LLVM 19.0.0git
MicroMipsSizeReduction.cpp
Go to the documentation of this file.
1//=== MicroMipsSizeReduction.cpp - MicroMips size reduction pass --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///\file
9/// This pass is used to reduce the size of instructions where applicable.
10///
11/// TODO: Implement microMIPS64 support.
12//===----------------------------------------------------------------------===//
13#include "Mips.h"
14#include "MipsInstrInfo.h"
15#include "MipsSubtarget.h"
16#include "llvm/ADT/Statistic.h"
18#include "llvm/Support/Debug.h"
19
20using namespace llvm;
21
22#define DEBUG_TYPE "micromips-reduce-size"
23#define MICROMIPS_SIZE_REDUCE_NAME "MicroMips instruction size reduce pass"
24
25STATISTIC(NumReduced, "Number of instructions reduced (32-bit to 16-bit ones, "
26 "or two instructions into one");
27
28namespace {
29
30/// Order of operands to transfer
31// TODO: Will be extended when additional optimizations are added
32enum OperandTransfer {
33 OT_NA, ///< Not applicable
34 OT_OperandsAll, ///< Transfer all operands
35 OT_Operands02, ///< Transfer operands 0 and 2
36 OT_Operand2, ///< Transfer just operand 2
37 OT_OperandsXOR, ///< Transfer operands for XOR16
38 OT_OperandsLwp, ///< Transfer operands for LWP
39 OT_OperandsSwp, ///< Transfer operands for SWP
40 OT_OperandsMovep, ///< Transfer operands for MOVEP
41};
42
43/// Reduction type
44// TODO: Will be extended when additional optimizations are added
45enum ReduceType {
46 RT_TwoInstr, ///< Reduce two instructions into one instruction
47 RT_OneInstr ///< Reduce one instruction into a smaller instruction
48};
49
50// Information about immediate field restrictions
51struct ImmField {
52 ImmField() : ImmFieldOperand(-1), Shift(0), LBound(0), HBound(0) {}
53 ImmField(uint8_t Shift, int16_t LBound, int16_t HBound,
54 int8_t ImmFieldOperand)
55 : ImmFieldOperand(ImmFieldOperand), Shift(Shift), LBound(LBound),
56 HBound(HBound) {}
57 int8_t ImmFieldOperand; // Immediate operand, -1 if it does not exist
58 uint8_t Shift; // Shift value
59 int16_t LBound; // Low bound of the immediate operand
60 int16_t HBound; // High bound of the immediate operand
61};
62
63/// Information about operands
64// TODO: Will be extended when additional optimizations are added
65struct OpInfo {
66 OpInfo(enum OperandTransfer TransferOperands)
67 : TransferOperands(TransferOperands) {}
68 OpInfo() : TransferOperands(OT_NA) {}
69
70 enum OperandTransfer
71 TransferOperands; ///< Operands to transfer to the new instruction
72};
73
74// Information about opcodes
75struct OpCodes {
76 OpCodes(unsigned WideOpc, unsigned NarrowOpc)
77 : WideOpc(WideOpc), NarrowOpc(NarrowOpc) {}
78
79 unsigned WideOpc; ///< Wide opcode
80 unsigned NarrowOpc; ///< Narrow opcode
81};
82
83typedef struct ReduceEntryFunArgs ReduceEntryFunArgs;
84
85/// ReduceTable - A static table with information on mapping from wide
86/// opcodes to narrow
87struct ReduceEntry {
88
89 enum ReduceType eRType; ///< Reduction type
90 bool (*ReduceFunction)(
91 ReduceEntryFunArgs *Arguments); ///< Pointer to reduce function
92 struct OpCodes Ops; ///< All relevant OpCodes
93 struct OpInfo OpInf; ///< Characteristics of operands
94 struct ImmField Imm; ///< Characteristics of immediate field
95
96 ReduceEntry(enum ReduceType RType, struct OpCodes Op,
97 bool (*F)(ReduceEntryFunArgs *Arguments), struct OpInfo OpInf,
98 struct ImmField Imm)
99 : eRType(RType), ReduceFunction(F), Ops(Op), OpInf(OpInf), Imm(Imm) {}
100
101 unsigned NarrowOpc() const { return Ops.NarrowOpc; }
102 unsigned WideOpc() const { return Ops.WideOpc; }
103 int16_t LBound() const { return Imm.LBound; }
104 int16_t HBound() const { return Imm.HBound; }
105 uint8_t Shift() const { return Imm.Shift; }
106 int8_t ImmField() const { return Imm.ImmFieldOperand; }
107 enum OperandTransfer TransferOperands() const {
108 return OpInf.TransferOperands;
109 }
110 enum ReduceType RType() const { return eRType; }
111
112 // operator used by std::equal_range
113 bool operator<(const unsigned int r) const { return (WideOpc() < r); }
114
115 // operator used by std::equal_range
116 friend bool operator<(const unsigned int r, const struct ReduceEntry &re) {
117 return (r < re.WideOpc());
118 }
119};
120
121// Function arguments for ReduceFunction
122struct ReduceEntryFunArgs {
123 MachineInstr *MI; // Instruction
124 const ReduceEntry &Entry; // Entry field
126 &NextMII; // Iterator to next instruction in block
127
128 ReduceEntryFunArgs(MachineInstr *argMI, const ReduceEntry &argEntry,
130 : MI(argMI), Entry(argEntry), NextMII(argNextMII) {}
131};
132
133typedef llvm::SmallVector<ReduceEntry, 32> ReduceEntryVector;
134
135class MicroMipsSizeReduce : public MachineFunctionPass {
136public:
137 static char ID;
138 MicroMipsSizeReduce();
139
140 static const MipsInstrInfo *MipsII;
141 const MipsSubtarget *Subtarget;
142
143 bool runOnMachineFunction(MachineFunction &MF) override;
144
145 llvm::StringRef getPassName() const override {
146 return "microMIPS instruction size reduction pass";
147 }
148
149private:
150 /// Reduces width of instructions in the specified basic block.
151 bool ReduceMBB(MachineBasicBlock &MBB);
152
153 /// Attempts to reduce MI, returns true on success.
154 bool ReduceMI(const MachineBasicBlock::instr_iterator &MII,
156
157 // Attempts to reduce LW/SW instruction into LWSP/SWSP,
158 // returns true on success.
159 static bool ReduceXWtoXWSP(ReduceEntryFunArgs *Arguments);
160
161 // Attempts to reduce two LW/SW instructions into LWP/SWP instruction,
162 // returns true on success.
163 static bool ReduceXWtoXWP(ReduceEntryFunArgs *Arguments);
164
165 // Attempts to reduce LBU/LHU instruction into LBU16/LHU16,
166 // returns true on success.
167 static bool ReduceLXUtoLXU16(ReduceEntryFunArgs *Arguments);
168
169 // Attempts to reduce SB/SH instruction into SB16/SH16,
170 // returns true on success.
171 static bool ReduceSXtoSX16(ReduceEntryFunArgs *Arguments);
172
173 // Attempts to reduce two MOVE instructions into MOVEP instruction,
174 // returns true on success.
175 static bool ReduceMoveToMovep(ReduceEntryFunArgs *Arguments);
176
177 // Attempts to reduce arithmetic instructions, returns true on success.
178 static bool ReduceArithmeticInstructions(ReduceEntryFunArgs *Arguments);
179
180 // Attempts to reduce ADDIU into ADDIUSP instruction,
181 // returns true on success.
182 static bool ReduceADDIUToADDIUSP(ReduceEntryFunArgs *Arguments);
183
184 // Attempts to reduce ADDIU into ADDIUR1SP instruction,
185 // returns true on success.
186 static bool ReduceADDIUToADDIUR1SP(ReduceEntryFunArgs *Arguments);
187
188 // Attempts to reduce XOR into XOR16 instruction,
189 // returns true on success.
190 static bool ReduceXORtoXOR16(ReduceEntryFunArgs *Arguments);
191
192 // Changes opcode of an instruction, replaces an instruction with a
193 // new one, or replaces two instructions with a new instruction
194 // depending on their order i.e. if these are consecutive forward
195 // or consecutive backward
196 static bool ReplaceInstruction(MachineInstr *MI, const ReduceEntry &Entry,
197 MachineInstr *MI2 = nullptr,
198 bool ConsecutiveForward = true);
199
200 // Table with transformation rules for each instruction.
201 static ReduceEntryVector ReduceTable;
202};
203
204char MicroMipsSizeReduce::ID = 0;
205const MipsInstrInfo *MicroMipsSizeReduce::MipsII;
206
207// This table must be sorted by WideOpc as a main criterion and
208// ReduceType as a sub-criterion (when wide opcodes are the same).
209ReduceEntryVector MicroMipsSizeReduce::ReduceTable = {
210
211 // ReduceType, OpCodes, ReduceFunction,
212 // OpInfo(TransferOperands),
213 // ImmField(Shift, LBound, HBound, ImmFieldPosition)
214 {RT_OneInstr, OpCodes(Mips::ADDiu, Mips::ADDIUR1SP_MM),
215 ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
216 {RT_OneInstr, OpCodes(Mips::ADDiu, Mips::ADDIUSP_MM), ReduceADDIUToADDIUSP,
217 OpInfo(OT_Operand2), ImmField(0, 0, 0, 2)},
218 {RT_OneInstr, OpCodes(Mips::ADDiu_MM, Mips::ADDIUR1SP_MM),
219 ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
220 {RT_OneInstr, OpCodes(Mips::ADDiu_MM, Mips::ADDIUSP_MM),
221 ReduceADDIUToADDIUSP, OpInfo(OT_Operand2), ImmField(0, 0, 0, 2)},
222 {RT_OneInstr, OpCodes(Mips::ADDu, Mips::ADDU16_MM),
223 ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
224 ImmField(0, 0, 0, -1)},
225 {RT_OneInstr, OpCodes(Mips::ADDu_MM, Mips::ADDU16_MM),
226 ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
227 ImmField(0, 0, 0, -1)},
228 {RT_OneInstr, OpCodes(Mips::LBu, Mips::LBU16_MM), ReduceLXUtoLXU16,
229 OpInfo(OT_OperandsAll), ImmField(0, -1, 15, 2)},
230 {RT_OneInstr, OpCodes(Mips::LBu_MM, Mips::LBU16_MM), ReduceLXUtoLXU16,
231 OpInfo(OT_OperandsAll), ImmField(0, -1, 15, 2)},
232 {RT_OneInstr, OpCodes(Mips::LEA_ADDiu, Mips::ADDIUR1SP_MM),
233 ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
234 {RT_OneInstr, OpCodes(Mips::LEA_ADDiu_MM, Mips::ADDIUR1SP_MM),
235 ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
236 {RT_OneInstr, OpCodes(Mips::LHu, Mips::LHU16_MM), ReduceLXUtoLXU16,
237 OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
238 {RT_OneInstr, OpCodes(Mips::LHu_MM, Mips::LHU16_MM), ReduceLXUtoLXU16,
239 OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
240 {RT_TwoInstr, OpCodes(Mips::LW, Mips::LWP_MM), ReduceXWtoXWP,
241 OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)},
242 {RT_OneInstr, OpCodes(Mips::LW, Mips::LWSP_MM), ReduceXWtoXWSP,
243 OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
244 {RT_TwoInstr, OpCodes(Mips::LW16_MM, Mips::LWP_MM), ReduceXWtoXWP,
245 OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)},
246 {RT_TwoInstr, OpCodes(Mips::LW_MM, Mips::LWP_MM), ReduceXWtoXWP,
247 OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)},
248 {RT_OneInstr, OpCodes(Mips::LW_MM, Mips::LWSP_MM), ReduceXWtoXWSP,
249 OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
250 {RT_TwoInstr, OpCodes(Mips::MOVE16_MM, Mips::MOVEP_MM), ReduceMoveToMovep,
251 OpInfo(OT_OperandsMovep), ImmField(0, 0, 0, -1)},
252 {RT_OneInstr, OpCodes(Mips::SB, Mips::SB16_MM), ReduceSXtoSX16,
253 OpInfo(OT_OperandsAll), ImmField(0, 0, 16, 2)},
254 {RT_OneInstr, OpCodes(Mips::SB_MM, Mips::SB16_MM), ReduceSXtoSX16,
255 OpInfo(OT_OperandsAll), ImmField(0, 0, 16, 2)},
256 {RT_OneInstr, OpCodes(Mips::SH, Mips::SH16_MM), ReduceSXtoSX16,
257 OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
258 {RT_OneInstr, OpCodes(Mips::SH_MM, Mips::SH16_MM), ReduceSXtoSX16,
259 OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
260 {RT_OneInstr, OpCodes(Mips::SUBu, Mips::SUBU16_MM),
261 ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
262 ImmField(0, 0, 0, -1)},
263 {RT_OneInstr, OpCodes(Mips::SUBu_MM, Mips::SUBU16_MM),
264 ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
265 ImmField(0, 0, 0, -1)},
266 {RT_TwoInstr, OpCodes(Mips::SW, Mips::SWP_MM), ReduceXWtoXWP,
267 OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)},
268 {RT_OneInstr, OpCodes(Mips::SW, Mips::SWSP_MM), ReduceXWtoXWSP,
269 OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
270 {RT_TwoInstr, OpCodes(Mips::SW16_MM, Mips::SWP_MM), ReduceXWtoXWP,
271 OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)},
272 {RT_TwoInstr, OpCodes(Mips::SW_MM, Mips::SWP_MM), ReduceXWtoXWP,
273 OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)},
274 {RT_OneInstr, OpCodes(Mips::SW_MM, Mips::SWSP_MM), ReduceXWtoXWSP,
275 OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
276 {RT_OneInstr, OpCodes(Mips::XOR, Mips::XOR16_MM), ReduceXORtoXOR16,
277 OpInfo(OT_OperandsXOR), ImmField(0, 0, 0, -1)},
278 {RT_OneInstr, OpCodes(Mips::XOR_MM, Mips::XOR16_MM), ReduceXORtoXOR16,
279 OpInfo(OT_OperandsXOR), ImmField(0, 0, 0, -1)}};
280} // end anonymous namespace
281
283 false, false)
284
285// Returns true if the machine operand MO is register SP.
286static bool IsSP(const MachineOperand &MO) {
287 if (MO.isReg() && ((MO.getReg() == Mips::SP)))
288 return true;
289 return false;
290}
291
292// Returns true if the machine operand MO is register $16, $17, or $2-$7.
294 if (MO.isReg() && Mips::GPRMM16RegClass.contains(MO.getReg()))
295 return true;
296 return false;
297}
298
299// Returns true if the machine operand MO is register $0, $17, or $2-$7.
300static bool isMMSourceRegister(const MachineOperand &MO) {
301 if (MO.isReg() && Mips::GPRMM16ZeroRegClass.contains(MO.getReg()))
302 return true;
303 return false;
304}
305
306// Returns true if the operand Op is an immediate value
307// and writes the immediate value into variable Imm.
308static bool GetImm(MachineInstr *MI, unsigned Op, int64_t &Imm) {
309
310 if (!MI->getOperand(Op).isImm())
311 return false;
312 Imm = MI->getOperand(Op).getImm();
313 return true;
314}
315
316// Returns true if the value is a valid immediate for ADDIUSP.
317static bool AddiuspImmValue(int64_t Value) {
318 int64_t Value2 = Value >> 2;
319 if (((Value & (int64_t)maskTrailingZeros<uint64_t>(2)) == Value) &&
320 ((Value2 >= 2 && Value2 <= 257) || (Value2 >= -258 && Value2 <= -3)))
321 return true;
322 return false;
323}
324
325// Returns true if the variable Value has the number of least-significant zero
326// bits equal to Shift and if the shifted value is between the bounds.
327static bool InRange(int64_t Value, unsigned short Shift, int LBound,
328 int HBound) {
329 int64_t Value2 = Value >> Shift;
330 if (((Value & (int64_t)maskTrailingZeros<uint64_t>(Shift)) == Value) &&
331 (Value2 >= LBound) && (Value2 < HBound))
332 return true;
333 return false;
334}
335
336// Returns true if immediate operand is in range.
337static bool ImmInRange(MachineInstr *MI, const ReduceEntry &Entry) {
338
339 int64_t offset;
340
341 if (!GetImm(MI, Entry.ImmField(), offset))
342 return false;
343
344 if (!InRange(offset, Entry.Shift(), Entry.LBound(), Entry.HBound()))
345 return false;
346
347 return true;
348}
349
350// Returns true if MI can be reduced to lwp/swp instruction
351static bool CheckXWPInstr(MachineInstr *MI, bool ReduceToLwp,
352 const ReduceEntry &Entry) {
353
354 if (ReduceToLwp &&
355 !(MI->getOpcode() == Mips::LW || MI->getOpcode() == Mips::LW_MM ||
356 MI->getOpcode() == Mips::LW16_MM))
357 return false;
358
359 if (!ReduceToLwp &&
360 !(MI->getOpcode() == Mips::SW || MI->getOpcode() == Mips::SW_MM ||
361 MI->getOpcode() == Mips::SW16_MM))
362 return false;
363
364 Register reg = MI->getOperand(0).getReg();
365 if (reg == Mips::RA)
366 return false;
367
368 if (!ImmInRange(MI, Entry))
369 return false;
370
371 if (ReduceToLwp && (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()))
372 return false;
373
374 return true;
375}
376
377// Returns true if the registers Reg1 and Reg2 are consecutive
378static bool ConsecutiveRegisters(unsigned Reg1, unsigned Reg2) {
379 constexpr std::array<unsigned, 31> Registers = {
380 {Mips::AT, Mips::V0, Mips::V1, Mips::A0, Mips::A1, Mips::A2, Mips::A3,
381 Mips::T0, Mips::T1, Mips::T2, Mips::T3, Mips::T4, Mips::T5, Mips::T6,
382 Mips::T7, Mips::S0, Mips::S1, Mips::S2, Mips::S3, Mips::S4, Mips::S5,
383 Mips::S6, Mips::S7, Mips::T8, Mips::T9, Mips::K0, Mips::K1, Mips::GP,
384 Mips::SP, Mips::FP, Mips::RA}};
385
386 for (uint8_t i = 0; i < Registers.size() - 1; i++) {
387 if (Registers[i] == Reg1) {
388 if (Registers[i + 1] == Reg2)
389 return true;
390 else
391 return false;
392 }
393 }
394 return false;
395}
396
397// Returns true if registers and offsets are consecutive
399
400 int64_t Offset1, Offset2;
401 if (!GetImm(MI1, 2, Offset1))
402 return false;
403 if (!GetImm(MI2, 2, Offset2))
404 return false;
405
406 Register Reg1 = MI1->getOperand(0).getReg();
407 Register Reg2 = MI2->getOperand(0).getReg();
408
409 return ((Offset1 == (Offset2 - 4)) && (ConsecutiveRegisters(Reg1, Reg2)));
410}
411
412MicroMipsSizeReduce::MicroMipsSizeReduce() : MachineFunctionPass(ID) {}
413
414bool MicroMipsSizeReduce::ReduceMI(const MachineBasicBlock::instr_iterator &MII,
416
417 MachineInstr *MI = &*MII;
418 unsigned Opcode = MI->getOpcode();
419
420 // Search the table.
421 ReduceEntryVector::const_iterator Start = std::begin(ReduceTable);
422 ReduceEntryVector::const_iterator End = std::end(ReduceTable);
423
424 std::pair<ReduceEntryVector::const_iterator,
425 ReduceEntryVector::const_iterator>
426 Range = std::equal_range(Start, End, Opcode);
427
428 if (Range.first == Range.second)
429 return false;
430
431 for (ReduceEntryVector::const_iterator Entry = Range.first;
432 Entry != Range.second; ++Entry) {
433 ReduceEntryFunArgs Arguments(&(*MII), *Entry, NextMII);
434 if (((*Entry).ReduceFunction)(&Arguments))
435 return true;
436 }
437 return false;
438}
439
440bool MicroMipsSizeReduce::ReduceXWtoXWSP(ReduceEntryFunArgs *Arguments) {
441
443 const ReduceEntry &Entry = Arguments->Entry;
444
445 if (!ImmInRange(MI, Entry))
446 return false;
447
448 if (!IsSP(MI->getOperand(1)))
449 return false;
450
451 return ReplaceInstruction(MI, Entry);
452}
453
454bool MicroMipsSizeReduce::ReduceXWtoXWP(ReduceEntryFunArgs *Arguments) {
455
456 const ReduceEntry &Entry = Arguments->Entry;
459 Arguments->MI->getParent()->instr_end();
460
461 if (NextMII == E)
462 return false;
463
464 MachineInstr *MI1 = Arguments->MI;
465 MachineInstr *MI2 = &*NextMII;
466
467 // ReduceToLwp = true/false - reduce to LWP/SWP instruction
468 bool ReduceToLwp = (MI1->getOpcode() == Mips::LW) ||
469 (MI1->getOpcode() == Mips::LW_MM) ||
470 (MI1->getOpcode() == Mips::LW16_MM);
471
472 if (!CheckXWPInstr(MI1, ReduceToLwp, Entry))
473 return false;
474
475 if (!CheckXWPInstr(MI2, ReduceToLwp, Entry))
476 return false;
477
478 Register Reg1 = MI1->getOperand(1).getReg();
479 Register Reg2 = MI2->getOperand(1).getReg();
480
481 if (Reg1 != Reg2)
482 return false;
483
484 bool ConsecutiveForward = ConsecutiveInstr(MI1, MI2);
485 bool ConsecutiveBackward = ConsecutiveInstr(MI2, MI1);
486
487 if (!(ConsecutiveForward || ConsecutiveBackward))
488 return false;
489
490 NextMII = std::next(NextMII);
491 return ReplaceInstruction(MI1, Entry, MI2, ConsecutiveForward);
492}
493
494bool MicroMipsSizeReduce::ReduceArithmeticInstructions(
495 ReduceEntryFunArgs *Arguments) {
496
498 const ReduceEntry &Entry = Arguments->Entry;
499
500 if (!isMMThreeBitGPRegister(MI->getOperand(0)) ||
501 !isMMThreeBitGPRegister(MI->getOperand(1)) ||
502 !isMMThreeBitGPRegister(MI->getOperand(2)))
503 return false;
504
505 return ReplaceInstruction(MI, Entry);
506}
507
508bool MicroMipsSizeReduce::ReduceADDIUToADDIUR1SP(
509 ReduceEntryFunArgs *Arguments) {
510
512 const ReduceEntry &Entry = Arguments->Entry;
513
514 if (!ImmInRange(MI, Entry))
515 return false;
516
517 if (!isMMThreeBitGPRegister(MI->getOperand(0)) || !IsSP(MI->getOperand(1)))
518 return false;
519
520 return ReplaceInstruction(MI, Entry);
521}
522
523bool MicroMipsSizeReduce::ReduceADDIUToADDIUSP(ReduceEntryFunArgs *Arguments) {
524
526 const ReduceEntry &Entry = Arguments->Entry;
527
528 int64_t ImmValue;
529 if (!GetImm(MI, Entry.ImmField(), ImmValue))
530 return false;
531
532 if (!AddiuspImmValue(ImmValue))
533 return false;
534
535 if (!IsSP(MI->getOperand(0)) || !IsSP(MI->getOperand(1)))
536 return false;
537
538 return ReplaceInstruction(MI, Entry);
539}
540
541bool MicroMipsSizeReduce::ReduceLXUtoLXU16(ReduceEntryFunArgs *Arguments) {
542
544 const ReduceEntry &Entry = Arguments->Entry;
545
546 if (!ImmInRange(MI, Entry))
547 return false;
548
549 if (!isMMThreeBitGPRegister(MI->getOperand(0)) ||
550 !isMMThreeBitGPRegister(MI->getOperand(1)))
551 return false;
552
553 return ReplaceInstruction(MI, Entry);
554}
555
556bool MicroMipsSizeReduce::ReduceSXtoSX16(ReduceEntryFunArgs *Arguments) {
557
559 const ReduceEntry &Entry = Arguments->Entry;
560
561 if (!ImmInRange(MI, Entry))
562 return false;
563
564 if (!isMMSourceRegister(MI->getOperand(0)) ||
565 !isMMThreeBitGPRegister(MI->getOperand(1)))
566 return false;
567
568 return ReplaceInstruction(MI, Entry);
569}
570
571// Returns true if Reg can be a source register
572// of MOVEP instruction
573static bool IsMovepSrcRegister(unsigned Reg) {
574
575 if (Reg == Mips::ZERO || Reg == Mips::V0 || Reg == Mips::V1 ||
576 Reg == Mips::S0 || Reg == Mips::S1 || Reg == Mips::S2 ||
577 Reg == Mips::S3 || Reg == Mips::S4)
578 return true;
579
580 return false;
581}
582
583// Returns true if Reg can be a destination register
584// of MOVEP instruction
585static bool IsMovepDestinationReg(unsigned Reg) {
586
587 if (Reg == Mips::A0 || Reg == Mips::A1 || Reg == Mips::A2 ||
588 Reg == Mips::A3 || Reg == Mips::S5 || Reg == Mips::S6)
589 return true;
590
591 return false;
592}
593
594// Returns true if the registers can be a pair of destination
595// registers in MOVEP instruction
596static bool IsMovepDestinationRegPair(unsigned R0, unsigned R1) {
597
598 if ((R0 == Mips::A0 && R1 == Mips::S5) ||
599 (R0 == Mips::A0 && R1 == Mips::S6) ||
600 (R0 == Mips::A0 && R1 == Mips::A1) ||
601 (R0 == Mips::A0 && R1 == Mips::A2) ||
602 (R0 == Mips::A0 && R1 == Mips::A3) ||
603 (R0 == Mips::A1 && R1 == Mips::A2) ||
604 (R0 == Mips::A1 && R1 == Mips::A3) ||
605 (R0 == Mips::A2 && R1 == Mips::A3))
606 return true;
607
608 return false;
609}
610
611bool MicroMipsSizeReduce::ReduceMoveToMovep(ReduceEntryFunArgs *Arguments) {
612
613 const ReduceEntry &Entry = Arguments->Entry;
616 Arguments->MI->getParent()->instr_end();
617
618 if (NextMII == E)
619 return false;
620
621 MachineInstr *MI1 = Arguments->MI;
622 MachineInstr *MI2 = &*NextMII;
623
624 Register RegDstMI1 = MI1->getOperand(0).getReg();
625 Register RegSrcMI1 = MI1->getOperand(1).getReg();
626
627 if (!IsMovepSrcRegister(RegSrcMI1))
628 return false;
629
630 if (!IsMovepDestinationReg(RegDstMI1))
631 return false;
632
633 if (MI2->getOpcode() != Entry.WideOpc())
634 return false;
635
636 Register RegDstMI2 = MI2->getOperand(0).getReg();
637 Register RegSrcMI2 = MI2->getOperand(1).getReg();
638
639 if (!IsMovepSrcRegister(RegSrcMI2))
640 return false;
641
642 bool ConsecutiveForward;
643 if (IsMovepDestinationRegPair(RegDstMI1, RegDstMI2)) {
644 ConsecutiveForward = true;
645 } else if (IsMovepDestinationRegPair(RegDstMI2, RegDstMI1)) {
646 ConsecutiveForward = false;
647 } else
648 return false;
649
650 NextMII = std::next(NextMII);
651 return ReplaceInstruction(MI1, Entry, MI2, ConsecutiveForward);
652}
653
654bool MicroMipsSizeReduce::ReduceXORtoXOR16(ReduceEntryFunArgs *Arguments) {
655
657 const ReduceEntry &Entry = Arguments->Entry;
658
659 if (!isMMThreeBitGPRegister(MI->getOperand(0)) ||
660 !isMMThreeBitGPRegister(MI->getOperand(1)) ||
661 !isMMThreeBitGPRegister(MI->getOperand(2)))
662 return false;
663
664 if (!(MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) &&
665 !(MI->getOperand(0).getReg() == MI->getOperand(1).getReg()))
666 return false;
667
668 return ReplaceInstruction(MI, Entry);
669}
670
671bool MicroMipsSizeReduce::ReduceMBB(MachineBasicBlock &MBB) {
672 bool Modified = false;
674 E = MBB.instr_end();
676
677 // Iterate through the instructions in the basic block
678 for (; MII != E; MII = NextMII) {
679 NextMII = std::next(MII);
680 MachineInstr *MI = &*MII;
681
682 // Don't reduce bundled instructions or pseudo operations
683 if (MI->isBundle() || MI->isTransient())
684 continue;
685
686 // Try to reduce 32-bit instruction into 16-bit instruction
687 Modified |= ReduceMI(MII, NextMII);
688 }
689
690 return Modified;
691}
692
693bool MicroMipsSizeReduce::ReplaceInstruction(MachineInstr *MI,
694 const ReduceEntry &Entry,
695 MachineInstr *MI2,
696 bool ConsecutiveForward) {
697
698 enum OperandTransfer OpTransfer = Entry.TransferOperands();
699
700 LLVM_DEBUG(dbgs() << "Converting 32-bit: " << *MI);
701 ++NumReduced;
702
703 if (OpTransfer == OT_OperandsAll) {
704 MI->setDesc(MipsII->get(Entry.NarrowOpc()));
705 LLVM_DEBUG(dbgs() << " to 16-bit: " << *MI);
706 return true;
707 } else {
708 MachineBasicBlock &MBB = *MI->getParent();
709 const MCInstrDesc &NewMCID = MipsII->get(Entry.NarrowOpc());
710 DebugLoc dl = MI->getDebugLoc();
711 MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, NewMCID);
712 switch (OpTransfer) {
713 case OT_Operand2:
714 MIB.add(MI->getOperand(2));
715 break;
716 case OT_Operands02: {
717 MIB.add(MI->getOperand(0));
718 MIB.add(MI->getOperand(2));
719 break;
720 }
721 case OT_OperandsXOR: {
722 if (MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) {
723 MIB.add(MI->getOperand(0));
724 MIB.add(MI->getOperand(1));
725 MIB.add(MI->getOperand(2));
726 } else {
727 MIB.add(MI->getOperand(0));
728 MIB.add(MI->getOperand(2));
729 MIB.add(MI->getOperand(1));
730 }
731 break;
732 }
733 case OT_OperandsMovep:
734 case OT_OperandsLwp:
735 case OT_OperandsSwp: {
736 if (ConsecutiveForward) {
737 MIB.add(MI->getOperand(0));
738 MIB.add(MI2->getOperand(0));
739 MIB.add(MI->getOperand(1));
740 if (OpTransfer == OT_OperandsMovep)
741 MIB.add(MI2->getOperand(1));
742 else
743 MIB.add(MI->getOperand(2));
744 } else { // consecutive backward
745 MIB.add(MI2->getOperand(0));
746 MIB.add(MI->getOperand(0));
747 MIB.add(MI2->getOperand(1));
748 if (OpTransfer == OT_OperandsMovep)
749 MIB.add(MI->getOperand(1));
750 else
751 MIB.add(MI2->getOperand(2));
752 }
753
754 LLVM_DEBUG(dbgs() << "and converting 32-bit: " << *MI2
755 << " to: " << *MIB);
756
758 MBB.erase_instr(MI2);
759 return true;
760 }
761 default:
762 llvm_unreachable("Unknown operand transfer!");
763 }
764
765 // Transfer MI flags.
766 MIB.setMIFlags(MI->getFlags());
767
768 LLVM_DEBUG(dbgs() << " to 16-bit: " << *MIB);
770 return true;
771 }
772 return false;
773}
774
775bool MicroMipsSizeReduce::runOnMachineFunction(MachineFunction &MF) {
776
777 Subtarget = &MF.getSubtarget<MipsSubtarget>();
778
779 // TODO: Add support for the subtarget microMIPS32R6.
780 if (!Subtarget->inMicroMipsMode() || !Subtarget->hasMips32r2() ||
781 Subtarget->hasMips32r6())
782 return false;
783
784 MipsII = static_cast<const MipsInstrInfo *>(Subtarget->getInstrInfo());
785
786 bool Modified = false;
787 MachineFunction::iterator I = MF.begin(), E = MF.end();
788
789 for (; I != E; ++I)
790 Modified |= ReduceMBB(*I);
791 return Modified;
792}
793
794/// Returns an instance of the MicroMips size reduction pass.
796 return new MicroMipsSizeReduce();
797}
aarch64 promote const
MachineBasicBlock & MBB
AMDGPU Lower Kernel Arguments
#define LLVM_DEBUG(X)
Definition: Debug.h:101
bool End
Definition: ELF_riscv.cpp:480
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static bool isMMSourceRegister(const MachineOperand &MO)
static bool IsMovepDestinationReg(unsigned Reg)
static bool CheckXWPInstr(MachineInstr *MI, bool ReduceToLwp, const ReduceEntry &Entry)
static bool ImmInRange(MachineInstr *MI, const ReduceEntry &Entry)
static bool IsMovepDestinationRegPair(unsigned R0, unsigned R1)
#define MICROMIPS_SIZE_REDUCE_NAME
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
static bool GetImm(MachineInstr *MI, unsigned Op, int64_t &Imm)
static bool IsMovepSrcRegister(unsigned Reg)
static bool AddiuspImmValue(int64_t Value)
static bool ConsecutiveRegisters(unsigned Reg1, unsigned Reg2)
static bool ConsecutiveInstr(MachineInstr *MI1, MachineInstr *MI2)
#define DEBUG_TYPE
static bool isMMThreeBitGPRegister(const MachineOperand &MO)
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
SI Pre allocate WWM Registers
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
instr_iterator instr_begin()
instr_iterator erase_instr(MachineInstr *I)
Remove an instruction from the instruction list and delete it.
Instructions::iterator instr_iterator
instr_iterator instr_end()
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:546
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:556
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
Register getReg() const
getReg - Returns the register number.
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
LLVM Value Representation.
Definition: Value.h:74
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool operator<(int64_t V1, const APSInt &V2)
Definition: APSInt.h:361
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
FunctionPass * createMicroMipsSizeReducePass()
Returns an instance of the MicroMips size reduction pass.