LLVM  6.0.0svn
ValueMapper.cpp
Go to the documentation of this file.
1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalAlias.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Operator.h"
27 using namespace llvm;
28 
29 // Out of line method to get vtable etc for class.
30 void ValueMapTypeRemapper::anchor() {}
31 void ValueMaterializer::anchor() {}
32 
33 namespace {
34 
35 /// A basic block used in a BlockAddress whose function body is not yet
36 /// materialized.
37 struct DelayedBasicBlock {
38  BasicBlock *OldBB;
39  std::unique_ptr<BasicBlock> TempBB;
40 
41  DelayedBasicBlock(const BlockAddress &Old)
42  : OldBB(Old.getBasicBlock()),
43  TempBB(BasicBlock::Create(Old.getContext())) {}
44 };
45 
46 struct WorklistEntry {
47  enum EntryKind {
48  MapGlobalInit,
49  MapAppendingVar,
50  MapGlobalAliasee,
52  };
53  struct GVInitTy {
54  GlobalVariable *GV;
55  Constant *Init;
56  };
57  struct AppendingGVTy {
58  GlobalVariable *GV;
59  Constant *InitPrefix;
60  };
61  struct GlobalAliaseeTy {
62  GlobalAlias *GA;
63  Constant *Aliasee;
64  };
65 
66  unsigned Kind : 2;
67  unsigned MCID : 29;
68  unsigned AppendingGVIsOldCtorDtor : 1;
69  unsigned AppendingGVNumNewMembers;
70  union {
71  GVInitTy GVInit;
72  AppendingGVTy AppendingGV;
73  GlobalAliaseeTy GlobalAliasee;
74  Function *RemapF;
75  } Data;
76 };
77 
78 struct MappingContext {
80  ValueMaterializer *Materializer = nullptr;
81 
82  /// Construct a MappingContext with a value map and materializer.
83  explicit MappingContext(ValueToValueMapTy &VM,
84  ValueMaterializer *Materializer = nullptr)
85  : VM(&VM), Materializer(Materializer) {}
86 };
87 
88 class MDNodeMapper;
89 class Mapper {
90  friend class MDNodeMapper;
91 
92 #ifndef NDEBUG
93  DenseSet<GlobalValue *> AlreadyScheduled;
94 #endif
95 
97  ValueMapTypeRemapper *TypeMapper;
98  unsigned CurrentMCID = 0;
102  SmallVector<Constant *, 16> AppendingInits;
103 
104 public:
105  Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
106  ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
107  : Flags(Flags), TypeMapper(TypeMapper),
108  MCs(1, MappingContext(VM, Materializer)) {}
109 
110  /// ValueMapper should explicitly call \a flush() before destruction.
111  ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
112 
113  bool hasWorkToDo() const { return !Worklist.empty(); }
114 
115  unsigned
116  registerAlternateMappingContext(ValueToValueMapTy &VM,
117  ValueMaterializer *Materializer = nullptr) {
118  MCs.push_back(MappingContext(VM, Materializer));
119  return MCs.size() - 1;
120  }
121 
122  void addFlags(RemapFlags Flags);
123 
124  void remapGlobalObjectMetadata(GlobalObject &GO);
125 
126  Value *mapValue(const Value *V);
128  void remapFunction(Function &F);
129 
130  Constant *mapConstant(const Constant *C) {
131  return cast_or_null<Constant>(mapValue(C));
132  }
133 
134  /// Map metadata.
135  ///
136  /// Find the mapping for MD. Guarantees that the return will be resolved
137  /// (not an MDNode, or MDNode::isResolved() returns true).
138  Metadata *mapMetadata(const Metadata *MD);
139 
140  void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
141  unsigned MCID);
142  void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
143  bool IsOldCtorDtor,
144  ArrayRef<Constant *> NewMembers,
145  unsigned MCID);
146  void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
147  unsigned MCID);
148  void scheduleRemapFunction(Function &F, unsigned MCID);
149 
150  void flush();
151 
152 private:
153  void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
154  void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
155  bool IsOldCtorDtor,
156  ArrayRef<Constant *> NewMembers);
157  void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
158  void remapFunction(Function &F, ValueToValueMapTy &VM);
159 
160  ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
161  ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
162 
163  Value *mapBlockAddress(const BlockAddress &BA);
164 
165  /// Map metadata that doesn't require visiting operands.
166  Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
167 
168  Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
169  Metadata *mapToSelf(const Metadata *MD);
170 };
171 
172 class MDNodeMapper {
173  Mapper &M;
174 
175  /// Data about a node in \a UniquedGraph.
176  struct Data {
177  bool HasChanged = false;
178  unsigned ID = ~0u;
179  TempMDNode Placeholder;
180  };
181 
182  /// A graph of uniqued nodes.
183  struct UniquedGraph {
184  SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
185  SmallVector<MDNode *, 16> POT; // Post-order traversal.
186 
187  /// Propagate changed operands through the post-order traversal.
188  ///
189  /// Iteratively update \a Data::HasChanged for each node based on \a
190  /// Data::HasChanged of its operands, until fixed point.
191  void propagateChanges();
192 
193  /// Get a forward reference to a node to use as an operand.
194  Metadata &getFwdReference(MDNode &Op);
195  };
196 
197  /// Worklist of distinct nodes whose operands need to be remapped.
198  SmallVector<MDNode *, 16> DistinctWorklist;
199 
200  // Storage for a UniquedGraph.
202  SmallVector<MDNode *, 16> POTStorage;
203 
204 public:
205  MDNodeMapper(Mapper &M) : M(M) {}
206 
207  /// Map a metadata node (and its transitive operands).
208  ///
209  /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
210  /// algorithm handles distinct nodes and uniqued node subgraphs using
211  /// different strategies.
212  ///
213  /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
214  /// using \a mapDistinctNode(). Their mapping can always be computed
215  /// immediately without visiting operands, even if their operands change.
216  ///
217  /// The mapping for uniqued nodes depends on whether their operands change.
218  /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
219  /// a node to calculate uniqued node mappings in bulk. Distinct leafs are
220  /// added to \a DistinctWorklist with \a mapDistinctNode().
221  ///
222  /// After mapping \c N itself, this function remaps the operands of the
223  /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
224  /// N has been mapped.
225  Metadata *map(const MDNode &N);
226 
227 private:
228  /// Map a top-level uniqued node and the uniqued subgraph underneath it.
229  ///
230  /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
231  /// underneath \c FirstN and calculates the nodes' mapping. Each node uses
232  /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
233  /// operands uses the identity mapping.
234  ///
235  /// The algorithm works as follows:
236  ///
237  /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
238  /// save the post-order traversal in the given \a UniquedGraph, tracking
239  /// nodes' operands change.
240  ///
241  /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
242  /// through the \a UniquedGraph until fixed point, following the rule
243  /// that if a node changes, any node that references must also change.
244  ///
245  /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
246  /// (referencing new operands) where necessary.
247  Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
248 
249  /// Try to map the operand of an \a MDNode.
250  ///
251  /// If \c Op is already mapped, return the mapping. If it's not an \a
252  /// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
253  /// return the result of \a mapDistinctNode().
254  ///
255  /// \return None if \c Op is an unmapped uniqued \a MDNode.
256  /// \post getMappedOp(Op) only returns None if this returns None.
257  Optional<Metadata *> tryToMapOperand(const Metadata *Op);
258 
259  /// Map a distinct node.
260  ///
261  /// Return the mapping for the distinct node \c N, saving the result in \a
262  /// DistinctWorklist for later remapping.
263  ///
264  /// \pre \c N is not yet mapped.
265  /// \pre \c N.isDistinct().
266  MDNode *mapDistinctNode(const MDNode &N);
267 
268  /// Get a previously mapped node.
269  Optional<Metadata *> getMappedOp(const Metadata *Op) const;
270 
271  /// Create a post-order traversal of an unmapped uniqued node subgraph.
272  ///
273  /// This traverses the metadata graph deeply enough to map \c FirstN. It
274  /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
275  /// metadata that has already been mapped will not be part of the POT.
276  ///
277  /// Each node that has a changed operand from outside the graph (e.g., a
278  /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
279  /// is marked with \a Data::HasChanged.
280  ///
281  /// \return \c true if any nodes in \c G have \a Data::HasChanged.
282  /// \post \c G.POT is a post-order traversal ending with \c FirstN.
283  /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
284  /// to change because of operands outside the graph.
285  bool createPOT(UniquedGraph &G, const MDNode &FirstN);
286 
287  /// Visit the operands of a uniqued node in the POT.
288  ///
289  /// Visit the operands in the range from \c I to \c E, returning the first
290  /// uniqued node we find that isn't yet in \c G. \c I is always advanced to
291  /// where to continue the loop through the operands.
292  ///
293  /// This sets \c HasChanged if any of the visited operands change.
294  MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
295  MDNode::op_iterator E, bool &HasChanged);
296 
297  /// Map all the nodes in the given uniqued graph.
298  ///
299  /// This visits all the nodes in \c G in post-order, using the identity
300  /// mapping or creating a new node depending on \a Data::HasChanged.
301  ///
302  /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
303  /// their operands outside of \c G.
304  /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
305  /// operands have changed.
306  /// \post \a getMappedOp() returns the mapped node for every node in \c G.
307  void mapNodesInPOT(UniquedGraph &G);
308 
309  /// Remap a node's operands using the given functor.
310  ///
311  /// Iterate through the operands of \c N and update them in place using \c
312  /// mapOperand.
313  ///
314  /// \pre N.isDistinct() or N.isTemporary().
315  template <class OperandMapper>
316  void remapOperands(MDNode &N, OperandMapper mapOperand);
317 };
318 
319 } // end namespace
320 
321 Value *Mapper::mapValue(const Value *V) {
322  ValueToValueMapTy::iterator I = getVM().find(V);
323 
324  // If the value already exists in the map, use it.
325  if (I != getVM().end()) {
326  assert(I->second && "Unexpected null mapping");
327  return I->second;
328  }
329 
330  // If we have a materializer and it can materialize a value, use that.
331  if (auto *Materializer = getMaterializer()) {
332  if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
333  getVM()[V] = NewV;
334  return NewV;
335  }
336  }
337 
338  // Global values do not need to be seeded into the VM if they
339  // are using the identity mapping.
340  if (isa<GlobalValue>(V)) {
341  if (Flags & RF_NullMapMissingGlobalValues)
342  return nullptr;
343  return getVM()[V] = const_cast<Value *>(V);
344  }
345 
346  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
347  // Inline asm may need *type* remapping.
348  FunctionType *NewTy = IA->getFunctionType();
349  if (TypeMapper) {
350  NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
351 
352  if (NewTy != IA->getFunctionType())
353  V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
354  IA->hasSideEffects(), IA->isAlignStack());
355  }
356 
357  return getVM()[V] = const_cast<Value *>(V);
358  }
359 
360  if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
361  const Metadata *MD = MDV->getMetadata();
362 
363  if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
364  // Look through to grab the local value.
365  if (Value *LV = mapValue(LAM->getValue())) {
366  if (V == LAM->getValue())
367  return const_cast<Value *>(V);
369  }
370 
371  // FIXME: always return nullptr once Verifier::verifyDominatesUse()
372  // ensures metadata operands only reference defined SSA values.
373  return (Flags & RF_IgnoreMissingLocals)
374  ? nullptr
376  MDTuple::get(V->getContext(), None));
377  }
378 
379  // If this is a module-level metadata and we know that nothing at the module
380  // level is changing, then use an identity mapping.
381  if (Flags & RF_NoModuleLevelChanges)
382  return getVM()[V] = const_cast<Value *>(V);
383 
384  // Map the metadata and turn it into a value.
385  auto *MappedMD = mapMetadata(MD);
386  if (MD == MappedMD)
387  return getVM()[V] = const_cast<Value *>(V);
388  return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
389  }
390 
391  // Okay, this either must be a constant (which may or may not be mappable) or
392  // is something that is not in the mapping table.
393  Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
394  if (!C)
395  return nullptr;
396 
397  if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
398  return mapBlockAddress(*BA);
399 
400  auto mapValueOrNull = [this](Value *V) {
401  auto Mapped = mapValue(V);
402  assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
403  "Unexpected null mapping for constant operand without "
404  "NullMapMissingGlobalValues flag");
405  return Mapped;
406  };
407 
408  // Otherwise, we have some other constant to remap. Start by checking to see
409  // if all operands have an identity remapping.
410  unsigned OpNo = 0, NumOperands = C->getNumOperands();
411  Value *Mapped = nullptr;
412  for (; OpNo != NumOperands; ++OpNo) {
413  Value *Op = C->getOperand(OpNo);
414  Mapped = mapValueOrNull(Op);
415  if (!Mapped)
416  return nullptr;
417  if (Mapped != Op)
418  break;
419  }
420 
421  // See if the type mapper wants to remap the type as well.
422  Type *NewTy = C->getType();
423  if (TypeMapper)
424  NewTy = TypeMapper->remapType(NewTy);
425 
426  // If the result type and all operands match up, then just insert an identity
427  // mapping.
428  if (OpNo == NumOperands && NewTy == C->getType())
429  return getVM()[V] = C;
430 
431  // Okay, we need to create a new constant. We've already processed some or
432  // all of the operands, set them all up now.
434  Ops.reserve(NumOperands);
435  for (unsigned j = 0; j != OpNo; ++j)
436  Ops.push_back(cast<Constant>(C->getOperand(j)));
437 
438  // If one of the operands mismatch, push it and the other mapped operands.
439  if (OpNo != NumOperands) {
440  Ops.push_back(cast<Constant>(Mapped));
441 
442  // Map the rest of the operands that aren't processed yet.
443  for (++OpNo; OpNo != NumOperands; ++OpNo) {
444  Mapped = mapValueOrNull(C->getOperand(OpNo));
445  if (!Mapped)
446  return nullptr;
447  Ops.push_back(cast<Constant>(Mapped));
448  }
449  }
450  Type *NewSrcTy = nullptr;
451  if (TypeMapper)
452  if (auto *GEPO = dyn_cast<GEPOperator>(C))
453  NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
454 
455  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
456  return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
457  if (isa<ConstantArray>(C))
458  return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
459  if (isa<ConstantStruct>(C))
460  return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
461  if (isa<ConstantVector>(C))
462  return getVM()[V] = ConstantVector::get(Ops);
463  // If this is a no-operand constant, it must be because the type was remapped.
464  if (isa<UndefValue>(C))
465  return getVM()[V] = UndefValue::get(NewTy);
466  if (isa<ConstantAggregateZero>(C))
467  return getVM()[V] = ConstantAggregateZero::get(NewTy);
468  assert(isa<ConstantPointerNull>(C));
469  return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
470 }
471 
472 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
473  Function *F = cast<Function>(mapValue(BA.getFunction()));
474 
475  // F may not have materialized its initializer. In that case, create a
476  // dummy basic block for now, and replace it once we've materialized all
477  // the initializers.
478  BasicBlock *BB;
479  if (F->empty()) {
480  DelayedBBs.push_back(DelayedBasicBlock(BA));
481  BB = DelayedBBs.back().TempBB.get();
482  } else {
483  BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
484  }
485 
486  return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
487 }
488 
489 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
490  getVM().MD()[Key].reset(Val);
491  return Val;
492 }
493 
494 Metadata *Mapper::mapToSelf(const Metadata *MD) {
495  return mapToMetadata(MD, const_cast<Metadata *>(MD));
496 }
497 
498 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
499  if (!Op)
500  return nullptr;
501 
502  if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
503 #ifndef NDEBUG
504  if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
505  assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
506  M.getVM().getMappedMD(Op)) &&
507  "Expected Value to be memoized");
508  else
509  assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
510  "Expected result to be memoized");
511 #endif
512  return *MappedOp;
513  }
514 
515  const MDNode &N = *cast<MDNode>(Op);
516  if (N.isDistinct())
517  return mapDistinctNode(N);
518  return None;
519 }
520 
521 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
522  assert(N.isDistinct() && "Expected a distinct node");
523  assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
524  DistinctWorklist.push_back(cast<MDNode>(
525  (M.Flags & RF_MoveDistinctMDs)
526  ? M.mapToSelf(&N)
527  : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone()))));
528  return DistinctWorklist.back();
529 }
530 
532  Value *MappedV) {
533  if (CMD.getValue() == MappedV)
534  return const_cast<ConstantAsMetadata *>(&CMD);
535  return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
536 }
537 
538 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
539  if (!Op)
540  return nullptr;
541 
542  if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
543  return *MappedOp;
544 
545  if (isa<MDString>(Op))
546  return const_cast<Metadata *>(Op);
547 
548  if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
549  return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
550 
551  return None;
552 }
553 
554 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
555  auto Where = Info.find(&Op);
556  assert(Where != Info.end() && "Expected a valid reference");
557 
558  auto &OpD = Where->second;
559  if (!OpD.HasChanged)
560  return Op;
561 
562  // Lazily construct a temporary node.
563  if (!OpD.Placeholder)
564  OpD.Placeholder = Op.clone();
565 
566  return *OpD.Placeholder;
567 }
568 
569 template <class OperandMapper>
570 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
571  assert(!N.isUniqued() && "Expected distinct or temporary nodes");
572  for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
573  Metadata *Old = N.getOperand(I);
574  Metadata *New = mapOperand(Old);
575 
576  if (Old != New)
577  N.replaceOperandWith(I, New);
578  }
579 }
580 
581 namespace {
582 /// An entry in the worklist for the post-order traversal.
583 struct POTWorklistEntry {
584  MDNode *N; ///< Current node.
585  MDNode::op_iterator Op; ///< Current operand of \c N.
586 
587  /// Keep a flag of whether operands have changed in the worklist to avoid
588  /// hitting the map in \a UniquedGraph.
589  bool HasChanged = false;
590 
591  POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
592 };
593 } // end namespace
594 
595 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
596  assert(G.Info.empty() && "Expected a fresh traversal");
597  assert(FirstN.isUniqued() && "Expected uniqued node in POT");
598 
599  // Construct a post-order traversal of the uniqued subgraph under FirstN.
600  bool AnyChanges = false;
602  Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
603  (void)G.Info[&FirstN];
604  while (!Worklist.empty()) {
605  // Start or continue the traversal through the this node's operands.
606  auto &WE = Worklist.back();
607  if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
608  // Push a new node to traverse first.
609  Worklist.push_back(POTWorklistEntry(*N));
610  continue;
611  }
612 
613  // Push the node onto the POT.
614  assert(WE.N->isUniqued() && "Expected only uniqued nodes");
615  assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
616  auto &D = G.Info[WE.N];
617  AnyChanges |= D.HasChanged = WE.HasChanged;
618  D.ID = G.POT.size();
619  G.POT.push_back(WE.N);
620 
621  // Pop the node off the worklist.
622  Worklist.pop_back();
623  }
624  return AnyChanges;
625 }
626 
627 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
628  MDNode::op_iterator E, bool &HasChanged) {
629  while (I != E) {
630  Metadata *Op = *I++; // Increment even on early return.
631  if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
632  // Check if the operand changes.
633  HasChanged |= Op != *MappedOp;
634  continue;
635  }
636 
637  // A uniqued metadata node.
638  MDNode &OpN = *cast<MDNode>(Op);
639  assert(OpN.isUniqued() &&
640  "Only uniqued operands cannot be mapped immediately");
641  if (G.Info.insert(std::make_pair(&OpN, Data())).second)
642  return &OpN; // This is a new one. Return it.
643  }
644  return nullptr;
645 }
646 
647 void MDNodeMapper::UniquedGraph::propagateChanges() {
648  bool AnyChanges;
649  do {
650  AnyChanges = false;
651  for (MDNode *N : POT) {
652  auto &D = Info[N];
653  if (D.HasChanged)
654  continue;
655 
656  if (none_of(N->operands(), [&](const Metadata *Op) {
657  auto Where = Info.find(Op);
658  return Where != Info.end() && Where->second.HasChanged;
659  }))
660  continue;
661 
662  AnyChanges = D.HasChanged = true;
663  }
664  } while (AnyChanges);
665 }
666 
667 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
668  // Construct uniqued nodes, building forward references as necessary.
669  SmallVector<MDNode *, 16> CyclicNodes;
670  for (auto *N : G.POT) {
671  auto &D = G.Info[N];
672  if (!D.HasChanged) {
673  // The node hasn't changed.
674  M.mapToSelf(N);
675  continue;
676  }
677 
678  // Remember whether this node had a placeholder.
679  bool HadPlaceholder(D.Placeholder);
680 
681  // Clone the uniqued node and remap the operands.
682  TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
683  remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
684  if (Optional<Metadata *> MappedOp = getMappedOp(Old))
685  return *MappedOp;
686  (void)D;
687  assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
688  return &G.getFwdReference(*cast<MDNode>(Old));
689  });
690 
691  auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
692  M.mapToMetadata(N, NewN);
693 
694  // Nodes that were referenced out of order in the POT are involved in a
695  // uniquing cycle.
696  if (HadPlaceholder)
697  CyclicNodes.push_back(NewN);
698  }
699 
700  // Resolve cycles.
701  for (auto *N : CyclicNodes)
702  if (!N->isResolved())
703  N->resolveCycles();
704 }
705 
706 Metadata *MDNodeMapper::map(const MDNode &N) {
707  assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
708  assert(!(M.Flags & RF_NoModuleLevelChanges) &&
709  "MDNodeMapper::map assumes module-level changes");
710 
711  // Require resolved nodes whenever metadata might be remapped.
712  assert(N.isResolved() && "Unexpected unresolved node");
713 
714  Metadata *MappedN =
715  N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
716  while (!DistinctWorklist.empty())
717  remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
718  if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
719  return *MappedOp;
720  return mapTopLevelUniquedNode(*cast<MDNode>(Old));
721  });
722  return MappedN;
723 }
724 
725 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
726  assert(FirstN.isUniqued() && "Expected uniqued node");
727 
728  // Create a post-order traversal of uniqued nodes under FirstN.
729  UniquedGraph G;
730  if (!createPOT(G, FirstN)) {
731  // Return early if no nodes have changed.
732  for (const MDNode *N : G.POT)
733  M.mapToSelf(N);
734  return &const_cast<MDNode &>(FirstN);
735  }
736 
737  // Update graph with all nodes that have changed.
738  G.propagateChanges();
739 
740  // Map all the nodes in the graph.
741  mapNodesInPOT(G);
742 
743  // Return the original node, remapped.
744  return *getMappedOp(&FirstN);
745 }
746 
747 namespace {
748 
749 struct MapMetadataDisabler {
750  ValueToValueMapTy &VM;
751 
752  MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
753  VM.disableMapMetadata();
754  }
755  ~MapMetadataDisabler() { VM.enableMapMetadata(); }
756 };
757 
758 } // end namespace
759 
760 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
761  // If the value already exists in the map, use it.
762  if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
763  return *NewMD;
764 
765  if (isa<MDString>(MD))
766  return const_cast<Metadata *>(MD);
767 
768  // This is a module-level metadata. If nothing at the module level is
769  // changing, use an identity mapping.
770  if ((Flags & RF_NoModuleLevelChanges))
771  return const_cast<Metadata *>(MD);
772 
773  if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
774  // Disallow recursion into metadata mapping through mapValue.
775  MapMetadataDisabler MMD(getVM());
776 
777  // Don't memoize ConstantAsMetadata. Instead of lasting until the
778  // LLVMContext is destroyed, they can be deleted when the GlobalValue they
779  // reference is destructed. These aren't super common, so the extra
780  // indirection isn't that expensive.
781  return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
782  }
783 
784  assert(isa<MDNode>(MD) && "Expected a metadata node");
785 
786  return None;
787 }
788 
789 Metadata *Mapper::mapMetadata(const Metadata *MD) {
790  assert(MD && "Expected valid metadata");
791  assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
792 
793  if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
794  return *NewMD;
795 
796  return MDNodeMapper(*this).map(*cast<MDNode>(MD));
797 }
798 
799 void Mapper::flush() {
800  // Flush out the worklist of global values.
801  while (!Worklist.empty()) {
802  WorklistEntry E = Worklist.pop_back_val();
803  CurrentMCID = E.MCID;
804  switch (E.Kind) {
805  case WorklistEntry::MapGlobalInit:
806  E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
807  remapGlobalObjectMetadata(*E.Data.GVInit.GV);
808  break;
809  case WorklistEntry::MapAppendingVar: {
810  unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
811  mapAppendingVariable(*E.Data.AppendingGV.GV,
812  E.Data.AppendingGV.InitPrefix,
813  E.AppendingGVIsOldCtorDtor,
814  makeArrayRef(AppendingInits).slice(PrefixSize));
815  AppendingInits.resize(PrefixSize);
816  break;
817  }
818  case WorklistEntry::MapGlobalAliasee:
819  E.Data.GlobalAliasee.GA->setAliasee(
820  mapConstant(E.Data.GlobalAliasee.Aliasee));
821  break;
823  remapFunction(*E.Data.RemapF);
824  break;
825  }
826  }
827  CurrentMCID = 0;
828 
829  // Finish logic for block addresses now that all global values have been
830  // handled.
831  while (!DelayedBBs.empty()) {
832  DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
833  BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
834  DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
835  }
836 }
837 
839  // Remap operands.
840  for (Use &Op : I->operands()) {
841  Value *V = mapValue(Op);
842  // If we aren't ignoring missing entries, assert that something happened.
843  if (V)
844  Op = V;
845  else
846  assert((Flags & RF_IgnoreMissingLocals) &&
847  "Referenced value not in value map!");
848  }
849 
850  // Remap phi nodes' incoming blocks.
851  if (PHINode *PN = dyn_cast<PHINode>(I)) {
852  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
853  Value *V = mapValue(PN->getIncomingBlock(i));
854  // If we aren't ignoring missing entries, assert that something happened.
855  if (V)
856  PN->setIncomingBlock(i, cast<BasicBlock>(V));
857  else
858  assert((Flags & RF_IgnoreMissingLocals) &&
859  "Referenced block not in value map!");
860  }
861  }
862 
863  // Remap attached metadata.
865  I->getAllMetadata(MDs);
866  for (const auto &MI : MDs) {
867  MDNode *Old = MI.second;
868  MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
869  if (New != Old)
870  I->setMetadata(MI.first, New);
871  }
872 
873  if (!TypeMapper)
874  return;
875 
876  // If the instruction's type is being remapped, do so now.
877  if (auto CS = CallSite(I)) {
879  FunctionType *FTy = CS.getFunctionType();
880  Tys.reserve(FTy->getNumParams());
881  for (Type *Ty : FTy->params())
882  Tys.push_back(TypeMapper->remapType(Ty));
883  CS.mutateFunctionType(FunctionType::get(
884  TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
885  return;
886  }
887  if (auto *AI = dyn_cast<AllocaInst>(I))
888  AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
889  if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
890  GEP->setSourceElementType(
891  TypeMapper->remapType(GEP->getSourceElementType()));
892  GEP->setResultElementType(
893  TypeMapper->remapType(GEP->getResultElementType()));
894  }
895  I->mutateType(TypeMapper->remapType(I->getType()));
896 }
897 
898 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
900  GO.getAllMetadata(MDs);
901  GO.clearMetadata();
902  for (const auto &I : MDs)
903  GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
904 }
905 
906 void Mapper::remapFunction(Function &F) {
907  // Remap the operands.
908  for (Use &Op : F.operands())
909  if (Op)
910  Op = mapValue(Op);
911 
912  // Remap the metadata attachments.
913  remapGlobalObjectMetadata(F);
914 
915  // Remap the argument types.
916  if (TypeMapper)
917  for (Argument &A : F.args())
918  A.mutateType(TypeMapper->remapType(A.getType()));
919 
920  // Remap the instructions.
921  for (BasicBlock &BB : F)
922  for (Instruction &I : BB)
923  remapInstruction(&I);
924 }
925 
926 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
927  bool IsOldCtorDtor,
928  ArrayRef<Constant *> NewMembers) {
930  if (InitPrefix) {
931  unsigned NumElements =
932  cast<ArrayType>(InitPrefix->getType())->getNumElements();
933  for (unsigned I = 0; I != NumElements; ++I)
934  Elements.push_back(InitPrefix->getAggregateElement(I));
935  }
936 
937  PointerType *VoidPtrTy;
938  Type *EltTy;
939  if (IsOldCtorDtor) {
940  // FIXME: This upgrade is done during linking to support the C API. See
941  // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
942  VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
943  auto &ST = *cast<StructType>(NewMembers.front()->getType());
944  Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
945  EltTy = StructType::get(GV.getContext(), Tys, false);
946  }
947 
948  for (auto *V : NewMembers) {
949  Constant *NewV;
950  if (IsOldCtorDtor) {
951  auto *S = cast<ConstantStruct>(V);
952  auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
953  auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
954  Constant *Null = Constant::getNullValue(VoidPtrTy);
955  NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
956  } else {
957  NewV = cast_or_null<Constant>(mapValue(V));
958  }
959  Elements.push_back(NewV);
960  }
961 
963  cast<ArrayType>(GV.getType()->getElementType()), Elements));
964 }
965 
966 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
967  unsigned MCID) {
968  assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
969  assert(MCID < MCs.size() && "Invalid mapping context");
970 
971  WorklistEntry WE;
972  WE.Kind = WorklistEntry::MapGlobalInit;
973  WE.MCID = MCID;
974  WE.Data.GVInit.GV = &GV;
975  WE.Data.GVInit.Init = &Init;
976  Worklist.push_back(WE);
977 }
978 
979 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
980  Constant *InitPrefix,
981  bool IsOldCtorDtor,
982  ArrayRef<Constant *> NewMembers,
983  unsigned MCID) {
984  assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
985  assert(MCID < MCs.size() && "Invalid mapping context");
986 
987  WorklistEntry WE;
988  WE.Kind = WorklistEntry::MapAppendingVar;
989  WE.MCID = MCID;
990  WE.Data.AppendingGV.GV = &GV;
991  WE.Data.AppendingGV.InitPrefix = InitPrefix;
992  WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
993  WE.AppendingGVNumNewMembers = NewMembers.size();
994  Worklist.push_back(WE);
995  AppendingInits.append(NewMembers.begin(), NewMembers.end());
996 }
997 
998 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
999  unsigned MCID) {
1000  assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
1001  assert(MCID < MCs.size() && "Invalid mapping context");
1002 
1003  WorklistEntry WE;
1004  WE.Kind = WorklistEntry::MapGlobalAliasee;
1005  WE.MCID = MCID;
1006  WE.Data.GlobalAliasee.GA = &GA;
1007  WE.Data.GlobalAliasee.Aliasee = &Aliasee;
1008  Worklist.push_back(WE);
1009 }
1010 
1011 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1012  assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1013  assert(MCID < MCs.size() && "Invalid mapping context");
1014 
1015  WorklistEntry WE;
1016  WE.Kind = WorklistEntry::RemapFunction;
1017  WE.MCID = MCID;
1018  WE.Data.RemapF = &F;
1019  Worklist.push_back(WE);
1020 }
1021 
1022 void Mapper::addFlags(RemapFlags Flags) {
1023  assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1024  this->Flags = this->Flags | Flags;
1025 }
1026 
1027 static Mapper *getAsMapper(void *pImpl) {
1028  return reinterpret_cast<Mapper *>(pImpl);
1029 }
1030 
1031 namespace {
1032 
1033 class FlushingMapper {
1034  Mapper &M;
1035 
1036 public:
1037  explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1038  assert(!M.hasWorkToDo() && "Expected to be flushed");
1039  }
1040  ~FlushingMapper() { M.flush(); }
1041  Mapper *operator->() const { return &M; }
1042 };
1043 
1044 } // end namespace
1045 
1047  ValueMapTypeRemapper *TypeMapper,
1048  ValueMaterializer *Materializer)
1049  : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1050 
1052 
1053 unsigned
1055  ValueMaterializer *Materializer) {
1056  return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1057 }
1058 
1060  FlushingMapper(pImpl)->addFlags(Flags);
1061 }
1062 
1064  return FlushingMapper(pImpl)->mapValue(&V);
1065 }
1066 
1068  return cast_or_null<Constant>(mapValue(C));
1069 }
1070 
1072  return FlushingMapper(pImpl)->mapMetadata(&MD);
1073 }
1074 
1076  return cast_or_null<MDNode>(mapMetadata(N));
1077 }
1078 
1080  FlushingMapper(pImpl)->remapInstruction(&I);
1081 }
1082 
1084  FlushingMapper(pImpl)->remapFunction(F);
1085 }
1086 
1088  Constant &Init,
1089  unsigned MCID) {
1090  getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1091 }
1092 
1094  Constant *InitPrefix,
1095  bool IsOldCtorDtor,
1096  ArrayRef<Constant *> NewMembers,
1097  unsigned MCID) {
1098  getAsMapper(pImpl)->scheduleMapAppendingVariable(
1099  GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1100 }
1101 
1103  unsigned MCID) {
1104  getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
1105 }
1106 
1108  getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1109 }
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:152
uint64_t CallInst * C
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:243
bool isUniqued() const
Definition: Metadata.h:940
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:709
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata *> MDs)
Definition: Metadata.h:1131
bool empty() const
Definition: Function.h:586
bool isDistinct() const
Definition: Metadata.h:941
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
static void remapInstruction(Instruction *I, ValueToValueMapTy &VMap)
Convert the instruction operands from referencing the current values into those specified by VMap...
Definition: LoopUnroll.cpp:67
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
iterator begin() const
Definition: ArrayRef.h:137
LLVM_ATTRIBUTE_ALWAYS_INLINE size_type size() const
Definition: SmallVector.h:136
void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
Definition: Metadata.cpp:851
void RemapFunction(Function &F, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Remap the operands, metadata, arguments, and instructions of a function.
Definition: ValueMapper.h:256
Implements a dense probed hash-table based set.
Definition: DenseSet.h:221
Any global values not in value map are mapped to null instead of mapping to self. ...
Definition: ValueMapper.h:91
static ConstantAggregateZero * get(Type *Ty)
Definition: Constants.cpp:1237
This file contains the declarations for metadata subclasses.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:697
Metadata node.
Definition: Metadata.h:862
void scheduleRemapFunction(Function &F, unsigned MappingContextID=0)
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1067
Hexagon Common GEP
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
Appends all attachments for the global to MDs, sorting by attachment ID.
Definition: Metadata.cpp:1404
void reserve(size_type N)
Definition: SmallVector.h:380
static Mapper * getAsMapper(void *pImpl)
static Constant * get(ArrayType *T, ArrayRef< Constant *> V)
Definition: Constants.cpp:888
TempMDNode clone() const
Create a (temporary) clone of this.
Definition: Metadata.cpp:514
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:207
static std::enable_if< std::is_base_of< MDNode, T >::value, T * >::type replaceWithDistinct(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a distinct one.
Definition: Metadata.h:989
Function * getFunction() const
Definition: Constants.h:839
The address of a basic block.
Definition: Constants.h:813
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:451
void setInitializer(Constant *InitVal)
setInitializer - Sets the initializer for this global variable, removing any existing initializer if ...
Definition: Globals.cpp:339
bool isResolved() const
Check if node is fully resolved.
Definition: Metadata.h:938
void remapInstruction(Instruction &I)
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
Constant * mapConstant(const Constant &C)
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:832
Windows NT (Windows on ARM)
static StructType * get(LLVMContext &Context, ArrayRef< Type *> Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:336
void resolveCycles()
Resolve cycles.
Definition: Metadata.cpp:613
op_iterator op_begin() const
Definition: Metadata.h:1057
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:862
Class to represent function types.
Definition: DerivedTypes.h:103
Metadata * mapMetadata(const Metadata &MD)
Instruct the remapper to move distinct metadata instead of duplicating it when there are module-level...
Definition: ValueMapper.h:87
#define F(x, y, z)
Definition: MD5.cpp:55
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
op_range operands() const
Definition: Metadata.h:1065
bool isVarArg() const
Definition: DerivedTypes.h:123
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
BasicBlock * getBasicBlock() const
Definition: Constants.h:840
void enableMapMetadata()
Definition: ValueMap.h:121
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:65
Class to represent pointers.
Definition: DerivedTypes.h:467
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:277
static MetadataAsValue * get(LLVMContext &Context, Metadata *MD)
Definition: Metadata.cpp:106
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:43
static std::enable_if< std::is_base_of< MDNode, T >::value, T * >::type replaceWithUniqued(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a uniqued one.
Definition: Metadata.h:979
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1306
LLVM Basic Block Representation.
Definition: BasicBlock.h:59
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
static ConstantAsMetadata * wrapConstantAsMetadata(const ConstantAsMetadata &CMD, Value *MappedV)
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1339
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
This is an important base class in LLVM.
Definition: Constant.h:42
This file contains the declarations for the subclasses of Constant, which represent the different fla...
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:139
#define A
Definition: LargeTest.cpp:12
ArrayRef< Type * > params() const
Definition: DerivedTypes.h:130
void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MappingContextID=0)
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:297
static Constant * get(StructType *T, ArrayRef< Constant *> V)
Definition: Constants.cpp:949
op_range operands()
Definition: User.h:222
void disableMapMetadata()
Definition: ValueMap.h:122
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1320
RemapFlags
These are flags that the value mapping APIs allow.
Definition: ValueMapper.h:59
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1214
#define E
Definition: LargeTest.cpp:27
static ConstantAsMetadata * getConstant(Value *C)
Definition: Metadata.h:359
static ValueAsMetadata * get(Value *V)
Definition: Metadata.cpp:341
Constant * getValue() const
Definition: Metadata.h:416
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:864
void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
Definition: Metadata.cpp:1382
iterator end() const
Definition: ArrayRef.h:138
const DataFlowGraph & G
Definition: RDFGraph.cpp:206
const size_t N
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:385
void remapFunction(Function &F)
void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, unsigned MappingContextID=0)
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
Get all metadata attached to this Instruction.
Definition: Instruction.h:206
ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:398
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:30
If this flag is set, the remapper ignores missing function-local entries (Argument, Instruction, BasicBlock) that are not in the value map.
Definition: ValueMapper.h:83
static std::vector< std::string > Flags
Definition: FlagsTest.cpp:8
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:61
#define I(x, y, z)
Definition: MD5.cpp:58
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
void addFlags(RemapFlags Flags)
Add to the current RemapFlags.
static InlineAsm * get(FunctionType *Ty, StringRef AsmString, StringRef Constraints, bool hasSideEffects, bool isAlignStack=false, AsmDialect asmDialect=AD_ATT)
InlineAsm::get - Return the specified uniqued inline asm string.
Definition: InlineAsm.cpp:43
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition: Value.h:598
const unsigned Kind
Value * mapValue(const Value &V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:73
unsigned registerAlternateMappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer=nullptr)
Register an alternate mapping context.
void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef< Constant *> NewMembers, unsigned MappingContextID=0)
virtual Type * remapType(Type *SrcTy)=0
The client should implement this method if they want to remap types while mapping values...
IRTranslator LLVM IR MI
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1073
IteratorT end() const
Root of the metadata hierarchy.
Definition: Metadata.h:58
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:174
static Constant * get(ArrayRef< Constant *> V)
Definition: Constants.cpp:984
#define D
Definition: LargeTest.cpp:26
Type * getElementType() const
Definition: DerivedTypes.h:486
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:260
iterator_range< arg_iterator > args()
Definition: Function.h:613
MDNode * mapMDNode(const MDNode &N)
void resize(size_type N)
Definition: SmallVector.h:355