LLVM  4.0.0
AsmWriter.cpp
Go to the documentation of this file.
1 
2 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
3 //
4 // The LLVM Compiler Infrastructure
5 //
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 // This library implements the functionality defined in llvm/IR/Writer.h
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/IR/TypeFinder.h"
38 #include "llvm/IR/UseListOrder.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/Dwarf.h"
43 #include "llvm/Support/Format.h"
47 #include <algorithm>
48 #include <cctype>
49 using namespace llvm;
50 
51 // Make virtual table appear in this compilation unit.
53 
54 //===----------------------------------------------------------------------===//
55 // Helper Functions
56 //===----------------------------------------------------------------------===//
57 
58 namespace {
59 struct OrderMap {
61 
62  unsigned size() const { return IDs.size(); }
63  std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
64  std::pair<unsigned, bool> lookup(const Value *V) const {
65  return IDs.lookup(V);
66  }
67  void index(const Value *V) {
68  // Explicitly sequence get-size and insert-value operations to avoid UB.
69  unsigned ID = IDs.size() + 1;
70  IDs[V].first = ID;
71  }
72 };
73 }
74 
75 static void orderValue(const Value *V, OrderMap &OM) {
76  if (OM.lookup(V).first)
77  return;
78 
79  if (const Constant *C = dyn_cast<Constant>(V))
80  if (C->getNumOperands() && !isa<GlobalValue>(C))
81  for (const Value *Op : C->operands())
82  if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
83  orderValue(Op, OM);
84 
85  // Note: we cannot cache this lookup above, since inserting into the map
86  // changes the map's size, and thus affects the other IDs.
87  OM.index(V);
88 }
89 
90 static OrderMap orderModule(const Module *M) {
91  // This needs to match the order used by ValueEnumerator::ValueEnumerator()
92  // and ValueEnumerator::incorporateFunction().
93  OrderMap OM;
94 
95  for (const GlobalVariable &G : M->globals()) {
96  if (G.hasInitializer())
97  if (!isa<GlobalValue>(G.getInitializer()))
98  orderValue(G.getInitializer(), OM);
99  orderValue(&G, OM);
100  }
101  for (const GlobalAlias &A : M->aliases()) {
102  if (!isa<GlobalValue>(A.getAliasee()))
103  orderValue(A.getAliasee(), OM);
104  orderValue(&A, OM);
105  }
106  for (const GlobalIFunc &I : M->ifuncs()) {
107  if (!isa<GlobalValue>(I.getResolver()))
108  orderValue(I.getResolver(), OM);
109  orderValue(&I, OM);
110  }
111  for (const Function &F : *M) {
112  for (const Use &U : F.operands())
113  if (!isa<GlobalValue>(U.get()))
114  orderValue(U.get(), OM);
115 
116  orderValue(&F, OM);
117 
118  if (F.isDeclaration())
119  continue;
120 
121  for (const Argument &A : F.args())
122  orderValue(&A, OM);
123  for (const BasicBlock &BB : F) {
124  orderValue(&BB, OM);
125  for (const Instruction &I : BB) {
126  for (const Value *Op : I.operands())
127  if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
128  isa<InlineAsm>(*Op))
129  orderValue(Op, OM);
130  orderValue(&I, OM);
131  }
132  }
133  }
134  return OM;
135 }
136 
137 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
138  unsigned ID, const OrderMap &OM,
139  UseListOrderStack &Stack) {
140  // Predict use-list order for this one.
141  typedef std::pair<const Use *, unsigned> Entry;
143  for (const Use &U : V->uses())
144  // Check if this user will be serialized.
145  if (OM.lookup(U.getUser()).first)
146  List.push_back(std::make_pair(&U, List.size()));
147 
148  if (List.size() < 2)
149  // We may have lost some users.
150  return;
151 
152  bool GetsReversed =
153  !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
154  if (auto *BA = dyn_cast<BlockAddress>(V))
155  ID = OM.lookup(BA->getBasicBlock()).first;
156  std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
157  const Use *LU = L.first;
158  const Use *RU = R.first;
159  if (LU == RU)
160  return false;
161 
162  auto LID = OM.lookup(LU->getUser()).first;
163  auto RID = OM.lookup(RU->getUser()).first;
164 
165  // If ID is 4, then expect: 7 6 5 1 2 3.
166  if (LID < RID) {
167  if (GetsReversed)
168  if (RID <= ID)
169  return true;
170  return false;
171  }
172  if (RID < LID) {
173  if (GetsReversed)
174  if (LID <= ID)
175  return false;
176  return true;
177  }
178 
179  // LID and RID are equal, so we have different operands of the same user.
180  // Assume operands are added in order for all instructions.
181  if (GetsReversed)
182  if (LID <= ID)
183  return LU->getOperandNo() < RU->getOperandNo();
184  return LU->getOperandNo() > RU->getOperandNo();
185  });
186 
187  if (std::is_sorted(
188  List.begin(), List.end(),
189  [](const Entry &L, const Entry &R) { return L.second < R.second; }))
190  // Order is already correct.
191  return;
192 
193  // Store the shuffle.
194  Stack.emplace_back(V, F, List.size());
195  assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
196  for (size_t I = 0, E = List.size(); I != E; ++I)
197  Stack.back().Shuffle[I] = List[I].second;
198 }
199 
200 static void predictValueUseListOrder(const Value *V, const Function *F,
201  OrderMap &OM, UseListOrderStack &Stack) {
202  auto &IDPair = OM[V];
203  assert(IDPair.first && "Unmapped value");
204  if (IDPair.second)
205  // Already predicted.
206  return;
207 
208  // Do the actual prediction.
209  IDPair.second = true;
210  if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
211  predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
212 
213  // Recursive descent into constants.
214  if (const Constant *C = dyn_cast<Constant>(V))
215  if (C->getNumOperands()) // Visit GlobalValues.
216  for (const Value *Op : C->operands())
217  if (isa<Constant>(Op)) // Visit GlobalValues.
218  predictValueUseListOrder(Op, F, OM, Stack);
219 }
220 
222  OrderMap OM = orderModule(M);
223 
224  // Use-list orders need to be serialized after all the users have been added
225  // to a value, or else the shuffles will be incomplete. Store them per
226  // function in a stack.
227  //
228  // Aside from function order, the order of values doesn't matter much here.
229  UseListOrderStack Stack;
230 
231  // We want to visit the functions backward now so we can list function-local
232  // constants in the last Function they're used in. Module-level constants
233  // have already been visited above.
234  for (const Function &F : make_range(M->rbegin(), M->rend())) {
235  if (F.isDeclaration())
236  continue;
237  for (const BasicBlock &BB : F)
238  predictValueUseListOrder(&BB, &F, OM, Stack);
239  for (const Argument &A : F.args())
240  predictValueUseListOrder(&A, &F, OM, Stack);
241  for (const BasicBlock &BB : F)
242  for (const Instruction &I : BB)
243  for (const Value *Op : I.operands())
244  if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
245  predictValueUseListOrder(Op, &F, OM, Stack);
246  for (const BasicBlock &BB : F)
247  for (const Instruction &I : BB)
248  predictValueUseListOrder(&I, &F, OM, Stack);
249  }
250 
251  // Visit globals last.
252  for (const GlobalVariable &G : M->globals())
253  predictValueUseListOrder(&G, nullptr, OM, Stack);
254  for (const Function &F : *M)
255  predictValueUseListOrder(&F, nullptr, OM, Stack);
256  for (const GlobalAlias &A : M->aliases())
257  predictValueUseListOrder(&A, nullptr, OM, Stack);
258  for (const GlobalIFunc &I : M->ifuncs())
259  predictValueUseListOrder(&I, nullptr, OM, Stack);
260  for (const GlobalVariable &G : M->globals())
261  if (G.hasInitializer())
262  predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
263  for (const GlobalAlias &A : M->aliases())
264  predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
265  for (const GlobalIFunc &I : M->ifuncs())
266  predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
267  for (const Function &F : *M)
268  for (const Use &U : F.operands())
269  predictValueUseListOrder(U.get(), nullptr, OM, Stack);
270 
271  return Stack;
272 }
273 
274 static const Module *getModuleFromVal(const Value *V) {
275  if (const Argument *MA = dyn_cast<Argument>(V))
276  return MA->getParent() ? MA->getParent()->getParent() : nullptr;
277 
278  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
279  return BB->getParent() ? BB->getParent()->getParent() : nullptr;
280 
281  if (const Instruction *I = dyn_cast<Instruction>(V)) {
282  const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
283  return M ? M->getParent() : nullptr;
284  }
285 
286  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
287  return GV->getParent();
288 
289  if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
290  for (const User *U : MAV->users())
291  if (isa<Instruction>(U))
292  if (const Module *M = getModuleFromVal(U))
293  return M;
294  return nullptr;
295  }
296 
297  return nullptr;
298 }
299 
300 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
301  switch (cc) {
302  default: Out << "cc" << cc; break;
303  case CallingConv::Fast: Out << "fastcc"; break;
304  case CallingConv::Cold: Out << "coldcc"; break;
305  case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
306  case CallingConv::AnyReg: Out << "anyregcc"; break;
307  case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
308  case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
309  case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
310  case CallingConv::GHC: Out << "ghccc"; break;
311  case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
312  case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
313  case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
314  case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
315  case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
316  case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
317  case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
318  case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
319  case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
320  case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
321  case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
322  case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
323  case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
324  case CallingConv::PTX_Device: Out << "ptx_device"; break;
325  case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
326  case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
327  case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
328  case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
329  case CallingConv::Swift: Out << "swiftcc"; break;
330  case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
331  case CallingConv::HHVM: Out << "hhvmcc"; break;
332  case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
333  case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
334  case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
335  case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
336  case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
337  case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
338  }
339 }
340 
342  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
343  unsigned char C = Name[i];
344  if (isprint(C) && C != '\\' && C != '"')
345  Out << C;
346  else
347  Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
348  }
349 }
350 
357 };
358 
360  assert(!Name.empty() && "Cannot get empty name!");
361 
362  // Scan the name to see if it needs quotes first.
363  bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
364  if (!NeedsQuotes) {
365  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
366  // By making this unsigned, the value passed in to isalnum will always be
367  // in the range 0-255. This is important when building with MSVC because
368  // its implementation will assert. This situation can arise when dealing
369  // with UTF-8 multibyte characters.
370  unsigned char C = Name[i];
371  if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
372  C != '_') {
373  NeedsQuotes = true;
374  break;
375  }
376  }
377  }
378 
379  // If we didn't need any quotes, just write out the name in one blast.
380  if (!NeedsQuotes) {
381  OS << Name;
382  return;
383  }
384 
385  // Okay, we need quotes. Output the quotes and escape any scary characters as
386  // needed.
387  OS << '"';
388  PrintEscapedString(Name, OS);
389  OS << '"';
390 }
391 
392 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
393 /// (if the string only contains simple characters) or is surrounded with ""'s
394 /// (if it has special chars in it). Print it out.
396  switch (Prefix) {
397  case NoPrefix:
398  break;
399  case GlobalPrefix:
400  OS << '@';
401  break;
402  case ComdatPrefix:
403  OS << '$';
404  break;
405  case LabelPrefix:
406  break;
407  case LocalPrefix:
408  OS << '%';
409  break;
410  }
411  printLLVMNameWithoutPrefix(OS, Name);
412 }
413 
414 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
415 /// (if the string only contains simple characters) or is surrounded with ""'s
416 /// (if it has special chars in it). Print it out.
417 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
418  PrintLLVMName(OS, V->getName(),
419  isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
420 }
421 
422 
423 namespace {
424 class TypePrinting {
425  TypePrinting(const TypePrinting &) = delete;
426  void operator=(const TypePrinting&) = delete;
427 public:
428 
429  /// NamedTypes - The named types that are used by the current module.
430  TypeFinder NamedTypes;
431 
432  /// NumberedTypes - The numbered types, along with their value.
433  DenseMap<StructType*, unsigned> NumberedTypes;
434 
435  TypePrinting() = default;
436 
437  void incorporateTypes(const Module &M);
438 
439  void print(Type *Ty, raw_ostream &OS);
440 
441  void printStructBody(StructType *Ty, raw_ostream &OS);
442 };
443 } // namespace
444 
445 void TypePrinting::incorporateTypes(const Module &M) {
446  NamedTypes.run(M, false);
447 
448  // The list of struct types we got back includes all the struct types, split
449  // the unnamed ones out to a numbering and remove the anonymous structs.
450  unsigned NextNumber = 0;
451 
452  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
453  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
454  StructType *STy = *I;
455 
456  // Ignore anonymous types.
457  if (STy->isLiteral())
458  continue;
459 
460  if (STy->getName().empty())
461  NumberedTypes[STy] = NextNumber++;
462  else
463  *NextToUse++ = STy;
464  }
465 
466  NamedTypes.erase(NextToUse, NamedTypes.end());
467 }
468 
469 
470 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
471 /// use of type names or up references to shorten the type name where possible.
472 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
473  switch (Ty->getTypeID()) {
474  case Type::VoidTyID: OS << "void"; return;
475  case Type::HalfTyID: OS << "half"; return;
476  case Type::FloatTyID: OS << "float"; return;
477  case Type::DoubleTyID: OS << "double"; return;
478  case Type::X86_FP80TyID: OS << "x86_fp80"; return;
479  case Type::FP128TyID: OS << "fp128"; return;
480  case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
481  case Type::LabelTyID: OS << "label"; return;
482  case Type::MetadataTyID: OS << "metadata"; return;
483  case Type::X86_MMXTyID: OS << "x86_mmx"; return;
484  case Type::TokenTyID: OS << "token"; return;
485  case Type::IntegerTyID:
486  OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
487  return;
488 
489  case Type::FunctionTyID: {
490  FunctionType *FTy = cast<FunctionType>(Ty);
491  print(FTy->getReturnType(), OS);
492  OS << " (";
494  E = FTy->param_end(); I != E; ++I) {
495  if (I != FTy->param_begin())
496  OS << ", ";
497  print(*I, OS);
498  }
499  if (FTy->isVarArg()) {
500  if (FTy->getNumParams()) OS << ", ";
501  OS << "...";
502  }
503  OS << ')';
504  return;
505  }
506  case Type::StructTyID: {
507  StructType *STy = cast<StructType>(Ty);
508 
509  if (STy->isLiteral())
510  return printStructBody(STy, OS);
511 
512  if (!STy->getName().empty())
513  return PrintLLVMName(OS, STy->getName(), LocalPrefix);
514 
515  DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
516  if (I != NumberedTypes.end())
517  OS << '%' << I->second;
518  else // Not enumerated, print the hex address.
519  OS << "%\"type " << STy << '\"';
520  return;
521  }
522  case Type::PointerTyID: {
523  PointerType *PTy = cast<PointerType>(Ty);
524  print(PTy->getElementType(), OS);
525  if (unsigned AddressSpace = PTy->getAddressSpace())
526  OS << " addrspace(" << AddressSpace << ')';
527  OS << '*';
528  return;
529  }
530  case Type::ArrayTyID: {
531  ArrayType *ATy = cast<ArrayType>(Ty);
532  OS << '[' << ATy->getNumElements() << " x ";
533  print(ATy->getElementType(), OS);
534  OS << ']';
535  return;
536  }
537  case Type::VectorTyID: {
538  VectorType *PTy = cast<VectorType>(Ty);
539  OS << "<" << PTy->getNumElements() << " x ";
540  print(PTy->getElementType(), OS);
541  OS << '>';
542  return;
543  }
544  }
545  llvm_unreachable("Invalid TypeID");
546 }
547 
548 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
549  if (STy->isOpaque()) {
550  OS << "opaque";
551  return;
552  }
553 
554  if (STy->isPacked())
555  OS << '<';
556 
557  if (STy->getNumElements() == 0) {
558  OS << "{}";
559  } else {
560  StructType::element_iterator I = STy->element_begin();
561  OS << "{ ";
562  print(*I++, OS);
563  for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
564  OS << ", ";
565  print(*I, OS);
566  }
567 
568  OS << " }";
569  }
570  if (STy->isPacked())
571  OS << '>';
572 }
573 
574 namespace llvm {
575 //===----------------------------------------------------------------------===//
576 // SlotTracker Class: Enumerate slot numbers for unnamed values
577 //===----------------------------------------------------------------------===//
578 /// This class provides computation of slot numbers for LLVM Assembly writing.
579 ///
580 class SlotTracker {
581 public:
582  /// ValueMap - A mapping of Values to slot numbers.
583  typedef DenseMap<const Value*, unsigned> ValueMap;
584 
585 private:
586  /// TheModule - The module for which we are holding slot numbers.
587  const Module* TheModule;
588 
589  /// TheFunction - The function for which we are holding slot numbers.
590  const Function* TheFunction;
591  bool FunctionProcessed;
592  bool ShouldInitializeAllMetadata;
593 
594  /// mMap - The slot map for the module level data.
595  ValueMap mMap;
596  unsigned mNext;
597 
598  /// fMap - The slot map for the function level data.
599  ValueMap fMap;
600  unsigned fNext;
601 
602  /// mdnMap - Map for MDNodes.
603  DenseMap<const MDNode*, unsigned> mdnMap;
604  unsigned mdnNext;
605 
606  /// asMap - The slot map for attribute sets.
607  DenseMap<AttributeSet, unsigned> asMap;
608  unsigned asNext;
609 public:
610  /// Construct from a module.
611  ///
612  /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
613  /// functions, giving correct numbering for metadata referenced only from
614  /// within a function (even if no functions have been initialized).
615  explicit SlotTracker(const Module *M,
616  bool ShouldInitializeAllMetadata = false);
617  /// Construct from a function, starting out in incorp state.
618  ///
619  /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
620  /// functions, giving correct numbering for metadata referenced only from
621  /// within a function (even if no functions have been initialized).
622  explicit SlotTracker(const Function *F,
623  bool ShouldInitializeAllMetadata = false);
624 
625  /// Return the slot number of the specified value in it's type
626  /// plane. If something is not in the SlotTracker, return -1.
627  int getLocalSlot(const Value *V);
628  int getGlobalSlot(const GlobalValue *V);
629  int getMetadataSlot(const MDNode *N);
630  int getAttributeGroupSlot(AttributeSet AS);
631 
632  /// If you'd like to deal with a function instead of just a module, use
633  /// this method to get its data into the SlotTracker.
634  void incorporateFunction(const Function *F) {
635  TheFunction = F;
636  FunctionProcessed = false;
637  }
638 
639  const Function *getFunction() const { return TheFunction; }
640 
641  /// After calling incorporateFunction, use this method to remove the
642  /// most recently incorporated function from the SlotTracker. This
643  /// will reset the state of the machine back to just the module contents.
644  void purgeFunction();
645 
646  /// MDNode map iterators.
647  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
648  mdn_iterator mdn_begin() { return mdnMap.begin(); }
649  mdn_iterator mdn_end() { return mdnMap.end(); }
650  unsigned mdn_size() const { return mdnMap.size(); }
651  bool mdn_empty() const { return mdnMap.empty(); }
652 
653  /// AttributeSet map iterators.
654  typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
655  as_iterator as_begin() { return asMap.begin(); }
656  as_iterator as_end() { return asMap.end(); }
657  unsigned as_size() const { return asMap.size(); }
658  bool as_empty() const { return asMap.empty(); }
659 
660  /// This function does the actual initialization.
661  inline void initialize();
662 
663  // Implementation Details
664 private:
665  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
666  void CreateModuleSlot(const GlobalValue *V);
667 
668  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
669  void CreateMetadataSlot(const MDNode *N);
670 
671  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
672  void CreateFunctionSlot(const Value *V);
673 
674  /// \brief Insert the specified AttributeSet into the slot table.
675  void CreateAttributeSetSlot(AttributeSet AS);
676 
677  /// Add all of the module level global variables (and their initializers)
678  /// and function declarations, but not the contents of those functions.
679  void processModule();
680 
681  /// Add all of the functions arguments, basic blocks, and instructions.
682  void processFunction();
683 
684  /// Add the metadata directly attached to a GlobalObject.
685  void processGlobalObjectMetadata(const GlobalObject &GO);
686 
687  /// Add all of the metadata from a function.
688  void processFunctionMetadata(const Function &F);
689 
690  /// Add all of the metadata from an instruction.
691  void processInstructionMetadata(const Instruction &I);
692 
693  SlotTracker(const SlotTracker &) = delete;
694  void operator=(const SlotTracker &) = delete;
695 };
696 } // namespace llvm
697 
698 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
699  const Function *F)
700  : M(M), F(F), Machine(&Machine) {}
701 
702 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
703  bool ShouldInitializeAllMetadata)
704  : ShouldCreateStorage(M),
705  ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
706 
707 ModuleSlotTracker::~ModuleSlotTracker() {}
708 
709 SlotTracker *ModuleSlotTracker::getMachine() {
710  if (!ShouldCreateStorage)
711  return Machine;
712 
713  ShouldCreateStorage = false;
714  MachineStorage =
715  llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
716  Machine = MachineStorage.get();
717  return Machine;
718 }
719 
720 void ModuleSlotTracker::incorporateFunction(const Function &F) {
721  // Using getMachine() may lazily create the slot tracker.
722  if (!getMachine())
723  return;
724 
725  // Nothing to do if this is the right function already.
726  if (this->F == &F)
727  return;
728  if (this->F)
729  Machine->purgeFunction();
730  Machine->incorporateFunction(&F);
731  this->F = &F;
732 }
733 
734 int ModuleSlotTracker::getLocalSlot(const Value *V) {
735  assert(F && "No function incorporated");
736  return Machine->getLocalSlot(V);
737 }
738 
739 static SlotTracker *createSlotTracker(const Value *V) {
740  if (const Argument *FA = dyn_cast<Argument>(V))
741  return new SlotTracker(FA->getParent());
742 
743  if (const Instruction *I = dyn_cast<Instruction>(V))
744  if (I->getParent())
745  return new SlotTracker(I->getParent()->getParent());
746 
747  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
748  return new SlotTracker(BB->getParent());
749 
750  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
751  return new SlotTracker(GV->getParent());
752 
753  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
754  return new SlotTracker(GA->getParent());
755 
756  if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
757  return new SlotTracker(GIF->getParent());
758 
759  if (const Function *Func = dyn_cast<Function>(V))
760  return new SlotTracker(Func);
761 
762  return nullptr;
763 }
764 
765 #if 0
766 #define ST_DEBUG(X) dbgs() << X
767 #else
768 #define ST_DEBUG(X)
769 #endif
770 
771 // Module level constructor. Causes the contents of the Module (sans functions)
772 // to be added to the slot table.
773 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
774  : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
775  ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
776  fNext(0), mdnNext(0), asNext(0) {}
777 
778 // Function level constructor. Causes the contents of the Module and the one
779 // function provided to be added to the slot table.
780 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
781  : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
782  FunctionProcessed(false),
783  ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
784  fNext(0), mdnNext(0), asNext(0) {}
785 
786 inline void SlotTracker::initialize() {
787  if (TheModule) {
788  processModule();
789  TheModule = nullptr; ///< Prevent re-processing next time we're called.
790  }
791 
792  if (TheFunction && !FunctionProcessed)
793  processFunction();
794 }
795 
796 // Iterate through all the global variables, functions, and global
797 // variable initializers and create slots for them.
798 void SlotTracker::processModule() {
799  ST_DEBUG("begin processModule!\n");
800 
801  // Add all of the unnamed global variables to the value table.
802  for (const GlobalVariable &Var : TheModule->globals()) {
803  if (!Var.hasName())
804  CreateModuleSlot(&Var);
805  processGlobalObjectMetadata(Var);
806  }
807 
808  for (const GlobalAlias &A : TheModule->aliases()) {
809  if (!A.hasName())
810  CreateModuleSlot(&A);
811  }
812 
813  for (const GlobalIFunc &I : TheModule->ifuncs()) {
814  if (!I.hasName())
815  CreateModuleSlot(&I);
816  }
817 
818  // Add metadata used by named metadata.
819  for (const NamedMDNode &NMD : TheModule->named_metadata()) {
820  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
821  CreateMetadataSlot(NMD.getOperand(i));
822  }
823 
824  for (const Function &F : *TheModule) {
825  if (!F.hasName())
826  // Add all the unnamed functions to the table.
827  CreateModuleSlot(&F);
828 
829  if (ShouldInitializeAllMetadata)
830  processFunctionMetadata(F);
831 
832  // Add all the function attributes to the table.
833  // FIXME: Add attributes of other objects?
834  AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
836  CreateAttributeSetSlot(FnAttrs);
837  }
838 
839  ST_DEBUG("end processModule!\n");
840 }
841 
842 // Process the arguments, basic blocks, and instructions of a function.
843 void SlotTracker::processFunction() {
844  ST_DEBUG("begin processFunction!\n");
845  fNext = 0;
846 
847  // Process function metadata if it wasn't hit at the module-level.
848  if (!ShouldInitializeAllMetadata)
849  processFunctionMetadata(*TheFunction);
850 
851  // Add all the function arguments with no names.
852  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
853  AE = TheFunction->arg_end(); AI != AE; ++AI)
854  if (!AI->hasName())
855  CreateFunctionSlot(&*AI);
856 
857  ST_DEBUG("Inserting Instructions:\n");
858 
859  // Add all of the basic blocks and instructions with no names.
860  for (auto &BB : *TheFunction) {
861  if (!BB.hasName())
862  CreateFunctionSlot(&BB);
863 
864  for (auto &I : BB) {
865  if (!I.getType()->isVoidTy() && !I.hasName())
866  CreateFunctionSlot(&I);
867 
868  // We allow direct calls to any llvm.foo function here, because the
869  // target may not be linked into the optimizer.
870  if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
871  // Add all the call attributes to the table.
872  AttributeSet Attrs = CI->getAttributes().getFnAttributes();
874  CreateAttributeSetSlot(Attrs);
875  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
876  // Add all the call attributes to the table.
877  AttributeSet Attrs = II->getAttributes().getFnAttributes();
879  CreateAttributeSetSlot(Attrs);
880  }
881  }
882  }
883 
884  FunctionProcessed = true;
885 
886  ST_DEBUG("end processFunction!\n");
887 }
888 
889 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
891  GO.getAllMetadata(MDs);
892  for (auto &MD : MDs)
893  CreateMetadataSlot(MD.second);
894 }
895 
896 void SlotTracker::processFunctionMetadata(const Function &F) {
897  processGlobalObjectMetadata(F);
898  for (auto &BB : F) {
899  for (auto &I : BB)
900  processInstructionMetadata(I);
901  }
902 }
903 
904 void SlotTracker::processInstructionMetadata(const Instruction &I) {
905  // Process metadata used directly by intrinsics.
906  if (const CallInst *CI = dyn_cast<CallInst>(&I))
907  if (Function *F = CI->getCalledFunction())
908  if (F->isIntrinsic())
909  for (auto &Op : I.operands())
910  if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
911  if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
912  CreateMetadataSlot(N);
913 
914  // Process metadata attached to this instruction.
916  I.getAllMetadata(MDs);
917  for (auto &MD : MDs)
918  CreateMetadataSlot(MD.second);
919 }
920 
921 /// Clean up after incorporating a function. This is the only way to get out of
922 /// the function incorporation state that affects get*Slot/Create*Slot. Function
923 /// incorporation state is indicated by TheFunction != 0.
925  ST_DEBUG("begin purgeFunction!\n");
926  fMap.clear(); // Simply discard the function level map
927  TheFunction = nullptr;
928  FunctionProcessed = false;
929  ST_DEBUG("end purgeFunction!\n");
930 }
931 
932 /// getGlobalSlot - Get the slot number of a global value.
934  // Check for uninitialized state and do lazy initialization.
935  initialize();
936 
937  // Find the value in the module map
938  ValueMap::iterator MI = mMap.find(V);
939  return MI == mMap.end() ? -1 : (int)MI->second;
940 }
941 
942 /// getMetadataSlot - Get the slot number of a MDNode.
944  // Check for uninitialized state and do lazy initialization.
945  initialize();
946 
947  // Find the MDNode in the module map
948  mdn_iterator MI = mdnMap.find(N);
949  return MI == mdnMap.end() ? -1 : (int)MI->second;
950 }
951 
952 
953 /// getLocalSlot - Get the slot number for a value that is local to a function.
955  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
956 
957  // Check for uninitialized state and do lazy initialization.
958  initialize();
959 
960  ValueMap::iterator FI = fMap.find(V);
961  return FI == fMap.end() ? -1 : (int)FI->second;
962 }
963 
965  // Check for uninitialized state and do lazy initialization.
966  initialize();
967 
968  // Find the AttributeSet in the module map.
969  as_iterator AI = asMap.find(AS);
970  return AI == asMap.end() ? -1 : (int)AI->second;
971 }
972 
973 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
974 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
975  assert(V && "Can't insert a null Value into SlotTracker!");
976  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
977  assert(!V->hasName() && "Doesn't need a slot!");
978 
979  unsigned DestSlot = mNext++;
980  mMap[V] = DestSlot;
981 
982  ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
983  DestSlot << " [");
984  // G = Global, F = Function, A = Alias, I = IFunc, o = other
985  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
986  (isa<Function>(V) ? 'F' :
987  (isa<GlobalAlias>(V) ? 'A' :
988  (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
989 }
990 
991 /// CreateSlot - Create a new slot for the specified value if it has no name.
992 void SlotTracker::CreateFunctionSlot(const Value *V) {
993  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
994 
995  unsigned DestSlot = fNext++;
996  fMap[V] = DestSlot;
997 
998  // G = Global, F = Function, o = other
999  ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1000  DestSlot << " [o]\n");
1001 }
1002 
1003 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1004 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1005  assert(N && "Can't insert a null Value into SlotTracker!");
1006 
1007  unsigned DestSlot = mdnNext;
1008  if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1009  return;
1010  ++mdnNext;
1011 
1012  // Recursively add any MDNodes referenced by operands.
1013  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1014  if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1015  CreateMetadataSlot(Op);
1016 }
1017 
1018 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1020  "Doesn't need a slot!");
1021 
1022  as_iterator I = asMap.find(AS);
1023  if (I != asMap.end())
1024  return;
1025 
1026  unsigned DestSlot = asNext++;
1027  asMap[AS] = DestSlot;
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 // AsmWriter Implementation
1032 //===----------------------------------------------------------------------===//
1033 
1034 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1035  TypePrinting *TypePrinter,
1037  const Module *Context);
1038 
1039 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1040  TypePrinting *TypePrinter,
1041  SlotTracker *Machine, const Module *Context,
1042  bool FromValue = false);
1043 
1046  switch (Op) {
1047  default: Out << " <unknown operation " << Op << ">"; break;
1048  case AtomicRMWInst::Xchg: Out << " xchg"; break;
1049  case AtomicRMWInst::Add: Out << " add"; break;
1050  case AtomicRMWInst::Sub: Out << " sub"; break;
1051  case AtomicRMWInst::And: Out << " and"; break;
1052  case AtomicRMWInst::Nand: Out << " nand"; break;
1053  case AtomicRMWInst::Or: Out << " or"; break;
1054  case AtomicRMWInst::Xor: Out << " xor"; break;
1055  case AtomicRMWInst::Max: Out << " max"; break;
1056  case AtomicRMWInst::Min: Out << " min"; break;
1057  case AtomicRMWInst::UMax: Out << " umax"; break;
1058  case AtomicRMWInst::UMin: Out << " umin"; break;
1059  }
1060 }
1061 
1062 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1063  if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1064  // Unsafe algebra implies all the others, no need to write them all out
1065  if (FPO->hasUnsafeAlgebra())
1066  Out << " fast";
1067  else {
1068  if (FPO->hasNoNaNs())
1069  Out << " nnan";
1070  if (FPO->hasNoInfs())
1071  Out << " ninf";
1072  if (FPO->hasNoSignedZeros())
1073  Out << " nsz";
1074  if (FPO->hasAllowReciprocal())
1075  Out << " arcp";
1076  }
1077  }
1078 
1079  if (const OverflowingBinaryOperator *OBO =
1080  dyn_cast<OverflowingBinaryOperator>(U)) {
1081  if (OBO->hasNoUnsignedWrap())
1082  Out << " nuw";
1083  if (OBO->hasNoSignedWrap())
1084  Out << " nsw";
1085  } else if (const PossiblyExactOperator *Div =
1086  dyn_cast<PossiblyExactOperator>(U)) {
1087  if (Div->isExact())
1088  Out << " exact";
1089  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1090  if (GEP->isInBounds())
1091  Out << " inbounds";
1092  }
1093 }
1094 
1095 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1096  TypePrinting &TypePrinter,
1098  const Module *Context) {
1099  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1100  if (CI->getType()->isIntegerTy(1)) {
1101  Out << (CI->getZExtValue() ? "true" : "false");
1102  return;
1103  }
1104  Out << CI->getValue();
1105  return;
1106  }
1107 
1108  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1109  if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle() ||
1110  &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble()) {
1111  // We would like to output the FP constant value in exponential notation,
1112  // but we cannot do this if doing so will lose precision. Check here to
1113  // make sure that we only output it in exponential format if we can parse
1114  // the value back and get the same value.
1115  //
1116  bool ignored;
1117  bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble();
1118  bool isInf = CFP->getValueAPF().isInfinity();
1119  bool isNaN = CFP->getValueAPF().isNaN();
1120  if (!isInf && !isNaN) {
1121  double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
1122  CFP->getValueAPF().convertToFloat();
1124  raw_svector_ostream(StrVal) << Val;
1125 
1126  // Check to make sure that the stringized number is not some string like
1127  // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1128  // that the string matches the "[-+]?[0-9]" regex.
1129  //
1130  if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1131  ((StrVal[0] == '-' || StrVal[0] == '+') &&
1132  (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
1133  // Reparse stringized version!
1134  if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1135  Out << StrVal;
1136  return;
1137  }
1138  }
1139  }
1140  // Otherwise we could not reparse it to exactly the same value, so we must
1141  // output the string in hexadecimal format! Note that loading and storing
1142  // floating point types changes the bits of NaNs on some hosts, notably
1143  // x86, so we must not use these types.
1144  static_assert(sizeof(double) == sizeof(uint64_t),
1145  "assuming that double is 64 bits!");
1146  APFloat apf = CFP->getValueAPF();
1147  // Floats are represented in ASCII IR as double, convert.
1148  if (!isDouble)
1150  &ignored);
1151  Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1152  return;
1153  }
1154 
1155  // Either half, or some form of long double.
1156  // These appear as a magic letter identifying the type, then a
1157  // fixed number of hex digits.
1158  Out << "0x";
1159  APInt API = CFP->getValueAPF().bitcastToAPInt();
1160  if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended()) {
1161  Out << 'K';
1162  Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1163  /*Upper=*/true);
1164  Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1165  /*Upper=*/true);
1166  return;
1167  } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad()) {
1168  Out << 'L';
1169  Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1170  /*Upper=*/true);
1171  Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1172  /*Upper=*/true);
1173  } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble()) {
1174  Out << 'M';
1175  Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1176  /*Upper=*/true);
1177  Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1178  /*Upper=*/true);
1179  } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf()) {
1180  Out << 'H';
1181  Out << format_hex_no_prefix(API.getZExtValue(), 4,
1182  /*Upper=*/true);
1183  } else
1184  llvm_unreachable("Unsupported floating point type");
1185  return;
1186  }
1187 
1188  if (isa<ConstantAggregateZero>(CV)) {
1189  Out << "zeroinitializer";
1190  return;
1191  }
1192 
1193  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1194  Out << "blockaddress(";
1195  WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1196  Context);
1197  Out << ", ";
1198  WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1199  Context);
1200  Out << ")";
1201  return;
1202  }
1203 
1204  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1205  Type *ETy = CA->getType()->getElementType();
1206  Out << '[';
1207  TypePrinter.print(ETy, Out);
1208  Out << ' ';
1209  WriteAsOperandInternal(Out, CA->getOperand(0),
1210  &TypePrinter, Machine,
1211  Context);
1212  for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1213  Out << ", ";
1214  TypePrinter.print(ETy, Out);
1215  Out << ' ';
1216  WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1217  Context);
1218  }
1219  Out << ']';
1220  return;
1221  }
1222 
1223  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1224  // As a special case, print the array as a string if it is an array of
1225  // i8 with ConstantInt values.
1226  if (CA->isString()) {
1227  Out << "c\"";
1228  PrintEscapedString(CA->getAsString(), Out);
1229  Out << '"';
1230  return;
1231  }
1232 
1233  Type *ETy = CA->getType()->getElementType();
1234  Out << '[';
1235  TypePrinter.print(ETy, Out);
1236  Out << ' ';
1237  WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1238  &TypePrinter, Machine,
1239  Context);
1240  for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1241  Out << ", ";
1242  TypePrinter.print(ETy, Out);
1243  Out << ' ';
1244  WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1245  Machine, Context);
1246  }
1247  Out << ']';
1248  return;
1249  }
1250 
1251 
1252  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1253  if (CS->getType()->isPacked())
1254  Out << '<';
1255  Out << '{';
1256  unsigned N = CS->getNumOperands();
1257  if (N) {
1258  Out << ' ';
1259  TypePrinter.print(CS->getOperand(0)->getType(), Out);
1260  Out << ' ';
1261 
1262  WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1263  Context);
1264 
1265  for (unsigned i = 1; i < N; i++) {
1266  Out << ", ";
1267  TypePrinter.print(CS->getOperand(i)->getType(), Out);
1268  Out << ' ';
1269 
1270  WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1271  Context);
1272  }
1273  Out << ' ';
1274  }
1275 
1276  Out << '}';
1277  if (CS->getType()->isPacked())
1278  Out << '>';
1279  return;
1280  }
1281 
1282  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1283  Type *ETy = CV->getType()->getVectorElementType();
1284  Out << '<';
1285  TypePrinter.print(ETy, Out);
1286  Out << ' ';
1287  WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1288  Machine, Context);
1289  for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1290  Out << ", ";
1291  TypePrinter.print(ETy, Out);
1292  Out << ' ';
1293  WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1294  Machine, Context);
1295  }
1296  Out << '>';
1297  return;
1298  }
1299 
1300  if (isa<ConstantPointerNull>(CV)) {
1301  Out << "null";
1302  return;
1303  }
1304 
1305  if (isa<ConstantTokenNone>(CV)) {
1306  Out << "none";
1307  return;
1308  }
1309 
1310  if (isa<UndefValue>(CV)) {
1311  Out << "undef";
1312  return;
1313  }
1314 
1315  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1316  Out << CE->getOpcodeName();
1317  WriteOptimizationInfo(Out, CE);
1318  if (CE->isCompare())
1319  Out << ' ' << CmpInst::getPredicateName(
1320  static_cast<CmpInst::Predicate>(CE->getPredicate()));
1321  Out << " (";
1322 
1323  Optional<unsigned> InRangeOp;
1324  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1325  TypePrinter.print(GEP->getSourceElementType(), Out);
1326  Out << ", ";
1327  InRangeOp = GEP->getInRangeIndex();
1328  if (InRangeOp)
1329  ++*InRangeOp;
1330  }
1331 
1332  for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1333  if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1334  Out << "inrange ";
1335  TypePrinter.print((*OI)->getType(), Out);
1336  Out << ' ';
1337  WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1338  if (OI+1 != CE->op_end())
1339  Out << ", ";
1340  }
1341 
1342  if (CE->hasIndices()) {
1343  ArrayRef<unsigned> Indices = CE->getIndices();
1344  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1345  Out << ", " << Indices[i];
1346  }
1347 
1348  if (CE->isCast()) {
1349  Out << " to ";
1350  TypePrinter.print(CE->getType(), Out);
1351  }
1352 
1353  Out << ')';
1354  return;
1355  }
1356 
1357  Out << "<placeholder or erroneous Constant>";
1358 }
1359 
1360 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1361  TypePrinting *TypePrinter, SlotTracker *Machine,
1362  const Module *Context) {
1363  Out << "!{";
1364  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1365  const Metadata *MD = Node->getOperand(mi);
1366  if (!MD)
1367  Out << "null";
1368  else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1369  Value *V = MDV->getValue();
1370  TypePrinter->print(V->getType(), Out);
1371  Out << ' ';
1372  WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1373  } else {
1374  WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1375  }
1376  if (mi + 1 != me)
1377  Out << ", ";
1378  }
1379 
1380  Out << "}";
1381 }
1382 
1383 namespace {
1384 struct FieldSeparator {
1385  bool Skip;
1386  const char *Sep;
1387  FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
1388 };
1389 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1390  if (FS.Skip) {
1391  FS.Skip = false;
1392  return OS;
1393  }
1394  return OS << FS.Sep;
1395 }
1396 struct MDFieldPrinter {
1397  raw_ostream &Out;
1398  FieldSeparator FS;
1399  TypePrinting *TypePrinter;
1400  SlotTracker *Machine;
1401  const Module *Context;
1402 
1403  explicit MDFieldPrinter(raw_ostream &Out)
1404  : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
1405  MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1406  SlotTracker *Machine, const Module *Context)
1407  : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1408  }
1409  void printTag(const DINode *N);
1410  void printMacinfoType(const DIMacroNode *N);
1411  void printChecksumKind(const DIFile *N);
1412  void printString(StringRef Name, StringRef Value,
1413  bool ShouldSkipEmpty = true);
1414  void printMetadata(StringRef Name, const Metadata *MD,
1415  bool ShouldSkipNull = true);
1416  template <class IntTy>
1417  void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1418  void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1419  void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1420  template <class IntTy, class Stringifier>
1421  void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1422  bool ShouldSkipZero = true);
1423  void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1424 };
1425 } // end namespace
1426 
1427 void MDFieldPrinter::printTag(const DINode *N) {
1428  Out << FS << "tag: ";
1429  auto Tag = dwarf::TagString(N->getTag());
1430  if (!Tag.empty())
1431  Out << Tag;
1432  else
1433  Out << N->getTag();
1434 }
1435 
1436 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1437  Out << FS << "type: ";
1438  auto Type = dwarf::MacinfoString(N->getMacinfoType());
1439  if (!Type.empty())
1440  Out << Type;
1441  else
1442  Out << N->getMacinfoType();
1443 }
1444 
1445 void MDFieldPrinter::printChecksumKind(const DIFile *N) {
1446  if (N->getChecksumKind() == DIFile::CSK_None)
1447  // Skip CSK_None checksum kind.
1448  return;
1449  Out << FS << "checksumkind: " << N->getChecksumKindAsString();
1450 }
1451 
1452 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1453  bool ShouldSkipEmpty) {
1454  if (ShouldSkipEmpty && Value.empty())
1455  return;
1456 
1457  Out << FS << Name << ": \"";
1458  PrintEscapedString(Value, Out);
1459  Out << "\"";
1460 }
1461 
1462 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1463  TypePrinting *TypePrinter,
1464  SlotTracker *Machine,
1465  const Module *Context) {
1466  if (!MD) {
1467  Out << "null";
1468  return;
1469  }
1470  WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1471 }
1472 
1473 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1474  bool ShouldSkipNull) {
1475  if (ShouldSkipNull && !MD)
1476  return;
1477 
1478  Out << FS << Name << ": ";
1479  writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1480 }
1481 
1482 template <class IntTy>
1483 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1484  if (ShouldSkipZero && !Int)
1485  return;
1486 
1487  Out << FS << Name << ": " << Int;
1488 }
1489 
1490 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1491  Optional<bool> Default) {
1492  if (Default && Value == *Default)
1493  return;
1494  Out << FS << Name << ": " << (Value ? "true" : "false");
1495 }
1496 
1497 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1498  if (!Flags)
1499  return;
1500 
1501  Out << FS << Name << ": ";
1502 
1503  SmallVector<DINode::DIFlags, 8> SplitFlags;
1504  auto Extra = DINode::splitFlags(Flags, SplitFlags);
1505 
1506  FieldSeparator FlagsFS(" | ");
1507  for (auto F : SplitFlags) {
1508  auto StringF = DINode::getFlagString(F);
1509  assert(!StringF.empty() && "Expected valid flag");
1510  Out << FlagsFS << StringF;
1511  }
1512  if (Extra || SplitFlags.empty())
1513  Out << FlagsFS << Extra;
1514 }
1515 
1516 void MDFieldPrinter::printEmissionKind(StringRef Name,
1517  DICompileUnit::DebugEmissionKind EK) {
1518  Out << FS << Name << ": " << DICompileUnit::EmissionKindString(EK);
1519 }
1520 
1521 
1522 template <class IntTy, class Stringifier>
1523 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1524  Stringifier toString, bool ShouldSkipZero) {
1525  if (!Value)
1526  return;
1527 
1528  Out << FS << Name << ": ";
1529  auto S = toString(Value);
1530  if (!S.empty())
1531  Out << S;
1532  else
1533  Out << Value;
1534 }
1535 
1536 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1537  TypePrinting *TypePrinter, SlotTracker *Machine,
1538  const Module *Context) {
1539  Out << "!GenericDINode(";
1540  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1541  Printer.printTag(N);
1542  Printer.printString("header", N->getHeader());
1543  if (N->getNumDwarfOperands()) {
1544  Out << Printer.FS << "operands: {";
1545  FieldSeparator IFS;
1546  for (auto &I : N->dwarf_operands()) {
1547  Out << IFS;
1548  writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1549  }
1550  Out << "}";
1551  }
1552  Out << ")";
1553 }
1554 
1555 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1556  TypePrinting *TypePrinter, SlotTracker *Machine,
1557  const Module *Context) {
1558  Out << "!DILocation(";
1559  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1560  // Always output the line, since 0 is a relevant and important value for it.
1561  Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1562  Printer.printInt("column", DL->getColumn());
1563  Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1564  Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1565  Out << ")";
1566 }
1567 
1568 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1569  TypePrinting *, SlotTracker *, const Module *) {
1570  Out << "!DISubrange(";
1571  MDFieldPrinter Printer(Out);
1572  Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
1573  Printer.printInt("lowerBound", N->getLowerBound());
1574  Out << ")";
1575 }
1576 
1577 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1578  TypePrinting *, SlotTracker *, const Module *) {
1579  Out << "!DIEnumerator(";
1580  MDFieldPrinter Printer(Out);
1581  Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1582  Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1583  Out << ")";
1584 }
1585 
1586 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1587  TypePrinting *, SlotTracker *, const Module *) {
1588  Out << "!DIBasicType(";
1589  MDFieldPrinter Printer(Out);
1590  if (N->getTag() != dwarf::DW_TAG_base_type)
1591  Printer.printTag(N);
1592  Printer.printString("name", N->getName());
1593  Printer.printInt("size", N->getSizeInBits());
1594  Printer.printInt("align", N->getAlignInBits());
1595  Printer.printDwarfEnum("encoding", N->getEncoding(),
1596  dwarf::AttributeEncodingString);
1597  Out << ")";
1598 }
1599 
1600 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1601  TypePrinting *TypePrinter, SlotTracker *Machine,
1602  const Module *Context) {
1603  Out << "!DIDerivedType(";
1604  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1605  Printer.printTag(N);
1606  Printer.printString("name", N->getName());
1607  Printer.printMetadata("scope", N->getRawScope());
1608  Printer.printMetadata("file", N->getRawFile());
1609  Printer.printInt("line", N->getLine());
1610  Printer.printMetadata("baseType", N->getRawBaseType(),
1611  /* ShouldSkipNull */ false);
1612  Printer.printInt("size", N->getSizeInBits());
1613  Printer.printInt("align", N->getAlignInBits());
1614  Printer.printInt("offset", N->getOffsetInBits());
1615  Printer.printDIFlags("flags", N->getFlags());
1616  Printer.printMetadata("extraData", N->getRawExtraData());
1617  Out << ")";
1618 }
1619 
1620 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1621  TypePrinting *TypePrinter,
1622  SlotTracker *Machine, const Module *Context) {
1623  Out << "!DICompositeType(";
1624  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1625  Printer.printTag(N);
1626  Printer.printString("name", N->getName());
1627  Printer.printMetadata("scope", N->getRawScope());
1628  Printer.printMetadata("file", N->getRawFile());
1629  Printer.printInt("line", N->getLine());
1630  Printer.printMetadata("baseType", N->getRawBaseType());
1631  Printer.printInt("size", N->getSizeInBits());
1632  Printer.printInt("align", N->getAlignInBits());
1633  Printer.printInt("offset", N->getOffsetInBits());
1634  Printer.printDIFlags("flags", N->getFlags());
1635  Printer.printMetadata("elements", N->getRawElements());
1636  Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1637  dwarf::LanguageString);
1638  Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1639  Printer.printMetadata("templateParams", N->getRawTemplateParams());
1640  Printer.printString("identifier", N->getIdentifier());
1641  Out << ")";
1642 }
1643 
1644 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1645  TypePrinting *TypePrinter,
1646  SlotTracker *Machine, const Module *Context) {
1647  Out << "!DISubroutineType(";
1648  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1649  Printer.printDIFlags("flags", N->getFlags());
1650  Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1651  Printer.printMetadata("types", N->getRawTypeArray(),
1652  /* ShouldSkipNull */ false);
1653  Out << ")";
1654 }
1655 
1656 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1657  SlotTracker *, const Module *) {
1658  Out << "!DIFile(";
1659  MDFieldPrinter Printer(Out);
1660  Printer.printString("filename", N->getFilename(),
1661  /* ShouldSkipEmpty */ false);
1662  Printer.printString("directory", N->getDirectory(),
1663  /* ShouldSkipEmpty */ false);
1664  Printer.printChecksumKind(N);
1665  Printer.printString("checksum", N->getChecksum(), /* ShouldSkipEmpty */ true);
1666  Out << ")";
1667 }
1668 
1669 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1670  TypePrinting *TypePrinter, SlotTracker *Machine,
1671  const Module *Context) {
1672  Out << "!DICompileUnit(";
1673  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1674  Printer.printDwarfEnum("language", N->getSourceLanguage(),
1675  dwarf::LanguageString, /* ShouldSkipZero */ false);
1676  Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1677  Printer.printString("producer", N->getProducer());
1678  Printer.printBool("isOptimized", N->isOptimized());
1679  Printer.printString("flags", N->getFlags());
1680  Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1681  /* ShouldSkipZero */ false);
1682  Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1683  Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1684  Printer.printMetadata("enums", N->getRawEnumTypes());
1685  Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1686  Printer.printMetadata("globals", N->getRawGlobalVariables());
1687  Printer.printMetadata("imports", N->getRawImportedEntities());
1688  Printer.printMetadata("macros", N->getRawMacros());
1689  Printer.printInt("dwoId", N->getDWOId());
1690  Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
1691  Out << ")";
1692 }
1693 
1694 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1695  TypePrinting *TypePrinter, SlotTracker *Machine,
1696  const Module *Context) {
1697  Out << "!DISubprogram(";
1698  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1699  Printer.printString("name", N->getName());
1700  Printer.printString("linkageName", N->getLinkageName());
1701  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1702  Printer.printMetadata("file", N->getRawFile());
1703  Printer.printInt("line", N->getLine());
1704  Printer.printMetadata("type", N->getRawType());
1705  Printer.printBool("isLocal", N->isLocalToUnit());
1706  Printer.printBool("isDefinition", N->isDefinition());
1707  Printer.printInt("scopeLine", N->getScopeLine());
1708  Printer.printMetadata("containingType", N->getRawContainingType());
1709  Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1710  dwarf::VirtualityString);
1711  if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1712  N->getVirtualIndex() != 0)
1713  Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1714  Printer.printInt("thisAdjustment", N->getThisAdjustment());
1715  Printer.printDIFlags("flags", N->getFlags());
1716  Printer.printBool("isOptimized", N->isOptimized());
1717  Printer.printMetadata("unit", N->getRawUnit());
1718  Printer.printMetadata("templateParams", N->getRawTemplateParams());
1719  Printer.printMetadata("declaration", N->getRawDeclaration());
1720  Printer.printMetadata("variables", N->getRawVariables());
1721  Out << ")";
1722 }
1723 
1724 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1725  TypePrinting *TypePrinter, SlotTracker *Machine,
1726  const Module *Context) {
1727  Out << "!DILexicalBlock(";
1728  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1729  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1730  Printer.printMetadata("file", N->getRawFile());
1731  Printer.printInt("line", N->getLine());
1732  Printer.printInt("column", N->getColumn());
1733  Out << ")";
1734 }
1735 
1736 static void writeDILexicalBlockFile(raw_ostream &Out,
1737  const DILexicalBlockFile *N,
1738  TypePrinting *TypePrinter,
1739  SlotTracker *Machine,
1740  const Module *Context) {
1741  Out << "!DILexicalBlockFile(";
1742  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1743  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1744  Printer.printMetadata("file", N->getRawFile());
1745  Printer.printInt("discriminator", N->getDiscriminator(),
1746  /* ShouldSkipZero */ false);
1747  Out << ")";
1748 }
1749 
1750 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1751  TypePrinting *TypePrinter, SlotTracker *Machine,
1752  const Module *Context) {
1753  Out << "!DINamespace(";
1754  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1755  Printer.printString("name", N->getName());
1756  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1757  Printer.printMetadata("file", N->getRawFile());
1758  Printer.printInt("line", N->getLine());
1759  Printer.printBool("exportSymbols", N->getExportSymbols(), false);
1760  Out << ")";
1761 }
1762 
1763 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
1764  TypePrinting *TypePrinter, SlotTracker *Machine,
1765  const Module *Context) {
1766  Out << "!DIMacro(";
1767  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1768  Printer.printMacinfoType(N);
1769  Printer.printInt("line", N->getLine());
1770  Printer.printString("name", N->getName());
1771  Printer.printString("value", N->getValue());
1772  Out << ")";
1773 }
1774 
1775 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
1776  TypePrinting *TypePrinter, SlotTracker *Machine,
1777  const Module *Context) {
1778  Out << "!DIMacroFile(";
1779  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1780  Printer.printInt("line", N->getLine());
1781  Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1782  Printer.printMetadata("nodes", N->getRawElements());
1783  Out << ")";
1784 }
1785 
1786 static void writeDIModule(raw_ostream &Out, const DIModule *N,
1787  TypePrinting *TypePrinter, SlotTracker *Machine,
1788  const Module *Context) {
1789  Out << "!DIModule(";
1790  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1791  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1792  Printer.printString("name", N->getName());
1793  Printer.printString("configMacros", N->getConfigurationMacros());
1794  Printer.printString("includePath", N->getIncludePath());
1795  Printer.printString("isysroot", N->getISysRoot());
1796  Out << ")";
1797 }
1798 
1799 
1800 static void writeDITemplateTypeParameter(raw_ostream &Out,
1801  const DITemplateTypeParameter *N,
1802  TypePrinting *TypePrinter,
1803  SlotTracker *Machine,
1804  const Module *Context) {
1805  Out << "!DITemplateTypeParameter(";
1806  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1807  Printer.printString("name", N->getName());
1808  Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
1809  Out << ")";
1810 }
1811 
1812 static void writeDITemplateValueParameter(raw_ostream &Out,
1813  const DITemplateValueParameter *N,
1814  TypePrinting *TypePrinter,
1815  SlotTracker *Machine,
1816  const Module *Context) {
1817  Out << "!DITemplateValueParameter(";
1818  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1819  if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
1820  Printer.printTag(N);
1821  Printer.printString("name", N->getName());
1822  Printer.printMetadata("type", N->getRawType());
1823  Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
1824  Out << ")";
1825 }
1826 
1827 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
1828  TypePrinting *TypePrinter,
1829  SlotTracker *Machine, const Module *Context) {
1830  Out << "!DIGlobalVariable(";
1831  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1832  Printer.printString("name", N->getName());
1833  Printer.printString("linkageName", N->getLinkageName());
1834  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1835  Printer.printMetadata("file", N->getRawFile());
1836  Printer.printInt("line", N->getLine());
1837  Printer.printMetadata("type", N->getRawType());
1838  Printer.printBool("isLocal", N->isLocalToUnit());
1839  Printer.printBool("isDefinition", N->isDefinition());
1840  Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
1841  Printer.printInt("align", N->getAlignInBits());
1842  Out << ")";
1843 }
1844 
1845 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
1846  TypePrinting *TypePrinter,
1847  SlotTracker *Machine, const Module *Context) {
1848  Out << "!DILocalVariable(";
1849  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1850  Printer.printString("name", N->getName());
1851  Printer.printInt("arg", N->getArg());
1852  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1853  Printer.printMetadata("file", N->getRawFile());
1854  Printer.printInt("line", N->getLine());
1855  Printer.printMetadata("type", N->getRawType());
1856  Printer.printDIFlags("flags", N->getFlags());
1857  Printer.printInt("align", N->getAlignInBits());
1858  Out << ")";
1859 }
1860 
1861 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
1862  TypePrinting *TypePrinter, SlotTracker *Machine,
1863  const Module *Context) {
1864  Out << "!DIExpression(";
1865  FieldSeparator FS;
1866  if (N->isValid()) {
1867  for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
1868  auto OpStr = dwarf::OperationEncodingString(I->getOp());
1869  assert(!OpStr.empty() && "Expected valid opcode");
1870 
1871  Out << FS << OpStr;
1872  for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
1873  Out << FS << I->getArg(A);
1874  }
1875  } else {
1876  for (const auto &I : N->getElements())
1877  Out << FS << I;
1878  }
1879  Out << ")";
1880 }
1881 
1882 static void writeDIGlobalVariableExpression(raw_ostream &Out,
1883  const DIGlobalVariableExpression *N,
1884  TypePrinting *TypePrinter,
1885  SlotTracker *Machine,
1886  const Module *Context) {
1887  Out << "!DIGlobalVariableExpression(";
1888  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1889  Printer.printMetadata("var", N->getVariable());
1890  Printer.printMetadata("expr", N->getExpression());
1891  Out << ")";
1892 }
1893 
1894 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
1895  TypePrinting *TypePrinter, SlotTracker *Machine,
1896  const Module *Context) {
1897  Out << "!DIObjCProperty(";
1898  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1899  Printer.printString("name", N->getName());
1900  Printer.printMetadata("file", N->getRawFile());
1901  Printer.printInt("line", N->getLine());
1902  Printer.printString("setter", N->getSetterName());
1903  Printer.printString("getter", N->getGetterName());
1904  Printer.printInt("attributes", N->getAttributes());
1905  Printer.printMetadata("type", N->getRawType());
1906  Out << ")";
1907 }
1908 
1909 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
1910  TypePrinting *TypePrinter,
1911  SlotTracker *Machine, const Module *Context) {
1912  Out << "!DIImportedEntity(";
1913  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1914  Printer.printTag(N);
1915  Printer.printString("name", N->getName());
1916  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1917  Printer.printMetadata("entity", N->getRawEntity());
1918  Printer.printInt("line", N->getLine());
1919  Out << ")";
1920 }
1921 
1922 
1923 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1924  TypePrinting *TypePrinter,
1925  SlotTracker *Machine,
1926  const Module *Context) {
1927  if (Node->isDistinct())
1928  Out << "distinct ";
1929  else if (Node->isTemporary())
1930  Out << "<temporary!> "; // Handle broken code.
1931 
1932  switch (Node->getMetadataID()) {
1933  default:
1934  llvm_unreachable("Expected uniquable MDNode");
1935 #define HANDLE_MDNODE_LEAF(CLASS) \
1936  case Metadata::CLASS##Kind: \
1937  write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
1938  break;
1939 #include "llvm/IR/Metadata.def"
1940  }
1941 }
1942 
1943 // Full implementation of printing a Value as an operand with support for
1944 // TypePrinting, etc.
1945 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1946  TypePrinting *TypePrinter,
1947  SlotTracker *Machine,
1948  const Module *Context) {
1949  if (V->hasName()) {
1950  PrintLLVMName(Out, V);
1951  return;
1952  }
1953 
1954  const Constant *CV = dyn_cast<Constant>(V);
1955  if (CV && !isa<GlobalValue>(CV)) {
1956  assert(TypePrinter && "Constants require TypePrinting!");
1957  WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1958  return;
1959  }
1960 
1961  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1962  Out << "asm ";
1963  if (IA->hasSideEffects())
1964  Out << "sideeffect ";
1965  if (IA->isAlignStack())
1966  Out << "alignstack ";
1967  // We don't emit the AD_ATT dialect as it's the assumed default.
1968  if (IA->getDialect() == InlineAsm::AD_Intel)
1969  Out << "inteldialect ";
1970  Out << '"';
1971  PrintEscapedString(IA->getAsmString(), Out);
1972  Out << "\", \"";
1973  PrintEscapedString(IA->getConstraintString(), Out);
1974  Out << '"';
1975  return;
1976  }
1977 
1978  if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
1979  WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
1980  Context, /* FromValue */ true);
1981  return;
1982  }
1983 
1984  char Prefix = '%';
1985  int Slot;
1986  // If we have a SlotTracker, use it.
1987  if (Machine) {
1988  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1989  Slot = Machine->getGlobalSlot(GV);
1990  Prefix = '@';
1991  } else {
1992  Slot = Machine->getLocalSlot(V);
1993 
1994  // If the local value didn't succeed, then we may be referring to a value
1995  // from a different function. Translate it, as this can happen when using
1996  // address of blocks.
1997  if (Slot == -1)
1998  if ((Machine = createSlotTracker(V))) {
1999  Slot = Machine->getLocalSlot(V);
2000  delete Machine;
2001  }
2002  }
2003  } else if ((Machine = createSlotTracker(V))) {
2004  // Otherwise, create one to get the # and then destroy it.
2005  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2006  Slot = Machine->getGlobalSlot(GV);
2007  Prefix = '@';
2008  } else {
2009  Slot = Machine->getLocalSlot(V);
2010  }
2011  delete Machine;
2012  Machine = nullptr;
2013  } else {
2014  Slot = -1;
2015  }
2016 
2017  if (Slot != -1)
2018  Out << Prefix << Slot;
2019  else
2020  Out << "<badref>";
2021 }
2022 
2023 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2024  TypePrinting *TypePrinter,
2025  SlotTracker *Machine, const Module *Context,
2026  bool FromValue) {
2027  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2028  std::unique_ptr<SlotTracker> MachineStorage;
2029  if (!Machine) {
2030  MachineStorage = make_unique<SlotTracker>(Context);
2031  Machine = MachineStorage.get();
2032  }
2033  int Slot = Machine->getMetadataSlot(N);
2034  if (Slot == -1)
2035  // Give the pointer value instead of "badref", since this comes up all
2036  // the time when debugging.
2037  Out << "<" << N << ">";
2038  else
2039  Out << '!' << Slot;
2040  return;
2041  }
2042 
2043  if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2044  Out << "!\"";
2045  PrintEscapedString(MDS->getString(), Out);
2046  Out << '"';
2047  return;
2048  }
2049 
2050  auto *V = cast<ValueAsMetadata>(MD);
2051  assert(TypePrinter && "TypePrinter required for metadata values");
2052  assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2053  "Unexpected function-local metadata outside of value argument");
2054 
2055  TypePrinter->print(V->getValue()->getType(), Out);
2056  Out << ' ';
2057  WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2058 }
2059 
2060 namespace {
2061 class AssemblyWriter {
2062  formatted_raw_ostream &Out;
2063  const Module *TheModule;
2064  std::unique_ptr<SlotTracker> SlotTrackerStorage;
2066  TypePrinting TypePrinter;
2067  AssemblyAnnotationWriter *AnnotationWriter;
2068  SetVector<const Comdat *> Comdats;
2069  bool IsForDebug;
2070  bool ShouldPreserveUseListOrder;
2071  UseListOrderStack UseListOrders;
2072  SmallVector<StringRef, 8> MDNames;
2073 
2074 public:
2075  /// Construct an AssemblyWriter with an external SlotTracker
2076  AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2077  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2078  bool ShouldPreserveUseListOrder = false);
2079 
2080  void printMDNodeBody(const MDNode *MD);
2081  void printNamedMDNode(const NamedMDNode *NMD);
2082 
2083  void printModule(const Module *M);
2084 
2085  void writeOperand(const Value *Op, bool PrintType);
2086  void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
2087  void writeOperandBundles(ImmutableCallSite CS);
2088  void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
2089  void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2090  AtomicOrdering FailureOrdering,
2091  SynchronizationScope SynchScope);
2092 
2093  void writeAllMDNodes();
2094  void writeMDNode(unsigned Slot, const MDNode *Node);
2095  void writeAllAttributeGroups();
2096 
2097  void printTypeIdentities();
2098  void printGlobal(const GlobalVariable *GV);
2099  void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2100  void printComdat(const Comdat *C);
2101  void printFunction(const Function *F);
2102  void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
2103  void printBasicBlock(const BasicBlock *BB);
2104  void printInstructionLine(const Instruction &I);
2105  void printInstruction(const Instruction &I);
2106 
2107  void printUseListOrder(const UseListOrder &Order);
2108  void printUseLists(const Function *F);
2109 
2110 private:
2111  /// \brief Print out metadata attachments.
2112  void printMetadataAttachments(
2113  const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2115 
2116  // printInfoComment - Print a little comment after the instruction indicating
2117  // which slot it occupies.
2118  void printInfoComment(const Value &V);
2119 
2120  // printGCRelocateComment - print comment after call to the gc.relocate
2121  // intrinsic indicating base and derived pointer names.
2122  void printGCRelocateComment(const GCRelocateInst &Relocate);
2123 };
2124 } // namespace
2125 
2126 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2127  const Module *M, AssemblyAnnotationWriter *AAW,
2128  bool IsForDebug, bool ShouldPreserveUseListOrder)
2129  : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
2130  IsForDebug(IsForDebug),
2131  ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2132  if (!TheModule)
2133  return;
2134  TypePrinter.incorporateTypes(*TheModule);
2135  for (const GlobalObject &GO : TheModule->global_objects())
2136  if (const Comdat *C = GO.getComdat())
2137  Comdats.insert(C);
2138 }
2139 
2140 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2141  if (!Operand) {
2142  Out << "<null operand!>";
2143  return;
2144  }
2145  if (PrintType) {
2146  TypePrinter.print(Operand->getType(), Out);
2147  Out << ' ';
2148  }
2149  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2150 }
2151 
2152 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
2153  SynchronizationScope SynchScope) {
2154  if (Ordering == AtomicOrdering::NotAtomic)
2155  return;
2156 
2157  switch (SynchScope) {
2158  case SingleThread: Out << " singlethread"; break;
2159  case CrossThread: break;
2160  }
2161 
2162  Out << " " << toIRString(Ordering);
2163 }
2164 
2165 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2166  AtomicOrdering FailureOrdering,
2167  SynchronizationScope SynchScope) {
2168  assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2169  FailureOrdering != AtomicOrdering::NotAtomic);
2170 
2171  switch (SynchScope) {
2172  case SingleThread: Out << " singlethread"; break;
2173  case CrossThread: break;
2174  }
2175 
2176  Out << " " << toIRString(SuccessOrdering);
2177  Out << " " << toIRString(FailureOrdering);
2178 }
2179 
2180 void AssemblyWriter::writeParamOperand(const Value *Operand,
2181  AttributeSet Attrs, unsigned Idx) {
2182  if (!Operand) {
2183  Out << "<null operand!>";
2184  return;
2185  }
2186 
2187  // Print the type
2188  TypePrinter.print(Operand->getType(), Out);
2189  // Print parameter attributes list
2190  if (Attrs.hasAttributes(Idx))
2191  Out << ' ' << Attrs.getAsString(Idx);
2192  Out << ' ';
2193  // Print the operand
2194  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2195 }
2196 
2197 void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
2198  if (!CS.hasOperandBundles())
2199  return;
2200 
2201  Out << " [ ";
2202 
2203  bool FirstBundle = true;
2204  for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2206 
2207  if (!FirstBundle)
2208  Out << ", ";
2209  FirstBundle = false;
2210 
2211  Out << '"';
2212  PrintEscapedString(BU.getTagName(), Out);
2213  Out << '"';
2214 
2215  Out << '(';
2216 
2217  bool FirstInput = true;
2218  for (const auto &Input : BU.Inputs) {
2219  if (!FirstInput)
2220  Out << ", ";
2221  FirstInput = false;
2222 
2223  TypePrinter.print(Input->getType(), Out);
2224  Out << " ";
2225  WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2226  }
2227 
2228  Out << ')';
2229  }
2230 
2231  Out << " ]";
2232 }
2233 
2234 void AssemblyWriter::printModule(const Module *M) {
2235  Machine.initialize();
2236 
2237  if (ShouldPreserveUseListOrder)
2238  UseListOrders = predictUseListOrder(M);
2239 
2240  if (!M->getModuleIdentifier().empty() &&
2241  // Don't print the ID if it will start a new line (which would
2242  // require a comment char before it).
2243  M->getModuleIdentifier().find('\n') == std::string::npos)
2244  Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2245 
2246  if (!M->getSourceFileName().empty()) {
2247  Out << "source_filename = \"";
2249  Out << "\"\n";
2250  }
2251 
2252  const std::string &DL = M->getDataLayoutStr();
2253  if (!DL.empty())
2254  Out << "target datalayout = \"" << DL << "\"\n";
2255  if (!M->getTargetTriple().empty())
2256  Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2257 
2258  if (!M->getModuleInlineAsm().empty()) {
2259  Out << '\n';
2260 
2261  // Split the string into lines, to make it easier to read the .ll file.
2263  do {
2264  StringRef Front;
2265  std::tie(Front, Asm) = Asm.split('\n');
2266 
2267  // We found a newline, print the portion of the asm string from the
2268  // last newline up to this newline.
2269  Out << "module asm \"";
2270  PrintEscapedString(Front, Out);
2271  Out << "\"\n";
2272  } while (!Asm.empty());
2273  }
2274 
2275  printTypeIdentities();
2276 
2277  // Output all comdats.
2278  if (!Comdats.empty())
2279  Out << '\n';
2280  for (const Comdat *C : Comdats) {
2281  printComdat(C);
2282  if (C != Comdats.back())
2283  Out << '\n';
2284  }
2285 
2286  // Output all globals.
2287  if (!M->global_empty()) Out << '\n';
2288  for (const GlobalVariable &GV : M->globals()) {
2289  printGlobal(&GV); Out << '\n';
2290  }
2291 
2292  // Output all aliases.
2293  if (!M->alias_empty()) Out << "\n";
2294  for (const GlobalAlias &GA : M->aliases())
2295  printIndirectSymbol(&GA);
2296 
2297  // Output all ifuncs.
2298  if (!M->ifunc_empty()) Out << "\n";
2299  for (const GlobalIFunc &GI : M->ifuncs())
2300  printIndirectSymbol(&GI);
2301 
2302  // Output global use-lists.
2303  printUseLists(nullptr);
2304 
2305  // Output all of the functions.
2306  for (const Function &F : *M)
2307  printFunction(&F);
2308  assert(UseListOrders.empty() && "All use-lists should have been consumed");
2309 
2310  // Output all attribute groups.
2311  if (!Machine.as_empty()) {
2312  Out << '\n';
2313  writeAllAttributeGroups();
2314  }
2315 
2316  // Output named metadata.
2317  if (!M->named_metadata_empty()) Out << '\n';
2318 
2319  for (const NamedMDNode &Node : M->named_metadata())
2320  printNamedMDNode(&Node);
2321 
2322  // Output metadata.
2323  if (!Machine.mdn_empty()) {
2324  Out << '\n';
2325  writeAllMDNodes();
2326  }
2327 }
2328 
2330  formatted_raw_ostream &Out) {
2331  if (Name.empty()) {
2332  Out << "<empty name> ";
2333  } else {
2334  if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
2335  Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
2336  Out << Name[0];
2337  else
2338  Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
2339  for (unsigned i = 1, e = Name.size(); i != e; ++i) {
2340  unsigned char C = Name[i];
2341  if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
2342  C == '.' || C == '_')
2343  Out << C;
2344  else
2345  Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
2346  }
2347  }
2348 }
2349 
2350 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
2351  Out << '!';
2352  printMetadataIdentifier(NMD->getName(), Out);
2353  Out << " = !{";
2354  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2355  if (i)
2356  Out << ", ";
2357  int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
2358  if (Slot == -1)
2359  Out << "<badref>";
2360  else
2361  Out << '!' << Slot;
2362  }
2363  Out << "}\n";
2364 }
2365 
2367  switch (LT) {
2368  case GlobalValue::ExternalLinkage:
2369  return "";
2370  case GlobalValue::PrivateLinkage:
2371  return "private ";
2372  case GlobalValue::InternalLinkage:
2373  return "internal ";
2374  case GlobalValue::LinkOnceAnyLinkage:
2375  return "linkonce ";
2376  case GlobalValue::LinkOnceODRLinkage:
2377  return "linkonce_odr ";
2378  case GlobalValue::WeakAnyLinkage:
2379  return "weak ";
2380  case GlobalValue::WeakODRLinkage:
2381  return "weak_odr ";
2382  case GlobalValue::CommonLinkage:
2383  return "common ";
2384  case GlobalValue::AppendingLinkage:
2385  return "appending ";
2386  case GlobalValue::ExternalWeakLinkage:
2387  return "extern_weak ";
2388  case GlobalValue::AvailableExternallyLinkage:
2389  return "available_externally ";
2390  }
2391  llvm_unreachable("invalid linkage");
2392 }
2393 
2395  formatted_raw_ostream &Out) {
2396  switch (Vis) {
2397  case GlobalValue::DefaultVisibility: break;
2398  case GlobalValue::HiddenVisibility: Out << "hidden "; break;
2399  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
2400  }
2401 }
2402 
2404  formatted_raw_ostream &Out) {
2405  switch (SCT) {
2406  case GlobalValue::DefaultStorageClass: break;
2407  case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
2408  case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
2409  }
2410 }
2411 
2412 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
2413  formatted_raw_ostream &Out) {
2414  switch (TLM) {
2415  case GlobalVariable::NotThreadLocal:
2416  break;
2417  case GlobalVariable::GeneralDynamicTLSModel:
2418  Out << "thread_local ";
2419  break;
2420  case GlobalVariable::LocalDynamicTLSModel:
2421  Out << "thread_local(localdynamic) ";
2422  break;
2423  case GlobalVariable::InitialExecTLSModel:
2424  Out << "thread_local(initialexec) ";
2425  break;
2426  case GlobalVariable::LocalExecTLSModel:
2427  Out << "thread_local(localexec) ";
2428  break;
2429  }
2430 }
2431 
2432 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
2433  switch (UA) {
2435  return "";
2437  return "local_unnamed_addr";
2439  return "unnamed_addr";
2440  }
2441  llvm_unreachable("Unknown UnnamedAddr");
2442 }
2443 
2445  const GlobalObject &GO) {
2446  const Comdat *C = GO.getComdat();
2447  if (!C)
2448  return;
2449 
2450  if (isa<GlobalVariable>(GO))
2451  Out << ',';
2452  Out << " comdat";
2453 
2454  if (GO.getName() == C->getName())
2455  return;
2456 
2457  Out << '(';
2458  PrintLLVMName(Out, C->getName(), ComdatPrefix);
2459  Out << ')';
2460 }
2461 
2462 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
2463  if (GV->isMaterializable())
2464  Out << "; Materializable\n";
2465 
2466  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
2467  Out << " = ";
2468 
2469  if (!GV->hasInitializer() && GV->hasExternalLinkage())
2470  Out << "external ";
2471 
2472  Out << getLinkagePrintName(GV->getLinkage());
2473  PrintVisibility(GV->getVisibility(), Out);
2477  if (!UA.empty())
2478  Out << UA << ' ';
2479 
2480  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
2481  Out << "addrspace(" << AddressSpace << ") ";
2482  if (GV->isExternallyInitialized()) Out << "externally_initialized ";
2483  Out << (GV->isConstant() ? "constant " : "global ");
2484  TypePrinter.print(GV->getValueType(), Out);
2485 
2486  if (GV->hasInitializer()) {
2487  Out << ' ';
2488  writeOperand(GV->getInitializer(), false);
2489  }
2490 
2491  if (GV->hasSection()) {
2492  Out << ", section \"";
2493  PrintEscapedString(GV->getSection(), Out);
2494  Out << '"';
2495  }
2496  maybePrintComdat(Out, *GV);
2497  if (GV->getAlignment())
2498  Out << ", align " << GV->getAlignment();
2499 
2501  GV->getAllMetadata(MDs);
2502  printMetadataAttachments(MDs, ", ");
2503 
2504  printInfoComment(*GV);
2505 }
2506 
2507 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
2508  if (GIS->isMaterializable())
2509  Out << "; Materializable\n";
2510 
2511  WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
2512  Out << " = ";
2513 
2514  Out << getLinkagePrintName(GIS->getLinkage());
2515  PrintVisibility(GIS->getVisibility(), Out);
2519  if (!UA.empty())
2520  Out << UA << ' ';
2521 
2522  if (isa<GlobalAlias>(GIS))
2523  Out << "alias ";
2524  else if (isa<GlobalIFunc>(GIS))
2525  Out << "ifunc ";
2526  else
2527  llvm_unreachable("Not an alias or ifunc!");
2528 
2529  TypePrinter.print(GIS->getValueType(), Out);
2530 
2531  Out << ", ";
2532 
2533  const Constant *IS = GIS->getIndirectSymbol();
2534 
2535  if (!IS) {
2536  TypePrinter.print(GIS->getType(), Out);
2537  Out << " <<NULL ALIASEE>>";
2538  } else {
2539  writeOperand(IS, !isa<ConstantExpr>(IS));
2540  }
2541 
2542  printInfoComment(*GIS);
2543  Out << '\n';
2544 }
2545 
2546 void AssemblyWriter::printComdat(const Comdat *C) {
2547  C->print(Out);
2548 }
2549 
2550 void AssemblyWriter::printTypeIdentities() {
2551  if (TypePrinter.NumberedTypes.empty() &&
2552  TypePrinter.NamedTypes.empty())
2553  return;
2554 
2555  Out << '\n';
2556 
2557  // We know all the numbers that each type is used and we know that it is a
2558  // dense assignment. Convert the map to an index table.
2559  std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
2561  TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
2562  I != E; ++I) {
2563  assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
2564  NumberedTypes[I->second] = I->first;
2565  }
2566 
2567  // Emit all numbered types.
2568  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
2569  Out << '%' << i << " = type ";
2570 
2571  // Make sure we print out at least one level of the type structure, so
2572  // that we do not get %2 = type %2
2573  TypePrinter.printStructBody(NumberedTypes[i], Out);
2574  Out << '\n';
2575  }
2576 
2577  for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
2578  PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
2579  Out << " = type ";
2580 
2581  // Make sure we print out at least one level of the type structure, so
2582  // that we do not get %FILE = type %FILE
2583  TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
2584  Out << '\n';
2585  }
2586 }
2587 
2588 /// printFunction - Print all aspects of a function.
2589 ///
2590 void AssemblyWriter::printFunction(const Function *F) {
2591  // Print out the return type and name.
2592  Out << '\n';
2593 
2594  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
2595 
2596  if (F->isMaterializable())
2597  Out << "; Materializable\n";
2598 
2599  const AttributeSet &Attrs = F->getAttributes();
2600  if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
2601  AttributeSet AS = Attrs.getFnAttributes();
2602  std::string AttrStr;
2603 
2604  unsigned Idx = 0;
2605  for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
2606  if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
2607  break;
2608 
2609  for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
2610  I != E; ++I) {
2611  Attribute Attr = *I;
2612  if (!Attr.isStringAttribute()) {
2613  if (!AttrStr.empty()) AttrStr += ' ';
2614  AttrStr += Attr.getAsString();
2615  }
2616  }
2617 
2618  if (!AttrStr.empty())
2619  Out << "; Function Attrs: " << AttrStr << '\n';
2620  }
2621 
2622  Machine.incorporateFunction(F);
2623 
2624  if (F->isDeclaration()) {
2625  Out << "declare";
2627  F->getAllMetadata(MDs);
2628  printMetadataAttachments(MDs, " ");
2629  Out << ' ';
2630  } else
2631  Out << "define ";
2632 
2633  Out << getLinkagePrintName(F->getLinkage());
2634  PrintVisibility(F->getVisibility(), Out);
2636 
2637  // Print the calling convention.
2638  if (F->getCallingConv() != CallingConv::C) {
2639  PrintCallingConv(F->getCallingConv(), Out);
2640  Out << " ";
2641  }
2642 
2643  FunctionType *FT = F->getFunctionType();
2644  if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2645  Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
2646  TypePrinter.print(F->getReturnType(), Out);
2647  Out << ' ';
2648  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
2649  Out << '(';
2650 
2651  // Loop over the arguments, printing them...
2652  if (F->isDeclaration() && !IsForDebug) {
2653  // We're only interested in the type here - don't print argument names.
2654  for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
2655  // Insert commas as we go... the first arg doesn't get a comma
2656  if (I)
2657  Out << ", ";
2658  // Output type...
2659  TypePrinter.print(FT->getParamType(I), Out);
2660 
2661  if (Attrs.hasAttributes(I + 1))
2662  Out << ' ' << Attrs.getAsString(I + 1);
2663  }
2664  } else {
2665  // The arguments are meaningful here, print them in detail.
2666  unsigned Idx = 1;
2667  for (const Argument &Arg : F->args()) {
2668  // Insert commas as we go... the first arg doesn't get a comma
2669  if (Idx != 1)
2670  Out << ", ";
2671  printArgument(&Arg, Attrs, Idx++);
2672  }
2673  }
2674 
2675  // Finish printing arguments...
2676  if (FT->isVarArg()) {
2677  if (FT->getNumParams()) Out << ", ";
2678  Out << "..."; // Output varargs portion of signature!
2679  }
2680  Out << ')';
2682  if (!UA.empty())
2683  Out << ' ' << UA;
2684  if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2685  Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
2686  if (F->hasSection()) {
2687  Out << " section \"";
2688  PrintEscapedString(F->getSection(), Out);
2689  Out << '"';
2690  }
2691  maybePrintComdat(Out, *F);
2692  if (F->getAlignment())
2693  Out << " align " << F->getAlignment();
2694  if (F->hasGC())
2695  Out << " gc \"" << F->getGC() << '"';
2696  if (F->hasPrefixData()) {
2697  Out << " prefix ";
2698  writeOperand(F->getPrefixData(), true);
2699  }
2700  if (F->hasPrologueData()) {
2701  Out << " prologue ";
2702  writeOperand(F->getPrologueData(), true);
2703  }
2704  if (F->hasPersonalityFn()) {
2705  Out << " personality ";
2706  writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
2707  }
2708 
2709  if (F->isDeclaration()) {
2710  Out << '\n';
2711  } else {
2713  F->getAllMetadata(MDs);
2714  printMetadataAttachments(MDs, " ");
2715 
2716  Out << " {";
2717  // Output all of the function's basic blocks.
2718  for (const BasicBlock &BB : *F)
2719  printBasicBlock(&BB);
2720 
2721  // Output the function's use-lists.
2722  printUseLists(F);
2723 
2724  Out << "}\n";
2725  }
2726 
2727  Machine.purgeFunction();
2728 }
2729 
2730 /// printArgument - This member is called for every argument that is passed into
2731 /// the function. Simply print it out
2732 ///
2733 void AssemblyWriter::printArgument(const Argument *Arg,
2734  AttributeSet Attrs, unsigned Idx) {
2735  // Output type...
2736  TypePrinter.print(Arg->getType(), Out);
2737 
2738  // Output parameter attributes list
2739  if (Attrs.hasAttributes(Idx))
2740  Out << ' ' << Attrs.getAsString(Idx);
2741 
2742  // Output name, if available...
2743  if (Arg->hasName()) {
2744  Out << ' ';
2745  PrintLLVMName(Out, Arg);
2746  }
2747 }
2748 
2749 /// printBasicBlock - This member is called for each basic block in a method.
2750 ///
2751 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
2752  if (BB->hasName()) { // Print out the label if it exists...
2753  Out << "\n";
2754  PrintLLVMName(Out, BB->getName(), LabelPrefix);
2755  Out << ':';
2756  } else if (!BB->use_empty()) { // Don't print block # of no uses...
2757  Out << "\n; <label>:";
2758  int Slot = Machine.getLocalSlot(BB);
2759  if (Slot != -1)
2760  Out << Slot << ":";
2761  else
2762  Out << "<badref>";
2763  }
2764 
2765  if (!BB->getParent()) {
2766  Out.PadToColumn(50);
2767  Out << "; Error: Block without parent!";
2768  } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
2769  // Output predecessors for the block.
2770  Out.PadToColumn(50);
2771  Out << ";";
2772  const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
2773 
2774  if (PI == PE) {
2775  Out << " No predecessors!";
2776  } else {
2777  Out << " preds = ";
2778  writeOperand(*PI, false);
2779  for (++PI; PI != PE; ++PI) {
2780  Out << ", ";
2781  writeOperand(*PI, false);
2782  }
2783  }
2784  }
2785 
2786  Out << "\n";
2787 
2788  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
2789 
2790  // Output all of the instructions in the basic block...
2791  for (const Instruction &I : *BB) {
2792  printInstructionLine(I);
2793  }
2794 
2795  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
2796 }
2797 
2798 /// printInstructionLine - Print an instruction and a newline character.
2799 void AssemblyWriter::printInstructionLine(const Instruction &I) {
2800  printInstruction(I);
2801  Out << '\n';
2802 }
2803 
2804 /// printGCRelocateComment - print comment after call to the gc.relocate
2805 /// intrinsic indicating base and derived pointer names.
2806 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
2807  Out << " ; (";
2808  writeOperand(Relocate.getBasePtr(), false);
2809  Out << ", ";
2810  writeOperand(Relocate.getDerivedPtr(), false);
2811  Out << ")";
2812 }
2813 
2814 /// printInfoComment - Print a little comment after the instruction indicating
2815 /// which slot it occupies.
2816 ///
2817 void AssemblyWriter::printInfoComment(const Value &V) {
2818  if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
2819  printGCRelocateComment(*Relocate);
2820 
2821  if (AnnotationWriter)
2822  AnnotationWriter->printInfoComment(V, Out);
2823 }
2824 
2825 // This member is called for each Instruction in a function..
2826 void AssemblyWriter::printInstruction(const Instruction &I) {
2827  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
2828 
2829  // Print out indentation for an instruction.
2830  Out << " ";
2831 
2832  // Print out name if it exists...
2833  if (I.hasName()) {
2834  PrintLLVMName(Out, &I);
2835  Out << " = ";
2836  } else if (!I.getType()->isVoidTy()) {
2837  // Print out the def slot taken.
2838  int SlotNum = Machine.getLocalSlot(&I);
2839  if (SlotNum == -1)
2840  Out << "<badref> = ";
2841  else
2842  Out << '%' << SlotNum << " = ";
2843  }
2844 
2845  if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2846  if (CI->isMustTailCall())
2847  Out << "musttail ";
2848  else if (CI->isTailCall())
2849  Out << "tail ";
2850  else if (CI->isNoTailCall())
2851  Out << "notail ";
2852  }
2853 
2854  // Print out the opcode...
2855  Out << I.getOpcodeName();
2856 
2857  // If this is an atomic load or store, print out the atomic marker.
2858  if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
2859  (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
2860  Out << " atomic";
2861 
2862  if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
2863  Out << " weak";
2864 
2865  // If this is a volatile operation, print out the volatile marker.
2866  if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
2867  (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
2868  (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
2869  (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
2870  Out << " volatile";
2871 
2872  // Print out optimization information.
2873  WriteOptimizationInfo(Out, &I);
2874 
2875  // Print out the compare instruction predicates
2876  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
2877  Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
2878 
2879  // Print out the atomicrmw operation
2880  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
2881  writeAtomicRMWOperation(Out, RMWI->getOperation());
2882 
2883  // Print out the type of the operands...
2884  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
2885 
2886  // Special case conditional branches to swizzle the condition out to the front
2887  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
2888  const BranchInst &BI(cast<BranchInst>(I));
2889  Out << ' ';
2890  writeOperand(BI.getCondition(), true);
2891  Out << ", ";
2892  writeOperand(BI.getSuccessor(0), true);
2893  Out << ", ";
2894  writeOperand(BI.getSuccessor(1), true);
2895 
2896  } else if (isa<SwitchInst>(I)) {
2897  const SwitchInst& SI(cast<SwitchInst>(I));
2898  // Special case switch instruction to get formatting nice and correct.
2899  Out << ' ';
2900  writeOperand(SI.getCondition(), true);
2901  Out << ", ";
2902  writeOperand(SI.getDefaultDest(), true);
2903  Out << " [";
2904  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2905  i != e; ++i) {
2906  Out << "\n ";
2907  writeOperand(i.getCaseValue(), true);
2908  Out << ", ";
2909  writeOperand(i.getCaseSuccessor(), true);
2910  }
2911  Out << "\n ]";
2912  } else if (isa<IndirectBrInst>(I)) {
2913  // Special case indirectbr instruction to get formatting nice and correct.
2914  Out << ' ';
2915  writeOperand(Operand, true);
2916  Out << ", [";
2917 
2918  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2919  if (i != 1)
2920  Out << ", ";
2921  writeOperand(I.getOperand(i), true);
2922  }
2923  Out << ']';
2924  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
2925  Out << ' ';
2926  TypePrinter.print(I.getType(), Out);
2927  Out << ' ';
2928 
2929  for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
2930  if (op) Out << ", ";
2931  Out << "[ ";
2932  writeOperand(PN->getIncomingValue(op), false); Out << ", ";
2933  writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
2934  }
2935  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
2936  Out << ' ';
2937  writeOperand(I.getOperand(0), true);
2938  for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
2939  Out << ", " << *i;
2940  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
2941  Out << ' ';
2942  writeOperand(I.getOperand(0), true); Out << ", ";
2943  writeOperand(I.getOperand(1), true);
2944  for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
2945  Out << ", " << *i;
2946  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
2947  Out << ' ';
2948  TypePrinter.print(I.getType(), Out);
2949  if (LPI->isCleanup() || LPI->getNumClauses() != 0)
2950  Out << '\n';
2951 
2952  if (LPI->isCleanup())
2953  Out << " cleanup";
2954 
2955  for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
2956  if (i != 0 || LPI->isCleanup()) Out << "\n";
2957  if (LPI->isCatch(i))
2958  Out << " catch ";
2959  else
2960  Out << " filter ";
2961 
2962  writeOperand(LPI->getClause(i), true);
2963  }
2964  } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
2965  Out << " within ";
2966  writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
2967  Out << " [";
2968  unsigned Op = 0;
2969  for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
2970  if (Op > 0)
2971  Out << ", ";
2972  writeOperand(PadBB, /*PrintType=*/true);
2973  ++Op;
2974  }
2975  Out << "] unwind ";
2976  if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
2977  writeOperand(UnwindDest, /*PrintType=*/true);
2978  else
2979  Out << "to caller";
2980  } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
2981  Out << " within ";
2982  writeOperand(FPI->getParentPad(), /*PrintType=*/false);
2983  Out << " [";
2984  for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
2985  ++Op) {
2986  if (Op > 0)
2987  Out << ", ";
2988  writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
2989  }
2990  Out << ']';
2991  } else if (isa<ReturnInst>(I) && !Operand) {
2992  Out << " void";
2993  } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
2994  Out << " from ";
2995  writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2996 
2997  Out << " to ";
2998  writeOperand(CRI->getOperand(1), /*PrintType=*/true);
2999  } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3000  Out << " from ";
3001  writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3002 
3003  Out << " unwind ";
3004  if (CRI->hasUnwindDest())
3005  writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3006  else
3007  Out << "to caller";
3008  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3009  // Print the calling convention being used.
3010  if (CI->getCallingConv() != CallingConv::C) {
3011  Out << " ";
3012  PrintCallingConv(CI->getCallingConv(), Out);
3013  }
3014 
3015  Operand = CI->getCalledValue();
3016  FunctionType *FTy = CI->getFunctionType();
3017  Type *RetTy = FTy->getReturnType();
3018  const AttributeSet &PAL = CI->getAttributes();
3019 
3020  if (PAL.hasAttributes(AttributeSet::ReturnIndex))
3021  Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
3022 
3023  // If possible, print out the short form of the call instruction. We can
3024  // only do this if the first argument is a pointer to a nonvararg function,
3025  // and if the return type is not a pointer to a function.
3026  //
3027  Out << ' ';
3028  TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3029  Out << ' ';
3030  writeOperand(Operand, false);
3031  Out << '(';
3032  for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3033  if (op > 0)
3034  Out << ", ";
3035  writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
3036  }
3037 
3038  // Emit an ellipsis if this is a musttail call in a vararg function. This
3039  // is only to aid readability, musttail calls forward varargs by default.
3040  if (CI->isMustTailCall() && CI->getParent() &&
3041  CI->getParent()->getParent() &&
3042  CI->getParent()->getParent()->isVarArg())
3043  Out << ", ...";
3044 
3045  Out << ')';
3046  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
3047  Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3048 
3049  writeOperandBundles(CI);
3050 
3051  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3052  Operand = II->getCalledValue();
3053  FunctionType *FTy = II->getFunctionType();
3054  Type *RetTy = FTy->getReturnType();
3055  const AttributeSet &PAL = II->getAttributes();
3056 
3057  // Print the calling convention being used.
3058  if (II->getCallingConv() != CallingConv::C) {
3059  Out << " ";
3060  PrintCallingConv(II->getCallingConv(), Out);
3061  }
3062 
3063  if (PAL.hasAttributes(AttributeSet::ReturnIndex))
3064  Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
3065 
3066  // If possible, print out the short form of the invoke instruction. We can
3067  // only do this if the first argument is a pointer to a nonvararg function,
3068  // and if the return type is not a pointer to a function.
3069  //
3070  Out << ' ';
3071  TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3072  Out << ' ';
3073  writeOperand(Operand, false);
3074  Out << '(';
3075  for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3076  if (op)
3077  Out << ", ";
3078  writeParamOperand(II->getArgOperand(op), PAL, op + 1);
3079  }
3080 
3081  Out << ')';
3082  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
3083  Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3084 
3085  writeOperandBundles(II);
3086 
3087  Out << "\n to ";
3088  writeOperand(II->getNormalDest(), true);
3089  Out << " unwind ";
3090  writeOperand(II->getUnwindDest(), true);
3091 
3092  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3093  Out << ' ';
3094  if (AI->isUsedWithInAlloca())
3095  Out << "inalloca ";
3096  if (AI->isSwiftError())
3097  Out << "swifterror ";
3098  TypePrinter.print(AI->getAllocatedType(), Out);
3099 
3100  // Explicitly write the array size if the code is broken, if it's an array
3101  // allocation, or if the type is not canonical for scalar allocations. The
3102  // latter case prevents the type from mutating when round-tripping through
3103  // assembly.
3104  if (!AI->getArraySize() || AI->isArrayAllocation() ||
3105  !AI->getArraySize()->getType()->isIntegerTy(32)) {
3106  Out << ", ";
3107  writeOperand(AI->getArraySize(), true);
3108  }
3109  if (AI->getAlignment()) {
3110  Out << ", align " << AI->getAlignment();
3111  }
3112  } else if (isa<CastInst>(I)) {
3113  if (Operand) {
3114  Out << ' ';
3115  writeOperand(Operand, true); // Work with broken code
3116  }
3117  Out << " to ";
3118  TypePrinter.print(I.getType(), Out);
3119  } else if (isa<VAArgInst>(I)) {
3120  if (Operand) {
3121  Out << ' ';
3122  writeOperand(Operand, true); // Work with broken code
3123  }
3124  Out << ", ";
3125  TypePrinter.print(I.getType(), Out);
3126  } else if (Operand) { // Print the normal way.
3127  if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3128  Out << ' ';
3129  TypePrinter.print(GEP->getSourceElementType(), Out);
3130  Out << ',';
3131  } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3132  Out << ' ';
3133  TypePrinter.print(LI->getType(), Out);
3134  Out << ',';
3135  }
3136 
3137  // PrintAllTypes - Instructions who have operands of all the same type
3138  // omit the type from all but the first operand. If the instruction has
3139  // different type operands (for example br), then they are all printed.
3140  bool PrintAllTypes = false;
3141  Type *TheType = Operand->getType();
3142 
3143  // Select, Store and ShuffleVector always print all types.
3144  if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3145  || isa<ReturnInst>(I)) {
3146  PrintAllTypes = true;
3147  } else {
3148  for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3149  Operand = I.getOperand(i);
3150  // note that Operand shouldn't be null, but the test helps make dump()
3151  // more tolerant of malformed IR
3152  if (Operand && Operand->getType() != TheType) {
3153  PrintAllTypes = true; // We have differing types! Print them all!
3154  break;
3155  }
3156  }
3157  }
3158 
3159  if (!PrintAllTypes) {
3160  Out << ' ';
3161  TypePrinter.print(TheType, Out);
3162  }
3163 
3164  Out << ' ';
3165  for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3166  if (i) Out << ", ";
3167  writeOperand(I.getOperand(i), PrintAllTypes);
3168  }
3169  }
3170 
3171  // Print atomic ordering/alignment for memory operations
3172  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3173  if (LI->isAtomic())
3174  writeAtomic(LI->getOrdering(), LI->getSynchScope());
3175  if (LI->getAlignment())
3176  Out << ", align " << LI->getAlignment();
3177  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3178  if (SI->isAtomic())
3179  writeAtomic(SI->getOrdering(), SI->getSynchScope());
3180  if (SI->getAlignment())
3181  Out << ", align " << SI->getAlignment();
3182  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3183  writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
3184  CXI->getSynchScope());
3185  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3186  writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
3187  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3188  writeAtomic(FI->getOrdering(), FI->getSynchScope());
3189  }
3190 
3191  // Print Metadata info.
3193  I.getAllMetadata(InstMD);
3194  printMetadataAttachments(InstMD, ", ");
3195 
3196  // Print a nice comment.
3197  printInfoComment(I);
3198 }
3199 
3200 void AssemblyWriter::printMetadataAttachments(
3201  const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3202  StringRef Separator) {
3203  if (MDs.empty())
3204  return;
3205 
3206  if (MDNames.empty())
3207  MDs[0].second->getContext().getMDKindNames(MDNames);
3208 
3209  for (const auto &I : MDs) {
3210  unsigned Kind = I.first;
3211  Out << Separator;
3212  if (Kind < MDNames.size()) {
3213  Out << "!";
3214  printMetadataIdentifier(MDNames[Kind], Out);
3215  } else
3216  Out << "!<unknown kind #" << Kind << ">";
3217  Out << ' ';
3218  WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3219  }
3220 }
3221 
3222 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3223  Out << '!' << Slot << " = ";
3224  printMDNodeBody(Node);
3225  Out << "\n";
3226 }
3227 
3228 void AssemblyWriter::writeAllMDNodes() {
3230  Nodes.resize(Machine.mdn_size());
3231  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3232  I != E; ++I)
3233  Nodes[I->second] = cast<MDNode>(I->first);
3234 
3235  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3236  writeMDNode(i, Nodes[i]);
3237  }
3238 }
3239 
3240 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3241  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3242 }
3243 
3244 void AssemblyWriter::writeAllAttributeGroups() {
3245  std::vector<std::pair<AttributeSet, unsigned> > asVec;
3246  asVec.resize(Machine.as_size());
3247 
3248  for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3249  I != E; ++I)
3250  asVec[I->second] = *I;
3251 
3252  for (const auto &I : asVec)
3253  Out << "attributes #" << I.second << " = { "
3254  << I.first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
3255 }
3256 
3257 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3258  bool IsInFunction = Machine.getFunction();
3259  if (IsInFunction)
3260  Out << " ";
3261 
3262  Out << "uselistorder";
3263  if (const BasicBlock *BB =
3264  IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3265  Out << "_bb ";
3266  writeOperand(BB->getParent(), false);
3267  Out << ", ";
3268  writeOperand(BB, false);
3269  } else {
3270  Out << " ";
3271  writeOperand(Order.V, true);
3272  }
3273  Out << ", { ";
3274 
3275  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3276  Out << Order.Shuffle[0];
3277  for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
3278  Out << ", " << Order.Shuffle[I];
3279  Out << " }\n";
3280 }
3281 
3282 void AssemblyWriter::printUseLists(const Function *F) {
3283  auto hasMore =
3284  [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
3285  if (!hasMore())
3286  // Nothing to do.
3287  return;
3288 
3289  Out << "\n; uselistorder directives\n";
3290  while (hasMore()) {
3291  printUseListOrder(UseListOrders.back());
3292  UseListOrders.pop_back();
3293  }
3294 }
3295 
3296 //===----------------------------------------------------------------------===//
3297 // External Interface declarations
3298 //===----------------------------------------------------------------------===//
3299 
3300 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3301  bool ShouldPreserveUseListOrder,
3302  bool IsForDebug) const {
3303  SlotTracker SlotTable(this->getParent());
3304  formatted_raw_ostream OS(ROS);
3305  AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
3306  IsForDebug,
3307  ShouldPreserveUseListOrder);
3308  W.printFunction(this);
3309 }
3310 
3312  bool ShouldPreserveUseListOrder, bool IsForDebug) const {
3313  SlotTracker SlotTable(this);
3314  formatted_raw_ostream OS(ROS);
3315  AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
3316  ShouldPreserveUseListOrder);
3317  W.printModule(this);
3318 }
3319 
3320 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
3321  SlotTracker SlotTable(getParent());
3322  formatted_raw_ostream OS(ROS);
3323  AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
3324  W.printNamedMDNode(this);
3325 }
3326 
3328  bool IsForDebug) const {
3329  Optional<SlotTracker> LocalST;
3330  SlotTracker *SlotTable;
3331  if (auto *ST = MST.getMachine())
3332  SlotTable = ST;
3333  else {
3334  LocalST.emplace(getParent());
3335  SlotTable = &*LocalST;
3336  }
3337 
3338  formatted_raw_ostream OS(ROS);
3339  AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
3340  W.printNamedMDNode(this);
3341 }
3342 
3343 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
3345  ROS << " = comdat ";
3346 
3347  switch (getSelectionKind()) {
3348  case Comdat::Any:
3349  ROS << "any";
3350  break;
3351  case Comdat::ExactMatch:
3352  ROS << "exactmatch";
3353  break;
3354  case Comdat::Largest:
3355  ROS << "largest";
3356  break;
3357  case Comdat::NoDuplicates:
3358  ROS << "noduplicates";
3359  break;
3360  case Comdat::SameSize:
3361  ROS << "samesize";
3362  break;
3363  }
3364 
3365  ROS << '\n';
3366 }
3367 
3368 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
3369  TypePrinting TP;
3370  TP.print(const_cast<Type*>(this), OS);
3371 
3372  if (NoDetails)
3373  return;
3374 
3375  // If the type is a named struct type, print the body as well.
3376  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
3377  if (!STy->isLiteral()) {
3378  OS << " = type ";
3379  TP.printStructBody(STy, OS);
3380  }
3381 }
3382 
3383 static bool isReferencingMDNode(const Instruction &I) {
3384  if (const auto *CI = dyn_cast<CallInst>(&I))
3385  if (Function *F = CI->getCalledFunction())
3386  if (F->isIntrinsic())
3387  for (auto &Op : I.operands())
3388  if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
3389  if (isa<MDNode>(V->getMetadata()))
3390  return true;
3391  return false;
3392 }
3393 
3394 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
3395  bool ShouldInitializeAllMetadata = false;
3396  if (auto *I = dyn_cast<Instruction>(this))
3397  ShouldInitializeAllMetadata = isReferencingMDNode(*I);
3398  else if (isa<Function>(this) || isa<MetadataAsValue>(this))
3399  ShouldInitializeAllMetadata = true;
3400 
3401  ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
3402  print(ROS, MST, IsForDebug);
3403 }
3404 
3406  bool IsForDebug) const {
3407  formatted_raw_ostream OS(ROS);
3408  SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
3409  SlotTracker &SlotTable =
3410  MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
3411  auto incorporateFunction = [&](const Function *F) {
3412  if (F)
3413  MST.incorporateFunction(*F);
3414  };
3415 
3416  if (const Instruction *I = dyn_cast<Instruction>(this)) {
3417  incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
3418  AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
3419  W.printInstruction(*I);
3420  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
3421  incorporateFunction(BB->getParent());
3422  AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
3423  W.printBasicBlock(BB);
3424  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
3425  AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
3426  if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
3427  W.printGlobal(V);
3428  else if (const Function *F = dyn_cast<Function>(GV))
3429  W.printFunction(F);
3430  else
3431  W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
3432  } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
3433  V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
3434  } else if (const Constant *C = dyn_cast<Constant>(this)) {
3435  TypePrinting TypePrinter;
3436  TypePrinter.print(C->getType(), OS);
3437  OS << ' ';
3438  WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
3439  } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
3440  this->printAsOperand(OS, /* PrintType */ true, MST);
3441  } else {
3442  llvm_unreachable("Unknown value to print out!");
3443  }
3444 }
3445 
3446 /// Print without a type, skipping the TypePrinting object.
3447 ///
3448 /// \return \c true iff printing was successful.
3449 static bool printWithoutType(const Value &V, raw_ostream &O,
3450  SlotTracker *Machine, const Module *M) {
3451  if (V.hasName() || isa<GlobalValue>(V) ||
3452  (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
3453  WriteAsOperandInternal(O, &V, nullptr, Machine, M);
3454  return true;
3455  }
3456  return false;
3457 }
3458 
3459 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
3460  ModuleSlotTracker &MST) {
3461  TypePrinting TypePrinter;
3462  if (const Module *M = MST.getModule())
3463  TypePrinter.incorporateTypes(*M);
3464  if (PrintType) {
3465  TypePrinter.print(V.getType(), O);
3466  O << ' ';
3467  }
3468 
3469  WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
3470  MST.getModule());
3471 }
3472 
3473 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3474  const Module *M) const {
3475  if (!M)
3476  M = getModuleFromVal(this);
3477 
3478  if (!PrintType)
3479  if (printWithoutType(*this, O, nullptr, M))
3480  return;
3481 
3483  M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
3484  ModuleSlotTracker MST(Machine, M);
3485  printAsOperandImpl(*this, O, PrintType, MST);
3486 }
3487 
3488 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3489  ModuleSlotTracker &MST) const {
3490  if (!PrintType)
3491  if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
3492  return;
3493 
3494  printAsOperandImpl(*this, O, PrintType, MST);
3495 }
3496 
3497 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
3498  ModuleSlotTracker &MST, const Module *M,
3499  bool OnlyAsOperand) {
3500  formatted_raw_ostream OS(ROS);
3501 
3502  TypePrinting TypePrinter;
3503  if (M)
3504  TypePrinter.incorporateTypes(*M);
3505 
3506  WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
3507  /* FromValue */ true);
3508 
3509  auto *N = dyn_cast<MDNode>(&MD);
3510  if (OnlyAsOperand || !N)
3511  return;
3512 
3513  OS << " = ";
3514  WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
3515 }
3516 
3517 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
3518  ModuleSlotTracker MST(M, isa<MDNode>(this));
3519  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3520 }
3521 
3523  const Module *M) const {
3524  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3525 }
3526 
3528  bool /*IsForDebug*/) const {
3529  ModuleSlotTracker MST(M, isa<MDNode>(this));
3530  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3531 }
3532 
3534  const Module *M, bool /*IsForDebug*/) const {
3535  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3536 }
3537 
3538 // Value::dump - allow easy printing of Values from the debugger.
3540 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3541 
3542 // Type::dump - allow easy printing of Types from the debugger.
3544 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3545 
3546 // Module::dump() - Allow printing of Modules from the debugger.
3548 void Module::dump() const {
3549  print(dbgs(), nullptr,
3550  /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
3551 }
3552 
3553 // \brief Allow printing of Comdats from the debugger.
3555 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3556 
3557 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
3559 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3560 
3562 void Metadata::dump() const { dump(nullptr); }
3563 
3565 void Metadata::dump(const Module *M) const {
3566  print(dbgs(), M, /*IsForDebug=*/true);
3567  dbgs() << '\n';
3568 }
MachineLoop * L
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * >> &MDs) const
Appends all attachments for the global to MDs, sorting by attachment ID.
Definition: Metadata.cpp:1364
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type (if unknown returns 0).
const NoneType None
Definition: None.h:23
static SlotTracker * createSlotTracker(const Value *V)
Definition: AsmWriter.cpp:739
StringRef getName() const
Definition: Metadata.cpp:1059
use_iterator use_end()
Definition: Value.h:318
7: Labels
Definition: Type.h:63
LinkageTypes getLinkage() const
Definition: GlobalValue.h:429
static void WriteOptimizationInfo(raw_ostream &Out, const User *U)
Definition: AsmWriter.cpp:1062
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:870
SPIR_FUNC - Calling convention for SPIR non-kernel device functions.
Definition: CallingConv.h:128
iterator_range< use_iterator > uses()
Definition: Value.h:326
Intel_OCL_BI - Calling conventions for Intel OpenCL built-ins.
Definition: CallingConv.h:139
This instruction extracts a struct member or array element value from an aggregate value...
VisibilityTypes getVisibility() const
Definition: GlobalValue.h:219
*p = old <signed v ? old : v
Definition: Instructions.h:699
unsigned getNumOperandBundles() const
Definition: CallSite.h:488
LLVM Argument representation.
Definition: Argument.h:34
void purgeFunction()
After calling incorporateFunction, use this method to remove the most recently incorporated function ...
Definition: AsmWriter.cpp:924
LLVMContext & Context
Constant * getPrologueData() const
Get the prologue data associated with this function.
Definition: Function.cpp:1238
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1309
static bool printWithoutType(const Value &V, raw_ostream &O, SlotTracker *Machine, const Module *M)
Print without a type, skipping the TypePrinting object.
Definition: AsmWriter.cpp:3449
bool hasName() const
Definition: Value.h:236
size_t i
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds...
Definition: Compiler.h:450
std::string getAsString(unsigned Index, bool InAttrGrp=false) const
Return the attributes at the index as a string.
ARM_APCS - ARM Procedure Calling Standard calling convention (obsolete, but still used on some target...
Definition: CallingConv.h:95
void dump() const
Definition: AsmWriter.cpp:3559
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:52
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:137
void PrintEscapedString(StringRef Name, raw_ostream &Out)
PrintEscapedString - Print each character of the specified string, escaping it if it is not printable...
Definition: AsmWriter.cpp:341
2: 32-bit floating point type
Definition: Type.h:58
An instruction for ordering other memory operations.
Definition: Instructions.h:430
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)
Definition: AsmWriter.cpp:2432
an instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:504
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
Definition: Format.h:177
formatted_raw_ostream - A raw_ostream that wraps another one and keeps track of line and column posit...
unsigned getNumOperands() const
Definition: User.h:167
MSP430_INTR - Calling convention used for MSP430 interrupt routines.
Definition: CallingConv.h:105
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1040
static void writeAtomicRMWOperation(raw_ostream &Out, AtomicRMWInst::BinOp Op)
Definition: AsmWriter.cpp:1044
PrefixType
Definition: AsmWriter.cpp:351
Type::subtype_iterator param_iterator
Definition: DerivedTypes.h:125
UnnamedAddr getUnnamedAddr() const
Definition: GlobalValue.h:200
Type * getValueType() const
Definition: GlobalValue.h:261
Calling convention used for Mesa vertex shaders.
Definition: CallingConv.h:182
This class represents a function call, abstracting a target machine's calling convention.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition: Function.h:151
bool alias_empty() const
Definition: Module.h:562
Calling convention used by HipHop Virtual Machine (HHVM) to perform calls to and from translation cac...
Definition: CallingConv.h:159
*p = old <unsigned v ? old : v
Definition: Instructions.h:703
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:2403
*p = old >unsigned v ? old : v
Definition: Instructions.h:701
void initialize()
This function does the actual initialization.
Definition: AsmWriter.cpp:786
iterator begin(unsigned Slot) const
The data referenced by the COMDAT must be the same size.
Definition: Comdat.h:36
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:490
Type * getReturnType() const
Returns the type of the ret val.
Definition: Function.cpp:238
DenseMap< AttributeSet, unsigned >::iterator as_iterator
AttributeSet map iterators.
Definition: AsmWriter.cpp:654
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:100
arg_iterator arg_end()
Definition: Function.h:559
13: Structures
Definition: Type.h:72
bool hasPrologueData() const
Check whether this function has prologue data.
Definition: Function.h:599
Metadata node.
Definition: Metadata.h:830
int getGlobalSlot(const GlobalValue *V)
getGlobalSlot - Get the slot number of a global value.
Definition: AsmWriter.cpp:933
4: 80-bit floating point type (X87)
Definition: Type.h:60
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:471
An instruction for reading from memory.
Definition: Instructions.h:164
Manage lifetime of a slot tracker for printing IR.
1: 16-bit floating point type
Definition: Type.h:57
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * >> &MDs) const
Get all metadata attached to this Instruction.
Definition: Instruction.h:191
an instruction that atomically reads a memory location, combines it with another value, and then stores the result back.
Definition: Instructions.h:669
Hexagon Common GEP
#define op(i)
15: Pointers
Definition: Type.h:74
Type * getElementType() const
Definition: DerivedTypes.h:462
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
12: Functions
Definition: Type.h:71
*p = old >signed v ? old : v
Definition: Instructions.h:697
int getMetadataSlot(const MDNode *N)
getMetadataSlot - Get the slot number of a MDNode.
Definition: AsmWriter.cpp:943
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition: Module.h:218
static void PrintCallingConv(unsigned cc, raw_ostream &Out)
Definition: AsmWriter.cpp:300
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:165
bool isMaterializable() const
Definition: Function.cpp:216
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:191
SlotTracker * getMachine()
Lazily creates a slot tracker.
Definition: AsmWriter.cpp:709
static void predictValueUseListOrder(const Value *V, const Function *F, OrderMap &OM, UseListOrderStack &Stack)
Definition: AsmWriter.cpp:200
static const char * getLinkagePrintName(GlobalValue::LinkageTypes LT)
Definition: AsmWriter.cpp:2366
The address of a basic block.
Definition: Constants.h:822
StringRef getTagName() const
Return the tag of this operand bundle as a string.
Definition: InstrTypes.h:1225
Value * getDerivedPtr() const
Definition: Statepoint.h:394
A tuple of MDNodes.
Definition: Metadata.h:1282
std::vector< unsigned > Shuffle
Definition: UseListOrder.h:31
static OrderMap orderModule(const Module *M)
Definition: AsmWriter.cpp:90
bool hasGC() const
hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm to use during code generatio...
Definition: Function.h:250
std::string getAsString(bool InAttrGrp=false) const
The Attribute is converted to a string of equivalent mnemonic.
Definition: Attributes.cpp:226
static const fltSemantics & x87DoubleExtended()
Definition: APFloat.cpp:109
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, ModuleSlotTracker &MST, const Module *M, bool OnlyAsOperand)
Definition: AsmWriter.cpp:3497
const Value * V
Definition: UseListOrder.h:29
static F t[256]
X86_INTR - x86 hardware interrupt context.
Definition: CallingConv.h:169
void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
Definition: AsmWriter.cpp:3394
Class to represent struct types.
Definition: DerivedTypes.h:199
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
param_iterator param_end() const
Definition: DerivedTypes.h:127
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:32
PTX_Kernel - Call to a PTX kernel.
Definition: CallingConv.h:114
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition...
Definition: DerivedTypes.h:249
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1218
std::vector< UseListOrder > UseListOrderStack
Definition: UseListOrder.h:41
APInt bitcastToAPInt() const
Definition: APFloat.h:1012
The linker may choose any COMDAT.
Definition: Comdat.h:32
Register calling convention used for parameters transfer optimization.
Definition: CallingConv.h:197
SynchronizationScope
Definition: Instructions.h:50
Type * getVectorElementType() const
Definition: Type.h:353
static void printMetadataIdentifier(StringRef Name, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:2329
static const uint16_t * lookup(unsigned opcode, unsigned domain, ArrayRef< uint16_t[3]> Table)
const std::string & getModuleIdentifier() const
Get the module identifier which is, essentially, the name of the module.
Definition: Module.h:193
StringRef getName() const
Definition: Comdat.cpp:22
X86_ThisCall - Similar to X86_StdCall.
Definition: CallingConv.h:110
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:60
AtomicOrdering
Atomic ordering for LLVM's memory model.
void print(raw_ostream &OS, bool IsForDebug=false) const
Definition: AsmWriter.cpp:3343
Class to represent function types.
Definition: DerivedTypes.h:102
#define F(x, y, z)
Definition: MD5.cpp:51
reverse_iterator rend()
Definition: Module.h:541
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition: APFloat.cpp:4139
BinOp
This enumeration lists the possible modifications atomicrmw can make.
Definition: Instructions.h:681
void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
Definition: AsmWriter.cpp:3473
unsigned getAlignment() const
Definition: GlobalObject.h:59
Class to represent array types.
Definition: DerivedTypes.h:345
VisibilityTypes
An enumeration for the kinds of visibility of global values.
Definition: GlobalValue.h:63
Value * getBasePtr() const
Definition: Statepoint.h:389
bool isMaterializable() const
If this function's Module is being lazily streamed in functions from disk or some other source...
Definition: Globals.cpp:45
void dump() const
Definition: AsmWriter.cpp:3544
StringRef getSection() const
Get the custom section of this global if it has one.
Definition: GlobalObject.h:81
X86_FastCall - 'fast' analog of X86_StdCall.
Definition: CallingConv.h:91
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:136
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:68
An instruction for storing to memory.
Definition: Instructions.h:300
COFF::MachineTypes Machine
Definition: COFFYAML.cpp:303
static void PrintVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:2394
Structure to hold a use-list order.
Definition: UseListOrder.h:28
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t size() const
size - Get the string size.
Definition: StringRef.h:135
const char * getOpcodeName() const
Definition: Instruction.h:113
Type * getElementType() const
Definition: DerivedTypes.h:336
int getLocalSlot(const Value *V)
Return the slot number of the specified value in it's type plane.
Definition: AsmWriter.cpp:954
Class to represent pointers.
Definition: DerivedTypes.h:443
static GCRegistry::Add< CoreCLRGC > E("coreclr","CoreCLR-compatible GC")
static const fltSemantics & IEEEsingle()
Definition: APFloat.cpp:100
bool hasOperandBundles() const
Definition: CallSite.h:492
bool global_empty() const
Definition: Module.h:522
11: Arbitrary bit width integers
Definition: Type.h:70
bool hasSection() const
Check if this global has a custom object file section.
Definition: GlobalObject.h:73
This class provides computation of slot numbers for LLVM Assembly writing.
Definition: AsmWriter.cpp:580
void print(raw_ostream &OS, const Module *M=nullptr, bool IsForDebug=false) const
Print.
Definition: AsmWriter.cpp:3527
0: type with no size
Definition: Type.h:56
unsigned getNumSlots() const
Return the number of slots used in this attribute list.
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:133
bool isExternallyInitialized() const
No other Module may specify this COMDAT.
Definition: Comdat.h:35
The landingpad instruction holds all of the information necessary to generate correct exception handl...
void dump() const
Dump the module to stderr (for debugging).
Definition: AsmWriter.cpp:3548
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double, and whose elements are just simple data values (i.e.
Definition: Constants.h:676
static void predictValueUseListOrderImpl(const Value *V, const Function *F, unsigned ID, const OrderMap &OM, UseListOrderStack &Stack)
Definition: AsmWriter.cpp:137
LLVM Basic Block Representation.
Definition: BasicBlock.h:51
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
Conditional or Unconditional Branch instruction.
Calling convention for AMDGPU code object kernels.
Definition: CallingConv.h:194
const Comdat * getComdat() const
Definition: GlobalObject.h:92
This is an important base class in LLVM.
Definition: Constant.h:42
ArrayRef< Use > Inputs
Definition: InstrTypes.h:1207
X86_StdCall - stdcall is the calling conventions mostly used by the Win32 API.
Definition: CallingConv.h:86
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:115
This file contains the declarations for the subclasses of Constant, which represent the different fla...
param_iterator param_begin() const
Definition: DerivedTypes.h:126
10: Tokens
Definition: Type.h:66
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:269
static const fltSemantics & IEEEhalf()
Definition: APFloat.cpp:97
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:116
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:581
iterator_range< named_metadata_iterator > named_metadata()
Definition: Module.h:635
A udiv or sdiv instruction, which can be marked as "exact", indicating that no bits are destroyed...
Definition: Operator.h:128
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context)
Definition: AsmWriter.cpp:1945
APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
Definition: APInt.cpp:654
void print(raw_ostream &O, bool IsForDebug=false, bool NoDetails=false) const
Print the current type.
Definition: AsmWriter.cpp:3368
Utility class for integer arithmetic operators which may exhibit overflow - Add, Sub, and Mul.
Definition: Operator.h:75
MDNode * getOperand(unsigned i) const
Definition: Metadata.cpp:1042
uint64_t getNumElements() const
Definition: DerivedTypes.h:335
for(unsigned i=0, e=MI->getNumOperands();i!=e;++i)
DLLStorageClassTypes
Storage classes of global values for PE targets.
Definition: GlobalValue.h:70
6: 128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:62
Value * getOperand(unsigned i) const
Definition: User.h:145
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, ModuleSlotTracker &MST)
Definition: AsmWriter.cpp:3459
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:119
op_range operands()
Definition: User.h:213
arg_iterator arg_begin()
Definition: Function.h:550
SelectionKind getSelectionKind() const
Definition: Comdat.h:42
Used for AVR interrupt routines.
Definition: CallingConv.h:172
static const Module * getModuleFromVal(const Value *V)
Definition: AsmWriter.cpp:274
The data referenced by the COMDAT must be the same.
Definition: Comdat.h:33
Metadata wrapper in the Value hierarchy.
Definition: Metadata.h:161
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:265
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
Definition: CallingConv.h:153
void incorporateFunction(const Function &F)
Incorporate the given function.
Definition: AsmWriter.cpp:720
static const fltSemantics & IEEEquad()
Definition: APFloat.cpp:106
static bool isAtomic(Instruction *I)
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:2412
void dump() const
User-friendly dump.
Definition: AsmWriter.cpp:3562
Calling convention used for Mesa pixel shaders.
Definition: CallingConv.h:188
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Definition: CallSite.h:508
void dump() const
Support for debugging, callable in GDB: V->dump()
Definition: AsmWriter.cpp:3540
const std::string & getModuleInlineAsm() const
Get any module-scope inline assembly blocks.
Definition: Module.h:226
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix)
Turn the specified name into an 'LLVM name', which is either prefixed with % (if the string only cont...
Definition: AsmWriter.cpp:395
reverse_iterator rbegin()
Definition: Module.h:539
14: Arrays
Definition: Type.h:73
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
bool hasExternalLinkage() const
Definition: GlobalValue.h:401
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1034
Iterator for intrusive lists based on ilist_node.
This is the shared class of boolean and integer constants.
Definition: Constants.h:88
APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition: APInt.cpp:649
Calling convention used for Mesa geometry shaders.
Definition: CallingConv.h:185
PTX_Device - Call to a PTX device function.
Definition: CallingConv.h:118
16: SIMD 'packed' format, or other vector type
Definition: Type.h:75
static const char * Separator
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:843
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:220
Module.h This file contains the declarations for the Module class.
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:230
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, TypePrinting &TypePrinter, SlotTracker *Machine, const Module *Context)
Definition: AsmWriter.cpp:1095
AddressSpace
Definition: NVPTXBaseInfo.h:22
iterator end(unsigned Slot) const
HHVM calling convention for invoking C/C++ helpers.
Definition: CallingConv.h:162
void printAsOperand(raw_ostream &OS, const Module *M=nullptr) const
Print as operand.
Definition: AsmWriter.cpp:3517
const DataFlowGraph & G
Definition: RDFGraph.cpp:206
void printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name)
Print out a name of an LLVM value without any prefixes.
Definition: AsmWriter.cpp:359
The linker will choose the largest COMDAT.
Definition: Comdat.h:34
static bool isReferencingMDNode(const Instruction &I)
Definition: AsmWriter.cpp:3383
const BasicBlock & getEntryBlock() const
Definition: Function.h:519
static GCRegistry::Add< ShadowStackGC > C("shadow-stack","Very portable GC for uncooperative code generators")
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
8: Metadata
Definition: Type.h:64
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:176
Class to represent vector types.
Definition: DerivedTypes.h:369
bool hasInitializer() const
Definitions have initializers, declarations don't.
ConstantArray - Constant Array Declarations.
Definition: Constants.h:411
Class for arbitrary precision integers.
Definition: APInt.h:77
static const char * toIRString(AtomicOrdering ao)
String used by LLVM IR to represent atomic ordering.
static bool isWeak(const MCSymbolELF &Sym)
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition: GlobalValue.h:48
LLVM_NODISCARD std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:716
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
Definition: CallingConv.h:143
StringRef getName() const
Return the name for this struct type if it has an identity.
Definition: Type.cpp:510
A lightweight accessor for an operand bundle meant to be passed around by value.
Definition: InstrTypes.h:1206
iterator_range< user_iterator > users()
Definition: Value.h:370
unsigned getVectorNumElements() const
Definition: DerivedTypes.h:438
SPIR_KERNEL - Calling convention for SPIR kernel functions.
Definition: CallingConv.h:136
The C convention as implemented on Windows/x86-64.
Definition: CallingConv.h:149
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:130
static const fltSemantics & IEEEdouble()
Definition: APFloat.cpp:103
static char hexdigit(unsigned X, bool LowerCase=false)
hexdigit - Return the hexadecimal character for the given number X (which should be less than 16)...
Definition: StringExtras.h:27
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the module to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:3311
ThreadLocalMode getThreadLocalMode() const
Definition: GlobalValue.h:240
use_iterator use_begin()
Definition: Value.h:310
#define ST_DEBUG(X)
Definition: AsmWriter.cpp:768
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:259
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:119
unsigned size() const
Definition: DenseMap.h:83
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:188
unsigned getSlotIndex(unsigned Slot) const
Return the index for the given slot.
bool hasAttributes(unsigned Index) const
Return true if attribute exists at the given index.
static void orderValue(const Value *V, OrderMap &OM)
Definition: AsmWriter.cpp:75
ImmutableCallSite - establish a view to a call site for examination.
Definition: CallSite.h:665
FormattedNumber format_hex_no_prefix(uint64_t N, unsigned Width, bool Upper=false)
format_hex_no_prefix - Output N as a fixed width hexadecimal.
Definition: Format.h:190
const NodeList & List
Definition: RDFGraph.cpp:205
const std::string & getGC() const
Definition: Function.cpp:412
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
LLVM_ATTRIBUTE_ALWAYS_INLINE size_type size() const
Definition: SmallVector.h:135
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.cpp:230
static void maybePrintComdat(formatted_raw_ostream &Out, const GlobalObject &GO)
Definition: AsmWriter.cpp:2444
static const fltSemantics & PPCDoubleDouble()
Definition: APFloat.cpp:115
iterator find(const KeyT &Val)
Definition: DenseMap.h:127
bool hasPrefixData() const
Check whether this function has prefix data.
Definition: Function.h:590
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:287
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context)
Definition: AsmWriter.cpp:1923
bool isStringAttribute() const
Return true if the attribute is a string (target-dependent) attribute.
Definition: Attributes.cpp:153
iterator_range< ifunc_iterator > ifuncs()
Definition: Module.h:582
const std::string & getSourceFileName() const
Get the module's original source file name.
Definition: Module.h:199
Constant * getPrefixData() const
Get the prefix data associated with this function.
Definition: Function.cpp:1228
const Module * getModule() const
Calling convention used for Mesa compute shaders.
Definition: CallingConv.h:191
const Constant * getIndirectSymbol() const
This file defines passes to print out IR in various granularities.
bool isVarArg() const
Definition: DerivedTypes.h:122
void dump() const
Definition: AsmWriter.cpp:3555
const unsigned Kind
3: 64-bit floating point type
Definition: Type.h:59
Multiway switch.
bool use_empty() const
Definition: Value.h:299
Type * getReturnType() const
Definition: DerivedTypes.h:123
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Represents calls to the gc.relocate intrinsic.
Definition: Statepoint.h:367
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:537
LLVM Value Representation.
Definition: Value.h:71
A vector that has set insertion semantics.
Definition: SetVector.h:41
DLLStorageClassTypes getDLLStorageClass() const
Definition: GlobalValue.h:244
unsigned getNumOperands() const
Definition: Metadata.cpp:1038
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:44
Invoke instruction.
void print(raw_ostream &ROS, bool IsForDebug=false) const
Definition: AsmWriter.cpp:3320
Calling convention used for AVR signal routines.
Definition: CallingConv.h:175
iterator_range< global_iterator > globals()
Definition: Module.h:524
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:47
A single uniqued string.
Definition: Metadata.h:586
const std::string & getDataLayoutStr() const
Get the data layout string for the module's target platform.
Definition: Module.h:209
static bool isVolatile(Instruction *Inst)
9: MMX vectors (64 bits, X86 specific)
Definition: Type.h:65
void emplace(ArgTypes &&...Args)
Create a new object by constructing it in place with the given arguments.
Definition: Optional.h:75
static GCRegistry::Add< ErlangGC > A("erlang","erlang-compatible garbage collector")
TypeFinder - Walk over a module, identifying all of the types that are used by the module...
Definition: TypeFinder.h:31
Root of the metadata hierarchy.
Definition: Metadata.h:55
bool ifunc_empty() const
Definition: Module.h:580
ARM_AAPCS - ARM Architecture Procedure Calling Standard calling convention (aka EABI).
Definition: CallingConv.h:99
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:42
ARM_AAPCS_VFP - Same as ARM_AAPCS, but uses hard floating point ABI.
Definition: CallingConv.h:102
static UseListOrderStack predictUseListOrder(const Module *M)
Definition: AsmWriter.cpp:221
const BasicBlock * getParent() const
Definition: Instruction.h:62
TLM
Definition: LLParser.cpp:1329
int getAttributeGroupSlot(AttributeSet AS)
Definition: AsmWriter.cpp:964
iterator_range< arg_iterator > args()
Definition: Function.h:568
Module * getParent()
Get the module that holds this named metadata collection.
Definition: Metadata.h:1348
bool isVoidTy() const
Return true if this is 'void'.
Definition: Type.h:139
an instruction to allocate memory on the stack
Definition: Instructions.h:60
This instruction inserts a struct field of array element value into an aggregate value.
5: 128-bit floating point type (112-bit mantissa)
Definition: Type.h:61
iterator_range< alias_iterator > aliases()
Definition: Module.h:564
void resize(size_type N)
Definition: SmallVector.h:352
AttributeSet getFnAttributes() const
The function attributes are returned.
Definition: Attributes.cpp:985