LLVM  8.0.0svn
Instruction.h
Go to the documentation of this file.
1 //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the Instruction class, which is the
11 // base class for all of the LLVM instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_INSTRUCTION_H
16 #define LLVM_IR_INSTRUCTION_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/IR/User.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <cstdint>
30 #include <utility>
31 
32 namespace llvm {
33 
34 class BasicBlock;
35 class FastMathFlags;
36 class MDNode;
37 class Module;
38 struct AAMDNodes;
39 
40 template <> struct ilist_alloc_traits<Instruction> {
41  static inline void deleteNode(Instruction *V);
42 };
43 
44 class Instruction : public User,
45  public ilist_node_with_parent<Instruction, BasicBlock> {
46  BasicBlock *Parent;
47  DebugLoc DbgLoc; // 'dbg' Metadata cache.
48 
49  enum {
50  /// This is a bit stored in the SubClassData field which indicates whether
51  /// this instruction has metadata attached to it or not.
52  HasMetadataBit = 1 << 15
53  };
54 
55 protected:
56  ~Instruction(); // Use deleteValue() to delete a generic Instruction.
57 
58 public:
59  Instruction(const Instruction &) = delete;
60  Instruction &operator=(const Instruction &) = delete;
61 
62  /// Specialize the methods defined in Value, as we know that an instruction
63  /// can only be used by other instructions.
64  Instruction *user_back() { return cast<Instruction>(*user_begin());}
65  const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
66 
67  inline const BasicBlock *getParent() const { return Parent; }
68  inline BasicBlock *getParent() { return Parent; }
69 
70  /// Return the module owning the function this instruction belongs to
71  /// or nullptr it the function does not have a module.
72  ///
73  /// Note: this is undefined behavior if the instruction does not have a
74  /// parent, or the parent basic block does not have a parent function.
75  const Module *getModule() const;
77  return const_cast<Module *>(
78  static_cast<const Instruction *>(this)->getModule());
79  }
80 
81  /// Return the function this instruction belongs to.
82  ///
83  /// Note: it is undefined behavior to call this on an instruction not
84  /// currently inserted into a function.
85  const Function *getFunction() const;
87  return const_cast<Function *>(
88  static_cast<const Instruction *>(this)->getFunction());
89  }
90 
91  /// This method unlinks 'this' from the containing basic block, but does not
92  /// delete it.
93  void removeFromParent();
94 
95  /// This method unlinks 'this' from the containing basic block and deletes it.
96  ///
97  /// \returns an iterator pointing to the element after the erased one
99 
100  /// Insert an unlinked instruction into a basic block immediately before
101  /// the specified instruction.
102  void insertBefore(Instruction *InsertPos);
103 
104  /// Insert an unlinked instruction into a basic block immediately after the
105  /// specified instruction.
106  void insertAfter(Instruction *InsertPos);
107 
108  /// Unlink this instruction from its current basic block and insert it into
109  /// the basic block that MovePos lives in, right before MovePos.
110  void moveBefore(Instruction *MovePos);
111 
112  /// Unlink this instruction and insert into BB before I.
113  ///
114  /// \pre I is a valid iterator into BB.
116 
117  /// Unlink this instruction from its current basic block and insert it into
118  /// the basic block that MovePos lives in, right after MovePos.
119  void moveAfter(Instruction *MovePos);
120 
121  //===--------------------------------------------------------------------===//
122  // Subclass classification.
123  //===--------------------------------------------------------------------===//
124 
125  /// Returns a member of one of the enums like Instruction::Add.
126  unsigned getOpcode() const { return getValueID() - InstructionVal; }
127 
128  const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
129  bool isTerminator() const { return isTerminator(getOpcode()); }
130  bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
131  bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
132  bool isShift() { return isShift(getOpcode()); }
133  bool isCast() const { return isCast(getOpcode()); }
134  bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
135  bool isExceptionalTerminator() const {
136  return isExceptionalTerminator(getOpcode());
137  }
138 
139  static const char* getOpcodeName(unsigned OpCode);
140 
141  static inline bool isTerminator(unsigned OpCode) {
142  return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
143  }
144 
145  static inline bool isBinaryOp(unsigned Opcode) {
146  return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
147  }
148 
149  static inline bool isIntDivRem(unsigned Opcode) {
150  return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
151  }
152 
153  /// Determine if the Opcode is one of the shift instructions.
154  static inline bool isShift(unsigned Opcode) {
155  return Opcode >= Shl && Opcode <= AShr;
156  }
157 
158  /// Return true if this is a logical shift left or a logical shift right.
159  inline bool isLogicalShift() const {
160  return getOpcode() == Shl || getOpcode() == LShr;
161  }
162 
163  /// Return true if this is an arithmetic shift right.
164  inline bool isArithmeticShift() const {
165  return getOpcode() == AShr;
166  }
167 
168  /// Determine if the Opcode is and/or/xor.
169  static inline bool isBitwiseLogicOp(unsigned Opcode) {
170  return Opcode == And || Opcode == Or || Opcode == Xor;
171  }
172 
173  /// Return true if this is and/or/xor.
174  inline bool isBitwiseLogicOp() const {
175  return isBitwiseLogicOp(getOpcode());
176  }
177 
178  /// Determine if the OpCode is one of the CastInst instructions.
179  static inline bool isCast(unsigned OpCode) {
180  return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
181  }
182 
183  /// Determine if the OpCode is one of the FuncletPadInst instructions.
184  static inline bool isFuncletPad(unsigned OpCode) {
185  return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
186  }
187 
188  /// Returns true if the OpCode is a terminator related to exception handling.
189  static inline bool isExceptionalTerminator(unsigned OpCode) {
190  switch (OpCode) {
191  case Instruction::CatchSwitch:
192  case Instruction::CatchRet:
193  case Instruction::CleanupRet:
194  case Instruction::Invoke:
195  case Instruction::Resume:
196  return true;
197  default:
198  return false;
199  }
200  }
201 
202  //===--------------------------------------------------------------------===//
203  // Metadata manipulation.
204  //===--------------------------------------------------------------------===//
205 
206  /// Return true if this instruction has any metadata attached to it.
207  bool hasMetadata() const { return DbgLoc || hasMetadataHashEntry(); }
208 
209  /// Return true if this instruction has metadata attached to it other than a
210  /// debug location.
212  return hasMetadataHashEntry();
213  }
214 
215  /// Get the metadata of given kind attached to this Instruction.
216  /// If the metadata is not found then return null.
217  MDNode *getMetadata(unsigned KindID) const {
218  if (!hasMetadata()) return nullptr;
219  return getMetadataImpl(KindID);
220  }
221 
222  /// Get the metadata of given kind attached to this Instruction.
223  /// If the metadata is not found then return null.
225  if (!hasMetadata()) return nullptr;
226  return getMetadataImpl(Kind);
227  }
228 
229  /// Get all metadata attached to this Instruction. The first element of each
230  /// pair returned is the KindID, the second element is the metadata value.
231  /// This list is returned sorted by the KindID.
232  void
233  getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
234  if (hasMetadata())
235  getAllMetadataImpl(MDs);
236  }
237 
238  /// This does the same thing as getAllMetadata, except that it filters out the
239  /// debug location.
241  SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
243  getAllMetadataOtherThanDebugLocImpl(MDs);
244  }
245 
246  /// Fills the AAMDNodes structure with AA metadata from this instruction.
247  /// When Merge is true, the existing AA metadata is merged with that from this
248  /// instruction providing the most-general result.
249  void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
250 
251  /// Set the metadata of the specified kind to the specified node. This updates
252  /// or replaces metadata if already present, or removes it if Node is null.
253  void setMetadata(unsigned KindID, MDNode *Node);
254  void setMetadata(StringRef Kind, MDNode *Node);
255 
256  /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
257  /// specifies the list of meta data that needs to be copied. If \p WL is
258  /// empty, all meta data will be copied.
259  void copyMetadata(const Instruction &SrcInst,
261 
262  /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
263  /// has three operands (including name string), swap the order of the
264  /// metadata.
265  void swapProfMetadata();
266 
267  /// Drop all unknown metadata except for debug locations.
268  /// @{
269  /// Passes are required to drop metadata they don't understand. This is a
270  /// convenience method for passes to do so.
271  void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
273  return dropUnknownNonDebugMetadata(None);
274  }
275  void dropUnknownNonDebugMetadata(unsigned ID1) {
276  return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
277  }
278  void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
279  unsigned IDs[] = {ID1, ID2};
280  return dropUnknownNonDebugMetadata(IDs);
281  }
282  /// @}
283 
284  /// Sets the metadata on this instruction from the AAMDNodes structure.
285  void setAAMetadata(const AAMDNodes &N);
286 
287  /// Retrieve the raw weight values of a conditional branch or select.
288  /// Returns true on success with profile weights filled in.
289  /// Returns false if no metadata or invalid metadata was found.
290  bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
291 
292  /// Retrieve total raw weight values of a branch.
293  /// Returns true on success with profile total weights filled in.
294  /// Returns false if no metadata was found.
295  bool extractProfTotalWeight(uint64_t &TotalVal) const;
296 
297  /// Updates branch_weights metadata by scaling it by \p S / \p T.
298  void updateProfWeight(uint64_t S, uint64_t T);
299 
300  /// Sets the branch_weights metadata to \p W for CallInst.
301  void setProfWeight(uint64_t W);
302 
303  /// Set the debug location information for this instruction.
304  void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
305 
306  /// Return the debug location for this node as a DebugLoc.
307  const DebugLoc &getDebugLoc() const { return DbgLoc; }
308 
309  /// Set or clear the nuw flag on this instruction, which must be an operator
310  /// which supports this flag. See LangRef.html for the meaning of this flag.
311  void setHasNoUnsignedWrap(bool b = true);
312 
313  /// Set or clear the nsw flag on this instruction, which must be an operator
314  /// which supports this flag. See LangRef.html for the meaning of this flag.
315  void setHasNoSignedWrap(bool b = true);
316 
317  /// Set or clear the exact flag on this instruction, which must be an operator
318  /// which supports this flag. See LangRef.html for the meaning of this flag.
319  void setIsExact(bool b = true);
320 
321  /// Determine whether the no unsigned wrap flag is set.
322  bool hasNoUnsignedWrap() const;
323 
324  /// Determine whether the no signed wrap flag is set.
325  bool hasNoSignedWrap() const;
326 
327  /// Drops flags that may cause this instruction to evaluate to poison despite
328  /// having non-poison inputs.
329  void dropPoisonGeneratingFlags();
330 
331  /// Determine whether the exact flag is set.
332  bool isExact() const;
333 
334  /// Set or clear all fast-math-flags on this instruction, which must be an
335  /// operator which supports this flag. See LangRef.html for the meaning of
336  /// this flag.
337  void setFast(bool B);
338 
339  /// Set or clear the reassociation flag on this instruction, which must be
340  /// an operator which supports this flag. See LangRef.html for the meaning of
341  /// this flag.
342  void setHasAllowReassoc(bool B);
343 
344  /// Set or clear the no-nans flag on this instruction, which must be an
345  /// operator which supports this flag. See LangRef.html for the meaning of
346  /// this flag.
347  void setHasNoNaNs(bool B);
348 
349  /// Set or clear the no-infs flag on this instruction, which must be an
350  /// operator which supports this flag. See LangRef.html for the meaning of
351  /// this flag.
352  void setHasNoInfs(bool B);
353 
354  /// Set or clear the no-signed-zeros flag on this instruction, which must be
355  /// an operator which supports this flag. See LangRef.html for the meaning of
356  /// this flag.
357  void setHasNoSignedZeros(bool B);
358 
359  /// Set or clear the allow-reciprocal flag on this instruction, which must be
360  /// an operator which supports this flag. See LangRef.html for the meaning of
361  /// this flag.
362  void setHasAllowReciprocal(bool B);
363 
364  /// Set or clear the approximate-math-functions flag on this instruction,
365  /// which must be an operator which supports this flag. See LangRef.html for
366  /// the meaning of this flag.
367  void setHasApproxFunc(bool B);
368 
369  /// Convenience function for setting multiple fast-math flags on this
370  /// instruction, which must be an operator which supports these flags. See
371  /// LangRef.html for the meaning of these flags.
372  void setFastMathFlags(FastMathFlags FMF);
373 
374  /// Convenience function for transferring all fast-math flag values to this
375  /// instruction, which must be an operator which supports these flags. See
376  /// LangRef.html for the meaning of these flags.
377  void copyFastMathFlags(FastMathFlags FMF);
378 
379  /// Determine whether all fast-math-flags are set.
380  bool isFast() const;
381 
382  /// Determine whether the allow-reassociation flag is set.
383  bool hasAllowReassoc() const;
384 
385  /// Determine whether the no-NaNs flag is set.
386  bool hasNoNaNs() const;
387 
388  /// Determine whether the no-infs flag is set.
389  bool hasNoInfs() const;
390 
391  /// Determine whether the no-signed-zeros flag is set.
392  bool hasNoSignedZeros() const;
393 
394  /// Determine whether the allow-reciprocal flag is set.
395  bool hasAllowReciprocal() const;
396 
397  /// Determine whether the allow-contract flag is set.
398  bool hasAllowContract() const;
399 
400  /// Determine whether the approximate-math-functions flag is set.
401  bool hasApproxFunc() const;
402 
403  /// Convenience function for getting all the fast-math flags, which must be an
404  /// operator which supports these flags. See LangRef.html for the meaning of
405  /// these flags.
406  FastMathFlags getFastMathFlags() const;
407 
408  /// Copy I's fast-math flags
409  void copyFastMathFlags(const Instruction *I);
410 
411  /// Convenience method to copy supported exact, fast-math, and (optionally)
412  /// wrapping flags from V to this instruction.
413  void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
414 
415  /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
416  /// V and this instruction.
417  void andIRFlags(const Value *V);
418 
419  /// Merge 2 debug locations and apply it to the Instruction. If the
420  /// instruction is a CallIns, we need to traverse the inline chain to find
421  /// the common scope. This is not efficient for N-way merging as each time
422  /// you merge 2 iterations, you need to rebuild the hashmap to find the
423  /// common scope. However, we still choose this API because:
424  /// 1) Simplicity: it takes 2 locations instead of a list of locations.
425  /// 2) In worst case, it increases the complexity from O(N*I) to
426  /// O(2*N*I), where N is # of Instructions to merge, and I is the
427  /// maximum level of inline stack. So it is still linear.
428  /// 3) Merging of call instructions should be extremely rare in real
429  /// applications, thus the N-way merging should be in code path.
430  /// The DebugLoc attached to this instruction will be overwritten by the
431  /// merged DebugLoc.
432  void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
433 
434 private:
435  /// Return true if we have an entry in the on-the-side metadata hash.
436  bool hasMetadataHashEntry() const {
437  return (getSubclassDataFromValue() & HasMetadataBit) != 0;
438  }
439 
440  // These are all implemented in Metadata.cpp.
441  MDNode *getMetadataImpl(unsigned KindID) const;
442  MDNode *getMetadataImpl(StringRef Kind) const;
443  void
444  getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
445  void getAllMetadataOtherThanDebugLocImpl(
446  SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
447  /// Clear all hashtable-based metadata from this instruction.
448  void clearMetadataHashEntries();
449 
450 public:
451  //===--------------------------------------------------------------------===//
452  // Predicates and helper methods.
453  //===--------------------------------------------------------------------===//
454 
455  /// Return true if the instruction is associative:
456  ///
457  /// Associative operators satisfy: x op (y op z) === (x op y) op z
458  ///
459  /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
460  ///
461  bool isAssociative() const LLVM_READONLY;
462  static bool isAssociative(unsigned Opcode) {
463  return Opcode == And || Opcode == Or || Opcode == Xor ||
464  Opcode == Add || Opcode == Mul;
465  }
466 
467  /// Return true if the instruction is commutative:
468  ///
469  /// Commutative operators satisfy: (x op y) === (y op x)
470  ///
471  /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
472  /// applied to any type.
473  ///
474  bool isCommutative() const { return isCommutative(getOpcode()); }
475  static bool isCommutative(unsigned Opcode) {
476  switch (Opcode) {
477  case Add: case FAdd:
478  case Mul: case FMul:
479  case And: case Or: case Xor:
480  return true;
481  default:
482  return false;
483  }
484  }
485 
486  /// Return true if the instruction is idempotent:
487  ///
488  /// Idempotent operators satisfy: x op x === x
489  ///
490  /// In LLVM, the And and Or operators are idempotent.
491  ///
492  bool isIdempotent() const { return isIdempotent(getOpcode()); }
493  static bool isIdempotent(unsigned Opcode) {
494  return Opcode == And || Opcode == Or;
495  }
496 
497  /// Return true if the instruction is nilpotent:
498  ///
499  /// Nilpotent operators satisfy: x op x === Id,
500  ///
501  /// where Id is the identity for the operator, i.e. a constant such that
502  /// x op Id === x and Id op x === x for all x.
503  ///
504  /// In LLVM, the Xor operator is nilpotent.
505  ///
506  bool isNilpotent() const { return isNilpotent(getOpcode()); }
507  static bool isNilpotent(unsigned Opcode) {
508  return Opcode == Xor;
509  }
510 
511  /// Return true if this instruction may modify memory.
512  bool mayWriteToMemory() const;
513 
514  /// Return true if this instruction may read memory.
515  bool mayReadFromMemory() const;
516 
517  /// Return true if this instruction may read or write memory.
518  bool mayReadOrWriteMemory() const {
519  return mayReadFromMemory() || mayWriteToMemory();
520  }
521 
522  /// Return true if this instruction has an AtomicOrdering of unordered or
523  /// higher.
524  bool isAtomic() const;
525 
526  /// Return true if this atomic instruction loads from memory.
527  bool hasAtomicLoad() const;
528 
529  /// Return true if this atomic instruction stores to memory.
530  bool hasAtomicStore() const;
531 
532  /// Return true if this instruction may throw an exception.
533  bool mayThrow() const;
534 
535  /// Return true if this instruction behaves like a memory fence: it can load
536  /// or store to memory location without being given a memory location.
537  bool isFenceLike() const {
538  switch (getOpcode()) {
539  default:
540  return false;
541  // This list should be kept in sync with the list in mayWriteToMemory for
542  // all opcodes which don't have a memory location.
543  case Instruction::Fence:
544  case Instruction::CatchPad:
545  case Instruction::CatchRet:
546  case Instruction::Call:
547  case Instruction::Invoke:
548  return true;
549  }
550  }
551 
552  /// Return true if the instruction may have side effects.
553  ///
554  /// Note that this does not consider malloc and alloca to have side
555  /// effects because the newly allocated memory is completely invisible to
556  /// instructions which don't use the returned value. For cases where this
557  /// matters, isSafeToSpeculativelyExecute may be more appropriate.
558  bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); }
559 
560  /// Return true if the instruction can be removed if the result is unused.
561  ///
562  /// When constant folding some instructions cannot be removed even if their
563  /// results are unused. Specifically terminator instructions and calls that
564  /// may have side effects cannot be removed without semantically changing the
565  /// generated program.
566  bool isSafeToRemove() const;
567 
568  /// Return true if the instruction is a variety of EH-block.
569  bool isEHPad() const {
570  switch (getOpcode()) {
571  case Instruction::CatchSwitch:
572  case Instruction::CatchPad:
573  case Instruction::CleanupPad:
574  case Instruction::LandingPad:
575  return true;
576  default:
577  return false;
578  }
579  }
580 
581  /// Return a pointer to the next non-debug instruction in the same basic
582  /// block as 'this', or nullptr if no such instruction exists.
583  const Instruction *getNextNonDebugInstruction() const;
585  return const_cast<Instruction *>(
586  static_cast<const Instruction *>(this)->getNextNonDebugInstruction());
587  }
588 
589  /// Create a copy of 'this' instruction that is identical in all ways except
590  /// the following:
591  /// * The instruction has no parent
592  /// * The instruction has no name
593  ///
594  Instruction *clone() const;
595 
596  /// Return true if the specified instruction is exactly identical to the
597  /// current one. This means that all operands match and any extra information
598  /// (e.g. load is volatile) agree.
599  bool isIdenticalTo(const Instruction *I) const;
600 
601  /// This is like isIdenticalTo, except that it ignores the
602  /// SubclassOptionalData flags, which may specify conditions under which the
603  /// instruction's result is undefined.
604  bool isIdenticalToWhenDefined(const Instruction *I) const;
605 
606  /// When checking for operation equivalence (using isSameOperationAs) it is
607  /// sometimes useful to ignore certain attributes.
609  /// Check for equivalence ignoring load/store alignment.
610  CompareIgnoringAlignment = 1<<0,
611  /// Check for equivalence treating a type and a vector of that type
612  /// as equivalent.
613  CompareUsingScalarTypes = 1<<1
614  };
615 
616  /// This function determines if the specified instruction executes the same
617  /// operation as the current one. This means that the opcodes, type, operand
618  /// types and any other factors affecting the operation must be the same. This
619  /// is similar to isIdenticalTo except the operands themselves don't have to
620  /// be identical.
621  /// @returns true if the specified instruction is the same operation as
622  /// the current one.
623  /// Determine if one instruction is the same operation as another.
624  bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
625 
626  /// Return true if there are any uses of this instruction in blocks other than
627  /// the specified block. Note that PHI nodes are considered to evaluate their
628  /// operands in the corresponding predecessor block.
629  bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
630 
631  /// Return the number of successors that this instruction has. The instruction
632  /// must be a terminator.
633  unsigned getNumSuccessors() const;
634 
635  /// Return the specified successor. This instruction must be a terminator.
636  BasicBlock *getSuccessor(unsigned Idx) const;
637 
638  /// Update the specified successor to point at the provided block. This
639  /// instruction must be a terminator.
640  void setSuccessor(unsigned Idx, BasicBlock *BB);
641 
642  /// Methods for support type inquiry through isa, cast, and dyn_cast:
643  static bool classof(const Value *V) {
644  return V->getValueID() >= Value::InstructionVal;
645  }
646 
647  //----------------------------------------------------------------------
648  // Exported enumerations.
649  //
650  enum TermOps { // These terminate basic blocks
651 #define FIRST_TERM_INST(N) TermOpsBegin = N,
652 #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
653 #define LAST_TERM_INST(N) TermOpsEnd = N+1
654 #include "llvm/IR/Instruction.def"
655  };
656 
657  enum BinaryOps {
658 #define FIRST_BINARY_INST(N) BinaryOpsBegin = N,
659 #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
660 #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1
661 #include "llvm/IR/Instruction.def"
662  };
663 
664  enum MemoryOps {
665 #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N,
666 #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
667 #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1
668 #include "llvm/IR/Instruction.def"
669  };
670 
671  enum CastOps {
672 #define FIRST_CAST_INST(N) CastOpsBegin = N,
673 #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
674 #define LAST_CAST_INST(N) CastOpsEnd = N+1
675 #include "llvm/IR/Instruction.def"
676  };
677 
679 #define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N,
680 #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
681 #define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1
682 #include "llvm/IR/Instruction.def"
683  };
684 
685  enum OtherOps {
686 #define FIRST_OTHER_INST(N) OtherOpsBegin = N,
687 #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
688 #define LAST_OTHER_INST(N) OtherOpsEnd = N+1
689 #include "llvm/IR/Instruction.def"
690  };
691 
692 private:
694 
695  // Shadow Value::setValueSubclassData with a private forwarding method so that
696  // subclasses cannot accidentally use it.
697  void setValueSubclassData(unsigned short D) {
699  }
700 
701  unsigned short getSubclassDataFromValue() const {
703  }
704 
705  void setHasMetadataHashEntry(bool V) {
706  setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) |
707  (V ? HasMetadataBit : 0));
708  }
709 
710  void setParent(BasicBlock *P);
711 
712 protected:
713  // Instruction subclasses can stick up to 15 bits of stuff into the
714  // SubclassData field of instruction with these members.
715 
716  // Verify that only the low 15 bits are used.
717  void setInstructionSubclassData(unsigned short D) {
718  assert((D & HasMetadataBit) == 0 && "Out of range value put into field");
719  setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D);
720  }
721 
723  return getSubclassDataFromValue() & ~HasMetadataBit;
724  }
725 
726  Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
727  Instruction *InsertBefore = nullptr);
728  Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
729  BasicBlock *InsertAtEnd);
730 
731 private:
732  /// Create a copy of this instruction.
733  Instruction *cloneImpl() const;
734 };
735 
737  V->deleteValue();
738 }
739 
740 } // end namespace llvm
741 
742 #endif // LLVM_IR_INSTRUCTION_H
Function * getFunction()
Definition: Instruction.h:86
void getAllMetadataOtherThanDebugLoc(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
This does the same thing as getAllMetadata, except that it filters out the debug location.
Definition: Instruction.h:240
unsigned short getSubclassDataFromValue() const
Definition: Value.h:655
unsigned getValueID() const
Return an ID for the concrete type of this object.
Definition: Value.h:464
bool isFuncletPad() const
Definition: Instruction.h:134
bool isFenceLike() const
Return true if this instruction behaves like a memory fence: it can load or store to memory location ...
Definition: Instruction.h:537
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
unsigned getSubclassDataFromInstruction() const
Definition: Instruction.h:722
Various leaf nodes.
Definition: ISDOpcodes.h:60
bool hasMetadataOtherThanDebugLoc() const
Return true if this instruction has metadata attached to it other than a debug location.
Definition: Instruction.h:211
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:64
bool isIdempotent() const
Return true if the instruction is idempotent:
Definition: Instruction.h:492
bool mayThrow(const MachineInstr &MI)
MDNode * getMetadata(StringRef Kind) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:224
bool isTerminator() const
Definition: Instruction.h:129
void deleteValue()
Delete a pointer to a generic Value.
Definition: Value.cpp:99
A debug info location.
Definition: DebugLoc.h:34
Metadata node.
Definition: Metadata.h:864
bool isArithmeticShift() const
Return true if this is an arithmetic shift right.
Definition: Instruction.h:164
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
Definition: Instruction.h:169
static bool isShift(unsigned Opcode)
Determine if the Opcode is one of the shift instructions.
Definition: Instruction.h:154
static bool isCommutative(unsigned Opcode)
Definition: Instruction.h:475
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:451
bool isNilpotent() const
Return true if the instruction is nilpotent:
Definition: Instruction.h:506
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
Definition: Instruction.h:207
void dropUnknownNonDebugMetadata(unsigned ID1)
Definition: Instruction.h:275
OperationEquivalenceFlags
When checking for operation equivalence (using isSameOperationAs) it is sometimes useful to ignore ce...
Definition: Instruction.h:608
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
Definition: Instruction.h:174
void dropUnknownNonDebugMetadata()
Definition: Instruction.h:272
static bool isBinaryOp(unsigned Opcode)
Definition: Instruction.h:145
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:217
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
void setInstructionSubclassData(unsigned short D)
Definition: Instruction.h:717
Instruction * getNextNonDebugInstruction()
Definition: Instruction.h:584
static bool hasMetadataOtherThanDebugLoc(const GlobalVariable *GV)
static Function * getFunction(Constant *C)
Definition: Evaluator.cpp:221
Debug location.
BasicBlock * getParent()
Definition: Instruction.h:68
static bool isTerminator(unsigned OpCode)
Definition: Instruction.h:141
Use delete by default for iplist and ilist.
Definition: ilist.h:41
#define P(N)
An ilist node that can access its parent list.
Definition: ilist_node.h:257
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:304
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
const char * getOpcodeName() const
Definition: Instruction.h:128
bool mayHaveSideEffects() const
Return true if the instruction may have side effects.
Definition: Instruction.h:558
static bool classof(const Value *V)
Methods for support type inquiry through isa, cast, and dyn_cast:
Definition: Instruction.h:643
bool isBinaryOp() const
Definition: Instruction.h:130
R600 Clause Merge
bool isExceptionalTerminator() const
Definition: Instruction.h:135
bool isCast() const
Definition: Instruction.h:133
static bool isAtomic(Instruction *I)
C setMetadata(LLVMContext::MD_range, MDNode::get(Context, LowAndHigh))
Module * getModule()
Definition: Instruction.h:76
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:64
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:644
static bool isCast(unsigned OpCode)
Determine if the OpCode is one of the CastInst instructions.
Definition: Instruction.h:179
void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2)
Definition: Instruction.h:278
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static void deleteNode(NodeTy *V)
Definition: ilist.h:42
bool isCommutative() const
Return true if the instruction is commutative:
Definition: Instruction.h:474
void setValueSubclassData(unsigned short D)
Definition: Value.h:656
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
Get all metadata attached to this Instruction.
Definition: Instruction.h:233
static bool isExceptionalTerminator(unsigned OpCode)
Returns true if the OpCode is a terminator related to exception handling.
Definition: Instruction.h:189
const Instruction * user_back() const
Definition: Instruction.h:65
List that automatically updates parent links and symbol tables.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:307
static bool isNilpotent(unsigned Opcode)
Definition: Instruction.h:507
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
#define LLVM_READONLY
Definition: Compiler.h:184
bool isLogicalShift() const
Return true if this is a logical shift left or a logical shift right.
Definition: Instruction.h:159
static bool isFuncletPad(unsigned OpCode)
Determine if the OpCode is one of the FuncletPadInst instructions.
Definition: Instruction.h:184
const unsigned Kind
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:73
static bool isIntDivRem(unsigned Opcode)
Definition: Instruction.h:149
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
Definition: Instruction.h:569
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:160
bool isIntDivRem() const
Definition: Instruction.h:131
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
static bool isIdempotent(unsigned Opcode)
Definition: Instruction.h:493
static bool isAssociative(const COFFSection &Section)
static bool isAssociative(unsigned Opcode)
Definition: Instruction.h:462
const BasicBlock * getParent() const
Definition: Instruction.h:67
bool mayReadOrWriteMemory() const
Return true if this instruction may read or write memory.
Definition: Instruction.h:518