LLVM  8.0.0svn
SystemZISelDAGToDAG.cpp
Go to the documentation of this file.
1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZTargetMachine.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
20 
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "systemz-isel"
24 
25 namespace {
26 // Used to build addressing modes.
27 struct SystemZAddressingMode {
28  // The shape of the address.
29  enum AddrForm {
30  // base+displacement
31  FormBD,
32 
33  // base+displacement+index for load and store operands
34  FormBDXNormal,
35 
36  // base+displacement+index for load address operands
37  FormBDXLA,
38 
39  // base+displacement+index+ADJDYNALLOC
40  FormBDXDynAlloc
41  };
42  AddrForm Form;
43 
44  // The type of displacement. The enum names here correspond directly
45  // to the definitions in SystemZOperand.td. We could split them into
46  // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
47  enum DispRange {
48  Disp12Only,
49  Disp12Pair,
50  Disp20Only,
51  Disp20Only128,
52  Disp20Pair
53  };
54  DispRange DR;
55 
56  // The parts of the address. The address is equivalent to:
57  //
58  // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
59  SDValue Base;
60  int64_t Disp;
61  SDValue Index;
62  bool IncludesDynAlloc;
63 
64  SystemZAddressingMode(AddrForm form, DispRange dr)
65  : Form(form), DR(dr), Base(), Disp(0), Index(),
66  IncludesDynAlloc(false) {}
67 
68  // True if the address can have an index register.
69  bool hasIndexField() { return Form != FormBD; }
70 
71  // True if the address can (and must) include ADJDYNALLOC.
72  bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73 
74  void dump() {
75  errs() << "SystemZAddressingMode " << this << '\n';
76 
77  errs() << " Base ";
78  if (Base.getNode())
79  Base.getNode()->dump();
80  else
81  errs() << "null\n";
82 
83  if (hasIndexField()) {
84  errs() << " Index ";
85  if (Index.getNode())
86  Index.getNode()->dump();
87  else
88  errs() << "null\n";
89  }
90 
91  errs() << " Disp " << Disp;
92  if (IncludesDynAlloc)
93  errs() << " + ADJDYNALLOC";
94  errs() << '\n';
95  }
96 };
97 
98 // Return a mask with Count low bits set.
99 static uint64_t allOnes(unsigned int Count) {
100  assert(Count <= 64);
101  if (Count > 63)
102  return UINT64_MAX;
103  return (uint64_t(1) << Count) - 1;
104 }
105 
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5). The combined operand value is effectively:
109 //
110 // (or (rotl Input, Rotate), ~Mask)
111 //
112 // for RNSBG and:
113 //
114 // (and (rotl Input, Rotate), Mask)
115 //
116 // otherwise. The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
120  RxSBGOperands(unsigned Op, SDValue N)
121  : Opcode(Op), BitSize(N.getValueSizeInBits()),
122  Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123  Rotate(0) {}
124 
125  unsigned Opcode;
126  unsigned BitSize;
127  uint64_t Mask;
128  SDValue Input;
129  unsigned Start;
130  unsigned End;
131  unsigned Rotate;
132 };
133 
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135  const SystemZSubtarget *Subtarget;
136 
137  // Used by SystemZOperands.td to create integer constants.
138  inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139  return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140  }
141 
142  const SystemZTargetMachine &getTargetMachine() const {
143  return static_cast<const SystemZTargetMachine &>(TM);
144  }
145 
146  const SystemZInstrInfo *getInstrInfo() const {
147  return Subtarget->getInstrInfo();
148  }
149 
150  // Try to fold more of the base or index of AM into AM, where IsBase
151  // selects between the base and index.
152  bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153 
154  // Try to describe N in AM, returning true on success.
155  bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156 
157  // Extract individual target operands from matched address AM.
158  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159  SDValue &Base, SDValue &Disp) const;
160  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161  SDValue &Base, SDValue &Disp, SDValue &Index) const;
162 
163  // Try to match Addr as a FormBD address with displacement type DR.
164  // Return true on success, storing the base and displacement in
165  // Base and Disp respectively.
166  bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167  SDValue &Base, SDValue &Disp) const;
168 
169  // Try to match Addr as a FormBDX address with displacement type DR.
170  // Return true on success and if the result had no index. Store the
171  // base and displacement in Base and Disp respectively.
172  bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173  SDValue &Base, SDValue &Disp) const;
174 
175  // Try to match Addr as a FormBDX* address of form Form with
176  // displacement type DR. Return true on success, storing the base,
177  // displacement and index in Base, Disp and Index respectively.
178  bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179  SystemZAddressingMode::DispRange DR, SDValue Addr,
180  SDValue &Base, SDValue &Disp, SDValue &Index) const;
181 
182  // PC-relative address matching routines used by SystemZOperands.td.
183  bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184  if (SystemZISD::isPCREL(Addr.getOpcode())) {
185  Target = Addr.getOperand(0);
186  return true;
187  }
188  return false;
189  }
190 
191  // BD matching routines used by SystemZOperands.td.
192  bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193  return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194  }
195  bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196  return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197  }
198  bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199  return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200  }
201  bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202  return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203  }
204 
205  // MVI matching routines used by SystemZOperands.td.
206  bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207  return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208  }
209  bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210  return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211  }
212 
213  // BDX matching routines used by SystemZOperands.td.
214  bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215  SDValue &Index) const {
216  return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217  SystemZAddressingMode::Disp12Only,
218  Addr, Base, Disp, Index);
219  }
220  bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221  SDValue &Index) const {
222  return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223  SystemZAddressingMode::Disp12Pair,
224  Addr, Base, Disp, Index);
225  }
226  bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227  SDValue &Index) const {
228  return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229  SystemZAddressingMode::Disp12Only,
230  Addr, Base, Disp, Index);
231  }
232  bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233  SDValue &Index) const {
234  return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235  SystemZAddressingMode::Disp20Only,
236  Addr, Base, Disp, Index);
237  }
238  bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239  SDValue &Index) const {
240  return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241  SystemZAddressingMode::Disp20Only128,
242  Addr, Base, Disp, Index);
243  }
244  bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245  SDValue &Index) const {
246  return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247  SystemZAddressingMode::Disp20Pair,
248  Addr, Base, Disp, Index);
249  }
250  bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251  SDValue &Index) const {
252  return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253  SystemZAddressingMode::Disp12Pair,
254  Addr, Base, Disp, Index);
255  }
256  bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257  SDValue &Index) const {
258  return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259  SystemZAddressingMode::Disp20Pair,
260  Addr, Base, Disp, Index);
261  }
262 
263  // Try to match Addr as an address with a base, 12-bit displacement
264  // and index, where the index is element Elem of a vector.
265  // Return true on success, storing the base, displacement and vector
266  // in Base, Disp and Index respectively.
267  bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268  SDValue &Disp, SDValue &Index) const;
269 
270  // Check whether (or Op (and X InsertMask)) is effectively an insertion
271  // of X into bits InsertMask of some Y != Op. Return true if so and
272  // set Op to that Y.
273  bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274 
275  // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276  // Return true on success.
277  bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278 
279  // Try to fold some of RxSBG.Input into other fields of RxSBG.
280  // Return true on success.
281  bool expandRxSBG(RxSBGOperands &RxSBG) const;
282 
283  // Return an undefined value of type VT.
284  SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285 
286  // Convert N to VT, if it isn't already.
287  SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288 
289  // Try to implement AND or shift node N using RISBG with the zero flag set.
290  // Return the selected node on success, otherwise return null.
291  bool tryRISBGZero(SDNode *N);
292 
293  // Try to use RISBG or Opcode to implement OR or XOR node N.
294  // Return the selected node on success, otherwise return null.
295  bool tryRxSBG(SDNode *N, unsigned Opcode);
296 
297  // If Op0 is null, then Node is a constant that can be loaded using:
298  //
299  // (Opcode UpperVal LowerVal)
300  //
301  // If Op0 is nonnull, then Node can be implemented using:
302  //
303  // (Opcode (Opcode Op0 UpperVal) LowerVal)
304  void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305  uint64_t UpperVal, uint64_t LowerVal);
306 
307  // Try to use gather instruction Opcode to implement vector insertion N.
308  bool tryGather(SDNode *N, unsigned Opcode);
309 
310  // Try to use scatter instruction Opcode to implement store Store.
311  bool tryScatter(StoreSDNode *Store, unsigned Opcode);
312 
313  // Change a chain of {load; op; store} of the same value into a simple op
314  // through memory of that value, if the uses of the modified value and its
315  // address are suitable.
316  bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
317 
318  // Return true if Load and Store are loads and stores of the same size
319  // and are guaranteed not to overlap. Such operations can be implemented
320  // using block (SS-format) instructions.
321  //
322  // Partial overlap would lead to incorrect code, since the block operations
323  // are logically bytewise, even though they have a fast path for the
324  // non-overlapping case. We also need to avoid full overlap (i.e. two
325  // addresses that might be equal at run time) because although that case
326  // would be handled correctly, it might be implemented by millicode.
327  bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
328 
329  // N is a (store (load Y), X) pattern. Return true if it can use an MVC
330  // from Y to X.
331  bool storeLoadCanUseMVC(SDNode *N) const;
332 
333  // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
334  // if A[1 - I] == X and if N can use a block operation like NC from A[I]
335  // to X.
336  bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
337 
338  // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
339  SDValue expandSelectBoolean(SDNode *Node);
340 
341 public:
342  SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
343  : SelectionDAGISel(TM, OptLevel) {}
344 
345  bool runOnMachineFunction(MachineFunction &MF) override {
346  Subtarget = &MF.getSubtarget<SystemZSubtarget>();
348  }
349 
350  // Override MachineFunctionPass.
351  StringRef getPassName() const override {
352  return "SystemZ DAG->DAG Pattern Instruction Selection";
353  }
354 
355  // Override SelectionDAGISel.
356  void Select(SDNode *Node) override;
357  bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
358  std::vector<SDValue> &OutOps) override;
359  bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
360  void PreprocessISelDAG() override;
361 
362  // Include the pieces autogenerated from the target description.
363  #include "SystemZGenDAGISel.inc"
364 };
365 } // end anonymous namespace
366 
368  CodeGenOpt::Level OptLevel) {
369  return new SystemZDAGToDAGISel(TM, OptLevel);
370 }
371 
372 // Return true if Val should be selected as a displacement for an address
373 // with range DR. Here we're interested in the range of both the instruction
374 // described by DR and of any pairing instruction.
375 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
376  switch (DR) {
377  case SystemZAddressingMode::Disp12Only:
378  return isUInt<12>(Val);
379 
380  case SystemZAddressingMode::Disp12Pair:
381  case SystemZAddressingMode::Disp20Only:
382  case SystemZAddressingMode::Disp20Pair:
383  return isInt<20>(Val);
384 
385  case SystemZAddressingMode::Disp20Only128:
386  return isInt<20>(Val) && isInt<20>(Val + 8);
387  }
388  llvm_unreachable("Unhandled displacement range");
389 }
390 
391 // Change the base or index in AM to Value, where IsBase selects
392 // between the base and index.
393 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
394  SDValue Value) {
395  if (IsBase)
396  AM.Base = Value;
397  else
398  AM.Index = Value;
399 }
400 
401 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
402 // where IsBase selects between the base and index. Try to fold the
403 // ADJDYNALLOC into AM.
404 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
405  SDValue Value) {
406  if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
407  changeComponent(AM, IsBase, Value);
408  AM.IncludesDynAlloc = true;
409  return true;
410  }
411  return false;
412 }
413 
414 // The base of AM is equivalent to Base + Index. Try to use Index as
415 // the index register.
416 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
417  SDValue Index) {
418  if (AM.hasIndexField() && !AM.Index.getNode()) {
419  AM.Base = Base;
420  AM.Index = Index;
421  return true;
422  }
423  return false;
424 }
425 
426 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
427 // between the base and index. Try to fold Op1 into AM's displacement.
428 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
429  SDValue Op0, uint64_t Op1) {
430  // First try adjusting the displacement.
431  int64_t TestDisp = AM.Disp + Op1;
432  if (selectDisp(AM.DR, TestDisp)) {
433  changeComponent(AM, IsBase, Op0);
434  AM.Disp = TestDisp;
435  return true;
436  }
437 
438  // We could consider forcing the displacement into a register and
439  // using it as an index, but it would need to be carefully tuned.
440  return false;
441 }
442 
443 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
444  bool IsBase) const {
445  SDValue N = IsBase ? AM.Base : AM.Index;
446  unsigned Opcode = N.getOpcode();
447  if (Opcode == ISD::TRUNCATE) {
448  N = N.getOperand(0);
449  Opcode = N.getOpcode();
450  }
451  if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
452  SDValue Op0 = N.getOperand(0);
453  SDValue Op1 = N.getOperand(1);
454 
455  unsigned Op0Code = Op0->getOpcode();
456  unsigned Op1Code = Op1->getOpcode();
457 
458  if (Op0Code == SystemZISD::ADJDYNALLOC)
459  return expandAdjDynAlloc(AM, IsBase, Op1);
460  if (Op1Code == SystemZISD::ADJDYNALLOC)
461  return expandAdjDynAlloc(AM, IsBase, Op0);
462 
463  if (Op0Code == ISD::Constant)
464  return expandDisp(AM, IsBase, Op1,
465  cast<ConstantSDNode>(Op0)->getSExtValue());
466  if (Op1Code == ISD::Constant)
467  return expandDisp(AM, IsBase, Op0,
468  cast<ConstantSDNode>(Op1)->getSExtValue());
469 
470  if (IsBase && expandIndex(AM, Op0, Op1))
471  return true;
472  }
473  if (Opcode == SystemZISD::PCREL_OFFSET) {
474  SDValue Full = N.getOperand(0);
475  SDValue Base = N.getOperand(1);
476  SDValue Anchor = Base.getOperand(0);
477  uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
478  cast<GlobalAddressSDNode>(Anchor)->getOffset());
479  return expandDisp(AM, IsBase, Base, Offset);
480  }
481  return false;
482 }
483 
484 // Return true if an instruction with displacement range DR should be
485 // used for displacement value Val. selectDisp(DR, Val) must already hold.
486 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
487  assert(selectDisp(DR, Val) && "Invalid displacement");
488  switch (DR) {
489  case SystemZAddressingMode::Disp12Only:
490  case SystemZAddressingMode::Disp20Only:
491  case SystemZAddressingMode::Disp20Only128:
492  return true;
493 
494  case SystemZAddressingMode::Disp12Pair:
495  // Use the other instruction if the displacement is too large.
496  return isUInt<12>(Val);
497 
498  case SystemZAddressingMode::Disp20Pair:
499  // Use the other instruction if the displacement is small enough.
500  return !isUInt<12>(Val);
501  }
502  llvm_unreachable("Unhandled displacement range");
503 }
504 
505 // Return true if Base + Disp + Index should be performed by LA(Y).
506 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
507  // Don't use LA(Y) for constants.
508  if (!Base)
509  return false;
510 
511  // Always use LA(Y) for frame addresses, since we know that the destination
512  // register is almost always (perhaps always) going to be different from
513  // the frame register.
514  if (Base->getOpcode() == ISD::FrameIndex)
515  return true;
516 
517  if (Disp) {
518  // Always use LA(Y) if there is a base, displacement and index.
519  if (Index)
520  return true;
521 
522  // Always use LA if the displacement is small enough. It should always
523  // be no worse than AGHI (and better if it avoids a move).
524  if (isUInt<12>(Disp))
525  return true;
526 
527  // For similar reasons, always use LAY if the constant is too big for AGHI.
528  // LAY should be no worse than AGFI.
529  if (!isInt<16>(Disp))
530  return true;
531  } else {
532  // Don't use LA for plain registers.
533  if (!Index)
534  return false;
535 
536  // Don't use LA for plain addition if the index operand is only used
537  // once. It should be a natural two-operand addition in that case.
538  if (Index->hasOneUse())
539  return false;
540 
541  // Prefer addition if the second operation is sign-extended, in the
542  // hope of using AGF.
543  unsigned IndexOpcode = Index->getOpcode();
544  if (IndexOpcode == ISD::SIGN_EXTEND ||
545  IndexOpcode == ISD::SIGN_EXTEND_INREG)
546  return false;
547  }
548 
549  // Don't use LA for two-operand addition if either operand is only
550  // used once. The addition instructions are better in that case.
551  if (Base->hasOneUse())
552  return false;
553 
554  return true;
555 }
556 
557 // Return true if Addr is suitable for AM, updating AM if so.
558 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
559  SystemZAddressingMode &AM) const {
560  // Start out assuming that the address will need to be loaded separately,
561  // then try to extend it as much as we can.
562  AM.Base = Addr;
563 
564  // First try treating the address as a constant.
565  if (Addr.getOpcode() == ISD::Constant &&
566  expandDisp(AM, true, SDValue(),
567  cast<ConstantSDNode>(Addr)->getSExtValue()))
568  ;
569  // Also see if it's a bare ADJDYNALLOC.
570  else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
571  expandAdjDynAlloc(AM, true, SDValue()))
572  ;
573  else
574  // Otherwise try expanding each component.
575  while (expandAddress(AM, true) ||
576  (AM.Index.getNode() && expandAddress(AM, false)))
577  continue;
578 
579  // Reject cases where it isn't profitable to use LA(Y).
580  if (AM.Form == SystemZAddressingMode::FormBDXLA &&
581  !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
582  return false;
583 
584  // Reject cases where the other instruction in a pair should be used.
585  if (!isValidDisp(AM.DR, AM.Disp))
586  return false;
587 
588  // Make sure that ADJDYNALLOC is included where necessary.
589  if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
590  return false;
591 
592  LLVM_DEBUG(AM.dump());
593  return true;
594 }
595 
596 // Insert a node into the DAG at least before Pos. This will reposition
597 // the node as needed, and will assign it a node ID that is <= Pos's ID.
598 // Note that this does *not* preserve the uniqueness of node IDs!
599 // The selection DAG must no longer depend on their uniqueness when this
600 // function is used.
601 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
602  if (N->getNodeId() == -1 ||
605  DAG->RepositionNode(Pos->getIterator(), N.getNode());
606  // Mark Node as invalid for pruning as after this it may be a successor to a
607  // selected node but otherwise be in the same position of Pos.
608  // Conservatively mark it with the same -abs(Id) to assure node id
609  // invariant is preserved.
610  N->setNodeId(Pos->getNodeId());
612  }
613 }
614 
615 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
616  EVT VT, SDValue &Base,
617  SDValue &Disp) const {
618  Base = AM.Base;
619  if (!Base.getNode())
620  // Register 0 means "no base". This is mostly useful for shifts.
621  Base = CurDAG->getRegister(0, VT);
622  else if (Base.getOpcode() == ISD::FrameIndex) {
623  // Lower a FrameIndex to a TargetFrameIndex.
624  int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
625  Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
626  } else if (Base.getValueType() != VT) {
627  // Truncate values from i64 to i32, for shifts.
628  assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
629  "Unexpected truncation");
630  SDLoc DL(Base);
631  SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
632  insertDAGNode(CurDAG, Base.getNode(), Trunc);
633  Base = Trunc;
634  }
635 
636  // Lower the displacement to a TargetConstant.
637  Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
638 }
639 
640 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
641  EVT VT, SDValue &Base,
642  SDValue &Disp,
643  SDValue &Index) const {
644  getAddressOperands(AM, VT, Base, Disp);
645 
646  Index = AM.Index;
647  if (!Index.getNode())
648  // Register 0 means "no index".
649  Index = CurDAG->getRegister(0, VT);
650 }
651 
652 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
653  SDValue Addr, SDValue &Base,
654  SDValue &Disp) const {
655  SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
656  if (!selectAddress(Addr, AM))
657  return false;
658 
659  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
660  return true;
661 }
662 
663 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
664  SDValue Addr, SDValue &Base,
665  SDValue &Disp) const {
666  SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
667  if (!selectAddress(Addr, AM) || AM.Index.getNode())
668  return false;
669 
670  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
671  return true;
672 }
673 
674 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
675  SystemZAddressingMode::DispRange DR,
676  SDValue Addr, SDValue &Base,
677  SDValue &Disp, SDValue &Index) const {
678  SystemZAddressingMode AM(Form, DR);
679  if (!selectAddress(Addr, AM))
680  return false;
681 
682  getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
683  return true;
684 }
685 
686 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
687  SDValue &Base,
688  SDValue &Disp,
689  SDValue &Index) const {
690  SDValue Regs[2];
691  if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
692  Regs[0].getNode() && Regs[1].getNode()) {
693  for (unsigned int I = 0; I < 2; ++I) {
694  Base = Regs[I];
695  Index = Regs[1 - I];
696  // We can't tell here whether the index vector has the right type
697  // for the access; the caller needs to do that instead.
698  if (Index.getOpcode() == ISD::ZERO_EXTEND)
699  Index = Index.getOperand(0);
700  if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
701  Index.getOperand(1) == Elem) {
702  Index = Index.getOperand(0);
703  return true;
704  }
705  }
706  }
707  return false;
708 }
709 
710 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
711  uint64_t InsertMask) const {
712  // We're only interested in cases where the insertion is into some operand
713  // of Op, rather than into Op itself. The only useful case is an AND.
714  if (Op.getOpcode() != ISD::AND)
715  return false;
716 
717  // We need a constant mask.
718  auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
719  if (!MaskNode)
720  return false;
721 
722  // It's not an insertion of Op.getOperand(0) if the two masks overlap.
723  uint64_t AndMask = MaskNode->getZExtValue();
724  if (InsertMask & AndMask)
725  return false;
726 
727  // It's only an insertion if all bits are covered or are known to be zero.
728  // The inner check covers all cases but is more expensive.
729  uint64_t Used = allOnes(Op.getValueSizeInBits());
730  if (Used != (AndMask | InsertMask)) {
731  KnownBits Known;
732  CurDAG->computeKnownBits(Op.getOperand(0), Known);
733  if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
734  return false;
735  }
736 
737  Op = Op.getOperand(0);
738  return true;
739 }
740 
741 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
742  uint64_t Mask) const {
743  const SystemZInstrInfo *TII = getInstrInfo();
744  if (RxSBG.Rotate != 0)
745  Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
746  Mask &= RxSBG.Mask;
747  if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
748  RxSBG.Mask = Mask;
749  return true;
750  }
751  return false;
752 }
753 
754 // Return true if any bits of (RxSBG.Input & Mask) are significant.
755 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
756  // Rotate the mask in the same way as RxSBG.Input is rotated.
757  if (RxSBG.Rotate != 0)
758  Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
759  return (Mask & RxSBG.Mask) != 0;
760 }
761 
762 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
763  SDValue N = RxSBG.Input;
764  unsigned Opcode = N.getOpcode();
765  switch (Opcode) {
766  case ISD::TRUNCATE: {
767  if (RxSBG.Opcode == SystemZ::RNSBG)
768  return false;
769  uint64_t BitSize = N.getValueSizeInBits();
770  uint64_t Mask = allOnes(BitSize);
771  if (!refineRxSBGMask(RxSBG, Mask))
772  return false;
773  RxSBG.Input = N.getOperand(0);
774  return true;
775  }
776  case ISD::AND: {
777  if (RxSBG.Opcode == SystemZ::RNSBG)
778  return false;
779 
780  auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
781  if (!MaskNode)
782  return false;
783 
784  SDValue Input = N.getOperand(0);
785  uint64_t Mask = MaskNode->getZExtValue();
786  if (!refineRxSBGMask(RxSBG, Mask)) {
787  // If some bits of Input are already known zeros, those bits will have
788  // been removed from the mask. See if adding them back in makes the
789  // mask suitable.
790  KnownBits Known;
791  CurDAG->computeKnownBits(Input, Known);
792  Mask |= Known.Zero.getZExtValue();
793  if (!refineRxSBGMask(RxSBG, Mask))
794  return false;
795  }
796  RxSBG.Input = Input;
797  return true;
798  }
799 
800  case ISD::OR: {
801  if (RxSBG.Opcode != SystemZ::RNSBG)
802  return false;
803 
804  auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
805  if (!MaskNode)
806  return false;
807 
808  SDValue Input = N.getOperand(0);
809  uint64_t Mask = ~MaskNode->getZExtValue();
810  if (!refineRxSBGMask(RxSBG, Mask)) {
811  // If some bits of Input are already known ones, those bits will have
812  // been removed from the mask. See if adding them back in makes the
813  // mask suitable.
814  KnownBits Known;
815  CurDAG->computeKnownBits(Input, Known);
816  Mask &= ~Known.One.getZExtValue();
817  if (!refineRxSBGMask(RxSBG, Mask))
818  return false;
819  }
820  RxSBG.Input = Input;
821  return true;
822  }
823 
824  case ISD::ROTL: {
825  // Any 64-bit rotate left can be merged into the RxSBG.
826  if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
827  return false;
828  auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
829  if (!CountNode)
830  return false;
831 
832  RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
833  RxSBG.Input = N.getOperand(0);
834  return true;
835  }
836 
837  case ISD::ANY_EXTEND:
838  // Bits above the extended operand are don't-care.
839  RxSBG.Input = N.getOperand(0);
840  return true;
841 
842  case ISD::ZERO_EXTEND:
843  if (RxSBG.Opcode != SystemZ::RNSBG) {
844  // Restrict the mask to the extended operand.
845  unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
846  if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
847  return false;
848 
849  RxSBG.Input = N.getOperand(0);
850  return true;
851  }
853 
854  case ISD::SIGN_EXTEND: {
855  // Check that the extension bits are don't-care (i.e. are masked out
856  // by the final mask).
857  unsigned BitSize = N.getValueSizeInBits();
858  unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
859  if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
860  // In the case where only the sign bit is active, increase Rotate with
861  // the extension width.
862  if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
863  RxSBG.Rotate += (BitSize - InnerBitSize);
864  else
865  return false;
866  }
867 
868  RxSBG.Input = N.getOperand(0);
869  return true;
870  }
871 
872  case ISD::SHL: {
873  auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
874  if (!CountNode)
875  return false;
876 
877  uint64_t Count = CountNode->getZExtValue();
878  unsigned BitSize = N.getValueSizeInBits();
879  if (Count < 1 || Count >= BitSize)
880  return false;
881 
882  if (RxSBG.Opcode == SystemZ::RNSBG) {
883  // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
884  // count bits from RxSBG.Input are ignored.
885  if (maskMatters(RxSBG, allOnes(Count)))
886  return false;
887  } else {
888  // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
889  if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
890  return false;
891  }
892 
893  RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
894  RxSBG.Input = N.getOperand(0);
895  return true;
896  }
897 
898  case ISD::SRL:
899  case ISD::SRA: {
900  auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
901  if (!CountNode)
902  return false;
903 
904  uint64_t Count = CountNode->getZExtValue();
905  unsigned BitSize = N.getValueSizeInBits();
906  if (Count < 1 || Count >= BitSize)
907  return false;
908 
909  if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
910  // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
911  // count bits from RxSBG.Input are ignored.
912  if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
913  return false;
914  } else {
915  // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
916  // which is similar to SLL above.
917  if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
918  return false;
919  }
920 
921  RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
922  RxSBG.Input = N.getOperand(0);
923  return true;
924  }
925  default:
926  return false;
927  }
928 }
929 
930 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
931  SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
932  return SDValue(N, 0);
933 }
934 
935 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
936  SDValue N) const {
937  if (N.getValueType() == MVT::i32 && VT == MVT::i64)
938  return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
939  DL, VT, getUNDEF(DL, MVT::i64), N);
940  if (N.getValueType() == MVT::i64 && VT == MVT::i32)
941  return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
942  assert(N.getValueType() == VT && "Unexpected value types");
943  return N;
944 }
945 
946 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
947  SDLoc DL(N);
948  EVT VT = N->getValueType(0);
949  if (!VT.isInteger() || VT.getSizeInBits() > 64)
950  return false;
951  RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
952  unsigned Count = 0;
953  while (expandRxSBG(RISBG))
954  // The widening or narrowing is expected to be free.
955  // Counting widening or narrowing as a saved operation will result in
956  // preferring an R*SBG over a simple shift/logical instruction.
957  if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
958  RISBG.Input.getOpcode() != ISD::TRUNCATE)
959  Count += 1;
960  if (Count == 0)
961  return false;
962 
963  // Prefer to use normal shift instructions over RISBG, since they can handle
964  // all cases and are sometimes shorter.
965  if (Count == 1 && N->getOpcode() != ISD::AND)
966  return false;
967 
968  // Prefer register extensions like LLC over RISBG. Also prefer to start
969  // out with normal ANDs if one instruction would be enough. We can convert
970  // these ANDs into an RISBG later if a three-address instruction is useful.
971  if (RISBG.Rotate == 0) {
972  bool PreferAnd = false;
973  // Prefer AND for any 32-bit and-immediate operation.
974  if (VT == MVT::i32)
975  PreferAnd = true;
976  // As well as for any 64-bit operation that can be implemented via LLC(R),
977  // LLH(R), LLGT(R), or one of the and-immediate instructions.
978  else if (RISBG.Mask == 0xff ||
979  RISBG.Mask == 0xffff ||
980  RISBG.Mask == 0x7fffffff ||
981  SystemZ::isImmLF(~RISBG.Mask) ||
982  SystemZ::isImmHF(~RISBG.Mask))
983  PreferAnd = true;
984  // And likewise for the LLZRGF instruction, which doesn't have a register
985  // to register version.
986  else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
987  if (Load->getMemoryVT() == MVT::i32 &&
988  (Load->getExtensionType() == ISD::EXTLOAD ||
989  Load->getExtensionType() == ISD::ZEXTLOAD) &&
990  RISBG.Mask == 0xffffff00 &&
991  Subtarget->hasLoadAndZeroRightmostByte())
992  PreferAnd = true;
993  }
994  if (PreferAnd) {
995  // Replace the current node with an AND. Note that the current node
996  // might already be that same AND, in which case it is already CSE'd
997  // with it, and we must not call ReplaceNode.
998  SDValue In = convertTo(DL, VT, RISBG.Input);
999  SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
1000  SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
1001  if (N != New.getNode()) {
1002  insertDAGNode(CurDAG, N, Mask);
1003  insertDAGNode(CurDAG, N, New);
1004  ReplaceNode(N, New.getNode());
1005  N = New.getNode();
1006  }
1007  // Now, select the machine opcode to implement this operation.
1008  if (!N->isMachineOpcode())
1009  SelectCode(N);
1010  return true;
1011  }
1012  }
1013 
1014  unsigned Opcode = SystemZ::RISBG;
1015  // Prefer RISBGN if available, since it does not clobber CC.
1016  if (Subtarget->hasMiscellaneousExtensions())
1017  Opcode = SystemZ::RISBGN;
1018  EVT OpcodeVT = MVT::i64;
1019  if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1020  // We can only use the 32-bit instructions if all source bits are
1021  // in the low 32 bits without wrapping, both after rotation (because
1022  // of the smaller range for Start and End) and before rotation
1023  // (because the input value is truncated).
1024  RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1025  ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1026  ((RISBG.End + RISBG.Rotate) & 63) >=
1027  ((RISBG.Start + RISBG.Rotate) & 63)) {
1028  Opcode = SystemZ::RISBMux;
1029  OpcodeVT = MVT::i32;
1030  RISBG.Start &= 31;
1031  RISBG.End &= 31;
1032  }
1033  SDValue Ops[5] = {
1034  getUNDEF(DL, OpcodeVT),
1035  convertTo(DL, OpcodeVT, RISBG.Input),
1036  CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1037  CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1038  CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1039  };
1040  SDValue New = convertTo(
1041  DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1042  ReplaceNode(N, New.getNode());
1043  return true;
1044 }
1045 
1046 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1047  SDLoc DL(N);
1048  EVT VT = N->getValueType(0);
1049  if (!VT.isInteger() || VT.getSizeInBits() > 64)
1050  return false;
1051  // Try treating each operand of N as the second operand of the RxSBG
1052  // and see which goes deepest.
1053  RxSBGOperands RxSBG[] = {
1054  RxSBGOperands(Opcode, N->getOperand(0)),
1055  RxSBGOperands(Opcode, N->getOperand(1))
1056  };
1057  unsigned Count[] = { 0, 0 };
1058  for (unsigned I = 0; I < 2; ++I)
1059  while (expandRxSBG(RxSBG[I]))
1060  // The widening or narrowing is expected to be free.
1061  // Counting widening or narrowing as a saved operation will result in
1062  // preferring an R*SBG over a simple shift/logical instruction.
1063  if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1064  RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1065  Count[I] += 1;
1066 
1067  // Do nothing if neither operand is suitable.
1068  if (Count[0] == 0 && Count[1] == 0)
1069  return false;
1070 
1071  // Pick the deepest second operand.
1072  unsigned I = Count[0] > Count[1] ? 0 : 1;
1073  SDValue Op0 = N->getOperand(I ^ 1);
1074 
1075  // Prefer IC for character insertions from memory.
1076  if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1077  if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1078  if (Load->getMemoryVT() == MVT::i8)
1079  return false;
1080 
1081  // See whether we can avoid an AND in the first operand by converting
1082  // ROSBG to RISBG.
1083  if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1084  Opcode = SystemZ::RISBG;
1085  // Prefer RISBGN if available, since it does not clobber CC.
1086  if (Subtarget->hasMiscellaneousExtensions())
1087  Opcode = SystemZ::RISBGN;
1088  }
1089 
1090  SDValue Ops[5] = {
1091  convertTo(DL, MVT::i64, Op0),
1092  convertTo(DL, MVT::i64, RxSBG[I].Input),
1093  CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1094  CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1095  CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1096  };
1097  SDValue New = convertTo(
1098  DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1099  ReplaceNode(N, New.getNode());
1100  return true;
1101 }
1102 
1103 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1104  SDValue Op0, uint64_t UpperVal,
1105  uint64_t LowerVal) {
1106  EVT VT = Node->getValueType(0);
1107  SDLoc DL(Node);
1108  SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1109  if (Op0.getNode())
1110  Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1111 
1112  {
1113  // When we haven't passed in Op0, Upper will be a constant. In order to
1114  // prevent folding back to the large immediate in `Or = getNode(...)` we run
1115  // SelectCode first and end up with an opaque machine node. This means that
1116  // we need to use a handle to keep track of Upper in case it gets CSE'd by
1117  // SelectCode.
1118  //
1119  // Note that in the case where Op0 is passed in we could just call
1120  // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1121  // the handle at all, but it's fine to do it here.
1122  //
1123  // TODO: This is a pretty hacky way to do this. Can we do something that
1124  // doesn't require a two paragraph explanation?
1125  HandleSDNode Handle(Upper);
1126  SelectCode(Upper.getNode());
1127  Upper = Handle.getValue();
1128  }
1129 
1130  SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1131  SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1132 
1133  ReplaceNode(Node, Or.getNode());
1134 
1135  SelectCode(Or.getNode());
1136 }
1137 
1138 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1139  SDValue ElemV = N->getOperand(2);
1140  auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1141  if (!ElemN)
1142  return false;
1143 
1144  unsigned Elem = ElemN->getZExtValue();
1145  EVT VT = N->getValueType(0);
1146  if (Elem >= VT.getVectorNumElements())
1147  return false;
1148 
1149  auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1150  if (!Load || !Load->hasOneUse())
1151  return false;
1152  if (Load->getMemoryVT().getSizeInBits() !=
1153  Load->getValueType(0).getSizeInBits())
1154  return false;
1155 
1156  SDValue Base, Disp, Index;
1157  if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1159  return false;
1160 
1161  SDLoc DL(Load);
1162  SDValue Ops[] = {
1163  N->getOperand(0), Base, Disp, Index,
1164  CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1165  };
1166  SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1167  ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1168  ReplaceNode(N, Res);
1169  return true;
1170 }
1171 
1172 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1173  SDValue Value = Store->getValue();
1174  if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1175  return false;
1176  if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1177  return false;
1178 
1179  SDValue ElemV = Value.getOperand(1);
1180  auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1181  if (!ElemN)
1182  return false;
1183 
1184  SDValue Vec = Value.getOperand(0);
1185  EVT VT = Vec.getValueType();
1186  unsigned Elem = ElemN->getZExtValue();
1187  if (Elem >= VT.getVectorNumElements())
1188  return false;
1189 
1190  SDValue Base, Disp, Index;
1191  if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1193  return false;
1194 
1195  SDLoc DL(Store);
1196  SDValue Ops[] = {
1197  Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1198  Store->getChain()
1199  };
1200  ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1201  return true;
1202 }
1203 
1204 // Check whether or not the chain ending in StoreNode is suitable for doing
1205 // the {load; op; store} to modify transformation.
1207  SDValue StoredVal, SelectionDAG *CurDAG,
1208  LoadSDNode *&LoadNode,
1209  SDValue &InputChain) {
1210  // Is the stored value result 0 of the operation?
1211  if (StoredVal.getResNo() != 0)
1212  return false;
1213 
1214  // Are there other uses of the loaded value than the operation?
1215  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1216  return false;
1217 
1218  // Is the store non-extending and non-indexed?
1219  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1220  return false;
1221 
1222  SDValue Load = StoredVal->getOperand(0);
1223  // Is the stored value a non-extending and non-indexed load?
1224  if (!ISD::isNormalLoad(Load.getNode()))
1225  return false;
1226 
1227  // Return LoadNode by reference.
1228  LoadNode = cast<LoadSDNode>(Load);
1229 
1230  // Is store the only read of the loaded value?
1231  if (!Load.hasOneUse())
1232  return false;
1233 
1234  // Is the address of the store the same as the load?
1235  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1236  LoadNode->getOffset() != StoreNode->getOffset())
1237  return false;
1238 
1239  // Check if the chain is produced by the load or is a TokenFactor with
1240  // the load output chain as an operand. Return InputChain by reference.
1241  SDValue Chain = StoreNode->getChain();
1242 
1243  bool ChainCheck = false;
1244  if (Chain == Load.getValue(1)) {
1245  ChainCheck = true;
1246  InputChain = LoadNode->getChain();
1247  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1248  SmallVector<SDValue, 4> ChainOps;
1249  for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1250  SDValue Op = Chain.getOperand(i);
1251  if (Op == Load.getValue(1)) {
1252  ChainCheck = true;
1253  // Drop Load, but keep its chain. No cycle check necessary.
1254  ChainOps.push_back(Load.getOperand(0));
1255  continue;
1256  }
1257 
1258  // Make sure using Op as part of the chain would not cause a cycle here.
1259  // In theory, we could check whether the chain node is a predecessor of
1260  // the load. But that can be very expensive. Instead visit the uses and
1261  // make sure they all have smaller node id than the load.
1262  int LoadId = LoadNode->getNodeId();
1263  for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1264  UE = UI->use_end(); UI != UE; ++UI) {
1265  if (UI.getUse().getResNo() != 0)
1266  continue;
1267  if (UI->getNodeId() > LoadId)
1268  return false;
1269  }
1270 
1271  ChainOps.push_back(Op);
1272  }
1273 
1274  if (ChainCheck)
1275  // Make a new TokenFactor with all the other input chains except
1276  // for the load.
1277  InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1278  MVT::Other, ChainOps);
1279  }
1280  if (!ChainCheck)
1281  return false;
1282 
1283  return true;
1284 }
1285 
1286 // Change a chain of {load; op; store} of the same value into a simple op
1287 // through memory of that value, if the uses of the modified value and its
1288 // address are suitable.
1289 //
1290 // The tablegen pattern memory operand pattern is currently not able to match
1291 // the case where the CC on the original operation are used.
1292 //
1293 // See the equivalent routine in X86ISelDAGToDAG for further comments.
1294 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1295  StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1296  SDValue StoredVal = StoreNode->getOperand(1);
1297  unsigned Opc = StoredVal->getOpcode();
1298  SDLoc DL(StoreNode);
1299 
1300  // Before we try to select anything, make sure this is memory operand size
1301  // and opcode we can handle. Note that this must match the code below that
1302  // actually lowers the opcodes.
1303  EVT MemVT = StoreNode->getMemoryVT();
1304  unsigned NewOpc = 0;
1305  bool NegateOperand = false;
1306  switch (Opc) {
1307  default:
1308  return false;
1309  case SystemZISD::SSUBO:
1310  NegateOperand = true;
1311  /* fall through */
1312  case SystemZISD::SADDO:
1313  if (MemVT == MVT::i32)
1314  NewOpc = SystemZ::ASI;
1315  else if (MemVT == MVT::i64)
1316  NewOpc = SystemZ::AGSI;
1317  else
1318  return false;
1319  break;
1320  case SystemZISD::USUBO:
1321  NegateOperand = true;
1322  /* fall through */
1323  case SystemZISD::UADDO:
1324  if (MemVT == MVT::i32)
1325  NewOpc = SystemZ::ALSI;
1326  else if (MemVT == MVT::i64)
1327  NewOpc = SystemZ::ALGSI;
1328  else
1329  return false;
1330  break;
1331  }
1332 
1333  LoadSDNode *LoadNode = nullptr;
1334  SDValue InputChain;
1335  if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1336  InputChain))
1337  return false;
1338 
1339  SDValue Operand = StoredVal.getOperand(1);
1340  auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1341  if (!OperandC)
1342  return false;
1343  auto OperandV = OperandC->getAPIntValue();
1344  if (NegateOperand)
1345  OperandV = -OperandV;
1346  if (OperandV.getMinSignedBits() > 8)
1347  return false;
1348  Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1349 
1350  SDValue Base, Disp;
1351  if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1352  return false;
1353 
1354  SDValue Ops[] = { Base, Disp, Operand, InputChain };
1356  CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1357  CurDAG->setNodeMemRefs(
1358  Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1359 
1360  ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1361  ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1362  CurDAG->RemoveDeadNode(Node);
1363  return true;
1364 }
1365 
1366 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1367  LoadSDNode *Load) const {
1368  // Check that the two memory operands have the same size.
1369  if (Load->getMemoryVT() != Store->getMemoryVT())
1370  return false;
1371 
1372  // Volatility stops an access from being decomposed.
1373  if (Load->isVolatile() || Store->isVolatile())
1374  return false;
1375 
1376  // There's no chance of overlap if the load is invariant.
1377  if (Load->isInvariant() && Load->isDereferenceable())
1378  return true;
1379 
1380  // Otherwise we need to check whether there's an alias.
1381  const Value *V1 = Load->getMemOperand()->getValue();
1382  const Value *V2 = Store->getMemOperand()->getValue();
1383  if (!V1 || !V2)
1384  return false;
1385 
1386  // Reject equality.
1387  uint64_t Size = Load->getMemoryVT().getStoreSize();
1388  int64_t End1 = Load->getSrcValueOffset() + Size;
1389  int64_t End2 = Store->getSrcValueOffset() + Size;
1390  if (V1 == V2 && End1 == End2)
1391  return false;
1392 
1393  return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1394  MemoryLocation(V2, End2, Store->getAAInfo()));
1395 }
1396 
1397 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1398  auto *Store = cast<StoreSDNode>(N);
1399  auto *Load = cast<LoadSDNode>(Store->getValue());
1400 
1401  // Prefer not to use MVC if either address can use ... RELATIVE LONG
1402  // instructions.
1403  uint64_t Size = Load->getMemoryVT().getStoreSize();
1404  if (Size > 1 && Size <= 8) {
1405  // Prefer LHRL, LRL and LGRL.
1406  if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1407  return false;
1408  // Prefer STHRL, STRL and STGRL.
1409  if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1410  return false;
1411  }
1412 
1413  return canUseBlockOperation(Store, Load);
1414 }
1415 
1416 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1417  unsigned I) const {
1418  auto *StoreA = cast<StoreSDNode>(N);
1419  auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1420  auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1421  return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1422 }
1423 
1424 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1425  // If we have a custom node, we already have selected!
1426  if (Node->isMachineOpcode()) {
1427  LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1428  Node->setNodeId(-1);
1429  return;
1430  }
1431 
1432  unsigned Opcode = Node->getOpcode();
1433  switch (Opcode) {
1434  case ISD::OR:
1435  if (Node->getOperand(1).getOpcode() != ISD::Constant)
1436  if (tryRxSBG(Node, SystemZ::ROSBG))
1437  return;
1438  goto or_xor;
1439 
1440  case ISD::XOR:
1441  if (Node->getOperand(1).getOpcode() != ISD::Constant)
1442  if (tryRxSBG(Node, SystemZ::RXSBG))
1443  return;
1444  // Fall through.
1445  or_xor:
1446  // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1447  // split the operation into two. If both operands here happen to be
1448  // constant, leave this to common code to optimize.
1449  if (Node->getValueType(0) == MVT::i64 &&
1450  Node->getOperand(0).getOpcode() != ISD::Constant)
1451  if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1452  uint64_t Val = Op1->getZExtValue();
1453  if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1454  splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1455  Val - uint32_t(Val), uint32_t(Val));
1456  return;
1457  }
1458  }
1459  break;
1460 
1461  case ISD::AND:
1462  if (Node->getOperand(1).getOpcode() != ISD::Constant)
1463  if (tryRxSBG(Node, SystemZ::RNSBG))
1464  return;
1466  case ISD::ROTL:
1467  case ISD::SHL:
1468  case ISD::SRL:
1469  case ISD::ZERO_EXTEND:
1470  if (tryRISBGZero(Node))
1471  return;
1472  break;
1473 
1474  case ISD::Constant:
1475  // If this is a 64-bit constant that is out of the range of LLILF,
1476  // LLIHF and LGFI, split it into two 32-bit pieces.
1477  if (Node->getValueType(0) == MVT::i64) {
1478  uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1479  if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1480  splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1481  uint32_t(Val));
1482  return;
1483  }
1484  }
1485  break;
1486 
1488  SDValue Op0 = Node->getOperand(0);
1489  SDValue Op1 = Node->getOperand(1);
1490  // Prefer to put any load first, so that it can be matched as a
1491  // conditional load. Likewise for constants in range for LOCHI.
1492  if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1493  (Subtarget->hasLoadStoreOnCond2() &&
1494  Node->getValueType(0).isInteger() &&
1495  Op1.getOpcode() == ISD::Constant &&
1496  isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1497  !(Op0.getOpcode() == ISD::Constant &&
1498  isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1499  SDValue CCValid = Node->getOperand(2);
1500  SDValue CCMask = Node->getOperand(3);
1501  uint64_t ConstCCValid =
1502  cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1503  uint64_t ConstCCMask =
1504  cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1505  // Invert the condition.
1506  CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node),
1507  CCMask.getValueType());
1508  SDValue Op4 = Node->getOperand(4);
1509  SDNode *UpdatedNode =
1510  CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1511  if (UpdatedNode != Node) {
1512  // In case this node already exists then replace Node with it.
1513  ReplaceNode(Node, UpdatedNode);
1514  Node = UpdatedNode;
1515  }
1516  }
1517  break;
1518  }
1519 
1520  case ISD::INSERT_VECTOR_ELT: {
1521  EVT VT = Node->getValueType(0);
1522  unsigned ElemBitSize = VT.getScalarSizeInBits();
1523  if (ElemBitSize == 32) {
1524  if (tryGather(Node, SystemZ::VGEF))
1525  return;
1526  } else if (ElemBitSize == 64) {
1527  if (tryGather(Node, SystemZ::VGEG))
1528  return;
1529  }
1530  break;
1531  }
1532 
1533  case ISD::STORE: {
1534  if (tryFoldLoadStoreIntoMemOperand(Node))
1535  return;
1536  auto *Store = cast<StoreSDNode>(Node);
1537  unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1538  if (ElemBitSize == 32) {
1539  if (tryScatter(Store, SystemZ::VSCEF))
1540  return;
1541  } else if (ElemBitSize == 64) {
1542  if (tryScatter(Store, SystemZ::VSCEG))
1543  return;
1544  }
1545  break;
1546  }
1547  }
1548 
1549  SelectCode(Node);
1550 }
1551 
1552 bool SystemZDAGToDAGISel::
1553 SelectInlineAsmMemoryOperand(const SDValue &Op,
1554  unsigned ConstraintID,
1555  std::vector<SDValue> &OutOps) {
1556  SystemZAddressingMode::AddrForm Form;
1557  SystemZAddressingMode::DispRange DispRange;
1558  SDValue Base, Disp, Index;
1559 
1560  switch(ConstraintID) {
1561  default:
1562  llvm_unreachable("Unexpected asm memory constraint");
1565  // Accept an address with a short displacement, but no index.
1566  Form = SystemZAddressingMode::FormBD;
1567  DispRange = SystemZAddressingMode::Disp12Only;
1568  break;
1570  // Accept an address with a short displacement and an index.
1571  Form = SystemZAddressingMode::FormBDXNormal;
1572  DispRange = SystemZAddressingMode::Disp12Only;
1573  break;
1575  // Accept an address with a long displacement, but no index.
1576  Form = SystemZAddressingMode::FormBD;
1577  DispRange = SystemZAddressingMode::Disp20Only;
1578  break;
1582  // Accept an address with a long displacement and an index.
1583  // m works the same as T, as this is the most general case.
1584  // We don't really have any special handling of "offsettable"
1585  // memory addresses, so just treat o the same as m.
1586  Form = SystemZAddressingMode::FormBDXNormal;
1587  DispRange = SystemZAddressingMode::Disp20Only;
1588  break;
1589  }
1590 
1591  if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1592  const TargetRegisterClass *TRC =
1593  Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1594  SDLoc DL(Base);
1595  SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1596 
1597  // Make sure that the base address doesn't go into %r0.
1598  // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1599  if (Base.getOpcode() != ISD::TargetFrameIndex &&
1600  Base.getOpcode() != ISD::Register) {
1601  Base =
1602  SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1603  DL, Base.getValueType(),
1604  Base, RC), 0);
1605  }
1606 
1607  // Make sure that the index register isn't assigned to %r0 either.
1608  if (Index.getOpcode() != ISD::Register) {
1609  Index =
1610  SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1611  DL, Index.getValueType(),
1612  Index, RC), 0);
1613  }
1614 
1615  OutOps.push_back(Base);
1616  OutOps.push_back(Disp);
1617  OutOps.push_back(Index);
1618  return false;
1619  }
1620 
1621  return true;
1622 }
1623 
1624 // IsProfitableToFold - Returns true if is profitable to fold the specific
1625 // operand node N of U during instruction selection that starts at Root.
1626 bool
1627 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1628  SDNode *Root) const {
1629  // We want to avoid folding a LOAD into an ICMP node if as a result
1630  // we would be forced to spill the condition code into a GPR.
1631  if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1632  if (!N.hasOneUse() || !U->hasOneUse())
1633  return false;
1634 
1635  // The user of the CC value will usually be a CopyToReg into the
1636  // physical CC register, which in turn is glued and chained to the
1637  // actual instruction that uses the CC value. Bail out if we have
1638  // anything else than that.
1639  SDNode *CCUser = *U->use_begin();
1640  SDNode *CCRegUser = nullptr;
1641  if (CCUser->getOpcode() == ISD::CopyToReg ||
1642  cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1643  for (auto *U : CCUser->uses()) {
1644  if (CCRegUser == nullptr)
1645  CCRegUser = U;
1646  else if (CCRegUser != U)
1647  return false;
1648  }
1649  }
1650  if (CCRegUser == nullptr)
1651  return false;
1652 
1653  // If the actual instruction is a branch, the only thing that remains to be
1654  // checked is whether the CCUser chain is a predecessor of the load.
1655  if (CCRegUser->isMachineOpcode() &&
1656  CCRegUser->getMachineOpcode() == SystemZ::BRC)
1657  return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1658 
1659  // Otherwise, the instruction may have multiple operands, and we need to
1660  // verify that none of them are a predecessor of the load. This is exactly
1661  // the same check that would be done by common code if the CC setter were
1662  // glued to the CC user, so simply invoke that check here.
1663  if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1664  return false;
1665  }
1666 
1667  return true;
1668 }
1669 
1670 namespace {
1671 // Represents a sequence for extracting a 0/1 value from an IPM result:
1672 // (((X ^ XORValue) + AddValue) >> Bit)
1673 struct IPMConversion {
1674  IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1675  : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1676 
1677  int64_t XORValue;
1678  int64_t AddValue;
1679  unsigned Bit;
1680 };
1681 } // end anonymous namespace
1682 
1683 // Return a sequence for getting a 1 from an IPM result when CC has a
1684 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1685 // The handling of CC values outside CCValid doesn't matter.
1686 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1687  // Deal with cases where the result can be taken directly from a bit
1688  // of the IPM result.
1689  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1690  return IPMConversion(0, 0, SystemZ::IPM_CC);
1691  if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1692  return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1693 
1694  // Deal with cases where we can add a value to force the sign bit
1695  // to contain the right value. Putting the bit in 31 means we can
1696  // use SRL rather than RISBG(L), and also makes it easier to get a
1697  // 0/-1 value, so it has priority over the other tests below.
1698  //
1699  // These sequences rely on the fact that the upper two bits of the
1700  // IPM result are zero.
1701  uint64_t TopBit = uint64_t(1) << 31;
1702  if (CCMask == (CCValid & SystemZ::CCMASK_0))
1703  return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1704  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1705  return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1706  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1708  | SystemZ::CCMASK_2)))
1709  return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1710  if (CCMask == (CCValid & SystemZ::CCMASK_3))
1711  return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1712  if (CCMask == (CCValid & (SystemZ::CCMASK_1
1714  | SystemZ::CCMASK_3)))
1715  return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1716 
1717  // Next try inverting the value and testing a bit. 0/1 could be
1718  // handled this way too, but we dealt with that case above.
1719  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1720  return IPMConversion(-1, 0, SystemZ::IPM_CC);
1721 
1722  // Handle cases where adding a value forces a non-sign bit to contain
1723  // the right value.
1724  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1725  return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1726  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1727  return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1728 
1729  // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1730  // can be done by inverting the low CC bit and applying one of the
1731  // sign-based extractions above.
1732  if (CCMask == (CCValid & SystemZ::CCMASK_1))
1733  return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1734  if (CCMask == (CCValid & SystemZ::CCMASK_2))
1735  return IPMConversion(1 << SystemZ::IPM_CC,
1736  TopBit - (3 << SystemZ::IPM_CC), 31);
1737  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1738  | SystemZ::CCMASK_1
1739  | SystemZ::CCMASK_3)))
1740  return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1741  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1742  | SystemZ::CCMASK_2
1743  | SystemZ::CCMASK_3)))
1744  return IPMConversion(1 << SystemZ::IPM_CC,
1745  TopBit - (1 << SystemZ::IPM_CC), 31);
1746 
1747  llvm_unreachable("Unexpected CC combination");
1748 }
1749 
1750 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
1751  auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
1752  auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
1753  if (!TrueOp || !FalseOp)
1754  return SDValue();
1755  if (FalseOp->getZExtValue() != 0)
1756  return SDValue();
1757  if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
1758  return SDValue();
1759 
1760  auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
1761  auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
1762  if (!CCValidOp || !CCMaskOp)
1763  return SDValue();
1764  int CCValid = CCValidOp->getZExtValue();
1765  int CCMask = CCMaskOp->getZExtValue();
1766 
1767  SDLoc DL(Node);
1768  SDValue CCReg = Node->getOperand(4);
1769  IPMConversion IPM = getIPMConversion(CCValid, CCMask);
1770  SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
1771 
1772  if (IPM.XORValue)
1773  Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
1774  CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
1775 
1776  if (IPM.AddValue)
1777  Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
1778  CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
1779 
1780  EVT VT = Node->getValueType(0);
1781  if (VT == MVT::i32 && IPM.Bit == 31) {
1782  unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
1783  Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
1784  CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1785  } else {
1786  if (VT != MVT::i32)
1787  Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
1788 
1789  if (TrueOp->getSExtValue() == 1) {
1790  // The SHR/AND sequence should get optimized to an RISBG.
1791  Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
1792  CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1793  Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
1794  CurDAG->getConstant(1, DL, VT));
1795  } else {
1796  // Sign-extend from IPM.Bit using a pair of shifts.
1797  int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
1798  int SraAmt = VT.getSizeInBits() - 1;
1799  Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
1800  CurDAG->getConstant(ShlAmt, DL, MVT::i32));
1801  Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
1802  CurDAG->getConstant(SraAmt, DL, MVT::i32));
1803  }
1804  }
1805 
1806  return Result;
1807 }
1808 
1809 void SystemZDAGToDAGISel::PreprocessISelDAG() {
1810  // If we have conditional immediate loads, we always prefer
1811  // using those over an IPM sequence.
1812  if (Subtarget->hasLoadStoreOnCond2())
1813  return;
1814 
1815  bool MadeChange = false;
1816 
1817  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
1818  E = CurDAG->allnodes_end();
1819  I != E;) {
1820  SDNode *N = &*I++;
1821  if (N->use_empty())
1822  continue;
1823 
1824  SDValue Res;
1825  switch (N->getOpcode()) {
1826  default: break;
1828  Res = expandSelectBoolean(N);
1829  break;
1830  }
1831 
1832  if (Res) {
1833  LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: ");
1834  LLVM_DEBUG(N->dump(CurDAG));
1835  LLVM_DEBUG(dbgs() << "\nNew: ");
1836  LLVM_DEBUG(Res.getNode()->dump(CurDAG));
1837  LLVM_DEBUG(dbgs() << "\n");
1838 
1839  CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1840  MadeChange = true;
1841  }
1842  }
1843 
1844  if (MadeChange)
1845  CurDAG->RemoveDeadNodes();
1846 }
static bool isImmHF(uint64_t Val)
Definition: SystemZ.h:186
bool isInvariant() const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOffset() const
raw_ostream & errs()
This returns a reference to a raw_ostream for standard error.
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1557
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N)
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
static bool isImmLF(uint64_t Val)
Definition: SystemZ.h:181
const SDValue & getBasePtr() const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
const SDValue & getValue() const
static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask)
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
const SDValue & getChain() const
constexpr bool isInt< 16 >(int64_t x)
Definition: MathExtras.h:306
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:141
void setNodeId(int Id)
Set unique node id.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
unsigned getValueSizeInBits() const
Returns the size of the value in bits.
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
static uint64_t allOnes(unsigned int Count)
bool hasOneUse() const
Return true if there is exactly one use of this node.
const HexagonInstrInfo * TII
Shift and rotation operations.
Definition: ISDOpcodes.h:390
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
FunctionPass * createSystemZISelDag(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
const unsigned CCMASK_2
Definition: SystemZ.h:29
CopyToReg - This node has three operands: a chain, a register number to set to this value...
Definition: ISDOpcodes.h:170
unsigned getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition: ValueTypes.h:304
unsigned getID() const
Return the register class ID number.
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
static void InvalidateNodeId(SDNode *N)
unsigned getScalarSizeInBits() const
Definition: ValueTypes.h:298
unsigned getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:292
#define UINT64_MAX
Definition: DataTypes.h:83
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:201
static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase, SDValue Value)
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
int64_t getSrcValueOffset() const
static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index)
This class is used to represent ISD::STORE nodes.
const Value * getValue() const
Return the base address of the memory access.
const SDValue & getBasePtr() const
bool isNormalLoad(const SDNode *N)
Returns true if the specified node is a non-extending and unindexed load.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
static bool expandDisp(SystemZAddressingMode &AM, bool IsBase, SDValue Op0, uint64_t Op1)
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:273
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
const SDValue & getOperand(unsigned Num) const
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL...
Definition: ISDOpcodes.h:316
const SDValue & getOffset() const
This class provides iterator support for SDUse operands that use a specific SDNode.
void RepositionNode(allnodes_iterator Position, SDNode *N)
Move node N in the AllNodes list to be immediately before the given iterator Position.
static void changeComponent(SystemZAddressingMode &AM, bool IsBase, SDValue Value)
const APInt & getAPIntValue() const
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
const unsigned CCMASK_3
Definition: SystemZ.h:30
self_iterator getIterator()
Definition: ilist_node.h:82
bool isPCREL(unsigned Opcode)
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const
Return true if there are exactly NUSES uses of the indicated value.
Extended Value Type.
Definition: ValueTypes.h:34
bool isVolatile() const
bool isMachineOpcode() const
Test if this node has a post-isel opcode, directly corresponding to a MachineInstr opcode...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const SystemZInstrInfo * getInstrInfo() const override
bool use_empty() const
Return true if there are no uses of this node.
Representation for a specific memory location.
TokenFactor - This node takes multiple tokens as input and produces a single token result...
Definition: ISDOpcodes.h:50
void dump() const
Dump this node, for debugging.
Iterator for intrusive lists based on ilist_node.
constexpr bool isInt< 32 >(int64_t x)
Definition: MathExtras.h:309
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition: ISDOpcodes.h:323
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:222
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
Definition: ValueTypes.h:96
An SDNode that represents everything that will be needed to construct a MachineInstr.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
SelectionDAGISel - This is the common base class used for SelectionDAG-based pattern-matching instruc...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
bool isDereferenceable() const
static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask)
const unsigned CCMASK_1
Definition: SystemZ.h:28
EVT getMemoryVT() const
Return the type of the in-memory value.
Target - Wrapper for Target specific information.
iterator_range< use_iterator > uses()
static unsigned getReg(const void *D, unsigned RC, unsigned RegNo)
static use_iterator use_end()
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:448
const unsigned CCMASK_0
Definition: SystemZ.h:27
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:451
int getNodeId() const
Return the unique node id.
const SDValue & getValue() const
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:371
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition: ISDOpcodes.h:466
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
Definition: ISDOpcodes.h:583
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
uint32_t Size
Definition: Profile.cpp:47
unsigned getOpcode() const
SDValue getValue(unsigned R) const
static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val)
This class is used to form a handle around another node that is persistent and is updated across invo...
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool isPredecessorOf(const SDNode *N) const
Return true if this node is a predecessor of N.
static bool expandIndex(SystemZAddressingMode &AM, SDValue Base, SDValue Index)
LLVM Value Representation.
Definition: Value.h:73
unsigned getResNo() const
get the index which selects a specific result in the SDNode
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
bool isNonTemporal() const
static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val)
bool isRxSBGMask(uint64_t Mask, unsigned BitSize, unsigned &Start, unsigned &End) const
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
const unsigned IPM_CC
Definition: SystemZ.h:112
unsigned getNumOperands() const
Conversion operators.
Definition: ISDOpcodes.h:445
const SDValue & getOperand(unsigned i) const
uint64_t getZExtValue() const
static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode, SDValue StoredVal, SelectionDAG *CurDAG, LoadSDNode *&LoadNode, SDValue &InputChain)
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:454
#define LLVM_DEBUG(X)
Definition: Debug.h:123
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation...
This class is used to represent ISD::LOAD nodes.
static int getUninvalidatedNodeId(SDNode *N)