LLVM 19.0.0git
SystemZISelLowering.h
Go to the documentation of this file.
1//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that SystemZ uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16
17#include "SystemZ.h"
18#include "SystemZInstrInfo.h"
22#include <optional>
23
24namespace llvm {
25namespace SystemZISD {
26enum NodeType : unsigned {
28
29 // Return with a glue operand. Operand 0 is the chain operand.
31
32 // Calls a function. Operand 0 is the chain operand and operand 1
33 // is the target address. The arguments start at operand 2.
34 // There is an optional glue operand at the end.
37
38 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
39 // (The call target is implicitly __tls_get_offset.)
42
43 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
44 // accesses (LARL). Operand 0 is the address.
46
47 // Used in cases where an offset is applied to a TargetGlobalAddress.
48 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
49 // PCREL_WRAPPER for an anchor point. This is used so that we can
50 // cheaply refer to either the full address or the anchor point
51 // as a register base.
53
54 // Integer comparisons. There are three operands: the two values
55 // to compare, and an integer of type SystemZICMP.
57
58 // Floating-point comparisons. The two operands are the values to compare.
60
61 // Test under mask. The first operand is ANDed with the second operand
62 // and the condition codes are set on the result. The third operand is
63 // a boolean that is true if the condition codes need to distinguish
64 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
65 // register forms do but the memory forms don't).
67
68 // Branches if a condition is true. Operand 0 is the chain operand;
69 // operand 1 is the 4-bit condition-code mask, with bit N in
70 // big-endian order meaning "branch if CC=N"; operand 2 is the
71 // target block and operand 3 is the flag operand.
73
74 // Selects between operand 0 and operand 1. Operand 2 is the
75 // mask of condition-code values for which operand 0 should be
76 // chosen over operand 1; it has the same form as BR_CCMASK.
77 // Operand 3 is the flag operand.
79
80 // Evaluates to the gap between the stack pointer and the
81 // base of the dynamically-allocatable area.
83
84 // For allocating stack space when using stack clash protector.
85 // Allocation is performed by block, and each block is probed.
87
88 // Count number of bits set in operand 0 per byte.
90
91 // Wrappers around the ISD opcodes of the same name. The output is GR128.
92 // Input operands may be GR64 or GR32, depending on the instruction.
97
98 // Add/subtract with overflow/carry. These have the same operands as
99 // the corresponding standard operations, except with the carry flag
100 // replaced by a condition code value.
102
103 // Set the condition code from a boolean value in operand 0.
104 // Operand 1 is a mask of all condition-code values that may result of this
105 // operation, operand 2 is a mask of condition-code values that may result
106 // if the boolean is true.
107 // Note that this operation is always optimized away, we will never
108 // generate any code for it.
110
111 // Use a series of MVCs to copy bytes from one memory location to another.
112 // The operands are:
113 // - the target address
114 // - the source address
115 // - the constant length
116 //
117 // This isn't a memory opcode because we'd need to attach two
118 // MachineMemOperands rather than one.
120
121 // Similar to MVC, but for logic operations (AND, OR, XOR).
125
126 // Use CLC to compare two blocks of memory, with the same comments
127 // as for MVC.
129
130 // Use MVC to set a block of memory after storing the first byte.
132
133 // Use an MVST-based sequence to implement stpcpy().
135
136 // Use a CLST-based sequence to implement strcmp(). The two input operands
137 // are the addresses of the strings to compare.
139
140 // Use an SRST-based sequence to search a block of memory. The first
141 // operand is the end address, the second is the start, and the third
142 // is the character to search for. CC is set to 1 on success and 2
143 // on failure.
145
146 // Store the CC value in bits 29 and 28 of an integer.
148
149 // Transaction begin. The first operand is the chain, the second
150 // the TDB pointer, and the third the immediate control field.
151 // Returns CC value and chain.
154
155 // Transaction end. Just the chain operand. Returns CC value and chain.
157
158 // Create a vector constant by filling byte N of the result with bit
159 // 15-N of the single operand.
161
162 // Create a vector constant by replicating an element-sized RISBG-style mask.
163 // The first operand specifies the starting set bit and the second operand
164 // specifies the ending set bit. Both operands count from the MSB of the
165 // element.
167
168 // Replicate a GPR scalar value into all elements of a vector.
170
171 // Create a vector from two i64 GPRs.
173
174 // Replicate one element of a vector into all elements. The first operand
175 // is the vector and the second is the index of the element to replicate.
177
178 // Interleave elements from the high half of operand 0 and the high half
179 // of operand 1.
181
182 // Likewise for the low halves.
184
185 // Concatenate the vectors in the first two operands, shift them left
186 // by the third operand, and take the first half of the result.
188
189 // Take one element of the first v2i64 operand and the one element of
190 // the second v2i64 operand and concatenate them to form a v2i64 result.
191 // The third operand is a 4-bit value of the form 0A0B, where A and B
192 // are the element selectors for the first operand and second operands
193 // respectively.
195
196 // Perform a general vector permute on vector operands 0 and 1.
197 // Each byte of operand 2 controls the corresponding byte of the result,
198 // in the same way as a byte-level VECTOR_SHUFFLE mask.
200
201 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
203
204 // Likewise, but saturate the result and set CC. PACKS_CC does signed
205 // saturation and PACKLS_CC does unsigned saturation.
208
209 // Unpack the first half of vector operand 0 into double-sized elements.
210 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
213
214 // Likewise for the second half.
217
218 // Shift/rotate each element of vector operand 0 by the number of bits
219 // specified by scalar operand 1.
224
225 // For each element of the output type, sum across all sub-elements of
226 // operand 0 belonging to the corresponding element, and add in the
227 // rightmost sub-element of the corresponding element of operand 1.
229
230 // Compute carry/borrow indication for add/subtract.
232 // Add/subtract with carry/borrow.
234 // Compute carry/borrow indication for add/subtract with carry/borrow.
236
237 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
238 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
239 // and VICMPHL for "unsigned greater than".
243
244 // Likewise, but also set the condition codes on the result.
248
249 // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
250 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
251 // greater than" and VFCMPHE for "ordered and greater than or equal to".
255
256 // Likewise, but also set the condition codes on the result.
260
261 // Test floating-point data class for vectors.
263
264 // Extend the even f32 elements of vector operand 0 to produce a vector
265 // of f64 elements.
267
268 // Round the f64 elements of vector operand 0 to f32s and store them in the
269 // even elements of the result.
271
272 // AND the two vector operands together and set CC based on the result.
274
275 // i128 high integer comparisons.
278
279 // String operations that set CC as a side-effect.
291
292 // Test Data Class.
293 //
294 // Operand 0: the value to test
295 // Operand 1: the bit mask
297
298 // z/OS XPLINK ADA Entry
299 // Wraps a TargetGlobalAddress that should be loaded from a function's
300 // AssociatedData Area (ADA). Tha ADA is passed to the function by the
301 // caller in the XPLink ABI defined register R5.
302 // Operand 0: the GlobalValue/External Symbol
303 // Operand 1: the ADA register
304 // Operand 2: the offset (0 for the first and 8 for the second element in the
305 // function descriptor)
307
308 // Strict variants of scalar floating-point comparisons.
309 // Quiet and signaling versions.
312
313 // Strict variants of vector floating-point comparisons.
314 // Quiet and signaling versions.
321
322 // Strict variants of VEXTEND and VROUND.
325
326 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
327 // ATOMIC_LOAD_<op>.
328 //
329 // Operand 0: the address of the containing 32-bit-aligned field
330 // Operand 1: the second operand of <op>, in the high bits of an i32
331 // for everything except ATOMIC_SWAPW
332 // Operand 2: how many bits to rotate the i32 left to bring the first
333 // operand into the high bits
334 // Operand 3: the negative of operand 2, for rotating the other way
335 // Operand 4: the width of the field in bits (8 or 16)
347
348 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
349 //
350 // Operand 0: the address of the containing 32-bit-aligned field
351 // Operand 1: the compare value, in the low bits of an i32
352 // Operand 2: the swap value, in the low bits of an i32
353 // Operand 3: how many bits to rotate the i32 left to bring the first
354 // operand into the high bits
355 // Operand 4: the negative of operand 2, for rotating the other way
356 // Operand 5: the width of the field in bits (8 or 16)
358
359 // Atomic compare-and-swap returning CC value.
360 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
362
363 // 128-bit atomic load.
364 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
366
367 // 128-bit atomic store.
368 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
370
371 // 128-bit atomic compare-and-swap.
372 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
374
375 // Byte swapping load/store. Same operands as regular load/store.
377
378 // Element swapping load/store. Same operands as regular load/store.
380
381 // Prefetch from the second operand using the 4-bit control code in
382 // the first operand. The code is 1 for a load prefetch and 2 for
383 // a store prefetch.
386
387// Return true if OPCODE is some kind of PC-relative address.
388inline bool isPCREL(unsigned Opcode) {
389 return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
390}
391} // end namespace SystemZISD
392
393namespace SystemZICMP {
394// Describes whether an integer comparison needs to be signed or unsigned,
395// or whether either type is OK.
396enum {
401} // end namespace SystemZICMP
402
403class SystemZSubtarget;
404
406public:
407 explicit SystemZTargetLowering(const TargetMachine &TM,
408 const SystemZSubtarget &STI);
409
410 bool useSoftFloat() const override;
411
412 // Override TargetLowering.
413 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
414 return MVT::i32;
415 }
416 MVT getVectorIdxTy(const DataLayout &DL) const override {
417 // Only the lower 12 bits of an element index are used, so we don't
418 // want to clobber the upper 32 bits of a GPR unnecessarily.
419 return MVT::i32;
420 }
422 const override {
423 // Widen subvectors to the full width rather than promoting integer
424 // elements. This is better because:
425 //
426 // (a) it means that we can handle the ABI for passing and returning
427 // sub-128 vectors without having to handle them as legal types.
428 //
429 // (b) we don't have instructions to extend on load and truncate on store,
430 // so promoting the integers is less efficient.
431 //
432 // (c) there are no multiplication instructions for the widest integer
433 // type (v2i64).
434 if (VT.getScalarSizeInBits() % 8 == 0)
435 return TypeWidenVector;
437 }
438 unsigned
440 std::optional<MVT> RegisterVT) const override {
441 // i128 inline assembly operand.
442 if (VT == MVT::i128 && RegisterVT && *RegisterVT == MVT::Untyped)
443 return 1;
445 }
447 EVT VT) const override {
448 // 128-bit single-element vector types are passed like other vectors,
449 // not like their element type.
450 if (VT.isVector() && VT.getSizeInBits() == 128 &&
451 VT.getVectorNumElements() == 1)
452 return MVT::v16i8;
454 }
455 bool isCheapToSpeculateCtlz(Type *) const override { return true; }
456 bool isCheapToSpeculateCttz(Type *) const override { return true; }
457 bool preferZeroCompareBranch() const override { return true; }
458 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override {
459 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
460 return Mask && Mask->getValue().isIntN(16);
461 }
462 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
463 return VT.isScalarInteger();
464 }
466 EVT) const override;
468 EVT VT) const override;
469 bool isFPImmLegal(const APFloat &Imm, EVT VT,
470 bool ForCodeSize) const override;
471 bool ShouldShrinkFPConstant(EVT VT) const override {
472 // Do not shrink 64-bit FP constpool entries since LDEB is slower than
473 // LD, and having the full constant in memory enables reg/mem opcodes.
474 return VT != MVT::f64;
475 }
476 bool hasInlineStackProbe(const MachineFunction &MF) const override;
478 shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const override;
479 bool isLegalICmpImmediate(int64_t Imm) const override;
480 bool isLegalAddImmediate(int64_t Imm) const override;
481 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
482 unsigned AS,
483 Instruction *I = nullptr) const override;
484 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment,
486 unsigned *Fast) const override;
487 bool
488 findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
489 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
490 const AttributeList &FuncAttributes) const override;
492 const AttributeList &FuncAttributes) const override;
493 bool isTruncateFree(Type *, Type *) const override;
494 bool isTruncateFree(EVT, EVT) const override;
495
496 bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
497 bool MathUsed) const override {
498 // Form add and sub with overflow intrinsics regardless of any extra
499 // users of the math result.
500 return VT == MVT::i32 || VT == MVT::i64;
501 }
502
503 bool shouldConsiderGEPOffsetSplit() const override { return true; }
504
505 const char *getTargetNodeName(unsigned Opcode) const override;
506 std::pair<unsigned, const TargetRegisterClass *>
508 StringRef Constraint, MVT VT) const override;
510 getConstraintType(StringRef Constraint) const override;
512 getSingleConstraintMatchWeight(AsmOperandInfo &info,
513 const char *constraint) const override;
515 std::vector<SDValue> &Ops,
516 SelectionDAG &DAG) const override;
517
519 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
520 if (ConstraintCode.size() == 1) {
521 switch(ConstraintCode[0]) {
522 default:
523 break;
524 case 'o':
526 case 'Q':
528 case 'R':
530 case 'S':
532 case 'T':
534 }
535 } else if (ConstraintCode.size() == 2 && ConstraintCode[0] == 'Z') {
536 switch (ConstraintCode[1]) {
537 default:
538 break;
539 case 'Q':
541 case 'R':
543 case 'S':
545 case 'T':
547 }
548 }
549 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
550 }
551
552 Register getRegisterByName(const char *RegName, LLT VT,
553 const MachineFunction &MF) const override;
554
555 /// If a physical register, this returns the register that receives the
556 /// exception address on entry to an EH pad.
558 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
559
560 /// If a physical register, this returns the register that receives the
561 /// exception typeid on entry to a landing pad.
563 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
564
565 /// Override to support customized stack guard loading.
566 bool useLoadStackGuardNode() const override {
567 return true;
568 }
569 void insertSSPDeclarations(Module &M) const override {
570 }
571
574 MachineBasicBlock *BB) const override;
575 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
577 SelectionDAG &DAG) const override;
579 SelectionDAG &DAG) const override;
580 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
581 bool allowTruncateForTailCall(Type *, Type *) const override;
582 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
584 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
585 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
586 const override;
588 SelectionDAG & DAG, const SDLoc &DL, const SDValue *Parts,
589 unsigned NumParts, MVT PartVT, EVT ValueVT,
590 std::optional<CallingConv::ID> CC) const override;
592 bool isVarArg,
594 const SDLoc &DL, SelectionDAG &DAG,
595 SmallVectorImpl<SDValue> &InVals) const override;
596 SDValue LowerCall(CallLoweringInfo &CLI,
597 SmallVectorImpl<SDValue> &InVals) const override;
598
599 std::pair<SDValue, SDValue>
600 makeExternalCall(SDValue Chain, SelectionDAG &DAG, const char *CalleeName,
601 EVT RetVT, ArrayRef<SDValue> Ops, CallingConv::ID CallConv,
602 bool IsSigned, SDLoc DL, bool DoesNotReturn,
603 bool IsReturnValueUsed) const;
604
606 bool isVarArg,
608 LLVMContext &Context) const override;
609 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
611 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
612 SelectionDAG &DAG) const override;
613 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
614
615 /// Determine which of the bits specified in Mask are known to be either
616 /// zero or one and return them in the KnownZero/KnownOne bitsets.
618 KnownBits &Known,
619 const APInt &DemandedElts,
620 const SelectionDAG &DAG,
621 unsigned Depth = 0) const override;
622
623 /// Determine the number of bits in the operation that are sign bits.
625 const APInt &DemandedElts,
626 const SelectionDAG &DAG,
627 unsigned Depth) const override;
628
630 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
631 bool PoisonOnly, unsigned Depth) const override;
632
634 return ISD::ANY_EXTEND;
635 }
637 return ISD::ZERO_EXTEND;
638 }
639
640 bool supportSwiftError() const override {
641 return true;
642 }
643
644 unsigned getStackProbeSize(const MachineFunction &MF) const;
645
646private:
647 const SystemZSubtarget &Subtarget;
648
649 // Implement LowerOperation for individual opcodes.
650 SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
651 const SDLoc &DL, EVT VT,
652 SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
653 SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
654 EVT VT, ISD::CondCode CC,
655 SDValue CmpOp0, SDValue CmpOp1,
656 SDValue Chain = SDValue(),
657 bool IsSignaling = false) const;
658 SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
659 SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
660 bool IsSignaling) const;
661 SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
662 SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
663 SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
664 SelectionDAG &DAG) const;
665 SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
666 SelectionDAG &DAG, unsigned Opcode,
667 SDValue GOTOffset) const;
668 SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
669 SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
670 SelectionDAG &DAG) const;
671 SDValue lowerBlockAddress(BlockAddressSDNode *Node,
672 SelectionDAG &DAG) const;
673 SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
674 SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
675 SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
676 SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
677 SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
678 SDValue lowerVASTART_ELF(SDValue Op, SelectionDAG &DAG) const;
679 SDValue lowerVASTART_XPLINK(SDValue Op, SelectionDAG &DAG) const;
680 SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
681 SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
682 SDValue lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, SelectionDAG &DAG) const;
683 SDValue lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, SelectionDAG &DAG) const;
684 SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
685 SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
686 SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
687 SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
688 SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
689 SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
690 SDValue lowerUADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG) const;
691 SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
692 SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
693 SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
694 SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
695 SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
696 SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
697 SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
698 unsigned Opcode) const;
699 SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
700 SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
701 SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
702 SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
703 SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
704 SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
705 SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
706 bool isVectorElementLoad(SDValue Op) const;
707 SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
708 SmallVectorImpl<SDValue> &Elems) const;
709 SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
710 SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
711 SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
712 SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
713 SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
714 SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
715 SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
716 SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
717 SDValue lowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
718 SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
719
720 bool canTreatAsByteVector(EVT VT) const;
721 SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
722 unsigned Index, DAGCombinerInfo &DCI,
723 bool Force) const;
724 SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
725 DAGCombinerInfo &DCI) const;
726 SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
727 SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
728 SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
729 SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
730 bool canLoadStoreByteSwapped(EVT VT) const;
731 SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
732 SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
733 SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
734 SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
735 SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
736 SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
737 SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
738 SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const;
739 SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
740 SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
741 SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
742 SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
743 SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
744 SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const;
745
746 SDValue unwrapAddress(SDValue N) const override;
747
748 // If the last instruction before MBBI in MBB was some form of COMPARE,
749 // try to replace it with a COMPARE AND BRANCH just before MBBI.
750 // CCMask and Target are the BRC-like operands for the branch.
751 // Return true if the change was made.
752 bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
754 unsigned CCMask,
756
757 // Implement EmitInstrWithCustomInserter for individual operation types.
758 MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
760 unsigned StoreOpcode, unsigned STOCOpcode,
761 bool Invert) const;
763 bool Unsigned) const;
764 MachineBasicBlock *emitPair128(MachineInstr &MI,
765 MachineBasicBlock *MBB) const;
767 bool ClearEven) const;
768 MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
770 unsigned BinOpcode,
771 bool Invert = false) const;
772 MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
774 unsigned CompareOpcode,
775 unsigned KeepOldMask) const;
776 MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
777 MachineBasicBlock *BB) const;
778 MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
779 unsigned Opcode,
780 bool IsMemset = false) const;
781 MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
782 unsigned Opcode) const;
783 MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
785 unsigned Opcode, bool NoFloat) const;
786 MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
788 unsigned Opcode) const;
789 MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
790 MachineBasicBlock *MBB) const;
791
792 SDValue getBackchainAddress(SDValue SP, SelectionDAG &DAG) const;
793
795 getTargetMMOFlags(const Instruction &I) const override;
796 const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
797};
798
800private:
801 APInt IntBits; // The 128 bits as an integer.
802 APInt SplatBits; // Smallest splat value.
803 APInt SplatUndef; // Bits correspoding to undef operands of the BVN.
804 unsigned SplatBitSize = 0;
805 bool isFP128 = false;
806public:
807 unsigned Opcode = 0;
812 : SystemZVectorConstantInfo(FPImm.bitcastToAPInt()) {
813 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
814 }
816 bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
817};
818
819} // end namespace llvm
820
821#endif
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
IRTranslator LLVM IR MI
#define RegName(no)
lazy value info
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
LLVMContext & Context
const char LLVMTargetMachineRef TM
This file describes how to lower LLVM code to machine code.
const fltSemantics & getSemantics() const
Definition: APFloat.h:1303
Class for arbitrary precision integers.
Definition: APInt.h:76
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:748
A "pseudo-class" with methods for operating on BUILD_VECTORs.
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
Definition: Constants.h:79
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
Machine Value Type.
uint64_t getScalarSizeInBits() const
Representation of each machine instruction.
Definition: MachineInstr.h:69
Flags
Flags values. These may be or'd together.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:225
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:137
bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const override
Try to convert math with an overflow comparison into the corresponding DAG node operation.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override
Return if the target supports combining a chain like:
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &FuncAttributes) const override
Returns the target specific optimal type for load and store operations as a result of memset,...
ISD::NodeType getExtendForAtomicOps() const override
Returns how the platform's atomic operations are extended (ZERO_EXTEND, SIGN_EXTEND,...
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
bool hasInlineStackProbe(const MachineFunction &MF) const override
Returns true if stack probing through inline assembly is requested.
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override
Use bitwise logic to make pairs of compares more efficient.
MVT getVectorIdxTy(const DataLayout &DL) const override
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT) const override
Return the ValueType of the result of SETCC operations.
bool allowTruncateForTailCall(Type *, Type *) const override
Return true if a truncation from FromTy to ToTy is permitted when deciding whether a call is in tail ...
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
bool preferZeroCompareBranch() const override
Return true if the heuristic to prefer icmp eq zero should be used in code gen prepare.
bool findOptimalMemOpLowering(std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const override
Determines the optimal series of memory ops to replace the memset / memcpy.
bool useSoftFloat() const override
std::pair< SDValue, SDValue > makeExternalCall(SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, ArrayRef< SDValue > Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, bool DoesNotReturn, bool IsReturnValueUsed) const
bool shouldConsiderGEPOffsetSplit() const override
bool supportSwiftError() const override
Return true if the target supports swifterror attribute.
bool mayBeEmittedAsTailCall(const CallInst *CI) const override
Return true if the target may be able emit the call instruction as a tail call.
bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const override
Target-specific splitting of values into parts that fit a register storing a legal type.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool isCheapToSpeculateCtlz(Type *) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
TargetLowering::ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override
Examine constraint string and operand type and determine a weight value.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const override
Determine if the target supports unaligned memory accesses.
const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const override
Returns a 0 terminated array of registers that can be safely used as scratch registers.
TargetLowering::ConstraintType getConstraintType(StringRef Constraint) const override
Given a constraint, return the type of constraint it is for this target.
bool useLoadStackGuardNode() const override
Override to support customized stack guard loading.
bool ShouldShrinkFPConstant(EVT VT) const override
If true, then instruction selection should seek to shrink the FP constant of the specified type to a ...
bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override
Returns true if the target can instruction select the specified FP immediate natively.
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const override
Target-specific combining of register parts into its original value.
unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT) const override
Return the number of registers that this ValueType will eventually require.
bool isTruncateFree(Type *, Type *) const override
Return true if it's free to truncate a value of type FromTy to type ToTy.
unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const override
Determine the number of bits in the operation that are sign bits.
ISD::NodeType getExtendForAtomicCmpSwapArg() const override
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const override
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isCheapToSpeculateCttz(Type *) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const override
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
void insertSSPDeclarations(Module &M) const override
Inserts necessary declarations for SSP (stack protection) purpose.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
unsigned getStackProbeSize(const MachineFunction &MF) const
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:76
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
Value * getOperand(unsigned i) const
Definition: User.h:169
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:40
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:783
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1400
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:780
static const int FIRST_TARGET_MEMORY_OPCODE
FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations which do not reference a specific me...
Definition: ISDOpcodes.h:1412
static const int FIRST_TARGET_STRICTFP_OPCODE
FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations which cannot raise FP exceptions s...
Definition: ISDOpcodes.h:1406
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1523
bool isPCREL(unsigned Opcode)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
#define N
static const fltSemantics & IEEEquad() LLVM_READNONE
Definition: APFloat.cpp:251
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:34
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:358
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:167
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition: ValueTypes.h:156
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:326
SmallVector< unsigned, 2 > OpVals
bool isVectorConstantLegal(const SystemZSubtarget &Subtarget)