LLVM  9.0.0svn
PatternMatch.h
Go to the documentation of this file.
1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 // Value *Exp = ...
17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 // ... Pattern is matched and variables are bound ...
21 // }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30 
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
42 #include <cstdint>
43 
44 namespace llvm {
45 namespace PatternMatch {
46 
47 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
48  return const_cast<Pattern &>(P).match(V);
49 }
50 
51 template <typename SubPattern_t> struct OneUse_match {
52  SubPattern_t SubPattern;
53 
54  OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
55 
56  template <typename OpTy> bool match(OpTy *V) {
57  return V->hasOneUse() && SubPattern.match(V);
58  }
59 };
60 
61 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
62  return SubPattern;
63 }
64 
65 template <typename Class> struct class_match {
66  template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
67 };
68 
69 /// Match an arbitrary value and ignore it.
71 
72 /// Match an arbitrary binary operation and ignore it.
75 }
76 
77 /// Matches any compare instruction and ignore it.
79 
80 /// Match an arbitrary ConstantInt and ignore it.
82  return class_match<ConstantInt>();
83 }
84 
85 /// Match an arbitrary undef constant.
87 
88 /// Match an arbitrary Constant and ignore it.
90 
91 /// Matching combinators
92 template <typename LTy, typename RTy> struct match_combine_or {
93  LTy L;
94  RTy R;
95 
96  match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
97 
98  template <typename ITy> bool match(ITy *V) {
99  if (L.match(V))
100  return true;
101  if (R.match(V))
102  return true;
103  return false;
104  }
105 };
106 
107 template <typename LTy, typename RTy> struct match_combine_and {
108  LTy L;
109  RTy R;
110 
111  match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
112 
113  template <typename ITy> bool match(ITy *V) {
114  if (L.match(V))
115  if (R.match(V))
116  return true;
117  return false;
118  }
119 };
120 
121 /// Combine two pattern matchers matching L || R
122 template <typename LTy, typename RTy>
123 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
124  return match_combine_or<LTy, RTy>(L, R);
125 }
126 
127 /// Combine two pattern matchers matching L && R
128 template <typename LTy, typename RTy>
129 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
130  return match_combine_and<LTy, RTy>(L, R);
131 }
132 
133 struct apint_match {
134  const APInt *&Res;
135 
136  apint_match(const APInt *&R) : Res(R) {}
137 
138  template <typename ITy> bool match(ITy *V) {
139  if (auto *CI = dyn_cast<ConstantInt>(V)) {
140  Res = &CI->getValue();
141  return true;
142  }
143  if (V->getType()->isVectorTy())
144  if (const auto *C = dyn_cast<Constant>(V))
145  if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
146  Res = &CI->getValue();
147  return true;
148  }
149  return false;
150  }
151 };
152 // Either constexpr if or renaming ConstantFP::getValueAPF to
153 // ConstantFP::getValue is needed to do it via single template
154 // function for both apint/apfloat.
156  const APFloat *&Res;
157  apfloat_match(const APFloat *&R) : Res(R) {}
158  template <typename ITy> bool match(ITy *V) {
159  if (auto *CI = dyn_cast<ConstantFP>(V)) {
160  Res = &CI->getValueAPF();
161  return true;
162  }
163  if (V->getType()->isVectorTy())
164  if (const auto *C = dyn_cast<Constant>(V))
165  if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
166  Res = &CI->getValueAPF();
167  return true;
168  }
169  return false;
170  }
171 };
172 
173 /// Match a ConstantInt or splatted ConstantVector, binding the
174 /// specified pointer to the contained APInt.
175 inline apint_match m_APInt(const APInt *&Res) { return Res; }
176 
177 /// Match a ConstantFP or splatted ConstantVector, binding the
178 /// specified pointer to the contained APFloat.
179 inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
180 
181 template <int64_t Val> struct constantint_match {
182  template <typename ITy> bool match(ITy *V) {
183  if (const auto *CI = dyn_cast<ConstantInt>(V)) {
184  const APInt &CIV = CI->getValue();
185  if (Val >= 0)
186  return CIV == static_cast<uint64_t>(Val);
187  // If Val is negative, and CI is shorter than it, truncate to the right
188  // number of bits. If it is larger, then we have to sign extend. Just
189  // compare their negated values.
190  return -CIV == -Val;
191  }
192  return false;
193  }
194 };
195 
196 /// Match a ConstantInt with a specific value.
197 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
198  return constantint_match<Val>();
199 }
200 
201 /// This helper class is used to match scalar and vector integer constants that
202 /// satisfy a specified predicate.
203 /// For vector constants, undefined elements are ignored.
204 template <typename Predicate> struct cst_pred_ty : public Predicate {
205  template <typename ITy> bool match(ITy *V) {
206  if (const auto *CI = dyn_cast<ConstantInt>(V))
207  return this->isValue(CI->getValue());
208  if (V->getType()->isVectorTy()) {
209  if (const auto *C = dyn_cast<Constant>(V)) {
210  if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
211  return this->isValue(CI->getValue());
212 
213  // Non-splat vector constant: check each element for a match.
214  unsigned NumElts = V->getType()->getVectorNumElements();
215  assert(NumElts != 0 && "Constant vector with no elements?");
216  bool HasNonUndefElements = false;
217  for (unsigned i = 0; i != NumElts; ++i) {
218  Constant *Elt = C->getAggregateElement(i);
219  if (!Elt)
220  return false;
221  if (isa<UndefValue>(Elt))
222  continue;
223  auto *CI = dyn_cast<ConstantInt>(Elt);
224  if (!CI || !this->isValue(CI->getValue()))
225  return false;
226  HasNonUndefElements = true;
227  }
228  return HasNonUndefElements;
229  }
230  }
231  return false;
232  }
233 };
234 
235 /// This helper class is used to match scalar and vector constants that
236 /// satisfy a specified predicate, and bind them to an APInt.
237 template <typename Predicate> struct api_pred_ty : public Predicate {
238  const APInt *&Res;
239 
240  api_pred_ty(const APInt *&R) : Res(R) {}
241 
242  template <typename ITy> bool match(ITy *V) {
243  if (const auto *CI = dyn_cast<ConstantInt>(V))
244  if (this->isValue(CI->getValue())) {
245  Res = &CI->getValue();
246  return true;
247  }
248  if (V->getType()->isVectorTy())
249  if (const auto *C = dyn_cast<Constant>(V))
250  if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
251  if (this->isValue(CI->getValue())) {
252  Res = &CI->getValue();
253  return true;
254  }
255 
256  return false;
257  }
258 };
259 
260 /// This helper class is used to match scalar and vector floating-point
261 /// constants that satisfy a specified predicate.
262 /// For vector constants, undefined elements are ignored.
263 template <typename Predicate> struct cstfp_pred_ty : public Predicate {
264  template <typename ITy> bool match(ITy *V) {
265  if (const auto *CF = dyn_cast<ConstantFP>(V))
266  return this->isValue(CF->getValueAPF());
267  if (V->getType()->isVectorTy()) {
268  if (const auto *C = dyn_cast<Constant>(V)) {
269  if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
270  return this->isValue(CF->getValueAPF());
271 
272  // Non-splat vector constant: check each element for a match.
273  unsigned NumElts = V->getType()->getVectorNumElements();
274  assert(NumElts != 0 && "Constant vector with no elements?");
275  bool HasNonUndefElements = false;
276  for (unsigned i = 0; i != NumElts; ++i) {
277  Constant *Elt = C->getAggregateElement(i);
278  if (!Elt)
279  return false;
280  if (isa<UndefValue>(Elt))
281  continue;
282  auto *CF = dyn_cast<ConstantFP>(Elt);
283  if (!CF || !this->isValue(CF->getValueAPF()))
284  return false;
285  HasNonUndefElements = true;
286  }
287  return HasNonUndefElements;
288  }
289  }
290  return false;
291  }
292 };
293 
294 ///////////////////////////////////////////////////////////////////////////////
295 //
296 // Encapsulate constant value queries for use in templated predicate matchers.
297 // This allows checking if constants match using compound predicates and works
298 // with vector constants, possibly with relaxed constraints. For example, ignore
299 // undef values.
300 //
301 ///////////////////////////////////////////////////////////////////////////////
302 
303 struct is_all_ones {
304  bool isValue(const APInt &C) { return C.isAllOnesValue(); }
305 };
306 /// Match an integer or vector with all bits set.
307 /// For vectors, this includes constants with undefined elements.
309  return cst_pred_ty<is_all_ones>();
310 }
311 
313  bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
314 };
315 /// Match an integer or vector with values having all bits except for the high
316 /// bit set (0x7f...).
317 /// For vectors, this includes constants with undefined elements.
320 }
322  return V;
323 }
324 
325 struct is_negative {
326  bool isValue(const APInt &C) { return C.isNegative(); }
327 };
328 /// Match an integer or vector of negative values.
329 /// For vectors, this includes constants with undefined elements.
331  return cst_pred_ty<is_negative>();
332 }
334  return V;
335 }
336 
338  bool isValue(const APInt &C) { return C.isNonNegative(); }
339 };
340 /// Match an integer or vector of nonnegative values.
341 /// For vectors, this includes constants with undefined elements.
344 }
346  return V;
347 }
348 
349 struct is_one {
350  bool isValue(const APInt &C) { return C.isOneValue(); }
351 };
352 /// Match an integer 1 or a vector with all elements equal to 1.
353 /// For vectors, this includes constants with undefined elements.
355  return cst_pred_ty<is_one>();
356 }
357 
358 struct is_zero_int {
359  bool isValue(const APInt &C) { return C.isNullValue(); }
360 };
361 /// Match an integer 0 or a vector with all elements equal to 0.
362 /// For vectors, this includes constants with undefined elements.
364  return cst_pred_ty<is_zero_int>();
365 }
366 
367 struct is_zero {
368  template <typename ITy> bool match(ITy *V) {
369  auto *C = dyn_cast<Constant>(V);
370  return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
371  }
372 };
373 /// Match any null constant or a vector with all elements equal to 0.
374 /// For vectors, this includes constants with undefined elements.
375 inline is_zero m_Zero() {
376  return is_zero();
377 }
378 
379 struct is_power2 {
380  bool isValue(const APInt &C) { return C.isPowerOf2(); }
381 };
382 /// Match an integer or vector power-of-2.
383 /// For vectors, this includes constants with undefined elements.
385  return cst_pred_ty<is_power2>();
386 }
388  return V;
389 }
390 
392  bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
393 };
394 /// Match an integer or vector of 0 or power-of-2 values.
395 /// For vectors, this includes constants with undefined elements.
398 }
400  return V;
401 }
402 
403 struct is_sign_mask {
404  bool isValue(const APInt &C) { return C.isSignMask(); }
405 };
406 /// Match an integer or vector with only the sign bit(s) set.
407 /// For vectors, this includes constants with undefined elements.
409  return cst_pred_ty<is_sign_mask>();
410 }
411 
413  bool isValue(const APInt &C) { return C.isMask(); }
414 };
415 /// Match an integer or vector with only the low bit(s) set.
416 /// For vectors, this includes constants with undefined elements.
419 }
420 
421 struct is_nan {
422  bool isValue(const APFloat &C) { return C.isNaN(); }
423 };
424 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
425 /// For vectors, this includes constants with undefined elements.
427  return cstfp_pred_ty<is_nan>();
428 }
429 
431  bool isValue(const APFloat &C) { return C.isZero(); }
432 };
433 /// Match a floating-point negative zero or positive zero.
434 /// For vectors, this includes constants with undefined elements.
437 }
438 
440  bool isValue(const APFloat &C) { return C.isPosZero(); }
441 };
442 /// Match a floating-point positive zero.
443 /// For vectors, this includes constants with undefined elements.
446 }
447 
449  bool isValue(const APFloat &C) { return C.isNegZero(); }
450 };
451 /// Match a floating-point negative zero.
452 /// For vectors, this includes constants with undefined elements.
455 }
456 
457 ///////////////////////////////////////////////////////////////////////////////
458 
459 template <typename Class> struct bind_ty {
460  Class *&VR;
461 
462  bind_ty(Class *&V) : VR(V) {}
463 
464  template <typename ITy> bool match(ITy *V) {
465  if (auto *CV = dyn_cast<Class>(V)) {
466  VR = CV;
467  return true;
468  }
469  return false;
470  }
471 };
472 
473 /// Match a value, capturing it if we match.
474 inline bind_ty<Value> m_Value(Value *&V) { return V; }
475 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
476 
477 /// Match an instruction, capturing it if we match.
479 /// Match a binary operator, capturing it if we match.
481 
482 /// Match a ConstantInt, capturing the value if we match.
483 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
484 
485 /// Match a Constant, capturing the value if we match.
486 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
487 
488 /// Match a ConstantFP, capturing the value if we match.
490 
491 /// Match a specified Value*.
493  const Value *Val;
494 
495  specificval_ty(const Value *V) : Val(V) {}
496 
497  template <typename ITy> bool match(ITy *V) { return V == Val; }
498 };
499 
500 /// Match if we have a specific specified value.
501 inline specificval_ty m_Specific(const Value *V) { return V; }
502 
503 /// Stores a reference to the Value *, not the Value * itself,
504 /// thus can be used in commutative matchers.
505 template <typename Class> struct deferredval_ty {
506  Class *const &Val;
507 
508  deferredval_ty(Class *const &V) : Val(V) {}
509 
510  template <typename ITy> bool match(ITy *const V) { return V == Val; }
511 };
512 
513 /// A commutative-friendly version of m_Specific().
514 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
516  return V;
517 }
518 
519 /// Match a specified floating point value or vector of all elements of
520 /// that value.
522  double Val;
523 
524  specific_fpval(double V) : Val(V) {}
525 
526  template <typename ITy> bool match(ITy *V) {
527  if (const auto *CFP = dyn_cast<ConstantFP>(V))
528  return CFP->isExactlyValue(Val);
529  if (V->getType()->isVectorTy())
530  if (const auto *C = dyn_cast<Constant>(V))
531  if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
532  return CFP->isExactlyValue(Val);
533  return false;
534  }
535 };
536 
537 /// Match a specific floating point value or vector with all elements
538 /// equal to the value.
539 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
540 
541 /// Match a float 1.0 or vector with all elements equal to 1.0.
542 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
543 
545  uint64_t &VR;
546 
547  bind_const_intval_ty(uint64_t &V) : VR(V) {}
548 
549  template <typename ITy> bool match(ITy *V) {
550  if (const auto *CV = dyn_cast<ConstantInt>(V))
551  if (CV->getValue().ule(UINT64_MAX)) {
552  VR = CV->getZExtValue();
553  return true;
554  }
555  return false;
556  }
557 };
558 
559 /// Match a specified integer value or vector of all elements of that
560 // value.
562  uint64_t Val;
563 
564  specific_intval(uint64_t V) : Val(V) {}
565 
566  template <typename ITy> bool match(ITy *V) {
567  const auto *CI = dyn_cast<ConstantInt>(V);
568  if (!CI && V->getType()->isVectorTy())
569  if (const auto *C = dyn_cast<Constant>(V))
570  CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
571 
572  return CI && CI->getValue() == Val;
573  }
574 };
575 
576 /// Match a specific integer value or vector with all elements equal to
577 /// the value.
578 inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
579 
580 /// Match a ConstantInt and bind to its value. This does not match
581 /// ConstantInts wider than 64-bits.
582 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
583 
584 //===----------------------------------------------------------------------===//
585 // Matcher for any binary operator.
586 //
587 template <typename LHS_t, typename RHS_t, bool Commutable = false>
589  LHS_t L;
590  RHS_t R;
591 
592  // The evaluation order is always stable, regardless of Commutability.
593  // The LHS is always matched first.
594  AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
595 
596  template <typename OpTy> bool match(OpTy *V) {
597  if (auto *I = dyn_cast<BinaryOperator>(V))
598  return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
599  (Commutable && L.match(I->getOperand(1)) &&
600  R.match(I->getOperand(0)));
601  return false;
602  }
603 };
604 
605 template <typename LHS, typename RHS>
606 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
607  return AnyBinaryOp_match<LHS, RHS>(L, R);
608 }
609 
610 //===----------------------------------------------------------------------===//
611 // Matchers for specific binary operators.
612 //
613 
614 template <typename LHS_t, typename RHS_t, unsigned Opcode,
615  bool Commutable = false>
617  LHS_t L;
618  RHS_t R;
619 
620  // The evaluation order is always stable, regardless of Commutability.
621  // The LHS is always matched first.
622  BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
623 
624  template <typename OpTy> bool match(OpTy *V) {
625  if (V->getValueID() == Value::InstructionVal + Opcode) {
626  auto *I = cast<BinaryOperator>(V);
627  return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
628  (Commutable && L.match(I->getOperand(1)) &&
629  R.match(I->getOperand(0)));
630  }
631  if (auto *CE = dyn_cast<ConstantExpr>(V))
632  return CE->getOpcode() == Opcode &&
633  ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
634  (Commutable && L.match(CE->getOperand(1)) &&
635  R.match(CE->getOperand(0))));
636  return false;
637  }
638 };
639 
640 template <typename LHS, typename RHS>
642  const RHS &R) {
644 }
645 
646 template <typename LHS, typename RHS>
648  const RHS &R) {
650 }
651 
652 template <typename LHS, typename RHS>
654  const RHS &R) {
656 }
657 
658 template <typename LHS, typename RHS>
660  const RHS &R) {
662 }
663 
664 template <typename Op_t> struct FNeg_match {
665  Op_t X;
666 
667  FNeg_match(const Op_t &Op) : X(Op) {}
668  template <typename OpTy> bool match(OpTy *V) {
669  auto *FPMO = dyn_cast<FPMathOperator>(V);
670  if (!FPMO || FPMO->getOpcode() != Instruction::FSub)
671  return false;
672  if (FPMO->hasNoSignedZeros()) {
673  // With 'nsz', any zero goes.
674  if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
675  return false;
676  } else {
677  // Without 'nsz', we need fsub -0.0, X exactly.
678  if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
679  return false;
680  }
681  return X.match(FPMO->getOperand(1));
682  }
683 };
684 
685 /// Match 'fneg X' as 'fsub -0.0, X'.
686 template <typename OpTy>
687 inline FNeg_match<OpTy>
688 m_FNeg(const OpTy &X) {
689  return FNeg_match<OpTy>(X);
690 }
691 
692 /// Match 'fneg X' as 'fsub +-0.0, X'.
693 template <typename RHS>
694 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
695 m_FNegNSZ(const RHS &X) {
696  return m_FSub(m_AnyZeroFP(), X);
697 }
698 
699 template <typename LHS, typename RHS>
701  const RHS &R) {
703 }
704 
705 template <typename LHS, typename RHS>
707  const RHS &R) {
709 }
710 
711 template <typename LHS, typename RHS>
713  const RHS &R) {
715 }
716 
717 template <typename LHS, typename RHS>
719  const RHS &R) {
721 }
722 
723 template <typename LHS, typename RHS>
725  const RHS &R) {
727 }
728 
729 template <typename LHS, typename RHS>
731  const RHS &R) {
733 }
734 
735 template <typename LHS, typename RHS>
737  const RHS &R) {
739 }
740 
741 template <typename LHS, typename RHS>
743  const RHS &R) {
745 }
746 
747 template <typename LHS, typename RHS>
749  const RHS &R) {
751 }
752 
753 template <typename LHS, typename RHS>
755  const RHS &R) {
757 }
758 
759 template <typename LHS, typename RHS>
761  const RHS &R) {
763 }
764 
765 template <typename LHS, typename RHS>
767  const RHS &R) {
769 }
770 
771 template <typename LHS, typename RHS>
773  const RHS &R) {
775 }
776 
777 template <typename LHS, typename RHS>
779  const RHS &R) {
781 }
782 
783 template <typename LHS_t, typename RHS_t, unsigned Opcode,
784  unsigned WrapFlags = 0>
786  LHS_t L;
787  RHS_t R;
788 
789  OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
790  : L(LHS), R(RHS) {}
791 
792  template <typename OpTy> bool match(OpTy *V) {
793  if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
794  if (Op->getOpcode() != Opcode)
795  return false;
797  !Op->hasNoUnsignedWrap())
798  return false;
799  if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
800  !Op->hasNoSignedWrap())
801  return false;
802  return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
803  }
804  return false;
805  }
806 };
807 
808 template <typename LHS, typename RHS>
811 m_NSWAdd(const LHS &L, const RHS &R) {
814  L, R);
815 }
816 template <typename LHS, typename RHS>
817 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
819 m_NSWSub(const LHS &L, const RHS &R) {
820  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
822  L, R);
823 }
824 template <typename LHS, typename RHS>
825 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
827 m_NSWMul(const LHS &L, const RHS &R) {
828  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
830  L, R);
831 }
832 template <typename LHS, typename RHS>
833 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
835 m_NSWShl(const LHS &L, const RHS &R) {
836  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
838  L, R);
839 }
840 
841 template <typename LHS, typename RHS>
844 m_NUWAdd(const LHS &L, const RHS &R) {
847  L, R);
848 }
849 template <typename LHS, typename RHS>
850 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
852 m_NUWSub(const LHS &L, const RHS &R) {
853  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
855  L, R);
856 }
857 template <typename LHS, typename RHS>
858 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
860 m_NUWMul(const LHS &L, const RHS &R) {
861  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
863  L, R);
864 }
865 template <typename LHS, typename RHS>
866 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
868 m_NUWShl(const LHS &L, const RHS &R) {
869  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
871  L, R);
872 }
873 
874 //===----------------------------------------------------------------------===//
875 // Class that matches a group of binary opcodes.
876 //
877 template <typename LHS_t, typename RHS_t, typename Predicate>
879  LHS_t L;
880  RHS_t R;
881 
882  BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
883 
884  template <typename OpTy> bool match(OpTy *V) {
885  if (auto *I = dyn_cast<Instruction>(V))
886  return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
887  R.match(I->getOperand(1));
888  if (auto *CE = dyn_cast<ConstantExpr>(V))
889  return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
890  R.match(CE->getOperand(1));
891  return false;
892  }
893 };
894 
895 struct is_shift_op {
896  bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
897 };
898 
900  bool isOpType(unsigned Opcode) {
901  return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
902  }
903 };
904 
906  bool isOpType(unsigned Opcode) {
907  return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
908  }
909 };
910 
912  bool isOpType(unsigned Opcode) {
913  return Instruction::isBitwiseLogicOp(Opcode);
914  }
915 };
916 
917 struct is_idiv_op {
918  bool isOpType(unsigned Opcode) {
919  return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
920  }
921 };
922 
923 /// Matches shift operations.
924 template <typename LHS, typename RHS>
926  const RHS &R) {
928 }
929 
930 /// Matches logical shift operations.
931 template <typename LHS, typename RHS>
933  const RHS &R) {
935 }
936 
937 /// Matches logical shift operations.
938 template <typename LHS, typename RHS>
940 m_LogicalShift(const LHS &L, const RHS &R) {
942 }
943 
944 /// Matches bitwise logic operations.
945 template <typename LHS, typename RHS>
947 m_BitwiseLogic(const LHS &L, const RHS &R) {
949 }
950 
951 /// Matches integer division operations.
952 template <typename LHS, typename RHS>
954  const RHS &R) {
956 }
957 
958 //===----------------------------------------------------------------------===//
959 // Class that matches exact binary ops.
960 //
961 template <typename SubPattern_t> struct Exact_match {
962  SubPattern_t SubPattern;
963 
964  Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
965 
966  template <typename OpTy> bool match(OpTy *V) {
967  if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
968  return PEO->isExact() && SubPattern.match(V);
969  return false;
970  }
971 };
972 
973 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
974  return SubPattern;
975 }
976 
977 //===----------------------------------------------------------------------===//
978 // Matchers for CmpInst classes
979 //
980 
981 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
982  bool Commutable = false>
984  PredicateTy &Predicate;
985  LHS_t L;
986  RHS_t R;
987 
988  // The evaluation order is always stable, regardless of Commutability.
989  // The LHS is always matched first.
990  CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
991  : Predicate(Pred), L(LHS), R(RHS) {}
992 
993  template <typename OpTy> bool match(OpTy *V) {
994  if (auto *I = dyn_cast<Class>(V))
995  if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
996  (Commutable && L.match(I->getOperand(1)) &&
997  R.match(I->getOperand(0)))) {
998  Predicate = I->getPredicate();
999  return true;
1000  }
1001  return false;
1002  }
1003 };
1004 
1005 template <typename LHS, typename RHS>
1007 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1009 }
1010 
1011 template <typename LHS, typename RHS>
1013 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1015 }
1016 
1017 template <typename LHS, typename RHS>
1019 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1021 }
1022 
1023 //===----------------------------------------------------------------------===//
1024 // Matchers for instructions with a given opcode and number of operands.
1025 //
1026 
1027 /// Matches instructions with Opcode and three operands.
1028 template <typename T0, unsigned Opcode> struct OneOps_match {
1029  T0 Op1;
1030 
1031  OneOps_match(const T0 &Op1) : Op1(Op1) {}
1032 
1033  template <typename OpTy> bool match(OpTy *V) {
1034  if (V->getValueID() == Value::InstructionVal + Opcode) {
1035  auto *I = cast<Instruction>(V);
1036  return Op1.match(I->getOperand(0));
1037  }
1038  return false;
1039  }
1040 };
1041 
1042 /// Matches instructions with Opcode and three operands.
1043 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1044  T0 Op1;
1046 
1047  TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1048 
1049  template <typename OpTy> bool match(OpTy *V) {
1050  if (V->getValueID() == Value::InstructionVal + Opcode) {
1051  auto *I = cast<Instruction>(V);
1052  return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1053  }
1054  return false;
1055  }
1056 };
1057 
1058 /// Matches instructions with Opcode and three operands.
1059 template <typename T0, typename T1, typename T2, unsigned Opcode>
1061  T0 Op1;
1063  T2 Op3;
1064 
1065  ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1066  : Op1(Op1), Op2(Op2), Op3(Op3) {}
1067 
1068  template <typename OpTy> bool match(OpTy *V) {
1069  if (V->getValueID() == Value::InstructionVal + Opcode) {
1070  auto *I = cast<Instruction>(V);
1071  return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1072  Op3.match(I->getOperand(2));
1073  }
1074  return false;
1075  }
1076 };
1077 
1078 /// Matches SelectInst.
1079 template <typename Cond, typename LHS, typename RHS>
1081 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1083 }
1084 
1085 /// This matches a select of two constants, e.g.:
1086 /// m_SelectCst<-1, 0>(m_Value(V))
1087 template <int64_t L, int64_t R, typename Cond>
1090 m_SelectCst(const Cond &C) {
1091  return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1092 }
1093 
1094 /// Matches InsertElementInst.
1095 template <typename Val_t, typename Elt_t, typename Idx_t>
1097 m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1099  Val, Elt, Idx);
1100 }
1101 
1102 /// Matches ExtractElementInst.
1103 template <typename Val_t, typename Idx_t>
1105 m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1107 }
1108 
1109 /// Matches ShuffleVectorInst.
1110 template <typename V1_t, typename V2_t, typename Mask_t>
1112 m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1114  m);
1115 }
1116 
1117 /// Matches LoadInst.
1118 template <typename OpTy>
1121 }
1122 
1123 /// Matches StoreInst.
1124 template <typename ValueOpTy, typename PointerOpTy>
1126 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1128  PointerOp);
1129 }
1130 
1131 //===----------------------------------------------------------------------===//
1132 // Matchers for CastInst classes
1133 //
1134 
1135 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1136  Op_t Op;
1137 
1138  CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1139 
1140  template <typename OpTy> bool match(OpTy *V) {
1141  if (auto *O = dyn_cast<Operator>(V))
1142  return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1143  return false;
1144  }
1145 };
1146 
1147 /// Matches BitCast.
1148 template <typename OpTy>
1151 }
1152 
1153 /// Matches PtrToInt.
1154 template <typename OpTy>
1157 }
1158 
1159 /// Matches Trunc.
1160 template <typename OpTy>
1163 }
1164 
1165 /// Matches SExt.
1166 template <typename OpTy>
1169 }
1170 
1171 /// Matches ZExt.
1172 template <typename OpTy>
1175 }
1176 
1177 template <typename OpTy>
1180 m_ZExtOrSExt(const OpTy &Op) {
1181  return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1182 }
1183 
1184 /// Matches UIToFP.
1185 template <typename OpTy>
1188 }
1189 
1190 /// Matches SIToFP.
1191 template <typename OpTy>
1194 }
1195 
1196 /// Matches FPTrunc
1197 template <typename OpTy>
1200 }
1201 
1202 /// Matches FPExt
1203 template <typename OpTy>
1206 }
1207 
1208 //===----------------------------------------------------------------------===//
1209 // Matchers for control flow.
1210 //
1211 
1212 struct br_match {
1214 
1215  br_match(BasicBlock *&Succ) : Succ(Succ) {}
1216 
1217  template <typename OpTy> bool match(OpTy *V) {
1218  if (auto *BI = dyn_cast<BranchInst>(V))
1219  if (BI->isUnconditional()) {
1220  Succ = BI->getSuccessor(0);
1221  return true;
1222  }
1223  return false;
1224  }
1225 };
1226 
1227 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1228 
1229 template <typename Cond_t> struct brc_match {
1230  Cond_t Cond;
1232 
1233  brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
1234  : Cond(C), T(t), F(f) {}
1235 
1236  template <typename OpTy> bool match(OpTy *V) {
1237  if (auto *BI = dyn_cast<BranchInst>(V))
1238  if (BI->isConditional() && Cond.match(BI->getCondition())) {
1239  T = BI->getSuccessor(0);
1240  F = BI->getSuccessor(1);
1241  return true;
1242  }
1243  return false;
1244  }
1245 };
1246 
1247 template <typename Cond_t>
1248 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1249  return brc_match<Cond_t>(C, T, F);
1250 }
1251 
1252 //===----------------------------------------------------------------------===//
1253 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1254 //
1255 
1256 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1257  bool Commutable = false>
1259  LHS_t L;
1260  RHS_t R;
1261 
1262  // The evaluation order is always stable, regardless of Commutability.
1263  // The LHS is always matched first.
1264  MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1265 
1266  template <typename OpTy> bool match(OpTy *V) {
1267  // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1268  auto *SI = dyn_cast<SelectInst>(V);
1269  if (!SI)
1270  return false;
1271  auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1272  if (!Cmp)
1273  return false;
1274  // At this point we have a select conditioned on a comparison. Check that
1275  // it is the values returned by the select that are being compared.
1276  Value *TrueVal = SI->getTrueValue();
1277  Value *FalseVal = SI->getFalseValue();
1278  Value *LHS = Cmp->getOperand(0);
1279  Value *RHS = Cmp->getOperand(1);
1280  if ((TrueVal != LHS || FalseVal != RHS) &&
1281  (TrueVal != RHS || FalseVal != LHS))
1282  return false;
1283  typename CmpInst_t::Predicate Pred =
1284  LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1285  // Does "(x pred y) ? x : y" represent the desired max/min operation?
1286  if (!Pred_t::match(Pred))
1287  return false;
1288  // It does! Bind the operands.
1289  return (L.match(LHS) && R.match(RHS)) ||
1290  (Commutable && L.match(RHS) && R.match(LHS));
1291  }
1292 };
1293 
1294 /// Helper class for identifying signed max predicates.
1296  static bool match(ICmpInst::Predicate Pred) {
1297  return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1298  }
1299 };
1300 
1301 /// Helper class for identifying signed min predicates.
1303  static bool match(ICmpInst::Predicate Pred) {
1304  return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1305  }
1306 };
1307 
1308 /// Helper class for identifying unsigned max predicates.
1310  static bool match(ICmpInst::Predicate Pred) {
1311  return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1312  }
1313 };
1314 
1315 /// Helper class for identifying unsigned min predicates.
1317  static bool match(ICmpInst::Predicate Pred) {
1318  return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1319  }
1320 };
1321 
1322 /// Helper class for identifying ordered max predicates.
1324  static bool match(FCmpInst::Predicate Pred) {
1325  return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1326  }
1327 };
1328 
1329 /// Helper class for identifying ordered min predicates.
1331  static bool match(FCmpInst::Predicate Pred) {
1332  return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1333  }
1334 };
1335 
1336 /// Helper class for identifying unordered max predicates.
1338  static bool match(FCmpInst::Predicate Pred) {
1339  return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1340  }
1341 };
1342 
1343 /// Helper class for identifying unordered min predicates.
1345  static bool match(FCmpInst::Predicate Pred) {
1346  return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1347  }
1348 };
1349 
1350 template <typename LHS, typename RHS>
1352  const RHS &R) {
1354 }
1355 
1356 template <typename LHS, typename RHS>
1358  const RHS &R) {
1360 }
1361 
1362 template <typename LHS, typename RHS>
1364  const RHS &R) {
1366 }
1367 
1368 template <typename LHS, typename RHS>
1370  const RHS &R) {
1372 }
1373 
1374 /// Match an 'ordered' floating point maximum function.
1375 /// Floating point has one special value 'NaN'. Therefore, there is no total
1376 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1377 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1378 /// semantics. In the presence of 'NaN' we have to preserve the original
1379 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1380 ///
1381 /// max(L, R) iff L and R are not NaN
1382 /// m_OrdFMax(L, R) = R iff L or R are NaN
1383 template <typename LHS, typename RHS>
1385  const RHS &R) {
1387 }
1388 
1389 /// Match an 'ordered' floating point minimum function.
1390 /// Floating point has one special value 'NaN'. Therefore, there is no total
1391 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1392 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1393 /// semantics. In the presence of 'NaN' we have to preserve the original
1394 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1395 ///
1396 /// min(L, R) iff L and R are not NaN
1397 /// m_OrdFMin(L, R) = R iff L or R are NaN
1398 template <typename LHS, typename RHS>
1400  const RHS &R) {
1402 }
1403 
1404 /// Match an 'unordered' floating point maximum function.
1405 /// Floating point has one special value 'NaN'. Therefore, there is no total
1406 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1407 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1408 /// semantics. In the presence of 'NaN' we have to preserve the original
1409 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1410 ///
1411 /// max(L, R) iff L and R are not NaN
1412 /// m_UnordFMax(L, R) = L iff L or R are NaN
1413 template <typename LHS, typename RHS>
1415 m_UnordFMax(const LHS &L, const RHS &R) {
1417 }
1418 
1419 /// Match an 'unordered' floating point minimum function.
1420 /// Floating point has one special value 'NaN'. Therefore, there is no total
1421 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1422 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1423 /// semantics. In the presence of 'NaN' we have to preserve the original
1424 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1425 ///
1426 /// min(L, R) iff L and R are not NaN
1427 /// m_UnordFMin(L, R) = L iff L or R are NaN
1428 template <typename LHS, typename RHS>
1430 m_UnordFMin(const LHS &L, const RHS &R) {
1432 }
1433 
1434 //===----------------------------------------------------------------------===//
1435 // Matchers for overflow check patterns: e.g. (a + b) u< a
1436 //
1437 
1438 template <typename LHS_t, typename RHS_t, typename Sum_t>
1440  LHS_t L;
1441  RHS_t R;
1442  Sum_t S;
1443 
1444  UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1445  : L(L), R(R), S(S) {}
1446 
1447  template <typename OpTy> bool match(OpTy *V) {
1448  Value *ICmpLHS, *ICmpRHS;
1449  ICmpInst::Predicate Pred;
1450  if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1451  return false;
1452 
1453  Value *AddLHS, *AddRHS;
1454  auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1455 
1456  // (a + b) u< a, (a + b) u< b
1457  if (Pred == ICmpInst::ICMP_ULT)
1458  if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1459  return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1460 
1461  // a >u (a + b), b >u (a + b)
1462  if (Pred == ICmpInst::ICMP_UGT)
1463  if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1464  return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1465 
1466  // Match special-case for increment-by-1.
1467  if (Pred == ICmpInst::ICMP_EQ) {
1468  // (a + 1) == 0
1469  // (1 + a) == 0
1470  if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1471  (m_One().match(AddLHS) || m_One().match(AddRHS)))
1472  return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1473  // 0 == (a + 1)
1474  // 0 == (1 + a)
1475  if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1476  (m_One().match(AddLHS) || m_One().match(AddRHS)))
1477  return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1478  }
1479 
1480  return false;
1481  }
1482 };
1483 
1484 /// Match an icmp instruction checking for unsigned overflow on addition.
1485 ///
1486 /// S is matched to the addition whose result is being checked for overflow, and
1487 /// L and R are matched to the LHS and RHS of S.
1488 template <typename LHS_t, typename RHS_t, typename Sum_t>
1490 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1492 }
1493 
1494 template <typename Opnd_t> struct Argument_match {
1495  unsigned OpI;
1496  Opnd_t Val;
1497 
1498  Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1499 
1500  template <typename OpTy> bool match(OpTy *V) {
1501  // FIXME: Should likely be switched to use `CallBase`.
1502  if (const auto *CI = dyn_cast<CallInst>(V))
1503  return Val.match(CI->getArgOperand(OpI));
1504  return false;
1505  }
1506 };
1507 
1508 /// Match an argument.
1509 template <unsigned OpI, typename Opnd_t>
1510 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1511  return Argument_match<Opnd_t>(OpI, Op);
1512 }
1513 
1514 /// Intrinsic matchers.
1516  unsigned ID;
1517 
1518  IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1519 
1520  template <typename OpTy> bool match(OpTy *V) {
1521  if (const auto *CI = dyn_cast<CallInst>(V))
1522  if (const auto *F = CI->getCalledFunction())
1523  return F->getIntrinsicID() == ID;
1524  return false;
1525  }
1526 };
1527 
1528 /// Intrinsic matches are combinations of ID matchers, and argument
1529 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1530 /// them with lower arity matchers. Here's some convenient typedefs for up to
1531 /// several arguments, and more can be added as needed
1532 template <typename T0 = void, typename T1 = void, typename T2 = void,
1533  typename T3 = void, typename T4 = void, typename T5 = void,
1534  typename T6 = void, typename T7 = void, typename T8 = void,
1535  typename T9 = void, typename T10 = void>
1537 template <typename T0> struct m_Intrinsic_Ty<T0> {
1539 };
1540 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1541  using Ty =
1543 };
1544 template <typename T0, typename T1, typename T2>
1545 struct m_Intrinsic_Ty<T0, T1, T2> {
1546  using Ty =
1549 };
1550 template <typename T0, typename T1, typename T2, typename T3>
1551 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1552  using Ty =
1555 };
1556 
1557 /// Match intrinsic calls like this:
1558 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1559 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1560  return IntrinsicID_match(IntrID);
1561 }
1562 
1563 template <Intrinsic::ID IntrID, typename T0>
1564 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1565  return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1566 }
1567 
1568 template <Intrinsic::ID IntrID, typename T0, typename T1>
1569 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1570  const T1 &Op1) {
1571  return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1572 }
1573 
1574 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1575 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1576 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1577  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1578 }
1579 
1580 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1581  typename T3>
1582 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1583 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1584  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1585 }
1586 
1587 // Helper intrinsic matching specializations.
1588 template <typename Opnd0>
1589 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1590  return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1591 }
1592 
1593 template <typename Opnd0>
1594 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1595  return m_Intrinsic<Intrinsic::bswap>(Op0);
1596 }
1597 
1598 template <typename Opnd0>
1599 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1600  return m_Intrinsic<Intrinsic::fabs>(Op0);
1601 }
1602 
1603 template <typename Opnd0>
1604 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1605  return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1606 }
1607 
1608 template <typename Opnd0, typename Opnd1>
1609 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1610  const Opnd1 &Op1) {
1611  return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1612 }
1613 
1614 template <typename Opnd0, typename Opnd1>
1615 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1616  const Opnd1 &Op1) {
1617  return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1618 }
1619 
1620 //===----------------------------------------------------------------------===//
1621 // Matchers for two-operands operators with the operators in either order
1622 //
1623 
1624 /// Matches a BinaryOperator with LHS and RHS in either order.
1625 template <typename LHS, typename RHS>
1626 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1627  return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1628 }
1629 
1630 /// Matches an ICmp with a predicate over LHS and RHS in either order.
1631 /// Does not swap the predicate.
1632 template <typename LHS, typename RHS>
1634 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1636  R);
1637 }
1638 
1639 /// Matches a Add with LHS and RHS in either order.
1640 template <typename LHS, typename RHS>
1642  const RHS &R) {
1644 }
1645 
1646 /// Matches a Mul with LHS and RHS in either order.
1647 template <typename LHS, typename RHS>
1649  const RHS &R) {
1651 }
1652 
1653 /// Matches an And with LHS and RHS in either order.
1654 template <typename LHS, typename RHS>
1656  const RHS &R) {
1658 }
1659 
1660 /// Matches an Or with LHS and RHS in either order.
1661 template <typename LHS, typename RHS>
1663  const RHS &R) {
1665 }
1666 
1667 /// Matches an Xor with LHS and RHS in either order.
1668 template <typename LHS, typename RHS>
1670  const RHS &R) {
1672 }
1673 
1674 /// Matches a 'Neg' as 'sub 0, V'.
1675 template <typename ValTy>
1676 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1677 m_Neg(const ValTy &V) {
1678  return m_Sub(m_ZeroInt(), V);
1679 }
1680 
1681 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1682 template <typename ValTy>
1683 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1684 m_Not(const ValTy &V) {
1685  return m_c_Xor(V, m_AllOnes());
1686 }
1687 
1688 /// Matches an SMin with LHS and RHS in either order.
1689 template <typename LHS, typename RHS>
1691 m_c_SMin(const LHS &L, const RHS &R) {
1693 }
1694 /// Matches an SMax with LHS and RHS in either order.
1695 template <typename LHS, typename RHS>
1697 m_c_SMax(const LHS &L, const RHS &R) {
1699 }
1700 /// Matches a UMin with LHS and RHS in either order.
1701 template <typename LHS, typename RHS>
1703 m_c_UMin(const LHS &L, const RHS &R) {
1705 }
1706 /// Matches a UMax with LHS and RHS in either order.
1707 template <typename LHS, typename RHS>
1709 m_c_UMax(const LHS &L, const RHS &R) {
1711 }
1712 
1713 /// Matches FAdd with LHS and RHS in either order.
1714 template <typename LHS, typename RHS>
1716 m_c_FAdd(const LHS &L, const RHS &R) {
1718 }
1719 
1720 /// Matches FMul with LHS and RHS in either order.
1721 template <typename LHS, typename RHS>
1723 m_c_FMul(const LHS &L, const RHS &R) {
1725 }
1726 
1727 template <typename Opnd_t> struct Signum_match {
1728  Opnd_t Val;
1729  Signum_match(const Opnd_t &V) : Val(V) {}
1730 
1731  template <typename OpTy> bool match(OpTy *V) {
1732  unsigned TypeSize = V->getType()->getScalarSizeInBits();
1733  if (TypeSize == 0)
1734  return false;
1735 
1736  unsigned ShiftWidth = TypeSize - 1;
1737  Value *OpL = nullptr, *OpR = nullptr;
1738 
1739  // This is the representation of signum we match:
1740  //
1741  // signum(x) == (x >> 63) | (-x >>u 63)
1742  //
1743  // An i1 value is its own signum, so it's correct to match
1744  //
1745  // signum(x) == (x >> 0) | (-x >>u 0)
1746  //
1747  // for i1 values.
1748 
1749  auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1750  auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1751  auto Signum = m_Or(LHS, RHS);
1752 
1753  return Signum.match(V) && OpL == OpR && Val.match(OpL);
1754  }
1755 };
1756 
1757 /// Matches a signum pattern.
1758 ///
1759 /// signum(x) =
1760 /// x > 0 -> 1
1761 /// x == 0 -> 0
1762 /// x < 0 -> -1
1763 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1764  return Signum_match<Val_t>(V);
1765 }
1766 
1767 } // end namespace PatternMatch
1768 } // end namespace llvm
1769 
1770 #endif // LLVM_IR_PATTERNMATCH_H
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
Definition: PatternMatch.h:748
uint64_t CallInst * C
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
Definition: PatternMatch.h:932
bool isValue(const APFloat &C)
Definition: PatternMatch.h:440
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:819
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of nonnegative values.
Definition: PatternMatch.h:342
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMin(const Opnd0 &Op0, const Opnd1 &Op1)
static bool match(FCmpInst::Predicate Pred)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
class_match< UndefValue > m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:86
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
bool isSignMask() const
Check if the APInt&#39;s value is returned by getSignMask.
Definition: APInt.h:472
bool isZero() const
Definition: APFloat.h:1142
Match a specified integer value or vector of all elements of that.
Definition: PatternMatch.h:561
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
Definition: PatternMatch.h:78
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:653
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:375
br_match(BasicBlock *&Succ)
This class represents lattice values for constants.
Definition: AllocatorList.h:23
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
Definition: PatternMatch.h:647
Matches instructions with Opcode and three operands.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
Match a specified floating point value or vector of all elements of that value.
Definition: PatternMatch.h:521
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMax(const Opnd0 &Op0, const Opnd1 &Op1)
bool isValue(const APInt &C)
Definition: PatternMatch.h:404
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
Definition: PatternMatch.h:724
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
Definition: PatternMatch.h:736
bool isValue(const APInt &C)
Definition: PatternMatch.h:359
Exact_match(const SubPattern_t &SP)
Definition: PatternMatch.h:964
BinaryOp_match< cstfp_pred_ty< is_any_zero_fp >, RHS, Instruction::FSub > m_FNegNSZ(const RHS &X)
Match &#39;fneg X&#39; as &#39;fsub +-0.0, X&#39;.
Definition: PatternMatch.h:695
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:700
br_match m_UnconditionalBr(BasicBlock *&Succ)
This helper class is used to match scalar and vector floating-point constants that satisfy a specifie...
Definition: PatternMatch.h:263
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
Definition: PatternMatch.h:408
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:89
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
unsigned less or equal
Definition: InstrTypes.h:672
unsigned less than
Definition: InstrTypes.h:671
bool isValue(const APInt &C)
Definition: PatternMatch.h:326
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:778
static bool match(ICmpInst::Predicate Pred)
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:652
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate, true > m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
match_combine_or(const LTy &Left, const RTy &Right)
Definition: PatternMatch.h:96
F(f)
ThreeOps_match< V1_t, V2_t, Mask_t, Instruction::ShuffleVector > m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m)
Matches ShuffleVectorInst.
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:659
MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > m_UnordFMax(const LHS &L, const RHS &R)
Match an &#39;unordered&#39; floating point maximum function.
Argument_match(unsigned OpIdx, const Opnd_t &V)
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
Definition: PatternMatch.h:363
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
Definition: PatternMatch.h:940
Matches instructions with Opcode and three operands.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
Definition: PatternMatch.h:539
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:47
CmpClass_match< LHS, RHS, FCmpInst, FCmpInst::Predicate > m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R)
Helper class for identifying signed min predicates.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
Definition: PatternMatch.h:760
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElement(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
This class represents the LLVM &#39;select&#39; instruction.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:368
Exact_match< T > m_Exact(const T &SubPattern)
Definition: PatternMatch.h:973
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
Definition: PatternMatch.h:417
bool isValue(const APFloat &C)
Definition: PatternMatch.h:431
CastClass_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
Matches Trunc.
bool isValue(const APFloat &C)
Definition: PatternMatch.h:422
cst_pred_ty< is_maxsignedvalue > m_MaxSignedValue()
Match an integer or vector with values having all bits except for the high bit set (0x7f...
Definition: PatternMatch.h:318
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:653
ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > m_UnordFMin(const LHS &L, const RHS &R)
Match an &#39;unordered&#39; floating point minimum function.
This file implements a class to represent arbitrary precision integral constant values and operations...
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:641
bind_ty< ConstantFP > m_ConstantFP(ConstantFP *&C)
Match a ConstantFP, capturing the value if we match.
Definition: PatternMatch.h:489
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
Definition: Instruction.h:180
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
Definition: PatternMatch.h:844
#define UINT64_MAX
Definition: DataTypes.h:83
cstfp_pred_ty< is_nan > m_NaN()
Match an arbitrary NaN constant.
Definition: PatternMatch.h:426
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
Definition: PatternMatch.h:179
CastClass_match< OpTy, Instruction::FPExt > m_FPExt(const OpTy &Op)
Matches FPExt.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:123
CastClass_match(const Op_t &OpMatch)
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
Matches ZExt.
#define T
CastClass_match< OpTy, Instruction::FPTrunc > m_FPTrunc(const OpTy &Op)
Matches FPTrunc.
MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty > m_OrdFMin(const LHS &L, const RHS &R)
Match an &#39;ordered&#39; floating point minimum function.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:81
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:137
UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
Definition: PatternMatch.h:444
IntrinsicID_match(Intrinsic::ID IntrID)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:384
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:860
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
static bool match(FCmpInst::Predicate Pred)
Helper class for identifying ordered min predicates.
match_combine_and(const LTy &Left, const RTy &Right)
Definition: PatternMatch.h:111
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:61
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:363
#define P(N)
bool isNegZero() const
Definition: APFloat.h:1158
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:772
Helper class for identifying signed max predicates.
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:395
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt...
Definition: PatternMatch.h:175
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
Definition: PatternMatch.h:718
This helper class is used to match scalar and vector integer constants that satisfy a specified predi...
Definition: PatternMatch.h:204
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:868
BinaryOp_match< LHS, RHS, Instruction::FRem > m_FRem(const LHS &L, const RHS &R)
Definition: PatternMatch.h:742
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
Definition: PatternMatch.h:396
LLVM Basic Block Representation.
Definition: BasicBlock.h:57
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
Definition: PatternMatch.h:754
TwoOps_match< ValueOpTy, PointerOpTy, Instruction::Store > m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp)
Matches StoreInst.
bool isNaN() const
Definition: APFloat.h:1144
CastClass_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
This is an important base class in LLVM.
Definition: Constant.h:41
This file contains the declarations for the subclasses of Constant, which represent the different fla...
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:263
bool isMask(unsigned numBits) const
Definition: APInt.h:494
bool isOneValue() const
Determine if this is a value of 1.
Definition: APInt.h:410
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:308
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:501
brc_match< Cond_t > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:766
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:646
match_combine_or< CastClass_match< OpTy, Instruction::ZExt >, CastClass_match< OpTy, Instruction::SExt > > m_ZExtOrSExt(const OpTy &Op)
Helper class for identifying unsigned min predicates.
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
Definition: PatternMatch.h:947
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
Definition: PatternMatch.h:594
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:73
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
Signum_match< Val_t > m_Signum(const Val_t &V)
Matches a signum pattern.
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
Definition: PatternMatch.h:953
Helper class for identifying unordered min predicates.
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:661
BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
Definition: PatternMatch.h:622
deferredval_ty< Value > m_Deferred(Value *const &V)
A commutative-friendly version of m_Specific().
Definition: PatternMatch.h:514
signed greater than
Definition: InstrTypes.h:673
Argument_match< Opnd_t > m_Argument(const Opnd_t &Op)
Match an argument.
CastClass_match< OpTy, Instruction::SExt > m_SExt(const OpTy &Op)
Matches SExt.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
OneUse_match(const SubPattern_t &SP)
Definition: PatternMatch.h:54
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:650
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
Definition: PatternMatch.h:330
Intrinsic matches are combinations of ID matchers, and argument matchers.
static bool match(ICmpInst::Predicate Pred)
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition: APInt.h:426
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
static bool match(ICmpInst::Predicate Pred)
bool isValue(const APInt &C)
Definition: PatternMatch.h:380
Match a specified Value*.
Definition: PatternMatch.h:492
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:660
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:239
brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
Definition: PatternMatch.h:730
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:26
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
Definition: PatternMatch.h:712
signed less than
Definition: InstrTypes.h:675
bool isOpType(unsigned Opcode)
Definition: PatternMatch.h:918
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
Stores a reference to the Value *, not the Value * itself, thus can be used in commutative matchers...
Definition: PatternMatch.h:505
CastClass_match< OpTy, Instruction::UIToFP > m_UIToFP(const OpTy &Op)
Matches UIToFP.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:706
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
Definition: PatternMatch.h:811
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a &#39;Neg&#39; as &#39;sub 0, V&#39;.
signed less or equal
Definition: InstrTypes.h:676
Class for arbitrary precision integers.
Definition: APInt.h:69
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
Definition: PatternMatch.h:453
bool isPowerOf2() const
Check if this APInt&#39;s value is a power of two greater than zero.
Definition: APInt.h:463
CastClass_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
Definition: PatternMatch.h:925
Helper class for identifying unsigned max predicates.
Helper class for identifying ordered max predicates.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:852
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
Definition: PatternMatch.h:542
m_Intrinsic_Ty< Opnd0 >::Ty m_FCanonicalize(const Opnd0 &Op0)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match &#39;fneg X&#39; as &#39;fsub -0.0, X&#39;.
Definition: PatternMatch.h:688
bool isPosZero() const
Definition: APFloat.h:1157
unsigned greater or equal
Definition: InstrTypes.h:670
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
Definition: PatternMatch.h:990
#define I(x, y, z)
Definition: MD5.cpp:58
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:835
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
ThreeOps_match< Cond, constantint_match< L >, constantint_match< R >, Instruction::Select > m_SelectCst(const Cond &C)
This matches a select of two constants, e.g.
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:322
CastClass_match< OpTy, Instruction::SIToFP > m_SIToFP(const OpTy &Op)
Matches SIToFP.
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:658
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
Definition: PatternMatch.h:789
Matches instructions with Opcode and three operands.
bool isOpType(unsigned Opcode)
Definition: PatternMatch.h:896
static bool match(FCmpInst::Predicate Pred)
apfloat_match(const APFloat *&R)
Definition: PatternMatch.h:157
MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty > m_OrdFMax(const LHS &L, const RHS &R)
Match an &#39;ordered&#39; floating point maximum function.
Helper class for identifying unordered max predicates.
LLVM Value Representation.
Definition: Value.h:72
bool isValue(const APInt &C)
Definition: PatternMatch.h:304
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:659
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:827
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:354
static bool match(ICmpInst::Predicate Pred)
BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS)
Definition: PatternMatch.h:882
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
Definition: PatternMatch.h:129
static bool match(FCmpInst::Predicate Pred)
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
unsigned greater than
Definition: InstrTypes.h:669
specific_intval m_SpecificInt(uint64_t V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:578
bool isValue(const APInt &C)
Definition: PatternMatch.h:350
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
Definition: PatternMatch.h:435
MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:651
bool isValue(const APFloat &C)
Definition: PatternMatch.h:449
This helper class is used to match scalar and vector constants that satisfy a specified predicate...
Definition: PatternMatch.h:237
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:478
#define T1
BinaryOp_match< ValTy, cst_pred_ty< is_all_ones >, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a &#39;Not&#39; as &#39;xor V, -1&#39; or &#39;xor -1, V&#39;.
bool isNullValue() const
Determine if all bits are clear.
Definition: APInt.h:405
signed greater or equal
Definition: InstrTypes.h:674
TwoOps_match(const T0 &Op1, const T1 &Op2)
UAddWithOverflow_match< LHS_t, RHS_t, Sum_t > m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S)
Match an icmp instruction checking for unsigned overflow on addition.
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)