LLVM  7.0.0svn
Go to the documentation of this file.
1 //===-- HexagonISelLowering.h - Hexagon DAG Lowering Interface --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that Hexagon uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
18 #include "Hexagon.h"
19 #include "llvm/ADT/StringRef.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/InlineAsm.h"
27 #include <cstdint>
28 #include <utility>
30 namespace llvm {
32 namespace HexagonISD {
34  enum NodeType : unsigned {
38  CONST32_GP, // For marking data present in GP.
39  ADDC, // Add with carry: (X, Y, Cin) -> (X+Y, Cout).
40  SUBC, // Sub with carry: (X, Y, Cin) -> (X+~Y+Cin, Cout).
43  AT_GOT, // Index in GOT.
44  AT_PCREL, // Offset relative to PC.
46  CALL, // Function call.
47  CALLnr, // Function call that does not return.
50  RET_FLAG, // Return with a flag operand.
51  BARRIER, // Memory barrier.
52  JT, // Jump table.
53  CP, // Constant pool.
56  VSPLAT, // Generic splat, selection depends on argument/return
57  // types.
72  D2P, // Convert 8-byte value to 8-bit predicate register. [*]
73  P2D, // Convert 8-bit predicate register to 8-byte value. [*]
74  V2Q, // Convert HVX vector to a vector predicate reg. [*]
75  Q2V, // Convert vector predicate to an HVX vector. [*]
76  // [*] The equivalence is defined as "Q <=> (V != 0)",
77  // where the != operation compares bytes.
78  // Note: V != 0 is implemented as V >u 0.
83  VSPLATW, // HVX splat of a 32-bit word with an arbitrary result type.
84  TYPECAST, // No-op that's used to convert between different legal
85  // types in a register.
86  VALIGN, // Align two vectors (in Op0, Op1) to one that would have
87  // been loaded from address in Op2.
88  VALIGNADDR, // Align vector address: Op0 & -Op1, except when it is
89  // an address in a vector load, then it's a no-op.
91  };
93 } // end namespace HexagonISD
95  class HexagonSubtarget;
98  int VarArgsFrameOffset; // Frame offset to start of varargs area.
99  const HexagonTargetMachine &HTM;
100  const HexagonSubtarget &Subtarget;
102  bool CanReturnSmallStruct(const Function* CalleeFn, unsigned& RetSize)
103  const;
104  void promoteLdStType(MVT VT, MVT PromotedLdStVT);
106  public:
107  explicit HexagonTargetLowering(const TargetMachine &TM,
108  const HexagonSubtarget &ST);
110  bool isHVXVectorType(MVT Ty) const;
112  /// IsEligibleForTailCallOptimization - Check whether the call is eligible
113  /// for tail call optimization. Targets which want to do tail call
114  /// optimization should implement this function.
115  bool IsEligibleForTailCallOptimization(SDValue Callee,
116  CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet,
117  bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs,
118  const SmallVectorImpl<SDValue> &OutVals,
119  const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const;
121  bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
122  MachineFunction &MF,
123  unsigned Intrinsic) const override;
125  bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
126  bool isTruncateFree(EVT VT1, EVT VT2) const override;
128  bool isCheapToSpeculateCttz() const override { return true; }
129  bool isCheapToSpeculateCtlz() const override { return true; }
130  bool isCtlzFast() const override { return true; }
132  bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
134  /// Return true if an FMA operation is faster than a pair of mul and add
135  /// instructions. fmuladd intrinsics will be expanded to FMAs when this
136  /// method returns true (and FMAs are legal), otherwise fmuladd is
137  /// expanded to mul + add.
138  bool isFMAFasterThanFMulAndFAdd(EVT) const override;
140  // Should we expand the build vector with shuffles?
141  bool shouldExpandBuildVectorWithShuffles(EVT VT,
142  unsigned DefinedValues) const override;
144  bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
145  TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
146  const override;
148  SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
149  void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
150  SelectionDAG &DAG) const override;
152  const char *getTargetNodeName(unsigned Opcode) const override;
154  SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
161  SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const;
162  SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
163  SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
167  SDValue LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) const;
168  SDValue LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const;
171  SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
172  SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
174  SDValue LowerEH_LABEL(SDValue Op, SelectionDAG &DAG) const;
175  SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
176  SDValue
177  LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
179  const SDLoc &dl, SelectionDAG &DAG,
180  SmallVectorImpl<SDValue> &InVals) const override;
181  SDValue LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const;
182  SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
183  SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
184  SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
185  SelectionDAG &DAG) const;
186  SDValue LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
187  SelectionDAG &DAG) const;
188  SDValue LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
189  SelectionDAG &DAG) const;
190  SDValue GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
191  GlobalAddressSDNode *GA, SDValue InFlag, EVT PtrVT,
192  unsigned ReturnReg, unsigned char OperandFlags) const;
193  SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const;
196  SmallVectorImpl<SDValue> &InVals) const override;
197  SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
198  CallingConv::ID CallConv, bool isVarArg,
200  const SDLoc &dl, SelectionDAG &DAG,
201  SmallVectorImpl<SDValue> &InVals,
202  const SmallVectorImpl<SDValue> &OutVals,
203  SDValue Callee) const;
205  SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
206  SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
207  SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
211  bool CanLowerReturn(CallingConv::ID CallConv,
212  MachineFunction &MF, bool isVarArg,
214  LLVMContext &Context) const override;
216  SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
218  const SmallVectorImpl<SDValue> &OutVals,
219  const SDLoc &dl, SelectionDAG &DAG) const override;
221  bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
223  /// If a physical register, this returns the register that receives the
224  /// exception address on entry to an EH pad.
225  unsigned
226  getExceptionPointerRegister(const Constant *PersonalityFn) const override {
227  return Hexagon::R0;
228  }
230  /// If a physical register, this returns the register that receives the
231  /// exception typeid on entry to a landing pad.
232  unsigned
233  getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
234  return Hexagon::R1;
235  }
237  SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
238  SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
239  SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
242  EVT VT) const override {
243  if (!VT.isVector())
244  return MVT::i1;
245  else
247  }
249  bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
252  SelectionDAG &DAG) const override;
254  ConstraintType getConstraintType(StringRef Constraint) const override;
256  std::pair<unsigned, const TargetRegisterClass *>
257  getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
258  StringRef Constraint, MVT VT) const override;
260  unsigned
261  getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
262  if (ConstraintCode == "o")
264  return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
265  }
267  // Intrinsics
268  SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
269  SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
270  /// isLegalAddressingMode - Return true if the addressing mode represented
271  /// by AM is legal for this target, for a load/store of the specified type.
272  /// The type may be VoidTy, in which case only return true if the addressing
273  /// mode is legal for a load/store of any legal type.
274  /// TODO: Handle pre/postinc as well.
275  bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
276  Type *Ty, unsigned AS,
277  Instruction *I = nullptr) const override;
278  /// Return true if folding a constant offset with the given GlobalAddress
279  /// is legal. It is frequently not legal in PIC relocation models.
280  bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
282  bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
284  /// isLegalICmpImmediate - Return true if the specified immediate is legal
285  /// icmp immediate, that is the target has icmp instructions which can
286  /// compare a register against the immediate without having to materialize
287  /// the immediate into a register.
288  bool isLegalICmpImmediate(int64_t Imm) const override;
290  EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
291  unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
292  MachineFunction &MF) const override;
294  bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
295  unsigned Align, bool *Fast) const override;
297  /// Returns relocation base for the given PIC jumptable.
298  SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG)
299  const override;
301  // Handling of atomic RMW instructions.
302  Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
303  AtomicOrdering Ord) const override;
304  Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
305  Value *Addr, AtomicOrdering Ord) const override;
306  AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
307  bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
308  bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;
312  return AtomicExpansionKind::LLSC;
313  }
315  private:
316  void initializeHVXLowering();
317  std::pair<SDValue,int> getBaseAndOffset(SDValue Addr) const;
319  bool getBuildVectorConstInts(ArrayRef<SDValue> Values, MVT VecTy,
320  SelectionDAG &DAG,
321  MutableArrayRef<ConstantInt*> Consts) const;
322  SDValue buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy,
323  SelectionDAG &DAG) const;
324  SDValue buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy,
325  SelectionDAG &DAG) const;
326  SDValue extractVector(SDValue VecV, SDValue IdxV, const SDLoc &dl,
327  MVT ValTy, MVT ResTy, SelectionDAG &DAG) const;
328  SDValue insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
329  const SDLoc &dl, MVT ValTy, SelectionDAG &DAG) const;
330  SDValue expandPredicate(SDValue Vec32, const SDLoc &dl,
331  SelectionDAG &DAG) const;
332  SDValue contractPredicate(SDValue Vec64, const SDLoc &dl,
333  SelectionDAG &DAG) const;
334  SDValue getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) const;
336  bool isUndef(SDValue Op) const {
337  if (Op.isMachineOpcode())
338  return Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF;
339  return Op.getOpcode() == ISD::UNDEF;
340  }
341  SDValue getInstr(unsigned MachineOpc, const SDLoc &dl, MVT Ty,
342  ArrayRef<SDValue> Ops, SelectionDAG &DAG) const {
343  SDNode *N = DAG.getMachineNode(MachineOpc, dl, Ty, Ops);
344  return SDValue(N, 0);
345  }
346  SDValue getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) const;
348  using VectorPair = std::pair<SDValue, SDValue>;
349  using TypePair = std::pair<MVT, MVT>;
351  SDValue getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
352  const SDLoc &dl, SelectionDAG &DAG) const;
354  MVT ty(SDValue Op) const {
355  return Op.getValueType().getSimpleVT();
356  }
357  TypePair ty(const VectorPair &Ops) const {
358  return { Ops.first.getValueType().getSimpleVT(),
359  Ops.second.getValueType().getSimpleVT() };
360  }
361  MVT tyScalar(MVT Ty) const {
362  if (!Ty.isVector())
363  return Ty;
364  return MVT::getIntegerVT(Ty.getSizeInBits());
365  }
366  MVT tyVector(MVT Ty, MVT ElemTy) const {
367  if (Ty.isVector() && Ty.getVectorElementType() == ElemTy)
368  return Ty;
369  unsigned TyWidth = Ty.getSizeInBits();
370  unsigned ElemWidth = ElemTy.getSizeInBits();
371  assert((TyWidth % ElemWidth) == 0);
372  return MVT::getVectorVT(ElemTy, TyWidth/ElemWidth);
373  }
375  MVT typeJoin(const TypePair &Tys) const;
376  TypePair typeSplit(MVT Ty) const;
377  MVT typeExtElem(MVT VecTy, unsigned Factor) const;
378  MVT typeTruncElem(MVT VecTy, unsigned Factor) const;
380  SDValue opJoin(const VectorPair &Ops, const SDLoc &dl,
381  SelectionDAG &DAG) const;
382  VectorPair opSplit(SDValue Vec, const SDLoc &dl, SelectionDAG &DAG) const;
383  SDValue opCastElem(SDValue Vec, MVT ElemTy, SelectionDAG &DAG) const;
385  bool isHvxSingleTy(MVT Ty) const;
386  bool isHvxPairTy(MVT Ty) const;
387  SDValue convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
388  SelectionDAG &DAG) const;
389  SDValue getIndexInWord32(SDValue Idx, MVT ElemTy, SelectionDAG &DAG) const;
390  SDValue getByteShuffle(const SDLoc &dl, SDValue Op0, SDValue Op1,
391  ArrayRef<int> Mask, SelectionDAG &DAG) const;
393  SDValue buildHvxVectorReg(ArrayRef<SDValue> Values, const SDLoc &dl,
394  MVT VecTy, SelectionDAG &DAG) const;
395  SDValue buildHvxVectorPred(ArrayRef<SDValue> Values, const SDLoc &dl,
396  MVT VecTy, SelectionDAG &DAG) const;
397  SDValue createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
398  unsigned BitBytes, bool ZeroFill,
399  SelectionDAG &DAG) const;
400  SDValue extractHvxElementReg(SDValue VecV, SDValue IdxV, const SDLoc &dl,
401  MVT ResTy, SelectionDAG &DAG) const;
402  SDValue extractHvxElementPred(SDValue VecV, SDValue IdxV, const SDLoc &dl,
403  MVT ResTy, SelectionDAG &DAG) const;
404  SDValue insertHvxElementReg(SDValue VecV, SDValue IdxV, SDValue ValV,
405  const SDLoc &dl, SelectionDAG &DAG) const;
406  SDValue insertHvxElementPred(SDValue VecV, SDValue IdxV, SDValue ValV,
407  const SDLoc &dl, SelectionDAG &DAG) const;
408  SDValue extractHvxSubvectorReg(SDValue VecV, SDValue IdxV, const SDLoc &dl,
409  MVT ResTy, SelectionDAG &DAG) const;
410  SDValue extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, const SDLoc &dl,
411  MVT ResTy, SelectionDAG &DAG) const;
412  SDValue insertHvxSubvectorReg(SDValue VecV, SDValue SubV, SDValue IdxV,
413  const SDLoc &dl, SelectionDAG &DAG) const;
414  SDValue insertHvxSubvectorPred(SDValue VecV, SDValue SubV, SDValue IdxV,
415  const SDLoc &dl, SelectionDAG &DAG) const;
416  SDValue extendHvxVectorPred(SDValue VecV, const SDLoc &dl, MVT ResTy,
417  bool ZeroExt, SelectionDAG &DAG) const;
419  SDValue LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) const;
420  SDValue LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) const;
421  SDValue LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) const;
422  SDValue LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) const;
423  SDValue LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) const;
424  SDValue LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) const;
426  SDValue LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const;
427  SDValue LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const;
428  SDValue LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const;
429  SDValue LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const;
430  SDValue LowerHvxMul(SDValue Op, SelectionDAG &DAG) const;
431  SDValue LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const;
432  SDValue LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const;
433  SDValue LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const;
434  SDValue LowerHvxShift(SDValue Op, SelectionDAG &DAG) const;
436  SDValue SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const;
437  SDValue SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const;
439  std::pair<const TargetRegisterClass*, uint8_t>
440  findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT)
441  const override;
443  bool isHvxOperation(SDValue Op) const;
444  SDValue LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const;
445  };
447 } // end namespace llvm
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG)
uint64_t CallInst * C
static MVT getIntegerVT(unsigned BitWidth)
static SDValue LowerCallResult(SDValue Chain, SDValue InFlag, const SmallVectorImpl< CCValAssign > &RVLocs, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals)
LowerCallResult - Lower the result values of a call into the appropriate copies out of appropriate ph...
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:829
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
EVT getValueType() const
Return the ValueType of the referenced return value.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg If BaseGV is null...
LLVMContext & Context
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget &Subtarget, SelectionDAG &DAG)
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static MVT getVectorVT(MVT VT, unsigned NumElements)
an instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:518
bool isVector() const
Return true if this is a vector value type.
unsigned getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget &Subtarget, SelectionDAG &DAG)
static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget, SelectionDAG &DAG)
This class represents a function call, abstracting a target machine&#39;s calling convention.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:253
Function Alias Analysis Results
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG)
unsigned const TargetRegisterInfo * TRI
bool isCheapToSpeculateCttz() const override
Return true if it is cheap to speculate a call to intrinsic cttz.
An instruction for reading from memory.
Definition: Instructions.h:168
an instruction that atomically reads a memory location, combines it with another value, and then stores the result back.
Definition: Instructions.h:681
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all...
unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG)
static unsigned getInt(StringRef R)
Get an unsigned integer, including error checks.
Definition: DataLayout.cpp:213
MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s), MachineInstr opcode, and operands.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:731
bool isCtlzFast() const override
Return true if ctlz instruction is fast.
static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI, const SparcSubtarget *Subtarget)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
Atomic ordering for LLVM&#39;s memory model.
unsigned getSizeInBits() const
static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG)
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
An instruction for storing to memory.
Definition: Instructions.h:310
virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const
amdgpu Simplify well known AMD library false Value * Callee
MVT getVectorElementType() const
UNDEF - An undefined node.
Definition: ISDOpcodes.h:178
bool isCheapToSpeculateCtlz() const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:291
Machine Value Type.
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG)
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
bool isMachineOpcode() const
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:273
This is an important base class in LLVM.
Definition: Constant.h:42
These are flags set on operands, but should be considered private, all access should go through the M...
Definition: MCInstrDesc.h:41
unsigned getMachineOpcode() const
static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, const SparcSubtarget *Subtarget)
static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, const SparcSubtarget *Subtarget)
Extended Value Type.
Definition: ValueTypes.h:34
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
This structure contains all information that is necessary for lowering calls.
unsigned getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
static bool isUndef(ArrayRef< int > Mask)
static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG)
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:222
static Value * insertVector(IRBuilderTy &IRB, Value *Old, Value *V, unsigned BeginIndex, const Twine &Name)
Definition: SROA.cpp:2170
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
EVT getSetCCResultType(const DataLayout &, LLVMContext &C, EVT VT) const override
Return the ValueType of the result of SETCC operations.
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT...
Definition: ValueTypes.h:73
static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget &Subtarget, SelectionDAG &DAG)
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:43
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget, SelectionDAG &DAG)
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:151
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget &Subtarget, SelectionDAG &DAG)
unsigned getOpcode() const
static Value * extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, unsigned EndIndex, const Twine &Name)
Definition: SROA.cpp:2144
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
LLVM Value Representation.
Definition: Value.h:73
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:59
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation...
This file describes how to lower LLVM code to machine code.
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:866