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Abstract
Managed Runtime Environments (MREs), such as the JVM and
the CLI, form an attractive environment for program execution, by
providing portability and safety, via the use of a bytecode language
and automatic memory management, as well as good performance,
via just-in-time (JIT) compilation. Nevertheless, developing a fully
featured MRE, including e.g. a garbage collector and JIT compiler,
is a herculean task. As a result, new languages cannot easily take
advantage of the benefits of MREs, and it is difficult to experiment
with extensions of existing MRE based languages.

This paper describes and evaluates VMKit, a first attempt to
build a common substrate that eases the development of high-level
MREs. We have successfully used VMKit to build two MREs: a
Java Virtual Machine and a Common Language Runtime. We pro-
vide an extensive study of the lessons learned in developing this
infrastructure, and assess the ease of implementing new MREs or
MRE extensions and the resulting performance. In particular, it
took one of the authors only one month to develop a Common
Language Runtime using VMKit. VMKit furthermore has perfor-
mance comparable to the well established open source MREs Ca-
cao, Apache Harmony and Mono, and is 1.2 to 3 times slower than
JikesRVM on most of the DaCapo benchmarks.

Categories and Subject Descriptors D.3.4 [Programing Lan-
guages]: Runtime Environments - Compilers

General Terms Design, Performance, Experimentation

Keywords Virtual machine, Just in Time Compiler, VMKit,
LLVM
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1. Introduction
Managed runtime environments, such as the Java Virtual Machine
(JVM) [28] or the Common Language Infrastructure (CLI) [20],1

are becoming the norm for executing programs in environments
ranging from web servers to desktops and even embedded systems.
An MRE executes an intermediate representation of an applica-
tion, which is portable, compact and, most important of all, can be
checked to enforce safety. An MRE can in principle support many
languages; for example, the CLI supports languages ranging from
the imperative language C# to the functional language F#, and the
scripting language IronPython. Nevertheless, an MRE inevitably
imposes some design decisions on the languages that target it. For
example, the JVM does not provide non-GC allocated structures
or pointers, which are required for languages such as C or C++,
and the CLI does not perform dynamic class unloading for a single
application domain, which can introduce memory leaks for appli-
cation servers such as OSGi [21] or Jonas [33] where classes are
updated frequently. New managed runtime environments are thus
potentially needed to support either new languages or MRE fea-
tures [10, 16, 25, 34, 44, 47].

Implementing a new managed runtime environment, however,
is a daunting task and may require implementing complex modules
such as a Just In Time (JIT) compiler and an exact garbage col-
lector (GC). Convincingly demonstrating the interest of a research
prototype requires that it be competitive with other well established
projects. Meeting such goals requires a huge development effort: (i)
many functionalities that are uninteresting from a research point of
view must be implemented to run standard benchmarks, and (ii)
reaching the performance of current MREs requires spending a lot
of time in finding, optimizing and removing performance bottle-
necks. To allow the development of MREs for new languages and
new language features, it is thus essential to reduce this develop-
ment burden.

In this paper, we propose a solution to help experimentation in
the domain of MREs based on a reusable substrate called VMKit.
Our approach splits the implementation of an MRE into two inde-
pendent layers. The first layer consists of VMKit, which provides
basic functionalities: threads, GC-based memory management and
a JIT compiler for a language-independent intermediate language.

1 The CLI defines the executable code and the managed runtime environ-
ment of the Microsoft .NET Framework [43].



The second layer, called a high-level MRE, instantiates the sub-
strate for a particular high-level language or class of high-level lan-
guages. It defines a complete and specific managed runtime envi-
ronment.

The key challenge in building VMKit is to ensure that it does
not impose any design decisions on the high-level MREs. VMKit
thus defines the core of an MRE but does not impose any object
model, type system or call semantics, which instead are defined by
the high-level MRE. In particular, VMKit lets a high-level MRE
control how memory is allocated (GC, non-GC, on stack), and how
methods are dispatched (direct call, indirect call, single dispatch,
multi dispatch, etc).

The contributions of this paper are the design and preliminary
implementation of the VMKit substrate, a methodology for us-
ing this substrate in developing high-level MREs and a complete
evaluation of the approach. Our implementation relies on the state
of the art third-party projects LLVM [35] for the JIT compiler,
MMTk [3, 23] for the garbage collector and the POSIX Thread li-
brary [9] for the thread manager. As these projects were not ini-
tially designed to work together, a challenge in the development
of VMKit has been to define the necessary glue between them to
construct an efficient and language-independent substrate, without
modifying these projects. Technically, the glue allows the use of an
exact GC integrated with the JIT compiler in a multi-threaded envi-
ronment without imposing the object model, the type system or the
call semantics. We also report our experience in building two high-
level MREs to show the usability of VMKit: a Java Virtual Machine
(J3) and a CLI implementation (N3). Although the JVM and CLI
have many similarities, there are enough differences between them
to highlight the reusability of VMKit.

The main lessons learned from our work are:

• One can build different high-level MREs on top of a shared
substrate very easily. Out of the roughly 500,000 lines of code
of J3 or N3,2 only 4% (20,000 lines of code) are devoted to
implementing the high level MRE, while the remaining 96%
are provided by the substrate. Once we had gained experience
with the J3 implementation, which was developed in parallel
with VMKit, it took one of the authors one month to develop
N3. In other work, we have also developed a variant of the
Multitasking Virtual Machine [16] in J3, in around one month,
without needing to change the substrate [25].

• By providing a substrate that includes a state-of-the-art JIT
compiler and GC, VMKit supports the development of MREs
that have performance similar to other research or open source
MREs, such as Cacao, Harmony, and Mono, on e.g., the Da-
Capo Benchmark suite [4]. Nevertheless, optimization oppor-
tunities remain. For example, our JVM does not yet provide
an adaptive compiler [14], optimized array bound and null
pointer check elimination [38], or copying collectors. J3 re-
mains therefore 1.2 to 3 times slower than the state-of-the-art
MRE JikesRVM.

The remainder of this paper is organized as follows. Section 2
presents the overall design of VMKit. Section 3 introduces our
target high-level MREs and their implementation using VMKit.
Section 4 analyses their performance. Section 5 discusses related
work. Section 6 concludes the paper.

2. The Design of VMKit
VMKit provides a JIT compiler, a memory manager, and a thread
manager, as shown in Figure 1. We have selected these modules

2 This number excludes the number of lines of code for the base libraries
(rt.jar/glibj.jar, mscorlib.dll).
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Figure 1. VMKit and a high level MRE. A grey box represents
a module and a white box represents code generated by the JIT
compiler. Black arrows represent calls between VMKit and the
High Level MRE while grey arrows represent calls inside VMKit.
Solid arrows are calls between modules and dashed arrows are calls
between generated code (or an interpreted function) and a module.

as the basis of VMKit because they are required by most existing
high-level MREs. However, a high-level MRE is not obligated to
use all of them. For example, if the MRE does not want to define
threads or does not want to use the garbage collector, it can simply
never call the corresponding modules.

To obtain good performance, however, it is not sufficient to pro-
vide these modules; they must also work together. In particular, the
GC needs the help of the JIT compiler to understand the structure
of the execution stack (or stacks, in the multi-threaded case) and
the help of the thread manager to construct multi-threaded garbage
collectors. Therefore, the implementation of VMKit adds glue be-
tween these modules: (i) glue between the GC and the JIT compiler
to collect precise information about the layout of function frames
and (ii) glue between the thread manager and the GC to build multi-
threaded garbage collectors.

In addition to the glue, VMKit relies on a small interface that
must be exported by the high-level MRE, as illustrated in Figure 1.
This interface allows VMKit to be independent of the high-level
MRE, by providing information that VMKit requires about various
MRE design decisions. The functions in this interface are:

• Compilation-related functions: The high-level MRE must pro-
vide a callback function that is capable of generating code for an
arbitrary function. This callback function allows the compiler to
perform lazy compilation. Rather than compiling all functions
during initialization, VMKit compiles a function only when it
is first executed, by invoking this callback function.

• GC-related functions: The MRE must provide a collection of
five functions that help the GC by reifying the structure of the
root objects and the structure of the heap. These functions allow
the GC to be independent of the object and type models used by
the high-level MRE.

Concretely, our implementation of VMKit uses LLVM [35] as the
JIT compiler, MMTk [3, 23] as the memory manager, and POSIX
Threads [9] as the thread manager. We have made no modification
to these projects to keep the code of VMKit as independent as
possible. The rest of the section presents in detail these modules
and their integration into VMKit.
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Figure 2. Compilation process in VMKit.

2.1 The JIT Compiler
The JIT compiler is the main entry point of VMKit for a high-level
MRE. This compiler must support a general purpose instruction set
to allow a high-level MRE to build the intermediate representation
of arbitrary functions. This instruction set should be language-
independent and it should produce efficient code. The JIT compiler
must furthermore also generate stack maps for the GC to allow
precise scanning of the heap, as described further in Section 2.2.

We have chosen to use LLVM [35] as the JIT compiler because
it meets our requirements: (i) it does not impose any object model
or type system, (ii) it does not impose any call semantics, (iii) it
generates very efficient code and (iv) it can generate stack maps.
The LLVM JIT compiler does, however, optimize all functions to
the same degree, rather than focusing on functions that are fre-
quently called (adaptive compilation), thus potentially introducing
some unnecessary compilation overhead. Nevertheless, we believe
that the benefits of LLVM outweigh this weakness for a first imple-
mentation of VMKit.

As shown in Figure 2, a high-level MRE uses the interface
proposed by LLVM to build the intermediate representation of a
function. A function generated by a high-level MRE may call:
(i) functions provided by VMKit such as the memory allocator
of the memory manager, (ii) functions provided by the high-level
MRE and (iii) other generated functions. After the construction
of the intermediate representation, the high-level MRE delegates
the compilation to LLVM to generate the native code. LLVM also
defines a bytecode language that allows serializing the intermediate
representation to a file. VMKit only uses this bytecode to store and
load a precompiled version of MMTk, as described in Section 2.2.

We now briefly present the instruction set of LLVM and two
features proposed by LLVM that we exploit to build high-level
MREs: compiler extension with intrinsics and lazy compilation.

Instruction set of LLVM LLVM defines an abstract register ma-
chine, i.e, LLVM supposes the existence of an infinite set of reg-
isters and all operations are executed on these registers. A high-
level MRE projects each local variable or temporary of a function
to an abstract register. During compilation, LLVM uses a linear
scan register allocation algorithm [42] to select the abstract reg-
isters that will be implemented in a concrete register of the under-
lying CPU and the ones that will be implemented in the function
frame (spilling).

The intermediate representation of LLVM contains five kinds
of instructions: (i) arithmetic, copy and cast operations on regis-
ters, (ii) local control flow instructions (branch), (iii) method invo-
cation (direct and indirect), (iv) memory reads and writes and (v)
intrinsics, described below. This instruction set does not impose the
object model. Nevertheless, a high-level MRE must give the defi-
nition of its data structures to LLVM so that LLVM can use it to

optimize memory writes and the access modes of registers (float,
integer, pointers, etc.).

Compiler extension with intrinsics During the transformation
from a high-level language to the LLVM intermediate representa-
tion, many common sequences of instructions may be introduced
for operations that are implicit in the high-level language, such as
getting the length of an array in an array bounds check or dynam-
ically checking the type of an object. Because LLVM can not pre-
dict that the accessed memory is immutable (in Java, the length of
an array or the type of an object can not change), LLVM consid-
ers that the result of such sequences depends on the state of the
memory, and thus the common subexpression elimination pass of
LLVM does not remove redundant copies of such sequences when
they are separated by writes or function calls. To solve this problem,
LLVM proposes the notion of an intrinsic: a special function that
is associated with information about any side effects it performs.
An intrinsic is analysed by LLVM like a direct method invocation,
however, if it is specified that an intrinsic does not have any side
effects, LLVM can eliminate redundant invocations and lift such
invocations outside loops.

Intrinsics are language-dependant and thus LLVM does not
know how to handle them. To provide this information, the high-
level MRE must define an external compilation pass for each intrin-
sic. A compilation pass is applied to the intermediate representation
to optimize or modify it. It handles an intrinsic by transforming it
into zero or more known instructions.

Lazy compilation To avoid the compilation of the whole applica-
tion during initialization, LLVM provides a lazy compilation mech-
anism that relies on a callback function (the Compilation Related
Function of Figure 1). When LLVM has to generate a direct in-
vocation of a function that has not yet been compiled, it inserts a
call to the callback function instead. The high-level MRE provides
the callback function. It loads and generates the intermediate rep-
resentation of the lazily compiled function, and finally delegates to
LLVM the generation of its native representation. Once the func-
tion is generated, LLVM patches the calling site to call the newly
generated function for subsequent calls.

In the same way, to allow lazy binding with other invocation
semantics, LLVM defines stub functions. A stub function calls
the above callback function. Invocation semantics such as single
dispatch or multi-dispatch can then be decomposed into a sequence
of memory reads to dynamically find the pointer to the receiver
function, followed by an indirect method invocation through this
pointer. For lazy binding, the indirect invocation first calls the
stub, which calls the callback function. The callback function then
generates the native code of the invoked method and updates the
pointer to the stub to the native code.

2.2 The Memory Manager
The memory manager is in charge of memory allocation and recla-
mation. The efficiency of these operations has a critical impact on
the overall performance of a high-level MRE. Current optimized
state of the art GCs are exact and thus they must have accurate
knowledge of the locations of references in memory. So that this
constraint does not cause the GC to impose any object model or
type system on the MRE, the MRE is required to provide functions
to allow the GC to find references into the heap (see the box GC
related functions in Figure 1).

We have chosen the Memory Manager Toolkit (MMTk) [3]
as the memory manager for VMKit. MMTk is a state of the art
toolkit for writing memory managers. It was initially used in the
JikesRVM [32] Java Virtual Machine and provides a wide vari-
ety of powerful state of the art garbage collectors. MMTk is in-
dependent from the rest of JikesRVM and does not impose any
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Figure 3. Integration of MMTk in VMKit. Solid arrows are com-
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big solid arrow is the initialisation phase of VMKit.

object model or type system. It therefore meets our requirements.
Nevertheless, using MMTk in VMKit raises two significant issues:
(i) linking MMTk with VMKit, as MMTk is implemented in Java
while LLVM and the rest of VMKit are implemented in C++, and
(ii) providing MMTk’s GCs with exact knowledge of the object lo-
cations in the heap and the threads execution stacks.

Linking MMTk with VMKit To link an MMTk function with
VMKit, VMKit must have access to the MMTk function’s LLVM
code. To create this code, we exploit J3, our JVM built upon
VMKit. We use J3 to load and compile MMTk during the com-
pilation of VMKit (see Figure 3). Because LLVM includes a tra-
ditional ahead of time compiler, it can generate LLVM bytecode
files. Thus, the compilation of VMKit is separated into two phases.
During the first phase (arrow 1), J3 is executed with a lightweight
memory manager and the rest of VMKit to generate the LLVM
bytecode of MMTk. This bytecode of MMTk is not Java specific
and VMKit can load it without any MRE. The second phase is per-
formed during the initialisation of VMKit. Before launching a high-
level MRE, VMKit loads and dynamically compiles the LLVM
bytecode of MMTk (arrow 2). Once MMTk is compiled in VMKit,
VMKit can launch a high-level MRE.

The LLVM bytecode of a function generated by a high-level
MRE can call functions of MMTk, for example to allocate an ob-
ject or to execute a GC write barrier. Object oriented languages
intensively use these two functions and thus these calls must be in-
lined (arrow 3) by the high-level MRE to obtain good performance.
Our strategy for linking MMTk with VMKit also allows inlining.
Specifically, VMKit keeps the generated LLVM intermediate rep-
resentation of the MMTk code. When a high-level MRE generates
the intermediate representation of a function, it can thus inline the
intermediate representation of the GC-related functions.

MMTk is normally linked with JikesRVM which provides about
a hundred functions to compute statistics, to know the bounds of
the heap, to allocate pages, to access the processor type, to allow
debugging, to handle mutator threads, to create the collector thread
and to understand the object layout. Most of these functions only
depend on the operating system, underlying processor and Thread
Manager. We have therefore directly implemented these functions
in VMKit. VMKit delegates only five functions related to the object
model or the type system to the high-level MRE, as described
below.

Exact memory map To provide exact knowledge of the object
locations, a high-level MRE must provide functions to allow the
GC to accurately scan the heap. These functions depend on the
MRE’s heap organisation, object model, type system and execution

stack layout. They are represented by the box GC related functions
in Figure 1.

A high-level MRE must first provide a function to find the
global roots of the object graph. These are the global variables
(static variables in Java or C#), the constant objects and the reifi-
cations of internal structures (classes, fields, methods, assemblies,
etc.). To find the roots in the execution stack of a thread, help from
LLVM is needed. LLVM provides an intrinsic called gcroot that
takes an abstract register as argument to indicate that the register
contains a reference. LLVM uses this intrinsic to generate, at each
collection point (handshake point), a stack map, i.e, a map that in-
dicates where are the root objects in the frames. A high-level MRE
can thus identify the references in the function frames by using
these generated stack maps. In the execution stack, frames from the
MRE are interspersed with frames from the application executed by
the MRE. Stack maps of the former are generated during the com-
pilation of a high-level MRE by LLVM with llvm-gcc, the C/C++
front-end of LLVM, and stack maps of the latter are generated on
the fly during the compilation of a method with the LLVM’s JIT.

To traverse the reachable object graph, MMTk must find the
directly reachable object references from each object. Therefore, a
high-level MRE must provide a function to trace an object, i.e, to
find its directly reachable sub-objects. Furthermore, MMTk does
not know the exact layout of a data structure; in particular, it does
not know the locations of virtual tables or type descriptors. A high-
level MRE must therefore provide functions to change the content
of the header of an object (i.e, to assign a type to a data structure or
to change its mark during a collection) and to clone an object, for
copying collectors.

2.3 The Thread Manager
Multithreaded MREs need to be able to start threads and to syn-
chronize them (lock, variable condition, join). For these thread-
related operations, we have chosen to use the POSIX Thread Li-
brary implementation provided by the execution host. There is,
however, one case in which the POSIX Thread Library is not suffi-
ciently efficient: an MRE that supports multi-threaded garbage col-
lection requires that each thread have its own memory area to store
thread-private data such as the per-thread memory allocator data
or the remembered set of inter-generational references [5, 30]. The
latter set is accessed at each write to a reference and must therefore
be accessible with the lowest possible overhead.

To address the constraints of efficient multi-threaded garbage
collection, we associate each thread with thread-local storage im-
plemented in the first few pages of the thread’s execution stack.
Because each stack is aligned on a power of 2 boundary, finding
a pointer to the local storage of a thread requires only masking
the thread’s stack pointer with the boundary complemented by two.
This approach gives access to the thread local storage without per-
forming a function call, as would be required with POSIX. Alter-
natively, we could have reserved a register to hold a pointer to the
thread-local storage, but this approach would have required modi-
fications to LLVM.

As shown in Figure 1, a high-level MRE must provide to the
thread manager a function for finding the root objects in the execu-
tion stack of each thread. When a garbage collection is triggered, all
threads must join a handshake, so that the garbage collector knows
the objects referenced on the stacks. To implement a handshake,
a thread-local boolean variable is regularly polled by the threads
(on return calls and backward branches) to verify if a collection is
happening. Once all threads have joined the handshake, the thread
manager invokes the function provided by the high-level MRE to
find the root objects in the threads’ execution stacks.
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Figure 4. Implementation of J3 and N3.

3. Developing the J3 and N3 High-Level MREs
using VMKit

To illustrate the process of building a high-level MRE and to show
that VMKit is well-suited for this purpose, we have implemented
two high-level MREs using VMKit: a Java virtual machine [37]
called J3 and a Common Language Infrastructure (CLI) [20] called
N3. In our implementation of J3, the goal has been to demonstrate
the efficiency of VMKit. On the other hand, in our implementation
of N3, the goal has been to demonstrate that by using VMKit it
is possible to rapidly prototype an MRE, while still obtaining an
implementation that is reasonably efficient.

The Java specification and the CLI specification both require
an object-oriented high-level MRE with threads and exceptions.
Therefore, as presented in Figure 4, we have chosen to design both
high-level MREs according to the same architecture with the same
set of modules. Within these modules, J3 and N3 implement the
Compiler-related and GC-related functions required by VMKit, as
described in Section 2.

The rest of this section presents the implementation of these
modules for J3 and N3 in detail.

3.1 J3 implementation
J3 is a JVM implementation that interfaces with the GNU Classpath
implementation of the Java libraries [26]. The rest of this section
presents our choices in the J3 implementation.

The symbol resolver The symbol resolver is in charge of class,
field and method resolution. In Java, symbols are managed by
class loaders, which both load classes and provide a namespace
for classes that have been loaded [36, 37].

A Java class loader groups together a set of classes to enforce
isolation and to permit unloading: a class and all its associated
native code are unloaded by the GC when its class loader is no
longer referenced. When a class loader is reached during garbage
collection, it traces its constant objects, its global (static) variables,
the reifications of its classes, and its own reification.

J3 has a direct reference to the initial class loader (the class
loader of the Java library) to build the class reifications, the arrays,
the strings and the internal exceptions. The GC related function to
find the global root objects traces only this initial class loader. Other
class loaders are not directly referenced by J3, but may be reachable
through the instances of their classes and through the methods of
their classes that are on the execution stack.

The object model implementation Building a high-level MRE
requires defining the layout of data structures, which determines
the object header access and clone functions required by the VMKit
memory manager. For J3, we use a header of two words. The first
one holds a thin lock [2] (a fast lock implementation that avoids
atomic operations when the lock is not in contention), information

for the memory manager (bits for the GC write barrier and bits
to store the GC mark), and a 10-bits hashcode. The second word
holds a pointer to a virtual table. The virtual table holds virtual
function pointers, a pointer to the class descriptor and information
to improve the efficiency of dynamic type checking instructions,
following the Java HotSpot algorithm [15].

The object model implementation also provides the function to
trace a Java object required by the memory manager of VMKit.
This function finds the class descriptor of the object in its virtual
table. The class descriptor describes the layout of the object and is
used to mark and trace the directly reachable subobjects. Moreover,
the class descriptor contains a reference to its class loader which is
also marked and traced.

The exception manager To manage exceptions, J3 reserves a
word for the pending exception in the local storage of each thread.
After each method invocation, the word is tested. If an exception
has been raised and the function is able to trap the exception, a
branch to the exception handler is executed. Otherwise, the function
returns to the caller. This implementation is not optimal because it
requires a test and branch after each method invocation. A more
efficient implementation would use exception tables. However, at
time of writing the paper, the exception tables generated by LLVM
rely on the GCC runtime library [19] which is not optimized for
dynamically generated tables, at least on Linux.

The intermediate representation translator The bytecode trans-
lator relies on the LLVM interface to build the LLVM intermedi-
ate representation of the Java bytecode. A Java Virtual Machine
is, however, an abstract stack machine while LLVM is an abstract
register machine. Thus, the bytecode translator of J3 defines an ab-
stract LLVM register for each entry of the Java stack, and for each
parameter and local variable of a function definition. This is possi-
ble because LLVM provides an infinite set of abstract registers. To
build stack maps, J3 also marks the abstract registers that hold ref-
erences with the gcroot intrinsic. The resulting stack map is stored
in the method descriptor of the compiled function.

The JVM provides 10 kinds of instructions: (i) arithmetic oper-
ations, (ii) branch and flow operations, (iii) local variable accesses,
(iv) lock operations, (v) memory allocations, (vi) class compar-
isons, (vii) constant loading operations, (viii) array accesses, (ix)
field accesses, (x) method invocations. These instructions are trans-
lated as follows:

An arithmetic, branch, or local variable operation is directly
translated into the corresponding LLVM instruction, except for the
Java switch instructions (i.e., tableswitch and lookupswitch)
which do not exist in LLVM. These instructions are decomposed
into multiple LLVM instructions that perform the same compar-
isons and branches.

A lock operation (i.e., monitorenter or monitorexit) is
translated into a thin lock implementation [2].

A memory allocation operation (i.e., new, newarray, anew-
array or multianewarray) is translated to a call to the memory
manager.

A class comparison is translated into a sequence of LLVM
instructions that perform the Java HotSpot algorithm for dynamic
type checking [15]. J3 defines an intrinsic for this operation to allow
LLVM to eliminate redundant checks (see Section 2.1).

A constant loading operation ldc is directly translated to a
register assignment if the constant is not an object. Otherwise, the
constant object is stored in the class descriptor and used as a root
object, and the constant loading operation is translated to a load
from memory. This solution avoids introducing the need for the
GC to search the native code for references to root objects.

An array access is translated into a sequence of LLVM instruc-
tions that perform the operation. For an array length operation (i.e.,



arraylength), J3 defines an intrinsic to allow LLVM to elimi-
nate redundant loads of the length. For an array read or write, J3
generates LLVM instructions to check that the access is inside the
bounds, evaluate the address of the access and perform the access
itself. Array bounds checks also involve accessing the length of the
array. Because the access to the array length is implemented using
an intrinsic and does not have side effects, LLVM is able to remove
some redundant bounds checks.

A field access is translated using a lazy resolution technique,
because at compilation time the compiler might not know the lay-
out of a class nor its methods. If the class is already resolved, J3
translates a Java field access directly into the memory access in-
structions provided by LLVM. Otherwise, J3 inserts a runtime call
to first dynamically resolve the entry of the class.

A non-virtual call (i.e., invokespecial or invokestatic) is
translated into a direct LLVM call to the method when the method
is already loaded, resolved and compiled. Otherwise, J3 inserts
a call to the callback function provided by J3 (see Section 2.1)
that resolves, loads and compiles the method, as needed. Then
LLVM patches the calling site to call the real receiving method for
subsequent calls.

A virtual, non-interface call, (i.e., invokevirtual) is trans-
lated into a sequence of LLVM instructions that load the virtual
table of the object (defined as an intrinsic to avoid redundant eval-
uations), load the function pointer from the virtual table, and call
the function. At run time, if the function has not been compiled, a
stub is executed that will call the callback. The callback looks up
the offset of the method in the virtual table, compiles the method if
it is not already compiled and updates the virtual table with the real
receiver method for subsequent calls.

An interface method invocation is translated following the
interface method table algorithm, described in [1].

The MRE thread manager The MRE thread manager defines the
MRE representation of a thread. In J3, a thread is materialized
by an instance of the class java.lang.Thread. The MRE thread
manager uses the thread manager of VMKit for thread creation,
synchronisation and thread-local storage. Threads are therefore
scheduled by the POSIX library or by the kernel depending on the
POSIX thread implementation.

The MRE thread manager is also in charge of finding the root
objects of a thread in the thread’s local storage and in the thread’s
execution stack. The objects referenced from the thread-local stor-
age are the pending exception and the JNI references, i.e., the Java
references used by the currently executing native functions. J3 finds
the root objects in the stack by scanning it frame by frame. For each
frame, J3 finds the method descriptor associated with the frame in
a global table. If the method is a Java method, J3 adds the class
loader of the class that defines the method to the root set.3 In all
cases, J3 finds the root objects in the frame by using the stack map
generated during the compilation of the function.

3.2 N3 implementation
N3 is a CLI implementation that interfaces either with the PNetLib
[18] or with the Mono [39] implementation of the standard library
(e.g., the System name space). Because the goal of the N3 experi-
ment has been to show that VMKit permits rapid prototyping of an
MRE, N3 is not as optimized as J3. In particular, some mechanisms
that could be the same are implemented differently to decrease the
development burden (principally, N3 does not use virtual tables,
thin-locks, fast dynamic type checking and any of the J3-specific
intrinsics). This drawback of N3, however, further highlights the

3 To avoid the destruction of the function during a collection, the class
loader that defines the function must not be freed, even if there are not any
instances of any class managed by this class loader.

genericity of VMKit: VMKit does not impose a specific implemen-
tation of a virtual machine functionality.

There are also notable differences between the JVM and the
CLI specifications that further highlight the contribution of the N3
experiment:

• Structures: In the CLI specification, not everything is an object.
A CLI implementation must thus support the allocation of un-
boxed structures, which are allocated on the stack or within an
object. Hence the compiler and the garbage collector of a CLI
implementation must deal with this kind of memory, that does
not exist in the JVM specification.

• Static class resolution: Contrary to the JVM specification, the
CLI specification requires that a class be resolved when the
compiler references it. Generating code that accesses a field, or
calls a method of a class triggers its resolution. The JVM spec-
ification, permits the resolution of a class during the execution
of methods, i.e., when a field is accessed or a method is called.

• Generics: In the CLI specification, the managed runtime envi-
ronment handles generics, while there are no generics in the
JVM specification. Instead, the source to bytecode Java com-
piler handles generics and produces a generic-free class file. In
VMKit, the LLVM compiler does not know about generics, and
therefore N3 must itself instantiate the generics and produce the
LLVM representation of the instantiated method.

• Out arguments: In the CLI, the byref keyword indicates that an
argument is passed by reference, i.e., that the callee can modify
the value of the caller. No comparable operator exists in Java

The Exception Manager and the MRE Thread Manager of N3
and J3 are totally equivalent. We now describe the differences in
the other modules.

The object model implementation A N3 object header consists
of three words. The first one holds information for the memory
manager (GC write barrier and GC mark), the second one holds a
pointer to a fat lock (N3 does not use the thin-lock algorithm) and
the third one holds a pointer to the class descriptor (N3 does not
use virtual tables). The hashcode of an object is encoded in the first
word.

While the object model of J3 permits the use of more sophis-
ticated and efficient algorithms, by using another object model in
N3, we show that the object model is independent of VMKit.

To trace an object, N3 finds the class descriptor of the object
in the object’s header and uses it to find the objects it references.
An N3 unboxed structure, however, is not an object and does not
have an object header. If an object contains unboxed structures, N3
follows them by using the descriptors of structures found in the
class descriptor.

Bytecode translation Like J3, N3 is an abstract stack machine
and defines the same ten kinds of bytecode operations. The only
significant differences between the implementations of the instruc-
tion sets of the MREs concern the construction of the stack maps
and the implementation of virtual method invocation.

The construction of stack maps in N3 must take into account un-
boxed structures. N3 also relies on the gcroot intrinsic of LLVM.
If a local variable is a reference, it is marked gcroot and if a lo-
cal variable is an unboxed structure, each object referenced by the
structure is marked gcroot.

For virtual method invocation, N3 does not use virtual tables
and instead relies on the linked list of caches based algorithm that
is used for interface method invocation in J3.

The symbol resolver N3 loads assemblies while J3 loads classes.
An assembly defines a set of classes. In N3, the bytecode is there-
fore associated with the assembly descriptor, while it is associated



with the class in J3. Moreover, contrarily to J3, an assembly is not
unloaded when it is no longer referenced. N3 can therefore main-
tain a list of the loaded assemblies and, to find the global root ob-
jects, N3 explores all the assemblies to collect the global references
(static), the constant objects and the reification of assemblies, prop-
erties, classes, methods and fields.

4. Evaluation
Currently, VMKit runs on Linux/x86 and MacOSX/x86. Ulti-
mately, VMKit should be able to run on all architectures supported
by LLVM. However, the JIT compiler of LLVM is still in major
development, and only its x86 backend is sufficiently robust.

To evaluate the interest of having a common substrate for im-
plementing high-level MREs, the following criteria must be con-
sidered:

1. Code base: the development of a high-level MRE should require
writing as little code as possible.

2. Ease of experimentation: the common substrate should ease the
extension of high-level MREs with new features.

3. Startup time: there is always an overhead when running an
application on top of an MRE, even for a simple HelloWorld
program. However, this overhead should be as small as possible.

4. Memory footprint: an MRE should use as little memory as
possible, beyond the memory usage of the application.

5. Steady state performance: an application should run as fast as
possible, once it is loaded and compiled.

For benchmarking J3, we use a Pentium D 3GHz with 3GB of
memory, running Mandrake with a Linux 2.6.23 kernel, while for
N3 we use a Core 2 Duo 2.5GHz with 1.5GB of memory, running
Gentoo with a Linux 2.6.27 kernel.

4.1 Code base
Table 1 summarizes the lines of code for each subsystem of the
high-level MREs. VMKit consists of 12K lines of code, which are
basically the glue between the JIT compiler, the thread manager
and the memory manager. LLVM is about 450K lines of code and
MMTk 50K.

In comparison, Sun’s JVM, OpenJDK, is 6.5M lines of code,
and contains multiple JIT compilers and interpreters, multiple GCs
and class libraries. On a smaller scale, JikesRVM [32], which
contains a JIT compiler and multiple GCs, has a code base of 270K
lines of code, and Cacao, which contains multiple compilers and a
GC has a code base of 230K lines of code.

J3 is a full implementation of the JVM specification [37] and
should be able to run any Java application that GNU Classpath can
support. These include the applications of the DaCapo benchmark
suite [4]. J3 and VMKit were developed in parallel and the devel-
opment time was between six and nine months for one person.

N3 is able to run simple applications as well as the PNetMark
benchmark [18]. After implementing J3, it took one month for
one of the authors of the paper to implement most of N3, without
generics, and another month to implement them.

4.2 Ease of experimentation
To evaluate the development cost of implementing a new research
feature using VMKit, we implemented parts of the MultiTasking
Virtual Machine (MVM) [16] by modifying the J3 high-level MRE.
MVM provides the ability to run multiple Java applications in the
same execution environment, with full isolation at the application
level. To improve scalability, MVM enables the sharing of class
metadata and dynamically generated native code. We implemented
class metadata, bytecode, constant pool and native method sharing

J3 N3
Total lines of code 23200 (4.5%) 16200 (3.1%)
LLVM translation 5500 5500
Runtime engine 15000 9200
Library interface 2700 1500

Table 1. Lines of code of the high level MREs. The percentage is
relative to the total number of lines of code of the MRE.

JVM J3 IBM Sun Jikes Cacao
Memory (MB) 24 12 7 38 8

Table 2. JVM memory footprint (smaller is better)

between applications, including sharing across class loaders [17]. It
took one of the authors of this paper one month to implement these
functionalities. Integrating MVM into J3 required modifying 1000
lines of code and adding 2000 lines. No modification of VMKit was
needed.

Based on this first work on MVM, we have implemented a Java
virtual machine, called I-JVM, that enforces the isolation between
components in OSGi [25]. OSGi is a Java-based, centralized, com-
ponent oriented framework. Current implementations of OSGi are
unable to isolate components from each other, and thus, for in-
stance, a malicious component can freeze the platform by allocat-
ing too much memory or alter the behavior of other components
by modifying shared variables. It took one of the authors of this
paper one month to implement I-JVM, which required modifying
650 lines in the implementation of J3.

4.3 Startup time
VMKit only uses LLVM for code execution, and does not provide
an interpreter or baseline compiler. Although LLVM has the advan-
tage of being language-independent and generating efficient code,
it only performs aggressive optimizations. A Java HelloWorld pro-
gram thus takes 8 seconds to run without any optimization acti-
vated. When turning all optimizations on, the program runs on J3
in 12 seconds. In comparison, other JVMs execute the same pro-
gram in less than one second.

Execution of the HelloWorld program involves compiling
many methods. These methods create the class loader, load the file
and print "HelloWorld". With GNU Classpath version 0.97.2, 536
methods have to be compiled, resulting in a total of 26952 bytecode
instructions. Other JVMs interpret these methods or apply a simple
baseline compiler in order to achieve a better responsiveness.

To reduce the startup time, we plan on using the ahead of
time compiler (AOT) of VMKit for Java. However, the scan of
the Java objects emitted in the ahead of time compiled code, e.g.
String and Class objects, by the garbage collector remains to be
implemented. Notice that the compilation of MMTk by the AOT
does not suffer from this missing functionality because it does not
emit Java objects that the collector must scan at runtime.

4.4 Memory footprint
Tables 2 and 3 compare the memory footprint of J3 and N3 with
that of other MREs. JVMs have a larger footprint than CLI imple-
mentations because they load and initialize many classes at startup,
which involves more class metadata objects, JIT compiled code,
and static instances. The memory footprint of our MREs is larger
than that of the other MREs. We have, however, not yet performed
any memory footprint tuning of J3, N3, or VMKit.



CLI N3 Mono
Memory (MB) 9.1 3

Table 3. CLI memory footprint (smaller is better)

4.5 Steady state performance
We now analyze the steady-state performance of J3 and N3 in order
to factor out the effects of compilation startup (for VMKit) and
dynamic optimizations (for the MREs).

Evaluation of J3 Figure 5 shows the results of running the Da-
Capo benchmark release 2006-10-MR2 [4] on the following JVMs:

• J3: VMKit’s JVM with MMTk’s MarkSweep garbage collector.
• Cacao 0.99.4: An open-source JVM with a similar number of

developers as VMKit.
• Harmony 5.0M11: Apache’s JVM.
• JikesRVM/Immix 3.1: JikesRVM with the default garbage col-

lector (Immix).
• JikesRVM/MarkSweep 3.1: JikesRVM with MMTk’s Mark-

Sweep garbage collector, which is the garbage collector used
in our evaluation of J3.

• Sun JVM 1.6.0 13: The Sun JVM server implementation.

Out of the eleven benchmarks of DaCapo, we have been able to
run nine on J3. Due to multi-threading bugs, the eclipse benchmark
could not run on J3. The chart benchmark requires a graphics
library (gtkpeer from GNU Classpath) that we could not compile
on our test machine. Also, J3 uses the local register allocator of
LLVM for the fop benchmark instead of the default linear scan
register allocator because of a bug in LLVM. This change results in
less optimized JIT-generated code. Finally, with Harmony version
5.0M11, the antlr benchmark did not run to completion because
Harmony depends on a version of the antlr library incompatible
with the benchmark.

We have conducted all the benchmarks with a minimum heap
of 128MB and a maximum heap of 1GB. For each benchmark, we
ran 31 iterations, and computed the mean of the last 30 iterations,
so that the initial compilation time of the benchmark is excluded.

The benchmarks show that, while J3 has performance similar to
other well-established open-source JVMs (Cacao, Harmony), it is
still 1.2 to 3 times slower than JikesRVM and 1.5 to 5 times slower
than OpenJDK on most DaCapo benchmarks. The main missing
optimizations of our current J3 prototype are described below.

No copying collector: J3 does not yet use the copying or gener-
ational collectors of MMTk such as the Immix collector [6]. Using
a copying collector of MMTk in J3 is a matter of engineering. J3
is exact and can already update the root objects on the stack. How-
ever, at time of writing this paper, we have not yet implemented the
interface between MMTk and VMKit for copying objects.

No inlining of System.arraycopy: The System.arraycopy method
of the Java class libraries is critical in most applications [29] and
most JVMs optimize the call by inlining a fast path. Inlining a fast
path in J3 should not raise particular difficulties but has not been
implemented yet.

No array bounds check elimination: J3 does not provide a
complete array bounds check elimination pass such as that of Lujàn
et al. [38] in Sun or ABCD [7] in JikesRVM. Implementing this
compilation pass in LLVM requires an engineering effort but does
not raise particular difficulties.

No stack map optimization: LLVM reduces the level of opti-
mization when generating functions with stack maps: most com-
piler optimizations do not apply because LLVM forces object ref-
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erences to be allocated on the stack and never in registers. Solving
this problem would require modifying the implementation of the
LLVM optimizations to take the gcroot intrinsics into account.

No adaptive compiler: LLVM does not yet provide an adaptive
optimization system, where native code is dynamically optimized
on hotspots [14]. All the other JVMs have an adaptive compiler.
Constructing an adaptive compiler would require significant modi-
fications to the LLVM JIT compiler.

Evaluation of N3 Unlike for Java, there are currently no real
standard industry benchmarks available for CLI implementations.
We use the PNetMark benchmark [18]. It provides the Scimark and
Linpack applications, which are classical scientific computations.
Scimark includes the programs FFT, SOR, Monte Carlo, and Sparse
Matmult. We compare N3 with Mono [39] version 2.4.2.3, an
open-source CLI implementation. The number of developers of
Mono is comparable to that of JikesRVM. We did not compare with
Microsoft’s .Net implementation because it only runs on Windows
while N3 only runs on Linux or MacOS.

Figure 6 gives the results of the PNetMark benchmark relative
to N3. For this benchmark, we use a Core 2 Duo 2.5GHz with
1.5GB of memory, running Gentoo with a Linux 2.6.27 kernel. The
results show that N3 is very close to Mono in performance and
yields better results on all benchmarks except one. However, these
benchmarks only stress the JIT compiler and do not stress other
aspects of the MREs.

5. Related Work
The inspiration for this work comes from the Flux OSKit project [22]
and from the availability of several low-level services that can
be used in implementing MREs, such as compiler infrastruc-
tures [18, 35, 41, 45] and garbage collection libraries [8, 40].

OSKit has shown that a common substrate can be used for
implementing kernel OSes, including an OS integrating the Kaffe
JVM [22]. VMKit applies the substrate idea to the design of MREs.

The idea of modularizing a managed runtime environment
and using third-party components originates in our work on La-
dyVM [24], which implemented a JVM exclusively using the exist-
ing projects LLVM and Boehm GC [8]. VMKit goes much further
by demonstrating that a common substrate can be used to imple-
ment MREs differing in their functionalities. Moreover, for better
performance, VMKit relies on MMTk which provides a selection
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of exact GCs. Adding support for exact GCs entailed a significant
reorganization of the design.

The GNU Compiler Collection (GCC) [27] is the most rep-
resentative example of a compiler shared between different lan-
guages. However, GCC does not have a JIT, therefore MREs such
as JVM and CLI cannot be implemented with it. The gcj project
of GCC statically compiles Java bytecode to native code, and gij
interprets Java classes. Neither gcj nor gij provides an exact map
of the memory and they can therefore only rely on conservative
garbage collection [8]. On the other hand, the integration of the
compiler and the garbage collector in VMKit permits the use of
exact garbage collectors.

VPU [41] is a JIT that exposes its intermediate representation
(IR) as an application programming interface. A MRE developer
can use this interface to translate a high-level language or bytecode
to native code. The JVM JnJVM [46] has been implemented on
top of VPU. VPU has shown that an intermediate representation
between the bytecode and the processor can be the target of high-
level MREs. While the performance of the JnJVM prototype was
equivalent to the open-source Kaffe JVM, it was ten times slower
than well established JVMs. VPU does not have all of the aggres-
sive optimizations of modern MRE compilers.

The Common Language Infrastructure (CLI) [20] supports
many languages with different needs, including C#, Java, Smalltalk,
and Python. Each language (or its bytecode) is compiled to the CIL,
the bytecode language of the CLI. IKVM.Net [31] is an implemen-
tation of the JVM on top of a CLI implementation. The differ-
ence between IKVM.Net and a JVM on top of VMKit is that with
VMKit there is no need to translate from one high-level bytecode
(JVM bytecode) representation to another (CIL). With VMKit,
JVM bytecodes and CIL bytecodes are translated to the LLVM

intermediate representation, which is directly targeted for compi-
lation. Moreover, some JVM mechanisms, such as class loading,
cannot be implemented efficiently with the CLI [21].

The JikesRVM [32] provides a JVM that allows experimenta-
tion with new MRE technologies. So far, no high-level languages
other than Java and the closely related experimental language X10
[11] have been implemented with the JikesRVM compilation sys-
tem. Parley [12] is an interoperability layer for MREs. Its goal
is to provide efficient communication between programs targeted
for different existing MREs. It thus does not provide any common
MRE components.

The Open Runtime Platform (ORP) [13] provides an MRE
infrastructure with a JIT compiler and GC framework. The goal is
that new GCs or JIT compilers can be implemented independently
from each other. ORP has thus focused on componentizing the
substrate while we focus on the ease of development of high-level
MREs.

6. Conclusion
In this paper, we have presented an approach for designing MREs
using a common substrate that can be efficiently reused. Our cur-
rent implementation of VMKit has been successfully used to build
the two complete high-level MREs, J3 and N3. Our experiments
furthermore show that VMKit eases the development of MREs and
experiments with new ideas.

Our performance evaluation shows that VMKit has performance
close to that of the well established research or open source proto-
types Cacao, Mono and Apache Harmony. However, J3 does not yet
have the same level of performance as state of the art Java virtual
machines such as JikesRVM and Sun’s JVM. The difference in per-
formance comes principally from the lack of advanced optimiza-



tions that we are currently implementing in VMKit (the use of the
MMTk’s copying collector Immix and inlining System.arraycopy)
and that should be implemented in the core of LLVM (array bounds
check elimination and adaptive compilation). The first two opti-
mizations appear to be relatively easy to implement. To reduce
startup time and dynamically optimize hotspots, an adaptive com-
piler is needed. However, developing a generic adaptive compiler,
that can be specialized by high-level MREs, merits a full research
project.

7. Availability
VMKit, J3 and N3 are publicly available via an open-source license
at the URL: http://vmkit.llvm.org
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