Macroscopic Data Structure Analysis & Optimization

Chris Lattner, Prof. Vikram Adve, UIUC

Macroscopic Data S ure Optimization

Q. Can compilers optimize entire data structures?

Primary Goals:

Identify distinct data structure instances

Find important properties of those instances

Optimize each data structure instance based on its usage

Give some control over dynamic layout to the compiler

Develop algorithms suitable for a commercial compiler

Applications:

Application performance (the focus of this poster)
Safety (see SAFECode poster)
Program understanding

Static garbage collection

Automatic Pool Allocation [PLDI'05]

Allocate memory from pool instead of the heap:

« Partition distinct data structures in memory
- Better for cache, locality, allocation speed, etc

« Give compiler information about dynamic location of memory
- Needed to perform memory layout optimizations at runtime

« Give compiler control over layout of data structure
- Can segregate or collocate nodes in the RDS
- Can optimize away inter-object padding in many cases (below)

Extremely fast compiler transform: 1.3s for 100K loc
o o | T
- "If":i:n_m"-{'_\'- @ Optimize based on pool properties
s
Pool #1 Pool #2

Transparent Pointer Compression [MSP

Problem: 64-bit pointers cost 2x as much as 32-bit ptrs

« Reduces effective cache capacity and memory bandwidth

-
[

Idea: Reduce 64-bit pointers to 32-bit pool indices
« Use pool allocation to segregate data structures
« Pointer dereferences become *(PoolBase+Idx) instead of *Ptr

Implementation: Interprocedural Restructuring xform

struct tree {

std::set<float> T struct tree {

tree* Left;
tree* Right; pointer uint32 Right;
ll
. . uint32 Parent;
tree* Parent; compressed

float data;
}:
sizeof(set<float>) = 16

. float data;
implemented as

sizeof(set<float>) = 32

Data Structure Analysis (DSA)

Identify Recursive Data Structures & their Properties

Aggressive Context-Sensitive Analysis

Captures points-to, mod/ref, type information

Extremely fast: analyzes 200K LOC programs in < 2s

Can support standard alias analysis clients & macroscopic clients

bLlppUr&Ci]) full generality of C (varargs,setjmp/longjmp,casts,...)

Pool Allocation Performance Effect

Pool Allocation & optzns improve RDS performance:

* 10-20% in many cases, ~2x in 2 cases, > 10x in two cases

Biggest source of speedup is cache and TLB effects:

« Deinterlacing disjoint data structures, reducing inter-object padding

| evoytrsepseui|

e =

. | = ‘
i

Sos

TiTE B " 5 F 1§43 R AT Tsgaarae n s

Pointer Compression Perf. Impact

1.0 = Program compiled with PA but no PC
1 Peak Memory Usage
PA PC

I

0 d bh 77MB | 7.7MB

bisort 48MB | 24MB

o7 perimeter | 256MB | 149MB

06 power 924KB | 854KB

y treeadd 96MB | 48MB

oa tsp 131MB | 114MB

t 89MB | 4.5MB

o3 ks 47KB | 47KB

02 llubench 3MB | 15MB
01
0

=

UltraSPARC llli w/IMB Cache

10)

°

Runtime Ratio (NoPA

Time per node dereference

DSA Algorithm Highlights

Basic algorithm design:
« Context-sensitive, unification-based, flow-insensitive algorithm
« Provides speculative type information and field-sensitivity
« Computes which memory is passed into/out of the analysis region

Bottom-Up phase computes Fn behavior with all callees
« Computes “total effect” of calling the function
« Incrementally constructs program call graph
« BU results are used by Pool Allocation & Pointer Compression

Top-Down phase adds information from callees
« BU computes no information about callers of a function
« TD pass is useful for alias analysis clients

See llvm-tv demo for more examples of graphs

Pool Allocation Locality Effect

Graph Load Addresses vs Program Time: (for “chomp”)
« 3linked lists: Pool allocation segregates them into distinct pools

« With malloc, green and red nodes are interlaced with each other
- Traversal of one brings the other into cache (green/red overlap)

 Locality after pool allocation is much better than with malloc
;//1 i Hqu\

access pattem‘with poolalloc

Load Latency vs Heap Size

How does ptr comp vary with heap size & architecture?
« Methodology: take a small pointer intensive program, vary input size

access pattern with malloc

Pointer comp. can double performance over pool alloc
« Smaller data structures > improved cache usage - lower latency

1/ 5 jjvww
P B

Ry

e
el

SparcV9 Performance Scaling AMD64 Performance Scaling

i [LLINOILS

http://llvm.cs.uiuc.edu

