
A HACKER’S ASSISTANT

Document Date: 3/7/03

1 Introduction
Aha! is a program of the superoptimizer type that can be used to find short branch-
free code sequences for certain simple functions such as

• the absolute value function,

• a comparison predicate such as and

• swapping the two low-order bits of a register.

It works by exhaustive search over programs of a given length. As a practical mat-
ter the length is limited to four instructions for most machines.

The user supplies a C program that computes the desired function. The func-
tion must do a calculation on one or two integer arguments. It cannot have any
“memory” and should not have side effects. The code supplied can be inefficient
because it is executed only a few times. As an example, below is the user-supplied
function for computing the absolute value of an integer.

int userfun(int x) {
 if (x >= 0) return x;
 else return -x;
}

The user also defines the target machine by supplying a definition of each
computational instruction in the machine’s instruction set, and a subroutine that
performs its function. The instructions must operate only on data in registers and
have one output register operand and a maximum of three input register operands.
(Some of the registers hold constants and thus serve as “immediate” operands.)
Side effects such as a carry, overflow, and a condition register setting cannot be
handled with this program. The program handles only computational instructions;
it does not handle memory operations (loads, stores, and so on) or branches.

As examples, below are the definitions of four instructions that the machine
might have. The meaning of the fields will be described in more detail later, but
briefly, they are: name of subroutine to simulate the instruction, number of oper-
ands, commutative indicator, starting register number for operands, name for
printing the instruction in assembly language style, and two character strings used
for printing the discovered code in algebraic style.

x 0,≤
1

2 A Hacker’s Assistant Sect. 1

 {add, 2, 1, {RX, 2, 0}, "add", "(", " + " },
 {sub, 2, 0, { 2, 2, 0}, "sub", "(", " - " },
 {mul, 2, 1, {RX, 3, 0}, "mul", "(", "*" },
 {pop, 1, 0, {RX, 0, 0}, "pop", "pop(", "" },

Below is an example of a subroutine for simulating an instruction.

int add(int x, int y, int) {return x + y;}

Most of the instruction simulation routines are simple one-liners like this, but a
few, such as for population count, are several lines of code.

After supplying the user function and the machine description (which in
many cases would be a small modification of the one supplied), the user compiles
Aha! with a simple “make” command. It is always completely recompiled after a
change to either the user function or the machine description; on a modern
machine this takes only two or three seconds.

Finally, the program is executed by typing in its name followed by an integer
that specifies the length (number of instructions) of the programs to be tried. (It
does not try programs of length 1, then 2, and so on.) Aha! displays each program
as it is found, and also writes the display output to an output file. As an example,
for the absolute value function on a typical RISC machine, one of the solutions it
finds is displayed as shown below.

 shrs r1,rx,30
 or r2,r1,1
 mul r3,r2,rx
 Expr: (((x >>s 30) | 1)*x)

First are shown the three instructions in assembly language style (shift right
signed 30 positions, or with the immediate value 1, and multiply; the input argu-
ment is in register rx and the target register is on the left). The assembly language
code is followed by a formula for the function in algebraic notation (>>s is shift
right signed, | is or, and * is multiply).

This run of the program, incidentally, took 0.33 seconds of process time on a
667 MHz Pentium III workstation. 1.86 million instructions were simulated, from
which we calculate that the program used 118 machine cycles per evaluation. The
wall clock time, which includes the time to start and end the program, is only a
fraction of a second longer than the process time, assuming there is not much
competition for machine cycles when Aha! is running.

As another example, consider the problem mentioned above of interchanging
the rightmost (least significant) bits of a register. The straightforward code:

 (x & 0xfffffffc) | ((x & 1) << 1) | ((x & 2) >> 1)

uses seven instructions plus, for some machines, a load immediate of the large
constant. A method is given in Hacker’s Delight for doing it in six instructions
(bottom of page 40, with).m 1=

Sect. 1 Introduction 3

This problem was given to Aha! as set up for a basic RISC machine with six
nonzero immediate values and four immediate shift values (1, 2, 30, and 31). For
programs of length three, no solutions were found. For programs of length four,
Aha! ground away for 101 seconds (667 mHz machine) and came up with 20 solu-
tions. Many were trivial variations of one another, and 12 of the solutions used
divide (signed).

One of Aha!’s solutions that does not use divide is shown below.

 add r1,rx,3
 and r2,r1,2
 shr r3,3,r2
 xor r4,r3,rx
 Expr: ((3 >>u ((x + 3) & 2)) ^ x)

In truth, this is not really a 4-instruction solution on most computers, because
most computers do not allow an immediate value for the first operand of a shift
instruction. But it’s close; in some situations the required load immediate of 3
could be moved out of a loop, leaving four instructions for the function in the
loop. If Aha! were set up to not use an immediate value in this position (which is
easy to do), the above solution would be missed, unless the user is willing to wait
several hours for a search over programs of length five.

Seven uninteresting variations of the above were found, such as using shift
right signed instead of shift right, and computing instead of by the
first instruction (which are equivalent for the purposes of this code).

Below is a solution that uses divide but not with immediate operands.

 shl r1,rx,30
 sub r2,r1,1
 div r3,r1,r2
 add r4,r3,rx
 Expr: (((x << 30)/((x << 30) - 1)) + x)

How long would it take to find 5-instruction solutions? The jump from three
to four instructions increased the execution time by a factor of about 306 (101/
0.33). The jump from four to five would increase execution time by a factor some-
what larger than this (because each last instruction must try one more register for
its input operands), probably 350 or so. This gives an estimated execution time of
35,350 seconds, or about 10 hours.

Aha! is based on an idea by Henry Massalin [HM]. His program has been
generalized and made widely available by Torbjörn Granlund and Richard Ken-
ner as the GNU Superoptimizer [GK]. Like its predecessors, Aha! is oriented
toward a machine with a number of 32-bit general purpose registers, and it deals
with integer and logical instructions only.

Aha! differs from its predecessors in several details. Basically, it is more
algebraically oriented. As provided, the instruction set consists of the usual com-
putational instructions found on most computers (add, and, shift left, and so on).
But (unlike most computers) any operand can be either a 32-bit immediate value

2– x– x 3+

4 A Hacker’s Assistant Sect. 2

or a register. If this generality is not wanted, it is a simple matter to specify that
certain operands of certain instructions cannot be immediate values.

Aha! is not perfect. It can miss solutions, mainly because it does not try all
immediate values. It can print out multiple solutions when they are only trivially
different, for example the solution given above for the absolute value function is
followed by the same solution except with the 30 changed to 31. As provided,
Aha! can give an n-instruction solution that cannot really be implemented in n
instructions because it uses an immediate value for an operand that the machine in
mind does not allow. To solve a difficult problem the user may have to tinker with
the instruction set and the set of immediate values used. For example, to find effi-
cient code for multiplying by 5, the multiply instruction should be deleted from
the instruction set (by simply commenting-out one line in a header file). There are
other shortcomings, discussed in a later section. The program should be viewed
not as an infallible oracle but rather as a hardworking assistant.

2 User’s Guide
Aha! was developed and is maintained with the Windows 2000 and Windows XP
operating systems, using the Cygwin GNU C compiler. The user must have this
compiler installed. A Windows version is available at no charge from http://cyg-
win.com/ (click “Install Cygwin now”).

Calin Cascaval has kindly made a Makefile for Aha! on Red Hat Linux with
gcc 3.2.1, and finds that Aha! runs successfully on that system. This Makefile and
Aha! may very well run successfully on other Unix-like systems. However, the
user is cautioned that Aha! is seldom tested on Linux or any other operating sys-
tem except Windows.

Any interested party is invited to port Aha! to other platforms, but the author
has no plans to do so. It should be easy to port, because it is not a large program
(less than 700 lines of code, including the machine description for a basic RISC),
it uses straightforward ANSI C (although with probably a few GNU extensions),
and it has no assembly language or calls on unusual operating system services.
Aha! is “freeware.” It is free of charge, and you are free, and in fact encouraged,
to modify it and distribute it in any way you like. This program is made available
to you without any warranty, either expressed or implied. The author makes no
claim that the code is free of errors; in fact it is likely to have some bugs. You may
charge a fee for modifying and distributing this code, but you may not restrict fur-
ther modifying and distributing of your derivative work by any means, such as by
licensing or patenting.

This description assumes that you, the user of Aha!, are reasonably skilled in
the use of a text editor and in using Windows from a Command Prompt window.

Aha! consists of the following source files:

 aha.h
 userfun.cc
 aha.cc

Sect. 2 User’s Guide 5

There is also a file named make.bat for compiling and linking the program on
Windows, and Makefile for compiling and linking on Linux. There are a few
other files for documentation and miscellaneous functions that would not often be
used. To perform experiments with Aha!, you modify only the first two files
(unless of course you wish to alter the program to do new things).

First you supply C code that defines the function that you wish to implement
more efficiently. This would usually be a very simple program and it comprises
userfun.cc. An example is shown on page 1.

Next you define the instruction set and other parameters of the computer for
which you desire to find efficient code (the “target machine”). These definitions
are all contained in a single header file; aha.h is an example. You can either
modify aha.h (if you do, it is suggested that you save it first, using a name such
as aha.h.orig), or you can make a new header file with a name such as
MyMachine.h. This header file will be included into all the .cc files that make
up Aha!.

Modifying the Header File
The header file aha.h contains quite a few comments so it should not often be
necessary to refer to this documentation. Below is a description of the data you
might want to modify.

debug 1 for debugging output, 0 for none.

counters 1 to count and display the number of instruction evaluations, 0 to not
do this (using 0 does not speed execution significantly).

NARGS The number of arguments of userfun (1 or 2).

NBSM Mask applied to shift amounts. Use 63 for mod 64 shifts, and 31 for
mod 32 shifts.

trialx A list of values to be tried for the first userfun argument. This
normally includes some “random” integers and some special values
that you want to be sure your program works for, such as 0 and the
maximum negative number. However, you might have a function
that has to work only for a few values, in which case you should list
only those. Execution time is not very sensitive to the length of this
list; use as many values as you want. Aha! does NOT augment this
list with internally generated random integers.

trialy A list of values to be tried for the second userfun argument.

IMMEDS A list of immediate values to be tried for all instruction operands
except shift amounts. The first three values must be 0, –1, and 1, in
that order. Most instructions skip the value 0, and some skip –1 and
1 (e.g., we never add 0 or multiply by 1, and so on) Execution time
is very sensitive to the length of this list. If you have reason to think
that certain immediate values might be used in a solution, then
include those. The maximum negative number is often a good one to
include. Other than those, you might include no numbers at all, or

6 A Hacker’s Assistant Sect. 2

just a few such as ±2. This list is a sequence of integers separated by
commas, but with no braces around them.

SHIMMEDS A list of the immediate values to be tried for shift amounts. The val-
ues should range from 1 to 31. Execution time is quite sensitive to
the length of this list. If you have reason to think that certain values
might be used in a solution, then include those. Otherwise, 1 and 31,
and possibly 2 and 30, are reasonable values to include. This list is a
sequence of integers separated by commas, but with no braces
around them.

Functions You must provide a simulator routine for each instruction in the tar-
get machine’s ISA. See aha.h for examples.

Instruction Definitions You must give various characteristics of each instruction.
A few examples are given above on page 2, and there are many more
examples in aha.h.

In the instruction definitions, the opndstart entries need more explana-
tion. These values are the first (lowest) register numbers ever used by the operand.
Each value is independent of the others. To fully understand their meaning, you
have to understand the way registers are used by Aha!; this is described in page 8.
The essence is that you set these values as follows:

1. If the operand can be an ordinary immediate value (IMMEDS), use the
index of the first immediate value that makes sense for the instruction.
Specify 0 to use all values starting with 0, 1 to use all values starting with
–1, 2 to use all values starting with 1, and so on (recall that IMMEDS
must start with the values 0, –1, and 1, in that order).

2. If the operand is a shift amount, use NIM.

3. If the operand can only be a register (that holds a variable), use RX.

The conditional move instructions, such as those found on the Compac
Alpha, have a target register that is conditionally set. It is both an input and an out-
put register. You can emulate this fairly closely with a select instruction, in which
the target register is always set. The select instructions have three source oper-
ands, for example

 sellt rt,ra,rb,rc

tests the contents of register ra, and if less than 0, it copies rb to rt, and other-
wise it copies rc to rt. Examples are in aha.h.

Because 3-operand instructions have a large number of combinations of their
operands, their use is expensive in execution time.

If you get a stackdump with the first line:

 Exception: STATUS_ACCESS_VIOLATION at eip=00000000

Sect. 2 User’s Guide 7

a likely reason is that you forgot to include a simulator routine for one (or more)
of the instructions in the ISA, and hence the program did a branch-and-link to
location 0.

Compiling, Linking, and Executing
When you are through defining your machine, you compile and link all the pro-
grams with a command such as

make MyMachine, on Windows, or
make EXAMPLE=MyMachine, on Linux.

The file MyMachine.h will be included in file aha.cc. (This feature of having
the file to be included defined on the command line might be difficult to imple-
ment on some platforms. If so, you can change a line in aha.cc from
#include INC to #include "aha.h" and work by always copying the
machine description file you’re interested in to aha.h.)

The make command above creates file MyMachine.exe, which you run
with the command

 MyMachine n

where n is length of the programs to be tried (from 1 to 4, or 5 if you are willing
to wait for a very long time for the run to end).

The solutions (if any) are displayed as they are found. They are also written
to a file MyMachine.out.

Testing and Debugging
If you make very many changes to aha.h, you should test them. Set the debug
switch to 1, and execute Aha! with a small parameter such as 1 or 2. Examine the
contents of the output file (e.g., MyMachine.out) to assure yourself that it’s
reasonable.

The output file contains a trace of each trial program executed and shows the
input values in RX and, if applicable, RY. The result computed by each instruction
executed is shown. Below is an example.

Simulating with trial arg x = 3 (0x3):
 not r1,rx ==> -4 (0xFFFFFFFC)
 add r2,rx,1 ==> 4 (0x4)
 shl r3,r2,r1 ==> 0 (0x0)
 Expr: ((x + 1) << ~(x))
Computed result = 0, correct result = 3, fail

Simulating with trial arg x = 3 (0x3):
 not r1,rx ==> -4 (0xFFFFFFFC)
 add r2,rx,1 ==> 4 (0x4)
 shl r3,r1,r2 ==> -64 (0xFFFFFFC0)
 Expr: (~(x) << (x + 1))

8 A Hacker’s Assistant Sect. 3

Computed result = -64, correct result = 3, fail

The word fail means the result of the simulation did not match the precom-
puted result for the input argument used (3). If it reports ok here, the next group
of lines will show the simulation of the same program with a different input value.

Notice that after the shift left with input operands r2,r1, the next combina-
tion is r1,r2 rather than an immediate shift amount followed by r2. This is
because the shl is the last instruction, and r1 has not yet been used, so the shl
must use r1 (and also r2). Due to a shortcoming in the logic of the program, the
next trial program uses an shl with operands r2,r2; if the program had a little
more smarts this would be skipped. (The program will sometimes simulate an
unnecessary program, but it will not skip a program that should be tried.)

3 Internals

Register usage
All instruction operands are register numbers; Aha! does not deal with instruction
formats that have immediate operands. Instead, the general purpose registers are
used to hold both immediate values and the results of evaluating instructions. The
registers are grouped in the following order, starting with register 0:

1. Immediate values (user-defined) for most instructions (IMMEDS)

2. Immediate values (user-defined) for the shift instructions (SHIMMEDS)

3. First argument of the user-defined function

4. Second argument of the user-defined function (optional)

5. Result of trial instruction 0

6. Result of trial instruction 1

7. …

8. Result of last trial instruction

Table 3–1 shows the expressions used in the code to refer to these groups of
registers. Most are macro variables, so they become constants when the program
is compiled. The basic variables upon which others are defined are:

NIM, the number of immediate values
NSHIM, the number of shift immediate values
NARGS, the number of arguments of the user-defined function (1 or 2)
The immediate values are preset into the array and they never change. The

first and second arguments to userfun come from arrays trialx and tri-
aly. The remaining values are computed by the instructions of the trial programs.

Sect. 3 Internals 9

Instruction operands
There are three types of operands:

1. An operand that starts with an ordinary (non-shift) immediate value
(from IMMEDS), continues through to the last immediate value, skips the
shift immediate values, and continues to the registers that contain vari-
ables (RX up to the register set by the previous instruction).

2. An operand that starts with a shift immediate value (from SHIMMEDS)
and continues to the last valid register that holds a variable.

3. An operand that cannot be immediate; it starts at RX and continues to the
last valid register that holds a variable.

The first type of operand is the most common. It is denoted by a starting value
(in opndstart) of 0, 1, 2, or 3. If 0, the operand runs through all the ordinary
immediate values. If 1, it starts with IMMEDS[1], bypassing IMMEDS[0],
which always contains 0, and so on.

The second type of operand is denoted by a starting register number in the
range of shift immediate values (NIM through NIM+NSHIM-1); ordinarily the
starting register number is NIM.

The third type of operand can only be a register (that contains a variable), and
it is denoted by a starting value in the range of registers that contain variables,
ordinarily RX. This type of operand is used only for the first operand of a commu-
tative operation, which in Aha! means an instruction for which the first two oper-
ands commute. Aha! doesn’t generate trial instructions in which the operands are
all immediate values (as this would just generate another constant, which is
assumed to be a waste of time). For a two-operand commutative operation, it puts
the immediate operand, if any, second. Thus the first operand is always a variable.
So far there are no three-operand commutative instructions, but the program will
handle them.

As an example, for the divide instruction, opndstart is given as
{1,3,0}. This means that the first operand starts with register 1, which contains

TABLE 3–1. REGISTER USAGE

Description Register Number Expression

First ordinary immediate value 0 0

...

First shift immediate value NIM NIM

...

First argument NIM + NSHIM RX

Second argument (optional) NIM + NSHIM + 1 RY

Result of instruction 0 NIM + NSHIM + NARGS RI0

...

Result of instruction i NIM + NSHIM + NARGS + i RI0 + i

10 A Hacker’s Assistant Sect. 3

the value –1. Having a first operand (dividend) of 0 would be a waste of time, so
it is bypassed. The second operand starts with register 3; thus dividing by imme-
diate 0, –1, and 1 are bypassed (–1 is bypassed because it is presumed that the
negate instruction is present). The last integer in opndstart is not used,
because the divide instruction has only two operands.

Although 1 and 3 are, independently, the lowest values used for the divide
instruction’s operands, it is not executed with these two values for its operands.
When Aha! sets up the divide instruction in a trial program, it initially sets the
operands to register numbers 1 and 3, but then immediately invokes function
fix_operands to “fix up” the operands so they observe three rules: (1) if the
instruction is the last in the trial program, at least one of the operands must refer-
ence the immediately preceding instruction (otherwise the immediately preceding
instruction would be useless), (2) if the operation is commutative, the first oper-
and is greater than or equal to the second (as a register number), and (3) not all
operands are immediate values.

It does this by “incrementing” the operands by a minimal amount so that the
conditions are satisfied. When Aha! cycles through the combinations of registers
for an instruction, it increments the leftmost operand until it reaches its maximum
value, then it resets that operand to its minimum permitted value (defined by
opndstart) and increments the operand to the right, and so on, much like the
numbers on an odometer except in reverse order. (Certain details in the program,
such as handling commutative operations, are simpler if this counter-intuitive
order is used.) As an example, assume that a divide instruction is the second of
three instructions, and the last immediate value is at index 4 (that is, NIM = 5).
Then the operands get incremented in the order shown below, reading down-
wards. Here R0 holds the result of the first instruction (instruction 0). The order of
the register numbers is 1, 2, 3, 4, RX, R0.

RX,3 1,RX RX,RX 3,R0
R0,3 2,RX R0,RX 4,R0
 RX,4 3,RX 1,R0 RX,R0
 R0,4 4,RX 2,R0 R0,R0

If you want the divide instruction to cycle through only registers that contain
variables, set opndstart to {RX,RX,0}.

As another example, consider the add instruction. For this, opndstart is
given as {RX,2,0}. This means that the initial value for the first operand is reg-
ister RX. This operand is never an immediate value, because the operation is com-
mutative. The starting value of the second operand is 2, referring to the number
two (the third) immediate value, which is 1. Since the first three immediate values
are 0, –1, and 1, this specifies that the values of 0 and –1 are to be skipped, and an
add of 1 is the first value to be considered. An add of –1 is skipped because pre-
sumably it will be covered by a subtract of 1. Assuming the add instruction is the
second of three or more instructions, its operands cycle through the following val-
ues:

Sect. 3 Internals 11

RX,2 RX,4 R0,R0
R0,2 R0,4
RX,3 RX,RX
R0,3 R0,RX

Notice that RX,R0 is not tried; for commutative operands the rule is that the first
register number must be greater than or equal to the second.

Overall Method
The number of instructions in the trial program, n, is given as an argument to
Aha!. First the program evaluates userfun for all the values in trialx and,
optionally, in trialy, and saves the results in a table (correct_result).
Function userfun will not be evaluated anymore.

Next the program sets up the instruction array pgm with n copies of the first
instruction in the ISA, and with the lowest register numbers used by that instruc-
tion (from opndstart). For each of these instructions, fix_operands is
called, so their operands are copacetic.

That completes initialization, and next function search is called to search
for solutions.

The search begins by simulating the program using the first values in array
trialx and, optionally, trialy, which are placed in RX and RY. The simula-
tion is done by function check. The result calculated by instruction i is placed in
the register array at r[i+RI0]. The value placed in the last register is compared
to the precalculated result in array correct_result. If the comparison result
is “not equal,” then check immediately returns to search with a failure indica-
tion. If the comparison result is “equal,” then check simulates the complete pro-
gram (all n instructions) with the next value in trialx and, optionally, trialy.
For each simulation, the final result is compared to the appropriate value in array
correct_result, and if the comparison result is “not equal,” control returns
with a failure indication. If all comparisons results are “equal,” check returns
with a success indication.

If a comparison result is “not equal,” check remembers the indexes in tri-
alx and trialy, and it will start with these values the next time it is called. This
is an attempt to reduce the number of simulations required by sticking with a
“good” value (one that causes failure) when one is found.

Function check is called with the index i of the lowest numbered instruction
that was altered by the caller (search). Only instructions from i on to the end of
the trial program are simulated. This greatly reduces the number of instructions to
simulate, as usually i indexes the last instruction in the program.

If variable counters is 1, function check increments counter[i] each
time it simulates the instruction at position i. At the end of the run the n counters
are displayed. This is primarily of interest to the program maintainer.

Back in program search, if check returns with a success indication, the
program is displayed. Then, whether success or failure occurred, the program is
“incremented” and tried again. The incrementation, done by function incre-

12 A Hacker’s Assistant Sect. 4

ment, increments the leftmost operand of the last instruction in the program, if
possible. If not, it resets that operand and increments the next operand to the right,
and so on. If the operands cannot be increased anymore, it replaces the last
instruction in the trial program with the next instruction in the ISA. If it has
reached the last instruction in the ISA, it backs up and increases the previous
instruction, and so on.

4 Shortcomings
Immediate operands are the bane of this program. Most RISC computers have
many instructions with 16-bit immediate fields, but to allow all 65,536 values is
out of the question. As soon as a program with three immediate values is tried, it
would require over instruction simulations, which would take a few years of
running time. The GNU superoptimizer allows five immediate values: 0, ±1, the
maximum negative number, and the maximum positive number. Aha! allows
more, but if you don’t have any reason to suspect that certain immediate values
might be useful, you might as well hold the list down to about those five. Thus a
shortcoming of Aha! is that it will not necessarily find an n-instruction solution
when in fact one exists.

Another is that a solution it finds may not be correct. All that can be said is
that it works for the trial values in trialx and trialy, but the user must exam-
ine an alleged solution to see if it works for all input arguments.

Of course a major shortcoming is that it takes so long to execute that it can’t
very well be used for trial program lengths of five or more. Well, for some simpli-
fied machines, if you’re willing to run the program all day, maybe it can handle
five. But not six. It is entertaining to try to speed it up by tinkering with the code,
but many of the things the author has tried resulted in only a 5 or 10 percent
improvement, and made the program much less transparent, and so were rejected.

The maximum number of arguments to userfun is two. The maximum
number of source operands on an instruction is three. Caution: three-operand
instructions increase the execution time substantially.

Aha! does not handle the carry bit or other bits that a machine may set as a
side effect of executing certain instructions. It probably should be improved to
handle the carry bit, because most machines have it in some form, and both Mas-
selin’s and GNU’s superoptimizers have found several interesting and unexpected
problem solutions that use it.

The program does not handle two-address instructions. However, Aha! is
probably useful for experimenting with such machines anyway, by fixing up the
discovered code manually.

The program does not handle operands that can only be immediate values.
The program does not handle the possibility that register 0 is a permanent 0.

However, you can fake this by adding a few instructions. For example, to get the
effect of a subtract in which the first operand is 0, add a negate instruction (which
has just one operand).

248

Sect. 5 Future Work 13

The program does not handle register pairs. For example, many machines
have a multiply instruction that produces a two-register result, and a divide
instruction for which the dividend is a register pair. These instructions cannot be
handled by Aha!.

The fact that Aha! doesn’t handle loads and stores can cause it to miss certain
solutions. For example, suppose userfun has two arguments x and y, and the
desired function is to transfer the rightmost byte from y to the rightmost byte of x.
Then the shortest program would store byte from y and insert byte into x, assum-
ing the machine has those instructions. But Aha! would not find that solution.
This seems like a rather unimportant shortcoming.

The program also does not handle branches. And it does not handle floating-
point instructions or memory-to-memory operations such as are often found on
CISC’s. Actually, Aha! probably could handle single-precision floating-point
operations by treating the data as integers, assuming it is satisfactory to have the
floating-point data reside in the same set of registers as is used by the integer and
logical instructions.

5 Future Work
Find a better (simpler and faster) way to increment the operands. Table assist?

Is there a good way to ensure that all computed values are used? E.g., for
numi = 3, the present program might generate:

 op1 r1,rx,rx
 op2 r2,rx,rx
 op3 r3,rx,r2

which leaves r1 unused. In such a case Aha! would have found a solution with
fewer than n instructions, which the user presumably tried and found no such
solutions. But still, if such cases can be efficiently skipped, the program would
run faster.

An investigation of this showed that for a typical RISC instruction set, 39%
of three-instruction programs had an unused result, and 70% of four-instruction
programs had an unused result. This is compared to the program which ensures
only that the second from last computed result does not go unused. Thus there is
hay to be made here.

An attempt to skip all these silly programs resulted in a net increase in exe-
cution time, because it was implemented inefficiently. Then, as a compromise,
steps were added to the program to ensure only that the second and third from last
results are both used. This improved execution time by a factor of 1.8 (over a ver-
sion of the program that ensured only that the second from last result is used) in
the case of searching for a four-instruction solution, and the factor would proba-
bly be larger for five-instruction programs. The logic for even this simple optimi-
zation is a bit complicated. It is explained in the program.

14 A Hacker’s Assistant Sect. 6

Is there a good way to eliminate silly instructions such as subtracting a regis-
ter from itself, or adding a register to itself given that we probably would have
shift left 1, etc.?

Similarly, is there a good way to eliminate useless combinations, such as a
negate feeding another negate?

The best way to find the shortest path from one node to another in a graph is
to search from both ends alternately until the set of nodes reached from one end
intersected with the set of nodes reached from the other end is non-null. Is there
some way to solve the shortest program problem by searching from both ends?
For example, assume that an add instruction is being tried as the last instruction.
Then it is pointless to try all the immediate values. One can simply subtract the
result of instruction from the known result and use that as the immediate
value. Then, see if the program works for all the trial values. Similarly, if the last
instruction is or immediate, then in most cases only a few immediate values will
work. This would not only speed up the program considerably, but would allow
an arbitrary immediate value at least in this one position.

Simulate the carry bit. This might be expensive, requiring four add and four
subtract ops, rather than the present one each. To hold down the execution time
cost and reduce the number of silly solutions that are printed, the program should
not use the carry bit until it has been set, and should not set it twice with no use
between. And the last instruction should not set it. And no program should gener-
ate the carry but never use it. How should it be shown in the expression represen-
tation of each solution? I suppose we could just have some more “+” operators,
such as +gc, +ci, and +igc, but it wouldn’t be clear (in general) to which operation
a carry input is tied. A little gross and pretty ugly.

6 References

[GK] Torbjörn Granlund and Richard Kenner, “Eliminating Branches using a
Superoptimizer and the GNU C Compiler.” In Proceedings of the 5th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), July 1992, 341-352.

[HM] Henry Massalin, “Superoptimizer -- A Look at the Smallest Program.”
In Proceedings of the Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
II), 1987, 122-126.

n 1–

	A Hacker’s Assistant
	1 Introduction
	2 User’s Guide
	Modifying the Header File
	Compiling, Linking, and Executing
	Testing and Debugging

	3 Internals
	Register usage
	Instruction operands
	Overall Method

	4 Shortcomings
	5 Future Work
	6 References

