
http://llvm.cs.uiuc.edu

Macroscopic Data Structure Analysis & Optimization
Chris Lattner, Prof. Vikram Adve, UIUC

DSA Algorithm Highlights
Basic algorithm design:

• Context-sensitive, unification-based, flow-insensitive algorithm

• Provides speculative type information and field-sensitivity

• Computes which memory is passed into/out of the analysis region

Bottom-Up phase computes Fn behavior with all callees
• Computes “total effect” of calling the function

• Incrementally constructs program call graph

• BU results are used by Pool Allocation & Pointer Compression

Top-Down phase adds information from callees
• BU computes no information about callers of a function

• TD pass is useful for alias analysis clients

See llvm-tv demo for more examples of graphs

Automatic Pool Allocation [PLDI’05]
Allocate memory from pool instead of the heap:

• Partition distinct data structures in memory
- Better for cache, locality, allocation speed, etc

• Give compiler information about dynamic location of memory
- Needed to perform memory layout optimizations at runtime

• Give compiler control over layout of data structure
- Can segregate or collocate nodes in the RDS
- Can optimize away inter-object padding in many cases (below)

Extremely fast compiler transform: 1.3s for 100K loc

Pool #1 Pool #2

16-byte
user data

16-byte
user data

16-byte
user data

16-byte
user data

16-byte
user data

Optimize based on pool properties

Pool Allocation Performance Effect
Pool Allocation & optzns improve RDS performance:

• 10-20% in many cases, ~2x in 2 cases, > 10x in two cases

Biggest source of speedup is cache and TLB effects:
• Deinterlacing disjoint data structures, reducing inter-object padding

0

0.2

0.4

0.6

0.8

1

1.2

175.vpr

197.parser-b

300.tw
olf

b
c

ft analyzer

llu-bench

chom
p

fpgrow
th

espresso

povray31

bisort

health

m
st

perim
eter

tsp

C
ac

h
e

m
is

s
ra

ti
o

L1 Misses
L2 Misses

TLB Misses

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

175.vpr

197.parser-b

300.tw
olf

bc ft analyzer

llu-bench

chom
p

fpgrow
th

espresso

povray31

bisort

health

m
st

perim
eter

tsp

R
un

tim
e

ra
tio

 (
sm

al
le

r
is

 f
as

te
r)

Base Pool Allocator

PA + All Pool Optimizations

Pool Allocation Locality Effect
Graph Load Addresses vs Program Time: (for “chomp”)

• 3 linked lists: Pool allocation segregates them into distinct pools

• With malloc, green and red nodes are interlaced with each other
- Traversal of one brings the other into cache (green/red overlap)

• Locality after pool allocation is much better than with malloc

access pattern with malloc access pattern with poolalloc

Transparent Pointer Compression [MSP’05]
Problem: 64-bit pointers cost 2x as much as 32-bit ptrs

• Reduces effective cache capacity and memory bandwidth

Idea: Reduce 64-bit pointers to 32-bit pool indices
• Use pool allocation to segregate data structures

• Pointer dereferences become *(PoolBase+Idx) instead of *Ptr

Implementation: Interprocedural Restructuring xform

structstruct tree {tree {

tree* tree* Left;Left;

tree* tree* Right;Right;

tree* tree* Parent;Parent;

floatfloat data;data;

};};

std::setstd::set<float> T<float> T structstruct tree {tree {

uint32 uint32 Left;Left;

uint32 uint32 Right;Right;

uint32 uint32 Parent;Parent;

floatfloat data;data;

};};

sizeof(set<float>) = 32 sizeof(set<float>) = 16

implemented as

pointer
compressed

Pointer Compression Perf. Impact

UltraSPARC IIIi w/1MB Cache

PCPA

1.5MB3MBllubench

47KB47KBks

4.5MB8.9MBft

114MB131MBtsp

48MB96MBtreeadd

854KB924KBpower

149MB256MBperimeter

24MB48MBbisort

7.7MB7.7MBbh

PCPA

1.5MB3MBllubench

47KB47KBks

4.5MB8.9MBft

114MB131MBtsp

48MB96MBtreeadd

854KB924KBpower

149MB256MBperimeter

24MB48MBbisort

7.7MB7.7MBbh

Peak Memory Usage
1.0 = Program compiled with PA but no PC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bh

bi
so

rt

pe
rim

et
er

po
w

er

tre
ea

dd ts
p ft ks

llu
be

nc
h

R
un

tim
e

R
at

io
 (N

oP
A

 =
 1

.0
)

Pool Allocation

Pointer Compression

Load Latency vs Heap Size
How does ptr comp vary with heap size & architecture?

• Methodology: take a small pointer intensive program, vary input size

Pointer comp. can double performance over pool alloc
• Smaller data structures à improved cache usage à lower latency

SparcV9 Performance Scaling AMD64 Performance Scaling

0.E+00

1.E-08

2.E-08

3.E-08

4.E-08

5.E-08

6.E-08

Heap Size

Ti
m

e
pe

r n
od

e
de

re
fe

re
nc

e

malloc 64
PoolAlloc 64
PtrComp 64
malloc 32
PoolAlloc 32
PtrComp 32

0.E+00

1.E-08

2.E-08

3.E-08

4.E-08

5.E-08

6.E-08

7.E-08

Heap Size

T
im

e
p

er
 n

o
d

e
d

er
ef

er
en

ce malloc 64
PoolAlloc 64
PtrComp 64
malloc 32
PoolAlloc 32
PtrComp 32

Data Structure Analysis (DSA)
Identify Recursive Data Structures & their Properties

• Aggressive Context-Sensitive Analysis

• Captures points-to, mod/ref, type information

• Extremely fast: analyzes 200K LOC programs in < 2s

• Can support standard alias analysis clients & macroscopic clients

• Supports the full generality of C (varargs,setjmp/longjmp,casts,…)

Macroscopic Data Structure Optimization
Q. Can compilers optimize entire data structures?

Primary Goals:
• Identify distinct data structure instances

• Find important properties of those instances

• Optimize each data structure instance based on its usage

• Give some control over dynamic layout to the compiler

• Develop algorithms suitable for a commercial compiler

Applications:
• Application performance (the focus of this poster)

• Safety (see SAFECode poster)

• Program understanding

• Static garbage collection

