LLVM  3.7.0
Constants.cpp
Go to the documentation of this file.
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38 
39 //===----------------------------------------------------------------------===//
40 // Constant Class
41 //===----------------------------------------------------------------------===//
42 
43 void Constant::anchor() { }
44 
46  // Floating point values have an explicit -0.0 value.
47  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48  return CFP->isZero() && CFP->isNegative();
49 
50  // Equivalent for a vector of -0.0's.
51  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52  if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53  if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54  return true;
55 
56  // We've already handled true FP case; any other FP vectors can't represent -0.0.
57  if (getType()->isFPOrFPVectorTy())
58  return false;
59 
60  // Otherwise, just use +0.0.
61  return isNullValue();
62 }
63 
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67  // Floating point values have an explicit -0.0 value.
68  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69  return CFP->isZero();
70 
71  // Otherwise, just use +0.0.
72  return isNullValue();
73 }
74 
75 bool Constant::isNullValue() const {
76  // 0 is null.
77  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78  return CI->isZero();
79 
80  // +0.0 is null.
81  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82  return CFP->isZero() && !CFP->isNegative();
83 
84  // constant zero is zero for aggregates and cpnull is null for pointers.
85  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86 }
87 
89  // Check for -1 integers
90  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91  return CI->isMinusOne();
92 
93  // Check for FP which are bitcasted from -1 integers
94  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95  return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96 
97  // Check for constant vectors which are splats of -1 values.
98  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99  if (Constant *Splat = CV->getSplatValue())
100  return Splat->isAllOnesValue();
101 
102  // Check for constant vectors which are splats of -1 values.
103  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104  if (Constant *Splat = CV->getSplatValue())
105  return Splat->isAllOnesValue();
106 
107  return false;
108 }
109 
110 bool Constant::isOneValue() const {
111  // Check for 1 integers
112  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113  return CI->isOne();
114 
115  // Check for FP which are bitcasted from 1 integers
116  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117  return CFP->getValueAPF().bitcastToAPInt() == 1;
118 
119  // Check for constant vectors which are splats of 1 values.
120  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
121  if (Constant *Splat = CV->getSplatValue())
122  return Splat->isOneValue();
123 
124  // Check for constant vectors which are splats of 1 values.
125  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
126  if (Constant *Splat = CV->getSplatValue())
127  return Splat->isOneValue();
128 
129  return false;
130 }
131 
133  // Check for INT_MIN integers
134  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
135  return CI->isMinValue(/*isSigned=*/true);
136 
137  // Check for FP which are bitcasted from INT_MIN integers
138  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
139  return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
140 
141  // Check for constant vectors which are splats of INT_MIN values.
142  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
143  if (Constant *Splat = CV->getSplatValue())
144  return Splat->isMinSignedValue();
145 
146  // Check for constant vectors which are splats of INT_MIN values.
147  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
148  if (Constant *Splat = CV->getSplatValue())
149  return Splat->isMinSignedValue();
150 
151  return false;
152 }
153 
155  // Check for INT_MIN integers
156  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
157  return !CI->isMinValue(/*isSigned=*/true);
158 
159  // Check for FP which are bitcasted from INT_MIN integers
160  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
161  return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
162 
163  // Check for constant vectors which are splats of INT_MIN values.
164  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
165  if (Constant *Splat = CV->getSplatValue())
166  return Splat->isNotMinSignedValue();
167 
168  // Check for constant vectors which are splats of INT_MIN values.
169  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
170  if (Constant *Splat = CV->getSplatValue())
171  return Splat->isNotMinSignedValue();
172 
173  // It *may* contain INT_MIN, we can't tell.
174  return false;
175 }
176 
177 // Constructor to create a '0' constant of arbitrary type...
179  switch (Ty->getTypeID()) {
180  case Type::IntegerTyID:
181  return ConstantInt::get(Ty, 0);
182  case Type::HalfTyID:
183  return ConstantFP::get(Ty->getContext(),
185  case Type::FloatTyID:
186  return ConstantFP::get(Ty->getContext(),
188  case Type::DoubleTyID:
189  return ConstantFP::get(Ty->getContext(),
191  case Type::X86_FP80TyID:
192  return ConstantFP::get(Ty->getContext(),
194  case Type::FP128TyID:
195  return ConstantFP::get(Ty->getContext(),
197  case Type::PPC_FP128TyID:
198  return ConstantFP::get(Ty->getContext(),
200  APInt::getNullValue(128)));
201  case Type::PointerTyID:
202  return ConstantPointerNull::get(cast<PointerType>(Ty));
203  case Type::StructTyID:
204  case Type::ArrayTyID:
205  case Type::VectorTyID:
206  return ConstantAggregateZero::get(Ty);
207  default:
208  // Function, Label, or Opaque type?
209  llvm_unreachable("Cannot create a null constant of that type!");
210  }
211 }
212 
214  Type *ScalarTy = Ty->getScalarType();
215 
216  // Create the base integer constant.
217  Constant *C = ConstantInt::get(Ty->getContext(), V);
218 
219  // Convert an integer to a pointer, if necessary.
220  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
221  C = ConstantExpr::getIntToPtr(C, PTy);
222 
223  // Broadcast a scalar to a vector, if necessary.
224  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
225  C = ConstantVector::getSplat(VTy->getNumElements(), C);
226 
227  return C;
228 }
229 
231  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
232  return ConstantInt::get(Ty->getContext(),
233  APInt::getAllOnesValue(ITy->getBitWidth()));
234 
235  if (Ty->isFloatingPointTy()) {
237  !Ty->isPPC_FP128Ty());
238  return ConstantFP::get(Ty->getContext(), FL);
239  }
240 
241  VectorType *VTy = cast<VectorType>(Ty);
244 }
245 
246 /// getAggregateElement - For aggregates (struct/array/vector) return the
247 /// constant that corresponds to the specified element if possible, or null if
248 /// not. This can return null if the element index is a ConstantExpr, or if
249 /// 'this' is a constant expr.
251  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
252  return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
253 
254  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
255  return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
256 
257  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
258  return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
259 
260  if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
261  return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
262 
263  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
264  return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
265 
266  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
267  return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
268  : nullptr;
269  return nullptr;
270 }
271 
273  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
274  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
275  return getAggregateElement(CI->getZExtValue());
276  return nullptr;
277 }
278 
280  /// First call destroyConstantImpl on the subclass. This gives the subclass
281  /// a chance to remove the constant from any maps/pools it's contained in.
282  switch (getValueID()) {
283  default:
284  llvm_unreachable("Not a constant!");
285 #define HANDLE_CONSTANT(Name) \
286  case Value::Name##Val: \
287  cast<Name>(this)->destroyConstantImpl(); \
288  break;
289 #include "llvm/IR/Value.def"
290  }
291 
292  // When a Constant is destroyed, there may be lingering
293  // references to the constant by other constants in the constant pool. These
294  // constants are implicitly dependent on the module that is being deleted,
295  // but they don't know that. Because we only find out when the CPV is
296  // deleted, we must now notify all of our users (that should only be
297  // Constants) that they are, in fact, invalid now and should be deleted.
298  //
299  while (!use_empty()) {
300  Value *V = user_back();
301 #ifndef NDEBUG // Only in -g mode...
302  if (!isa<Constant>(V)) {
303  dbgs() << "While deleting: " << *this
304  << "\n\nUse still stuck around after Def is destroyed: " << *V
305  << "\n\n";
306  }
307 #endif
308  assert(isa<Constant>(V) && "References remain to Constant being destroyed");
309  cast<Constant>(V)->destroyConstant();
310 
311  // The constant should remove itself from our use list...
312  assert((use_empty() || user_back() != V) && "Constant not removed!");
313  }
314 
315  // Value has no outstanding references it is safe to delete it now...
316  delete this;
317 }
318 
319 static bool canTrapImpl(const Constant *C,
320  SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
321  assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
322  // The only thing that could possibly trap are constant exprs.
323  const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
324  if (!CE)
325  return false;
326 
327  // ConstantExpr traps if any operands can trap.
328  for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
329  if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
330  if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
331  return true;
332  }
333  }
334 
335  // Otherwise, only specific operations can trap.
336  switch (CE->getOpcode()) {
337  default:
338  return false;
339  case Instruction::UDiv:
340  case Instruction::SDiv:
341  case Instruction::FDiv:
342  case Instruction::URem:
343  case Instruction::SRem:
344  case Instruction::FRem:
345  // Div and rem can trap if the RHS is not known to be non-zero.
346  if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
347  return true;
348  return false;
349  }
350 }
351 
352 /// canTrap - Return true if evaluation of this constant could trap. This is
353 /// true for things like constant expressions that could divide by zero.
354 bool Constant::canTrap() const {
356  return canTrapImpl(this, NonTrappingOps);
357 }
358 
359 /// Check if C contains a GlobalValue for which Predicate is true.
360 static bool
362  bool (*Predicate)(const GlobalValue *)) {
365  WorkList.push_back(C);
366  Visited.insert(C);
367 
368  while (!WorkList.empty()) {
369  const Constant *WorkItem = WorkList.pop_back_val();
370  if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
371  if (Predicate(GV))
372  return true;
373  for (const Value *Op : WorkItem->operands()) {
374  const Constant *ConstOp = dyn_cast<Constant>(Op);
375  if (!ConstOp)
376  continue;
377  if (Visited.insert(ConstOp).second)
378  WorkList.push_back(ConstOp);
379  }
380  }
381  return false;
382 }
383 
384 /// Return true if the value can vary between threads.
386  auto DLLImportPredicate = [](const GlobalValue *GV) {
387  return GV->isThreadLocal();
388  };
389  return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
390 }
391 
393  auto DLLImportPredicate = [](const GlobalValue *GV) {
394  return GV->hasDLLImportStorageClass();
395  };
396  return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
397 }
398 
399 /// Return true if the constant has users other than constant exprs and other
400 /// dangling things.
402  for (const User *U : users()) {
403  const Constant *UC = dyn_cast<Constant>(U);
404  if (!UC || isa<GlobalValue>(UC))
405  return true;
406 
407  if (UC->isConstantUsed())
408  return true;
409  }
410  return false;
411 }
412 
413 
414 
415 /// getRelocationInfo - This method classifies the entry according to
416 /// whether or not it may generate a relocation entry. This must be
417 /// conservative, so if it might codegen to a relocatable entry, it should say
418 /// so. The return values are:
419 ///
420 /// NoRelocation: This constant pool entry is guaranteed to never have a
421 /// relocation applied to it (because it holds a simple constant like
422 /// '4').
423 /// LocalRelocation: This entry has relocations, but the entries are
424 /// guaranteed to be resolvable by the static linker, so the dynamic
425 /// linker will never see them.
426 /// GlobalRelocations: This entry may have arbitrary relocations.
427 ///
428 /// FIXME: This really should not be in IR.
430  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
431  if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
432  return LocalRelocation; // Local to this file/library.
433  return GlobalRelocations; // Global reference.
434  }
435 
436  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
437  return BA->getFunction()->getRelocationInfo();
438 
439  // While raw uses of blockaddress need to be relocated, differences between
440  // two of them don't when they are for labels in the same function. This is a
441  // common idiom when creating a table for the indirect goto extension, so we
442  // handle it efficiently here.
443  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
444  if (CE->getOpcode() == Instruction::Sub) {
445  ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
446  ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
447  if (LHS && RHS &&
448  LHS->getOpcode() == Instruction::PtrToInt &&
449  RHS->getOpcode() == Instruction::PtrToInt &&
450  isa<BlockAddress>(LHS->getOperand(0)) &&
451  isa<BlockAddress>(RHS->getOperand(0)) &&
452  cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
453  cast<BlockAddress>(RHS->getOperand(0))->getFunction())
454  return NoRelocation;
455  }
456 
458  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
459  Result = std::max(Result,
460  cast<Constant>(getOperand(i))->getRelocationInfo());
461 
462  return Result;
463 }
464 
465 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
466 /// it. This involves recursively eliminating any dead users of the
467 /// constantexpr.
468 static bool removeDeadUsersOfConstant(const Constant *C) {
469  if (isa<GlobalValue>(C)) return false; // Cannot remove this
470 
471  while (!C->use_empty()) {
472  const Constant *User = dyn_cast<Constant>(C->user_back());
473  if (!User) return false; // Non-constant usage;
474  if (!removeDeadUsersOfConstant(User))
475  return false; // Constant wasn't dead
476  }
477 
478  const_cast<Constant*>(C)->destroyConstant();
479  return true;
480 }
481 
482 
483 /// removeDeadConstantUsers - If there are any dead constant users dangling
484 /// off of this constant, remove them. This method is useful for clients
485 /// that want to check to see if a global is unused, but don't want to deal
486 /// with potentially dead constants hanging off of the globals.
489  Value::const_user_iterator LastNonDeadUser = E;
490  while (I != E) {
491  const Constant *User = dyn_cast<Constant>(*I);
492  if (!User) {
493  LastNonDeadUser = I;
494  ++I;
495  continue;
496  }
497 
498  if (!removeDeadUsersOfConstant(User)) {
499  // If the constant wasn't dead, remember that this was the last live use
500  // and move on to the next constant.
501  LastNonDeadUser = I;
502  ++I;
503  continue;
504  }
505 
506  // If the constant was dead, then the iterator is invalidated.
507  if (LastNonDeadUser == E) {
508  I = user_begin();
509  if (I == E) break;
510  } else {
511  I = LastNonDeadUser;
512  ++I;
513  }
514  }
515 }
516 
517 
518 
519 //===----------------------------------------------------------------------===//
520 // ConstantInt
521 //===----------------------------------------------------------------------===//
522 
523 void ConstantInt::anchor() { }
524 
525 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
526  : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
527  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
528 }
529 
531  LLVMContextImpl *pImpl = Context.pImpl;
532  if (!pImpl->TheTrueVal)
533  pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
534  return pImpl->TheTrueVal;
535 }
536 
538  LLVMContextImpl *pImpl = Context.pImpl;
539  if (!pImpl->TheFalseVal)
540  pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
541  return pImpl->TheFalseVal;
542 }
543 
545  VectorType *VTy = dyn_cast<VectorType>(Ty);
546  if (!VTy) {
547  assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
548  return ConstantInt::getTrue(Ty->getContext());
549  }
550  assert(VTy->getElementType()->isIntegerTy(1) &&
551  "True must be vector of i1 or i1.");
554 }
555 
557  VectorType *VTy = dyn_cast<VectorType>(Ty);
558  if (!VTy) {
559  assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
560  return ConstantInt::getFalse(Ty->getContext());
561  }
562  assert(VTy->getElementType()->isIntegerTy(1) &&
563  "False must be vector of i1 or i1.");
566 }
567 
568 // Get a ConstantInt from an APInt.
570  // get an existing value or the insertion position
571  LLVMContextImpl *pImpl = Context.pImpl;
572  ConstantInt *&Slot = pImpl->IntConstants[V];
573  if (!Slot) {
574  // Get the corresponding integer type for the bit width of the value.
575  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
576  Slot = new ConstantInt(ITy, V);
577  }
578  assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
579  return Slot;
580 }
581 
582 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
583  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
584 
585  // For vectors, broadcast the value.
586  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
587  return ConstantVector::getSplat(VTy->getNumElements(), C);
588 
589  return C;
590 }
591 
593  bool isSigned) {
594  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
595 }
596 
598  return get(Ty, V, true);
599 }
600 
602  return get(Ty, V, true);
603 }
604 
606  ConstantInt *C = get(Ty->getContext(), V);
607  assert(C->getType() == Ty->getScalarType() &&
608  "ConstantInt type doesn't match the type implied by its value!");
609 
610  // For vectors, broadcast the value.
611  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
612  return ConstantVector::getSplat(VTy->getNumElements(), C);
613 
614  return C;
615 }
616 
618  uint8_t radix) {
619  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
620 }
621 
622 /// Remove the constant from the constant table.
623 void ConstantInt::destroyConstantImpl() {
624  llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
625 }
626 
627 //===----------------------------------------------------------------------===//
628 // ConstantFP
629 //===----------------------------------------------------------------------===//
630 
632  if (Ty->isHalfTy())
633  return &APFloat::IEEEhalf;
634  if (Ty->isFloatTy())
635  return &APFloat::IEEEsingle;
636  if (Ty->isDoubleTy())
637  return &APFloat::IEEEdouble;
638  if (Ty->isX86_FP80Ty())
640  else if (Ty->isFP128Ty())
641  return &APFloat::IEEEquad;
642 
643  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
644  return &APFloat::PPCDoubleDouble;
645 }
646 
647 void ConstantFP::anchor() { }
648 
649 /// get() - This returns a constant fp for the specified value in the
650 /// specified type. This should only be used for simple constant values like
651 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
652 Constant *ConstantFP::get(Type *Ty, double V) {
653  LLVMContext &Context = Ty->getContext();
654 
655  APFloat FV(V);
656  bool ignored;
658  APFloat::rmNearestTiesToEven, &ignored);
659  Constant *C = get(Context, FV);
660 
661  // For vectors, broadcast the value.
662  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
663  return ConstantVector::getSplat(VTy->getNumElements(), C);
664 
665  return C;
666 }
667 
668 
670  LLVMContext &Context = Ty->getContext();
671 
672  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
673  Constant *C = get(Context, FV);
674 
675  // For vectors, broadcast the value.
676  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
677  return ConstantVector::getSplat(VTy->getNumElements(), C);
678 
679  return C;
680 }
681 
682 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
683  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
684  APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
685  Constant *C = get(Ty->getContext(), NaN);
686 
687  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
688  return ConstantVector::getSplat(VTy->getNumElements(), C);
689 
690  return C;
691 }
692 
694  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
695  APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
696  Constant *C = get(Ty->getContext(), NegZero);
697 
698  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
699  return ConstantVector::getSplat(VTy->getNumElements(), C);
700 
701  return C;
702 }
703 
704 
706  if (Ty->isFPOrFPVectorTy())
707  return getNegativeZero(Ty);
708 
709  return Constant::getNullValue(Ty);
710 }
711 
712 
713 // ConstantFP accessors.
715  LLVMContextImpl* pImpl = Context.pImpl;
716 
717  ConstantFP *&Slot = pImpl->FPConstants[V];
718 
719  if (!Slot) {
720  Type *Ty;
721  if (&V.getSemantics() == &APFloat::IEEEhalf)
722  Ty = Type::getHalfTy(Context);
723  else if (&V.getSemantics() == &APFloat::IEEEsingle)
724  Ty = Type::getFloatTy(Context);
725  else if (&V.getSemantics() == &APFloat::IEEEdouble)
726  Ty = Type::getDoubleTy(Context);
727  else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
728  Ty = Type::getX86_FP80Ty(Context);
729  else if (&V.getSemantics() == &APFloat::IEEEquad)
730  Ty = Type::getFP128Ty(Context);
731  else {
732  assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
733  "Unknown FP format");
734  Ty = Type::getPPC_FP128Ty(Context);
735  }
736  Slot = new ConstantFP(Ty, V);
737  }
738 
739  return Slot;
740 }
741 
742 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
743  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
744  Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
745 
746  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
747  return ConstantVector::getSplat(VTy->getNumElements(), C);
748 
749  return C;
750 }
751 
752 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
753  : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
754  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
755  "FP type Mismatch");
756 }
757 
758 bool ConstantFP::isExactlyValue(const APFloat &V) const {
759  return Val.bitwiseIsEqual(V);
760 }
761 
762 /// Remove the constant from the constant table.
763 void ConstantFP::destroyConstantImpl() {
764  llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
765 }
766 
767 //===----------------------------------------------------------------------===//
768 // ConstantAggregateZero Implementation
769 //===----------------------------------------------------------------------===//
770 
771 /// getSequentialElement - If this CAZ has array or vector type, return a zero
772 /// with the right element type.
774  return Constant::getNullValue(getType()->getSequentialElementType());
775 }
776 
777 /// getStructElement - If this CAZ has struct type, return a zero with the
778 /// right element type for the specified element.
780  return Constant::getNullValue(getType()->getStructElementType(Elt));
781 }
782 
783 /// getElementValue - Return a zero of the right value for the specified GEP
784 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
786  if (isa<SequentialType>(getType()))
787  return getSequentialElement();
788  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
789 }
790 
791 /// getElementValue - Return a zero of the right value for the specified GEP
792 /// index.
794  if (isa<SequentialType>(getType()))
795  return getSequentialElement();
796  return getStructElement(Idx);
797 }
798 
800  const Type *Ty = getType();
801  if (const auto *AT = dyn_cast<ArrayType>(Ty))
802  return AT->getNumElements();
803  if (const auto *VT = dyn_cast<VectorType>(Ty))
804  return VT->getNumElements();
805  return Ty->getStructNumElements();
806 }
807 
808 //===----------------------------------------------------------------------===//
809 // UndefValue Implementation
810 //===----------------------------------------------------------------------===//
811 
812 /// getSequentialElement - If this undef has array or vector type, return an
813 /// undef with the right element type.
815  return UndefValue::get(getType()->getSequentialElementType());
816 }
817 
818 /// getStructElement - If this undef has struct type, return a zero with the
819 /// right element type for the specified element.
821  return UndefValue::get(getType()->getStructElementType(Elt));
822 }
823 
824 /// getElementValue - Return an undef of the right value for the specified GEP
825 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
827  if (isa<SequentialType>(getType()))
828  return getSequentialElement();
829  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
830 }
831 
832 /// getElementValue - Return an undef of the right value for the specified GEP
833 /// index.
835  if (isa<SequentialType>(getType()))
836  return getSequentialElement();
837  return getStructElement(Idx);
838 }
839 
840 unsigned UndefValue::getNumElements() const {
841  const Type *Ty = getType();
842  if (const auto *AT = dyn_cast<ArrayType>(Ty))
843  return AT->getNumElements();
844  if (const auto *VT = dyn_cast<VectorType>(Ty))
845  return VT->getNumElements();
846  return Ty->getStructNumElements();
847 }
848 
849 //===----------------------------------------------------------------------===//
850 // ConstantXXX Classes
851 //===----------------------------------------------------------------------===//
852 
853 template <typename ItTy, typename EltTy>
854 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
855  for (; Start != End; ++Start)
856  if (*Start != Elt)
857  return false;
858  return true;
859 }
860 
861 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
862  : Constant(T, ConstantArrayVal,
863  OperandTraits<ConstantArray>::op_end(this) - V.size(),
864  V.size()) {
865  assert(V.size() == T->getNumElements() &&
866  "Invalid initializer vector for constant array");
867  for (unsigned i = 0, e = V.size(); i != e; ++i)
868  assert(V[i]->getType() == T->getElementType() &&
869  "Initializer for array element doesn't match array element type!");
870  std::copy(V.begin(), V.end(), op_begin());
871 }
872 
874  if (Constant *C = getImpl(Ty, V))
875  return C;
876  return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
877 }
878 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
879  // Empty arrays are canonicalized to ConstantAggregateZero.
880  if (V.empty())
881  return ConstantAggregateZero::get(Ty);
882 
883  for (unsigned i = 0, e = V.size(); i != e; ++i) {
884  assert(V[i]->getType() == Ty->getElementType() &&
885  "Wrong type in array element initializer");
886  }
887 
888  // If this is an all-zero array, return a ConstantAggregateZero object. If
889  // all undef, return an UndefValue, if "all simple", then return a
890  // ConstantDataArray.
891  Constant *C = V[0];
892  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
893  return UndefValue::get(Ty);
894 
895  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
896  return ConstantAggregateZero::get(Ty);
897 
898  // Check to see if all of the elements are ConstantFP or ConstantInt and if
899  // the element type is compatible with ConstantDataVector. If so, use it.
901  // We speculatively build the elements here even if it turns out that there
902  // is a constantexpr or something else weird in the array, since it is so
903  // uncommon for that to happen.
904  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
905  if (CI->getType()->isIntegerTy(8)) {
907  for (unsigned i = 0, e = V.size(); i != e; ++i)
908  if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
909  Elts.push_back(CI->getZExtValue());
910  else
911  break;
912  if (Elts.size() == V.size())
913  return ConstantDataArray::get(C->getContext(), Elts);
914  } else if (CI->getType()->isIntegerTy(16)) {
916  for (unsigned i = 0, e = V.size(); i != e; ++i)
917  if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
918  Elts.push_back(CI->getZExtValue());
919  else
920  break;
921  if (Elts.size() == V.size())
922  return ConstantDataArray::get(C->getContext(), Elts);
923  } else if (CI->getType()->isIntegerTy(32)) {
925  for (unsigned i = 0, e = V.size(); i != e; ++i)
926  if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
927  Elts.push_back(CI->getZExtValue());
928  else
929  break;
930  if (Elts.size() == V.size())
931  return ConstantDataArray::get(C->getContext(), Elts);
932  } else if (CI->getType()->isIntegerTy(64)) {
934  for (unsigned i = 0, e = V.size(); i != e; ++i)
935  if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
936  Elts.push_back(CI->getZExtValue());
937  else
938  break;
939  if (Elts.size() == V.size())
940  return ConstantDataArray::get(C->getContext(), Elts);
941  }
942  }
943 
944  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
945  if (CFP->getType()->isFloatTy()) {
947  for (unsigned i = 0, e = V.size(); i != e; ++i)
948  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
949  Elts.push_back(
950  CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
951  else
952  break;
953  if (Elts.size() == V.size())
954  return ConstantDataArray::getFP(C->getContext(), Elts);
955  } else if (CFP->getType()->isDoubleTy()) {
957  for (unsigned i = 0, e = V.size(); i != e; ++i)
958  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
959  Elts.push_back(
960  CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
961  else
962  break;
963  if (Elts.size() == V.size())
964  return ConstantDataArray::getFP(C->getContext(), Elts);
965  }
966  }
967  }
968 
969  // Otherwise, we really do want to create a ConstantArray.
970  return nullptr;
971 }
972 
973 /// getTypeForElements - Return an anonymous struct type to use for a constant
974 /// with the specified set of elements. The list must not be empty.
977  bool Packed) {
978  unsigned VecSize = V.size();
979  SmallVector<Type*, 16> EltTypes(VecSize);
980  for (unsigned i = 0; i != VecSize; ++i)
981  EltTypes[i] = V[i]->getType();
982 
983  return StructType::get(Context, EltTypes, Packed);
984 }
985 
986 
988  bool Packed) {
989  assert(!V.empty() &&
990  "ConstantStruct::getTypeForElements cannot be called on empty list");
991  return getTypeForElements(V[0]->getContext(), V, Packed);
992 }
993 
994 
995 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
996  : Constant(T, ConstantStructVal,
997  OperandTraits<ConstantStruct>::op_end(this) - V.size(),
998  V.size()) {
999  assert(V.size() == T->getNumElements() &&
1000  "Invalid initializer vector for constant structure");
1001  for (unsigned i = 0, e = V.size(); i != e; ++i)
1002  assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
1003  "Initializer for struct element doesn't match struct element type!");
1004  std::copy(V.begin(), V.end(), op_begin());
1005 }
1006 
1007 // ConstantStruct accessors.
1009  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1010  "Incorrect # elements specified to ConstantStruct::get");
1011 
1012  // Create a ConstantAggregateZero value if all elements are zeros.
1013  bool isZero = true;
1014  bool isUndef = false;
1015 
1016  if (!V.empty()) {
1017  isUndef = isa<UndefValue>(V[0]);
1018  isZero = V[0]->isNullValue();
1019  if (isUndef || isZero) {
1020  for (unsigned i = 0, e = V.size(); i != e; ++i) {
1021  if (!V[i]->isNullValue())
1022  isZero = false;
1023  if (!isa<UndefValue>(V[i]))
1024  isUndef = false;
1025  }
1026  }
1027  }
1028  if (isZero)
1029  return ConstantAggregateZero::get(ST);
1030  if (isUndef)
1031  return UndefValue::get(ST);
1032 
1033  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1034 }
1035 
1037  va_list ap;
1039  va_start(ap, T);
1040  while (Constant *Val = va_arg(ap, llvm::Constant*))
1041  Values.push_back(Val);
1042  va_end(ap);
1043  return get(T, Values);
1044 }
1045 
1046 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1047  : Constant(T, ConstantVectorVal,
1048  OperandTraits<ConstantVector>::op_end(this) - V.size(),
1049  V.size()) {
1050  for (size_t i = 0, e = V.size(); i != e; i++)
1051  assert(V[i]->getType() == T->getElementType() &&
1052  "Initializer for vector element doesn't match vector element type!");
1053  std::copy(V.begin(), V.end(), op_begin());
1054 }
1055 
1056 // ConstantVector accessors.
1058  if (Constant *C = getImpl(V))
1059  return C;
1060  VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1061  return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1062 }
1063 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1064  assert(!V.empty() && "Vectors can't be empty");
1065  VectorType *T = VectorType::get(V.front()->getType(), V.size());
1066 
1067  // If this is an all-undef or all-zero vector, return a
1068  // ConstantAggregateZero or UndefValue.
1069  Constant *C = V[0];
1070  bool isZero = C->isNullValue();
1071  bool isUndef = isa<UndefValue>(C);
1072 
1073  if (isZero || isUndef) {
1074  for (unsigned i = 1, e = V.size(); i != e; ++i)
1075  if (V[i] != C) {
1076  isZero = isUndef = false;
1077  break;
1078  }
1079  }
1080 
1081  if (isZero)
1082  return ConstantAggregateZero::get(T);
1083  if (isUndef)
1084  return UndefValue::get(T);
1085 
1086  // Check to see if all of the elements are ConstantFP or ConstantInt and if
1087  // the element type is compatible with ConstantDataVector. If so, use it.
1089  // We speculatively build the elements here even if it turns out that there
1090  // is a constantexpr or something else weird in the array, since it is so
1091  // uncommon for that to happen.
1092  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1093  if (CI->getType()->isIntegerTy(8)) {
1095  for (unsigned i = 0, e = V.size(); i != e; ++i)
1096  if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1097  Elts.push_back(CI->getZExtValue());
1098  else
1099  break;
1100  if (Elts.size() == V.size())
1101  return ConstantDataVector::get(C->getContext(), Elts);
1102  } else if (CI->getType()->isIntegerTy(16)) {
1104  for (unsigned i = 0, e = V.size(); i != e; ++i)
1105  if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1106  Elts.push_back(CI->getZExtValue());
1107  else
1108  break;
1109  if (Elts.size() == V.size())
1110  return ConstantDataVector::get(C->getContext(), Elts);
1111  } else if (CI->getType()->isIntegerTy(32)) {
1113  for (unsigned i = 0, e = V.size(); i != e; ++i)
1114  if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1115  Elts.push_back(CI->getZExtValue());
1116  else
1117  break;
1118  if (Elts.size() == V.size())
1119  return ConstantDataVector::get(C->getContext(), Elts);
1120  } else if (CI->getType()->isIntegerTy(64)) {
1122  for (unsigned i = 0, e = V.size(); i != e; ++i)
1123  if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1124  Elts.push_back(CI->getZExtValue());
1125  else
1126  break;
1127  if (Elts.size() == V.size())
1128  return ConstantDataVector::get(C->getContext(), Elts);
1129  }
1130  }
1131 
1132  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1133  if (CFP->getType()->isFloatTy()) {
1135  for (unsigned i = 0, e = V.size(); i != e; ++i)
1136  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1137  Elts.push_back(
1138  CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1139  else
1140  break;
1141  if (Elts.size() == V.size())
1142  return ConstantDataVector::getFP(C->getContext(), Elts);
1143  } else if (CFP->getType()->isDoubleTy()) {
1145  for (unsigned i = 0, e = V.size(); i != e; ++i)
1146  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1147  Elts.push_back(
1148  CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1149  else
1150  break;
1151  if (Elts.size() == V.size())
1152  return ConstantDataVector::getFP(C->getContext(), Elts);
1153  }
1154  }
1155  }
1156 
1157  // Otherwise, the element type isn't compatible with ConstantDataVector, or
1158  // the operand list constants a ConstantExpr or something else strange.
1159  return nullptr;
1160 }
1161 
1163  // If this splat is compatible with ConstantDataVector, use it instead of
1164  // ConstantVector.
1165  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1167  return ConstantDataVector::getSplat(NumElts, V);
1168 
1169  SmallVector<Constant*, 32> Elts(NumElts, V);
1170  return get(Elts);
1171 }
1172 
1173 
1174 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1175 // can't be inline because we don't want to #include Instruction.h into
1176 // Constant.h
1177 bool ConstantExpr::isCast() const {
1178  return Instruction::isCast(getOpcode());
1179 }
1180 
1182  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1183 }
1184 
1186  if (getOpcode() != Instruction::GetElementPtr) return false;
1187 
1188  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1189  User::const_op_iterator OI = std::next(this->op_begin());
1190 
1191  // Skip the first index, as it has no static limit.
1192  ++GEPI;
1193  ++OI;
1194 
1195  // The remaining indices must be compile-time known integers within the
1196  // bounds of the corresponding notional static array types.
1197  for (; GEPI != E; ++GEPI, ++OI) {
1198  ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1199  if (!CI) return false;
1200  if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1201  if (CI->getValue().getActiveBits() > 64 ||
1202  CI->getZExtValue() >= ATy->getNumElements())
1203  return false;
1204  }
1205 
1206  // All the indices checked out.
1207  return true;
1208 }
1209 
1211  return getOpcode() == Instruction::ExtractValue ||
1212  getOpcode() == Instruction::InsertValue;
1213 }
1214 
1216  if (const ExtractValueConstantExpr *EVCE =
1217  dyn_cast<ExtractValueConstantExpr>(this))
1218  return EVCE->Indices;
1219 
1220  return cast<InsertValueConstantExpr>(this)->Indices;
1221 }
1222 
1223 unsigned ConstantExpr::getPredicate() const {
1224  assert(isCompare());
1225  return ((const CompareConstantExpr*)this)->predicate;
1226 }
1227 
1228 /// getWithOperandReplaced - Return a constant expression identical to this
1229 /// one, but with the specified operand set to the specified value.
1230 Constant *
1232  assert(Op->getType() == getOperand(OpNo)->getType() &&
1233  "Replacing operand with value of different type!");
1234  if (getOperand(OpNo) == Op)
1235  return const_cast<ConstantExpr*>(this);
1236 
1238  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1239  NewOps.push_back(i == OpNo ? Op : getOperand(i));
1240 
1241  return getWithOperands(NewOps);
1242 }
1243 
1244 /// getWithOperands - This returns the current constant expression with the
1245 /// operands replaced with the specified values. The specified array must
1246 /// have the same number of operands as our current one.
1248  bool OnlyIfReduced) const {
1249  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1250 
1251  // If no operands changed return self.
1252  if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1253  return const_cast<ConstantExpr*>(this);
1254 
1255  Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1256  switch (getOpcode()) {
1257  case Instruction::Trunc:
1258  case Instruction::ZExt:
1259  case Instruction::SExt:
1260  case Instruction::FPTrunc:
1261  case Instruction::FPExt:
1262  case Instruction::UIToFP:
1263  case Instruction::SIToFP:
1264  case Instruction::FPToUI:
1265  case Instruction::FPToSI:
1266  case Instruction::PtrToInt:
1267  case Instruction::IntToPtr:
1268  case Instruction::BitCast:
1269  case Instruction::AddrSpaceCast:
1270  return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1271  case Instruction::Select:
1272  return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1273  case Instruction::InsertElement:
1274  return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1275  OnlyIfReducedTy);
1277  return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1278  case Instruction::InsertValue:
1279  return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1280  OnlyIfReducedTy);
1281  case Instruction::ExtractValue:
1282  return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1283  case Instruction::ShuffleVector:
1284  return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1285  OnlyIfReducedTy);
1286  case Instruction::GetElementPtr:
1287  return ConstantExpr::getGetElementPtr(nullptr, Ops[0], Ops.slice(1),
1288  cast<GEPOperator>(this)->isInBounds(),
1289  OnlyIfReducedTy);
1290  case Instruction::ICmp:
1291  case Instruction::FCmp:
1292  return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1293  OnlyIfReducedTy);
1294  default:
1295  assert(getNumOperands() == 2 && "Must be binary operator?");
1296  return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1297  OnlyIfReducedTy);
1298  }
1299 }
1300 
1301 
1302 //===----------------------------------------------------------------------===//
1303 // isValueValidForType implementations
1304 
1305 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1306  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1307  if (Ty->isIntegerTy(1))
1308  return Val == 0 || Val == 1;
1309  if (NumBits >= 64)
1310  return true; // always true, has to fit in largest type
1311  uint64_t Max = (1ll << NumBits) - 1;
1312  return Val <= Max;
1313 }
1314 
1315 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1316  unsigned NumBits = Ty->getIntegerBitWidth();
1317  if (Ty->isIntegerTy(1))
1318  return Val == 0 || Val == 1 || Val == -1;
1319  if (NumBits >= 64)
1320  return true; // always true, has to fit in largest type
1321  int64_t Min = -(1ll << (NumBits-1));
1322  int64_t Max = (1ll << (NumBits-1)) - 1;
1323  return (Val >= Min && Val <= Max);
1324 }
1325 
1327  // convert modifies in place, so make a copy.
1328  APFloat Val2 = APFloat(Val);
1329  bool losesInfo;
1330  switch (Ty->getTypeID()) {
1331  default:
1332  return false; // These can't be represented as floating point!
1333 
1334  // FIXME rounding mode needs to be more flexible
1335  case Type::HalfTyID: {
1336  if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1337  return true;
1339  return !losesInfo;
1340  }
1341  case Type::FloatTyID: {
1342  if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1343  return true;
1345  return !losesInfo;
1346  }
1347  case Type::DoubleTyID: {
1348  if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1349  &Val2.getSemantics() == &APFloat::IEEEsingle ||
1350  &Val2.getSemantics() == &APFloat::IEEEdouble)
1351  return true;
1353  return !losesInfo;
1354  }
1355  case Type::X86_FP80TyID:
1356  return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1357  &Val2.getSemantics() == &APFloat::IEEEsingle ||
1358  &Val2.getSemantics() == &APFloat::IEEEdouble ||
1360  case Type::FP128TyID:
1361  return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1362  &Val2.getSemantics() == &APFloat::IEEEsingle ||
1363  &Val2.getSemantics() == &APFloat::IEEEdouble ||
1364  &Val2.getSemantics() == &APFloat::IEEEquad;
1365  case Type::PPC_FP128TyID:
1366  return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1367  &Val2.getSemantics() == &APFloat::IEEEsingle ||
1368  &Val2.getSemantics() == &APFloat::IEEEdouble ||
1370  }
1371 }
1372 
1373 
1374 //===----------------------------------------------------------------------===//
1375 // Factory Function Implementation
1376 
1378  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1379  "Cannot create an aggregate zero of non-aggregate type!");
1380 
1381  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1382  if (!Entry)
1383  Entry = new ConstantAggregateZero(Ty);
1384 
1385  return Entry;
1386 }
1387 
1388 /// destroyConstant - Remove the constant from the constant table.
1389 ///
1390 void ConstantAggregateZero::destroyConstantImpl() {
1391  getContext().pImpl->CAZConstants.erase(getType());
1392 }
1393 
1394 /// destroyConstant - Remove the constant from the constant table...
1395 ///
1396 void ConstantArray::destroyConstantImpl() {
1398 }
1399 
1400 
1401 //---- ConstantStruct::get() implementation...
1402 //
1403 
1404 // destroyConstant - Remove the constant from the constant table...
1405 //
1406 void ConstantStruct::destroyConstantImpl() {
1408 }
1409 
1410 // destroyConstant - Remove the constant from the constant table...
1411 //
1412 void ConstantVector::destroyConstantImpl() {
1414 }
1415 
1416 /// getSplatValue - If this is a splat vector constant, meaning that all of
1417 /// the elements have the same value, return that value. Otherwise return 0.
1419  assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1420  if (isa<ConstantAggregateZero>(this))
1421  return getNullValue(this->getType()->getVectorElementType());
1422  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1423  return CV->getSplatValue();
1424  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1425  return CV->getSplatValue();
1426  return nullptr;
1427 }
1428 
1429 /// getSplatValue - If this is a splat constant, where all of the
1430 /// elements have the same value, return that value. Otherwise return null.
1432  // Check out first element.
1433  Constant *Elt = getOperand(0);
1434  // Then make sure all remaining elements point to the same value.
1435  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1436  if (getOperand(I) != Elt)
1437  return nullptr;
1438  return Elt;
1439 }
1440 
1441 /// If C is a constant integer then return its value, otherwise C must be a
1442 /// vector of constant integers, all equal, and the common value is returned.
1444  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1445  return CI->getValue();
1446  assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1447  const Constant *C = this->getAggregateElement(0U);
1448  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1449  return cast<ConstantInt>(C)->getValue();
1450 }
1451 
1452 //---- ConstantPointerNull::get() implementation.
1453 //
1454 
1456  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1457  if (!Entry)
1458  Entry = new ConstantPointerNull(Ty);
1459 
1460  return Entry;
1461 }
1462 
1463 // destroyConstant - Remove the constant from the constant table...
1464 //
1465 void ConstantPointerNull::destroyConstantImpl() {
1466  getContext().pImpl->CPNConstants.erase(getType());
1467 }
1468 
1469 
1470 //---- UndefValue::get() implementation.
1471 //
1472 
1474  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1475  if (!Entry)
1476  Entry = new UndefValue(Ty);
1477 
1478  return Entry;
1479 }
1480 
1481 // destroyConstant - Remove the constant from the constant table.
1482 //
1483 void UndefValue::destroyConstantImpl() {
1484  // Free the constant and any dangling references to it.
1485  getContext().pImpl->UVConstants.erase(getType());
1486 }
1487 
1488 //---- BlockAddress::get() implementation.
1489 //
1490 
1492  assert(BB->getParent() && "Block must have a parent");
1493  return get(BB->getParent(), BB);
1494 }
1495 
1497  BlockAddress *&BA =
1498  F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1499  if (!BA)
1500  BA = new BlockAddress(F, BB);
1501 
1502  assert(BA->getFunction() == F && "Basic block moved between functions");
1503  return BA;
1504 }
1505 
1506 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1507 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1508  &Op<0>(), 2) {
1509  setOperand(0, F);
1510  setOperand(1, BB);
1511  BB->AdjustBlockAddressRefCount(1);
1512 }
1513 
1515  if (!BB->hasAddressTaken())
1516  return nullptr;
1517 
1518  const Function *F = BB->getParent();
1519  assert(F && "Block must have a parent");
1520  BlockAddress *BA =
1521  F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1522  assert(BA && "Refcount and block address map disagree!");
1523  return BA;
1524 }
1525 
1526 // destroyConstant - Remove the constant from the constant table.
1527 //
1528 void BlockAddress::destroyConstantImpl() {
1530  ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1531  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1532 }
1533 
1534 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
1535  // This could be replacing either the Basic Block or the Function. In either
1536  // case, we have to remove the map entry.
1537  Function *NewF = getFunction();
1538  BasicBlock *NewBB = getBasicBlock();
1539 
1540  if (U == &Op<0>())
1541  NewF = cast<Function>(To->stripPointerCasts());
1542  else
1543  NewBB = cast<BasicBlock>(To);
1544 
1545  // See if the 'new' entry already exists, if not, just update this in place
1546  // and return early.
1547  BlockAddress *&NewBA =
1548  getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1549  if (NewBA)
1550  return NewBA;
1551 
1552  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1553 
1554  // Remove the old entry, this can't cause the map to rehash (just a
1555  // tombstone will get added).
1556  getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1557  getBasicBlock()));
1558  NewBA = this;
1559  setOperand(0, NewF);
1560  setOperand(1, NewBB);
1561  getBasicBlock()->AdjustBlockAddressRefCount(1);
1562 
1563  // If we just want to keep the existing value, then return null.
1564  // Callers know that this means we shouldn't delete this value.
1565  return nullptr;
1566 }
1567 
1568 //---- ConstantExpr::get() implementations.
1569 //
1570 
1571 /// This is a utility function to handle folding of casts and lookup of the
1572 /// cast in the ExprConstants map. It is used by the various get* methods below.
1574  bool OnlyIfReduced = false) {
1575  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1576  // Fold a few common cases
1577  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1578  return FC;
1579 
1580  if (OnlyIfReduced)
1581  return nullptr;
1582 
1583  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1584 
1585  // Look up the constant in the table first to ensure uniqueness.
1586  ConstantExprKeyType Key(opc, C);
1587 
1588  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1589 }
1590 
1592  bool OnlyIfReduced) {
1594  assert(Instruction::isCast(opc) && "opcode out of range");
1595  assert(C && Ty && "Null arguments to getCast");
1596  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1597 
1598  switch (opc) {
1599  default:
1600  llvm_unreachable("Invalid cast opcode");
1601  case Instruction::Trunc:
1602  return getTrunc(C, Ty, OnlyIfReduced);
1603  case Instruction::ZExt:
1604  return getZExt(C, Ty, OnlyIfReduced);
1605  case Instruction::SExt:
1606  return getSExt(C, Ty, OnlyIfReduced);
1607  case Instruction::FPTrunc:
1608  return getFPTrunc(C, Ty, OnlyIfReduced);
1609  case Instruction::FPExt:
1610  return getFPExtend(C, Ty, OnlyIfReduced);
1611  case Instruction::UIToFP:
1612  return getUIToFP(C, Ty, OnlyIfReduced);
1613  case Instruction::SIToFP:
1614  return getSIToFP(C, Ty, OnlyIfReduced);
1615  case Instruction::FPToUI:
1616  return getFPToUI(C, Ty, OnlyIfReduced);
1617  case Instruction::FPToSI:
1618  return getFPToSI(C, Ty, OnlyIfReduced);
1619  case Instruction::PtrToInt:
1620  return getPtrToInt(C, Ty, OnlyIfReduced);
1621  case Instruction::IntToPtr:
1622  return getIntToPtr(C, Ty, OnlyIfReduced);
1623  case Instruction::BitCast:
1624  return getBitCast(C, Ty, OnlyIfReduced);
1625  case Instruction::AddrSpaceCast:
1626  return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1627  }
1628 }
1629 
1631  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1632  return getBitCast(C, Ty);
1633  return getZExt(C, Ty);
1634 }
1635 
1637  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1638  return getBitCast(C, Ty);
1639  return getSExt(C, Ty);
1640 }
1641 
1643  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1644  return getBitCast(C, Ty);
1645  return getTrunc(C, Ty);
1646 }
1647 
1649  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1650  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1651  "Invalid cast");
1652 
1653  if (Ty->isIntOrIntVectorTy())
1654  return getPtrToInt(S, Ty);
1655 
1656  unsigned SrcAS = S->getType()->getPointerAddressSpace();
1657  if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1658  return getAddrSpaceCast(S, Ty);
1659 
1660  return getBitCast(S, Ty);
1661 }
1662 
1664  Type *Ty) {
1665  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1666  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1667 
1669  return getAddrSpaceCast(S, Ty);
1670 
1671  return getBitCast(S, Ty);
1672 }
1673 
1675  bool isSigned) {
1676  assert(C->getType()->isIntOrIntVectorTy() &&
1677  Ty->isIntOrIntVectorTy() && "Invalid cast");
1678  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1679  unsigned DstBits = Ty->getScalarSizeInBits();
1680  Instruction::CastOps opcode =
1681  (SrcBits == DstBits ? Instruction::BitCast :
1682  (SrcBits > DstBits ? Instruction::Trunc :
1683  (isSigned ? Instruction::SExt : Instruction::ZExt)));
1684  return getCast(opcode, C, Ty);
1685 }
1686 
1688  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1689  "Invalid cast");
1690  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1691  unsigned DstBits = Ty->getScalarSizeInBits();
1692  if (SrcBits == DstBits)
1693  return C; // Avoid a useless cast
1694  Instruction::CastOps opcode =
1695  (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1696  return getCast(opcode, C, Ty);
1697 }
1698 
1699 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1700 #ifndef NDEBUG
1701  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1702  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1703 #endif
1704  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1705  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1706  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1707  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1708  "SrcTy must be larger than DestTy for Trunc!");
1709 
1710  return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1711 }
1712 
1713 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1714 #ifndef NDEBUG
1715  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1716  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1717 #endif
1718  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1719  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1720  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1721  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1722  "SrcTy must be smaller than DestTy for SExt!");
1723 
1724  return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1725 }
1726 
1727 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1728 #ifndef NDEBUG
1729  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1730  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1731 #endif
1732  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1733  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1734  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1735  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1736  "SrcTy must be smaller than DestTy for ZExt!");
1737 
1738  return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1739 }
1740 
1741 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1742 #ifndef NDEBUG
1743  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1744  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1745 #endif
1746  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1747  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1749  "This is an illegal floating point truncation!");
1750  return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1751 }
1752 
1753 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1754 #ifndef NDEBUG
1755  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1756  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1757 #endif
1758  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1759  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1761  "This is an illegal floating point extension!");
1762  return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1763 }
1764 
1765 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1766 #ifndef NDEBUG
1767  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1768  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1769 #endif
1770  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1771  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1772  "This is an illegal uint to floating point cast!");
1773  return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1774 }
1775 
1776 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1777 #ifndef NDEBUG
1778  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1779  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1780 #endif
1781  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1782  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1783  "This is an illegal sint to floating point cast!");
1784  return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1785 }
1786 
1787 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1788 #ifndef NDEBUG
1789  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1790  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1791 #endif
1792  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1793  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1794  "This is an illegal floating point to uint cast!");
1795  return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1796 }
1797 
1798 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1799 #ifndef NDEBUG
1800  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1801  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1802 #endif
1803  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1804  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1805  "This is an illegal floating point to sint cast!");
1806  return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1807 }
1808 
1810  bool OnlyIfReduced) {
1811  assert(C->getType()->getScalarType()->isPointerTy() &&
1812  "PtrToInt source must be pointer or pointer vector");
1813  assert(DstTy->getScalarType()->isIntegerTy() &&
1814  "PtrToInt destination must be integer or integer vector");
1815  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1816  if (isa<VectorType>(C->getType()))
1817  assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1818  "Invalid cast between a different number of vector elements");
1819  return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1820 }
1821 
1823  bool OnlyIfReduced) {
1824  assert(C->getType()->getScalarType()->isIntegerTy() &&
1825  "IntToPtr source must be integer or integer vector");
1826  assert(DstTy->getScalarType()->isPointerTy() &&
1827  "IntToPtr destination must be a pointer or pointer vector");
1828  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1829  if (isa<VectorType>(C->getType()))
1830  assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1831  "Invalid cast between a different number of vector elements");
1832  return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1833 }
1834 
1836  bool OnlyIfReduced) {
1837  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1838  "Invalid constantexpr bitcast!");
1839 
1840  // It is common to ask for a bitcast of a value to its own type, handle this
1841  // speedily.
1842  if (C->getType() == DstTy) return C;
1843 
1844  return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1845 }
1846 
1848  bool OnlyIfReduced) {
1849  assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1850  "Invalid constantexpr addrspacecast!");
1851 
1852  // Canonicalize addrspacecasts between different pointer types by first
1853  // bitcasting the pointer type and then converting the address space.
1854  PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1855  PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1856  Type *DstElemTy = DstScalarTy->getElementType();
1857  if (SrcScalarTy->getElementType() != DstElemTy) {
1858  Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1859  if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1860  // Handle vectors of pointers.
1861  MidTy = VectorType::get(MidTy, VT->getNumElements());
1862  }
1863  C = getBitCast(C, MidTy);
1864  }
1865  return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1866 }
1867 
1868 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1869  unsigned Flags, Type *OnlyIfReducedTy) {
1870  // Check the operands for consistency first.
1871  assert(Opcode >= Instruction::BinaryOpsBegin &&
1872  Opcode < Instruction::BinaryOpsEnd &&
1873  "Invalid opcode in binary constant expression");
1874  assert(C1->getType() == C2->getType() &&
1875  "Operand types in binary constant expression should match");
1876 
1877 #ifndef NDEBUG
1878  switch (Opcode) {
1879  case Instruction::Add:
1880  case Instruction::Sub:
1881  case Instruction::Mul:
1882  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1883  assert(C1->getType()->isIntOrIntVectorTy() &&
1884  "Tried to create an integer operation on a non-integer type!");
1885  break;
1886  case Instruction::FAdd:
1887  case Instruction::FSub:
1888  case Instruction::FMul:
1889  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1890  assert(C1->getType()->isFPOrFPVectorTy() &&
1891  "Tried to create a floating-point operation on a "
1892  "non-floating-point type!");
1893  break;
1894  case Instruction::UDiv:
1895  case Instruction::SDiv:
1896  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1897  assert(C1->getType()->isIntOrIntVectorTy() &&
1898  "Tried to create an arithmetic operation on a non-arithmetic type!");
1899  break;
1900  case Instruction::FDiv:
1901  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1902  assert(C1->getType()->isFPOrFPVectorTy() &&
1903  "Tried to create an arithmetic operation on a non-arithmetic type!");
1904  break;
1905  case Instruction::URem:
1906  case Instruction::SRem:
1907  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1908  assert(C1->getType()->isIntOrIntVectorTy() &&
1909  "Tried to create an arithmetic operation on a non-arithmetic type!");
1910  break;
1911  case Instruction::FRem:
1912  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1913  assert(C1->getType()->isFPOrFPVectorTy() &&
1914  "Tried to create an arithmetic operation on a non-arithmetic type!");
1915  break;
1916  case Instruction::And:
1917  case Instruction::Or:
1918  case Instruction::Xor:
1919  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1920  assert(C1->getType()->isIntOrIntVectorTy() &&
1921  "Tried to create a logical operation on a non-integral type!");
1922  break;
1923  case Instruction::Shl:
1924  case Instruction::LShr:
1925  case Instruction::AShr:
1926  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1927  assert(C1->getType()->isIntOrIntVectorTy() &&
1928  "Tried to create a shift operation on a non-integer type!");
1929  break;
1930  default:
1931  break;
1932  }
1933 #endif
1934 
1935  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1936  return FC; // Fold a few common cases.
1937 
1938  if (OnlyIfReducedTy == C1->getType())
1939  return nullptr;
1940 
1941  Constant *ArgVec[] = { C1, C2 };
1942  ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1943 
1944  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1945  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1946 }
1947 
1949  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1950  // Note that a non-inbounds gep is used, as null isn't within any object.
1954  return getPtrToInt(GEP,
1955  Type::getInt64Ty(Ty->getContext()));
1956 }
1957 
1959  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1960  // Note that a non-inbounds gep is used, as null isn't within any object.
1961  Type *AligningTy =
1962  StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1963  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1966  Constant *Indices[2] = { Zero, One };
1967  Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1968  return getPtrToInt(GEP,
1969  Type::getInt64Ty(Ty->getContext()));
1970 }
1971 
1974  FieldNo));
1975 }
1976 
1978  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1979  // Note that a non-inbounds gep is used, as null isn't within any object.
1980  Constant *GEPIdx[] = {
1982  FieldNo
1983  };
1986  return getPtrToInt(GEP,
1987  Type::getInt64Ty(Ty->getContext()));
1988 }
1989 
1991  Constant *C2, bool OnlyIfReduced) {
1992  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1993 
1994  switch (Predicate) {
1995  default: llvm_unreachable("Invalid CmpInst predicate");
2001  case CmpInst::FCMP_TRUE:
2002  return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2003 
2007  case CmpInst::ICMP_SLE:
2008  return getICmp(Predicate, C1, C2, OnlyIfReduced);
2009  }
2010 }
2011 
2013  Type *OnlyIfReducedTy) {
2014  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2015 
2016  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2017  return SC; // Fold common cases
2018 
2019  if (OnlyIfReducedTy == V1->getType())
2020  return nullptr;
2021 
2022  Constant *ArgVec[] = { C, V1, V2 };
2024 
2025  LLVMContextImpl *pImpl = C->getContext().pImpl;
2026  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2027 }
2028 
2030  ArrayRef<Value *> Idxs, bool InBounds,
2031  Type *OnlyIfReducedTy) {
2032  if (!Ty)
2033  Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
2034  else
2035  assert(
2036  Ty ==
2037  cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
2038 
2039  if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, Idxs))
2040  return FC; // Fold a few common cases.
2041 
2042  // Get the result type of the getelementptr!
2043  Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2044  assert(DestTy && "GEP indices invalid!");
2045  unsigned AS = C->getType()->getPointerAddressSpace();
2046  Type *ReqTy = DestTy->getPointerTo(AS);
2047  if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2048  ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
2049 
2050  if (OnlyIfReducedTy == ReqTy)
2051  return nullptr;
2052 
2053  // Look up the constant in the table first to ensure uniqueness
2054  std::vector<Constant*> ArgVec;
2055  ArgVec.reserve(1 + Idxs.size());
2056  ArgVec.push_back(C);
2057  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2058  assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
2059  "getelementptr index type missmatch");
2060  assert((!Idxs[i]->getType()->isVectorTy() ||
2061  ReqTy->getVectorNumElements() ==
2062  Idxs[i]->getType()->getVectorNumElements()) &&
2063  "getelementptr index type missmatch");
2064  ArgVec.push_back(cast<Constant>(Idxs[i]));
2065  }
2066  const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2067  InBounds ? GEPOperator::IsInBounds : 0, None,
2068  Ty);
2069 
2070  LLVMContextImpl *pImpl = C->getContext().pImpl;
2071  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2072 }
2073 
2075  Constant *RHS, bool OnlyIfReduced) {
2076  assert(LHS->getType() == RHS->getType());
2077  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
2078  pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
2079 
2080  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2081  return FC; // Fold a few common cases...
2082 
2083  if (OnlyIfReduced)
2084  return nullptr;
2085 
2086  // Look up the constant in the table first to ensure uniqueness
2087  Constant *ArgVec[] = { LHS, RHS };
2088  // Get the key type with both the opcode and predicate
2089  const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2090 
2091  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2092  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2093  ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2094 
2095  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2096  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2097 }
2098 
2100  Constant *RHS, bool OnlyIfReduced) {
2101  assert(LHS->getType() == RHS->getType());
2102  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
2103 
2104  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2105  return FC; // Fold a few common cases...
2106 
2107  if (OnlyIfReduced)
2108  return nullptr;
2109 
2110  // Look up the constant in the table first to ensure uniqueness
2111  Constant *ArgVec[] = { LHS, RHS };
2112  // Get the key type with both the opcode and predicate
2113  const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2114 
2115  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2116  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2117  ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2118 
2119  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2120  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2121 }
2122 
2124  Type *OnlyIfReducedTy) {
2125  assert(Val->getType()->isVectorTy() &&
2126  "Tried to create extractelement operation on non-vector type!");
2127  assert(Idx->getType()->isIntegerTy() &&
2128  "Extractelement index must be an integer type!");
2129 
2131  return FC; // Fold a few common cases.
2132 
2133  Type *ReqTy = Val->getType()->getVectorElementType();
2134  if (OnlyIfReducedTy == ReqTy)
2135  return nullptr;
2136 
2137  // Look up the constant in the table first to ensure uniqueness
2138  Constant *ArgVec[] = { Val, Idx };
2140 
2141  LLVMContextImpl *pImpl = Val->getContext().pImpl;
2142  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2143 }
2144 
2146  Constant *Idx, Type *OnlyIfReducedTy) {
2147  assert(Val->getType()->isVectorTy() &&
2148  "Tried to create insertelement operation on non-vector type!");
2149  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2150  "Insertelement types must match!");
2151  assert(Idx->getType()->isIntegerTy() &&
2152  "Insertelement index must be i32 type!");
2153 
2154  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2155  return FC; // Fold a few common cases.
2156 
2157  if (OnlyIfReducedTy == Val->getType())
2158  return nullptr;
2159 
2160  // Look up the constant in the table first to ensure uniqueness
2161  Constant *ArgVec[] = { Val, Elt, Idx };
2162  const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2163 
2164  LLVMContextImpl *pImpl = Val->getContext().pImpl;
2165  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2166 }
2167 
2169  Constant *Mask, Type *OnlyIfReducedTy) {
2170  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2171  "Invalid shuffle vector constant expr operands!");
2172 
2173  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2174  return FC; // Fold a few common cases.
2175 
2176  unsigned NElts = Mask->getType()->getVectorNumElements();
2177  Type *EltTy = V1->getType()->getVectorElementType();
2178  Type *ShufTy = VectorType::get(EltTy, NElts);
2179 
2180  if (OnlyIfReducedTy == ShufTy)
2181  return nullptr;
2182 
2183  // Look up the constant in the table first to ensure uniqueness
2184  Constant *ArgVec[] = { V1, V2, Mask };
2185  const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2186 
2187  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2188  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2189 }
2190 
2192  ArrayRef<unsigned> Idxs,
2193  Type *OnlyIfReducedTy) {
2194  assert(Agg->getType()->isFirstClassType() &&
2195  "Non-first-class type for constant insertvalue expression");
2196 
2198  Idxs) == Val->getType() &&
2199  "insertvalue indices invalid!");
2200  Type *ReqTy = Val->getType();
2201 
2202  if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2203  return FC;
2204 
2205  if (OnlyIfReducedTy == ReqTy)
2206  return nullptr;
2207 
2208  Constant *ArgVec[] = { Agg, Val };
2209  const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2210 
2211  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2212  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2213 }
2214 
2216  Type *OnlyIfReducedTy) {
2217  assert(Agg->getType()->isFirstClassType() &&
2218  "Tried to create extractelement operation on non-first-class type!");
2219 
2220  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2221  (void)ReqTy;
2222  assert(ReqTy && "extractvalue indices invalid!");
2223 
2224  assert(Agg->getType()->isFirstClassType() &&
2225  "Non-first-class type for constant extractvalue expression");
2227  return FC;
2228 
2229  if (OnlyIfReducedTy == ReqTy)
2230  return nullptr;
2231 
2232  Constant *ArgVec[] = { Agg };
2233  const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2234 
2235  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2236  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2237 }
2238 
2239 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2240  assert(C->getType()->isIntOrIntVectorTy() &&
2241  "Cannot NEG a nonintegral value!");
2243  C, HasNUW, HasNSW);
2244 }
2245 
2247  assert(C->getType()->isFPOrFPVectorTy() &&
2248  "Cannot FNEG a non-floating-point value!");
2250 }
2251 
2253  assert(C->getType()->isIntOrIntVectorTy() &&
2254  "Cannot NOT a nonintegral value!");
2255  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2256 }
2257 
2259  bool HasNUW, bool HasNSW) {
2260  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2262  return get(Instruction::Add, C1, C2, Flags);
2263 }
2264 
2266  return get(Instruction::FAdd, C1, C2);
2267 }
2268 
2270  bool HasNUW, bool HasNSW) {
2271  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2273  return get(Instruction::Sub, C1, C2, Flags);
2274 }
2275 
2277  return get(Instruction::FSub, C1, C2);
2278 }
2279 
2281  bool HasNUW, bool HasNSW) {
2282  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2284  return get(Instruction::Mul, C1, C2, Flags);
2285 }
2286 
2288  return get(Instruction::FMul, C1, C2);
2289 }
2290 
2292  return get(Instruction::UDiv, C1, C2,
2293  isExact ? PossiblyExactOperator::IsExact : 0);
2294 }
2295 
2297  return get(Instruction::SDiv, C1, C2,
2298  isExact ? PossiblyExactOperator::IsExact : 0);
2299 }
2300 
2302  return get(Instruction::FDiv, C1, C2);
2303 }
2304 
2306  return get(Instruction::URem, C1, C2);
2307 }
2308 
2310  return get(Instruction::SRem, C1, C2);
2311 }
2312 
2314  return get(Instruction::FRem, C1, C2);
2315 }
2316 
2318  return get(Instruction::And, C1, C2);
2319 }
2320 
2322  return get(Instruction::Or, C1, C2);
2323 }
2324 
2326  return get(Instruction::Xor, C1, C2);
2327 }
2328 
2330  bool HasNUW, bool HasNSW) {
2331  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2333  return get(Instruction::Shl, C1, C2, Flags);
2334 }
2335 
2337  return get(Instruction::LShr, C1, C2,
2338  isExact ? PossiblyExactOperator::IsExact : 0);
2339 }
2340 
2342  return get(Instruction::AShr, C1, C2,
2343  isExact ? PossiblyExactOperator::IsExact : 0);
2344 }
2345 
2346 /// getBinOpIdentity - Return the identity for the given binary operation,
2347 /// i.e. a constant C such that X op C = X and C op X = X for every X. It
2348 /// returns null if the operator doesn't have an identity.
2350  switch (Opcode) {
2351  default:
2352  // Doesn't have an identity.
2353  return nullptr;
2354 
2355  case Instruction::Add:
2356  case Instruction::Or:
2357  case Instruction::Xor:
2358  return Constant::getNullValue(Ty);
2359 
2360  case Instruction::Mul:
2361  return ConstantInt::get(Ty, 1);
2362 
2363  case Instruction::And:
2364  return Constant::getAllOnesValue(Ty);
2365  }
2366 }
2367 
2368 /// getBinOpAbsorber - Return the absorbing element for the given binary
2369 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2370 /// every X. For example, this returns zero for integer multiplication.
2371 /// It returns null if the operator doesn't have an absorbing element.
2373  switch (Opcode) {
2374  default:
2375  // Doesn't have an absorber.
2376  return nullptr;
2377 
2378  case Instruction::Or:
2379  return Constant::getAllOnesValue(Ty);
2380 
2381  case Instruction::And:
2382  case Instruction::Mul:
2383  return Constant::getNullValue(Ty);
2384  }
2385 }
2386 
2387 // destroyConstant - Remove the constant from the constant table...
2388 //
2389 void ConstantExpr::destroyConstantImpl() {
2390  getType()->getContext().pImpl->ExprConstants.remove(this);
2391 }
2392 
2393 const char *ConstantExpr::getOpcodeName() const {
2395 }
2396 
2397 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2398  Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2399  : ConstantExpr(DestTy, Instruction::GetElementPtr,
2400  OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2401  (IdxList.size() + 1),
2402  IdxList.size() + 1),
2403  SrcElementTy(SrcElementTy) {
2404  Op<0>() = C;
2405  Use *OperandList = getOperandList();
2406  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2407  OperandList[i+1] = IdxList[i];
2408 }
2409 
2411  return SrcElementTy;
2412 }
2413 
2414 //===----------------------------------------------------------------------===//
2415 // ConstantData* implementations
2416 
2417 void ConstantDataArray::anchor() {}
2418 void ConstantDataVector::anchor() {}
2419 
2420 /// getElementType - Return the element type of the array/vector.
2422  return getType()->getElementType();
2423 }
2424 
2426  return StringRef(DataElements, getNumElements()*getElementByteSize());
2427 }
2428 
2429 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2430 /// formed with a vector or array of the specified element type.
2431 /// ConstantDataArray only works with normal float and int types that are
2432 /// stored densely in memory, not with things like i42 or x86_f80.
2434  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2435  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2436  switch (IT->getBitWidth()) {
2437  case 8:
2438  case 16:
2439  case 32:
2440  case 64:
2441  return true;
2442  default: break;
2443  }
2444  }
2445  return false;
2446 }
2447 
2448 /// getNumElements - Return the number of elements in the array or vector.
2450  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2451  return AT->getNumElements();
2452  return getType()->getVectorNumElements();
2453 }
2454 
2455 
2456 /// getElementByteSize - Return the size in bytes of the elements in the data.
2458  return getElementType()->getPrimitiveSizeInBits()/8;
2459 }
2460 
2461 /// getElementPointer - Return the start of the specified element.
2462 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2463  assert(Elt < getNumElements() && "Invalid Elt");
2464  return DataElements+Elt*getElementByteSize();
2465 }
2466 
2467 
2468 /// isAllZeros - return true if the array is empty or all zeros.
2469 static bool isAllZeros(StringRef Arr) {
2470  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2471  if (*I != 0)
2472  return false;
2473  return true;
2474 }
2475 
2476 /// getImpl - This is the underlying implementation of all of the
2477 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2478 /// the correct element type. We take the bytes in as a StringRef because
2479 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2482  // If the elements are all zero or there are no elements, return a CAZ, which
2483  // is more dense and canonical.
2484  if (isAllZeros(Elements))
2485  return ConstantAggregateZero::get(Ty);
2486 
2487  // Do a lookup to see if we have already formed one of these.
2488  auto &Slot =
2489  *Ty->getContext()
2490  .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2491  .first;
2492 
2493  // The bucket can point to a linked list of different CDS's that have the same
2494  // body but different types. For example, 0,0,0,1 could be a 4 element array
2495  // of i8, or a 1-element array of i32. They'll both end up in the same
2496  /// StringMap bucket, linked up by their Next pointers. Walk the list.
2497  ConstantDataSequential **Entry = &Slot.second;
2498  for (ConstantDataSequential *Node = *Entry; Node;
2499  Entry = &Node->Next, Node = *Entry)
2500  if (Node->getType() == Ty)
2501  return Node;
2502 
2503  // Okay, we didn't get a hit. Create a node of the right class, link it in,
2504  // and return it.
2505  if (isa<ArrayType>(Ty))
2506  return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2507 
2508  assert(isa<VectorType>(Ty));
2509  return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2510 }
2511 
2512 void ConstantDataSequential::destroyConstantImpl() {
2513  // Remove the constant from the StringMap.
2514  StringMap<ConstantDataSequential*> &CDSConstants =
2516 
2518  CDSConstants.find(getRawDataValues());
2519 
2520  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2521 
2522  ConstantDataSequential **Entry = &Slot->getValue();
2523 
2524  // Remove the entry from the hash table.
2525  if (!(*Entry)->Next) {
2526  // If there is only one value in the bucket (common case) it must be this
2527  // entry, and removing the entry should remove the bucket completely.
2528  assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2529  getContext().pImpl->CDSConstants.erase(Slot);
2530  } else {
2531  // Otherwise, there are multiple entries linked off the bucket, unlink the
2532  // node we care about but keep the bucket around.
2533  for (ConstantDataSequential *Node = *Entry; ;
2534  Entry = &Node->Next, Node = *Entry) {
2535  assert(Node && "Didn't find entry in its uniquing hash table!");
2536  // If we found our entry, unlink it from the list and we're done.
2537  if (Node == this) {
2538  *Entry = Node->Next;
2539  break;
2540  }
2541  }
2542  }
2543 
2544  // If we were part of a list, make sure that we don't delete the list that is
2545  // still owned by the uniquing map.
2546  Next = nullptr;
2547 }
2548 
2549 /// get() constructors - Return a constant with array type with an element
2550 /// count and element type matching the ArrayRef passed in. Note that this
2551 /// can return a ConstantAggregateZero object.
2553  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2554  const char *Data = reinterpret_cast<const char *>(Elts.data());
2555  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2556 }
2558  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2559  const char *Data = reinterpret_cast<const char *>(Elts.data());
2560  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2561 }
2563  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2564  const char *Data = reinterpret_cast<const char *>(Elts.data());
2565  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2566 }
2568  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2569  const char *Data = reinterpret_cast<const char *>(Elts.data());
2570  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2571 }
2573  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2574  const char *Data = reinterpret_cast<const char *>(Elts.data());
2575  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2576 }
2578  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2579  const char *Data = reinterpret_cast<const char *>(Elts.data());
2580  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2581 }
2582 
2583 /// getFP() constructors - Return a constant with array type with an element
2584 /// count and element type of float with precision matching the number of
2585 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2586 /// double for 64bits) Note that this can return a ConstantAggregateZero
2587 /// object.
2589  ArrayRef<uint16_t> Elts) {
2590  Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2591  const char *Data = reinterpret_cast<const char *>(Elts.data());
2592  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2593 }
2595  ArrayRef<uint32_t> Elts) {
2596  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2597  const char *Data = reinterpret_cast<const char *>(Elts.data());
2598  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2599 }
2601  ArrayRef<uint64_t> Elts) {
2602  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2603  const char *Data = reinterpret_cast<const char *>(Elts.data());
2604  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2605 }
2606 
2607 /// getString - This method constructs a CDS and initializes it with a text
2608 /// string. The default behavior (AddNull==true) causes a null terminator to
2609 /// be placed at the end of the array (increasing the length of the string by
2610 /// one more than the StringRef would normally indicate. Pass AddNull=false
2611 /// to disable this behavior.
2613  StringRef Str, bool AddNull) {
2614  if (!AddNull) {
2615  const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2616  return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2617  Str.size()));
2618  }
2619 
2620  SmallVector<uint8_t, 64> ElementVals;
2621  ElementVals.append(Str.begin(), Str.end());
2622  ElementVals.push_back(0);
2623  return get(Context, ElementVals);
2624 }
2625 
2626 /// get() constructors - Return a constant with vector type with an element
2627 /// count and element type matching the ArrayRef passed in. Note that this
2628 /// can return a ConstantAggregateZero object.
2630  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2631  const char *Data = reinterpret_cast<const char *>(Elts.data());
2632  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2633 }
2635  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2636  const char *Data = reinterpret_cast<const char *>(Elts.data());
2637  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2638 }
2640  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2641  const char *Data = reinterpret_cast<const char *>(Elts.data());
2642  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2643 }
2645  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2646  const char *Data = reinterpret_cast<const char *>(Elts.data());
2647  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2648 }
2650  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2651  const char *Data = reinterpret_cast<const char *>(Elts.data());
2652  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2653 }
2655  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2656  const char *Data = reinterpret_cast<const char *>(Elts.data());
2657  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2658 }
2659 
2660 /// getFP() constructors - Return a constant with vector type with an element
2661 /// count and element type of float with the precision matching the number of
2662 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2663 /// double for 64bits) Note that this can return a ConstantAggregateZero
2664 /// object.
2666  ArrayRef<uint16_t> Elts) {
2667  Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2668  const char *Data = reinterpret_cast<const char *>(Elts.data());
2669  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2670 }
2672  ArrayRef<uint32_t> Elts) {
2673  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2674  const char *Data = reinterpret_cast<const char *>(Elts.data());
2675  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2676 }
2678  ArrayRef<uint64_t> Elts) {
2679  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2680  const char *Data = reinterpret_cast<const char *>(Elts.data());
2681  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2682 }
2683 
2685  assert(isElementTypeCompatible(V->getType()) &&
2686  "Element type not compatible with ConstantData");
2687  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2688  if (CI->getType()->isIntegerTy(8)) {
2689  SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2690  return get(V->getContext(), Elts);
2691  }
2692  if (CI->getType()->isIntegerTy(16)) {
2693  SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2694  return get(V->getContext(), Elts);
2695  }
2696  if (CI->getType()->isIntegerTy(32)) {
2697  SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2698  return get(V->getContext(), Elts);
2699  }
2700  assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2701  SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2702  return get(V->getContext(), Elts);
2703  }
2704 
2705  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2706  if (CFP->getType()->isFloatTy()) {
2708  NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2709  return getFP(V->getContext(), Elts);
2710  }
2711  if (CFP->getType()->isDoubleTy()) {
2713  NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2714  return getFP(V->getContext(), Elts);
2715  }
2716  }
2717  return ConstantVector::getSplat(NumElts, V);
2718 }
2719 
2720 
2721 /// getElementAsInteger - If this is a sequential container of integers (of
2722 /// any size), return the specified element in the low bits of a uint64_t.
2723 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2724  assert(isa<IntegerType>(getElementType()) &&
2725  "Accessor can only be used when element is an integer");
2726  const char *EltPtr = getElementPointer(Elt);
2727 
2728  // The data is stored in host byte order, make sure to cast back to the right
2729  // type to load with the right endianness.
2730  switch (getElementType()->getIntegerBitWidth()) {
2731  default: llvm_unreachable("Invalid bitwidth for CDS");
2732  case 8:
2733  return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2734  case 16:
2735  return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2736  case 32:
2737  return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2738  case 64:
2739  return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2740  }
2741 }
2742 
2743 /// getElementAsAPFloat - If this is a sequential container of floating point
2744 /// type, return the specified element as an APFloat.
2746  const char *EltPtr = getElementPointer(Elt);
2747 
2748  switch (getElementType()->getTypeID()) {
2749  default:
2750  llvm_unreachable("Accessor can only be used when element is float/double!");
2751  case Type::FloatTyID: {
2752  auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2753  return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
2754  }
2755  case Type::DoubleTyID: {
2756  auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2757  return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
2758  }
2759  }
2760 }
2761 
2762 /// getElementAsFloat - If this is an sequential container of floats, return
2763 /// the specified element as a float.
2765  assert(getElementType()->isFloatTy() &&
2766  "Accessor can only be used when element is a 'float'");
2767  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2768  return *const_cast<float *>(EltPtr);
2769 }
2770 
2771 /// getElementAsDouble - If this is an sequential container of doubles, return
2772 /// the specified element as a float.
2774  assert(getElementType()->isDoubleTy() &&
2775  "Accessor can only be used when element is a 'float'");
2776  const double *EltPtr =
2777  reinterpret_cast<const double *>(getElementPointer(Elt));
2778  return *const_cast<double *>(EltPtr);
2779 }
2780 
2781 /// getElementAsConstant - Return a Constant for a specified index's element.
2782 /// Note that this has to compute a new constant to return, so it isn't as
2783 /// efficient as getElementAsInteger/Float/Double.
2785  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2787 
2789 }
2790 
2791 /// isString - This method returns true if this is an array of i8.
2793  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2794 }
2795 
2796 /// isCString - This method returns true if the array "isString", ends with a
2797 /// nul byte, and does not contains any other nul bytes.
2799  if (!isString())
2800  return false;
2801 
2802  StringRef Str = getAsString();
2803 
2804  // The last value must be nul.
2805  if (Str.back() != 0) return false;
2806 
2807  // Other elements must be non-nul.
2808  return Str.drop_back().find(0) == StringRef::npos;
2809 }
2810 
2811 /// getSplatValue - If this is a splat constant, meaning that all of the
2812 /// elements have the same value, return that value. Otherwise return nullptr.
2814  const char *Base = getRawDataValues().data();
2815 
2816  // Compare elements 1+ to the 0'th element.
2817  unsigned EltSize = getElementByteSize();
2818  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2819  if (memcmp(Base, Base+i*EltSize, EltSize))
2820  return nullptr;
2821 
2822  // If they're all the same, return the 0th one as a representative.
2823  return getElementAsConstant(0);
2824 }
2825 
2826 //===----------------------------------------------------------------------===//
2827 // handleOperandChange implementations
2828 
2829 /// Update this constant array to change uses of
2830 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2831 /// etc.
2832 ///
2833 /// Note that we intentionally replace all uses of From with To here. Consider
2834 /// a large array that uses 'From' 1000 times. By handling this case all here,
2835 /// ConstantArray::handleOperandChange is only invoked once, and that
2836 /// single invocation handles all 1000 uses. Handling them one at a time would
2837 /// work, but would be really slow because it would have to unique each updated
2838 /// array instance.
2839 ///
2841  Value *Replacement = nullptr;
2842  switch (getValueID()) {
2843  default:
2844  llvm_unreachable("Not a constant!");
2845 #define HANDLE_CONSTANT(Name) \
2846  case Value::Name##Val: \
2847  Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To, U); \
2848  break;
2849 #include "llvm/IR/Value.def"
2850  }
2851 
2852  // If handleOperandChangeImpl returned nullptr, then it handled
2853  // replacing itself and we don't want to delete or replace anything else here.
2854  if (!Replacement)
2855  return;
2856 
2857  // I do need to replace this with an existing value.
2858  assert(Replacement != this && "I didn't contain From!");
2859 
2860  // Everyone using this now uses the replacement.
2861  replaceAllUsesWith(Replacement);
2862 
2863  // Delete the old constant!
2864  destroyConstant();
2865 }
2866 
2867 Value *ConstantInt::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2868  llvm_unreachable("Unsupported class for handleOperandChange()!");
2869 }
2870 
2871 Value *ConstantFP::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2872  llvm_unreachable("Unsupported class for handleOperandChange()!");
2873 }
2874 
2875 Value *UndefValue::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2876  llvm_unreachable("Unsupported class for handleOperandChange()!");
2877 }
2878 
2879 Value *ConstantPointerNull::handleOperandChangeImpl(Value *From, Value *To,
2880  Use *U) {
2881  llvm_unreachable("Unsupported class for handleOperandChange()!");
2882 }
2883 
2884 Value *ConstantAggregateZero::handleOperandChangeImpl(Value *From, Value *To,
2885  Use *U) {
2886  llvm_unreachable("Unsupported class for handleOperandChange()!");
2887 }
2888 
2889 Value *ConstantDataSequential::handleOperandChangeImpl(Value *From, Value *To,
2890  Use *U) {
2891  llvm_unreachable("Unsupported class for handleOperandChange()!");
2892 }
2893 
2894 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2895  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2896  Constant *ToC = cast<Constant>(To);
2897 
2899  Values.reserve(getNumOperands()); // Build replacement array.
2900 
2901  // Fill values with the modified operands of the constant array. Also,
2902  // compute whether this turns into an all-zeros array.
2903  unsigned NumUpdated = 0;
2904 
2905  // Keep track of whether all the values in the array are "ToC".
2906  bool AllSame = true;
2907  Use *OperandList = getOperandList();
2908  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2909  Constant *Val = cast<Constant>(O->get());
2910  if (Val == From) {
2911  Val = ToC;
2912  ++NumUpdated;
2913  }
2914  Values.push_back(Val);
2915  AllSame &= Val == ToC;
2916  }
2917 
2918  if (AllSame && ToC->isNullValue())
2920 
2921  if (AllSame && isa<UndefValue>(ToC))
2922  return UndefValue::get(getType());
2923 
2924  // Check for any other type of constant-folding.
2925  if (Constant *C = getImpl(getType(), Values))
2926  return C;
2927 
2928  // Update to the new value.
2930  Values, this, From, ToC, NumUpdated, U - OperandList);
2931 }
2932 
2933 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2934  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2935  Constant *ToC = cast<Constant>(To);
2936 
2937  Use *OperandList = getOperandList();
2938  unsigned OperandToUpdate = U-OperandList;
2939  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2940 
2942  Values.reserve(getNumOperands()); // Build replacement struct.
2943 
2944  // Fill values with the modified operands of the constant struct. Also,
2945  // compute whether this turns into an all-zeros struct.
2946  bool isAllZeros = false;
2947  bool isAllUndef = false;
2948  if (ToC->isNullValue()) {
2949  isAllZeros = true;
2950  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2951  Constant *Val = cast<Constant>(O->get());
2952  Values.push_back(Val);
2953  if (isAllZeros) isAllZeros = Val->isNullValue();
2954  }
2955  } else if (isa<UndefValue>(ToC)) {
2956  isAllUndef = true;
2957  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2958  Constant *Val = cast<Constant>(O->get());
2959  Values.push_back(Val);
2960  if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2961  }
2962  } else {
2963  for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2964  Values.push_back(cast<Constant>(O->get()));
2965  }
2966  Values[OperandToUpdate] = ToC;
2967 
2968  if (isAllZeros)
2970 
2971  if (isAllUndef)
2972  return UndefValue::get(getType());
2973 
2974  // Update to the new value.
2976  Values, this, From, ToC);
2977 }
2978 
2979 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2980  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2981  Constant *ToC = cast<Constant>(To);
2982 
2984  Values.reserve(getNumOperands()); // Build replacement array...
2985  unsigned NumUpdated = 0;
2986  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2987  Constant *Val = getOperand(i);
2988  if (Val == From) {
2989  ++NumUpdated;
2990  Val = ToC;
2991  }
2992  Values.push_back(Val);
2993  }
2994 
2995  if (Constant *C = getImpl(Values))
2996  return C;
2997 
2998  // Update to the new value.
2999  Use *OperandList = getOperandList();
3001  Values, this, From, ToC, NumUpdated, U - OperandList);
3002 }
3003 
3004 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV, Use *U) {
3005  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3006  Constant *To = cast<Constant>(ToV);
3007 
3009  unsigned NumUpdated = 0;
3010  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3011  Constant *Op = getOperand(i);
3012  if (Op == From) {
3013  ++NumUpdated;
3014  Op = To;
3015  }
3016  NewOps.push_back(Op);
3017  }
3018  assert(NumUpdated && "I didn't contain From!");
3019 
3020  if (Constant *C = getWithOperands(NewOps, getType(), true))
3021  return C;
3022 
3023  // Update to the new value.
3024  Use *OperandList = getOperandList();
3025  return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3026  NewOps, this, From, To, NumUpdated, U - OperandList);
3027 }
3028 
3030  SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
3031  ArrayRef<Value*> Ops(ValueOperands);
3032 
3033  switch (getOpcode()) {
3034  case Instruction::Trunc:
3035  case Instruction::ZExt:
3036  case Instruction::SExt:
3037  case Instruction::FPTrunc:
3038  case Instruction::FPExt:
3039  case Instruction::UIToFP:
3040  case Instruction::SIToFP:
3041  case Instruction::FPToUI:
3042  case Instruction::FPToSI:
3043  case Instruction::PtrToInt:
3044  case Instruction::IntToPtr:
3045  case Instruction::BitCast:
3046  case Instruction::AddrSpaceCast:
3048  Ops[0], getType());
3049  case Instruction::Select:
3050  return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3051  case Instruction::InsertElement:
3052  return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3054  return ExtractElementInst::Create(Ops[0], Ops[1]);
3055  case Instruction::InsertValue:
3056  return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3057  case Instruction::ExtractValue:
3058  return ExtractValueInst::Create(Ops[0], getIndices());
3059  case Instruction::ShuffleVector:
3060  return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
3061 
3062  case Instruction::GetElementPtr: {
3063  const auto *GO = cast<GEPOperator>(this);
3064  if (GO->isInBounds())
3065  return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3066  Ops[0], Ops.slice(1));
3067  return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3068  Ops.slice(1));
3069  }
3070  case Instruction::ICmp:
3071  case Instruction::FCmp:
3073  getPredicate(), Ops[0], Ops[1]);
3074 
3075  default:
3076  assert(getNumOperands() == 2 && "Must be binary operator?");
3077  BinaryOperator *BO =
3079  Ops[0], Ops[1]);
3080  if (isa<OverflowingBinaryOperator>(BO)) {
3085  }
3086  if (isa<PossiblyExactOperator>(BO))
3088  return BO;
3089  }
3090 }
static Constant * getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1741
static bool isValueValidForType(Type *Ty, uint64_t V)
This static method returns true if the type Ty is big enough to represent the value V...
Definition: Constants.cpp:1305
ConstantDataVector - A vector constant whose element type is a simple 1/2/4/8-byte integer or float/d...
Definition: Constants.h:742
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:537
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:140
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag...
static Constant * getString(LLVMContext &Context, StringRef Initializer, bool AddNull=true)
getString - This method constructs a CDS and initializes it with a text string.
Definition: Constants.cpp:2612
static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt)
Definition: Constants.cpp:854
static Type * getDoubleTy(LLVMContext &C)
Definition: Type.cpp:229
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:236
static Constant * getFAdd(Constant *C1, Constant *C2)
Definition: Constants.cpp:2265
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:223
unsigned getStructNumElements() const
Definition: Type.cpp:196
APFloat getElementAsAPFloat(unsigned i) const
getElementAsAPFloat - If this is a sequential container of floating point type, return the specified ...
Definition: Constants.cpp:2745
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:453
static Constant * getPointerBitCastOrAddrSpaceCast(Constant *C, Type *Ty)
Create a BitCast or AddrSpaceCast for a pointer type depending on the address space.
Definition: Constants.cpp:1663
Type * getSequentialElementType() const
Definition: Type.cpp:204
size_t size() const
size - Get the string size.
Definition: StringRef.h:113
bool isOpaque() const
isOpaque - Return true if this is a type with an identity that has no body specified yet...
Definition: DerivedTypes.h:250
static const fltSemantics IEEEdouble
Definition: APFloat.h:133
static Constant * getNaN(Type *Ty, bool Negative=false, unsigned type=0)
Definition: Constants.cpp:682
DenseMap< std::pair< const Function *, const BasicBlock * >, BlockAddress * > BlockAddresses
static Constant * getInfinity(Type *Ty, bool Negative=false)
Definition: Constants.cpp:742
2: 32-bit floating point type
Definition: Type.h:58
Constant * getSplatValue() const
getSplatValue - If this is a splat vector constant, meaning that all of the elements have the same va...
Definition: Constants.cpp:1418
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:137
unsigned getNumOperands() const
Definition: User.h:138
size_t find(char C, size_t From=0) const
Search for the first character C in the string.
Definition: StringRef.h:240
static Constant * getAddrSpaceCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1847
static ConstantAggregateZero * get(Type *Ty)
Definition: Constants.cpp:1377
ExtractValueConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to i...
iterator end() const
Definition: ArrayRef.h:123
bool isOneValue() const
Returns true if the value is one.
Definition: Constants.cpp:110
Constant * ConstantFoldExtractElementInstruction(Constant *Val, Constant *Idx)
Attempt to constant fold an extractelement instruction with the specified operands and indices...
Constant * getElementAsConstant(unsigned i) const
getElementAsConstant - Return a Constant for a specified index's element.
Definition: Constants.cpp:2784
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty)
getBinOpIdentity - Return the identity for the given binary operation, i.e.
Definition: Constants.cpp:2349
Constant * getSplatValue() const
getSplatValue - If this is a splat constant, meaning that all of the elements have the same value...
Definition: Constants.cpp:2813
static PointerType * get(Type *ElementType, unsigned AddressSpace)
PointerType::get - This constructs a pointer to an object of the specified type in a numbered address...
Definition: Type.cpp:738
gep_type_iterator gep_type_end(const User *GEP)
unsigned less or equal
Definition: InstrTypes.h:723
unsigned less than
Definition: InstrTypes.h:722
Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
static Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1822
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, bool InBounds=false, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition: Constants.h:1092
static Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2123
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:703
iterator find(StringRef Key)
Definition: StringMap.h:265
static Constant * getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, bool OnlyIfReduced=false)
This is a utility function to handle folding of casts and lookup of the cast in the ExprConstants map...
Definition: Constants.cpp:1573
ShuffleVectorInst - This instruction constructs a fixed permutation of two input vectors.
bool isDoubleTy() const
isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:146
ConstantInt * TheFalseVal
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:713
bool isPtrOrPtrVectorTy() const
isPtrOrPtrVectorTy - Return true if this is a pointer type or a vector of pointer types...
Definition: Type.h:222
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:111
12: Structures
Definition: Type.h:71
F(f)
4: 80-bit floating point type (X87)
Definition: Type.h:60
const APInt & getUniqueInteger() const
If C is a constant integer then return its value, otherwise C must be a vector of constant integers...
Definition: Constants.cpp:1443
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:472
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition: APFloat.h:213
1: 16-bit floating point type
Definition: Type.h:57
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:61
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:240
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2, bool OnlyIfReduced=false)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1990
Hexagon Common GEP
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2269
StringRef drop_back(size_t N=1) const
Return a StringRef equal to 'this' but with the last N elements dropped.
Definition: StringRef.h:419
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: Type.cpp:216
14: Pointers
Definition: Type.h:73
void reserve(size_type N)
Definition: SmallVector.h:401
static IntegerType * getInt16Ty(LLVMContext &C)
Definition: Type.cpp:238
unsigned getOpcode() const
getOpcode - Return the opcode at the root of this constant expression
Definition: Constants.h:1144
op_iterator op_begin()
Definition: User.h:183
static Type * getX86_FP80Ty(LLVMContext &C)
Definition: Type.cpp:231
bool bitwiseIsEqual(const APFloat &) const
Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
Definition: APFloat.cpp:771
static Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2145
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:178
ConstantInt * TheTrueVal
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:242
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2258
static Constant * getFMul(Constant *C1, Constant *C2)
Definition: Constants.cpp:2287
bool isCast() const
Definition: Instruction.h:118
bool isNegativeZeroValue() const
isNegativeZeroValue - Return true if the value is what would be returned by getZeroValueForNegation.
Definition: Constants.cpp:45
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:708
BlockAddress - The address of a basic block.
Definition: Constants.h:802
static const fltSemantics x87DoubleExtended
Definition: APFloat.h:136
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:707
static Constant * getIntegerCast(Constant *C, Type *Ty, bool isSigned)
Create a ZExt, Bitcast or Trunc for integer -> integer casts.
Definition: Constants.cpp:1674
static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy)
This method can be used to determine if a cast from S to DstTy using Opcode op is valid or not...
static Type * getIndexedType(Type *Agg, ArrayRef< unsigned > Idxs)
getIndexedType - Returns the type of the element that would be extracted with an extractvalue instruc...
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::ZeroOrMore, cl::values(clEnumValN(DefaultIT,"arm-default-it","Generate IT block based on arch"), clEnumValN(RestrictedIT,"arm-restrict-it","Disallow deprecated IT based on ARMv8"), clEnumValN(NoRestrictedIT,"arm-no-restrict-it","Allow IT blocks based on ARMv7"), clEnumValEnd))
static Type * getFloatTy(LLVMContext &C)
Definition: Type.cpp:228
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:106
static Constant * getNegativeZero(Type *Ty)
Definition: Constants.cpp:693
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:308
UndefValue - 'undef' values are things that do not have specified contents.
Definition: Constants.h:1220
Constant * getSequentialElement() const
getSequentialElement - If this CAZ has array or vector type, return a zero with the right element typ...
Definition: Constants.cpp:773
static Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with array type with an element count and element type matchin...
Definition: Constants.cpp:2552
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:406
StructType - Class to represent struct types.
Definition: DerivedTypes.h:191
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Definition: ErrorHandling.h:98
A Use represents the edge between a Value definition and its users.
Definition: Use.h:69
static Constant * getLShr(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2336
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag...
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:1057
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc.
Definition: BasicBlock.h:306
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:704
double getElementAsDouble(unsigned i) const
getElementAsDouble - If this is an sequential container of doubles, return the specified element as a...
Definition: Constants.cpp:2773
static Constant * getSExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1713
static const fltSemantics IEEEquad
Definition: APFloat.h:134
Instruction * getAsInstruction()
getAsInstruction - Returns an Instruction which implements the same operation as this ConstantExpr...
Definition: Constants.cpp:3029
static ConstantInt * ExtractElement(Constant *V, Constant *Idx)
Type * getVectorElementType() const
Definition: Type.h:364
void remove(ConstantClass *CP)
Remove this constant from the map.
static Type * getPPC_FP128Ty(LLVMContext &C)
Definition: Type.cpp:233
Use * getOperandList()
Definition: User.h:112
ConstantAggregateZero - All zero aggregate value.
Definition: Constants.h:307
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:117
void handleOperandChange(Value *, Value *, Use *)
This method is a special form of User::replaceUsesOfWith (which does not work on constants) that does...
Definition: Constants.cpp:2840
static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
isValidOperands - Return true if a shufflevector instruction can be formed with the specified operand...
bool isDLLImportDependent() const
Return true if the value is dependent on a dllimport variable.
Definition: Constants.cpp:392
static Constant * getZExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1727
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible. ...
Definition: Constants.cpp:1868
static Constant * getSizeOf(Type *Ty)
getSizeOf constant expr - computes the (alloc) size of a type (in address-units, not bits) in a targe...
Definition: Constants.cpp:1948
static StructType * getTypeForElements(ArrayRef< Constant * > V, bool Packed=false)
getTypeForElements - Return an anonymous struct type to use for a constant with the specified set of ...
Definition: Constants.cpp:987
ConstantExpr - a constant value that is initialized with an expression using other constant values...
Definition: Constants.h:852
static GetElementPtrInst * CreateInBounds(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Definition: Instructions.h:887
UndefValue * getElementValue(Constant *C) const
getElementValue - Return an undef of the right value for the specified GEP index. ...
Definition: Constants.cpp:826
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:125
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:57
static Constant * getFPCast(Constant *C, Type *Ty)
Create a FPExt, Bitcast or FPTrunc for fp -> fp casts.
Definition: Constants.cpp:1687
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition: Constants.h:557
const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:107
bool isHalfTy() const
isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
Definition: Type.h:140
ArrayRef< T > slice(unsigned N) const
slice(n) - Chop off the first N elements of the array.
Definition: ArrayRef.h:165
#define T
static Constant * getAShr(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2341
ArrayType - Class to represent array types.
Definition: DerivedTypes.h:336
bool isConstantUsed() const
isConstantUsed - Return true if the constant has users other than constant exprs and other dangling t...
Definition: Constants.cpp:401
UndefValue * getStructElement(unsigned Elt) const
getStructElement - If this undef has struct type, return a undef with the right element type for the ...
Definition: Constants.cpp:820
static Constant * getSelect(Constant *C, Constant *V1, Constant *V2, Type *OnlyIfReducedTy=nullptr)
Select constant expr.
Definition: Constants.cpp:2012
bool isFirstClassType() const
isFirstClassType - Return true if the type is "first class", meaning it is a valid type for a Value...
Definition: Type.h:242
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: ArrayRef.h:31
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1297
TypeID getTypeID() const
getTypeID - Return the type id for the type.
Definition: Type.h:134
bool isFloatingPointTy() const
isFloatingPointTy - Return true if this is one of the six floating point types
Definition: Type.h:159
ArrayConstantsTy ArrayConstants
DenseMap< PointerType *, ConstantPointerNull * > CPNConstants
SequentialType * getType() const
getType - Specialize the getType() method to always return a SequentialType, which reduces the amount...
Definition: Constants.h:619
Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:351
bool isArrayTy() const
isArrayTy - True if this is an instance of ArrayType.
Definition: Type.h:213
static Constant * getUDiv(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2291
unsigned getNumElements() const
Return the number of elements in the Vector type.
Definition: DerivedTypes.h:432
Constant * getWithOperandReplaced(unsigned OpNo, Constant *Op) const
getWithOperandReplaced - Return a constant expression identical to this one, but with the specified o...
Definition: Constants.cpp:1231
const char * getOpcodeName() const
Definition: Instruction.h:114
bool isPPC_FP128Ty() const
isPPC_FP128Ty - Return true if this is powerpc long double.
Definition: Type.h:155
Type * getElementType() const
Definition: DerivedTypes.h:323
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:134
static Constant * getFDiv(Constant *C1, Constant *C2)
Definition: Constants.cpp:2301
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition: APFloat.h:222
PointerType - Class to represent pointers.
Definition: DerivedTypes.h:449
iterator begin() const
Definition: StringRef.h:90
10: Arbitrary bit width integers
Definition: Type.h:69
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1835
static bool removeDeadUsersOfConstant(const Constant *C)
removeDeadUsersOfConstant - If the specified constantexpr is dead, remove it.
Definition: Constants.cpp:468
bool isNotMinSignedValue() const
Return true if the value is not the smallest signed value.
Definition: Constants.cpp:154
DenseMap< Type *, ConstantAggregateZero * > CAZConstants
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
static Constant * getInsertValue(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2191
bool isIntOrIntVectorTy() const
isIntOrIntVectorTy - Return true if this is an integer type or a vector of integer types...
Definition: Type.h:201
static bool ConstHasGlobalValuePredicate(const Constant *C, bool(*Predicate)(const GlobalValue *))
Check if C contains a GlobalValue for which Predicate is true.
Definition: Constants.cpp:361
Constant * ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, Constant *Mask)
static Constant * getFNeg(Constant *C)
Definition: Constants.cpp:2246
static Constant * getFRem(Constant *C1, Constant *C2)
Definition: Constants.cpp:2313
static CmpInst * Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, const Twine &Name="", Instruction *InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
static Constant * getImpl(StringRef Bytes, Type *Ty)
getImpl - This is the underlying implementation of all of the ConstantDataSequential::get methods...
Definition: Constants.cpp:2480
static ConstantPointerNull * get(PointerType *T)
get() - Static factory methods - Return objects of the specified value
Definition: Constants.cpp:1455
ConstantDataArray - An array constant whose element type is a simple 1/2/4/8-byte integer or float/do...
Definition: Constants.h:681
LLVM Basic Block Representation.
Definition: BasicBlock.h:65
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:41
bool canTrap() const
canTrap - Return true if evaluation of this constant could trap.
Definition: Constants.cpp:354
static Constant * getFP(LLVMContext &Context, ArrayRef< uint16_t > Elts)
getFP() constructors - Return a constant with array type with an element count and element type of fl...
Definition: Constants.cpp:2588
static volatile int One
Definition: InfiniteTest.cpp:9
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
bool isVectorTy() const
isVectorTy - True if this is an instance of VectorType.
Definition: Type.h:226
static BlockAddress * get(Function *F, BasicBlock *BB)
get - Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1496
Type * getElementType(unsigned N) const
Definition: DerivedTypes.h:291
This is an important base class in LLVM.
Definition: Constant.h:41
uint64_t getElementByteSize() const
getElementByteSize - Return the size (in bytes) of each element in the array/vector.
Definition: Constants.cpp:2457
bool hasIndices() const
Return true if this is an insertvalue or extractvalue expression, and the getIndices() method may be ...
Definition: Constants.cpp:1210
StringRef getAsString() const
getAsString - If this array is isString(), then this method returns the array as a StringRef...
Definition: Constants.h:645
This file contains the declarations for the subclasses of Constant, which represent the different fla...
char back() const
back - Get the last character in the string.
Definition: StringRef.h:122
StringRef getRawDataValues() const
getRawDataValues - Return the raw, underlying, bytes of this data.
Definition: Constants.cpp:2425
static Constant * getFP(LLVMContext &Context, ArrayRef< uint16_t > Elts)
getFP() constructors - Return a constant with vector type with an element count and element type of f...
Definition: Constants.cpp:2665
bool isFloatTy() const
isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:143
static Constant * getAnd(Constant *C1, Constant *C2)
Definition: Constants.cpp:2317
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1895
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:873
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:233
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:264
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1900
bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition: Constants.cpp:66
static Constant * getSExtOrBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1636
static Constant * getShuffleVector(Constant *V1, Constant *V2, Constant *Mask, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2168
op_iterator op_end()
Definition: User.h:185
UndefValue * getSequentialElement() const
getSequentialElement - If this Undef has array or vector type, return a undef with the right element ...
Definition: Constants.cpp:814
uint64_t getNumElements() const
Definition: DerivedTypes.h:352
static bool canTrapImpl(const Constant *C, SmallPtrSetImpl< const ConstantExpr * > &NonTrappingOps)
Definition: Constants.cpp:319
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1273
unsigned getValueID() const
Return an ID for the concrete type of this object.
Definition: Value.h:362
iterator begin() const
Definition: ArrayRef.h:122
opStatus convert(const fltSemantics &, roundingMode, bool *)
APFloat::convert - convert a value of one floating point type to another.
Definition: APFloat.cpp:1972
6: 128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:62
Value * getOperand(unsigned i) const
Definition: User.h:118
op_range operands()
Definition: User.h:191
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:706
ConstantClass * replaceOperandsInPlace(ArrayRef< Constant * > Operands, ConstantClass *CP, Value *From, Constant *To, unsigned NumUpdated=0, unsigned OperandNo=~0u)
static bool isValueValidForType(Type *Ty, const APFloat &V)
isValueValidForType - return true if Ty is big enough to represent V.
Definition: Constants.cpp:1326
static Constant * getICmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced=false)
get* - Return some common constants without having to specify the full Instruction::OPCODE identifier...
Definition: Constants.cpp:2074
Class to represent integer types.
Definition: DerivedTypes.h:37
ConstantVector - Constant Vector Declarations.
Definition: Constants.h:461
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1008
static Constant * getSplat(unsigned NumElts, Constant *Elt)
getSplat - Return a ConstantVector with the specified constant in each element.
Definition: Constants.cpp:2684
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:129
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2252
Constant * getAggregateElement(unsigned Elt) const
getAggregateElement - For aggregates (struct/array/vector) return the constant that corresponds to th...
Definition: Constants.cpp:250
static Constant * getAllOnesValue(Type *Ty)
Get the all ones value.
Definition: Constants.cpp:230
unsigned getPredicate() const
getPredicate - Return the ICMP or FCMP predicate value.
Definition: Constants.cpp:1223
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:714
ArrayRef< unsigned > getIndices() const
getIndices - Assert that this is an insertvalue or exactvalue expression and return the list of indic...
Definition: Constants.cpp:1215
uint64_t getElementAsInteger(unsigned i) const
getElementAsInteger - If this is a sequential container of integers (of any size), return the specified element in the low bits of a uint64_t.
Definition: Constants.cpp:2723
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:416
static const fltSemantics * TypeToFloatSemantics(Type *Ty)
Definition: Constants.cpp:631
bool isFP128Ty() const
isFP128Ty - Return true if this is 'fp128'.
Definition: Type.h:152
bool isPointerTy() const
isPointerTy - True if this is an instance of PointerType.
Definition: Type.h:217
static UndefValue * get(Type *T)
get() - Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1473
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:519
bool isFPOrFPVectorTy() const
isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
Definition: Type.h:183
PointerType * getPointerTo(unsigned AddrSpace=0)
getPointerTo - Return a pointer to the current type.
Definition: Type.cpp:764
Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Definition: Instructions.h:854
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:712
static const fltSemantics IEEEhalf
Definition: APFloat.h:131
VectorConstantsTy VectorConstants
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
Definition: Value.h:84
LLVMContextImpl *const pImpl
Definition: LLVMContext.h:43
bool isCString() const
isCString - This method returns true if the array "isString", ends with a nul byte, and does not contains any other nul bytes.
Definition: Constants.cpp:2798
signed greater than
Definition: InstrTypes.h:724
static Type * getFP128Ty(LLVMContext &C)
Definition: Type.cpp:232
Constant * ConstantFoldGetElementPtr(Constant *C, bool inBounds, ArrayRef< Constant * > Idxs)
static Constant * getIntegerValue(Type *Ty, const APInt &V)
getIntegerValue - Return the value for an integer or pointer constant, or a vector thereof...
Definition: Constants.cpp:213
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag...
hexagon gen pred
bool isCompare() const
Return true if this is a compare constant expression.
Definition: Constants.cpp:1181
13: Arrays
Definition: Type.h:72
static Constant * getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced=false)
Definition: Constants.cpp:2099
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:701
static Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
Definition: Constants.cpp:1648
static Constant * getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1776
static Type * getHalfTy(LLVMContext &C)
Definition: Type.cpp:227
const char * iterator
Definition: StringRef.h:42
static Constant * getSplat(unsigned NumElts, Constant *Elt)
getSplat - Return a ConstantVector with the specified constant in each element.
Definition: Constants.cpp:1162
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:304
static bool isAllZeros(StringRef Arr)
isAllZeros - return true if the array is empty or all zeros.
Definition: Constants.cpp:2469
PossibleRelocationsTy getRelocationInfo() const
getRelocationInfo - This method classifies the entry according to whether or not it may generate a re...
Definition: Constants.cpp:429
static const fltSemantics PPCDoubleDouble
Definition: APFloat.h:135
ArrayType * getType() const
getType - Specialize the getType() method to always return an ArrayType, which reduces the amount of ...
Definition: Constants.h:380
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:299
unsigned getIntegerBitWidth() const
Definition: Type.cpp:176
static PointerType * getUnqual(Type *ElementType)
PointerType::getUnqual - This constructs a pointer to an object of the specified type in the generic ...
Definition: DerivedTypes.h:460
This is the shared class of boolean and integer constants.
Definition: Constants.h:47
15: SIMD 'packed' format, or other vector type
Definition: Type.h:74
unsigned getVectorNumElements() const
Definition: Type.cpp:212
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
StructType::get - This static method is the primary way to create a literal StructType.
Definition: Type.cpp:404
static Constant * getSDiv(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2296
unsigned getScalarSizeInBits() const LLVM_READONLY
getScalarSizeInBits - If this is a vector type, return the getPrimitiveSizeInBits value for the eleme...
Definition: Type.cpp:139
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:711
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:861
Module.h This file contains the declarations for the Module class.
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:222
ConstantPointerNull - a constant pointer value that points to null.
Definition: Constants.h:513
const char * getOpcodeName() const
getOpcodeName - Return a string representation for an opcode.
Definition: Constants.cpp:2393
signed less than
Definition: InstrTypes.h:726
CHAIN = SC CHAIN, Imm128 - System call.
static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE=false)
Returns a float which is bitcasted from an all one value int.
Definition: APFloat.cpp:3354
BasicBlock * getBasicBlock() const
Definition: Constants.h:829
Value * stripPointerCasts()
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:458
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1699
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:582
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition: Constants.cpp:597
static Constant * get(Type *Ty, double V)
get() - This returns a ConstantFP, or a vector containing a splat of a ConstantFP, for the specified value in the specified type.
Definition: Constants.cpp:652
bool isNullValue() const
isNullValue - Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:75
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:530
void setOperand(unsigned i, Value *Val)
Definition: User.h:122
static BlockAddress * lookup(const BasicBlock *BB)
Lookup an existing BlockAddress constant for the given BasicBlock.
Definition: Constants.cpp:1514
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:123
bool isAllOnesValue() const
isAllOnesValue - Return true if this is the value that would be returned by getAllOnesValue.
Definition: Constants.cpp:88
signed less or equal
Definition: InstrTypes.h:727
StringMap - This is an unconventional map that is specialized for handling keys that are "strings"...
Definition: StringMap.h:214
VectorType - Class to represent vector types.
Definition: DerivedTypes.h:362
ConstantArray - Constant Array Declarations.
Definition: Constants.h:356
Class for arbitrary precision integers.
Definition: APInt.h:73
bool isCast() const
Return true if this is a convert constant expression.
Definition: Constants.cpp:1177
unsigned getNumElements() const
Return the number of elements in the array, vector, or struct.
Definition: Constants.cpp:799
bool isIntegerTy() const
isIntegerTy - True if this is an instance of IntegerType.
Definition: Type.h:193
StructType * getType() const
getType() specialization - Reduce amount of casting...
Definition: Constants.h:440
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
GetElementPtrConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to ...
iterator_range< user_iterator > users()
Definition: Value.h:300
static Constant * getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1787
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
Definition: Constants.cpp:1591
LLVM_ATTRIBUTE_UNUSED_RESULT std::enable_if< !is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:285
static char getTypeID(Type *Ty)
static bool isElementTypeCompatible(const Type *Ty)
isElementTypeCompatible - Return true if a ConstantDataSequential can be formed with a vector or arra...
Definition: Constants.cpp:2433
DenseMap< Type *, UndefValue * > UVConstants
static Constant * getZExtOrBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1630
const Type * getScalarType() const LLVM_READONLY
getScalarType - If this is a vector type, return the element type, otherwise return 'this'...
Definition: Type.cpp:51
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1890
bool isStructTy() const
isStructTy - True if this is an instance of StructType.
Definition: Type.h:209
static Constant * getFSub(Constant *C1, Constant *C2)
Definition: Constants.cpp:2276
static Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
getIndexedType - Returns the type of the element that would be loaded with a load instruction with th...
bool isGEPWithNoNotionalOverIndexing() const
Return true if this is a getelementptr expression and all the index operands are compile-time known i...
Definition: Constants.cpp:1185
static Constant * getTruncOrBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1642
static Constant * getNeg(Constant *C, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2239
Constant * ConstantFoldCompareInstruction(unsigned short predicate, Constant *C1, Constant *C2)
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:697
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, unsigned type=0)
Factory for QNaN values.
Definition: APFloat.h:233
Constant * getElementValue(Constant *C) const
getElementValue - Return a zero of the right value for the specified GEP index.
Definition: Constants.cpp:785
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:185
static const fltSemantics IEEEsingle
Definition: APFloat.h:132
Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
user_iterator_impl< const User > const_user_iterator
Definition: Value.h:293
bool isX86_FP80Ty() const
isX86_FP80Ty - Return true if this is x86 long double.
Definition: Type.h:149
static const size_t npos
Definition: StringRef.h:44
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:239
float getElementAsFloat(unsigned i) const
getElementAsFloat - If this is an sequential container of floats, return the specified element as a f...
Definition: Constants.cpp:2764
static Constant * getOffsetOf(StructType *STy, unsigned FieldNo)
getOffsetOf constant expr - computes the offset of a struct field in a target independent way (Note: ...
Definition: Constants.cpp:1972
unsigned greater or equal
Definition: InstrTypes.h:721
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Type * getSourceElementType() const
Definition: Constants.cpp:2410
static Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1809
#define I(x, y, z)
Definition: MD5.cpp:54
static Constant * getOr(Constant *C1, Constant *C2)
Definition: Constants.cpp:2321
static Constant * getZeroValueForNegation(Type *Ty)
Floating point negation must be implemented with f(x) = -0.0 - x.
Definition: Constants.cpp:705
unsigned getNumElements() const
getNumElements - Return the number of elements in the array or vector.
Definition: Constants.cpp:2449
unsigned getNumElements() const
Return the number of elements in the array, vector, or struct.
Definition: Constants.cpp:840
Constant * ConstantFoldInsertElementInstruction(Constant *Val, Constant *Elt, Constant *Idx)
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:705
static ArrayType * get(Type *ElementType, uint64_t NumElements)
ArrayType::get - This static method is the primary way to construct an ArrayType. ...
Definition: Type.cpp:686
Compile-time customization of User operands.
Definition: User.h:34
void size_t size
bool isString() const
isString - This method returns true if this is an array of i8.
Definition: Constants.cpp:2792
static Constant * getShl(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2329
void destroyConstant()
Called if some element of this constant is no longer valid.
Definition: Constants.cpp:279
PointerType * getType() const
getType - Specialize the getType() method to always return an PointerType, which reduces the amount o...
Definition: Constants.h:538
ConstantUniqueMap< ConstantExpr > ExprConstants
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:709
VectorType * getType() const
getType - Specialize the getType() method to always return a VectorType, which reduces the amount of ...
Definition: Constants.h:489
bool isExactlyValue(const APFloat &V) const
isExactlyValue - We don't rely on operator== working on double values, as it returns true for things ...
Definition: Constants.cpp:758
Type * getElementType() const
getElementType - Return the element type of the array/vector.
Definition: Constants.cpp:2421
3: 64-bit floating point type
Definition: Type.h:59
bool use_empty() const
Definition: Value.h:275
Function * getFunction() const
Definition: Constants.h:828
user_iterator user_begin()
Definition: Value.h:294
static Constant * getSRem(Constant *C1, Constant *C2)
Definition: Constants.cpp:2309
void removeDeadConstantUsers() const
removeDeadConstantUsers - If there are any dead constant users dangling off of this constant...
Definition: Constants.cpp:487
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
getPrimitiveSizeInBits - Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:121
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:700
StructConstantsTy StructConstants
LLVM Value Representation.
Definition: Value.h:69
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:710
static Constant * getURem(Constant *C1, Constant *C2)
Definition: Constants.cpp:2305
static VectorType * get(Type *ElementType, unsigned NumElements)
VectorType::get - This static method is the primary way to construct an VectorType.
Definition: Type.cpp:713
static Constant * getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1765
static Constant * getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1798
Constant * getStructElement(unsigned Elt) const
getStructElement - If this CAZ has struct type, return a zero with the right element type for the spe...
Definition: Constants.cpp:779
iterator end() const
Definition: StringRef.h:92
ConstantClass * getOrCreate(TypeClass *Ty, ValType V)
Return the specified constant from the map, creating it if necessary.
static Constant * getExtractValue(Constant *Agg, ArrayRef< unsigned > Idxs, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2215
unsigned greater than
Definition: InstrTypes.h:720
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:40
Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices...
Use & Op()
Definition: User.h:93
static APInt getNullValue(unsigned numBits)
Get the '0' value.
Definition: APInt.h:460
static Constant * getAlignOf(Type *Ty)
getAlignOf constant expr - computes the alignment of a type in a target independent way (Note: the re...
Definition: Constants.cpp:1958
static Constant * getMul(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2280
static Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
Definition: Constants.cpp:2629
static ExtractElementInst * Create(Value *Vec, Value *Idx, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:290
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:702
static Constant * getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1753
StringMap< ConstantDataSequential * > CDSConstants
const T * data() const
Definition: ArrayRef.h:131
bool isThreadDependent() const
isThreadDependent - Return true if the value can vary between threads.
Definition: Constants.cpp:385
Constant * getWithOperands(ArrayRef< Constant * > Ops) const
getWithOperands - This returns the current constant expression with the operands replaced with the sp...
Definition: Constants.h:1164
static Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty)
getBinOpAbsorber - Return the absorbing element for the given binary operation, i.e.
Definition: Constants.cpp:2372
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:237
const fltSemantics & getSemantics() const
Definition: APFloat.h:435
iterator end()
Definition: StringMap.h:255
Constant * getSplatValue() const
getSplatValue - If this is a splat constant, meaning that all of the elements have the same value...
Definition: Constants.cpp:1431
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:699
signed greater or equal
Definition: InstrTypes.h:725
User * user_back()
Definition: Value.h:298
bool isMinSignedValue() const
Return true if the value is the smallest signed value.
Definition: Constants.cpp:132
static Constant * getXor(Constant *C1, Constant *C2)
Definition: Constants.cpp:2325
5: 128-bit floating point type (112-bit mantissa)
Definition: Type.h:61
gep_type_iterator gep_type_begin(const User *GEP)
static const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
areInvalidOperands - Return a string if the specified operands are invalid for a select operation...
user_iterator user_end()
Definition: Value.h:296