LLVM 19.0.0git
SSAUpdaterImpl.h
Go to the documentation of this file.
1//===- SSAUpdaterImpl.h - SSA Updater Implementation ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a template that implements the core algorithm for the
10// SSAUpdater and MachineSSAUpdater.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
15#define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
16
17#include "llvm/ADT/DenseMap.h"
20#include "llvm/Support/Debug.h"
22
23#define DEBUG_TYPE "ssaupdater"
24
25namespace llvm {
26
27template<typename T> class SSAUpdaterTraits;
28
29template<typename UpdaterT>
31private:
32 UpdaterT *Updater;
33
35 using BlkT = typename Traits::BlkT;
36 using ValT = typename Traits::ValT;
37 using PhiT = typename Traits::PhiT;
38
39 /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
40 /// The predecessors of each block are cached here since pred_iterator is
41 /// slow and we need to iterate over the blocks at least a few times.
42 class BBInfo {
43 public:
44 // Back-pointer to the corresponding block.
45 BlkT *BB;
46
47 // Value to use in this block.
48 ValT AvailableVal;
49
50 // Block that defines the available value.
51 BBInfo *DefBB;
52
53 // Postorder number.
54 int BlkNum = 0;
55
56 // Immediate dominator.
57 BBInfo *IDom = nullptr;
58
59 // Number of predecessor blocks.
60 unsigned NumPreds = 0;
61
62 // Array[NumPreds] of predecessor blocks.
63 BBInfo **Preds = nullptr;
64
65 // Marker for existing PHIs that match.
66 PhiT *PHITag = nullptr;
67
68 BBInfo(BlkT *ThisBB, ValT V)
69 : BB(ThisBB), AvailableVal(V), DefBB(V ? this : nullptr) {}
70 };
71
73
74 AvailableValsTy *AvailableVals;
75
76 SmallVectorImpl<PhiT *> *InsertedPHIs;
77
80
81 BBMapTy BBMap;
82 BumpPtrAllocator Allocator;
83
84public:
85 explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
87 Updater(U), AvailableVals(A), InsertedPHIs(Ins) {}
88
89 /// GetValue - Check to see if AvailableVals has an entry for the specified
90 /// BB and if so, return it. If not, construct SSA form by first
91 /// calculating the required placement of PHIs and then inserting new PHIs
92 /// where needed.
93 ValT GetValue(BlkT *BB) {
95 BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
96
97 // Special case: bail out if BB is unreachable.
98 if (BlockList.size() == 0) {
99 ValT V = Traits::GetUndefVal(BB, Updater);
100 (*AvailableVals)[BB] = V;
101 return V;
102 }
103
104 FindDominators(&BlockList, PseudoEntry);
105 FindPHIPlacement(&BlockList);
106 FindAvailableVals(&BlockList);
107
108 return BBMap[BB]->DefBB->AvailableVal;
109 }
110
111 /// BuildBlockList - Starting from the specified basic block, traverse back
112 /// through its predecessors until reaching blocks with known values.
113 /// Create BBInfo structures for the blocks and append them to the block
114 /// list.
115 BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
118
119 BBInfo *Info = new (Allocator) BBInfo(BB, 0);
120 BBMap[BB] = Info;
121 WorkList.push_back(Info);
122
123 // Search backward from BB, creating BBInfos along the way and stopping
124 // when reaching blocks that define the value. Record those defining
125 // blocks on the RootList.
127 while (!WorkList.empty()) {
128 Info = WorkList.pop_back_val();
129 Preds.clear();
130 Traits::FindPredecessorBlocks(Info->BB, &Preds);
131 Info->NumPreds = Preds.size();
132 if (Info->NumPreds == 0)
133 Info->Preds = nullptr;
134 else
135 Info->Preds = static_cast<BBInfo **>(Allocator.Allocate(
136 Info->NumPreds * sizeof(BBInfo *), alignof(BBInfo *)));
137
138 for (unsigned p = 0; p != Info->NumPreds; ++p) {
139 BlkT *Pred = Preds[p];
140 // Check if BBMap already has a BBInfo for the predecessor block.
141 typename BBMapTy::value_type &BBMapBucket =
142 BBMap.FindAndConstruct(Pred);
143 if (BBMapBucket.second) {
144 Info->Preds[p] = BBMapBucket.second;
145 continue;
146 }
147
148 // Create a new BBInfo for the predecessor.
149 ValT PredVal = AvailableVals->lookup(Pred);
150 BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
151 BBMapBucket.second = PredInfo;
152 Info->Preds[p] = PredInfo;
153
154 if (PredInfo->AvailableVal) {
155 RootList.push_back(PredInfo);
156 continue;
157 }
158 WorkList.push_back(PredInfo);
159 }
160 }
161
162 // Now that we know what blocks are backwards-reachable from the starting
163 // block, do a forward depth-first traversal to assign postorder numbers
164 // to those blocks.
165 BBInfo *PseudoEntry = new (Allocator) BBInfo(nullptr, 0);
166 unsigned BlkNum = 1;
167
168 // Initialize the worklist with the roots from the backward traversal.
169 while (!RootList.empty()) {
170 Info = RootList.pop_back_val();
171 Info->IDom = PseudoEntry;
172 Info->BlkNum = -1;
173 WorkList.push_back(Info);
174 }
175
176 while (!WorkList.empty()) {
177 Info = WorkList.back();
178
179 if (Info->BlkNum == -2) {
180 // All the successors have been handled; assign the postorder number.
181 Info->BlkNum = BlkNum++;
182 // If not a root, put it on the BlockList.
183 if (!Info->AvailableVal)
184 BlockList->push_back(Info);
185 WorkList.pop_back();
186 continue;
187 }
188
189 // Leave this entry on the worklist, but set its BlkNum to mark that its
190 // successors have been put on the worklist. When it returns to the top
191 // the list, after handling its successors, it will be assigned a
192 // number.
193 Info->BlkNum = -2;
194
195 // Add unvisited successors to the work list.
196 for (typename Traits::BlkSucc_iterator SI =
197 Traits::BlkSucc_begin(Info->BB),
198 E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
199 BBInfo *SuccInfo = BBMap[*SI];
200 if (!SuccInfo || SuccInfo->BlkNum)
201 continue;
202 SuccInfo->BlkNum = -1;
203 WorkList.push_back(SuccInfo);
204 }
205 }
206 PseudoEntry->BlkNum = BlkNum;
207 return PseudoEntry;
208 }
209
210 /// IntersectDominators - This is the dataflow lattice "meet" operation for
211 /// finding dominators. Given two basic blocks, it walks up the dominator
212 /// tree until it finds a common dominator of both. It uses the postorder
213 /// number of the blocks to determine how to do that.
214 BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
215 while (Blk1 != Blk2) {
216 while (Blk1->BlkNum < Blk2->BlkNum) {
217 Blk1 = Blk1->IDom;
218 if (!Blk1)
219 return Blk2;
220 }
221 while (Blk2->BlkNum < Blk1->BlkNum) {
222 Blk2 = Blk2->IDom;
223 if (!Blk2)
224 return Blk1;
225 }
226 }
227 return Blk1;
228 }
229
230 /// FindDominators - Calculate the dominator tree for the subset of the CFG
231 /// corresponding to the basic blocks on the BlockList. This uses the
232 /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
233 /// and Kennedy, published in Software--Practice and Experience, 2001,
234 /// 4:1-10. Because the CFG subset does not include any edges leading into
235 /// blocks that define the value, the results are not the usual dominator
236 /// tree. The CFG subset has a single pseudo-entry node with edges to a set
237 /// of root nodes for blocks that define the value. The dominators for this
238 /// subset CFG are not the standard dominators but they are adequate for
239 /// placing PHIs within the subset CFG.
240 void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
241 bool Changed;
242 do {
243 Changed = false;
244 // Iterate over the list in reverse order, i.e., forward on CFG edges.
245 for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
246 E = BlockList->rend(); I != E; ++I) {
247 BBInfo *Info = *I;
248 BBInfo *NewIDom = nullptr;
249
250 // Iterate through the block's predecessors.
251 for (unsigned p = 0; p != Info->NumPreds; ++p) {
252 BBInfo *Pred = Info->Preds[p];
253
254 // Treat an unreachable predecessor as a definition with 'undef'.
255 if (Pred->BlkNum == 0) {
256 Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
257 (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
258 Pred->DefBB = Pred;
259 Pred->BlkNum = PseudoEntry->BlkNum;
260 PseudoEntry->BlkNum++;
261 }
262
263 if (!NewIDom)
264 NewIDom = Pred;
265 else
266 NewIDom = IntersectDominators(NewIDom, Pred);
267 }
268
269 // Check if the IDom value has changed.
270 if (NewIDom && NewIDom != Info->IDom) {
271 Info->IDom = NewIDom;
272 Changed = true;
273 }
274 }
275 } while (Changed);
276 }
277
278 /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
279 /// any blocks containing definitions of the value. If one is found, then
280 /// the successor of Pred is in the dominance frontier for the definition,
281 /// and this function returns true.
282 bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
283 for (; Pred != IDom; Pred = Pred->IDom) {
284 if (Pred->DefBB == Pred)
285 return true;
286 }
287 return false;
288 }
289
290 /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
291 /// of the known definitions. Iteratively add PHIs in the dom frontiers
292 /// until nothing changes. Along the way, keep track of the nearest
293 /// dominating definitions for non-PHI blocks.
294 void FindPHIPlacement(BlockListTy *BlockList) {
295 bool Changed;
296 do {
297 Changed = false;
298 // Iterate over the list in reverse order, i.e., forward on CFG edges.
299 for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
300 E = BlockList->rend(); I != E; ++I) {
301 BBInfo *Info = *I;
302
303 // If this block already needs a PHI, there is nothing to do here.
304 if (Info->DefBB == Info)
305 continue;
306
307 // Default to use the same def as the immediate dominator.
308 BBInfo *NewDefBB = Info->IDom->DefBB;
309 for (unsigned p = 0; p != Info->NumPreds; ++p) {
310 if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
311 // Need a PHI here.
312 NewDefBB = Info;
313 break;
314 }
315 }
316
317 // Check if anything changed.
318 if (NewDefBB != Info->DefBB) {
319 Info->DefBB = NewDefBB;
320 Changed = true;
321 }
322 }
323 } while (Changed);
324 }
325
326 /// Check all predecessors and if all of them have the same AvailableVal use
327 /// it as value for block represented by Info. Return true if singluar value
328 /// is found.
329 bool FindSingularVal(BBInfo *Info) {
330 if (!Info->NumPreds)
331 return false;
332 ValT Singular = Info->Preds[0]->DefBB->AvailableVal;
333 if (!Singular)
334 return false;
335 for (unsigned Idx = 1; Idx < Info->NumPreds; ++Idx) {
336 ValT PredVal = Info->Preds[Idx]->DefBB->AvailableVal;
337 if (!PredVal || Singular != PredVal)
338 return false;
339 }
340 // Record Singular value.
341 (*AvailableVals)[Info->BB] = Singular;
342 assert(BBMap[Info->BB] == Info && "Info missed in BBMap?");
343 Info->AvailableVal = Singular;
344 Info->DefBB = Info->Preds[0]->DefBB;
345 return true;
346 }
347
348 /// FindAvailableVal - If this block requires a PHI, first check if an
349 /// existing PHI matches the PHI placement and reaching definitions computed
350 /// earlier, and if not, create a new PHI. Visit all the block's
351 /// predecessors to calculate the available value for each one and fill in
352 /// the incoming values for a new PHI.
354 // Go through the worklist in forward order (i.e., backward through the CFG)
355 // and check if existing PHIs can be used. If not, create empty PHIs where
356 // they are needed.
357 for (typename BlockListTy::iterator I = BlockList->begin(),
358 E = BlockList->end(); I != E; ++I) {
359 BBInfo *Info = *I;
360 // Check if there needs to be a PHI in BB.
361 if (Info->DefBB != Info)
362 continue;
363
364 // Look for singular value.
366 continue;
367
368 // Look for an existing PHI.
369 FindExistingPHI(Info->BB, BlockList);
370 if (Info->AvailableVal)
371 continue;
372
373 ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
374 Info->AvailableVal = PHI;
375 (*AvailableVals)[Info->BB] = PHI;
376 }
377
378 // Now go back through the worklist in reverse order to fill in the
379 // arguments for any new PHIs added in the forward traversal.
380 for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
381 E = BlockList->rend(); I != E; ++I) {
382 BBInfo *Info = *I;
383
384 if (Info->DefBB != Info) {
385 // Record the available value to speed up subsequent uses of this
386 // SSAUpdater for the same value.
387 (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
388 continue;
389 }
390
391 // Check if this block contains a newly added PHI.
392 PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
393 if (!PHI)
394 continue;
395
396 // Iterate through the block's predecessors.
397 for (unsigned p = 0; p != Info->NumPreds; ++p) {
398 BBInfo *PredInfo = Info->Preds[p];
399 BlkT *Pred = PredInfo->BB;
400 // Skip to the nearest preceding definition.
401 if (PredInfo->DefBB != PredInfo)
402 PredInfo = PredInfo->DefBB;
403 Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
404 }
405
406 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
407
408 // If the client wants to know about all new instructions, tell it.
409 if (InsertedPHIs) InsertedPHIs->push_back(PHI);
410 }
411 }
412
413 /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
414 /// them match what is needed.
415 void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
416 for (auto &SomePHI : BB->phis()) {
417 if (CheckIfPHIMatches(&SomePHI)) {
418 RecordMatchingPHIs(BlockList);
419 break;
420 }
421 // Match failed: clear all the PHITag values.
422 for (typename BlockListTy::iterator I = BlockList->begin(),
423 E = BlockList->end(); I != E; ++I)
424 (*I)->PHITag = nullptr;
425 }
426 }
427
428 /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
429 /// in the BBMap.
430 bool CheckIfPHIMatches(PhiT *PHI) {
432 WorkList.push_back(PHI);
433
434 // Mark that the block containing this PHI has been visited.
435 BBMap[PHI->getParent()]->PHITag = PHI;
436
437 while (!WorkList.empty()) {
438 PHI = WorkList.pop_back_val();
439
440 // Iterate through the PHI's incoming values.
441 for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
442 E = Traits::PHI_end(PHI); I != E; ++I) {
443 ValT IncomingVal = I.getIncomingValue();
444 BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
445 // Skip to the nearest preceding definition.
446 if (PredInfo->DefBB != PredInfo)
447 PredInfo = PredInfo->DefBB;
448
449 // Check if it matches the expected value.
450 if (PredInfo->AvailableVal) {
451 if (IncomingVal == PredInfo->AvailableVal)
452 continue;
453 return false;
454 }
455
456 // Check if the value is a PHI in the correct block.
457 PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
458 if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
459 return false;
460
461 // If this block has already been visited, check if this PHI matches.
462 if (PredInfo->PHITag) {
463 if (IncomingPHIVal == PredInfo->PHITag)
464 continue;
465 return false;
466 }
467 PredInfo->PHITag = IncomingPHIVal;
468
469 WorkList.push_back(IncomingPHIVal);
470 }
471 }
472 return true;
473 }
474
475 /// RecordMatchingPHIs - For each PHI node that matches, record it in both
476 /// the BBMap and the AvailableVals mapping.
478 for (typename BlockListTy::iterator I = BlockList->begin(),
479 E = BlockList->end(); I != E; ++I)
480 if (PhiT *PHI = (*I)->PHITag) {
481 BlkT *BB = PHI->getParent();
482 ValT PHIVal = Traits::GetPHIValue(PHI);
483 (*AvailableVals)[BB] = PHIVal;
484 BBMap[BB]->AvailableVal = PHIVal;
485 }
486 }
487};
488
489} // end namespace llvm
490
491#undef DEBUG_TYPE // "ssaupdater"
492
493#endif // LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
Rewrite undef for PHI
This file defines the BumpPtrAllocator interface.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
#define I(x, y, z)
Definition: MD5.cpp:58
Basic Register Allocator
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:66
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:202
value_type & FindAndConstruct(const KeyT &Key)
Definition: DenseMap.h:348
BucketT value_type
Definition: DenseMap.h:69
void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry)
FindDominators - Calculate the dominator tree for the subset of the CFG corresponding to the basic bl...
bool CheckIfPHIMatches(PhiT *PHI)
CheckIfPHIMatches - Check if a PHI node matches the placement and values in the BBMap.
void RecordMatchingPHIs(BlockListTy *BlockList)
RecordMatchingPHIs - For each PHI node that matches, record it in both the BBMap and the AvailableVal...
void FindAvailableVals(BlockListTy *BlockList)
FindAvailableVal - If this block requires a PHI, first check if an existing PHI matches the PHI place...
bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom)
IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for any blocks containing definit...
ValT GetValue(BlkT *BB)
GetValue - Check to see if AvailableVals has an entry for the specified BB and if so,...
SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A, SmallVectorImpl< PhiT * > *Ins)
BBInfo * BuildBlockList(BlkT *BB, BlockListTy *BlockList)
BuildBlockList - Starting from the specified basic block, traverse back through its predecessors unti...
void FindExistingPHI(BlkT *BB, BlockListTy *BlockList)
FindExistingPHI - Look through the PHI nodes in a block to see if any of them match what is needed.
bool FindSingularVal(BBInfo *Info)
Check all predecessors and if all of them have the same AvailableVal use it as value for block repres...
void FindPHIPlacement(BlockListTy *BlockList)
FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of the known definitions.
BBInfo * IntersectDominators(BBInfo *Blk1, BBInfo *Blk2)
IntersectDominators - This is the dataflow lattice "meet" operation for finding dominators.
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
typename SuperClass::iterator iterator
Definition: SmallVector.h:590
void push_back(const T &Elt)
Definition: SmallVector.h:426
std::reverse_iterator< iterator > reverse_iterator
Definition: SmallVector.h:268
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163