LLVM  3.7.0
Verifier.cpp
Go to the documentation of this file.
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * All landingpad instructions must use the same personality function with
43 // the same function.
44 // * All other things that are tested by asserts spread about the code...
45 //
46 //===----------------------------------------------------------------------===//
47 
48 #include "llvm/IR/Verifier.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/CallSite.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/ConstantRange.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugInfo.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/Dominators.h"
63 #include "llvm/IR/InlineAsm.h"
64 #include "llvm/IR/InstIterator.h"
65 #include "llvm/IR/InstVisitor.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Metadata.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/IR/Statepoint.h"
72 #include "llvm/Pass.h"
74 #include "llvm/Support/Debug.h"
77 #include <algorithm>
78 #include <cstdarg>
79 using namespace llvm;
80 
81 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
82 
83 namespace {
84 struct VerifierSupport {
85  raw_ostream &OS;
86  const Module *M;
87 
88  /// \brief Track the brokenness of the module while recursively visiting.
89  bool Broken;
90 
91  explicit VerifierSupport(raw_ostream &OS)
92  : OS(OS), M(nullptr), Broken(false) {}
93 
94 private:
95  void Write(const Value *V) {
96  if (!V)
97  return;
98  if (isa<Instruction>(V)) {
99  OS << *V << '\n';
100  } else {
101  V->printAsOperand(OS, true, M);
102  OS << '\n';
103  }
104  }
105  void Write(ImmutableCallSite CS) {
106  Write(CS.getInstruction());
107  }
108 
109  void Write(const Metadata *MD) {
110  if (!MD)
111  return;
112  MD->print(OS, M);
113  OS << '\n';
114  }
115 
116  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
117  Write(MD.get());
118  }
119 
120  void Write(const NamedMDNode *NMD) {
121  if (!NMD)
122  return;
123  NMD->print(OS);
124  OS << '\n';
125  }
126 
127  void Write(Type *T) {
128  if (!T)
129  return;
130  OS << ' ' << *T;
131  }
132 
133  void Write(const Comdat *C) {
134  if (!C)
135  return;
136  OS << *C;
137  }
138 
139  template <typename T1, typename... Ts>
140  void WriteTs(const T1 &V1, const Ts &... Vs) {
141  Write(V1);
142  WriteTs(Vs...);
143  }
144 
145  template <typename... Ts> void WriteTs() {}
146 
147 public:
148  /// \brief A check failed, so printout out the condition and the message.
149  ///
150  /// This provides a nice place to put a breakpoint if you want to see why
151  /// something is not correct.
152  void CheckFailed(const Twine &Message) {
153  OS << Message << '\n';
154  Broken = true;
155  }
156 
157  /// \brief A check failed (with values to print).
158  ///
159  /// This calls the Message-only version so that the above is easier to set a
160  /// breakpoint on.
161  template <typename T1, typename... Ts>
162  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
163  CheckFailed(Message);
164  WriteTs(V1, Vs...);
165  }
166 };
167 
168 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
169  friend class InstVisitor<Verifier>;
170 
171  LLVMContext *Context;
172  DominatorTree DT;
173 
174  /// \brief When verifying a basic block, keep track of all of the
175  /// instructions we have seen so far.
176  ///
177  /// This allows us to do efficient dominance checks for the case when an
178  /// instruction has an operand that is an instruction in the same block.
179  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
180 
181  /// \brief Keep track of the metadata nodes that have been checked already.
183 
184  /// \brief Track unresolved string-based type references.
186 
187  /// \brief Whether we've seen a call to @llvm.localescape in this function
188  /// already.
189  bool SawFrameEscape;
190 
191  /// Stores the count of how many objects were passed to llvm.localescape for a
192  /// given function and the largest index passed to llvm.localrecover.
194 
195 public:
196  explicit Verifier(raw_ostream &OS)
197  : VerifierSupport(OS), Context(nullptr), SawFrameEscape(false) {}
198 
199  bool verify(const Function &F) {
200  M = F.getParent();
201  Context = &M->getContext();
202 
203  // First ensure the function is well-enough formed to compute dominance
204  // information.
205  if (F.empty()) {
206  OS << "Function '" << F.getName()
207  << "' does not contain an entry block!\n";
208  return false;
209  }
210  for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
211  if (I->empty() || !I->back().isTerminator()) {
212  OS << "Basic Block in function '" << F.getName()
213  << "' does not have terminator!\n";
214  I->printAsOperand(OS, true);
215  OS << "\n";
216  return false;
217  }
218  }
219 
220  // Now directly compute a dominance tree. We don't rely on the pass
221  // manager to provide this as it isolates us from a potentially
222  // out-of-date dominator tree and makes it significantly more complex to
223  // run this code outside of a pass manager.
224  // FIXME: It's really gross that we have to cast away constness here.
225  DT.recalculate(const_cast<Function &>(F));
226 
227  Broken = false;
228  // FIXME: We strip const here because the inst visitor strips const.
229  visit(const_cast<Function &>(F));
230  InstsInThisBlock.clear();
231  SawFrameEscape = false;
232 
233  return !Broken;
234  }
235 
236  bool verify(const Module &M) {
237  this->M = &M;
238  Context = &M.getContext();
239  Broken = false;
240 
241  // Scan through, checking all of the external function's linkage now...
242  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
243  visitGlobalValue(*I);
244 
245  // Check to make sure function prototypes are okay.
246  if (I->isDeclaration())
247  visitFunction(*I);
248  }
249 
250  // Now that we've visited every function, verify that we never asked to
251  // recover a frame index that wasn't escaped.
252  verifyFrameRecoverIndices();
253 
255  I != E; ++I)
256  visitGlobalVariable(*I);
257 
259  I != E; ++I)
260  visitGlobalAlias(*I);
261 
263  E = M.named_metadata_end();
264  I != E; ++I)
265  visitNamedMDNode(*I);
266 
267  for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
268  visitComdat(SMEC.getValue());
269 
270  visitModuleFlags(M);
271  visitModuleIdents(M);
272 
273  // Verify type referneces last.
274  verifyTypeRefs();
275 
276  return !Broken;
277  }
278 
279 private:
280  // Verification methods...
281  void visitGlobalValue(const GlobalValue &GV);
282  void visitGlobalVariable(const GlobalVariable &GV);
283  void visitGlobalAlias(const GlobalAlias &GA);
284  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
285  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
286  const GlobalAlias &A, const Constant &C);
287  void visitNamedMDNode(const NamedMDNode &NMD);
288  void visitMDNode(const MDNode &MD);
289  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
290  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
291  void visitComdat(const Comdat &C);
292  void visitModuleIdents(const Module &M);
293  void visitModuleFlags(const Module &M);
294  void visitModuleFlag(const MDNode *Op,
296  SmallVectorImpl<const MDNode *> &Requirements);
297  void visitFunction(const Function &F);
298  void visitBasicBlock(BasicBlock &BB);
299  void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
300 
301  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
302 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
303 #include "llvm/IR/Metadata.def"
304  void visitDIScope(const DIScope &N);
305  void visitDIDerivedTypeBase(const DIDerivedTypeBase &N);
306  void visitDIVariable(const DIVariable &N);
307  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
308  void visitDITemplateParameter(const DITemplateParameter &N);
309 
310  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
311 
312  /// \brief Check for a valid string-based type reference.
313  ///
314  /// Checks if \c MD is a string-based type reference. If it is, keeps track
315  /// of it (and its user, \c N) for error messages later.
316  bool isValidUUID(const MDNode &N, const Metadata *MD);
317 
318  /// \brief Check for a valid type reference.
319  ///
320  /// Checks for subclasses of \a DIType, or \a isValidUUID().
321  bool isTypeRef(const MDNode &N, const Metadata *MD);
322 
323  /// \brief Check for a valid scope reference.
324  ///
325  /// Checks for subclasses of \a DIScope, or \a isValidUUID().
326  bool isScopeRef(const MDNode &N, const Metadata *MD);
327 
328  /// \brief Check for a valid debug info reference.
329  ///
330  /// Checks for subclasses of \a DINode, or \a isValidUUID().
331  bool isDIRef(const MDNode &N, const Metadata *MD);
332 
333  // InstVisitor overrides...
335  void visit(Instruction &I);
336 
337  void visitTruncInst(TruncInst &I);
338  void visitZExtInst(ZExtInst &I);
339  void visitSExtInst(SExtInst &I);
340  void visitFPTruncInst(FPTruncInst &I);
341  void visitFPExtInst(FPExtInst &I);
342  void visitFPToUIInst(FPToUIInst &I);
343  void visitFPToSIInst(FPToSIInst &I);
344  void visitUIToFPInst(UIToFPInst &I);
345  void visitSIToFPInst(SIToFPInst &I);
346  void visitIntToPtrInst(IntToPtrInst &I);
347  void visitPtrToIntInst(PtrToIntInst &I);
348  void visitBitCastInst(BitCastInst &I);
349  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
350  void visitPHINode(PHINode &PN);
351  void visitBinaryOperator(BinaryOperator &B);
352  void visitICmpInst(ICmpInst &IC);
353  void visitFCmpInst(FCmpInst &FC);
354  void visitExtractElementInst(ExtractElementInst &EI);
355  void visitInsertElementInst(InsertElementInst &EI);
356  void visitShuffleVectorInst(ShuffleVectorInst &EI);
357  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
358  void visitCallInst(CallInst &CI);
359  void visitInvokeInst(InvokeInst &II);
360  void visitGetElementPtrInst(GetElementPtrInst &GEP);
361  void visitLoadInst(LoadInst &LI);
362  void visitStoreInst(StoreInst &SI);
363  void verifyDominatesUse(Instruction &I, unsigned i);
364  void visitInstruction(Instruction &I);
365  void visitTerminatorInst(TerminatorInst &I);
366  void visitBranchInst(BranchInst &BI);
367  void visitReturnInst(ReturnInst &RI);
368  void visitSwitchInst(SwitchInst &SI);
369  void visitIndirectBrInst(IndirectBrInst &BI);
370  void visitSelectInst(SelectInst &SI);
371  void visitUserOp1(Instruction &I);
372  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
373  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
374  template <class DbgIntrinsicTy>
375  void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
376  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
377  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
378  void visitFenceInst(FenceInst &FI);
379  void visitAllocaInst(AllocaInst &AI);
380  void visitExtractValueInst(ExtractValueInst &EVI);
381  void visitInsertValueInst(InsertValueInst &IVI);
382  void visitLandingPadInst(LandingPadInst &LPI);
383 
384  void VerifyCallSite(CallSite CS);
385  void verifyMustTailCall(CallInst &CI);
386  bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
387  unsigned ArgNo, std::string &Suffix);
388  bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
389  SmallVectorImpl<Type *> &ArgTys);
390  bool VerifyIntrinsicIsVarArg(bool isVarArg,
392  bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
393  void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
394  const Value *V);
395  void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
396  bool isReturnValue, const Value *V);
397  void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
398  const Value *V);
399  void VerifyFunctionMetadata(
400  const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
401 
402  void VerifyConstantExprBitcastType(const ConstantExpr *CE);
403  void VerifyStatepoint(ImmutableCallSite CS);
404  void verifyFrameRecoverIndices();
405 
406  // Module-level debug info verification...
407  void verifyTypeRefs();
408  template <class MapTy>
409  void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
410  const MapTy &TypeRefs);
411  void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
412 };
413 } // End anonymous namespace
414 
415 // Assert - We know that cond should be true, if not print an error message.
416 #define Assert(C, ...) \
417  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
418 
419 void Verifier::visit(Instruction &I) {
420  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
421  Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
423 }
424 
425 
426 void Verifier::visitGlobalValue(const GlobalValue &GV) {
427  Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
429  "Global is external, but doesn't have external or weak linkage!", &GV);
430 
432  "huge alignment values are unsupported", &GV);
433  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
434  "Only global variables can have appending linkage!", &GV);
435 
436  if (GV.hasAppendingLinkage()) {
437  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
438  Assert(GVar && GVar->getValueType()->isArrayTy(),
439  "Only global arrays can have appending linkage!", GVar);
440  }
441 
442  if (GV.isDeclarationForLinker())
443  Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
444 }
445 
446 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
447  if (GV.hasInitializer()) {
449  "Global variable initializer type does not match global "
450  "variable type!",
451  &GV);
452 
453  // If the global has common linkage, it must have a zero initializer and
454  // cannot be constant.
455  if (GV.hasCommonLinkage()) {
457  "'common' global must have a zero initializer!", &GV);
458  Assert(!GV.isConstant(), "'common' global may not be marked constant!",
459  &GV);
460  Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
461  }
462  } else {
464  "invalid linkage type for global declaration", &GV);
465  }
466 
467  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
468  GV.getName() == "llvm.global_dtors")) {
470  "invalid linkage for intrinsic global variable", &GV);
471  // Don't worry about emitting an error for it not being an array,
472  // visitGlobalValue will complain on appending non-array.
473  if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
474  StructType *STy = dyn_cast<StructType>(ATy->getElementType());
475  PointerType *FuncPtrTy =
476  FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
477  // FIXME: Reject the 2-field form in LLVM 4.0.
478  Assert(STy &&
479  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
480  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
481  STy->getTypeAtIndex(1) == FuncPtrTy,
482  "wrong type for intrinsic global variable", &GV);
483  if (STy->getNumElements() == 3) {
484  Type *ETy = STy->getTypeAtIndex(2);
485  Assert(ETy->isPointerTy() &&
486  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
487  "wrong type for intrinsic global variable", &GV);
488  }
489  }
490  }
491 
492  if (GV.hasName() && (GV.getName() == "llvm.used" ||
493  GV.getName() == "llvm.compiler.used")) {
495  "invalid linkage for intrinsic global variable", &GV);
496  Type *GVType = GV.getValueType();
497  if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
498  PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
499  Assert(PTy, "wrong type for intrinsic global variable", &GV);
500  if (GV.hasInitializer()) {
501  const Constant *Init = GV.getInitializer();
502  const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
503  Assert(InitArray, "wrong initalizer for intrinsic global variable",
504  Init);
505  for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
507  Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
508  isa<GlobalAlias>(V),
509  "invalid llvm.used member", V);
510  Assert(V->hasName(), "members of llvm.used must be named", V);
511  }
512  }
513  }
514  }
515 
517  (GV.isDeclaration() && GV.hasExternalLinkage()) ||
519  "Global is marked as dllimport, but not external", &GV);
520 
521  if (!GV.hasInitializer()) {
522  visitGlobalValue(GV);
523  return;
524  }
525 
526  // Walk any aggregate initializers looking for bitcasts between address spaces
529  WorkStack.push_back(cast<Value>(GV.getInitializer()));
530 
531  while (!WorkStack.empty()) {
532  const Value *V = WorkStack.pop_back_val();
533  if (!Visited.insert(V).second)
534  continue;
535 
536  if (const User *U = dyn_cast<User>(V)) {
537  WorkStack.append(U->op_begin(), U->op_end());
538  }
539 
540  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
541  VerifyConstantExprBitcastType(CE);
542  if (Broken)
543  return;
544  }
545  }
546 
547  visitGlobalValue(GV);
548 }
549 
550 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
552  Visited.insert(&GA);
553  visitAliaseeSubExpr(Visited, GA, C);
554 }
555 
556 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
557  const GlobalAlias &GA, const Constant &C) {
558  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
559  Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);
560 
561  if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
562  Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
563 
564  Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
565  &GA);
566  } else {
567  // Only continue verifying subexpressions of GlobalAliases.
568  // Do not recurse into global initializers.
569  return;
570  }
571  }
572 
573  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
574  VerifyConstantExprBitcastType(CE);
575 
576  for (const Use &U : C.operands()) {
577  Value *V = &*U;
578  if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
579  visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
580  else if (const auto *C2 = dyn_cast<Constant>(V))
581  visitAliaseeSubExpr(Visited, GA, *C2);
582  }
583 }
584 
585 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
587  "Alias should have private, internal, linkonce, weak, linkonce_odr, "
588  "weak_odr, or external linkage!",
589  &GA);
590  const Constant *Aliasee = GA.getAliasee();
591  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
592  Assert(GA.getType() == Aliasee->getType(),
593  "Alias and aliasee types should match!", &GA);
594 
595  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
596  "Aliasee should be either GlobalValue or ConstantExpr", &GA);
597 
598  visitAliaseeSubExpr(GA, *Aliasee);
599 
600  visitGlobalValue(GA);
601 }
602 
603 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
604  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
605  MDNode *MD = NMD.getOperand(i);
606 
607  if (NMD.getName() == "llvm.dbg.cu") {
608  Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
609  }
610 
611  if (!MD)
612  continue;
613 
614  visitMDNode(*MD);
615  }
616 }
617 
618 void Verifier::visitMDNode(const MDNode &MD) {
619  // Only visit each node once. Metadata can be mutually recursive, so this
620  // avoids infinite recursion here, as well as being an optimization.
621  if (!MDNodes.insert(&MD).second)
622  return;
623 
624  switch (MD.getMetadataID()) {
625  default:
626  llvm_unreachable("Invalid MDNode subclass");
628  break;
629 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
630  case Metadata::CLASS##Kind: \
631  visit##CLASS(cast<CLASS>(MD)); \
632  break;
633 #include "llvm/IR/Metadata.def"
634  }
635 
636  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
637  Metadata *Op = MD.getOperand(i);
638  if (!Op)
639  continue;
640  Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
641  &MD, Op);
642  if (auto *N = dyn_cast<MDNode>(Op)) {
643  visitMDNode(*N);
644  continue;
645  }
646  if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
647  visitValueAsMetadata(*V, nullptr);
648  continue;
649  }
650  }
651 
652  // Check these last, so we diagnose problems in operands first.
653  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
654  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
655 }
656 
657 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
658  Assert(MD.getValue(), "Expected valid value", &MD);
659  Assert(!MD.getValue()->getType()->isMetadataTy(),
660  "Unexpected metadata round-trip through values", &MD, MD.getValue());
661 
662  auto *L = dyn_cast<LocalAsMetadata>(&MD);
663  if (!L)
664  return;
665 
666  Assert(F, "function-local metadata used outside a function", L);
667 
668  // If this was an instruction, bb, or argument, verify that it is in the
669  // function that we expect.
670  Function *ActualF = nullptr;
671  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
672  Assert(I->getParent(), "function-local metadata not in basic block", L, I);
673  ActualF = I->getParent()->getParent();
674  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
675  ActualF = BB->getParent();
676  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
677  ActualF = A->getParent();
678  assert(ActualF && "Unimplemented function local metadata case!");
679 
680  Assert(ActualF == F, "function-local metadata used in wrong function", L);
681 }
682 
683 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
684  Metadata *MD = MDV.getMetadata();
685  if (auto *N = dyn_cast<MDNode>(MD)) {
686  visitMDNode(*N);
687  return;
688  }
689 
690  // Only visit each node once. Metadata can be mutually recursive, so this
691  // avoids infinite recursion here, as well as being an optimization.
692  if (!MDNodes.insert(MD).second)
693  return;
694 
695  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
696  visitValueAsMetadata(*V, F);
697 }
698 
699 bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
700  auto *S = dyn_cast<MDString>(MD);
701  if (!S)
702  return false;
703  if (S->getString().empty())
704  return false;
705 
706  // Keep track of names of types referenced via UUID so we can check that they
707  // actually exist.
708  UnresolvedTypeRefs.insert(std::make_pair(S, &N));
709  return true;
710 }
711 
712 /// \brief Check if a value can be a reference to a type.
713 bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
714  return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
715 }
716 
717 /// \brief Check if a value can be a ScopeRef.
718 bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
719  return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
720 }
721 
722 /// \brief Check if a value can be a debug info ref.
723 bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
724  return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
725 }
726 
727 template <class Ty>
728 bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
729  for (Metadata *MD : N.operands()) {
730  if (MD) {
731  if (!isa<Ty>(MD))
732  return false;
733  } else {
734  if (!AllowNull)
735  return false;
736  }
737  }
738  return true;
739 }
740 
741 template <class Ty>
743  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
744 }
745 
746 template <class Ty>
748  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
749 }
750 
751 void Verifier::visitDILocation(const DILocation &N) {
752  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
753  "location requires a valid scope", &N, N.getRawScope());
754  if (auto *IA = N.getRawInlinedAt())
755  Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
756 }
757 
758 void Verifier::visitGenericDINode(const GenericDINode &N) {
759  Assert(N.getTag(), "invalid tag", &N);
760 }
761 
762 void Verifier::visitDIScope(const DIScope &N) {
763  if (auto *F = N.getRawFile())
764  Assert(isa<DIFile>(F), "invalid file", &N, F);
765 }
766 
767 void Verifier::visitDISubrange(const DISubrange &N) {
768  Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
769  Assert(N.getCount() >= -1, "invalid subrange count", &N);
770 }
771 
772 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
773  Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
774 }
775 
776 void Verifier::visitDIBasicType(const DIBasicType &N) {
777  Assert(N.getTag() == dwarf::DW_TAG_base_type ||
778  N.getTag() == dwarf::DW_TAG_unspecified_type,
779  "invalid tag", &N);
780 }
781 
782 void Verifier::visitDIDerivedTypeBase(const DIDerivedTypeBase &N) {
783  // Common scope checks.
784  visitDIScope(N);
785 
786  Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
787  Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
788  N.getBaseType());
789 
790  // FIXME: Sink this into the subclass verifies.
791  if (!N.getFile() || N.getFile()->getFilename().empty()) {
792  // Check whether the filename is allowed to be empty.
793  uint16_t Tag = N.getTag();
794  Assert(
795  Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
796  Tag == dwarf::DW_TAG_pointer_type ||
797  Tag == dwarf::DW_TAG_ptr_to_member_type ||
798  Tag == dwarf::DW_TAG_reference_type ||
799  Tag == dwarf::DW_TAG_rvalue_reference_type ||
800  Tag == dwarf::DW_TAG_restrict_type ||
801  Tag == dwarf::DW_TAG_array_type ||
802  Tag == dwarf::DW_TAG_enumeration_type ||
803  Tag == dwarf::DW_TAG_subroutine_type ||
804  Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend ||
805  Tag == dwarf::DW_TAG_structure_type ||
806  Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef,
807  "derived/composite type requires a filename", &N, N.getFile());
808  }
809 }
810 
811 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
812  // Common derived type checks.
813  visitDIDerivedTypeBase(N);
814 
815  Assert(N.getTag() == dwarf::DW_TAG_typedef ||
816  N.getTag() == dwarf::DW_TAG_pointer_type ||
817  N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
818  N.getTag() == dwarf::DW_TAG_reference_type ||
819  N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
820  N.getTag() == dwarf::DW_TAG_const_type ||
821  N.getTag() == dwarf::DW_TAG_volatile_type ||
822  N.getTag() == dwarf::DW_TAG_restrict_type ||
823  N.getTag() == dwarf::DW_TAG_member ||
824  N.getTag() == dwarf::DW_TAG_inheritance ||
825  N.getTag() == dwarf::DW_TAG_friend,
826  "invalid tag", &N);
827  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
828  Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
829  N.getExtraData());
830  }
831 }
832 
833 static bool hasConflictingReferenceFlags(unsigned Flags) {
834  return (Flags & DINode::FlagLValueReference) &&
835  (Flags & DINode::FlagRValueReference);
836 }
837 
838 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
839  auto *Params = dyn_cast<MDTuple>(&RawParams);
840  Assert(Params, "invalid template params", &N, &RawParams);
841  for (Metadata *Op : Params->operands()) {
842  Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
843  Params, Op);
844  }
845 }
846 
847 void Verifier::visitDICompositeType(const DICompositeType &N) {
848  // Common derived type checks.
849  visitDIDerivedTypeBase(N);
850 
851  Assert(N.getTag() == dwarf::DW_TAG_array_type ||
852  N.getTag() == dwarf::DW_TAG_structure_type ||
853  N.getTag() == dwarf::DW_TAG_union_type ||
854  N.getTag() == dwarf::DW_TAG_enumeration_type ||
855  N.getTag() == dwarf::DW_TAG_subroutine_type ||
856  N.getTag() == dwarf::DW_TAG_class_type,
857  "invalid tag", &N);
858 
859  Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
860  "invalid composite elements", &N, N.getRawElements());
861  Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
862  N.getRawVTableHolder());
863  Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
864  "invalid composite elements", &N, N.getRawElements());
865  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
866  &N);
867  if (auto *Params = N.getRawTemplateParams())
868  visitTemplateParams(N, *Params);
869 }
870 
871 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
872  Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
873  if (auto *Types = N.getRawTypeArray()) {
874  Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
875  for (Metadata *Ty : N.getTypeArray()->operands()) {
876  Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
877  }
878  }
879  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
880  &N);
881 }
882 
883 void Verifier::visitDIFile(const DIFile &N) {
884  Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
885 }
886 
887 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
888  Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
889 
890  // Don't bother verifying the compilation directory or producer string
891  // as those could be empty.
892  Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
893  N.getRawFile());
894  Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
895  N.getFile());
896 
897  if (auto *Array = N.getRawEnumTypes()) {
898  Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
899  for (Metadata *Op : N.getEnumTypes()->operands()) {
900  auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
901  Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
902  "invalid enum type", &N, N.getEnumTypes(), Op);
903  }
904  }
905  if (auto *Array = N.getRawRetainedTypes()) {
906  Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
907  for (Metadata *Op : N.getRetainedTypes()->operands()) {
908  Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
909  }
910  }
911  if (auto *Array = N.getRawSubprograms()) {
912  Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
913  for (Metadata *Op : N.getSubprograms()->operands()) {
914  Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
915  }
916  }
917  if (auto *Array = N.getRawGlobalVariables()) {
918  Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
919  for (Metadata *Op : N.getGlobalVariables()->operands()) {
920  Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
921  Op);
922  }
923  }
924  if (auto *Array = N.getRawImportedEntities()) {
925  Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
926  for (Metadata *Op : N.getImportedEntities()->operands()) {
927  Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
928  Op);
929  }
930  }
931 }
932 
933 void Verifier::visitDISubprogram(const DISubprogram &N) {
934  Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
935  Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
936  if (auto *T = N.getRawType())
937  Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
938  Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
939  N.getRawContainingType());
940  if (auto *RawF = N.getRawFunction()) {
941  auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
942  auto *F = FMD ? FMD->getValue() : nullptr;
943  auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
944  Assert(F && FT && isa<FunctionType>(FT->getElementType()),
945  "invalid function", &N, F, FT);
946  }
947  if (auto *Params = N.getRawTemplateParams())
948  visitTemplateParams(N, *Params);
949  if (auto *S = N.getRawDeclaration()) {
950  Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
951  "invalid subprogram declaration", &N, S);
952  }
953  if (auto *RawVars = N.getRawVariables()) {
954  auto *Vars = dyn_cast<MDTuple>(RawVars);
955  Assert(Vars, "invalid variable list", &N, RawVars);
956  for (Metadata *Op : Vars->operands()) {
957  Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
958  Op);
959  }
960  }
961  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
962  &N);
963 
964  auto *F = N.getFunction();
965  if (!F)
966  return;
967 
968  // Check that all !dbg attachments lead to back to N (or, at least, another
969  // subprogram that describes the same function).
970  //
971  // FIXME: Check this incrementally while visiting !dbg attachments.
972  // FIXME: Only check when N is the canonical subprogram for F.
974  for (auto &BB : *F)
975  for (auto &I : BB) {
976  // Be careful about using DILocation here since we might be dealing with
977  // broken code (this is the Verifier after all).
978  DILocation *DL =
979  dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
980  if (!DL)
981  continue;
982  if (!Seen.insert(DL).second)
983  continue;
984 
985  DILocalScope *Scope = DL->getInlinedAtScope();
986  if (Scope && !Seen.insert(Scope).second)
987  continue;
988 
989  DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
990  if (SP && !Seen.insert(SP).second)
991  continue;
992 
993  // FIXME: Once N is canonical, check "SP == &N".
994  Assert(SP->describes(F),
995  "!dbg attachment points at wrong subprogram for function", &N, F,
996  &I, DL, Scope, SP);
997  }
998 }
999 
1000 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1001  Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1002  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1003  "invalid local scope", &N, N.getRawScope());
1004 }
1005 
1006 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1007  visitDILexicalBlockBase(N);
1008 
1009  Assert(N.getLine() || !N.getColumn(),
1010  "cannot have column info without line info", &N);
1011 }
1012 
1013 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1014  visitDILexicalBlockBase(N);
1015 }
1016 
1017 void Verifier::visitDINamespace(const DINamespace &N) {
1018  Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1019  if (auto *S = N.getRawScope())
1020  Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
1021 }
1022 
1023 void Verifier::visitDIModule(const DIModule &N) {
1024  Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1025  Assert(!N.getName().empty(), "anonymous module", &N);
1026 }
1027 
1028 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1029  Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
1030 }
1031 
1032 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1033  visitDITemplateParameter(N);
1034 
1035  Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1036  &N);
1037 }
1038 
1039 void Verifier::visitDITemplateValueParameter(
1040  const DITemplateValueParameter &N) {
1041  visitDITemplateParameter(N);
1042 
1043  Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1044  N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1045  N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1046  "invalid tag", &N);
1047 }
1048 
1049 void Verifier::visitDIVariable(const DIVariable &N) {
1050  if (auto *S = N.getRawScope())
1051  Assert(isa<DIScope>(S), "invalid scope", &N, S);
1052  Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
1053  if (auto *F = N.getRawFile())
1054  Assert(isa<DIFile>(F), "invalid file", &N, F);
1055 }
1056 
1057 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1058  // Checks common to all variables.
1059  visitDIVariable(N);
1060 
1061  Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1062  Assert(!N.getName().empty(), "missing global variable name", &N);
1063  if (auto *V = N.getRawVariable()) {
1064  Assert(isa<ConstantAsMetadata>(V) &&
1065  !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
1066  "invalid global varaible ref", &N, V);
1067  }
1068  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1069  Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
1070  &N, Member);
1071  }
1072 }
1073 
1074 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1075  // Checks common to all variables.
1076  visitDIVariable(N);
1077 
1078  Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
1079  N.getTag() == dwarf::DW_TAG_arg_variable,
1080  "invalid tag", &N);
1081  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1082  "local variable requires a valid scope", &N, N.getRawScope());
1083 }
1084 
1085 void Verifier::visitDIExpression(const DIExpression &N) {
1086  Assert(N.isValid(), "invalid expression", &N);
1087 }
1088 
1089 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1090  Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1091  if (auto *T = N.getRawType())
1092  Assert(isTypeRef(N, T), "invalid type ref", &N, T);
1093  if (auto *F = N.getRawFile())
1094  Assert(isa<DIFile>(F), "invalid file", &N, F);
1095 }
1096 
1097 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1098  Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
1099  N.getTag() == dwarf::DW_TAG_imported_declaration,
1100  "invalid tag", &N);
1101  if (auto *S = N.getRawScope())
1102  Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1103  Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
1104  N.getEntity());
1105 }
1106 
1107 void Verifier::visitComdat(const Comdat &C) {
1108  // The Module is invalid if the GlobalValue has private linkage. Entities
1109  // with private linkage don't have entries in the symbol table.
1110  if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1111  Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1112  GV);
1113 }
1114 
1115 void Verifier::visitModuleIdents(const Module &M) {
1116  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1117  if (!Idents)
1118  return;
1119 
1120  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1121  // Scan each llvm.ident entry and make sure that this requirement is met.
1122  for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
1123  const MDNode *N = Idents->getOperand(i);
1124  Assert(N->getNumOperands() == 1,
1125  "incorrect number of operands in llvm.ident metadata", N);
1126  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1127  ("invalid value for llvm.ident metadata entry operand"
1128  "(the operand should be a string)"),
1129  N->getOperand(0));
1130  }
1131 }
1132 
1133 void Verifier::visitModuleFlags(const Module &M) {
1135  if (!Flags) return;
1136 
1137  // Scan each flag, and track the flags and requirements.
1139  SmallVector<const MDNode*, 16> Requirements;
1140  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
1141  visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
1142  }
1143 
1144  // Validate that the requirements in the module are valid.
1145  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1146  const MDNode *Requirement = Requirements[I];
1147  const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1148  const Metadata *ReqValue = Requirement->getOperand(1);
1149 
1150  const MDNode *Op = SeenIDs.lookup(Flag);
1151  if (!Op) {
1152  CheckFailed("invalid requirement on flag, flag is not present in module",
1153  Flag);
1154  continue;
1155  }
1156 
1157  if (Op->getOperand(2) != ReqValue) {
1158  CheckFailed(("invalid requirement on flag, "
1159  "flag does not have the required value"),
1160  Flag);
1161  continue;
1162  }
1163  }
1164 }
1165 
1166 void
1167 Verifier::visitModuleFlag(const MDNode *Op,
1169  SmallVectorImpl<const MDNode *> &Requirements) {
1170  // Each module flag should have three arguments, the merge behavior (a
1171  // constant int), the flag ID (an MDString), and the value.
1172  Assert(Op->getNumOperands() == 3,
1173  "incorrect number of operands in module flag", Op);
1175  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1176  Assert(
1177  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1178  "invalid behavior operand in module flag (expected constant integer)",
1179  Op->getOperand(0));
1180  Assert(false,
1181  "invalid behavior operand in module flag (unexpected constant)",
1182  Op->getOperand(0));
1183  }
1184  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1185  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1186  Op->getOperand(1));
1187 
1188  // Sanity check the values for behaviors with additional requirements.
1189  switch (MFB) {
1190  case Module::Error:
1191  case Module::Warning:
1192  case Module::Override:
1193  // These behavior types accept any value.
1194  break;
1195 
1196  case Module::Require: {
1197  // The value should itself be an MDNode with two operands, a flag ID (an
1198  // MDString), and a value.
1199  MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1200  Assert(Value && Value->getNumOperands() == 2,
1201  "invalid value for 'require' module flag (expected metadata pair)",
1202  Op->getOperand(2));
1203  Assert(isa<MDString>(Value->getOperand(0)),
1204  ("invalid value for 'require' module flag "
1205  "(first value operand should be a string)"),
1206  Value->getOperand(0));
1207 
1208  // Append it to the list of requirements, to check once all module flags are
1209  // scanned.
1210  Requirements.push_back(Value);
1211  break;
1212  }
1213 
1214  case Module::Append:
1215  case Module::AppendUnique: {
1216  // These behavior types require the operand be an MDNode.
1217  Assert(isa<MDNode>(Op->getOperand(2)),
1218  "invalid value for 'append'-type module flag "
1219  "(expected a metadata node)",
1220  Op->getOperand(2));
1221  break;
1222  }
1223  }
1224 
1225  // Unless this is a "requires" flag, check the ID is unique.
1226  if (MFB != Module::Require) {
1227  bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1228  Assert(Inserted,
1229  "module flag identifiers must be unique (or of 'require' type)", ID);
1230  }
1231 }
1232 
1233 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1234  bool isFunction, const Value *V) {
1235  unsigned Slot = ~0U;
1236  for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1237  if (Attrs.getSlotIndex(I) == Idx) {
1238  Slot = I;
1239  break;
1240  }
1241 
1242  assert(Slot != ~0U && "Attribute set inconsistency!");
1243 
1244  for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1245  I != E; ++I) {
1246  if (I->isStringAttribute())
1247  continue;
1248 
1249  if (I->getKindAsEnum() == Attribute::NoReturn ||
1250  I->getKindAsEnum() == Attribute::NoUnwind ||
1251  I->getKindAsEnum() == Attribute::NoInline ||
1252  I->getKindAsEnum() == Attribute::AlwaysInline ||
1253  I->getKindAsEnum() == Attribute::OptimizeForSize ||
1254  I->getKindAsEnum() == Attribute::StackProtect ||
1255  I->getKindAsEnum() == Attribute::StackProtectReq ||
1256  I->getKindAsEnum() == Attribute::StackProtectStrong ||
1257  I->getKindAsEnum() == Attribute::SafeStack ||
1258  I->getKindAsEnum() == Attribute::NoRedZone ||
1259  I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1260  I->getKindAsEnum() == Attribute::Naked ||
1261  I->getKindAsEnum() == Attribute::InlineHint ||
1262  I->getKindAsEnum() == Attribute::StackAlignment ||
1263  I->getKindAsEnum() == Attribute::UWTable ||
1264  I->getKindAsEnum() == Attribute::NonLazyBind ||
1265  I->getKindAsEnum() == Attribute::ReturnsTwice ||
1266  I->getKindAsEnum() == Attribute::SanitizeAddress ||
1267  I->getKindAsEnum() == Attribute::SanitizeThread ||
1268  I->getKindAsEnum() == Attribute::SanitizeMemory ||
1269  I->getKindAsEnum() == Attribute::MinSize ||
1270  I->getKindAsEnum() == Attribute::NoDuplicate ||
1271  I->getKindAsEnum() == Attribute::Builtin ||
1272  I->getKindAsEnum() == Attribute::NoBuiltin ||
1273  I->getKindAsEnum() == Attribute::Cold ||
1274  I->getKindAsEnum() == Attribute::OptimizeNone ||
1275  I->getKindAsEnum() == Attribute::JumpTable ||
1276  I->getKindAsEnum() == Attribute::Convergent ||
1277  I->getKindAsEnum() == Attribute::ArgMemOnly) {
1278  if (!isFunction) {
1279  CheckFailed("Attribute '" + I->getAsString() +
1280  "' only applies to functions!", V);
1281  return;
1282  }
1283  } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1284  I->getKindAsEnum() == Attribute::ReadNone) {
1285  if (Idx == 0) {
1286  CheckFailed("Attribute '" + I->getAsString() +
1287  "' does not apply to function returns");
1288  return;
1289  }
1290  } else if (isFunction) {
1291  CheckFailed("Attribute '" + I->getAsString() +
1292  "' does not apply to functions!", V);
1293  return;
1294  }
1295  }
1296 }
1297 
1298 // VerifyParameterAttrs - Check the given attributes for an argument or return
1299 // value of the specified type. The value V is printed in error messages.
1300 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1301  bool isReturnValue, const Value *V) {
1302  if (!Attrs.hasAttributes(Idx))
1303  return;
1304 
1305  VerifyAttributeTypes(Attrs, Idx, false, V);
1306 
1307  if (isReturnValue)
1308  Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1309  !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1310  !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1311  !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1312  !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1313  !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1314  "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
1315  "'returned' do not apply to return values!",
1316  V);
1317 
1318  // Check for mutually incompatible attributes. Only inreg is compatible with
1319  // sret.
1320  unsigned AttrCount = 0;
1321  AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1322  AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1323  AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1324  Attrs.hasAttribute(Idx, Attribute::InReg);
1325  AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1326  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1327  "and 'sret' are incompatible!",
1328  V);
1329 
1330  Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1331  Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1332  "Attributes "
1333  "'inalloca and readonly' are incompatible!",
1334  V);
1335 
1336  Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1337  Attrs.hasAttribute(Idx, Attribute::Returned)),
1338  "Attributes "
1339  "'sret and returned' are incompatible!",
1340  V);
1341 
1342  Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1343  Attrs.hasAttribute(Idx, Attribute::SExt)),
1344  "Attributes "
1345  "'zeroext and signext' are incompatible!",
1346  V);
1347 
1348  Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1349  Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1350  "Attributes "
1351  "'readnone and readonly' are incompatible!",
1352  V);
1353 
1354  Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1356  "Attributes "
1357  "'noinline and alwaysinline' are incompatible!",
1358  V);
1359 
1360  Assert(!AttrBuilder(Attrs, Idx)
1361  .overlaps(AttributeFuncs::typeIncompatible(Ty)),
1362  "Wrong types for attribute: " +
1363  AttributeSet::get(*Context, Idx,
1364  AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
1365  V);
1366 
1367  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1369  if (!PTy->getElementType()->isSized(&Visited)) {
1370  Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1371  !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1372  "Attributes 'byval' and 'inalloca' do not support unsized types!",
1373  V);
1374  }
1375  } else {
1376  Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1377  "Attribute 'byval' only applies to parameters with pointer type!",
1378  V);
1379  }
1380 }
1381 
1382 // VerifyFunctionAttrs - Check parameter attributes against a function type.
1383 // The value V is printed in error messages.
1384 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1385  const Value *V) {
1386  if (Attrs.isEmpty())
1387  return;
1388 
1389  bool SawNest = false;
1390  bool SawReturned = false;
1391  bool SawSRet = false;
1392 
1393  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1394  unsigned Idx = Attrs.getSlotIndex(i);
1395 
1396  Type *Ty;
1397  if (Idx == 0)
1398  Ty = FT->getReturnType();
1399  else if (Idx-1 < FT->getNumParams())
1400  Ty = FT->getParamType(Idx-1);
1401  else
1402  break; // VarArgs attributes, verified elsewhere.
1403 
1404  VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1405 
1406  if (Idx == 0)
1407  continue;
1408 
1409  if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1410  Assert(!SawNest, "More than one parameter has attribute nest!", V);
1411  SawNest = true;
1412  }
1413 
1414  if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1415  Assert(!SawReturned, "More than one parameter has attribute returned!",
1416  V);
1418  "Incompatible "
1419  "argument and return types for 'returned' attribute",
1420  V);
1421  SawReturned = true;
1422  }
1423 
1424  if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1425  Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1426  Assert(Idx == 1 || Idx == 2,
1427  "Attribute 'sret' is not on first or second parameter!", V);
1428  SawSRet = true;
1429  }
1430 
1431  if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1432  Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1433  V);
1434  }
1435  }
1436 
1438  return;
1439 
1440  VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1441 
1442  Assert(
1445  "Attributes 'readnone and readonly' are incompatible!", V);
1446 
1447  Assert(
1451  "Attributes 'noinline and alwaysinline' are incompatible!", V);
1452 
1456  "Attribute 'optnone' requires 'noinline'!", V);
1457 
1460  "Attributes 'optsize and optnone' are incompatible!", V);
1461 
1463  "Attributes 'minsize and optnone' are incompatible!", V);
1464  }
1465 
1468  const GlobalValue *GV = cast<GlobalValue>(V);
1469  Assert(GV->hasUnnamedAddr(),
1470  "Attribute 'jumptable' requires 'unnamed_addr'", V);
1471  }
1472 }
1473 
1474 void Verifier::VerifyFunctionMetadata(
1475  const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
1476  if (MDs.empty())
1477  return;
1478 
1479  for (unsigned i = 0; i < MDs.size(); i++) {
1480  if (MDs[i].first == LLVMContext::MD_prof) {
1481  MDNode *MD = MDs[i].second;
1482  Assert(MD->getNumOperands() == 2,
1483  "!prof annotations should have exactly 2 operands", MD);
1484 
1485  // Check first operand.
1486  Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1487  MD);
1488  Assert(isa<MDString>(MD->getOperand(0)),
1489  "expected string with name of the !prof annotation", MD);
1490  MDString *MDS = cast<MDString>(MD->getOperand(0));
1491  StringRef ProfName = MDS->getString();
1492  Assert(ProfName.equals("function_entry_count"),
1493  "first operand should be 'function_entry_count'", MD);
1494 
1495  // Check second operand.
1496  Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1497  MD);
1498  Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1499  "expected integer argument to function_entry_count", MD);
1500  }
1501  }
1502 }
1503 
1504 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
1505  if (CE->getOpcode() != Instruction::BitCast)
1506  return;
1507 
1508  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1509  CE->getType()),
1510  "Invalid bitcast", CE);
1511 }
1512 
1513 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1514  if (Attrs.getNumSlots() == 0)
1515  return true;
1516 
1517  unsigned LastSlot = Attrs.getNumSlots() - 1;
1518  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1519  if (LastIndex <= Params
1520  || (LastIndex == AttributeSet::FunctionIndex
1521  && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1522  return true;
1523 
1524  return false;
1525 }
1526 
1527 /// \brief Verify that statepoint intrinsic is well formed.
1528 void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
1529  assert(CS.getCalledFunction() &&
1531  Intrinsic::experimental_gc_statepoint);
1532 
1533  const Instruction &CI = *CS.getInstruction();
1534 
1535  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1536  !CS.onlyAccessesArgMemory(),
1537  "gc.statepoint must read and write all memory to preserve "
1538  "reordering restrictions required by safepoint semantics",
1539  &CI);
1540 
1541  const Value *IDV = CS.getArgument(0);
1542  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1543  &CI);
1544 
1545  const Value *NumPatchBytesV = CS.getArgument(1);
1546  Assert(isa<ConstantInt>(NumPatchBytesV),
1547  "gc.statepoint number of patchable bytes must be a constant integer",
1548  &CI);
1549  const int64_t NumPatchBytes =
1550  cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1551  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1552  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1553  "positive",
1554  &CI);
1555 
1556  const Value *Target = CS.getArgument(2);
1557  const PointerType *PT = dyn_cast<PointerType>(Target->getType());
1558  Assert(PT && PT->getElementType()->isFunctionTy(),
1559  "gc.statepoint callee must be of function pointer type", &CI, Target);
1560  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1561 
1562  if (NumPatchBytes)
1563  Assert(isa<ConstantPointerNull>(Target->stripPointerCasts()),
1564  "gc.statepoint must have null as call target if number of patchable "
1565  "bytes is non zero",
1566  &CI);
1567 
1568  const Value *NumCallArgsV = CS.getArgument(3);
1569  Assert(isa<ConstantInt>(NumCallArgsV),
1570  "gc.statepoint number of arguments to underlying call "
1571  "must be constant integer",
1572  &CI);
1573  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1574  Assert(NumCallArgs >= 0,
1575  "gc.statepoint number of arguments to underlying call "
1576  "must be positive",
1577  &CI);
1578  const int NumParams = (int)TargetFuncType->getNumParams();
1579  if (TargetFuncType->isVarArg()) {
1580  Assert(NumCallArgs >= NumParams,
1581  "gc.statepoint mismatch in number of vararg call args", &CI);
1582 
1583  // TODO: Remove this limitation
1584  Assert(TargetFuncType->getReturnType()->isVoidTy(),
1585  "gc.statepoint doesn't support wrapping non-void "
1586  "vararg functions yet",
1587  &CI);
1588  } else
1589  Assert(NumCallArgs == NumParams,
1590  "gc.statepoint mismatch in number of call args", &CI);
1591 
1592  const Value *FlagsV = CS.getArgument(4);
1593  Assert(isa<ConstantInt>(FlagsV),
1594  "gc.statepoint flags must be constant integer", &CI);
1595  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1596  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1597  "unknown flag used in gc.statepoint flags argument", &CI);
1598 
1599  // Verify that the types of the call parameter arguments match
1600  // the type of the wrapped callee.
1601  for (int i = 0; i < NumParams; i++) {
1602  Type *ParamType = TargetFuncType->getParamType(i);
1603  Type *ArgType = CS.getArgument(5 + i)->getType();
1604  Assert(ArgType == ParamType,
1605  "gc.statepoint call argument does not match wrapped "
1606  "function type",
1607  &CI);
1608  }
1609 
1610  const int EndCallArgsInx = 4 + NumCallArgs;
1611 
1612  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1613  Assert(isa<ConstantInt>(NumTransitionArgsV),
1614  "gc.statepoint number of transition arguments "
1615  "must be constant integer",
1616  &CI);
1617  const int NumTransitionArgs =
1618  cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1619  Assert(NumTransitionArgs >= 0,
1620  "gc.statepoint number of transition arguments must be positive", &CI);
1621  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1622 
1623  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1624  Assert(isa<ConstantInt>(NumDeoptArgsV),
1625  "gc.statepoint number of deoptimization arguments "
1626  "must be constant integer",
1627  &CI);
1628  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1629  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1630  "must be positive",
1631  &CI);
1632 
1633  const int ExpectedNumArgs =
1634  7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1635  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1636  "gc.statepoint too few arguments according to length fields", &CI);
1637 
1638  // Check that the only uses of this gc.statepoint are gc.result or
1639  // gc.relocate calls which are tied to this statepoint and thus part
1640  // of the same statepoint sequence
1641  for (const User *U : CI.users()) {
1642  const CallInst *Call = dyn_cast<const CallInst>(U);
1643  Assert(Call, "illegal use of statepoint token", &CI, U);
1644  if (!Call) continue;
1645  Assert(isGCRelocate(Call) || isGCResult(Call),
1646  "gc.result or gc.relocate are the only value uses"
1647  "of a gc.statepoint",
1648  &CI, U);
1649  if (isGCResult(Call)) {
1650  Assert(Call->getArgOperand(0) == &CI,
1651  "gc.result connected to wrong gc.statepoint", &CI, Call);
1652  } else if (isGCRelocate(Call)) {
1653  Assert(Call->getArgOperand(0) == &CI,
1654  "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1655  }
1656  }
1657 
1658  // Note: It is legal for a single derived pointer to be listed multiple
1659  // times. It's non-optimal, but it is legal. It can also happen after
1660  // insertion if we strip a bitcast away.
1661  // Note: It is really tempting to check that each base is relocated and
1662  // that a derived pointer is never reused as a base pointer. This turns
1663  // out to be problematic since optimizations run after safepoint insertion
1664  // can recognize equality properties that the insertion logic doesn't know
1665  // about. See example statepoint.ll in the verifier subdirectory
1666 }
1667 
1668 void Verifier::verifyFrameRecoverIndices() {
1669  for (auto &Counts : FrameEscapeInfo) {
1670  Function *F = Counts.first;
1671  unsigned EscapedObjectCount = Counts.second.first;
1672  unsigned MaxRecoveredIndex = Counts.second.second;
1673  Assert(MaxRecoveredIndex <= EscapedObjectCount,
1674  "all indices passed to llvm.localrecover must be less than the "
1675  "number of arguments passed ot llvm.localescape in the parent "
1676  "function",
1677  F);
1678  }
1679 }
1680 
1681 // visitFunction - Verify that a function is ok.
1682 //
1683 void Verifier::visitFunction(const Function &F) {
1684  // Check function arguments.
1685  FunctionType *FT = F.getFunctionType();
1686  unsigned NumArgs = F.arg_size();
1687 
1688  Assert(Context == &F.getContext(),
1689  "Function context does not match Module context!", &F);
1690 
1691  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1692  Assert(FT->getNumParams() == NumArgs,
1693  "# formal arguments must match # of arguments for function type!", &F,
1694  FT);
1695  Assert(F.getReturnType()->isFirstClassType() ||
1696  F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1697  "Functions cannot return aggregate values!", &F);
1698 
1699  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1700  "Invalid struct return type!", &F);
1701 
1702  AttributeSet Attrs = F.getAttributes();
1703 
1704  Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
1705  "Attribute after last parameter!", &F);
1706 
1707  // Check function attributes.
1708  VerifyFunctionAttrs(FT, Attrs, &F);
1709 
1710  // On function declarations/definitions, we do not support the builtin
1711  // attribute. We do not check this in VerifyFunctionAttrs since that is
1712  // checking for Attributes that can/can not ever be on functions.
1714  "Attribute 'builtin' can only be applied to a callsite.", &F);
1715 
1716  // Check that this function meets the restrictions on this calling convention.
1717  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1718  // restrictions can be lifted.
1719  switch (F.getCallingConv()) {
1720  default:
1721  case CallingConv::C:
1722  break;
1723  case CallingConv::Fast:
1724  case CallingConv::Cold:
1728  Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1729  "perfect forwarding!",
1730  &F);
1731  break;
1732  }
1733 
1734  bool isLLVMdotName = F.getName().size() >= 5 &&
1735  F.getName().substr(0, 5) == "llvm.";
1736 
1737  // Check that the argument values match the function type for this function...
1738  unsigned i = 0;
1739  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1740  ++I, ++i) {
1741  Assert(I->getType() == FT->getParamType(i),
1742  "Argument value does not match function argument type!", I,
1743  FT->getParamType(i));
1744  Assert(I->getType()->isFirstClassType(),
1745  "Function arguments must have first-class types!", I);
1746  if (!isLLVMdotName)
1747  Assert(!I->getType()->isMetadataTy(),
1748  "Function takes metadata but isn't an intrinsic", I, &F);
1749  }
1750 
1751  // Get the function metadata attachments.
1753  F.getAllMetadata(MDs);
1754  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
1755  VerifyFunctionMetadata(MDs);
1756 
1757  if (F.isMaterializable()) {
1758  // Function has a body somewhere we can't see.
1759  Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
1760  MDs.empty() ? nullptr : MDs.front().second);
1761  } else if (F.isDeclaration()) {
1762  Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1763  "invalid linkage type for function declaration", &F);
1764  Assert(MDs.empty(), "function without a body cannot have metadata", &F,
1765  MDs.empty() ? nullptr : MDs.front().second);
1766  Assert(!F.hasPersonalityFn(),
1767  "Function declaration shouldn't have a personality routine", &F);
1768  } else {
1769  // Verify that this function (which has a body) is not named "llvm.*". It
1770  // is not legal to define intrinsics.
1771  Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1772 
1773  // Check the entry node
1774  const BasicBlock *Entry = &F.getEntryBlock();
1775  Assert(pred_empty(Entry),
1776  "Entry block to function must not have predecessors!", Entry);
1777 
1778  // The address of the entry block cannot be taken, unless it is dead.
1779  if (Entry->hasAddressTaken()) {
1780  Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
1781  "blockaddress may not be used with the entry block!", Entry);
1782  }
1783 
1784  // Visit metadata attachments.
1785  for (const auto &I : MDs)
1786  visitMDNode(*I.second);
1787  }
1788 
1789  // If this function is actually an intrinsic, verify that it is only used in
1790  // direct call/invokes, never having its "address taken".
1791  if (F.getIntrinsicID()) {
1792  const User *U;
1793  if (F.hasAddressTaken(&U))
1794  Assert(0, "Invalid user of intrinsic instruction!", U);
1795  }
1796 
1797  Assert(!F.hasDLLImportStorageClass() ||
1798  (F.isDeclaration() && F.hasExternalLinkage()) ||
1799  F.hasAvailableExternallyLinkage(),
1800  "Function is marked as dllimport, but not external.", &F);
1801 }
1802 
1803 // verifyBasicBlock - Verify that a basic block is well formed...
1804 //
1805 void Verifier::visitBasicBlock(BasicBlock &BB) {
1806  InstsInThisBlock.clear();
1807 
1808  // Ensure that basic blocks have terminators!
1809  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1810 
1811  // Check constraints that this basic block imposes on all of the PHI nodes in
1812  // it.
1813  if (isa<PHINode>(BB.front())) {
1816  std::sort(Preds.begin(), Preds.end());
1817  PHINode *PN;
1818  for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1819  // Ensure that PHI nodes have at least one entry!
1820  Assert(PN->getNumIncomingValues() != 0,
1821  "PHI nodes must have at least one entry. If the block is dead, "
1822  "the PHI should be removed!",
1823  PN);
1824  Assert(PN->getNumIncomingValues() == Preds.size(),
1825  "PHINode should have one entry for each predecessor of its "
1826  "parent basic block!",
1827  PN);
1828 
1829  // Get and sort all incoming values in the PHI node...
1830  Values.clear();
1831  Values.reserve(PN->getNumIncomingValues());
1832  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1833  Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1834  PN->getIncomingValue(i)));
1835  std::sort(Values.begin(), Values.end());
1836 
1837  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1838  // Check to make sure that if there is more than one entry for a
1839  // particular basic block in this PHI node, that the incoming values are
1840  // all identical.
1841  //
1842  Assert(i == 0 || Values[i].first != Values[i - 1].first ||
1843  Values[i].second == Values[i - 1].second,
1844  "PHI node has multiple entries for the same basic block with "
1845  "different incoming values!",
1846  PN, Values[i].first, Values[i].second, Values[i - 1].second);
1847 
1848  // Check to make sure that the predecessors and PHI node entries are
1849  // matched up.
1850  Assert(Values[i].first == Preds[i],
1851  "PHI node entries do not match predecessors!", PN,
1852  Values[i].first, Preds[i]);
1853  }
1854  }
1855  }
1856 
1857  // Check that all instructions have their parent pointers set up correctly.
1858  for (auto &I : BB)
1859  {
1860  Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
1861  }
1862 }
1863 
1864 void Verifier::visitTerminatorInst(TerminatorInst &I) {
1865  // Ensure that terminators only exist at the end of the basic block.
1866  Assert(&I == I.getParent()->getTerminator(),
1867  "Terminator found in the middle of a basic block!", I.getParent());
1868  visitInstruction(I);
1869 }
1870 
1871 void Verifier::visitBranchInst(BranchInst &BI) {
1872  if (BI.isConditional()) {
1873  Assert(BI.getCondition()->getType()->isIntegerTy(1),
1874  "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1875  }
1876  visitTerminatorInst(BI);
1877 }
1878 
1879 void Verifier::visitReturnInst(ReturnInst &RI) {
1880  Function *F = RI.getParent()->getParent();
1881  unsigned N = RI.getNumOperands();
1882  if (F->getReturnType()->isVoidTy())
1883  Assert(N == 0,
1884  "Found return instr that returns non-void in Function of void "
1885  "return type!",
1886  &RI, F->getReturnType());
1887  else
1888  Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1889  "Function return type does not match operand "
1890  "type of return inst!",
1891  &RI, F->getReturnType());
1892 
1893  // Check to make sure that the return value has necessary properties for
1894  // terminators...
1895  visitTerminatorInst(RI);
1896 }
1897 
1898 void Verifier::visitSwitchInst(SwitchInst &SI) {
1899  // Check to make sure that all of the constants in the switch instruction
1900  // have the same type as the switched-on value.
1901  Type *SwitchTy = SI.getCondition()->getType();
1903  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1904  Assert(i.getCaseValue()->getType() == SwitchTy,
1905  "Switch constants must all be same type as switch value!", &SI);
1906  Assert(Constants.insert(i.getCaseValue()).second,
1907  "Duplicate integer as switch case", &SI, i.getCaseValue());
1908  }
1909 
1910  visitTerminatorInst(SI);
1911 }
1912 
1913 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1914  Assert(BI.getAddress()->getType()->isPointerTy(),
1915  "Indirectbr operand must have pointer type!", &BI);
1916  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1917  Assert(BI.getDestination(i)->getType()->isLabelTy(),
1918  "Indirectbr destinations must all have pointer type!", &BI);
1919 
1920  visitTerminatorInst(BI);
1921 }
1922 
1923 void Verifier::visitSelectInst(SelectInst &SI) {
1925  SI.getOperand(2)),
1926  "Invalid operands for select instruction!", &SI);
1927 
1928  Assert(SI.getTrueValue()->getType() == SI.getType(),
1929  "Select values must have same type as select instruction!", &SI);
1930  visitInstruction(SI);
1931 }
1932 
1933 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1934 /// a pass, if any exist, it's an error.
1935 ///
1936 void Verifier::visitUserOp1(Instruction &I) {
1937  Assert(0, "User-defined operators should not live outside of a pass!", &I);
1938 }
1939 
1940 void Verifier::visitTruncInst(TruncInst &I) {
1941  // Get the source and destination types
1942  Type *SrcTy = I.getOperand(0)->getType();
1943  Type *DestTy = I.getType();
1944 
1945  // Get the size of the types in bits, we'll need this later
1946  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1947  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1948 
1949  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1950  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1951  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1952  "trunc source and destination must both be a vector or neither", &I);
1953  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
1954 
1955  visitInstruction(I);
1956 }
1957 
1958 void Verifier::visitZExtInst(ZExtInst &I) {
1959  // Get the source and destination types
1960  Type *SrcTy = I.getOperand(0)->getType();
1961  Type *DestTy = I.getType();
1962 
1963  // Get the size of the types in bits, we'll need this later
1964  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1965  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1966  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1967  "zext source and destination must both be a vector or neither", &I);
1968  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1969  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1970 
1971  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
1972 
1973  visitInstruction(I);
1974 }
1975 
1976 void Verifier::visitSExtInst(SExtInst &I) {
1977  // Get the source and destination types
1978  Type *SrcTy = I.getOperand(0)->getType();
1979  Type *DestTy = I.getType();
1980 
1981  // Get the size of the types in bits, we'll need this later
1982  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1983  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1984 
1985  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1986  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1987  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1988  "sext source and destination must both be a vector or neither", &I);
1989  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
1990 
1991  visitInstruction(I);
1992 }
1993 
1994 void Verifier::visitFPTruncInst(FPTruncInst &I) {
1995  // Get the source and destination types
1996  Type *SrcTy = I.getOperand(0)->getType();
1997  Type *DestTy = I.getType();
1998  // Get the size of the types in bits, we'll need this later
1999  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2000  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2001 
2002  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2003  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2004  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2005  "fptrunc source and destination must both be a vector or neither", &I);
2006  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2007 
2008  visitInstruction(I);
2009 }
2010 
2011 void Verifier::visitFPExtInst(FPExtInst &I) {
2012  // Get the source and destination types
2013  Type *SrcTy = I.getOperand(0)->getType();
2014  Type *DestTy = I.getType();
2015 
2016  // Get the size of the types in bits, we'll need this later
2017  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2018  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2019 
2020  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2021  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2022  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2023  "fpext source and destination must both be a vector or neither", &I);
2024  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2025 
2026  visitInstruction(I);
2027 }
2028 
2029 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2030  // Get the source and destination types
2031  Type *SrcTy = I.getOperand(0)->getType();
2032  Type *DestTy = I.getType();
2033 
2034  bool SrcVec = SrcTy->isVectorTy();
2035  bool DstVec = DestTy->isVectorTy();
2036 
2037  Assert(SrcVec == DstVec,
2038  "UIToFP source and dest must both be vector or scalar", &I);
2039  Assert(SrcTy->isIntOrIntVectorTy(),
2040  "UIToFP source must be integer or integer vector", &I);
2041  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2042  &I);
2043 
2044  if (SrcVec && DstVec)
2045  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2046  cast<VectorType>(DestTy)->getNumElements(),
2047  "UIToFP source and dest vector length mismatch", &I);
2048 
2049  visitInstruction(I);
2050 }
2051 
2052 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2053  // Get the source and destination types
2054  Type *SrcTy = I.getOperand(0)->getType();
2055  Type *DestTy = I.getType();
2056 
2057  bool SrcVec = SrcTy->isVectorTy();
2058  bool DstVec = DestTy->isVectorTy();
2059 
2060  Assert(SrcVec == DstVec,
2061  "SIToFP source and dest must both be vector or scalar", &I);
2062  Assert(SrcTy->isIntOrIntVectorTy(),
2063  "SIToFP source must be integer or integer vector", &I);
2064  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2065  &I);
2066 
2067  if (SrcVec && DstVec)
2068  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2069  cast<VectorType>(DestTy)->getNumElements(),
2070  "SIToFP source and dest vector length mismatch", &I);
2071 
2072  visitInstruction(I);
2073 }
2074 
2075 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2076  // Get the source and destination types
2077  Type *SrcTy = I.getOperand(0)->getType();
2078  Type *DestTy = I.getType();
2079 
2080  bool SrcVec = SrcTy->isVectorTy();
2081  bool DstVec = DestTy->isVectorTy();
2082 
2083  Assert(SrcVec == DstVec,
2084  "FPToUI source and dest must both be vector or scalar", &I);
2085  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2086  &I);
2087  Assert(DestTy->isIntOrIntVectorTy(),
2088  "FPToUI result must be integer or integer vector", &I);
2089 
2090  if (SrcVec && DstVec)
2091  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2092  cast<VectorType>(DestTy)->getNumElements(),
2093  "FPToUI source and dest vector length mismatch", &I);
2094 
2095  visitInstruction(I);
2096 }
2097 
2098 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2099  // Get the source and destination types
2100  Type *SrcTy = I.getOperand(0)->getType();
2101  Type *DestTy = I.getType();
2102 
2103  bool SrcVec = SrcTy->isVectorTy();
2104  bool DstVec = DestTy->isVectorTy();
2105 
2106  Assert(SrcVec == DstVec,
2107  "FPToSI source and dest must both be vector or scalar", &I);
2108  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2109  &I);
2110  Assert(DestTy->isIntOrIntVectorTy(),
2111  "FPToSI result must be integer or integer vector", &I);
2112 
2113  if (SrcVec && DstVec)
2114  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2115  cast<VectorType>(DestTy)->getNumElements(),
2116  "FPToSI source and dest vector length mismatch", &I);
2117 
2118  visitInstruction(I);
2119 }
2120 
2121 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2122  // Get the source and destination types
2123  Type *SrcTy = I.getOperand(0)->getType();
2124  Type *DestTy = I.getType();
2125 
2126  Assert(SrcTy->getScalarType()->isPointerTy(),
2127  "PtrToInt source must be pointer", &I);
2128  Assert(DestTy->getScalarType()->isIntegerTy(),
2129  "PtrToInt result must be integral", &I);
2130  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2131  &I);
2132 
2133  if (SrcTy->isVectorTy()) {
2134  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2135  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2136  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2137  "PtrToInt Vector width mismatch", &I);
2138  }
2139 
2140  visitInstruction(I);
2141 }
2142 
2143 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2144  // Get the source and destination types
2145  Type *SrcTy = I.getOperand(0)->getType();
2146  Type *DestTy = I.getType();
2147 
2148  Assert(SrcTy->getScalarType()->isIntegerTy(),
2149  "IntToPtr source must be an integral", &I);
2150  Assert(DestTy->getScalarType()->isPointerTy(),
2151  "IntToPtr result must be a pointer", &I);
2152  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2153  &I);
2154  if (SrcTy->isVectorTy()) {
2155  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2156  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2157  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2158  "IntToPtr Vector width mismatch", &I);
2159  }
2160  visitInstruction(I);
2161 }
2162 
2163 void Verifier::visitBitCastInst(BitCastInst &I) {
2164  Assert(
2165  CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2166  "Invalid bitcast", &I);
2167  visitInstruction(I);
2168 }
2169 
2170 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2171  Type *SrcTy = I.getOperand(0)->getType();
2172  Type *DestTy = I.getType();
2173 
2174  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2175  &I);
2176  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2177  &I);
2179  "AddrSpaceCast must be between different address spaces", &I);
2180  if (SrcTy->isVectorTy())
2181  Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2182  "AddrSpaceCast vector pointer number of elements mismatch", &I);
2183  visitInstruction(I);
2184 }
2185 
2186 /// visitPHINode - Ensure that a PHI node is well formed.
2187 ///
2188 void Verifier::visitPHINode(PHINode &PN) {
2189  // Ensure that the PHI nodes are all grouped together at the top of the block.
2190  // This can be tested by checking whether the instruction before this is
2191  // either nonexistent (because this is begin()) or is a PHI node. If not,
2192  // then there is some other instruction before a PHI.
2193  Assert(&PN == &PN.getParent()->front() ||
2194  isa<PHINode>(--BasicBlock::iterator(&PN)),
2195  "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2196 
2197  // Check that all of the values of the PHI node have the same type as the
2198  // result, and that the incoming blocks are really basic blocks.
2199  for (Value *IncValue : PN.incoming_values()) {
2200  Assert(PN.getType() == IncValue->getType(),
2201  "PHI node operands are not the same type as the result!", &PN);
2202  }
2203 
2204  // All other PHI node constraints are checked in the visitBasicBlock method.
2205 
2206  visitInstruction(PN);
2207 }
2208 
2209 void Verifier::VerifyCallSite(CallSite CS) {
2210  Instruction *I = CS.getInstruction();
2211 
2213  "Called function must be a pointer!", I);
2214  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2215 
2216  Assert(FPTy->getElementType()->isFunctionTy(),
2217  "Called function is not pointer to function type!", I);
2218 
2219  Assert(FPTy->getElementType() == CS.getFunctionType(),
2220  "Called function is not the same type as the call!", I);
2221 
2222  FunctionType *FTy = CS.getFunctionType();
2223 
2224  // Verify that the correct number of arguments are being passed
2225  if (FTy->isVarArg())
2226  Assert(CS.arg_size() >= FTy->getNumParams(),
2227  "Called function requires more parameters than were provided!", I);
2228  else
2229  Assert(CS.arg_size() == FTy->getNumParams(),
2230  "Incorrect number of arguments passed to called function!", I);
2231 
2232  // Verify that all arguments to the call match the function type.
2233  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2234  Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2235  "Call parameter type does not match function signature!",
2236  CS.getArgument(i), FTy->getParamType(i), I);
2237 
2238  AttributeSet Attrs = CS.getAttributes();
2239 
2240  Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
2241  "Attribute after last parameter!", I);
2242 
2243  // Verify call attributes.
2244  VerifyFunctionAttrs(FTy, Attrs, I);
2245 
2246  // Conservatively check the inalloca argument.
2247  // We have a bug if we can find that there is an underlying alloca without
2248  // inalloca.
2249  if (CS.hasInAllocaArgument()) {
2250  Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2251  if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2252  Assert(AI->isUsedWithInAlloca(),
2253  "inalloca argument for call has mismatched alloca", AI, I);
2254  }
2255 
2256  if (FTy->isVarArg()) {
2257  // FIXME? is 'nest' even legal here?
2258  bool SawNest = false;
2259  bool SawReturned = false;
2260 
2261  for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2262  if (Attrs.hasAttribute(Idx, Attribute::Nest))
2263  SawNest = true;
2264  if (Attrs.hasAttribute(Idx, Attribute::Returned))
2265  SawReturned = true;
2266  }
2267 
2268  // Check attributes on the varargs part.
2269  for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2270  Type *Ty = CS.getArgument(Idx-1)->getType();
2271  VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
2272 
2273  if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2274  Assert(!SawNest, "More than one parameter has attribute nest!", I);
2275  SawNest = true;
2276  }
2277 
2278  if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2279  Assert(!SawReturned, "More than one parameter has attribute returned!",
2280  I);
2281  Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2282  "Incompatible argument and return types for 'returned' "
2283  "attribute",
2284  I);
2285  SawReturned = true;
2286  }
2287 
2289  "Attribute 'sret' cannot be used for vararg call arguments!", I);
2290 
2291  if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2292  Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2293  }
2294  }
2295 
2296  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2297  if (CS.getCalledFunction() == nullptr ||
2298  !CS.getCalledFunction()->getName().startswith("llvm.")) {
2299  for (FunctionType::param_iterator PI = FTy->param_begin(),
2300  PE = FTy->param_end(); PI != PE; ++PI)
2301  Assert(!(*PI)->isMetadataTy(),
2302  "Function has metadata parameter but isn't an intrinsic", I);
2303  }
2304 
2305  if (Function *F = CS.getCalledFunction())
2307  visitIntrinsicCallSite(ID, CS);
2308 
2309  visitInstruction(*I);
2310 }
2311 
2312 /// Two types are "congruent" if they are identical, or if they are both pointer
2313 /// types with different pointee types and the same address space.
2314 static bool isTypeCongruent(Type *L, Type *R) {
2315  if (L == R)
2316  return true;
2318  PointerType *PR = dyn_cast<PointerType>(R);
2319  if (!PL || !PR)
2320  return false;
2321  return PL->getAddressSpace() == PR->getAddressSpace();
2322 }
2323 
2325  static const Attribute::AttrKind ABIAttrs[] = {
2328  AttrBuilder Copy;
2329  for (auto AK : ABIAttrs) {
2330  if (Attrs.hasAttribute(I + 1, AK))
2331  Copy.addAttribute(AK);
2332  }
2333  if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2334  Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2335  return Copy;
2336 }
2337 
2338 void Verifier::verifyMustTailCall(CallInst &CI) {
2339  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2340 
2341  // - The caller and callee prototypes must match. Pointer types of
2342  // parameters or return types may differ in pointee type, but not
2343  // address space.
2344  Function *F = CI.getParent()->getParent();
2345  FunctionType *CallerTy = F->getFunctionType();
2346  FunctionType *CalleeTy = CI.getFunctionType();
2347  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2348  "cannot guarantee tail call due to mismatched parameter counts", &CI);
2349  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2350  "cannot guarantee tail call due to mismatched varargs", &CI);
2351  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2352  "cannot guarantee tail call due to mismatched return types", &CI);
2353  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2354  Assert(
2355  isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2356  "cannot guarantee tail call due to mismatched parameter types", &CI);
2357  }
2358 
2359  // - The calling conventions of the caller and callee must match.
2360  Assert(F->getCallingConv() == CI.getCallingConv(),
2361  "cannot guarantee tail call due to mismatched calling conv", &CI);
2362 
2363  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2364  // returned, and inalloca, must match.
2365  AttributeSet CallerAttrs = F->getAttributes();
2366  AttributeSet CalleeAttrs = CI.getAttributes();
2367  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2368  AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2369  AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2370  Assert(CallerABIAttrs == CalleeABIAttrs,
2371  "cannot guarantee tail call due to mismatched ABI impacting "
2372  "function attributes",
2373  &CI, CI.getOperand(I));
2374  }
2375 
2376  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2377  // or a pointer bitcast followed by a ret instruction.
2378  // - The ret instruction must return the (possibly bitcasted) value
2379  // produced by the call or void.
2380  Value *RetVal = &CI;
2381  Instruction *Next = CI.getNextNode();
2382 
2383  // Handle the optional bitcast.
2384  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2385  Assert(BI->getOperand(0) == RetVal,
2386  "bitcast following musttail call must use the call", BI);
2387  RetVal = BI;
2388  Next = BI->getNextNode();
2389  }
2390 
2391  // Check the return.
2392  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2393  Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2394  &CI);
2395  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2396  "musttail call result must be returned", Ret);
2397 }
2398 
2399 void Verifier::visitCallInst(CallInst &CI) {
2400  VerifyCallSite(&CI);
2401 
2402  if (CI.isMustTailCall())
2403  verifyMustTailCall(CI);
2404 }
2405 
2406 void Verifier::visitInvokeInst(InvokeInst &II) {
2407  VerifyCallSite(&II);
2408 
2409  // Verify that there is a landingpad instruction as the first non-PHI
2410  // instruction of the 'unwind' destination.
2412  "The unwind destination does not have a landingpad instruction!", &II);
2413 
2414  visitTerminatorInst(II);
2415 }
2416 
2417 /// visitBinaryOperator - Check that both arguments to the binary operator are
2418 /// of the same type!
2419 ///
2420 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2421  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2422  "Both operands to a binary operator are not of the same type!", &B);
2423 
2424  switch (B.getOpcode()) {
2425  // Check that integer arithmetic operators are only used with
2426  // integral operands.
2427  case Instruction::Add:
2428  case Instruction::Sub:
2429  case Instruction::Mul:
2430  case Instruction::SDiv:
2431  case Instruction::UDiv:
2432  case Instruction::SRem:
2433  case Instruction::URem:
2435  "Integer arithmetic operators only work with integral types!", &B);
2436  Assert(B.getType() == B.getOperand(0)->getType(),
2437  "Integer arithmetic operators must have same type "
2438  "for operands and result!",
2439  &B);
2440  break;
2441  // Check that floating-point arithmetic operators are only used with
2442  // floating-point operands.
2443  case Instruction::FAdd:
2444  case Instruction::FSub:
2445  case Instruction::FMul:
2446  case Instruction::FDiv:
2447  case Instruction::FRem:
2449  "Floating-point arithmetic operators only work with "
2450  "floating-point types!",
2451  &B);
2452  Assert(B.getType() == B.getOperand(0)->getType(),
2453  "Floating-point arithmetic operators must have same type "
2454  "for operands and result!",
2455  &B);
2456  break;
2457  // Check that logical operators are only used with integral operands.
2458  case Instruction::And:
2459  case Instruction::Or:
2460  case Instruction::Xor:
2462  "Logical operators only work with integral types!", &B);
2463  Assert(B.getType() == B.getOperand(0)->getType(),
2464  "Logical operators must have same type for operands and result!",
2465  &B);
2466  break;
2467  case Instruction::Shl:
2468  case Instruction::LShr:
2469  case Instruction::AShr:
2471  "Shifts only work with integral types!", &B);
2472  Assert(B.getType() == B.getOperand(0)->getType(),
2473  "Shift return type must be same as operands!", &B);
2474  break;
2475  default:
2476  llvm_unreachable("Unknown BinaryOperator opcode!");
2477  }
2478 
2479  visitInstruction(B);
2480 }
2481 
2482 void Verifier::visitICmpInst(ICmpInst &IC) {
2483  // Check that the operands are the same type
2484  Type *Op0Ty = IC.getOperand(0)->getType();
2485  Type *Op1Ty = IC.getOperand(1)->getType();
2486  Assert(Op0Ty == Op1Ty,
2487  "Both operands to ICmp instruction are not of the same type!", &IC);
2488  // Check that the operands are the right type
2489  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2490  "Invalid operand types for ICmp instruction", &IC);
2491  // Check that the predicate is valid.
2494  "Invalid predicate in ICmp instruction!", &IC);
2495 
2496  visitInstruction(IC);
2497 }
2498 
2499 void Verifier::visitFCmpInst(FCmpInst &FC) {
2500  // Check that the operands are the same type
2501  Type *Op0Ty = FC.getOperand(0)->getType();
2502  Type *Op1Ty = FC.getOperand(1)->getType();
2503  Assert(Op0Ty == Op1Ty,
2504  "Both operands to FCmp instruction are not of the same type!", &FC);
2505  // Check that the operands are the right type
2506  Assert(Op0Ty->isFPOrFPVectorTy(),
2507  "Invalid operand types for FCmp instruction", &FC);
2508  // Check that the predicate is valid.
2511  "Invalid predicate in FCmp instruction!", &FC);
2512 
2513  visitInstruction(FC);
2514 }
2515 
2516 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2517  Assert(
2519  "Invalid extractelement operands!", &EI);
2520  visitInstruction(EI);
2521 }
2522 
2523 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2525  IE.getOperand(2)),
2526  "Invalid insertelement operands!", &IE);
2527  visitInstruction(IE);
2528 }
2529 
2530 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2532  SV.getOperand(2)),
2533  "Invalid shufflevector operands!", &SV);
2534  visitInstruction(SV);
2535 }
2536 
2537 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2538  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2539 
2540  Assert(isa<PointerType>(TargetTy),
2541  "GEP base pointer is not a vector or a vector of pointers", &GEP);
2542  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2543  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2544  Type *ElTy =
2546  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2547 
2548  Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2549  GEP.getResultElementType() == ElTy,
2550  "GEP is not of right type for indices!", &GEP, ElTy);
2551 
2552  if (GEP.getType()->isVectorTy()) {
2553  // Additional checks for vector GEPs.
2554  unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2555  if (GEP.getPointerOperandType()->isVectorTy())
2556  Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2557  "Vector GEP result width doesn't match operand's", &GEP);
2558  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2559  Type *IndexTy = Idxs[i]->getType();
2560  if (IndexTy->isVectorTy()) {
2561  unsigned IndexWidth = IndexTy->getVectorNumElements();
2562  Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2563  }
2564  Assert(IndexTy->getScalarType()->isIntegerTy(),
2565  "All GEP indices should be of integer type");
2566  }
2567  }
2568  visitInstruction(GEP);
2569 }
2570 
2571 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2572  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2573 }
2574 
2575 void Verifier::visitRangeMetadata(Instruction& I,
2576  MDNode* Range, Type* Ty) {
2577  assert(Range &&
2578  Range == I.getMetadata(LLVMContext::MD_range) &&
2579  "precondition violation");
2580 
2581  unsigned NumOperands = Range->getNumOperands();
2582  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2583  unsigned NumRanges = NumOperands / 2;
2584  Assert(NumRanges >= 1, "It should have at least one range!", Range);
2585 
2586  ConstantRange LastRange(1); // Dummy initial value
2587  for (unsigned i = 0; i < NumRanges; ++i) {
2588  ConstantInt *Low =
2589  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2590  Assert(Low, "The lower limit must be an integer!", Low);
2591  ConstantInt *High =
2592  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2593  Assert(High, "The upper limit must be an integer!", High);
2594  Assert(High->getType() == Low->getType() && High->getType() == Ty,
2595  "Range types must match instruction type!", &I);
2596 
2597  APInt HighV = High->getValue();
2598  APInt LowV = Low->getValue();
2599  ConstantRange CurRange(LowV, HighV);
2600  Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2601  "Range must not be empty!", Range);
2602  if (i != 0) {
2603  Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2604  "Intervals are overlapping", Range);
2605  Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
2606  Range);
2607  Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
2608  Range);
2609  }
2610  LastRange = ConstantRange(LowV, HighV);
2611  }
2612  if (NumRanges > 2) {
2613  APInt FirstLow =
2614  mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2615  APInt FirstHigh =
2616  mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2617  ConstantRange FirstRange(FirstLow, FirstHigh);
2618  Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
2619  "Intervals are overlapping", Range);
2620  Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
2621  Range);
2622  }
2623 }
2624 
2625 void Verifier::visitLoadInst(LoadInst &LI) {
2627  Assert(PTy, "Load operand must be a pointer.", &LI);
2628  Type *ElTy = LI.getType();
2630  "huge alignment values are unsupported", &LI);
2631  if (LI.isAtomic()) {
2633  "Load cannot have Release ordering", &LI);
2634  Assert(LI.getAlignment() != 0,
2635  "Atomic load must specify explicit alignment", &LI);
2636  if (!ElTy->isPointerTy()) {
2637  Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
2638  &LI, ElTy);
2639  unsigned Size = ElTy->getPrimitiveSizeInBits();
2640  Assert(Size >= 8 && !(Size & (Size - 1)),
2641  "atomic load operand must be power-of-two byte-sized integer", &LI,
2642  ElTy);
2643  }
2644  } else {
2646  "Non-atomic load cannot have SynchronizationScope specified", &LI);
2647  }
2648 
2649  visitInstruction(LI);
2650 }
2651 
2652 void Verifier::visitStoreInst(StoreInst &SI) {
2654  Assert(PTy, "Store operand must be a pointer.", &SI);
2655  Type *ElTy = PTy->getElementType();
2656  Assert(ElTy == SI.getOperand(0)->getType(),
2657  "Stored value type does not match pointer operand type!", &SI, ElTy);
2659  "huge alignment values are unsupported", &SI);
2660  if (SI.isAtomic()) {
2662  "Store cannot have Acquire ordering", &SI);
2663  Assert(SI.getAlignment() != 0,
2664  "Atomic store must specify explicit alignment", &SI);
2665  if (!ElTy->isPointerTy()) {
2666  Assert(ElTy->isIntegerTy(),
2667  "atomic store operand must have integer type!", &SI, ElTy);
2668  unsigned Size = ElTy->getPrimitiveSizeInBits();
2669  Assert(Size >= 8 && !(Size & (Size - 1)),
2670  "atomic store operand must be power-of-two byte-sized integer",
2671  &SI, ElTy);
2672  }
2673  } else {
2675  "Non-atomic store cannot have SynchronizationScope specified", &SI);
2676  }
2677  visitInstruction(SI);
2678 }
2679 
2680 void Verifier::visitAllocaInst(AllocaInst &AI) {
2682  PointerType *PTy = AI.getType();
2683  Assert(PTy->getAddressSpace() == 0,
2684  "Allocation instruction pointer not in the generic address space!",
2685  &AI);
2686  Assert(AI.getAllocatedType()->isSized(&Visited),
2687  "Cannot allocate unsized type", &AI);
2689  "Alloca array size must have integer type", &AI);
2691  "huge alignment values are unsupported", &AI);
2692 
2693  visitInstruction(AI);
2694 }
2695 
2696 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2697 
2698  // FIXME: more conditions???
2700  "cmpxchg instructions must be atomic.", &CXI);
2702  "cmpxchg instructions must be atomic.", &CXI);
2704  "cmpxchg instructions cannot be unordered.", &CXI);
2706  "cmpxchg instructions cannot be unordered.", &CXI);
2708  "cmpxchg instructions be at least as constrained on success as fail",
2709  &CXI);
2710  Assert(CXI.getFailureOrdering() != Release &&
2712  "cmpxchg failure ordering cannot include release semantics", &CXI);
2713 
2714  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2715  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2716  Type *ElTy = PTy->getElementType();
2717  Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
2718  ElTy);
2719  unsigned Size = ElTy->getPrimitiveSizeInBits();
2720  Assert(Size >= 8 && !(Size & (Size - 1)),
2721  "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
2722  Assert(ElTy == CXI.getOperand(1)->getType(),
2723  "Expected value type does not match pointer operand type!", &CXI,
2724  ElTy);
2725  Assert(ElTy == CXI.getOperand(2)->getType(),
2726  "Stored value type does not match pointer operand type!", &CXI, ElTy);
2727  visitInstruction(CXI);
2728 }
2729 
2730 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2731  Assert(RMWI.getOrdering() != NotAtomic,
2732  "atomicrmw instructions must be atomic.", &RMWI);
2733  Assert(RMWI.getOrdering() != Unordered,
2734  "atomicrmw instructions cannot be unordered.", &RMWI);
2735  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2736  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2737  Type *ElTy = PTy->getElementType();
2738  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
2739  &RMWI, ElTy);
2740  unsigned Size = ElTy->getPrimitiveSizeInBits();
2741  Assert(Size >= 8 && !(Size & (Size - 1)),
2742  "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
2743  ElTy);
2744  Assert(ElTy == RMWI.getOperand(1)->getType(),
2745  "Argument value type does not match pointer operand type!", &RMWI,
2746  ElTy);
2749  "Invalid binary operation!", &RMWI);
2750  visitInstruction(RMWI);
2751 }
2752 
2753 void Verifier::visitFenceInst(FenceInst &FI) {
2754  const AtomicOrdering Ordering = FI.getOrdering();
2755  Assert(Ordering == Acquire || Ordering == Release ||
2756  Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2757  "fence instructions may only have "
2758  "acquire, release, acq_rel, or seq_cst ordering.",
2759  &FI);
2760  visitInstruction(FI);
2761 }
2762 
2763 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2765  EVI.getIndices()) == EVI.getType(),
2766  "Invalid ExtractValueInst operands!", &EVI);
2767 
2768  visitInstruction(EVI);
2769 }
2770 
2771 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2773  IVI.getIndices()) ==
2774  IVI.getOperand(1)->getType(),
2775  "Invalid InsertValueInst operands!", &IVI);
2776 
2777  visitInstruction(IVI);
2778 }
2779 
2780 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
2781  BasicBlock *BB = LPI.getParent();
2782 
2783  // The landingpad instruction is ill-formed if it doesn't have any clauses and
2784  // isn't a cleanup.
2785  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
2786  "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
2787 
2788  // The landingpad instruction defines its parent as a landing pad block. The
2789  // landing pad block may be branched to only by the unwind edge of an invoke.
2790  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
2791  const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
2792  Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2793  "Block containing LandingPadInst must be jumped to "
2794  "only by the unwind edge of an invoke.",
2795  &LPI);
2796  }
2797 
2798  Function *F = LPI.getParent()->getParent();
2799  Assert(F->hasPersonalityFn(),
2800  "LandingPadInst needs to be in a function with a personality.", &LPI);
2801 
2802  // The landingpad instruction must be the first non-PHI instruction in the
2803  // block.
2804  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
2805  "LandingPadInst not the first non-PHI instruction in the block.",
2806  &LPI);
2807 
2808  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2809  Constant *Clause = LPI.getClause(i);
2810  if (LPI.isCatch(i)) {
2811  Assert(isa<PointerType>(Clause->getType()),
2812  "Catch operand does not have pointer type!", &LPI);
2813  } else {
2814  Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
2815  Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
2816  "Filter operand is not an array of constants!", &LPI);
2817  }
2818  }
2819 
2820  visitInstruction(LPI);
2821 }
2822 
2823 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
2824  Instruction *Op = cast<Instruction>(I.getOperand(i));
2825  // If the we have an invalid invoke, don't try to compute the dominance.
2826  // We already reject it in the invoke specific checks and the dominance
2827  // computation doesn't handle multiple edges.
2828  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
2829  if (II->getNormalDest() == II->getUnwindDest())
2830  return;
2831  }
2832 
2833  const Use &U = I.getOperandUse(i);
2834  Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
2835  "Instruction does not dominate all uses!", Op, &I);
2836 }
2837 
2838 /// verifyInstruction - Verify that an instruction is well formed.
2839 ///
2840 void Verifier::visitInstruction(Instruction &I) {
2841  BasicBlock *BB = I.getParent();
2842  Assert(BB, "Instruction not embedded in basic block!", &I);
2843 
2844  if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
2845  for (User *U : I.users()) {
2846  Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
2847  "Only PHI nodes may reference their own value!", &I);
2848  }
2849  }
2850 
2851  // Check that void typed values don't have names
2852  Assert(!I.getType()->isVoidTy() || !I.hasName(),
2853  "Instruction has a name, but provides a void value!", &I);
2854 
2855  // Check that the return value of the instruction is either void or a legal
2856  // value type.
2857  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
2858  "Instruction returns a non-scalar type!", &I);
2859 
2860  // Check that the instruction doesn't produce metadata. Calls are already
2861  // checked against the callee type.
2862  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
2863  "Invalid use of metadata!", &I);
2864 
2865  // Check that all uses of the instruction, if they are instructions
2866  // themselves, actually have parent basic blocks. If the use is not an
2867  // instruction, it is an error!
2868  for (Use &U : I.uses()) {
2869  if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
2870  Assert(Used->getParent() != nullptr,
2871  "Instruction referencing"
2872  " instruction not embedded in a basic block!",
2873  &I, Used);
2874  else {
2875  CheckFailed("Use of instruction is not an instruction!", U);
2876  return;
2877  }
2878  }
2879 
2880  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2881  Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
2882 
2883  // Check to make sure that only first-class-values are operands to
2884  // instructions.
2885  if (!I.getOperand(i)->getType()->isFirstClassType()) {
2886  Assert(0, "Instruction operands must be first-class values!", &I);
2887  }
2888 
2889  if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
2890  // Check to make sure that the "address of" an intrinsic function is never
2891  // taken.
2892  Assert(
2893  !F->isIntrinsic() ||
2894  i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
2895  "Cannot take the address of an intrinsic!", &I);
2896  Assert(
2897  !F->isIntrinsic() || isa<CallInst>(I) ||
2898  F->getIntrinsicID() == Intrinsic::donothing ||
2899  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
2900  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
2901  F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
2902  "Cannot invoke an intrinsinc other than"
2903  " donothing or patchpoint",
2904  &I);
2905  Assert(F->getParent() == M, "Referencing function in another module!",
2906  &I);
2907  } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
2908  Assert(OpBB->getParent() == BB->getParent(),
2909  "Referring to a basic block in another function!", &I);
2910  } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
2911  Assert(OpArg->getParent() == BB->getParent(),
2912  "Referring to an argument in another function!", &I);
2913  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
2914  Assert(GV->getParent() == M, "Referencing global in another module!", &I);
2915  } else if (isa<Instruction>(I.getOperand(i))) {
2916  verifyDominatesUse(I, i);
2917  } else if (isa<InlineAsm>(I.getOperand(i))) {
2918  Assert((i + 1 == e && isa<CallInst>(I)) ||
2919  (i + 3 == e && isa<InvokeInst>(I)),
2920  "Cannot take the address of an inline asm!", &I);
2921  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
2922  if (CE->getType()->isPtrOrPtrVectorTy()) {
2923  // If we have a ConstantExpr pointer, we need to see if it came from an
2924  // illegal bitcast (inttoptr <constant int> )
2927  Stack.push_back(CE);
2928 
2929  while (!Stack.empty()) {
2930  const ConstantExpr *V = Stack.pop_back_val();
2931  if (!Visited.insert(V).second)
2932  continue;
2933 
2934  VerifyConstantExprBitcastType(V);
2935 
2936  for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
2937  if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
2938  Stack.push_back(Op);
2939  }
2940  }
2941  }
2942  }
2943  }
2944 
2945  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
2947  "fpmath requires a floating point result!", &I);
2948  Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
2949  if (ConstantFP *CFP0 =
2950  mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
2951  APFloat Accuracy = CFP0->getValueAPF();
2952  Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
2953  "fpmath accuracy not a positive number!", &I);
2954  } else {
2955  Assert(false, "invalid fpmath accuracy!", &I);
2956  }
2957  }
2958 
2959  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
2960  Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
2961  "Ranges are only for loads, calls and invokes!", &I);
2962  visitRangeMetadata(I, Range, I.getType());
2963  }
2964 
2966  Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
2967  &I);
2968  Assert(isa<LoadInst>(I),
2969  "nonnull applies only to load instructions, use attributes"
2970  " for calls or invokes",
2971  &I);
2972  }
2973 
2974  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
2975  Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
2976  visitMDNode(*N);
2977  }
2978 
2979  InstsInThisBlock.insert(&I);
2980 }
2981 
2982 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
2983 /// intrinsic argument or return value) matches the type constraints specified
2984 /// by the .td file (e.g. an "any integer" argument really is an integer).
2985 ///
2986 /// This return true on error but does not print a message.
2987 bool Verifier::VerifyIntrinsicType(Type *Ty,
2989  SmallVectorImpl<Type*> &ArgTys) {
2990  using namespace Intrinsic;
2991 
2992  // If we ran out of descriptors, there are too many arguments.
2993  if (Infos.empty()) return true;
2994  IITDescriptor D = Infos.front();
2995  Infos = Infos.slice(1);
2996 
2997  switch (D.Kind) {
2998  case IITDescriptor::Void: return !Ty->isVoidTy();
2999  case IITDescriptor::VarArg: return true;
3000  case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
3001  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
3002  case IITDescriptor::Half: return !Ty->isHalfTy();
3003  case IITDescriptor::Float: return !Ty->isFloatTy();
3004  case IITDescriptor::Double: return !Ty->isDoubleTy();
3005  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
3006  case IITDescriptor::Vector: {
3007  VectorType *VT = dyn_cast<VectorType>(Ty);
3008  return !VT || VT->getNumElements() != D.Vector_Width ||
3009  VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
3010  }
3011  case IITDescriptor::Pointer: {
3012  PointerType *PT = dyn_cast<PointerType>(Ty);
3013  return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
3014  VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
3015  }
3016 
3017  case IITDescriptor::Struct: {
3018  StructType *ST = dyn_cast<StructType>(Ty);
3019  if (!ST || ST->getNumElements() != D.Struct_NumElements)
3020  return true;
3021 
3022  for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
3023  if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
3024  return true;
3025  return false;
3026  }
3027 
3029  // Two cases here - If this is the second occurrence of an argument, verify
3030  // that the later instance matches the previous instance.
3031  if (D.getArgumentNumber() < ArgTys.size())
3032  return Ty != ArgTys[D.getArgumentNumber()];
3033 
3034  // Otherwise, if this is the first instance of an argument, record it and
3035  // verify the "Any" kind.
3036  assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
3037  ArgTys.push_back(Ty);
3038 
3039  switch (D.getArgumentKind()) {
3040  case IITDescriptor::AK_Any: return false; // Success
3042  case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
3043  case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
3044  case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
3045  }
3046  llvm_unreachable("all argument kinds not covered");
3047 
3049  // This may only be used when referring to a previous vector argument.
3050  if (D.getArgumentNumber() >= ArgTys.size())
3051  return true;
3052 
3053  Type *NewTy = ArgTys[D.getArgumentNumber()];
3054  if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3056  else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3057  NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
3058  else
3059  return true;
3060 
3061  return Ty != NewTy;
3062  }
3064  // This may only be used when referring to a previous vector argument.
3065  if (D.getArgumentNumber() >= ArgTys.size())
3066  return true;
3067 
3068  Type *NewTy = ArgTys[D.getArgumentNumber()];
3069  if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3071  else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3072  NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
3073  else
3074  return true;
3075 
3076  return Ty != NewTy;
3077  }
3079  // This may only be used when referring to a previous vector argument.
3080  return D.getArgumentNumber() >= ArgTys.size() ||
3081  !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
3083  cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
3085  if (D.getArgumentNumber() >= ArgTys.size())
3086  return true;
3087  VectorType * ReferenceType =
3088  dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
3089  VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
3090  if (!ThisArgType || !ReferenceType ||
3091  (ReferenceType->getVectorNumElements() !=
3092  ThisArgType->getVectorNumElements()))
3093  return true;
3094  return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
3095  Infos, ArgTys);
3096  }
3098  if (D.getArgumentNumber() >= ArgTys.size())
3099  return true;
3100  Type * ReferenceType = ArgTys[D.getArgumentNumber()];
3101  PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
3102  return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
3103  }
3105  if (D.getArgumentNumber() >= ArgTys.size())
3106  return true;
3107  VectorType * ReferenceType =
3108  dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
3109  VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
3110  if (!ThisArgVecTy || !ReferenceType ||
3111  (ReferenceType->getVectorNumElements() !=
3112  ThisArgVecTy->getVectorNumElements()))
3113  return true;
3114  PointerType *ThisArgEltTy =
3115  dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
3116  if (!ThisArgEltTy)
3117  return true;
3118  return ThisArgEltTy->getElementType() !=
3119  ReferenceType->getVectorElementType();
3120  }
3121  }
3122  llvm_unreachable("unhandled");
3123 }
3124 
3125 /// \brief Verify if the intrinsic has variable arguments.
3126 /// This method is intended to be called after all the fixed arguments have been
3127 /// verified first.
3128 ///
3129 /// This method returns true on error and does not print an error message.
3130 bool
3131 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
3133  using namespace Intrinsic;
3134 
3135  // If there are no descriptors left, then it can't be a vararg.
3136  if (Infos.empty())
3137  return isVarArg;
3138 
3139  // There should be only one descriptor remaining at this point.
3140  if (Infos.size() != 1)
3141  return true;
3142 
3143  // Check and verify the descriptor.
3144  IITDescriptor D = Infos.front();
3145  Infos = Infos.slice(1);
3146  if (D.Kind == IITDescriptor::VarArg)
3147  return !isVarArg;
3148 
3149  return true;
3150 }
3151 
3152 /// Allow intrinsics to be verified in different ways.
3153 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3154  Function *IF = CS.getCalledFunction();
3155  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3156  IF);
3157 
3158  // Verify that the intrinsic prototype lines up with what the .td files
3159  // describe.
3160  FunctionType *IFTy = IF->getFunctionType();
3161  bool IsVarArg = IFTy->isVarArg();
3162 
3164  getIntrinsicInfoTableEntries(ID, Table);
3165  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3166 
3167  SmallVector<Type *, 4> ArgTys;
3168  Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
3169  "Intrinsic has incorrect return type!", IF);
3170  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3171  Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
3172  "Intrinsic has incorrect argument type!", IF);
3173 
3174  // Verify if the intrinsic call matches the vararg property.
3175  if (IsVarArg)
3176  Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3177  "Intrinsic was not defined with variable arguments!", IF);
3178  else
3179  Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3180  "Callsite was not defined with variable arguments!", IF);
3181 
3182  // All descriptors should be absorbed by now.
3183  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3184 
3185  // Now that we have the intrinsic ID and the actual argument types (and we
3186  // know they are legal for the intrinsic!) get the intrinsic name through the
3187  // usual means. This allows us to verify the mangling of argument types into
3188  // the name.
3189  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3190  Assert(ExpectedName == IF->getName(),
3191  "Intrinsic name not mangled correctly for type arguments! "
3192  "Should be: " +
3193  ExpectedName,
3194  IF);
3195 
3196  // If the intrinsic takes MDNode arguments, verify that they are either global
3197  // or are local to *this* function.
3198  for (Value *V : CS.args())
3199  if (auto *MD = dyn_cast<MetadataAsValue>(V))
3200  visitMetadataAsValue(*MD, CS.getCaller());
3201 
3202  switch (ID) {
3203  default:
3204  break;
3205  case Intrinsic::ctlz: // llvm.ctlz
3206  case Intrinsic::cttz: // llvm.cttz
3207  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3208  "is_zero_undef argument of bit counting intrinsics must be a "
3209  "constant int",
3210  CS);
3211  break;
3212  case Intrinsic::dbg_declare: // llvm.dbg.declare
3213  Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3214  "invalid llvm.dbg.declare intrinsic call 1", CS);
3215  visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3216  break;
3217  case Intrinsic::dbg_value: // llvm.dbg.value
3218  visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3219  break;
3220  case Intrinsic::memcpy:
3221  case Intrinsic::memmove:
3222  case Intrinsic::memset: {
3223  ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3224  Assert(AlignCI,
3225  "alignment argument of memory intrinsics must be a constant int",
3226  CS);
3227  const APInt &AlignVal = AlignCI->getValue();
3228  Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3229  "alignment argument of memory intrinsics must be a power of 2", CS);
3230  Assert(isa<ConstantInt>(CS.getArgOperand(4)),
3231  "isvolatile argument of memory intrinsics must be a constant int",
3232  CS);
3233  break;
3234  }
3235  case Intrinsic::gcroot:
3236  case Intrinsic::gcwrite:
3237  case Intrinsic::gcread:
3238  if (ID == Intrinsic::gcroot) {
3239  AllocaInst *AI =
3241  Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
3242  Assert(isa<Constant>(CS.getArgOperand(1)),
3243  "llvm.gcroot parameter #2 must be a constant.", CS);
3244  if (!AI->getAllocatedType()->isPointerTy()) {
3245  Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
3246  "llvm.gcroot parameter #1 must either be a pointer alloca, "
3247  "or argument #2 must be a non-null constant.",
3248  CS);
3249  }
3250  }
3251 
3252  Assert(CS.getParent()->getParent()->hasGC(),
3253  "Enclosing function does not use GC.", CS);
3254  break;
3255  case Intrinsic::init_trampoline:
3256  Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
3257  "llvm.init_trampoline parameter #2 must resolve to a function.",
3258  CS);
3259  break;
3260  case Intrinsic::prefetch:
3261  Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
3262  isa<ConstantInt>(CS.getArgOperand(2)) &&
3263  cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
3264  cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
3265  "invalid arguments to llvm.prefetch", CS);
3266  break;
3267  case Intrinsic::stackprotector:
3268  Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
3269  "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
3270  break;
3271  case Intrinsic::lifetime_start:
3272  case Intrinsic::lifetime_end:
3273  case Intrinsic::invariant_start:
3274  Assert(isa<ConstantInt>(CS.getArgOperand(0)),
3275  "size argument of memory use markers must be a constant integer",
3276  CS);
3277  break;
3278  case Intrinsic::invariant_end:
3279  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3280  "llvm.invariant.end parameter #2 must be a constant integer", CS);
3281  break;
3282 
3283  case Intrinsic::localescape: {
3284  BasicBlock *BB = CS.getParent();
3285  Assert(BB == &BB->getParent()->front(),
3286  "llvm.localescape used outside of entry block", CS);
3287  Assert(!SawFrameEscape,
3288  "multiple calls to llvm.localescape in one function", CS);
3289  for (Value *Arg : CS.args()) {
3290  if (isa<ConstantPointerNull>(Arg))
3291  continue; // Null values are allowed as placeholders.
3292  auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3293  Assert(AI && AI->isStaticAlloca(),
3294  "llvm.localescape only accepts static allocas", CS);
3295  }
3296  FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
3297  SawFrameEscape = true;
3298  break;
3299  }
3300  case Intrinsic::localrecover: {
3301  Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
3302  Function *Fn = dyn_cast<Function>(FnArg);
3303  Assert(Fn && !Fn->isDeclaration(),
3304  "llvm.localrecover first "
3305  "argument must be function defined in this module",
3306  CS);
3307  auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
3308  Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
3309  CS);
3310  auto &Entry = FrameEscapeInfo[Fn];
3311  Entry.second = unsigned(
3312  std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3313  break;
3314  }
3315 
3316  case Intrinsic::experimental_gc_statepoint:
3317  Assert(!CS.isInlineAsm(),
3318  "gc.statepoint support for inline assembly unimplemented", CS);
3319  Assert(CS.getParent()->getParent()->hasGC(),
3320  "Enclosing function does not use GC.", CS);
3321 
3322  VerifyStatepoint(CS);
3323  break;
3324  case Intrinsic::experimental_gc_result_int:
3325  case Intrinsic::experimental_gc_result_float:
3326  case Intrinsic::experimental_gc_result_ptr:
3327  case Intrinsic::experimental_gc_result: {
3328  Assert(CS.getParent()->getParent()->hasGC(),
3329  "Enclosing function does not use GC.", CS);
3330  // Are we tied to a statepoint properly?
3331  CallSite StatepointCS(CS.getArgOperand(0));
3332  const Function *StatepointFn =
3333  StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
3334  Assert(StatepointFn && StatepointFn->isDeclaration() &&
3335  StatepointFn->getIntrinsicID() ==
3336  Intrinsic::experimental_gc_statepoint,
3337  "gc.result operand #1 must be from a statepoint", CS,
3338  CS.getArgOperand(0));
3339 
3340  // Assert that result type matches wrapped callee.
3341  const Value *Target = StatepointCS.getArgument(2);
3342  const PointerType *PT = cast<PointerType>(Target->getType());
3343  const FunctionType *TargetFuncType =
3344  cast<FunctionType>(PT->getElementType());
3345  Assert(CS.getType() == TargetFuncType->getReturnType(),
3346  "gc.result result type does not match wrapped callee", CS);
3347  break;
3348  }
3349  case Intrinsic::experimental_gc_relocate: {
3350  Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
3351 
3352  // Check that this relocate is correctly tied to the statepoint
3353 
3354  // This is case for relocate on the unwinding path of an invoke statepoint
3355  if (ExtractValueInst *ExtractValue =
3356  dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) {
3357  Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
3358  "gc relocate on unwind path incorrectly linked to the statepoint",
3359  CS);
3360 
3361  const BasicBlock *InvokeBB =
3362  ExtractValue->getParent()->getUniquePredecessor();
3363 
3364  // Landingpad relocates should have only one predecessor with invoke
3365  // statepoint terminator
3366  Assert(InvokeBB, "safepoints should have unique landingpads",
3367  ExtractValue->getParent());
3368  Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
3369  InvokeBB);
3370  Assert(isStatepoint(InvokeBB->getTerminator()),
3371  "gc relocate should be linked to a statepoint", InvokeBB);
3372  }
3373  else {
3374  // In all other cases relocate should be tied to the statepoint directly.
3375  // This covers relocates on a normal return path of invoke statepoint and
3376  // relocates of a call statepoint
3377  auto Token = CS.getArgOperand(0);
3378  Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
3379  "gc relocate is incorrectly tied to the statepoint", CS, Token);
3380  }
3381 
3382  // Verify rest of the relocate arguments
3383 
3384  GCRelocateOperands Ops(CS);
3385  ImmutableCallSite StatepointCS(Ops.getStatepoint());
3386 
3387  // Both the base and derived must be piped through the safepoint
3388  Value* Base = CS.getArgOperand(1);
3389  Assert(isa<ConstantInt>(Base),
3390  "gc.relocate operand #2 must be integer offset", CS);
3391 
3392  Value* Derived = CS.getArgOperand(2);
3393  Assert(isa<ConstantInt>(Derived),
3394  "gc.relocate operand #3 must be integer offset", CS);
3395 
3396  const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
3397  const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
3398  // Check the bounds
3399  Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
3400  "gc.relocate: statepoint base index out of bounds", CS);
3401  Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
3402  "gc.relocate: statepoint derived index out of bounds", CS);
3403 
3404  // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
3405  // section of the statepoint's argument
3406  Assert(StatepointCS.arg_size() > 0,
3407  "gc.statepoint: insufficient arguments");
3408  Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
3409  "gc.statement: number of call arguments must be constant integer");
3410  const unsigned NumCallArgs =
3411  cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
3412  Assert(StatepointCS.arg_size() > NumCallArgs + 5,
3413  "gc.statepoint: mismatch in number of call arguments");
3414  Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
3415  "gc.statepoint: number of transition arguments must be "
3416  "a constant integer");
3417  const int NumTransitionArgs =
3418  cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
3419  ->getZExtValue();
3420  const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
3421  Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
3422  "gc.statepoint: number of deoptimization arguments must be "
3423  "a constant integer");
3424  const int NumDeoptArgs =
3425  cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
3426  const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
3427  const int GCParamArgsEnd = StatepointCS.arg_size();
3428  Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
3429  "gc.relocate: statepoint base index doesn't fall within the "
3430  "'gc parameters' section of the statepoint call",
3431  CS);
3432  Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
3433  "gc.relocate: statepoint derived index doesn't fall within the "
3434  "'gc parameters' section of the statepoint call",
3435  CS);
3436 
3437  // Relocated value must be a pointer type, but gc_relocate does not need to return the
3438  // same pointer type as the relocated pointer. It can be casted to the correct type later
3439  // if it's desired. However, they must have the same address space.
3441  Assert(Operands.getDerivedPtr()->getType()->isPointerTy(),
3442  "gc.relocate: relocated value must be a gc pointer", CS);
3443 
3444  // gc_relocate return type must be a pointer type, and is verified earlier in
3445  // VerifyIntrinsicType().
3446  Assert(cast<PointerType>(CS.getType())->getAddressSpace() ==
3447  cast<PointerType>(Operands.getDerivedPtr()->getType())->getAddressSpace(),
3448  "gc.relocate: relocating a pointer shouldn't change its address space", CS);
3449  break;
3450  }
3451  };
3452 }
3453 
3454 /// \brief Carefully grab the subprogram from a local scope.
3455 ///
3456 /// This carefully grabs the subprogram from a local scope, avoiding the
3457 /// built-in assertions that would typically fire.
3458 static DISubprogram *getSubprogram(Metadata *LocalScope) {
3459  if (!LocalScope)
3460  return nullptr;
3461 
3462  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
3463  return SP;
3464 
3465  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
3466  return getSubprogram(LB->getRawScope());
3467 
3468  // Just return null; broken scope chains are checked elsewhere.
3469  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
3470  return nullptr;
3471 }
3472 
3473 template <class DbgIntrinsicTy>
3474 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
3475  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
3476  Assert(isa<ValueAsMetadata>(MD) ||
3477  (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
3478  "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
3479  Assert(isa<DILocalVariable>(DII.getRawVariable()),
3480  "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
3481  DII.getRawVariable());
3482  Assert(isa<DIExpression>(DII.getRawExpression()),
3483  "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
3484  DII.getRawExpression());
3485 
3486  // Ignore broken !dbg attachments; they're checked elsewhere.
3487  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
3488  if (!isa<DILocation>(N))
3489  return;
3490 
3491  BasicBlock *BB = DII.getParent();
3492  Function *F = BB ? BB->getParent() : nullptr;
3493 
3494  // The scopes for variables and !dbg attachments must agree.
3495  DILocalVariable *Var = DII.getVariable();
3496  DILocation *Loc = DII.getDebugLoc();
3497  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
3498  &DII, BB, F);
3499 
3500  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
3501  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
3502  if (!VarSP || !LocSP)
3503  return; // Broken scope chains are checked elsewhere.
3504 
3505  Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
3506  " variable and !dbg attachment",
3507  &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
3508  Loc->getScope()->getSubprogram());
3509 }
3510 
3511 template <class MapTy>
3512 static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
3513  // Be careful of broken types (checked elsewhere).
3514  const Metadata *RawType = V.getRawType();
3515  while (RawType) {
3516  // Try to get the size directly.
3517  if (auto *T = dyn_cast<DIType>(RawType))
3518  if (uint64_t Size = T->getSizeInBits())
3519  return Size;
3520 
3521  if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
3522  // Look at the base type.
3523  RawType = DT->getRawBaseType();
3524  continue;
3525  }
3526 
3527  if (auto *S = dyn_cast<MDString>(RawType)) {
3528  // Don't error on missing types (checked elsewhere).
3529  RawType = Map.lookup(S);
3530  continue;
3531  }
3532 
3533  // Missing type or size.
3534  break;
3535  }
3536 
3537  // Fail gracefully.
3538  return 0;
3539 }
3540 
3541 template <class MapTy>
3542 void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
3543  const MapTy &TypeRefs) {
3544  DILocalVariable *V;
3545  DIExpression *E;
3546  if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
3547  V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
3548  E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
3549  } else {
3550  auto *DDI = cast<DbgDeclareInst>(&I);
3551  V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
3552  E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
3553  }
3554 
3555  // We don't know whether this intrinsic verified correctly.
3556  if (!V || !E || !E->isValid())
3557  return;
3558 
3559  // Nothing to do if this isn't a bit piece expression.
3560  if (!E->isBitPiece())
3561  return;
3562 
3563  // The frontend helps out GDB by emitting the members of local anonymous
3564  // unions as artificial local variables with shared storage. When SROA splits
3565  // the storage for artificial local variables that are smaller than the entire
3566  // union, the overhang piece will be outside of the allotted space for the
3567  // variable and this check fails.
3568  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
3569  if (V->isArtificial())
3570  return;
3571 
3572  // If there's no size, the type is broken, but that should be checked
3573  // elsewhere.
3574  uint64_t VarSize = getVariableSize(*V, TypeRefs);
3575  if (!VarSize)
3576  return;
3577 
3578  unsigned PieceSize = E->getBitPieceSize();
3579  unsigned PieceOffset = E->getBitPieceOffset();
3580  Assert(PieceSize + PieceOffset <= VarSize,
3581  "piece is larger than or outside of variable", &I, V, E);
3582  Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
3583 }
3584 
3585 void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
3586  // This is in its own function so we get an error for each bad type ref (not
3587  // just the first).
3588  Assert(false, "unresolved type ref", S, N);
3589 }
3590 
3591 void Verifier::verifyTypeRefs() {
3592  auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
3593  if (!CUs)
3594  return;
3595 
3596  // Visit all the compile units again to map the type references.
3598  for (auto *CU : CUs->operands())
3599  if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
3600  for (DIType *Op : Ts)
3601  if (auto *T = dyn_cast<DICompositeType>(Op))
3602  if (auto *S = T->getRawIdentifier()) {
3603  UnresolvedTypeRefs.erase(S);
3604  TypeRefs.insert(std::make_pair(S, T));
3605  }
3606 
3607  // Verify debug info intrinsic bit piece expressions. This needs a second
3608  // pass through the intructions, since we haven't built TypeRefs yet when
3609  // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
3610  // later/now would queue up some that could be later deleted.
3611  for (const Function &F : *M)
3612  for (const BasicBlock &BB : F)
3613  for (const Instruction &I : BB)
3614  if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3615  verifyBitPieceExpression(*DII, TypeRefs);
3616 
3617  // Return early if all typerefs were resolved.
3618  if (UnresolvedTypeRefs.empty())
3619  return;
3620 
3621  // Sort the unresolved references by name so the output is deterministic.
3622  typedef std::pair<const MDString *, const MDNode *> TypeRef;
3623  SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
3624  UnresolvedTypeRefs.end());
3625  std::sort(Unresolved.begin(), Unresolved.end(),
3626  [](const TypeRef &LHS, const TypeRef &RHS) {
3627  return LHS.first->getString() < RHS.first->getString();
3628  });
3629 
3630  // Visit the unresolved refs (printing out the errors).
3631  for (const TypeRef &TR : Unresolved)
3632  visitUnresolvedTypeRef(TR.first, TR.second);
3633 }
3634 
3635 //===----------------------------------------------------------------------===//
3636 // Implement the public interfaces to this file...
3637 //===----------------------------------------------------------------------===//
3638 
3640  Function &F = const_cast<Function &>(f);
3641  assert(!F.isDeclaration() && "Cannot verify external functions");
3642 
3643  raw_null_ostream NullStr;
3644  Verifier V(OS ? *OS : NullStr);
3645 
3646  // Note that this function's return value is inverted from what you would
3647  // expect of a function called "verify".
3648  return !V.verify(F);
3649 }
3650 
3652  raw_null_ostream NullStr;
3653  Verifier V(OS ? *OS : NullStr);
3654 
3655  bool Broken = false;
3656  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
3657  if (!I->isDeclaration() && !I->isMaterializable())
3658  Broken |= !V.verify(*I);
3659 
3660  // Note that this function's return value is inverted from what you would
3661  // expect of a function called "verify".
3662  return !V.verify(M) || Broken;
3663 }
3664 
3665 namespace {
3666 struct VerifierLegacyPass : public FunctionPass {
3667  static char ID;
3668 
3669  Verifier V;
3670  bool FatalErrors;
3671 
3672  VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
3674  }
3675  explicit VerifierLegacyPass(bool FatalErrors)
3676  : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
3678  }
3679 
3680  bool runOnFunction(Function &F) override {
3681  if (!V.verify(F) && FatalErrors)
3682  report_fatal_error("Broken function found, compilation aborted!");
3683 
3684  return false;
3685  }
3686 
3687  bool doFinalization(Module &M) override {
3688  if (!V.verify(M) && FatalErrors)
3689  report_fatal_error("Broken module found, compilation aborted!");
3690 
3691  return false;
3692  }
3693 
3694  void getAnalysisUsage(AnalysisUsage &AU) const override {
3695  AU.setPreservesAll();
3696  }
3697 };
3698 }
3699 
3700 char VerifierLegacyPass::ID = 0;
3701 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
3702 
3703 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
3704  return new VerifierLegacyPass(FatalErrors);
3705 }
3706 
3708  if (verifyModule(M, &dbgs()) && FatalErrors)
3709  report_fatal_error("Broken module found, compilation aborted!");
3710 
3711  return PreservedAnalyses::all();
3712 }
3713 
3715  if (verifyFunction(F, &dbgs()) && FatalErrors)
3716  report_fatal_error("Broken function found, compilation aborted!");
3717 
3718  return PreservedAnalyses::all();
3719 }
bool isInt< 32 >(int64_t x)
Definition: MathExtras.h:276
Metadata * getRawScope() const
DISubprogramArray getSubprograms() const
const Use & getOperandUse(unsigned i) const
Definition: User.h:129
ReturnInst - Return a value (possibly void), from a function.
bool describes(const Function *F) const
Check if this subprogram decribes the given function.
StringRef getName() const
Definition: Metadata.cpp:986
AtomicOrdering getFailureOrdering() const
Returns the ordering constraint on this cmpxchg.
Definition: Instructions.h:597
LinkageTypes getLinkage() const
Definition: GlobalValue.h:289
Intel_OCL_BI - Calling conventions for Intel OpenCL built-ins.
Definition: CallingConv.h:133
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:140
CaseIt case_end()
Returns a read/write iterator that points one past the last in the SwitchInst.
iterator_range< use_iterator > uses()
Definition: Value.h:283
bool hasComdat() const
Definition: GlobalObject.h:60
bool hasInAllocaArgument() const
Determine if there are is an inalloca argument.
Definition: CallSite.h:344
ExtractValueInst - This instruction extracts a struct member or array element value from an aggregate...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:223
LLVM Argument representation.
Definition: Argument.h:35
Base class for instruction visitors.
Definition: InstVisitor.h:81
Value * getAggregateOperand()
Alignment of stack for function (3 bits) stored as log2 of alignment with +1 bias 0 means unaligned (...
Definition: Attributes.h:106
Type * getSourceElementType() const
Definition: Instructions.h:926
bool hasName() const
Definition: Value.h:228
SynchronizationScope getSynchScope() const
Definition: Instructions.h:383
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:159
ArrayRef< unsigned > getIndices() const
Sign extended before/after call.
Definition: Attributes.h:105
MDTuple * get() const
Definition: Metadata.h:1102
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
Definition: StringMap.h:28
ValTy * getArgument(unsigned ArgNo) const
Definition: CallSite.h:119
static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
isValidOperands - Return true if an insertelement instruction can be formed with the specified operan...
Force argument to be passed in register.
Definition: Attributes.h:78
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:114
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
unsigned getNumParams() const
getNumParams - Return the number of fixed parameters this function type requires. ...
Definition: DerivedTypes.h:136
Function is called early and/or often, so lazy binding isn't worthwhile.
Definition: Attributes.h:89
AtomicOrdering getSuccessOrdering() const
Returns the ordering constraint on this cmpxchg.
Definition: Instructions.h:592
FenceInst - an instruction for ordering other memory operations.
Definition: Instructions.h:445
iterator end()
Definition: Function.h:459
InstrTy * getInstruction() const
Definition: CallSite.h:82
AtomicCmpXchgInst - an instruction that atomically checks whether a specified value is in a memory lo...
Definition: Instructions.h:515
Metadata * getRawSubprograms() const
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:137
DILocalScope * getScope() const
Get the local scope for this variable.
This class represents zero extension of integer types.
unsigned getNumOperands() const
Definition: User.h:138
A raw_ostream that discards all output.
Definition: raw_ostream.h:525
Nested function static chain.
Definition: Attributes.h:82
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:942
Type::subtype_iterator param_iterator
Definition: DerivedTypes.h:123
PTX_Device - Call to a PTX device function.
Definition: CallingConv.h:112
int64_t getCount() const
Metadata * getRawFile() const
Return the raw underlying file.
Type * getValueType() const
Definition: GlobalValue.h:187
CallInst - This class represents a function call, abstracting a target machine's calling convention...
bool isIntrinsic() const
Definition: Function.h:160
named_metadata_iterator named_metadata_end()
Definition: Module.h:614
bool hasAppendingLinkage() const
Definition: GlobalValue.h:277
Metadata * getRawType() const
This file contains the declarations for metadata subclasses.
FunctionPass * createVerifierPass(bool FatalErrors=true)
Create a verifier pass.
Definition: Verifier.cpp:3703
CaseIt case_begin()
Returns a read/write iterator that points to the first case in SwitchInst.
BBTy * getParent() const
Get the basic block containing the call site.
Definition: CallSite.h:87
Source said inlining was desirable.
Definition: Attributes.h:77
ShuffleVectorInst - This instruction constructs a fixed permutation of two input vectors.
bool isDoubleTy() const
isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:146
bool hasAvailableExternallyLinkage() const
Definition: GlobalValue.h:261
iterator begin(unsigned Slot) const
bool isPtrOrPtrVectorTy() const
isPtrOrPtrVectorTy - Return true if this is a pointer type or a vector of pointer types...
Definition: Type.h:222
Type * getReturnType() const
Definition: Function.cpp:233
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:111
unsigned getParamAlignment(unsigned Index) const
Return the alignment for the specified function parameter.
Definition: Attributes.cpp:997
const Instruction & front() const
Definition: BasicBlock.h:243
Metadata node.
Definition: Metadata.h:740
F(f)
FunTy * getCaller() const
getCaller - Return the caller function for this call site
Definition: CallSite.h:170
This class represents a sign extension of integer types.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:472
LoadInst - an instruction for reading from memory.
Definition: Instructions.h:177
bool isValidMetadataNullArray(const MDTuple &N)
Definition: Verifier.cpp:747
Typed, array-like tuple of metadata.
Definition: Metadata.h:1078
AttrBuilder & addAttribute(Attribute::AttrKind Val)
Add an attribute to the builder.
AtomicRMWInst - an instruction that atomically reads a memory location, combines it with another valu...
Definition: Instructions.h:674
Hexagon Common GEP
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: Type.cpp:216
static VectorType * getTruncatedElementVectorType(VectorType *VTy)
VectorType::getTruncatedElementVectorType - This static method is like getInteger except that the ele...
Definition: DerivedTypes.h:399
void reserve(size_type N)
Definition: SmallVector.h:401
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const
Return true if the attribute exists at the given index.
Definition: Attributes.cpp:956
Metadata * getRawScope() const
const Constant * getAliasee() const
Definition: GlobalAlias.h:81
void print(raw_ostream &ROS) const
Definition: AsmWriter.cpp:3154
unsigned getOpcode() const
getOpcode - Return the opcode at the root of this constant expression
Definition: Constants.h:1144
bool isFiniteNonZero() const
Definition: APFloat.h:437
Naked function.
Definition: Attributes.h:81
Tuple of metadata.
Definition: Metadata.h:972
A scope for locals.
unsigned getColumn() const
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
Reports a serious error, calling any installed error handler.
size_t arg_size() const
Definition: Function.cpp:301
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:188
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:242
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:231
Adds a requirement that another module flag be present and have a specified value after linking is pe...
Definition: Module.h:171
ArrayRef< unsigned > getIndices() const
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:169
Appends the two values, which are required to be metadata nodes.
Definition: Module.h:179
Base class for DIDerivedType and DICompositeType.
A tuple of MDNodes.
Definition: Metadata.h:1127
This class represents a conversion between pointers from one address space to another.
static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy)
This method can be used to determine if a cast from S to DstTy using Opcode op is valid or not...
bool hasCommonLinkage() const
Definition: GlobalValue.h:282
static Type * getIndexedType(Type *Agg, ArrayRef< unsigned > Idxs)
getIndexedType - Returns the type of the element that would be extracted with an extractvalue instruc...
StringRef getName() const
SelectInst - This class represents the LLVM 'select' instruction.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:79
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:106
NodeTy * getNextNode()
Get the next node, or 0 for the list tail.
Definition: ilist_node.h:80
unsigned getTag() const
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:406
StructType - Class to represent struct types.
Definition: DerivedTypes.h:191
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Definition: ErrorHandling.h:98
Array subrange.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:69
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APInt.h:33
bool canLosslesslyBitCastTo(Type *Ty) const
canLosslesslyBitCastTo - Return true if this type could be converted with a lossless BitCast to type ...
Definition: Type.cpp:65
Metadata * getRawRetainedTypes() const
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc.
Definition: BasicBlock.h:306
bool isSized(SmallPtrSetImpl< const Type * > *Visited=nullptr) const
isSized - Return true if it makes sense to take the size of this type.
Definition: Type.h:268
DITypeArray getRetainedTypes() const
bool isMustTailCall() const
Function must be in a unwind table.
Definition: Attributes.h:118
Type * getVectorElementType() const
Definition: Type.h:364
StringRef getName() const
static const unsigned MaximumAlignment
Definition: Value.h:463
Type * getPointerOperandType() const
getPointerOperandType - Method to return the pointer operand as a PointerType.
Definition: Instructions.h:971
#define false
Definition: ConvertUTF.c:65
StringRef getName() const
Definition: Comdat.cpp:25
Function does not access memory.
Definition: Attributes.h:99
BasicBlock * getDestination(unsigned i)
getDestination - Return the specified destination.
Hidden pointer to structure to return.
Definition: Attributes.h:114
DITypeRefArray getTypeArray() const
Function creates no aliases of pointer.
Definition: Attributes.h:85
bool hasPrivateLinkage() const
Definition: GlobalValue.h:279
SynchronizationScope getSynchScope() const
Definition: Instructions.h:261
This class represents a cast from a pointer to an integer.
AtomicOrdering
Definition: Instructions.h:38
Metadata * getRawFile() const
global_iterator global_begin()
Definition: Module.h:552
bool isStatepoint(const ImmutableCallSite &CS)
Definition: Statepoint.cpp:22
static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
isValidOperands - Return true if a shufflevector instruction can be formed with the specified operand...
iterator_range< IterTy > args() const
Definition: CallSite.h:158
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:90
Metadata * getRawStaticDataMemberDeclaration() const
Subprogram description.
ConstantExpr - a constant value that is initialized with an expression using other constant values...
Definition: Constants.h:852
FunctionType - Class to represent function types.
Definition: DerivedTypes.h:96
AtomicOrdering getOrdering() const
Returns the ordering constraint on this RMW.
Definition: Instructions.h:769
static bool isTypeCongruent(Type *L, Type *R)
Two types are "congruent" if they are identical, or if they are both pointer types with different poi...
Definition: Verifier.cpp:2314
Safe Stack protection.
Definition: Attributes.h:113
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:57
ValTy * getCalledValue() const
getCalledValue - Return the pointer to function that is being called.
Definition: CallSite.h:91
void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
Definition: AsmWriter.cpp:3287
bool isHalfTy() const
isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
Definition: Type.h:140
ArrayRef< T > slice(unsigned N) const
slice(n) - Chop off the first N elements of the array.
Definition: ArrayRef.h:165
#define T
#define Assert(C,...)
Definition: Verifier.cpp:416
ArrayType - Class to represent array types.
Definition: DerivedTypes.h:336
unsigned getNumArgOperands() const
Definition: CallSite.h:196
bool isInlineAsm() const
Definition: CallSite.h:204
Enumeration value.
This instruction compares its operands according to the predicate given to the constructor.
PTX_Kernel - Call to a PTX kernel.
Definition: CallingConv.h:108
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1119
bool isFirstClassType() const
isFirstClassType - Return true if the type is "first class", meaning it is a valid type for a Value...
Definition: Type.h:242
This class represents a no-op cast from one type to another.
op_iterator idx_begin()
Definition: Instructions.h:954
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
FunctionType::get - This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:361
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: ArrayRef.h:31
Pass structure by value.
Definition: Attributes.h:73
unsigned getNumClauses() const
getNumClauses - Get the number of clauses for this landing pad.
StoreInst - an instruction for storing to memory.
Definition: Instructions.h:316
Metadata * getRawVTableHolder() const
This class represents a cast from floating point to signed integer.
bool isArrayTy() const
isArrayTy - True if this is an instance of ArrayType.
Definition: Type.h:213
Metadata * getRawEnumTypes() const
Value wrapper in the Metadata hierarchy.
Definition: Metadata.h:252
unsigned getNumElements() const
Return the number of elements in the Vector type.
Definition: DerivedTypes.h:432
Debug location.
iterator begin()
Definition: Function.h:457
Stack protection.
Definition: Attributes.h:110
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:67
DIScopeRef getScope() const
Type * getElementType() const
Definition: DerivedTypes.h:323
This class represents a truncation of integer types.
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:134
bool isAtomic() const
isAtomic - Return true if this instruction has an AtomicOrdering of unordered or higher.
BasicBlock * getNormalDest() const
PointerType - Class to represent pointers.
Definition: DerivedTypes.h:449
Flag
These should be considered private to the implementation of the MCInstrDesc class.
Definition: MCInstrDesc.h:97
bool isValidMetadataArray(const MDTuple &N)
Definition: Verifier.cpp:742
Metadata * getRawScope() const
GetElementPtrInst - an instruction for type-safe pointer arithmetic to access elements of arrays and ...
Definition: Instructions.h:830
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
bool doesNotAccessMemory() const
Determine if the call does not access memory.
Definition: CallSite.h:278
Value * stripPointerCastsNoFollowAliases()
Strip off pointer casts and all-zero GEPs.
Definition: Value.cpp:462
bool isFilter(unsigned Idx) const
isFilter - Return 'true' if the clause and index Idx is a filter clause.
bool isX86_MMXTy() const
isX86_MMXTy - Return true if this is X86 MMX.
Definition: Type.h:179
bool isIntOrIntVectorTy() const
isIntOrIntVectorTy - Return true if this is an integer type or a vector of integer types...
Definition: Type.h:201
Metadata * getRawElements() const
unsigned getNumSlots() const
Return the number of slots used in this attribute list.
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:131
#define true
Definition: ConvertUTF.c:66
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:325
bool erase(const KeyT &Val)
Definition: DenseMap.h:206
InsertElementInst - This instruction inserts a single (scalar) element into a VectorType value...
static VectorType * getHalfElementsVectorType(VectorType *VTy)
VectorType::getHalfElementsVectorType - This static method returns a VectorType with half as many ele...
Definition: DerivedTypes.h:411
LandingPadInst - The landingpad instruction holds all of the information necessary to generate correc...
Emits an error if two values disagree, otherwise the resulting value is that of the operands...
Definition: Module.h:158
Metadata * getRawFile() const
unsigned getAlignment() const
getAlignment - Return the alignment of the access that is being performed
Definition: Instructions.h:365
Subclasses of this class are all able to terminate a basic block.
Definition: InstrTypes.h:35
An abstract set of preserved analyses following a transformation pass run.
Definition: PassManager.h:69
alias_iterator alias_end()
Definition: Module.h:593
LLVM Basic Block Representation.
Definition: BasicBlock.h:65
bool isTemporary() const
Definition: Metadata.h:819
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:41
BranchInst - Conditional or Unconditional Branch instruction.
FunTy * getCalledFunction() const
getCalledFunction - Return the function being called if this is a direct call, otherwise return null ...
Definition: CallSite.h:99
bool isVectorTy() const
isVectorTy - True if this is an instance of VectorType.
Definition: Type.h:226
Type * getElementType(unsigned N) const
Definition: DerivedTypes.h:291
This is an important base class in LLVM.
Definition: Constant.h:41
void getModuleFlagsMetadata(SmallVectorImpl< ModuleFlagEntry > &Flags) const
Returns the module flags in the provided vector.
Definition: Module.cpp:293
PointerType * getType() const
getType - Overload to return most specific pointer type
Definition: Instructions.h:115
Metadata * getRawType() const
DIFile * getFile() const
bool isGCRelocate(const Value *V)
Definition: Statepoint.cpp:50
This file contains the declarations for the subclasses of Constant, which represent the different fla...
IndirectBrInst - Indirect Branch Instruction.
bool isFloatTy() const
isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:143
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1895
Base class for template parameters.
ModFlagBehavior
This enumeration defines the supported behaviors of module flags.
Definition: Module.h:155
unsigned getAlignment() const
getAlignment - Return the alignment of the memory that is being allocated by the instruction.
Definition: Instructions.h:130
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:233
LandingPadInst * getLandingPadInst()
Return the landingpad instruction associated with the landing pad.
Definition: BasicBlock.cpp:418
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:264
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1900
unsigned getLine() const
Value * stripInBoundsOffsets()
Strip off pointer casts and inbounds GEPs.
Definition: Value.cpp:507
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:114
bool hasPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.h:132
Return value is always equal to this argument.
Definition: Attributes.h:103
StringRef getFilename() const
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:230
static bool isValidLinkage(LinkageTypes L)
Definition: GlobalAlias.h:103
Metadata * getRawTemplateParams() const
Represent the analysis usage information of a pass.
Pass structure in an alloca.
Definition: Attributes.h:74
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:225
unsigned getMetadataID() const
Definition: Metadata.h:107
Type * getTypeAtIndex(const Value *V)
getTypeAtIndex - Given an index value into the type, return the type of the element.
Definition: Type.cpp:634
This instruction compares its operands according to the predicate given to the constructor.
MDNode * getOperand(unsigned i) const
Definition: Metadata.cpp:965
User * getUser() const
Returns the User that contains this Use.
Definition: Use.cpp:41
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:294
Value * getOperand(unsigned i) const
Definition: User.h:118
Zero extended before/after call.
Definition: Attributes.h:119
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:117
op_range operands()
Definition: User.h:191
Base class for variables.
SI Fold Operands
Function doesn't unwind stack.
Definition: Attributes.h:96
Class to represent integer types.
Definition: DerivedTypes.h:37
Wraps a call to a gc.relocate and provides access to it's operands.
Definition: Statepoint.h:308
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:760
DITypeRef getBaseType() const
bool pred_empty(const BasicBlock *BB)
Definition: IR/CFG.h:99
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:129
Metadata wrapper in the Value hierarchy.
Definition: Metadata.h:172
Marks function as being in a cold path.
Definition: Attributes.h:75
This class represents a cast from an integer to a pointer.
Mark the function as not returning.
Definition: Attributes.h:95
static DISubprogram * getSubprogram(Metadata *LocalScope)
Carefully grab the subprogram from a local scope.
Definition: Verifier.cpp:3458
DINodeRef getEntity() const
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:416
bool isPointerTy() const
isPointerTy - True if this is an instance of PointerType.
Definition: Type.h:217
VAArgInst - This class represents the va_arg llvm instruction, which returns an argument of the speci...
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:91
bool isFPOrFPVectorTy() const
isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
Definition: Type.h:183
PointerType * getPointerTo(unsigned AddrSpace=0)
getPointerTo - Return a pointer to the current type.
Definition: Type.cpp:764
static bool isValidOperands(const Value *Vec, const Value *Idx)
isValidOperands - Return true if an extractelement instruction can be formed with the specified opera...
const Value * getTrueValue() const
void print(raw_ostream &OS, const Module *M=nullptr) const
Print.
Definition: AsmWriter.cpp:3341
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:386
ValTy * getArgOperand(unsigned i) const
Definition: CallSite.h:200
Call cannot be duplicated.
Definition: Attributes.h:86
FunctionType * getFunctionType() const
An imported module (C++ using directive or similar).
Base class for scope-like contexts.
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:56
bool isConditional() const
global_iterator global_end()
Definition: Module.h:554
bool verifyModule(const Module &M, raw_ostream *OS=nullptr)
Check a module for errors.
Definition: Verifier.cpp:3651
bool hasExternalWeakLinkage() const
Definition: GlobalValue.h:281
DIImportedEntityArray getImportedEntities() const
BinaryOps getOpcode() const
Definition: InstrTypes.h:323
StringRef getString() const
Definition: Metadata.cpp:375
bool hasExternalLinkage() const
Definition: GlobalValue.h:260
bool hasDLLImportStorageClass() const
Definition: GlobalValue.h:167
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:304
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:936
BasicBlock * getUnwindDest() const
unsigned getTag() const
AtomicOrdering getOrdering() const
Returns the ordering effect of this store.
Definition: Instructions.h:372
bool startswith(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:215
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:299
Base class for types.
Metadata * getMetadata() const
Definition: Metadata.h:187
This is the shared class of boolean and integer constants.
Definition: Constants.h:47
bool isFunctionTy() const
isFunctionTy - True if this is an instance of FunctionType.
Definition: Type.h:205
bool isNegative() const
IEEE-754R isSignMinus: Returns true if and only if the current value is negative. ...
Definition: APFloat.h:399
unsigned getVectorNumElements() const
Definition: Type.cpp:212
unsigned getScalarSizeInBits() const LLVM_READONLY
getScalarSizeInBits - If this is a vector type, return the getPrimitiveSizeInBits value for the eleme...
Definition: Type.cpp:139
void getIntrinsicInfoTableEntries(ID id, SmallVectorImpl< IITDescriptor > &T)
Return the IIT table descriptor for the specified intrinsic into an array of IITDescriptors.
Definition: Function.cpp:710
Metadata * getRawInlinedAt() const
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:861
bool isStaticAlloca() const
isStaticAlloca - Return true if this alloca is in the entry block of the function and is a constant s...
Module.h This file contains the declarations for the Module class.
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:222
static bool isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB)
Checks if Metadata represents a valid ModFlagBehavior, and stores the converted result in MFB...
Definition: Module.cpp:280
MDNode * getMetadata(unsigned KindID) const
getMetadata - Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:167
Callee is recognized as a builtin, despite nobuiltin attribute on its declaration.
Definition: Attributes.h:71
iterator end(unsigned Slot) const
This class represents a range of values.
Definition: ConstantRange.h:43
DbgInfoIntrinsic - This is the common base class for debug info intrinsics.
Definition: IntrinsicInst.h:61
const APInt & getLower() const
Return the lower value for this range.
Definition: ConstantRange.h:87
This class represents a cast from floating point to unsigned integer.
alias_iterator alias_begin()
Definition: Module.h:591
unsigned arg_size() const
Definition: CallSite.h:162
SequentialType * getType() const
Definition: Instructions.h:922
Value * stripPointerCasts()
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:458
AtomicOrdering getOrdering() const
Returns the ordering effect of this fence.
Definition: Instructions.h:250
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:161
bool isNullValue() const
isNullValue - Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:75
ppc loop data prefetch
BinOp getOperation() const
Definition: Instructions.h:726
DWARF expression.
static VectorType * getExtendedElementVectorType(VectorType *VTy)
VectorType::getExtendedElementVectorType - This static method is like getInteger except that the elem...
Definition: DerivedTypes.h:389
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:159
Uses the specified value, regardless of the behavior or value of the other module.
Definition: Module.h:176
static BlockAddress * lookup(const BasicBlock *BB)
Lookup an existing BlockAddress constant for the given BasicBlock.
Definition: Constants.cpp:1514
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:123
Alignment of parameter (5 bits) stored as log2 of alignment with +1 bias 0 means unaligned (different...
Definition: Attributes.h:67
Value * getArgOperand(unsigned i) const
getArgOperand/setArgOperand - Return/set the i-th call argument.
VectorType - Class to represent vector types.
Definition: DerivedTypes.h:362
Target - Wrapper for Target specific information.
Class for arbitrary precision integers.
Definition: APInt.h:73
ConstantArray - Constant Array Declarations.
Definition: Constants.h:356
bool hasInitializer() const
Definitions have initializers, declarations don't.
A (clang) module that has been imported by the compile unit.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
Function must not be optimized.
Definition: Attributes.h:98
bool isIntegerTy() const
isIntegerTy - True if this is an instance of IntegerType.
Definition: Type.h:193
Emits a warning if two values disagree.
Definition: Module.h:162
void setPreservesAll()
Set by analyses that do not transform their input at all.
PreservedAnalyses run(Module &M)
Definition: Verifier.cpp:3707
iterator_range< user_iterator > users()
Definition: Value.h:300
Function only reads from memory.
Definition: Attributes.h:100
LLVM_ATTRIBUTE_UNUSED_RESULT std::enable_if< !is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:285
bool hasGC() const
hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm to use during code generatio...
Definition: Function.cpp:379
bool empty() const
Definition: Function.h:463
Generic tagged DWARF-like metadata node.
Value * getCondition() const
bool isInlineAsm() const
isInlineAsm - Check if this call is an inline asm statement.
const AttributeSet & getAttributes() const
getAttributes - Return the parameter attributes for this call.
const Type * getScalarType() const LLVM_READONLY
getScalarType - If this is a vector type, return the element type, otherwise return 'this'...
Definition: Type.cpp:51
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1890
MDNode * getAsMDNode() const
Return this as a bar MDNode.
Definition: DebugLoc.h:113
Metadata * getRawVariable() const
static Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
getIndexedType - Returns the type of the element that would be loaded with a load instruction with th...
static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs)
Definition: Verifier.cpp:2324
Disable redzone.
Definition: Attributes.h:94
Type array for a subprogram.
Metadata * getRawImportedEntities() const
ThreadSanitizer is on.
Definition: Attributes.h:116
Metadata * getRawScope() const
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:185
NamedMDNode * getNamedMetadata(const Twine &Name) const
Return the first NamedMDNode in the module with the specified name.
Definition: Module.cpp:253
Value * getCondition() const
iterator end()
Definition: Module.h:571
std::string getName(ID id, ArrayRef< Type * > Tys=None)
Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
Definition: Function.cpp:500
Appends the two values, which are required to be metadata nodes.
Definition: Module.h:184
AtomicOrdering getOrdering() const
Returns the ordering effect of this fence.
Definition: Instructions.h:469
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:128
unsigned getSlotIndex(unsigned Slot) const
Return the index for the given slot.
Value * getValue() const
Definition: Metadata.h:287
bool hasAttributes(unsigned Index) const
Return true if attribute exists at the given index.
Definition: Attributes.cpp:966
unsigned getAlignment() const
getAlignment - Return the alignment of the access that is being performed
Definition: Instructions.h:243
AttrBuilder typeIncompatible(const Type *Ty)
Which attributes cannot be applied to a type.
Callee isn't recognized as a builtin.
Definition: Attributes.h:84
ImmutableCallSite - establish a view to a call site for examination.
Definition: CallSite.h:418
const ComdatSymTabType & getComdatSymbolTable() const
Get the Module's symbol table for COMDATs (constant).
Definition: Module.h:544
bool isCatch(unsigned Idx) const
isCatch - Return 'true' if the clause and index Idx is a catch clause.
AddressSanitizer is on.
Definition: Attributes.h:115
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
Strong Stack protection.
Definition: Attributes.h:112
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:124
bool hasComdat() const
Definition: GlobalValue.h:133
bool isLandingPad() const
Return true if this basic block is a landing pad.
Definition: BasicBlock.cpp:413
FunctionType * getFunctionType() const
Definition: Function.cpp:227
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:42
void initializeVerifierLegacyPassPass(PassRegistry &)
This class represents a cast unsigned integer to floating point.
iterator begin()
Definition: Module.h:569
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
Definition: Verifier.cpp:3639
const AttributeSet & getAttributes() const
getAttributes/setAttributes - get or set the parameter attributes of the call.
Definition: CallSite.h:229
ExtractElementInst - This instruction extracts a single (scalar) element from a VectorType value...
op_range operands() const
Definition: Metadata.h:934
Funciton can access memory only using pointers based on its arguments.
Definition: Attributes.h:101
FunctionType * getFunctionType() const
Definition: CallSite.h:219
bool isVarArg() const
Definition: DerivedTypes.h:120
Metadata * getRawScope() const
SwitchInst - Multiway switch.
This class represents a cast from signed integer to floating point.
const APInt & getUpper() const
Return the upper value for this range.
Definition: ConstantRange.h:91
Type * getReturnType() const
Definition: DerivedTypes.h:121
unsigned getAlignment() const
Definition: Globals.cpp:63
Function can return twice.
Definition: Attributes.h:104
unsigned getFlags() const
const ARM::ArchExtKind Kind
const BasicBlock & front() const
Definition: Function.h:464
This class represents a truncation of floating point types.
static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map)
Definition: Verifier.cpp:3512
DICompositeTypeArray getEnumTypes() const
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
getPrimitiveSizeInBits - Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:121
bool isLabelTy() const
isLabelTy - Return true if this is 'label'.
Definition: Type.h:186
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:365
LLVM Value Representation.
Definition: Value.h:69
bool hasUnnamedAddr() const
Definition: GlobalValue.h:130
static bool hasConflictingReferenceFlags(unsigned Flags)
Definition: Verifier.cpp:833
Disable implicit floating point insts.
Definition: Attributes.h:87
const Value * getArraySize() const
getArraySize - Get the number of elements allocated.
Definition: Instructions.h:110
unsigned getNumOperands() const
Definition: Metadata.cpp:961
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:38
InvokeInst - Invoke instruction.
static bool isContiguous(const ConstantRange &A, const ConstantRange &B)
Definition: Verifier.cpp:2571
bool isCleanup() const
isCleanup - Return 'true' if this landingpad instruction is a cleanup.
C - The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:40
A single uniqued string.
Definition: Metadata.h:508
AttrBuilder & addAlignmentAttr(unsigned Align)
This turns an int alignment (which must be a power of 2) into the form used internally in Attribute...
CallingConv::ID getCallingConv() const
getCallingConv/setCallingConv - Get or set the calling convention of this function call...
ppc ctr loops verify
This header defines various interfaces for pass management in LLVM.
bool isGCResult(const Value *V)
Definition: Statepoint.cpp:67
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:290
DIGlobalVariableArray getGlobalVariables() const
Type * getAllocatedType() const
getAllocatedType - Return the type that is being allocated by the instruction.
Definition: Instructions.h:122
op_range incoming_values()
This class represents an extension of floating point types.
bool isResolved() const
Check if node is fully resolved.
Definition: Metadata.h:815
DISubprogram * getSubprogram() const
Get the subprogram for this scope.
Can only be moved to control-equivalent blocks.
Definition: Attributes.h:76
A bitmask that includes all valid flags.
Stack protection required.
Definition: Attributes.h:111
Root of the metadata hierarchy.
Definition: Metadata.h:45
bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull)
Definition: Verifier.cpp:728
MemorySanitizer is on.
Definition: Attributes.h:117
bool isDeclarationForLinker() const
Definition: GlobalValue.h:344
unsigned getNumDestinations() const
getNumDestinations - return the number of possible destinations in this indirectbr instruction...
bool isEmpty() const
Return true if there are no attributes.
Definition: Attributes.h:390
GlobalValue * getNamedValue(StringRef Name) const
Return the global value in the module with the specified name, of arbitrary type. ...
Definition: Module.cpp:88
const BasicBlock * getParent() const
Definition: Instruction.h:72
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:93
Build jump-instruction tables and replace refs.
Definition: Attributes.h:79
Type * getResultElementType() const
Definition: Instructions.h:931
static cl::opt< bool > VerifyDebugInfo("verify-debug-info", cl::init(true))
bool onlyReadsMemory() const
Determine if the call does not access or only reads memory.
Definition: CallSite.h:286
#define T1
named_metadata_iterator named_metadata_begin()
Definition: Module.h:609
LLVMContext & getContext() const
Get the global data context.
Definition: Module.h:265
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:137
AllocaInst - an instruction to allocate memory on the stack.
Definition: Instructions.h:76
InsertValueInst - This instruction inserts a struct field of array element value into an aggregate va...
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results...
Definition: Attributes.h:64
bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:110
Metadata * getRawGlobalVariables() const
Basic type, like 'int' or 'float'.
bool isMetadataTy() const
isMetadataTy - Return true if this is 'metadata'.
Definition: Type.h:189
Metadata * getRawTypeArray() const
bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
Definition: CallSite.h:295
static const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
areInvalidOperands - Return a string if the specified operands are invalid for a select operation...
Function must be optimized for size first.
Definition: Attributes.h:80