LLVM  7.0.0svn
SimplifyLibCalls.cpp
Go to the documentation of this file.
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the library calls simplifier. It does not implement
11 // any pass, but can't be used by other passes to do simplifications.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/KnownBits.h"
36 
37 using namespace llvm;
38 using namespace PatternMatch;
39 
40 static cl::opt<bool>
41  EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
42  cl::init(false),
43  cl::desc("Enable unsafe double to float "
44  "shrinking for math lib calls"));
45 
46 
47 //===----------------------------------------------------------------------===//
48 // Helper Functions
49 //===----------------------------------------------------------------------===//
50 
51 static bool ignoreCallingConv(LibFunc Func) {
52  return Func == LibFunc_abs || Func == LibFunc_labs ||
53  Func == LibFunc_llabs || Func == LibFunc_strlen;
54 }
55 
57  switch(CI->getCallingConv()) {
58  default:
59  return false;
61  return true;
65 
66  // The iOS ABI diverges from the standard in some cases, so for now don't
67  // try to simplify those calls.
68  if (Triple(CI->getModule()->getTargetTriple()).isiOS())
69  return false;
70 
71  auto *FuncTy = CI->getFunctionType();
72 
73  if (!FuncTy->getReturnType()->isPointerTy() &&
74  !FuncTy->getReturnType()->isIntegerTy() &&
75  !FuncTy->getReturnType()->isVoidTy())
76  return false;
77 
78  for (auto Param : FuncTy->params()) {
79  if (!Param->isPointerTy() && !Param->isIntegerTy())
80  return false;
81  }
82  return true;
83  }
84  }
85  return false;
86 }
87 
88 /// Return true if it is only used in equality comparisons with With.
89 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
90  for (User *U : V->users()) {
91  if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
92  if (IC->isEquality() && IC->getOperand(1) == With)
93  continue;
94  // Unknown instruction.
95  return false;
96  }
97  return true;
98 }
99 
100 static bool callHasFloatingPointArgument(const CallInst *CI) {
101  return any_of(CI->operands(), [](const Use &OI) {
102  return OI->getType()->isFloatingPointTy();
103  });
104 }
105 
106 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
107  if (Base < 2 || Base > 36)
108  // handle special zero base
109  if (Base != 0)
110  return nullptr;
111 
112  char *End;
113  std::string nptr = Str.str();
114  errno = 0;
115  long long int Result = strtoll(nptr.c_str(), &End, Base);
116  if (errno)
117  return nullptr;
118 
119  // if we assume all possible target locales are ASCII supersets,
120  // then if strtoll successfully parses a number on the host,
121  // it will also successfully parse the same way on the target
122  if (*End != '\0')
123  return nullptr;
124 
125  if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
126  return nullptr;
127 
128  return ConstantInt::get(CI->getType(), Result);
129 }
130 
132  const TargetLibraryInfo *TLI) {
133  CallInst *FOpen = dyn_cast<CallInst>(File);
134  if (!FOpen)
135  return false;
136 
137  Function *InnerCallee = FOpen->getCalledFunction();
138  if (!InnerCallee)
139  return false;
140 
141  LibFunc Func;
142  if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
143  Func != LibFunc_fopen)
144  return false;
145 
147  if (PointerMayBeCaptured(File, true, true))
148  return false;
149 
150  return true;
151 }
152 
153 //===----------------------------------------------------------------------===//
154 // String and Memory Library Call Optimizations
155 //===----------------------------------------------------------------------===//
156 
157 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
158  // Extract some information from the instruction
159  Value *Dst = CI->getArgOperand(0);
160  Value *Src = CI->getArgOperand(1);
161 
162  // See if we can get the length of the input string.
163  uint64_t Len = GetStringLength(Src);
164  if (Len == 0)
165  return nullptr;
166  --Len; // Unbias length.
167 
168  // Handle the simple, do-nothing case: strcat(x, "") -> x
169  if (Len == 0)
170  return Dst;
171 
172  return emitStrLenMemCpy(Src, Dst, Len, B);
173 }
174 
175 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
176  IRBuilder<> &B) {
177  // We need to find the end of the destination string. That's where the
178  // memory is to be moved to. We just generate a call to strlen.
179  Value *DstLen = emitStrLen(Dst, B, DL, TLI);
180  if (!DstLen)
181  return nullptr;
182 
183  // Now that we have the destination's length, we must index into the
184  // destination's pointer to get the actual memcpy destination (end of
185  // the string .. we're concatenating).
186  Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
187 
188  // We have enough information to now generate the memcpy call to do the
189  // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
190  B.CreateMemCpy(CpyDst, 1, Src, 1,
191  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
192  return Dst;
193 }
194 
195 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
196  // Extract some information from the instruction.
197  Value *Dst = CI->getArgOperand(0);
198  Value *Src = CI->getArgOperand(1);
199  uint64_t Len;
200 
201  // We don't do anything if length is not constant.
202  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
203  Len = LengthArg->getZExtValue();
204  else
205  return nullptr;
206 
207  // See if we can get the length of the input string.
208  uint64_t SrcLen = GetStringLength(Src);
209  if (SrcLen == 0)
210  return nullptr;
211  --SrcLen; // Unbias length.
212 
213  // Handle the simple, do-nothing cases:
214  // strncat(x, "", c) -> x
215  // strncat(x, c, 0) -> x
216  if (SrcLen == 0 || Len == 0)
217  return Dst;
218 
219  // We don't optimize this case.
220  if (Len < SrcLen)
221  return nullptr;
222 
223  // strncat(x, s, c) -> strcat(x, s)
224  // s is constant so the strcat can be optimized further.
225  return emitStrLenMemCpy(Src, Dst, SrcLen, B);
226 }
227 
228 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
230  FunctionType *FT = Callee->getFunctionType();
231  Value *SrcStr = CI->getArgOperand(0);
232 
233  // If the second operand is non-constant, see if we can compute the length
234  // of the input string and turn this into memchr.
235  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
236  if (!CharC) {
237  uint64_t Len = GetStringLength(SrcStr);
238  if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
239  return nullptr;
240 
241  return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
242  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
243  B, DL, TLI);
244  }
245 
246  // Otherwise, the character is a constant, see if the first argument is
247  // a string literal. If so, we can constant fold.
248  StringRef Str;
249  if (!getConstantStringInfo(SrcStr, Str)) {
250  if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
251  return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
252  "strchr");
253  return nullptr;
254  }
255 
256  // Compute the offset, make sure to handle the case when we're searching for
257  // zero (a weird way to spell strlen).
258  size_t I = (0xFF & CharC->getSExtValue()) == 0
259  ? Str.size()
260  : Str.find(CharC->getSExtValue());
261  if (I == StringRef::npos) // Didn't find the char. strchr returns null.
262  return Constant::getNullValue(CI->getType());
263 
264  // strchr(s+n,c) -> gep(s+n+i,c)
265  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
266 }
267 
268 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
269  Value *SrcStr = CI->getArgOperand(0);
270  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
271 
272  // Cannot fold anything if we're not looking for a constant.
273  if (!CharC)
274  return nullptr;
275 
276  StringRef Str;
277  if (!getConstantStringInfo(SrcStr, Str)) {
278  // strrchr(s, 0) -> strchr(s, 0)
279  if (CharC->isZero())
280  return emitStrChr(SrcStr, '\0', B, TLI);
281  return nullptr;
282  }
283 
284  // Compute the offset.
285  size_t I = (0xFF & CharC->getSExtValue()) == 0
286  ? Str.size()
287  : Str.rfind(CharC->getSExtValue());
288  if (I == StringRef::npos) // Didn't find the char. Return null.
289  return Constant::getNullValue(CI->getType());
290 
291  // strrchr(s+n,c) -> gep(s+n+i,c)
292  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
293 }
294 
295 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
296  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
297  if (Str1P == Str2P) // strcmp(x,x) -> 0
298  return ConstantInt::get(CI->getType(), 0);
299 
300  StringRef Str1, Str2;
301  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
302  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
303 
304  // strcmp(x, y) -> cnst (if both x and y are constant strings)
305  if (HasStr1 && HasStr2)
306  return ConstantInt::get(CI->getType(), Str1.compare(Str2));
307 
308  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
309  return B.CreateNeg(
310  B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
311 
312  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
313  return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
314 
315  // strcmp(P, "x") -> memcmp(P, "x", 2)
316  uint64_t Len1 = GetStringLength(Str1P);
317  uint64_t Len2 = GetStringLength(Str2P);
318  if (Len1 && Len2) {
319  return emitMemCmp(Str1P, Str2P,
320  ConstantInt::get(DL.getIntPtrType(CI->getContext()),
321  std::min(Len1, Len2)),
322  B, DL, TLI);
323  }
324 
325  return nullptr;
326 }
327 
328 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
329  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
330  if (Str1P == Str2P) // strncmp(x,x,n) -> 0
331  return ConstantInt::get(CI->getType(), 0);
332 
333  // Get the length argument if it is constant.
334  uint64_t Length;
335  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
336  Length = LengthArg->getZExtValue();
337  else
338  return nullptr;
339 
340  if (Length == 0) // strncmp(x,y,0) -> 0
341  return ConstantInt::get(CI->getType(), 0);
342 
343  if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
344  return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
345 
346  StringRef Str1, Str2;
347  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
348  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
349 
350  // strncmp(x, y) -> cnst (if both x and y are constant strings)
351  if (HasStr1 && HasStr2) {
352  StringRef SubStr1 = Str1.substr(0, Length);
353  StringRef SubStr2 = Str2.substr(0, Length);
354  return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
355  }
356 
357  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
358  return B.CreateNeg(
359  B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
360 
361  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
362  return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
363 
364  return nullptr;
365 }
366 
367 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
368  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
369  if (Dst == Src) // strcpy(x,x) -> x
370  return Src;
371 
372  // See if we can get the length of the input string.
373  uint64_t Len = GetStringLength(Src);
374  if (Len == 0)
375  return nullptr;
376 
377  // We have enough information to now generate the memcpy call to do the
378  // copy for us. Make a memcpy to copy the nul byte with align = 1.
379  B.CreateMemCpy(Dst, 1, Src, 1,
380  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
381  return Dst;
382 }
383 
384 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
386  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
387  if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
388  Value *StrLen = emitStrLen(Src, B, DL, TLI);
389  return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
390  }
391 
392  // See if we can get the length of the input string.
393  uint64_t Len = GetStringLength(Src);
394  if (Len == 0)
395  return nullptr;
396 
397  Type *PT = Callee->getFunctionType()->getParamType(0);
398  Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
399  Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
400  ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
401 
402  // We have enough information to now generate the memcpy call to do the
403  // copy for us. Make a memcpy to copy the nul byte with align = 1.
404  B.CreateMemCpy(Dst, 1, Src, 1, LenV);
405  return DstEnd;
406 }
407 
408 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
410  Value *Dst = CI->getArgOperand(0);
411  Value *Src = CI->getArgOperand(1);
412  Value *LenOp = CI->getArgOperand(2);
413 
414  // See if we can get the length of the input string.
415  uint64_t SrcLen = GetStringLength(Src);
416  if (SrcLen == 0)
417  return nullptr;
418  --SrcLen;
419 
420  if (SrcLen == 0) {
421  // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
422  B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
423  return Dst;
424  }
425 
426  uint64_t Len;
427  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
428  Len = LengthArg->getZExtValue();
429  else
430  return nullptr;
431 
432  if (Len == 0)
433  return Dst; // strncpy(x, y, 0) -> x
434 
435  // Let strncpy handle the zero padding
436  if (Len > SrcLen + 1)
437  return nullptr;
438 
439  Type *PT = Callee->getFunctionType()->getParamType(0);
440  // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
441  B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
442 
443  return Dst;
444 }
445 
446 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
447  unsigned CharSize) {
448  Value *Src = CI->getArgOperand(0);
449 
450  // Constant folding: strlen("xyz") -> 3
451  if (uint64_t Len = GetStringLength(Src, CharSize))
452  return ConstantInt::get(CI->getType(), Len - 1);
453 
454  // If s is a constant pointer pointing to a string literal, we can fold
455  // strlen(s + x) to strlen(s) - x, when x is known to be in the range
456  // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
457  // We only try to simplify strlen when the pointer s points to an array
458  // of i8. Otherwise, we would need to scale the offset x before doing the
459  // subtraction. This will make the optimization more complex, and it's not
460  // very useful because calling strlen for a pointer of other types is
461  // very uncommon.
462  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
463  if (!isGEPBasedOnPointerToString(GEP, CharSize))
464  return nullptr;
465 
467  if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
468  uint64_t NullTermIdx;
469  if (Slice.Array == nullptr) {
470  NullTermIdx = 0;
471  } else {
472  NullTermIdx = ~((uint64_t)0);
473  for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
474  if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
475  NullTermIdx = I;
476  break;
477  }
478  }
479  // If the string does not have '\0', leave it to strlen to compute
480  // its length.
481  if (NullTermIdx == ~((uint64_t)0))
482  return nullptr;
483  }
484 
485  Value *Offset = GEP->getOperand(2);
486  KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
487  Known.Zero.flipAllBits();
488  uint64_t ArrSize =
489  cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
490 
491  // KnownZero's bits are flipped, so zeros in KnownZero now represent
492  // bits known to be zeros in Offset, and ones in KnowZero represent
493  // bits unknown in Offset. Therefore, Offset is known to be in range
494  // [0, NullTermIdx] when the flipped KnownZero is non-negative and
495  // unsigned-less-than NullTermIdx.
496  //
497  // If Offset is not provably in the range [0, NullTermIdx], we can still
498  // optimize if we can prove that the program has undefined behavior when
499  // Offset is outside that range. That is the case when GEP->getOperand(0)
500  // is a pointer to an object whose memory extent is NullTermIdx+1.
501  if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
502  (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
503  NullTermIdx == ArrSize - 1)) {
504  Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
505  return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
506  Offset);
507  }
508  }
509 
510  return nullptr;
511  }
512 
513  // strlen(x?"foo":"bars") --> x ? 3 : 4
514  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
515  uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
516  uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
517  if (LenTrue && LenFalse) {
518  ORE.emit([&]() {
519  return OptimizationRemark("instcombine", "simplify-libcalls", CI)
520  << "folded strlen(select) to select of constants";
521  });
522  return B.CreateSelect(SI->getCondition(),
523  ConstantInt::get(CI->getType(), LenTrue - 1),
524  ConstantInt::get(CI->getType(), LenFalse - 1));
525  }
526  }
527 
528  // strlen(x) != 0 --> *x != 0
529  // strlen(x) == 0 --> *x == 0
531  return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
532 
533  return nullptr;
534 }
535 
536 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
537  return optimizeStringLength(CI, B, 8);
538 }
539 
540 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
541  Module &M = *CI->getModule();
542  unsigned WCharSize = TLI->getWCharSize(M) * 8;
543  // We cannot perform this optimization without wchar_size metadata.
544  if (WCharSize == 0)
545  return nullptr;
546 
547  return optimizeStringLength(CI, B, WCharSize);
548 }
549 
550 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
551  StringRef S1, S2;
552  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
553  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
554 
555  // strpbrk(s, "") -> nullptr
556  // strpbrk("", s) -> nullptr
557  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
558  return Constant::getNullValue(CI->getType());
559 
560  // Constant folding.
561  if (HasS1 && HasS2) {
562  size_t I = S1.find_first_of(S2);
563  if (I == StringRef::npos) // No match.
564  return Constant::getNullValue(CI->getType());
565 
566  return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
567  "strpbrk");
568  }
569 
570  // strpbrk(s, "a") -> strchr(s, 'a')
571  if (HasS2 && S2.size() == 1)
572  return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
573 
574  return nullptr;
575 }
576 
577 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
578  Value *EndPtr = CI->getArgOperand(1);
579  if (isa<ConstantPointerNull>(EndPtr)) {
580  // With a null EndPtr, this function won't capture the main argument.
581  // It would be readonly too, except that it still may write to errno.
582  CI->addParamAttr(0, Attribute::NoCapture);
583  }
584 
585  return nullptr;
586 }
587 
588 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
589  StringRef S1, S2;
590  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
591  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
592 
593  // strspn(s, "") -> 0
594  // strspn("", s) -> 0
595  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
596  return Constant::getNullValue(CI->getType());
597 
598  // Constant folding.
599  if (HasS1 && HasS2) {
600  size_t Pos = S1.find_first_not_of(S2);
601  if (Pos == StringRef::npos)
602  Pos = S1.size();
603  return ConstantInt::get(CI->getType(), Pos);
604  }
605 
606  return nullptr;
607 }
608 
609 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
610  StringRef S1, S2;
611  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
612  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
613 
614  // strcspn("", s) -> 0
615  if (HasS1 && S1.empty())
616  return Constant::getNullValue(CI->getType());
617 
618  // Constant folding.
619  if (HasS1 && HasS2) {
620  size_t Pos = S1.find_first_of(S2);
621  if (Pos == StringRef::npos)
622  Pos = S1.size();
623  return ConstantInt::get(CI->getType(), Pos);
624  }
625 
626  // strcspn(s, "") -> strlen(s)
627  if (HasS2 && S2.empty())
628  return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
629 
630  return nullptr;
631 }
632 
633 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
634  // fold strstr(x, x) -> x.
635  if (CI->getArgOperand(0) == CI->getArgOperand(1))
636  return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
637 
638  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
640  Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
641  if (!StrLen)
642  return nullptr;
643  Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
644  StrLen, B, DL, TLI);
645  if (!StrNCmp)
646  return nullptr;
647  for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
648  ICmpInst *Old = cast<ICmpInst>(*UI++);
649  Value *Cmp =
650  B.CreateICmp(Old->getPredicate(), StrNCmp,
651  ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
652  replaceAllUsesWith(Old, Cmp);
653  }
654  return CI;
655  }
656 
657  // See if either input string is a constant string.
658  StringRef SearchStr, ToFindStr;
659  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
660  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
661 
662  // fold strstr(x, "") -> x.
663  if (HasStr2 && ToFindStr.empty())
664  return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
665 
666  // If both strings are known, constant fold it.
667  if (HasStr1 && HasStr2) {
668  size_t Offset = SearchStr.find(ToFindStr);
669 
670  if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
671  return Constant::getNullValue(CI->getType());
672 
673  // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
674  Value *Result = castToCStr(CI->getArgOperand(0), B);
675  Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
676  return B.CreateBitCast(Result, CI->getType());
677  }
678 
679  // fold strstr(x, "y") -> strchr(x, 'y').
680  if (HasStr2 && ToFindStr.size() == 1) {
681  Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
682  return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
683  }
684  return nullptr;
685 }
686 
687 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
688  Value *SrcStr = CI->getArgOperand(0);
689  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
691 
692  // memchr(x, y, 0) -> null
693  if (LenC && LenC->isZero())
694  return Constant::getNullValue(CI->getType());
695 
696  // From now on we need at least constant length and string.
697  StringRef Str;
698  if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
699  return nullptr;
700 
701  // Truncate the string to LenC. If Str is smaller than LenC we will still only
702  // scan the string, as reading past the end of it is undefined and we can just
703  // return null if we don't find the char.
704  Str = Str.substr(0, LenC->getZExtValue());
705 
706  // If the char is variable but the input str and length are not we can turn
707  // this memchr call into a simple bit field test. Of course this only works
708  // when the return value is only checked against null.
709  //
710  // It would be really nice to reuse switch lowering here but we can't change
711  // the CFG at this point.
712  //
713  // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
714  // after bounds check.
715  if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
716  unsigned char Max =
717  *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
718  reinterpret_cast<const unsigned char *>(Str.end()));
719 
720  // Make sure the bit field we're about to create fits in a register on the
721  // target.
722  // FIXME: On a 64 bit architecture this prevents us from using the
723  // interesting range of alpha ascii chars. We could do better by emitting
724  // two bitfields or shifting the range by 64 if no lower chars are used.
725  if (!DL.fitsInLegalInteger(Max + 1))
726  return nullptr;
727 
728  // For the bit field use a power-of-2 type with at least 8 bits to avoid
729  // creating unnecessary illegal types.
730  unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
731 
732  // Now build the bit field.
733  APInt Bitfield(Width, 0);
734  for (char C : Str)
735  Bitfield.setBit((unsigned char)C);
736  Value *BitfieldC = B.getInt(Bitfield);
737 
738  // First check that the bit field access is within bounds.
739  Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
740  Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
741  "memchr.bounds");
742 
743  // Create code that checks if the given bit is set in the field.
744  Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
745  Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
746 
747  // Finally merge both checks and cast to pointer type. The inttoptr
748  // implicitly zexts the i1 to intptr type.
749  return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
750  }
751 
752  // Check if all arguments are constants. If so, we can constant fold.
753  if (!CharC)
754  return nullptr;
755 
756  // Compute the offset.
757  size_t I = Str.find(CharC->getSExtValue() & 0xFF);
758  if (I == StringRef::npos) // Didn't find the char. memchr returns null.
759  return Constant::getNullValue(CI->getType());
760 
761  // memchr(s+n,c,l) -> gep(s+n+i,c)
762  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
763 }
764 
765 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
766  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
767 
768  if (LHS == RHS) // memcmp(s,s,x) -> 0
769  return Constant::getNullValue(CI->getType());
770 
771  // Make sure we have a constant length.
773  if (!LenC)
774  return nullptr;
775 
776  uint64_t Len = LenC->getZExtValue();
777  if (Len == 0) // memcmp(s1,s2,0) -> 0
778  return Constant::getNullValue(CI->getType());
779 
780  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
781  if (Len == 1) {
782  Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
783  CI->getType(), "lhsv");
784  Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
785  CI->getType(), "rhsv");
786  return B.CreateSub(LHSV, RHSV, "chardiff");
787  }
788 
789  // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
790  // TODO: The case where both inputs are constants does not need to be limited
791  // to legal integers or equality comparison. See block below this.
792  if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
793  IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
794  unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
795 
796  // First, see if we can fold either argument to a constant.
797  Value *LHSV = nullptr;
798  if (auto *LHSC = dyn_cast<Constant>(LHS)) {
799  LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
800  LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
801  }
802  Value *RHSV = nullptr;
803  if (auto *RHSC = dyn_cast<Constant>(RHS)) {
804  RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
805  RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
806  }
807 
808  // Don't generate unaligned loads. If either source is constant data,
809  // alignment doesn't matter for that source because there is no load.
810  if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
811  (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
812  if (!LHSV) {
813  Type *LHSPtrTy =
814  IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
815  LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
816  }
817  if (!RHSV) {
818  Type *RHSPtrTy =
819  IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
820  RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
821  }
822  return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
823  }
824  }
825 
826  // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
827  // TODO: This is limited to i8 arrays.
828  StringRef LHSStr, RHSStr;
829  if (getConstantStringInfo(LHS, LHSStr) &&
830  getConstantStringInfo(RHS, RHSStr)) {
831  // Make sure we're not reading out-of-bounds memory.
832  if (Len > LHSStr.size() || Len > RHSStr.size())
833  return nullptr;
834  // Fold the memcmp and normalize the result. This way we get consistent
835  // results across multiple platforms.
836  uint64_t Ret = 0;
837  int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
838  if (Cmp < 0)
839  Ret = -1;
840  else if (Cmp > 0)
841  Ret = 1;
842  return ConstantInt::get(CI->getType(), Ret);
843  }
844 
845  return nullptr;
846 }
847 
848 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
849  // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
850  B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
851  CI->getArgOperand(2));
852  return CI->getArgOperand(0);
853 }
854 
855 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
856  // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
857  B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
858  CI->getArgOperand(2));
859  return CI->getArgOperand(0);
860 }
861 
862 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
864  const TargetLibraryInfo &TLI) {
865  // This has to be a memset of zeros (bzero).
866  auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
867  if (!FillValue || FillValue->getZExtValue() != 0)
868  return nullptr;
869 
870  // TODO: We should handle the case where the malloc has more than one use.
871  // This is necessary to optimize common patterns such as when the result of
872  // the malloc is checked against null or when a memset intrinsic is used in
873  // place of a memset library call.
874  auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
875  if (!Malloc || !Malloc->hasOneUse())
876  return nullptr;
877 
878  // Is the inner call really malloc()?
879  Function *InnerCallee = Malloc->getCalledFunction();
880  if (!InnerCallee)
881  return nullptr;
882 
883  LibFunc Func;
884  if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
885  Func != LibFunc_malloc)
886  return nullptr;
887 
888  // The memset must cover the same number of bytes that are malloc'd.
889  if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
890  return nullptr;
891 
892  // Replace the malloc with a calloc. We need the data layout to know what the
893  // actual size of a 'size_t' parameter is.
894  B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
895  const DataLayout &DL = Malloc->getModule()->getDataLayout();
896  IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
897  Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
898  Malloc->getArgOperand(0), Malloc->getAttributes(),
899  B, TLI);
900  if (!Calloc)
901  return nullptr;
902 
903  Malloc->replaceAllUsesWith(Calloc);
904  Malloc->eraseFromParent();
905 
906  return Calloc;
907 }
908 
909 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
910  if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
911  return Calloc;
912 
913  // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
914  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
915  B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
916  return CI->getArgOperand(0);
917 }
918 
919 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
920  if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
921  return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
922 
923  return nullptr;
924 }
925 
926 //===----------------------------------------------------------------------===//
927 // Math Library Optimizations
928 //===----------------------------------------------------------------------===//
929 
930 /// Return a variant of Val with float type.
931 /// Currently this works in two cases: If Val is an FPExtension of a float
932 /// value to something bigger, simply return the operand.
933 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
934 /// loss of precision do so.
936  if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
937  Value *Op = Cast->getOperand(0);
938  if (Op->getType()->isFloatTy())
939  return Op;
940  }
941  if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
942  APFloat F = Const->getValueAPF();
943  bool losesInfo;
945  &losesInfo);
946  if (!losesInfo)
947  return ConstantFP::get(Const->getContext(), F);
948  }
949  return nullptr;
950 }
951 
952 /// Shrink double -> float for unary functions like 'floor'.
954  bool CheckRetType) {
956  // We know this libcall has a valid prototype, but we don't know which.
957  if (!CI->getType()->isDoubleTy())
958  return nullptr;
959 
960  if (CheckRetType) {
961  // Check if all the uses for function like 'sin' are converted to float.
962  for (User *U : CI->users()) {
963  FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
964  if (!Cast || !Cast->getType()->isFloatTy())
965  return nullptr;
966  }
967  }
968 
969  // If this is something like 'floor((double)floatval)', convert to floorf.
971  if (V == nullptr)
972  return nullptr;
973 
974  // If call isn't an intrinsic, check that it isn't within a function with the
975  // same name as the float version of this call.
976  //
977  // e.g. inline float expf(float val) { return (float) exp((double) val); }
978  //
979  // A similar such definition exists in the MinGW-w64 math.h header file which
980  // when compiled with -O2 -ffast-math causes the generation of infinite loops
981  // where expf is called.
982  if (!Callee->isIntrinsic()) {
983  const Function *F = CI->getFunction();
984  StringRef FName = F->getName();
985  StringRef CalleeName = Callee->getName();
986  if ((FName.size() == (CalleeName.size() + 1)) &&
987  (FName.back() == 'f') &&
988  FName.startswith(CalleeName))
989  return nullptr;
990  }
991 
992  // Propagate fast-math flags from the existing call to the new call.
995 
996  // floor((double)floatval) -> (double)floorf(floatval)
997  if (Callee->isIntrinsic()) {
998  Module *M = CI->getModule();
999  Intrinsic::ID IID = Callee->getIntrinsicID();
1001  V = B.CreateCall(F, V);
1002  } else {
1003  // The call is a library call rather than an intrinsic.
1004  V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
1005  }
1006 
1007  return B.CreateFPExt(V, B.getDoubleTy());
1008 }
1009 
1010 // Replace a libcall \p CI with a call to intrinsic \p IID
1012  // Propagate fast-math flags from the existing call to the new call.
1015 
1016  Module *M = CI->getModule();
1017  Value *V = CI->getArgOperand(0);
1018  Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1019  CallInst *NewCall = B.CreateCall(F, V);
1020  NewCall->takeName(CI);
1021  return NewCall;
1022 }
1023 
1024 /// Shrink double -> float for binary functions like 'fmin/fmax'.
1027  // We know this libcall has a valid prototype, but we don't know which.
1028  if (!CI->getType()->isDoubleTy())
1029  return nullptr;
1030 
1031  // If this is something like 'fmin((double)floatval1, (double)floatval2)',
1032  // or fmin(1.0, (double)floatval), then we convert it to fminf.
1034  if (V1 == nullptr)
1035  return nullptr;
1037  if (V2 == nullptr)
1038  return nullptr;
1039 
1040  // Propagate fast-math flags from the existing call to the new call.
1043 
1044  // fmin((double)floatval1, (double)floatval2)
1045  // -> (double)fminf(floatval1, floatval2)
1046  // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1047  Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1048  Callee->getAttributes());
1049  return B.CreateFPExt(V, B.getDoubleTy());
1050 }
1051 
1052 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1053 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1054  if (!CI->isFast())
1055  return nullptr;
1056 
1057  // Propagate fast-math flags from the existing call to new instructions.
1060 
1061  Value *Real, *Imag;
1062  if (CI->getNumArgOperands() == 1) {
1063  Value *Op = CI->getArgOperand(0);
1064  assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1065  Real = B.CreateExtractValue(Op, 0, "real");
1066  Imag = B.CreateExtractValue(Op, 1, "imag");
1067  } else {
1068  assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1069  Real = CI->getArgOperand(0);
1070  Imag = CI->getArgOperand(1);
1071  }
1072 
1073  Value *RealReal = B.CreateFMul(Real, Real);
1074  Value *ImagImag = B.CreateFMul(Imag, Imag);
1075 
1076  Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1077  CI->getType());
1078  return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1079 }
1080 
1081 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1083  Value *Ret = nullptr;
1084  StringRef Name = Callee->getName();
1085  if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
1086  Ret = optimizeUnaryDoubleFP(CI, B, true);
1087 
1088  // cos(-x) -> cos(x)
1089  Value *Op1 = CI->getArgOperand(0);
1090  if (BinaryOperator::isFNeg(Op1)) {
1091  BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1092  return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1093  }
1094  return Ret;
1095 }
1096 
1097 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1098  // Multiplications calculated using Addition Chains.
1099  // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1100 
1101  assert(Exp != 0 && "Incorrect exponent 0 not handled");
1102 
1103  if (InnerChain[Exp])
1104  return InnerChain[Exp];
1105 
1106  static const unsigned AddChain[33][2] = {
1107  {0, 0}, // Unused.
1108  {0, 0}, // Unused (base case = pow1).
1109  {1, 1}, // Unused (pre-computed).
1110  {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
1111  {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
1112  {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
1113  {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1114  {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1115  };
1116 
1117  InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1118  getPow(InnerChain, AddChain[Exp][1], B));
1119  return InnerChain[Exp];
1120 }
1121 
1122 /// Use square root in place of pow(x, +/-0.5).
1123 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1124  // TODO: There is some subset of 'fast' under which these transforms should
1125  // be allowed.
1126  if (!Pow->isFast())
1127  return nullptr;
1128 
1129  const APFloat *Arg1C;
1130  if (!match(Pow->getArgOperand(1), m_APFloat(Arg1C)))
1131  return nullptr;
1132  if (!Arg1C->isExactlyValue(0.5) && !Arg1C->isExactlyValue(-0.5))
1133  return nullptr;
1134 
1135  // Fast-math flags from the pow() are propagated to all replacement ops.
1138  Type *Ty = Pow->getType();
1139  Value *Sqrt;
1140  if (Pow->hasFnAttr(Attribute::ReadNone)) {
1141  // We know that errno is never set, so replace with an intrinsic:
1142  // pow(x, 0.5) --> llvm.sqrt(x)
1143  // llvm.pow(x, 0.5) --> llvm.sqrt(x)
1144  auto *F = Intrinsic::getDeclaration(Pow->getModule(), Intrinsic::sqrt, Ty);
1145  Sqrt = B.CreateCall(F, Pow->getArgOperand(0));
1146  } else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf,
1147  LibFunc_sqrtl)) {
1148  // Errno could be set, so we must use a sqrt libcall.
1149  // TODO: We also should check that the target can in fact lower the sqrt
1150  // libcall. We currently have no way to ask this question, so we ask
1151  // whether the target has a sqrt libcall which is not exactly the same.
1152  Sqrt = emitUnaryFloatFnCall(Pow->getArgOperand(0),
1153  TLI->getName(LibFunc_sqrt), B,
1154  Pow->getCalledFunction()->getAttributes());
1155  } else {
1156  // We can't replace with an intrinsic or a libcall.
1157  return nullptr;
1158  }
1159 
1160  // If this is pow(x, -0.5), get the reciprocal.
1161  if (Arg1C->isExactlyValue(-0.5))
1162  Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt);
1163 
1164  return Sqrt;
1165 }
1166 
1167 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1169  Value *Ret = nullptr;
1170  StringRef Name = Callee->getName();
1171  if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1172  Ret = optimizeUnaryDoubleFP(CI, B, true);
1173 
1174  Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1175 
1176  // pow(1.0, x) -> 1.0
1177  if (match(Op1, m_SpecificFP(1.0)))
1178  return Op1;
1179  // pow(2.0, x) -> llvm.exp2(x)
1180  if (match(Op1, m_SpecificFP(2.0))) {
1181  Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1182  CI->getType());
1183  return B.CreateCall(Exp2, Op2, "exp2");
1184  }
1185 
1186  // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1187  // be one.
1188  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1189  // pow(10.0, x) -> exp10(x)
1190  if (Op1C->isExactlyValue(10.0) &&
1191  hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
1192  LibFunc_exp10l))
1193  return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
1194  Callee->getAttributes());
1195  }
1196 
1197  // pow(exp(x), y) -> exp(x * y)
1198  // pow(exp2(x), y) -> exp2(x * y)
1199  // We enable these only with fast-math. Besides rounding differences, the
1200  // transformation changes overflow and underflow behavior quite dramatically.
1201  // Example: x = 1000, y = 0.001.
1202  // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1203  auto *OpC = dyn_cast<CallInst>(Op1);
1204  if (OpC && OpC->isFast() && CI->isFast()) {
1205  LibFunc Func;
1206  Function *OpCCallee = OpC->getCalledFunction();
1207  if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1208  TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
1211  Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1212  return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1213  OpCCallee->getAttributes());
1214  }
1215  }
1216 
1217  if (Value *Sqrt = replacePowWithSqrt(CI, B))
1218  return Sqrt;
1219 
1220  ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1221  if (!Op2C)
1222  return Ret;
1223 
1224  if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1225  return ConstantFP::get(CI->getType(), 1.0);
1226 
1227  // FIXME: Correct the transforms and pull this into replacePowWithSqrt().
1228  if (Op2C->isExactlyValue(0.5) &&
1229  hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1230  LibFunc_sqrtl)) {
1231  // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1232  // This is faster than calling pow, and still handles negative zero
1233  // and negative infinity correctly.
1234  // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1235  Value *Inf = ConstantFP::getInfinity(CI->getType());
1236  Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1237 
1238  // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1239  // intrinsic, to match errno semantics.
1240  Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1241 
1242  Module *M = Callee->getParent();
1243  Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
1244  CI->getType());
1245  Value *FAbs = B.CreateCall(FabsF, Sqrt);
1246 
1247  Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1248  Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1249  return Sel;
1250  }
1251 
1252  // Propagate fast-math-flags from the call to any created instructions.
1255  // pow(x, 1.0) --> x
1256  if (Op2C->isExactlyValue(1.0))
1257  return Op1;
1258  // pow(x, 2.0) --> x * x
1259  if (Op2C->isExactlyValue(2.0))
1260  return B.CreateFMul(Op1, Op1, "pow2");
1261  // pow(x, -1.0) --> 1.0 / x
1262  if (Op2C->isExactlyValue(-1.0))
1263  return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1264 
1265  // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1266  if (CI->isFast()) {
1267  APFloat V = abs(Op2C->getValueAPF());
1268  // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1269  // This transformation applies to integer exponents only.
1270  if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1271  !V.isInteger())
1272  return nullptr;
1273 
1274  // We will memoize intermediate products of the Addition Chain.
1275  Value *InnerChain[33] = {nullptr};
1276  InnerChain[1] = Op1;
1277  InnerChain[2] = B.CreateFMul(Op1, Op1);
1278 
1279  // We cannot readily convert a non-double type (like float) to a double.
1280  // So we first convert V to something which could be converted to double.
1281  bool Ignored;
1283 
1284  Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1285  // For negative exponents simply compute the reciprocal.
1286  if (Op2C->isNegative())
1287  FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1288  return FMul;
1289  }
1290 
1291  return nullptr;
1292 }
1293 
1294 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1296  Value *Ret = nullptr;
1297  StringRef Name = Callee->getName();
1298  if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1299  Ret = optimizeUnaryDoubleFP(CI, B, true);
1300 
1301  Value *Op = CI->getArgOperand(0);
1302  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1303  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1304  LibFunc LdExp = LibFunc_ldexpl;
1305  if (Op->getType()->isFloatTy())
1306  LdExp = LibFunc_ldexpf;
1307  else if (Op->getType()->isDoubleTy())
1308  LdExp = LibFunc_ldexp;
1309 
1310  if (TLI->has(LdExp)) {
1311  Value *LdExpArg = nullptr;
1312  if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1313  if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1314  LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1315  } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1316  if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1317  LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1318  }
1319 
1320  if (LdExpArg) {
1321  Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1322  if (!Op->getType()->isFloatTy())
1323  One = ConstantExpr::getFPExtend(One, Op->getType());
1324 
1325  Module *M = CI->getModule();
1326  Value *NewCallee =
1327  M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1328  Op->getType(), B.getInt32Ty());
1329  CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1330  if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1331  CI->setCallingConv(F->getCallingConv());
1332 
1333  return CI;
1334  }
1335  }
1336  return Ret;
1337 }
1338 
1339 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1341  // If we can shrink the call to a float function rather than a double
1342  // function, do that first.
1343  StringRef Name = Callee->getName();
1344  if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1345  if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1346  return Ret;
1347 
1349  FastMathFlags FMF;
1350  if (CI->isFast()) {
1351  // If the call is 'fast', then anything we create here will also be 'fast'.
1352  FMF.setFast();
1353  } else {
1354  // At a minimum, no-nans-fp-math must be true.
1355  if (!CI->hasNoNaNs())
1356  return nullptr;
1357  // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1358  // "Ideally, fmax would be sensitive to the sign of zero, for example
1359  // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1360  // might be impractical."
1361  FMF.setNoSignedZeros();
1362  FMF.setNoNaNs();
1363  }
1364  B.setFastMathFlags(FMF);
1365 
1366  // We have a relaxed floating-point environment. We can ignore NaN-handling
1367  // and transform to a compare and select. We do not have to consider errno or
1368  // exceptions, because fmin/fmax do not have those.
1369  Value *Op0 = CI->getArgOperand(0);
1370  Value *Op1 = CI->getArgOperand(1);
1371  Value *Cmp = Callee->getName().startswith("fmin") ?
1372  B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1373  return B.CreateSelect(Cmp, Op0, Op1);
1374 }
1375 
1376 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1378  Value *Ret = nullptr;
1379  StringRef Name = Callee->getName();
1380  if (UnsafeFPShrink && hasFloatVersion(Name))
1381  Ret = optimizeUnaryDoubleFP(CI, B, true);
1382 
1383  if (!CI->isFast())
1384  return Ret;
1385  Value *Op1 = CI->getArgOperand(0);
1386  auto *OpC = dyn_cast<CallInst>(Op1);
1387 
1388  // The earlier call must also be 'fast' in order to do these transforms.
1389  if (!OpC || !OpC->isFast())
1390  return Ret;
1391 
1392  // log(pow(x,y)) -> y*log(x)
1393  // This is only applicable to log, log2, log10.
1394  if (Name != "log" && Name != "log2" && Name != "log10")
1395  return Ret;
1396 
1398  FastMathFlags FMF;
1399  FMF.setFast();
1400  B.setFastMathFlags(FMF);
1401 
1402  LibFunc Func;
1403  Function *F = OpC->getCalledFunction();
1404  if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1405  Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1406  return B.CreateFMul(OpC->getArgOperand(1),
1407  emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1408  Callee->getAttributes()), "mul");
1409 
1410  // log(exp2(y)) -> y*log(2)
1411  if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1412  TLI->has(Func) && Func == LibFunc_exp2)
1413  return B.CreateFMul(
1414  OpC->getArgOperand(0),
1416  Callee->getName(), B, Callee->getAttributes()),
1417  "logmul");
1418  return Ret;
1419 }
1420 
1421 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1423  Value *Ret = nullptr;
1424  // TODO: Once we have a way (other than checking for the existince of the
1425  // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1426  // condition below.
1427  if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1428  Callee->getIntrinsicID() == Intrinsic::sqrt))
1429  Ret = optimizeUnaryDoubleFP(CI, B, true);
1430 
1431  if (!CI->isFast())
1432  return Ret;
1433 
1435  if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1436  return Ret;
1437 
1438  // We're looking for a repeated factor in a multiplication tree,
1439  // so we can do this fold: sqrt(x * x) -> fabs(x);
1440  // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1441  Value *Op0 = I->getOperand(0);
1442  Value *Op1 = I->getOperand(1);
1443  Value *RepeatOp = nullptr;
1444  Value *OtherOp = nullptr;
1445  if (Op0 == Op1) {
1446  // Simple match: the operands of the multiply are identical.
1447  RepeatOp = Op0;
1448  } else {
1449  // Look for a more complicated pattern: one of the operands is itself
1450  // a multiply, so search for a common factor in that multiply.
1451  // Note: We don't bother looking any deeper than this first level or for
1452  // variations of this pattern because instcombine's visitFMUL and/or the
1453  // reassociation pass should give us this form.
1454  Value *OtherMul0, *OtherMul1;
1455  if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1456  // Pattern: sqrt((x * y) * z)
1457  if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1458  // Matched: sqrt((x * x) * z)
1459  RepeatOp = OtherMul0;
1460  OtherOp = Op1;
1461  }
1462  }
1463  }
1464  if (!RepeatOp)
1465  return Ret;
1466 
1467  // Fast math flags for any created instructions should match the sqrt
1468  // and multiply.
1471 
1472  // If we found a repeated factor, hoist it out of the square root and
1473  // replace it with the fabs of that factor.
1474  Module *M = Callee->getParent();
1475  Type *ArgType = I->getType();
1476  Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1477  Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1478  if (OtherOp) {
1479  // If we found a non-repeated factor, we still need to get its square
1480  // root. We then multiply that by the value that was simplified out
1481  // of the square root calculation.
1482  Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1483  Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1484  return B.CreateFMul(FabsCall, SqrtCall);
1485  }
1486  return FabsCall;
1487 }
1488 
1489 // TODO: Generalize to handle any trig function and its inverse.
1490 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1492  Value *Ret = nullptr;
1493  StringRef Name = Callee->getName();
1494  if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1495  Ret = optimizeUnaryDoubleFP(CI, B, true);
1496 
1497  Value *Op1 = CI->getArgOperand(0);
1498  auto *OpC = dyn_cast<CallInst>(Op1);
1499  if (!OpC)
1500  return Ret;
1501 
1502  // Both calls must be 'fast' in order to remove them.
1503  if (!CI->isFast() || !OpC->isFast())
1504  return Ret;
1505 
1506  // tan(atan(x)) -> x
1507  // tanf(atanf(x)) -> x
1508  // tanl(atanl(x)) -> x
1509  LibFunc Func;
1510  Function *F = OpC->getCalledFunction();
1511  if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1512  ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1513  (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1514  (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1515  Ret = OpC->getArgOperand(0);
1516  return Ret;
1517 }
1518 
1519 static bool isTrigLibCall(CallInst *CI) {
1520  // We can only hope to do anything useful if we can ignore things like errno
1521  // and floating-point exceptions.
1522  // We already checked the prototype.
1523  return CI->hasFnAttr(Attribute::NoUnwind) &&
1524  CI->hasFnAttr(Attribute::ReadNone);
1525 }
1526 
1527 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1528  bool UseFloat, Value *&Sin, Value *&Cos,
1529  Value *&SinCos) {
1530  Type *ArgTy = Arg->getType();
1531  Type *ResTy;
1532  StringRef Name;
1533 
1534  Triple T(OrigCallee->getParent()->getTargetTriple());
1535  if (UseFloat) {
1536  Name = "__sincospif_stret";
1537 
1538  assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1539  // x86_64 can't use {float, float} since that would be returned in both
1540  // xmm0 and xmm1, which isn't what a real struct would do.
1541  ResTy = T.getArch() == Triple::x86_64
1542  ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1543  : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1544  } else {
1545  Name = "__sincospi_stret";
1546  ResTy = StructType::get(ArgTy, ArgTy);
1547  }
1548 
1549  Module *M = OrigCallee->getParent();
1550  Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1551  ResTy, ArgTy);
1552 
1553  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1554  // If the argument is an instruction, it must dominate all uses so put our
1555  // sincos call there.
1556  B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1557  } else {
1558  // Otherwise (e.g. for a constant) the beginning of the function is as
1559  // good a place as any.
1560  BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1561  B.SetInsertPoint(&EntryBB, EntryBB.begin());
1562  }
1563 
1564  SinCos = B.CreateCall(Callee, Arg, "sincospi");
1565 
1566  if (SinCos->getType()->isStructTy()) {
1567  Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1568  Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1569  } else {
1570  Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1571  "sinpi");
1572  Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1573  "cospi");
1574  }
1575 }
1576 
1577 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1578  // Make sure the prototype is as expected, otherwise the rest of the
1579  // function is probably invalid and likely to abort.
1580  if (!isTrigLibCall(CI))
1581  return nullptr;
1582 
1583  Value *Arg = CI->getArgOperand(0);
1584  SmallVector<CallInst *, 1> SinCalls;
1585  SmallVector<CallInst *, 1> CosCalls;
1586  SmallVector<CallInst *, 1> SinCosCalls;
1587 
1588  bool IsFloat = Arg->getType()->isFloatTy();
1589 
1590  // Look for all compatible sinpi, cospi and sincospi calls with the same
1591  // argument. If there are enough (in some sense) we can make the
1592  // substitution.
1593  Function *F = CI->getFunction();
1594  for (User *U : Arg->users())
1595  classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1596 
1597  // It's only worthwhile if both sinpi and cospi are actually used.
1598  if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1599  return nullptr;
1600 
1601  Value *Sin, *Cos, *SinCos;
1602  insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1603 
1604  auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1605  Value *Res) {
1606  for (CallInst *C : Calls)
1607  replaceAllUsesWith(C, Res);
1608  };
1609 
1610  replaceTrigInsts(SinCalls, Sin);
1611  replaceTrigInsts(CosCalls, Cos);
1612  replaceTrigInsts(SinCosCalls, SinCos);
1613 
1614  return nullptr;
1615 }
1616 
1617 void LibCallSimplifier::classifyArgUse(
1618  Value *Val, Function *F, bool IsFloat,
1619  SmallVectorImpl<CallInst *> &SinCalls,
1620  SmallVectorImpl<CallInst *> &CosCalls,
1621  SmallVectorImpl<CallInst *> &SinCosCalls) {
1622  CallInst *CI = dyn_cast<CallInst>(Val);
1623 
1624  if (!CI)
1625  return;
1626 
1627  // Don't consider calls in other functions.
1628  if (CI->getFunction() != F)
1629  return;
1630 
1632  LibFunc Func;
1633  if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1634  !isTrigLibCall(CI))
1635  return;
1636 
1637  if (IsFloat) {
1638  if (Func == LibFunc_sinpif)
1639  SinCalls.push_back(CI);
1640  else if (Func == LibFunc_cospif)
1641  CosCalls.push_back(CI);
1642  else if (Func == LibFunc_sincospif_stret)
1643  SinCosCalls.push_back(CI);
1644  } else {
1645  if (Func == LibFunc_sinpi)
1646  SinCalls.push_back(CI);
1647  else if (Func == LibFunc_cospi)
1648  CosCalls.push_back(CI);
1649  else if (Func == LibFunc_sincospi_stret)
1650  SinCosCalls.push_back(CI);
1651  }
1652 }
1653 
1654 //===----------------------------------------------------------------------===//
1655 // Integer Library Call Optimizations
1656 //===----------------------------------------------------------------------===//
1657 
1658 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1659  // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1660  Value *Op = CI->getArgOperand(0);
1661  Type *ArgType = Op->getType();
1663  Intrinsic::cttz, ArgType);
1664  Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1665  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1666  V = B.CreateIntCast(V, B.getInt32Ty(), false);
1667 
1668  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1669  return B.CreateSelect(Cond, V, B.getInt32(0));
1670 }
1671 
1672 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1673  // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1674  Value *Op = CI->getArgOperand(0);
1675  Type *ArgType = Op->getType();
1677  Intrinsic::ctlz, ArgType);
1678  Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1679  V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1680  V);
1681  return B.CreateIntCast(V, CI->getType(), false);
1682 }
1683 
1684 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1685  // abs(x) -> x <s 0 ? -x : x
1686  // The negation has 'nsw' because abs of INT_MIN is undefined.
1687  Value *X = CI->getArgOperand(0);
1688  Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
1689  Value *NegX = B.CreateNSWNeg(X, "neg");
1690  return B.CreateSelect(IsNeg, NegX, X);
1691 }
1692 
1693 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1694  // isdigit(c) -> (c-'0') <u 10
1695  Value *Op = CI->getArgOperand(0);
1696  Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1697  Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1698  return B.CreateZExt(Op, CI->getType());
1699 }
1700 
1701 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1702  // isascii(c) -> c <u 128
1703  Value *Op = CI->getArgOperand(0);
1704  Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1705  return B.CreateZExt(Op, CI->getType());
1706 }
1707 
1708 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1709  // toascii(c) -> c & 0x7f
1710  return B.CreateAnd(CI->getArgOperand(0),
1711  ConstantInt::get(CI->getType(), 0x7F));
1712 }
1713 
1714 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
1715  StringRef Str;
1716  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1717  return nullptr;
1718 
1719  return convertStrToNumber(CI, Str, 10);
1720 }
1721 
1722 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
1723  StringRef Str;
1724  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1725  return nullptr;
1726 
1727  if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
1728  return nullptr;
1729 
1730  if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
1731  return convertStrToNumber(CI, Str, CInt->getSExtValue());
1732  }
1733 
1734  return nullptr;
1735 }
1736 
1737 //===----------------------------------------------------------------------===//
1738 // Formatting and IO Library Call Optimizations
1739 //===----------------------------------------------------------------------===//
1740 
1741 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1742 
1743 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1744  int StreamArg) {
1745  Function *Callee = CI->getCalledFunction();
1746  // Error reporting calls should be cold, mark them as such.
1747  // This applies even to non-builtin calls: it is only a hint and applies to
1748  // functions that the frontend might not understand as builtins.
1749 
1750  // This heuristic was suggested in:
1751  // Improving Static Branch Prediction in a Compiler
1752  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1753  // Proceedings of PACT'98, Oct. 1998, IEEE
1754  if (!CI->hasFnAttr(Attribute::Cold) &&
1755  isReportingError(Callee, CI, StreamArg)) {
1757  }
1758 
1759  return nullptr;
1760 }
1761 
1762 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1763  if (!Callee || !Callee->isDeclaration())
1764  return false;
1765 
1766  if (StreamArg < 0)
1767  return true;
1768 
1769  // These functions might be considered cold, but only if their stream
1770  // argument is stderr.
1771 
1772  if (StreamArg >= (int)CI->getNumArgOperands())
1773  return false;
1774  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1775  if (!LI)
1776  return false;
1778  if (!GV || !GV->isDeclaration())
1779  return false;
1780  return GV->getName() == "stderr";
1781 }
1782 
1783 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1784  // Check for a fixed format string.
1785  StringRef FormatStr;
1786  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1787  return nullptr;
1788 
1789  // Empty format string -> noop.
1790  if (FormatStr.empty()) // Tolerate printf's declared void.
1791  return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1792 
1793  // Do not do any of the following transformations if the printf return value
1794  // is used, in general the printf return value is not compatible with either
1795  // putchar() or puts().
1796  if (!CI->use_empty())
1797  return nullptr;
1798 
1799  // printf("x") -> putchar('x'), even for "%" and "%%".
1800  if (FormatStr.size() == 1 || FormatStr == "%%")
1801  return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1802 
1803  // printf("%s", "a") --> putchar('a')
1804  if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1805  StringRef ChrStr;
1806  if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1807  return nullptr;
1808  if (ChrStr.size() != 1)
1809  return nullptr;
1810  return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1811  }
1812 
1813  // printf("foo\n") --> puts("foo")
1814  if (FormatStr[FormatStr.size() - 1] == '\n' &&
1815  FormatStr.find('%') == StringRef::npos) { // No format characters.
1816  // Create a string literal with no \n on it. We expect the constant merge
1817  // pass to be run after this pass, to merge duplicate strings.
1818  FormatStr = FormatStr.drop_back();
1819  Value *GV = B.CreateGlobalString(FormatStr, "str");
1820  return emitPutS(GV, B, TLI);
1821  }
1822 
1823  // Optimize specific format strings.
1824  // printf("%c", chr) --> putchar(chr)
1825  if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1826  CI->getArgOperand(1)->getType()->isIntegerTy())
1827  return emitPutChar(CI->getArgOperand(1), B, TLI);
1828 
1829  // printf("%s\n", str) --> puts(str)
1830  if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1831  CI->getArgOperand(1)->getType()->isPointerTy())
1832  return emitPutS(CI->getArgOperand(1), B, TLI);
1833  return nullptr;
1834 }
1835 
1836 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1837 
1838  Function *Callee = CI->getCalledFunction();
1839  FunctionType *FT = Callee->getFunctionType();
1840  if (Value *V = optimizePrintFString(CI, B)) {
1841  return V;
1842  }
1843 
1844  // printf(format, ...) -> iprintf(format, ...) if no floating point
1845  // arguments.
1846  if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1847  Module *M = B.GetInsertBlock()->getParent()->getParent();
1848  Constant *IPrintFFn =
1849  M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1850  CallInst *New = cast<CallInst>(CI->clone());
1851  New->setCalledFunction(IPrintFFn);
1852  B.Insert(New);
1853  return New;
1854  }
1855  return nullptr;
1856 }
1857 
1858 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1859  // Check for a fixed format string.
1860  StringRef FormatStr;
1861  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1862  return nullptr;
1863 
1864  // If we just have a format string (nothing else crazy) transform it.
1865  if (CI->getNumArgOperands() == 2) {
1866  // Make sure there's no % in the constant array. We could try to handle
1867  // %% -> % in the future if we cared.
1868  if (FormatStr.find('%') != StringRef::npos)
1869  return nullptr; // we found a format specifier, bail out.
1870 
1871  // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
1872  B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
1873  ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1874  FormatStr.size() + 1)); // Copy the null byte.
1875  return ConstantInt::get(CI->getType(), FormatStr.size());
1876  }
1877 
1878  // The remaining optimizations require the format string to be "%s" or "%c"
1879  // and have an extra operand.
1880  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1881  CI->getNumArgOperands() < 3)
1882  return nullptr;
1883 
1884  // Decode the second character of the format string.
1885  if (FormatStr[1] == 'c') {
1886  // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1887  if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1888  return nullptr;
1889  Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1890  Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1891  B.CreateStore(V, Ptr);
1892  Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1893  B.CreateStore(B.getInt8(0), Ptr);
1894 
1895  return ConstantInt::get(CI->getType(), 1);
1896  }
1897 
1898  if (FormatStr[1] == 's') {
1899  // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1900  if (!CI->getArgOperand(2)->getType()->isPointerTy())
1901  return nullptr;
1902 
1903  Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1904  if (!Len)
1905  return nullptr;
1906  Value *IncLen =
1907  B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1908  B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
1909 
1910  // The sprintf result is the unincremented number of bytes in the string.
1911  return B.CreateIntCast(Len, CI->getType(), false);
1912  }
1913  return nullptr;
1914 }
1915 
1916 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1917  Function *Callee = CI->getCalledFunction();
1918  FunctionType *FT = Callee->getFunctionType();
1919  if (Value *V = optimizeSPrintFString(CI, B)) {
1920  return V;
1921  }
1922 
1923  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1924  // point arguments.
1925  if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1926  Module *M = B.GetInsertBlock()->getParent()->getParent();
1927  Constant *SIPrintFFn =
1928  M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1929  CallInst *New = cast<CallInst>(CI->clone());
1930  New->setCalledFunction(SIPrintFFn);
1931  B.Insert(New);
1932  return New;
1933  }
1934  return nullptr;
1935 }
1936 
1937 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
1938  // Check for a fixed format string.
1939  StringRef FormatStr;
1940  if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
1941  return nullptr;
1942 
1943  // Check for size
1945  if (!Size)
1946  return nullptr;
1947 
1948  uint64_t N = Size->getZExtValue();
1949 
1950  // If we just have a format string (nothing else crazy) transform it.
1951  if (CI->getNumArgOperands() == 3) {
1952  // Make sure there's no % in the constant array. We could try to handle
1953  // %% -> % in the future if we cared.
1954  if (FormatStr.find('%') != StringRef::npos)
1955  return nullptr; // we found a format specifier, bail out.
1956 
1957  if (N == 0)
1958  return ConstantInt::get(CI->getType(), FormatStr.size());
1959  else if (N < FormatStr.size() + 1)
1960  return nullptr;
1961 
1962  // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt,
1963  // strlen(fmt)+1)
1964  B.CreateMemCpy(
1965  CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
1966  ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1967  FormatStr.size() + 1)); // Copy the null byte.
1968  return ConstantInt::get(CI->getType(), FormatStr.size());
1969  }
1970 
1971  // The remaining optimizations require the format string to be "%s" or "%c"
1972  // and have an extra operand.
1973  if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
1974  CI->getNumArgOperands() == 4) {
1975 
1976  // Decode the second character of the format string.
1977  if (FormatStr[1] == 'c') {
1978  if (N == 0)
1979  return ConstantInt::get(CI->getType(), 1);
1980  else if (N == 1)
1981  return nullptr;
1982 
1983  // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1984  if (!CI->getArgOperand(3)->getType()->isIntegerTy())
1985  return nullptr;
1986  Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
1987  Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1988  B.CreateStore(V, Ptr);
1989  Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1990  B.CreateStore(B.getInt8(0), Ptr);
1991 
1992  return ConstantInt::get(CI->getType(), 1);
1993  }
1994 
1995  if (FormatStr[1] == 's') {
1996  // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
1997  StringRef Str;
1998  if (!getConstantStringInfo(CI->getArgOperand(3), Str))
1999  return nullptr;
2000 
2001  if (N == 0)
2002  return ConstantInt::get(CI->getType(), Str.size());
2003  else if (N < Str.size() + 1)
2004  return nullptr;
2005 
2006  B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2007  ConstantInt::get(CI->getType(), Str.size() + 1));
2008 
2009  // The snprintf result is the unincremented number of bytes in the string.
2010  return ConstantInt::get(CI->getType(), Str.size());
2011  }
2012  }
2013  return nullptr;
2014 }
2015 
2016 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2017  if (Value *V = optimizeSnPrintFString(CI, B)) {
2018  return V;
2019  }
2020 
2021  return nullptr;
2022 }
2023 
2024 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2025  optimizeErrorReporting(CI, B, 0);
2026 
2027  // All the optimizations depend on the format string.
2028  StringRef FormatStr;
2029  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2030  return nullptr;
2031 
2032  // Do not do any of the following transformations if the fprintf return
2033  // value is used, in general the fprintf return value is not compatible
2034  // with fwrite(), fputc() or fputs().
2035  if (!CI->use_empty())
2036  return nullptr;
2037 
2038  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2039  if (CI->getNumArgOperands() == 2) {
2040  // Could handle %% -> % if we cared.
2041  if (FormatStr.find('%') != StringRef::npos)
2042  return nullptr; // We found a format specifier.
2043 
2044  return emitFWrite(
2045  CI->getArgOperand(1),
2046  ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2047  CI->getArgOperand(0), B, DL, TLI);
2048  }
2049 
2050  // The remaining optimizations require the format string to be "%s" or "%c"
2051  // and have an extra operand.
2052  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2053  CI->getNumArgOperands() < 3)
2054  return nullptr;
2055 
2056  // Decode the second character of the format string.
2057  if (FormatStr[1] == 'c') {
2058  // fprintf(F, "%c", chr) --> fputc(chr, F)
2059  if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2060  return nullptr;
2061  return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2062  }
2063 
2064  if (FormatStr[1] == 's') {
2065  // fprintf(F, "%s", str) --> fputs(str, F)
2066  if (!CI->getArgOperand(2)->getType()->isPointerTy())
2067  return nullptr;
2068  return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2069  }
2070  return nullptr;
2071 }
2072 
2073 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2074  Function *Callee = CI->getCalledFunction();
2075  FunctionType *FT = Callee->getFunctionType();
2076  if (Value *V = optimizeFPrintFString(CI, B)) {
2077  return V;
2078  }
2079 
2080  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2081  // floating point arguments.
2082  if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2083  Module *M = B.GetInsertBlock()->getParent()->getParent();
2084  Constant *FIPrintFFn =
2085  M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2086  CallInst *New = cast<CallInst>(CI->clone());
2087  New->setCalledFunction(FIPrintFFn);
2088  B.Insert(New);
2089  return New;
2090  }
2091  return nullptr;
2092 }
2093 
2094 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2095  optimizeErrorReporting(CI, B, 3);
2096 
2097  // Get the element size and count.
2098  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2099  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2100  if (SizeC && CountC) {
2101  uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2102 
2103  // If this is writing zero records, remove the call (it's a noop).
2104  if (Bytes == 0)
2105  return ConstantInt::get(CI->getType(), 0);
2106 
2107  // If this is writing one byte, turn it into fputc.
2108  // This optimisation is only valid, if the return value is unused.
2109  if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2110  Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
2111  Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2112  return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2113  }
2114  }
2115 
2116  if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2117  return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2118  CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2119  TLI);
2120 
2121  return nullptr;
2122 }
2123 
2124 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2125  optimizeErrorReporting(CI, B, 1);
2126 
2127  // Don't rewrite fputs to fwrite when optimising for size because fwrite
2128  // requires more arguments and thus extra MOVs are required.
2129  if (CI->getFunction()->optForSize())
2130  return nullptr;
2131 
2132  // Check if has any use
2133  if (!CI->use_empty()) {
2134  if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2135  return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2136  TLI);
2137  else
2138  // We can't optimize if return value is used.
2139  return nullptr;
2140  }
2141 
2142  // fputs(s,F) --> fwrite(s,1,strlen(s),F)
2143  uint64_t Len = GetStringLength(CI->getArgOperand(0));
2144  if (!Len)
2145  return nullptr;
2146 
2147  // Known to have no uses (see above).
2148  return emitFWrite(
2149  CI->getArgOperand(0),
2150  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2151  CI->getArgOperand(1), B, DL, TLI);
2152 }
2153 
2154 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2155  optimizeErrorReporting(CI, B, 1);
2156 
2157  if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2158  return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2159  TLI);
2160 
2161  return nullptr;
2162 }
2163 
2164 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2165  if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2166  return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2167 
2168  return nullptr;
2169 }
2170 
2171 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2172  if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2173  return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2174  CI->getArgOperand(2), B, TLI);
2175 
2176  return nullptr;
2177 }
2178 
2179 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2180  if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2181  return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2182  CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2183  TLI);
2184 
2185  return nullptr;
2186 }
2187 
2188 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2189  // Check for a constant string.
2190  StringRef Str;
2191  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2192  return nullptr;
2193 
2194  if (Str.empty() && CI->use_empty()) {
2195  // puts("") -> putchar('\n')
2196  Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
2197  if (CI->use_empty() || !Res)
2198  return Res;
2199  return B.CreateIntCast(Res, CI->getType(), true);
2200  }
2201 
2202  return nullptr;
2203 }
2204 
2205 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2206  LibFunc Func;
2207  SmallString<20> FloatFuncName = FuncName;
2208  FloatFuncName += 'f';
2209  if (TLI->getLibFunc(FloatFuncName, Func))
2210  return TLI->has(Func);
2211  return false;
2212 }
2213 
2214 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2215  IRBuilder<> &Builder) {
2216  LibFunc Func;
2217  Function *Callee = CI->getCalledFunction();
2218  // Check for string/memory library functions.
2219  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2220  // Make sure we never change the calling convention.
2221  assert((ignoreCallingConv(Func) ||
2222  isCallingConvCCompatible(CI)) &&
2223  "Optimizing string/memory libcall would change the calling convention");
2224  switch (Func) {
2225  case LibFunc_strcat:
2226  return optimizeStrCat(CI, Builder);
2227  case LibFunc_strncat:
2228  return optimizeStrNCat(CI, Builder);
2229  case LibFunc_strchr:
2230  return optimizeStrChr(CI, Builder);
2231  case LibFunc_strrchr:
2232  return optimizeStrRChr(CI, Builder);
2233  case LibFunc_strcmp:
2234  return optimizeStrCmp(CI, Builder);
2235  case LibFunc_strncmp:
2236  return optimizeStrNCmp(CI, Builder);
2237  case LibFunc_strcpy:
2238  return optimizeStrCpy(CI, Builder);
2239  case LibFunc_stpcpy:
2240  return optimizeStpCpy(CI, Builder);
2241  case LibFunc_strncpy:
2242  return optimizeStrNCpy(CI, Builder);
2243  case LibFunc_strlen:
2244  return optimizeStrLen(CI, Builder);
2245  case LibFunc_strpbrk:
2246  return optimizeStrPBrk(CI, Builder);
2247  case LibFunc_strtol:
2248  case LibFunc_strtod:
2249  case LibFunc_strtof:
2250  case LibFunc_strtoul:
2251  case LibFunc_strtoll:
2252  case LibFunc_strtold:
2253  case LibFunc_strtoull:
2254  return optimizeStrTo(CI, Builder);
2255  case LibFunc_strspn:
2256  return optimizeStrSpn(CI, Builder);
2257  case LibFunc_strcspn:
2258  return optimizeStrCSpn(CI, Builder);
2259  case LibFunc_strstr:
2260  return optimizeStrStr(CI, Builder);
2261  case LibFunc_memchr:
2262  return optimizeMemChr(CI, Builder);
2263  case LibFunc_memcmp:
2264  return optimizeMemCmp(CI, Builder);
2265  case LibFunc_memcpy:
2266  return optimizeMemCpy(CI, Builder);
2267  case LibFunc_memmove:
2268  return optimizeMemMove(CI, Builder);
2269  case LibFunc_memset:
2270  return optimizeMemSet(CI, Builder);
2271  case LibFunc_realloc:
2272  return optimizeRealloc(CI, Builder);
2273  case LibFunc_wcslen:
2274  return optimizeWcslen(CI, Builder);
2275  default:
2276  break;
2277  }
2278  }
2279  return nullptr;
2280 }
2281 
2282 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2283  LibFunc Func,
2284  IRBuilder<> &Builder) {
2285  // Don't optimize calls that require strict floating point semantics.
2286  if (CI->isStrictFP())
2287  return nullptr;
2288 
2289  switch (Func) {
2290  case LibFunc_cosf:
2291  case LibFunc_cos:
2292  case LibFunc_cosl:
2293  return optimizeCos(CI, Builder);
2294  case LibFunc_sinpif:
2295  case LibFunc_sinpi:
2296  case LibFunc_cospif:
2297  case LibFunc_cospi:
2298  return optimizeSinCosPi(CI, Builder);
2299  case LibFunc_powf:
2300  case LibFunc_pow:
2301  case LibFunc_powl:
2302  return optimizePow(CI, Builder);
2303  case LibFunc_exp2l:
2304  case LibFunc_exp2:
2305  case LibFunc_exp2f:
2306  return optimizeExp2(CI, Builder);
2307  case LibFunc_fabsf:
2308  case LibFunc_fabs:
2309  case LibFunc_fabsl:
2310  return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2311  case LibFunc_sqrtf:
2312  case LibFunc_sqrt:
2313  case LibFunc_sqrtl:
2314  return optimizeSqrt(CI, Builder);
2315  case LibFunc_log:
2316  case LibFunc_log10:
2317  case LibFunc_log1p:
2318  case LibFunc_log2:
2319  case LibFunc_logb:
2320  return optimizeLog(CI, Builder);
2321  case LibFunc_tan:
2322  case LibFunc_tanf:
2323  case LibFunc_tanl:
2324  return optimizeTan(CI, Builder);
2325  case LibFunc_ceil:
2326  return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2327  case LibFunc_floor:
2328  return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2329  case LibFunc_round:
2330  return replaceUnaryCall(CI, Builder, Intrinsic::round);
2331  case LibFunc_nearbyint:
2332  return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2333  case LibFunc_rint:
2334  return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2335  case LibFunc_trunc:
2336  return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2337  case LibFunc_acos:
2338  case LibFunc_acosh:
2339  case LibFunc_asin:
2340  case LibFunc_asinh:
2341  case LibFunc_atan:
2342  case LibFunc_atanh:
2343  case LibFunc_cbrt:
2344  case LibFunc_cosh:
2345  case LibFunc_exp:
2346  case LibFunc_exp10:
2347  case LibFunc_expm1:
2348  case LibFunc_sin:
2349  case LibFunc_sinh:
2350  case LibFunc_tanh:
2351  if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2352  return optimizeUnaryDoubleFP(CI, Builder, true);
2353  return nullptr;
2354  case LibFunc_copysign:
2355  if (hasFloatVersion(CI->getCalledFunction()->getName()))
2356  return optimizeBinaryDoubleFP(CI, Builder);
2357  return nullptr;
2358  case LibFunc_fminf:
2359  case LibFunc_fmin:
2360  case LibFunc_fminl:
2361  case LibFunc_fmaxf:
2362  case LibFunc_fmax:
2363  case LibFunc_fmaxl:
2364  return optimizeFMinFMax(CI, Builder);
2365  case LibFunc_cabs:
2366  case LibFunc_cabsf:
2367  case LibFunc_cabsl:
2368  return optimizeCAbs(CI, Builder);
2369  default:
2370  return nullptr;
2371  }
2372 }
2373 
2375  // TODO: Split out the code below that operates on FP calls so that
2376  // we can all non-FP calls with the StrictFP attribute to be
2377  // optimized.
2378  if (CI->isNoBuiltin())
2379  return nullptr;
2380 
2381  LibFunc Func;
2382  Function *Callee = CI->getCalledFunction();
2383 
2385  CI->getOperandBundlesAsDefs(OpBundles);
2386  IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2387  bool isCallingConvC = isCallingConvCCompatible(CI);
2388 
2389  // Command-line parameter overrides instruction attribute.
2390  // This can't be moved to optimizeFloatingPointLibCall() because it may be
2391  // used by the intrinsic optimizations.
2392  if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2393  UnsafeFPShrink = EnableUnsafeFPShrink;
2394  else if (isa<FPMathOperator>(CI) && CI->isFast())
2395  UnsafeFPShrink = true;
2396 
2397  // First, check for intrinsics.
2398  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2399  if (!isCallingConvC)
2400  return nullptr;
2401  // The FP intrinsics have corresponding constrained versions so we don't
2402  // need to check for the StrictFP attribute here.
2403  switch (II->getIntrinsicID()) {
2404  case Intrinsic::pow:
2405  return optimizePow(CI, Builder);
2406  case Intrinsic::exp2:
2407  return optimizeExp2(CI, Builder);
2408  case Intrinsic::log:
2409  return optimizeLog(CI, Builder);
2410  case Intrinsic::sqrt:
2411  return optimizeSqrt(CI, Builder);
2412  // TODO: Use foldMallocMemset() with memset intrinsic.
2413  default:
2414  return nullptr;
2415  }
2416  }
2417 
2418  // Also try to simplify calls to fortified library functions.
2419  if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2420  // Try to further simplify the result.
2421  CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2422  if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2423  // Use an IR Builder from SimplifiedCI if available instead of CI
2424  // to guarantee we reach all uses we might replace later on.
2425  IRBuilder<> TmpBuilder(SimplifiedCI);
2426  if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2427  // If we were able to further simplify, remove the now redundant call.
2428  SimplifiedCI->replaceAllUsesWith(V);
2429  SimplifiedCI->eraseFromParent();
2430  return V;
2431  }
2432  }
2433  return SimplifiedFortifiedCI;
2434  }
2435 
2436  // Then check for known library functions.
2437  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2438  // We never change the calling convention.
2439  if (!ignoreCallingConv(Func) && !isCallingConvC)
2440  return nullptr;
2441  if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2442  return V;
2443  if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2444  return V;
2445  switch (Func) {
2446  case LibFunc_ffs:
2447  case LibFunc_ffsl:
2448  case LibFunc_ffsll:
2449  return optimizeFFS(CI, Builder);
2450  case LibFunc_fls:
2451  case LibFunc_flsl:
2452  case LibFunc_flsll:
2453  return optimizeFls(CI, Builder);
2454  case LibFunc_abs:
2455  case LibFunc_labs:
2456  case LibFunc_llabs:
2457  return optimizeAbs(CI, Builder);
2458  case LibFunc_isdigit:
2459  return optimizeIsDigit(CI, Builder);
2460  case LibFunc_isascii:
2461  return optimizeIsAscii(CI, Builder);
2462  case LibFunc_toascii:
2463  return optimizeToAscii(CI, Builder);
2464  case LibFunc_atoi:
2465  case LibFunc_atol:
2466  case LibFunc_atoll:
2467  return optimizeAtoi(CI, Builder);
2468  case LibFunc_strtol:
2469  case LibFunc_strtoll:
2470  return optimizeStrtol(CI, Builder);
2471  case LibFunc_printf:
2472  return optimizePrintF(CI, Builder);
2473  case LibFunc_sprintf:
2474  return optimizeSPrintF(CI, Builder);
2475  case LibFunc_snprintf:
2476  return optimizeSnPrintF(CI, Builder);
2477  case LibFunc_fprintf:
2478  return optimizeFPrintF(CI, Builder);
2479  case LibFunc_fwrite:
2480  return optimizeFWrite(CI, Builder);
2481  case LibFunc_fread:
2482  return optimizeFRead(CI, Builder);
2483  case LibFunc_fputs:
2484  return optimizeFPuts(CI, Builder);
2485  case LibFunc_fgets:
2486  return optimizeFGets(CI, Builder);
2487  case LibFunc_fputc:
2488  return optimizeFPutc(CI, Builder);
2489  case LibFunc_fgetc:
2490  return optimizeFGetc(CI, Builder);
2491  case LibFunc_puts:
2492  return optimizePuts(CI, Builder);
2493  case LibFunc_perror:
2494  return optimizeErrorReporting(CI, Builder);
2495  case LibFunc_vfprintf:
2496  case LibFunc_fiprintf:
2497  return optimizeErrorReporting(CI, Builder, 0);
2498  default:
2499  return nullptr;
2500  }
2501  }
2502  return nullptr;
2503 }
2504 
2506  const DataLayout &DL, const TargetLibraryInfo *TLI,
2508  function_ref<void(Instruction *, Value *)> Replacer)
2509  : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2510  UnsafeFPShrink(false), Replacer(Replacer) {}
2511 
2512 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2513  // Indirect through the replacer used in this instance.
2514  Replacer(I, With);
2515 }
2516 
2517 // TODO:
2518 // Additional cases that we need to add to this file:
2519 //
2520 // cbrt:
2521 // * cbrt(expN(X)) -> expN(x/3)
2522 // * cbrt(sqrt(x)) -> pow(x,1/6)
2523 // * cbrt(cbrt(x)) -> pow(x,1/9)
2524 //
2525 // exp, expf, expl:
2526 // * exp(log(x)) -> x
2527 //
2528 // log, logf, logl:
2529 // * log(exp(x)) -> x
2530 // * log(exp(y)) -> y*log(e)
2531 // * log(exp10(y)) -> y*log(10)
2532 // * log(sqrt(x)) -> 0.5*log(x)
2533 //
2534 // pow, powf, powl:
2535 // * pow(sqrt(x),y) -> pow(x,y*0.5)
2536 // * pow(pow(x,y),z)-> pow(x,y*z)
2537 //
2538 // signbit:
2539 // * signbit(cnst) -> cnst'
2540 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2541 //
2542 // sqrt, sqrtf, sqrtl:
2543 // * sqrt(expN(x)) -> expN(x*0.5)
2544 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2545 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2546 //
2547 
2548 //===----------------------------------------------------------------------===//
2549 // Fortified Library Call Optimizations
2550 //===----------------------------------------------------------------------===//
2551 
2552 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2553  unsigned ObjSizeOp,
2554  unsigned SizeOp,
2555  bool isString) {
2556  if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2557  return true;
2558  if (ConstantInt *ObjSizeCI =
2559  dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2560  if (ObjSizeCI->isMinusOne())
2561  return true;
2562  // If the object size wasn't -1 (unknown), bail out if we were asked to.
2563  if (OnlyLowerUnknownSize)
2564  return false;
2565  if (isString) {
2566  uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2567  // If the length is 0 we don't know how long it is and so we can't
2568  // remove the check.
2569  if (Len == 0)
2570  return false;
2571  return ObjSizeCI->getZExtValue() >= Len;
2572  }
2573  if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2574  return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2575  }
2576  return false;
2577 }
2578 
2579 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2580  IRBuilder<> &B) {
2581  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2582  B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2583  CI->getArgOperand(2));
2584  return CI->getArgOperand(0);
2585  }
2586  return nullptr;
2587 }
2588 
2589 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2590  IRBuilder<> &B) {
2591  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2592  B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2593  CI->getArgOperand(2));
2594  return CI->getArgOperand(0);
2595  }
2596  return nullptr;
2597 }
2598 
2599 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2600  IRBuilder<> &B) {
2601  // TODO: Try foldMallocMemset() here.
2602 
2603  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2604  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2605  B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2606  return CI->getArgOperand(0);
2607  }
2608  return nullptr;
2609 }
2610 
2611 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2612  IRBuilder<> &B,
2613  LibFunc Func) {
2614  Function *Callee = CI->getCalledFunction();
2615  StringRef Name = Callee->getName();
2616  const DataLayout &DL = CI->getModule()->getDataLayout();
2617  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2618  *ObjSize = CI->getArgOperand(2);
2619 
2620  // __stpcpy_chk(x,x,...) -> x+strlen(x)
2621  if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2622  Value *StrLen = emitStrLen(Src, B, DL, TLI);
2623  return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2624  }
2625 
2626  // If a) we don't have any length information, or b) we know this will
2627  // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2628  // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2629  // TODO: It might be nice to get a maximum length out of the possible
2630  // string lengths for varying.
2631  if (isFortifiedCallFoldable(CI, 2, 1, true))
2632  return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2633 
2634  if (OnlyLowerUnknownSize)
2635  return nullptr;
2636 
2637  // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2638  uint64_t Len = GetStringLength(Src);
2639  if (Len == 0)
2640  return nullptr;
2641 
2642  Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2643  Value *LenV = ConstantInt::get(SizeTTy, Len);
2644  Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2645  // If the function was an __stpcpy_chk, and we were able to fold it into
2646  // a __memcpy_chk, we still need to return the correct end pointer.
2647  if (Ret && Func == LibFunc_stpcpy_chk)
2648  return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2649  return Ret;
2650 }
2651 
2652 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2653  IRBuilder<> &B,
2654  LibFunc Func) {
2655  Function *Callee = CI->getCalledFunction();
2656  StringRef Name = Callee->getName();
2657  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2658  Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2659  CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2660  return Ret;
2661  }
2662  return nullptr;
2663 }
2664 
2666  // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2667  // Some clang users checked for _chk libcall availability using:
2668  // __has_builtin(__builtin___memcpy_chk)
2669  // When compiling with -fno-builtin, this is always true.
2670  // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2671  // end up with fortified libcalls, which isn't acceptable in a freestanding
2672  // environment which only provides their non-fortified counterparts.
2673  //
2674  // Until we change clang and/or teach external users to check for availability
2675  // differently, disregard the "nobuiltin" attribute and TLI::has.
2676  //
2677  // PR23093.
2678 
2679  LibFunc Func;
2680  Function *Callee = CI->getCalledFunction();
2681 
2683  CI->getOperandBundlesAsDefs(OpBundles);
2684  IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2685  bool isCallingConvC = isCallingConvCCompatible(CI);
2686 
2687  // First, check that this is a known library functions and that the prototype
2688  // is correct.
2689  if (!TLI->getLibFunc(*Callee, Func))
2690  return nullptr;
2691 
2692  // We never change the calling convention.
2693  if (!ignoreCallingConv(Func) && !isCallingConvC)
2694  return nullptr;
2695 
2696  switch (Func) {
2697  case LibFunc_memcpy_chk:
2698  return optimizeMemCpyChk(CI, Builder);
2699  case LibFunc_memmove_chk:
2700  return optimizeMemMoveChk(CI, Builder);
2701  case LibFunc_memset_chk:
2702  return optimizeMemSetChk(CI, Builder);
2703  case LibFunc_stpcpy_chk:
2704  case LibFunc_strcpy_chk:
2705  return optimizeStrpCpyChk(CI, Builder, Func);
2706  case LibFunc_stpncpy_chk:
2707  case LibFunc_strncpy_chk:
2708  return optimizeStrpNCpyChk(CI, Builder, Func);
2709  default:
2710  break;
2711  }
2712  return nullptr;
2713 }
2714 
2716  const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2717  : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
Value * CreateNSWNeg(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1266
static Value * optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool CheckRetType)
Shrink double -> float for unary functions like &#39;floor&#39;.
Value * CreateInBoundsGEP(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &Name="")
Definition: IRBuilder.h:1393
uint64_t CallInst * C
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:185
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
void push_back(const T &Elt)
Definition: SmallVector.h:213
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition: Module.h:238
Function * getCalledFunction() const
Return the function called, or null if this is an indirect function invocation.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:72
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1846
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
bool isZero() const
Definition: APFloat.h:1143
static Value * foldMallocMemset(CallInst *Memset, IRBuilder<> &B, const TargetLibraryInfo &TLI)
Fold memset[_chk](malloc(n), 0, n) –> calloc(1, n).
void flipAllBits()
Toggle every bit to its opposite value.
Definition: APInt.h:1461
bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
LLVM_NODISCARD std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:228
void setFast(bool B=true)
Definition: Operator.h:231
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1740
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return an i1 value testing if Arg is not null.
Definition: IRBuilder.h:1996
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:1566
void addAttribute(unsigned i, Attribute::AttrKind Kind)
adds the attribute to the list of attributes.
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
static bool callHasFloatingPointArgument(const CallInst *CI)
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1752
Constant * getOrInsertFunction(StringRef Name, FunctionType *T, AttributeList AttributeList)
Look up the specified function in the module symbol table.
Definition: Module.cpp:142
Value * optimizeCall(CallInst *CI)
Take the given call instruction and return a more optimal value to replace the instruction with or 0 ...
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:63
static Constant * getInfinity(Type *Ty, bool Negative=false)
Definition: Constants.cpp:775
LLVM_NODISCARD size_t rfind(char C, size_t From=npos) const
Search for the last character C in the string.
Definition: StringRef.h:360
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t size() const
size - Get the string size.
Definition: StringRef.h:138
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1768
This class represents a function call, abstracting a target machine&#39;s calling convention.
static uint64_t round(uint64_t Acc, uint64_t Input)
Definition: xxhash.cpp:57
unsigned less than
Definition: InstrTypes.h:910
An efficient, type-erasing, non-owning reference to a callable.
Definition: STLExtras.h:93
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:713
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1560
F(f)
const fltSemantics & getSemantics() const
Definition: APFloat.h:1155
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
CallInst * CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memset to the specified pointer and the specified value.
Definition: IRBuilder.h:404
An instruction for reading from memory.
Definition: Instructions.h:164
Hexagon Common GEP
static bool isTrigLibCall(CallInst *CI)
CallingConv::ID getCallingConv() const
getCallingConv/setCallingConv - Get or set the calling convention of this function call...
Value * emitStrNCpy(Value *Dst, Value *Src, Value *Len, IRBuilder<> &B, const TargetLibraryInfo *TLI, StringRef Name="strncpy")
Emit a call to the strncpy function to the builder, for the specified pointer arguments and length...
bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize=8)
Returns true if the GEP is based on a pointer to a string (array of.
Value * emitFPutSUnlocked(Value *Str, Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fputs_unlocked function.
uint64_t Offset
Slice starts at this Offset.
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
Value * emitMalloc(Value *Num, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the malloc function.
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:128
static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg)
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:258
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:264
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:347
static Value * replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID)
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
Definition: PatternMatch.h:528
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
Value * CreateFPExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1615
void setBit(unsigned BitPosition)
Set a given bit to 1.
Definition: APInt.h:1387
This class represents the LLVM &#39;select&#39; instruction.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:361
FunctionType * getFunctionType() const
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:362
FortifiedLibCallSimplifier(const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize=false)
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
PointerType * getPointerTo(unsigned AddrSpace=0) const
Return a pointer to the current type.
Definition: Type.cpp:639
Value * emitPutChar(Value *Char, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the putchar function. This assumes that Char is an integer.
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:731
LibCallSimplifier(const DataLayout &DL, const TargetLibraryInfo *TLI, OptimizationRemarkEmitter &ORE, function_ref< void(Instruction *, Value *)> Replacer=&replaceAllUsesWithDefault)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:962
CallInst * CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memmove between the specified pointers.
Definition: IRBuilder.h:494
Value * emitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilder<> &B, const AttributeList &Attrs)
Emit a call to the unary function named &#39;Name&#39; (e.g.
static cl::opt< bool > EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, cl::init(false), cl::desc("Enable unsafe double to float " "shrinking for math lib calls"))
Value * emitFPutCUnlocked(Value *Char, Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fputc_unlocked function.
ARM_AAPCS_VFP - Same as ARM_AAPCS, but uses hard floating point ABI.
Definition: CallingConv.h:103
static StructType * get(LLVMContext &Context, ArrayRef< Type *> Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:336
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition: IRBuilder.h:1321
static Value * convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base)
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1624
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool startswith(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:267
Class to represent function types.
Definition: DerivedTypes.h:103
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1629
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
Value * CreateSExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a SExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:1581
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
Definition: PatternMatch.h:181
const ConstantDataArray * Array
ConstantDataArray pointer.
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition: APFloat.cpp:4444
#define T
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:121
Value * emitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the __memcpy_chk function to the builder.
bool isNegative() const
Return true if the sign bit is set.
Definition: Constants.h:305
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
bool has(LibFunc F) const
Tests whether a library function is available.
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:133
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
Value * emitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B, const TargetLibraryInfo *TLI, StringRef Name="strcpy")
Emit a call to the strcpy function to the builder, for the specified pointer arguments.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:979
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:210
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:439
static const fltSemantics & IEEEdouble() LLVM_READNONE
Definition: APFloat.cpp:123
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:598
static Value * valueHasFloatPrecision(Value *Val)
Return a variant of Val with float type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1556
C - The default llvm calling convention, compatible with C.
Definition: CallingConv.h:35
uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return &#39;len+1&#39;...
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:301
Value * CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1776
amdgpu Simplify well known AMD library false Value * Callee
Function * getDeclaration(Module *M, ID id, ArrayRef< Type *> Tys=None)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1001
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:127
Value * getOperand(unsigned i) const
Definition: User.h:170
ConstantInt * getIntN(unsigned N, uint64_t C)
Get a constant N-bit value, zero extended or truncated from a 64-bit value.
Definition: IRBuilder.h:318
ARM_AAPCS - ARM Architecture Procedure Calling Standard calling convention (aka EABI).
Definition: CallingConv.h:100
Value * getOperand(unsigned i_nocapture) const
bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1740
Value * emitFPutS(Value *Str, Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fputs function.
bool isFloatTy() const
Return true if this is &#39;float&#39;, a 32-bit IEEE fp type.
Definition: Type.h:147
const BasicBlock & getEntryBlock() const
Definition: Function.h:626
LoadInst * CreateLoad(Value *Ptr, const char *Name)
Provided to resolve &#39;CreateLoad(Ptr, "...")&#39; correctly, instead of converting the string to &#39;bool&#39; fo...
Definition: IRBuilder.h:1305
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space...
Definition: DataLayout.cpp:742
bool inferLibFuncAttributes(Function &F, const TargetLibraryInfo &TLI)
Analyze the name and prototype of the given function and set any applicable attributes.
Type * getDoubleTy()
Fetch the type representing a 64-bit floating point value.
Definition: IRBuilder.h:375
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:410
static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, const TargetLibraryInfo *TLI)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Value * CreateFMul(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1195
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
void setNoSignedZeros(bool B=true)
Definition: Operator.h:219
LLVM Basic Block Representation.
Definition: BasicBlock.h:59
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition: IRBuilder.h:287
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.h:1901
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:221
LLVM_NODISCARD size_t find_first_not_of(char C, size_t From=0) const
Find the first character in the string that is not C or npos if not found.
Definition: StringRef.cpp:250
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:264
Value * CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1781
double convertToDouble() const
Definition: APFloat.h:1097
Diagnostic information for applied optimization remarks.
bool isExactlyValue(double V) const
We don&#39;t rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: APFloat.h:1130
bool isFast() const
Determine whether all fast-math-flags are set.
bool any_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:915
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1256
void setCalledFunction(Value *Fn)
Set the function called.
bool optForSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:584
This instruction compares its operands according to the predicate given to the constructor.
static const unsigned End
ARM_APCS - ARM Procedure Calling Standard calling convention (obsolete, but still used on some target...
Definition: CallingConv.h:96
op_range operands()
Definition: User.h:238
Value * getPointerOperand()
Definition: Instructions.h:270
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE int compare(StringRef RHS) const
compare - Compare two strings; the result is -1, 0, or 1 if this string is lexicographically less tha...
Definition: StringRef.h:184
static bool isCallingConvCCompatible(CallInst *CI)
Class to represent integer types.
Definition: DerivedTypes.h:40
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Definition: IRBuilder.h:312
Value * castToCStr(Value *V, IRBuilder<> &B)
Return V if it is an i8*, otherwise cast it to i8*.
Represents offset+length into a ConstantDataArray.
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:1921
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:60
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, const DataLayout &DL)
ConstantFoldLoadFromConstPtr - Return the value that a load from C would produce if it is constant an...
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:390
uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:632
const Constant * stripPointerCasts() const
Definition: Constant.h:169
Value * emitStrChr(Value *Ptr, char C, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the strchr function to the builder, for the specified pointer and character.
bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, bool StoreCaptures)
PointerMayBeCaptured - Return true if this pointer value may be captured by the enclosing function (w...
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:1963
LLVM_NODISCARD char back() const
back - Get the last character in the string.
Definition: StringRef.h:149
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1552
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
void setCallingConv(CallingConv::ID CC)
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE StringRef drop_back(size_t N=1) const
Return a StringRef equal to &#39;this&#39; but with the last N elements dropped.
Definition: StringRef.h:654
const APFloat & getValueAPF() const
Definition: Constants.h:299
Value * emitFWriteUnlocked(Value *Ptr, Value *Size, Value *N, Value *File, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the fwrite_unlocked function.
Value * CreateGEP(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &Name="")
Definition: IRBuilder.h:1374
Value * CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1791
Value * emitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the strlen function to the builder, for the specified pointer.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:240
Value * emitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name, IRBuilder<> &B, const AttributeList &Attrs)
Emit a call to the binary function named &#39;Name&#39; (e.g.
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:120
bool isInteger() const
Definition: APFloat.h:1162
Value * emitFGetCUnlocked(Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fgetc_unlocked function. File is a pointer to FILE.
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
GlobalVariable * CreateGlobalString(StringRef Str, const Twine &Name="", unsigned AddressSpace=0)
Make a new global variable with initializer type i8*.
Definition: IRBuilder.cpp:43
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:1698
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:861
uint64_t getElementAsInteger(unsigned i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
Definition: Constants.cpp:2592
Module.h This file contains the declarations for the Module class.
uint64_t Length
Length of the slice.
Provides information about what library functions are available for the current target.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:307
CallInst * CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *TBAAStructTag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memcpy between the specified pointers.
Definition: IRBuilder.h:446
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:611
static Constant * get(Type *Ty, double V)
This returns a ConstantFP, or a vector containing a splat of a ConstantFP, for the specified value in...
Definition: Constants.cpp:674
Value * CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name="")
Definition: IRBuilder.h:1491
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:667
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:180
void setNoNaNs(bool B=true)
Definition: Operator.h:213
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:150
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:56
Class for arbitrary precision integers.
Definition: APInt.h:69
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1207
iterator_range< user_iterator > users()
Definition: Value.h:399
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Definition: IRBuilder.h:337
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1051
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
iterator begin() const
Definition: StringRef.h:106
static Value * optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B)
Shrink double -> float for binary functions like &#39;fmin/fmax&#39;.
Value * emitFPutC(Value *Char, Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fputc function.
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition: IRBuilder.h:292
amdgpu Simplify well known AMD library false Value Value * Arg
bool isStrictFP() const
Determine if the call requires strict floating point semantics.
Value * emitFGetSUnlocked(Value *Str, Value *Size, Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fgets_unlocked function.
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:959
Merge contiguous icmps into a memcmp
Definition: MergeICmps.cpp:794
static const size_t npos
Definition: StringRef.h:51
unsigned getIntegerBitWidth() const
Definition: DerivedTypes.h:97
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:62
unsigned getNumArgOperands() const
Return the number of call arguments.
Value * emitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the strncmp function to the builder.
static bool isFNeg(const Value *V, bool IgnoreZeroSign=false)
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:224
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:108
LLVM_NODISCARD size_t find_first_of(char C, size_t From=0) const
Find the first character in the string that is C, or npos if not found.
Definition: StringRef.h:395
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition: APFloat.h:1213
This class represents a cast unsigned integer to floating point.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:193
Value * optimizeCall(CallInst *CI)
optimizeCall - Take the given call instruction and return a more optimal value to replace the instruc...
unsigned getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
Definition: Local.h:260
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos)
Type * getFloatTy()
Fetch the type representing a 32-bit floating point value.
Definition: IRBuilder.h:370
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1161
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1112
void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
Definition: InstrTypes.h:1458
Value * CreateFDiv(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1212
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:201
bool getConstantStringInfo(const Value *V, StringRef &Str, uint64_t Offset=0, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
Value * emitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the fwrite function.
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Definition: IRBuilder.h:782
Value * emitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the memcmp function.
This class represents a cast from signed integer to floating point.
static bool isOnlyUsedInEqualityComparison(Value *V, Value *With)
Return true if it is only used in equality comparisons with With.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
user_iterator user_begin()
Definition: Value.h:375
Value * getArgOperand(unsigned i) const
getArgOperand/setArgOperand - Return/set the i-th call argument.
This class represents a truncation of floating point types.
Value * emitFReadUnlocked(Value *Ptr, Value *Size, Value *N, Value *File, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the fread_unlocked function.
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:565
LLVM Value Representation.
Definition: Value.h:73
Value * emitPutS(Value *Str, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the puts function. This assumes that Str is some pointer.
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
static VectorType * get(Type *ElementType, unsigned NumElements)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:593
Value * emitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the memchr function.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition: IRBuilder.h:220
Value * emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, IRBuilder<> &B, const TargetLibraryInfo &TLI)
Emit a call to the calloc function.
bool isExactlyValue(const APFloat &V) const
We don&#39;t rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: Constants.cpp:791
ConstantInt * getInt8(uint8_t C)
Get a constant 8-bit value.
Definition: IRBuilder.h:297
bool hasNoNaNs() const
Determine whether the no-NaNs flag is set.
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:160
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:157
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Definition: IRBuilder.h:323
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t find(char C, size_t From=0) const
Search for the first character C in the string.
Definition: StringRef.h:298
static bool ignoreCallingConv(LibFunc Func)
This class represents an extension of floating point types.
iterator end() const
Definition: StringRef.h:108
static Constant * getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1658
bool isDoubleTy() const
Return true if this is &#39;double&#39;, a 64-bit IEEE fp type.
Definition: Type.h:150
bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn)
Check whether the overloaded unary floating point function corresponding to Ty is available...
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
The optimization diagnostic interface.
bool use_empty() const
Definition: Value.h:322
static Value * getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B)
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:215
cmpResult compare(const APFloat &RHS) const
Definition: APFloat.h:1102
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:218
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
CallInst * CreateCall(Value *Callee, ArrayRef< Value *> Args=None, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1871
user_iterator user_end()
Definition: Value.h:383