
Chris Lattner
clattner@apple.com

Google Tech Talk
July 27, 2007

LLVM - 2.0 and beyond!

http://llvm.org/

http://llvm.org/

What is the LLVM Project?
Two primary components:

• Mid-Level Optimizer and Code Generator
– Standard Suite of SSA-based optimizations
– Scalar optimizations, loop optimizations, load/store xforms, etc.
– Codegen support for many targets:
– X86, X86-64, PPC, PPC64, ARM, Thumb, SPARC, Alpha, IA64, MIPS

• llvm-gcc front-end for C/C++/ObjC/Ada/FORTRAN/...
– Based on GCC 4.0, translates from GIMPLE to LLVM IR.
– Uses GCC frontend with LLVM Optimizers and Codegen
– Drop in compatibility with GCC: make CC=llvm-gcc

http://llvm.org/

Novel Capabilities of LLVM
Relative to GCC

• Link Time Optimization (cross-file optimization)
– Includes a full suite of IPO transformations, since LLVM 1.0
– Integrates with native system linker

• Just-In-Time (JIT) code generation
– Can optionally optimize and generate code on the fly
– Used by Apple (OpenGL stack) and Adobe (After Effects CS3)
– ... among others, see http://llvm.org/Users.html

• Easy to learn, work with, and contribute to:
– Clean and modular design, good support tools (bugpoint)
– Strong and friendly community, good documentation

http://llvm.org/

Talk Outline
LLVM - 2.0 and beyond!

• What’s new in LLVM 2.0 (May 23, 2007)
– New features, optimizations, major changes

• What is coming next?
– LLVM 2.1 (~Sep 2007)
– llvm-gcc 4.2
– “clang” - New C front-end

What’s new in LLVM 2.0

New features, optimizations, major changes

http://llvm.org/

New Features in LLVM 2.0 (vs 1.9)
• Missing ELF features added:
– visibility control
– Extern weak linkage
– Thread Local Storage: __thread
– Symbol Aliases

• Other missing features added:
– #pragma pack
– alignment info for loads/stores
– soft float support
– Precompiled Headers (PCH)

• Missing X86 features added:
– MMX support
– linux/i386 PIC support
– regparm parameters

• Still missing in LLVM 2.0:
– C++ Zero Cost EH (LLVM 2.1)
– long double (LLVM 2.1 or 2.2)
– Nested function trampolines (?)
– __builtin_apply (?)

Can now build many large software packages out of the box: mozilla, Qt, etc...

http://llvm.org/

Other LLVM 2.0 user-visible improvements
• Optimizer / Codegen Improvements:
– Can now promote simple unions to registers (important for vectors)
– Better register coallescing: avoid coallescing that leads to spilling
– Simple rematerialization support in the register allocator
– Register pressure optimizations in the scheduler
– Improved switch statement lowering

• Other new stuff:
– Compile-time speedup in several places
– Better llvm-gcc support for Ada (which generates “aggressive” GIMPLE)
– MSIL backend (transforms LLVM IR into unsafe MSIL)

http://llvm.org/

LLVM 2.0 Internal IR Changes
• LLVM Intermediate Representation is stored in two kinds of files:
– .ll file - Human readable/writable file, looks like assembly language
– .bc file - Binary file, very compact and fast to read/write

• “2.0” allowed us to break backwards compatibility with 1.x IR files:
– LLVM 1.9 transparently upgrades .ll files and .bc files from LLVM 1.3 - 1.9
– LLVM 2.0 requires use of llvm-upgrade tool to upgrade llvm 1.9 .ll file
– ‘2.0’ allows major IR changes, that would be difficult to ‘auto-upgrade’

• Two major IR changes:
– Signless types
– Arbitrary-precision integers

http://llvm.org/

LLVM 2.0 IR: Signless Types
• The LLVM 1.9 IR uses integer type system very similar to C:
– signed vs unsigned 8/16/32/64 bit integers

• The LLVM 2.0 IR uses integer types similar to CPUs:
– 8/16/32/64 bits, with sign stored in operators (e.g. sdiv vs udiv)

int foo(unsigned A) {
 int B = (int)A;
 unsigned C = A + 4;
 int D = B + 4;
 int E = (int)C;
 return D-E;
}

C Code

int %foo(uint %A) {
 %B = cast uint %A to int
 %C = add uint %A, 4
 %D = add int %B, 4
 %E = cast uint %C to int
 %F = sub int %D, %E
 ret int %F
}

LLVM 1.9

i32 @foo(i32 %A) {

 %C = add i32 %A, 4
 %D = add i32 %A, 4

 %F = sub i32 %D, %C
 ret i32 %F
}

LLVM 2.0

• Advantages:
– Smaller IR: don’t need “noop” conversions (e.g. uint <--> sint)
– More explicit operations (e.g. ‘sign extend’ instead of ‘cast’)
– Redundancy elimination: (actually happens during strength reduction)

http://llvm.org/

LLVM 2.0 IR: Arbitrary precision integers
• LLVM 2.0 allows arbitrary fixed width integers:
– i2, i13, i128, i1047, i12345, etc

• Primarily useful to EDA / hardware synthesis business:
– An 11-bit multiplier is significantly cheaper/smaller than a 16-bit one
– Can use LLVM analysis/optimization framework to shrink variable widths
– Patch available that adds an attribute in llvm-gcc to get this

• Implementation impact of arbitrary width integers:
– Immediates, constant folding, intermediate arithmetic simplifications
– New “APInt” class used internally to represent/manipulate these
– Makes LLVM more portable, not using uint64_t everywhere for arithmetic

What’s next?

LLVM 2.1, llvm-gcc 4.2, clang CFE

http://llvm.org/

Coming Soon - LLVM 2.1: September ‘07
• LLVM release cycle varies from 3-6 months
– Emphasize incremental development, discourage development branches

• Major new LLVM 2.1 features will likely include:
– C++ Zero-Cost DWARF Exception handling support for linux/x86
– Several improvements in the optimizer
– Compile time improvements (20%+ faster optimizer at -O3 in some cases)

• LLVM 2.1 code freeze is on Sep 12 ’07 - get your feature in soon! :)

http://llvm.org/

Coming Soon - llvm-gcc 4.2
Update llvm-gcc from GCC 4.0 to GCC 4.2

• Bring new GCC 4.2 front-end features to LLVM:
– OpenMP, better warning control, visibility support
– Many FORTRAN and Ada improvements
– New recursive descent C/ObjC parser

• Current Status:
– Work just started in mid-July, already making fast progress
– Can build front-end, libgcc, etc, but cannot bootstrap yet
– Current plan is for this to be ready for LLVM 2.2.

LLVM C Family Frontend
“clang”

http://clang.llvm.org/

http://llvm.org/

Motivation: Why a new front-end?
• GCC doesn’t service the diverse need of an IDE
– Indexing - scoped variable uses and defs: ‘jump to definition’ ‘doxygen’
– Source analysis - ‘automatic bug finding’
– Refactoring - ‘Rename variable’ ‘pull code into a new function’
– Other source-to-source transformation tools, like ‘smart editing’
– Yes, it does support compiling :-)

• GCC does not preserve enough source-level information
– Full column numbers, it implicitly folds/simplifies trees as it parses, etc

• GCC’s front-end is difficult to work with
– Learning curve too steep for many developers
– Implementation and politics limit innovation

• GCC’s front-end is very slow and memory hungry

http://llvm.org/

Goals
• Unified parser for C-based languages
– Language conformance (C, Objective C, C++) & GCC compatibility
– Good diagnostics

• Library based architecture with finely crafted C++ API’s
– Useable and extensible by mere mortals
– Reentrant, composable, replaceable

• Multi-purpose
– Indexing, static analysis, code generation
– Source to source tools, refactoring

• High performance!
– Low memory footprint, fast compiles
– Support lazy evaluation, caching, multithreading

http://llvm.org/

Non Goals
• Support for non-C based languages
– No plans for Java, Ada, FORTRAN, etc
– These languages can reuse some code, but the ASTs are C-specific
– Separate front-end projects could do this if someone steps up to do it

• Obsoleting GCC (or llvm-gcc)
– not pragmatic, we respect GCC’s ubiquity
– our goals are fundamentally different than GCC
– our contributors set our priorities, GCC’s contributors set theirs
– GCC/LLVM will always have distinct (but partially overlapping) strengths

http://llvm.org/

Introducing “clang”: http://clang.llvm.org/

• A simple driver, with (some) GCC compatible options:
$ clang implicit-def.c -std=c89 -fsyntax-only
implicit-def.c:6:10: warning: implicit declaration of function 'X'
 return X();
 ^

$ cat testcase.c
typedef union <bad> __mbstate_t; // \
 expected-error: {{not really here}}
$ clang -parse-ast-check testcase.c
Errors expected but not seen:
 Line 1: not really here
Errors seen but not expected:
 Line 1: expected identifier or '{'

Diagnostic Checker (for testsuite)

$ time clang -parse-noop INPUTS/carbon_h.c
real 0m0.204s
user 0m0.138s
sys 0m0.047s

• Performance analysis options (-Eonly, -parse-noop, -stats)

$ clang -parse-ast-print madd.c
typedef float V;
V foo(V a, V b) {
 return a + b * a;
}

Pretty Printer from ASTs

• Several useful features built in:

http://llvm.org/

GCC diagnostics

// test.c
struct A { int X; } someA;
int func(int);

int test1(int intArg) {
 *(someA.X);
 return intArg + func(intArg ? ((someA.X + 40) + someA) / 42 + someA.X : someA.X);
}

% cc -c test.c

test.c: In function ‘test1’:
test.c:7: error: invalid type argument of ‘unary *’
test.c:8: error: invalid operands to binary +

http://llvm.org/

clang “expressive” diagnostics

% clang test.c

test.c:7:2: error: indirection requires a pointer operand ('int' invalid)
 *(someA.X);
 ^~~~~~~~~~
test.c:8:48: error: invalid operands to binary expression ('int' and 'struct A')
 return intArg + func(intArg ? ((someA.X + 40) + someA) / 42 + someA.X : someA.X);
                                ~~~~~~~~~~~~~~ ^ ~~~~~

% cc -c test.c

test.c: In function ‘test1’:
test.c:7: error: invalid type argument of ‘unary *’
test.c:8: error: invalid operands to binary +

• Other Features:
– Retains typedef info: std::string instead of std::basic_string<char, 

std::char_traits<char>, std::allocator<char> >
– Diagnostics have unique ID’s (good for internationalization, control, IDE)
– Fine grained location tracking (even through macro instantiations)



http://llvm.org/

clang status: still very early (July 26, ‘07)
• Major components:
– Lexer and preprocessor are done and well tested
– C Parser is 95% complete
– Required semantic analysis / type-checking for C is 80% done (errors)
– “QOI” Semantic analysis (warnings) largely missing
– Code generation through LLVM: 15% done  

• Objective C and C++ support are almost completely missing

Work continues, and there are 
already many interesting things we 
can do: are we on the right track?



Compile Time 
Performance
http://clang.llvm.org/



http://llvm.org/

Three primary scenarios:
• Release builds:
– Highly optimized -O4 builds

• Development builds: 
– “-O0 -g” builds: fast compile, debug, edit cycles

• Source-Level Analysis tools:
– e.g. indexing: need to keep the index up-to-date as user edits code

Question: Where does a front-end spend its time?

front-end has little effect*: speed up the optimizer/codegen

front-end is critical!

front-end is critical!

* for uniprocessor builds, more later



http://llvm.org/

Anatomy of a typical GUI app on the mac
• Contains a few dozen or few hundred source files (C or Objective C)
– Each file may be a few thousand lines of code

• Each pulls in carbon.h (C) or Cocoa.h (Objective C) among others
– Standard interfaces to system frameworks



http://llvm.org/

Problem: System headers are huge!
• Carbon.h contains:
– 558 files
– 12.3 megabytes!
– 10,000 function declarations
– 2000 structure definitions,  8000 fields
– 3000 enum definitions, 20000 enum constants
– 5000 typedefs
– 2000 file scoped variables
– 6000 macros

• Compile time is dominated by header preprocessing & analysis time:
– Parser has to grok entire input
– Optimizer and codegen only have to process code being used



http://llvm.org/

Space

Input Source Preprocessed Source  clang AST’s GCC trees

614,044
804,716

1,504,840

2,104,780
3,578,038

12,285,640

Characters Identifiers/Strings (51936) Decl AST (49468)
Stmt/Expr AST (31532) Type AST (26684)

clang 30% larger than source



http://llvm.org/

Input Source Preprocessed Source clang AST’s GCC trees

30,000,000

614,044
804,716

1,504,840

2,104,780
3,578,038

12,285,640

Characters Identifiers/Strings (51936) Decl AST (49468)
Stmt/Expr AST (31532) Type AST (26684) GCC tree nodes

Space

gcc 10x larger than source

clang 30% larger than source



http://llvm.org/

0.25

0.50

0.75

1.00

clang

0.068
0.021

0.160

Preprocess, Lex Parse Semantic Analysis, Tree Building

65%

10%
25%

gcc 4.0

0.314

0.314

clang 2.5x faster

2.0 Ghz Intel Core Duo

Time to parse carbon.h: -fsyntax-only



http://llvm.org/

• Whole program ASTs (space efficient and easy to access)
– Lazily [de]serialize them to/from disk or store in a server/IDE
– ASTs are built as a side-effect of compiling
– Use lessons learned from building and streaming LLVM IR

• ASTs are the intermediate form to enable many clients:
– Symbol index, cross reference
– Source code refactoring
– Precompiled headers (smart caching)
– Codegen to LLVM, in process (JIT for -O0?)
– Debugger: use AST for types, decls, etc, reducing DWARF size
– Syntax-aware highlighting (not regex’ing source) and editing
– Who knows what else? Clearly many possibilities...

Changing the rules: 2.5x good, 10x better :-)

Next Question: What about parallel builds?



http://llvm.org/

Distributed parallel builds with distcc
• distcc model:
– Main build machine invokes distcc from makefile with high parallel build
– Each distcc invocation preprocesses a source file and sends to slave
– Slave compiles, optimizes, returns resultant .o file

• Advantages:
– Don’t need to synch system, lib, app headers across machines
– High optimization levels parallelize well

• Problem: Scalability limited by preprocessor!
– “Performance tends to plateau between ten and twenty machines. This is consistent 

with measurements of the preprocessor using roughly 5-10% of the total CPU time: 
when twenty preprocessors and distcc clients are running, the client is completely 
saturated and cannot issue any more jobs.”
– From ‘distcc, a fast free distributed compiler’ by Martin Pool

What if you have huge clusters of machines laying around?



http://llvm.org/

Preprocessor Speeds: GCC 4.0 vs 4.2
• Picked the biggest SPEC2006 benchmarks (by emitted .i file size)
– For example, 483.xalancbmk is 291MB of preprocessed output!

483.xalancbmk
       291MB

447.dealII
   116MB

450.soplex
      45MB

453.povray
     26MB

4.424.78

10.76

42.45

5.035.03

11.14

44.65

Apple GCC 4.0 FSF GCC 4.2

5.2% Speedup

3.5% Speedup

5.2% Speedup 13.8% Speedup

Average Speedup: 6.9%



http://llvm.org/

Preprocessor Speeds: GCC 4.2 vs clang
• Minimum of 3 runs, time on a 2.66Ghz Core2 Duo Mac Pro

483.xalancbmk
       291MB

447.dealII
   116MB

450.soplex
      45MB

453.povray
     26MB

2.762.88

7.26

26.59

4.424.78

10.76

42.45

gcc 4.2 clang

58.0% Speedup

48.2% Speedup

66.0% Speedup
60.1% Speedup

Average Speedup: 58%



http://llvm.org/

Changing the rules: Intelligent caching
• Observation: Huge amount of commonality across translation units
– Header search paths are the same
– Headers contents are common across all .cpp/.c files

• Why not build a “distcc accelerator” tool?
– clang is built as a reusable framework!

• Simple approach: cache the header lookup and filesystem objects
– Model: Preprocess multiple files at once
– Do cache basic filesystem accesses (mmaps, directory searches)
– Don’t cache preprocessor or lexer state - Possible for future work

• Note: implementation is not integrated with distcc
– Patches welcome :-)



http://llvm.org/

Preprocessor Speeds: GCC 4.2 vs clang-all
• 10x reduction in system time
– 483.xalancbmk: clang: 9.85s, clang-all: 0.88s

• “-fdirectives-only”: another 30%+ reduction in clang time (4x -> 12x) 

483.xalancbmk
       291MB

447.dealII
   116MB

450.soplex
      45MB

453.povray
     26MB

1.191.66
4.21

10.10

2.762.88

7.26

26.59

4.424.78

10.76

42.45

gcc 4.2 clang clang-all

4.2x Speedup

2.6x Speedup

2.9x Speedup 3.7x Speedup

Average Speedup: 3.3x



http://llvm.org/

Conclusion: LLVM 2.0 and beyond!
• LLVM 2.0
• Nearly “feature complete”, many optimization and improvements 

• LLVM 2.1, llvm-gcc 4.2
• Coming in the next 3-6mo, new incremental improvements

• New C Frontend: 
• New library-based design, improves over GCC in many areas
• Already has useful applications (3.3x speedup for distcc)
• Still in early development

Questions?

http://llvm.org http://clang.llvm.org


