Transparent Pointer Compression

for Linked Data Structures

Chris Lattner Vikram Adve

latther@cs.uiuc.edu vadve@cs.uiuc.edu

June 12, 2005
MSP 2005

http://llvm.cs.uiuc.edu/

Growth of 64-bit computing

m 64-bit architectures are increasingly common:
New architectures and chips (G5, |1A64, X86-64, ...)
High-end systems have existed for many years now

m 64-bit address space used for many purposes:
Address space randomization (security)

Memory mapping large files (databases, etc)
Single address space OS’s

Many 64-Dbit systems have < 4GB of phys memory
m 64-Dbits Is still useful for its virtual address space

Chris Lattner

Cost of a 64-bit virtual address space

BIGGER POINTERS

m Pointers must be 64 bits (8 bytes) instead of 32 bits:
Significant impact for pointer-intensive programst!

m Pointer intensive programs suffer from:
Reduced effective L1/L2/TLB cache sizes
Reduced effective memory bandwidth
Increased alignment requirements, etc

m Pointer intensive programs are increasingly common:
Recursive data structures (our focus)
Object oriented programs

Chris Lattner

Previously Published Approaches

m Simplest approaches: Use 32-bit addressing
Compile for 32-bit pointer size “-m32”
Force program image into 32-bits [Adl-Tabatabai’'04]
Loses advantage of 64-bit address spaces!

m Other approaches: Exotic hardware support

Compress pairs of values, speculating that pointer
offset is small [Zhang'02]

Compress arrays of related pointers [Takagi'03]
Requires significant changes to cache hierarchy

NOFpPIrEVIoUS | JH/ Uitematic compiler
LEChNIguertersifnk pelnters N IRDS S

Chris Lattner

/

Our Approach (1/2)

Pointer 16 Bytes

O”g | n a| h eap L(/ Variable | | —
layout A | |c «| [B > DI [>T

1. Use Automatic Pool Allocation [PLDI'0O5] to
partition heap into memory pools:

Infers and captures pool homogeneity information

Pointer L Pool
LalyollIJt after A "“‘"a""e////,___ﬁiﬁ\ b
ool allocation ™
P (A | C ~|-[B ™ |D

Chris Lattner

Our Approach (2/2)

2. Replace pointers with 64-bit integer offsets
from the start of the pool

Change *Ptr into *(PoolBase+Ptr)

3. Shrink 64-bit integers to 32-bit integers
Allows each pool to be up to 4GB in size

8 "Pointer" Pool Pool
Variable — Base Descriptor
Layout after pointer 8 Bytes

compression
A 24|1C 32|B 16/|D O

Chris Lattner

Talk Outline

m Introduction & Motivation

m Automatic Pool Allocation Background
m Pointer Compression Transformation
m Experimental Results

m Conclusion

Chris Lattner

Automatic Pool Allocation

1. Compute points-to graph:

Ensure each pointer has one target Pool 1
= “unification-based” approach Pool 2
2. Infer pool lifetimes: Pool 3 -
Uses escape analysis Pool 4 (i)
3. Rewrite program:
malloc - poolalloc, free = poolfree i i
Insert calls to poolinit/pooldestroy e

“/Pool 1 “/Pool 2
Pass pool descriptors to functions

For more info: see MSP paper or talk at PLDI tomorrow

Chris Lattner

A Simple Pointer-intensive Example

m A list of pointers to doubles

Pool allocate
List *L = O: :>List * = 0

for (.) { for (.) {
List *N = mal | oc(List); Li st *N = pool al | oc(, List);
N- >Next = L; N- >Next = L;
N->Data = nal | oc(doubl e); N->Data = pool al | oc(, doubl e) ;
L = N L = N

} }

i - w1)

L J L J |::> J PD1

)
Points-to graph r b
double summary ouble PD2

Chris Lattner

Effect of Automatic Pool Allocation 1/2

m Heap is partitioned into separate pools

Each individual pool is smaller than total heap
List *L = O: :>List * = 0

for (.) { for (.) {
List *N = mal | oc(List); List *N = (, List);
N- >Next = L; N- >Next = L;
N->Data = nal | oc(doubl e); N->Data = pool al | oc(PD2, doubl e);
L = N L = N

} }
i CF/

PD1 [}\

%

L
o I

Chris Lattner

Effect of Automatic Pool Allocation 2/2

m Each pool has a descriptor associated with it:
Passed into poolalloc/poolfree

List *L = O: :>List * = 0

for (.) { for (.) {

List *N = mall oc(List); Li st *N = pool al | oc(PDL, List);
N- >Next = L; N- >Next = L;
N->Data = mal | oc(doubl e); N->Dat a = pool al | oc(PD2, doubl e) ;
L = N L = N

} }

m We know which pool each pointer points into:

Given the above, we also have the pool descriptor
eg.“N,“L"=>PD1 and N->Data -> PD2

Chris Lattner

Talk Outline

m Introduction & Motivation

m Automatic Pool Allocation Background
m Pointer Compression Transformation
m Experimental Results

m Conclusion

Chris Lattner

Index Conversion of a Pool

m Force pool memory to be contiguous:
Normal PoolAlloc runtime allocates memory in chunks
Two implementation strategies for this (see paper)

m Change pointers into the pool to integer
offsets/indexes from pool base:
Replace “* P" with “* (Pool Base + P)”

| f

—n

A Pooifcan DE INAex Converte
POINLERS INto]'t Jm/ eJe)ipiire)
ICK O glienal mem)

(@

el

;O

Chris Lattner

Index Compression of a Pointer

m Shrink indexes in type-homogenous pools
Shrink from 64-Dbits to 32-bits

m Replace structure definition & field accesses
Requires accurate type-info and type-safe accesses

struct List { struct List { struct List {
struct List *Next; | nt 64 Next ; | nt 32 Next;
| nt Dat a; | nt Dat a; | nt Dat a;

¥ ¥ ¥

List *L = nmall oc(16); L = mall oc(16); L = mall oc(8);

. = Q. ~

index conversion Index compression . e

Index Conversion Example 1

Previous Example After Index Conversion

@ index _—/ (T
. Convert O }\
e 64-bit

\
' Pools \ I

Integer

Indexes
Two pointers are Index conversion changes
compressible pointer dereferences, but

not memory layout

Chris Lattner

Index Compression Example 1

Example after
index conversion

P 64-bit 32-bit
integer integer
indiceS indices

Compress pointers,
change accesses to

Compress both indexes and size of structure

from 64 to 32-bit ints

‘Pointer’ registers
remain 64-bits

Chris Lattner

Impact of Type-Homogeneity/safety

m Compression requires rewriting structures:
e.g. malloc(32) - malloc(16)

Rewriting depends on type-safe memory accesses
= We can’t know how to rewrite unions and other cases

Must verify that memory accesses are ‘type-safe’

m Pool allocation infers type homogeneity:
Unions, bad C pointer tricks, etc - non-TH
Some pools may be TH, others not

m Can’t index compress ptrs in non-TH pools!

Chris Lattner

Index Conversion Example 2

unknown

gl 64-Dbit

\ !_‘ % integer
/') - indexes
Heap pointer points from TH Index conversion changes
pool to a heap-only pool: pointer dereferences, but
compress this pointer! not memory layout

Compression of TH memory, pointed to by non-TH memory

Chris Lattner

Index Compression Example 2

Example after
index conversion

64-bit
Integer
Indexes

Next step: compress the
pointer in the heap

unknown / _ 64-bit
type ~integer
e indexes

32-bit
,\ %/ integer
Vo= Index

~.. 7

Compress pointer in type-
safe pool, change offsets
and size of structure

Compression of TH memory, pointed to by non-TH memory

Chris Lattner

Pointer Compression Example 3

> @ 7
=

[|
—)
5
type type

Index convert non-TH Index compress
pool to shrink TH array of pointers!
pointers

Compression of TH pointers, pointing to non-TH memory

Chris Lattner

Static Pointer Compression Impl.

m Inspect graph of pools provided by APA:
Find compressible pointers
Determine pools to index convert

m Use rewrite rules to ptr compress program:

e.g. If P, and P, are compressed pointers, change:
P,=*P, P P, =*(nt*)(PoolBase+P,’)

m Perform interprocedural call graph traversal:
Top-down traversal from main()

Chris Lattner

Talk Outline

Introduction & Motivation

Automatic Pool Allocation Background
Pointer Compression Transformation
Dynamic Pointer Compression
Experimental Results

Conclusion

Chris Lattner

Dynamic Pointer Compression ldea

m Static compression can break programs:

Each pool is limited to 232 bytes of memory
= Program aborts when 232" byte allocated!

m Expand pointers dynamically when needed!
When 232" byte is allocated, expand ptrs to 64-bits
Traverse/rewrite pool, uses type information
Similar to (but a bit simpler than) a copying GC pass

Chris Lattner

Dynamic Pointer Compression Cost

m Structure offset and sizes depend on
whether a pool is currently compressed:

P,=*P, P if (PD->isCompressed)
P, = *(int32*)(PoolBase + P,*C1 + C2);
else
P,’ = *(int64*)(PoolBase + P,”*C3 + C4);

m Use standard optimizations to address this:
Predication, loop unswitching, jump threading, etc.

m See paper for details

Chris Lattner

Talk Outline

m Introduction & Motivation

m Automatic Pool Allocation Background
m Pointer Compression Transformation
m Experimental Results

m Conclusion

Chris Lattner

Experimental Results: 2 Questions

1. Does Pointer Compression improve the
performance of pointer intensive programs?

Cache miss reductions, memory bandwidth
Improvements

Memory footprint reduction

2. How does the impact of Pointer Compression
vary across 64-bit architectures?

Do memory system improvements outweigh overhead?

Built in the LLVM Compiler Infrastructure: http://llvm.cs.uiuc.edu/

Chris Lattner

1.0)

Runtime Ratio (PA

14

12

0.8 -

0.6 A

04 A

0.2 4

Static PtrComp Performance Impact

1.0 = Program compiled with LLVM & PA but no PC

Peak Memory Usage

O NoPA Runtime Ratio

B PtrComp Runtime Ratio [

bh

bisort
em3d

perimeter

power

treeadd

tsp

ks

llubench

PA PC PC/PA
bh 8MB 8MB 1.00
bisort 64MB 32MB 0.50
em3d 47MB | 47MB 1.00
perimeter | 299MB | 171MB 0.57
power 882KB | 816KB 0.93
treeadd 128MB | 64MB 0.50
tsp 128MB | 96MB 0.75
ft oMB 4MB 0.51
ks 47KB 47KB 1.00
llubench 4MB 2MB 0.50

UltraSPARC Illi w/1IMB Cache

Chris Lattner

Evaluating Effect of Architecture

m Pick one program that scales easily:
llubench — Linked list micro-benchmark

llubench has little computation, many dereferences
m Best possible case for pointer compression

m Evaluate how ptrcomp impacts scalability:
Compare to native and pool allocated version

m Evaluate overhead introduced by ptrcomp:
Compare PA32 with PC32 (‘compress’ 32 - 32 bits)

m How close Is ptrcomp to native 32-bit pointers?
Compare to native-32 and poolalloc-32 for limit study

Chris Lattner

SPARC V9 PtrComp (1MB Cache)

7.E-08

6.E-08

5.E-08 —e— Normal 64

-u— PoolAlloc 64
—4— PtrComp 64 | |
-4 Normal 32

-#&- PoolAlloc 32
—o— PtrComp 32 —

4.E-08

3.E-08

v,

Time per node dereference

2.E-08 1

1608 1 STgicen

seelzigflfty I ozt

0.E+00 T T T T
s , J 500 1000 1500 2000 2500
PirCaonrg overnesl

; Heap Size (no units)
5 vary low

Chris Lattner

AMDG64 PtrComp (1MB Cache)

6.E-08
5.E-08 —e—Normal 64
——PoolAlloc 64
—&—PtrComp 64
—4—Normal 32
4.E-08 —$K- PoolAlloc 32 -
—e—PtrComp 32 SIIIIZISS *ele o116y

10 OEle

3.E-08 \Z
2.E-08 EW&%

Im 4z
."u-ﬁn

Time per node dereference

1.E-08 - pf,zuﬁ ™
Y
0.E+00 T T

400 600 800 1000 1200 \ﬂﬁﬁ—

eif for Heap Size (© PirCang s felsier i)
= eap Size (no units 2) I\ 2) \ /”
BIVIESS PASZ g AVIPEZ

Chris Lattner

Pointer Compression Conclusion

m Pointer compression can substantially reduce
footprint of pointer-intensive programs:

... without specialized hardware support!

m Significant perf. impact for some programs:
Effectively higher memory bandwidth
Effectively larger caches

m Dynamic compression for full generality:
Speculate that pools are small, expand if not
More investigation needed, see paper!

m Questions?

http://llvm.cs.uiuc.edu/

Chris Lattner

