LLVM  4.0.0
IRMover.cpp
Go to the documentation of this file.
1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Linker/IRMover.h"
11 #include "LinkDiagnosticInfo.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfo.h"
18 #include "llvm/IR/GVMaterializer.h"
19 #include "llvm/IR/Intrinsics.h"
20 #include "llvm/IR/TypeFinder.h"
21 #include "llvm/Support/Error.h"
23 #include <utility>
24 using namespace llvm;
25 
26 //===----------------------------------------------------------------------===//
27 // TypeMap implementation.
28 //===----------------------------------------------------------------------===//
29 
30 namespace {
31 class TypeMapTy : public ValueMapTypeRemapper {
32  /// This is a mapping from a source type to a destination type to use.
33  DenseMap<Type *, Type *> MappedTypes;
34 
35  /// When checking to see if two subgraphs are isomorphic, we speculatively
36  /// add types to MappedTypes, but keep track of them here in case we need to
37  /// roll back.
38  SmallVector<Type *, 16> SpeculativeTypes;
39 
40  SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
41 
42  /// This is a list of non-opaque structs in the source module that are mapped
43  /// to an opaque struct in the destination module.
44  SmallVector<StructType *, 16> SrcDefinitionsToResolve;
45 
46  /// This is the set of opaque types in the destination modules who are
47  /// getting a body from the source module.
48  SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
49 
50 public:
51  TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
52  : DstStructTypesSet(DstStructTypesSet) {}
53 
54  IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
55  /// Indicate that the specified type in the destination module is conceptually
56  /// equivalent to the specified type in the source module.
57  void addTypeMapping(Type *DstTy, Type *SrcTy);
58 
59  /// Produce a body for an opaque type in the dest module from a type
60  /// definition in the source module.
61  void linkDefinedTypeBodies();
62 
63  /// Return the mapped type to use for the specified input type from the
64  /// source module.
65  Type *get(Type *SrcTy);
66  Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
67 
68  void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
69 
70  FunctionType *get(FunctionType *T) {
71  return cast<FunctionType>(get((Type *)T));
72  }
73 
74 private:
75  Type *remapType(Type *SrcTy) override { return get(SrcTy); }
76 
77  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
78 };
79 }
80 
81 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
82  assert(SpeculativeTypes.empty());
83  assert(SpeculativeDstOpaqueTypes.empty());
84 
85  // Check to see if these types are recursively isomorphic and establish a
86  // mapping between them if so.
87  if (!areTypesIsomorphic(DstTy, SrcTy)) {
88  // Oops, they aren't isomorphic. Just discard this request by rolling out
89  // any speculative mappings we've established.
90  for (Type *Ty : SpeculativeTypes)
91  MappedTypes.erase(Ty);
92 
93  SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
94  SpeculativeDstOpaqueTypes.size());
95  for (StructType *Ty : SpeculativeDstOpaqueTypes)
96  DstResolvedOpaqueTypes.erase(Ty);
97  } else {
98  for (Type *Ty : SpeculativeTypes)
99  if (auto *STy = dyn_cast<StructType>(Ty))
100  if (STy->hasName())
101  STy->setName("");
102  }
103  SpeculativeTypes.clear();
104  SpeculativeDstOpaqueTypes.clear();
105 }
106 
107 /// Recursively walk this pair of types, returning true if they are isomorphic,
108 /// false if they are not.
109 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
110  // Two types with differing kinds are clearly not isomorphic.
111  if (DstTy->getTypeID() != SrcTy->getTypeID())
112  return false;
113 
114  // If we have an entry in the MappedTypes table, then we have our answer.
115  Type *&Entry = MappedTypes[SrcTy];
116  if (Entry)
117  return Entry == DstTy;
118 
119  // Two identical types are clearly isomorphic. Remember this
120  // non-speculatively.
121  if (DstTy == SrcTy) {
122  Entry = DstTy;
123  return true;
124  }
125 
126  // Okay, we have two types with identical kinds that we haven't seen before.
127 
128  // If this is an opaque struct type, special case it.
129  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
130  // Mapping an opaque type to any struct, just keep the dest struct.
131  if (SSTy->isOpaque()) {
132  Entry = DstTy;
133  SpeculativeTypes.push_back(SrcTy);
134  return true;
135  }
136 
137  // Mapping a non-opaque source type to an opaque dest. If this is the first
138  // type that we're mapping onto this destination type then we succeed. Keep
139  // the dest, but fill it in later. If this is the second (different) type
140  // that we're trying to map onto the same opaque type then we fail.
141  if (cast<StructType>(DstTy)->isOpaque()) {
142  // We can only map one source type onto the opaque destination type.
143  if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
144  return false;
145  SrcDefinitionsToResolve.push_back(SSTy);
146  SpeculativeTypes.push_back(SrcTy);
147  SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
148  Entry = DstTy;
149  return true;
150  }
151  }
152 
153  // If the number of subtypes disagree between the two types, then we fail.
154  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
155  return false;
156 
157  // Fail if any of the extra properties (e.g. array size) of the type disagree.
158  if (isa<IntegerType>(DstTy))
159  return false; // bitwidth disagrees.
160  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
161  if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
162  return false;
163 
164  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
165  if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
166  return false;
167  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
168  StructType *SSTy = cast<StructType>(SrcTy);
169  if (DSTy->isLiteral() != SSTy->isLiteral() ||
170  DSTy->isPacked() != SSTy->isPacked())
171  return false;
172  } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
173  if (DSeqTy->getNumElements() !=
174  cast<SequentialType>(SrcTy)->getNumElements())
175  return false;
176  }
177 
178  // Otherwise, we speculate that these two types will line up and recursively
179  // check the subelements.
180  Entry = DstTy;
181  SpeculativeTypes.push_back(SrcTy);
182 
183  for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
184  if (!areTypesIsomorphic(DstTy->getContainedType(I),
185  SrcTy->getContainedType(I)))
186  return false;
187 
188  // If everything seems to have lined up, then everything is great.
189  return true;
190 }
191 
192 void TypeMapTy::linkDefinedTypeBodies() {
193  SmallVector<Type *, 16> Elements;
194  for (StructType *SrcSTy : SrcDefinitionsToResolve) {
195  StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
196  assert(DstSTy->isOpaque());
197 
198  // Map the body of the source type over to a new body for the dest type.
199  Elements.resize(SrcSTy->getNumElements());
200  for (unsigned I = 0, E = Elements.size(); I != E; ++I)
201  Elements[I] = get(SrcSTy->getElementType(I));
202 
203  DstSTy->setBody(Elements, SrcSTy->isPacked());
204  DstStructTypesSet.switchToNonOpaque(DstSTy);
205  }
206  SrcDefinitionsToResolve.clear();
207  DstResolvedOpaqueTypes.clear();
208 }
209 
210 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
211  ArrayRef<Type *> ETypes) {
212  DTy->setBody(ETypes, STy->isPacked());
213 
214  // Steal STy's name.
215  if (STy->hasName()) {
216  SmallString<16> TmpName = STy->getName();
217  STy->setName("");
218  DTy->setName(TmpName);
219  }
220 
221  DstStructTypesSet.addNonOpaque(DTy);
222 }
223 
224 Type *TypeMapTy::get(Type *Ty) {
226  return get(Ty, Visited);
227 }
228 
229 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
230  // If we already have an entry for this type, return it.
231  Type **Entry = &MappedTypes[Ty];
232  if (*Entry)
233  return *Entry;
234 
235  // These are types that LLVM itself will unique.
236  bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
237 
238 #ifndef NDEBUG
239  if (!IsUniqued) {
240  for (auto &Pair : MappedTypes) {
241  assert(!(Pair.first != Ty && Pair.second == Ty) &&
242  "mapping to a source type");
243  }
244  }
245 #endif
246 
247  if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
249  return *Entry = DTy;
250  }
251 
252  // If this is not a recursive type, then just map all of the elements and
253  // then rebuild the type from inside out.
254  SmallVector<Type *, 4> ElementTypes;
255 
256  // If there are no element types to map, then the type is itself. This is
257  // true for the anonymous {} struct, things like 'float', integers, etc.
258  if (Ty->getNumContainedTypes() == 0 && IsUniqued)
259  return *Entry = Ty;
260 
261  // Remap all of the elements, keeping track of whether any of them change.
262  bool AnyChange = false;
263  ElementTypes.resize(Ty->getNumContainedTypes());
264  for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
265  ElementTypes[I] = get(Ty->getContainedType(I), Visited);
266  AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
267  }
268 
269  // If we found our type while recursively processing stuff, just use it.
270  Entry = &MappedTypes[Ty];
271  if (*Entry) {
272  if (auto *DTy = dyn_cast<StructType>(*Entry)) {
273  if (DTy->isOpaque()) {
274  auto *STy = cast<StructType>(Ty);
275  finishType(DTy, STy, ElementTypes);
276  }
277  }
278  return *Entry;
279  }
280 
281  // If all of the element types mapped directly over and the type is not
282  // a named struct, then the type is usable as-is.
283  if (!AnyChange && IsUniqued)
284  return *Entry = Ty;
285 
286  // Otherwise, rebuild a modified type.
287  switch (Ty->getTypeID()) {
288  default:
289  llvm_unreachable("unknown derived type to remap");
290  case Type::ArrayTyID:
291  return *Entry = ArrayType::get(ElementTypes[0],
292  cast<ArrayType>(Ty)->getNumElements());
293  case Type::VectorTyID:
294  return *Entry = VectorType::get(ElementTypes[0],
295  cast<VectorType>(Ty)->getNumElements());
296  case Type::PointerTyID:
297  return *Entry = PointerType::get(ElementTypes[0],
298  cast<PointerType>(Ty)->getAddressSpace());
299  case Type::FunctionTyID:
300  return *Entry = FunctionType::get(ElementTypes[0],
301  makeArrayRef(ElementTypes).slice(1),
302  cast<FunctionType>(Ty)->isVarArg());
303  case Type::StructTyID: {
304  auto *STy = cast<StructType>(Ty);
305  bool IsPacked = STy->isPacked();
306  if (IsUniqued)
307  return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
308 
309  // If the type is opaque, we can just use it directly.
310  if (STy->isOpaque()) {
311  DstStructTypesSet.addOpaque(STy);
312  return *Entry = Ty;
313  }
314 
315  if (StructType *OldT =
316  DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
317  STy->setName("");
318  return *Entry = OldT;
319  }
320 
321  if (!AnyChange) {
322  DstStructTypesSet.addNonOpaque(STy);
323  return *Entry = Ty;
324  }
325 
327  finishType(DTy, STy, ElementTypes);
328  return *Entry = DTy;
329  }
330  }
331 }
332 
334  const Twine &Msg)
335  : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
336 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
337 
338 //===----------------------------------------------------------------------===//
339 // IRLinker implementation.
340 //===----------------------------------------------------------------------===//
341 
342 namespace {
343 class IRLinker;
344 
345 /// Creates prototypes for functions that are lazily linked on the fly. This
346 /// speeds up linking for modules with many/ lazily linked functions of which
347 /// few get used.
348 class GlobalValueMaterializer final : public ValueMaterializer {
349  IRLinker &TheIRLinker;
350 
351 public:
352  GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
353  Value *materialize(Value *V) override;
354 };
355 
356 class LocalValueMaterializer final : public ValueMaterializer {
357  IRLinker &TheIRLinker;
358 
359 public:
360  LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
361  Value *materialize(Value *V) override;
362 };
363 
364 /// Type of the Metadata map in \a ValueToValueMapTy.
366 
367 /// This is responsible for keeping track of the state used for moving data
368 /// from SrcM to DstM.
369 class IRLinker {
370  Module &DstM;
371  std::unique_ptr<Module> SrcM;
372 
373  /// See IRMover::move().
374  std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
375 
376  TypeMapTy TypeMap;
377  GlobalValueMaterializer GValMaterializer;
378  LocalValueMaterializer LValMaterializer;
379 
380  /// A metadata map that's shared between IRLinker instances.
381  MDMapT &SharedMDs;
382 
383  /// Mapping of values from what they used to be in Src, to what they are now
384  /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
385  /// due to the use of Value handles which the Linker doesn't actually need,
386  /// but this allows us to reuse the ValueMapper code.
388  ValueToValueMapTy AliasValueMap;
389 
390  DenseSet<GlobalValue *> ValuesToLink;
391  std::vector<GlobalValue *> Worklist;
392 
393  void maybeAdd(GlobalValue *GV) {
394  if (ValuesToLink.insert(GV).second)
395  Worklist.push_back(GV);
396  }
397 
398  /// Flag whether the ModuleInlineAsm string in Src should be linked with
399  /// (concatenated into) the ModuleInlineAsm string for the destination
400  /// module. It should be true for full LTO, but not when importing for
401  /// ThinLTO, otherwise we can have duplicate symbols.
402  bool LinkModuleInlineAsm;
403 
404  /// Set to true when all global value body linking is complete (including
405  /// lazy linking). Used to prevent metadata linking from creating new
406  /// references.
407  bool DoneLinkingBodies = false;
408 
409  /// The Error encountered during materialization. We use an Optional here to
410  /// avoid needing to manage an unconsumed success value.
411  Optional<Error> FoundError;
412  void setError(Error E) {
413  if (E)
414  FoundError = std::move(E);
415  }
416 
417  /// Most of the errors produced by this module are inconvertible StringErrors.
418  /// This convenience function lets us return one of those more easily.
419  Error stringErr(const Twine &T) {
420  return make_error<StringError>(T, inconvertibleErrorCode());
421  }
422 
423  /// Entry point for mapping values and alternate context for mapping aliases.
424  ValueMapper Mapper;
425  unsigned AliasMCID;
426 
427  /// Handles cloning of a global values from the source module into
428  /// the destination module, including setting the attributes and visibility.
429  GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
430 
431  void emitWarning(const Twine &Message) {
432  SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
433  }
434 
435  /// Given a global in the source module, return the global in the
436  /// destination module that is being linked to, if any.
437  GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
438  // If the source has no name it can't link. If it has local linkage,
439  // there is no name match-up going on.
440  if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
441  return nullptr;
442 
443  // Otherwise see if we have a match in the destination module's symtab.
444  GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
445  if (!DGV)
446  return nullptr;
447 
448  // If we found a global with the same name in the dest module, but it has
449  // internal linkage, we are really not doing any linkage here.
450  if (DGV->hasLocalLinkage())
451  return nullptr;
452 
453  // Otherwise, we do in fact link to the destination global.
454  return DGV;
455  }
456 
457  void computeTypeMapping();
458 
459  Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
460  const GlobalVariable *SrcGV);
461 
462  /// Given the GlobaValue \p SGV in the source module, and the matching
463  /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
464  /// into the destination module.
465  ///
466  /// Note this code may call the client-provided \p AddLazyFor.
467  bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
468  Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
469 
470  Error linkModuleFlagsMetadata();
471 
472  void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
473  Error linkFunctionBody(Function &Dst, Function &Src);
474  void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
475  Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
476 
477  /// Functions that take care of cloning a specific global value type
478  /// into the destination module.
479  GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
480  Function *copyFunctionProto(const Function *SF);
481  GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
482 
483  /// When importing for ThinLTO, prevent importing of types listed on
484  /// the DICompileUnit that we don't need a copy of in the importing
485  /// module.
486  void prepareCompileUnitsForImport();
487  void linkNamedMDNodes();
488 
489 public:
490  IRLinker(Module &DstM, MDMapT &SharedMDs,
491  IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
492  ArrayRef<GlobalValue *> ValuesToLink,
493  std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
494  bool LinkModuleInlineAsm, bool IsPerformingImport)
495  : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
496  TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
497  SharedMDs(SharedMDs), LinkModuleInlineAsm(LinkModuleInlineAsm),
499  &GValMaterializer),
500  AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap,
501  &LValMaterializer)) {
502  ValueMap.getMDMap() = std::move(SharedMDs);
503  for (GlobalValue *GV : ValuesToLink)
504  maybeAdd(GV);
505  if (IsPerformingImport)
506  prepareCompileUnitsForImport();
507  }
508  ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
509 
510  Error run();
511  Value *materialize(Value *V, bool ForAlias);
512 };
513 }
514 
515 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
516 /// table. This is good for all clients except for us. Go through the trouble
517 /// to force this back.
519  // If the global doesn't force its name or if it already has the right name,
520  // there is nothing for us to do.
521  if (GV->hasLocalLinkage() || GV->getName() == Name)
522  return;
523 
524  Module *M = GV->getParent();
525 
526  // If there is a conflict, rename the conflict.
527  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
528  GV->takeName(ConflictGV);
529  ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
530  assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
531  } else {
532  GV->setName(Name); // Force the name back
533  }
534 }
535 
536 Value *GlobalValueMaterializer::materialize(Value *SGV) {
537  return TheIRLinker.materialize(SGV, false);
538 }
539 
540 Value *LocalValueMaterializer::materialize(Value *SGV) {
541  return TheIRLinker.materialize(SGV, true);
542 }
543 
544 Value *IRLinker::materialize(Value *V, bool ForAlias) {
545  auto *SGV = dyn_cast<GlobalValue>(V);
546  if (!SGV)
547  return nullptr;
548 
549  Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias);
550  if (!NewProto) {
551  setError(NewProto.takeError());
552  return nullptr;
553  }
554  if (!*NewProto)
555  return nullptr;
556 
557  GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
558  if (!New)
559  return *NewProto;
560 
561  // If we already created the body, just return.
562  if (auto *F = dyn_cast<Function>(New)) {
563  if (!F->isDeclaration())
564  return New;
565  } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
566  if (V->hasInitializer() || V->hasAppendingLinkage())
567  return New;
568  } else {
569  auto *A = cast<GlobalAlias>(New);
570  if (A->getAliasee())
571  return New;
572  }
573 
574  // When linking a global for an alias, it will always be linked. However we
575  // need to check if it was not already scheduled to satisfy a reference from a
576  // regular global value initializer. We know if it has been schedule if the
577  // "New" GlobalValue that is mapped here for the alias is the same as the one
578  // already mapped. If there is an entry in the ValueMap but the value is
579  // different, it means that the value already had a definition in the
580  // destination module (linkonce for instance), but we need a new definition
581  // for the alias ("New" will be different.
582  if (ForAlias && ValueMap.lookup(SGV) == New)
583  return New;
584 
585  if (ForAlias || shouldLink(New, *SGV))
586  setError(linkGlobalValueBody(*New, *SGV));
587 
588  return New;
589 }
590 
591 /// Loop through the global variables in the src module and merge them into the
592 /// dest module.
593 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
594  // No linking to be performed or linking from the source: simply create an
595  // identical version of the symbol over in the dest module... the
596  // initializer will be filled in later by LinkGlobalInits.
597  GlobalVariable *NewDGV =
598  new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
600  /*init*/ nullptr, SGVar->getName(),
601  /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
602  SGVar->getType()->getAddressSpace());
603  NewDGV->setAlignment(SGVar->getAlignment());
604  return NewDGV;
605 }
606 
607 /// Link the function in the source module into the destination module if
608 /// needed, setting up mapping information.
609 Function *IRLinker::copyFunctionProto(const Function *SF) {
610  // If there is no linkage to be performed or we are linking from the source,
611  // bring SF over.
612  return Function::Create(TypeMap.get(SF->getFunctionType()),
613  GlobalValue::ExternalLinkage, SF->getName(), &DstM);
614 }
615 
616 /// Set up prototypes for any aliases that come over from the source module.
617 GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
618  // If there is no linkage to be performed or we're linking from the source,
619  // bring over SGA.
620  auto *Ty = TypeMap.get(SGA->getValueType());
623  &DstM);
624 }
625 
626 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
627  bool ForDefinition) {
628  GlobalValue *NewGV;
629  if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
630  NewGV = copyGlobalVariableProto(SGVar);
631  } else if (auto *SF = dyn_cast<Function>(SGV)) {
632  NewGV = copyFunctionProto(SF);
633  } else {
634  if (ForDefinition)
635  NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
636  else
637  NewGV = new GlobalVariable(
638  DstM, TypeMap.get(SGV->getValueType()),
639  /*isConstant*/ false, GlobalValue::ExternalLinkage,
640  /*init*/ nullptr, SGV->getName(),
641  /*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
642  SGV->getType()->getAddressSpace());
643  }
644 
645  if (ForDefinition)
646  NewGV->setLinkage(SGV->getLinkage());
647  else if (SGV->hasExternalWeakLinkage())
649 
650  NewGV->copyAttributesFrom(SGV);
651 
652  if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
653  // Metadata for global variables and function declarations is copied eagerly.
654  if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
655  NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
656  }
657 
658  // Remove these copied constants in case this stays a declaration, since
659  // they point to the source module. If the def is linked the values will
660  // be mapped in during linkFunctionBody.
661  if (auto *NewF = dyn_cast<Function>(NewGV)) {
662  NewF->setPersonalityFn(nullptr);
663  NewF->setPrefixData(nullptr);
664  NewF->setPrologueData(nullptr);
665  }
666 
667  return NewGV;
668 }
669 
670 /// Loop over all of the linked values to compute type mappings. For example,
671 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
672 /// types 'Foo' but one got renamed when the module was loaded into the same
673 /// LLVMContext.
674 void IRLinker::computeTypeMapping() {
675  for (GlobalValue &SGV : SrcM->globals()) {
676  GlobalValue *DGV = getLinkedToGlobal(&SGV);
677  if (!DGV)
678  continue;
679 
680  if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
681  TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
682  continue;
683  }
684 
685  // Unify the element type of appending arrays.
686  ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
687  ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
688  TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
689  }
690 
691  for (GlobalValue &SGV : *SrcM)
692  if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
693  TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
694 
695  for (GlobalValue &SGV : SrcM->aliases())
696  if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
697  TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
698 
699  // Incorporate types by name, scanning all the types in the source module.
700  // At this point, the destination module may have a type "%foo = { i32 }" for
701  // example. When the source module got loaded into the same LLVMContext, if
702  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
703  std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
704  for (StructType *ST : Types) {
705  if (!ST->hasName())
706  continue;
707 
708  if (TypeMap.DstStructTypesSet.hasType(ST)) {
709  // This is actually a type from the destination module.
710  // getIdentifiedStructTypes() can have found it by walking debug info
711  // metadata nodes, some of which get linked by name when ODR Type Uniquing
712  // is enabled on the Context, from the source to the destination module.
713  continue;
714  }
715 
716  // Check to see if there is a dot in the name followed by a digit.
717  size_t DotPos = ST->getName().rfind('.');
718  if (DotPos == 0 || DotPos == StringRef::npos ||
719  ST->getName().back() == '.' ||
720  !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
721  continue;
722 
723  // Check to see if the destination module has a struct with the prefix name.
724  StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos));
725  if (!DST)
726  continue;
727 
728  // Don't use it if this actually came from the source module. They're in
729  // the same LLVMContext after all. Also don't use it unless the type is
730  // actually used in the destination module. This can happen in situations
731  // like this:
732  //
733  // Module A Module B
734  // -------- --------
735  // %Z = type { %A } %B = type { %C.1 }
736  // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
737  // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
738  // %C = type { i8* } %B.3 = type { %C.1 }
739  //
740  // When we link Module B with Module A, the '%B' in Module B is
741  // used. However, that would then use '%C.1'. But when we process '%C.1',
742  // we prefer to take the '%C' version. So we are then left with both
743  // '%C.1' and '%C' being used for the same types. This leads to some
744  // variables using one type and some using the other.
745  if (TypeMap.DstStructTypesSet.hasType(DST))
746  TypeMap.addTypeMapping(DST, ST);
747  }
748 
749  // Now that we have discovered all of the type equivalences, get a body for
750  // any 'opaque' types in the dest module that are now resolved.
751  TypeMap.linkDefinedTypeBodies();
752 }
753 
754 static void getArrayElements(const Constant *C,
756  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
757 
758  for (unsigned i = 0; i != NumElements; ++i)
759  Dest.push_back(C->getAggregateElement(i));
760 }
761 
762 /// If there were any appending global variables, link them together now.
764 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
765  const GlobalVariable *SrcGV) {
766  Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
767  ->getElementType();
768 
769  // FIXME: This upgrade is done during linking to support the C API. Once the
770  // old form is deprecated, we should move this upgrade to
771  // llvm::UpgradeGlobalVariable() and simplify the logic here and in
772  // Mapper::mapAppendingVariable() in ValueMapper.cpp.
773  StringRef Name = SrcGV->getName();
774  bool IsNewStructor = false;
775  bool IsOldStructor = false;
776  if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
777  if (cast<StructType>(EltTy)->getNumElements() == 3)
778  IsNewStructor = true;
779  else
780  IsOldStructor = true;
781  }
782 
783  PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
784  if (IsOldStructor) {
785  auto &ST = *cast<StructType>(EltTy);
786  Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
787  EltTy = StructType::get(SrcGV->getContext(), Tys, false);
788  }
789 
790  uint64_t DstNumElements = 0;
791  if (DstGV) {
792  ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
793  DstNumElements = DstTy->getNumElements();
794 
795  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
796  return stringErr(
797  "Linking globals named '" + SrcGV->getName() +
798  "': can only link appending global with another appending "
799  "global!");
800 
801  // Check to see that they two arrays agree on type.
802  if (EltTy != DstTy->getElementType())
803  return stringErr("Appending variables with different element types!");
804  if (DstGV->isConstant() != SrcGV->isConstant())
805  return stringErr("Appending variables linked with different const'ness!");
806 
807  if (DstGV->getAlignment() != SrcGV->getAlignment())
808  return stringErr(
809  "Appending variables with different alignment need to be linked!");
810 
811  if (DstGV->getVisibility() != SrcGV->getVisibility())
812  return stringErr(
813  "Appending variables with different visibility need to be linked!");
814 
815  if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
816  return stringErr(
817  "Appending variables with different unnamed_addr need to be linked!");
818 
819  if (DstGV->getSection() != SrcGV->getSection())
820  return stringErr(
821  "Appending variables with different section name need to be linked!");
822  }
823 
824  SmallVector<Constant *, 16> SrcElements;
825  getArrayElements(SrcGV->getInitializer(), SrcElements);
826 
827  if (IsNewStructor) {
828  auto It = remove_if(SrcElements, [this](Constant *E) {
829  auto *Key =
831  if (!Key)
832  return false;
833  GlobalValue *DGV = getLinkedToGlobal(Key);
834  return !shouldLink(DGV, *Key);
835  });
836  SrcElements.erase(It, SrcElements.end());
837  }
838  uint64_t NewSize = DstNumElements + SrcElements.size();
839  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
840 
841  // Create the new global variable.
842  GlobalVariable *NG = new GlobalVariable(
843  DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
844  /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
845  SrcGV->getType()->getAddressSpace());
846 
847  NG->copyAttributesFrom(SrcGV);
848  forceRenaming(NG, SrcGV->getName());
849 
850  Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
851 
852  Mapper.scheduleMapAppendingVariable(*NG,
853  DstGV ? DstGV->getInitializer() : nullptr,
854  IsOldStructor, SrcElements);
855 
856  // Replace any uses of the two global variables with uses of the new
857  // global.
858  if (DstGV) {
860  DstGV->eraseFromParent();
861  }
862 
863  return Ret;
864 }
865 
866 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
867  if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
868  return true;
869 
870  if (DGV && !DGV->isDeclarationForLinker())
871  return false;
872 
874  return true;
875 
876  if (SGV.isDeclaration() || DoneLinkingBodies)
877  return false;
878 
879  // Callback to the client to give a chance to lazily add the Global to the
880  // list of value to link.
881  bool LazilyAdded = false;
882  AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
883  maybeAdd(&GV);
884  LazilyAdded = true;
885  });
886  return LazilyAdded;
887 }
888 
889 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
890  bool ForAlias) {
891  GlobalValue *DGV = getLinkedToGlobal(SGV);
892 
893  bool ShouldLink = shouldLink(DGV, *SGV);
894 
895  // just missing from map
896  if (ShouldLink) {
897  auto I = ValueMap.find(SGV);
898  if (I != ValueMap.end())
899  return cast<Constant>(I->second);
900 
901  I = AliasValueMap.find(SGV);
902  if (I != AliasValueMap.end())
903  return cast<Constant>(I->second);
904  }
905 
906  if (!ShouldLink && ForAlias)
907  DGV = nullptr;
908 
909  // Handle the ultra special appending linkage case first.
910  assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
911  if (SGV->hasAppendingLinkage())
912  return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
913  cast<GlobalVariable>(SGV));
914 
915  GlobalValue *NewGV;
916  if (DGV && !ShouldLink) {
917  NewGV = DGV;
918  } else {
919  // If we are done linking global value bodies (i.e. we are performing
920  // metadata linking), don't link in the global value due to this
921  // reference, simply map it to null.
922  if (DoneLinkingBodies)
923  return nullptr;
924 
925  NewGV = copyGlobalValueProto(SGV, ShouldLink);
926  if (ShouldLink || !ForAlias)
927  forceRenaming(NewGV, SGV->getName());
928  }
929 
930  // Overloaded intrinsics have overloaded types names as part of their
931  // names. If we renamed overloaded types we should rename the intrinsic
932  // as well.
933  if (Function *F = dyn_cast<Function>(NewGV))
934  if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
935  NewGV = Remangled.getValue();
936 
937  if (ShouldLink || ForAlias) {
938  if (const Comdat *SC = SGV->getComdat()) {
939  if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
940  Comdat *DC = DstM.getOrInsertComdat(SC->getName());
941  DC->setSelectionKind(SC->getSelectionKind());
942  GO->setComdat(DC);
943  }
944  }
945  }
946 
947  if (!ShouldLink && ForAlias)
949 
950  Constant *C = NewGV;
951  if (DGV)
952  C = ConstantExpr::getBitCast(NewGV, TypeMap.get(SGV->getType()));
953 
954  if (DGV && NewGV != DGV) {
956  DGV->eraseFromParent();
957  }
958 
959  return C;
960 }
961 
962 /// Update the initializers in the Dest module now that all globals that may be
963 /// referenced are in Dest.
964 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
965  // Figure out what the initializer looks like in the dest module.
966  Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
967 }
968 
969 /// Copy the source function over into the dest function and fix up references
970 /// to values. At this point we know that Dest is an external function, and
971 /// that Src is not.
972 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
973  assert(Dst.isDeclaration() && !Src.isDeclaration());
974 
975  // Materialize if needed.
976  if (Error Err = Src.materialize())
977  return Err;
978 
979  // Link in the operands without remapping.
980  if (Src.hasPrefixData())
981  Dst.setPrefixData(Src.getPrefixData());
982  if (Src.hasPrologueData())
983  Dst.setPrologueData(Src.getPrologueData());
984  if (Src.hasPersonalityFn())
986 
987  // Copy over the metadata attachments without remapping.
988  Dst.copyMetadata(&Src, 0);
989 
990  // Steal arguments and splice the body of Src into Dst.
991  Dst.stealArgumentListFrom(Src);
992  Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
993 
994  // Everything has been moved over. Remap it.
995  Mapper.scheduleRemapFunction(Dst);
996  return Error::success();
997 }
998 
999 void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
1000  Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID);
1001 }
1002 
1003 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1004  if (auto *F = dyn_cast<Function>(&Src))
1005  return linkFunctionBody(cast<Function>(Dst), *F);
1006  if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1007  linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1008  return Error::success();
1009  }
1010  linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
1011  return Error::success();
1012 }
1013 
1014 void IRLinker::prepareCompileUnitsForImport() {
1015  NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1016  if (!SrcCompileUnits)
1017  return;
1018  // When importing for ThinLTO, prevent importing of types listed on
1019  // the DICompileUnit that we don't need a copy of in the importing
1020  // module. They will be emitted by the originating module.
1021  for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1022  auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1023  assert(CU && "Expected valid compile unit");
1024  // Enums, macros, and retained types don't need to be listed on the
1025  // imported DICompileUnit. This means they will only be imported
1026  // if reached from the mapped IR. Do this by setting their value map
1027  // entries to nullptr, which will automatically prevent their importing
1028  // when reached from the DICompileUnit during metadata mapping.
1029  ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
1030  ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
1031  ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
1032  // If we ever start importing global variable defs, we'll need to
1033  // add their DIGlobalVariable to the globals list on the imported
1034  // DICompileUnit. Confirm none are imported, and then we can
1035  // map the list of global variables to nullptr.
1036  assert(none_of(
1037  ValuesToLink,
1038  [](const GlobalValue *GV) { return isa<GlobalVariable>(GV); }) &&
1039  "Unexpected importing of a GlobalVariable definition");
1040  ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
1041 
1042  // Imported entities only need to be mapped in if they have local
1043  // scope, as those might correspond to an imported entity inside a
1044  // function being imported (any locally scoped imported entities that
1045  // don't end up referenced by an imported function will not be emitted
1046  // into the object). Imported entities not in a local scope
1047  // (e.g. on the namespace) only need to be emitted by the originating
1048  // module. Create a list of the locally scoped imported entities, and
1049  // replace the source CUs imported entity list with the new list, so
1050  // only those are mapped in.
1051  // FIXME: Locally-scoped imported entities could be moved to the
1052  // functions they are local to instead of listing them on the CU, and
1053  // we would naturally only link in those needed by function importing.
1054  SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1055  bool ReplaceImportedEntities = false;
1056  for (auto *IE : CU->getImportedEntities()) {
1057  DIScope *Scope = IE->getScope();
1058  assert(Scope && "Invalid Scope encoding!");
1059  if (isa<DILocalScope>(Scope))
1060  AllImportedModules.emplace_back(IE);
1061  else
1062  ReplaceImportedEntities = true;
1063  }
1064  if (ReplaceImportedEntities) {
1065  if (!AllImportedModules.empty())
1066  CU->replaceImportedEntities(MDTuple::get(
1067  CU->getContext(),
1068  SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1069  AllImportedModules.end())));
1070  else
1071  // If there were no local scope imported entities, we can map
1072  // the whole list to nullptr.
1073  ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
1074  }
1075  }
1076 }
1077 
1078 /// Insert all of the named MDNodes in Src into the Dest module.
1079 void IRLinker::linkNamedMDNodes() {
1080  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1081  for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1082  // Don't link module flags here. Do them separately.
1083  if (&NMD == SrcModFlags)
1084  continue;
1085  NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1086  // Add Src elements into Dest node.
1087  for (const MDNode *Op : NMD.operands())
1088  DestNMD->addOperand(Mapper.mapMDNode(*Op));
1089  }
1090 }
1091 
1092 /// Merge the linker flags in Src into the Dest module.
1093 Error IRLinker::linkModuleFlagsMetadata() {
1094  // If the source module has no module flags, we are done.
1095  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1096  if (!SrcModFlags)
1097  return Error::success();
1098 
1099  // If the destination module doesn't have module flags yet, then just copy
1100  // over the source module's flags.
1101  NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1102  if (DstModFlags->getNumOperands() == 0) {
1103  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1104  DstModFlags->addOperand(SrcModFlags->getOperand(I));
1105 
1106  return Error::success();
1107  }
1108 
1109  // First build a map of the existing module flags and requirements.
1111  SmallSetVector<MDNode *, 16> Requirements;
1112  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1113  MDNode *Op = DstModFlags->getOperand(I);
1114  ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1115  MDString *ID = cast<MDString>(Op->getOperand(1));
1116 
1117  if (Behavior->getZExtValue() == Module::Require) {
1118  Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1119  } else {
1120  Flags[ID] = std::make_pair(Op, I);
1121  }
1122  }
1123 
1124  // Merge in the flags from the source module, and also collect its set of
1125  // requirements.
1126  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1127  MDNode *SrcOp = SrcModFlags->getOperand(I);
1128  ConstantInt *SrcBehavior =
1129  mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1130  MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1131  MDNode *DstOp;
1132  unsigned DstIndex;
1133  std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1134  unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1135 
1136  // If this is a requirement, add it and continue.
1137  if (SrcBehaviorValue == Module::Require) {
1138  // If the destination module does not already have this requirement, add
1139  // it.
1140  if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1141  DstModFlags->addOperand(SrcOp);
1142  }
1143  continue;
1144  }
1145 
1146  // If there is no existing flag with this ID, just add it.
1147  if (!DstOp) {
1148  Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1149  DstModFlags->addOperand(SrcOp);
1150  continue;
1151  }
1152 
1153  // Otherwise, perform a merge.
1154  ConstantInt *DstBehavior =
1155  mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1156  unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1157 
1158  // If either flag has override behavior, handle it first.
1159  if (DstBehaviorValue == Module::Override) {
1160  // Diagnose inconsistent flags which both have override behavior.
1161  if (SrcBehaviorValue == Module::Override &&
1162  SrcOp->getOperand(2) != DstOp->getOperand(2))
1163  return stringErr("linking module flags '" + ID->getString() +
1164  "': IDs have conflicting override values");
1165  continue;
1166  } else if (SrcBehaviorValue == Module::Override) {
1167  // Update the destination flag to that of the source.
1168  DstModFlags->setOperand(DstIndex, SrcOp);
1169  Flags[ID].first = SrcOp;
1170  continue;
1171  }
1172 
1173  // Diagnose inconsistent merge behavior types.
1174  if (SrcBehaviorValue != DstBehaviorValue)
1175  return stringErr("linking module flags '" + ID->getString() +
1176  "': IDs have conflicting behaviors");
1177 
1178  auto replaceDstValue = [&](MDNode *New) {
1179  Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1180  MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1181  DstModFlags->setOperand(DstIndex, Flag);
1182  Flags[ID].first = Flag;
1183  };
1184 
1185  // Perform the merge for standard behavior types.
1186  switch (SrcBehaviorValue) {
1187  case Module::Require:
1188  case Module::Override:
1189  llvm_unreachable("not possible");
1190  case Module::Error: {
1191  // Emit an error if the values differ.
1192  if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1193  return stringErr("linking module flags '" + ID->getString() +
1194  "': IDs have conflicting values");
1195  continue;
1196  }
1197  case Module::Warning: {
1198  // Emit a warning if the values differ.
1199  if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1200  emitWarning("linking module flags '" + ID->getString() +
1201  "': IDs have conflicting values");
1202  }
1203  continue;
1204  }
1205  case Module::Append: {
1206  MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1207  MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1209  MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1210  MDs.append(DstValue->op_begin(), DstValue->op_end());
1211  MDs.append(SrcValue->op_begin(), SrcValue->op_end());
1212 
1213  replaceDstValue(MDNode::get(DstM.getContext(), MDs));
1214  break;
1215  }
1216  case Module::AppendUnique: {
1218  MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1219  MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1220  Elts.insert(DstValue->op_begin(), DstValue->op_end());
1221  Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1222 
1223  replaceDstValue(MDNode::get(DstM.getContext(),
1224  makeArrayRef(Elts.begin(), Elts.end())));
1225  break;
1226  }
1227  }
1228  }
1229 
1230  // Check all of the requirements.
1231  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1232  MDNode *Requirement = Requirements[I];
1233  MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1234  Metadata *ReqValue = Requirement->getOperand(1);
1235 
1236  MDNode *Op = Flags[Flag].first;
1237  if (!Op || Op->getOperand(2) != ReqValue)
1238  return stringErr("linking module flags '" + Flag->getString() +
1239  "': does not have the required value");
1240  }
1241  return Error::success();
1242 }
1243 
1244 // This function returns true if the triples match.
1245 static bool triplesMatch(const Triple &T0, const Triple &T1) {
1246  // If vendor is apple, ignore the version number.
1247  if (T0.getVendor() == Triple::Apple)
1248  return T0.getArch() == T1.getArch() && T0.getSubArch() == T1.getSubArch() &&
1249  T0.getVendor() == T1.getVendor() && T0.getOS() == T1.getOS();
1250 
1251  return T0 == T1;
1252 }
1253 
1254 // This function returns the merged triple.
1255 static std::string mergeTriples(const Triple &SrcTriple,
1256  const Triple &DstTriple) {
1257  // If vendor is apple, pick the triple with the larger version number.
1258  if (SrcTriple.getVendor() == Triple::Apple)
1259  if (DstTriple.isOSVersionLT(SrcTriple))
1260  return SrcTriple.str();
1261 
1262  return DstTriple.str();
1263 }
1264 
1265 Error IRLinker::run() {
1266  // Ensure metadata materialized before value mapping.
1267  if (SrcM->getMaterializer())
1268  if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1269  return Err;
1270 
1271  // Inherit the target data from the source module if the destination module
1272  // doesn't have one already.
1273  if (DstM.getDataLayout().isDefault())
1274  DstM.setDataLayout(SrcM->getDataLayout());
1275 
1276  if (SrcM->getDataLayout() != DstM.getDataLayout()) {
1277  emitWarning("Linking two modules of different data layouts: '" +
1278  SrcM->getModuleIdentifier() + "' is '" +
1279  SrcM->getDataLayoutStr() + "' whereas '" +
1280  DstM.getModuleIdentifier() + "' is '" +
1281  DstM.getDataLayoutStr() + "'\n");
1282  }
1283 
1284  // Copy the target triple from the source to dest if the dest's is empty.
1285  if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1286  DstM.setTargetTriple(SrcM->getTargetTriple());
1287 
1288  Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1289 
1290  if (!SrcM->getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
1291  emitWarning("Linking two modules of different target triples: " +
1292  SrcM->getModuleIdentifier() + "' is '" +
1293  SrcM->getTargetTriple() + "' whereas '" +
1294  DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1295  "'\n");
1296 
1297  DstM.setTargetTriple(mergeTriples(SrcTriple, DstTriple));
1298 
1299  // Append the module inline asm string.
1300  if (LinkModuleInlineAsm && !SrcM->getModuleInlineAsm().empty()) {
1301  if (DstM.getModuleInlineAsm().empty())
1302  DstM.setModuleInlineAsm(SrcM->getModuleInlineAsm());
1303  else
1304  DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
1305  SrcM->getModuleInlineAsm());
1306  }
1307 
1308  // Loop over all of the linked values to compute type mappings.
1309  computeTypeMapping();
1310 
1311  std::reverse(Worklist.begin(), Worklist.end());
1312  while (!Worklist.empty()) {
1313  GlobalValue *GV = Worklist.back();
1314  Worklist.pop_back();
1315 
1316  // Already mapped.
1317  if (ValueMap.find(GV) != ValueMap.end() ||
1318  AliasValueMap.find(GV) != AliasValueMap.end())
1319  continue;
1320 
1321  assert(!GV->isDeclaration());
1322  Mapper.mapValue(*GV);
1323  if (FoundError)
1324  return std::move(*FoundError);
1325  }
1326 
1327  // Note that we are done linking global value bodies. This prevents
1328  // metadata linking from creating new references.
1329  DoneLinkingBodies = true;
1330  Mapper.addFlags(RF_NullMapMissingGlobalValues);
1331 
1332  // Remap all of the named MDNodes in Src into the DstM module. We do this
1333  // after linking GlobalValues so that MDNodes that reference GlobalValues
1334  // are properly remapped.
1335  linkNamedMDNodes();
1336 
1337  // Merge the module flags into the DstM module.
1338  return linkModuleFlagsMetadata();
1339 }
1340 
1342  : ETypes(E), IsPacked(P) {}
1343 
1345  : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1346 
1348  return IsPacked == That.IsPacked && ETypes == That.ETypes;
1349 }
1350 
1352  return !this->operator==(That);
1353 }
1354 
1355 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1357 }
1358 
1359 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1361 }
1362 
1363 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1364  return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1365  Key.IsPacked);
1366 }
1367 
1368 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1369  return getHashValue(KeyTy(ST));
1370 }
1371 
1372 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1373  const StructType *RHS) {
1374  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1375  return false;
1376  return LHS == KeyTy(RHS);
1377 }
1378 
1380  const StructType *RHS) {
1381  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1382  return LHS == RHS;
1383  return KeyTy(LHS) == KeyTy(RHS);
1384 }
1385 
1387  assert(!Ty->isOpaque());
1388  NonOpaqueStructTypes.insert(Ty);
1389 }
1390 
1392  assert(!Ty->isOpaque());
1393  NonOpaqueStructTypes.insert(Ty);
1394  bool Removed = OpaqueStructTypes.erase(Ty);
1395  (void)Removed;
1396  assert(Removed);
1397 }
1398 
1400  assert(Ty->isOpaque());
1401  OpaqueStructTypes.insert(Ty);
1402 }
1403 
1404 StructType *
1406  bool IsPacked) {
1407  IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1408  auto I = NonOpaqueStructTypes.find_as(Key);
1409  return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1410 }
1411 
1413  if (Ty->isOpaque())
1414  return OpaqueStructTypes.count(Ty);
1415  auto I = NonOpaqueStructTypes.find(Ty);
1416  return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1417 }
1418 
1419 IRMover::IRMover(Module &M) : Composite(M) {
1420  TypeFinder StructTypes;
1421  StructTypes.run(M, /* OnlyNamed */ false);
1422  for (StructType *Ty : StructTypes) {
1423  if (Ty->isOpaque())
1424  IdentifiedStructTypes.addOpaque(Ty);
1425  else
1426  IdentifiedStructTypes.addNonOpaque(Ty);
1427  }
1428  // Self-map metadatas in the destination module. This is needed when
1429  // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1430  // destination module may be reached from the source module.
1431  for (auto *MD : StructTypes.getVisitedMetadata()) {
1432  SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1433  }
1434 }
1435 
1437  std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
1438  std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
1439  bool LinkModuleInlineAsm, bool IsPerformingImport) {
1440  IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1441  std::move(Src), ValuesToLink, std::move(AddLazyFor),
1442  LinkModuleInlineAsm, IsPerformingImport);
1443  Error E = TheIRLinker.run();
1444  Composite.dropTriviallyDeadConstantArrays();
1445  return E;
1446 }
OSType getOS() const
getOS - Get the parsed operating system type of this triple.
Definition: Triple.h:279
LinkageTypes getLinkage() const
Definition: GlobalValue.h:429
VisibilityTypes getVisibility() const
Definition: GlobalValue.h:219
virtual void copyAttributesFrom(const GlobalValue *Src)
Copy all additional attributes (those not needed to create a GlobalValue) from the GlobalValue Src to...
Definition: Globals.cpp:66
Constant * getPrologueData() const
Get the prologue data associated with this function.
Definition: Function.cpp:1238
bool hasName() const
Definition: Value.h:236
size_t i
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:162
bool isOpaque() const
Return true if this is a type with an identity that has no body specified yet.
Definition: DerivedTypes.h:253
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:52
auto remove_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range))
Provide wrappers to std::remove_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:776
iterator end()
Definition: Function.h:537
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:167
bool operator!=(const KeyTy &that) const
Definition: IRMover.cpp:1351
Implements a dense probed hash-table based set.
Definition: DenseSet.h:202
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1040
Any global values not in value map are mapped to null instead of mapping to self. ...
Definition: ValueMapper.h:88
StructType * findNonOpaque(ArrayRef< Type * > ETypes, bool IsPacked)
Definition: IRMover.cpp:1405
Type * getValueType() const
Definition: GlobalValue.h:261
void addOperand(MDNode *M)
Definition: Metadata.cpp:1048
bool hasAppendingLinkage() const
Definition: GlobalValue.h:412
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space...
Definition: Type.cpp:655
NamedMDNode * getOrInsertNamedMetadata(StringRef Name)
Return the named MDNode in the module with the specified name.
Definition: Module.cpp:274
Externally visible function.
Definition: GlobalValue.h:49
bool hasAvailableExternallyLinkage() const
Definition: GlobalValue.h:402
void setDataLayout(StringRef Desc)
Set the data layout.
Definition: Module.cpp:378
op_iterator op_begin() const
Definition: Metadata.h:1024
13: Structures
Definition: Type.h:72
const std::string & str() const
Definition: Triple.h:339
bool hasPrologueData() const
Check whether this function has prologue data.
Definition: Function.h:599
Metadata node.
Definition: Metadata.h:830
Context for (re-)mapping values (and metadata).
Definition: ValueMapper.h:133
static void getArrayElements(const Constant *C, SmallVectorImpl< Constant * > &Dest)
Definition: IRMover.cpp:754
void switchToNonOpaque(StructType *Ty)
Definition: IRMover.cpp:1391
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:471
Error takeError()
Take ownership of the stored error.
bool isDefault() const
Test if the DataLayout was constructed from an empty string.
Definition: DataLayout.h:233
15: Pointers
Definition: Type.h:74
void reserve(size_type N)
Definition: SmallVector.h:377
void setAlignment(unsigned Align)
Definition: Globals.cpp:86
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
void setOperand(unsigned I, MDNode *New)
Definition: Metadata.cpp:1050
12: Functions
Definition: Type.h:71
iterator end()
Get an iterator to the end of the SetVector.
Definition: SetVector.h:93
const Constant * getAliasee() const
Definition: GlobalAlias.h:74
op_iterator op_end() const
Definition: Metadata.h:1028
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition: Module.h:218
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:78
StructType * getTypeByName(StringRef Name) const
Return the type with the specified name, or null if there is none by that name.
Definition: Type.cpp:545
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:191
Adds a requirement that another module flag be present and have a specified value after linking is pe...
Definition: Module.h:116
Appends the two values, which are required to be metadata nodes.
Definition: Module.h:124
bool isPacked() const
Definition: DerivedTypes.h:245
void copyMetadata(const GlobalObject *Src, unsigned Offset)
Copy metadata from Src, adjusting offsets by Offset.
Definition: Metadata.cpp:1404
A tuple of MDNodes.
Definition: Metadata.h:1282
DiagnosticSeverity
Defines the different supported severity of a diagnostic.
struct fuzzer::@269 Flags
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:440
Class to represent struct types.
Definition: DerivedTypes.h:199
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:32
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition...
Definition: DerivedTypes.h:249
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:750
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1218
void setModuleInlineAsm(StringRef Asm)
Set the module-scope inline assembly blocks.
Definition: Module.h:258
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:257
Tagged union holding either a T or a Error.
Interface for custom diagnostic printing.
const std::string & getModuleIdentifier() const
Get the module identifier which is, essentially, the name of the module.
Definition: Module.h:193
void eraseFromParent() override
eraseFromParent - This method unlinks 'this' from the containing module and deletes it...
Definition: Globals.cpp:319
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:60
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:154
auto reverse(ContainerTy &&C, typename std::enable_if< has_rbegin< ContainerTy >::value >::type *=nullptr) -> decltype(make_range(C.rbegin(), C.rend()))
Definition: STLExtras.h:241
llvm::Optional< Function * > remangleIntrinsicFunction(Function *F)
Definition: Function.cpp:1135
Class to represent function types.
Definition: DerivedTypes.h:102
Instruct the remapper to move distinct metadata instead of duplicating it when there are module-level...
Definition: ValueMapper.h:84
#define F(x, y, z)
Definition: MD5.cpp:51
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:136
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
static bool isEqual(const Function &Caller, const Function &Callee)
bool operator==(const KeyTy &that) const
Definition: IRMover.cpp:1347
#define T
unsigned getAlignment() const
Definition: GlobalObject.h:59
Class to represent array types.
Definition: DerivedTypes.h:345
iterator find(const KeyT &Val)
Definition: ValueMap.h:158
iterator begin()
Get an iterator to the beginning of the SetVector.
Definition: SetVector.h:83
StringRef getSection() const
Get the custom section of this global if it has one.
Definition: GlobalObject.h:81
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:291
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:136
ArchType getArch() const
getArch - Get the parsed architecture type of this triple.
Definition: Triple.h:270
static std::string mergeTriples(const Triple &SrcTriple, const Triple &DstTriple)
Definition: IRMover.cpp:1255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:401
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:263
Type * getElementType() const
Definition: DerivedTypes.h:336
Class to represent pointers.
Definition: DerivedTypes.h:443
static GCRegistry::Add< CoreCLRGC > E("coreclr","CoreCLR-compatible GC")
SubArchType getSubArch() const
getSubArch - get the parsed subarchitecture type for this triple.
Definition: Triple.h:273
Flag
These should be considered private to the implementation of the MCInstrDesc class.
Definition: MCInstrDesc.h:121
static bool triplesMatch(const Triple &T0, const Triple &T1)
Definition: IRMover.cpp:1245
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1695
ExternalWeak linkage description.
Definition: GlobalValue.h:58
Error move(std::unique_ptr< Module > Src, ArrayRef< GlobalValue * > ValuesToLink, std::function< void(GlobalValue &GV, ValueAdder Add)> AddLazyFor, bool LinkModuleInlineAsm, bool IsPerformingImport)
Move in the provide values in ValuesToLink from Src.
Definition: IRMover.cpp:1436
#define P(N)
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:40
This is the base abstract class for diagnostic reporting in the backend.
void stealArgumentListFrom(Function &Src)
Steal arguments from another function.
Definition: Function.cpp:305
Emits an error if two values disagree, otherwise the resulting value is that of the operands...
Definition: Module.h:103
Constant * stripPointerCasts()
Definition: Constant.h:155
KeyTy(ArrayRef< Type * > E, bool P)
Definition: IRMover.cpp:1341
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition: Type.h:316
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1099
This is an important base class in LLVM.
Definition: Constant.h:42
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:115
This file contains the declarations for the subclasses of Constant, which represent the different fla...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:368
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:581
Optional< MDMapT > & getMDMap()
Definition: ValueMap.h:119
void splice(iterator where, iplist_impl &L2)
Definition: ilist.h:342
MDNode * getOperand(unsigned i) const
Definition: Metadata.cpp:1042
uint64_t getNumElements() const
Definition: DerivedTypes.h:335
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:265
unsigned getNumContainedTypes() const
Return the number of types in the derived type.
Definition: Type.h:322
Error materialize()
Make sure this GlobalValue is fully read.
Definition: Globals.cpp:50
Comdat * getOrInsertComdat(StringRef Name)
Return the Comdat in the module with the specified name.
Definition: Module.cpp:482
iterator erase(const_iterator CI)
Definition: SmallVector.h:431
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:654
void setBody(ArrayRef< Type * > Elements, bool isPacked=false)
Specify a body for an opaque identified type.
Definition: Type.cpp:350
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
Base class for scope-like contexts.
const std::string & getModuleInlineAsm() const
Get any module-scope inline assembly blocks.
Definition: Module.h:226
iterator end()
Definition: ValueMap.h:138
14: Arrays
Definition: Type.h:73
bool hasExternalWeakLinkage() const
Definition: GlobalValue.h:416
StringRef getString() const
Definition: Metadata.cpp:424
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1034
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:292
static ErrorSuccess success()
Create a success value.
bool hasGlobalUnnamedAddr() const
Definition: GlobalValue.h:187
const BasicBlockListType & getBasicBlockList() const
Definition: Function.h:512
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:425
Comdat * getComdat()
Definition: Globals.cpp:155
This is the shared class of boolean and integer constants.
Definition: Constants.h:88
void setSelectionKind(SelectionKind Val)
Definition: Comdat.h:43
16: SIMD 'packed' format, or other vector type
Definition: Type.h:75
void dropTriviallyDeadConstantArrays()
Destroy ConstantArrays in LLVMContext if they are not used.
void run(const Module &M, bool onlyNamed)
Definition: TypeFinder.cpp:23
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:330
bool hasName() const
Return true if this is a named struct that has a non-empty name.
Definition: DerivedTypes.h:259
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:843
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:230
CHAIN = SC CHAIN, Imm128 - System call.
NamedMDNode * getOrInsertModuleFlagsMetadata()
Returns the NamedMDNode in the module that represents module-level flags.
Definition: Module.cpp:345
void print(DiagnosticPrinter &DP) const override
Print using the given DP a user-friendly message.
Definition: IRMover.cpp:336
void setLinkage(LinkageTypes LT)
Definition: GlobalValue.h:424
static GCRegistry::Add< ShadowStackGC > C("shadow-stack","Very portable GC for uncooperative code generators")
Uses the specified value, regardless of the behavior or value of the other module.
Definition: Module.h:121
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition: Hashing.h:602
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg)
Definition: IRMover.cpp:333
Emits a warning if two values disagree.
Definition: Module.h:107
StringRef getName() const
Return the name for this struct type if it has an identity.
Definition: Type.cpp:510
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition: Hashing.h:480
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:28
bool isOSVersionLT(unsigned Major, unsigned Minor=0, unsigned Micro=0) const
isOSVersionLT - Helper function for doing comparisons against version numbers included in the target ...
Definition: Triple.h:388
If this flag is set, the remapper ignores missing function-local entries (Argument, Instruction, BasicBlock) that are not in the value map.
Definition: ValueMapper.h:80
ThreadLocalMode getThreadLocalMode() const
Definition: GlobalValue.h:240
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1132
void setName(StringRef Name)
Change the name of this type to the specified name, or to a name with a suffix if there is a collisio...
Definition: Type.cpp:367
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:259
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition: Module.cpp:384
IRMover(Module &M)
Definition: IRMover.cpp:1419
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:119
void emplace_back(ArgTypes &&...Args)
Definition: SmallVector.h:635
static const size_t npos
Definition: StringRef.h:51
Appends the two values, which are required to be metadata nodes.
Definition: Module.h:129
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:188
#define I(x, y, z)
Definition: MD5.cpp:54
LLVM_ATTRIBUTE_ALWAYS_INLINE size_type size() const
Definition: SmallVector.h:135
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.cpp:230
void setPrologueData(Constant *PrologueData)
Definition: Function.cpp:1243
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Definition: Type.cpp:606
void setTargetTriple(StringRef T)
Set the target triple.
Definition: Module.h:254
bool hasPrefixData() const
Check whether this function has prefix data.
Definition: Function.h:590
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:287
Rename collisions when linking (static functions).
Definition: GlobalValue.h:56
Constant * getPrefixData() const
Get the prefix data associated with this function.
Definition: Function.cpp:1228
bool hasLocalLinkage() const
Definition: GlobalValue.h:415
void copyAttributesFrom(const GlobalValue *Src) override
copyAttributesFrom - copy all additional attributes (those not needed to create a GlobalVariable) fro...
Definition: Globals.cpp:346
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
std::function< void(GlobalValue &)> ValueAdder
Definition: IRMover.h:65
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:537
LLVM Value Representation.
Definition: Value.h:71
static VectorType * get(Type *ElementType, unsigned NumElements)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:631
static StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition: Type.cpp:417
Lightweight error class with error context and mandatory checking.
virtual void eraseFromParent()=0
This method unlinks 'this' from the containing module and deletes it.
static void forceRenaming(GlobalValue *GV, StringRef Name)
The LLVM SymbolTable class autorenames globals that conflict in the symbol table. ...
Definition: IRMover.cpp:518
unsigned getNumOperands() const
Definition: Metadata.cpp:1038
VendorType getVendor() const
getVendor - Get the parsed vendor type of this triple.
Definition: Triple.h:276
print Print MemDeps of function
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:47
A single uniqued string.
Definition: Metadata.h:586
const std::string & getDataLayoutStr() const
Get the data layout string for the module's target platform.
Definition: Module.h:209
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, const Twine &N="", Module *M=nullptr)
Definition: Function.h:117
void setPersonalityFn(Constant *Fn)
Definition: Function.cpp:1223
bool operator==(uint64_t V1, const APInt &V2)
Definition: APInt.h:1722
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:479
static GCRegistry::Add< ErlangGC > A("erlang","erlang-compatible garbage collector")
MDMapT & MD()
Definition: ValueMap.h:114
TypeFinder - Walk over a module, identifying all of the types that are used by the module...
Definition: TypeFinder.h:31
Root of the metadata hierarchy.
Definition: Metadata.h:55
bool isDeclarationForLinker() const
Definition: GlobalValue.h:496
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:167
GlobalValue * getNamedValue(StringRef Name) const
Return the global value in the module with the specified name, of arbitrary type. ...
Definition: Module.cpp:93
static GlobalAlias * create(Type *Ty, unsigned AddressSpace, LinkageTypes Linkage, const Twine &Name, Constant *Aliasee, Module *Parent)
If a parent module is specified, the alias is automatically inserted into the end of the specified mo...
Definition: Globals.cpp:384
#define T1
LLVMContext & getContext() const
Get the global data context.
Definition: Module.h:222
std::error_code inconvertibleErrorCode()
The value returned by this function can be returned from convertToErrorCode for Error values where no...
void setPrefixData(Constant *PrefixData)
Definition: Function.cpp:1233
void resize(size_type N)
Definition: SmallVector.h:352