LLVM  4.0.0
APInt.h
Go to the documentation of this file.
1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file implements a class to represent arbitrary precision
12 /// integral constant values and operations on them.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_APINT_H
17 #define LLVM_ADT_APINT_H
18 
19 #include "llvm/Support/Compiler.h"
21 #include <cassert>
22 #include <climits>
23 #include <cstring>
24 #include <string>
25 
26 namespace llvm {
27 class FoldingSetNodeID;
28 class StringRef;
29 class hash_code;
30 class raw_ostream;
31 
32 template <typename T> class SmallVectorImpl;
33 template <typename T> class ArrayRef;
34 
35 // An unsigned host type used as a single part of a multi-part
36 // bignum.
37 typedef uint64_t integerPart;
38 
39 const unsigned int host_char_bit = 8;
40 const unsigned int integerPartWidth =
41  host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
42 
43 class APInt;
44 
45 inline APInt operator-(APInt);
46 
47 //===----------------------------------------------------------------------===//
48 // APInt Class
49 //===----------------------------------------------------------------------===//
50 
51 /// \brief Class for arbitrary precision integers.
52 ///
53 /// APInt is a functional replacement for common case unsigned integer type like
54 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
55 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
56 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
57 /// and methods to manipulate integer values of any bit-width. It supports both
58 /// the typical integer arithmetic and comparison operations as well as bitwise
59 /// manipulation.
60 ///
61 /// The class has several invariants worth noting:
62 /// * All bit, byte, and word positions are zero-based.
63 /// * Once the bit width is set, it doesn't change except by the Truncate,
64 /// SignExtend, or ZeroExtend operations.
65 /// * All binary operators must be on APInt instances of the same bit width.
66 /// Attempting to use these operators on instances with different bit
67 /// widths will yield an assertion.
68 /// * The value is stored canonically as an unsigned value. For operations
69 /// where it makes a difference, there are both signed and unsigned variants
70 /// of the operation. For example, sdiv and udiv. However, because the bit
71 /// widths must be the same, operations such as Mul and Add produce the same
72 /// results regardless of whether the values are interpreted as signed or
73 /// not.
74 /// * In general, the class tries to follow the style of computation that LLVM
75 /// uses in its IR. This simplifies its use for LLVM.
76 ///
78  unsigned BitWidth; ///< The number of bits in this APInt.
79 
80  /// This union is used to store the integer value. When the
81  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
82  union {
83  uint64_t VAL; ///< Used to store the <= 64 bits integer value.
84  uint64_t *pVal; ///< Used to store the >64 bits integer value.
85  };
86 
87  /// This enum is used to hold the constants we needed for APInt.
88  enum {
89  /// Bits in a word
90  APINT_BITS_PER_WORD =
91  static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
92  /// Byte size of a word
93  APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
94  };
95 
96  friend struct DenseMapAPIntKeyInfo;
97 
98  /// \brief Fast internal constructor
99  ///
100  /// This constructor is used only internally for speed of construction of
101  /// temporaries. It is unsafe for general use so it is not public.
102  APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
103 
104  /// \brief Determine if this APInt just has one word to store value.
105  ///
106  /// \returns true if the number of bits <= 64, false otherwise.
107  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
108 
109  /// \brief Determine which word a bit is in.
110  ///
111  /// \returns the word position for the specified bit position.
112  static unsigned whichWord(unsigned bitPosition) {
113  return bitPosition / APINT_BITS_PER_WORD;
114  }
115 
116  /// \brief Determine which bit in a word a bit is in.
117  ///
118  /// \returns the bit position in a word for the specified bit position
119  /// in the APInt.
120  static unsigned whichBit(unsigned bitPosition) {
121  return bitPosition % APINT_BITS_PER_WORD;
122  }
123 
124  /// \brief Get a single bit mask.
125  ///
126  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
127  /// This method generates and returns a uint64_t (word) mask for a single
128  /// bit at a specific bit position. This is used to mask the bit in the
129  /// corresponding word.
130  static uint64_t maskBit(unsigned bitPosition) {
131  return 1ULL << whichBit(bitPosition);
132  }
133 
134  /// \brief Clear unused high order bits
135  ///
136  /// This method is used internally to clear the top "N" bits in the high order
137  /// word that are not used by the APInt. This is needed after the most
138  /// significant word is assigned a value to ensure that those bits are
139  /// zero'd out.
140  APInt &clearUnusedBits() {
141  // Compute how many bits are used in the final word
142  unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
143  if (wordBits == 0)
144  // If all bits are used, we want to leave the value alone. This also
145  // avoids the undefined behavior of >> when the shift is the same size as
146  // the word size (64).
147  return *this;
148 
149  // Mask out the high bits.
150  uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
151  if (isSingleWord())
152  VAL &= mask;
153  else
154  pVal[getNumWords() - 1] &= mask;
155  return *this;
156  }
157 
158  /// \brief Get the word corresponding to a bit position
159  /// \returns the corresponding word for the specified bit position.
160  uint64_t getWord(unsigned bitPosition) const {
161  return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
162  }
163 
164  /// \brief Convert a char array into an APInt
165  ///
166  /// \param radix 2, 8, 10, 16, or 36
167  /// Converts a string into a number. The string must be non-empty
168  /// and well-formed as a number of the given base. The bit-width
169  /// must be sufficient to hold the result.
170  ///
171  /// This is used by the constructors that take string arguments.
172  ///
173  /// StringRef::getAsInteger is superficially similar but (1) does
174  /// not assume that the string is well-formed and (2) grows the
175  /// result to hold the input.
176  void fromString(unsigned numBits, StringRef str, uint8_t radix);
177 
178  /// \brief An internal division function for dividing APInts.
179  ///
180  /// This is used by the toString method to divide by the radix. It simply
181  /// provides a more convenient form of divide for internal use since KnuthDiv
182  /// has specific constraints on its inputs. If those constraints are not met
183  /// then it provides a simpler form of divide.
184  static void divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS,
185  unsigned rhsWords, APInt *Quotient, APInt *Remainder);
186 
187  /// out-of-line slow case for inline constructor
188  void initSlowCase(uint64_t val, bool isSigned);
189 
190  /// shared code between two array constructors
191  void initFromArray(ArrayRef<uint64_t> array);
192 
193  /// out-of-line slow case for inline copy constructor
194  void initSlowCase(const APInt &that);
195 
196  /// out-of-line slow case for shl
197  APInt shlSlowCase(unsigned shiftAmt) const;
198 
199  /// out-of-line slow case for operator&
200  APInt AndSlowCase(const APInt &RHS) const;
201 
202  /// out-of-line slow case for operator|
203  APInt OrSlowCase(const APInt &RHS) const;
204 
205  /// out-of-line slow case for operator^
206  APInt XorSlowCase(const APInt &RHS) const;
207 
208  /// out-of-line slow case for operator=
209  APInt &AssignSlowCase(const APInt &RHS);
210 
211  /// out-of-line slow case for operator==
212  bool EqualSlowCase(const APInt &RHS) const;
213 
214  /// out-of-line slow case for operator==
215  bool EqualSlowCase(uint64_t Val) const;
216 
217  /// out-of-line slow case for countLeadingZeros
218  unsigned countLeadingZerosSlowCase() const;
219 
220  /// out-of-line slow case for countTrailingOnes
221  unsigned countTrailingOnesSlowCase() const;
222 
223  /// out-of-line slow case for countPopulation
224  unsigned countPopulationSlowCase() const;
225 
226 public:
227  /// \name Constructors
228  /// @{
229 
230  /// \brief Create a new APInt of numBits width, initialized as val.
231  ///
232  /// If isSigned is true then val is treated as if it were a signed value
233  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
234  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
235  /// the range of val are zero filled).
236  ///
237  /// \param numBits the bit width of the constructed APInt
238  /// \param val the initial value of the APInt
239  /// \param isSigned how to treat signedness of val
240  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
241  : BitWidth(numBits), VAL(0) {
242  assert(BitWidth && "bitwidth too small");
243  if (isSingleWord())
244  VAL = val;
245  else
246  initSlowCase(val, isSigned);
247  clearUnusedBits();
248  }
249 
250  /// \brief Construct an APInt of numBits width, initialized as bigVal[].
251  ///
252  /// Note that bigVal.size() can be smaller or larger than the corresponding
253  /// bit width but any extraneous bits will be dropped.
254  ///
255  /// \param numBits the bit width of the constructed APInt
256  /// \param bigVal a sequence of words to form the initial value of the APInt
257  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
258 
259  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
260  /// deprecated because this constructor is prone to ambiguity with the
261  /// APInt(unsigned, uint64_t, bool) constructor.
262  ///
263  /// If this overload is ever deleted, care should be taken to prevent calls
264  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
265  /// constructor.
266  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
267 
268  /// \brief Construct an APInt from a string representation.
269  ///
270  /// This constructor interprets the string \p str in the given radix. The
271  /// interpretation stops when the first character that is not suitable for the
272  /// radix is encountered, or the end of the string. Acceptable radix values
273  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
274  /// string to require more bits than numBits.
275  ///
276  /// \param numBits the bit width of the constructed APInt
277  /// \param str the string to be interpreted
278  /// \param radix the radix to use for the conversion
279  APInt(unsigned numBits, StringRef str, uint8_t radix);
280 
281  /// Simply makes *this a copy of that.
282  /// @brief Copy Constructor.
283  APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
284  if (isSingleWord())
285  VAL = that.VAL;
286  else
287  initSlowCase(that);
288  }
289 
290  /// \brief Move Constructor.
291  APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
292  that.BitWidth = 0;
293  }
294 
295  /// \brief Destructor.
296  ~APInt() {
297  if (needsCleanup())
298  delete[] pVal;
299  }
300 
301  /// \brief Default constructor that creates an uninteresting APInt
302  /// representing a 1-bit zero value.
303  ///
304  /// This is useful for object deserialization (pair this with the static
305  /// method Read).
306  explicit APInt() : BitWidth(1), VAL(0) {}
307 
308  /// \brief Returns whether this instance allocated memory.
309  bool needsCleanup() const { return !isSingleWord(); }
310 
311  /// Used to insert APInt objects, or objects that contain APInt objects, into
312  /// FoldingSets.
313  void Profile(FoldingSetNodeID &id) const;
314 
315  /// @}
316  /// \name Value Tests
317  /// @{
318 
319  /// \brief Determine sign of this APInt.
320  ///
321  /// This tests the high bit of this APInt to determine if it is set.
322  ///
323  /// \returns true if this APInt is negative, false otherwise
324  bool isNegative() const { return (*this)[BitWidth - 1]; }
325 
326  /// \brief Determine if this APInt Value is non-negative (>= 0)
327  ///
328  /// This tests the high bit of the APInt to determine if it is unset.
329  bool isNonNegative() const { return !isNegative(); }
330 
331  /// \brief Determine if this APInt Value is positive.
332  ///
333  /// This tests if the value of this APInt is positive (> 0). Note
334  /// that 0 is not a positive value.
335  ///
336  /// \returns true if this APInt is positive.
337  bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
338 
339  /// \brief Determine if all bits are set
340  ///
341  /// This checks to see if the value has all bits of the APInt are set or not.
342  bool isAllOnesValue() const {
343  if (isSingleWord())
344  return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
345  return countPopulationSlowCase() == BitWidth;
346  }
347 
348  /// \brief Determine if this is the largest unsigned value.
349  ///
350  /// This checks to see if the value of this APInt is the maximum unsigned
351  /// value for the APInt's bit width.
352  bool isMaxValue() const { return isAllOnesValue(); }
353 
354  /// \brief Determine if this is the largest signed value.
355  ///
356  /// This checks to see if the value of this APInt is the maximum signed
357  /// value for the APInt's bit width.
358  bool isMaxSignedValue() const {
359  return !isNegative() && countPopulation() == BitWidth - 1;
360  }
361 
362  /// \brief Determine if this is the smallest unsigned value.
363  ///
364  /// This checks to see if the value of this APInt is the minimum unsigned
365  /// value for the APInt's bit width.
366  bool isMinValue() const { return !*this; }
367 
368  /// \brief Determine if this is the smallest signed value.
369  ///
370  /// This checks to see if the value of this APInt is the minimum signed
371  /// value for the APInt's bit width.
372  bool isMinSignedValue() const {
373  return isNegative() && isPowerOf2();
374  }
375 
376  /// \brief Check if this APInt has an N-bits unsigned integer value.
377  bool isIntN(unsigned N) const {
378  assert(N && "N == 0 ???");
379  return getActiveBits() <= N;
380  }
381 
382  /// \brief Check if this APInt has an N-bits signed integer value.
383  bool isSignedIntN(unsigned N) const {
384  assert(N && "N == 0 ???");
385  return getMinSignedBits() <= N;
386  }
387 
388  /// \brief Check if this APInt's value is a power of two greater than zero.
389  ///
390  /// \returns true if the argument APInt value is a power of two > 0.
391  bool isPowerOf2() const {
392  if (isSingleWord())
393  return isPowerOf2_64(VAL);
394  return countPopulationSlowCase() == 1;
395  }
396 
397  /// \brief Check if the APInt's value is returned by getSignBit.
398  ///
399  /// \returns true if this is the value returned by getSignBit.
400  bool isSignBit() const { return isMinSignedValue(); }
401 
402  /// \brief Convert APInt to a boolean value.
403  ///
404  /// This converts the APInt to a boolean value as a test against zero.
405  bool getBoolValue() const { return !!*this; }
406 
407  /// If this value is smaller than the specified limit, return it, otherwise
408  /// return the limit value. This causes the value to saturate to the limit.
409  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
410  return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
411  : getZExtValue();
412  }
413 
414  /// \brief Check if the APInt consists of a repeated bit pattern.
415  ///
416  /// e.g. 0x01010101 satisfies isSplat(8).
417  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
418  /// width without remainder.
419  bool isSplat(unsigned SplatSizeInBits) const;
420 
421  /// @}
422  /// \name Value Generators
423  /// @{
424 
425  /// \brief Gets maximum unsigned value of APInt for specific bit width.
426  static APInt getMaxValue(unsigned numBits) {
427  return getAllOnesValue(numBits);
428  }
429 
430  /// \brief Gets maximum signed value of APInt for a specific bit width.
431  static APInt getSignedMaxValue(unsigned numBits) {
432  APInt API = getAllOnesValue(numBits);
433  API.clearBit(numBits - 1);
434  return API;
435  }
436 
437  /// \brief Gets minimum unsigned value of APInt for a specific bit width.
438  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
439 
440  /// \brief Gets minimum signed value of APInt for a specific bit width.
441  static APInt getSignedMinValue(unsigned numBits) {
442  APInt API(numBits, 0);
443  API.setBit(numBits - 1);
444  return API;
445  }
446 
447  /// \brief Get the SignBit for a specific bit width.
448  ///
449  /// This is just a wrapper function of getSignedMinValue(), and it helps code
450  /// readability when we want to get a SignBit.
451  static APInt getSignBit(unsigned BitWidth) {
452  return getSignedMinValue(BitWidth);
453  }
454 
455  /// \brief Get the all-ones value.
456  ///
457  /// \returns the all-ones value for an APInt of the specified bit-width.
458  static APInt getAllOnesValue(unsigned numBits) {
459  return APInt(numBits, UINT64_MAX, true);
460  }
461 
462  /// \brief Get the '0' value.
463  ///
464  /// \returns the '0' value for an APInt of the specified bit-width.
465  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
466 
467  /// \brief Compute an APInt containing numBits highbits from this APInt.
468  ///
469  /// Get an APInt with the same BitWidth as this APInt, just zero mask
470  /// the low bits and right shift to the least significant bit.
471  ///
472  /// \returns the high "numBits" bits of this APInt.
473  APInt getHiBits(unsigned numBits) const;
474 
475  /// \brief Compute an APInt containing numBits lowbits from this APInt.
476  ///
477  /// Get an APInt with the same BitWidth as this APInt, just zero mask
478  /// the high bits.
479  ///
480  /// \returns the low "numBits" bits of this APInt.
481  APInt getLoBits(unsigned numBits) const;
482 
483  /// \brief Return an APInt with exactly one bit set in the result.
484  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
485  APInt Res(numBits, 0);
486  Res.setBit(BitNo);
487  return Res;
488  }
489 
490  /// \brief Get a value with a block of bits set.
491  ///
492  /// Constructs an APInt value that has a contiguous range of bits set. The
493  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
494  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
495  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
496  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
497  ///
498  /// \param numBits the intended bit width of the result
499  /// \param loBit the index of the lowest bit set.
500  /// \param hiBit the index of the highest bit set.
501  ///
502  /// \returns An APInt value with the requested bits set.
503  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
504  assert(hiBit <= numBits && "hiBit out of range");
505  assert(loBit < numBits && "loBit out of range");
506  if (hiBit < loBit)
507  return getLowBitsSet(numBits, hiBit) |
508  getHighBitsSet(numBits, numBits - loBit);
509  return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
510  }
511 
512  /// \brief Get a value with high bits set
513  ///
514  /// Constructs an APInt value that has the top hiBitsSet bits set.
515  ///
516  /// \param numBits the bitwidth of the result
517  /// \param hiBitsSet the number of high-order bits set in the result.
518  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
519  assert(hiBitsSet <= numBits && "Too many bits to set!");
520  // Handle a degenerate case, to avoid shifting by word size
521  if (hiBitsSet == 0)
522  return APInt(numBits, 0);
523  unsigned shiftAmt = numBits - hiBitsSet;
524  // For small values, return quickly
525  if (numBits <= APINT_BITS_PER_WORD)
526  return APInt(numBits, ~0ULL << shiftAmt);
527  return getAllOnesValue(numBits).shl(shiftAmt);
528  }
529 
530  /// \brief Get a value with low bits set
531  ///
532  /// Constructs an APInt value that has the bottom loBitsSet bits set.
533  ///
534  /// \param numBits the bitwidth of the result
535  /// \param loBitsSet the number of low-order bits set in the result.
536  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
537  assert(loBitsSet <= numBits && "Too many bits to set!");
538  // Handle a degenerate case, to avoid shifting by word size
539  if (loBitsSet == 0)
540  return APInt(numBits, 0);
541  if (loBitsSet == APINT_BITS_PER_WORD)
542  return APInt(numBits, UINT64_MAX);
543  // For small values, return quickly.
544  if (loBitsSet <= APINT_BITS_PER_WORD)
545  return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
546  return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
547  }
548 
549  /// \brief Return a value containing V broadcasted over NewLen bits.
550  static APInt getSplat(unsigned NewLen, const APInt &V) {
551  assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
552 
553  APInt Val = V.zextOrSelf(NewLen);
554  for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
555  Val |= Val << I;
556 
557  return Val;
558  }
559 
560  /// \brief Determine if two APInts have the same value, after zero-extending
561  /// one of them (if needed!) to ensure that the bit-widths match.
562  static bool isSameValue(const APInt &I1, const APInt &I2) {
563  if (I1.getBitWidth() == I2.getBitWidth())
564  return I1 == I2;
565 
566  if (I1.getBitWidth() > I2.getBitWidth())
567  return I1 == I2.zext(I1.getBitWidth());
568 
569  return I1.zext(I2.getBitWidth()) == I2;
570  }
571 
572  /// \brief Overload to compute a hash_code for an APInt value.
573  friend hash_code hash_value(const APInt &Arg);
574 
575  /// This function returns a pointer to the internal storage of the APInt.
576  /// This is useful for writing out the APInt in binary form without any
577  /// conversions.
578  const uint64_t *getRawData() const {
579  if (isSingleWord())
580  return &VAL;
581  return &pVal[0];
582  }
583 
584  /// @}
585  /// \name Unary Operators
586  /// @{
587 
588  /// \brief Postfix increment operator.
589  ///
590  /// \returns a new APInt value representing *this incremented by one
591  const APInt operator++(int) {
592  APInt API(*this);
593  ++(*this);
594  return API;
595  }
596 
597  /// \brief Prefix increment operator.
598  ///
599  /// \returns *this incremented by one
600  APInt &operator++();
601 
602  /// \brief Postfix decrement operator.
603  ///
604  /// \returns a new APInt representing *this decremented by one.
605  const APInt operator--(int) {
606  APInt API(*this);
607  --(*this);
608  return API;
609  }
610 
611  /// \brief Prefix decrement operator.
612  ///
613  /// \returns *this decremented by one.
614  APInt &operator--();
615 
616  /// \brief Unary bitwise complement operator.
617  ///
618  /// Performs a bitwise complement operation on this APInt.
619  ///
620  /// \returns an APInt that is the bitwise complement of *this
621  APInt operator~() const {
622  APInt Result(*this);
623  Result.flipAllBits();
624  return Result;
625  }
626 
627  /// \brief Logical negation operator.
628  ///
629  /// Performs logical negation operation on this APInt.
630  ///
631  /// \returns true if *this is zero, false otherwise.
632  bool operator!() const {
633  if (isSingleWord())
634  return !VAL;
635 
636  for (unsigned i = 0; i != getNumWords(); ++i)
637  if (pVal[i])
638  return false;
639  return true;
640  }
641 
642  /// @}
643  /// \name Assignment Operators
644  /// @{
645 
646  /// \brief Copy assignment operator.
647  ///
648  /// \returns *this after assignment of RHS.
649  APInt &operator=(const APInt &RHS) {
650  // If the bitwidths are the same, we can avoid mucking with memory
651  if (isSingleWord() && RHS.isSingleWord()) {
652  VAL = RHS.VAL;
653  BitWidth = RHS.BitWidth;
654  return clearUnusedBits();
655  }
656 
657  return AssignSlowCase(RHS);
658  }
659 
660  /// @brief Move assignment operator.
661  APInt &operator=(APInt &&that) {
662  if (!isSingleWord()) {
663  // The MSVC STL shipped in 2013 requires that self move assignment be a
664  // no-op. Otherwise algorithms like stable_sort will produce answers
665  // where half of the output is left in a moved-from state.
666  if (this == &that)
667  return *this;
668  delete[] pVal;
669  }
670 
671  // Use memcpy so that type based alias analysis sees both VAL and pVal
672  // as modified.
673  memcpy(&VAL, &that.VAL, sizeof(uint64_t));
674 
675  // If 'this == &that', avoid zeroing our own bitwidth by storing to 'that'
676  // first.
677  unsigned ThatBitWidth = that.BitWidth;
678  that.BitWidth = 0;
679  BitWidth = ThatBitWidth;
680 
681  return *this;
682  }
683 
684  /// \brief Assignment operator.
685  ///
686  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
687  /// the bit width, the excess bits are truncated. If the bit width is larger
688  /// than 64, the value is zero filled in the unspecified high order bits.
689  ///
690  /// \returns *this after assignment of RHS value.
691  APInt &operator=(uint64_t RHS);
692 
693  /// \brief Bitwise AND assignment operator.
694  ///
695  /// Performs a bitwise AND operation on this APInt and RHS. The result is
696  /// assigned to *this.
697  ///
698  /// \returns *this after ANDing with RHS.
699  APInt &operator&=(const APInt &RHS);
700 
701  /// \brief Bitwise OR assignment operator.
702  ///
703  /// Performs a bitwise OR operation on this APInt and RHS. The result is
704  /// assigned *this;
705  ///
706  /// \returns *this after ORing with RHS.
707  APInt &operator|=(const APInt &RHS);
708 
709  /// \brief Bitwise OR assignment operator.
710  ///
711  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
712  /// logically zero-extended or truncated to match the bit-width of
713  /// the LHS.
714  APInt &operator|=(uint64_t RHS) {
715  if (isSingleWord()) {
716  VAL |= RHS;
717  clearUnusedBits();
718  } else {
719  pVal[0] |= RHS;
720  }
721  return *this;
722  }
723 
724  /// \brief Bitwise XOR assignment operator.
725  ///
726  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
727  /// assigned to *this.
728  ///
729  /// \returns *this after XORing with RHS.
730  APInt &operator^=(const APInt &RHS);
731 
732  /// \brief Multiplication assignment operator.
733  ///
734  /// Multiplies this APInt by RHS and assigns the result to *this.
735  ///
736  /// \returns *this
737  APInt &operator*=(const APInt &RHS);
738 
739  /// \brief Addition assignment operator.
740  ///
741  /// Adds RHS to *this and assigns the result to *this.
742  ///
743  /// \returns *this
744  APInt &operator+=(const APInt &RHS);
745  APInt &operator+=(uint64_t RHS);
746 
747  /// \brief Subtraction assignment operator.
748  ///
749  /// Subtracts RHS from *this and assigns the result to *this.
750  ///
751  /// \returns *this
752  APInt &operator-=(const APInt &RHS);
753  APInt &operator-=(uint64_t RHS);
754 
755  /// \brief Left-shift assignment function.
756  ///
757  /// Shifts *this left by shiftAmt and assigns the result to *this.
758  ///
759  /// \returns *this after shifting left by shiftAmt
760  APInt &operator<<=(unsigned shiftAmt) {
761  *this = shl(shiftAmt);
762  return *this;
763  }
764 
765  /// @}
766  /// \name Binary Operators
767  /// @{
768 
769  /// \brief Bitwise AND operator.
770  ///
771  /// Performs a bitwise AND operation on *this and RHS.
772  ///
773  /// \returns An APInt value representing the bitwise AND of *this and RHS.
774  APInt operator&(const APInt &RHS) const {
775  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
776  if (isSingleWord())
777  return APInt(getBitWidth(), VAL & RHS.VAL);
778  return AndSlowCase(RHS);
779  }
780  APInt And(const APInt &RHS) const { return this->operator&(RHS); }
781 
782  /// \brief Bitwise OR operator.
783  ///
784  /// Performs a bitwise OR operation on *this and RHS.
785  ///
786  /// \returns An APInt value representing the bitwise OR of *this and RHS.
787  APInt operator|(const APInt &RHS) const {
788  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
789  if (isSingleWord())
790  return APInt(getBitWidth(), VAL | RHS.VAL);
791  return OrSlowCase(RHS);
792  }
793 
794  /// \brief Bitwise OR function.
795  ///
796  /// Performs a bitwise or on *this and RHS. This is implemented by simply
797  /// calling operator|.
798  ///
799  /// \returns An APInt value representing the bitwise OR of *this and RHS.
800  APInt Or(const APInt &RHS) const { return this->operator|(RHS); }
801 
802  /// \brief Bitwise XOR operator.
803  ///
804  /// Performs a bitwise XOR operation on *this and RHS.
805  ///
806  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
807  APInt operator^(const APInt &RHS) const {
808  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
809  if (isSingleWord())
810  return APInt(BitWidth, VAL ^ RHS.VAL);
811  return XorSlowCase(RHS);
812  }
813 
814  /// \brief Bitwise XOR function.
815  ///
816  /// Performs a bitwise XOR operation on *this and RHS. This is implemented
817  /// through the usage of operator^.
818  ///
819  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
820  APInt Xor(const APInt &RHS) const { return this->operator^(RHS); }
821 
822  /// \brief Multiplication operator.
823  ///
824  /// Multiplies this APInt by RHS and returns the result.
825  APInt operator*(const APInt &RHS) const;
826 
827  /// \brief Left logical shift operator.
828  ///
829  /// Shifts this APInt left by \p Bits and returns the result.
830  APInt operator<<(unsigned Bits) const { return shl(Bits); }
831 
832  /// \brief Left logical shift operator.
833  ///
834  /// Shifts this APInt left by \p Bits and returns the result.
835  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
836 
837  /// \brief Arithmetic right-shift function.
838  ///
839  /// Arithmetic right-shift this APInt by shiftAmt.
840  APInt ashr(unsigned shiftAmt) const;
841 
842  /// \brief Logical right-shift function.
843  ///
844  /// Logical right-shift this APInt by shiftAmt.
845  APInt lshr(unsigned shiftAmt) const;
846 
847  /// \brief Left-shift function.
848  ///
849  /// Left-shift this APInt by shiftAmt.
850  APInt shl(unsigned shiftAmt) const {
851  assert(shiftAmt <= BitWidth && "Invalid shift amount");
852  if (isSingleWord()) {
853  if (shiftAmt >= BitWidth)
854  return APInt(BitWidth, 0); // avoid undefined shift results
855  return APInt(BitWidth, VAL << shiftAmt);
856  }
857  return shlSlowCase(shiftAmt);
858  }
859 
860  /// \brief Rotate left by rotateAmt.
861  APInt rotl(unsigned rotateAmt) const;
862 
863  /// \brief Rotate right by rotateAmt.
864  APInt rotr(unsigned rotateAmt) const;
865 
866  /// \brief Arithmetic right-shift function.
867  ///
868  /// Arithmetic right-shift this APInt by shiftAmt.
869  APInt ashr(const APInt &shiftAmt) const;
870 
871  /// \brief Logical right-shift function.
872  ///
873  /// Logical right-shift this APInt by shiftAmt.
874  APInt lshr(const APInt &shiftAmt) const;
875 
876  /// \brief Left-shift function.
877  ///
878  /// Left-shift this APInt by shiftAmt.
879  APInt shl(const APInt &shiftAmt) const;
880 
881  /// \brief Rotate left by rotateAmt.
882  APInt rotl(const APInt &rotateAmt) const;
883 
884  /// \brief Rotate right by rotateAmt.
885  APInt rotr(const APInt &rotateAmt) const;
886 
887  /// \brief Unsigned division operation.
888  ///
889  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
890  /// RHS are treated as unsigned quantities for purposes of this division.
891  ///
892  /// \returns a new APInt value containing the division result
893  APInt udiv(const APInt &RHS) const;
894 
895  /// \brief Signed division function for APInt.
896  ///
897  /// Signed divide this APInt by APInt RHS.
898  APInt sdiv(const APInt &RHS) const;
899 
900  /// \brief Unsigned remainder operation.
901  ///
902  /// Perform an unsigned remainder operation on this APInt with RHS being the
903  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
904  /// of this operation. Note that this is a true remainder operation and not a
905  /// modulo operation because the sign follows the sign of the dividend which
906  /// is *this.
907  ///
908  /// \returns a new APInt value containing the remainder result
909  APInt urem(const APInt &RHS) const;
910 
911  /// \brief Function for signed remainder operation.
912  ///
913  /// Signed remainder operation on APInt.
914  APInt srem(const APInt &RHS) const;
915 
916  /// \brief Dual division/remainder interface.
917  ///
918  /// Sometimes it is convenient to divide two APInt values and obtain both the
919  /// quotient and remainder. This function does both operations in the same
920  /// computation making it a little more efficient. The pair of input arguments
921  /// may overlap with the pair of output arguments. It is safe to call
922  /// udivrem(X, Y, X, Y), for example.
923  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
924  APInt &Remainder);
925 
926  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
927  APInt &Remainder);
928 
929  // Operations that return overflow indicators.
930  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
931  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
932  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
933  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
934  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
935  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
936  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
937  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
938  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
939 
940  /// \brief Array-indexing support.
941  ///
942  /// \returns the bit value at bitPosition
943  bool operator[](unsigned bitPosition) const {
944  assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
945  return (maskBit(bitPosition) &
946  (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
947  0;
948  }
949 
950  /// @}
951  /// \name Comparison Operators
952  /// @{
953 
954  /// \brief Equality operator.
955  ///
956  /// Compares this APInt with RHS for the validity of the equality
957  /// relationship.
958  bool operator==(const APInt &RHS) const {
959  assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
960  if (isSingleWord())
961  return VAL == RHS.VAL;
962  return EqualSlowCase(RHS);
963  }
964 
965  /// \brief Equality operator.
966  ///
967  /// Compares this APInt with a uint64_t for the validity of the equality
968  /// relationship.
969  ///
970  /// \returns true if *this == Val
971  bool operator==(uint64_t Val) const {
972  if (isSingleWord())
973  return VAL == Val;
974  return EqualSlowCase(Val);
975  }
976 
977  /// \brief Equality comparison.
978  ///
979  /// Compares this APInt with RHS for the validity of the equality
980  /// relationship.
981  ///
982  /// \returns true if *this == Val
983  bool eq(const APInt &RHS) const { return (*this) == RHS; }
984 
985  /// \brief Inequality operator.
986  ///
987  /// Compares this APInt with RHS for the validity of the inequality
988  /// relationship.
989  ///
990  /// \returns true if *this != Val
991  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
992 
993  /// \brief Inequality operator.
994  ///
995  /// Compares this APInt with a uint64_t for the validity of the inequality
996  /// relationship.
997  ///
998  /// \returns true if *this != Val
999  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1000 
1001  /// \brief Inequality comparison
1002  ///
1003  /// Compares this APInt with RHS for the validity of the inequality
1004  /// relationship.
1005  ///
1006  /// \returns true if *this != Val
1007  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1008 
1009  /// \brief Unsigned less than comparison
1010  ///
1011  /// Regards both *this and RHS as unsigned quantities and compares them for
1012  /// the validity of the less-than relationship.
1013  ///
1014  /// \returns true if *this < RHS when both are considered unsigned.
1015  bool ult(const APInt &RHS) const;
1016 
1017  /// \brief Unsigned less than comparison
1018  ///
1019  /// Regards both *this as an unsigned quantity and compares it with RHS for
1020  /// the validity of the less-than relationship.
1021  ///
1022  /// \returns true if *this < RHS when considered unsigned.
1023  bool ult(uint64_t RHS) const {
1024  return getActiveBits() > 64 ? false : getZExtValue() < RHS;
1025  }
1026 
1027  /// \brief Signed less than comparison
1028  ///
1029  /// Regards both *this and RHS as signed quantities and compares them for
1030  /// validity of the less-than relationship.
1031  ///
1032  /// \returns true if *this < RHS when both are considered signed.
1033  bool slt(const APInt &RHS) const;
1034 
1035  /// \brief Signed less than comparison
1036  ///
1037  /// Regards both *this as a signed quantity and compares it with RHS for
1038  /// the validity of the less-than relationship.
1039  ///
1040  /// \returns true if *this < RHS when considered signed.
1041  bool slt(int64_t RHS) const {
1042  return getMinSignedBits() > 64 ? isNegative() : getSExtValue() < RHS;
1043  }
1044 
1045  /// \brief Unsigned less or equal comparison
1046  ///
1047  /// Regards both *this and RHS as unsigned quantities and compares them for
1048  /// validity of the less-or-equal relationship.
1049  ///
1050  /// \returns true if *this <= RHS when both are considered unsigned.
1051  bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
1052 
1053  /// \brief Unsigned less or equal comparison
1054  ///
1055  /// Regards both *this as an unsigned quantity and compares it with RHS for
1056  /// the validity of the less-or-equal relationship.
1057  ///
1058  /// \returns true if *this <= RHS when considered unsigned.
1059  bool ule(uint64_t RHS) const { return !ugt(RHS); }
1060 
1061  /// \brief Signed less or equal comparison
1062  ///
1063  /// Regards both *this and RHS as signed quantities and compares them for
1064  /// validity of the less-or-equal relationship.
1065  ///
1066  /// \returns true if *this <= RHS when both are considered signed.
1067  bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
1068 
1069  /// \brief Signed less or equal comparison
1070  ///
1071  /// Regards both *this as a signed quantity and compares it with RHS for the
1072  /// validity of the less-or-equal relationship.
1073  ///
1074  /// \returns true if *this <= RHS when considered signed.
1075  bool sle(uint64_t RHS) const { return !sgt(RHS); }
1076 
1077  /// \brief Unsigned greather than comparison
1078  ///
1079  /// Regards both *this and RHS as unsigned quantities and compares them for
1080  /// the validity of the greater-than relationship.
1081  ///
1082  /// \returns true if *this > RHS when both are considered unsigned.
1083  bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
1084 
1085  /// \brief Unsigned greater than comparison
1086  ///
1087  /// Regards both *this as an unsigned quantity and compares it with RHS for
1088  /// the validity of the greater-than relationship.
1089  ///
1090  /// \returns true if *this > RHS when considered unsigned.
1091  bool ugt(uint64_t RHS) const {
1092  return getActiveBits() > 64 ? true : getZExtValue() > RHS;
1093  }
1094 
1095  /// \brief Signed greather than comparison
1096  ///
1097  /// Regards both *this and RHS as signed quantities and compares them for the
1098  /// validity of the greater-than relationship.
1099  ///
1100  /// \returns true if *this > RHS when both are considered signed.
1101  bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
1102 
1103  /// \brief Signed greater than comparison
1104  ///
1105  /// Regards both *this as a signed quantity and compares it with RHS for
1106  /// the validity of the greater-than relationship.
1107  ///
1108  /// \returns true if *this > RHS when considered signed.
1109  bool sgt(int64_t RHS) const {
1110  return getMinSignedBits() > 64 ? !isNegative() : getSExtValue() > RHS;
1111  }
1112 
1113  /// \brief Unsigned greater or equal comparison
1114  ///
1115  /// Regards both *this and RHS as unsigned quantities and compares them for
1116  /// validity of the greater-or-equal relationship.
1117  ///
1118  /// \returns true if *this >= RHS when both are considered unsigned.
1119  bool uge(const APInt &RHS) const { return !ult(RHS); }
1120 
1121  /// \brief Unsigned greater or equal comparison
1122  ///
1123  /// Regards both *this as an unsigned quantity and compares it with RHS for
1124  /// the validity of the greater-or-equal relationship.
1125  ///
1126  /// \returns true if *this >= RHS when considered unsigned.
1127  bool uge(uint64_t RHS) const { return !ult(RHS); }
1128 
1129  /// \brief Signed greather or equal comparison
1130  ///
1131  /// Regards both *this and RHS as signed quantities and compares them for
1132  /// validity of the greater-or-equal relationship.
1133  ///
1134  /// \returns true if *this >= RHS when both are considered signed.
1135  bool sge(const APInt &RHS) const { return !slt(RHS); }
1136 
1137  /// \brief Signed greater or equal comparison
1138  ///
1139  /// Regards both *this as a signed quantity and compares it with RHS for
1140  /// the validity of the greater-or-equal relationship.
1141  ///
1142  /// \returns true if *this >= RHS when considered signed.
1143  bool sge(int64_t RHS) const { return !slt(RHS); }
1144 
1145  /// This operation tests if there are any pairs of corresponding bits
1146  /// between this APInt and RHS that are both set.
1147  bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
1148 
1149  /// @}
1150  /// \name Resizing Operators
1151  /// @{
1152 
1153  /// \brief Truncate to new width.
1154  ///
1155  /// Truncate the APInt to a specified width. It is an error to specify a width
1156  /// that is greater than or equal to the current width.
1157  APInt trunc(unsigned width) const;
1158 
1159  /// \brief Sign extend to a new width.
1160  ///
1161  /// This operation sign extends the APInt to a new width. If the high order
1162  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1163  /// It is an error to specify a width that is less than or equal to the
1164  /// current width.
1165  APInt sext(unsigned width) const;
1166 
1167  /// \brief Zero extend to a new width.
1168  ///
1169  /// This operation zero extends the APInt to a new width. The high order bits
1170  /// are filled with 0 bits. It is an error to specify a width that is less
1171  /// than or equal to the current width.
1172  APInt zext(unsigned width) const;
1173 
1174  /// \brief Sign extend or truncate to width
1175  ///
1176  /// Make this APInt have the bit width given by \p width. The value is sign
1177  /// extended, truncated, or left alone to make it that width.
1178  APInt sextOrTrunc(unsigned width) const;
1179 
1180  /// \brief Zero extend or truncate to width
1181  ///
1182  /// Make this APInt have the bit width given by \p width. The value is zero
1183  /// extended, truncated, or left alone to make it that width.
1184  APInt zextOrTrunc(unsigned width) const;
1185 
1186  /// \brief Sign extend or truncate to width
1187  ///
1188  /// Make this APInt have the bit width given by \p width. The value is sign
1189  /// extended, or left alone to make it that width.
1190  APInt sextOrSelf(unsigned width) const;
1191 
1192  /// \brief Zero extend or truncate to width
1193  ///
1194  /// Make this APInt have the bit width given by \p width. The value is zero
1195  /// extended, or left alone to make it that width.
1196  APInt zextOrSelf(unsigned width) const;
1197 
1198  /// @}
1199  /// \name Bit Manipulation Operators
1200  /// @{
1201 
1202  /// \brief Set every bit to 1.
1203  void setAllBits() {
1204  if (isSingleWord())
1205  VAL = UINT64_MAX;
1206  else {
1207  // Set all the bits in all the words.
1208  for (unsigned i = 0; i < getNumWords(); ++i)
1209  pVal[i] = UINT64_MAX;
1210  }
1211  // Clear the unused ones
1212  clearUnusedBits();
1213  }
1214 
1215  /// \brief Set a given bit to 1.
1216  ///
1217  /// Set the given bit to 1 whose position is given as "bitPosition".
1218  void setBit(unsigned bitPosition);
1219 
1220  /// \brief Set every bit to 0.
1221  void clearAllBits() {
1222  if (isSingleWord())
1223  VAL = 0;
1224  else
1225  memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1226  }
1227 
1228  /// \brief Set a given bit to 0.
1229  ///
1230  /// Set the given bit to 0 whose position is given as "bitPosition".
1231  void clearBit(unsigned bitPosition);
1232 
1233  /// \brief Toggle every bit to its opposite value.
1234  void flipAllBits() {
1235  if (isSingleWord())
1236  VAL ^= UINT64_MAX;
1237  else {
1238  for (unsigned i = 0; i < getNumWords(); ++i)
1239  pVal[i] ^= UINT64_MAX;
1240  }
1241  clearUnusedBits();
1242  }
1243 
1244  /// \brief Toggles a given bit to its opposite value.
1245  ///
1246  /// Toggle a given bit to its opposite value whose position is given
1247  /// as "bitPosition".
1248  void flipBit(unsigned bitPosition);
1249 
1250  /// @}
1251  /// \name Value Characterization Functions
1252  /// @{
1253 
1254  /// \brief Return the number of bits in the APInt.
1255  unsigned getBitWidth() const { return BitWidth; }
1256 
1257  /// \brief Get the number of words.
1258  ///
1259  /// Here one word's bitwidth equals to that of uint64_t.
1260  ///
1261  /// \returns the number of words to hold the integer value of this APInt.
1262  unsigned getNumWords() const { return getNumWords(BitWidth); }
1263 
1264  /// \brief Get the number of words.
1265  ///
1266  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1267  ///
1268  /// \returns the number of words to hold the integer value with a given bit
1269  /// width.
1270  static unsigned getNumWords(unsigned BitWidth) {
1271  return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1272  }
1273 
1274  /// \brief Compute the number of active bits in the value
1275  ///
1276  /// This function returns the number of active bits which is defined as the
1277  /// bit width minus the number of leading zeros. This is used in several
1278  /// computations to see how "wide" the value is.
1279  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1280 
1281  /// \brief Compute the number of active words in the value of this APInt.
1282  ///
1283  /// This is used in conjunction with getActiveData to extract the raw value of
1284  /// the APInt.
1285  unsigned getActiveWords() const {
1286  unsigned numActiveBits = getActiveBits();
1287  return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1288  }
1289 
1290  /// \brief Get the minimum bit size for this signed APInt
1291  ///
1292  /// Computes the minimum bit width for this APInt while considering it to be a
1293  /// signed (and probably negative) value. If the value is not negative, this
1294  /// function returns the same value as getActiveBits()+1. Otherwise, it
1295  /// returns the smallest bit width that will retain the negative value. For
1296  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1297  /// for -1, this function will always return 1.
1298  unsigned getMinSignedBits() const {
1299  if (isNegative())
1300  return BitWidth - countLeadingOnes() + 1;
1301  return getActiveBits() + 1;
1302  }
1303 
1304  /// \brief Get zero extended value
1305  ///
1306  /// This method attempts to return the value of this APInt as a zero extended
1307  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1308  /// uint64_t. Otherwise an assertion will result.
1309  uint64_t getZExtValue() const {
1310  if (isSingleWord())
1311  return VAL;
1312  assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1313  return pVal[0];
1314  }
1315 
1316  /// \brief Get sign extended value
1317  ///
1318  /// This method attempts to return the value of this APInt as a sign extended
1319  /// int64_t. The bit width must be <= 64 or the value must fit within an
1320  /// int64_t. Otherwise an assertion will result.
1321  int64_t getSExtValue() const {
1322  if (isSingleWord())
1323  return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1324  (APINT_BITS_PER_WORD - BitWidth);
1325  assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1326  return int64_t(pVal[0]);
1327  }
1328 
1329  /// \brief Get bits required for string value.
1330  ///
1331  /// This method determines how many bits are required to hold the APInt
1332  /// equivalent of the string given by \p str.
1333  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1334 
1335  /// \brief The APInt version of the countLeadingZeros functions in
1336  /// MathExtras.h.
1337  ///
1338  /// It counts the number of zeros from the most significant bit to the first
1339  /// one bit.
1340  ///
1341  /// \returns BitWidth if the value is zero, otherwise returns the number of
1342  /// zeros from the most significant bit to the first one bits.
1343  unsigned countLeadingZeros() const {
1344  if (isSingleWord()) {
1345  unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1346  return llvm::countLeadingZeros(VAL) - unusedBits;
1347  }
1348  return countLeadingZerosSlowCase();
1349  }
1350 
1351  /// \brief Count the number of leading one bits.
1352  ///
1353  /// This function is an APInt version of the countLeadingOnes
1354  /// functions in MathExtras.h. It counts the number of ones from the most
1355  /// significant bit to the first zero bit.
1356  ///
1357  /// \returns 0 if the high order bit is not set, otherwise returns the number
1358  /// of 1 bits from the most significant to the least
1359  unsigned countLeadingOnes() const;
1360 
1361  /// Computes the number of leading bits of this APInt that are equal to its
1362  /// sign bit.
1363  unsigned getNumSignBits() const {
1364  return isNegative() ? countLeadingOnes() : countLeadingZeros();
1365  }
1366 
1367  /// \brief Count the number of trailing zero bits.
1368  ///
1369  /// This function is an APInt version of the countTrailingZeros
1370  /// functions in MathExtras.h. It counts the number of zeros from the least
1371  /// significant bit to the first set bit.
1372  ///
1373  /// \returns BitWidth if the value is zero, otherwise returns the number of
1374  /// zeros from the least significant bit to the first one bit.
1375  unsigned countTrailingZeros() const;
1376 
1377  /// \brief Count the number of trailing one bits.
1378  ///
1379  /// This function is an APInt version of the countTrailingOnes
1380  /// functions in MathExtras.h. It counts the number of ones from the least
1381  /// significant bit to the first zero bit.
1382  ///
1383  /// \returns BitWidth if the value is all ones, otherwise returns the number
1384  /// of ones from the least significant bit to the first zero bit.
1385  unsigned countTrailingOnes() const {
1386  if (isSingleWord())
1387  return llvm::countTrailingOnes(VAL);
1388  return countTrailingOnesSlowCase();
1389  }
1390 
1391  /// \brief Count the number of bits set.
1392  ///
1393  /// This function is an APInt version of the countPopulation functions
1394  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1395  ///
1396  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1397  unsigned countPopulation() const {
1398  if (isSingleWord())
1399  return llvm::countPopulation(VAL);
1400  return countPopulationSlowCase();
1401  }
1402 
1403  /// @}
1404  /// \name Conversion Functions
1405  /// @{
1406  void print(raw_ostream &OS, bool isSigned) const;
1407 
1408  /// Converts an APInt to a string and append it to Str. Str is commonly a
1409  /// SmallString.
1410  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1411  bool formatAsCLiteral = false) const;
1412 
1413  /// Considers the APInt to be unsigned and converts it into a string in the
1414  /// radix given. The radix can be 2, 8, 10 16, or 36.
1415  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1416  toString(Str, Radix, false, false);
1417  }
1418 
1419  /// Considers the APInt to be signed and converts it into a string in the
1420  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1421  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1422  toString(Str, Radix, true, false);
1423  }
1424 
1425  /// \brief Return the APInt as a std::string.
1426  ///
1427  /// Note that this is an inefficient method. It is better to pass in a
1428  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1429  /// for the string.
1430  std::string toString(unsigned Radix, bool Signed) const;
1431 
1432  /// \returns a byte-swapped representation of this APInt Value.
1433  APInt byteSwap() const;
1434 
1435  /// \returns the value with the bit representation reversed of this APInt
1436  /// Value.
1437  APInt reverseBits() const;
1438 
1439  /// \brief Converts this APInt to a double value.
1440  double roundToDouble(bool isSigned) const;
1441 
1442  /// \brief Converts this unsigned APInt to a double value.
1443  double roundToDouble() const { return roundToDouble(false); }
1444 
1445  /// \brief Converts this signed APInt to a double value.
1446  double signedRoundToDouble() const { return roundToDouble(true); }
1447 
1448  /// \brief Converts APInt bits to a double
1449  ///
1450  /// The conversion does not do a translation from integer to double, it just
1451  /// re-interprets the bits as a double. Note that it is valid to do this on
1452  /// any bit width. Exactly 64 bits will be translated.
1453  double bitsToDouble() const {
1454  union {
1455  uint64_t I;
1456  double D;
1457  } T;
1458  T.I = (isSingleWord() ? VAL : pVal[0]);
1459  return T.D;
1460  }
1461 
1462  /// \brief Converts APInt bits to a double
1463  ///
1464  /// The conversion does not do a translation from integer to float, it just
1465  /// re-interprets the bits as a float. Note that it is valid to do this on
1466  /// any bit width. Exactly 32 bits will be translated.
1467  float bitsToFloat() const {
1468  union {
1469  unsigned I;
1470  float F;
1471  } T;
1472  T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1473  return T.F;
1474  }
1475 
1476  /// \brief Converts a double to APInt bits.
1477  ///
1478  /// The conversion does not do a translation from double to integer, it just
1479  /// re-interprets the bits of the double.
1480  static APInt doubleToBits(double V) {
1481  union {
1482  uint64_t I;
1483  double D;
1484  } T;
1485  T.D = V;
1486  return APInt(sizeof T * CHAR_BIT, T.I);
1487  }
1488 
1489  /// \brief Converts a float to APInt bits.
1490  ///
1491  /// The conversion does not do a translation from float to integer, it just
1492  /// re-interprets the bits of the float.
1493  static APInt floatToBits(float V) {
1494  union {
1495  unsigned I;
1496  float F;
1497  } T;
1498  T.F = V;
1499  return APInt(sizeof T * CHAR_BIT, T.I);
1500  }
1501 
1502  /// @}
1503  /// \name Mathematics Operations
1504  /// @{
1505 
1506  /// \returns the floor log base 2 of this APInt.
1507  unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1508 
1509  /// \returns the ceil log base 2 of this APInt.
1510  unsigned ceilLogBase2() const {
1511  APInt temp(*this);
1512  --temp;
1513  return BitWidth - temp.countLeadingZeros();
1514  }
1515 
1516  /// \returns the nearest log base 2 of this APInt. Ties round up.
1517  ///
1518  /// NOTE: When we have a BitWidth of 1, we define:
1519  ///
1520  /// log2(0) = UINT32_MAX
1521  /// log2(1) = 0
1522  ///
1523  /// to get around any mathematical concerns resulting from
1524  /// referencing 2 in a space where 2 does no exist.
1525  unsigned nearestLogBase2() const {
1526  // Special case when we have a bitwidth of 1. If VAL is 1, then we
1527  // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
1528  // UINT32_MAX.
1529  if (BitWidth == 1)
1530  return VAL - 1;
1531 
1532  // Handle the zero case.
1533  if (!getBoolValue())
1534  return UINT32_MAX;
1535 
1536  // The non-zero case is handled by computing:
1537  //
1538  // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1539  //
1540  // where x[i] is referring to the value of the ith bit of x.
1541  unsigned lg = logBase2();
1542  return lg + unsigned((*this)[lg - 1]);
1543  }
1544 
1545  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1546  /// otherwise
1547  int32_t exactLogBase2() const {
1548  if (!isPowerOf2())
1549  return -1;
1550  return logBase2();
1551  }
1552 
1553  /// \brief Compute the square root
1554  APInt sqrt() const;
1555 
1556  /// \brief Get the absolute value;
1557  ///
1558  /// If *this is < 0 then return -(*this), otherwise *this;
1559  APInt abs() const {
1560  if (isNegative())
1561  return -(*this);
1562  return *this;
1563  }
1564 
1565  /// \returns the multiplicative inverse for a given modulo.
1566  APInt multiplicativeInverse(const APInt &modulo) const;
1567 
1568  /// @}
1569  /// \name Support for division by constant
1570  /// @{
1571 
1572  /// Calculate the magic number for signed division by a constant.
1573  struct ms;
1574  ms magic() const;
1575 
1576  /// Calculate the magic number for unsigned division by a constant.
1577  struct mu;
1578  mu magicu(unsigned LeadingZeros = 0) const;
1579 
1580  /// @}
1581  /// \name Building-block Operations for APInt and APFloat
1582  /// @{
1583 
1584  // These building block operations operate on a representation of arbitrary
1585  // precision, two's-complement, bignum integer values. They should be
1586  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1587  // generally a pointer to the base of an array of integer parts, representing
1588  // an unsigned bignum, and a count of how many parts there are.
1589 
1590  /// Sets the least significant part of a bignum to the input value, and zeroes
1591  /// out higher parts.
1592  static void tcSet(integerPart *, integerPart, unsigned int);
1593 
1594  /// Assign one bignum to another.
1595  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1596 
1597  /// Returns true if a bignum is zero, false otherwise.
1598  static bool tcIsZero(const integerPart *, unsigned int);
1599 
1600  /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1601  static int tcExtractBit(const integerPart *, unsigned int bit);
1602 
1603  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1604  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1605  /// significant bit of DST. All high bits above srcBITS in DST are
1606  /// zero-filled.
1607  static void tcExtract(integerPart *, unsigned int dstCount,
1608  const integerPart *, unsigned int srcBits,
1609  unsigned int srcLSB);
1610 
1611  /// Set the given bit of a bignum. Zero-based.
1612  static void tcSetBit(integerPart *, unsigned int bit);
1613 
1614  /// Clear the given bit of a bignum. Zero-based.
1615  static void tcClearBit(integerPart *, unsigned int bit);
1616 
1617  /// Returns the bit number of the least or most significant set bit of a
1618  /// number. If the input number has no bits set -1U is returned.
1619  static unsigned int tcLSB(const integerPart *, unsigned int);
1620  static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1621 
1622  /// Negate a bignum in-place.
1623  static void tcNegate(integerPart *, unsigned int);
1624 
1625  /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1626  static integerPart tcAdd(integerPart *, const integerPart *,
1627  integerPart carry, unsigned);
1628 
1629  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1630  static integerPart tcSubtract(integerPart *, const integerPart *,
1631  integerPart carry, unsigned);
1632 
1633  /// DST += SRC * MULTIPLIER + PART if add is true
1634  /// DST = SRC * MULTIPLIER + PART if add is false
1635  ///
1636  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1637  /// start at the same point, i.e. DST == SRC.
1638  ///
1639  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1640  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1641  /// result, and if all of the omitted higher parts were zero return zero,
1642  /// otherwise overflow occurred and return one.
1643  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1644  integerPart multiplier, integerPart carry,
1645  unsigned int srcParts, unsigned int dstParts,
1646  bool add);
1647 
1648  /// DST = LHS * RHS, where DST has the same width as the operands and is
1649  /// filled with the least significant parts of the result. Returns one if
1650  /// overflow occurred, otherwise zero. DST must be disjoint from both
1651  /// operands.
1652  static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
1653  unsigned);
1654 
1655  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1656  /// operands. No overflow occurs. DST must be disjoint from both
1657  /// operands. Returns the number of parts required to hold the result.
1658  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1659  const integerPart *, unsigned, unsigned);
1660 
1661  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1662  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1663  /// REMAINDER to the remainder, return zero. i.e.
1664  ///
1665  /// OLD_LHS = RHS * LHS + REMAINDER
1666  ///
1667  /// SCRATCH is a bignum of the same size as the operands and result for use by
1668  /// the routine; its contents need not be initialized and are destroyed. LHS,
1669  /// REMAINDER and SCRATCH must be distinct.
1670  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1671  integerPart *remainder, integerPart *scratch,
1672  unsigned int parts);
1673 
1674  /// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no
1675  /// restrictions on COUNT.
1676  static void tcShiftLeft(integerPart *, unsigned int parts,
1677  unsigned int count);
1678 
1679  /// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no
1680  /// restrictions on COUNT.
1681  static void tcShiftRight(integerPart *, unsigned int parts,
1682  unsigned int count);
1683 
1684  /// The obvious AND, OR and XOR and complement operations.
1685  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1686  static void tcOr(integerPart *, const integerPart *, unsigned int);
1687  static void tcXor(integerPart *, const integerPart *, unsigned int);
1688  static void tcComplement(integerPart *, unsigned int);
1689 
1690  /// Comparison (unsigned) of two bignums.
1691  static int tcCompare(const integerPart *, const integerPart *, unsigned int);
1692 
1693  /// Increment a bignum in-place. Return the carry flag.
1694  static integerPart tcIncrement(integerPart *, unsigned int);
1695 
1696  /// Decrement a bignum in-place. Return the borrow flag.
1697  static integerPart tcDecrement(integerPart *, unsigned int);
1698 
1699  /// Set the least significant BITS and clear the rest.
1700  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1701  unsigned int bits);
1702 
1703  /// \brief debug method
1704  void dump() const;
1705 
1706  /// @}
1707 };
1708 
1709 /// Magic data for optimising signed division by a constant.
1710 struct APInt::ms {
1711  APInt m; ///< magic number
1712  unsigned s; ///< shift amount
1713 };
1714 
1715 /// Magic data for optimising unsigned division by a constant.
1716 struct APInt::mu {
1717  APInt m; ///< magic number
1718  bool a; ///< add indicator
1719  unsigned s; ///< shift amount
1720 };
1721 
1722 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1723 
1724 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1725 
1726 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1727  I.print(OS, true);
1728  return OS;
1729 }
1730 
1731 inline APInt operator-(APInt v) {
1732  v.flipAllBits();
1733  ++v;
1734  return v;
1735 }
1736 
1737 inline APInt operator+(APInt a, const APInt &b) {
1738  a += b;
1739  return a;
1740 }
1741 
1742 inline APInt operator+(const APInt &a, APInt &&b) {
1743  b += a;
1744  return std::move(b);
1745 }
1746 
1747 inline APInt operator+(APInt a, uint64_t RHS) {
1748  a += RHS;
1749  return a;
1750 }
1751 
1752 inline APInt operator+(uint64_t LHS, APInt b) {
1753  b += LHS;
1754  return b;
1755 }
1756 
1757 inline APInt operator-(APInt a, const APInt &b) {
1758  a -= b;
1759  return a;
1760 }
1761 
1762 inline APInt operator-(const APInt &a, APInt &&b) {
1763  b = -std::move(b);
1764  b += a;
1765  return std::move(b);
1766 }
1767 
1768 inline APInt operator-(APInt a, uint64_t RHS) {
1769  a -= RHS;
1770  return a;
1771 }
1772 
1773 inline APInt operator-(uint64_t LHS, APInt b) {
1774  b = -std::move(b);
1775  b += LHS;
1776  return b;
1777 }
1778 
1779 
1780 namespace APIntOps {
1781 
1782 /// \brief Determine the smaller of two APInts considered to be signed.
1783 inline const APInt &smin(const APInt &A, const APInt &B) {
1784  return A.slt(B) ? A : B;
1785 }
1786 
1787 /// \brief Determine the larger of two APInts considered to be signed.
1788 inline const APInt &smax(const APInt &A, const APInt &B) {
1789  return A.sgt(B) ? A : B;
1790 }
1791 
1792 /// \brief Determine the smaller of two APInts considered to be signed.
1793 inline const APInt &umin(const APInt &A, const APInt &B) {
1794  return A.ult(B) ? A : B;
1795 }
1796 
1797 /// \brief Determine the larger of two APInts considered to be unsigned.
1798 inline const APInt &umax(const APInt &A, const APInt &B) {
1799  return A.ugt(B) ? A : B;
1800 }
1801 
1802 /// \brief Check if the specified APInt has a N-bits unsigned integer value.
1803 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
1804 
1805 /// \brief Check if the specified APInt has a N-bits signed integer value.
1806 inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
1807  return APIVal.isSignedIntN(N);
1808 }
1809 
1810 /// \returns true if the argument APInt value is a sequence of ones starting at
1811 /// the least significant bit with the remainder zero.
1812 inline bool isMask(unsigned numBits, const APInt &APIVal) {
1813  return numBits <= APIVal.getBitWidth() &&
1814  APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1815 }
1816 
1817 /// \returns true if the argument is a non-empty sequence of ones starting at
1818 /// the least significant bit with the remainder zero (32 bit version).
1819 /// Ex. isMask(0x0000FFFFU) == true.
1820 inline bool isMask(const APInt &Value) {
1821  return (Value != 0) && ((Value + 1) & Value) == 0;
1822 }
1823 
1824 /// \brief Return true if the argument APInt value contains a sequence of ones
1825 /// with the remainder zero.
1826 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
1827  return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
1828 }
1829 
1830 /// \brief Returns a byte-swapped representation of the specified APInt Value.
1831 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
1832 
1833 /// \brief Returns the floor log base 2 of the specified APInt value.
1834 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
1835 
1836 /// \brief Compute GCD of two APInt values.
1837 ///
1838 /// This function returns the greatest common divisor of the two APInt values
1839 /// using Euclid's algorithm.
1840 ///
1841 /// \returns the greatest common divisor of Val1 and Val2
1842 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
1843 
1844 /// \brief Converts the given APInt to a double value.
1845 ///
1846 /// Treats the APInt as an unsigned value for conversion purposes.
1847 inline double RoundAPIntToDouble(const APInt &APIVal) {
1848  return APIVal.roundToDouble();
1849 }
1850 
1851 /// \brief Converts the given APInt to a double value.
1852 ///
1853 /// Treats the APInt as a signed value for conversion purposes.
1854 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
1855  return APIVal.signedRoundToDouble();
1856 }
1857 
1858 /// \brief Converts the given APInt to a float vlalue.
1859 inline float RoundAPIntToFloat(const APInt &APIVal) {
1860  return float(RoundAPIntToDouble(APIVal));
1861 }
1862 
1863 /// \brief Converts the given APInt to a float value.
1864 ///
1865 /// Treast the APInt as a signed value for conversion purposes.
1866 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
1867  return float(APIVal.signedRoundToDouble());
1868 }
1869 
1870 /// \brief Converts the given double value into a APInt.
1871 ///
1872 /// This function convert a double value to an APInt value.
1873 APInt RoundDoubleToAPInt(double Double, unsigned width);
1874 
1875 /// \brief Converts a float value into a APInt.
1876 ///
1877 /// Converts a float value into an APInt value.
1878 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1879  return RoundDoubleToAPInt(double(Float), width);
1880 }
1881 
1882 /// \brief Arithmetic right-shift function.
1883 ///
1884 /// Arithmetic right-shift the APInt by shiftAmt.
1885 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
1886  return LHS.ashr(shiftAmt);
1887 }
1888 
1889 /// \brief Logical right-shift function.
1890 ///
1891 /// Logical right-shift the APInt by shiftAmt.
1892 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
1893  return LHS.lshr(shiftAmt);
1894 }
1895 
1896 /// \brief Left-shift function.
1897 ///
1898 /// Left-shift the APInt by shiftAmt.
1899 inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
1900  return LHS.shl(shiftAmt);
1901 }
1902 
1903 /// \brief Signed division function for APInt.
1904 ///
1905 /// Signed divide APInt LHS by APInt RHS.
1906 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
1907 
1908 /// \brief Unsigned division function for APInt.
1909 ///
1910 /// Unsigned divide APInt LHS by APInt RHS.
1911 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
1912 
1913 /// \brief Function for signed remainder operation.
1914 ///
1915 /// Signed remainder operation on APInt.
1916 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
1917 
1918 /// \brief Function for unsigned remainder operation.
1919 ///
1920 /// Unsigned remainder operation on APInt.
1921 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
1922 
1923 /// \brief Function for multiplication operation.
1924 ///
1925 /// Performs multiplication on APInt values.
1926 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
1927 
1928 /// \brief Function for addition operation.
1929 ///
1930 /// Performs addition on APInt values.
1931 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
1932 
1933 /// \brief Function for subtraction operation.
1934 ///
1935 /// Performs subtraction on APInt values.
1936 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
1937 
1938 /// \brief Bitwise AND function for APInt.
1939 ///
1940 /// Performs bitwise AND operation on APInt LHS and
1941 /// APInt RHS.
1942 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
1943 
1944 /// \brief Bitwise OR function for APInt.
1945 ///
1946 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
1947 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
1948 
1949 /// \brief Bitwise XOR function for APInt.
1950 ///
1951 /// Performs bitwise XOR operation on APInt.
1952 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
1953 
1954 /// \brief Bitwise complement function.
1955 ///
1956 /// Performs a bitwise complement operation on APInt.
1957 inline APInt Not(const APInt &APIVal) { return ~APIVal; }
1958 
1959 } // End of APIntOps namespace
1960 
1961 // See friend declaration above. This additional declaration is required in
1962 // order to compile LLVM with IBM xlC compiler.
1963 hash_code hash_value(const APInt &Arg);
1964 } // End of llvm namespace
1965 
1966 #endif
APInt operator|(const APInt &RHS) const
Bitwise OR operator.
Definition: APInt.h:787
void clearAllBits()
Set every bit to 0.
Definition: APInt.h:1221
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type (if unknown returns 0).
APInt ashr(unsigned shiftAmt) const
Arithmetic right-shift function.
Definition: APInt.cpp:1035
std::string & operator+=(std::string &buffer, StringRef string)
Definition: StringRef.h:888
static APInt getSignBit(unsigned BitWidth)
Get the SignBit for a specific bit width.
Definition: APInt.h:451
APInt byteSwap() const
Definition: APInt.cpp:744
double signedRoundToDouble() const
Converts this signed APInt to a double value.
Definition: APInt.h:1446
void flipAllBits()
Toggle every bit to its opposite value.
Definition: APInt.h:1234
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:458
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1309
APInt operator+(APInt a, const APInt &b)
Definition: APInt.h:1737
double RoundAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:1847
size_t i
APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2)
Compute GCD of two APInt values.
Definition: APInt.cpp:801
float RoundAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float vlalue.
Definition: APInt.h:1859
bool operator!() const
Logical negation operator.
Definition: APInt.h:632
APInt byteSwap(const APInt &APIVal)
Returns a byte-swapped representation of the specified APInt Value.
Definition: APInt.h:1831
void setBit(unsigned bitPosition)
Set a given bit to 1.
Definition: APInt.cpp:553
void print(raw_ostream &OS, bool isSigned) const
Definition: APInt.cpp:2257
unsigned s
shift amount
Definition: APInt.h:1712
bool ule(uint64_t RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1059
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:329
SmallBitVector operator&(const SmallBitVector &LHS, const SmallBitVector &RHS)
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Get a value with low bits set.
Definition: APInt.h:536
unsigned getActiveWords() const
Compute the number of active words in the value of this APInt.
Definition: APInt.h:1285
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
If this value is smaller than the specified limit, return it, otherwise return the limit value...
Definition: APInt.h:409
bool isMask(unsigned numBits, const APInt &APIVal)
Definition: APInt.h:1812
demanded bits
void setAllBits()
Set every bit to 1.
Definition: APInt.h:1203
APInt mul(const APInt &LHS, const APInt &RHS)
Function for multiplication operation.
Definition: APInt.h:1926
bool slt(int64_t RHS) const
Signed less than comparison.
Definition: APInt.h:1041
double roundToDouble(bool isSigned) const
Converts this APInt to a double value.
Definition: APInt.cpp:855
bool operator!=(uint64_t Val) const
Inequality operator.
Definition: APInt.h:999
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit. ...
Definition: APInt.h:1363
std::size_t countLeadingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the most significant bit to the least stopping at the first 1...
Definition: MathExtras.h:180
bool uge(uint64_t RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1127
Magic data for optimising unsigned division by a constant.
Definition: APInt.h:1716
void toStringUnsigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be unsigned and converts it into a string in the radix given.
Definition: APInt.h:1415
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:431
APInt add(const APInt &LHS, const APInt &RHS)
Function for addition operation.
Definition: APInt.h:1931
APInt Not(const APInt &APIVal)
Bitwise complement function.
Definition: APInt.h:1957
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:324
~APInt()
Destructor.
Definition: APInt.h:296
APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition: APInt.cpp:1865
bool sgt(int64_t RHS) const
Signed greater than comparison.
Definition: APInt.h:1109
std::string toString(Error E)
Write all error messages (if any) in E to a string.
bool isSignedIntN(unsigned N, const APInt &APIVal)
Check if the specified APInt has a N-bits signed integer value.
Definition: APInt.h:1806
APInt urem(const APInt &LHS, const APInt &RHS)
Function for unsigned remainder operation.
Definition: APInt.h:1921
static APInt doubleToBits(double V)
Converts a double to APInt bits.
Definition: APInt.h:1480
APInt()
Default constructor that creates an uninteresting APInt representing a 1-bit zero value...
Definition: APInt.h:306
std::size_t countTrailingOnes(T Value, ZeroBehavior ZB=ZB_Width)
Count the number of ones from the least significant bit to the first zero bit.
Definition: MathExtras.h:452
uint64_t VAL
Used to store the <= 64 bits integer value.
Definition: APInt.h:83
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.cpp:1122
static GCRegistry::Add< StatepointGC > D("statepoint-example","an example strategy for statepoint")
unsigned logBase2(const APInt &APIVal)
Returns the floor log base 2 of the specified APInt value.
Definition: APInt.h:1834
SmallBitVector operator|(const SmallBitVector &LHS, const SmallBitVector &RHS)
bool isShiftedMask(unsigned numBits, const APInt &APIVal)
Return true if the argument APInt value contains a sequence of ones with the remainder zero...
Definition: APInt.h:1826
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
Definition: APInt.h:377
bool getBoolValue() const
Convert APInt to a boolean value.
Definition: APInt.h:405
APInt lshr(const APInt &LHS, unsigned shiftAmt)
Logical right-shift function.
Definition: APInt.h:1892
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition: APInt.h:1788
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:850
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition: APInt.h:1783
bool isIntN(unsigned N, const APInt &APIVal)
Check if the specified APInt has a N-bits unsigned integer value.
Definition: APInt.h:1803
#define F(x, y, z)
Definition: MD5.cpp:51
APInt zextOrSelf(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:1015
APInt sub(const APInt &LHS, const APInt &RHS)
Function for subtraction operation.
Definition: APInt.h:1936
#define T
APInt udiv(const APInt &LHS, const APInt &RHS)
Unsigned division function for APInt.
Definition: APInt.h:1911
static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, unsigned len)
This function adds the integer array x to the integer array Y and places the result in dest...
Definition: APInt.cpp:239
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1101
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1279
hash_code hash_value(const APFloat &Arg)
See friend declarations above.
Definition: APFloat.cpp:4132
APInt sdiv(const APInt &LHS, const APInt &RHS)
Signed division function for APInt.
Definition: APInt.h:1906
static GCRegistry::Add< OcamlGC > B("ocaml","ocaml 3.10-compatible GC")
auto count(R &&Range, const E &Element) -> typename std::iterator_traits< decltype(std::begin(Range))>::difference_type
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition: STLExtras.h:791
float RoundSignedAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition: APInt.h:1866
APInt ashr(const APInt &LHS, unsigned shiftAmt)
Arithmetic right-shift function.
Definition: APInt.h:1885
E & operator^=(E &LHS, E RHS)
Definition: BitmaskEnum.h:141
unsigned getMinSignedBits() const
Get the minimum bit size for this signed APInt.
Definition: APInt.h:1298
APInt Or(const APInt &RHS) const
Bitwise OR function.
Definition: APInt.h:800
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.cpp:501
bool operator==(uint64_t Val) const
Equality operator.
Definition: APInt.h:971
bool needsCleanup() const
Returns whether this instance allocated memory.
Definition: APInt.h:309
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Get a value with high bits set.
Definition: APInt.h:518
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition: FoldingSet.h:316
bool operator==(const APInt &RHS) const
Equality operator.
Definition: APInt.h:958
bool operator|=(SparseBitVector< ElementSize > &LHS, const SparseBitVector< ElementSize > *RHS)
bool eq(const APInt &RHS) const
Equality comparison.
Definition: APInt.h:983
bool ugt(uint64_t RHS) const
Unsigned greater than comparison.
Definition: APInt.h:1091
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition: APInt.h:1147
APInt srem(const APInt &LHS, const APInt &RHS)
Function for signed remainder operation.
Definition: APInt.h:1916
std::size_t countTrailingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the least significant bit to the most stopping at the first 1...
Definition: MathExtras.h:111
APInt operator<<(const APInt &Bits) const
Left logical shift operator.
Definition: APInt.h:835
bool sge(const APInt &RHS) const
Signed greather or equal comparison.
Definition: APInt.h:1135
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition: APInt.h:358
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1321
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1947
const unsigned int integerPartWidth
Definition: APInt.h:40
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1952
APInt & operator=(const APInt &RHS)
Copy assignment operator.
Definition: APInt.h:649
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:484
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition: APInt.h:1067
constexpr bool isPowerOf2_64(uint64_t Value)
isPowerOf2_64 - This function returns true if the argument is a power of two 0 (64 bit edition...
Definition: MathExtras.h:405
APInt(APInt &&that)
Move Constructor.
Definition: APInt.h:291
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1255
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1119
bool isMaxValue() const
Determine if this is the largest unsigned value.
Definition: APInt.h:352
APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition: APInt.cpp:1854
static unsigned getNumWords(unsigned BitWidth)
Get the number of words.
Definition: APInt.h:1270
unsigned countPopulation() const
Count the number of bits set.
Definition: APInt.h:1397
bool sge(int64_t RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1143
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!) to ensure ...
Definition: APInt.h:562
BlockMass operator*(BlockMass L, BranchProbability R)
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:391
APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition: APInt.cpp:1902
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition: APInt.h:1793
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1083
double roundToDouble() const
Converts this unsigned APInt to a double value.
Definition: APInt.h:1443
unsigned countPopulation(T Value)
Count the number of set bits in a value.
Definition: MathExtras.h:494
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.cpp:533
APInt m
magic number
Definition: APInt.h:1717
unsigned logBase2() const
Definition: APInt.h:1507
APInt Xor(const APInt &RHS) const
Bitwise XOR function.
Definition: APInt.h:820
APInt(const APInt &that)
Simply makes *this a copy of that.
Definition: APInt.h:283
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition: APInt.h:337
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition: APInt.h:438
int array[kArraySize]
Definition: LoadTest.cpp:13
int32_t exactLogBase2() const
Definition: APInt.h:1547
APInt operator^(const APInt &RHS) const
Bitwise XOR operator.
Definition: APInt.h:807
unsigned ceilLogBase2() const
Definition: APInt.h:1510
static APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition: APInt.h:550
Class for arbitrary precision integers.
Definition: APInt.h:77
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
Definition: APInt.h:383
APInt operator<<(unsigned Bits) const
Left logical shift operator.
Definition: APInt.h:830
An opaque object representing a hash code.
Definition: Hashing.h:72
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition: APInt.h:1798
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:426
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:366
double bitsToDouble() const
Converts APInt bits to a double.
Definition: APInt.h:1453
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1942
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition: APInt.h:503
APInt RoundFloatToAPInt(float Float, unsigned width)
Converts a float value into a APInt.
Definition: APInt.h:1878
bool sle(uint64_t RHS) const
Signed less or equal comparison.
Definition: APInt.h:1075
bool ult(uint64_t RHS) const
Unsigned less than comparison.
Definition: APInt.h:1023
bool operator!=(uint64_t V1, const APInt &V2)
Definition: APInt.h:1724
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:342
bool operator!=(const APInt &RHS) const
Inequality operator.
Definition: APInt.h:991
APInt And(const APInt &RHS) const
Definition: APInt.h:780
Magic data for optimising signed division by a constant.
Definition: APInt.h:1710
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:372
unsigned s
shift amount
Definition: APInt.h:1719
const uint64_t * getRawData() const
This function returns a pointer to the internal storage of the APInt.
Definition: APInt.h:578
APInt operator~() const
Unary bitwise complement operator.
Definition: APInt.h:621
APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition: APInt.cpp:1817
const unsigned int host_char_bit
Definition: APInt.h:39
APInt m
magic number
Definition: APInt.h:1711
APInt & operator|=(uint64_t RHS)
Bitwise OR assignment operator.
Definition: APInt.h:714
void clearBit(unsigned bitPosition)
Set a given bit to 0.
Definition: APInt.cpp:562
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
APInt(unsigned numBits, uint64_t val, bool isSigned=false)
Create a new APInt of numBits width, initialized as val.
Definition: APInt.h:240
bool isSignBit() const
Check if the APInt's value is returned by getSignBit.
Definition: APInt.h:400
APInt operator-(APInt)
Definition: APInt.h:1731
SmallBitVector operator^(const SmallBitVector &LHS, const SmallBitVector &RHS)
unsigned countTrailingOnes() const
Count the number of trailing one bits.
Definition: APInt.h:1385
APInt & operator<<=(unsigned shiftAmt)
Left-shift assignment function.
Definition: APInt.h:760
raw_ostream & operator<<(raw_ostream &OS, const APInt &I)
Definition: APInt.h:1726
static bool isSplat(ArrayRef< Value * > VL)
#define LLVM_NODISCARD
LLVM_NODISCARD - Warn if a type or return value is discarded.
Definition: Compiler.h:132
bool operator[](unsigned bitPosition) const
Array-indexing support.
Definition: APInt.h:943
APInt operator&(const APInt &RHS) const
Bitwise AND operator.
Definition: APInt.h:774
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:441
LLVM Value Representation.
Definition: Value.h:71
APInt shl(const APInt &LHS, unsigned shiftAmt)
Left-shift function.
Definition: APInt.h:1899
const APInt operator--(int)
Postfix decrement operator.
Definition: APInt.h:605
void toStringSigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be signed and converts it into a string in the radix given.
Definition: APInt.h:1421
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:44
unsigned countLeadingZeros() const
The APInt version of the countLeadingZeros functions in MathExtras.h.
Definition: APInt.h:1343
APInt & operator=(APInt &&that)
Move assignment operator.
Definition: APInt.h:661
const APInt operator++(int)
Postfix increment operator.
Definition: APInt.h:591
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:47
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:980
bool operator==(uint64_t V1, const APInt &V2)
Definition: APInt.h:1722
static APInt getNullValue(unsigned numBits)
Get the '0' value.
Definition: APInt.h:465
APInt abs() const
Get the absolute value;.
Definition: APInt.h:1559
APInt RoundDoubleToAPInt(double Double, unsigned width)
Converts the given double value into a APInt.
Definition: APInt.cpp:812
T reverseBits(T Val)
Reverse the bits in Val.
Definition: MathExtras.h:233
unsigned nearestLogBase2() const
Definition: APInt.h:1525
static APInt floatToBits(float V)
Converts a float to APInt bits.
Definition: APInt.h:1493
static GCRegistry::Add< ErlangGC > A("erlang","erlang-compatible garbage collector")
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1051
bool operator&=(SparseBitVector< ElementSize > *LHS, const SparseBitVector< ElementSize > &RHS)
double RoundSignedAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:1854
std::size_t countLeadingOnes(T Value, ZeroBehavior ZB=ZB_Width)
Count the number of ones from the most significant bit to the first zero bit.
Definition: MathExtras.h:436
uint64_t * pVal
Used to store the >64 bits integer value.
Definition: APInt.h:84
bool ne(const APInt &RHS) const
Inequality comparison.
Definition: APInt.h:1007
float bitsToFloat() const
Converts APInt bits to a double.
Definition: APInt.h:1467
bool a
add indicator
Definition: APInt.h:1718
uint64_t integerPart
Definition: APInt.h:33
unsigned getNumWords() const
Get the number of words.
Definition: APInt.h:1262