
Transparent Pointer CompressionTransparent Pointer Compression
for Linked Data Structuresfor Linked Data Structures

June 12, 2005June 12, 2005
MSP 2005MSP 2005

http://http://llvm.cs.uiuc.edullvm.cs.uiuc.edu//

Chris LattnerChris Lattner
lattner@cs.uiuc.edulattner@cs.uiuc.edu

VikramVikram AdveAdve
vadve@cs.uiuc.eduvadve@cs.uiuc.edu



Chris Lattner

Growth of 64Growth of 64--bit computingbit computing

nn 6464--bit architectures are increasingly common:bit architectures are increasingly common:
vv New architectures and chips (G5, IA64, X86New architectures and chips (G5, IA64, X86--64, 64, ……))
vv HighHigh--end systems have existed for many years nowend systems have existed for many years now

nn 6464--bit address space used for many purposes:bit address space used for many purposes:
vv Address space randomization (security)Address space randomization (security)
vv Memory mapping large files (databases, etc)Memory mapping large files (databases, etc)
vv Single address space Single address space OSOS’’ss
vv Many 64Many 64--bit systems have < 4GB of phys memorybit systems have < 4GB of phys memory

nn 6464--bits is still useful for its bits is still useful for its virtual address spacevirtual address space



Chris Lattner

Cost of a 64Cost of a 64--bit virtual address spacebit virtual address space

nn Pointers must be 64 bits (8 bytes) instead of 32 bits:Pointers must be 64 bits (8 bytes) instead of 32 bits:
vv Significant impact for pointerSignificant impact for pointer--intensive programs!intensive programs!

nn Pointer intensive programs suffer from:Pointer intensive programs suffer from:
vv Reduced effective L1/L2/TLB cache sizesReduced effective L1/L2/TLB cache sizes
vv Reduced effective memory bandwidthReduced effective memory bandwidth
vv Increased alignment requirements, etcIncreased alignment requirements, etc

nn Pointer intensive programs are increasingly common:Pointer intensive programs are increasingly common:
vv Recursive data structures (our focus)Recursive data structures (our focus)
vv Object oriented programsObject oriented programs

BIGGER POINTERSBIGGER POINTERS



Chris Lattner

Previously Published ApproachesPreviously Published Approaches

nn Simplest approaches: Use 32Simplest approaches: Use 32--bit addressingbit addressing
vv Compile for 32Compile for 32--bit pointer size bit pointer size ““--m32m32””
vv Force program image into 32Force program image into 32--bits [Adlbits [Adl--TabatabaiTabatabai’’04]04]
vv Loses advantage of 64Loses advantage of 64--bit address spaces!bit address spaces!

nn Other approaches: Exotic hardware supportOther approaches: Exotic hardware support
vv Compress pairs of values, speculating that pointer Compress pairs of values, speculating that pointer 

offset is small [Zhangoffset is small [Zhang’’02]02]
vv Compress arrays of related pointers [TakagiCompress arrays of related pointers [Takagi’’03]03]
vv Requires significant changes to cache hierarchyRequires significant changes to cache hierarchy

No previous fullyNo previous fully--automatic compiler automatic compiler 
technique to shrink pointers in technique to shrink pointers in RDSRDS’’ss



Chris Lattner

Our Approach (1/2)Our Approach (1/2)

1.1. Use Automatic Pool Allocation [PLDIUse Automatic Pool Allocation [PLDI’’05] to 05] to 
partition heap into memory pools:partition heap into memory pools:
vv Infers and captures pool homogeneity informationInfers and captures pool homogeneity information

Original heap Original heap 
layoutlayout

Layout after Layout after 
pool allocationpool allocation



Chris Lattner

Our Approach (2/2)Our Approach (2/2)

2.2. Replace pointers with 64Replace pointers with 64--bit integer offsets bit integer offsets 
from the start of the poolfrom the start of the pool
vv Change *Change *PtrPtr into *(into *(PoolBase+PtrPoolBase+Ptr))

3.3. Shrink 64Shrink 64--bit integers to 32bit integers to 32--bit integersbit integers
vv Allows each pool to be up to 4GB in sizeAllows each pool to be up to 4GB in size

Layout after pointer Layout after pointer 
compressioncompression



Chris Lattner

Talk OutlineTalk Outline

nn Introduction & MotivationIntroduction & Motivation
nn Automatic Pool Allocation BackgroundAutomatic Pool Allocation Background
nn Pointer Compression TransformationPointer Compression Transformation
nn Experimental ResultsExperimental Results
nn ConclusionConclusion



Chris Lattner

1.1. Compute pointsCompute points--to graph:to graph:
vv Ensure each pointer has one targetEnsure each pointer has one target

nn ““unificationunification--basedbased”” approachapproach

2.2. Infer pool lifetimes:Infer pool lifetimes:
vv Uses escape analysisUses escape analysis

3.3. Rewrite program:Rewrite program:
vv mallocmalloc àà poolallocpoolalloc, free , free àà poolfreepoolfree
vv Insert calls to Insert calls to poolinit/pooldestroypoolinit/pooldestroy
vv Pass pool descriptors to functionsPass pool descriptors to functions

Automatic Pool AllocationAutomatic Pool Allocation

Pool 1Pool 1

Pool 2Pool 2

Pool 3Pool 3

Pool 4Pool 4

For more info: see MSP paper or talk at PLDI tomorrowFor more info: see MSP paper or talk at PLDI tomorrow

L1

List

L2

List

Pool 1Pool 1 Pool 2Pool 2



Chris Lattner

A Simple PointerA Simple Pointer--intensive Exampleintensive Example

nn A list of pointers to doublesA list of pointers to doubles

List *L = 0;List *L = 0;
for (for (……) {) {
List *N = List *N = mallocmalloc(List(List););
NN-->Next = L;>Next = L;
NN-->Data = >Data = mallocmalloc(double(double););
L = N;L = N;

}}

L

double

List List List

double

L

double

List

PointsPoints--to graphto graph
summarysummary

List *L = 0;List *L = 0;
for (for (……) {) {
List *N = List *N = poolallocpoolalloc((PD1PD1, List);, List);
NN-->Next = L;>Next = L;
NN-->Data = >Data = poolallocpoolalloc((PD2PD2,double);,double);
L = N;L = N;

}}

Pool allocatePool allocate

PD1

PD2



Chris Lattner

Effect of Automatic Pool Allocation 1/2Effect of Automatic Pool Allocation 1/2

nn Heap is partitioned into separate poolsHeap is partitioned into separate pools
vv Each individual pool is smaller than total heapEach individual pool is smaller than total heap

L

double

List

List *L = 0;List *L = 0;
for (for (……) {) {
List *N = List *N = mallocmalloc(List(List););
NN-->Next = L;>Next = L;
NN-->Data = >Data = mallocmalloc(double(double););
L = N;L = N;

}}

List *L = 0;List *L = 0;
for (for (……) {) {
List *N = List *N = poolallocpoolalloc((PD1PD1, List);, List);
NN-->Next = L;>Next = L;
NN-->Data = >Data = poolallocpoolalloc((PD2PD2,double);,double);
L = N;L = N;

}}

PD1

PD2 …

…



Chris Lattner

Effect of Automatic Pool Allocation 2/2Effect of Automatic Pool Allocation 2/2

nn Each pool has a descriptor associated with it:Each pool has a descriptor associated with it:
vv Passed into Passed into poolalloc/poolfreepoolalloc/poolfree

nn We know which pool each pointer points into:We know which pool each pointer points into:
vv Given the above, we also have the pool descriptorGiven the above, we also have the pool descriptor
vv e.g. e.g. ““NN””, , ““LL”” àà PD1      and     PD1      and     NN-->Data>Data àà PD2PD2

List *L = 0;List *L = 0;
for (for (……) {) {
List *N = List *N = malloc(Listmalloc(List););
NN-->Next = L;>Next = L;
NN-->Data = >Data = malloc(doublemalloc(double););
L = N;L = N;

}}

List *List *LL = 0;= 0;
for (for (……) {) {
List *List *NN = poolalloc(= poolalloc(PD1PD1, List);, List);
NN-->Next>Next = = LL;;
NN-->Data>Data = poolalloc(= poolalloc(PD2PD2,double);,double);
LL = = NN;;

}}



Chris Lattner

Talk OutlineTalk Outline

nn Introduction & MotivationIntroduction & Motivation
nn Automatic Pool Allocation BackgroundAutomatic Pool Allocation Background
nn Pointer Compression TransformationPointer Compression Transformation
nn Experimental ResultsExperimental Results
nn ConclusionConclusion



Chris Lattner

Index Conversion of a PoolIndex Conversion of a Pool

nn Force pool memory to be contiguous:Force pool memory to be contiguous:
vv Normal Normal PoolAllocPoolAlloc runtime allocates memory in chunksruntime allocates memory in chunks
vv Two implementation strategies for this (see paper)Two implementation strategies for this (see paper)

nn Change pointers into the pool to integer Change pointers into the pool to integer 
offsets/indexes from pool base:offsets/indexes from pool base:
vv Replace Replace ““*P*P”” with with ““*(*(PoolBasePoolBase + P)+ P)””

A pool can be index converted if A pool can be index converted if 
pointers into it only point to heap pointers into it only point to heap 
memory (no stack or global memory (no stack or global memmem))



Chris Lattner

Index Compression of a PointerIndex Compression of a Pointer

nn Shrink indexes in typeShrink indexes in type--homogenous poolshomogenous pools
vv Shrink from 64Shrink from 64--bits to 32bits to 32--bitsbits

nn Replace structure definition & field accesses Replace structure definition & field accesses 
vv Requires accurate typeRequires accurate type--info and typeinfo and type--safe accessessafe accesses

structstruct List {List {
structstruct List *Next;List *Next;
int Data;int Data;

};};

structstruct List {List {
int64 Next;int64 Next;
int Data;int Data;

};};

structstruct List {List {
int32 Next;int32 Next;
int Data;int Data;

};};

List *L = malloc(16);List *L = malloc(16); L = malloc(16);L = malloc(16); L = malloc(8);L = malloc(8);

index conversionindex conversion index compressionindex compression



Chris Lattner

IndexIndex ConversionConversion Example 1Example 1

L

double

List

Two pointers are Two pointers are 
compressiblecompressible

Previous ExamplePrevious Example

Index conversion changes Index conversion changes 
pointer dereferences, but pointer dereferences, but 

not memory layoutnot memory layout

6464--bit bit 
integer integer 
indexesindexes

L

double

ListIndex Index 
ConvertConvert
PoolsPools

After Index ConversionAfter Index Conversion



Chris Lattner

IndexIndex CompressionCompression Example 1Example 1
Example afterExample after

index conversionindex conversion

6464--bit bit 
integer integer 
indicesindices

L

double

List

Compress pointers, Compress pointers, 
change accesses to change accesses to 
and size of structureand size of structure

L

double

List

3232--bit bit 
integer integer 
indicesindices

‘‘PointerPointer’’ registersregisters
remain 64remain 64--bitsbits

Compress both indexes Compress both indexes 
from 64 to 32from 64 to 32--bit bit intsints



Chris Lattner

Impact of TypeImpact of Type--Homogeneity/safety Homogeneity/safety 

nn Compression requires rewriting structures:Compression requires rewriting structures:
vv e.g. malloc(32) e.g. malloc(32) àà malloc(16)malloc(16)
vv Rewriting depends on typeRewriting depends on type--safe memory accessessafe memory accesses

nn We canWe can’’t know how to rewrite unions and other casest know how to rewrite unions and other cases

vv Must verify that memory accesses are Must verify that memory accesses are ‘‘typetype--safesafe’’

nn Pool allocation infers type homogeneity:Pool allocation infers type homogeneity:
vv Unions, bad C pointer tricks, etc Unions, bad C pointer tricks, etc àà nonnon--THTH
vv Some pools may be TH, others notSome pools may be TH, others not

nn CanCan’’t index compress t index compress ptrsptrs in nonin non--TH pools!TH pools!



Chris Lattner

Index Conversion Example 2Index Conversion Example 2

L

List

unknown
type

Heap pointer points from TH Heap pointer points from TH 
pool to a heappool to a heap--only pool: only pool: 
compress this pointer!compress this pointer!

L

List

unknown
type

Index conversion changes Index conversion changes 
pointer dereferences, but pointer dereferences, but 

not memory layoutnot memory layout

6464--bit bit 
integer integer 
indexesindexes

Compression of TH memory, pointed to by non-TH memory



Chris Lattner

Index Compression Example 2Index Compression Example 2

L

List

unknown
type

Example afterExample after
index conversionindex conversion

6464--bit bit 
integer integer 
indexesindexes

Next step: compress the Next step: compress the 
pointer in the heappointer in the heap

unknown
type

Compress pointer in typeCompress pointer in type--
safe pool, change offsets safe pool, change offsets 

and size of structureand size of structure

6464--bit bit 
integer integer 
indexesindexes

3232--bit bit 
integer integer 
indexindex

L

List

Compression of TH memory, pointed to by non-TH memory



Chris Lattner

Pointer Compression Example 3Pointer Compression Example 3

L

Array

unknown
type

L

Array

unknown
type

Index convert nonIndex convert non--TH TH 
pool to shrink TH pool to shrink TH 

pointerspointers

L

Array

unknown
type

Index compress Index compress 
array of pointers!array of pointers!

Compression of TH pointers, pointing to non-TH memory



Chris Lattner

Static Pointer Compression Static Pointer Compression ImplImpl..

nn Inspect graph of pools provided by APA:Inspect graph of pools provided by APA:
vv Find compressible pointersFind compressible pointers
vv Determine pools to index convertDetermine pools to index convert

nn Use rewrite rules to Use rewrite rules to ptrptr compress program:compress program:
vv e.g. if Pe.g. if P11 and Pand P22 are compressed pointers, change:are compressed pointers, change:

PP11 = *P= *P22 ⇒⇒ PP11’’ = *(int*)(PoolBase+P= *(int*)(PoolBase+P22’’))

nn Perform interprocedural call graph traversal:Perform interprocedural call graph traversal:
vv TopTop--down traversal from main()down traversal from main()



Chris Lattner

Talk OutlineTalk Outline

nn Introduction & MotivationIntroduction & Motivation
nn Automatic Pool Allocation BackgroundAutomatic Pool Allocation Background
nn Pointer Compression TransformationPointer Compression Transformation
nn Dynamic Pointer CompressionDynamic Pointer Compression
nn Experimental ResultsExperimental Results
nn ConclusionConclusion



Chris Lattner

Dynamic Pointer Compression IdeaDynamic Pointer Compression Idea

nn Static compression can break programs:Static compression can break programs:
vv Each pool is limited to 2Each pool is limited to 23232 bytes of memorybytes of memory

nn Program aborts when 2Program aborts when 23232ndnd
byte allocated!byte allocated!

nn Expand pointers dynamically when needed!Expand pointers dynamically when needed!
vv When 2When 23232ndnd

byte is allocated, expand byte is allocated, expand ptrsptrs to 64to 64--bitsbits
vv Traverse/rewrite pool, uses type informationTraverse/rewrite pool, uses type information
vv Similar to (but a bit simpler than) a copying GC passSimilar to (but a bit simpler than) a copying GC pass



Chris Lattner

Dynamic Pointer Compression CostDynamic Pointer Compression Cost

nn Structure offset and sizes depend on Structure offset and sizes depend on 
whether a pool is currently compressed:whether a pool is currently compressed:
PP11 = *P= *P22 ⇒⇒

nn Use standard optimizations to address this:Use standard optimizations to address this:
vv Predication, loop Predication, loop unswitchingunswitching, jump threading, etc., jump threading, etc.

nn See paper for detailsSee paper for details

if (PD->isCompressed)
P1’ = *(int32*)(PoolBase + P2’*C1 + C2);

else
P1’ = *(int64*)(PoolBase + P2’*C3 + C4);



Chris Lattner

Talk OutlineTalk Outline

nn Introduction & MotivationIntroduction & Motivation
nn Automatic Pool Allocation BackgroundAutomatic Pool Allocation Background
nn Pointer Compression TransformationPointer Compression Transformation
nn Experimental ResultsExperimental Results
nn ConclusionConclusion



Chris Lattner

Experimental Results: 2 QuestionsExperimental Results: 2 Questions

1.1. Does Pointer Compression improve the Does Pointer Compression improve the 
performance of pointer intensive programs?performance of pointer intensive programs?
nn Cache miss reductions, memory bandwidth Cache miss reductions, memory bandwidth 

improvementsimprovements
nn Memory footprint reductionMemory footprint reduction

2.2. How does the impact of Pointer Compression How does the impact of Pointer Compression 
vary across 64vary across 64--bit architectures?bit architectures?
nn Do memory system improvements outweigh overhead?Do memory system improvements outweigh overhead?

Built in the LLVM Compiler Infrastructure: Built in the LLVM Compiler Infrastructure: http://http://llvm.cs.uiuc.edullvm.cs.uiuc.edu//



Chris Lattner

Static Static PtrCompPtrComp Performance ImpactPerformance Impact

UltraSPARC IIIi w/1MB Cache

0.500.50

1.00

0.510.51

0.750.75

0.500.50

0.93

0.570.57

1.00

0.500.50

1.00

PC/PA

47MB47MBem3d

PCPA

2MB4MBllubench

47KB47KBks

4MB9MBft

96MB128MBtsp

64MB128MBtreeadd

816KB882KBpower

171MB299MBperimeter

32MB64MBbisort

8MB8MBbh

Peak Memory Usage
1.0 = Program compiled with LLVM & PA but no PC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

b
h

bi
so

rt

em
3d

pe
rim

et
er

po
w

er

tr
ee

ad
d

ts
p ft

ks

llu
be

nc
h

R
u

n
ti

m
e 

R
at

io
 (

P
A

 =
 1

.0
)

NoPA Runtime Ratio

PtrComp Runtime Ratio



Chris Lattner

Evaluating Effect of ArchitectureEvaluating Effect of Architecture

nn Pick one program that scales easily:Pick one program that scales easily:
vv llubenchllubench –– Linked list microLinked list micro--benchmarkbenchmark
vv llubenchllubench has little computation, many dereferenceshas little computation, many dereferences

nn Best possible case for pointer compressionBest possible case for pointer compression

nn Evaluate how Evaluate how ptrcompptrcomp impacts scalability:impacts scalability:
vv Compare to native and pool allocated versionCompare to native and pool allocated version

nn Evaluate overhead introduced by Evaluate overhead introduced by ptrcompptrcomp::
vv Compare PA32 with PC32 (Compare PA32 with PC32 (‘‘compresscompress’’ 32 32 àà 32 bits)32 bits)

nn How close is How close is ptrcompptrcomp to native 32to native 32--bit pointers?bit pointers?
vv Compare to nativeCompare to native--32 and poolalloc32 and poolalloc--32 for limit study32 for limit study



Chris Lattner

SPARC V9 SPARC V9 PtrCompPtrComp (1MB Cache)(1MB Cache)

0.E+00

1.E-08

2.E-08

3.E-08

4.E-08

5.E-08

6.E-08

7.E-08

0 500 1000 1500 2000 2500

Heap Size (no units)

Ti
m

e 
pe

r 
no

de
 d

er
ef

er
en

ce Normal 64
PoolAlloc 64
PtrComp 64
Normal 32
PoolAlloc 32
PtrComp 32

PtrCompPtrComp overhead overhead 
is very lowis very low

Significant Significant 
scalability impactscalability impact



Chris Lattner

AMD64 AMD64 PtrCompPtrComp (1MB Cache)(1MB Cache)

0.E+00

1.E-08

2.E-08

3.E-08

4.E-08

5.E-08

6.E-08

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Heap Size (no units)

T
im

e 
p

er
 n

o
d

e 
d

er
ef

er
en

ce

Normal 64

PoolAlloc 64
PtrComp 64
Normal 32

PoolAlloc 32
PtrComp 32

PtrCompPtrComp is is fasterfaster than than 
PA32 on AMD64!PA32 on AMD64!

Similar scalability Similar scalability 
impactimpact

See paper for See paper for 
IA64 and IBMIA64 and IBM--SPSP



Chris Lattner

Pointer Compression ConclusionPointer Compression Conclusion

nn Pointer compression can substantially reduce Pointer compression can substantially reduce 
footprint of pointerfootprint of pointer--intensive programs:intensive programs:
vv …… without specialized hardware support!without specialized hardware support!

nn Significant Significant perfperf. impact for some programs:. impact for some programs:
vv Effectively higher memory bandwidthEffectively higher memory bandwidth
vv Effectively larger cachesEffectively larger caches

nn Dynamic compression for full generality:Dynamic compression for full generality:
vv Speculate that pools are small, expand if notSpeculate that pools are small, expand if not
vv More investigation needed, see paper!More investigation needed, see paper!

nn Questions?Questions?

http://http://llvm.cs.uiuc.edullvm.cs.uiuc.edu//


