LLVM  3.7.0
AsmWriter.cpp
Go to the documentation of this file.
1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/IR/Writer.h
11 //
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/TypeFinder.h"
37 #include "llvm/IR/UseListOrder.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/Dwarf.h"
45 #include <algorithm>
46 #include <cctype>
47 using namespace llvm;
48 
49 // Make virtual table appear in this compilation unit.
51 
52 //===----------------------------------------------------------------------===//
53 // Helper Functions
54 //===----------------------------------------------------------------------===//
55 
56 namespace {
57 struct OrderMap {
59 
60  unsigned size() const { return IDs.size(); }
61  std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
62  std::pair<unsigned, bool> lookup(const Value *V) const {
63  return IDs.lookup(V);
64  }
65  void index(const Value *V) {
66  // Explicitly sequence get-size and insert-value operations to avoid UB.
67  unsigned ID = IDs.size() + 1;
68  IDs[V].first = ID;
69  }
70 };
71 }
72 
73 static void orderValue(const Value *V, OrderMap &OM) {
74  if (OM.lookup(V).first)
75  return;
76 
77  if (const Constant *C = dyn_cast<Constant>(V))
78  if (C->getNumOperands() && !isa<GlobalValue>(C))
79  for (const Value *Op : C->operands())
80  if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
81  orderValue(Op, OM);
82 
83  // Note: we cannot cache this lookup above, since inserting into the map
84  // changes the map's size, and thus affects the other IDs.
85  OM.index(V);
86 }
87 
88 static OrderMap orderModule(const Module *M) {
89  // This needs to match the order used by ValueEnumerator::ValueEnumerator()
90  // and ValueEnumerator::incorporateFunction().
91  OrderMap OM;
92 
93  for (const GlobalVariable &G : M->globals()) {
94  if (G.hasInitializer())
95  if (!isa<GlobalValue>(G.getInitializer()))
96  orderValue(G.getInitializer(), OM);
97  orderValue(&G, OM);
98  }
99  for (const GlobalAlias &A : M->aliases()) {
100  if (!isa<GlobalValue>(A.getAliasee()))
101  orderValue(A.getAliasee(), OM);
102  orderValue(&A, OM);
103  }
104  for (const Function &F : *M) {
105  if (F.hasPrefixData())
106  if (!isa<GlobalValue>(F.getPrefixData()))
107  orderValue(F.getPrefixData(), OM);
108 
109  if (F.hasPrologueData())
110  if (!isa<GlobalValue>(F.getPrologueData()))
111  orderValue(F.getPrologueData(), OM);
112 
113  if (F.hasPersonalityFn())
114  if (!isa<GlobalValue>(F.getPersonalityFn()))
115  orderValue(F.getPersonalityFn(), OM);
116 
117  orderValue(&F, OM);
118 
119  if (F.isDeclaration())
120  continue;
121 
122  for (const Argument &A : F.args())
123  orderValue(&A, OM);
124  for (const BasicBlock &BB : F) {
125  orderValue(&BB, OM);
126  for (const Instruction &I : BB) {
127  for (const Value *Op : I.operands())
128  if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
129  isa<InlineAsm>(*Op))
130  orderValue(Op, OM);
131  orderValue(&I, OM);
132  }
133  }
134  }
135  return OM;
136 }
137 
138 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
139  unsigned ID, const OrderMap &OM,
140  UseListOrderStack &Stack) {
141  // Predict use-list order for this one.
142  typedef std::pair<const Use *, unsigned> Entry;
144  for (const Use &U : V->uses())
145  // Check if this user will be serialized.
146  if (OM.lookup(U.getUser()).first)
147  List.push_back(std::make_pair(&U, List.size()));
148 
149  if (List.size() < 2)
150  // We may have lost some users.
151  return;
152 
153  bool GetsReversed =
154  !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
155  if (auto *BA = dyn_cast<BlockAddress>(V))
156  ID = OM.lookup(BA->getBasicBlock()).first;
157  std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
158  const Use *LU = L.first;
159  const Use *RU = R.first;
160  if (LU == RU)
161  return false;
162 
163  auto LID = OM.lookup(LU->getUser()).first;
164  auto RID = OM.lookup(RU->getUser()).first;
165 
166  // If ID is 4, then expect: 7 6 5 1 2 3.
167  if (LID < RID) {
168  if (GetsReversed)
169  if (RID <= ID)
170  return true;
171  return false;
172  }
173  if (RID < LID) {
174  if (GetsReversed)
175  if (LID <= ID)
176  return false;
177  return true;
178  }
179 
180  // LID and RID are equal, so we have different operands of the same user.
181  // Assume operands are added in order for all instructions.
182  if (GetsReversed)
183  if (LID <= ID)
184  return LU->getOperandNo() < RU->getOperandNo();
185  return LU->getOperandNo() > RU->getOperandNo();
186  });
187 
188  if (std::is_sorted(
189  List.begin(), List.end(),
190  [](const Entry &L, const Entry &R) { return L.second < R.second; }))
191  // Order is already correct.
192  return;
193 
194  // Store the shuffle.
195  Stack.emplace_back(V, F, List.size());
196  assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
197  for (size_t I = 0, E = List.size(); I != E; ++I)
198  Stack.back().Shuffle[I] = List[I].second;
199 }
200 
201 static void predictValueUseListOrder(const Value *V, const Function *F,
202  OrderMap &OM, UseListOrderStack &Stack) {
203  auto &IDPair = OM[V];
204  assert(IDPair.first && "Unmapped value");
205  if (IDPair.second)
206  // Already predicted.
207  return;
208 
209  // Do the actual prediction.
210  IDPair.second = true;
211  if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
212  predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
213 
214  // Recursive descent into constants.
215  if (const Constant *C = dyn_cast<Constant>(V))
216  if (C->getNumOperands()) // Visit GlobalValues.
217  for (const Value *Op : C->operands())
218  if (isa<Constant>(Op)) // Visit GlobalValues.
219  predictValueUseListOrder(Op, F, OM, Stack);
220 }
221 
223  OrderMap OM = orderModule(M);
224 
225  // Use-list orders need to be serialized after all the users have been added
226  // to a value, or else the shuffles will be incomplete. Store them per
227  // function in a stack.
228  //
229  // Aside from function order, the order of values doesn't matter much here.
231 
232  // We want to visit the functions backward now so we can list function-local
233  // constants in the last Function they're used in. Module-level constants
234  // have already been visited above.
235  for (auto I = M->rbegin(), E = M->rend(); I != E; ++I) {
236  const Function &F = *I;
237  if (F.isDeclaration())
238  continue;
239  for (const BasicBlock &BB : F)
240  predictValueUseListOrder(&BB, &F, OM, Stack);
241  for (const Argument &A : F.args())
242  predictValueUseListOrder(&A, &F, OM, Stack);
243  for (const BasicBlock &BB : F)
244  for (const Instruction &I : BB)
245  for (const Value *Op : I.operands())
246  if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
247  predictValueUseListOrder(Op, &F, OM, Stack);
248  for (const BasicBlock &BB : F)
249  for (const Instruction &I : BB)
250  predictValueUseListOrder(&I, &F, OM, Stack);
251  }
252 
253  // Visit globals last.
254  for (const GlobalVariable &G : M->globals())
255  predictValueUseListOrder(&G, nullptr, OM, Stack);
256  for (const Function &F : *M)
257  predictValueUseListOrder(&F, nullptr, OM, Stack);
258  for (const GlobalAlias &A : M->aliases())
259  predictValueUseListOrder(&A, nullptr, OM, Stack);
260  for (const GlobalVariable &G : M->globals())
261  if (G.hasInitializer())
262  predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
263  for (const GlobalAlias &A : M->aliases())
264  predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
265  for (const Function &F : *M)
266  if (F.hasPrefixData())
267  predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
268 
269  return Stack;
270 }
271 
272 static const Module *getModuleFromVal(const Value *V) {
273  if (const Argument *MA = dyn_cast<Argument>(V))
274  return MA->getParent() ? MA->getParent()->getParent() : nullptr;
275 
276  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
277  return BB->getParent() ? BB->getParent()->getParent() : nullptr;
278 
279  if (const Instruction *I = dyn_cast<Instruction>(V)) {
280  const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
281  return M ? M->getParent() : nullptr;
282  }
283 
284  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
285  return GV->getParent();
286 
287  if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
288  for (const User *U : MAV->users())
289  if (isa<Instruction>(U))
290  if (const Module *M = getModuleFromVal(U))
291  return M;
292  return nullptr;
293  }
294 
295  return nullptr;
296 }
297 
298 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
299  switch (cc) {
300  default: Out << "cc" << cc; break;
301  case CallingConv::Fast: Out << "fastcc"; break;
302  case CallingConv::Cold: Out << "coldcc"; break;
303  case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
304  case CallingConv::AnyReg: Out << "anyregcc"; break;
305  case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
306  case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
307  case CallingConv::GHC: Out << "ghccc"; break;
308  case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
309  case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
310  case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
311  case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
312  case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
313  case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
314  case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
315  case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
316  case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
317  case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
318  case CallingConv::PTX_Device: Out << "ptx_device"; break;
319  case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
320  case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
321  case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
322  case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
323  }
324 }
325 
326 // PrintEscapedString - Print each character of the specified string, escaping
327 // it if it is not printable or if it is an escape char.
329  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
330  unsigned char C = Name[i];
331  if (isprint(C) && C != '\\' && C != '"')
332  Out << C;
333  else
334  Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
335  }
336 }
337 
344 };
345 
346 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
347 /// prefixed with % (if the string only contains simple characters) or is
348 /// surrounded with ""'s (if it has special chars in it). Print it out.
350  assert(!Name.empty() && "Cannot get empty name!");
351  switch (Prefix) {
352  case NoPrefix: break;
353  case GlobalPrefix: OS << '@'; break;
354  case ComdatPrefix: OS << '$'; break;
355  case LabelPrefix: break;
356  case LocalPrefix: OS << '%'; break;
357  }
358 
359  // Scan the name to see if it needs quotes first.
360  bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
361  if (!NeedsQuotes) {
362  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
363  // By making this unsigned, the value passed in to isalnum will always be
364  // in the range 0-255. This is important when building with MSVC because
365  // its implementation will assert. This situation can arise when dealing
366  // with UTF-8 multibyte characters.
367  unsigned char C = Name[i];
368  if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
369  C != '_') {
370  NeedsQuotes = true;
371  break;
372  }
373  }
374  }
375 
376  // If we didn't need any quotes, just write out the name in one blast.
377  if (!NeedsQuotes) {
378  OS << Name;
379  return;
380  }
381 
382  // Okay, we need quotes. Output the quotes and escape any scary characters as
383  // needed.
384  OS << '"';
385  PrintEscapedString(Name, OS);
386  OS << '"';
387 }
388 
389 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
390 /// prefixed with % (if the string only contains simple characters) or is
391 /// surrounded with ""'s (if it has special chars in it). Print it out.
392 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
393  PrintLLVMName(OS, V->getName(),
394  isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
395 }
396 
397 
398 namespace {
399 class TypePrinting {
400  TypePrinting(const TypePrinting &) = delete;
401  void operator=(const TypePrinting&) = delete;
402 public:
403 
404  /// NamedTypes - The named types that are used by the current module.
405  TypeFinder NamedTypes;
406 
407  /// NumberedTypes - The numbered types, along with their value.
408  DenseMap<StructType*, unsigned> NumberedTypes;
409 
410  TypePrinting() = default;
411 
412  void incorporateTypes(const Module &M);
413 
414  void print(Type *Ty, raw_ostream &OS);
415 
416  void printStructBody(StructType *Ty, raw_ostream &OS);
417 };
418 } // namespace
419 
420 void TypePrinting::incorporateTypes(const Module &M) {
421  NamedTypes.run(M, false);
422 
423  // The list of struct types we got back includes all the struct types, split
424  // the unnamed ones out to a numbering and remove the anonymous structs.
425  unsigned NextNumber = 0;
426 
427  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
428  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
429  StructType *STy = *I;
430 
431  // Ignore anonymous types.
432  if (STy->isLiteral())
433  continue;
434 
435  if (STy->getName().empty())
436  NumberedTypes[STy] = NextNumber++;
437  else
438  *NextToUse++ = STy;
439  }
440 
441  NamedTypes.erase(NextToUse, NamedTypes.end());
442 }
443 
444 
445 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
446 /// use of type names or up references to shorten the type name where possible.
447 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
448  switch (Ty->getTypeID()) {
449  case Type::VoidTyID: OS << "void"; return;
450  case Type::HalfTyID: OS << "half"; return;
451  case Type::FloatTyID: OS << "float"; return;
452  case Type::DoubleTyID: OS << "double"; return;
453  case Type::X86_FP80TyID: OS << "x86_fp80"; return;
454  case Type::FP128TyID: OS << "fp128"; return;
455  case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
456  case Type::LabelTyID: OS << "label"; return;
457  case Type::MetadataTyID: OS << "metadata"; return;
458  case Type::X86_MMXTyID: OS << "x86_mmx"; return;
459  case Type::IntegerTyID:
460  OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
461  return;
462 
463  case Type::FunctionTyID: {
464  FunctionType *FTy = cast<FunctionType>(Ty);
465  print(FTy->getReturnType(), OS);
466  OS << " (";
468  E = FTy->param_end(); I != E; ++I) {
469  if (I != FTy->param_begin())
470  OS << ", ";
471  print(*I, OS);
472  }
473  if (FTy->isVarArg()) {
474  if (FTy->getNumParams()) OS << ", ";
475  OS << "...";
476  }
477  OS << ')';
478  return;
479  }
480  case Type::StructTyID: {
481  StructType *STy = cast<StructType>(Ty);
482 
483  if (STy->isLiteral())
484  return printStructBody(STy, OS);
485 
486  if (!STy->getName().empty())
487  return PrintLLVMName(OS, STy->getName(), LocalPrefix);
488 
489  DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
490  if (I != NumberedTypes.end())
491  OS << '%' << I->second;
492  else // Not enumerated, print the hex address.
493  OS << "%\"type " << STy << '\"';
494  return;
495  }
496  case Type::PointerTyID: {
497  PointerType *PTy = cast<PointerType>(Ty);
498  print(PTy->getElementType(), OS);
499  if (unsigned AddressSpace = PTy->getAddressSpace())
500  OS << " addrspace(" << AddressSpace << ')';
501  OS << '*';
502  return;
503  }
504  case Type::ArrayTyID: {
505  ArrayType *ATy = cast<ArrayType>(Ty);
506  OS << '[' << ATy->getNumElements() << " x ";
507  print(ATy->getElementType(), OS);
508  OS << ']';
509  return;
510  }
511  case Type::VectorTyID: {
512  VectorType *PTy = cast<VectorType>(Ty);
513  OS << "<" << PTy->getNumElements() << " x ";
514  print(PTy->getElementType(), OS);
515  OS << '>';
516  return;
517  }
518  }
519  llvm_unreachable("Invalid TypeID");
520 }
521 
522 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
523  if (STy->isOpaque()) {
524  OS << "opaque";
525  return;
526  }
527 
528  if (STy->isPacked())
529  OS << '<';
530 
531  if (STy->getNumElements() == 0) {
532  OS << "{}";
533  } else {
534  StructType::element_iterator I = STy->element_begin();
535  OS << "{ ";
536  print(*I++, OS);
537  for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
538  OS << ", ";
539  print(*I, OS);
540  }
541 
542  OS << " }";
543  }
544  if (STy->isPacked())
545  OS << '>';
546 }
547 
548 namespace llvm {
549 //===----------------------------------------------------------------------===//
550 // SlotTracker Class: Enumerate slot numbers for unnamed values
551 //===----------------------------------------------------------------------===//
552 /// This class provides computation of slot numbers for LLVM Assembly writing.
553 ///
554 class SlotTracker {
555 public:
556  /// ValueMap - A mapping of Values to slot numbers.
557  typedef DenseMap<const Value*, unsigned> ValueMap;
558 
559 private:
560  /// TheModule - The module for which we are holding slot numbers.
561  const Module* TheModule;
562 
563  /// TheFunction - The function for which we are holding slot numbers.
564  const Function* TheFunction;
565  bool FunctionProcessed;
566  bool ShouldInitializeAllMetadata;
567 
568  /// mMap - The slot map for the module level data.
569  ValueMap mMap;
570  unsigned mNext;
571 
572  /// fMap - The slot map for the function level data.
573  ValueMap fMap;
574  unsigned fNext;
575 
576  /// mdnMap - Map for MDNodes.
577  DenseMap<const MDNode*, unsigned> mdnMap;
578  unsigned mdnNext;
579 
580  /// asMap - The slot map for attribute sets.
581  DenseMap<AttributeSet, unsigned> asMap;
582  unsigned asNext;
583 public:
584  /// Construct from a module.
585  ///
586  /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
587  /// functions, giving correct numbering for metadata referenced only from
588  /// within a function (even if no functions have been initialized).
589  explicit SlotTracker(const Module *M,
590  bool ShouldInitializeAllMetadata = false);
591  /// Construct from a function, starting out in incorp state.
592  ///
593  /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
594  /// functions, giving correct numbering for metadata referenced only from
595  /// within a function (even if no functions have been initialized).
596  explicit SlotTracker(const Function *F,
597  bool ShouldInitializeAllMetadata = false);
598 
599  /// Return the slot number of the specified value in it's type
600  /// plane. If something is not in the SlotTracker, return -1.
601  int getLocalSlot(const Value *V);
602  int getGlobalSlot(const GlobalValue *V);
603  int getMetadataSlot(const MDNode *N);
604  int getAttributeGroupSlot(AttributeSet AS);
605 
606  /// If you'd like to deal with a function instead of just a module, use
607  /// this method to get its data into the SlotTracker.
608  void incorporateFunction(const Function *F) {
609  TheFunction = F;
610  FunctionProcessed = false;
611  }
612 
613  const Function *getFunction() const { return TheFunction; }
614 
615  /// After calling incorporateFunction, use this method to remove the
616  /// most recently incorporated function from the SlotTracker. This
617  /// will reset the state of the machine back to just the module contents.
618  void purgeFunction();
619 
620  /// MDNode map iterators.
621  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
622  mdn_iterator mdn_begin() { return mdnMap.begin(); }
623  mdn_iterator mdn_end() { return mdnMap.end(); }
624  unsigned mdn_size() const { return mdnMap.size(); }
625  bool mdn_empty() const { return mdnMap.empty(); }
626 
627  /// AttributeSet map iterators.
628  typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
629  as_iterator as_begin() { return asMap.begin(); }
630  as_iterator as_end() { return asMap.end(); }
631  unsigned as_size() const { return asMap.size(); }
632  bool as_empty() const { return asMap.empty(); }
633 
634  /// This function does the actual initialization.
635  inline void initialize();
636 
637  // Implementation Details
638 private:
639  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
640  void CreateModuleSlot(const GlobalValue *V);
641 
642  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
643  void CreateMetadataSlot(const MDNode *N);
644 
645  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
646  void CreateFunctionSlot(const Value *V);
647 
648  /// \brief Insert the specified AttributeSet into the slot table.
649  void CreateAttributeSetSlot(AttributeSet AS);
650 
651  /// Add all of the module level global variables (and their initializers)
652  /// and function declarations, but not the contents of those functions.
653  void processModule();
654 
655  /// Add all of the functions arguments, basic blocks, and instructions.
656  void processFunction();
657 
658  /// Add all of the metadata from a function.
659  void processFunctionMetadata(const Function &F);
660 
661  /// Add all of the metadata from an instruction.
662  void processInstructionMetadata(const Instruction &I);
663 
664  SlotTracker(const SlotTracker &) = delete;
665  void operator=(const SlotTracker &) = delete;
666 };
667 } // namespace llvm
668 
669 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
670  const Function *F)
671  : M(M), F(F), Machine(&Machine) {}
672 
673 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
674  bool ShouldInitializeAllMetadata)
675  : MachineStorage(M ? new SlotTracker(M, ShouldInitializeAllMetadata)
676  : nullptr),
677  M(M), Machine(MachineStorage.get()) {}
678 
679 ModuleSlotTracker::~ModuleSlotTracker() {}
680 
681 void ModuleSlotTracker::incorporateFunction(const Function &F) {
682  if (!Machine)
683  return;
684 
685  // Nothing to do if this is the right function already.
686  if (this->F == &F)
687  return;
688  if (this->F)
689  Machine->purgeFunction();
690  Machine->incorporateFunction(&F);
691  this->F = &F;
692 }
693 
694 static SlotTracker *createSlotTracker(const Module *M) {
695  return new SlotTracker(M);
696 }
697 
698 static SlotTracker *createSlotTracker(const Value *V) {
699  if (const Argument *FA = dyn_cast<Argument>(V))
700  return new SlotTracker(FA->getParent());
701 
702  if (const Instruction *I = dyn_cast<Instruction>(V))
703  if (I->getParent())
704  return new SlotTracker(I->getParent()->getParent());
705 
706  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
707  return new SlotTracker(BB->getParent());
708 
709  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
710  return new SlotTracker(GV->getParent());
711 
712  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
713  return new SlotTracker(GA->getParent());
714 
715  if (const Function *Func = dyn_cast<Function>(V))
716  return new SlotTracker(Func);
717 
718  return nullptr;
719 }
720 
721 #if 0
722 #define ST_DEBUG(X) dbgs() << X
723 #else
724 #define ST_DEBUG(X)
725 #endif
726 
727 // Module level constructor. Causes the contents of the Module (sans functions)
728 // to be added to the slot table.
729 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
730  : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
731  ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
732  fNext(0), mdnNext(0), asNext(0) {}
733 
734 // Function level constructor. Causes the contents of the Module and the one
735 // function provided to be added to the slot table.
736 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
737  : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
738  FunctionProcessed(false),
739  ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
740  fNext(0), mdnNext(0), asNext(0) {}
741 
742 inline void SlotTracker::initialize() {
743  if (TheModule) {
744  processModule();
745  TheModule = nullptr; ///< Prevent re-processing next time we're called.
746  }
747 
748  if (TheFunction && !FunctionProcessed)
749  processFunction();
750 }
751 
752 // Iterate through all the global variables, functions, and global
753 // variable initializers and create slots for them.
754 void SlotTracker::processModule() {
755  ST_DEBUG("begin processModule!\n");
756 
757  // Add all of the unnamed global variables to the value table.
758  for (const GlobalVariable &Var : TheModule->globals()) {
759  if (!Var.hasName())
760  CreateModuleSlot(&Var);
761  }
762 
763  for (const GlobalAlias &A : TheModule->aliases()) {
764  if (!A.hasName())
765  CreateModuleSlot(&A);
766  }
767 
768  // Add metadata used by named metadata.
769  for (const NamedMDNode &NMD : TheModule->named_metadata()) {
770  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
771  CreateMetadataSlot(NMD.getOperand(i));
772  }
773 
774  for (const Function &F : *TheModule) {
775  if (!F.hasName())
776  // Add all the unnamed functions to the table.
777  CreateModuleSlot(&F);
778 
779  if (ShouldInitializeAllMetadata)
780  processFunctionMetadata(F);
781 
782  // Add all the function attributes to the table.
783  // FIXME: Add attributes of other objects?
784  AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
786  CreateAttributeSetSlot(FnAttrs);
787  }
788 
789  ST_DEBUG("end processModule!\n");
790 }
791 
792 // Process the arguments, basic blocks, and instructions of a function.
793 void SlotTracker::processFunction() {
794  ST_DEBUG("begin processFunction!\n");
795  fNext = 0;
796 
797  // Add all the function arguments with no names.
798  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
799  AE = TheFunction->arg_end(); AI != AE; ++AI)
800  if (!AI->hasName())
801  CreateFunctionSlot(AI);
802 
803  ST_DEBUG("Inserting Instructions:\n");
804 
805  // Add all of the basic blocks and instructions with no names.
806  for (auto &BB : *TheFunction) {
807  if (!BB.hasName())
808  CreateFunctionSlot(&BB);
809 
810  processFunctionMetadata(*TheFunction);
811 
812  for (auto &I : BB) {
813  if (!I.getType()->isVoidTy() && !I.hasName())
814  CreateFunctionSlot(&I);
815 
816  // We allow direct calls to any llvm.foo function here, because the
817  // target may not be linked into the optimizer.
818  if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
819  // Add all the call attributes to the table.
820  AttributeSet Attrs = CI->getAttributes().getFnAttributes();
822  CreateAttributeSetSlot(Attrs);
823  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
824  // Add all the call attributes to the table.
825  AttributeSet Attrs = II->getAttributes().getFnAttributes();
827  CreateAttributeSetSlot(Attrs);
828  }
829  }
830  }
831 
832  FunctionProcessed = true;
833 
834  ST_DEBUG("end processFunction!\n");
835 }
836 
837 void SlotTracker::processFunctionMetadata(const Function &F) {
839  for (auto &BB : F) {
840  F.getAllMetadata(MDs);
841  for (auto &MD : MDs)
842  CreateMetadataSlot(MD.second);
843 
844  for (auto &I : BB)
845  processInstructionMetadata(I);
846  }
847 }
848 
849 void SlotTracker::processInstructionMetadata(const Instruction &I) {
850  // Process metadata used directly by intrinsics.
851  if (const CallInst *CI = dyn_cast<CallInst>(&I))
852  if (Function *F = CI->getCalledFunction())
853  if (F->isIntrinsic())
854  for (auto &Op : I.operands())
855  if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
856  if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
857  CreateMetadataSlot(N);
858 
859  // Process metadata attached to this instruction.
861  I.getAllMetadata(MDs);
862  for (auto &MD : MDs)
863  CreateMetadataSlot(MD.second);
864 }
865 
866 /// Clean up after incorporating a function. This is the only way to get out of
867 /// the function incorporation state that affects get*Slot/Create*Slot. Function
868 /// incorporation state is indicated by TheFunction != 0.
870  ST_DEBUG("begin purgeFunction!\n");
871  fMap.clear(); // Simply discard the function level map
872  TheFunction = nullptr;
873  FunctionProcessed = false;
874  ST_DEBUG("end purgeFunction!\n");
875 }
876 
877 /// getGlobalSlot - Get the slot number of a global value.
879  // Check for uninitialized state and do lazy initialization.
880  initialize();
881 
882  // Find the value in the module map
883  ValueMap::iterator MI = mMap.find(V);
884  return MI == mMap.end() ? -1 : (int)MI->second;
885 }
886 
887 /// getMetadataSlot - Get the slot number of a MDNode.
889  // Check for uninitialized state and do lazy initialization.
890  initialize();
891 
892  // Find the MDNode in the module map
893  mdn_iterator MI = mdnMap.find(N);
894  return MI == mdnMap.end() ? -1 : (int)MI->second;
895 }
896 
897 
898 /// getLocalSlot - Get the slot number for a value that is local to a function.
900  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
901 
902  // Check for uninitialized state and do lazy initialization.
903  initialize();
904 
905  ValueMap::iterator FI = fMap.find(V);
906  return FI == fMap.end() ? -1 : (int)FI->second;
907 }
908 
910  // Check for uninitialized state and do lazy initialization.
911  initialize();
912 
913  // Find the AttributeSet in the module map.
914  as_iterator AI = asMap.find(AS);
915  return AI == asMap.end() ? -1 : (int)AI->second;
916 }
917 
918 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
919 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
920  assert(V && "Can't insert a null Value into SlotTracker!");
921  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
922  assert(!V->hasName() && "Doesn't need a slot!");
923 
924  unsigned DestSlot = mNext++;
925  mMap[V] = DestSlot;
926 
927  ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
928  DestSlot << " [");
929  // G = Global, F = Function, A = Alias, o = other
930  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
931  (isa<Function>(V) ? 'F' :
932  (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
933 }
934 
935 /// CreateSlot - Create a new slot for the specified value if it has no name.
936 void SlotTracker::CreateFunctionSlot(const Value *V) {
937  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
938 
939  unsigned DestSlot = fNext++;
940  fMap[V] = DestSlot;
941 
942  // G = Global, F = Function, o = other
943  ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
944  DestSlot << " [o]\n");
945 }
946 
947 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
948 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
949  assert(N && "Can't insert a null Value into SlotTracker!");
950 
951  unsigned DestSlot = mdnNext;
952  if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
953  return;
954  ++mdnNext;
955 
956  // Recursively add any MDNodes referenced by operands.
957  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
958  if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
959  CreateMetadataSlot(Op);
960 }
961 
962 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
964  "Doesn't need a slot!");
965 
966  as_iterator I = asMap.find(AS);
967  if (I != asMap.end())
968  return;
969 
970  unsigned DestSlot = asNext++;
971  asMap[AS] = DestSlot;
972 }
973 
974 //===----------------------------------------------------------------------===//
975 // AsmWriter Implementation
976 //===----------------------------------------------------------------------===//
977 
978 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
979  TypePrinting *TypePrinter,
981  const Module *Context);
982 
983 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
984  TypePrinting *TypePrinter,
985  SlotTracker *Machine, const Module *Context,
986  bool FromValue = false);
987 
988 static const char *getPredicateText(unsigned predicate) {
989  const char * pred = "unknown";
990  switch (predicate) {
991  case FCmpInst::FCMP_FALSE: pred = "false"; break;
992  case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
993  case FCmpInst::FCMP_OGT: pred = "ogt"; break;
994  case FCmpInst::FCMP_OGE: pred = "oge"; break;
995  case FCmpInst::FCMP_OLT: pred = "olt"; break;
996  case FCmpInst::FCMP_OLE: pred = "ole"; break;
997  case FCmpInst::FCMP_ONE: pred = "one"; break;
998  case FCmpInst::FCMP_ORD: pred = "ord"; break;
999  case FCmpInst::FCMP_UNO: pred = "uno"; break;
1000  case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
1001  case FCmpInst::FCMP_UGT: pred = "ugt"; break;
1002  case FCmpInst::FCMP_UGE: pred = "uge"; break;
1003  case FCmpInst::FCMP_ULT: pred = "ult"; break;
1004  case FCmpInst::FCMP_ULE: pred = "ule"; break;
1005  case FCmpInst::FCMP_UNE: pred = "une"; break;
1006  case FCmpInst::FCMP_TRUE: pred = "true"; break;
1007  case ICmpInst::ICMP_EQ: pred = "eq"; break;
1008  case ICmpInst::ICMP_NE: pred = "ne"; break;
1009  case ICmpInst::ICMP_SGT: pred = "sgt"; break;
1010  case ICmpInst::ICMP_SGE: pred = "sge"; break;
1011  case ICmpInst::ICMP_SLT: pred = "slt"; break;
1012  case ICmpInst::ICMP_SLE: pred = "sle"; break;
1013  case ICmpInst::ICMP_UGT: pred = "ugt"; break;
1014  case ICmpInst::ICMP_UGE: pred = "uge"; break;
1015  case ICmpInst::ICMP_ULT: pred = "ult"; break;
1016  case ICmpInst::ICMP_ULE: pred = "ule"; break;
1017  }
1018  return pred;
1019 }
1020 
1022  AtomicRMWInst::BinOp Op) {
1023  switch (Op) {
1024  default: Out << " <unknown operation " << Op << ">"; break;
1025  case AtomicRMWInst::Xchg: Out << " xchg"; break;
1026  case AtomicRMWInst::Add: Out << " add"; break;
1027  case AtomicRMWInst::Sub: Out << " sub"; break;
1028  case AtomicRMWInst::And: Out << " and"; break;
1029  case AtomicRMWInst::Nand: Out << " nand"; break;
1030  case AtomicRMWInst::Or: Out << " or"; break;
1031  case AtomicRMWInst::Xor: Out << " xor"; break;
1032  case AtomicRMWInst::Max: Out << " max"; break;
1033  case AtomicRMWInst::Min: Out << " min"; break;
1034  case AtomicRMWInst::UMax: Out << " umax"; break;
1035  case AtomicRMWInst::UMin: Out << " umin"; break;
1036  }
1037 }
1038 
1039 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1040  if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1041  // Unsafe algebra implies all the others, no need to write them all out
1042  if (FPO->hasUnsafeAlgebra())
1043  Out << " fast";
1044  else {
1045  if (FPO->hasNoNaNs())
1046  Out << " nnan";
1047  if (FPO->hasNoInfs())
1048  Out << " ninf";
1049  if (FPO->hasNoSignedZeros())
1050  Out << " nsz";
1051  if (FPO->hasAllowReciprocal())
1052  Out << " arcp";
1053  }
1054  }
1055 
1056  if (const OverflowingBinaryOperator *OBO =
1057  dyn_cast<OverflowingBinaryOperator>(U)) {
1058  if (OBO->hasNoUnsignedWrap())
1059  Out << " nuw";
1060  if (OBO->hasNoSignedWrap())
1061  Out << " nsw";
1062  } else if (const PossiblyExactOperator *Div =
1063  dyn_cast<PossiblyExactOperator>(U)) {
1064  if (Div->isExact())
1065  Out << " exact";
1066  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1067  if (GEP->isInBounds())
1068  Out << " inbounds";
1069  }
1070 }
1071 
1072 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1073  TypePrinting &TypePrinter,
1075  const Module *Context) {
1076  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1077  if (CI->getType()->isIntegerTy(1)) {
1078  Out << (CI->getZExtValue() ? "true" : "false");
1079  return;
1080  }
1081  Out << CI->getValue();
1082  return;
1083  }
1084 
1085  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1086  if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
1087  &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
1088  // We would like to output the FP constant value in exponential notation,
1089  // but we cannot do this if doing so will lose precision. Check here to
1090  // make sure that we only output it in exponential format if we can parse
1091  // the value back and get the same value.
1092  //
1093  bool ignored;
1094  bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
1095  bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
1096  bool isInf = CFP->getValueAPF().isInfinity();
1097  bool isNaN = CFP->getValueAPF().isNaN();
1098  if (!isHalf && !isInf && !isNaN) {
1099  double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
1100  CFP->getValueAPF().convertToFloat();
1102  raw_svector_ostream(StrVal) << Val;
1103 
1104  // Check to make sure that the stringized number is not some string like
1105  // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1106  // that the string matches the "[-+]?[0-9]" regex.
1107  //
1108  if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1109  ((StrVal[0] == '-' || StrVal[0] == '+') &&
1110  (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
1111  // Reparse stringized version!
1112  if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
1113  Out << StrVal;
1114  return;
1115  }
1116  }
1117  }
1118  // Otherwise we could not reparse it to exactly the same value, so we must
1119  // output the string in hexadecimal format! Note that loading and storing
1120  // floating point types changes the bits of NaNs on some hosts, notably
1121  // x86, so we must not use these types.
1122  static_assert(sizeof(double) == sizeof(uint64_t),
1123  "assuming that double is 64 bits!");
1124  char Buffer[40];
1125  APFloat apf = CFP->getValueAPF();
1126  // Halves and floats are represented in ASCII IR as double, convert.
1127  if (!isDouble)
1129  &ignored);
1130  Out << "0x" <<
1131  utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
1132  Buffer+40);
1133  return;
1134  }
1135 
1136  // Either half, or some form of long double.
1137  // These appear as a magic letter identifying the type, then a
1138  // fixed number of hex digits.
1139  Out << "0x";
1140  // Bit position, in the current word, of the next nibble to print.
1141  int shiftcount;
1142 
1143  if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
1144  Out << 'K';
1145  // api needed to prevent premature destruction
1146  APInt api = CFP->getValueAPF().bitcastToAPInt();
1147  const uint64_t* p = api.getRawData();
1148  uint64_t word = p[1];
1149  shiftcount = 12;
1150  int width = api.getBitWidth();
1151  for (int j=0; j<width; j+=4, shiftcount-=4) {
1152  unsigned int nibble = (word>>shiftcount) & 15;
1153  if (nibble < 10)
1154  Out << (unsigned char)(nibble + '0');
1155  else
1156  Out << (unsigned char)(nibble - 10 + 'A');
1157  if (shiftcount == 0 && j+4 < width) {
1158  word = *p;
1159  shiftcount = 64;
1160  if (width-j-4 < 64)
1161  shiftcount = width-j-4;
1162  }
1163  }
1164  return;
1165  } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
1166  shiftcount = 60;
1167  Out << 'L';
1168  } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
1169  shiftcount = 60;
1170  Out << 'M';
1171  } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
1172  shiftcount = 12;
1173  Out << 'H';
1174  } else
1175  llvm_unreachable("Unsupported floating point type");
1176  // api needed to prevent premature destruction
1177  APInt api = CFP->getValueAPF().bitcastToAPInt();
1178  const uint64_t* p = api.getRawData();
1179  uint64_t word = *p;
1180  int width = api.getBitWidth();
1181  for (int j=0; j<width; j+=4, shiftcount-=4) {
1182  unsigned int nibble = (word>>shiftcount) & 15;
1183  if (nibble < 10)
1184  Out << (unsigned char)(nibble + '0');
1185  else
1186  Out << (unsigned char)(nibble - 10 + 'A');
1187  if (shiftcount == 0 && j+4 < width) {
1188  word = *(++p);
1189  shiftcount = 64;
1190  if (width-j-4 < 64)
1191  shiftcount = width-j-4;
1192  }
1193  }
1194  return;
1195  }
1196 
1197  if (isa<ConstantAggregateZero>(CV)) {
1198  Out << "zeroinitializer";
1199  return;
1200  }
1201 
1202  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1203  Out << "blockaddress(";
1204  WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1205  Context);
1206  Out << ", ";
1207  WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1208  Context);
1209  Out << ")";
1210  return;
1211  }
1212 
1213  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1214  Type *ETy = CA->getType()->getElementType();
1215  Out << '[';
1216  TypePrinter.print(ETy, Out);
1217  Out << ' ';
1218  WriteAsOperandInternal(Out, CA->getOperand(0),
1219  &TypePrinter, Machine,
1220  Context);
1221  for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1222  Out << ", ";
1223  TypePrinter.print(ETy, Out);
1224  Out << ' ';
1225  WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1226  Context);
1227  }
1228  Out << ']';
1229  return;
1230  }
1231 
1232  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1233  // As a special case, print the array as a string if it is an array of
1234  // i8 with ConstantInt values.
1235  if (CA->isString()) {
1236  Out << "c\"";
1237  PrintEscapedString(CA->getAsString(), Out);
1238  Out << '"';
1239  return;
1240  }
1241 
1242  Type *ETy = CA->getType()->getElementType();
1243  Out << '[';
1244  TypePrinter.print(ETy, Out);
1245  Out << ' ';
1246  WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1247  &TypePrinter, Machine,
1248  Context);
1249  for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1250  Out << ", ";
1251  TypePrinter.print(ETy, Out);
1252  Out << ' ';
1253  WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1254  Machine, Context);
1255  }
1256  Out << ']';
1257  return;
1258  }
1259 
1260 
1261  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1262  if (CS->getType()->isPacked())
1263  Out << '<';
1264  Out << '{';
1265  unsigned N = CS->getNumOperands();
1266  if (N) {
1267  Out << ' ';
1268  TypePrinter.print(CS->getOperand(0)->getType(), Out);
1269  Out << ' ';
1270 
1271  WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1272  Context);
1273 
1274  for (unsigned i = 1; i < N; i++) {
1275  Out << ", ";
1276  TypePrinter.print(CS->getOperand(i)->getType(), Out);
1277  Out << ' ';
1278 
1279  WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1280  Context);
1281  }
1282  Out << ' ';
1283  }
1284 
1285  Out << '}';
1286  if (CS->getType()->isPacked())
1287  Out << '>';
1288  return;
1289  }
1290 
1291  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1292  Type *ETy = CV->getType()->getVectorElementType();
1293  Out << '<';
1294  TypePrinter.print(ETy, Out);
1295  Out << ' ';
1296  WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1297  Machine, Context);
1298  for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1299  Out << ", ";
1300  TypePrinter.print(ETy, Out);
1301  Out << ' ';
1302  WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1303  Machine, Context);
1304  }
1305  Out << '>';
1306  return;
1307  }
1308 
1309  if (isa<ConstantPointerNull>(CV)) {
1310  Out << "null";
1311  return;
1312  }
1313 
1314  if (isa<UndefValue>(CV)) {
1315  Out << "undef";
1316  return;
1317  }
1318 
1319  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1320  Out << CE->getOpcodeName();
1321  WriteOptimizationInfo(Out, CE);
1322  if (CE->isCompare())
1323  Out << ' ' << getPredicateText(CE->getPredicate());
1324  Out << " (";
1325 
1326  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1327  TypePrinter.print(
1328  cast<PointerType>(GEP->getPointerOperandType()->getScalarType())
1329  ->getElementType(),
1330  Out);
1331  Out << ", ";
1332  }
1333 
1334  for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1335  TypePrinter.print((*OI)->getType(), Out);
1336  Out << ' ';
1337  WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1338  if (OI+1 != CE->op_end())
1339  Out << ", ";
1340  }
1341 
1342  if (CE->hasIndices()) {
1343  ArrayRef<unsigned> Indices = CE->getIndices();
1344  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1345  Out << ", " << Indices[i];
1346  }
1347 
1348  if (CE->isCast()) {
1349  Out << " to ";
1350  TypePrinter.print(CE->getType(), Out);
1351  }
1352 
1353  Out << ')';
1354  return;
1355  }
1356 
1357  Out << "<placeholder or erroneous Constant>";
1358 }
1359 
1360 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1361  TypePrinting *TypePrinter, SlotTracker *Machine,
1362  const Module *Context) {
1363  Out << "!{";
1364  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1365  const Metadata *MD = Node->getOperand(mi);
1366  if (!MD)
1367  Out << "null";
1368  else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1369  Value *V = MDV->getValue();
1370  TypePrinter->print(V->getType(), Out);
1371  Out << ' ';
1372  WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1373  } else {
1374  WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1375  }
1376  if (mi + 1 != me)
1377  Out << ", ";
1378  }
1379 
1380  Out << "}";
1381 }
1382 
1383 namespace {
1384 struct FieldSeparator {
1385  bool Skip;
1386  const char *Sep;
1387  FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
1388 };
1389 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1390  if (FS.Skip) {
1391  FS.Skip = false;
1392  return OS;
1393  }
1394  return OS << FS.Sep;
1395 }
1396 struct MDFieldPrinter {
1397  raw_ostream &Out;
1398  FieldSeparator FS;
1399  TypePrinting *TypePrinter;
1400  SlotTracker *Machine;
1401  const Module *Context;
1402 
1403  explicit MDFieldPrinter(raw_ostream &Out)
1404  : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
1405  MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1406  SlotTracker *Machine, const Module *Context)
1407  : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1408  }
1409  void printTag(const DINode *N);
1410  void printString(StringRef Name, StringRef Value,
1411  bool ShouldSkipEmpty = true);
1412  void printMetadata(StringRef Name, const Metadata *MD,
1413  bool ShouldSkipNull = true);
1414  template <class IntTy>
1415  void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1416  void printBool(StringRef Name, bool Value);
1417  void printDIFlags(StringRef Name, unsigned Flags);
1418  template <class IntTy, class Stringifier>
1419  void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1420  bool ShouldSkipZero = true);
1421 };
1422 } // end namespace
1423 
1424 void MDFieldPrinter::printTag(const DINode *N) {
1425  Out << FS << "tag: ";
1426  if (const char *Tag = dwarf::TagString(N->getTag()))
1427  Out << Tag;
1428  else
1429  Out << N->getTag();
1430 }
1431 
1432 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1433  bool ShouldSkipEmpty) {
1434  if (ShouldSkipEmpty && Value.empty())
1435  return;
1436 
1437  Out << FS << Name << ": \"";
1438  PrintEscapedString(Value, Out);
1439  Out << "\"";
1440 }
1441 
1442 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1443  TypePrinting *TypePrinter,
1444  SlotTracker *Machine,
1445  const Module *Context) {
1446  if (!MD) {
1447  Out << "null";
1448  return;
1449  }
1450  WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1451 }
1452 
1453 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1454  bool ShouldSkipNull) {
1455  if (ShouldSkipNull && !MD)
1456  return;
1457 
1458  Out << FS << Name << ": ";
1459  writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1460 }
1461 
1462 template <class IntTy>
1463 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1464  if (ShouldSkipZero && !Int)
1465  return;
1466 
1467  Out << FS << Name << ": " << Int;
1468 }
1469 
1470 void MDFieldPrinter::printBool(StringRef Name, bool Value) {
1471  Out << FS << Name << ": " << (Value ? "true" : "false");
1472 }
1473 
1474 void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
1475  if (!Flags)
1476  return;
1477 
1478  Out << FS << Name << ": ";
1479 
1480  SmallVector<unsigned, 8> SplitFlags;
1481  unsigned Extra = DINode::splitFlags(Flags, SplitFlags);
1482 
1483  FieldSeparator FlagsFS(" | ");
1484  for (unsigned F : SplitFlags) {
1485  const char *StringF = DINode::getFlagString(F);
1486  assert(StringF && "Expected valid flag");
1487  Out << FlagsFS << StringF;
1488  }
1489  if (Extra || SplitFlags.empty())
1490  Out << FlagsFS << Extra;
1491 }
1492 
1493 template <class IntTy, class Stringifier>
1494 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1495  Stringifier toString, bool ShouldSkipZero) {
1496  if (!Value)
1497  return;
1498 
1499  Out << FS << Name << ": ";
1500  if (const char *S = toString(Value))
1501  Out << S;
1502  else
1503  Out << Value;
1504 }
1505 
1506 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1507  TypePrinting *TypePrinter, SlotTracker *Machine,
1508  const Module *Context) {
1509  Out << "!GenericDINode(";
1510  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1511  Printer.printTag(N);
1512  Printer.printString("header", N->getHeader());
1513  if (N->getNumDwarfOperands()) {
1514  Out << Printer.FS << "operands: {";
1515  FieldSeparator IFS;
1516  for (auto &I : N->dwarf_operands()) {
1517  Out << IFS;
1518  writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1519  }
1520  Out << "}";
1521  }
1522  Out << ")";
1523 }
1524 
1525 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1526  TypePrinting *TypePrinter, SlotTracker *Machine,
1527  const Module *Context) {
1528  Out << "!DILocation(";
1529  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1530  // Always output the line, since 0 is a relevant and important value for it.
1531  Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1532  Printer.printInt("column", DL->getColumn());
1533  Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1534  Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1535  Out << ")";
1536 }
1537 
1538 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1539  TypePrinting *, SlotTracker *, const Module *) {
1540  Out << "!DISubrange(";
1541  MDFieldPrinter Printer(Out);
1542  Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
1543  Printer.printInt("lowerBound", N->getLowerBound());
1544  Out << ")";
1545 }
1546 
1547 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1548  TypePrinting *, SlotTracker *, const Module *) {
1549  Out << "!DIEnumerator(";
1550  MDFieldPrinter Printer(Out);
1551  Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1552  Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1553  Out << ")";
1554 }
1555 
1556 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1557  TypePrinting *, SlotTracker *, const Module *) {
1558  Out << "!DIBasicType(";
1559  MDFieldPrinter Printer(Out);
1560  if (N->getTag() != dwarf::DW_TAG_base_type)
1561  Printer.printTag(N);
1562  Printer.printString("name", N->getName());
1563  Printer.printInt("size", N->getSizeInBits());
1564  Printer.printInt("align", N->getAlignInBits());
1565  Printer.printDwarfEnum("encoding", N->getEncoding(),
1566  dwarf::AttributeEncodingString);
1567  Out << ")";
1568 }
1569 
1570 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1571  TypePrinting *TypePrinter, SlotTracker *Machine,
1572  const Module *Context) {
1573  Out << "!DIDerivedType(";
1574  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1575  Printer.printTag(N);
1576  Printer.printString("name", N->getName());
1577  Printer.printMetadata("scope", N->getRawScope());
1578  Printer.printMetadata("file", N->getRawFile());
1579  Printer.printInt("line", N->getLine());
1580  Printer.printMetadata("baseType", N->getRawBaseType(),
1581  /* ShouldSkipNull */ false);
1582  Printer.printInt("size", N->getSizeInBits());
1583  Printer.printInt("align", N->getAlignInBits());
1584  Printer.printInt("offset", N->getOffsetInBits());
1585  Printer.printDIFlags("flags", N->getFlags());
1586  Printer.printMetadata("extraData", N->getRawExtraData());
1587  Out << ")";
1588 }
1589 
1590 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1591  TypePrinting *TypePrinter,
1592  SlotTracker *Machine, const Module *Context) {
1593  Out << "!DICompositeType(";
1594  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1595  Printer.printTag(N);
1596  Printer.printString("name", N->getName());
1597  Printer.printMetadata("scope", N->getRawScope());
1598  Printer.printMetadata("file", N->getRawFile());
1599  Printer.printInt("line", N->getLine());
1600  Printer.printMetadata("baseType", N->getRawBaseType());
1601  Printer.printInt("size", N->getSizeInBits());
1602  Printer.printInt("align", N->getAlignInBits());
1603  Printer.printInt("offset", N->getOffsetInBits());
1604  Printer.printDIFlags("flags", N->getFlags());
1605  Printer.printMetadata("elements", N->getRawElements());
1606  Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1607  dwarf::LanguageString);
1608  Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1609  Printer.printMetadata("templateParams", N->getRawTemplateParams());
1610  Printer.printString("identifier", N->getIdentifier());
1611  Out << ")";
1612 }
1613 
1614 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1615  TypePrinting *TypePrinter,
1616  SlotTracker *Machine, const Module *Context) {
1617  Out << "!DISubroutineType(";
1618  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1619  Printer.printDIFlags("flags", N->getFlags());
1620  Printer.printMetadata("types", N->getRawTypeArray(),
1621  /* ShouldSkipNull */ false);
1622  Out << ")";
1623 }
1624 
1625 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1626  SlotTracker *, const Module *) {
1627  Out << "!DIFile(";
1628  MDFieldPrinter Printer(Out);
1629  Printer.printString("filename", N->getFilename(),
1630  /* ShouldSkipEmpty */ false);
1631  Printer.printString("directory", N->getDirectory(),
1632  /* ShouldSkipEmpty */ false);
1633  Out << ")";
1634 }
1635 
1636 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1637  TypePrinting *TypePrinter, SlotTracker *Machine,
1638  const Module *Context) {
1639  Out << "!DICompileUnit(";
1640  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1641  Printer.printDwarfEnum("language", N->getSourceLanguage(),
1642  dwarf::LanguageString, /* ShouldSkipZero */ false);
1643  Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1644  Printer.printString("producer", N->getProducer());
1645  Printer.printBool("isOptimized", N->isOptimized());
1646  Printer.printString("flags", N->getFlags());
1647  Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1648  /* ShouldSkipZero */ false);
1649  Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1650  Printer.printInt("emissionKind", N->getEmissionKind(),
1651  /* ShouldSkipZero */ false);
1652  Printer.printMetadata("enums", N->getRawEnumTypes());
1653  Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1654  Printer.printMetadata("subprograms", N->getRawSubprograms());
1655  Printer.printMetadata("globals", N->getRawGlobalVariables());
1656  Printer.printMetadata("imports", N->getRawImportedEntities());
1657  Printer.printInt("dwoId", N->getDWOId());
1658  Out << ")";
1659 }
1660 
1661 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1662  TypePrinting *TypePrinter, SlotTracker *Machine,
1663  const Module *Context) {
1664  Out << "!DISubprogram(";
1665  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1666  Printer.printString("name", N->getName());
1667  Printer.printString("linkageName", N->getLinkageName());
1668  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1669  Printer.printMetadata("file", N->getRawFile());
1670  Printer.printInt("line", N->getLine());
1671  Printer.printMetadata("type", N->getRawType());
1672  Printer.printBool("isLocal", N->isLocalToUnit());
1673  Printer.printBool("isDefinition", N->isDefinition());
1674  Printer.printInt("scopeLine", N->getScopeLine());
1675  Printer.printMetadata("containingType", N->getRawContainingType());
1676  Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1677  dwarf::VirtualityString);
1678  Printer.printInt("virtualIndex", N->getVirtualIndex());
1679  Printer.printDIFlags("flags", N->getFlags());
1680  Printer.printBool("isOptimized", N->isOptimized());
1681  Printer.printMetadata("function", N->getRawFunction());
1682  Printer.printMetadata("templateParams", N->getRawTemplateParams());
1683  Printer.printMetadata("declaration", N->getRawDeclaration());
1684  Printer.printMetadata("variables", N->getRawVariables());
1685  Out << ")";
1686 }
1687 
1688 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1689  TypePrinting *TypePrinter, SlotTracker *Machine,
1690  const Module *Context) {
1691  Out << "!DILexicalBlock(";
1692  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1693  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1694  Printer.printMetadata("file", N->getRawFile());
1695  Printer.printInt("line", N->getLine());
1696  Printer.printInt("column", N->getColumn());
1697  Out << ")";
1698 }
1699 
1700 static void writeDILexicalBlockFile(raw_ostream &Out,
1701  const DILexicalBlockFile *N,
1702  TypePrinting *TypePrinter,
1703  SlotTracker *Machine,
1704  const Module *Context) {
1705  Out << "!DILexicalBlockFile(";
1706  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1707  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1708  Printer.printMetadata("file", N->getRawFile());
1709  Printer.printInt("discriminator", N->getDiscriminator(),
1710  /* ShouldSkipZero */ false);
1711  Out << ")";
1712 }
1713 
1714 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1715  TypePrinting *TypePrinter, SlotTracker *Machine,
1716  const Module *Context) {
1717  Out << "!DINamespace(";
1718  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1719  Printer.printString("name", N->getName());
1720  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1721  Printer.printMetadata("file", N->getRawFile());
1722  Printer.printInt("line", N->getLine());
1723  Out << ")";
1724 }
1725 
1726 static void writeDIModule(raw_ostream &Out, const DIModule *N,
1727  TypePrinting *TypePrinter, SlotTracker *Machine,
1728  const Module *Context) {
1729  Out << "!DIModule(";
1730  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1731  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1732  Printer.printString("name", N->getName());
1733  Printer.printString("configMacros", N->getConfigurationMacros());
1734  Printer.printString("includePath", N->getIncludePath());
1735  Printer.printString("isysroot", N->getISysRoot());
1736  Out << ")";
1737 }
1738 
1739 
1740 static void writeDITemplateTypeParameter(raw_ostream &Out,
1741  const DITemplateTypeParameter *N,
1742  TypePrinting *TypePrinter,
1743  SlotTracker *Machine,
1744  const Module *Context) {
1745  Out << "!DITemplateTypeParameter(";
1746  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1747  Printer.printString("name", N->getName());
1748  Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
1749  Out << ")";
1750 }
1751 
1752 static void writeDITemplateValueParameter(raw_ostream &Out,
1753  const DITemplateValueParameter *N,
1754  TypePrinting *TypePrinter,
1755  SlotTracker *Machine,
1756  const Module *Context) {
1757  Out << "!DITemplateValueParameter(";
1758  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1759  if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
1760  Printer.printTag(N);
1761  Printer.printString("name", N->getName());
1762  Printer.printMetadata("type", N->getRawType());
1763  Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
1764  Out << ")";
1765 }
1766 
1767 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
1768  TypePrinting *TypePrinter,
1769  SlotTracker *Machine, const Module *Context) {
1770  Out << "!DIGlobalVariable(";
1771  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1772  Printer.printString("name", N->getName());
1773  Printer.printString("linkageName", N->getLinkageName());
1774  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1775  Printer.printMetadata("file", N->getRawFile());
1776  Printer.printInt("line", N->getLine());
1777  Printer.printMetadata("type", N->getRawType());
1778  Printer.printBool("isLocal", N->isLocalToUnit());
1779  Printer.printBool("isDefinition", N->isDefinition());
1780  Printer.printMetadata("variable", N->getRawVariable());
1781  Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
1782  Out << ")";
1783 }
1784 
1785 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
1786  TypePrinting *TypePrinter,
1787  SlotTracker *Machine, const Module *Context) {
1788  Out << "!DILocalVariable(";
1789  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1790  Printer.printTag(N);
1791  Printer.printString("name", N->getName());
1792  Printer.printInt("arg", N->getArg(),
1793  /* ShouldSkipZero */
1794  N->getTag() == dwarf::DW_TAG_auto_variable);
1795  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1796  Printer.printMetadata("file", N->getRawFile());
1797  Printer.printInt("line", N->getLine());
1798  Printer.printMetadata("type", N->getRawType());
1799  Printer.printDIFlags("flags", N->getFlags());
1800  Out << ")";
1801 }
1802 
1803 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
1804  TypePrinting *TypePrinter, SlotTracker *Machine,
1805  const Module *Context) {
1806  Out << "!DIExpression(";
1807  FieldSeparator FS;
1808  if (N->isValid()) {
1809  for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
1810  const char *OpStr = dwarf::OperationEncodingString(I->getOp());
1811  assert(OpStr && "Expected valid opcode");
1812 
1813  Out << FS << OpStr;
1814  for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
1815  Out << FS << I->getArg(A);
1816  }
1817  } else {
1818  for (const auto &I : N->getElements())
1819  Out << FS << I;
1820  }
1821  Out << ")";
1822 }
1823 
1824 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
1825  TypePrinting *TypePrinter, SlotTracker *Machine,
1826  const Module *Context) {
1827  Out << "!DIObjCProperty(";
1828  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1829  Printer.printString("name", N->getName());
1830  Printer.printMetadata("file", N->getRawFile());
1831  Printer.printInt("line", N->getLine());
1832  Printer.printString("setter", N->getSetterName());
1833  Printer.printString("getter", N->getGetterName());
1834  Printer.printInt("attributes", N->getAttributes());
1835  Printer.printMetadata("type", N->getRawType());
1836  Out << ")";
1837 }
1838 
1839 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
1840  TypePrinting *TypePrinter,
1841  SlotTracker *Machine, const Module *Context) {
1842  Out << "!DIImportedEntity(";
1843  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1844  Printer.printTag(N);
1845  Printer.printString("name", N->getName());
1846  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1847  Printer.printMetadata("entity", N->getRawEntity());
1848  Printer.printInt("line", N->getLine());
1849  Out << ")";
1850 }
1851 
1852 
1853 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1854  TypePrinting *TypePrinter,
1855  SlotTracker *Machine,
1856  const Module *Context) {
1857  if (Node->isDistinct())
1858  Out << "distinct ";
1859  else if (Node->isTemporary())
1860  Out << "<temporary!> "; // Handle broken code.
1861 
1862  switch (Node->getMetadataID()) {
1863  default:
1864  llvm_unreachable("Expected uniquable MDNode");
1865 #define HANDLE_MDNODE_LEAF(CLASS) \
1866  case Metadata::CLASS##Kind: \
1867  write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
1868  break;
1869 #include "llvm/IR/Metadata.def"
1870  }
1871 }
1872 
1873 // Full implementation of printing a Value as an operand with support for
1874 // TypePrinting, etc.
1875 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1876  TypePrinting *TypePrinter,
1877  SlotTracker *Machine,
1878  const Module *Context) {
1879  if (V->hasName()) {
1880  PrintLLVMName(Out, V);
1881  return;
1882  }
1883 
1884  const Constant *CV = dyn_cast<Constant>(V);
1885  if (CV && !isa<GlobalValue>(CV)) {
1886  assert(TypePrinter && "Constants require TypePrinting!");
1887  WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1888  return;
1889  }
1890 
1891  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1892  Out << "asm ";
1893  if (IA->hasSideEffects())
1894  Out << "sideeffect ";
1895  if (IA->isAlignStack())
1896  Out << "alignstack ";
1897  // We don't emit the AD_ATT dialect as it's the assumed default.
1898  if (IA->getDialect() == InlineAsm::AD_Intel)
1899  Out << "inteldialect ";
1900  Out << '"';
1901  PrintEscapedString(IA->getAsmString(), Out);
1902  Out << "\", \"";
1903  PrintEscapedString(IA->getConstraintString(), Out);
1904  Out << '"';
1905  return;
1906  }
1907 
1908  if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
1909  WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
1910  Context, /* FromValue */ true);
1911  return;
1912  }
1913 
1914  char Prefix = '%';
1915  int Slot;
1916  // If we have a SlotTracker, use it.
1917  if (Machine) {
1918  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1919  Slot = Machine->getGlobalSlot(GV);
1920  Prefix = '@';
1921  } else {
1922  Slot = Machine->getLocalSlot(V);
1923 
1924  // If the local value didn't succeed, then we may be referring to a value
1925  // from a different function. Translate it, as this can happen when using
1926  // address of blocks.
1927  if (Slot == -1)
1928  if ((Machine = createSlotTracker(V))) {
1929  Slot = Machine->getLocalSlot(V);
1930  delete Machine;
1931  }
1932  }
1933  } else if ((Machine = createSlotTracker(V))) {
1934  // Otherwise, create one to get the # and then destroy it.
1935  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1936  Slot = Machine->getGlobalSlot(GV);
1937  Prefix = '@';
1938  } else {
1939  Slot = Machine->getLocalSlot(V);
1940  }
1941  delete Machine;
1942  Machine = nullptr;
1943  } else {
1944  Slot = -1;
1945  }
1946 
1947  if (Slot != -1)
1948  Out << Prefix << Slot;
1949  else
1950  Out << "<badref>";
1951 }
1952 
1953 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1954  TypePrinting *TypePrinter,
1955  SlotTracker *Machine, const Module *Context,
1956  bool FromValue) {
1957  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1958  std::unique_ptr<SlotTracker> MachineStorage;
1959  if (!Machine) {
1960  MachineStorage = make_unique<SlotTracker>(Context);
1961  Machine = MachineStorage.get();
1962  }
1963  int Slot = Machine->getMetadataSlot(N);
1964  if (Slot == -1)
1965  // Give the pointer value instead of "badref", since this comes up all
1966  // the time when debugging.
1967  Out << "<" << N << ">";
1968  else
1969  Out << '!' << Slot;
1970  return;
1971  }
1972 
1973  if (const MDString *MDS = dyn_cast<MDString>(MD)) {
1974  Out << "!\"";
1975  PrintEscapedString(MDS->getString(), Out);
1976  Out << '"';
1977  return;
1978  }
1979 
1980  auto *V = cast<ValueAsMetadata>(MD);
1981  assert(TypePrinter && "TypePrinter required for metadata values");
1982  assert((FromValue || !isa<LocalAsMetadata>(V)) &&
1983  "Unexpected function-local metadata outside of value argument");
1984 
1985  TypePrinter->print(V->getValue()->getType(), Out);
1986  Out << ' ';
1987  WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
1988 }
1989 
1990 namespace {
1991 class AssemblyWriter {
1992  formatted_raw_ostream &Out;
1993  const Module *TheModule;
1994  std::unique_ptr<SlotTracker> SlotTrackerStorage;
1996  TypePrinting TypePrinter;
1997  AssemblyAnnotationWriter *AnnotationWriter;
1998  SetVector<const Comdat *> Comdats;
1999  bool ShouldPreserveUseListOrder;
2000  UseListOrderStack UseListOrders;
2001  SmallVector<StringRef, 8> MDNames;
2002 
2003 public:
2004  /// Construct an AssemblyWriter with an external SlotTracker
2005  AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2007  bool ShouldPreserveUseListOrder = false);
2008 
2009  /// Construct an AssemblyWriter with an internally allocated SlotTracker
2010  AssemblyWriter(formatted_raw_ostream &o, const Module *M,
2012  bool ShouldPreserveUseListOrder = false);
2013 
2014  void printMDNodeBody(const MDNode *MD);
2015  void printNamedMDNode(const NamedMDNode *NMD);
2016 
2017  void printModule(const Module *M);
2018 
2019  void writeOperand(const Value *Op, bool PrintType);
2020  void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
2021  void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
2022  void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2023  AtomicOrdering FailureOrdering,
2024  SynchronizationScope SynchScope);
2025 
2026  void writeAllMDNodes();
2027  void writeMDNode(unsigned Slot, const MDNode *Node);
2028  void writeAllAttributeGroups();
2029 
2030  void printTypeIdentities();
2031  void printGlobal(const GlobalVariable *GV);
2032  void printAlias(const GlobalAlias *GV);
2033  void printComdat(const Comdat *C);
2034  void printFunction(const Function *F);
2035  void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
2036  void printBasicBlock(const BasicBlock *BB);
2037  void printInstructionLine(const Instruction &I);
2038  void printInstruction(const Instruction &I);
2039 
2040  void printUseListOrder(const UseListOrder &Order);
2041  void printUseLists(const Function *F);
2042 
2043 private:
2044  void init();
2045 
2046  /// \brief Print out metadata attachments.
2047  void printMetadataAttachments(
2048  const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2049  StringRef Separator);
2050 
2051  // printInfoComment - Print a little comment after the instruction indicating
2052  // which slot it occupies.
2053  void printInfoComment(const Value &V);
2054 
2055  // printGCRelocateComment - print comment after call to the gc.relocate
2056  // intrinsic indicating base and derived pointer names.
2057  void printGCRelocateComment(const Value &V);
2058 };
2059 } // namespace
2060 
2061 void AssemblyWriter::init() {
2062  if (!TheModule)
2063  return;
2064  TypePrinter.incorporateTypes(*TheModule);
2065  for (const Function &F : *TheModule)
2066  if (const Comdat *C = F.getComdat())
2067  Comdats.insert(C);
2068  for (const GlobalVariable &GV : TheModule->globals())
2069  if (const Comdat *C = GV.getComdat())
2070  Comdats.insert(C);
2071 }
2072 
2073 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2074  const Module *M, AssemblyAnnotationWriter *AAW,
2075  bool ShouldPreserveUseListOrder)
2076  : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
2077  ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2078  init();
2079 }
2080 
2081 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
2083  bool ShouldPreserveUseListOrder)
2084  : Out(o), TheModule(M), SlotTrackerStorage(createSlotTracker(M)),
2085  Machine(*SlotTrackerStorage), AnnotationWriter(AAW),
2086  ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2087  init();
2088 }
2089 
2090 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2091  if (!Operand) {
2092  Out << "<null operand!>";
2093  return;
2094  }
2095  if (PrintType) {
2096  TypePrinter.print(Operand->getType(), Out);
2097  Out << ' ';
2098  }
2099  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2100 }
2101 
2102 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
2103  SynchronizationScope SynchScope) {
2104  if (Ordering == NotAtomic)
2105  return;
2106 
2107  switch (SynchScope) {
2108  case SingleThread: Out << " singlethread"; break;
2109  case CrossThread: break;
2110  }
2111 
2112  switch (Ordering) {
2113  default: Out << " <bad ordering " << int(Ordering) << ">"; break;
2114  case Unordered: Out << " unordered"; break;
2115  case Monotonic: Out << " monotonic"; break;
2116  case Acquire: Out << " acquire"; break;
2117  case Release: Out << " release"; break;
2118  case AcquireRelease: Out << " acq_rel"; break;
2119  case SequentiallyConsistent: Out << " seq_cst"; break;
2120  }
2121 }
2122 
2123 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2124  AtomicOrdering FailureOrdering,
2125  SynchronizationScope SynchScope) {
2126  assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
2127 
2128  switch (SynchScope) {
2129  case SingleThread: Out << " singlethread"; break;
2130  case CrossThread: break;
2131  }
2132 
2133  switch (SuccessOrdering) {
2134  default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
2135  case Unordered: Out << " unordered"; break;
2136  case Monotonic: Out << " monotonic"; break;
2137  case Acquire: Out << " acquire"; break;
2138  case Release: Out << " release"; break;
2139  case AcquireRelease: Out << " acq_rel"; break;
2140  case SequentiallyConsistent: Out << " seq_cst"; break;
2141  }
2142 
2143  switch (FailureOrdering) {
2144  default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
2145  case Unordered: Out << " unordered"; break;
2146  case Monotonic: Out << " monotonic"; break;
2147  case Acquire: Out << " acquire"; break;
2148  case Release: Out << " release"; break;
2149  case AcquireRelease: Out << " acq_rel"; break;
2150  case SequentiallyConsistent: Out << " seq_cst"; break;
2151  }
2152 }
2153 
2154 void AssemblyWriter::writeParamOperand(const Value *Operand,
2155  AttributeSet Attrs, unsigned Idx) {
2156  if (!Operand) {
2157  Out << "<null operand!>";
2158  return;
2159  }
2160 
2161  // Print the type
2162  TypePrinter.print(Operand->getType(), Out);
2163  // Print parameter attributes list
2164  if (Attrs.hasAttributes(Idx))
2165  Out << ' ' << Attrs.getAsString(Idx);
2166  Out << ' ';
2167  // Print the operand
2168  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2169 }
2170 
2171 void AssemblyWriter::printModule(const Module *M) {
2172  Machine.initialize();
2173 
2174  if (ShouldPreserveUseListOrder)
2175  UseListOrders = predictUseListOrder(M);
2176 
2177  if (!M->getModuleIdentifier().empty() &&
2178  // Don't print the ID if it will start a new line (which would
2179  // require a comment char before it).
2180  M->getModuleIdentifier().find('\n') == std::string::npos)
2181  Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2182 
2183  const std::string &DL = M->getDataLayoutStr();
2184  if (!DL.empty())
2185  Out << "target datalayout = \"" << DL << "\"\n";
2186  if (!M->getTargetTriple().empty())
2187  Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2188 
2189  if (!M->getModuleInlineAsm().empty()) {
2190  Out << '\n';
2191 
2192  // Split the string into lines, to make it easier to read the .ll file.
2194  do {
2195  StringRef Front;
2196  std::tie(Front, Asm) = Asm.split('\n');
2197 
2198  // We found a newline, print the portion of the asm string from the
2199  // last newline up to this newline.
2200  Out << "module asm \"";
2201  PrintEscapedString(Front, Out);
2202  Out << "\"\n";
2203  } while (!Asm.empty());
2204  }
2205 
2206  printTypeIdentities();
2207 
2208  // Output all comdats.
2209  if (!Comdats.empty())
2210  Out << '\n';
2211  for (const Comdat *C : Comdats) {
2212  printComdat(C);
2213  if (C != Comdats.back())
2214  Out << '\n';
2215  }
2216 
2217  // Output all globals.
2218  if (!M->global_empty()) Out << '\n';
2219  for (const GlobalVariable &GV : M->globals()) {
2220  printGlobal(&GV); Out << '\n';
2221  }
2222 
2223  // Output all aliases.
2224  if (!M->alias_empty()) Out << "\n";
2225  for (const GlobalAlias &GA : M->aliases())
2226  printAlias(&GA);
2227 
2228  // Output global use-lists.
2229  printUseLists(nullptr);
2230 
2231  // Output all of the functions.
2232  for (const Function &F : *M)
2233  printFunction(&F);
2234  assert(UseListOrders.empty() && "All use-lists should have been consumed");
2235 
2236  // Output all attribute groups.
2237  if (!Machine.as_empty()) {
2238  Out << '\n';
2239  writeAllAttributeGroups();
2240  }
2241 
2242  // Output named metadata.
2243  if (!M->named_metadata_empty()) Out << '\n';
2244 
2245  for (const NamedMDNode &Node : M->named_metadata())
2246  printNamedMDNode(&Node);
2247 
2248  // Output metadata.
2249  if (!Machine.mdn_empty()) {
2250  Out << '\n';
2251  writeAllMDNodes();
2252  }
2253 }
2254 
2256  formatted_raw_ostream &Out) {
2257  if (Name.empty()) {
2258  Out << "<empty name> ";
2259  } else {
2260  if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
2261  Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
2262  Out << Name[0];
2263  else
2264  Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
2265  for (unsigned i = 1, e = Name.size(); i != e; ++i) {
2266  unsigned char C = Name[i];
2267  if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
2268  C == '.' || C == '_')
2269  Out << C;
2270  else
2271  Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
2272  }
2273  }
2274 }
2275 
2276 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
2277  Out << '!';
2278  printMetadataIdentifier(NMD->getName(), Out);
2279  Out << " = !{";
2280  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2281  if (i)
2282  Out << ", ";
2283  int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
2284  if (Slot == -1)
2285  Out << "<badref>";
2286  else
2287  Out << '!' << Slot;
2288  }
2289  Out << "}\n";
2290 }
2291 
2293  formatted_raw_ostream &Out) {
2294  switch (LT) {
2295  case GlobalValue::ExternalLinkage: break;
2296  case GlobalValue::PrivateLinkage: Out << "private "; break;
2297  case GlobalValue::InternalLinkage: Out << "internal "; break;
2298  case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
2299  case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
2300  case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
2301  case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
2302  case GlobalValue::CommonLinkage: Out << "common "; break;
2303  case GlobalValue::AppendingLinkage: Out << "appending "; break;
2304  case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
2305  case GlobalValue::AvailableExternallyLinkage:
2306  Out << "available_externally ";
2307  break;
2308  }
2309 }
2310 
2312  formatted_raw_ostream &Out) {
2313  switch (Vis) {
2314  case GlobalValue::DefaultVisibility: break;
2315  case GlobalValue::HiddenVisibility: Out << "hidden "; break;
2316  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
2317  }
2318 }
2319 
2321  formatted_raw_ostream &Out) {
2322  switch (SCT) {
2323  case GlobalValue::DefaultStorageClass: break;
2324  case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
2325  case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
2326  }
2327 }
2328 
2329 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
2330  formatted_raw_ostream &Out) {
2331  switch (TLM) {
2332  case GlobalVariable::NotThreadLocal:
2333  break;
2334  case GlobalVariable::GeneralDynamicTLSModel:
2335  Out << "thread_local ";
2336  break;
2337  case GlobalVariable::LocalDynamicTLSModel:
2338  Out << "thread_local(localdynamic) ";
2339  break;
2340  case GlobalVariable::InitialExecTLSModel:
2341  Out << "thread_local(initialexec) ";
2342  break;
2343  case GlobalVariable::LocalExecTLSModel:
2344  Out << "thread_local(localexec) ";
2345  break;
2346  }
2347 }
2348 
2350  const GlobalObject &GO) {
2351  const Comdat *C = GO.getComdat();
2352  if (!C)
2353  return;
2354 
2355  if (isa<GlobalVariable>(GO))
2356  Out << ',';
2357  Out << " comdat";
2358 
2359  if (GO.getName() == C->getName())
2360  return;
2361 
2362  Out << '(';
2363  PrintLLVMName(Out, C->getName(), ComdatPrefix);
2364  Out << ')';
2365 }
2366 
2367 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
2368  if (GV->isMaterializable())
2369  Out << "; Materializable\n";
2370 
2371  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
2372  Out << " = ";
2373 
2374  if (!GV->hasInitializer() && GV->hasExternalLinkage())
2375  Out << "external ";
2376 
2377  PrintLinkage(GV->getLinkage(), Out);
2378  PrintVisibility(GV->getVisibility(), Out);
2381  if (GV->hasUnnamedAddr())
2382  Out << "unnamed_addr ";
2383 
2384  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
2385  Out << "addrspace(" << AddressSpace << ") ";
2386  if (GV->isExternallyInitialized()) Out << "externally_initialized ";
2387  Out << (GV->isConstant() ? "constant " : "global ");
2388  TypePrinter.print(GV->getType()->getElementType(), Out);
2389 
2390  if (GV->hasInitializer()) {
2391  Out << ' ';
2392  writeOperand(GV->getInitializer(), false);
2393  }
2394 
2395  if (GV->hasSection()) {
2396  Out << ", section \"";
2397  PrintEscapedString(GV->getSection(), Out);
2398  Out << '"';
2399  }
2400  maybePrintComdat(Out, *GV);
2401  if (GV->getAlignment())
2402  Out << ", align " << GV->getAlignment();
2403 
2404  printInfoComment(*GV);
2405 }
2406 
2407 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
2408  if (GA->isMaterializable())
2409  Out << "; Materializable\n";
2410 
2411  WriteAsOperandInternal(Out, GA, &TypePrinter, &Machine, GA->getParent());
2412  Out << " = ";
2413 
2414  PrintLinkage(GA->getLinkage(), Out);
2415  PrintVisibility(GA->getVisibility(), Out);
2418  if (GA->hasUnnamedAddr())
2419  Out << "unnamed_addr ";
2420 
2421  Out << "alias ";
2422 
2423  const Constant *Aliasee = GA->getAliasee();
2424 
2425  if (!Aliasee) {
2426  TypePrinter.print(GA->getType(), Out);
2427  Out << " <<NULL ALIASEE>>";
2428  } else {
2429  writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
2430  }
2431 
2432  printInfoComment(*GA);
2433  Out << '\n';
2434 }
2435 
2436 void AssemblyWriter::printComdat(const Comdat *C) {
2437  C->print(Out);
2438 }
2439 
2440 void AssemblyWriter::printTypeIdentities() {
2441  if (TypePrinter.NumberedTypes.empty() &&
2442  TypePrinter.NamedTypes.empty())
2443  return;
2444 
2445  Out << '\n';
2446 
2447  // We know all the numbers that each type is used and we know that it is a
2448  // dense assignment. Convert the map to an index table.
2449  std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
2451  TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
2452  I != E; ++I) {
2453  assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
2454  NumberedTypes[I->second] = I->first;
2455  }
2456 
2457  // Emit all numbered types.
2458  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
2459  Out << '%' << i << " = type ";
2460 
2461  // Make sure we print out at least one level of the type structure, so
2462  // that we do not get %2 = type %2
2463  TypePrinter.printStructBody(NumberedTypes[i], Out);
2464  Out << '\n';
2465  }
2466 
2467  for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
2468  PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
2469  Out << " = type ";
2470 
2471  // Make sure we print out at least one level of the type structure, so
2472  // that we do not get %FILE = type %FILE
2473  TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
2474  Out << '\n';
2475  }
2476 }
2477 
2478 /// printFunction - Print all aspects of a function.
2479 ///
2480 void AssemblyWriter::printFunction(const Function *F) {
2481  // Print out the return type and name.
2482  Out << '\n';
2483 
2484  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
2485 
2486  if (F->isMaterializable())
2487  Out << "; Materializable\n";
2488 
2489  const AttributeSet &Attrs = F->getAttributes();
2490  if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
2491  AttributeSet AS = Attrs.getFnAttributes();
2492  std::string AttrStr;
2493 
2494  unsigned Idx = 0;
2495  for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
2496  if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
2497  break;
2498 
2499  for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
2500  I != E; ++I) {
2501  Attribute Attr = *I;
2502  if (!Attr.isStringAttribute()) {
2503  if (!AttrStr.empty()) AttrStr += ' ';
2504  AttrStr += Attr.getAsString();
2505  }
2506  }
2507 
2508  if (!AttrStr.empty())
2509  Out << "; Function Attrs: " << AttrStr << '\n';
2510  }
2511 
2512  if (F->isDeclaration())
2513  Out << "declare ";
2514  else
2515  Out << "define ";
2516 
2517  PrintLinkage(F->getLinkage(), Out);
2518  PrintVisibility(F->getVisibility(), Out);
2520 
2521  // Print the calling convention.
2522  if (F->getCallingConv() != CallingConv::C) {
2523  PrintCallingConv(F->getCallingConv(), Out);
2524  Out << " ";
2525  }
2526 
2527  FunctionType *FT = F->getFunctionType();
2528  if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2529  Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
2530  TypePrinter.print(F->getReturnType(), Out);
2531  Out << ' ';
2532  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
2533  Out << '(';
2534  Machine.incorporateFunction(F);
2535 
2536  // Loop over the arguments, printing them...
2537 
2538  unsigned Idx = 1;
2539  if (!F->isDeclaration()) {
2540  // If this isn't a declaration, print the argument names as well.
2541  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
2542  I != E; ++I) {
2543  // Insert commas as we go... the first arg doesn't get a comma
2544  if (I != F->arg_begin()) Out << ", ";
2545  printArgument(I, Attrs, Idx);
2546  Idx++;
2547  }
2548  } else {
2549  // Otherwise, print the types from the function type.
2550  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2551  // Insert commas as we go... the first arg doesn't get a comma
2552  if (i) Out << ", ";
2553 
2554  // Output type...
2555  TypePrinter.print(FT->getParamType(i), Out);
2556 
2557  if (Attrs.hasAttributes(i+1))
2558  Out << ' ' << Attrs.getAsString(i+1);
2559  }
2560  }
2561 
2562  // Finish printing arguments...
2563  if (FT->isVarArg()) {
2564  if (FT->getNumParams()) Out << ", ";
2565  Out << "..."; // Output varargs portion of signature!
2566  }
2567  Out << ')';
2568  if (F->hasUnnamedAddr())
2569  Out << " unnamed_addr";
2570  if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2571  Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
2572  if (F->hasSection()) {
2573  Out << " section \"";
2574  PrintEscapedString(F->getSection(), Out);
2575  Out << '"';
2576  }
2577  maybePrintComdat(Out, *F);
2578  if (F->getAlignment())
2579  Out << " align " << F->getAlignment();
2580  if (F->hasGC())
2581  Out << " gc \"" << F->getGC() << '"';
2582  if (F->hasPrefixData()) {
2583  Out << " prefix ";
2584  writeOperand(F->getPrefixData(), true);
2585  }
2586  if (F->hasPrologueData()) {
2587  Out << " prologue ";
2588  writeOperand(F->getPrologueData(), true);
2589  }
2590  if (F->hasPersonalityFn()) {
2591  Out << " personality ";
2592  writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
2593  }
2594 
2596  F->getAllMetadata(MDs);
2597  printMetadataAttachments(MDs, " ");
2598 
2599  if (F->isDeclaration()) {
2600  Out << '\n';
2601  } else {
2602  Out << " {";
2603  // Output all of the function's basic blocks.
2604  for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
2605  printBasicBlock(I);
2606 
2607  // Output the function's use-lists.
2608  printUseLists(F);
2609 
2610  Out << "}\n";
2611  }
2612 
2613  Machine.purgeFunction();
2614 }
2615 
2616 /// printArgument - This member is called for every argument that is passed into
2617 /// the function. Simply print it out
2618 ///
2619 void AssemblyWriter::printArgument(const Argument *Arg,
2620  AttributeSet Attrs, unsigned Idx) {
2621  // Output type...
2622  TypePrinter.print(Arg->getType(), Out);
2623 
2624  // Output parameter attributes list
2625  if (Attrs.hasAttributes(Idx))
2626  Out << ' ' << Attrs.getAsString(Idx);
2627 
2628  // Output name, if available...
2629  if (Arg->hasName()) {
2630  Out << ' ';
2631  PrintLLVMName(Out, Arg);
2632  }
2633 }
2634 
2635 /// printBasicBlock - This member is called for each basic block in a method.
2636 ///
2637 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
2638  if (BB->hasName()) { // Print out the label if it exists...
2639  Out << "\n";
2640  PrintLLVMName(Out, BB->getName(), LabelPrefix);
2641  Out << ':';
2642  } else if (!BB->use_empty()) { // Don't print block # of no uses...
2643  Out << "\n; <label>:";
2644  int Slot = Machine.getLocalSlot(BB);
2645  if (Slot != -1)
2646  Out << Slot;
2647  else
2648  Out << "<badref>";
2649  }
2650 
2651  if (!BB->getParent()) {
2652  Out.PadToColumn(50);
2653  Out << "; Error: Block without parent!";
2654  } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
2655  // Output predecessors for the block.
2656  Out.PadToColumn(50);
2657  Out << ";";
2658  const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
2659 
2660  if (PI == PE) {
2661  Out << " No predecessors!";
2662  } else {
2663  Out << " preds = ";
2664  writeOperand(*PI, false);
2665  for (++PI; PI != PE; ++PI) {
2666  Out << ", ";
2667  writeOperand(*PI, false);
2668  }
2669  }
2670  }
2671 
2672  Out << "\n";
2673 
2674  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
2675 
2676  // Output all of the instructions in the basic block...
2677  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2678  printInstructionLine(*I);
2679  }
2680 
2681  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
2682 }
2683 
2684 /// printInstructionLine - Print an instruction and a newline character.
2685 void AssemblyWriter::printInstructionLine(const Instruction &I) {
2686  printInstruction(I);
2687  Out << '\n';
2688 }
2689 
2690 /// printGCRelocateComment - print comment after call to the gc.relocate
2691 /// intrinsic indicating base and derived pointer names.
2692 void AssemblyWriter::printGCRelocateComment(const Value &V) {
2693  assert(isGCRelocate(&V));
2694  GCRelocateOperands GCOps(cast<Instruction>(&V));
2695 
2696  Out << " ; (";
2697  writeOperand(GCOps.getBasePtr(), false);
2698  Out << ", ";
2699  writeOperand(GCOps.getDerivedPtr(), false);
2700  Out << ")";
2701 }
2702 
2703 /// printInfoComment - Print a little comment after the instruction indicating
2704 /// which slot it occupies.
2705 ///
2706 void AssemblyWriter::printInfoComment(const Value &V) {
2707  if (isGCRelocate(&V))
2708  printGCRelocateComment(V);
2709 
2710  if (AnnotationWriter)
2711  AnnotationWriter->printInfoComment(V, Out);
2712 }
2713 
2714 // This member is called for each Instruction in a function..
2715 void AssemblyWriter::printInstruction(const Instruction &I) {
2716  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
2717 
2718  // Print out indentation for an instruction.
2719  Out << " ";
2720 
2721  // Print out name if it exists...
2722  if (I.hasName()) {
2723  PrintLLVMName(Out, &I);
2724  Out << " = ";
2725  } else if (!I.getType()->isVoidTy()) {
2726  // Print out the def slot taken.
2727  int SlotNum = Machine.getLocalSlot(&I);
2728  if (SlotNum == -1)
2729  Out << "<badref> = ";
2730  else
2731  Out << '%' << SlotNum << " = ";
2732  }
2733 
2734  if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2735  if (CI->isMustTailCall())
2736  Out << "musttail ";
2737  else if (CI->isTailCall())
2738  Out << "tail ";
2739  }
2740 
2741  // Print out the opcode...
2742  Out << I.getOpcodeName();
2743 
2744  // If this is an atomic load or store, print out the atomic marker.
2745  if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
2746  (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
2747  Out << " atomic";
2748 
2749  if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
2750  Out << " weak";
2751 
2752  // If this is a volatile operation, print out the volatile marker.
2753  if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
2754  (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
2755  (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
2756  (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
2757  Out << " volatile";
2758 
2759  // Print out optimization information.
2760  WriteOptimizationInfo(Out, &I);
2761 
2762  // Print out the compare instruction predicates
2763  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
2764  Out << ' ' << getPredicateText(CI->getPredicate());
2765 
2766  // Print out the atomicrmw operation
2767  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
2768  writeAtomicRMWOperation(Out, RMWI->getOperation());
2769 
2770  // Print out the type of the operands...
2771  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
2772 
2773  // Special case conditional branches to swizzle the condition out to the front
2774  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
2775  const BranchInst &BI(cast<BranchInst>(I));
2776  Out << ' ';
2777  writeOperand(BI.getCondition(), true);
2778  Out << ", ";
2779  writeOperand(BI.getSuccessor(0), true);
2780  Out << ", ";
2781  writeOperand(BI.getSuccessor(1), true);
2782 
2783  } else if (isa<SwitchInst>(I)) {
2784  const SwitchInst& SI(cast<SwitchInst>(I));
2785  // Special case switch instruction to get formatting nice and correct.
2786  Out << ' ';
2787  writeOperand(SI.getCondition(), true);
2788  Out << ", ";
2789  writeOperand(SI.getDefaultDest(), true);
2790  Out << " [";
2791  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2792  i != e; ++i) {
2793  Out << "\n ";
2794  writeOperand(i.getCaseValue(), true);
2795  Out << ", ";
2796  writeOperand(i.getCaseSuccessor(), true);
2797  }
2798  Out << "\n ]";
2799  } else if (isa<IndirectBrInst>(I)) {
2800  // Special case indirectbr instruction to get formatting nice and correct.
2801  Out << ' ';
2802  writeOperand(Operand, true);
2803  Out << ", [";
2804 
2805  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2806  if (i != 1)
2807  Out << ", ";
2808  writeOperand(I.getOperand(i), true);
2809  }
2810  Out << ']';
2811  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
2812  Out << ' ';
2813  TypePrinter.print(I.getType(), Out);
2814  Out << ' ';
2815 
2816  for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
2817  if (op) Out << ", ";
2818  Out << "[ ";
2819  writeOperand(PN->getIncomingValue(op), false); Out << ", ";
2820  writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
2821  }
2822  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
2823  Out << ' ';
2824  writeOperand(I.getOperand(0), true);
2825  for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
2826  Out << ", " << *i;
2827  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
2828  Out << ' ';
2829  writeOperand(I.getOperand(0), true); Out << ", ";
2830  writeOperand(I.getOperand(1), true);
2831  for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
2832  Out << ", " << *i;
2833  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
2834  Out << ' ';
2835  TypePrinter.print(I.getType(), Out);
2836  if (LPI->isCleanup() || LPI->getNumClauses() != 0)
2837  Out << '\n';
2838 
2839  if (LPI->isCleanup())
2840  Out << " cleanup";
2841 
2842  for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
2843  if (i != 0 || LPI->isCleanup()) Out << "\n";
2844  if (LPI->isCatch(i))
2845  Out << " catch ";
2846  else
2847  Out << " filter ";
2848 
2849  writeOperand(LPI->getClause(i), true);
2850  }
2851  } else if (isa<ReturnInst>(I) && !Operand) {
2852  Out << " void";
2853  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2854  // Print the calling convention being used.
2855  if (CI->getCallingConv() != CallingConv::C) {
2856  Out << " ";
2857  PrintCallingConv(CI->getCallingConv(), Out);
2858  }
2859 
2860  Operand = CI->getCalledValue();
2861  FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
2862  Type *RetTy = FTy->getReturnType();
2863  const AttributeSet &PAL = CI->getAttributes();
2864 
2865  if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2866  Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2867 
2868  // If possible, print out the short form of the call instruction. We can
2869  // only do this if the first argument is a pointer to a nonvararg function,
2870  // and if the return type is not a pointer to a function.
2871  //
2872  Out << ' ';
2873  TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
2874  Out << ' ';
2875  writeOperand(Operand, false);
2876  Out << '(';
2877  for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
2878  if (op > 0)
2879  Out << ", ";
2880  writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
2881  }
2882 
2883  // Emit an ellipsis if this is a musttail call in a vararg function. This
2884  // is only to aid readability, musttail calls forward varargs by default.
2885  if (CI->isMustTailCall() && CI->getParent() &&
2886  CI->getParent()->getParent() &&
2887  CI->getParent()->getParent()->isVarArg())
2888  Out << ", ...";
2889 
2890  Out << ')';
2891  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
2892  Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
2893  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
2894  Operand = II->getCalledValue();
2895  FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
2896  Type *RetTy = FTy->getReturnType();
2897  const AttributeSet &PAL = II->getAttributes();
2898 
2899  // Print the calling convention being used.
2900  if (II->getCallingConv() != CallingConv::C) {
2901  Out << " ";
2902  PrintCallingConv(II->getCallingConv(), Out);
2903  }
2904 
2905  if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2906  Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2907 
2908  // If possible, print out the short form of the invoke instruction. We can
2909  // only do this if the first argument is a pointer to a nonvararg function,
2910  // and if the return type is not a pointer to a function.
2911  //
2912  Out << ' ';
2913  TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
2914  Out << ' ';
2915  writeOperand(Operand, false);
2916  Out << '(';
2917  for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
2918  if (op)
2919  Out << ", ";
2920  writeParamOperand(II->getArgOperand(op), PAL, op + 1);
2921  }
2922 
2923  Out << ')';
2924  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
2925  Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
2926 
2927  Out << "\n to ";
2928  writeOperand(II->getNormalDest(), true);
2929  Out << " unwind ";
2930  writeOperand(II->getUnwindDest(), true);
2931 
2932  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
2933  Out << ' ';
2934  if (AI->isUsedWithInAlloca())
2935  Out << "inalloca ";
2936  TypePrinter.print(AI->getAllocatedType(), Out);
2937 
2938  // Explicitly write the array size if the code is broken, if it's an array
2939  // allocation, or if the type is not canonical for scalar allocations. The
2940  // latter case prevents the type from mutating when round-tripping through
2941  // assembly.
2942  if (!AI->getArraySize() || AI->isArrayAllocation() ||
2943  !AI->getArraySize()->getType()->isIntegerTy(32)) {
2944  Out << ", ";
2945  writeOperand(AI->getArraySize(), true);
2946  }
2947  if (AI->getAlignment()) {
2948  Out << ", align " << AI->getAlignment();
2949  }
2950  } else if (isa<CastInst>(I)) {
2951  if (Operand) {
2952  Out << ' ';
2953  writeOperand(Operand, true); // Work with broken code
2954  }
2955  Out << " to ";
2956  TypePrinter.print(I.getType(), Out);
2957  } else if (isa<VAArgInst>(I)) {
2958  if (Operand) {
2959  Out << ' ';
2960  writeOperand(Operand, true); // Work with broken code
2961  }
2962  Out << ", ";
2963  TypePrinter.print(I.getType(), Out);
2964  } else if (Operand) { // Print the normal way.
2965  if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
2966  Out << ' ';
2967  TypePrinter.print(GEP->getSourceElementType(), Out);
2968  Out << ',';
2969  } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
2970  Out << ' ';
2971  TypePrinter.print(LI->getType(), Out);
2972  Out << ',';
2973  }
2974 
2975  // PrintAllTypes - Instructions who have operands of all the same type
2976  // omit the type from all but the first operand. If the instruction has
2977  // different type operands (for example br), then they are all printed.
2978  bool PrintAllTypes = false;
2979  Type *TheType = Operand->getType();
2980 
2981  // Select, Store and ShuffleVector always print all types.
2982  if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
2983  || isa<ReturnInst>(I)) {
2984  PrintAllTypes = true;
2985  } else {
2986  for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2987  Operand = I.getOperand(i);
2988  // note that Operand shouldn't be null, but the test helps make dump()
2989  // more tolerant of malformed IR
2990  if (Operand && Operand->getType() != TheType) {
2991  PrintAllTypes = true; // We have differing types! Print them all!
2992  break;
2993  }
2994  }
2995  }
2996 
2997  if (!PrintAllTypes) {
2998  Out << ' ';
2999  TypePrinter.print(TheType, Out);
3000  }
3001 
3002  Out << ' ';
3003  for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3004  if (i) Out << ", ";
3005  writeOperand(I.getOperand(i), PrintAllTypes);
3006  }
3007  }
3008 
3009  // Print atomic ordering/alignment for memory operations
3010  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3011  if (LI->isAtomic())
3012  writeAtomic(LI->getOrdering(), LI->getSynchScope());
3013  if (LI->getAlignment())
3014  Out << ", align " << LI->getAlignment();
3015  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3016  if (SI->isAtomic())
3017  writeAtomic(SI->getOrdering(), SI->getSynchScope());
3018  if (SI->getAlignment())
3019  Out << ", align " << SI->getAlignment();
3020  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3021  writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
3022  CXI->getSynchScope());
3023  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3024  writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
3025  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3026  writeAtomic(FI->getOrdering(), FI->getSynchScope());
3027  }
3028 
3029  // Print Metadata info.
3031  I.getAllMetadata(InstMD);
3032  printMetadataAttachments(InstMD, ", ");
3033 
3034  // Print a nice comment.
3035  printInfoComment(I);
3036 }
3037 
3038 void AssemblyWriter::printMetadataAttachments(
3039  const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3040  StringRef Separator) {
3041  if (MDs.empty())
3042  return;
3043 
3044  if (MDNames.empty())
3045  TheModule->getMDKindNames(MDNames);
3046 
3047  for (const auto &I : MDs) {
3048  unsigned Kind = I.first;
3049  Out << Separator;
3050  if (Kind < MDNames.size()) {
3051  Out << "!";
3052  printMetadataIdentifier(MDNames[Kind], Out);
3053  } else
3054  Out << "!<unknown kind #" << Kind << ">";
3055  Out << ' ';
3056  WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3057  }
3058 }
3059 
3060 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3061  Out << '!' << Slot << " = ";
3062  printMDNodeBody(Node);
3063  Out << "\n";
3064 }
3065 
3066 void AssemblyWriter::writeAllMDNodes() {
3068  Nodes.resize(Machine.mdn_size());
3069  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3070  I != E; ++I)
3071  Nodes[I->second] = cast<MDNode>(I->first);
3072 
3073  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3074  writeMDNode(i, Nodes[i]);
3075  }
3076 }
3077 
3078 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3079  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3080 }
3081 
3082 void AssemblyWriter::writeAllAttributeGroups() {
3083  std::vector<std::pair<AttributeSet, unsigned> > asVec;
3084  asVec.resize(Machine.as_size());
3085 
3086  for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3087  I != E; ++I)
3088  asVec[I->second] = *I;
3089 
3090  for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
3091  I = asVec.begin(), E = asVec.end(); I != E; ++I)
3092  Out << "attributes #" << I->second << " = { "
3093  << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
3094 }
3095 
3096 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3097  bool IsInFunction = Machine.getFunction();
3098  if (IsInFunction)
3099  Out << " ";
3100 
3101  Out << "uselistorder";
3102  if (const BasicBlock *BB =
3103  IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3104  Out << "_bb ";
3105  writeOperand(BB->getParent(), false);
3106  Out << ", ";
3107  writeOperand(BB, false);
3108  } else {
3109  Out << " ";
3110  writeOperand(Order.V, true);
3111  }
3112  Out << ", { ";
3113 
3114  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3115  Out << Order.Shuffle[0];
3116  for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
3117  Out << ", " << Order.Shuffle[I];
3118  Out << " }\n";
3119 }
3120 
3121 void AssemblyWriter::printUseLists(const Function *F) {
3122  auto hasMore =
3123  [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
3124  if (!hasMore())
3125  // Nothing to do.
3126  return;
3127 
3128  Out << "\n; uselistorder directives\n";
3129  while (hasMore()) {
3130  printUseListOrder(UseListOrders.back());
3131  UseListOrders.pop_back();
3132  }
3133 }
3134 
3135 //===----------------------------------------------------------------------===//
3136 // External Interface declarations
3137 //===----------------------------------------------------------------------===//
3138 
3139 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
3140  SlotTracker SlotTable(this->getParent());
3141  formatted_raw_ostream OS(ROS);
3142  AssemblyWriter W(OS, SlotTable, this->getParent(), AAW);
3143  W.printFunction(this);
3144 }
3145 
3147  bool ShouldPreserveUseListOrder) const {
3148  SlotTracker SlotTable(this);
3149  formatted_raw_ostream OS(ROS);
3150  AssemblyWriter W(OS, SlotTable, this, AAW, ShouldPreserveUseListOrder);
3151  W.printModule(this);
3152 }
3153 
3155  SlotTracker SlotTable(getParent());
3156  formatted_raw_ostream OS(ROS);
3157  AssemblyWriter W(OS, SlotTable, getParent(), nullptr);
3158  W.printNamedMDNode(this);
3159 }
3160 
3161 void Comdat::print(raw_ostream &ROS) const {
3163  ROS << " = comdat ";
3164 
3165  switch (getSelectionKind()) {
3166  case Comdat::Any:
3167  ROS << "any";
3168  break;
3169  case Comdat::ExactMatch:
3170  ROS << "exactmatch";
3171  break;
3172  case Comdat::Largest:
3173  ROS << "largest";
3174  break;
3175  case Comdat::NoDuplicates:
3176  ROS << "noduplicates";
3177  break;
3178  case Comdat::SameSize:
3179  ROS << "samesize";
3180  break;
3181  }
3182 
3183  ROS << '\n';
3184 }
3185 
3186 void Type::print(raw_ostream &OS) const {
3187  TypePrinting TP;
3188  TP.print(const_cast<Type*>(this), OS);
3189 
3190  // If the type is a named struct type, print the body as well.
3191  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
3192  if (!STy->isLiteral()) {
3193  OS << " = type ";
3194  TP.printStructBody(STy, OS);
3195  }
3196 }
3197 
3198 static bool isReferencingMDNode(const Instruction &I) {
3199  if (const auto *CI = dyn_cast<CallInst>(&I))
3200  if (Function *F = CI->getCalledFunction())
3201  if (F->isIntrinsic())
3202  for (auto &Op : I.operands())
3203  if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
3204  if (isa<MDNode>(V->getMetadata()))
3205  return true;
3206  return false;
3207 }
3208 
3209 void Value::print(raw_ostream &ROS) const {
3210  bool ShouldInitializeAllMetadata = false;
3211  if (auto *I = dyn_cast<Instruction>(this))
3212  ShouldInitializeAllMetadata = isReferencingMDNode(*I);
3213  else if (isa<Function>(this) || isa<MetadataAsValue>(this))
3214  ShouldInitializeAllMetadata = true;
3215 
3216  ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
3217  print(ROS, MST);
3218 }
3219 
3221  formatted_raw_ostream OS(ROS);
3222  SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
3223  SlotTracker &SlotTable =
3224  MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
3225  auto incorporateFunction = [&](const Function *F) {
3226  if (F)
3227  MST.incorporateFunction(*F);
3228  };
3229 
3230  if (const Instruction *I = dyn_cast<Instruction>(this)) {
3231  incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
3232  AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr);
3233  W.printInstruction(*I);
3234  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
3235  incorporateFunction(BB->getParent());
3236  AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr);
3237  W.printBasicBlock(BB);
3238  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
3239  AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr);
3240  if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
3241  W.printGlobal(V);
3242  else if (const Function *F = dyn_cast<Function>(GV))
3243  W.printFunction(F);
3244  else
3245  W.printAlias(cast<GlobalAlias>(GV));
3246  } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
3247  V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
3248  } else if (const Constant *C = dyn_cast<Constant>(this)) {
3249  TypePrinting TypePrinter;
3250  TypePrinter.print(C->getType(), OS);
3251  OS << ' ';
3252  WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
3253  } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
3254  this->printAsOperand(OS, /* PrintType */ true, MST);
3255  } else {
3256  llvm_unreachable("Unknown value to print out!");
3257  }
3258 }
3259 
3260 /// Print without a type, skipping the TypePrinting object.
3261 ///
3262 /// \return \c true iff printing was succesful.
3263 static bool printWithoutType(const Value &V, raw_ostream &O,
3264  SlotTracker *Machine, const Module *M) {
3265  if (V.hasName() || isa<GlobalValue>(V) ||
3266  (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
3267  WriteAsOperandInternal(O, &V, nullptr, Machine, M);
3268  return true;
3269  }
3270  return false;
3271 }
3272 
3273 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
3274  ModuleSlotTracker &MST) {
3275  TypePrinting TypePrinter;
3276  if (const Module *M = MST.getModule())
3277  TypePrinter.incorporateTypes(*M);
3278  if (PrintType) {
3279  TypePrinter.print(V.getType(), O);
3280  O << ' ';
3281  }
3282 
3283  WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
3284  MST.getModule());
3285 }
3286 
3287 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3288  const Module *M) const {
3289  if (!M)
3290  M = getModuleFromVal(this);
3291 
3292  if (!PrintType)
3293  if (printWithoutType(*this, O, nullptr, M))
3294  return;
3295 
3297  M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
3298  ModuleSlotTracker MST(Machine, M);
3299  printAsOperandImpl(*this, O, PrintType, MST);
3300 }
3301 
3302 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3303  ModuleSlotTracker &MST) const {
3304  if (!PrintType)
3305  if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
3306  return;
3307 
3308  printAsOperandImpl(*this, O, PrintType, MST);
3309 }
3310 
3311 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
3312  ModuleSlotTracker &MST, const Module *M,
3313  bool OnlyAsOperand) {
3314  formatted_raw_ostream OS(ROS);
3315 
3316  TypePrinting TypePrinter;
3317  if (M)
3318  TypePrinter.incorporateTypes(*M);
3319 
3320  WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
3321  /* FromValue */ true);
3322 
3323  auto *N = dyn_cast<MDNode>(&MD);
3324  if (OnlyAsOperand || !N)
3325  return;
3326 
3327  OS << " = ";
3328  WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
3329 }
3330 
3331 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
3332  ModuleSlotTracker MST(M, isa<MDNode>(this));
3333  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3334 }
3335 
3337  const Module *M) const {
3338  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3339 }
3340 
3341 void Metadata::print(raw_ostream &OS, const Module *M) const {
3342  ModuleSlotTracker MST(M, isa<MDNode>(this));
3343  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3344 }
3345 
3347  const Module *M) const {
3348  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3349 }
3350 
3351 // Value::dump - allow easy printing of Values from the debugger.
3353 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
3354 
3355 // Type::dump - allow easy printing of Types from the debugger.
3357 void Type::dump() const { print(dbgs()); dbgs() << '\n'; }
3358 
3359 // Module::dump() - Allow printing of Modules from the debugger.
3361 void Module::dump() const { print(dbgs(), nullptr); }
3362 
3363 // \brief Allow printing of Comdats from the debugger.
3365 void Comdat::dump() const { print(dbgs()); }
3366 
3367 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
3369 void NamedMDNode::dump() const { print(dbgs()); }
3370 
3372 void Metadata::dump() const { dump(nullptr); }
3373 
3375 void Metadata::dump(const Module *M) const {
3376  print(dbgs(), M);
3377  dbgs() << '\n';
3378 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type (if unknown returns 0).
StringRef getName() const
Definition: Metadata.cpp:986
use_iterator use_end()
Definition: Value.h:281
7: Labels
Definition: Type.h:63
LinkageTypes getLinkage() const
Definition: GlobalValue.h:289
Intel_OCL_BI - Calling conventions for Intel OpenCL built-ins.
Definition: CallingConv.h:133
static void WriteOptimizationInfo(raw_ostream &Out, const User *U)
Definition: AsmWriter.cpp:1039
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:679
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
Definition: CallingConv.h:137
iterator_range< use_iterator > uses()
Definition: Value.h:283
ExtractValueInst - This instruction extracts a struct member or array element value from an aggregate...
VisibilityTypes getVisibility() const
Definition: GlobalValue.h:139
*p = old <signed v ? old : v
Definition: Instructions.h:704
LLVM Argument representation.
Definition: Argument.h:35
void purgeFunction()
After calling incorporateFunction, use this method to remove the most recently incorporated function ...
Definition: AsmWriter.cpp:869
Constant * getPrologueData() const
Definition: Function.cpp:956
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1327
static bool printWithoutType(const Value &V, raw_ostream &O, SlotTracker *Machine, const Module *M)
Print without a type, skipping the TypePrinting object.
Definition: AsmWriter.cpp:3263
bool hasName() const
Definition: Value.h:228
size_t size() const
size - Get the string size.
Definition: StringRef.h:113
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds...
Definition: Compiler.h:344
std::string getAsString(unsigned Index, bool InAttrGrp=false) const
Return the attributes at the index as a string.
static const fltSemantics IEEEdouble
Definition: APFloat.h:133
void dump() const
Definition: AsmWriter.cpp:3369
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:114
unsigned getNumParams() const
getNumParams - Return the number of fixed parameters this function type requires. ...
Definition: DerivedTypes.h:136
2: 32-bit floating point type
Definition: Type.h:58
FenceInst - an instruction for ordering other memory operations.
Definition: Instructions.h:445
ARM_APCS - ARM Procedure Calling Standard calling convention (obsolete, but still used on some target...
Definition: CallingConv.h:89
iterator end()
Definition: Function.h:459
AtomicCmpXchgInst - an instruction that atomically checks whether a specified value is in a memory lo...
Definition: Instructions.h:515
formatted_raw_ostream - A raw_ostream that wraps another one and keeps track of line and column posit...
unsigned getNumOperands() const
Definition: User.h:138
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:942
static void writeAtomicRMWOperation(raw_ostream &Out, AtomicRMWInst::BinOp Op)
Definition: AsmWriter.cpp:1021
PrefixType
Definition: AsmWriter.cpp:338
Type::subtype_iterator param_iterator
Definition: DerivedTypes.h:123
PTX_Device - Call to a PTX device function.
Definition: CallingConv.h:112
const char * getGC() const
Definition: Function.cpp:384
CallInst - This class represents a function call, abstracting a target machine's calling convention...
bool isIntrinsic() const
Definition: Function.h:160
bool alias_empty() const
Definition: Module.h:596
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:450
unsigned less or equal
Definition: InstrTypes.h:723
unsigned less than
Definition: InstrTypes.h:722
*p = old <unsigned v ? old : v
Definition: Instructions.h:708
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:703
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:2320
*p = old >unsigned v ? old : v
Definition: Instructions.h:706
void initialize()
This function does the actual initialization.
Definition: AsmWriter.cpp:742
iterator begin(unsigned Slot) const
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:713
The data referenced by the COMDAT must be the same size.
Definition: Comdat.h:38
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:488
Type * getReturnType() const
Definition: Function.cpp:233
DenseMap< AttributeSet, unsigned >::iterator as_iterator
AttributeSet map iterators.
Definition: AsmWriter.cpp:628
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:111
arg_iterator arg_end()
Definition: Function.h:480
12: Structures
Definition: Type.h:71
bool hasPrologueData() const
Definition: Function.h:509
Metadata node.
Definition: Metadata.h:740
int getGlobalSlot(const GlobalValue *V)
getGlobalSlot - Get the slot number of a global value.
Definition: AsmWriter.cpp:878
F(f)
4: 80-bit floating point type (X87)
Definition: Type.h:60
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:472
LoadInst - an instruction for reading from memory.
Definition: Instructions.h:177
Manage lifetime of a slot tracker for printing IR.
1: 16-bit floating point type
Definition: Type.h:57
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * >> &MDs) const
getAllMetadata - Get all metadata attached to this Instruction.
Definition: Instruction.h:183
AtomicRMWInst - an instruction that atomically reads a memory location, combines it with another valu...
Definition: Instructions.h:674
Hexagon Common GEP
#define op(i)
14: Pointers
Definition: Type.h:73
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
11: Functions
Definition: Type.h:70
*p = old >signed v ? old : v
Definition: Instructions.h:702
const Constant * getAliasee() const
Definition: GlobalAlias.h:81
void print(raw_ostream &ROS) const
Definition: AsmWriter.cpp:3154
int getMetadataSlot(const MDNode *N)
getMetadataSlot - Get the slot number of a MDNode.
Definition: AsmWriter.cpp:888
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition: Module.h:261
static void PrintCallingConv(unsigned cc, raw_ostream &Out)
Definition: AsmWriter.cpp:298
SlotTracker * getMachine() const
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:172
bool isMaterializable() const
Definition: Function.cpp:215
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:188
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder=false) const
Print the module to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:3146
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:231
static void predictValueUseListOrder(const Value *V, const Function *F, OrderMap &OM, UseListOrderStack &Stack)
Definition: AsmWriter.cpp:201
void print(raw_ostream &O) const
Definition: AsmWriter.cpp:3186
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:708
BlockAddress - The address of a basic block.
Definition: Constants.h:802
static const fltSemantics x87DoubleExtended
Definition: APFloat.h:136
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:707
A tuple of MDNodes.
Definition: Metadata.h:1127
std::vector< unsigned > Shuffle
Definition: UseListOrder.h:32
static OrderMap orderModule(const Module *M)
Definition: AsmWriter.cpp:88
std::string getAsString(bool InAttrGrp=false) const
The Attribute is converted to a string of equivalent mnemonic.
Definition: Attributes.cpp:186
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, ModuleSlotTracker &MST, const Module *M, bool OnlyAsOperand)
Definition: AsmWriter.cpp:3311
const Value * V
Definition: UseListOrder.h:30
MSP430_INTR - Calling convention used for MSP430 interrupt routines.
Definition: CallingConv.h:99
StructType - Class to represent struct types.
Definition: DerivedTypes.h:191
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Definition: ErrorHandling.h:98
A Use represents the edge between a Value definition and its users.
Definition: Use.h:69
param_iterator param_end() const
Definition: DerivedTypes.h:125
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APInt.h:33
bool isLiteral() const
isLiteral - Return true if this type is uniqued by structural equivalence, false if it is a struct de...
Definition: DerivedTypes.h:246
std::vector< UseListOrder > UseListOrderStack
Definition: UseListOrder.h:52
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:704
The linker may choose any COMDAT.
Definition: Comdat.h:34
SynchronizationScope
Definition: Instructions.h:49
static const fltSemantics IEEEquad
Definition: APFloat.h:134
void print(raw_ostream &O) const
Implement operator<< on Value.
Definition: AsmWriter.cpp:3209
Type * getVectorElementType() const
Definition: Type.h:364
static void printMetadataIdentifier(StringRef Name, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:2255
const std::string & getModuleIdentifier() const
Get the module identifier which is, essentially, the name of the module.
Definition: Module.h:242
StringRef getName() const
Definition: Comdat.cpp:25
#define G(x, y, z)
Definition: MD5.cpp:52
AtomicOrdering
Definition: Instructions.h:38
FunctionType - Class to represent function types.
Definition: DerivedTypes.h:96
reverse_iterator rend()
Definition: Module.h:575
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:57
BinOp
This enumeration lists the possible modifications atomicrmw can make.
Definition: Instructions.h:686
void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
Definition: AsmWriter.cpp:3287
unsigned getAlignment() const
Definition: GlobalObject.h:46
ArrayType - Class to represent array types.
Definition: DerivedTypes.h:336
VisibilityTypes
An enumeration for the kinds of visibility of global values.
Definition: GlobalValue.h:54
PTX_Kernel - Call to a PTX kernel.
Definition: CallingConv.h:108
bool isMaterializable() const
If this function's Module is being lazily streamed in functions from disk or some other source...
Definition: Globals.cpp:30
void dump() const
Definition: AsmWriter.cpp:3357
TypeID getTypeID() const
getTypeID - Return the type id for the type.
Definition: Type.h:134
StoreInst - an instruction for storing to memory.
Definition: Instructions.h:316
COFF::MachineTypes Machine
Definition: COFFYAML.cpp:301
static void PrintVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:2311
unsigned getNumElements() const
Return the number of elements in the Vector type.
Definition: DerivedTypes.h:432
Structure to hold a use-list order.
Definition: UseListOrder.h:29
iterator begin()
Definition: Function.h:457
const char * getOpcodeName() const
Definition: Instruction.h:114
Type * getElementType() const
Definition: DerivedTypes.h:323
int getLocalSlot(const Value *V)
Return the slot number of the specified value in it's type plane.
Definition: AsmWriter.cpp:899
PointerType - Class to represent pointers.
Definition: DerivedTypes.h:449
bool global_empty() const
Definition: Module.h:556
10: Arbitrary bit width integers
Definition: Type.h:69
bool hasSection() const
Definition: GlobalObject.h:56
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
This class provides computation of slot numbers for LLVM Assembly writing.
Definition: AsmWriter.cpp:554
0: type with no size
Definition: Type.h:56
unsigned getNumSlots() const
Return the number of slots used in this attribute list.
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:131
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:325
SPIR_FUNC - Calling convention for SPIR non-kernel device functions.
Definition: CallingConv.h:122
bool isExternallyInitialized() const
No other Module may specify this COMDAT.
Definition: Comdat.h:37
LandingPadInst - The landingpad instruction holds all of the information necessary to generate correc...
static const char * getPredicateText(unsigned predicate)
Definition: AsmWriter.cpp:988
void dump() const
Dump the module to stderr (for debugging).
Definition: AsmWriter.cpp:3361
ConstantDataArray - An array constant whose element type is a simple 1/2/4/8-byte integer or float/do...
Definition: Constants.h:681
static void predictValueUseListOrderImpl(const Value *V, const Function *F, unsigned ID, const OrderMap &OM, UseListOrderStack &Stack)
Definition: AsmWriter.cpp:138
LLVM Basic Block Representation.
Definition: BasicBlock.h:65
static void PrintLinkage(GlobalValue::LinkageTypes LT, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:2292
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
ARM_AAPCS_VFP - Same as ARM_AAPCS, but uses hard floating point ABI.
Definition: CallingConv.h:96
BranchInst - Conditional or Unconditional Branch instruction.
const Comdat * getComdat() const
Definition: GlobalObject.h:61
This is an important base class in LLVM.
Definition: Constant.h:41
bool isGCRelocate(const Value *V)
Definition: Statepoint.cpp:50
This file contains the declarations for the subclasses of Constant, which represent the different fla...
param_iterator param_begin() const
Definition: DerivedTypes.h:124
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:233
X86_StdCall - stdcall is the calling conventions mostly used by the Win32 API.
Definition: CallingConv.h:80
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:114
bool hasPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.h:132
iterator_range< named_metadata_iterator > named_metadata()
Definition: Module.h:622
A udiv or sdiv instruction, which can be marked as "exact", indicating that no bits are destroyed...
Definition: Operator.h:126
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context)
Definition: AsmWriter.cpp:1875
void print(raw_ostream &OS) const
Definition: AsmWriter.cpp:3161
uint64_t getNumElements() const
Definition: DerivedTypes.h:352
Utility class for integer arithmetic operators which may exhibit overflow - Add, Sub, and Mul.
Definition: Operator.h:74
MDNode * getOperand(unsigned i) const
Definition: Metadata.cpp:965
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1273
static void PrintEscapedString(StringRef Name, raw_ostream &Out)
Definition: AsmWriter.cpp:328
opStatus convert(const fltSemantics &, roundingMode, bool *)
APFloat::convert - convert a value of one floating point type to another.
Definition: APFloat.cpp:1972
for(unsigned i=0, e=MI->getNumOperands();i!=e;++i)
DLLStorageClassTypes
Storage classes of global values for PE targets.
Definition: GlobalValue.h:61
6: 128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:62
Value * getOperand(unsigned i) const
Definition: User.h:118
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, ModuleSlotTracker &MST)
Definition: AsmWriter.cpp:3273
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:117
op_range operands()
Definition: User.h:191
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:706
arg_iterator arg_begin()
Definition: Function.h:472
SelectionKind getSelectionKind() const
Definition: Comdat.h:42
static const Module * getModuleFromVal(const Value *V)
Definition: AsmWriter.cpp:272
Wraps a call to a gc.relocate and provides access to it's operands.
Definition: Statepoint.h:308
The data referenced by the COMDAT must be the same.
Definition: Comdat.h:35
Metadata wrapper in the Value hierarchy.
Definition: Metadata.h:172
Constant * getAggregateElement(unsigned Elt) const
getAggregateElement - For aggregates (struct/array/vector) return the constant that corresponds to th...
Definition: Constants.cpp:250
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:714
void incorporateFunction(const Function &F)
Incorporate the given function.
Definition: AsmWriter.cpp:681
static bool isAtomic(Instruction *I)
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:2329
ARM_AAPCS - ARM Architecture Procedure Calling Standard calling convention (aka EABI).
Definition: CallingConv.h:93
void print(raw_ostream &OS, const Module *M=nullptr) const
Print.
Definition: AsmWriter.cpp:3341
void dump() const
User-friendly dump.
Definition: AsmWriter.cpp:3372
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:712
static const fltSemantics IEEEhalf
Definition: APFloat.h:131
signed greater than
Definition: InstrTypes.h:724
void dump() const
Support for debugging, callable in GDB: V->dump()
Definition: AsmWriter.cpp:3353
const std::string & getModuleInlineAsm() const
Get any module-scope inline assembly blocks.
Definition: Module.h:269
hexagon gen pred
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix)
PrintLLVMName - Turn the specified name into an 'LLVM name', which is either prefixed with % (if the ...
Definition: AsmWriter.cpp:349
reverse_iterator rbegin()
Definition: Module.h:573
const char * getSection() const
Definition: GlobalObject.h:57
13: Arrays
Definition: Type.h:72
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:701
bool hasExternalLinkage() const
Definition: GlobalValue.h:260
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:936
static const fltSemantics PPCDoubleDouble
Definition: APFloat.h:135
This is the shared class of boolean and integer constants.
Definition: Constants.h:47
SPIR_KERNEL - Calling convention for SPIR kernel functions.
Definition: CallingConv.h:130
15: SIMD 'packed' format, or other vector type
Definition: Type.h:74
unsigned getVectorNumElements() const
Definition: Type.cpp:212
iterator end()
Definition: BasicBlock.h:233
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:711
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:861
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:216
Module.h This file contains the declarations for the Module class.
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:222
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, TypePrinting &TypePrinter, SlotTracker *Machine, const Module *Context)
Definition: AsmWriter.cpp:1072
AddressSpace
Definition: NVPTXBaseInfo.h:22
iterator end(unsigned Slot) const
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * >> &MDs) const
Get all current metadata attachments.
Definition: Metadata.cpp:1216
void printAsOperand(raw_ostream &OS, const Module *M=nullptr) const
Print as operand.
Definition: AsmWriter.cpp:3331
signed less than
Definition: InstrTypes.h:726
The linker will choose the largest COMDAT.
Definition: Comdat.h:36
X86_FastCall - 'fast' analog of X86_StdCall.
Definition: CallingConv.h:85
static bool isReferencingMDNode(const Instruction &I)
Definition: AsmWriter.cpp:3198
const BasicBlock & getEntryBlock() const
Definition: Function.h:442
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:123
8: Metadata
Definition: Type.h:64
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:181
signed less or equal
Definition: InstrTypes.h:727
static char * utohex_buffer(IntTy X, char *BufferEnd, bool LowerCase=false)
utohex_buffer - Emit the specified number into the buffer specified by BufferEnd, returning a pointer...
Definition: StringExtras.h:56
VectorType - Class to represent vector types.
Definition: DerivedTypes.h:362
bool hasInitializer() const
Definitions have initializers, declarations don't.
ConstantArray - Constant Array Declarations.
Definition: Constants.h:356
Class for arbitrary precision integers.
Definition: APInt.h:73
static bool isWeak(const MCSymbolELF &Sym)
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition: GlobalValue.h:39
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
StringRef getName() const
getName - Return the name for this struct type if it has an identity.
Definition: Type.cpp:583
iterator_range< user_iterator > users()
Definition: Value.h:300
APInt bitcastToAPInt() const
Definition: APFloat.cpp:3084
LLVM_ATTRIBUTE_UNUSED_RESULT std::enable_if< !is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:285
bool hasGC() const
hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm to use during code generatio...
Definition: Function.cpp:379
static char hexdigit(unsigned X, bool LowerCase=false)
hexdigit - Return the hexadecimal character for the given number X (which should be less than 16)...
Definition: StringExtras.h:26
ThreadLocalMode getThreadLocalMode() const
Definition: GlobalValue.h:160
use_iterator use_begin()
Definition: Value.h:279
#define ST_DEBUG(X)
Definition: AsmWriter.cpp:724
static SlotTracker * createSlotTracker(const Module *M)
Definition: AsmWriter.cpp:694
static const uint16_t * lookup(unsigned opcode, unsigned domain)
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:185
static const fltSemantics IEEEsingle
Definition: APFloat.h:132
const uint64_t * getRawData() const
This function returns a pointer to the internal storage of the APInt.
Definition: APInt.h:573
Constant * getPersonalityFn() const
Definition: Function.h:133
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:128
unsigned getSlotIndex(unsigned Slot) const
Return the index for the given slot.
unsigned greater or equal
Definition: InstrTypes.h:721
bool hasAttributes(unsigned Index) const
Return true if attribute exists at the given index.
Definition: Attributes.cpp:966
static void orderValue(const Value *V, OrderMap &OM)
Definition: AsmWriter.cpp:73
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
Definition: CallingConv.h:147
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
FunctionType * getFunctionType() const
Definition: Function.cpp:227
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:42
static void maybePrintComdat(formatted_raw_ostream &Out, const GlobalObject &GO)
Definition: AsmWriter.cpp:2349
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:705
iterator find(const KeyT &Val)
Definition: DenseMap.h:124
void size_t size
X86_ThisCall - Similar to X86_StdCall.
Definition: CallingConv.h:104
bool hasPrefixData() const
Definition: Function.h:502
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context)
Definition: AsmWriter.cpp:1853
bool isStringAttribute() const
Return true if the attribute is a string (target-dependent) attribute.
Definition: Attributes.cpp:115
Constant * getPrefixData() const
Definition: Function.cpp:927
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:709
const Module * getModule() const
This file defines passes to print out IR in various granularities.
bool isVarArg() const
Definition: DerivedTypes.h:120
void dump() const
Definition: AsmWriter.cpp:3365
3: 64-bit floating point type
Definition: Type.h:59
SwitchInst - Multiway switch.
bool use_empty() const
Definition: Value.h:275
Type * getReturnType() const
Definition: DerivedTypes.h:121
const ARM::ArchExtKind Kind
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:700
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:365
LLVM Value Representation.
Definition: Value.h:69
bool hasUnnamedAddr() const
Definition: GlobalValue.h:130
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:710
A vector that has set insertion semantics.
Definition: SetVector.h:37
DLLStorageClassTypes getDLLStorageClass() const
Definition: GlobalValue.h:164
unsigned getNumOperands() const
Definition: Metadata.cpp:961
The C convention as implemented on Windows/x86-64.
Definition: CallingConv.h:143
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:38
InvokeInst - Invoke instruction.
iterator_range< global_iterator > globals()
Definition: Module.h:558
C - The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned greater than
Definition: InstrTypes.h:720
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:40
A single uniqued string.
Definition: Metadata.h:508
const std::string & getDataLayoutStr() const
Get the data layout string for the module's target platform.
Definition: Module.h:252
static bool isVolatile(Instruction *Inst)
9: MMX vectors (64 bits, X86 specific)
Definition: Type.h:65
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:702
TypeFinder - Walk over a module, identifying all of the types that are used by the module...
Definition: TypeFinder.h:30
Root of the metadata hierarchy.
Definition: Metadata.h:45
static UseListOrderStack predictUseListOrder(const Module *M)
Definition: AsmWriter.cpp:222
const BasicBlock * getParent() const
Definition: Instruction.h:72
TLM
Definition: LLParser.cpp:1199
int getAttributeGroupSlot(AttributeSet AS)
Definition: AsmWriter.cpp:909
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:699
signed greater or equal
Definition: InstrTypes.h:725
Module * getParent()
Get the module that holds this named metadata collection.
Definition: Metadata.h:1188
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:137
AllocaInst - an instruction to allocate memory on the stack.
Definition: Instructions.h:76
InsertValueInst - This instruction inserts a struct field of array element value into an aggregate va...
bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:110
5: 128-bit floating point type (112-bit mantissa)
Definition: Type.h:61
iterator_range< alias_iterator > aliases()
Definition: Module.h:598
void resize(size_type N)
Definition: SmallVector.h:376
AttributeSet getFnAttributes() const
The function attributes are returned.
Definition: Attributes.cpp:947