LLVM  6.0.0svn
X86Disassembler.cpp
Go to the documentation of this file.
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains code to translate the data produced by the decoder into
12 // MCInsts.
13 //
14 //
15 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
16 // 64-bit X86 instruction sets. The main decode sequence for an assembly
17 // instruction in this disassembler is:
18 //
19 // 1. Read the prefix bytes and determine the attributes of the instruction.
20 // These attributes, recorded in enum attributeBits
21 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
22 // provides a mapping from bitmasks to contexts, which are represented by
23 // enum InstructionContext (ibid.).
24 //
25 // 2. Read the opcode, and determine what kind of opcode it is. The
26 // disassembler distinguishes four kinds of opcodes, which are enumerated in
27 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
28 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
29 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
30 //
31 // 3. Depending on the opcode type, look in one of four ClassDecision structures
32 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
33 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
34 // a ModRMDecision (ibid.).
35 //
36 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
37 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
38 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from
39 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
40 // ModR/M byte is required and how to interpret it.
41 //
42 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
43 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
44 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
45 // meanings of its operands.
46 //
47 // 6. For each operand, its encoding is an entry from OperandEncoding
48 // (X86DisassemblerDecoderCommon.h) and its type is an entry from
49 // OperandType (ibid.). The encoding indicates how to read it from the
50 // instruction; the type indicates how to interpret the value once it has
51 // been read. For example, a register operand could be stored in the R/M
52 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to
53 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM
54 // register, for instance). Given this information, the operands can be
55 // extracted and interpreted.
56 //
57 // 7. As the last step, the disassembler translates the instruction information
58 // and operands into a format understandable by the client - in this case, an
59 // MCInst for use by the MC infrastructure.
60 //
61 // The disassembler is broken broadly into two parts: the table emitter that
62 // emits the instruction decode tables discussed above during compilation, and
63 // the disassembler itself. The table emitter is documented in more detail in
64 // utils/TableGen/X86DisassemblerEmitter.h.
65 //
66 // X86Disassembler.cpp contains the code responsible for step 7, and for
67 // invoking the decoder to execute steps 1-6.
68 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
69 // table emitter and the disassembler.
70 // X86DisassemblerDecoder.h contains the public interface of the decoder,
71 // factored out into C for possible use by other projects.
72 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
73 // responsible for steps 1-6.
74 //
75 //===----------------------------------------------------------------------===//
76 
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
86 #include "llvm/Support/Debug.h"
89 
90 using namespace llvm;
91 using namespace llvm::X86Disassembler;
92 
93 #define DEBUG_TYPE "x86-disassembler"
94 
95 void llvm::X86Disassembler::Debug(const char *file, unsigned line,
96  const char *s) {
97  dbgs() << file << ":" << line << ": " << s;
98 }
99 
101  const void *mii) {
102  const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
103  return MII->getName(Opcode);
104 }
105 
106 #define debug(s) DEBUG(Debug(__FILE__, __LINE__, s));
107 
108 namespace llvm {
109 
110 // Fill-ins to make the compiler happy. These constants are never actually
111 // assigned; they are just filler to make an automatically-generated switch
112 // statement work.
113 namespace X86 {
114  enum {
115  BX_SI = 500,
116  BX_DI = 501,
117  BP_SI = 502,
118  BP_DI = 503,
119  sib = 504,
120  sib64 = 505
121  };
122 }
123 
124 }
125 
126 static bool translateInstruction(MCInst &target,
127  InternalInstruction &source,
128  const MCDisassembler *Dis);
129 
130 namespace {
131 
132 /// Generic disassembler for all X86 platforms. All each platform class should
133 /// have to do is subclass the constructor, and provide a different
134 /// disassemblerMode value.
135 class X86GenericDisassembler : public MCDisassembler {
136  std::unique_ptr<const MCInstrInfo> MII;
137 public:
138  X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
139  std::unique_ptr<const MCInstrInfo> MII);
140 public:
141  DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
142  ArrayRef<uint8_t> Bytes, uint64_t Address,
143  raw_ostream &vStream,
144  raw_ostream &cStream) const override;
145 
146 private:
147  DisassemblerMode fMode;
148 };
149 
150 }
151 
152 X86GenericDisassembler::X86GenericDisassembler(
153  const MCSubtargetInfo &STI,
154  MCContext &Ctx,
155  std::unique_ptr<const MCInstrInfo> MII)
156  : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
157  const FeatureBitset &FB = STI.getFeatureBits();
158  if (FB[X86::Mode16Bit]) {
159  fMode = MODE_16BIT;
160  return;
161  } else if (FB[X86::Mode32Bit]) {
162  fMode = MODE_32BIT;
163  return;
164  } else if (FB[X86::Mode64Bit]) {
165  fMode = MODE_64BIT;
166  return;
167  }
168 
169  llvm_unreachable("Invalid CPU mode");
170 }
171 
172 namespace {
173 struct Region {
174  ArrayRef<uint8_t> Bytes;
175  uint64_t Base;
176  Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
177 };
178 } // end anonymous namespace
179 
180 /// A callback function that wraps the readByte method from Region.
181 ///
182 /// @param Arg - The generic callback parameter. In this case, this should
183 /// be a pointer to a Region.
184 /// @param Byte - A pointer to the byte to be read.
185 /// @param Address - The address to be read.
186 static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
187  auto *R = static_cast<const Region *>(Arg);
188  ArrayRef<uint8_t> Bytes = R->Bytes;
189  unsigned Index = Address - R->Base;
190  if (Bytes.size() <= Index)
191  return -1;
192  *Byte = Bytes[Index];
193  return 0;
194 }
195 
196 /// logger - a callback function that wraps the operator<< method from
197 /// raw_ostream.
198 ///
199 /// @param arg - The generic callback parameter. This should be a pointe
200 /// to a raw_ostream.
201 /// @param log - A string to be logged. logger() adds a newline.
202 static void logger(void* arg, const char* log) {
203  if (!arg)
204  return;
205 
206  raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
207  vStream << log << "\n";
208 }
209 
210 //
211 // Public interface for the disassembler
212 //
213 
214 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
215  MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
216  raw_ostream &VStream, raw_ostream &CStream) const {
217  CommentStream = &CStream;
218 
219  InternalInstruction InternalInstr;
220 
221  dlog_t LoggerFn = logger;
222  if (&VStream == &nulls())
223  LoggerFn = nullptr; // Disable logging completely if it's going to nulls().
224 
225  Region R(Bytes, Address);
226 
227  int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
228  LoggerFn, (void *)&VStream,
229  (const void *)MII.get(), Address, fMode);
230 
231  if (Ret) {
232  Size = InternalInstr.readerCursor - Address;
233  return Fail;
234  } else {
235  Size = InternalInstr.length;
236  bool Ret = translateInstruction(Instr, InternalInstr, this);
237  if (!Ret) {
238  unsigned Flags = X86::IP_NO_PREFIX;
239  if (InternalInstr.hasAdSize)
240  Flags |= X86::IP_HAS_AD_SIZE;
241  if (!InternalInstr.mandatoryPrefix) {
242  if (InternalInstr.hasOpSize)
243  Flags |= X86::IP_HAS_OP_SIZE;
244  if (InternalInstr.repeatPrefix == 0xf2)
245  Flags |= X86::IP_HAS_REPEAT_NE;
246  else if (InternalInstr.repeatPrefix == 0xf3 &&
247  // It should not be 'pause' f3 90
248  InternalInstr.opcode != 0x90)
249  Flags |= X86::IP_HAS_REPEAT;
250  }
251  Instr.setFlags(Flags);
252  }
253  return (!Ret) ? Success : Fail;
254  }
255 }
256 
257 //
258 // Private code that translates from struct InternalInstructions to MCInsts.
259 //
260 
261 /// translateRegister - Translates an internal register to the appropriate LLVM
262 /// register, and appends it as an operand to an MCInst.
263 ///
264 /// @param mcInst - The MCInst to append to.
265 /// @param reg - The Reg to append.
266 static void translateRegister(MCInst &mcInst, Reg reg) {
267 #define ENTRY(x) X86::x,
268  uint8_t llvmRegnums[] = {
269  ALL_REGS
270  0
271  };
272 #undef ENTRY
273 
274  uint8_t llvmRegnum = llvmRegnums[reg];
275  mcInst.addOperand(MCOperand::createReg(llvmRegnum));
276 }
277 
278 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
279 /// immediate Value in the MCInst.
280 ///
281 /// @param Value - The immediate Value, has had any PC adjustment made by
282 /// the caller.
283 /// @param isBranch - If the instruction is a branch instruction
284 /// @param Address - The starting address of the instruction
285 /// @param Offset - The byte offset to this immediate in the instruction
286 /// @param Width - The byte width of this immediate in the instruction
287 ///
288 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
289 /// called then that function is called to get any symbolic information for the
290 /// immediate in the instruction using the Address, Offset and Width. If that
291 /// returns non-zero then the symbolic information it returns is used to create
292 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
293 /// returns zero and isBranch is true then a symbol look up for immediate Value
294 /// is done and if a symbol is found an MCExpr is created with that, else
295 /// an MCExpr with the immediate Value is created. This function returns true
296 /// if it adds an operand to the MCInst and false otherwise.
297 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
298  uint64_t Address, uint64_t Offset,
299  uint64_t Width, MCInst &MI,
300  const MCDisassembler *Dis) {
301  return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
302  Offset, Width);
303 }
304 
305 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
306 /// referenced by a load instruction with the base register that is the rip.
307 /// These can often be addresses in a literal pool. The Address of the
308 /// instruction and its immediate Value are used to determine the address
309 /// being referenced in the literal pool entry. The SymbolLookUp call back will
310 /// return a pointer to a literal 'C' string if the referenced address is an
311 /// address into a section with 'C' string literals.
312 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
313  const void *Decoder) {
314  const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
315  Dis->tryAddingPcLoadReferenceComment(Value, Address);
316 }
317 
318 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
319  0, // SEG_OVERRIDE_NONE
320  X86::CS,
321  X86::SS,
322  X86::DS,
323  X86::ES,
324  X86::FS,
325  X86::GS
326 };
327 
328 /// translateSrcIndex - Appends a source index operand to an MCInst.
329 ///
330 /// @param mcInst - The MCInst to append to.
331 /// @param insn - The internal instruction.
332 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
333  unsigned baseRegNo;
334 
335  if (insn.mode == MODE_64BIT)
336  baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
337  else if (insn.mode == MODE_32BIT)
338  baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
339  else {
340  assert(insn.mode == MODE_16BIT);
341  baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
342  }
343  MCOperand baseReg = MCOperand::createReg(baseRegNo);
344  mcInst.addOperand(baseReg);
345 
346  MCOperand segmentReg;
347  segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
348  mcInst.addOperand(segmentReg);
349  return false;
350 }
351 
352 /// translateDstIndex - Appends a destination index operand to an MCInst.
353 ///
354 /// @param mcInst - The MCInst to append to.
355 /// @param insn - The internal instruction.
356 
357 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
358  unsigned baseRegNo;
359 
360  if (insn.mode == MODE_64BIT)
361  baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
362  else if (insn.mode == MODE_32BIT)
363  baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
364  else {
365  assert(insn.mode == MODE_16BIT);
366  baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
367  }
368  MCOperand baseReg = MCOperand::createReg(baseRegNo);
369  mcInst.addOperand(baseReg);
370  return false;
371 }
372 
373 /// translateImmediate - Appends an immediate operand to an MCInst.
374 ///
375 /// @param mcInst - The MCInst to append to.
376 /// @param immediate - The immediate value to append.
377 /// @param operand - The operand, as stored in the descriptor table.
378 /// @param insn - The internal instruction.
379 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
380  const OperandSpecifier &operand,
381  InternalInstruction &insn,
382  const MCDisassembler *Dis) {
383  // Sign-extend the immediate if necessary.
384 
385  OperandType type = (OperandType)operand.type;
386 
387  bool isBranch = false;
388  uint64_t pcrel = 0;
389  if (type == TYPE_REL) {
390  isBranch = true;
391  pcrel = insn.startLocation +
392  insn.immediateOffset + insn.immediateSize;
393  switch (operand.encoding) {
394  default:
395  break;
396  case ENCODING_Iv:
397  switch (insn.displacementSize) {
398  default:
399  break;
400  case 1:
401  if(immediate & 0x80)
402  immediate |= ~(0xffull);
403  break;
404  case 2:
405  if(immediate & 0x8000)
406  immediate |= ~(0xffffull);
407  break;
408  case 4:
409  if(immediate & 0x80000000)
410  immediate |= ~(0xffffffffull);
411  break;
412  case 8:
413  break;
414  }
415  break;
416  case ENCODING_IB:
417  if(immediate & 0x80)
418  immediate |= ~(0xffull);
419  break;
420  case ENCODING_IW:
421  if(immediate & 0x8000)
422  immediate |= ~(0xffffull);
423  break;
424  case ENCODING_ID:
425  if(immediate & 0x80000000)
426  immediate |= ~(0xffffffffull);
427  break;
428  }
429  }
430  // By default sign-extend all X86 immediates based on their encoding.
431  else if (type == TYPE_IMM) {
432  switch (operand.encoding) {
433  default:
434  break;
435  case ENCODING_IB:
436  if(immediate & 0x80)
437  immediate |= ~(0xffull);
438  break;
439  case ENCODING_IW:
440  if(immediate & 0x8000)
441  immediate |= ~(0xffffull);
442  break;
443  case ENCODING_ID:
444  if(immediate & 0x80000000)
445  immediate |= ~(0xffffffffull);
446  break;
447  case ENCODING_IO:
448  break;
449  }
450  } else if (type == TYPE_IMM3) {
451  // Check for immediates that printSSECC can't handle.
452  if (immediate >= 8) {
453  unsigned NewOpc;
454  switch (mcInst.getOpcode()) {
455  default: llvm_unreachable("unexpected opcode");
456  case X86::CMPPDrmi: NewOpc = X86::CMPPDrmi_alt; break;
457  case X86::CMPPDrri: NewOpc = X86::CMPPDrri_alt; break;
458  case X86::CMPPSrmi: NewOpc = X86::CMPPSrmi_alt; break;
459  case X86::CMPPSrri: NewOpc = X86::CMPPSrri_alt; break;
460  case X86::CMPSDrm: NewOpc = X86::CMPSDrm_alt; break;
461  case X86::CMPSDrr: NewOpc = X86::CMPSDrr_alt; break;
462  case X86::CMPSSrm: NewOpc = X86::CMPSSrm_alt; break;
463  case X86::CMPSSrr: NewOpc = X86::CMPSSrr_alt; break;
464  case X86::VPCOMBri: NewOpc = X86::VPCOMBri_alt; break;
465  case X86::VPCOMBmi: NewOpc = X86::VPCOMBmi_alt; break;
466  case X86::VPCOMWri: NewOpc = X86::VPCOMWri_alt; break;
467  case X86::VPCOMWmi: NewOpc = X86::VPCOMWmi_alt; break;
468  case X86::VPCOMDri: NewOpc = X86::VPCOMDri_alt; break;
469  case X86::VPCOMDmi: NewOpc = X86::VPCOMDmi_alt; break;
470  case X86::VPCOMQri: NewOpc = X86::VPCOMQri_alt; break;
471  case X86::VPCOMQmi: NewOpc = X86::VPCOMQmi_alt; break;
472  case X86::VPCOMUBri: NewOpc = X86::VPCOMUBri_alt; break;
473  case X86::VPCOMUBmi: NewOpc = X86::VPCOMUBmi_alt; break;
474  case X86::VPCOMUWri: NewOpc = X86::VPCOMUWri_alt; break;
475  case X86::VPCOMUWmi: NewOpc = X86::VPCOMUWmi_alt; break;
476  case X86::VPCOMUDri: NewOpc = X86::VPCOMUDri_alt; break;
477  case X86::VPCOMUDmi: NewOpc = X86::VPCOMUDmi_alt; break;
478  case X86::VPCOMUQri: NewOpc = X86::VPCOMUQri_alt; break;
479  case X86::VPCOMUQmi: NewOpc = X86::VPCOMUQmi_alt; break;
480  }
481  // Switch opcode to the one that doesn't get special printing.
482  mcInst.setOpcode(NewOpc);
483  }
484  } else if (type == TYPE_IMM5) {
485  // Check for immediates that printAVXCC can't handle.
486  if (immediate >= 32) {
487  unsigned NewOpc;
488  switch (mcInst.getOpcode()) {
489  default: llvm_unreachable("unexpected opcode");
490  case X86::VCMPPDrmi: NewOpc = X86::VCMPPDrmi_alt; break;
491  case X86::VCMPPDrri: NewOpc = X86::VCMPPDrri_alt; break;
492  case X86::VCMPPSrmi: NewOpc = X86::VCMPPSrmi_alt; break;
493  case X86::VCMPPSrri: NewOpc = X86::VCMPPSrri_alt; break;
494  case X86::VCMPSDrm: NewOpc = X86::VCMPSDrm_alt; break;
495  case X86::VCMPSDrr: NewOpc = X86::VCMPSDrr_alt; break;
496  case X86::VCMPSSrm: NewOpc = X86::VCMPSSrm_alt; break;
497  case X86::VCMPSSrr: NewOpc = X86::VCMPSSrr_alt; break;
498  case X86::VCMPPDYrmi: NewOpc = X86::VCMPPDYrmi_alt; break;
499  case X86::VCMPPDYrri: NewOpc = X86::VCMPPDYrri_alt; break;
500  case X86::VCMPPSYrmi: NewOpc = X86::VCMPPSYrmi_alt; break;
501  case X86::VCMPPSYrri: NewOpc = X86::VCMPPSYrri_alt; break;
502  case X86::VCMPPDZrmi: NewOpc = X86::VCMPPDZrmi_alt; break;
503  case X86::VCMPPDZrri: NewOpc = X86::VCMPPDZrri_alt; break;
504  case X86::VCMPPDZrrib: NewOpc = X86::VCMPPDZrrib_alt; break;
505  case X86::VCMPPSZrmi: NewOpc = X86::VCMPPSZrmi_alt; break;
506  case X86::VCMPPSZrri: NewOpc = X86::VCMPPSZrri_alt; break;
507  case X86::VCMPPSZrrib: NewOpc = X86::VCMPPSZrrib_alt; break;
508  case X86::VCMPPDZ128rmi: NewOpc = X86::VCMPPDZ128rmi_alt; break;
509  case X86::VCMPPDZ128rri: NewOpc = X86::VCMPPDZ128rri_alt; break;
510  case X86::VCMPPSZ128rmi: NewOpc = X86::VCMPPSZ128rmi_alt; break;
511  case X86::VCMPPSZ128rri: NewOpc = X86::VCMPPSZ128rri_alt; break;
512  case X86::VCMPPDZ256rmi: NewOpc = X86::VCMPPDZ256rmi_alt; break;
513  case X86::VCMPPDZ256rri: NewOpc = X86::VCMPPDZ256rri_alt; break;
514  case X86::VCMPPSZ256rmi: NewOpc = X86::VCMPPSZ256rmi_alt; break;
515  case X86::VCMPPSZ256rri: NewOpc = X86::VCMPPSZ256rri_alt; break;
516  case X86::VCMPSDZrm_Int: NewOpc = X86::VCMPSDZrmi_alt; break;
517  case X86::VCMPSDZrr_Int: NewOpc = X86::VCMPSDZrri_alt; break;
518  case X86::VCMPSDZrrb_Int: NewOpc = X86::VCMPSDZrrb_alt; break;
519  case X86::VCMPSSZrm_Int: NewOpc = X86::VCMPSSZrmi_alt; break;
520  case X86::VCMPSSZrr_Int: NewOpc = X86::VCMPSSZrri_alt; break;
521  case X86::VCMPSSZrrb_Int: NewOpc = X86::VCMPSSZrrb_alt; break;
522  }
523  // Switch opcode to the one that doesn't get special printing.
524  mcInst.setOpcode(NewOpc);
525  }
526  } else if (type == TYPE_AVX512ICC) {
527  if (immediate >= 8 || ((immediate & 0x3) == 3)) {
528  unsigned NewOpc;
529  switch (mcInst.getOpcode()) {
530  default: llvm_unreachable("unexpected opcode");
531  case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPBZ128rmi_alt; break;
532  case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPBZ128rmik_alt; break;
533  case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPBZ128rri_alt; break;
534  case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPBZ128rrik_alt; break;
535  case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPBZ256rmi_alt; break;
536  case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPBZ256rmik_alt; break;
537  case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPBZ256rri_alt; break;
538  case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPBZ256rrik_alt; break;
539  case X86::VPCMPBZrmi: NewOpc = X86::VPCMPBZrmi_alt; break;
540  case X86::VPCMPBZrmik: NewOpc = X86::VPCMPBZrmik_alt; break;
541  case X86::VPCMPBZrri: NewOpc = X86::VPCMPBZrri_alt; break;
542  case X86::VPCMPBZrrik: NewOpc = X86::VPCMPBZrrik_alt; break;
543  case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPDZ128rmi_alt; break;
544  case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPDZ128rmib_alt; break;
545  case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPDZ128rmibk_alt; break;
546  case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPDZ128rmik_alt; break;
547  case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPDZ128rri_alt; break;
548  case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPDZ128rrik_alt; break;
549  case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPDZ256rmi_alt; break;
550  case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPDZ256rmib_alt; break;
551  case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPDZ256rmibk_alt; break;
552  case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPDZ256rmik_alt; break;
553  case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPDZ256rri_alt; break;
554  case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPDZ256rrik_alt; break;
555  case X86::VPCMPDZrmi: NewOpc = X86::VPCMPDZrmi_alt; break;
556  case X86::VPCMPDZrmib: NewOpc = X86::VPCMPDZrmib_alt; break;
557  case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPDZrmibk_alt; break;
558  case X86::VPCMPDZrmik: NewOpc = X86::VPCMPDZrmik_alt; break;
559  case X86::VPCMPDZrri: NewOpc = X86::VPCMPDZrri_alt; break;
560  case X86::VPCMPDZrrik: NewOpc = X86::VPCMPDZrrik_alt; break;
561  case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPQZ128rmi_alt; break;
562  case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPQZ128rmib_alt; break;
563  case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPQZ128rmibk_alt; break;
564  case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPQZ128rmik_alt; break;
565  case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPQZ128rri_alt; break;
566  case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPQZ128rrik_alt; break;
567  case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPQZ256rmi_alt; break;
568  case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPQZ256rmib_alt; break;
569  case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPQZ256rmibk_alt; break;
570  case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPQZ256rmik_alt; break;
571  case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPQZ256rri_alt; break;
572  case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPQZ256rrik_alt; break;
573  case X86::VPCMPQZrmi: NewOpc = X86::VPCMPQZrmi_alt; break;
574  case X86::VPCMPQZrmib: NewOpc = X86::VPCMPQZrmib_alt; break;
575  case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPQZrmibk_alt; break;
576  case X86::VPCMPQZrmik: NewOpc = X86::VPCMPQZrmik_alt; break;
577  case X86::VPCMPQZrri: NewOpc = X86::VPCMPQZrri_alt; break;
578  case X86::VPCMPQZrrik: NewOpc = X86::VPCMPQZrrik_alt; break;
579  case X86::VPCMPUBZ128rmi: NewOpc = X86::VPCMPUBZ128rmi_alt; break;
580  case X86::VPCMPUBZ128rmik: NewOpc = X86::VPCMPUBZ128rmik_alt; break;
581  case X86::VPCMPUBZ128rri: NewOpc = X86::VPCMPUBZ128rri_alt; break;
582  case X86::VPCMPUBZ128rrik: NewOpc = X86::VPCMPUBZ128rrik_alt; break;
583  case X86::VPCMPUBZ256rmi: NewOpc = X86::VPCMPUBZ256rmi_alt; break;
584  case X86::VPCMPUBZ256rmik: NewOpc = X86::VPCMPUBZ256rmik_alt; break;
585  case X86::VPCMPUBZ256rri: NewOpc = X86::VPCMPUBZ256rri_alt; break;
586  case X86::VPCMPUBZ256rrik: NewOpc = X86::VPCMPUBZ256rrik_alt; break;
587  case X86::VPCMPUBZrmi: NewOpc = X86::VPCMPUBZrmi_alt; break;
588  case X86::VPCMPUBZrmik: NewOpc = X86::VPCMPUBZrmik_alt; break;
589  case X86::VPCMPUBZrri: NewOpc = X86::VPCMPUBZrri_alt; break;
590  case X86::VPCMPUBZrrik: NewOpc = X86::VPCMPUBZrrik_alt; break;
591  case X86::VPCMPUDZ128rmi: NewOpc = X86::VPCMPUDZ128rmi_alt; break;
592  case X86::VPCMPUDZ128rmib: NewOpc = X86::VPCMPUDZ128rmib_alt; break;
593  case X86::VPCMPUDZ128rmibk: NewOpc = X86::VPCMPUDZ128rmibk_alt; break;
594  case X86::VPCMPUDZ128rmik: NewOpc = X86::VPCMPUDZ128rmik_alt; break;
595  case X86::VPCMPUDZ128rri: NewOpc = X86::VPCMPUDZ128rri_alt; break;
596  case X86::VPCMPUDZ128rrik: NewOpc = X86::VPCMPUDZ128rrik_alt; break;
597  case X86::VPCMPUDZ256rmi: NewOpc = X86::VPCMPUDZ256rmi_alt; break;
598  case X86::VPCMPUDZ256rmib: NewOpc = X86::VPCMPUDZ256rmib_alt; break;
599  case X86::VPCMPUDZ256rmibk: NewOpc = X86::VPCMPUDZ256rmibk_alt; break;
600  case X86::VPCMPUDZ256rmik: NewOpc = X86::VPCMPUDZ256rmik_alt; break;
601  case X86::VPCMPUDZ256rri: NewOpc = X86::VPCMPUDZ256rri_alt; break;
602  case X86::VPCMPUDZ256rrik: NewOpc = X86::VPCMPUDZ256rrik_alt; break;
603  case X86::VPCMPUDZrmi: NewOpc = X86::VPCMPUDZrmi_alt; break;
604  case X86::VPCMPUDZrmib: NewOpc = X86::VPCMPUDZrmib_alt; break;
605  case X86::VPCMPUDZrmibk: NewOpc = X86::VPCMPUDZrmibk_alt; break;
606  case X86::VPCMPUDZrmik: NewOpc = X86::VPCMPUDZrmik_alt; break;
607  case X86::VPCMPUDZrri: NewOpc = X86::VPCMPUDZrri_alt; break;
608  case X86::VPCMPUDZrrik: NewOpc = X86::VPCMPUDZrrik_alt; break;
609  case X86::VPCMPUQZ128rmi: NewOpc = X86::VPCMPUQZ128rmi_alt; break;
610  case X86::VPCMPUQZ128rmib: NewOpc = X86::VPCMPUQZ128rmib_alt; break;
611  case X86::VPCMPUQZ128rmibk: NewOpc = X86::VPCMPUQZ128rmibk_alt; break;
612  case X86::VPCMPUQZ128rmik: NewOpc = X86::VPCMPUQZ128rmik_alt; break;
613  case X86::VPCMPUQZ128rri: NewOpc = X86::VPCMPUQZ128rri_alt; break;
614  case X86::VPCMPUQZ128rrik: NewOpc = X86::VPCMPUQZ128rrik_alt; break;
615  case X86::VPCMPUQZ256rmi: NewOpc = X86::VPCMPUQZ256rmi_alt; break;
616  case X86::VPCMPUQZ256rmib: NewOpc = X86::VPCMPUQZ256rmib_alt; break;
617  case X86::VPCMPUQZ256rmibk: NewOpc = X86::VPCMPUQZ256rmibk_alt; break;
618  case X86::VPCMPUQZ256rmik: NewOpc = X86::VPCMPUQZ256rmik_alt; break;
619  case X86::VPCMPUQZ256rri: NewOpc = X86::VPCMPUQZ256rri_alt; break;
620  case X86::VPCMPUQZ256rrik: NewOpc = X86::VPCMPUQZ256rrik_alt; break;
621  case X86::VPCMPUQZrmi: NewOpc = X86::VPCMPUQZrmi_alt; break;
622  case X86::VPCMPUQZrmib: NewOpc = X86::VPCMPUQZrmib_alt; break;
623  case X86::VPCMPUQZrmibk: NewOpc = X86::VPCMPUQZrmibk_alt; break;
624  case X86::VPCMPUQZrmik: NewOpc = X86::VPCMPUQZrmik_alt; break;
625  case X86::VPCMPUQZrri: NewOpc = X86::VPCMPUQZrri_alt; break;
626  case X86::VPCMPUQZrrik: NewOpc = X86::VPCMPUQZrrik_alt; break;
627  case X86::VPCMPUWZ128rmi: NewOpc = X86::VPCMPUWZ128rmi_alt; break;
628  case X86::VPCMPUWZ128rmik: NewOpc = X86::VPCMPUWZ128rmik_alt; break;
629  case X86::VPCMPUWZ128rri: NewOpc = X86::VPCMPUWZ128rri_alt; break;
630  case X86::VPCMPUWZ128rrik: NewOpc = X86::VPCMPUWZ128rrik_alt; break;
631  case X86::VPCMPUWZ256rmi: NewOpc = X86::VPCMPUWZ256rmi_alt; break;
632  case X86::VPCMPUWZ256rmik: NewOpc = X86::VPCMPUWZ256rmik_alt; break;
633  case X86::VPCMPUWZ256rri: NewOpc = X86::VPCMPUWZ256rri_alt; break;
634  case X86::VPCMPUWZ256rrik: NewOpc = X86::VPCMPUWZ256rrik_alt; break;
635  case X86::VPCMPUWZrmi: NewOpc = X86::VPCMPUWZrmi_alt; break;
636  case X86::VPCMPUWZrmik: NewOpc = X86::VPCMPUWZrmik_alt; break;
637  case X86::VPCMPUWZrri: NewOpc = X86::VPCMPUWZrri_alt; break;
638  case X86::VPCMPUWZrrik: NewOpc = X86::VPCMPUWZrrik_alt; break;
639  case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPWZ128rmi_alt; break;
640  case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPWZ128rmik_alt; break;
641  case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPWZ128rri_alt; break;
642  case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPWZ128rrik_alt; break;
643  case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPWZ256rmi_alt; break;
644  case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPWZ256rmik_alt; break;
645  case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPWZ256rri_alt; break;
646  case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPWZ256rrik_alt; break;
647  case X86::VPCMPWZrmi: NewOpc = X86::VPCMPWZrmi_alt; break;
648  case X86::VPCMPWZrmik: NewOpc = X86::VPCMPWZrmik_alt; break;
649  case X86::VPCMPWZrri: NewOpc = X86::VPCMPWZrri_alt; break;
650  case X86::VPCMPWZrrik: NewOpc = X86::VPCMPWZrrik_alt; break;
651  }
652  // Switch opcode to the one that doesn't get special printing.
653  mcInst.setOpcode(NewOpc);
654  }
655  }
656 
657  switch (type) {
658  case TYPE_XMM:
659  mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
660  return;
661  case TYPE_YMM:
662  mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
663  return;
664  case TYPE_ZMM:
665  mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
666  return;
667  case TYPE_BNDR:
668  mcInst.addOperand(MCOperand::createReg(X86::BND0 + (immediate >> 4)));
669  default:
670  // operand is 64 bits wide. Do nothing.
671  break;
672  }
673 
674  if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
675  insn.immediateOffset, insn.immediateSize,
676  mcInst, Dis))
677  mcInst.addOperand(MCOperand::createImm(immediate));
678 
679  if (type == TYPE_MOFFS) {
680  MCOperand segmentReg;
681  segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
682  mcInst.addOperand(segmentReg);
683  }
684 }
685 
686 /// translateRMRegister - Translates a register stored in the R/M field of the
687 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
688 /// @param mcInst - The MCInst to append to.
689 /// @param insn - The internal instruction to extract the R/M field
690 /// from.
691 /// @return - 0 on success; -1 otherwise
692 static bool translateRMRegister(MCInst &mcInst,
693  InternalInstruction &insn) {
694  if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
695  debug("A R/M register operand may not have a SIB byte");
696  return true;
697  }
698 
699  switch (insn.eaBase) {
700  default:
701  debug("Unexpected EA base register");
702  return true;
703  case EA_BASE_NONE:
704  debug("EA_BASE_NONE for ModR/M base");
705  return true;
706 #define ENTRY(x) case EA_BASE_##x:
708 #undef ENTRY
709  debug("A R/M register operand may not have a base; "
710  "the operand must be a register.");
711  return true;
712 #define ENTRY(x) \
713  case EA_REG_##x: \
714  mcInst.addOperand(MCOperand::createReg(X86::x)); break;
715  ALL_REGS
716 #undef ENTRY
717  }
718 
719  return false;
720 }
721 
722 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
723 /// fields of an internal instruction (and possibly its SIB byte) to a memory
724 /// operand in LLVM's format, and appends it to an MCInst.
725 ///
726 /// @param mcInst - The MCInst to append to.
727 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
728 /// from.
729 /// @return - 0 on success; nonzero otherwise
730 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
731  const MCDisassembler *Dis) {
732  // Addresses in an MCInst are represented as five operands:
733  // 1. basereg (register) The R/M base, or (if there is a SIB) the
734  // SIB base
735  // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
736  // scale amount
737  // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
738  // the index (which is multiplied by the
739  // scale amount)
740  // 4. displacement (immediate) 0, or the displacement if there is one
741  // 5. segmentreg (register) x86_registerNONE for now, but could be set
742  // if we have segment overrides
743 
744  MCOperand baseReg;
745  MCOperand scaleAmount;
746  MCOperand indexReg;
747  MCOperand displacement;
748  MCOperand segmentReg;
749  uint64_t pcrel = 0;
750 
751  if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
752  if (insn.sibBase != SIB_BASE_NONE) {
753  switch (insn.sibBase) {
754  default:
755  debug("Unexpected sibBase");
756  return true;
757 #define ENTRY(x) \
758  case SIB_BASE_##x: \
759  baseReg = MCOperand::createReg(X86::x); break;
761 #undef ENTRY
762  }
763  } else {
764  baseReg = MCOperand::createReg(0);
765  }
766 
767  if (insn.sibIndex != SIB_INDEX_NONE) {
768  switch (insn.sibIndex) {
769  default:
770  debug("Unexpected sibIndex");
771  return true;
772 #define ENTRY(x) \
773  case SIB_INDEX_##x: \
774  indexReg = MCOperand::createReg(X86::x); break;
777  REGS_XMM
778  REGS_YMM
779  REGS_ZMM
780 #undef ENTRY
781  }
782  } else {
783  indexReg = MCOperand::createReg(0);
784  }
785 
786  scaleAmount = MCOperand::createImm(insn.sibScale);
787  } else {
788  switch (insn.eaBase) {
789  case EA_BASE_NONE:
790  if (insn.eaDisplacement == EA_DISP_NONE) {
791  debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
792  return true;
793  }
794  if (insn.mode == MODE_64BIT){
795  pcrel = insn.startLocation +
798  insn.displacementOffset,
799  insn.displacement + pcrel, Dis);
800  baseReg = MCOperand::createReg(X86::RIP); // Section 2.2.1.6
801  }
802  else
803  baseReg = MCOperand::createReg(0);
804 
805  indexReg = MCOperand::createReg(0);
806  break;
807  case EA_BASE_BX_SI:
808  baseReg = MCOperand::createReg(X86::BX);
809  indexReg = MCOperand::createReg(X86::SI);
810  break;
811  case EA_BASE_BX_DI:
812  baseReg = MCOperand::createReg(X86::BX);
813  indexReg = MCOperand::createReg(X86::DI);
814  break;
815  case EA_BASE_BP_SI:
816  baseReg = MCOperand::createReg(X86::BP);
817  indexReg = MCOperand::createReg(X86::SI);
818  break;
819  case EA_BASE_BP_DI:
820  baseReg = MCOperand::createReg(X86::BP);
821  indexReg = MCOperand::createReg(X86::DI);
822  break;
823  default:
824  indexReg = MCOperand::createReg(0);
825  switch (insn.eaBase) {
826  default:
827  debug("Unexpected eaBase");
828  return true;
829  // Here, we will use the fill-ins defined above. However,
830  // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
831  // sib and sib64 were handled in the top-level if, so they're only
832  // placeholders to keep the compiler happy.
833 #define ENTRY(x) \
834  case EA_BASE_##x: \
835  baseReg = MCOperand::createReg(X86::x); break;
837 #undef ENTRY
838 #define ENTRY(x) case EA_REG_##x:
839  ALL_REGS
840 #undef ENTRY
841  debug("A R/M memory operand may not be a register; "
842  "the base field must be a base.");
843  return true;
844  }
845  }
846 
847  scaleAmount = MCOperand::createImm(1);
848  }
849 
850  displacement = MCOperand::createImm(insn.displacement);
851 
852  segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
853 
854  mcInst.addOperand(baseReg);
855  mcInst.addOperand(scaleAmount);
856  mcInst.addOperand(indexReg);
857  if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
859  insn.displacementSize, mcInst, Dis))
860  mcInst.addOperand(displacement);
861  mcInst.addOperand(segmentReg);
862  return false;
863 }
864 
865 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
866 /// byte of an instruction to LLVM form, and appends it to an MCInst.
867 ///
868 /// @param mcInst - The MCInst to append to.
869 /// @param operand - The operand, as stored in the descriptor table.
870 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
871 /// from.
872 /// @return - 0 on success; nonzero otherwise
873 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
874  InternalInstruction &insn, const MCDisassembler *Dis) {
875  switch (operand.type) {
876  default:
877  debug("Unexpected type for a R/M operand");
878  return true;
879  case TYPE_R8:
880  case TYPE_R16:
881  case TYPE_R32:
882  case TYPE_R64:
883  case TYPE_Rv:
884  case TYPE_MM64:
885  case TYPE_XMM:
886  case TYPE_YMM:
887  case TYPE_ZMM:
888  case TYPE_VK:
889  case TYPE_DEBUGREG:
890  case TYPE_CONTROLREG:
891  case TYPE_BNDR:
892  return translateRMRegister(mcInst, insn);
893  case TYPE_M:
894  case TYPE_MVSIBX:
895  case TYPE_MVSIBY:
896  case TYPE_MVSIBZ:
897  return translateRMMemory(mcInst, insn, Dis);
898  }
899 }
900 
901 /// translateFPRegister - Translates a stack position on the FPU stack to its
902 /// LLVM form, and appends it to an MCInst.
903 ///
904 /// @param mcInst - The MCInst to append to.
905 /// @param stackPos - The stack position to translate.
906 static void translateFPRegister(MCInst &mcInst,
907  uint8_t stackPos) {
908  mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
909 }
910 
911 /// translateMaskRegister - Translates a 3-bit mask register number to
912 /// LLVM form, and appends it to an MCInst.
913 ///
914 /// @param mcInst - The MCInst to append to.
915 /// @param maskRegNum - Number of mask register from 0 to 7.
916 /// @return - false on success; true otherwise.
917 static bool translateMaskRegister(MCInst &mcInst,
918  uint8_t maskRegNum) {
919  if (maskRegNum >= 8) {
920  debug("Invalid mask register number");
921  return true;
922  }
923 
924  mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
925  return false;
926 }
927 
928 /// translateOperand - Translates an operand stored in an internal instruction
929 /// to LLVM's format and appends it to an MCInst.
930 ///
931 /// @param mcInst - The MCInst to append to.
932 /// @param operand - The operand, as stored in the descriptor table.
933 /// @param insn - The internal instruction.
934 /// @return - false on success; true otherwise.
935 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
936  InternalInstruction &insn,
937  const MCDisassembler *Dis) {
938  switch (operand.encoding) {
939  default:
940  debug("Unhandled operand encoding during translation");
941  return true;
942  case ENCODING_REG:
943  translateRegister(mcInst, insn.reg);
944  return false;
945  case ENCODING_WRITEMASK:
946  return translateMaskRegister(mcInst, insn.writemask);
949  return translateRM(mcInst, operand, insn, Dis);
950  case ENCODING_IB:
951  case ENCODING_IW:
952  case ENCODING_ID:
953  case ENCODING_IO:
954  case ENCODING_Iv:
955  case ENCODING_Ia:
956  translateImmediate(mcInst,
957  insn.immediates[insn.numImmediatesTranslated++],
958  operand,
959  insn,
960  Dis);
961  return false;
962  case ENCODING_IRC:
963  mcInst.addOperand(MCOperand::createImm(insn.RC));
964  return false;
965  case ENCODING_SI:
966  return translateSrcIndex(mcInst, insn);
967  case ENCODING_DI:
968  return translateDstIndex(mcInst, insn);
969  case ENCODING_RB:
970  case ENCODING_RW:
971  case ENCODING_RD:
972  case ENCODING_RO:
973  case ENCODING_Rv:
974  translateRegister(mcInst, insn.opcodeRegister);
975  return false;
976  case ENCODING_FP:
977  translateFPRegister(mcInst, insn.modRM & 7);
978  return false;
979  case ENCODING_VVVV:
980  translateRegister(mcInst, insn.vvvv);
981  return false;
982  case ENCODING_DUP:
983  return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
984  insn, Dis);
985  }
986 }
987 
988 /// translateInstruction - Translates an internal instruction and all its
989 /// operands to an MCInst.
990 ///
991 /// @param mcInst - The MCInst to populate with the instruction's data.
992 /// @param insn - The internal instruction.
993 /// @return - false on success; true otherwise.
994 static bool translateInstruction(MCInst &mcInst,
995  InternalInstruction &insn,
996  const MCDisassembler *Dis) {
997  if (!insn.spec) {
998  debug("Instruction has no specification");
999  return true;
1000  }
1001 
1002  mcInst.clear();
1003  mcInst.setOpcode(insn.instructionID);
1004  // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
1005  // prefix bytes should be disassembled as xrelease and xacquire then set the
1006  // opcode to those instead of the rep and repne opcodes.
1007  if (insn.xAcquireRelease) {
1008  if(mcInst.getOpcode() == X86::REP_PREFIX)
1009  mcInst.setOpcode(X86::XRELEASE_PREFIX);
1010  else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
1011  mcInst.setOpcode(X86::XACQUIRE_PREFIX);
1012  }
1013 
1014  insn.numImmediatesTranslated = 0;
1015 
1016  for (const auto &Op : insn.operands) {
1017  if (Op.encoding != ENCODING_NONE) {
1018  if (translateOperand(mcInst, Op, insn, Dis)) {
1019  return true;
1020  }
1021  }
1022  }
1023 
1024  return false;
1025 }
1026 
1028  const MCSubtargetInfo &STI,
1029  MCContext &Ctx) {
1030  std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
1031  return new X86GenericDisassembler(STI, Ctx, std::move(MII));
1032 }
1033 
1035  // Register the disassembler.
1040 }
void(* dlog_t)(void *arg, const char *log)
Type for the logging function that the consumer can provide to get debugging output from the decoder...
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
void clear()
Definition: MCInst.h:189
DecodeStatus
Ternary decode status.
Superclass for all disassemblers.
bool tryAddingSymbolicOperand(MCInst &Inst, int64_t Value, uint64_t Address, bool IsBranch, uint64_t Offset, uint64_t InstSize) const
MCInstrInfo * createMCInstrInfo() const
createMCInstrInfo - Create a MCInstrInfo implementation.
#define ALL_REGS
static void translateImmediate(MCInst &mcInst, uint64_t immediate, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis)
translateImmediate - Appends an immediate operand to an MCInst.
static void RegisterMCDisassembler(Target &T, Target::MCDisassemblerCtorTy Fn)
RegisterMCDisassembler - Register a MCDisassembler implementation for the given target.
Definition: BitVector.h:920
static MCOperand createReg(unsigned Reg)
Definition: MCInst.h:116
#define Fail
const FeatureBitset & getFeatureBits() const
getFeatureBits - Return the feature bits.
Reg
All possible values of the reg field in the ModR/M byte.
#define ALL_EA_BASES
static bool translateInstruction(MCInst &target, InternalInstruction &source, const MCDisassembler *Dis)
translateInstruction - Translates an internal instruction and all its operands to an MCInst...
#define EA_BASES_64BIT
static void translateFPRegister(MCInst &mcInst, uint8_t stackPos)
translateFPRegister - Translates a stack position on the FPU stack to its LLVM form, and appends it to an MCInst.
Context object for machine code objects.
Definition: MCContext.h:59
static void translateRegister(MCInst &mcInst, Reg reg)
translateRegister - Translates an internal register to the appropriate LLVM register, and appends it as an operand to an MCInst.
static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, const void *Decoder)
tryAddingPcLoadReferenceComment - trys to add a comment as to what is being referenced by a load inst...
int decodeInstruction(InternalInstruction *insn, byteReader_t reader, const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg, uint64_t startLoc, DisassemblerMode mode)
Decode one instruction and store the decoding results in a buffer provided by the consumer...
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis)
translateOperand - Translates an operand stored in an internal instruction to LLVM&#39;s format and appen...
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:159
The specification for how to extract and interpret one operand.
void tryAddingPcLoadReferenceComment(int64_t Value, uint64_t Address) const
* if(!EatIfPresent(lltok::kw_thread_local)) return false
ParseOptionalThreadLocal := /*empty.
static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn)
translateSrcIndex - Appends a source index operand to an MCInst.
Container class for subtarget features.
static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address)
A callback function that wraps the readByte method from Region.
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
#define ALL_SIB_BASES
#define CASE_ENCODING_RM
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:24
static const uint8_t segmentRegnums[SEG_OVERRIDE_max]
dot regions Print regions of function to dot file(with no function bodies)"
void Debug(const char *file, unsigned line, const char *s)
Print a message to debugs()
The x86 internal instruction, which is produced by the decoder.
StringRef getName(unsigned Opcode) const
Returns the name for the instructions with the given opcode.
Definition: MCInstrInfo.h:51
StringRef GetInstrName(unsigned Opcode, const void *mii)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void setFlags(unsigned F)
Definition: MCInst.h:174
void setOpcode(unsigned Op)
Definition: MCInst.h:171
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis)
translateRM - Translates an operand stored in the R/M (and possibly SIB) byte of an instruction to LL...
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, const MCDisassembler *Dis)
translateRMMemory - Translates a memory operand stored in the Mod and R/M fields of an internal instr...
#define CASE_ENCODING_VSIB
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
void LLVMInitializeX86Disassembler()
#define debug(s)
Target - Wrapper for Target specific information.
amdgpu Simplify well known AMD library false Value Value * Arg
#define Success
#define REGS_ZMM
static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn)
translateDstIndex - Appends a destination index operand to an MCInst.
static bool translateRMRegister(MCInst &mcInst, InternalInstruction &insn)
translateRMRegister - Translates a register stored in the R/M field of the ModR/M byte to its LLVM eq...
OperandType
Types of operands to CF instructions.
static MCDisassembler * createX86Disassembler(const Target &T, const MCSubtargetInfo &STI, MCContext &Ctx)
MCSubtargetInfo - Generic base class for all target subtargets.
#define REGS_XMM
static void logger(void *arg, const char *log)
logger - a callback function that wraps the operator<< method from raw_ostream.
Target & getTheX86_32Target()
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isBranch(unsigned Opcode)
LLVM Value Representation.
Definition: Value.h:73
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
raw_ostream & nulls()
This returns a reference to a raw_ostream which simply discards output.
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:44
IRTranslator LLVM IR MI
void addOperand(const MCOperand &Op)
Definition: MCInst.h:184
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, uint64_t Address, uint64_t Offset, uint64_t Width, MCInst &MI, const MCDisassembler *Dis)
tryAddingSymbolicOperand - trys to add a symbolic operand in place of the immediate Value in the MCIn...
#define REGS_YMM
unsigned getOpcode() const
Definition: MCInst.h:172
#define EA_BASES_32BIT
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:35
Target & getTheX86_64Target()
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:123
static bool translateMaskRegister(MCInst &mcInst, uint8_t maskRegNum)
translateMaskRegister - Translates a 3-bit mask register number to LLVM form, and appends it to an MC...
DisassemblerMode
Decoding mode for the Intel disassembler.