LLVM  8.0.0svn
VPlan.h
Go to the documentation of this file.
1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file contains the declarations of the Vectorization Plan base classes:
12 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
13 /// VPBlockBase, together implementing a Hierarchical CFG;
14 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
15 /// treated as proper graphs for generic algorithms;
16 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
17 /// within VPBasicBlocks;
18 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
19 /// instruction;
20 /// 5. The VPlan class holding a candidate for vectorization;
21 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
22 /// These are documented in docs/VectorizationPlan.rst.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
28 
29 #include "VPlanLoopInfo.h"
30 #include "VPlanValue.h"
31 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/GraphTraits.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/ADT/ilist.h"
40 #include "llvm/ADT/ilist_node.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstddef>
45 #include <map>
46 #include <string>
47 
48 namespace llvm {
49 
50 class LoopVectorizationLegality;
51 class LoopVectorizationCostModel;
52 class BasicBlock;
53 class DominatorTree;
54 class InnerLoopVectorizer;
55 class InterleaveGroup;
56 class raw_ostream;
57 class Value;
58 class VPBasicBlock;
59 class VPRegionBlock;
60 class VPlan;
61 
62 /// A range of powers-of-2 vectorization factors with fixed start and
63 /// adjustable end. The range includes start and excludes end, e.g.,:
64 /// [1, 9) = {1, 2, 4, 8}
65 struct VFRange {
66  // A power of 2.
67  const unsigned Start;
68 
69  // Need not be a power of 2. If End <= Start range is empty.
70  unsigned End;
71 };
72 
73 using VPlanPtr = std::unique_ptr<VPlan>;
74 
75 /// In what follows, the term "input IR" refers to code that is fed into the
76 /// vectorizer whereas the term "output IR" refers to code that is generated by
77 /// the vectorizer.
78 
79 /// VPIteration represents a single point in the iteration space of the output
80 /// (vectorized and/or unrolled) IR loop.
81 struct VPIteration {
82  /// in [0..UF)
83  unsigned Part;
84 
85  /// in [0..VF)
86  unsigned Lane;
87 };
88 
89 /// This is a helper struct for maintaining vectorization state. It's used for
90 /// mapping values from the original loop to their corresponding values in
91 /// the new loop. Two mappings are maintained: one for vectorized values and
92 /// one for scalarized values. Vectorized values are represented with UF
93 /// vector values in the new loop, and scalarized values are represented with
94 /// UF x VF scalar values in the new loop. UF and VF are the unroll and
95 /// vectorization factors, respectively.
96 ///
97 /// Entries can be added to either map with setVectorValue and setScalarValue,
98 /// which assert that an entry was not already added before. If an entry is to
99 /// replace an existing one, call resetVectorValue and resetScalarValue. This is
100 /// currently needed to modify the mapped values during "fix-up" operations that
101 /// occur once the first phase of widening is complete. These operations include
102 /// type truncation and the second phase of recurrence widening.
103 ///
104 /// Entries from either map can be retrieved using the getVectorValue and
105 /// getScalarValue functions, which assert that the desired value exists.
107  friend struct VPTransformState;
108 
109 private:
110  /// The unroll factor. Each entry in the vector map contains UF vector values.
111  unsigned UF;
112 
113  /// The vectorization factor. Each entry in the scalar map contains UF x VF
114  /// scalar values.
115  unsigned VF;
116 
117  /// The vector and scalar map storage. We use std::map and not DenseMap
118  /// because insertions to DenseMap invalidate its iterators.
121  std::map<Value *, VectorParts> VectorMapStorage;
122  std::map<Value *, ScalarParts> ScalarMapStorage;
123 
124 public:
125  /// Construct an empty map with the given unroll and vectorization factors.
126  VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
127 
128  /// \return True if the map has any vector entry for \p Key.
129  bool hasAnyVectorValue(Value *Key) const {
130  return VectorMapStorage.count(Key);
131  }
132 
133  /// \return True if the map has a vector entry for \p Key and \p Part.
134  bool hasVectorValue(Value *Key, unsigned Part) const {
135  assert(Part < UF && "Queried Vector Part is too large.");
136  if (!hasAnyVectorValue(Key))
137  return false;
138  const VectorParts &Entry = VectorMapStorage.find(Key)->second;
139  assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
140  return Entry[Part] != nullptr;
141  }
142 
143  /// \return True if the map has any scalar entry for \p Key.
144  bool hasAnyScalarValue(Value *Key) const {
145  return ScalarMapStorage.count(Key);
146  }
147 
148  /// \return True if the map has a scalar entry for \p Key and \p Instance.
149  bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
150  assert(Instance.Part < UF && "Queried Scalar Part is too large.");
151  assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
152  if (!hasAnyScalarValue(Key))
153  return false;
154  const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
155  assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
156  assert(Entry[Instance.Part].size() == VF &&
157  "ScalarParts has wrong dimensions.");
158  return Entry[Instance.Part][Instance.Lane] != nullptr;
159  }
160 
161  /// Retrieve the existing vector value that corresponds to \p Key and
162  /// \p Part.
163  Value *getVectorValue(Value *Key, unsigned Part) {
164  assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
165  return VectorMapStorage[Key][Part];
166  }
167 
168  /// Retrieve the existing scalar value that corresponds to \p Key and
169  /// \p Instance.
170  Value *getScalarValue(Value *Key, const VPIteration &Instance) {
171  assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
172  return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
173  }
174 
175  /// Set a vector value associated with \p Key and \p Part. Assumes such a
176  /// value is not already set. If it is, use resetVectorValue() instead.
177  void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
178  assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
179  if (!VectorMapStorage.count(Key)) {
180  VectorParts Entry(UF);
181  VectorMapStorage[Key] = Entry;
182  }
183  VectorMapStorage[Key][Part] = Vector;
184  }
185 
186  /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
187  /// value is not already set.
188  void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
189  assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
190  if (!ScalarMapStorage.count(Key)) {
191  ScalarParts Entry(UF);
192  // TODO: Consider storing uniform values only per-part, as they occupy
193  // lane 0 only, keeping the other VF-1 redundant entries null.
194  for (unsigned Part = 0; Part < UF; ++Part)
195  Entry[Part].resize(VF, nullptr);
196  ScalarMapStorage[Key] = Entry;
197  }
198  ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
199  }
200 
201  /// Reset the vector value associated with \p Key for the given \p Part.
202  /// This function can be used to update values that have already been
203  /// vectorized. This is the case for "fix-up" operations including type
204  /// truncation and the second phase of recurrence vectorization.
205  void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
206  assert(hasVectorValue(Key, Part) && "Vector value not set for part");
207  VectorMapStorage[Key][Part] = Vector;
208  }
209 
210  /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
211  /// This function can be used to update values that have already been
212  /// scalarized. This is the case for "fix-up" operations including scalar phi
213  /// nodes for scalarized and predicated instructions.
214  void resetScalarValue(Value *Key, const VPIteration &Instance,
215  Value *Scalar) {
216  assert(hasScalarValue(Key, Instance) &&
217  "Scalar value not set for part and lane");
218  ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
219  }
220 };
221 
222 /// This class is used to enable the VPlan to invoke a method of ILV. This is
223 /// needed until the method is refactored out of ILV and becomes reusable.
224 struct VPCallback {
225  virtual ~VPCallback() {}
226  virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
227 };
228 
229 /// VPTransformState holds information passed down when "executing" a VPlan,
230 /// needed for generating the output IR.
232  VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
234  InnerLoopVectorizer *ILV, VPCallback &Callback)
235  : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
236  ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
237 
238  /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
239  unsigned VF;
240  unsigned UF;
241 
242  /// Hold the indices to generate specific scalar instructions. Null indicates
243  /// that all instances are to be generated, using either scalar or vector
244  /// instructions.
246 
247  struct DataState {
248  /// A type for vectorized values in the new loop. Each value from the
249  /// original loop, when vectorized, is represented by UF vector values in
250  /// the new unrolled loop, where UF is the unroll factor.
252 
254  } Data;
255 
256  /// Get the generated Value for a given VPValue and a given Part. Note that
257  /// as some Defs are still created by ILV and managed in its ValueMap, this
258  /// method will delegate the call to ILV in such cases in order to provide
259  /// callers a consistent API.
260  /// \see set.
261  Value *get(VPValue *Def, unsigned Part) {
262  // If Values have been set for this Def return the one relevant for \p Part.
263  if (Data.PerPartOutput.count(Def))
264  return Data.PerPartOutput[Def][Part];
265  // Def is managed by ILV: bring the Values from ValueMap.
266  return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
267  }
268 
269  /// Set the generated Value for a given VPValue and a given Part.
270  void set(VPValue *Def, Value *V, unsigned Part) {
271  if (!Data.PerPartOutput.count(Def)) {
272  DataState::PerPartValuesTy Entry(UF);
273  Data.PerPartOutput[Def] = Entry;
274  }
275  Data.PerPartOutput[Def][Part] = V;
276  }
277 
278  /// Hold state information used when constructing the CFG of the output IR,
279  /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
280  struct CFGState {
281  /// The previous VPBasicBlock visited. Initially set to null.
282  VPBasicBlock *PrevVPBB = nullptr;
283 
284  /// The previous IR BasicBlock created or used. Initially set to the new
285  /// header BasicBlock.
286  BasicBlock *PrevBB = nullptr;
287 
288  /// The last IR BasicBlock in the output IR. Set to the new latch
289  /// BasicBlock, used for placing the newly created BasicBlocks.
290  BasicBlock *LastBB = nullptr;
291 
292  /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
293  /// of replication, maps the BasicBlock of the last replica created.
295 
296  CFGState() = default;
297  } CFG;
298 
299  /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
301 
302  /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
304 
305  /// Hold a reference to the IRBuilder used to generate output IR code.
307 
308  /// Hold a reference to the Value state information used when generating the
309  /// Values of the output IR.
311 
312  /// Hold a reference to a mapping between VPValues in VPlan and original
313  /// Values they correspond to.
315 
316  /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
318 
320 };
321 
322 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
323 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
324 class VPBlockBase {
325  friend class VPBlockUtils;
326 
327 private:
328  const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
329 
330  /// An optional name for the block.
331  std::string Name;
332 
333  /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
334  /// it is a topmost VPBlockBase.
335  VPRegionBlock *Parent = nullptr;
336 
337  /// List of predecessor blocks.
338  SmallVector<VPBlockBase *, 1> Predecessors;
339 
340  /// List of successor blocks.
342 
343  /// Successor selector, null for zero or single successor blocks.
344  VPValue *CondBit = nullptr;
345 
346  /// Add \p Successor as the last successor to this block.
347  void appendSuccessor(VPBlockBase *Successor) {
348  assert(Successor && "Cannot add nullptr successor!");
349  Successors.push_back(Successor);
350  }
351 
352  /// Add \p Predecessor as the last predecessor to this block.
353  void appendPredecessor(VPBlockBase *Predecessor) {
354  assert(Predecessor && "Cannot add nullptr predecessor!");
355  Predecessors.push_back(Predecessor);
356  }
357 
358  /// Remove \p Predecessor from the predecessors of this block.
359  void removePredecessor(VPBlockBase *Predecessor) {
360  auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
361  assert(Pos && "Predecessor does not exist");
362  Predecessors.erase(Pos);
363  }
364 
365  /// Remove \p Successor from the successors of this block.
366  void removeSuccessor(VPBlockBase *Successor) {
367  auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
368  assert(Pos && "Successor does not exist");
369  Successors.erase(Pos);
370  }
371 
372 protected:
373  VPBlockBase(const unsigned char SC, const std::string &N)
374  : SubclassID(SC), Name(N) {}
375 
376 public:
377  /// An enumeration for keeping track of the concrete subclass of VPBlockBase
378  /// that are actually instantiated. Values of this enumeration are kept in the
379  /// SubclassID field of the VPBlockBase objects. They are used for concrete
380  /// type identification.
381  using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
382 
384 
385  virtual ~VPBlockBase() = default;
386 
387  const std::string &getName() const { return Name; }
388 
389  void setName(const Twine &newName) { Name = newName.str(); }
390 
391  /// \return an ID for the concrete type of this object.
392  /// This is used to implement the classof checks. This should not be used
393  /// for any other purpose, as the values may change as LLVM evolves.
394  unsigned getVPBlockID() const { return SubclassID; }
395 
396  VPRegionBlock *getParent() { return Parent; }
397  const VPRegionBlock *getParent() const { return Parent; }
398 
399  void setParent(VPRegionBlock *P) { Parent = P; }
400 
401  /// \return the VPBasicBlock that is the entry of this VPBlockBase,
402  /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
403  /// VPBlockBase is a VPBasicBlock, it is returned.
404  const VPBasicBlock *getEntryBasicBlock() const;
405  VPBasicBlock *getEntryBasicBlock();
406 
407  /// \return the VPBasicBlock that is the exit of this VPBlockBase,
408  /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
409  /// VPBlockBase is a VPBasicBlock, it is returned.
410  const VPBasicBlock *getExitBasicBlock() const;
411  VPBasicBlock *getExitBasicBlock();
412 
413  const VPBlocksTy &getSuccessors() const { return Successors; }
414  VPBlocksTy &getSuccessors() { return Successors; }
415 
416  const VPBlocksTy &getPredecessors() const { return Predecessors; }
417  VPBlocksTy &getPredecessors() { return Predecessors; }
418 
419  /// \return the successor of this VPBlockBase if it has a single successor.
420  /// Otherwise return a null pointer.
422  return (Successors.size() == 1 ? *Successors.begin() : nullptr);
423  }
424 
425  /// \return the predecessor of this VPBlockBase if it has a single
426  /// predecessor. Otherwise return a null pointer.
428  return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
429  }
430 
431  size_t getNumSuccessors() const { return Successors.size(); }
432  size_t getNumPredecessors() const { return Predecessors.size(); }
433 
434  /// An Enclosing Block of a block B is any block containing B, including B
435  /// itself. \return the closest enclosing block starting from "this", which
436  /// has successors. \return the root enclosing block if all enclosing blocks
437  /// have no successors.
438  VPBlockBase *getEnclosingBlockWithSuccessors();
439 
440  /// \return the closest enclosing block starting from "this", which has
441  /// predecessors. \return the root enclosing block if all enclosing blocks
442  /// have no predecessors.
443  VPBlockBase *getEnclosingBlockWithPredecessors();
444 
445  /// \return the successors either attached directly to this VPBlockBase or, if
446  /// this VPBlockBase is the exit block of a VPRegionBlock and has no
447  /// successors of its own, search recursively for the first enclosing
448  /// VPRegionBlock that has successors and return them. If no such
449  /// VPRegionBlock exists, return the (empty) successors of the topmost
450  /// VPBlockBase reached.
452  return getEnclosingBlockWithSuccessors()->getSuccessors();
453  }
454 
455  /// \return the hierarchical successor of this VPBlockBase if it has a single
456  /// hierarchical successor. Otherwise return a null pointer.
458  return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
459  }
460 
461  /// \return the predecessors either attached directly to this VPBlockBase or,
462  /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
463  /// predecessors of its own, search recursively for the first enclosing
464  /// VPRegionBlock that has predecessors and return them. If no such
465  /// VPRegionBlock exists, return the (empty) predecessors of the topmost
466  /// VPBlockBase reached.
468  return getEnclosingBlockWithPredecessors()->getPredecessors();
469  }
470 
471  /// \return the hierarchical predecessor of this VPBlockBase if it has a
472  /// single hierarchical predecessor. Otherwise return a null pointer.
474  return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
475  }
476 
477  /// \return the condition bit selecting the successor.
478  VPValue *getCondBit() { return CondBit; }
479 
480  const VPValue *getCondBit() const { return CondBit; }
481 
482  void setCondBit(VPValue *CV) { CondBit = CV; }
483 
484  /// Set a given VPBlockBase \p Successor as the single successor of this
485  /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
486  /// This VPBlockBase must have no successors.
487  void setOneSuccessor(VPBlockBase *Successor) {
488  assert(Successors.empty() && "Setting one successor when others exist.");
489  appendSuccessor(Successor);
490  }
491 
492  /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
493  /// successors of this VPBlockBase. \p Condition is set as the successor
494  /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
495  /// IfFalse. This VPBlockBase must have no successors.
496  void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
497  VPValue *Condition) {
498  assert(Successors.empty() && "Setting two successors when others exist.");
499  assert(Condition && "Setting two successors without condition!");
500  CondBit = Condition;
501  appendSuccessor(IfTrue);
502  appendSuccessor(IfFalse);
503  }
504 
505  /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
506  /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
507  /// as successor of any VPBasicBlock in \p NewPreds.
509  assert(Predecessors.empty() && "Block predecessors already set.");
510  for (auto *Pred : NewPreds)
511  appendPredecessor(Pred);
512  }
513 
514  /// The method which generates the output IR that correspond to this
515  /// VPBlockBase, thereby "executing" the VPlan.
516  virtual void execute(struct VPTransformState *State) = 0;
517 
518  /// Delete all blocks reachable from a given VPBlockBase, inclusive.
519  static void deleteCFG(VPBlockBase *Entry);
520 
521  void printAsOperand(raw_ostream &OS, bool PrintType) const {
522  OS << getName();
523  }
524 
525  void print(raw_ostream &OS) const {
526  // TODO: Only printing VPBB name for now since we only have dot printing
527  // support for VPInstructions/Recipes.
528  printAsOperand(OS, false);
529  }
530 
531  /// Return true if it is legal to hoist instructions into this block.
533  // There are currently no constraints that prevent an instruction to be
534  // hoisted into a VPBlockBase.
535  return true;
536  }
537 };
538 
539 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
540 /// instructions.
541 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
542  friend VPBasicBlock;
543 
544 private:
545  const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
546 
547  /// Each VPRecipe belongs to a single VPBasicBlock.
548  VPBasicBlock *Parent = nullptr;
549 
550 public:
551  /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
552  /// that is actually instantiated. Values of this enumeration are kept in the
553  /// SubclassID field of the VPRecipeBase objects. They are used for concrete
554  /// type identification.
555  using VPRecipeTy = enum {
556  VPBlendSC,
557  VPBranchOnMaskSC,
558  VPInstructionSC,
559  VPInterleaveSC,
560  VPPredInstPHISC,
561  VPReplicateSC,
562  VPWidenIntOrFpInductionSC,
563  VPWidenMemoryInstructionSC,
564  VPWidenPHISC,
565  VPWidenSC,
566  };
567 
568  VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
569  virtual ~VPRecipeBase() = default;
570 
571  /// \return an ID for the concrete type of this object.
572  /// This is used to implement the classof checks. This should not be used
573  /// for any other purpose, as the values may change as LLVM evolves.
574  unsigned getVPRecipeID() const { return SubclassID; }
575 
576  /// \return the VPBasicBlock which this VPRecipe belongs to.
577  VPBasicBlock *getParent() { return Parent; }
578  const VPBasicBlock *getParent() const { return Parent; }
579 
580  /// The method which generates the output IR instructions that correspond to
581  /// this VPRecipe, thereby "executing" the VPlan.
582  virtual void execute(struct VPTransformState &State) = 0;
583 
584  /// Each recipe prints itself.
585  virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
586 
587  /// Insert an unlinked recipe into a basic block immediately before
588  /// the specified recipe.
589  void insertBefore(VPRecipeBase *InsertPos);
590 
591  /// This method unlinks 'this' from the containing basic block and deletes it.
592  ///
593  /// \returns an iterator pointing to the element after the erased one
594  iplist<VPRecipeBase>::iterator eraseFromParent();
595 };
596 
597 /// This is a concrete Recipe that models a single VPlan-level instruction.
598 /// While as any Recipe it may generate a sequence of IR instructions when
599 /// executed, these instructions would always form a single-def expression as
600 /// the VPInstruction is also a single def-use vertex.
601 class VPInstruction : public VPUser, public VPRecipeBase {
602  friend class VPlanHCFGTransforms;
603 
604 public:
605  /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
606  enum { Not = Instruction::OtherOpsEnd + 1 };
607 
608 private:
609  typedef unsigned char OpcodeTy;
610  OpcodeTy Opcode;
611 
612  /// Utility method serving execute(): generates a single instance of the
613  /// modeled instruction.
614  void generateInstruction(VPTransformState &State, unsigned Part);
615 
616 public:
617  VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
618  : VPUser(VPValue::VPInstructionSC, Operands),
619  VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
620 
621  VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
622  : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
623 
624  /// Method to support type inquiry through isa, cast, and dyn_cast.
625  static inline bool classof(const VPValue *V) {
626  return V->getVPValueID() == VPValue::VPInstructionSC;
627  }
628 
629  /// Method to support type inquiry through isa, cast, and dyn_cast.
630  static inline bool classof(const VPRecipeBase *R) {
631  return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
632  }
633 
634  unsigned getOpcode() const { return Opcode; }
635 
636  /// Generate the instruction.
637  /// TODO: We currently execute only per-part unless a specific instance is
638  /// provided.
639  void execute(VPTransformState &State) override;
640 
641  /// Print the Recipe.
642  void print(raw_ostream &O, const Twine &Indent) const override;
643 
644  /// Print the VPInstruction.
645  void print(raw_ostream &O) const;
646 };
647 
648 /// VPWidenRecipe is a recipe for producing a copy of vector type for each
649 /// Instruction in its ingredients independently, in order. This recipe covers
650 /// most of the traditional vectorization cases where each ingredient transforms
651 /// into a vectorized version of itself.
652 class VPWidenRecipe : public VPRecipeBase {
653 private:
654  /// Hold the ingredients by pointing to their original BasicBlock location.
655  BasicBlock::iterator Begin;
657 
658 public:
660  End = I->getIterator();
661  Begin = End++;
662  }
663 
664  ~VPWidenRecipe() override = default;
665 
666  /// Method to support type inquiry through isa, cast, and dyn_cast.
667  static inline bool classof(const VPRecipeBase *V) {
668  return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
669  }
670 
671  /// Produce widened copies of all Ingredients.
672  void execute(VPTransformState &State) override;
673 
674  /// Augment the recipe to include Instr, if it lies at its End.
676  if (End != Instr->getIterator())
677  return false;
678  End++;
679  return true;
680  }
681 
682  /// Print the recipe.
683  void print(raw_ostream &O, const Twine &Indent) const override;
684 };
685 
686 /// A recipe for handling phi nodes of integer and floating-point inductions,
687 /// producing their vector and scalar values.
689 private:
690  PHINode *IV;
691  TruncInst *Trunc;
692 
693 public:
695  : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
696  ~VPWidenIntOrFpInductionRecipe() override = default;
697 
698  /// Method to support type inquiry through isa, cast, and dyn_cast.
699  static inline bool classof(const VPRecipeBase *V) {
700  return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
701  }
702 
703  /// Generate the vectorized and scalarized versions of the phi node as
704  /// needed by their users.
705  void execute(VPTransformState &State) override;
706 
707  /// Print the recipe.
708  void print(raw_ostream &O, const Twine &Indent) const override;
709 };
710 
711 /// A recipe for handling all phi nodes except for integer and FP inductions.
713 private:
714  PHINode *Phi;
715 
716 public:
717  VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
718  ~VPWidenPHIRecipe() override = default;
719 
720  /// Method to support type inquiry through isa, cast, and dyn_cast.
721  static inline bool classof(const VPRecipeBase *V) {
722  return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
723  }
724 
725  /// Generate the phi/select nodes.
726  void execute(VPTransformState &State) override;
727 
728  /// Print the recipe.
729  void print(raw_ostream &O, const Twine &Indent) const override;
730 };
731 
732 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
733 /// instructions.
734 class VPBlendRecipe : public VPRecipeBase {
735 private:
736  PHINode *Phi;
737 
738  /// The blend operation is a User of a mask, if not null.
739  std::unique_ptr<VPUser> User;
740 
741 public:
743  : VPRecipeBase(VPBlendSC), Phi(Phi) {
744  assert((Phi->getNumIncomingValues() == 1 ||
745  Phi->getNumIncomingValues() == Masks.size()) &&
746  "Expected the same number of incoming values and masks");
747  if (!Masks.empty())
748  User.reset(new VPUser(Masks));
749  }
750 
751  /// Method to support type inquiry through isa, cast, and dyn_cast.
752  static inline bool classof(const VPRecipeBase *V) {
753  return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
754  }
755 
756  /// Generate the phi/select nodes.
757  void execute(VPTransformState &State) override;
758 
759  /// Print the recipe.
760  void print(raw_ostream &O, const Twine &Indent) const override;
761 };
762 
763 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
764 /// or stores into one wide load/store and shuffles.
766 private:
767  const InterleaveGroup *IG;
768 
769 public:
771  : VPRecipeBase(VPInterleaveSC), IG(IG) {}
772  ~VPInterleaveRecipe() override = default;
773 
774  /// Method to support type inquiry through isa, cast, and dyn_cast.
775  static inline bool classof(const VPRecipeBase *V) {
776  return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
777  }
778 
779  /// Generate the wide load or store, and shuffles.
780  void execute(VPTransformState &State) override;
781 
782  /// Print the recipe.
783  void print(raw_ostream &O, const Twine &Indent) const override;
784 
785  const InterleaveGroup *getInterleaveGroup() { return IG; }
786 };
787 
788 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
789 /// copies of the original scalar type, one per lane, instead of producing a
790 /// single copy of widened type for all lanes. If the instruction is known to be
791 /// uniform only one copy, per lane zero, will be generated.
793 private:
794  /// The instruction being replicated.
795  Instruction *Ingredient;
796 
797  /// Indicator if only a single replica per lane is needed.
798  bool IsUniform;
799 
800  /// Indicator if the replicas are also predicated.
801  bool IsPredicated;
802 
803  /// Indicator if the scalar values should also be packed into a vector.
804  bool AlsoPack;
805 
806 public:
807  VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
808  : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
809  IsPredicated(IsPredicated) {
810  // Retain the previous behavior of predicateInstructions(), where an
811  // insert-element of a predicated instruction got hoisted into the
812  // predicated basic block iff it was its only user. This is achieved by
813  // having predicated instructions also pack their values into a vector by
814  // default unless they have a replicated user which uses their scalar value.
815  AlsoPack = IsPredicated && !I->use_empty();
816  }
817 
818  ~VPReplicateRecipe() override = default;
819 
820  /// Method to support type inquiry through isa, cast, and dyn_cast.
821  static inline bool classof(const VPRecipeBase *V) {
822  return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
823  }
824 
825  /// Generate replicas of the desired Ingredient. Replicas will be generated
826  /// for all parts and lanes unless a specific part and lane are specified in
827  /// the \p State.
828  void execute(VPTransformState &State) override;
829 
830  void setAlsoPack(bool Pack) { AlsoPack = Pack; }
831 
832  /// Print the recipe.
833  void print(raw_ostream &O, const Twine &Indent) const override;
834 };
835 
836 /// A recipe for generating conditional branches on the bits of a mask.
838 private:
839  std::unique_ptr<VPUser> User;
840 
841 public:
842  VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
843  if (BlockInMask) // nullptr means all-one mask.
844  User.reset(new VPUser({BlockInMask}));
845  }
846 
847  /// Method to support type inquiry through isa, cast, and dyn_cast.
848  static inline bool classof(const VPRecipeBase *V) {
849  return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
850  }
851 
852  /// Generate the extraction of the appropriate bit from the block mask and the
853  /// conditional branch.
854  void execute(VPTransformState &State) override;
855 
856  /// Print the recipe.
857  void print(raw_ostream &O, const Twine &Indent) const override {
858  O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
859  if (User)
860  O << *User->getOperand(0);
861  else
862  O << " All-One";
863  O << "\\l\"";
864  }
865 };
866 
867 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
868 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
869 /// order to merge values that are set under such a branch and feed their uses.
870 /// The phi nodes can be scalar or vector depending on the users of the value.
871 /// This recipe works in concert with VPBranchOnMaskRecipe.
873 private:
874  Instruction *PredInst;
875 
876 public:
877  /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
878  /// nodes after merging back from a Branch-on-Mask.
880  : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
881  ~VPPredInstPHIRecipe() override = default;
882 
883  /// Method to support type inquiry through isa, cast, and dyn_cast.
884  static inline bool classof(const VPRecipeBase *V) {
885  return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
886  }
887 
888  /// Generates phi nodes for live-outs as needed to retain SSA form.
889  void execute(VPTransformState &State) override;
890 
891  /// Print the recipe.
892  void print(raw_ostream &O, const Twine &Indent) const override;
893 };
894 
895 /// A Recipe for widening load/store operations.
896 /// TODO: We currently execute only per-part unless a specific instance is
897 /// provided.
899 private:
900  Instruction &Instr;
901  std::unique_ptr<VPUser> User;
902 
903 public:
905  : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
906  if (Mask) // Create a VPInstruction to register as a user of the mask.
907  User.reset(new VPUser({Mask}));
908  }
909 
910  /// Method to support type inquiry through isa, cast, and dyn_cast.
911  static inline bool classof(const VPRecipeBase *V) {
912  return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
913  }
914 
915  /// Generate the wide load/store.
916  void execute(VPTransformState &State) override;
917 
918  /// Print the recipe.
919  void print(raw_ostream &O, const Twine &Indent) const override;
920 };
921 
922 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
923 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
924 /// output IR instructions.
925 class VPBasicBlock : public VPBlockBase {
926 public:
928 
929 private:
930  /// The VPRecipes held in the order of output instructions to generate.
931  RecipeListTy Recipes;
932 
933 public:
934  VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
935  : VPBlockBase(VPBasicBlockSC, Name.str()) {
936  if (Recipe)
937  appendRecipe(Recipe);
938  }
939 
940  ~VPBasicBlock() override { Recipes.clear(); }
941 
942  /// Instruction iterators...
947 
948  //===--------------------------------------------------------------------===//
949  /// Recipe iterator methods
950  ///
951  inline iterator begin() { return Recipes.begin(); }
952  inline const_iterator begin() const { return Recipes.begin(); }
953  inline iterator end() { return Recipes.end(); }
954  inline const_iterator end() const { return Recipes.end(); }
955 
956  inline reverse_iterator rbegin() { return Recipes.rbegin(); }
957  inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
958  inline reverse_iterator rend() { return Recipes.rend(); }
959  inline const_reverse_iterator rend() const { return Recipes.rend(); }
960 
961  inline size_t size() const { return Recipes.size(); }
962  inline bool empty() const { return Recipes.empty(); }
963  inline const VPRecipeBase &front() const { return Recipes.front(); }
964  inline VPRecipeBase &front() { return Recipes.front(); }
965  inline const VPRecipeBase &back() const { return Recipes.back(); }
966  inline VPRecipeBase &back() { return Recipes.back(); }
967 
968  /// Returns a reference to the list of recipes.
969  RecipeListTy &getRecipeList() { return Recipes; }
970 
971  /// Returns a pointer to a member of the recipe list.
973  return &VPBasicBlock::Recipes;
974  }
975 
976  /// Method to support type inquiry through isa, cast, and dyn_cast.
977  static inline bool classof(const VPBlockBase *V) {
978  return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
979  }
980 
981  void insert(VPRecipeBase *Recipe, iterator InsertPt) {
982  assert(Recipe && "No recipe to append.");
983  assert(!Recipe->Parent && "Recipe already in VPlan");
984  Recipe->Parent = this;
985  Recipes.insert(InsertPt, Recipe);
986  }
987 
988  /// Augment the existing recipes of a VPBasicBlock with an additional
989  /// \p Recipe as the last recipe.
990  void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
991 
992  /// The method which generates the output IR instructions that correspond to
993  /// this VPBasicBlock, thereby "executing" the VPlan.
994  void execute(struct VPTransformState *State) override;
995 
996 private:
997  /// Create an IR BasicBlock to hold the output instructions generated by this
998  /// VPBasicBlock, and return it. Update the CFGState accordingly.
999  BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1000 };
1001 
1002 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1003 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1004 /// A VPRegionBlock may indicate that its contents are to be replicated several
1005 /// times. This is designed to support predicated scalarization, in which a
1006 /// scalar if-then code structure needs to be generated VF * UF times. Having
1007 /// this replication indicator helps to keep a single model for multiple
1008 /// candidate VF's. The actual replication takes place only once the desired VF
1009 /// and UF have been determined.
1010 class VPRegionBlock : public VPBlockBase {
1011 private:
1012  /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1013  VPBlockBase *Entry;
1014 
1015  /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1016  VPBlockBase *Exit;
1017 
1018  /// An indicator whether this region is to generate multiple replicated
1019  /// instances of output IR corresponding to its VPBlockBases.
1020  bool IsReplicator;
1021 
1022 public:
1024  const std::string &Name = "", bool IsReplicator = false)
1025  : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1026  IsReplicator(IsReplicator) {
1027  assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1028  assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1029  Entry->setParent(this);
1030  Exit->setParent(this);
1031  }
1032  VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
1033  : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1034  IsReplicator(IsReplicator) {}
1035 
1036  ~VPRegionBlock() override {
1037  if (Entry)
1038  deleteCFG(Entry);
1039  }
1040 
1041  /// Method to support type inquiry through isa, cast, and dyn_cast.
1042  static inline bool classof(const VPBlockBase *V) {
1043  return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1044  }
1045 
1046  const VPBlockBase *getEntry() const { return Entry; }
1047  VPBlockBase *getEntry() { return Entry; }
1048 
1049  /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1050  /// EntryBlock must have no predecessors.
1051  void setEntry(VPBlockBase *EntryBlock) {
1052  assert(EntryBlock->getPredecessors().empty() &&
1053  "Entry block cannot have predecessors.");
1054  Entry = EntryBlock;
1055  EntryBlock->setParent(this);
1056  }
1057 
1058  // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1059  // specific interface of llvm::Function, instead of using
1060  // GraphTraints::getEntryNode. We should add a new template parameter to
1061  // DominatorTreeBase representing the Graph type.
1062  VPBlockBase &front() const { return *Entry; }
1063 
1064  const VPBlockBase *getExit() const { return Exit; }
1065  VPBlockBase *getExit() { return Exit; }
1066 
1067  /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1068  /// ExitBlock must have no successors.
1069  void setExit(VPBlockBase *ExitBlock) {
1070  assert(ExitBlock->getSuccessors().empty() &&
1071  "Exit block cannot have successors.");
1072  Exit = ExitBlock;
1073  ExitBlock->setParent(this);
1074  }
1075 
1076  /// An indicator whether this region is to generate multiple replicated
1077  /// instances of output IR corresponding to its VPBlockBases.
1078  bool isReplicator() const { return IsReplicator; }
1079 
1080  /// The method which generates the output IR instructions that correspond to
1081  /// this VPRegionBlock, thereby "executing" the VPlan.
1082  void execute(struct VPTransformState *State) override;
1083 };
1084 
1085 /// VPlan models a candidate for vectorization, encoding various decisions take
1086 /// to produce efficient output IR, including which branches, basic-blocks and
1087 /// output IR instructions to generate, and their cost. VPlan holds a
1088 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1089 /// VPBlock.
1090 class VPlan {
1091  friend class VPlanPrinter;
1092 
1093 private:
1094  /// Hold the single entry to the Hierarchical CFG of the VPlan.
1095  VPBlockBase *Entry;
1096 
1097  /// Holds the VFs applicable to this VPlan.
1099 
1100  /// Holds the name of the VPlan, for printing.
1101  std::string Name;
1102 
1103  /// Holds all the external definitions created for this VPlan.
1104  // TODO: Introduce a specific representation for external definitions in
1105  // VPlan. External definitions must be immutable and hold a pointer to its
1106  // underlying IR that will be used to implement its structural comparison
1107  // (operators '==' and '<').
1108  SmallPtrSet<VPValue *, 16> VPExternalDefs;
1109 
1110  /// Holds a mapping between Values and their corresponding VPValue inside
1111  /// VPlan.
1112  Value2VPValueTy Value2VPValue;
1113 
1114  /// Holds the VPLoopInfo analysis for this VPlan.
1115  VPLoopInfo VPLInfo;
1116 
1117 public:
1118  VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
1119 
1121  if (Entry)
1122  VPBlockBase::deleteCFG(Entry);
1123  for (auto &MapEntry : Value2VPValue)
1124  delete MapEntry.second;
1125  for (VPValue *Def : VPExternalDefs)
1126  delete Def;
1127  }
1128 
1129  /// Generate the IR code for this VPlan.
1130  void execute(struct VPTransformState *State);
1131 
1132  VPBlockBase *getEntry() { return Entry; }
1133  const VPBlockBase *getEntry() const { return Entry; }
1134 
1135  VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
1136 
1137  void addVF(unsigned VF) { VFs.insert(VF); }
1138 
1139  bool hasVF(unsigned VF) { return VFs.count(VF); }
1140 
1141  const std::string &getName() const { return Name; }
1142 
1143  void setName(const Twine &newName) { Name = newName.str(); }
1144 
1145  /// Add \p VPVal to the pool of external definitions if it's not already
1146  /// in the pool.
1147  void addExternalDef(VPValue *VPVal) {
1148  VPExternalDefs.insert(VPVal);
1149  }
1150 
1151  void addVPValue(Value *V) {
1152  assert(V && "Trying to add a null Value to VPlan");
1153  assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1154  Value2VPValue[V] = new VPValue();
1155  }
1156 
1158  assert(V && "Trying to get the VPValue of a null Value");
1159  assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1160  return Value2VPValue[V];
1161  }
1162 
1163  /// Return the VPLoopInfo analysis for this VPlan.
1164  VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
1165  const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1166 
1167 private:
1168  /// Add to the given dominator tree the header block and every new basic block
1169  /// that was created between it and the latch block, inclusive.
1170  static void updateDominatorTree(DominatorTree *DT,
1171  BasicBlock *LoopPreHeaderBB,
1172  BasicBlock *LoopLatchBB);
1173 };
1174 
1175 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1176 /// indented and follows the dot format.
1178  friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
1179  friend inline raw_ostream &operator<<(raw_ostream &OS,
1180  const struct VPlanIngredient &I);
1181 
1182 private:
1183  raw_ostream &OS;
1184  VPlan &Plan;
1185  unsigned Depth;
1186  unsigned TabWidth = 2;
1187  std::string Indent;
1188  unsigned BID = 0;
1190 
1191  VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
1192 
1193  /// Handle indentation.
1194  void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1195 
1196  /// Print a given \p Block of the Plan.
1197  void dumpBlock(const VPBlockBase *Block);
1198 
1199  /// Print the information related to the CFG edges going out of a given
1200  /// \p Block, followed by printing the successor blocks themselves.
1201  void dumpEdges(const VPBlockBase *Block);
1202 
1203  /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1204  /// its successor blocks.
1205  void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1206 
1207  /// Print a given \p Region of the Plan.
1208  void dumpRegion(const VPRegionBlock *Region);
1209 
1210  unsigned getOrCreateBID(const VPBlockBase *Block) {
1211  return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1212  }
1213 
1214  const Twine getOrCreateName(const VPBlockBase *Block);
1215 
1216  const Twine getUID(const VPBlockBase *Block);
1217 
1218  /// Print the information related to a CFG edge between two VPBlockBases.
1219  void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1220  const Twine &Label);
1221 
1222  void dump();
1223 
1224  static void printAsIngredient(raw_ostream &O, Value *V);
1225 };
1226 
1229 
1230  VPlanIngredient(Value *V) : V(V) {}
1231 };
1232 
1234  VPlanPrinter::printAsIngredient(OS, I.V);
1235  return OS;
1236 }
1237 
1239  VPlanPrinter Printer(OS, Plan);
1240  Printer.dump();
1241  return OS;
1242 }
1243 
1244 //===----------------------------------------------------------------------===//
1245 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
1246 //===----------------------------------------------------------------------===//
1247 
1248 // The following set of template specializations implement GraphTraits to treat
1249 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1250 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1251 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
1252 // successors/predecessors but not to the blocks inside the region.
1253 
1254 template <> struct GraphTraits<VPBlockBase *> {
1257 
1258  static NodeRef getEntryNode(NodeRef N) { return N; }
1259 
1261  return N->getSuccessors().begin();
1262  }
1263 
1265  return N->getSuccessors().end();
1266  }
1267 };
1268 
1269 template <> struct GraphTraits<const VPBlockBase *> {
1270  using NodeRef = const VPBlockBase *;
1272 
1273  static NodeRef getEntryNode(NodeRef N) { return N; }
1274 
1276  return N->getSuccessors().begin();
1277  }
1278 
1280  return N->getSuccessors().end();
1281  }
1282 };
1283 
1284 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1285 // of successors for the inverse traversal.
1286 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
1289 
1291 
1293  return N->getPredecessors().begin();
1294  }
1295 
1297  return N->getPredecessors().end();
1298  }
1299 };
1300 
1301 // The following set of template specializations implement GraphTraits to
1302 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1303 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1304 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1305 // there won't be automatic recursion into other VPBlockBases that turn to be
1306 // VPRegionBlocks.
1307 
1308 template <>
1312 
1313  static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1314 
1316  return nodes_iterator::begin(N->getEntry());
1317  }
1318 
1320  // df_iterator::end() returns an empty iterator so the node used doesn't
1321  // matter.
1322  return nodes_iterator::end(N);
1323  }
1324 };
1325 
1326 template <>
1329  using GraphRef = const VPRegionBlock *;
1331 
1332  static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1333 
1335  return nodes_iterator::begin(N->getEntry());
1336  }
1337 
1339  // df_iterator::end() returns an empty iterator so the node used doesn't
1340  // matter.
1341  return nodes_iterator::end(N);
1342  }
1343 };
1344 
1345 template <>
1350 
1352  return N.Graph->getExit();
1353  }
1354 
1356  return nodes_iterator::begin(N->getExit());
1357  }
1358 
1360  // df_iterator::end() returns an empty iterator so the node used doesn't
1361  // matter.
1362  return nodes_iterator::end(N);
1363  }
1364 };
1365 
1366 //===----------------------------------------------------------------------===//
1367 // VPlan Utilities
1368 //===----------------------------------------------------------------------===//
1369 
1370 /// Class that provides utilities for VPBlockBases in VPlan.
1372 public:
1373  VPBlockUtils() = delete;
1374 
1375  /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
1376  /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1377  /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1378  /// has more than one successor, its conditional bit is propagated to \p
1379  /// NewBlock. \p NewBlock must have neither successors nor predecessors.
1380  static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1381  assert(NewBlock->getSuccessors().empty() &&
1382  "Can't insert new block with successors.");
1383  // TODO: move successors from BlockPtr to NewBlock when this functionality
1384  // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1385  // already has successors.
1386  BlockPtr->setOneSuccessor(NewBlock);
1387  NewBlock->setPredecessors({BlockPtr});
1388  NewBlock->setParent(BlockPtr->getParent());
1389  }
1390 
1391  /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1392  /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1393  /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
1394  /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1395  /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1396  /// must have neither successors nor predecessors.
1397  static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
1398  VPValue *Condition, VPBlockBase *BlockPtr) {
1399  assert(IfTrue->getSuccessors().empty() &&
1400  "Can't insert IfTrue with successors.");
1401  assert(IfFalse->getSuccessors().empty() &&
1402  "Can't insert IfFalse with successors.");
1403  BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
1404  IfTrue->setPredecessors({BlockPtr});
1405  IfFalse->setPredecessors({BlockPtr});
1406  IfTrue->setParent(BlockPtr->getParent());
1407  IfFalse->setParent(BlockPtr->getParent());
1408  }
1409 
1410  /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1411  /// the successors of \p From and \p From to the predecessors of \p To. Both
1412  /// VPBlockBases must have the same parent, which can be null. Both
1413  /// VPBlockBases can be already connected to other VPBlockBases.
1414  static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
1415  assert((From->getParent() == To->getParent()) &&
1416  "Can't connect two block with different parents");
1417  assert(From->getNumSuccessors() < 2 &&
1418  "Blocks can't have more than two successors.");
1419  From->appendSuccessor(To);
1420  To->appendPredecessor(From);
1421  }
1422 
1423  /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1424  /// from the successors of \p From and \p From from the predecessors of \p To.
1425  static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
1426  assert(To && "Successor to disconnect is null.");
1427  From->removeSuccessor(To);
1428  To->removePredecessor(From);
1429  }
1430 };
1431 
1432 } // end namespace llvm
1433 
1434 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
const std::string & getName() const
Definition: VPlan.h:387
LoopInfo * LI
Hold a pointer to LoopInfo to register new basic blocks in the loop.
Definition: VPlan.h:300
VPWidenRecipe(Instruction *I)
Definition: VPlan.h:659
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:259
const VPRegionBlock * getParent() const
Definition: VPlan.h:397
bool appendInstruction(Instruction *Instr)
Augment the recipe to include Instr, if it lies at its End.
Definition: VPlan.h:675
static NodeRef getEntryNode(Inverse< GraphRef > N)
Definition: VPlan.h:1351
void setAlsoPack(bool Pack)
Definition: VPlan.h:830
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:667
enum { VPBasicBlockSC, VPRegionBlockSC } VPBlockTy
An enumeration for keeping track of the concrete subclass of VPBlockBase that are actually instantiat...
Definition: VPlan.h:381
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:250
VectorizerValueMap(unsigned UF, unsigned VF)
Construct an empty map with the given unroll and vectorization factors.
Definition: VPlan.h:126
~VPBasicBlock() override
Definition: VPlan.h:940
SmallVectorImpl< VPBlockBase * >::const_iterator ChildIteratorType
Definition: VPlan.h:1271
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
Various leaf nodes.
Definition: ISDOpcodes.h:60
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, const std::string &Name="", bool IsReplicator=false)
Definition: VPlan.h:1023
const_reverse_iterator rbegin() const
Definition: VPlan.h:957
static NodeRef getEntryNode(GraphRef N)
Definition: VPlan.h:1313
Optional< VPIteration > Instance
Hold the indices to generate specific scalar instructions.
Definition: VPlan.h:245
VPRegionBlock * getParent()
Definition: VPlan.h:396
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:1090
VPInstruction(unsigned Opcode, ArrayRef< VPValue *> Operands)
Definition: VPlan.h:617
DenseMap< VPValue *, PerPartValuesTy > PerPartOutput
Definition: VPlan.h:253
Value * getScalarValue(Value *Key, const VPIteration &Instance)
Retrieve the existing scalar value that corresponds to Key and Instance.
Definition: VPlan.h:170
void setEntry(VPBlockBase *EntryBlock)
Set EntryBlock as the entry VPBlockBase of this VPRegionBlock.
Definition: VPlan.h:1051
VPlanIngredient(Value *V)
Definition: VPlan.h:1230
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:1010
enum { VPBlendSC, VPBranchOnMaskSC, VPInstructionSC, VPInterleaveSC, VPPredInstPHISC, VPReplicateSC, VPWidenIntOrFpInductionSC, VPWidenMemoryInstructionSC, VPWidenPHISC, VPWidenSC, } VPRecipeTy
An enumeration for keeping track of the concrete subclass of VPRecipeBase that is actually instantiat...
Definition: VPlan.h:566
IRBuilder & Builder
Hold a reference to the IRBuilder used to generate output IR code.
Definition: VPlan.h:306
VPRecipeBase & back()
Definition: VPlan.h:966
This is a helper struct for maintaining vectorization state.
Definition: VPlan.h:106
A Recipe for widening load/store operations.
Definition: VPlan.h:898
void print(raw_ostream &O, const Twine &Indent) const override
Print the recipe.
Definition: VPlan.h:857
bool hasAnyScalarValue(Value *Key) const
Definition: VPlan.h:144
void addExternalDef(VPValue *VPVal)
Add VPVal to the pool of external definitions if it&#39;s not already in the pool.
Definition: VPlan.h:1147
VPBlockBase * getSingleSuccessor() const
Definition: VPlan.h:421
void addVPValue(Value *V)
Definition: VPlan.h:1151
print alias Alias Set Printer
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:699
VPRecipeBase & front()
Definition: VPlan.h:964
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:541
unsigned getVPRecipeID() const
Definition: VPlan.h:574
VPValue * getVPValue(Value *V)
Definition: VPlan.h:1157
bool hasAnyVectorValue(Value *Key) const
Definition: VPlan.h:129
reverse_iterator rend()
Definition: VPlan.h:958
static bool classof(const VPRecipeBase *R)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:630
unsigned VF
The chosen Vectorization and Unroll Factors of the loop being vectorized.
Definition: VPlan.h:239
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
Definition: VPlan.h:872
const VPBlocksTy & getHierarchicalSuccessors()
Definition: VPlan.h:451
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
virtual ~VPCallback()
Definition: VPlan.h:225
VPBlockBase * getEntry()
Definition: VPlan.h:1047
size_t size() const
Definition: VPlan.h:961
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
Definition: VPlan.h:1380
bool hasVectorValue(Value *Key, unsigned Part) const
Definition: VPlan.h:134
VPBlocksTy & getSuccessors()
Definition: VPlan.h:414
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:731
VectorizerValueMap & ValueMap
Hold a reference to the Value state information used when generating the Values of the output IR...
Definition: VPlan.h:310
static StringRef getName(Value *V)
A recipe for handling all phi nodes except for integer and FP inductions.
Definition: VPlan.h:712
~VPRegionBlock() override
Definition: VPlan.h:1036
void setName(const Twine &newName)
Definition: VPlan.h:389
DominatorTree * DT
Hold a pointer to Dominator Tree to register new basic blocks in the loop.
Definition: VPlan.h:303
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition: VPlan.h:981
const std::string & getName() const
Definition: VPlan.h:1141
VPBlocksTy & getPredecessors()
Definition: VPlan.h:417
static RecipeListTy VPBasicBlock::* getSublistAccess(VPRecipeBase *)
Returns a pointer to a member of the recipe list.
Definition: VPlan.h:972
static ChildIteratorType child_end(NodeRef N)
Definition: VPlan.h:1296
void setName(const Twine &newName)
Definition: VPlan.h:1143
VPWidenPHIRecipe(PHINode *Phi)
Definition: VPlan.h:717
static ChildIteratorType child_begin(NodeRef N)
Definition: VPlan.h:1275
Key
PAL metadata keys.
VPBlockBase * getSinglePredecessor() const
Definition: VPlan.h:427
unsigned End
Definition: VPlan.h:70
VPlanPrinter prints a given VPlan to a given output stream.
Definition: VPlan.h:1177
static ChildIteratorType child_end(NodeRef N)
Definition: VPlan.h:1279
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition: VPlan.h:1078
static nodes_iterator nodes_begin(GraphRef N)
Definition: VPlan.h:1334
static NodeRef getEntryNode(GraphRef N)
Definition: VPlan.h:1332
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:721
This class is used to enable the VPlan to invoke a method of ILV.
Definition: VPlan.h:224
The group of interleaved loads/stores sharing the same stride and close to each other.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
const VPBlockBase * getExit() const
Definition: VPlan.h:1064
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
Definition: VPlan.h:231
VPBlockBase * getSingleHierarchicalSuccessor()
Definition: VPlan.h:457
VPBlockBase * getSingleHierarchicalPredecessor()
Definition: VPlan.h:473
unsigned getVPBlockID() const
Definition: VPlan.h:394
static bool classof(const VPValue *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:625
unsigned getVPValueID() const
Definition: VPlanValue.h:83
VPInstruction(unsigned Opcode, std::initializer_list< VPValue *> Operands)
Definition: VPlan.h:621
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:142
This class represents a truncation of integer types.
iterator begin()
Recipe iterator methods.
Definition: VPlan.h:951
void resetScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar)
Reset the scalar value associated with Key for Part and Lane.
Definition: VPlan.h:214
bool isLegalToHoistInto()
Return true if it is legal to hoist instructions into this block.
Definition: VPlan.h:532
SmallVectorImpl< VPBlockBase * >::iterator ChildIteratorType
Definition: VPlan.h:1256
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe...
Definition: VPlan.h:990
const VPBlocksTy & getHierarchicalPredecessors()
Definition: VPlan.h:467
#define P(N)
static nodes_iterator nodes_end(GraphRef N)
Definition: VPlan.h:1359
This class augments VPValue with operands which provide the inverse def-use edges from VPValue&#39;s user...
Definition: VPlanValue.h:114
An ilist node that can access its parent list.
Definition: ilist_node.h:257
typename VPBlockBase *::UnknownGraphTypeError NodeRef
Definition: GraphTraits.h:79
void setOneSuccessor(VPBlockBase *Successor)
Set a given VPBlockBase Successor as the single successor of this VPBlockBase.
Definition: VPlan.h:487
const InterleaveGroup * getInterleaveGroup()
Definition: VPlan.h:785
VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
Definition: VPlan.h:904
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:911
static ChildIteratorType child_begin(NodeRef N)
Definition: VPlan.h:1292
VPBlendRecipe(PHINode *Phi, ArrayRef< VPValue *> Masks)
Definition: VPlan.h:742
void setExit(VPBlockBase *ExitBlock)
Set ExitBlock as the exit VPBlockBase of this VPRegionBlock.
Definition: VPlan.h:1069
This file defines VPLoopInfo analysis and VPLoop class.
reverse_iterator rbegin()
Definition: VPlan.h:956
LLVM Basic Block Representation.
Definition: BasicBlock.h:59
const VPValue * getCondBit() const
Definition: VPlan.h:480
SmallVector< Value *, 2 > PerPartValuesTy
A type for vectorized values in the new loop.
Definition: VPlan.h:251
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
bool hasScalarValue(Value *Key, const VPIteration &Instance) const
Definition: VPlan.h:149
VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc=nullptr)
Definition: VPlan.h:694
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
SmallDenseMap< VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
Definition: VPlan.h:294
const unsigned Start
Definition: VPlan.h:67
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
size_t getNumPredecessors() const
Definition: VPlan.h:432
static NodeRef getEntryNode(NodeRef N)
Definition: VPlan.h:1258
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:73
static ChildIteratorType child_end(NodeRef N)
Definition: VPlan.h:1264
void printAsOperand(raw_ostream &OS, bool PrintType) const
Definition: VPlan.h:521
Hold state information used when constructing the CFG of the output IR, traversing the VPBasicBlocks ...
Definition: VPlan.h:280
size_t getNumSuccessors() const
Definition: VPlan.h:431
VPCallback & Callback
Definition: VPlan.h:319
VPBlockBase * setEntry(VPBlockBase *Block)
Definition: VPlan.h:1135
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
bool hasVF(unsigned VF)
Definition: VPlan.h:1139
self_iterator getIterator()
Definition: ilist_node.h:82
VPValue2ValueTy VPValue2Value
Hold a reference to a mapping between VPValues in VPlan and original Values they correspond to...
Definition: VPlan.h:314
std::pair< NoneType, bool > insert(const T &V)
insert - Insert an element into the set if it isn&#39;t already there.
Definition: SmallSet.h:181
static bool classof(const VPBlockBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:977
VPBlockBase & front() const
Definition: VPlan.h:1062
SmallVectorImpl< VPBlockBase * >::iterator ChildIteratorType
Definition: VPlan.h:1288
iterator erase(const_iterator CI)
Definition: SmallVector.h:445
static void connectBlocks(VPBlockBase *From, VPBlockBase *To)
Connect VPBlockBases From and To bi-directionally.
Definition: VPlan.h:1414
size_t size() const
Definition: SmallVector.h:53
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range))
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1039
void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar)
Set a scalar value associated with Key and Instance.
Definition: VPlan.h:188
An intrusive list with ownership and callbacks specified/controlled by ilist_traits, only with API safe for polymorphic types.
Definition: ilist.h:390
static nodes_iterator nodes_end(GraphRef N)
Definition: VPlan.h:1338
static void deleteCFG(VPBlockBase *Entry)
Delete all blocks reachable from a given VPBlockBase, inclusive.
Definition: VPlan.cpp:104
void setPredecessors(ArrayRef< VPBlockBase *> NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
Definition: VPlan.h:508
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:925
VPBlockBase(const unsigned char SC, const std::string &N)
Definition: VPlan.h:373
const_iterator begin() const
Definition: VPlan.h:952
unsigned Lane
in [0..VF)
Definition: VPlan.h:86
const VPRecipeBase & back() const
Definition: VPlan.h:965
Iterator for intrusive lists based on ilist_node.
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPValue *Condition)
Set two given VPBlockBases IfTrue and IfFalse to be the two successors of this VPBlockBase.
Definition: VPlan.h:496
See the file comment.
Definition: ValueMap.h:86
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
const GraphType & Graph
Definition: GraphTraits.h:97
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPValue *Condition, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
Definition: VPlan.h:1397
A range of powers-of-2 vectorization factors with fixed start and adjustable end. ...
Definition: VPlan.h:65
const VPRecipeBase & front() const
Definition: VPlan.h:963
VPLoopInfo & getVPLoopInfo()
Return the VPLoopInfo analysis for this VPlan.
Definition: VPlan.h:1164
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:324
static NodeRef getEntryNode(Inverse< NodeRef > B)
Definition: VPlan.h:1290
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated=false)
Definition: VPlan.h:807
Class that provides utilities for VPBlockBases in VPlan.
Definition: VPlan.h:1371
static NodeRef getEntryNode(NodeRef N)
Definition: VPlan.h:1273
CHAIN = SC CHAIN, Imm128 - System call.
static bool classof(const VPBlockBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:1042
void setCondBit(VPValue *CV)
Definition: VPlan.h:482
const VPBlocksTy & getSuccessors() const
Definition: VPlan.h:413
unsigned getNumIncomingValues() const
Return the number of incoming edges.
const VPBlockBase * getEntry() const
Definition: VPlan.h:1046
void addVF(unsigned VF)
Definition: VPlan.h:1137
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition: VPlan.h:765
VPValue * getCondBit()
Definition: VPlan.h:478
void resetVectorValue(Value *Key, unsigned Part, Value *Vector)
Reset the vector value associated with Key for the given Part.
Definition: VPlan.h:205
VPBlockBase * getExit()
Definition: VPlan.h:1065
InnerLoopVectorizer * ILV
Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
Definition: VPlan.h:317
VPRegionBlock(const std::string &Name="", bool IsReplicator=false)
Definition: VPlan.h:1032
const VPBasicBlock * getParent() const
Definition: VPlan.h:578
bool empty() const
Definition: VPlan.h:962
void print(raw_ostream &OS) const
Definition: VPlan.h:525
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:133
VPInterleaveRecipe(const InterleaveGroup *IG)
Definition: VPlan.h:770
iterator insert(iterator where, pointer New)
Definition: ilist.h:228
const VPBlocksTy & getPredecessors() const
Definition: VPlan.h:416
Flatten the CFG
static nodes_iterator nodes_begin(GraphRef N)
Definition: VPlan.h:1355
Value * getVectorValue(Value *Key, unsigned Part)
Retrieve the existing vector value that corresponds to Key and Part.
Definition: VPlan.h:163
void clear()
Definition: ilist.h:309
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition: VPlan.h:792
VPBlockBase * getEntry()
Definition: VPlan.h:1132
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:848
VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, IRBuilder<> &Builder, VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV, VPCallback &Callback)
Definition: VPlan.h:232
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:884
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
VPRecipeBase(const unsigned char SC)
Definition: VPlan.h:568
VPPredInstPHIRecipe(Instruction *PredInst)
Construct a VPPredInstPHIRecipe given PredInst whose value needs a phi nodes after merging back from ...
Definition: VPlan.h:879
const VPBlockBase * getEntry() const
Definition: VPlan.h:1133
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:821
VPlan(VPBlockBase *Entry=nullptr)
Definition: VPlan.h:1118
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector and ...
Definition: VPlan.h:688
unsigned getOpcode() const
Definition: VPlan.h:634
const_iterator end() const
Definition: VPlan.h:954
raw_ostream & operator<<(raw_ostream &OS, const APInt &I)
Definition: APInt.h:2033
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:141
std::string str() const
Return the twine contents as a std::string.
Definition: Twine.cpp:18
void setVectorValue(Value *Key, unsigned Part, Value *Vector)
Set a vector value associated with Key and Part.
Definition: VPlan.h:177
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:752
Definition: JSON.cpp:592
iterator end()
Definition: VPlan.h:953
VPBasicBlock * getParent()
Definition: VPlan.h:577
VPWidenRecipe is a recipe for producing a copy of vector type for each Instruction in its ingredients...
Definition: VPlan.h:652
aarch64 promote const
This file contains the declarations of the entities induced by Vectorization Plans, e.g.
LLVM Value Representation.
Definition: Value.h:73
A recipe for generating conditional branches on the bits of a mask.
Definition: VPlan.h:837
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
static ChildIteratorType child_begin(NodeRef N)
Definition: VPlan.h:1260
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
Definition: VPlan.h:734
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Definition: VPlan.h:81
static nodes_iterator nodes_end(GraphRef N)
Definition: VPlan.h:1319
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:775
unsigned Part
in [0..UF)
Definition: VPlan.h:83
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:601
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
Definition: VPlan.h:969
VPBranchOnMaskRecipe(VPValue *BlockInMask)
Definition: VPlan.h:842
bool use_empty() const
Definition: Value.h:323
const_reverse_iterator rend() const
Definition: VPlan.h:959
static nodes_iterator nodes_begin(GraphRef N)
Definition: VPlan.h:1315
VPBasicBlock(const Twine &Name="", VPRecipeBase *Recipe=nullptr)
Definition: VPlan.h:934
void setParent(VPRegionBlock *P)
Definition: VPlan.h:399
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
Definition: VPlan.h:1425
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:144
const VPLoopInfo & getVPLoopInfo() const
Definition: VPlan.h:1165
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition: SmallSet.h:165