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DSA Algorithm Highlights
Basic algorithm design:

• Context-sensitive, unification-based, flow-insensitive algorithm

• Provides speculative type information and field-sensitivity

• Computes which memory is passed into/out of the analysis region

Bottom-Up phase computes Fn behavior with all callees
• Computes “total effect” of calling the function

• Incrementally constructs program call graph

• BU results are used by Pool Allocation & Pointer Compression

Top-Down phase adds information from callees
• BU computes no information about callers of a function

• TD pass is useful for alias analysis clients

See llvm-tv demo for more examples of graphs

Automatic Pool Allocation [PLDI’05]
Allocate memory from pool instead of the heap:

• Partition distinct data structures in memory
- Better for cache, locality, allocation speed, etc

• Give compiler information about dynamic location of memory
- Needed to perform memory layout optimizations at runtime

• Give compiler control over layout of data structure
- Can segregate or collocate nodes in the RDS
- Can optimize away inter-object padding in many cases (below)

Extremely fast compiler transform: 1.3s for 100K loc
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Optimize based on pool properties

Pool Allocation Performance Effect
Pool Allocation & optzns improve RDS performance:

• 10-20% in many cases, ~2x in 2 cases, > 10x in two cases

Biggest source of speedup is cache and TLB effects:
• Deinterlacing disjoint data structures, reducing inter-object padding
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Base Pool Allocator

PA + All Pool Optimizations

Pool Allocation Locality Effect
Graph Load Addresses vs Program Time: (for “chomp”)

• 3 linked lists: Pool allocation segregates them into distinct pools

• With malloc, green and red nodes are interlaced with each other
- Traversal of one brings the other into cache (green/red overlap)

• Locality after pool allocation is much better than with malloc

access pattern with malloc access pattern with poolalloc

Transparent Pointer Compression [MSP’05]
Problem: 64-bit pointers cost 2x as much as 32-bit ptrs

• Reduces effective cache capacity and memory bandwidth

Idea: Reduce 64-bit pointers to 32-bit pool indices
• Use pool allocation to segregate data structures

• Pointer dereferences become *(PoolBase+Idx) instead of *Ptr

Implementation: Interprocedural Restructuring xform

structstruct tree {tree {

tree* tree* Left;Left;

tree* tree* Right;Right;

tree* tree* Parent;Parent;

floatfloat data;data;

};};

std::setstd::set<float> T<float> T structstruct tree {tree {

uint32  uint32  Left;Left;

uint32 uint32 Right;Right;

uint32 uint32 Parent;Parent;

floatfloat data;data;

};};

sizeof(set<float>) = 32 sizeof(set<float>) = 16

implemented as

pointer
compressed

Pointer Compression Perf. Impact

UltraSPARC IIIi w/1MB Cache

PCPA

1.5MB3MBllubench

47KB47KBks

4.5MB8.9MBft

114MB131MBtsp

48MB96MBtreeadd

854KB924KBpower

149MB256MBperimeter

24MB48MBbisort

7.7MB7.7MBbh
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1.5MB3MBllubench

47KB47KBks

4.5MB8.9MBft

114MB131MBtsp

48MB96MBtreeadd

854KB924KBpower

149MB256MBperimeter

24MB48MBbisort

7.7MB7.7MBbh

Peak Memory Usage
1.0 = Program compiled with PA but no PC
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Pool Allocation

Pointer Compression

Load Latency vs Heap Size
How does ptr comp vary with heap size & architecture?

• Methodology: take a small pointer intensive program, vary input size

Pointer comp. can double performance over pool alloc
• Smaller data structures à improved cache usage à lower latency

SparcV9 Performance Scaling AMD64 Performance Scaling
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Data Structure Analysis (DSA)
Identify Recursive Data Structures & their Properties

• Aggressive Context-Sensitive Analysis

• Captures points-to, mod/ref, type information

• Extremely fast: analyzes 200K LOC programs in < 2s

• Can support standard alias analysis clients & macroscopic clients

• Supports the full generality of C (varargs,setjmp/longjmp,casts,…)

Macroscopic Data Structure Optimization
Q. Can compilers optimize entire data structures?

Primary Goals:
• Identify distinct data structure instances

• Find important properties of those instances

• Optimize each data structure instance based on its usage

• Give some control over dynamic layout to the compiler

• Develop algorithms suitable for a commercial compiler

Applications:
• Application performance (the focus of this poster)

• Safety (see SAFECode poster)

• Program understanding 

• Static garbage collection


