LLVM  3.7.0
ExecutionEngine/ExecutionEngine.h
Go to the documentation of this file.
1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the abstract interface that implements execution support
11 // for LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
17 
18 #include "RuntimeDyld.h"
19 #include "llvm-c/ExecutionEngine.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/IR/ValueMap.h"
25 #include "llvm/MC/MCCodeGenInfo.h"
26 #include "llvm/Object/Binary.h"
28 #include "llvm/Support/Mutex.h"
31 #include <map>
32 #include <string>
33 #include <vector>
34 #include <functional>
35 
36 namespace llvm {
37 
38 struct GenericValue;
39 class Constant;
40 class DataLayout;
41 class ExecutionEngine;
42 class Function;
43 class GlobalVariable;
44 class GlobalValue;
45 class JITEventListener;
46 class MachineCodeInfo;
47 class MCJITMemoryManager;
48 class MutexGuard;
49 class ObjectCache;
50 class RTDyldMemoryManager;
51 class Triple;
52 class Type;
53 
54 namespace object {
55  class Archive;
56  class ObjectFile;
57 }
58 
59 /// \brief Helper class for helping synchronize access to the global address map
60 /// table. Access to this class should be serialized under a mutex.
62 public:
64 
65 private:
66 
67  /// GlobalAddressMap - A mapping between LLVM global symbol names values and
68  /// their actualized version...
69  GlobalAddressMapTy GlobalAddressMap;
70 
71  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
72  /// used to convert raw addresses into the LLVM global value that is emitted
73  /// at the address. This map is not computed unless getGlobalValueAtAddress
74  /// is called at some point.
75  std::map<uint64_t, std::string> GlobalAddressReverseMap;
76 
77 public:
78 
80  return GlobalAddressMap;
81  }
82 
83  std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
84  return GlobalAddressReverseMap;
85  }
86 
87  /// \brief Erase an entry from the mapping table.
88  ///
89  /// \returns The address that \p ToUnmap was happed to.
90  uint64_t RemoveMapping(StringRef Name);
91 };
92 
93 using FunctionCreator = std::function<void *(const std::string &)>;
94 
95 /// \brief Abstract interface for implementation execution of LLVM modules,
96 /// designed to support both interpreter and just-in-time (JIT) compiler
97 /// implementations.
99  /// The state object holding the global address mapping, which must be
100  /// accessed synchronously.
101  //
102  // FIXME: There is no particular need the entire map needs to be
103  // synchronized. Wouldn't a reader-writer design be better here?
104  ExecutionEngineState EEState;
105 
106  /// The target data for the platform for which execution is being performed.
107  const DataLayout *DL;
108 
109  /// Whether lazy JIT compilation is enabled.
110  bool CompilingLazily;
111 
112  /// Whether JIT compilation of external global variables is allowed.
113  bool GVCompilationDisabled;
114 
115  /// Whether the JIT should perform lookups of external symbols (e.g.,
116  /// using dlsym).
117  bool SymbolSearchingDisabled;
118 
119  /// Whether the JIT should verify IR modules during compilation.
120  bool VerifyModules;
121 
122  friend class EngineBuilder; // To allow access to JITCtor and InterpCtor.
123 
124 protected:
125  /// The list of Modules that we are JIT'ing from. We use a SmallVector to
126  /// optimize for the case where there is only one module.
128 
129  void setDataLayout(const DataLayout *Val) { DL = Val; }
130 
131  /// getMemoryforGV - Allocate memory for a global variable.
132  virtual char *getMemoryForGV(const GlobalVariable *GV);
133 
134  static ExecutionEngine *(*MCJITCtor)(
135  std::unique_ptr<Module> M,
136  std::string *ErrorStr,
137  std::shared_ptr<MCJITMemoryManager> MM,
138  std::shared_ptr<RuntimeDyld::SymbolResolver> SR,
139  std::unique_ptr<TargetMachine> TM);
140 
141  static ExecutionEngine *(*OrcMCJITReplacementCtor)(
142  std::string *ErrorStr,
143  std::shared_ptr<MCJITMemoryManager> MM,
144  std::shared_ptr<RuntimeDyld::SymbolResolver> SR,
145  std::unique_ptr<TargetMachine> TM);
146 
147  static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
148  std::string *ErrorStr);
149 
150  /// LazyFunctionCreator - If an unknown function is needed, this function
151  /// pointer is invoked to create it. If this returns null, the JIT will
152  /// abort.
154 
155  /// getMangledName - Get mangled name.
156  std::string getMangledName(const GlobalValue *GV);
157 
158 public:
159  /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
160  /// be held while changing the internal state of any of those classes.
162 
163  //===--------------------------------------------------------------------===//
164  // ExecutionEngine Startup
165  //===--------------------------------------------------------------------===//
166 
167  virtual ~ExecutionEngine();
168 
169  /// Add a Module to the list of modules that we can JIT from.
170  virtual void addModule(std::unique_ptr<Module> M) {
171  Modules.push_back(std::move(M));
172  }
173 
174  /// addObjectFile - Add an ObjectFile to the execution engine.
175  ///
176  /// This method is only supported by MCJIT. MCJIT will immediately load the
177  /// object into memory and adds its symbols to the list used to resolve
178  /// external symbols while preparing other objects for execution.
179  ///
180  /// Objects added using this function will not be made executable until
181  /// needed by another object.
182  ///
183  /// MCJIT will take ownership of the ObjectFile.
184  virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
186 
187  /// addArchive - Add an Archive to the execution engine.
188  ///
189  /// This method is only supported by MCJIT. MCJIT will use the archive to
190  /// resolve external symbols in objects it is loading. If a symbol is found
191  /// in the Archive the contained object file will be extracted (in memory)
192  /// and loaded for possible execution.
194 
195  //===--------------------------------------------------------------------===//
196 
197  const DataLayout *getDataLayout() const { return DL; }
198 
199  /// removeModule - Remove a Module from the list of modules. Returns true if
200  /// M is found.
201  virtual bool removeModule(Module *M);
202 
203  /// FindFunctionNamed - Search all of the active modules to find the function that
204  /// defines FnName. This is very slow operation and shouldn't be used for
205  /// general code.
206  virtual Function *FindFunctionNamed(const char *FnName);
207 
208  /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
209  /// that defines Name. This is very slow operation and shouldn't be used for
210  /// general code.
211  virtual GlobalVariable *FindGlobalVariableNamed(const char *Name, bool AllowInternal = false);
212 
213  /// runFunction - Execute the specified function with the specified arguments,
214  /// and return the result.
216  ArrayRef<GenericValue> ArgValues) = 0;
217 
218  /// getPointerToNamedFunction - This method returns the address of the
219  /// specified function by using the dlsym function call. As such it is only
220  /// useful for resolving library symbols, not code generated symbols.
221  ///
222  /// If AbortOnFailure is false and no function with the given name is
223  /// found, this function silently returns a null pointer. Otherwise,
224  /// it prints a message to stderr and aborts.
225  ///
226  /// This function is deprecated for the MCJIT execution engine.
228  bool AbortOnFailure = true) = 0;
229 
230  /// mapSectionAddress - map a section to its target address space value.
231  /// Map the address of a JIT section as returned from the memory manager
232  /// to the address in the target process as the running code will see it.
233  /// This is the address which will be used for relocation resolution.
234  virtual void mapSectionAddress(const void *LocalAddress,
235  uint64_t TargetAddress) {
236  llvm_unreachable("Re-mapping of section addresses not supported with this "
237  "EE!");
238  }
239 
240  /// generateCodeForModule - Run code generation for the specified module and
241  /// load it into memory.
242  ///
243  /// When this function has completed, all code and data for the specified
244  /// module, and any module on which this module depends, will be generated
245  /// and loaded into memory, but relocations will not yet have been applied
246  /// and all memory will be readable and writable but not executable.
247  ///
248  /// This function is primarily useful when generating code for an external
249  /// target, allowing the client an opportunity to remap section addresses
250  /// before relocations are applied. Clients that intend to execute code
251  /// locally can use the getFunctionAddress call, which will generate code
252  /// and apply final preparations all in one step.
253  ///
254  /// This method has no effect for the interpeter.
255  virtual void generateCodeForModule(Module *M) {}
256 
257  /// finalizeObject - ensure the module is fully processed and is usable.
258  ///
259  /// It is the user-level function for completing the process of making the
260  /// object usable for execution. It should be called after sections within an
261  /// object have been relocated using mapSectionAddress. When this method is
262  /// called the MCJIT execution engine will reapply relocations for a loaded
263  /// object. This method has no effect for the interpeter.
264  virtual void finalizeObject() {}
265 
266  /// runStaticConstructorsDestructors - This method is used to execute all of
267  /// the static constructors or destructors for a program.
268  ///
269  /// \param isDtors - Run the destructors instead of constructors.
270  virtual void runStaticConstructorsDestructors(bool isDtors);
271 
272  /// This method is used to execute all of the static constructors or
273  /// destructors for a particular module.
274  ///
275  /// \param isDtors - Run the destructors instead of constructors.
276  void runStaticConstructorsDestructors(Module &module, bool isDtors);
277 
278 
279  /// runFunctionAsMain - This is a helper function which wraps runFunction to
280  /// handle the common task of starting up main with the specified argc, argv,
281  /// and envp parameters.
282  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
283  const char * const * envp);
284 
285 
286  /// addGlobalMapping - Tell the execution engine that the specified global is
287  /// at the specified location. This is used internally as functions are JIT'd
288  /// and as global variables are laid out in memory. It can and should also be
289  /// used by clients of the EE that want to have an LLVM global overlay
290  /// existing data in memory. Mappings are automatically removed when their
291  /// GlobalValue is destroyed.
292  void addGlobalMapping(const GlobalValue *GV, void *Addr);
293  void addGlobalMapping(StringRef Name, uint64_t Addr);
294 
295  /// clearAllGlobalMappings - Clear all global mappings and start over again,
296  /// for use in dynamic compilation scenarios to move globals.
297  void clearAllGlobalMappings();
298 
299  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
300  /// particular module, because it has been removed from the JIT.
302 
303  /// updateGlobalMapping - Replace an existing mapping for GV with a new
304  /// address. This updates both maps as required. If "Addr" is null, the
305  /// entry for the global is removed from the mappings. This returns the old
306  /// value of the pointer, or null if it was not in the map.
307  uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
308  uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
309 
310  /// getAddressToGlobalIfAvailable - This returns the address of the specified
311  /// global symbol.
313 
314  /// getPointerToGlobalIfAvailable - This returns the address of the specified
315  /// global value if it is has already been codegen'd, otherwise it returns
316  /// null.
319 
320  /// getPointerToGlobal - This returns the address of the specified global
321  /// value. This may involve code generation if it's a function.
322  ///
323  /// This function is deprecated for the MCJIT execution engine. Use
324  /// getGlobalValueAddress instead.
325  void *getPointerToGlobal(const GlobalValue *GV);
326 
327  /// getPointerToFunction - The different EE's represent function bodies in
328  /// different ways. They should each implement this to say what a function
329  /// pointer should look like. When F is destroyed, the ExecutionEngine will
330  /// remove its global mapping and free any machine code. Be sure no threads
331  /// are running inside F when that happens.
332  ///
333  /// This function is deprecated for the MCJIT execution engine. Use
334  /// getFunctionAddress instead.
335  virtual void *getPointerToFunction(Function *F) = 0;
336 
337  /// getPointerToFunctionOrStub - If the specified function has been
338  /// code-gen'd, return a pointer to the function. If not, compile it, or use
339  /// a stub to implement lazy compilation if available. See
340  /// getPointerToFunction for the requirements on destroying F.
341  ///
342  /// This function is deprecated for the MCJIT execution engine. Use
343  /// getFunctionAddress instead.
345  // Default implementation, just codegen the function.
346  return getPointerToFunction(F);
347  }
348 
349  /// getGlobalValueAddress - Return the address of the specified global
350  /// value. This may involve code generation.
351  ///
352  /// This function should not be called with the interpreter engine.
353  virtual uint64_t getGlobalValueAddress(const std::string &Name) {
354  // Default implementation for the interpreter. MCJIT will override this.
355  // JIT and interpreter clients should use getPointerToGlobal instead.
356  return 0;
357  }
358 
359  /// getFunctionAddress - Return the address of the specified function.
360  /// This may involve code generation.
361  virtual uint64_t getFunctionAddress(const std::string &Name) {
362  // Default implementation for the interpreter. MCJIT will override this.
363  // Interpreter clients should use getPointerToFunction instead.
364  return 0;
365  }
366 
367  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
368  /// at the specified address.
369  ///
370  const GlobalValue *getGlobalValueAtAddress(void *Addr);
371 
372  /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
373  /// Ptr is the address of the memory at which to store Val, cast to
374  /// GenericValue *. It is not a pointer to a GenericValue containing the
375  /// address at which to store Val.
376  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
377  Type *Ty);
378 
379  void InitializeMemory(const Constant *Init, void *Addr);
380 
381  /// getOrEmitGlobalVariable - Return the address of the specified global
382  /// variable, possibly emitting it to memory if needed. This is used by the
383  /// Emitter.
384  ///
385  /// This function is deprecated for the MCJIT execution engine. Use
386  /// getGlobalValueAddress instead.
387  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
388  return getPointerToGlobal((const GlobalValue *)GV);
389  }
390 
391  /// Registers a listener to be called back on various events within
392  /// the JIT. See JITEventListener.h for more details. Does not
393  /// take ownership of the argument. The argument may be NULL, in
394  /// which case these functions do nothing.
397 
398  /// Sets the pre-compiled object cache. The ownership of the ObjectCache is
399  /// not changed. Supported by MCJIT but not the interpreter.
400  virtual void setObjectCache(ObjectCache *) {
401  llvm_unreachable("No support for an object cache");
402  }
403 
404  /// setProcessAllSections (MCJIT Only): By default, only sections that are
405  /// "required for execution" are passed to the RTDyldMemoryManager, and other
406  /// sections are discarded. Passing 'true' to this method will cause
407  /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
408  /// of whether they are "required to execute" in the usual sense.
409  ///
410  /// Rationale: Some MCJIT clients want to be able to inspect metadata
411  /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
412  /// performance. Passing these sections to the memory manager allows the
413  /// client to make policy about the relevant sections, rather than having
414  /// MCJIT do it.
415  virtual void setProcessAllSections(bool ProcessAllSections) {
416  llvm_unreachable("No support for ProcessAllSections option");
417  }
418 
419  /// Return the target machine (if available).
420  virtual TargetMachine *getTargetMachine() { return nullptr; }
421 
422  /// DisableLazyCompilation - When lazy compilation is off (the default), the
423  /// JIT will eagerly compile every function reachable from the argument to
424  /// getPointerToFunction. If lazy compilation is turned on, the JIT will only
425  /// compile the one function and emit stubs to compile the rest when they're
426  /// first called. If lazy compilation is turned off again while some lazy
427  /// stubs are still around, and one of those stubs is called, the program will
428  /// abort.
429  ///
430  /// In order to safely compile lazily in a threaded program, the user must
431  /// ensure that 1) only one thread at a time can call any particular lazy
432  /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
433  /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
434  /// lazy stub. See http://llvm.org/PR5184 for details.
435  void DisableLazyCompilation(bool Disabled = true) {
436  CompilingLazily = !Disabled;
437  }
438  bool isCompilingLazily() const {
439  return CompilingLazily;
440  }
441 
442  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
443  /// allocate space and populate a GlobalVariable that is not internal to
444  /// the module.
445  void DisableGVCompilation(bool Disabled = true) {
446  GVCompilationDisabled = Disabled;
447  }
448  bool isGVCompilationDisabled() const {
449  return GVCompilationDisabled;
450  }
451 
452  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
453  /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to
454  /// resolve symbols in a custom way.
455  void DisableSymbolSearching(bool Disabled = true) {
456  SymbolSearchingDisabled = Disabled;
457  }
459  return SymbolSearchingDisabled;
460  }
461 
462  /// Enable/Disable IR module verification.
463  ///
464  /// Note: Module verification is enabled by default in Debug builds, and
465  /// disabled by default in Release. Use this method to override the default.
467  VerifyModules = Verify;
468  }
469  bool getVerifyModules() const {
470  return VerifyModules;
471  }
472 
473  /// InstallLazyFunctionCreator - If an unknown function is needed, the
474  /// specified function pointer is invoked to create it. If it returns null,
475  /// the JIT will abort.
478  }
479 
480 protected:
482  explicit ExecutionEngine(std::unique_ptr<Module> M);
483 
484  void emitGlobals();
485 
486  void EmitGlobalVariable(const GlobalVariable *GV);
487 
489  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
490  Type *Ty);
491 };
492 
493 namespace EngineKind {
494  // These are actually bitmasks that get or-ed together.
495  enum Kind {
496  JIT = 0x1,
498  };
499  const static Kind Either = (Kind)(JIT | Interpreter);
500 }
501 
502 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
503 /// chaining the various set* methods, and terminating it with a .create()
504 /// call.
506 private:
507  std::unique_ptr<Module> M;
508  EngineKind::Kind WhichEngine;
509  std::string *ErrorStr;
510  CodeGenOpt::Level OptLevel;
511  std::shared_ptr<MCJITMemoryManager> MemMgr;
512  std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver;
513  TargetOptions Options;
514  Reloc::Model RelocModel;
515  CodeModel::Model CMModel;
516  std::string MArch;
517  std::string MCPU;
519  bool VerifyModules;
520  bool UseOrcMCJITReplacement;
521 
522 public:
523  /// Default constructor for EngineBuilder.
524  EngineBuilder();
525 
526  /// Constructor for EngineBuilder.
527  EngineBuilder(std::unique_ptr<Module> M);
528 
529  // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
530  ~EngineBuilder();
531 
532  /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
533  /// or whichever engine works. This option defaults to EngineKind::Either.
535  WhichEngine = w;
536  return *this;
537  }
538 
539  /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
540  /// clients to customize their memory allocation policies for the MCJIT. This
541  /// is only appropriate for the MCJIT; setting this and configuring the builder
542  /// to create anything other than MCJIT will cause a runtime error. If create()
543  /// is called and is successful, the created engine takes ownership of the
544  /// memory manager. This option defaults to NULL.
545  EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
546 
548  setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
549 
551  setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
552 
553  /// setErrorStr - Set the error string to write to on error. This option
554  /// defaults to NULL.
555  EngineBuilder &setErrorStr(std::string *e) {
556  ErrorStr = e;
557  return *this;
558  }
559 
560  /// setOptLevel - Set the optimization level for the JIT. This option
561  /// defaults to CodeGenOpt::Default.
563  OptLevel = l;
564  return *this;
565  }
566 
567  /// setTargetOptions - Set the target options that the ExecutionEngine
568  /// target is using. Defaults to TargetOptions().
570  Options = Opts;
571  return *this;
572  }
573 
574  /// setRelocationModel - Set the relocation model that the ExecutionEngine
575  /// target is using. Defaults to target specific default "Reloc::Default".
577  RelocModel = RM;
578  return *this;
579  }
580 
581  /// setCodeModel - Set the CodeModel that the ExecutionEngine target
582  /// data is using. Defaults to target specific default
583  /// "CodeModel::JITDefault".
585  CMModel = M;
586  return *this;
587  }
588 
589  /// setMArch - Override the architecture set by the Module's triple.
591  MArch.assign(march.begin(), march.end());
592  return *this;
593  }
594 
595  /// setMCPU - Target a specific cpu type.
597  MCPU.assign(mcpu.begin(), mcpu.end());
598  return *this;
599  }
600 
601  /// setVerifyModules - Set whether the JIT implementation should verify
602  /// IR modules during compilation.
604  VerifyModules = Verify;
605  return *this;
606  }
607 
608  /// setMAttrs - Set cpu-specific attributes.
609  template<typename StringSequence>
610  EngineBuilder &setMAttrs(const StringSequence &mattrs) {
611  MAttrs.clear();
612  MAttrs.append(mattrs.begin(), mattrs.end());
613  return *this;
614  }
615 
616  // \brief Use OrcMCJITReplacement instead of MCJIT. Off by default.
617  void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) {
618  this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
619  }
620 
622 
623  /// selectTarget - Pick a target either via -march or by guessing the native
624  /// arch. Add any CPU features specified via -mcpu or -mattr.
625  TargetMachine *selectTarget(const Triple &TargetTriple,
626  StringRef MArch,
627  StringRef MCPU,
628  const SmallVectorImpl<std::string>& MAttrs);
629 
631  return create(selectTarget());
632  }
633 
635 };
636 
637 // Create wrappers for C Binding types (see CBindingWrapping.h).
639 
640 } // End llvm namespace
641 
642 #endif
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:104
virtual void * getOrEmitGlobalVariable(const GlobalVariable *GV)
getOrEmitGlobalVariable - Return the address of the specified global variable, possibly emitting it t...
std::string getMangledName(const GlobalValue *GV)
getMangledName - Get mangled name.
void clearAllGlobalMappings()
clearAllGlobalMappings - Clear all global mappings and start over again, for use in dynamic compilati...
struct LLVMOpaqueExecutionEngine * LLVMExecutionEngineRef
int runFunctionAsMain(Function *Fn, const std::vector< std::string > &argv, const char *const *envp)
runFunctionAsMain - This is a helper function which wraps runFunction to handle the common task of st...
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:114
virtual bool removeModule(Module *M)
removeModule - Remove a Module from the list of modules.
void * getPointerToGlobalIfAvailable(StringRef S)
getPointerToGlobalIfAvailable - This returns the address of the specified global value if it is has a...
sys::Mutex lock
lock - This lock protects the ExecutionEngine and MCJIT classes.
uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr)
updateGlobalMapping - Replace an existing mapping for GV with a new address.
JITEventListener - Abstract interface for use by the JIT to notify clients about significant events d...
virtual GenericValue runFunction(Function *F, ArrayRef< GenericValue > ArgValues)=0
runFunction - Execute the specified function with the specified arguments, and return the result...
virtual void setObjectCache(ObjectCache *)
Sets the pre-compiled object cache.
void EmitGlobalVariable(const GlobalVariable *GV)
virtual void * getPointerToFunctionOrStub(Function *F)
getPointerToFunctionOrStub - If the specified function has been code-gen'd, return a pointer to the f...
F(f)
virtual void RegisterJITEventListener(JITEventListener *)
Registers a listener to be called back on various events within the JIT.
EngineBuilder & setMArch(StringRef march)
setMArch - Override the architecture set by the Module's triple.
virtual GlobalVariable * FindGlobalVariableNamed(const char *Name, bool AllowInternal=false)
FindGlobalVariableNamed - Search all of the active modules to find the global variable that defines N...
#define DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ty, ref)
ppc ctr loops PowerPC CTR Loops Verify
virtual void runStaticConstructorsDestructors(bool isDtors)
runStaticConstructorsDestructors - This method is used to execute all of the static constructors or d...
void * getPointerToGlobal(const GlobalValue *GV)
getPointerToGlobal - This returns the address of the specified global value.
void InitializeMemory(const Constant *Init, void *Addr)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Definition: ErrorHandling.h:98
EngineBuilder()
Default constructor for EngineBuilder.
EngineBuilder & setVerifyModules(bool Verify)
setVerifyModules - Set whether the JIT implementation should verify IR modules during compilation...
virtual void addModule(std::unique_ptr< Module > M)
Add a Module to the list of modules that we can JIT from.
virtual char * getMemoryForGV(const GlobalVariable *GV)
getMemoryforGV - Allocate memory for a global variable.
void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, Type *Ty)
FIXME: document.
std::function< void *(const std::string &)> FunctionCreator
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: ArrayRef.h:31
virtual void finalizeObject()
finalizeObject - ensure the module is fully processed and is usable.
EngineBuilder & setCodeModel(CodeModel::Model M)
setCodeModel - Set the CodeModel that the ExecutionEngine target data is using.
GenericValue getConstantValue(const Constant *C)
Converts a Constant* into a GenericValue, including handling of ConstantExpr values.
void emitGlobals()
EmitGlobals - Emit all of the global variables to memory, storing their addresses into GlobalAddress...
uint64_t RemoveMapping(StringRef Name)
Erase an entry from the mapping table.
void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, Type *Ty)
StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
EngineBuilder & setEngineKind(EngineKind::Kind w)
setEngineKind - Controls whether the user wants the interpreter, the JIT, or whichever engine works...
iterator begin() const
Definition: StringRef.h:90
virtual void generateCodeForModule(Module *M)
generateCodeForModule - Run code generation for the specified module and load it into memory...
void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement)
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
This is an important base class in LLVM.
Definition: Constant.h:41
EngineBuilder & setErrorStr(std::string *e)
setErrorStr - Set the error string to write to on error.
EngineBuilder & setMemoryManager(std::unique_ptr< MCJITMemoryManager > MM)
virtual void addObjectFile(std::unique_ptr< object::ObjectFile > O)
addObjectFile - Add an ObjectFile to the execution engine.
EngineBuilder & setMAttrs(const StringSequence &mattrs)
setMAttrs - Set cpu-specific attributes.
void InstallLazyFunctionCreator(FunctionCreator C)
InstallLazyFunctionCreator - If an unknown function is needed, the specified function pointer is invo...
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:416
void setDataLayout(const DataLayout *Val)
void clearGlobalMappingsFromModule(Module *M)
clearGlobalMappingsFromModule - Clear all global mappings that came from a particular module...
Abstract interface for implementation execution of LLVM modules, designed to support both interpreter...
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
std::map< uint64_t, std::string > & getGlobalAddressReverseMap()
void DisableSymbolSearching(bool Disabled=true)
DisableSymbolSearching - If called, the JIT will not try to lookup unknown symbols with dlsym...
EngineBuilder & setRelocationModel(Reloc::Model RM)
setRelocationModel - Set the relocation model that the ExecutionEngine target is using.
EngineBuilder & setTargetOptions(const TargetOptions &Opts)
setTargetOptions - Set the target options that the ExecutionEngine target is using.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:861
Module.h This file contains the declarations for the Module class.
virtual Function * FindFunctionNamed(const char *FnName)
FindFunctionNamed - Search all of the active modules to find the function that defines FnName...
uint64_t TargetAddress
Represents an address in the target process's address space.
Definition: JITSymbol.h:26
virtual void setProcessAllSections(bool ProcessAllSections)
setProcessAllSections (MCJIT Only): By default, only sections that are "required for execution" are p...
void setVerifyModules(bool Verify)
Enable/Disable IR module verification.
virtual void addArchive(object::OwningBinary< object::Archive > A)
addArchive - Add an Archive to the execution engine.
virtual void * getPointerToFunction(Function *F)=0
getPointerToFunction - The different EE's represent function bodies in different ways.
void DisableLazyCompilation(bool Disabled=true)
DisableLazyCompilation - When lazy compilation is off (the default), the JIT will eagerly compile eve...
SmallVector< std::unique_ptr< Module >, 1 > Modules
The list of Modules that we are JIT'ing from.
EngineBuilder & setSymbolResolver(std::unique_ptr< RuntimeDyld::SymbolResolver > SR)
void addGlobalMapping(const GlobalValue *GV, void *Addr)
addGlobalMapping - Tell the execution engine that the specified global is at the specified location...
const DataLayout * getDataLayout() const
uint64_t getAddressToGlobalIfAvailable(StringRef S)
getAddressToGlobalIfAvailable - This returns the address of the specified global symbol.
This is the base ObjectCache type which can be provided to an ExecutionEngine for the purpose of avoi...
Definition: ObjectCache.h:22
const GlobalValue * getGlobalValueAtAddress(void *Addr)
getGlobalValueAtAddress - Return the LLVM global value object that starts at the specified address...
Helper class for helping synchronize access to the global address map table.
Builder class for ExecutionEngines.
EngineBuilder & setMCJITMemoryManager(std::unique_ptr< RTDyldMemoryManager > mcjmm)
setMCJITMemoryManager - Sets the MCJIT memory manager to use.
virtual void * getPointerToNamedFunction(StringRef Name, bool AbortOnFailure=true)=0
getPointerToNamedFunction - This method returns the address of the specified function by using the dl...
virtual void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress)
mapSectionAddress - map a section to its target address space value.
virtual TargetMachine * getTargetMachine()
Return the target machine (if available).
TargetMachine * selectTarget()
FunctionCreator LazyFunctionCreator
LazyFunctionCreator - If an unknown function is needed, this function pointer is invoked to create it...
iterator end() const
Definition: StringRef.h:92
Primary interface to the complete machine description for the target machine.
void DisableGVCompilation(bool Disabled=true)
DisableGVCompilation - If called, the JIT will abort if it's asked to allocate space and populate a G...
virtual uint64_t getFunctionAddress(const std::string &Name)
getFunctionAddress - Return the address of the specified function.
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:40
virtual void UnregisterJITEventListener(JITEventListener *)
virtual uint64_t getGlobalValueAddress(const std::string &Name)
getGlobalValueAddress - Return the address of the specified global value.
EngineBuilder & setOptLevel(CodeGenOpt::Level l)
setOptLevel - Set the optimization level for the JIT.
EngineBuilder & setMCPU(StringRef mcpu)
setMCPU - Target a specific cpu type.