LLVM 19.0.0git
InterleavedAccessPass.cpp
Go to the documentation of this file.
1//===- InterleavedAccessPass.cpp ------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Interleaved Access pass, which identifies
10// interleaved memory accesses and transforms them into target specific
11// intrinsics.
12//
13// An interleaved load reads data from memory into several vectors, with
14// DE-interleaving the data on a factor. An interleaved store writes several
15// vectors to memory with RE-interleaving the data on a factor.
16//
17// As interleaved accesses are difficult to identified in CodeGen (mainly
18// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19// IR), we identify and transform them to intrinsics in this pass so the
20// intrinsics can be easily matched into target specific instructions later in
21// CodeGen.
22//
23// E.g. An interleaved load (Factor = 2):
24// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
27//
28// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29// intrinsic in ARM backend.
30//
31// In X86, this can be further optimized into a set of target
32// specific loads followed by an optimized sequence of shuffles.
33//
34// E.g. An interleaved store (Factor = 3):
35// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37// store <12 x i32> %i.vec, <12 x i32>* %ptr
38//
39// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40// intrinsic in ARM backend.
41//
42// Similarly, a set of interleaved stores can be transformed into an optimized
43// sequence of shuffles followed by a set of target specific stores for X86.
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/ADT/ArrayRef.h"
48#include "llvm/ADT/DenseMap.h"
49#include "llvm/ADT/SetVector.h"
55#include "llvm/IR/Constants.h"
56#include "llvm/IR/Dominators.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/IRBuilder.h"
60#include "llvm/IR/Instruction.h"
64#include "llvm/Pass.h"
67#include "llvm/Support/Debug.h"
72#include <cassert>
73#include <utility>
74
75using namespace llvm;
76
77#define DEBUG_TYPE "interleaved-access"
78
80 "lower-interleaved-accesses",
81 cl::desc("Enable lowering interleaved accesses to intrinsics"),
82 cl::init(true), cl::Hidden);
83
84namespace {
85
86class InterleavedAccessImpl {
87 friend class InterleavedAccess;
88
89public:
90 InterleavedAccessImpl() = default;
91 InterleavedAccessImpl(DominatorTree *DT, const TargetLowering *TLI)
92 : DT(DT), TLI(TLI), MaxFactor(TLI->getMaxSupportedInterleaveFactor()) {}
94
95private:
96 DominatorTree *DT = nullptr;
97 const TargetLowering *TLI = nullptr;
98
99 /// The maximum supported interleave factor.
100 unsigned MaxFactor = 0u;
101
102 /// Transform an interleaved load into target specific intrinsics.
103 bool lowerInterleavedLoad(LoadInst *LI,
105
106 /// Transform an interleaved store into target specific intrinsics.
107 bool lowerInterleavedStore(StoreInst *SI,
109
110 /// Transform a load and a deinterleave intrinsic into target specific
111 /// instructions.
112 bool lowerDeinterleaveIntrinsic(IntrinsicInst *II,
114
115 /// Transform an interleave intrinsic and a store into target specific
116 /// instructions.
117 bool lowerInterleaveIntrinsic(IntrinsicInst *II,
119
120 /// Returns true if the uses of an interleaved load by the
121 /// extractelement instructions in \p Extracts can be replaced by uses of the
122 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
123 /// replacements are also performed.
124 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
126
127 /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
128 /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
129 /// interleaving load. Any newly created shuffles that operate on \p LI will
130 /// be added to \p Shuffles. Returns true, if any changes to the IR have been
131 /// made.
132 bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
134 LoadInst *LI);
135};
136
137class InterleavedAccess : public FunctionPass {
138 InterleavedAccessImpl Impl;
139
140public:
141 static char ID;
142
143 InterleavedAccess() : FunctionPass(ID) {
145 }
146
147 StringRef getPassName() const override { return "Interleaved Access Pass"; }
148
149 bool runOnFunction(Function &F) override;
150
151 void getAnalysisUsage(AnalysisUsage &AU) const override {
153 AU.setPreservesCFG();
154 }
155};
156
157} // end anonymous namespace.
158
161 auto *DT = &FAM.getResult<DominatorTreeAnalysis>(F);
162 auto *TLI = TM->getSubtargetImpl(F)->getTargetLowering();
163 InterleavedAccessImpl Impl(DT, TLI);
164 bool Changed = Impl.runOnFunction(F);
165
166 if (!Changed)
167 return PreservedAnalyses::all();
168
171 return PA;
172}
173
174char InterleavedAccess::ID = 0;
175
176bool InterleavedAccess::runOnFunction(Function &F) {
177 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
178 if (!TPC || !LowerInterleavedAccesses)
179 return false;
180
181 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
182
183 Impl.DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
184 auto &TM = TPC->getTM<TargetMachine>();
185 Impl.TLI = TM.getSubtargetImpl(F)->getTargetLowering();
186 Impl.MaxFactor = Impl.TLI->getMaxSupportedInterleaveFactor();
187
188 return Impl.runOnFunction(F);
189}
190
192 "Lower interleaved memory accesses to target specific intrinsics", false,
193 false)
196 "Lower interleaved memory accesses to target specific intrinsics", false,
197 false)
198
200 return new InterleavedAccess();
201}
202
203/// Check if the mask is a DE-interleave mask for an interleaved load.
204///
205/// E.g. DE-interleave masks (Factor = 2) could be:
206/// <0, 2, 4, 6> (mask of index 0 to extract even elements)
207/// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
208static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
209 unsigned &Index, unsigned MaxFactor,
210 unsigned NumLoadElements) {
211 if (Mask.size() < 2)
212 return false;
213
214 // Check potential Factors.
215 for (Factor = 2; Factor <= MaxFactor; Factor++) {
216 // Make sure we don't produce a load wider than the input load.
217 if (Mask.size() * Factor > NumLoadElements)
218 return false;
220 return true;
221 }
222
223 return false;
224}
225
226/// Check if the mask can be used in an interleaved store.
227//
228/// It checks for a more general pattern than the RE-interleave mask.
229/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
230/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
231/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
232/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
233///
234/// The particular case of an RE-interleave mask is:
235/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
236/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
237static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor,
238 unsigned MaxFactor) {
239 unsigned NumElts = SVI->getShuffleMask().size();
240 if (NumElts < 4)
241 return false;
242
243 // Check potential Factors.
244 for (Factor = 2; Factor <= MaxFactor; Factor++) {
245 if (SVI->isInterleave(Factor))
246 return true;
247 }
248
249 return false;
250}
251
252bool InterleavedAccessImpl::lowerInterleavedLoad(
254 if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
255 return false;
256
257 // Check if all users of this load are shufflevectors. If we encounter any
258 // users that are extractelement instructions or binary operators, we save
259 // them to later check if they can be modified to extract from one of the
260 // shufflevectors instead of the load.
261
264 // BinOpShuffles need to be handled a single time in case both operands of the
265 // binop are the same load.
267
268 for (auto *User : LI->users()) {
269 auto *Extract = dyn_cast<ExtractElementInst>(User);
270 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
271 Extracts.push_back(Extract);
272 continue;
273 }
274 if (auto *BI = dyn_cast<BinaryOperator>(User)) {
275 if (!BI->user_empty() && all_of(BI->users(), [](auto *U) {
276 auto *SVI = dyn_cast<ShuffleVectorInst>(U);
277 return SVI && isa<UndefValue>(SVI->getOperand(1));
278 })) {
279 for (auto *SVI : BI->users())
280 BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI));
281 continue;
282 }
283 }
284 auto *SVI = dyn_cast<ShuffleVectorInst>(User);
285 if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
286 return false;
287
288 Shuffles.push_back(SVI);
289 }
290
291 if (Shuffles.empty() && BinOpShuffles.empty())
292 return false;
293
294 unsigned Factor, Index;
295
296 unsigned NumLoadElements =
297 cast<FixedVectorType>(LI->getType())->getNumElements();
298 auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
299 // Check if the first shufflevector is DE-interleave shuffle.
300 if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
301 NumLoadElements))
302 return false;
303
304 // Holds the corresponding index for each DE-interleave shuffle.
306
307 Type *VecTy = FirstSVI->getType();
308
309 // Check if other shufflevectors are also DE-interleaved of the same type
310 // and factor as the first shufflevector.
311 for (auto *Shuffle : Shuffles) {
312 if (Shuffle->getType() != VecTy)
313 return false;
315 Shuffle->getShuffleMask(), Factor, Index))
316 return false;
317
318 assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
319 Indices.push_back(Index);
320 }
321 for (auto *Shuffle : BinOpShuffles) {
322 if (Shuffle->getType() != VecTy)
323 return false;
325 Shuffle->getShuffleMask(), Factor, Index))
326 return false;
327
328 assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
329
330 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
331 Indices.push_back(Index);
332 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
333 Indices.push_back(Index);
334 }
335
336 // Try and modify users of the load that are extractelement instructions to
337 // use the shufflevector instructions instead of the load.
338 if (!tryReplaceExtracts(Extracts, Shuffles))
339 return false;
340
341 bool BinOpShuffleChanged =
342 replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
343
344 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
345
346 // Try to create target specific intrinsics to replace the load and shuffles.
347 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
348 // If Extracts is not empty, tryReplaceExtracts made changes earlier.
349 return !Extracts.empty() || BinOpShuffleChanged;
350 }
351
352 append_range(DeadInsts, Shuffles);
353
354 DeadInsts.push_back(LI);
355 return true;
356}
357
358bool InterleavedAccessImpl::replaceBinOpShuffles(
359 ArrayRef<ShuffleVectorInst *> BinOpShuffles,
361 for (auto *SVI : BinOpShuffles) {
362 BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
363 Type *BIOp0Ty = BI->getOperand(0)->getType();
364 ArrayRef<int> Mask = SVI->getShuffleMask();
365 assert(all_of(Mask, [&](int Idx) {
366 return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
367 }));
368
369 BasicBlock::iterator insertPos = SVI->getIterator();
370 auto *NewSVI1 =
371 new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
372 Mask, SVI->getName(), insertPos);
373 auto *NewSVI2 = new ShuffleVectorInst(
374 BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
375 SVI->getName(), insertPos);
377 BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), insertPos);
378 SVI->replaceAllUsesWith(NewBI);
379 LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI
380 << "\n With : " << *NewSVI1 << "\n And : "
381 << *NewSVI2 << "\n And : " << *NewBI << "\n");
383 if (NewSVI1->getOperand(0) == LI)
384 Shuffles.push_back(NewSVI1);
385 if (NewSVI2->getOperand(0) == LI)
386 Shuffles.push_back(NewSVI2);
387 }
388
389 return !BinOpShuffles.empty();
390}
391
392bool InterleavedAccessImpl::tryReplaceExtracts(
395 // If there aren't any extractelement instructions to modify, there's nothing
396 // to do.
397 if (Extracts.empty())
398 return true;
399
400 // Maps extractelement instructions to vector-index pairs. The extractlement
401 // instructions will be modified to use the new vector and index operands.
403
404 for (auto *Extract : Extracts) {
405 // The vector index that is extracted.
406 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
407 auto Index = IndexOperand->getSExtValue();
408
409 // Look for a suitable shufflevector instruction. The goal is to modify the
410 // extractelement instruction (which uses an interleaved load) to use one
411 // of the shufflevector instructions instead of the load.
412 for (auto *Shuffle : Shuffles) {
413 // If the shufflevector instruction doesn't dominate the extract, we
414 // can't create a use of it.
415 if (!DT->dominates(Shuffle, Extract))
416 continue;
417
418 // Inspect the indices of the shufflevector instruction. If the shuffle
419 // selects the same index that is extracted, we can modify the
420 // extractelement instruction.
421 SmallVector<int, 4> Indices;
422 Shuffle->getShuffleMask(Indices);
423 for (unsigned I = 0; I < Indices.size(); ++I)
424 if (Indices[I] == Index) {
425 assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
426 "Vector operations do not match");
427 ReplacementMap[Extract] = std::make_pair(Shuffle, I);
428 break;
429 }
430
431 // If we found a suitable shufflevector instruction, stop looking.
432 if (ReplacementMap.count(Extract))
433 break;
434 }
435
436 // If we did not find a suitable shufflevector instruction, the
437 // extractelement instruction cannot be modified, so we must give up.
438 if (!ReplacementMap.count(Extract))
439 return false;
440 }
441
442 // Finally, perform the replacements.
443 IRBuilder<> Builder(Extracts[0]->getContext());
444 for (auto &Replacement : ReplacementMap) {
445 auto *Extract = Replacement.first;
446 auto *Vector = Replacement.second.first;
447 auto Index = Replacement.second.second;
448 Builder.SetInsertPoint(Extract);
449 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
450 Extract->eraseFromParent();
451 }
452
453 return true;
454}
455
456bool InterleavedAccessImpl::lowerInterleavedStore(
458 if (!SI->isSimple())
459 return false;
460
461 auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
462 if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
463 return false;
464
465 // Check if the shufflevector is RE-interleave shuffle.
466 unsigned Factor;
467 if (!isReInterleaveMask(SVI, Factor, MaxFactor))
468 return false;
469
470 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
471
472 // Try to create target specific intrinsics to replace the store and shuffle.
473 if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
474 return false;
475
476 // Already have a new target specific interleaved store. Erase the old store.
477 DeadInsts.push_back(SI);
478 DeadInsts.push_back(SVI);
479 return true;
480}
481
482bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic(
484 LoadInst *LI = dyn_cast<LoadInst>(DI->getOperand(0));
485
486 if (!LI || !LI->hasOneUse() || !LI->isSimple())
487 return false;
488
489 LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI << "\n");
490
491 // Try and match this with target specific intrinsics.
492 if (!TLI->lowerDeinterleaveIntrinsicToLoad(DI, LI))
493 return false;
494
495 // We now have a target-specific load, so delete the old one.
496 DeadInsts.push_back(DI);
497 DeadInsts.push_back(LI);
498 return true;
499}
500
501bool InterleavedAccessImpl::lowerInterleaveIntrinsic(
503 if (!II->hasOneUse())
504 return false;
505
506 StoreInst *SI = dyn_cast<StoreInst>(*(II->users().begin()));
507
508 if (!SI || !SI->isSimple())
509 return false;
510
511 LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II << "\n");
512
513 // Try and match this with target specific intrinsics.
514 if (!TLI->lowerInterleaveIntrinsicToStore(II, SI))
515 return false;
516
517 // We now have a target-specific store, so delete the old one.
518 DeadInsts.push_back(SI);
519 DeadInsts.push_back(II);
520 return true;
521}
522
523bool InterleavedAccessImpl::runOnFunction(Function &F) {
524 // Holds dead instructions that will be erased later.
526 bool Changed = false;
527
528 for (auto &I : instructions(F)) {
529 if (auto *LI = dyn_cast<LoadInst>(&I))
530 Changed |= lowerInterleavedLoad(LI, DeadInsts);
531
532 if (auto *SI = dyn_cast<StoreInst>(&I))
533 Changed |= lowerInterleavedStore(SI, DeadInsts);
534
535 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
536 // At present, we only have intrinsics to represent (de)interleaving
537 // with a factor of 2.
538 if (II->getIntrinsicID() == Intrinsic::experimental_vector_deinterleave2)
539 Changed |= lowerDeinterleaveIntrinsic(II, DeadInsts);
540 if (II->getIntrinsicID() == Intrinsic::experimental_vector_interleave2)
541 Changed |= lowerInterleaveIntrinsic(II, DeadInsts);
542 }
543 }
544
545 for (auto *I : DeadInsts)
546 I->eraseFromParent();
547
548 return Changed;
549}
Expand Atomic instructions
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
static bool runOnFunction(Function &F, bool PostInlining)
expand Expand reduction intrinsics
#define DEBUG_TYPE
static bool isDeInterleaveMask(ArrayRef< int > Mask, unsigned &Factor, unsigned &Index, unsigned MaxFactor, unsigned NumLoadElements)
Check if the mask is a DE-interleave mask for an interleaved load.
static cl::opt< bool > LowerInterleavedAccesses("lower-interleaved-accesses", cl::desc("Enable lowering interleaved accesses to intrinsics"), cl::init(true), cl::Hidden)
static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor, unsigned MaxFactor)
Check if the mask can be used in an interleaved store.
This file contains the declaration of the InterleavedAccessPass class, its corresponding pass name is...
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
FunctionAnalysisManager FAM
const char LLVMTargetMachineRef TM
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallVector class.
This file describes how to lower LLVM code to machine code.
Target-Independent Code Generator Pass Configuration Options pass.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:321
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:473
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:165
BinaryOps getOpcode() const
Definition: InstrTypes.h:513
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name, BasicBlock::iterator InsertBefore)
Definition: InstrTypes.h:299
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:70
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2666
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM)
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:54
An instruction for reading from memory.
Definition: Instructions.h:184
bool isSimple() const
Definition: Instructions.h:272
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1827
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:109
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:115
void preserveSet()
Mark an analysis set as preserved.
Definition: Analysis.h:144
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:93
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
This instruction constructs a fixed permutation of two input vectors.
static void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
static bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index,...
bool isInterleave(unsigned Factor)
Return if this shuffle interleaves its two input vectors together.
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:317
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:76
virtual const TargetSubtargetInfo * getSubtargetImpl(const Function &) const
Virtual method implemented by subclasses that returns a reference to that target's TargetSubtargetInf...
virtual const TargetLowering * getTargetLowering() const
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
Value * getOperand(unsigned i) const
Definition: User.h:169
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
iterator_range< user_iterator > users()
Definition: Value.h:421
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:121
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void initializeInterleavedAccessPass(PassRegistry &)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:539
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2073
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
FunctionPass * createInterleavedAccessPass()
InterleavedAccess Pass - This pass identifies and matches interleaved memory accesses to target speci...