LLVM  10.0.0svn
SimplifyLibCalls.cpp
Go to the documentation of this file.
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/Support/KnownBits.h"
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 static cl::opt<bool>
46  EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47  cl::init(false),
48  cl::desc("Enable unsafe double to float "
49  "shrinking for math lib calls"));
50 
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54 
55 static bool ignoreCallingConv(LibFunc Func) {
56  return Func == LibFunc_abs || Func == LibFunc_labs ||
57  Func == LibFunc_llabs || Func == LibFunc_strlen;
58 }
59 
61  switch(CI->getCallingConv()) {
62  default:
63  return false;
65  return true;
69 
70  // The iOS ABI diverges from the standard in some cases, so for now don't
71  // try to simplify those calls.
72  if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73  return false;
74 
75  auto *FuncTy = CI->getFunctionType();
76 
77  if (!FuncTy->getReturnType()->isPointerTy() &&
78  !FuncTy->getReturnType()->isIntegerTy() &&
79  !FuncTy->getReturnType()->isVoidTy())
80  return false;
81 
82  for (auto Param : FuncTy->params()) {
83  if (!Param->isPointerTy() && !Param->isIntegerTy())
84  return false;
85  }
86  return true;
87  }
88  }
89  return false;
90 }
91 
92 /// Return true if it is only used in equality comparisons with With.
93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94  for (User *U : V->users()) {
95  if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96  if (IC->isEquality() && IC->getOperand(1) == With)
97  continue;
98  // Unknown instruction.
99  return false;
100  }
101  return true;
102 }
103 
104 static bool callHasFloatingPointArgument(const CallInst *CI) {
105  return any_of(CI->operands(), [](const Use &OI) {
106  return OI->getType()->isFloatingPointTy();
107  });
108 }
109 
110 static bool callHasFP128Argument(const CallInst *CI) {
111  return any_of(CI->operands(), [](const Use &OI) {
112  return OI->getType()->isFP128Ty();
113  });
114 }
115 
116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117  if (Base < 2 || Base > 36)
118  // handle special zero base
119  if (Base != 0)
120  return nullptr;
121 
122  char *End;
123  std::string nptr = Str.str();
124  errno = 0;
125  long long int Result = strtoll(nptr.c_str(), &End, Base);
126  if (errno)
127  return nullptr;
128 
129  // if we assume all possible target locales are ASCII supersets,
130  // then if strtoll successfully parses a number on the host,
131  // it will also successfully parse the same way on the target
132  if (*End != '\0')
133  return nullptr;
134 
135  if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136  return nullptr;
137 
138  return ConstantInt::get(CI->getType(), Result);
139 }
140 
142  const TargetLibraryInfo *TLI) {
143  CallInst *FOpen = dyn_cast<CallInst>(File);
144  if (!FOpen)
145  return false;
146 
147  Function *InnerCallee = FOpen->getCalledFunction();
148  if (!InnerCallee)
149  return false;
150 
151  LibFunc Func;
152  if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
153  Func != LibFunc_fopen)
154  return false;
155 
157  if (PointerMayBeCaptured(File, true, true))
158  return false;
159 
160  return true;
161 }
162 
164  for (User *U : V->users()) {
165  if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
166  if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
167  if (C->isNullValue())
168  continue;
169  // Unknown instruction.
170  return false;
171  }
172  return true;
173 }
174 
175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
176  const DataLayout &DL) {
178  return false;
179 
181  DL))
182  return false;
183 
184  if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
185  return false;
186 
187  return true;
188 }
189 
191  ArrayRef<unsigned> ArgNos,
192  uint64_t DereferenceableBytes) {
193  const Function *F = CI->getCaller();
194  if (!F)
195  return;
196  for (unsigned ArgNo : ArgNos) {
197  uint64_t DerefBytes = DereferenceableBytes;
198  unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
199  if (!llvm::NullPointerIsDefined(F, AS) ||
200  CI->paramHasAttr(ArgNo, Attribute::NonNull))
201  DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
203  DereferenceableBytes);
204 
206  DerefBytes) {
207  CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
208  if (!llvm::NullPointerIsDefined(F, AS) ||
209  CI->paramHasAttr(ArgNo, Attribute::NonNull))
210  CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
212  CI->getContext(), DerefBytes));
213  }
214  }
215 }
216 
218  ArrayRef<unsigned> ArgNos) {
219  Function *F = CI->getCaller();
220  if (!F)
221  return;
222 
223  for (unsigned ArgNo : ArgNos) {
224  if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
225  continue;
226  unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
227  if (llvm::NullPointerIsDefined(F, AS))
228  continue;
229 
230  CI->addParamAttr(ArgNo, Attribute::NonNull);
231  annotateDereferenceableBytes(CI, ArgNo, 1);
232  }
233 }
234 
236  Value *Size, const DataLayout &DL) {
237  if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
238  annotateNonNullBasedOnAccess(CI, ArgNos);
239  annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
240  } else if (isKnownNonZero(Size, DL)) {
241  annotateNonNullBasedOnAccess(CI, ArgNos);
242  const APInt *X, *Y;
243  uint64_t DerefMin = 1;
244  if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
245  DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
246  annotateDereferenceableBytes(CI, ArgNos, DerefMin);
247  }
248  }
249 }
250 
251 //===----------------------------------------------------------------------===//
252 // String and Memory Library Call Optimizations
253 //===----------------------------------------------------------------------===//
254 
255 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
256  // Extract some information from the instruction
257  Value *Dst = CI->getArgOperand(0);
258  Value *Src = CI->getArgOperand(1);
259  annotateNonNullBasedOnAccess(CI, {0, 1});
260 
261  // See if we can get the length of the input string.
262  uint64_t Len = GetStringLength(Src);
263  if (Len)
264  annotateDereferenceableBytes(CI, 1, Len);
265  else
266  return nullptr;
267  --Len; // Unbias length.
268 
269  // Handle the simple, do-nothing case: strcat(x, "") -> x
270  if (Len == 0)
271  return Dst;
272 
273  return emitStrLenMemCpy(Src, Dst, Len, B);
274 }
275 
276 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
277  IRBuilder<> &B) {
278  // We need to find the end of the destination string. That's where the
279  // memory is to be moved to. We just generate a call to strlen.
280  Value *DstLen = emitStrLen(Dst, B, DL, TLI);
281  if (!DstLen)
282  return nullptr;
283 
284  // Now that we have the destination's length, we must index into the
285  // destination's pointer to get the actual memcpy destination (end of
286  // the string .. we're concatenating).
287  Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
288 
289  // We have enough information to now generate the memcpy call to do the
290  // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
291  B.CreateMemCpy(CpyDst, 1, Src, 1,
292  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
293  return Dst;
294 }
295 
296 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
297  // Extract some information from the instruction.
298  Value *Dst = CI->getArgOperand(0);
299  Value *Src = CI->getArgOperand(1);
300  Value *Size = CI->getArgOperand(2);
301  uint64_t Len;
303  if (isKnownNonZero(Size, DL))
305 
306  // We don't do anything if length is not constant.
307  ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
308  if (LengthArg) {
309  Len = LengthArg->getZExtValue();
310  // strncat(x, c, 0) -> x
311  if (!Len)
312  return Dst;
313  } else {
314  return nullptr;
315  }
316 
317  // See if we can get the length of the input string.
318  uint64_t SrcLen = GetStringLength(Src);
319  if (SrcLen) {
320  annotateDereferenceableBytes(CI, 1, SrcLen);
321  --SrcLen; // Unbias length.
322  } else {
323  return nullptr;
324  }
325 
326  // strncat(x, "", c) -> x
327  if (SrcLen == 0)
328  return Dst;
329 
330  // We don't optimize this case.
331  if (Len < SrcLen)
332  return nullptr;
333 
334  // strncat(x, s, c) -> strcat(x, s)
335  // s is constant so the strcat can be optimized further.
336  return emitStrLenMemCpy(Src, Dst, SrcLen, B);
337 }
338 
339 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
341  FunctionType *FT = Callee->getFunctionType();
342  Value *SrcStr = CI->getArgOperand(0);
344 
345  // If the second operand is non-constant, see if we can compute the length
346  // of the input string and turn this into memchr.
347  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
348  if (!CharC) {
349  uint64_t Len = GetStringLength(SrcStr);
350  if (Len)
351  annotateDereferenceableBytes(CI, 0, Len);
352  else
353  return nullptr;
354  if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
355  return nullptr;
356 
357  return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
358  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
359  B, DL, TLI);
360  }
361 
362  // Otherwise, the character is a constant, see if the first argument is
363  // a string literal. If so, we can constant fold.
364  StringRef Str;
365  if (!getConstantStringInfo(SrcStr, Str)) {
366  if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
367  return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
368  "strchr");
369  return nullptr;
370  }
371 
372  // Compute the offset, make sure to handle the case when we're searching for
373  // zero (a weird way to spell strlen).
374  size_t I = (0xFF & CharC->getSExtValue()) == 0
375  ? Str.size()
376  : Str.find(CharC->getSExtValue());
377  if (I == StringRef::npos) // Didn't find the char. strchr returns null.
378  return Constant::getNullValue(CI->getType());
379 
380  // strchr(s+n,c) -> gep(s+n+i,c)
381  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
382 }
383 
384 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
385  Value *SrcStr = CI->getArgOperand(0);
386  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
388 
389  // Cannot fold anything if we're not looking for a constant.
390  if (!CharC)
391  return nullptr;
392 
393  StringRef Str;
394  if (!getConstantStringInfo(SrcStr, Str)) {
395  // strrchr(s, 0) -> strchr(s, 0)
396  if (CharC->isZero())
397  return emitStrChr(SrcStr, '\0', B, TLI);
398  return nullptr;
399  }
400 
401  // Compute the offset.
402  size_t I = (0xFF & CharC->getSExtValue()) == 0
403  ? Str.size()
404  : Str.rfind(CharC->getSExtValue());
405  if (I == StringRef::npos) // Didn't find the char. Return null.
406  return Constant::getNullValue(CI->getType());
407 
408  // strrchr(s+n,c) -> gep(s+n+i,c)
409  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
410 }
411 
412 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
413  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
414  if (Str1P == Str2P) // strcmp(x,x) -> 0
415  return ConstantInt::get(CI->getType(), 0);
416 
417  StringRef Str1, Str2;
418  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
419  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
420 
421  // strcmp(x, y) -> cnst (if both x and y are constant strings)
422  if (HasStr1 && HasStr2)
423  return ConstantInt::get(CI->getType(), Str1.compare(Str2));
424 
425  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
426  return B.CreateNeg(B.CreateZExt(
427  B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
428 
429  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
430  return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
431  CI->getType());
432 
433  // strcmp(P, "x") -> memcmp(P, "x", 2)
434  uint64_t Len1 = GetStringLength(Str1P);
435  if (Len1)
436  annotateDereferenceableBytes(CI, 0, Len1);
437  uint64_t Len2 = GetStringLength(Str2P);
438  if (Len2)
439  annotateDereferenceableBytes(CI, 1, Len2);
440 
441  if (Len1 && Len2) {
442  return emitMemCmp(Str1P, Str2P,
443  ConstantInt::get(DL.getIntPtrType(CI->getContext()),
444  std::min(Len1, Len2)),
445  B, DL, TLI);
446  }
447 
448  // strcmp to memcmp
449  if (!HasStr1 && HasStr2) {
450  if (canTransformToMemCmp(CI, Str1P, Len2, DL))
451  return emitMemCmp(
452  Str1P, Str2P,
453  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
454  TLI);
455  } else if (HasStr1 && !HasStr2) {
456  if (canTransformToMemCmp(CI, Str2P, Len1, DL))
457  return emitMemCmp(
458  Str1P, Str2P,
459  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
460  TLI);
461  }
462 
463  annotateNonNullBasedOnAccess(CI, {0, 1});
464  return nullptr;
465 }
466 
467 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
468  Value *Str1P = CI->getArgOperand(0);
469  Value *Str2P = CI->getArgOperand(1);
470  Value *Size = CI->getArgOperand(2);
471  if (Str1P == Str2P) // strncmp(x,x,n) -> 0
472  return ConstantInt::get(CI->getType(), 0);
473 
474  if (isKnownNonZero(Size, DL))
475  annotateNonNullBasedOnAccess(CI, {0, 1});
476  // Get the length argument if it is constant.
477  uint64_t Length;
478  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
479  Length = LengthArg->getZExtValue();
480  else
481  return nullptr;
482 
483  if (Length == 0) // strncmp(x,y,0) -> 0
484  return ConstantInt::get(CI->getType(), 0);
485 
486  if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
487  return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
488 
489  StringRef Str1, Str2;
490  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
491  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
492 
493  // strncmp(x, y) -> cnst (if both x and y are constant strings)
494  if (HasStr1 && HasStr2) {
495  StringRef SubStr1 = Str1.substr(0, Length);
496  StringRef SubStr2 = Str2.substr(0, Length);
497  return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
498  }
499 
500  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
501  return B.CreateNeg(B.CreateZExt(
502  B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
503 
504  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
505  return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
506  CI->getType());
507 
508  uint64_t Len1 = GetStringLength(Str1P);
509  if (Len1)
510  annotateDereferenceableBytes(CI, 0, Len1);
511  uint64_t Len2 = GetStringLength(Str2P);
512  if (Len2)
513  annotateDereferenceableBytes(CI, 1, Len2);
514 
515  // strncmp to memcmp
516  if (!HasStr1 && HasStr2) {
517  Len2 = std::min(Len2, Length);
518  if (canTransformToMemCmp(CI, Str1P, Len2, DL))
519  return emitMemCmp(
520  Str1P, Str2P,
521  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
522  TLI);
523  } else if (HasStr1 && !HasStr2) {
524  Len1 = std::min(Len1, Length);
525  if (canTransformToMemCmp(CI, Str2P, Len1, DL))
526  return emitMemCmp(
527  Str1P, Str2P,
528  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
529  TLI);
530  }
531 
532  return nullptr;
533 }
534 
535 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilder<> &B) {
536  Value *Src = CI->getArgOperand(0);
538  uint64_t SrcLen = GetStringLength(Src);
539  if (SrcLen && Size) {
540  annotateDereferenceableBytes(CI, 0, SrcLen);
541  if (SrcLen <= Size->getZExtValue() + 1)
542  return emitStrDup(Src, B, TLI);
543  }
544 
545  return nullptr;
546 }
547 
548 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
549  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
550  if (Dst == Src) // strcpy(x,x) -> x
551  return Src;
552 
553  annotateNonNullBasedOnAccess(CI, {0, 1});
554  // See if we can get the length of the input string.
555  uint64_t Len = GetStringLength(Src);
556  if (Len)
557  annotateDereferenceableBytes(CI, 1, Len);
558  else
559  return nullptr;
560 
561  // We have enough information to now generate the memcpy call to do the
562  // copy for us. Make a memcpy to copy the nul byte with align = 1.
563  CallInst *NewCI =
564  B.CreateMemCpy(Dst, 1, Src, 1,
565  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
566  NewCI->setAttributes(CI->getAttributes());
567  return Dst;
568 }
569 
570 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
572  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
573  if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
574  Value *StrLen = emitStrLen(Src, B, DL, TLI);
575  return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
576  }
577 
578  // See if we can get the length of the input string.
579  uint64_t Len = GetStringLength(Src);
580  if (Len)
581  annotateDereferenceableBytes(CI, 1, Len);
582  else
583  return nullptr;
584 
585  Type *PT = Callee->getFunctionType()->getParamType(0);
586  Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
587  Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
588  ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
589 
590  // We have enough information to now generate the memcpy call to do the
591  // copy for us. Make a memcpy to copy the nul byte with align = 1.
592  CallInst *NewCI = B.CreateMemCpy(Dst, 1, Src, 1, LenV);
593  NewCI->setAttributes(CI->getAttributes());
594  return DstEnd;
595 }
596 
597 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
599  Value *Dst = CI->getArgOperand(0);
600  Value *Src = CI->getArgOperand(1);
601  Value *Size = CI->getArgOperand(2);
603  if (isKnownNonZero(Size, DL))
605 
606  uint64_t Len;
607  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
608  Len = LengthArg->getZExtValue();
609  else
610  return nullptr;
611 
612  // strncpy(x, y, 0) -> x
613  if (Len == 0)
614  return Dst;
615 
616  // See if we can get the length of the input string.
617  uint64_t SrcLen = GetStringLength(Src);
618  if (SrcLen) {
619  annotateDereferenceableBytes(CI, 1, SrcLen);
620  --SrcLen; // Unbias length.
621  } else {
622  return nullptr;
623  }
624 
625  if (SrcLen == 0) {
626  // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
627  CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, 1);
628  AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
630  CI->getContext(), 0, ArgAttrs));
631  return Dst;
632  }
633 
634  // Let strncpy handle the zero padding
635  if (Len > SrcLen + 1)
636  return nullptr;
637 
638  Type *PT = Callee->getFunctionType()->getParamType(0);
639  // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
640  CallInst *NewCI = B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
641  NewCI->setAttributes(CI->getAttributes());
642  return Dst;
643 }
644 
645 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
646  unsigned CharSize) {
647  Value *Src = CI->getArgOperand(0);
648 
649  // Constant folding: strlen("xyz") -> 3
650  if (uint64_t Len = GetStringLength(Src, CharSize))
651  return ConstantInt::get(CI->getType(), Len - 1);
652 
653  // If s is a constant pointer pointing to a string literal, we can fold
654  // strlen(s + x) to strlen(s) - x, when x is known to be in the range
655  // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
656  // We only try to simplify strlen when the pointer s points to an array
657  // of i8. Otherwise, we would need to scale the offset x before doing the
658  // subtraction. This will make the optimization more complex, and it's not
659  // very useful because calling strlen for a pointer of other types is
660  // very uncommon.
661  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
662  if (!isGEPBasedOnPointerToString(GEP, CharSize))
663  return nullptr;
664 
666  if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
667  uint64_t NullTermIdx;
668  if (Slice.Array == nullptr) {
669  NullTermIdx = 0;
670  } else {
671  NullTermIdx = ~((uint64_t)0);
672  for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
673  if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
674  NullTermIdx = I;
675  break;
676  }
677  }
678  // If the string does not have '\0', leave it to strlen to compute
679  // its length.
680  if (NullTermIdx == ~((uint64_t)0))
681  return nullptr;
682  }
683 
684  Value *Offset = GEP->getOperand(2);
685  KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
686  Known.Zero.flipAllBits();
687  uint64_t ArrSize =
688  cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
689 
690  // KnownZero's bits are flipped, so zeros in KnownZero now represent
691  // bits known to be zeros in Offset, and ones in KnowZero represent
692  // bits unknown in Offset. Therefore, Offset is known to be in range
693  // [0, NullTermIdx] when the flipped KnownZero is non-negative and
694  // unsigned-less-than NullTermIdx.
695  //
696  // If Offset is not provably in the range [0, NullTermIdx], we can still
697  // optimize if we can prove that the program has undefined behavior when
698  // Offset is outside that range. That is the case when GEP->getOperand(0)
699  // is a pointer to an object whose memory extent is NullTermIdx+1.
700  if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
701  (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
702  NullTermIdx == ArrSize - 1)) {
703  Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
704  return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
705  Offset);
706  }
707  }
708 
709  return nullptr;
710  }
711 
712  // strlen(x?"foo":"bars") --> x ? 3 : 4
713  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
714  uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
715  uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
716  if (LenTrue && LenFalse) {
717  ORE.emit([&]() {
718  return OptimizationRemark("instcombine", "simplify-libcalls", CI)
719  << "folded strlen(select) to select of constants";
720  });
721  return B.CreateSelect(SI->getCondition(),
722  ConstantInt::get(CI->getType(), LenTrue - 1),
723  ConstantInt::get(CI->getType(), LenFalse - 1));
724  }
725  }
726 
727  // strlen(x) != 0 --> *x != 0
728  // strlen(x) == 0 --> *x == 0
730  return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
731  CI->getType());
732 
733  return nullptr;
734 }
735 
736 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
737  if (Value *V = optimizeStringLength(CI, B, 8))
738  return V;
740  return nullptr;
741 }
742 
743 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
744  Module &M = *CI->getModule();
745  unsigned WCharSize = TLI->getWCharSize(M) * 8;
746  // We cannot perform this optimization without wchar_size metadata.
747  if (WCharSize == 0)
748  return nullptr;
749 
750  return optimizeStringLength(CI, B, WCharSize);
751 }
752 
753 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
754  StringRef S1, S2;
755  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
756  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
757 
758  // strpbrk(s, "") -> nullptr
759  // strpbrk("", s) -> nullptr
760  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
761  return Constant::getNullValue(CI->getType());
762 
763  // Constant folding.
764  if (HasS1 && HasS2) {
765  size_t I = S1.find_first_of(S2);
766  if (I == StringRef::npos) // No match.
767  return Constant::getNullValue(CI->getType());
768 
769  return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
770  "strpbrk");
771  }
772 
773  // strpbrk(s, "a") -> strchr(s, 'a')
774  if (HasS2 && S2.size() == 1)
775  return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
776 
777  return nullptr;
778 }
779 
780 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
781  Value *EndPtr = CI->getArgOperand(1);
782  if (isa<ConstantPointerNull>(EndPtr)) {
783  // With a null EndPtr, this function won't capture the main argument.
784  // It would be readonly too, except that it still may write to errno.
785  CI->addParamAttr(0, Attribute::NoCapture);
786  }
787 
788  return nullptr;
789 }
790 
791 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
792  StringRef S1, S2;
793  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
794  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
795 
796  // strspn(s, "") -> 0
797  // strspn("", s) -> 0
798  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
799  return Constant::getNullValue(CI->getType());
800 
801  // Constant folding.
802  if (HasS1 && HasS2) {
803  size_t Pos = S1.find_first_not_of(S2);
804  if (Pos == StringRef::npos)
805  Pos = S1.size();
806  return ConstantInt::get(CI->getType(), Pos);
807  }
808 
809  return nullptr;
810 }
811 
812 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
813  StringRef S1, S2;
814  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
815  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
816 
817  // strcspn("", s) -> 0
818  if (HasS1 && S1.empty())
819  return Constant::getNullValue(CI->getType());
820 
821  // Constant folding.
822  if (HasS1 && HasS2) {
823  size_t Pos = S1.find_first_of(S2);
824  if (Pos == StringRef::npos)
825  Pos = S1.size();
826  return ConstantInt::get(CI->getType(), Pos);
827  }
828 
829  // strcspn(s, "") -> strlen(s)
830  if (HasS2 && S2.empty())
831  return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
832 
833  return nullptr;
834 }
835 
836 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
837  // fold strstr(x, x) -> x.
838  if (CI->getArgOperand(0) == CI->getArgOperand(1))
839  return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
840 
841  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
843  Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
844  if (!StrLen)
845  return nullptr;
846  Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
847  StrLen, B, DL, TLI);
848  if (!StrNCmp)
849  return nullptr;
850  for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
851  ICmpInst *Old = cast<ICmpInst>(*UI++);
852  Value *Cmp =
853  B.CreateICmp(Old->getPredicate(), StrNCmp,
854  ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
855  replaceAllUsesWith(Old, Cmp);
856  }
857  return CI;
858  }
859 
860  // See if either input string is a constant string.
861  StringRef SearchStr, ToFindStr;
862  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
863  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
864 
865  // fold strstr(x, "") -> x.
866  if (HasStr2 && ToFindStr.empty())
867  return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
868 
869  // If both strings are known, constant fold it.
870  if (HasStr1 && HasStr2) {
871  size_t Offset = SearchStr.find(ToFindStr);
872 
873  if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
874  return Constant::getNullValue(CI->getType());
875 
876  // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
877  Value *Result = castToCStr(CI->getArgOperand(0), B);
878  Result =
879  B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
880  return B.CreateBitCast(Result, CI->getType());
881  }
882 
883  // fold strstr(x, "y") -> strchr(x, 'y').
884  if (HasStr2 && ToFindStr.size() == 1) {
885  Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
886  return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
887  }
888 
889  annotateNonNullBasedOnAccess(CI, {0, 1});
890  return nullptr;
891 }
892 
893 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilder<> &B) {
894  if (isKnownNonZero(CI->getOperand(2), DL))
896  return nullptr;
897 }
898 
899 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
900  Value *SrcStr = CI->getArgOperand(0);
901  Value *Size = CI->getArgOperand(2);
902  annotateNonNullAndDereferenceable(CI, 0, Size, DL);
903  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
905 
906  // memchr(x, y, 0) -> null
907  if (LenC) {
908  if (LenC->isZero())
909  return Constant::getNullValue(CI->getType());
910  } else {
911  // From now on we need at least constant length and string.
912  return nullptr;
913  }
914 
915  StringRef Str;
916  if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
917  return nullptr;
918 
919  // Truncate the string to LenC. If Str is smaller than LenC we will still only
920  // scan the string, as reading past the end of it is undefined and we can just
921  // return null if we don't find the char.
922  Str = Str.substr(0, LenC->getZExtValue());
923 
924  // If the char is variable but the input str and length are not we can turn
925  // this memchr call into a simple bit field test. Of course this only works
926  // when the return value is only checked against null.
927  //
928  // It would be really nice to reuse switch lowering here but we can't change
929  // the CFG at this point.
930  //
931  // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
932  // != 0
933  // after bounds check.
934  if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
935  unsigned char Max =
936  *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
937  reinterpret_cast<const unsigned char *>(Str.end()));
938 
939  // Make sure the bit field we're about to create fits in a register on the
940  // target.
941  // FIXME: On a 64 bit architecture this prevents us from using the
942  // interesting range of alpha ascii chars. We could do better by emitting
943  // two bitfields or shifting the range by 64 if no lower chars are used.
944  if (!DL.fitsInLegalInteger(Max + 1))
945  return nullptr;
946 
947  // For the bit field use a power-of-2 type with at least 8 bits to avoid
948  // creating unnecessary illegal types.
949  unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
950 
951  // Now build the bit field.
952  APInt Bitfield(Width, 0);
953  for (char C : Str)
954  Bitfield.setBit((unsigned char)C);
955  Value *BitfieldC = B.getInt(Bitfield);
956 
957  // Adjust width of "C" to the bitfield width, then mask off the high bits.
958  Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
959  C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
960 
961  // First check that the bit field access is within bounds.
962  Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
963  "memchr.bounds");
964 
965  // Create code that checks if the given bit is set in the field.
966  Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
967  Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
968 
969  // Finally merge both checks and cast to pointer type. The inttoptr
970  // implicitly zexts the i1 to intptr type.
971  return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
972  }
973 
974  // Check if all arguments are constants. If so, we can constant fold.
975  if (!CharC)
976  return nullptr;
977 
978  // Compute the offset.
979  size_t I = Str.find(CharC->getSExtValue() & 0xFF);
980  if (I == StringRef::npos) // Didn't find the char. memchr returns null.
981  return Constant::getNullValue(CI->getType());
982 
983  // memchr(s+n,c,l) -> gep(s+n+i,c)
984  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
985 }
986 
988  uint64_t Len, IRBuilder<> &B,
989  const DataLayout &DL) {
990  if (Len == 0) // memcmp(s1,s2,0) -> 0
991  return Constant::getNullValue(CI->getType());
992 
993  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
994  if (Len == 1) {
995  Value *LHSV =
996  B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
997  CI->getType(), "lhsv");
998  Value *RHSV =
999  B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1000  CI->getType(), "rhsv");
1001  return B.CreateSub(LHSV, RHSV, "chardiff");
1002  }
1003 
1004  // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1005  // TODO: The case where both inputs are constants does not need to be limited
1006  // to legal integers or equality comparison. See block below this.
1007  if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1008  IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1009  unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1010 
1011  // First, see if we can fold either argument to a constant.
1012  Value *LHSV = nullptr;
1013  if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1014  LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1015  LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1016  }
1017  Value *RHSV = nullptr;
1018  if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1019  RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1020  RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1021  }
1022 
1023  // Don't generate unaligned loads. If either source is constant data,
1024  // alignment doesn't matter for that source because there is no load.
1025  if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1026  (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1027  if (!LHSV) {
1028  Type *LHSPtrTy =
1029  IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1030  LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1031  }
1032  if (!RHSV) {
1033  Type *RHSPtrTy =
1034  IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1035  RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1036  }
1037  return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1038  }
1039  }
1040 
1041  // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1042  // TODO: This is limited to i8 arrays.
1043  StringRef LHSStr, RHSStr;
1044  if (getConstantStringInfo(LHS, LHSStr) &&
1045  getConstantStringInfo(RHS, RHSStr)) {
1046  // Make sure we're not reading out-of-bounds memory.
1047  if (Len > LHSStr.size() || Len > RHSStr.size())
1048  return nullptr;
1049  // Fold the memcmp and normalize the result. This way we get consistent
1050  // results across multiple platforms.
1051  uint64_t Ret = 0;
1052  int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1053  if (Cmp < 0)
1054  Ret = -1;
1055  else if (Cmp > 0)
1056  Ret = 1;
1057  return ConstantInt::get(CI->getType(), Ret);
1058  }
1059 
1060  return nullptr;
1061 }
1062 
1063 // Most simplifications for memcmp also apply to bcmp.
1064 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1065  IRBuilder<> &B) {
1066  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1067  Value *Size = CI->getArgOperand(2);
1068 
1069  if (LHS == RHS) // memcmp(s,s,x) -> 0
1070  return Constant::getNullValue(CI->getType());
1071 
1072  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1073  // Handle constant lengths.
1075  if (!LenC)
1076  return nullptr;
1077 
1078  // memcmp(d,s,0) -> 0
1079  if (LenC->getZExtValue() == 0)
1080  return Constant::getNullValue(CI->getType());
1081 
1082  if (Value *Res =
1083  optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1084  return Res;
1085  return nullptr;
1086 }
1087 
1088 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
1089  if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1090  return V;
1091 
1092  // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1093  // bcmp can be more efficient than memcmp because it only has to know that
1094  // there is a difference, not how different one is to the other.
1095  if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1096  Value *LHS = CI->getArgOperand(0);
1097  Value *RHS = CI->getArgOperand(1);
1098  Value *Size = CI->getArgOperand(2);
1099  return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1100  }
1101 
1102  return nullptr;
1103 }
1104 
1105 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) {
1106  return optimizeMemCmpBCmpCommon(CI, B);
1107 }
1108 
1109 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
1110  Value *Size = CI->getArgOperand(2);
1111  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1112  if (isa<IntrinsicInst>(CI))
1113  return nullptr;
1114 
1115  // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1116  CallInst *NewCI =
1117  B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size);
1118  NewCI->setAttributes(CI->getAttributes());
1119  return CI->getArgOperand(0);
1120 }
1121 
1122 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilder<> &B) {
1123  Value *Dst = CI->getArgOperand(0);
1124  Value *N = CI->getArgOperand(2);
1125  // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1126  CallInst *NewCI = B.CreateMemCpy(Dst, 1, CI->getArgOperand(1), 1, N);
1127  NewCI->setAttributes(CI->getAttributes());
1128  return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1129 }
1130 
1131 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
1132  Value *Size = CI->getArgOperand(2);
1133  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1134  if (isa<IntrinsicInst>(CI))
1135  return nullptr;
1136 
1137  // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1138  CallInst *NewCI =
1139  B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size);
1140  NewCI->setAttributes(CI->getAttributes());
1141  return CI->getArgOperand(0);
1142 }
1143 
1144 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1145 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
1146  // This has to be a memset of zeros (bzero).
1147  auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1148  if (!FillValue || FillValue->getZExtValue() != 0)
1149  return nullptr;
1150 
1151  // TODO: We should handle the case where the malloc has more than one use.
1152  // This is necessary to optimize common patterns such as when the result of
1153  // the malloc is checked against null or when a memset intrinsic is used in
1154  // place of a memset library call.
1155  auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1156  if (!Malloc || !Malloc->hasOneUse())
1157  return nullptr;
1158 
1159  // Is the inner call really malloc()?
1160  Function *InnerCallee = Malloc->getCalledFunction();
1161  if (!InnerCallee)
1162  return nullptr;
1163 
1164  LibFunc Func;
1165  if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1166  Func != LibFunc_malloc)
1167  return nullptr;
1168 
1169  // The memset must cover the same number of bytes that are malloc'd.
1170  if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1171  return nullptr;
1172 
1173  // Replace the malloc with a calloc. We need the data layout to know what the
1174  // actual size of a 'size_t' parameter is.
1175  B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1176  const DataLayout &DL = Malloc->getModule()->getDataLayout();
1177  IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1178  if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1179  Malloc->getArgOperand(0),
1180  Malloc->getAttributes(), B, *TLI)) {
1181  substituteInParent(Malloc, Calloc);
1182  return Calloc;
1183  }
1184 
1185  return nullptr;
1186 }
1187 
1188 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
1189  Value *Size = CI->getArgOperand(2);
1190  annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1191  if (isa<IntrinsicInst>(CI))
1192  return nullptr;
1193 
1194  if (auto *Calloc = foldMallocMemset(CI, B))
1195  return Calloc;
1196 
1197  // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1198  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1199  CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, 1);
1200  NewCI->setAttributes(CI->getAttributes());
1201  return CI->getArgOperand(0);
1202 }
1203 
1204 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1205  if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1206  return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1207 
1208  return nullptr;
1209 }
1210 
1211 //===----------------------------------------------------------------------===//
1212 // Math Library Optimizations
1213 //===----------------------------------------------------------------------===//
1214 
1215 // Replace a libcall \p CI with a call to intrinsic \p IID
1217  // Propagate fast-math flags from the existing call to the new call.
1220 
1221  Module *M = CI->getModule();
1222  Value *V = CI->getArgOperand(0);
1223  Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1224  CallInst *NewCall = B.CreateCall(F, V);
1225  NewCall->takeName(CI);
1226  return NewCall;
1227 }
1228 
1229 /// Return a variant of Val with float type.
1230 /// Currently this works in two cases: If Val is an FPExtension of a float
1231 /// value to something bigger, simply return the operand.
1232 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1233 /// loss of precision do so.
1235  if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1236  Value *Op = Cast->getOperand(0);
1237  if (Op->getType()->isFloatTy())
1238  return Op;
1239  }
1240  if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1241  APFloat F = Const->getValueAPF();
1242  bool losesInfo;
1244  &losesInfo);
1245  if (!losesInfo)
1246  return ConstantFP::get(Const->getContext(), F);
1247  }
1248  return nullptr;
1249 }
1250 
1251 /// Shrink double -> float functions.
1253  bool isBinary, bool isPrecise = false) {
1254  Function *CalleeFn = CI->getCalledFunction();
1255  if (!CI->getType()->isDoubleTy() || !CalleeFn)
1256  return nullptr;
1257 
1258  // If not all the uses of the function are converted to float, then bail out.
1259  // This matters if the precision of the result is more important than the
1260  // precision of the arguments.
1261  if (isPrecise)
1262  for (User *U : CI->users()) {
1263  FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1264  if (!Cast || !Cast->getType()->isFloatTy())
1265  return nullptr;
1266  }
1267 
1268  // If this is something like 'g((double) float)', convert to 'gf(float)'.
1269  Value *V[2];
1270  V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1271  V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1272  if (!V[0] || (isBinary && !V[1]))
1273  return nullptr;
1274 
1275  // If call isn't an intrinsic, check that it isn't within a function with the
1276  // same name as the float version of this call, otherwise the result is an
1277  // infinite loop. For example, from MinGW-w64:
1278  //
1279  // float expf(float val) { return (float) exp((double) val); }
1280  StringRef CalleeName = CalleeFn->getName();
1281  bool IsIntrinsic = CalleeFn->isIntrinsic();
1282  if (!IsIntrinsic) {
1283  StringRef CallerName = CI->getFunction()->getName();
1284  if (!CallerName.empty() && CallerName.back() == 'f' &&
1285  CallerName.size() == (CalleeName.size() + 1) &&
1286  CallerName.startswith(CalleeName))
1287  return nullptr;
1288  }
1289 
1290  // Propagate the math semantics from the current function to the new function.
1293 
1294  // g((double) float) -> (double) gf(float)
1295  Value *R;
1296  if (IsIntrinsic) {
1297  Module *M = CI->getModule();
1298  Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1299  Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1300  R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1301  } else {
1302  AttributeList CalleeAttrs = CalleeFn->getAttributes();
1303  R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1304  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1305  }
1306  return B.CreateFPExt(R, B.getDoubleTy());
1307 }
1308 
1309 /// Shrink double -> float for unary functions.
1311  bool isPrecise = false) {
1312  return optimizeDoubleFP(CI, B, false, isPrecise);
1313 }
1314 
1315 /// Shrink double -> float for binary functions.
1317  bool isPrecise = false) {
1318  return optimizeDoubleFP(CI, B, true, isPrecise);
1319 }
1320 
1321 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1322 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1323  if (!CI->isFast())
1324  return nullptr;
1325 
1326  // Propagate fast-math flags from the existing call to new instructions.
1329 
1330  Value *Real, *Imag;
1331  if (CI->getNumArgOperands() == 1) {
1332  Value *Op = CI->getArgOperand(0);
1333  assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1334  Real = B.CreateExtractValue(Op, 0, "real");
1335  Imag = B.CreateExtractValue(Op, 1, "imag");
1336  } else {
1337  assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1338  Real = CI->getArgOperand(0);
1339  Imag = CI->getArgOperand(1);
1340  }
1341 
1342  Value *RealReal = B.CreateFMul(Real, Real);
1343  Value *ImagImag = B.CreateFMul(Imag, Imag);
1344 
1345  Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1346  CI->getType());
1347  return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1348 }
1349 
1351  IRBuilder<> &B) {
1352  if (!isa<FPMathOperator>(Call))
1353  return nullptr;
1354 
1357 
1358  // TODO: Can this be shared to also handle LLVM intrinsics?
1359  Value *X;
1360  switch (Func) {
1361  case LibFunc_sin:
1362  case LibFunc_sinf:
1363  case LibFunc_sinl:
1364  case LibFunc_tan:
1365  case LibFunc_tanf:
1366  case LibFunc_tanl:
1367  // sin(-X) --> -sin(X)
1368  // tan(-X) --> -tan(X)
1369  if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1370  return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1371  break;
1372  case LibFunc_cos:
1373  case LibFunc_cosf:
1374  case LibFunc_cosl:
1375  // cos(-X) --> cos(X)
1376  if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1377  return B.CreateCall(Call->getCalledFunction(), X, "cos");
1378  break;
1379  default:
1380  break;
1381  }
1382  return nullptr;
1383 }
1384 
1385 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1386  // Multiplications calculated using Addition Chains.
1387  // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1388 
1389  assert(Exp != 0 && "Incorrect exponent 0 not handled");
1390 
1391  if (InnerChain[Exp])
1392  return InnerChain[Exp];
1393 
1394  static const unsigned AddChain[33][2] = {
1395  {0, 0}, // Unused.
1396  {0, 0}, // Unused (base case = pow1).
1397  {1, 1}, // Unused (pre-computed).
1398  {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
1399  {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
1400  {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
1401  {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1402  {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1403  };
1404 
1405  InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1406  getPow(InnerChain, AddChain[Exp][1], B));
1407  return InnerChain[Exp];
1408 }
1409 
1410 // Return a properly extended 32-bit integer if the operation is an itofp.
1412  if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1413  Value *Op = cast<Instruction>(I2F)->getOperand(0);
1414  // Make sure that the exponent fits inside an int32_t,
1415  // thus avoiding any range issues that FP has not.
1416  unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1417  if (BitWidth < 32 ||
1418  (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1419  return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1420  : B.CreateZExt(Op, B.getInt32Ty());
1421  }
1422 
1423  return nullptr;
1424 }
1425 
1426 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1427 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1428 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1429 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1430  Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1432  Module *Mod = Pow->getModule();
1433  Type *Ty = Pow->getType();
1434  bool Ignored;
1435 
1436  // Evaluate special cases related to a nested function as the base.
1437 
1438  // pow(exp(x), y) -> exp(x * y)
1439  // pow(exp2(x), y) -> exp2(x * y)
1440  // If exp{,2}() is used only once, it is better to fold two transcendental
1441  // math functions into one. If used again, exp{,2}() would still have to be
1442  // called with the original argument, then keep both original transcendental
1443  // functions. However, this transformation is only safe with fully relaxed
1444  // math semantics, since, besides rounding differences, it changes overflow
1445  // and underflow behavior quite dramatically. For example:
1446  // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1447  // Whereas:
1448  // exp(1000 * 0.001) = exp(1)
1449  // TODO: Loosen the requirement for fully relaxed math semantics.
1450  // TODO: Handle exp10() when more targets have it available.
1451  CallInst *BaseFn = dyn_cast<CallInst>(Base);
1452  if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1453  LibFunc LibFn;
1454 
1455  Function *CalleeFn = BaseFn->getCalledFunction();
1456  if (CalleeFn &&
1457  TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1458  StringRef ExpName;
1459  Intrinsic::ID ID;
1460  Value *ExpFn;
1461  LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1462 
1463  switch (LibFn) {
1464  default:
1465  return nullptr;
1466  case LibFunc_expf: case LibFunc_exp: case LibFunc_expl:
1467  ExpName = TLI->getName(LibFunc_exp);
1468  ID = Intrinsic::exp;
1469  LibFnFloat = LibFunc_expf;
1470  LibFnDouble = LibFunc_exp;
1471  LibFnLongDouble = LibFunc_expl;
1472  break;
1473  case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1474  ExpName = TLI->getName(LibFunc_exp2);
1475  ID = Intrinsic::exp2;
1476  LibFnFloat = LibFunc_exp2f;
1477  LibFnDouble = LibFunc_exp2;
1478  LibFnLongDouble = LibFunc_exp2l;
1479  break;
1480  }
1481 
1482  // Create new exp{,2}() with the product as its argument.
1483  Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1484  ExpFn = BaseFn->doesNotAccessMemory()
1485  ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1486  FMul, ExpName)
1487  : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1488  LibFnLongDouble, B,
1489  BaseFn->getAttributes());
1490 
1491  // Since the new exp{,2}() is different from the original one, dead code
1492  // elimination cannot be trusted to remove it, since it may have side
1493  // effects (e.g., errno). When the only consumer for the original
1494  // exp{,2}() is pow(), then it has to be explicitly erased.
1495  substituteInParent(BaseFn, ExpFn);
1496  return ExpFn;
1497  }
1498  }
1499 
1500  // Evaluate special cases related to a constant base.
1501 
1502  const APFloat *BaseF;
1503  if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1504  return nullptr;
1505 
1506  // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1507  if (match(Base, m_SpecificFP(2.0)) &&
1508  (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1509  hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1510  if (Value *ExpoI = getIntToFPVal(Expo, B))
1511  return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1512  LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1513  B, Attrs);
1514  }
1515 
1516  // pow(2.0 ** n, x) -> exp2(n * x)
1517  if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1518  APFloat BaseR = APFloat(1.0);
1519  BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1520  BaseR = BaseR / *BaseF;
1521  bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1522  const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1523  APSInt NI(64, false);
1524  if ((IsInteger || IsReciprocal) &&
1525  NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1526  APFloat::opOK &&
1527  NI > 1 && NI.isPowerOf2()) {
1528  double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1529  Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1530  if (Pow->doesNotAccessMemory())
1531  return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1532  FMul, "exp2");
1533  else
1534  return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1535  LibFunc_exp2l, B, Attrs);
1536  }
1537  }
1538 
1539  // pow(10.0, x) -> exp10(x)
1540  // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1541  if (match(Base, m_SpecificFP(10.0)) &&
1542  hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1543  return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1544  LibFunc_exp10l, B, Attrs);
1545 
1546  // pow(n, x) -> exp2(log2(n) * x)
1547  if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() &&
1548  Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) {
1549  Value *Log = nullptr;
1550  if (Ty->isFloatTy())
1551  Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1552  else if (Ty->isDoubleTy())
1553  Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1554 
1555  if (Log) {
1556  Value *FMul = B.CreateFMul(Log, Expo, "mul");
1557  if (Pow->doesNotAccessMemory())
1558  return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1559  FMul, "exp2");
1560  else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1561  return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1562  LibFunc_exp2l, B, Attrs);
1563  }
1564  }
1565 
1566  return nullptr;
1567 }
1568 
1569 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1570  Module *M, IRBuilder<> &B,
1571  const TargetLibraryInfo *TLI) {
1572  // If errno is never set, then use the intrinsic for sqrt().
1573  if (NoErrno) {
1574  Function *SqrtFn =
1575  Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1576  return B.CreateCall(SqrtFn, V, "sqrt");
1577  }
1578 
1579  // Otherwise, use the libcall for sqrt().
1580  if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1581  // TODO: We also should check that the target can in fact lower the sqrt()
1582  // libcall. We currently have no way to ask this question, so we ask if
1583  // the target has a sqrt() libcall, which is not exactly the same.
1584  return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1585  LibFunc_sqrtl, B, Attrs);
1586 
1587  return nullptr;
1588 }
1589 
1590 /// Use square root in place of pow(x, +/-0.5).
1591 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1592  Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1594  Module *Mod = Pow->getModule();
1595  Type *Ty = Pow->getType();
1596 
1597  const APFloat *ExpoF;
1598  if (!match(Expo, m_APFloat(ExpoF)) ||
1599  (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1600  return nullptr;
1601 
1602  Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1603  if (!Sqrt)
1604  return nullptr;
1605 
1606  // Handle signed zero base by expanding to fabs(sqrt(x)).
1607  if (!Pow->hasNoSignedZeros()) {
1608  Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1609  Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1610  }
1611 
1612  // Handle non finite base by expanding to
1613  // (x == -infinity ? +infinity : sqrt(x)).
1614  if (!Pow->hasNoInfs()) {
1615  Value *PosInf = ConstantFP::getInfinity(Ty),
1616  *NegInf = ConstantFP::getInfinity(Ty, true);
1617  Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1618  Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1619  }
1620 
1621  // If the exponent is negative, then get the reciprocal.
1622  if (ExpoF->isNegative())
1623  Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1624 
1625  return Sqrt;
1626 }
1627 
1629  IRBuilder<> &B) {
1630  Value *Args[] = {Base, Expo};
1631  Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1632  return B.CreateCall(F, Args);
1633 }
1634 
1635 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1636  Value *Base = Pow->getArgOperand(0);
1637  Value *Expo = Pow->getArgOperand(1);
1638  Function *Callee = Pow->getCalledFunction();
1639  StringRef Name = Callee->getName();
1640  Type *Ty = Pow->getType();
1641  Module *M = Pow->getModule();
1642  Value *Shrunk = nullptr;
1643  bool AllowApprox = Pow->hasApproxFunc();
1644  bool Ignored;
1645 
1646  // Bail out if simplifying libcalls to pow() is disabled.
1647  if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1648  return nullptr;
1649 
1650  // Propagate the math semantics from the call to any created instructions.
1653 
1654  // Shrink pow() to powf() if the arguments are single precision,
1655  // unless the result is expected to be double precision.
1656  if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1657  hasFloatVersion(Name))
1658  Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1659 
1660  // Evaluate special cases related to the base.
1661 
1662  // pow(1.0, x) -> 1.0
1663  if (match(Base, m_FPOne()))
1664  return Base;
1665 
1666  if (Value *Exp = replacePowWithExp(Pow, B))
1667  return Exp;
1668 
1669  // Evaluate special cases related to the exponent.
1670 
1671  // pow(x, -1.0) -> 1.0 / x
1672  if (match(Expo, m_SpecificFP(-1.0)))
1673  return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1674 
1675  // pow(x, +/-0.0) -> 1.0
1676  if (match(Expo, m_AnyZeroFP()))
1677  return ConstantFP::get(Ty, 1.0);
1678 
1679  // pow(x, 1.0) -> x
1680  if (match(Expo, m_FPOne()))
1681  return Base;
1682 
1683  // pow(x, 2.0) -> x * x
1684  if (match(Expo, m_SpecificFP(2.0)))
1685  return B.CreateFMul(Base, Base, "square");
1686 
1687  if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1688  return Sqrt;
1689 
1690  // pow(x, n) -> x * x * x * ...
1691  const APFloat *ExpoF;
1692  if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1693  // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1694  // If the exponent is an integer+0.5 we generate a call to sqrt and an
1695  // additional fmul.
1696  // TODO: This whole transformation should be backend specific (e.g. some
1697  // backends might prefer libcalls or the limit for the exponent might
1698  // be different) and it should also consider optimizing for size.
1699  APFloat LimF(ExpoF->getSemantics(), 33.0),
1700  ExpoA(abs(*ExpoF));
1701  if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1702  // This transformation applies to integer or integer+0.5 exponents only.
1703  // For integer+0.5, we create a sqrt(Base) call.
1704  Value *Sqrt = nullptr;
1705  if (!ExpoA.isInteger()) {
1706  APFloat Expo2 = ExpoA;
1707  // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1708  // is no floating point exception and the result is an integer, then
1709  // ExpoA == integer + 0.5
1710  if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1711  return nullptr;
1712 
1713  if (!Expo2.isInteger())
1714  return nullptr;
1715 
1716  Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1717  Pow->doesNotAccessMemory(), M, B, TLI);
1718  }
1719 
1720  // We will memoize intermediate products of the Addition Chain.
1721  Value *InnerChain[33] = {nullptr};
1722  InnerChain[1] = Base;
1723  InnerChain[2] = B.CreateFMul(Base, Base, "square");
1724 
1725  // We cannot readily convert a non-double type (like float) to a double.
1726  // So we first convert it to something which could be converted to double.
1728  Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1729 
1730  // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1731  if (Sqrt)
1732  FMul = B.CreateFMul(FMul, Sqrt);
1733 
1734  // If the exponent is negative, then get the reciprocal.
1735  if (ExpoF->isNegative())
1736  FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1737 
1738  return FMul;
1739  }
1740 
1741  APSInt IntExpo(32, /*isUnsigned=*/false);
1742  // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1743  if (ExpoF->isInteger() &&
1744  ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1745  APFloat::opOK) {
1747  Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1748  }
1749  }
1750 
1751  // powf(x, itofp(y)) -> powi(x, y)
1752  if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1753  if (Value *ExpoI = getIntToFPVal(Expo, B))
1754  return createPowWithIntegerExponent(Base, ExpoI, M, B);
1755  }
1756 
1757  return Shrunk;
1758 }
1759 
1760 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1762  StringRef Name = Callee->getName();
1763  Value *Ret = nullptr;
1764  if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1765  hasFloatVersion(Name))
1766  Ret = optimizeUnaryDoubleFP(CI, B, true);
1767 
1768  Type *Ty = CI->getType();
1769  Value *Op = CI->getArgOperand(0);
1770 
1771  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1772  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1773  if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1774  hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1775  if (Value *Exp = getIntToFPVal(Op, B))
1776  return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1777  LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1778  B, CI->getCalledFunction()->getAttributes());
1779  }
1780 
1781  return Ret;
1782 }
1783 
1784 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1785  // If we can shrink the call to a float function rather than a double
1786  // function, do that first.
1788  StringRef Name = Callee->getName();
1789  if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1790  if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1791  return Ret;
1792 
1793  // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1794  // the intrinsics for improved optimization (for example, vectorization).
1795  // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1796  // From the C standard draft WG14/N1256:
1797  // "Ideally, fmax would be sensitive to the sign of zero, for example
1798  // fmax(-0.0, +0.0) would return +0; however, implementation in software
1799  // might be impractical."
1801  FastMathFlags FMF = CI->getFastMathFlags();
1802  FMF.setNoSignedZeros();
1803  B.setFastMathFlags(FMF);
1804 
1805  Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1807  Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1808  return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1809 }
1810 
1811 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilder<> &B) {
1812  Function *LogFn = Log->getCalledFunction();
1813  AttributeList Attrs = LogFn->getAttributes();
1814  StringRef LogNm = LogFn->getName();
1815  Intrinsic::ID LogID = LogFn->getIntrinsicID();
1816  Module *Mod = Log->getModule();
1817  Type *Ty = Log->getType();
1818  Value *Ret = nullptr;
1819 
1820  if (UnsafeFPShrink && hasFloatVersion(LogNm))
1821  Ret = optimizeUnaryDoubleFP(Log, B, true);
1822 
1823  // The earlier call must also be 'fast' in order to do these transforms.
1825  if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1826  return Ret;
1827 
1828  LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1829 
1830  // This is only applicable to log(), log2(), log10().
1831  if (TLI->getLibFunc(LogNm, LogLb))
1832  switch (LogLb) {
1833  case LibFunc_logf:
1834  LogID = Intrinsic::log;
1835  ExpLb = LibFunc_expf;
1836  Exp2Lb = LibFunc_exp2f;
1837  Exp10Lb = LibFunc_exp10f;
1838  PowLb = LibFunc_powf;
1839  break;
1840  case LibFunc_log:
1841  LogID = Intrinsic::log;
1842  ExpLb = LibFunc_exp;
1843  Exp2Lb = LibFunc_exp2;
1844  Exp10Lb = LibFunc_exp10;
1845  PowLb = LibFunc_pow;
1846  break;
1847  case LibFunc_logl:
1848  LogID = Intrinsic::log;
1849  ExpLb = LibFunc_expl;
1850  Exp2Lb = LibFunc_exp2l;
1851  Exp10Lb = LibFunc_exp10l;
1852  PowLb = LibFunc_powl;
1853  break;
1854  case LibFunc_log2f:
1855  LogID = Intrinsic::log2;
1856  ExpLb = LibFunc_expf;
1857  Exp2Lb = LibFunc_exp2f;
1858  Exp10Lb = LibFunc_exp10f;
1859  PowLb = LibFunc_powf;
1860  break;
1861  case LibFunc_log2:
1862  LogID = Intrinsic::log2;
1863  ExpLb = LibFunc_exp;
1864  Exp2Lb = LibFunc_exp2;
1865  Exp10Lb = LibFunc_exp10;
1866  PowLb = LibFunc_pow;
1867  break;
1868  case LibFunc_log2l:
1869  LogID = Intrinsic::log2;
1870  ExpLb = LibFunc_expl;
1871  Exp2Lb = LibFunc_exp2l;
1872  Exp10Lb = LibFunc_exp10l;
1873  PowLb = LibFunc_powl;
1874  break;
1875  case LibFunc_log10f:
1876  LogID = Intrinsic::log10;
1877  ExpLb = LibFunc_expf;
1878  Exp2Lb = LibFunc_exp2f;
1879  Exp10Lb = LibFunc_exp10f;
1880  PowLb = LibFunc_powf;
1881  break;
1882  case LibFunc_log10:
1883  LogID = Intrinsic::log10;
1884  ExpLb = LibFunc_exp;
1885  Exp2Lb = LibFunc_exp2;
1886  Exp10Lb = LibFunc_exp10;
1887  PowLb = LibFunc_pow;
1888  break;
1889  case LibFunc_log10l:
1890  LogID = Intrinsic::log10;
1891  ExpLb = LibFunc_expl;
1892  Exp2Lb = LibFunc_exp2l;
1893  Exp10Lb = LibFunc_exp10l;
1894  PowLb = LibFunc_powl;
1895  break;
1896  default:
1897  return Ret;
1898  }
1899  else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1900  LogID == Intrinsic::log10) {
1901  if (Ty->getScalarType()->isFloatTy()) {
1902  ExpLb = LibFunc_expf;
1903  Exp2Lb = LibFunc_exp2f;
1904  Exp10Lb = LibFunc_exp10f;
1905  PowLb = LibFunc_powf;
1906  } else if (Ty->getScalarType()->isDoubleTy()) {
1907  ExpLb = LibFunc_exp;
1908  Exp2Lb = LibFunc_exp2;
1909  Exp10Lb = LibFunc_exp10;
1910  PowLb = LibFunc_pow;
1911  } else
1912  return Ret;
1913  } else
1914  return Ret;
1915 
1918 
1919  Intrinsic::ID ArgID = Arg->getIntrinsicID();
1920  LibFunc ArgLb = NotLibFunc;
1921  TLI->getLibFunc(Arg, ArgLb);
1922 
1923  // log(pow(x,y)) -> y*log(x)
1924  if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1925  Value *LogX =
1926  Log->doesNotAccessMemory()
1927  ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1928  Arg->getOperand(0), "log")
1929  : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1930  Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1931  // Since pow() may have side effects, e.g. errno,
1932  // dead code elimination may not be trusted to remove it.
1933  substituteInParent(Arg, MulY);
1934  return MulY;
1935  }
1936 
1937  // log(exp{,2,10}(y)) -> y*log({e,2,10})
1938  // TODO: There is no exp10() intrinsic yet.
1939  if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1940  ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1941  Constant *Eul;
1942  if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1943  // FIXME: Add more precise value of e for long double.
1944  Eul = ConstantFP::get(Log->getType(), numbers::e);
1945  else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1946  Eul = ConstantFP::get(Log->getType(), 2.0);
1947  else
1948  Eul = ConstantFP::get(Log->getType(), 10.0);
1949  Value *LogE = Log->doesNotAccessMemory()
1950  ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1951  Eul, "log")
1952  : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1953  Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1954  // Since exp() may have side effects, e.g. errno,
1955  // dead code elimination may not be trusted to remove it.
1956  substituteInParent(Arg, MulY);
1957  return MulY;
1958  }
1959 
1960  return Ret;
1961 }
1962 
1963 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1965  Value *Ret = nullptr;
1966  // TODO: Once we have a way (other than checking for the existince of the
1967  // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1968  // condition below.
1969  if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1970  Callee->getIntrinsicID() == Intrinsic::sqrt))
1971  Ret = optimizeUnaryDoubleFP(CI, B, true);
1972 
1973  if (!CI->isFast())
1974  return Ret;
1975 
1977  if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1978  return Ret;
1979 
1980  // We're looking for a repeated factor in a multiplication tree,
1981  // so we can do this fold: sqrt(x * x) -> fabs(x);
1982  // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1983  Value *Op0 = I->getOperand(0);
1984  Value *Op1 = I->getOperand(1);
1985  Value *RepeatOp = nullptr;
1986  Value *OtherOp = nullptr;
1987  if (Op0 == Op1) {
1988  // Simple match: the operands of the multiply are identical.
1989  RepeatOp = Op0;
1990  } else {
1991  // Look for a more complicated pattern: one of the operands is itself
1992  // a multiply, so search for a common factor in that multiply.
1993  // Note: We don't bother looking any deeper than this first level or for
1994  // variations of this pattern because instcombine's visitFMUL and/or the
1995  // reassociation pass should give us this form.
1996  Value *OtherMul0, *OtherMul1;
1997  if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1998  // Pattern: sqrt((x * y) * z)
1999  if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2000  // Matched: sqrt((x * x) * z)
2001  RepeatOp = OtherMul0;
2002  OtherOp = Op1;
2003  }
2004  }
2005  }
2006  if (!RepeatOp)
2007  return Ret;
2008 
2009  // Fast math flags for any created instructions should match the sqrt
2010  // and multiply.
2013 
2014  // If we found a repeated factor, hoist it out of the square root and
2015  // replace it with the fabs of that factor.
2016  Module *M = Callee->getParent();
2017  Type *ArgType = I->getType();
2018  Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2019  Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2020  if (OtherOp) {
2021  // If we found a non-repeated factor, we still need to get its square
2022  // root. We then multiply that by the value that was simplified out
2023  // of the square root calculation.
2024  Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2025  Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2026  return B.CreateFMul(FabsCall, SqrtCall);
2027  }
2028  return FabsCall;
2029 }
2030 
2031 // TODO: Generalize to handle any trig function and its inverse.
2032 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
2034  Value *Ret = nullptr;
2035  StringRef Name = Callee->getName();
2036  if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2037  Ret = optimizeUnaryDoubleFP(CI, B, true);
2038 
2039  Value *Op1 = CI->getArgOperand(0);
2040  auto *OpC = dyn_cast<CallInst>(Op1);
2041  if (!OpC)
2042  return Ret;
2043 
2044  // Both calls must be 'fast' in order to remove them.
2045  if (!CI->isFast() || !OpC->isFast())
2046  return Ret;
2047 
2048  // tan(atan(x)) -> x
2049  // tanf(atanf(x)) -> x
2050  // tanl(atanl(x)) -> x
2051  LibFunc Func;
2052  Function *F = OpC->getCalledFunction();
2053  if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2054  ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2055  (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2056  (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2057  Ret = OpC->getArgOperand(0);
2058  return Ret;
2059 }
2060 
2061 static bool isTrigLibCall(CallInst *CI) {
2062  // We can only hope to do anything useful if we can ignore things like errno
2063  // and floating-point exceptions.
2064  // We already checked the prototype.
2065  return CI->hasFnAttr(Attribute::NoUnwind) &&
2066  CI->hasFnAttr(Attribute::ReadNone);
2067 }
2068 
2069 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
2070  bool UseFloat, Value *&Sin, Value *&Cos,
2071  Value *&SinCos) {
2072  Type *ArgTy = Arg->getType();
2073  Type *ResTy;
2074  StringRef Name;
2075 
2076  Triple T(OrigCallee->getParent()->getTargetTriple());
2077  if (UseFloat) {
2078  Name = "__sincospif_stret";
2079 
2080  assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2081  // x86_64 can't use {float, float} since that would be returned in both
2082  // xmm0 and xmm1, which isn't what a real struct would do.
2083  ResTy = T.getArch() == Triple::x86_64
2084  ? static_cast<Type *>(VectorType::get(ArgTy, 2))
2085  : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2086  } else {
2087  Name = "__sincospi_stret";
2088  ResTy = StructType::get(ArgTy, ArgTy);
2089  }
2090 
2091  Module *M = OrigCallee->getParent();
2093  M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2094 
2095  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2096  // If the argument is an instruction, it must dominate all uses so put our
2097  // sincos call there.
2098  B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2099  } else {
2100  // Otherwise (e.g. for a constant) the beginning of the function is as
2101  // good a place as any.
2102  BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2103  B.SetInsertPoint(&EntryBB, EntryBB.begin());
2104  }
2105 
2106  SinCos = B.CreateCall(Callee, Arg, "sincospi");
2107 
2108  if (SinCos->getType()->isStructTy()) {
2109  Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2110  Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2111  } else {
2112  Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2113  "sinpi");
2114  Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2115  "cospi");
2116  }
2117 }
2118 
2119 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
2120  // Make sure the prototype is as expected, otherwise the rest of the
2121  // function is probably invalid and likely to abort.
2122  if (!isTrigLibCall(CI))
2123  return nullptr;
2124 
2125  Value *Arg = CI->getArgOperand(0);
2126  SmallVector<CallInst *, 1> SinCalls;
2127  SmallVector<CallInst *, 1> CosCalls;
2128  SmallVector<CallInst *, 1> SinCosCalls;
2129 
2130  bool IsFloat = Arg->getType()->isFloatTy();
2131 
2132  // Look for all compatible sinpi, cospi and sincospi calls with the same
2133  // argument. If there are enough (in some sense) we can make the
2134  // substitution.
2135  Function *F = CI->getFunction();
2136  for (User *U : Arg->users())
2137  classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2138 
2139  // It's only worthwhile if both sinpi and cospi are actually used.
2140  if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2141  return nullptr;
2142 
2143  Value *Sin, *Cos, *SinCos;
2144  insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2145 
2146  auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2147  Value *Res) {
2148  for (CallInst *C : Calls)
2149  replaceAllUsesWith(C, Res);
2150  };
2151 
2152  replaceTrigInsts(SinCalls, Sin);
2153  replaceTrigInsts(CosCalls, Cos);
2154  replaceTrigInsts(SinCosCalls, SinCos);
2155 
2156  return nullptr;
2157 }
2158 
2159 void LibCallSimplifier::classifyArgUse(
2160  Value *Val, Function *F, bool IsFloat,
2161  SmallVectorImpl<CallInst *> &SinCalls,
2162  SmallVectorImpl<CallInst *> &CosCalls,
2163  SmallVectorImpl<CallInst *> &SinCosCalls) {
2164  CallInst *CI = dyn_cast<CallInst>(Val);
2165 
2166  if (!CI)
2167  return;
2168 
2169  // Don't consider calls in other functions.
2170  if (CI->getFunction() != F)
2171  return;
2172 
2174  LibFunc Func;
2175  if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2176  !isTrigLibCall(CI))
2177  return;
2178 
2179  if (IsFloat) {
2180  if (Func == LibFunc_sinpif)
2181  SinCalls.push_back(CI);
2182  else if (Func == LibFunc_cospif)
2183  CosCalls.push_back(CI);
2184  else if (Func == LibFunc_sincospif_stret)
2185  SinCosCalls.push_back(CI);
2186  } else {
2187  if (Func == LibFunc_sinpi)
2188  SinCalls.push_back(CI);
2189  else if (Func == LibFunc_cospi)
2190  CosCalls.push_back(CI);
2191  else if (Func == LibFunc_sincospi_stret)
2192  SinCosCalls.push_back(CI);
2193  }
2194 }
2195 
2196 //===----------------------------------------------------------------------===//
2197 // Integer Library Call Optimizations
2198 //===----------------------------------------------------------------------===//
2199 
2200 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
2201  // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2202  Value *Op = CI->getArgOperand(0);
2203  Type *ArgType = Op->getType();
2205  Intrinsic::cttz, ArgType);
2206  Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2207  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2208  V = B.CreateIntCast(V, B.getInt32Ty(), false);
2209 
2210  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2211  return B.CreateSelect(Cond, V, B.getInt32(0));
2212 }
2213 
2214 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
2215  // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2216  Value *Op = CI->getArgOperand(0);
2217  Type *ArgType = Op->getType();
2219  Intrinsic::ctlz, ArgType);
2220  Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2221  V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2222  V);
2223  return B.CreateIntCast(V, CI->getType(), false);
2224 }
2225 
2226 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
2227  // abs(x) -> x <s 0 ? -x : x
2228  // The negation has 'nsw' because abs of INT_MIN is undefined.
2229  Value *X = CI->getArgOperand(0);
2230  Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2231  Value *NegX = B.CreateNSWNeg(X, "neg");
2232  return B.CreateSelect(IsNeg, NegX, X);
2233 }
2234 
2235 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
2236  // isdigit(c) -> (c-'0') <u 10
2237  Value *Op = CI->getArgOperand(0);
2238  Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2239  Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2240  return B.CreateZExt(Op, CI->getType());
2241 }
2242 
2243 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
2244  // isascii(c) -> c <u 128
2245  Value *Op = CI->getArgOperand(0);
2246  Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2247  return B.CreateZExt(Op, CI->getType());
2248 }
2249 
2250 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
2251  // toascii(c) -> c & 0x7f
2252  return B.CreateAnd(CI->getArgOperand(0),
2253  ConstantInt::get(CI->getType(), 0x7F));
2254 }
2255 
2256 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
2257  StringRef Str;
2258  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2259  return nullptr;
2260 
2261  return convertStrToNumber(CI, Str, 10);
2262 }
2263 
2264 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
2265  StringRef Str;
2266  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2267  return nullptr;
2268 
2269  if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2270  return nullptr;
2271 
2272  if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2273  return convertStrToNumber(CI, Str, CInt->getSExtValue());
2274  }
2275 
2276  return nullptr;
2277 }
2278 
2279 //===----------------------------------------------------------------------===//
2280 // Formatting and IO Library Call Optimizations
2281 //===----------------------------------------------------------------------===//
2282 
2283 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2284 
2285 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
2286  int StreamArg) {
2287  Function *Callee = CI->getCalledFunction();
2288  // Error reporting calls should be cold, mark them as such.
2289  // This applies even to non-builtin calls: it is only a hint and applies to
2290  // functions that the frontend might not understand as builtins.
2291 
2292  // This heuristic was suggested in:
2293  // Improving Static Branch Prediction in a Compiler
2294  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2295  // Proceedings of PACT'98, Oct. 1998, IEEE
2296  if (!CI->hasFnAttr(Attribute::Cold) &&
2297  isReportingError(Callee, CI, StreamArg)) {
2299  }
2300 
2301  return nullptr;
2302 }
2303 
2304 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2305  if (!Callee || !Callee->isDeclaration())
2306  return false;
2307 
2308  if (StreamArg < 0)
2309  return true;
2310 
2311  // These functions might be considered cold, but only if their stream
2312  // argument is stderr.
2313 
2314  if (StreamArg >= (int)CI->getNumArgOperands())
2315  return false;
2316  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2317  if (!LI)
2318  return false;
2320  if (!GV || !GV->isDeclaration())
2321  return false;
2322  return GV->getName() == "stderr";
2323 }
2324 
2325 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
2326  // Check for a fixed format string.
2327  StringRef FormatStr;
2328  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2329  return nullptr;
2330 
2331  // Empty format string -> noop.
2332  if (FormatStr.empty()) // Tolerate printf's declared void.
2333  return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2334 
2335  // Do not do any of the following transformations if the printf return value
2336  // is used, in general the printf return value is not compatible with either
2337  // putchar() or puts().
2338  if (!CI->use_empty())
2339  return nullptr;
2340 
2341  // printf("x") -> putchar('x'), even for "%" and "%%".
2342  if (FormatStr.size() == 1 || FormatStr == "%%")
2343  return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2344 
2345  // printf("%s", "a") --> putchar('a')
2346  if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2347  StringRef ChrStr;
2348  if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2349  return nullptr;
2350  if (ChrStr.size() != 1)
2351  return nullptr;
2352  return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2353  }
2354 
2355  // printf("foo\n") --> puts("foo")
2356  if (FormatStr[FormatStr.size() - 1] == '\n' &&
2357  FormatStr.find('%') == StringRef::npos) { // No format characters.
2358  // Create a string literal with no \n on it. We expect the constant merge
2359  // pass to be run after this pass, to merge duplicate strings.
2360  FormatStr = FormatStr.drop_back();
2361  Value *GV = B.CreateGlobalString(FormatStr, "str");
2362  return emitPutS(GV, B, TLI);
2363  }
2364 
2365  // Optimize specific format strings.
2366  // printf("%c", chr) --> putchar(chr)
2367  if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2368  CI->getArgOperand(1)->getType()->isIntegerTy())
2369  return emitPutChar(CI->getArgOperand(1), B, TLI);
2370 
2371  // printf("%s\n", str) --> puts(str)
2372  if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2373  CI->getArgOperand(1)->getType()->isPointerTy())
2374  return emitPutS(CI->getArgOperand(1), B, TLI);
2375  return nullptr;
2376 }
2377 
2378 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2379 
2380  Function *Callee = CI->getCalledFunction();
2381  FunctionType *FT = Callee->getFunctionType();
2382  if (Value *V = optimizePrintFString(CI, B)) {
2383  return V;
2384  }
2385 
2386  // printf(format, ...) -> iprintf(format, ...) if no floating point
2387  // arguments.
2388  if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2389  Module *M = B.GetInsertBlock()->getParent()->getParent();
2390  FunctionCallee IPrintFFn =
2391  M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2392  CallInst *New = cast<CallInst>(CI->clone());
2393  New->setCalledFunction(IPrintFFn);
2394  B.Insert(New);
2395  return New;
2396  }
2397 
2398  // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2399  // arguments.
2400  if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2401  Module *M = B.GetInsertBlock()->getParent()->getParent();
2402  auto SmallPrintFFn =
2403  M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2404  FT, Callee->getAttributes());
2405  CallInst *New = cast<CallInst>(CI->clone());
2406  New->setCalledFunction(SmallPrintFFn);
2407  B.Insert(New);
2408  return New;
2409  }
2410 
2412  return nullptr;
2413 }
2414 
2415 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2416  // Check for a fixed format string.
2417  StringRef FormatStr;
2418  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2419  return nullptr;
2420 
2421  // If we just have a format string (nothing else crazy) transform it.
2422  if (CI->getNumArgOperands() == 2) {
2423  // Make sure there's no % in the constant array. We could try to handle
2424  // %% -> % in the future if we cared.
2425  if (FormatStr.find('%') != StringRef::npos)
2426  return nullptr; // we found a format specifier, bail out.
2427 
2428  // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2429  B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2430  ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2431  FormatStr.size() + 1)); // Copy the null byte.
2432  return ConstantInt::get(CI->getType(), FormatStr.size());
2433  }
2434 
2435  // The remaining optimizations require the format string to be "%s" or "%c"
2436  // and have an extra operand.
2437  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2438  CI->getNumArgOperands() < 3)
2439  return nullptr;
2440 
2441  // Decode the second character of the format string.
2442  if (FormatStr[1] == 'c') {
2443  // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2444  if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2445  return nullptr;
2446  Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2447  Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2448  B.CreateStore(V, Ptr);
2449  Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2450  B.CreateStore(B.getInt8(0), Ptr);
2451 
2452  return ConstantInt::get(CI->getType(), 1);
2453  }
2454 
2455  if (FormatStr[1] == 's') {
2456  // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2457  // strlen(str)+1)
2458  if (!CI->getArgOperand(2)->getType()->isPointerTy())
2459  return nullptr;
2460 
2461  Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2462  if (!Len)
2463  return nullptr;
2464  Value *IncLen =
2465  B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2466  B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
2467 
2468  // The sprintf result is the unincremented number of bytes in the string.
2469  return B.CreateIntCast(Len, CI->getType(), false);
2470  }
2471  return nullptr;
2472 }
2473 
2474 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2475  Function *Callee = CI->getCalledFunction();
2476  FunctionType *FT = Callee->getFunctionType();
2477  if (Value *V = optimizeSPrintFString(CI, B)) {
2478  return V;
2479  }
2480 
2481  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2482  // point arguments.
2483  if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2484  Module *M = B.GetInsertBlock()->getParent()->getParent();
2485  FunctionCallee SIPrintFFn =
2486  M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2487  CallInst *New = cast<CallInst>(CI->clone());
2488  New->setCalledFunction(SIPrintFFn);
2489  B.Insert(New);
2490  return New;
2491  }
2492 
2493  // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2494  // floating point arguments.
2495  if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2496  Module *M = B.GetInsertBlock()->getParent()->getParent();
2497  auto SmallSPrintFFn =
2498  M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2499  FT, Callee->getAttributes());
2500  CallInst *New = cast<CallInst>(CI->clone());
2501  New->setCalledFunction(SmallSPrintFFn);
2502  B.Insert(New);
2503  return New;
2504  }
2505 
2506  annotateNonNullBasedOnAccess(CI, {0, 1});
2507  return nullptr;
2508 }
2509 
2510 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2511  // Check for size
2513  if (!Size)
2514  return nullptr;
2515 
2516  uint64_t N = Size->getZExtValue();
2517  // Check for a fixed format string.
2518  StringRef FormatStr;
2519  if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2520  return nullptr;
2521 
2522  // If we just have a format string (nothing else crazy) transform it.
2523  if (CI->getNumArgOperands() == 3) {
2524  // Make sure there's no % in the constant array. We could try to handle
2525  // %% -> % in the future if we cared.
2526  if (FormatStr.find('%') != StringRef::npos)
2527  return nullptr; // we found a format specifier, bail out.
2528 
2529  if (N == 0)
2530  return ConstantInt::get(CI->getType(), FormatStr.size());
2531  else if (N < FormatStr.size() + 1)
2532  return nullptr;
2533 
2534  // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2535  // strlen(fmt)+1)
2536  B.CreateMemCpy(
2537  CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2538  ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2539  FormatStr.size() + 1)); // Copy the null byte.
2540  return ConstantInt::get(CI->getType(), FormatStr.size());
2541  }
2542 
2543  // The remaining optimizations require the format string to be "%s" or "%c"
2544  // and have an extra operand.
2545  if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2546  CI->getNumArgOperands() == 4) {
2547 
2548  // Decode the second character of the format string.
2549  if (FormatStr[1] == 'c') {
2550  if (N == 0)
2551  return ConstantInt::get(CI->getType(), 1);
2552  else if (N == 1)
2553  return nullptr;
2554 
2555  // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2556  if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2557  return nullptr;
2558  Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2559  Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2560  B.CreateStore(V, Ptr);
2561  Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2562  B.CreateStore(B.getInt8(0), Ptr);
2563 
2564  return ConstantInt::get(CI->getType(), 1);
2565  }
2566 
2567  if (FormatStr[1] == 's') {
2568  // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2569  StringRef Str;
2570  if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2571  return nullptr;
2572 
2573  if (N == 0)
2574  return ConstantInt::get(CI->getType(), Str.size());
2575  else if (N < Str.size() + 1)
2576  return nullptr;
2577 
2578  B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2579  ConstantInt::get(CI->getType(), Str.size() + 1));
2580 
2581  // The snprintf result is the unincremented number of bytes in the string.
2582  return ConstantInt::get(CI->getType(), Str.size());
2583  }
2584  }
2585  return nullptr;
2586 }
2587 
2588 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2589  if (Value *V = optimizeSnPrintFString(CI, B)) {
2590  return V;
2591  }
2592 
2593  if (isKnownNonZero(CI->getOperand(1), DL))
2595  return nullptr;
2596 }
2597 
2598 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2599  optimizeErrorReporting(CI, B, 0);
2600 
2601  // All the optimizations depend on the format string.
2602  StringRef FormatStr;
2603  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2604  return nullptr;
2605 
2606  // Do not do any of the following transformations if the fprintf return
2607  // value is used, in general the fprintf return value is not compatible
2608  // with fwrite(), fputc() or fputs().
2609  if (!CI->use_empty())
2610  return nullptr;
2611 
2612  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2613  if (CI->getNumArgOperands() == 2) {
2614  // Could handle %% -> % if we cared.
2615  if (FormatStr.find('%') != StringRef::npos)
2616  return nullptr; // We found a format specifier.
2617 
2618  return emitFWrite(
2619  CI->getArgOperand(1),
2620  ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2621  CI->getArgOperand(0), B, DL, TLI);
2622  }
2623 
2624  // The remaining optimizations require the format string to be "%s" or "%c"
2625  // and have an extra operand.
2626  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2627  CI->getNumArgOperands() < 3)
2628  return nullptr;
2629 
2630  // Decode the second character of the format string.
2631  if (FormatStr[1] == 'c') {
2632  // fprintf(F, "%c", chr) --> fputc(chr, F)
2633  if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2634  return nullptr;
2635  return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2636  }
2637 
2638  if (FormatStr[1] == 's') {
2639  // fprintf(F, "%s", str) --> fputs(str, F)
2640  if (!CI->getArgOperand(2)->getType()->isPointerTy())
2641  return nullptr;
2642  return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2643  }
2644  return nullptr;
2645 }
2646 
2647 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2648  Function *Callee = CI->getCalledFunction();
2649  FunctionType *FT = Callee->getFunctionType();
2650  if (Value *V = optimizeFPrintFString(CI, B)) {
2651  return V;
2652  }
2653 
2654  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2655  // floating point arguments.
2656  if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2657  Module *M = B.GetInsertBlock()->getParent()->getParent();
2658  FunctionCallee FIPrintFFn =
2659  M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2660  CallInst *New = cast<CallInst>(CI->clone());
2661  New->setCalledFunction(FIPrintFFn);
2662  B.Insert(New);
2663  return New;
2664  }
2665 
2666  // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2667  // 128-bit floating point arguments.
2668  if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2669  Module *M = B.GetInsertBlock()->getParent()->getParent();
2670  auto SmallFPrintFFn =
2671  M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2672  FT, Callee->getAttributes());
2673  CallInst *New = cast<CallInst>(CI->clone());
2674  New->setCalledFunction(SmallFPrintFFn);
2675  B.Insert(New);
2676  return New;
2677  }
2678 
2679  return nullptr;
2680 }
2681 
2682 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2683  optimizeErrorReporting(CI, B, 3);
2684 
2685  // Get the element size and count.
2686  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2687  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2688  if (SizeC && CountC) {
2689  uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2690 
2691  // If this is writing zero records, remove the call (it's a noop).
2692  if (Bytes == 0)
2693  return ConstantInt::get(CI->getType(), 0);
2694 
2695  // If this is writing one byte, turn it into fputc.
2696  // This optimisation is only valid, if the return value is unused.
2697  if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2698  Value *Char = B.CreateLoad(B.getInt8Ty(),
2699  castToCStr(CI->getArgOperand(0), B), "char");
2700  Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2701  return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2702  }
2703  }
2704 
2705  if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2706  return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2707  CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2708  TLI);
2709 
2710  return nullptr;
2711 }
2712 
2713 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2714  optimizeErrorReporting(CI, B, 1);
2715 
2716  // Don't rewrite fputs to fwrite when optimising for size because fwrite
2717  // requires more arguments and thus extra MOVs are required.
2718  bool OptForSize = CI->getFunction()->hasOptSize() ||
2720  if (OptForSize)
2721  return nullptr;
2722 
2723  // Check if has any use
2724  if (!CI->use_empty()) {
2725  if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2726  return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2727  TLI);
2728  else
2729  // We can't optimize if return value is used.
2730  return nullptr;
2731  }
2732 
2733  // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2734  uint64_t Len = GetStringLength(CI->getArgOperand(0));
2735  if (!Len)
2736  return nullptr;
2737 
2738  // Known to have no uses (see above).
2739  return emitFWrite(
2740  CI->getArgOperand(0),
2741  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2742  CI->getArgOperand(1), B, DL, TLI);
2743 }
2744 
2745 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2746  optimizeErrorReporting(CI, B, 1);
2747 
2748  if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2749  return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2750  TLI);
2751 
2752  return nullptr;
2753 }
2754 
2755 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2756  if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2757  return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2758 
2759  return nullptr;
2760 }
2761 
2762 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2763  if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2764  return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2765  CI->getArgOperand(2), B, TLI);
2766 
2767  return nullptr;
2768 }
2769 
2770 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2771  if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2772  return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2773  CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2774  TLI);
2775 
2776  return nullptr;
2777 }
2778 
2779 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2781  if (!CI->use_empty())
2782  return nullptr;
2783 
2784  // Check for a constant string.
2785  // puts("") -> putchar('\n')
2786  StringRef Str;
2787  if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2788  return emitPutChar(B.getInt32('\n'), B, TLI);
2789 
2790  return nullptr;
2791 }
2792 
2793 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilder<> &B) {
2794  // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2795  return B.CreateMemMove(CI->getArgOperand(1), 1, CI->getArgOperand(0), 1,
2796  CI->getArgOperand(2));
2797 }
2798 
2799 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2800  LibFunc Func;
2801  SmallString<20> FloatFuncName = FuncName;
2802  FloatFuncName += 'f';
2803  if (TLI->getLibFunc(FloatFuncName, Func))
2804  return TLI->has(Func);
2805  return false;
2806 }
2807 
2808 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2809  IRBuilder<> &Builder) {
2810  LibFunc Func;
2811  Function *Callee = CI->getCalledFunction();
2812  // Check for string/memory library functions.
2813  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2814  // Make sure we never change the calling convention.
2815  assert((ignoreCallingConv(Func) ||
2816  isCallingConvCCompatible(CI)) &&
2817  "Optimizing string/memory libcall would change the calling convention");
2818  switch (Func) {
2819  case LibFunc_strcat:
2820  return optimizeStrCat(CI, Builder);
2821  case LibFunc_strncat:
2822  return optimizeStrNCat(CI, Builder);
2823  case LibFunc_strchr:
2824  return optimizeStrChr(CI, Builder);
2825  case LibFunc_strrchr:
2826  return optimizeStrRChr(CI, Builder);
2827  case LibFunc_strcmp:
2828  return optimizeStrCmp(CI, Builder);
2829  case LibFunc_strncmp:
2830  return optimizeStrNCmp(CI, Builder);
2831  case LibFunc_strcpy:
2832  return optimizeStrCpy(CI, Builder);
2833  case LibFunc_stpcpy:
2834  return optimizeStpCpy(CI, Builder);
2835  case LibFunc_strncpy:
2836  return optimizeStrNCpy(CI, Builder);
2837  case LibFunc_strlen:
2838  return optimizeStrLen(CI, Builder);
2839  case LibFunc_strpbrk:
2840  return optimizeStrPBrk(CI, Builder);
2841  case LibFunc_strndup:
2842  return optimizeStrNDup(CI, Builder);
2843  case LibFunc_strtol:
2844  case LibFunc_strtod:
2845  case LibFunc_strtof:
2846  case LibFunc_strtoul:
2847  case LibFunc_strtoll:
2848  case LibFunc_strtold:
2849  case LibFunc_strtoull:
2850  return optimizeStrTo(CI, Builder);
2851  case LibFunc_strspn:
2852  return optimizeStrSpn(CI, Builder);
2853  case LibFunc_strcspn:
2854  return optimizeStrCSpn(CI, Builder);
2855  case LibFunc_strstr:
2856  return optimizeStrStr(CI, Builder);
2857  case LibFunc_memchr:
2858  return optimizeMemChr(CI, Builder);
2859  case LibFunc_memrchr:
2860  return optimizeMemRChr(CI, Builder);
2861  case LibFunc_bcmp:
2862  return optimizeBCmp(CI, Builder);
2863  case LibFunc_memcmp:
2864  return optimizeMemCmp(CI, Builder);
2865  case LibFunc_memcpy:
2866  return optimizeMemCpy(CI, Builder);
2867  case LibFunc_mempcpy:
2868  return optimizeMemPCpy(CI, Builder);
2869  case LibFunc_memmove:
2870  return optimizeMemMove(CI, Builder);
2871  case LibFunc_memset:
2872  return optimizeMemSet(CI, Builder);
2873  case LibFunc_realloc:
2874  return optimizeRealloc(CI, Builder);
2875  case LibFunc_wcslen:
2876  return optimizeWcslen(CI, Builder);
2877  case LibFunc_bcopy:
2878  return optimizeBCopy(CI, Builder);
2879  default:
2880  break;
2881  }
2882  }
2883  return nullptr;
2884 }
2885 
2886 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2887  LibFunc Func,
2888  IRBuilder<> &Builder) {
2889  // Don't optimize calls that require strict floating point semantics.
2890  if (CI->isStrictFP())
2891  return nullptr;
2892 
2893  if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2894  return V;
2895 
2896  switch (Func) {
2897  case LibFunc_sinpif:
2898  case LibFunc_sinpi:
2899  case LibFunc_cospif:
2900  case LibFunc_cospi:
2901  return optimizeSinCosPi(CI, Builder);
2902  case LibFunc_powf:
2903  case LibFunc_pow:
2904  case LibFunc_powl:
2905  return optimizePow(CI, Builder);
2906  case LibFunc_exp2l:
2907  case LibFunc_exp2:
2908  case LibFunc_exp2f:
2909  return optimizeExp2(CI, Builder);
2910  case LibFunc_fabsf:
2911  case LibFunc_fabs:
2912  case LibFunc_fabsl:
2913  return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2914  case LibFunc_sqrtf:
2915  case LibFunc_sqrt:
2916  case LibFunc_sqrtl:
2917  return optimizeSqrt(CI, Builder);
2918  case LibFunc_logf:
2919  case LibFunc_log:
2920  case LibFunc_logl:
2921  case LibFunc_log10f:
2922  case LibFunc_log10:
2923  case LibFunc_log10l:
2924  case LibFunc_log1pf:
2925  case LibFunc_log1p:
2926  case LibFunc_log1pl:
2927  case LibFunc_log2f:
2928  case LibFunc_log2:
2929  case LibFunc_log2l:
2930  case LibFunc_logbf:
2931  case LibFunc_logb:
2932  case LibFunc_logbl:
2933  return optimizeLog(CI, Builder);
2934  case LibFunc_tan:
2935  case LibFunc_tanf:
2936  case LibFunc_tanl:
2937  return optimizeTan(CI, Builder);
2938  case LibFunc_ceil:
2939  return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2940  case LibFunc_floor:
2941  return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2942  case LibFunc_round:
2943  return replaceUnaryCall(CI, Builder, Intrinsic::round);
2944  case LibFunc_nearbyint:
2945  return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2946  case LibFunc_rint:
2947  return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2948  case LibFunc_trunc:
2949  return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2950  case LibFunc_acos:
2951  case LibFunc_acosh:
2952  case LibFunc_asin:
2953  case LibFunc_asinh:
2954  case LibFunc_atan:
2955  case LibFunc_atanh:
2956  case LibFunc_cbrt:
2957  case LibFunc_cosh:
2958  case LibFunc_exp:
2959  case LibFunc_exp10:
2960  case LibFunc_expm1:
2961  case LibFunc_cos:
2962  case LibFunc_sin:
2963  case LibFunc_sinh:
2964  case LibFunc_tanh:
2965  if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2966  return optimizeUnaryDoubleFP(CI, Builder, true);
2967  return nullptr;
2968  case LibFunc_copysign:
2969  if (hasFloatVersion(CI->getCalledFunction()->getName()))
2970  return optimizeBinaryDoubleFP(CI, Builder);
2971  return nullptr;
2972  case LibFunc_fminf:
2973  case LibFunc_fmin:
2974  case LibFunc_fminl:
2975  case LibFunc_fmaxf:
2976  case LibFunc_fmax:
2977  case LibFunc_fmaxl:
2978  return optimizeFMinFMax(CI, Builder);
2979  case LibFunc_cabs:
2980  case LibFunc_cabsf:
2981  case LibFunc_cabsl:
2982  return optimizeCAbs(CI, Builder);
2983  default:
2984  return nullptr;
2985  }
2986 }
2987 
2989  // TODO: Split out the code below that operates on FP calls so that
2990  // we can all non-FP calls with the StrictFP attribute to be
2991  // optimized.
2992  if (CI->isNoBuiltin())
2993  return nullptr;
2994 
2995  LibFunc Func;
2996  Function *Callee = CI->getCalledFunction();
2997 
2999  CI->getOperandBundlesAsDefs(OpBundles);
3000  IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3001  bool isCallingConvC = isCallingConvCCompatible(CI);
3002 
3003  // Command-line parameter overrides instruction attribute.
3004  // This can't be moved to optimizeFloatingPointLibCall() because it may be
3005  // used by the intrinsic optimizations.
3006  if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3007  UnsafeFPShrink = EnableUnsafeFPShrink;
3008  else if (isa<FPMathOperator>(CI) && CI->isFast())
3009  UnsafeFPShrink = true;
3010 
3011  // First, check for intrinsics.
3012  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3013  if (!isCallingConvC)
3014  return nullptr;
3015  // The FP intrinsics have corresponding constrained versions so we don't
3016  // need to check for the StrictFP attribute here.
3017  switch (II->getIntrinsicID()) {
3018  case Intrinsic::pow:
3019  return optimizePow(CI, Builder);
3020  case Intrinsic::exp2:
3021  return optimizeExp2(CI, Builder);
3022  case Intrinsic::log:
3023  case Intrinsic::log2:
3024  case Intrinsic::log10:
3025  return optimizeLog(CI, Builder);
3026  case Intrinsic::sqrt:
3027  return optimizeSqrt(CI, Builder);
3028  // TODO: Use foldMallocMemset() with memset intrinsic.
3029  case Intrinsic::memset:
3030  return optimizeMemSet(CI, Builder);
3031  case Intrinsic::memcpy:
3032  return optimizeMemCpy(CI, Builder);
3033  case Intrinsic::memmove:
3034  return optimizeMemMove(CI, Builder);
3035  default:
3036  return nullptr;
3037  }
3038  }
3039 
3040  // Also try to simplify calls to fortified library functions.
3041  if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
3042  // Try to further simplify the result.
3043  CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3044  if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3045  // Use an IR Builder from SimplifiedCI if available instead of CI
3046  // to guarantee we reach all uses we might replace later on.
3047  IRBuilder<> TmpBuilder(SimplifiedCI);
3048  if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
3049  // If we were able to further simplify, remove the now redundant call.
3050  substituteInParent(SimplifiedCI, V);
3051  return V;
3052  }
3053  }
3054  return SimplifiedFortifiedCI;
3055  }
3056 
3057  // Then check for known library functions.
3058  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3059  // We never change the calling convention.
3060  if (!ignoreCallingConv(Func) && !isCallingConvC)
3061  return nullptr;
3062  if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3063  return V;
3064  if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3065  return V;
3066  switch (Func) {
3067  case LibFunc_ffs:
3068  case LibFunc_ffsl:
3069  case LibFunc_ffsll:
3070  return optimizeFFS(CI, Builder);
3071  case LibFunc_fls:
3072  case LibFunc_flsl:
3073  case LibFunc_flsll:
3074  return optimizeFls(CI, Builder);
3075  case LibFunc_abs:
3076  case LibFunc_labs:
3077  case LibFunc_llabs:
3078  return optimizeAbs(CI, Builder);
3079  case LibFunc_isdigit:
3080  return optimizeIsDigit(CI, Builder);
3081  case LibFunc_isascii:
3082  return optimizeIsAscii(CI, Builder);
3083  case LibFunc_toascii:
3084  return optimizeToAscii(CI, Builder);
3085  case LibFunc_atoi:
3086  case LibFunc_atol:
3087  case LibFunc_atoll:
3088  return optimizeAtoi(CI, Builder);
3089  case LibFunc_strtol:
3090  case LibFunc_strtoll:
3091  return optimizeStrtol(CI, Builder);
3092  case LibFunc_printf:
3093  return optimizePrintF(CI, Builder);
3094  case LibFunc_sprintf:
3095  return optimizeSPrintF(CI, Builder);
3096  case LibFunc_snprintf:
3097  return optimizeSnPrintF(CI, Builder);
3098  case LibFunc_fprintf:
3099  return optimizeFPrintF(CI, Builder);
3100  case LibFunc_fwrite:
3101  return optimizeFWrite(CI, Builder);
3102  case LibFunc_fread:
3103  return optimizeFRead(CI, Builder);
3104  case LibFunc_fputs:
3105  return optimizeFPuts(CI, Builder);
3106  case LibFunc_fgets:
3107  return optimizeFGets(CI, Builder);
3108  case LibFunc_fputc:
3109  return optimizeFPutc(CI, Builder);
3110  case LibFunc_fgetc:
3111  return optimizeFGetc(CI, Builder);
3112  case LibFunc_puts:
3113  return optimizePuts(CI, Builder);
3114  case LibFunc_perror:
3115  return optimizeErrorReporting(CI, Builder);
3116  case LibFunc_vfprintf:
3117  case LibFunc_fiprintf:
3118  return optimizeErrorReporting(CI, Builder, 0);
3119  default:
3120  return nullptr;
3121  }
3122  }
3123  return nullptr;
3124 }
3125 
3127  const DataLayout &DL, const TargetLibraryInfo *TLI,
3130  function_ref<void(Instruction *, Value *)> Replacer,
3131  function_ref<void(Instruction *)> Eraser)
3132  : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3133  UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3134 
3135 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3136  // Indirect through the replacer used in this instance.
3137  Replacer(I, With);
3138 }
3139 
3140 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3141  Eraser(I);
3142 }
3143 
3144 // TODO:
3145 // Additional cases that we need to add to this file:
3146 //
3147 // cbrt:
3148 // * cbrt(expN(X)) -> expN(x/3)
3149 // * cbrt(sqrt(x)) -> pow(x,1/6)
3150 // * cbrt(cbrt(x)) -> pow(x,1/9)
3151 //
3152 // exp, expf, expl:
3153 // * exp(log(x)) -> x
3154 //
3155 // log, logf, logl:
3156 // * log(exp(x)) -> x
3157 // * log(exp(y)) -> y*log(e)
3158 // * log(exp10(y)) -> y*log(10)
3159 // * log(sqrt(x)) -> 0.5*log(x)
3160 //
3161 // pow, powf, powl:
3162 // * pow(sqrt(x),y) -> pow(x,y*0.5)
3163 // * pow(pow(x,y),z)-> pow(x,y*z)
3164 //
3165 // signbit:
3166 // * signbit(cnst) -> cnst'
3167 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3168 //
3169 // sqrt, sqrtf, sqrtl:
3170 // * sqrt(expN(x)) -> expN(x*0.5)
3171 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3172 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3173 //
3174 
3175 //===----------------------------------------------------------------------===//
3176 // Fortified Library Call Optimizations
3177 //===----------------------------------------------------------------------===//
3178 
3179 bool
3180 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3181  unsigned ObjSizeOp,
3182  Optional<unsigned> SizeOp,
3183  Optional<unsigned> StrOp,
3184  Optional<unsigned> FlagOp) {
3185  // If this function takes a flag argument, the implementation may use it to
3186  // perform extra checks. Don't fold into the non-checking variant.
3187  if (FlagOp) {
3189  if (!Flag || !Flag->isZero())
3190  return false;
3191  }
3192 
3193  if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3194  return true;
3195 
3196  if (ConstantInt *ObjSizeCI =
3197  dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3198  if (ObjSizeCI->isMinusOne())
3199  return true;
3200  // If the object size wasn't -1 (unknown), bail out if we were asked to.
3201  if (OnlyLowerUnknownSize)
3202  return false;
3203  if (StrOp) {
3204  uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3205  // If the length is 0 we don't know how long it is and so we can't
3206  // remove the check.
3207  if (Len)
3208  annotateDereferenceableBytes(CI, *StrOp, Len);
3209  else
3210  return false;
3211  return ObjSizeCI->getZExtValue() >= Len;
3212  }
3213 
3214  if (SizeOp) {
3215  if (ConstantInt *SizeCI =
3216  dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3217  return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3218  }
3219  }
3220  return false;
3221 }
3222 
3223 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3224  IRBuilder<> &B) {
3225  if (isFortifiedCallFoldable(CI, 3, 2)) {
3226  CallInst *NewCI = B.CreateMemCpy(
3227  CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, CI->getArgOperand(2));
3228  NewCI->setAttributes(CI->getAttributes());
3229  return CI->getArgOperand(0);
3230  }
3231  return nullptr;
3232 }
3233 
3234 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3235  IRBuilder<> &B) {
3236  if (isFortifiedCallFoldable(CI, 3, 2)) {
3237  CallInst *NewCI = B.CreateMemMove(
3238  CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, CI->getArgOperand(2));
3239  NewCI->setAttributes(CI->getAttributes());
3240  return CI->getArgOperand(0);
3241  }
3242  return nullptr;
3243 }
3244 
3245 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3246  IRBuilder<> &B) {
3247  // TODO: Try foldMallocMemset() here.
3248 
3249  if (isFortifiedCallFoldable(CI, 3, 2)) {
3250  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3251  CallInst *NewCI =
3252  B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
3253  NewCI->setAttributes(CI->getAttributes());
3254  return CI->getArgOperand(0);
3255  }
3256  return nullptr;
3257 }
3258 
3259 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3260  IRBuilder<> &B,
3261  LibFunc Func) {
3262  const DataLayout &DL = CI->getModule()->getDataLayout();
3263  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3264  *ObjSize = CI->getArgOperand(2);
3265 
3266  // __stpcpy_chk(x,x,...) -> x+strlen(x)
3267  if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3268  Value *StrLen = emitStrLen(Src, B, DL, TLI);
3269  return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3270  }
3271 
3272  // If a) we don't have any length information, or b) we know this will
3273  // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3274  // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3275  // TODO: It might be nice to get a maximum length out of the possible
3276  // string lengths for varying.
3277  if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3278  if (Func == LibFunc_strcpy_chk)
3279  return emitStrCpy(Dst, Src, B, TLI);
3280  else
3281  return emitStpCpy(Dst, Src, B, TLI);
3282  }
3283 
3284  if (OnlyLowerUnknownSize)
3285  return nullptr;
3286 
3287  // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3288  uint64_t Len = GetStringLength(Src);
3289  if (Len)
3290  annotateDereferenceableBytes(CI, 1, Len);
3291  else
3292  return nullptr;
3293 
3294  Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3295  Value *LenV = ConstantInt::get(SizeTTy, Len);
3296  Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3297  // If the function was an __stpcpy_chk, and we were able to fold it into
3298  // a __memcpy_chk, we still need to return the correct end pointer.
3299  if (Ret && Func == LibFunc_stpcpy_chk)
3300  return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3301  return Ret;
3302 }
3303 
3304 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3305  IRBuilder<> &B,
3306  LibFunc Func) {
3307  if (isFortifiedCallFoldable(CI, 3, 2)) {
3308  if (Func == LibFunc_strncpy_chk)
3309  return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3310  CI->getArgOperand(2), B, TLI);
3311  else
3312  return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3313  CI->getArgOperand(2), B, TLI);
3314  }
3315 
3316  return nullptr;
3317 }
3318 
3319 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3320  IRBuilder<> &B) {
3321  if (isFortifiedCallFoldable(CI, 4, 3))
3322  return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3323  CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3324 
3325  return nullptr;
3326 }
3327 
3328 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3329  IRBuilder<> &B) {
3330  if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3331  SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3332  return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3333  CI->getArgOperand(4), VariadicArgs, B, TLI);
3334  }
3335 
3336  return nullptr;
3337 }
3338 
3339 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3340  IRBuilder<> &B) {
3341  if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3342  SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3343  return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3344  B, TLI);
3345  }
3346 
3347  return nullptr;
3348 }
3349 
3350 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3351  IRBuilder<> &B) {
3352  if (isFortifiedCallFoldable(CI, 2))
3353  return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3354 
3355  return nullptr;
3356 }
3357 
3358 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3359  IRBuilder<> &B) {
3360  if (isFortifiedCallFoldable(CI, 3))
3361  return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3362  CI->getArgOperand(2), B, TLI);
3363 
3364  return nullptr;
3365 }
3366 
3367 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3368  IRBuilder<> &B) {
3369  if (isFortifiedCallFoldable(CI, 3))
3370  return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3371  CI->getArgOperand(2), B, TLI);
3372 
3373  return nullptr;
3374 }
3375 
3376 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3377  IRBuilder<> &B) {
3378  if (isFortifiedCallFoldable(CI, 3))
3379  return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3380  CI->getArgOperand(2), B, TLI);
3381 
3382  return nullptr;
3383 }
3384 
3385 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3386  IRBuilder<> &B) {
3387  if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3388  return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3389  CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3390 
3391  return nullptr;
3392 }
3393 
3394 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3395  IRBuilder<> &B) {
3396  if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3397  return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3398  CI->getArgOperand(4), B, TLI);
3399 
3400  return nullptr;
3401 }
3402 
3404  // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3405  // Some clang users checked for _chk libcall availability using:
3406  // __has_builtin(__builtin___memcpy_chk)
3407  // When compiling with -fno-builtin, this is always true.
3408  // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3409  // end up with fortified libcalls, which isn't acceptable in a freestanding
3410  // environment which only provides their non-fortified counterparts.
3411  //
3412  // Until we change clang and/or teach external users to check for availability
3413  // differently, disregard the "nobuiltin" attribute and TLI::has.
3414  //
3415  // PR23093.
3416 
3417  LibFunc Func;
3418  Function *Callee = CI->getCalledFunction();
3419 
3421  CI->getOperandBundlesAsDefs(OpBundles);
3422  IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3423  bool isCallingConvC = isCallingConvCCompatible(CI);
3424 
3425  // First, check that this is a known library functions and that the prototype
3426  // is correct.
3427  if (!TLI->getLibFunc(*Callee, Func))
3428  return nullptr;
3429 
3430  // We never change the calling convention.
3431  if (!ignoreCallingConv(Func) && !isCallingConvC)
3432  return nullptr;
3433 
3434  switch (Func) {
3435  case LibFunc_memcpy_chk:
3436  return optimizeMemCpyChk(CI, Builder);
3437  case LibFunc_memmove_chk:
3438  return optimizeMemMoveChk(CI, Builder);
3439  case LibFunc_memset_chk:
3440  return optimizeMemSetChk(CI, Builder);
3441  case LibFunc_stpcpy_chk:
3442  case LibFunc_strcpy_chk:
3443  return optimizeStrpCpyChk(CI, Builder, Func);
3444  case LibFunc_stpncpy_chk:
3445  case LibFunc_strncpy_chk:
3446  return optimizeStrpNCpyChk(CI, Builder, Func);
3447  case LibFunc_memccpy_chk:
3448  return optimizeMemCCpyChk(CI, Builder);
3449  case LibFunc_snprintf_chk:
3450  return optimizeSNPrintfChk(CI, Builder);
3451  case LibFunc_sprintf_chk:
3452  return optimizeSPrintfChk(CI, Builder);
3453  case LibFunc_strcat_chk:
3454  return optimizeStrCatChk(CI, Builder);
3455  case LibFunc_strlcat_chk:
3456  return optimizeStrLCat(CI, Builder);
3457  case LibFunc_strncat_chk:
3458  return optimizeStrNCatChk(CI, Builder);
3459  case LibFunc_strlcpy_chk:
3460  return optimizeStrLCpyChk(CI, Builder);
3461  case LibFunc_vsnprintf_chk:
3462  return optimizeVSNPrintfChk(CI, Builder);
3463  case LibFunc_vsprintf_chk:
3464  return optimizeVSPrintfChk(CI, Builder);
3465  default:
3466  break;
3467  }
3468  return nullptr;
3469 }
3470 
3472  const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3473  : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
Value * CreateNSWNeg(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1496
Value * CreateInBoundsGEP(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &Name="")
Definition: IRBuilder.h:1695
uint64_t CallInst * C
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:198
bool hasNoInfs() const
Determine whether the no-infs flag is set.
Value * emitStpCpy(Value *Dst, Value *Src, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the stpcpy function to the builder, for the specified pointer arguments.
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition: Module.h:241
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2211
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
bool hasNoSignedZeros() const
Determine whether the no-signed-zeros flag is set.
void flipAllBits()
Toggle every bit to its opposite value.
Definition: APInt.h:1483
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1571
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_NODISCARD std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:232
bool doesNotAccessMemory(unsigned OpNo) const
Definition: InstrTypes.h:1551
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2105
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return an i1 value testing if Arg is not null.
Definition: IRBuilder.h:2384
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:1887
This class represents lattice values for constants.
Definition: AllocatorList.h:23
ARM_APCS - ARM Procedure Calling Standard calling convention (obsolete, but still used on some target...
Definition: CallingConv.h:100
static bool callHasFloatingPointArgument(const CallInst *CI)
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:140
Value * emitStrDup(Value *Ptr, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the strdup function to the builder, for the specified pointer.
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2117
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve &#39;CreateLoad(Ty, Ptr, "...")&#39; correctly, instead of converting the string to &#39;bool...
Definition: IRBuilder.h:1575
Value * optimizeCall(CallInst *CI)
Take the given call instruction and return a more optimal value to replace the instruction with or 0 ...
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:66
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:627
static Constant * getInfinity(Type *Ty, bool Negative=false)
Definition: Constants.cpp:839
static Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
Definition: Attributes.cpp:155
amdgpu Simplify well known AMD library false FunctionCallee Value const Twine & Name
Function * getCaller()
Helper to get the caller (the parent function).
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Definition: DerivedTypes.h:170
LLVM_NODISCARD bool startswith(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:270
LLVM_NODISCARD size_t rfind(char C, size_t From=npos) const
Search for the last character C in the string.
Definition: StringRef.h:359
void push_back(const T &Elt)
Definition: SmallVector.h:211
Analysis providing profile information.
LLVM_NODISCARD int compare(StringRef RHS) const
compare - Compare two strings; the result is -1, 0, or 1 if this string is lexicographically less tha...
Definition: StringRef.h:188
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2133
This class represents a function call, abstracting a target machine&#39;s calling convention.
static uint64_t round(uint64_t Acc, uint64_t Input)
Definition: xxhash.cpp:57
Value * emitSNPrintf(Value *Dest, Value *Size, Value *Fmt, ArrayRef< Value *> Args, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the snprintf function.
unsigned less than
Definition: InstrTypes.h:757
An efficient, type-erasing, non-owning reference to a callable.
Definition: STLExtras.h:104
float convertToFloat() const
Definition: APFloat.h:1113
bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, MaybeAlign Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested...
Definition: Loads.cpp:138
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:743
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.h:323
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1881
F(f)
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
Definition: InstrTypes.h:1212
const fltSemantics & getSemantics() const
Definition: APFloat.h:1170
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:635
CallInst * CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memset to the specified pointer and the specified value.
Definition: IRBuilder.h:440
An instruction for reading from memory.
Definition: Instructions.h:169
Value * emitMemCCpy(Value *Ptr1, Value *Ptr2, Value *Val, Value *Len, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the memccpy function.
Hexagon Common GEP
static bool isTrigLibCall(CallInst *CI)
bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize=8)
Returns true if the GEP is based on a pointer to a string (array of.
Value * emitFPutSUnlocked(Value *Str, Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fputs_unlocked function.
uint64_t Offset
Slice starts at this Offset.
void addAttribute(unsigned i, Attribute::AttrKind Kind)
adds the attribute to the list of attributes.
Definition: InstrTypes.h:1383
bool shouldOptimizeForSize(Function *F, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
Returns true if function F is suggested to be size-optimized base on the profile. ...
Definition: SizeOpts.cpp:23
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:32
Value * emitMalloc(Value *Num, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the malloc function.
static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg)
static void annotateDereferenceableBytes(CallInst *CI, ArrayRef< unsigned > ArgNos, uint64_t DereferenceableBytes)
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:289
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:273
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:383
static Value * replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID)
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1241
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition: APFloat.h:1084
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
Definition: PatternMatch.h:625
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:47
static void annotateNonNullBasedOnAccess(CallInst *CI, ArrayRef< unsigned > ArgNos)
static FastMathFlags getFast()
Definition: Operator.h:190
Value * CreateFPExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1946
void setBit(unsigned BitPosition)
Set a given bit to 1.
Definition: APInt.h:1402
This class represents the LLVM &#39;select&#39; instruction.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:369
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:368
FortifiedLibCallSimplifier(const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize=false)
A Use represents the edge between a Value definition and its users.
Definition: Use.h:55
PointerType * getPointerTo(unsigned AddrSpace=0) const
Return a pointer to the current type.
Definition: Type.cpp:659
Value * emitPutChar(Value *Char, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the putchar function. This assumes that Char is an integer.
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:779
bool hasApproxFunc() const
Determine whether the approximate-math-functions flag is set.
Value * emitStrLCpy(Value *Dest, Value *Src, Value *Size, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the strlcpy function.
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1118
CallInst * CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memmove between the specified pointers.
Definition: IRBuilder.h:530
Value * emitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilder<> &B, const AttributeList &Attrs)
Emit a call to the unary function named &#39;Name&#39; (e.g.
static cl::opt< bool > EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, cl::init(false), cl::desc("Enable unsafe double to float " "shrinking for math lib calls"))
Value * emitFPutCUnlocked(Value *Char, Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fputc_unlocked function.
LLVM_NODISCARD StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:592
LLVM_NODISCARD bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:140
static StructType * get(LLVMContext &Context, ArrayRef< Type *> Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:346
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition: IRBuilder.h:1604
static Value * convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base)
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1958
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
Class to represent function types.
Definition: DerivedTypes.h:108
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1963
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:246
Value * CreateSExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a SExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:1902
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
Definition: PatternMatch.h:198
const ConstantDataArray * Array
ConstantDataArray pointer.
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition: APFloat.cpp:4483
LibCallSimplifier(const DataLayout &DL, const TargetLibraryInfo *TLI, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, function_ref< void(Instruction *, Value *)> Replacer=&replaceAllUsesWithDefault, function_ref< void(Instruction *)> Eraser=&eraseFromParentDefault)
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
Definition: InstrTypes.h:1323
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:126
Value * emitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the __memcpy_chk function to the builder.
AttributeSet getParamAttributes(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
bool has(LibFunc F) const
Tests whether a library function is available.
Value * emitVSPrintf(Value *Dest, Value *Fmt, Value *VAList, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the vsprintf function.
LLVM_NODISCARD size_t size() const
size - Get the string size.
Definition: StringRef.h:144
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:25
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:125
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1135
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:223
static const fltSemantics & IEEEdouble() LLVM_READNONE
Definition: APFloat.cpp:158
static Value * valueHasFloatPrecision(Value *Val)
Return a variant of Val with float type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1877
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return &#39;len+1&#39;...
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
Function * getDeclaration(Module *M, ID id, ArrayRef< Type *> Tys=None)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1093
static Value * getIntToFPVal(Value *I2F, IRBuilder<> &B)
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:132
Value * getOperand(unsigned i) const
Definition: User.h:169
ConstantInt * getIntN(unsigned N, uint64_t C)
Get a constant N-bit value, zero extended or truncated from a 64-bit value.
Definition: IRBuilder.h:354
Flag
These should be considered private to the implementation of the MCInstrDesc class.
Definition: MCInstrDesc.h:131
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:307
static bool isOnlyUsedInComparisonWithZero(Value *V)
bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1804
Value * emitFPutS(Value *Str, Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fputs function.
bool isFloatTy() const
Return true if this is &#39;float&#39;, a 32-bit IEEE fp type.
Definition: Type.h:147
const BasicBlock & getEntryBlock() const
Definition: Function.h:669
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space...
Definition: DataLayout.cpp:769
bool inferLibFuncAttributes(Function &F, const TargetLibraryInfo &TLI)
Analyze the name and prototype of the given function and set any applicable attributes.
Type * getDoubleTy()
Fetch the type representing a 64-bit floating point value.
Definition: IRBuilder.h:411
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
C - The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:61
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:432
uint64_t getDereferenceableOrNullBytes(unsigned i) const
Extract the number of dereferenceable_or_null bytes for a call or parameter (0=unknown).
Definition: InstrTypes.h:1597
static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, const TargetLibraryInfo *TLI)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:148
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Value * CreateFMul(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1383
void setNoSignedZeros(bool B=true)
Definition: Operator.h:224
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt...
Definition: PatternMatch.h:194
bool isNegative() const
Definition: APFloat.h:1162
LLVM Basic Block Representation.
Definition: BasicBlock.h:57
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
Value * CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0, const Twine &Name="")
Definition: IRBuilder.h:1798
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition: IRBuilder.h:323
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Definition: InstrTypes.h:1617
Instrumentation for Order File
ARM_AAPCS - ARM Architecture Procedure Calling Standard calling convention (aka EABI).
Definition: CallingConv.h:104
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:41
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.h:2287
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:224
LLVM_NODISCARD size_t find_first_not_of(char C, size_t From=0) const
Find the first character in the string that is not C or npos if not found.
Definition: StringRef.cpp:249
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1144
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:263
double convertToDouble() const
Definition: APFloat.h:1112
Diagnostic information for applied optimization remarks.
LLVM_NODISCARD size_t find(char C, size_t From=0) const
Search for the first character C in the string.
Definition: StringRef.h:299
LLVM_NODISCARD AttributeList addParamAttributes(LLVMContext &C, unsigned ArgNo, const AttrBuilder &B) const
Add an argument attribute to the list.
Definition: Attributes.h:434
unsigned getPrefTypeAlignment(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Definition: DataLayout.cpp:765
bool isExactlyValue(double V) const
We don&#39;t rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: APFloat.h:1145
bool isFast() const
Determine whether all fast-math-flags are set.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1172
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1486
This instruction compares its operands according to the predicate given to the constructor.
constexpr double e
Definition: MathExtras.h:57
amdgpu Simplify well known AMD library false FunctionCallee Value * Arg
op_range operands()
Definition: User.h:237
Value * getPointerOperand()
Definition: Instructions.h:289
static bool isCallingConvCCompatible(CallInst *CI)
Class to represent integer types.
Definition: DerivedTypes.h:40
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Definition: IRBuilder.h:348
static Value * createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, IRBuilder<> &B)
Value * castToCStr(Value *V, IRBuilder<> &B)
Return V if it is an i8*, otherwise cast it to i8*.
IntegerType * getIntNTy(unsigned N)
Fetch the type representing an N-bit integer.
Definition: IRBuilder.h:396
Represents offset+length into a ConstantDataArray.
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2309
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:59
uint64_t getDereferenceableBytes(unsigned i) const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
Definition: InstrTypes.h:1591
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, const DataLayout &DL)
ConstantFoldLoadFromConstPtr - Return the value that a load from C would produce if it is constant an...
static double log2(double V)
static Value * optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, uint64_t Len, IRBuilder<> &B, const DataLayout &DL)
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:434
uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:672
static constexpr const Align None()
Returns a default constructed Align which corresponds to no alignment.
Definition: Alignment.h:93
Value * emitStrChr(Value *Ptr, char C, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the strchr function to the builder, for the specified pointer and character.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:2351
LLVM_NODISCARD char back() const
back - Get the last character in the string.
Definition: StringRef.h:155
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
Definition: InstrTypes.h:1373
static bool isBinary(MachineInstr &MI)
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE maxNum semantics.
Definition: APFloat.h:1253
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1873
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:43
Value * emitFWriteUnlocked(Value *Ptr, Value *Size, Value *N, Value *File, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the fwrite_unlocked function.
Value * CreateGEP(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &Name="")
Definition: IRBuilder.h:1676
Value * emitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the strlen function to the builder, for the specified pointer.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:244
Value * emitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name, IRBuilder<> &B, const AttributeList &Attrs)
Emit a call to the binary function named &#39;Name&#39; (e.g.
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:155
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
Definition: InstrTypes.h:1397
static Value * optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, bool isBinary, bool isPrecise=false)
Shrink double -> float functions.
bool isInteger() const
Definition: APFloat.h:1177
Value * emitStrNCpy(Value *Dst, Value *Src, Value *Len, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the strncpy function to the builder, for the specified pointer arguments and length...
Value * emitFGetCUnlocked(Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fgetc_unlocked function. File is a pointer to FILE.
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
Align max(MaybeAlign Lhs, Align Rhs)
Definition: Alignment.h:390
GlobalVariable * CreateGlobalString(StringRef Str, const Twine &Name="", unsigned AddressSpace=0)
Make a new global variable with initializer type i8*.
Definition: IRBuilder.cpp:42
Value * emitStrCat(Value *Dest, Value *Src, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the strcat function.
Value * emitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the strcpy function to the builder, for the specified pointer arguments.
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:2032
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:837
Value * emitVSNPrintf(Value *Dest, Value *Size, Value *Fmt, Value *VAList, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the vsnprintf function.
uint64_t getElementAsInteger(unsigned i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
Definition: Constants.cpp:2692
Module.h This file contains the declarations for the Module class.
uint64_t Length
Length of the slice.
Provides information about what library functions are available for the current target.
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU...
Definition: DataLayout.h:254
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:343
void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
Definition: InstrTypes.h:1849
CallInst * CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *TBAAStructTag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memcpy between the specified pointers.
Definition: IRBuilder.h:482
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:653
FunctionCallee getOrInsertFunction(StringRef Name, FunctionType *T, AttributeList AttributeList)
Look up the specified function in the module symbol table.
Definition: Module.cpp:143
static Constant * get(Type *Ty, double V)
This returns a ConstantFP, or a vector containing a splat of a ConstantFP, for the specified value in...
Definition: Constants.cpp:716
AttributeList getAttributes() const
Return the parameter attributes for this call.
Definition: InstrTypes.h:1366
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:832
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Definition: Function.cpp:1604
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:193
unsigned logBase2() const
Definition: APInt.h:1756
The access may modify the value stored in memory.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:163
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:55
Class for arbitrary precision integers.
Definition: APInt.h:69
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1222
amdgpu Simplify well known AMD library false FunctionCallee Callee
bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to be non-zero when defined.
bool isPowerOf2() const
Check if this APInt&#39;s value is a power of two greater than zero.
Definition: APInt.h:463
iterator_range< user_iterator > users()
Definition: Value.h:420
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Definition: IRBuilder.h:373
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1207
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
iterator begin() const
Definition: StringRef.h:115
Value * emitFPutC(Value *Char, Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fputc function.
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition: IRBuilder.h:328
Value * emitFGetSUnlocked(Value *Str, Value *Size, Value *File, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the fgets_unlocked function.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
Definition: InstrTypes.h:1206
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
Definition: PatternMatch.h:628
opStatus add(const APFloat &RHS, roundingMode RM)
Definition: APFloat.h:956
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:807
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match &#39;fneg X&#39; as &#39;fsub -0.0, X&#39;.
Definition: PatternMatch.h:814
unsigned getNumArgOperands() const
Definition: InstrTypes.h:1239
Merge contiguous icmps into a memcmp
Definition: MergeICmps.cpp:927
static const size_t npos
Definition: StringRef.h:50
unsigned getIntegerBitWidth() const
Definition: DerivedTypes.h:102
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:55
static Value * optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool isPrecise=false)
Shrink double -> float for unary functions.
Value * emitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the strncmp function to the builder.
CallingConv::ID getCallingConv() const
Definition: InstrTypes.h:1344
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:614
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation.
Definition: InstrTypes.h:1287
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:106
LLVM_NODISCARD size_t find_first_of(char C, size_t From=0) const
Find the first character in the string that is C, or npos if not found.
Definition: StringRef.h:394
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition: APFloat.h:1228
bool isNormal() const
Definition: APFloat.h:1166
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:192
static Value * optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool isPrecise=false)
Shrink double -> float for binary functions.
Value * optimizeCall(CallInst *CI)
optimizeCall - Take the given call instruction and return a more optimal value to replace the instruc...
Value * emitStrLCat(Value *Dest, Value *Src, Value *Size, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the strlcat function.
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Definition: InstrTypes.h:1370
void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Removes the attribute from the given argument.
Definition: InstrTypes.h:1427
unsigned getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
Definition: Local.h:267
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:332
uint32_t Size
Definition: Profile.cpp:46
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value *> Args=None, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2239
static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos)
Value * emitBCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the bcmp function.
Type * getFloatTy()
Fetch the type representing a 32-bit floating point value.
Definition: IRBuilder.h:406
Value * emitSPrintf(Value *Dest, Value *Fmt, ArrayRef< Value *> VariadicArgs, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the sprintf function.
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1333
bool isStrictFP() const
Determine if the call requires strict floating point semantics.
Definition: InstrTypes.h:1623
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1268
Value * CreateFDiv(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1408
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:231
bool getConstantStringInfo(const Value *V, StringRef &Str, uint64_t Offset=0, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
Value * emitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the fwrite function.
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Definition: IRBuilder.h:830
Value * emitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the memcmp function.
LLVM_NODISCARD const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:136
static bool isOnlyUsedInEqualityComparison(Value *V, Value *With)
Return true if it is only used in equality comparisons with With.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
user_iterator user_begin()
Definition: Value.h:396
This class represents a truncation of floating point types.
Value * emitFReadUnlocked(Value *Ptr, Value *Size, Value *N, Value *File, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the fread_unlocked function.
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:575
LLVM Value Representation.
Definition: Value.h:74
Value * emitPutS(Value *Str, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the puts function. This assumes that Str is some pointer.
ARM_AAPCS_VFP - Same as ARM_AAPCS, but uses hard floating point ABI.
Definition: CallingConv.h:107
LLVM_NODISCARD StringRef drop_back(size_t N=1) const
Return a StringRef equal to &#39;this&#39; but with the last N elements dropped.
Definition: StringRef.h:642
Value * emitStpNCpy(Value *Dst, Value *Src, Value *Len, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the stpncpy function to the builder, for the specified pointer arguments and length...
Value * emitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the memchr function.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition: IRBuilder.h:225
static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, const DataLayout &DL)
Value * emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, IRBuilder<> &B, const TargetLibraryInfo &TLI)
Emit a call to the calloc function.
static bool callHasFP128Argument(const CallInst *CI)
ConstantInt * getInt8(uint8_t C)
Get a constant 8-bit value.
Definition: IRBuilder.h:333
static Value * optimizeTrigReflections(CallInst *Call, LibFunc Func, IRBuilder<> &B)
bool hasNoNaNs() const
Determine whether the no-NaNs flag is set.
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:433
static Value * getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, Module *M, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:159
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:48
static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef< unsigned > ArgNos, Value *Size, const DataLayout &DL)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:156
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
Definition: PatternMatch.h:515
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Definition: IRBuilder.h:359
static bool ignoreCallingConv(LibFunc Func)
This class represents an extension of floating point types.
iterator end() const
Definition: StringRef.h:117
bool isDoubleTy() const
Return true if this is &#39;double&#39;, a 64-bit IEEE fp type.
Definition: Type.h:150
Value * emitStrNCat(Value *Dest, Value *Src, Value *Size, IRBuilder<> &B, const TargetLibraryInfo *TLI)
Emit a call to the strncat function.
bool hasFloatFn(const TargetLibraryInfo *TLI, Type *Ty, LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn)
Check whether the overloaded floating point function corresponding to Ty is available.
The optimization diagnostic interface.
bool use_empty() const
Definition: Value.h:343
static Value * getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B)
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1504
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE minNum semantics.
Definition: APFloat.h:1242
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:218
cmpResult compare(const APFloat &RHS) const
Definition: APFloat.h:1117
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:221
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:43
const BasicBlock * getParent() const
Definition: Instruction.h:66
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, bool StoreCaptures, unsigned MaxUsesToExplore=DefaultMaxUsesToExplore)
PointerMayBeCaptured - Return true if this pointer value may be captured by the enclosing function (w...
user_iterator user_end()
Definition: Value.h:404