clang  5.0.0
ASTStructuralEquivalence.cpp
Go to the documentation of this file.
1 //===--- ASTStructuralEquivalence.cpp - -------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implement StructuralEquivalenceContext class and helper functions
11 // for layout matching.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTImporter.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclVisitor.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/AST/TypeVisitor.h"
25 
26 namespace {
27 
28 using namespace clang;
29 
30 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
31  QualType T1, QualType T2);
32 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
33  Decl *D1, Decl *D2);
34 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
35  const TemplateArgument &Arg1,
36  const TemplateArgument &Arg2);
37 
38 /// Determine structural equivalence of two expressions.
39 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
40  Expr *E1, Expr *E2) {
41  if (!E1 || !E2)
42  return E1 == E2;
43 
44  // FIXME: Actually perform a structural comparison!
45  return true;
46 }
47 
48 /// Determine whether two identifiers are equivalent.
49 static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
50  const IdentifierInfo *Name2) {
51  if (!Name1 || !Name2)
52  return Name1 == Name2;
53 
54  return Name1->getName() == Name2->getName();
55 }
56 
57 /// Determine whether two nested-name-specifiers are equivalent.
58 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
59  NestedNameSpecifier *NNS1,
60  NestedNameSpecifier *NNS2) {
61  if (NNS1->getKind() != NNS2->getKind())
62  return false;
63 
64  NestedNameSpecifier *Prefix1 = NNS1->getPrefix(),
65  *Prefix2 = NNS2->getPrefix();
66  if ((bool)Prefix1 != (bool)Prefix2)
67  return false;
68 
69  if (Prefix1)
70  if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2))
71  return false;
72 
73  switch (NNS1->getKind()) {
74  case NestedNameSpecifier::Identifier:
75  return IsStructurallyEquivalent(NNS1->getAsIdentifier(),
76  NNS2->getAsIdentifier());
77  case NestedNameSpecifier::Namespace:
78  return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(),
79  NNS2->getAsNamespace());
80  case NestedNameSpecifier::NamespaceAlias:
81  return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(),
82  NNS2->getAsNamespaceAlias());
83  case NestedNameSpecifier::TypeSpec:
84  case NestedNameSpecifier::TypeSpecWithTemplate:
85  return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0),
86  QualType(NNS2->getAsType(), 0));
87  case NestedNameSpecifier::Global:
88  return true;
89  case NestedNameSpecifier::Super:
90  return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(),
91  NNS2->getAsRecordDecl());
92  }
93  return false;
94 }
95 
96 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
97  const TemplateName &N1,
98  const TemplateName &N2) {
99  if (N1.getKind() != N2.getKind())
100  return false;
101  switch (N1.getKind()) {
102  case TemplateName::Template:
103  return IsStructurallyEquivalent(Context, N1.getAsTemplateDecl(),
104  N2.getAsTemplateDecl());
105 
106  case TemplateName::OverloadedTemplate: {
108  *OS2 = N2.getAsOverloadedTemplate();
109  OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(),
110  E1 = OS1->end(), E2 = OS2->end();
111  for (; I1 != E1 && I2 != E2; ++I1, ++I2)
112  if (!IsStructurallyEquivalent(Context, *I1, *I2))
113  return false;
114  return I1 == E1 && I2 == E2;
115  }
116 
117  case TemplateName::QualifiedTemplate: {
119  *QN2 = N2.getAsQualifiedTemplateName();
120  return IsStructurallyEquivalent(Context, QN1->getDecl(), QN2->getDecl()) &&
121  IsStructurallyEquivalent(Context, QN1->getQualifier(),
122  QN2->getQualifier());
123  }
124 
125  case TemplateName::DependentTemplate: {
127  *DN2 = N2.getAsDependentTemplateName();
128  if (!IsStructurallyEquivalent(Context, DN1->getQualifier(),
129  DN2->getQualifier()))
130  return false;
131  if (DN1->isIdentifier() && DN2->isIdentifier())
132  return IsStructurallyEquivalent(DN1->getIdentifier(),
133  DN2->getIdentifier());
134  else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator())
135  return DN1->getOperator() == DN2->getOperator();
136  return false;
137  }
138 
139  case TemplateName::SubstTemplateTemplateParm: {
141  *TS2 = N2.getAsSubstTemplateTemplateParm();
142  return IsStructurallyEquivalent(Context, TS1->getParameter(),
143  TS2->getParameter()) &&
144  IsStructurallyEquivalent(Context, TS1->getReplacement(),
145  TS2->getReplacement());
146  }
147  case TemplateName::SubstTemplateTemplateParmPack: {
151  return IsStructurallyEquivalent(Context, P1->getArgumentPack(),
152  P2->getArgumentPack()) &&
153  IsStructurallyEquivalent(Context, P1->getParameterPack(),
154  P2->getParameterPack());
155  }
156  }
157  return false;
158 }
159 
160 /// Determine whether two template arguments are equivalent.
161 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
162  const TemplateArgument &Arg1,
163  const TemplateArgument &Arg2) {
164  if (Arg1.getKind() != Arg2.getKind())
165  return false;
166 
167  switch (Arg1.getKind()) {
168  case TemplateArgument::Null:
169  return true;
170 
171  case TemplateArgument::Type:
172  return Context.IsStructurallyEquivalent(Arg1.getAsType(), Arg2.getAsType());
173 
174  case TemplateArgument::Integral:
175  if (!Context.IsStructurallyEquivalent(Arg1.getIntegralType(),
176  Arg2.getIntegralType()))
177  return false;
178 
179  return llvm::APSInt::isSameValue(Arg1.getAsIntegral(),
180  Arg2.getAsIntegral());
181 
182  case TemplateArgument::Declaration:
183  return Context.IsStructurallyEquivalent(Arg1.getAsDecl(), Arg2.getAsDecl());
184 
185  case TemplateArgument::NullPtr:
186  return true; // FIXME: Is this correct?
187 
188  case TemplateArgument::Template:
189  return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(),
190  Arg2.getAsTemplate());
191 
192  case TemplateArgument::TemplateExpansion:
193  return IsStructurallyEquivalent(Context,
196 
197  case TemplateArgument::Expression:
198  return IsStructurallyEquivalent(Context, Arg1.getAsExpr(),
199  Arg2.getAsExpr());
200 
201  case TemplateArgument::Pack:
202  if (Arg1.pack_size() != Arg2.pack_size())
203  return false;
204 
205  for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I)
206  if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I],
207  Arg2.pack_begin()[I]))
208  return false;
209 
210  return true;
211  }
212 
213  llvm_unreachable("Invalid template argument kind");
214 }
215 
216 /// Determine structural equivalence for the common part of array
217 /// types.
218 static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
219  const ArrayType *Array1,
220  const ArrayType *Array2) {
221  if (!IsStructurallyEquivalent(Context, Array1->getElementType(),
222  Array2->getElementType()))
223  return false;
224  if (Array1->getSizeModifier() != Array2->getSizeModifier())
225  return false;
226  if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
227  return false;
228 
229  return true;
230 }
231 
232 /// Determine structural equivalence of two types.
233 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
234  QualType T1, QualType T2) {
235  if (T1.isNull() || T2.isNull())
236  return T1.isNull() && T2.isNull();
237 
238  if (!Context.StrictTypeSpelling) {
239  // We aren't being strict about token-to-token equivalence of types,
240  // so map down to the canonical type.
241  T1 = Context.FromCtx.getCanonicalType(T1);
242  T2 = Context.ToCtx.getCanonicalType(T2);
243  }
244 
245  if (T1.getQualifiers() != T2.getQualifiers())
246  return false;
247 
248  Type::TypeClass TC = T1->getTypeClass();
249 
250  if (T1->getTypeClass() != T2->getTypeClass()) {
251  // Compare function types with prototypes vs. without prototypes as if
252  // both did not have prototypes.
253  if (T1->getTypeClass() == Type::FunctionProto &&
254  T2->getTypeClass() == Type::FunctionNoProto)
255  TC = Type::FunctionNoProto;
256  else if (T1->getTypeClass() == Type::FunctionNoProto &&
257  T2->getTypeClass() == Type::FunctionProto)
258  TC = Type::FunctionNoProto;
259  else
260  return false;
261  }
262 
263  switch (TC) {
264  case Type::Builtin:
265  // FIXME: Deal with Char_S/Char_U.
266  if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
267  return false;
268  break;
269 
270  case Type::Complex:
271  if (!IsStructurallyEquivalent(Context,
272  cast<ComplexType>(T1)->getElementType(),
273  cast<ComplexType>(T2)->getElementType()))
274  return false;
275  break;
276 
277  case Type::Adjusted:
278  case Type::Decayed:
279  if (!IsStructurallyEquivalent(Context,
280  cast<AdjustedType>(T1)->getOriginalType(),
281  cast<AdjustedType>(T2)->getOriginalType()))
282  return false;
283  break;
284 
285  case Type::Pointer:
286  if (!IsStructurallyEquivalent(Context,
287  cast<PointerType>(T1)->getPointeeType(),
288  cast<PointerType>(T2)->getPointeeType()))
289  return false;
290  break;
291 
292  case Type::BlockPointer:
293  if (!IsStructurallyEquivalent(Context,
294  cast<BlockPointerType>(T1)->getPointeeType(),
295  cast<BlockPointerType>(T2)->getPointeeType()))
296  return false;
297  break;
298 
299  case Type::LValueReference:
300  case Type::RValueReference: {
301  const ReferenceType *Ref1 = cast<ReferenceType>(T1);
302  const ReferenceType *Ref2 = cast<ReferenceType>(T2);
303  if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
304  return false;
305  if (Ref1->isInnerRef() != Ref2->isInnerRef())
306  return false;
307  if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(),
308  Ref2->getPointeeTypeAsWritten()))
309  return false;
310  break;
311  }
312 
313  case Type::MemberPointer: {
314  const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1);
315  const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2);
316  if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(),
317  MemPtr2->getPointeeType()))
318  return false;
319  if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0),
320  QualType(MemPtr2->getClass(), 0)))
321  return false;
322  break;
323  }
324 
325  case Type::ConstantArray: {
326  const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1);
327  const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2);
328  if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize()))
329  return false;
330 
331  if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
332  return false;
333  break;
334  }
335 
336  case Type::IncompleteArray:
337  if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1),
338  cast<ArrayType>(T2)))
339  return false;
340  break;
341 
342  case Type::VariableArray: {
343  const VariableArrayType *Array1 = cast<VariableArrayType>(T1);
344  const VariableArrayType *Array2 = cast<VariableArrayType>(T2);
345  if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
346  Array2->getSizeExpr()))
347  return false;
348 
349  if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
350  return false;
351 
352  break;
353  }
354 
355  case Type::DependentSizedArray: {
356  const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1);
357  const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2);
358  if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
359  Array2->getSizeExpr()))
360  return false;
361 
362  if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
363  return false;
364 
365  break;
366  }
367 
368  case Type::DependentSizedExtVector: {
369  const DependentSizedExtVectorType *Vec1 =
370  cast<DependentSizedExtVectorType>(T1);
371  const DependentSizedExtVectorType *Vec2 =
372  cast<DependentSizedExtVectorType>(T2);
373  if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
374  Vec2->getSizeExpr()))
375  return false;
376  if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
377  Vec2->getElementType()))
378  return false;
379  break;
380  }
381 
382  case Type::Vector:
383  case Type::ExtVector: {
384  const VectorType *Vec1 = cast<VectorType>(T1);
385  const VectorType *Vec2 = cast<VectorType>(T2);
386  if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
387  Vec2->getElementType()))
388  return false;
389  if (Vec1->getNumElements() != Vec2->getNumElements())
390  return false;
391  if (Vec1->getVectorKind() != Vec2->getVectorKind())
392  return false;
393  break;
394  }
395 
396  case Type::FunctionProto: {
397  const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1);
398  const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2);
399  if (Proto1->getNumParams() != Proto2->getNumParams())
400  return false;
401  for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) {
402  if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I),
403  Proto2->getParamType(I)))
404  return false;
405  }
406  if (Proto1->isVariadic() != Proto2->isVariadic())
407  return false;
408  if (Proto1->getExceptionSpecType() != Proto2->getExceptionSpecType())
409  return false;
410  if (Proto1->getExceptionSpecType() == EST_Dynamic) {
411  if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
412  return false;
413  for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
414  if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I),
415  Proto2->getExceptionType(I)))
416  return false;
417  }
418  } else if (Proto1->getExceptionSpecType() == EST_ComputedNoexcept) {
419  if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(),
420  Proto2->getNoexceptExpr()))
421  return false;
422  }
423  if (Proto1->getTypeQuals() != Proto2->getTypeQuals())
424  return false;
425 
426  // Fall through to check the bits common with FunctionNoProtoType.
427  LLVM_FALLTHROUGH;
428  }
429 
430  case Type::FunctionNoProto: {
431  const FunctionType *Function1 = cast<FunctionType>(T1);
432  const FunctionType *Function2 = cast<FunctionType>(T2);
433  if (!IsStructurallyEquivalent(Context, Function1->getReturnType(),
434  Function2->getReturnType()))
435  return false;
436  if (Function1->getExtInfo() != Function2->getExtInfo())
437  return false;
438  break;
439  }
440 
441  case Type::UnresolvedUsing:
442  if (!IsStructurallyEquivalent(Context,
443  cast<UnresolvedUsingType>(T1)->getDecl(),
444  cast<UnresolvedUsingType>(T2)->getDecl()))
445  return false;
446 
447  break;
448 
449  case Type::Attributed:
450  if (!IsStructurallyEquivalent(Context,
451  cast<AttributedType>(T1)->getModifiedType(),
452  cast<AttributedType>(T2)->getModifiedType()))
453  return false;
454  if (!IsStructurallyEquivalent(
455  Context, cast<AttributedType>(T1)->getEquivalentType(),
456  cast<AttributedType>(T2)->getEquivalentType()))
457  return false;
458  break;
459 
460  case Type::Paren:
461  if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(),
462  cast<ParenType>(T2)->getInnerType()))
463  return false;
464  break;
465 
466  case Type::Typedef:
467  if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(),
468  cast<TypedefType>(T2)->getDecl()))
469  return false;
470  break;
471 
472  case Type::TypeOfExpr:
473  if (!IsStructurallyEquivalent(
474  Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
475  cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
476  return false;
477  break;
478 
479  case Type::TypeOf:
480  if (!IsStructurallyEquivalent(Context,
481  cast<TypeOfType>(T1)->getUnderlyingType(),
482  cast<TypeOfType>(T2)->getUnderlyingType()))
483  return false;
484  break;
485 
486  case Type::UnaryTransform:
487  if (!IsStructurallyEquivalent(
488  Context, cast<UnaryTransformType>(T1)->getUnderlyingType(),
489  cast<UnaryTransformType>(T1)->getUnderlyingType()))
490  return false;
491  break;
492 
493  case Type::Decltype:
494  if (!IsStructurallyEquivalent(Context,
495  cast<DecltypeType>(T1)->getUnderlyingExpr(),
496  cast<DecltypeType>(T2)->getUnderlyingExpr()))
497  return false;
498  break;
499 
500  case Type::Auto:
501  if (!IsStructurallyEquivalent(Context, cast<AutoType>(T1)->getDeducedType(),
502  cast<AutoType>(T2)->getDeducedType()))
503  return false;
504  break;
505 
506  case Type::DeducedTemplateSpecialization: {
507  auto *DT1 = cast<DeducedTemplateSpecializationType>(T1);
508  auto *DT2 = cast<DeducedTemplateSpecializationType>(T2);
509  if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(),
510  DT2->getTemplateName()))
511  return false;
512  if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(),
513  DT2->getDeducedType()))
514  return false;
515  break;
516  }
517 
518  case Type::Record:
519  case Type::Enum:
520  if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(),
521  cast<TagType>(T2)->getDecl()))
522  return false;
523  break;
524 
525  case Type::TemplateTypeParm: {
526  const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1);
527  const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2);
528  if (Parm1->getDepth() != Parm2->getDepth())
529  return false;
530  if (Parm1->getIndex() != Parm2->getIndex())
531  return false;
532  if (Parm1->isParameterPack() != Parm2->isParameterPack())
533  return false;
534 
535  // Names of template type parameters are never significant.
536  break;
537  }
538 
539  case Type::SubstTemplateTypeParm: {
540  const SubstTemplateTypeParmType *Subst1 =
541  cast<SubstTemplateTypeParmType>(T1);
542  const SubstTemplateTypeParmType *Subst2 =
543  cast<SubstTemplateTypeParmType>(T2);
544  if (!IsStructurallyEquivalent(Context,
545  QualType(Subst1->getReplacedParameter(), 0),
546  QualType(Subst2->getReplacedParameter(), 0)))
547  return false;
548  if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(),
549  Subst2->getReplacementType()))
550  return false;
551  break;
552  }
553 
554  case Type::SubstTemplateTypeParmPack: {
555  const SubstTemplateTypeParmPackType *Subst1 =
556  cast<SubstTemplateTypeParmPackType>(T1);
557  const SubstTemplateTypeParmPackType *Subst2 =
558  cast<SubstTemplateTypeParmPackType>(T2);
559  if (!IsStructurallyEquivalent(Context,
560  QualType(Subst1->getReplacedParameter(), 0),
561  QualType(Subst2->getReplacedParameter(), 0)))
562  return false;
563  if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(),
564  Subst2->getArgumentPack()))
565  return false;
566  break;
567  }
568  case Type::TemplateSpecialization: {
569  const TemplateSpecializationType *Spec1 =
570  cast<TemplateSpecializationType>(T1);
571  const TemplateSpecializationType *Spec2 =
572  cast<TemplateSpecializationType>(T2);
573  if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(),
574  Spec2->getTemplateName()))
575  return false;
576  if (Spec1->getNumArgs() != Spec2->getNumArgs())
577  return false;
578  for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
579  if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
580  Spec2->getArg(I)))
581  return false;
582  }
583  break;
584  }
585 
586  case Type::Elaborated: {
587  const ElaboratedType *Elab1 = cast<ElaboratedType>(T1);
588  const ElaboratedType *Elab2 = cast<ElaboratedType>(T2);
589  // CHECKME: what if a keyword is ETK_None or ETK_typename ?
590  if (Elab1->getKeyword() != Elab2->getKeyword())
591  return false;
592  if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(),
593  Elab2->getQualifier()))
594  return false;
595  if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(),
596  Elab2->getNamedType()))
597  return false;
598  break;
599  }
600 
601  case Type::InjectedClassName: {
602  const InjectedClassNameType *Inj1 = cast<InjectedClassNameType>(T1);
603  const InjectedClassNameType *Inj2 = cast<InjectedClassNameType>(T2);
604  if (!IsStructurallyEquivalent(Context,
606  Inj2->getInjectedSpecializationType()))
607  return false;
608  break;
609  }
610 
611  case Type::DependentName: {
612  const DependentNameType *Typename1 = cast<DependentNameType>(T1);
613  const DependentNameType *Typename2 = cast<DependentNameType>(T2);
614  if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(),
615  Typename2->getQualifier()))
616  return false;
617  if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
618  Typename2->getIdentifier()))
619  return false;
620 
621  break;
622  }
623 
624  case Type::DependentTemplateSpecialization: {
626  cast<DependentTemplateSpecializationType>(T1);
628  cast<DependentTemplateSpecializationType>(T2);
629  if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(),
630  Spec2->getQualifier()))
631  return false;
632  if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
633  Spec2->getIdentifier()))
634  return false;
635  if (Spec1->getNumArgs() != Spec2->getNumArgs())
636  return false;
637  for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
638  if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
639  Spec2->getArg(I)))
640  return false;
641  }
642  break;
643  }
644 
645  case Type::PackExpansion:
646  if (!IsStructurallyEquivalent(Context,
647  cast<PackExpansionType>(T1)->getPattern(),
648  cast<PackExpansionType>(T2)->getPattern()))
649  return false;
650  break;
651 
652  case Type::ObjCInterface: {
653  const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1);
654  const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2);
655  if (!IsStructurallyEquivalent(Context, Iface1->getDecl(),
656  Iface2->getDecl()))
657  return false;
658  break;
659  }
660 
661  case Type::ObjCTypeParam: {
662  const ObjCTypeParamType *Obj1 = cast<ObjCTypeParamType>(T1);
663  const ObjCTypeParamType *Obj2 = cast<ObjCTypeParamType>(T2);
664  if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl()))
665  return false;
666 
667  if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
668  return false;
669  for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
670  if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
671  Obj2->getProtocol(I)))
672  return false;
673  }
674  break;
675  }
676  case Type::ObjCObject: {
677  const ObjCObjectType *Obj1 = cast<ObjCObjectType>(T1);
678  const ObjCObjectType *Obj2 = cast<ObjCObjectType>(T2);
679  if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(),
680  Obj2->getBaseType()))
681  return false;
682  if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
683  return false;
684  for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
685  if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
686  Obj2->getProtocol(I)))
687  return false;
688  }
689  break;
690  }
691 
692  case Type::ObjCObjectPointer: {
693  const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1);
694  const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2);
695  if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(),
696  Ptr2->getPointeeType()))
697  return false;
698  break;
699  }
700 
701  case Type::Atomic: {
702  if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(),
703  cast<AtomicType>(T2)->getValueType()))
704  return false;
705  break;
706  }
707 
708  case Type::Pipe: {
709  if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(),
710  cast<PipeType>(T2)->getElementType()))
711  return false;
712  break;
713  }
714 
715  } // end switch
716 
717  return true;
718 }
719 
720 /// Determine structural equivalence of two fields.
721 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
722  FieldDecl *Field1, FieldDecl *Field2) {
723  RecordDecl *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
724 
725  // For anonymous structs/unions, match up the anonymous struct/union type
726  // declarations directly, so that we don't go off searching for anonymous
727  // types
728  if (Field1->isAnonymousStructOrUnion() &&
729  Field2->isAnonymousStructOrUnion()) {
730  RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl();
731  RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl();
732  return IsStructurallyEquivalent(Context, D1, D2);
733  }
734 
735  // Check for equivalent field names.
736  IdentifierInfo *Name1 = Field1->getIdentifier();
737  IdentifierInfo *Name2 = Field2->getIdentifier();
738  if (!::IsStructurallyEquivalent(Name1, Name2)) {
739  if (Context.Complain) {
740  Context.Diag2(Owner2->getLocation(),
741  Context.ErrorOnTagTypeMismatch
742  ? diag::err_odr_tag_type_inconsistent
743  : diag::warn_odr_tag_type_inconsistent)
744  << Context.ToCtx.getTypeDeclType(Owner2);
745  Context.Diag2(Field2->getLocation(), diag::note_odr_field_name)
746  << Field2->getDeclName();
747  Context.Diag1(Field1->getLocation(), diag::note_odr_field_name)
748  << Field1->getDeclName();
749  }
750  return false;
751  }
752 
753  if (!IsStructurallyEquivalent(Context, Field1->getType(),
754  Field2->getType())) {
755  if (Context.Complain) {
756  Context.Diag2(Owner2->getLocation(),
757  Context.ErrorOnTagTypeMismatch
758  ? diag::err_odr_tag_type_inconsistent
759  : diag::warn_odr_tag_type_inconsistent)
760  << Context.ToCtx.getTypeDeclType(Owner2);
761  Context.Diag2(Field2->getLocation(), diag::note_odr_field)
762  << Field2->getDeclName() << Field2->getType();
763  Context.Diag1(Field1->getLocation(), diag::note_odr_field)
764  << Field1->getDeclName() << Field1->getType();
765  }
766  return false;
767  }
768 
769  if (Field1->isBitField() != Field2->isBitField()) {
770  if (Context.Complain) {
771  Context.Diag2(Owner2->getLocation(),
772  Context.ErrorOnTagTypeMismatch
773  ? diag::err_odr_tag_type_inconsistent
774  : diag::warn_odr_tag_type_inconsistent)
775  << Context.ToCtx.getTypeDeclType(Owner2);
776  if (Field1->isBitField()) {
777  Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
778  << Field1->getDeclName() << Field1->getType()
779  << Field1->getBitWidthValue(Context.FromCtx);
780  Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
781  << Field2->getDeclName();
782  } else {
783  Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
784  << Field2->getDeclName() << Field2->getType()
785  << Field2->getBitWidthValue(Context.ToCtx);
786  Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field)
787  << Field1->getDeclName();
788  }
789  }
790  return false;
791  }
792 
793  if (Field1->isBitField()) {
794  // Make sure that the bit-fields are the same length.
795  unsigned Bits1 = Field1->getBitWidthValue(Context.FromCtx);
796  unsigned Bits2 = Field2->getBitWidthValue(Context.ToCtx);
797 
798  if (Bits1 != Bits2) {
799  if (Context.Complain) {
800  Context.Diag2(Owner2->getLocation(),
801  Context.ErrorOnTagTypeMismatch
802  ? diag::err_odr_tag_type_inconsistent
803  : diag::warn_odr_tag_type_inconsistent)
804  << Context.ToCtx.getTypeDeclType(Owner2);
805  Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
806  << Field2->getDeclName() << Field2->getType() << Bits2;
807  Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
808  << Field1->getDeclName() << Field1->getType() << Bits1;
809  }
810  return false;
811  }
812  }
813 
814  return true;
815 }
816 
817 /// Determine structural equivalence of two records.
818 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
819  RecordDecl *D1, RecordDecl *D2) {
820  if (D1->isUnion() != D2->isUnion()) {
821  if (Context.Complain) {
822  Context.Diag2(D2->getLocation(),
823  Context.ErrorOnTagTypeMismatch
824  ? diag::err_odr_tag_type_inconsistent
825  : diag::warn_odr_tag_type_inconsistent)
826  << Context.ToCtx.getTypeDeclType(D2);
827  Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
828  << D1->getDeclName() << (unsigned)D1->getTagKind();
829  }
830  return false;
831  }
832 
834  // If both anonymous structs/unions are in a record context, make sure
835  // they occur in the same location in the context records.
836  if (Optional<unsigned> Index1 =
837  StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) {
838  if (Optional<unsigned> Index2 =
839  StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(
840  D2)) {
841  if (*Index1 != *Index2)
842  return false;
843  }
844  }
845  }
846 
847  // If both declarations are class template specializations, we know
848  // the ODR applies, so check the template and template arguments.
850  dyn_cast<ClassTemplateSpecializationDecl>(D1);
852  dyn_cast<ClassTemplateSpecializationDecl>(D2);
853  if (Spec1 && Spec2) {
854  // Check that the specialized templates are the same.
855  if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
856  Spec2->getSpecializedTemplate()))
857  return false;
858 
859  // Check that the template arguments are the same.
860  if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
861  return false;
862 
863  for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
864  if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I),
865  Spec2->getTemplateArgs().get(I)))
866  return false;
867  }
868  // If one is a class template specialization and the other is not, these
869  // structures are different.
870  else if (Spec1 || Spec2)
871  return false;
872 
873  // Compare the definitions of these two records. If either or both are
874  // incomplete, we assume that they are equivalent.
875  D1 = D1->getDefinition();
876  D2 = D2->getDefinition();
877  if (!D1 || !D2)
878  return true;
879 
880  if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
881  if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
882  if (D1CXX->hasExternalLexicalStorage() &&
883  !D1CXX->isCompleteDefinition()) {
884  D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX);
885  }
886 
887  if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
888  if (Context.Complain) {
889  Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
890  << Context.ToCtx.getTypeDeclType(D2);
891  Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
892  << D2CXX->getNumBases();
893  Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
894  << D1CXX->getNumBases();
895  }
896  return false;
897  }
898 
899  // Check the base classes.
900  for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
901  BaseEnd1 = D1CXX->bases_end(),
902  Base2 = D2CXX->bases_begin();
903  Base1 != BaseEnd1; ++Base1, ++Base2) {
904  if (!IsStructurallyEquivalent(Context, Base1->getType(),
905  Base2->getType())) {
906  if (Context.Complain) {
907  Context.Diag2(D2->getLocation(),
908  diag::warn_odr_tag_type_inconsistent)
909  << Context.ToCtx.getTypeDeclType(D2);
910  Context.Diag2(Base2->getLocStart(), diag::note_odr_base)
911  << Base2->getType() << Base2->getSourceRange();
912  Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
913  << Base1->getType() << Base1->getSourceRange();
914  }
915  return false;
916  }
917 
918  // Check virtual vs. non-virtual inheritance mismatch.
919  if (Base1->isVirtual() != Base2->isVirtual()) {
920  if (Context.Complain) {
921  Context.Diag2(D2->getLocation(),
922  diag::warn_odr_tag_type_inconsistent)
923  << Context.ToCtx.getTypeDeclType(D2);
924  Context.Diag2(Base2->getLocStart(), diag::note_odr_virtual_base)
925  << Base2->isVirtual() << Base2->getSourceRange();
926  Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
927  << Base1->isVirtual() << Base1->getSourceRange();
928  }
929  return false;
930  }
931  }
932  } else if (D1CXX->getNumBases() > 0) {
933  if (Context.Complain) {
934  Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
935  << Context.ToCtx.getTypeDeclType(D2);
936  const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
937  Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
938  << Base1->getType() << Base1->getSourceRange();
939  Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
940  }
941  return false;
942  }
943  }
944 
945  // Check the fields for consistency.
947  Field2End = D2->field_end();
948  for (RecordDecl::field_iterator Field1 = D1->field_begin(),
949  Field1End = D1->field_end();
950  Field1 != Field1End; ++Field1, ++Field2) {
951  if (Field2 == Field2End) {
952  if (Context.Complain) {
953  Context.Diag2(D2->getLocation(),
954  Context.ErrorOnTagTypeMismatch
955  ? diag::err_odr_tag_type_inconsistent
956  : diag::warn_odr_tag_type_inconsistent)
957  << Context.ToCtx.getTypeDeclType(D2);
958  Context.Diag1(Field1->getLocation(), diag::note_odr_field)
959  << Field1->getDeclName() << Field1->getType();
960  Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
961  }
962  return false;
963  }
964 
965  if (!IsStructurallyEquivalent(Context, *Field1, *Field2))
966  return false;
967  }
968 
969  if (Field2 != Field2End) {
970  if (Context.Complain) {
971  Context.Diag2(D2->getLocation(),
972  Context.ErrorOnTagTypeMismatch
973  ? diag::err_odr_tag_type_inconsistent
974  : diag::warn_odr_tag_type_inconsistent)
975  << Context.ToCtx.getTypeDeclType(D2);
976  Context.Diag2(Field2->getLocation(), diag::note_odr_field)
977  << Field2->getDeclName() << Field2->getType();
978  Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
979  }
980  return false;
981  }
982 
983  return true;
984 }
985 
986 /// Determine structural equivalence of two enums.
987 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
988  EnumDecl *D1, EnumDecl *D2) {
990  EC2End = D2->enumerator_end();
992  EC1End = D1->enumerator_end();
993  EC1 != EC1End; ++EC1, ++EC2) {
994  if (EC2 == EC2End) {
995  if (Context.Complain) {
996  Context.Diag2(D2->getLocation(),
997  Context.ErrorOnTagTypeMismatch
998  ? diag::err_odr_tag_type_inconsistent
999  : diag::warn_odr_tag_type_inconsistent)
1000  << Context.ToCtx.getTypeDeclType(D2);
1001  Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
1002  << EC1->getDeclName() << EC1->getInitVal().toString(10);
1003  Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
1004  }
1005  return false;
1006  }
1007 
1008  llvm::APSInt Val1 = EC1->getInitVal();
1009  llvm::APSInt Val2 = EC2->getInitVal();
1010  if (!llvm::APSInt::isSameValue(Val1, Val2) ||
1011  !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
1012  if (Context.Complain) {
1013  Context.Diag2(D2->getLocation(),
1014  Context.ErrorOnTagTypeMismatch
1015  ? diag::err_odr_tag_type_inconsistent
1016  : diag::warn_odr_tag_type_inconsistent)
1017  << Context.ToCtx.getTypeDeclType(D2);
1018  Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
1019  << EC2->getDeclName() << EC2->getInitVal().toString(10);
1020  Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
1021  << EC1->getDeclName() << EC1->getInitVal().toString(10);
1022  }
1023  return false;
1024  }
1025  }
1026 
1027  if (EC2 != EC2End) {
1028  if (Context.Complain) {
1029  Context.Diag2(D2->getLocation(),
1030  Context.ErrorOnTagTypeMismatch
1031  ? diag::err_odr_tag_type_inconsistent
1032  : diag::warn_odr_tag_type_inconsistent)
1033  << Context.ToCtx.getTypeDeclType(D2);
1034  Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
1035  << EC2->getDeclName() << EC2->getInitVal().toString(10);
1036  Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
1037  }
1038  return false;
1039  }
1040 
1041  return true;
1042 }
1043 
1044 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1045  TemplateParameterList *Params1,
1046  TemplateParameterList *Params2) {
1047  if (Params1->size() != Params2->size()) {
1048  if (Context.Complain) {
1049  Context.Diag2(Params2->getTemplateLoc(),
1050  diag::err_odr_different_num_template_parameters)
1051  << Params1->size() << Params2->size();
1052  Context.Diag1(Params1->getTemplateLoc(),
1053  diag::note_odr_template_parameter_list);
1054  }
1055  return false;
1056  }
1057 
1058  for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
1059  if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
1060  if (Context.Complain) {
1061  Context.Diag2(Params2->getParam(I)->getLocation(),
1062  diag::err_odr_different_template_parameter_kind);
1063  Context.Diag1(Params1->getParam(I)->getLocation(),
1064  diag::note_odr_template_parameter_here);
1065  }
1066  return false;
1067  }
1068 
1069  if (!Context.IsStructurallyEquivalent(Params1->getParam(I),
1070  Params2->getParam(I))) {
1071 
1072  return false;
1073  }
1074  }
1075 
1076  return true;
1077 }
1078 
1079 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1081  TemplateTypeParmDecl *D2) {
1082  if (D1->isParameterPack() != D2->isParameterPack()) {
1083  if (Context.Complain) {
1084  Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
1085  << D2->isParameterPack();
1086  Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
1087  << D1->isParameterPack();
1088  }
1089  return false;
1090  }
1091 
1092  return true;
1093 }
1094 
1095 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1098  if (D1->isParameterPack() != D2->isParameterPack()) {
1099  if (Context.Complain) {
1100  Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
1101  << D2->isParameterPack();
1102  Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
1103  << D1->isParameterPack();
1104  }
1105  return false;
1106  }
1107 
1108  // Check types.
1109  if (!Context.IsStructurallyEquivalent(D1->getType(), D2->getType())) {
1110  if (Context.Complain) {
1111  Context.Diag2(D2->getLocation(),
1112  diag::err_odr_non_type_parameter_type_inconsistent)
1113  << D2->getType() << D1->getType();
1114  Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
1115  << D1->getType();
1116  }
1117  return false;
1118  }
1119 
1120  return true;
1121 }
1122 
1123 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1126  if (D1->isParameterPack() != D2->isParameterPack()) {
1127  if (Context.Complain) {
1128  Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
1129  << D2->isParameterPack();
1130  Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
1131  << D1->isParameterPack();
1132  }
1133  return false;
1134  }
1135 
1136  // Check template parameter lists.
1137  return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
1138  D2->getTemplateParameters());
1139 }
1140 
1141 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1142  ClassTemplateDecl *D1,
1143  ClassTemplateDecl *D2) {
1144  // Check template parameters.
1145  if (!IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
1146  D2->getTemplateParameters()))
1147  return false;
1148 
1149  // Check the templated declaration.
1150  return Context.IsStructurallyEquivalent(D1->getTemplatedDecl(),
1151  D2->getTemplatedDecl());
1152 }
1153 
1154 /// Determine structural equivalence of two declarations.
1155 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1156  Decl *D1, Decl *D2) {
1157  // FIXME: Check for known structural equivalences via a callback of some sort.
1158 
1159  // Check whether we already know that these two declarations are not
1160  // structurally equivalent.
1161  if (Context.NonEquivalentDecls.count(
1162  std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl())))
1163  return false;
1164 
1165  // Determine whether we've already produced a tentative equivalence for D1.
1166  Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()];
1167  if (EquivToD1)
1168  return EquivToD1 == D2->getCanonicalDecl();
1169 
1170  // Produce a tentative equivalence D1 <-> D2, which will be checked later.
1171  EquivToD1 = D2->getCanonicalDecl();
1172  Context.DeclsToCheck.push_back(D1->getCanonicalDecl());
1173  return true;
1174 }
1175 } // namespace
1176 
1177 namespace clang {
1178 
1179 DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc,
1180  unsigned DiagID) {
1181  assert(Complain && "Not allowed to complain");
1182  if (LastDiagFromC2)
1183  FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics());
1184  LastDiagFromC2 = false;
1185  return FromCtx.getDiagnostics().Report(Loc, DiagID);
1186 }
1187 
1188 DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc,
1189  unsigned DiagID) {
1190  assert(Complain && "Not allowed to complain");
1191  if (!LastDiagFromC2)
1192  ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics());
1193  LastDiagFromC2 = true;
1194  return ToCtx.getDiagnostics().Report(Loc, DiagID);
1195 }
1196 
1198 StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) {
1199  ASTContext &Context = Anon->getASTContext();
1200  QualType AnonTy = Context.getRecordType(Anon);
1201 
1202  RecordDecl *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext());
1203  if (!Owner)
1204  return None;
1205 
1206  unsigned Index = 0;
1207  for (const auto *D : Owner->noload_decls()) {
1208  const auto *F = dyn_cast<FieldDecl>(D);
1209  if (!F)
1210  continue;
1211 
1212  if (F->isAnonymousStructOrUnion()) {
1213  if (Context.hasSameType(F->getType(), AnonTy))
1214  break;
1215  ++Index;
1216  continue;
1217  }
1218 
1219  // If the field looks like this:
1220  // struct { ... } A;
1221  QualType FieldType = F->getType();
1222  if (const auto *RecType = dyn_cast<RecordType>(FieldType)) {
1223  const RecordDecl *RecDecl = RecType->getDecl();
1224  if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) {
1225  if (Context.hasSameType(FieldType, AnonTy))
1226  break;
1227  ++Index;
1228  continue;
1229  }
1230  }
1231  }
1232 
1233  return Index;
1234 }
1235 
1236 bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1,
1237  Decl *D2) {
1238  if (!::IsStructurallyEquivalent(*this, D1, D2))
1239  return false;
1240 
1241  return !Finish();
1242 }
1243 
1244 bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1,
1245  QualType T2) {
1246  if (!::IsStructurallyEquivalent(*this, T1, T2))
1247  return false;
1248 
1249  return !Finish();
1250 }
1251 
1252 bool StructuralEquivalenceContext::Finish() {
1253  while (!DeclsToCheck.empty()) {
1254  // Check the next declaration.
1255  Decl *D1 = DeclsToCheck.front();
1256  DeclsToCheck.pop_front();
1257 
1258  Decl *D2 = TentativeEquivalences[D1];
1259  assert(D2 && "Unrecorded tentative equivalence?");
1260 
1261  bool Equivalent = true;
1262 
1263  // FIXME: Switch on all declaration kinds. For now, we're just going to
1264  // check the obvious ones.
1265  if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) {
1266  if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) {
1267  // Check for equivalent structure names.
1268  IdentifierInfo *Name1 = Record1->getIdentifier();
1269  if (!Name1 && Record1->getTypedefNameForAnonDecl())
1270  Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier();
1271  IdentifierInfo *Name2 = Record2->getIdentifier();
1272  if (!Name2 && Record2->getTypedefNameForAnonDecl())
1273  Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier();
1274  if (!::IsStructurallyEquivalent(Name1, Name2) ||
1275  !::IsStructurallyEquivalent(*this, Record1, Record2))
1276  Equivalent = false;
1277  } else {
1278  // Record/non-record mismatch.
1279  Equivalent = false;
1280  }
1281  } else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) {
1282  if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) {
1283  // Check for equivalent enum names.
1284  IdentifierInfo *Name1 = Enum1->getIdentifier();
1285  if (!Name1 && Enum1->getTypedefNameForAnonDecl())
1286  Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier();
1287  IdentifierInfo *Name2 = Enum2->getIdentifier();
1288  if (!Name2 && Enum2->getTypedefNameForAnonDecl())
1289  Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier();
1290  if (!::IsStructurallyEquivalent(Name1, Name2) ||
1291  !::IsStructurallyEquivalent(*this, Enum1, Enum2))
1292  Equivalent = false;
1293  } else {
1294  // Enum/non-enum mismatch
1295  Equivalent = false;
1296  }
1297  } else if (TypedefNameDecl *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) {
1298  if (TypedefNameDecl *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) {
1299  if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
1300  Typedef2->getIdentifier()) ||
1301  !::IsStructurallyEquivalent(*this, Typedef1->getUnderlyingType(),
1302  Typedef2->getUnderlyingType()))
1303  Equivalent = false;
1304  } else {
1305  // Typedef/non-typedef mismatch.
1306  Equivalent = false;
1307  }
1308  } else if (ClassTemplateDecl *ClassTemplate1 =
1309  dyn_cast<ClassTemplateDecl>(D1)) {
1310  if (ClassTemplateDecl *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) {
1311  if (!::IsStructurallyEquivalent(ClassTemplate1->getIdentifier(),
1312  ClassTemplate2->getIdentifier()) ||
1313  !::IsStructurallyEquivalent(*this, ClassTemplate1, ClassTemplate2))
1314  Equivalent = false;
1315  } else {
1316  // Class template/non-class-template mismatch.
1317  Equivalent = false;
1318  }
1319  } else if (TemplateTypeParmDecl *TTP1 =
1320  dyn_cast<TemplateTypeParmDecl>(D1)) {
1321  if (TemplateTypeParmDecl *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) {
1322  if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
1323  Equivalent = false;
1324  } else {
1325  // Kind mismatch.
1326  Equivalent = false;
1327  }
1328  } else if (NonTypeTemplateParmDecl *NTTP1 =
1329  dyn_cast<NonTypeTemplateParmDecl>(D1)) {
1330  if (NonTypeTemplateParmDecl *NTTP2 =
1331  dyn_cast<NonTypeTemplateParmDecl>(D2)) {
1332  if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2))
1333  Equivalent = false;
1334  } else {
1335  // Kind mismatch.
1336  Equivalent = false;
1337  }
1338  } else if (TemplateTemplateParmDecl *TTP1 =
1339  dyn_cast<TemplateTemplateParmDecl>(D1)) {
1340  if (TemplateTemplateParmDecl *TTP2 =
1341  dyn_cast<TemplateTemplateParmDecl>(D2)) {
1342  if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
1343  Equivalent = false;
1344  } else {
1345  // Kind mismatch.
1346  Equivalent = false;
1347  }
1348  }
1349 
1350  if (!Equivalent) {
1351  // Note that these two declarations are not equivalent (and we already
1352  // know about it).
1353  NonEquivalentDecls.insert(
1354  std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl()));
1355  return true;
1356  }
1357  // FIXME: Check other declaration kinds!
1358  }
1359 
1360  return false;
1361 }
1362 } // namespace clang
unsigned getNumElements() const
Definition: Type.h:2822
Defines the clang::ASTContext interface.
QualType getExceptionType(unsigned i) const
Definition: Type.h:3402
Represents a type that was referred to using an elaborated type keyword, e.g., struct S...
Definition: Type.h:4576
Expr * getSizeExpr() const
Definition: Type.h:2772
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.h:5177
bool isVariadic() const
Definition: Type.h:3442
unsigned getDepth() const
Definition: Type.h:4024
A (possibly-)qualified type.
Definition: Type.h:616
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
Definition: TemplateBase.h:279
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2434
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:258
IdentifierInfo * getIdentifier() const
getIdentifier - Get the identifier that names this declaration, if there is one.
Definition: Decl.h:232
bool isParameterPack() const
Returns whether this is a parameter pack.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:2923
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
unsigned getNumArgs() const
Retrieve the number of template arguments.
Definition: Type.h:4734
OverloadedOperatorKind getOperator() const
Return the overloaded operator to which this template name refers.
Definition: TemplateName.h:484
Defines the SourceManager interface.
Represents a qualified type name for which the type name is dependent.
Definition: Type.h:4642
CXXRecordDecl * getTemplatedDecl() const
Get the underlying class declarations of the template.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:81
pack_iterator pack_begin() const
Iterator referencing the first argument of a template argument pack.
Definition: TemplateBase.h:316
QualType getPointeeType() const
Definition: Type.h:2461
CXXRecordDecl * getAsRecordDecl() const
Retrieve the record declaration stored in this nested name specifier.
enumerator_iterator enumerator_end() const
Definition: Decl.h:3209
QualType getRecordType(const RecordDecl *Decl) const
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2497
TemplateTemplateParmDecl * getParameterPack() const
Retrieve the template template parameter pack being substituted.
Definition: TemplateName.h:133
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:112
unsigned getIndex() const
Definition: Type.h:4025
Expr * getAsExpr() const
Retrieve the template argument as an expression.
Definition: TemplateBase.h:306
enumerator_iterator enumerator_begin() const
Definition: Decl.h:3202
const TemplateArgument & get(unsigned Idx) const
Retrieve the template argument at a given index.
Definition: DeclTemplate.h:238
bool isSpelledAsLValue() const
Definition: Type.h:2377
const llvm::APInt & getSize() const
Definition: Type.h:2568
field_iterator field_begin() const
Definition: Decl.cpp:3912
ASTContext & FromCtx
AST contexts for which we are checking structural equivalence.
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:50
Qualifiers getIndexTypeQualifiers() const
Definition: Type.h:2535
TemplateTemplateParmDecl * getParameter() const
Definition: TemplateName.h:327
Represents the result of substituting a type for a template type parameter.
Definition: Type.h:4062
unsigned getNumArgs() const
Retrieve the number of template arguments.
Definition: Type.h:4390
const IdentifierInfo * getIdentifier() const
Returns the identifier to which this template name refers.
Definition: TemplateName.h:474
unsigned getNumParams() const
Definition: Type.h:3338
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3354
const IdentifierInfo * getIdentifier() const
Retrieve the type named by the typename specifier as an identifier.
Definition: Type.h:4669
QualType getElementType() const
Definition: Type.h:2773
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
OverloadedTemplateStorage * getAsOverloadedTemplate() const
Retrieve the underlying, overloaded function template.
Represents a class type in Objective C.
Definition: Type.h:4969
Expr * getSizeExpr() const
Definition: Type.h:2664
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:128
Represents a dependent template name that cannot be resolved prior to template instantiation.
Definition: TemplateName.h:412
bool isIdentifier() const
Determine whether this template name refers to an identifier.
Definition: TemplateName.h:471
SourceLocation getLocStart() const LLVM_READONLY
Definition: DeclCXX.h:203
bool ErrorOnTagTypeMismatch
Whether warn or error on tag type mismatches.
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2366
NameKind getKind() const
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:253
NestedNameSpecifier * getQualifier() const
Retrieve the qualification on this type.
Definition: Type.h:4662
TagKind getTagKind() const
Definition: Decl.h:3019
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2103
Represents the result of substituting a set of types for a template type parameter pack...
Definition: Type.h:4117
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1295
bool StrictTypeSpelling
Whether we're being strict about the spelling of types when unifying two types.
TemplateArgument getArgumentPack() const
Definition: Type.cpp:3113
bool isParameterPack() const
Whether this parameter is a non-type template parameter pack.
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:5030
TemplateName getTemplateName() const
Retrieve the name of the template that we are specializing.
Definition: Type.h:4382
QualType getReturnType() const
Definition: Type.h:3065
TemplateArgument getArgumentPack() const
Retrieve the template template argument pack with which this parameter was substituted.
Expr * getNoexceptExpr() const
Definition: Type.h:3406
QualifiedTemplateName * getAsQualifiedTemplateName() const
Retrieve the underlying qualified template name structure, if any.
NestedNameSpecifier * getQualifier() const
Retrieve the qualification on this type.
Definition: Type.h:4603
TypeClass getTypeClass() const
Definition: Type.h:1555
NestedNameSpecifier * getQualifier() const
Return the nested name specifier that qualifies this name.
Definition: TemplateName.h:468
detail::InMemoryDirectory::const_iterator I
QualType getType() const
Definition: Decl.h:589
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:841
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:2759
const TemplateTypeParmType * getReplacedParameter() const
Gets the template parameter that was substituted for.
Definition: Type.h:4138
field_iterator field_end() const
Definition: Decl.h:3486
bool IsStructurallyEquivalent(Decl *D1, Decl *D2)
Determine whether the two declarations are structurally equivalent.
bool isUnion() const
Definition: Decl.h:3028
QualType getInjectedSpecializationType() const
Definition: Type.h:4469
ExtInfo getExtInfo() const
Definition: Type.h:3074
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:953
QualType getParamType(unsigned i) const
Definition: Type.h:3339
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3129
ExceptionSpecificationType getExceptionSpecType() const
Get the kind of exception specification on this function.
Definition: Type.h:3371
decl_range noload_decls() const
noload_decls_begin/end - Iterate over the declarations stored in this context that are currently load...
Definition: DeclBase.h:1545
ASTContext * Context
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:414
Represents an array type in C++ whose size is a value-dependent expression.
Definition: Type.h:2700
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID)
Expr - This represents one expression.
Definition: Expr.h:105
StringRef getName() const
Return the actual identifier string.
Declaration of a template type parameter.
Kind getKind() const
Definition: DeclBase.h:410
QualType getNamedType() const
Retrieve the type named by the qualified-id.
Definition: Type.h:4606
ArgKind getKind() const
Return the kind of stored template argument.
Definition: TemplateBase.h:213
DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID)
DeclContext * getDeclContext()
Definition: DeclBase.h:416
A structure for storing the information associated with a substituted template template parameter...
Definition: TemplateName.h:314
SubstTemplateTemplateParmPackStorage * getAsSubstTemplateTemplateParmPack() const
Retrieve the substituted template template parameter pack, if known.
NonTypeTemplateParmDecl - Declares a non-type template parameter, e.g., "Size" in.
Represents a C++ template name within the type system.
Definition: TemplateName.h:176
bool isParameterPack() const
Whether this template template parameter is a template parameter pack.
TemplateName getAsTemplateOrTemplatePattern() const
Retrieve the template argument as a template name; if the argument is a pack expansion, return the pattern as a template name.
Definition: TemplateBase.h:266
Represents a GCC generic vector type.
Definition: Type.h:2797
DeclarationName getDeclName() const
getDeclName - Get the actual, stored name of the declaration, which may be a special name...
Definition: Decl.h:258
TemplateTemplateParmDecl - Declares a template template parameter, e.g., "T" in.
ClassTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
QualType getElementType() const
Definition: Type.h:2821
RecordDecl * getDefinition() const
getDefinition - Returns the RecordDecl that actually defines this struct/union/class.
Definition: Decl.h:3473
QualType getReplacementType() const
Gets the type that was substituted for the template parameter.
Definition: Type.h:4083
const TemplateTypeParmType * getReplacedParameter() const
Gets the template parameter that was substituted for.
Definition: Type.h:4077
NamespaceDecl * getAsNamespace() const
Retrieve the namespace stored in this nested name specifier.
const IdentifierInfo * getIdentifier() const
Definition: Type.h:4726
Encodes a location in the source.
bool isAnonymousStructOrUnion() const
isAnonymousStructOrUnion - Determines whether this field is a representative for an anonymous struct ...
Definition: Decl.cpp:3589
ExternalASTSource * getExternalSource() const
Retrieve a pointer to the external AST source associated with this AST context, if any...
Definition: ASTContext.h:1014
TemplateName getAsTemplate() const
Retrieve the template name for a template name argument.
Definition: TemplateBase.h:259
unsigned getBitWidthValue(const ASTContext &Ctx) const
Definition: Decl.cpp:3599
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5165
A structure for storing an already-substituted template template parameter pack.
Definition: TemplateName.h:119
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:346
static QualType getUnderlyingType(const SubRegion *R)
VectorKind getVectorKind() const
Definition: Type.h:2830
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
SubstTemplateTemplateParmStorage * getAsSubstTemplateTemplateParm() const
Retrieve the substituted template template parameter, if known.
NamespaceAliasDecl * getAsNamespaceAlias() const
Retrieve the namespace alias stored in this nested name specifier.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6105
ObjCProtocolDecl * getProtocol(unsigned I) const
Fetch a protocol by index.
Definition: Type.h:4887
ObjCTypeParamDecl * getDecl() const
Definition: Type.h:4938
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
Definition: TemplateBase.h:242
The injected class name of a C++ class template or class template partial specialization.
Definition: Type.h:4437
Expr * getSizeExpr() const
Definition: Type.h:2720
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:2682
bool isAnonymousStructOrUnion() const
isAnonymousStructOrUnion - Whether this is an anonymous struct or union.
Definition: Decl.h:3421
Represents a template argument.
Definition: TemplateBase.h:40
QualType getAsType() const
Retrieve the type for a type template argument.
Definition: TemplateBase.h:235
Represents a template name that was expressed as a qualified name.
Definition: TemplateName.h:355
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
bool isParameterPack() const
Definition: Type.h:4026
EnumDecl - Represents an enum.
Definition: Decl.h:3102
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2442
unsigned getNumProtocols() const
Return the number of qualifying protocols in this type, or 0 if there are none.
Definition: Type.h:4882
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2087
bool isOverloadedOperator() const
Determine whether this template name refers to an overloaded operator.
Definition: TemplateName.h:481
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1557
const TemplateArgument & getArg(unsigned Idx) const
Definition: TemplateBase.h:666
QualType getPointeeType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5235
Represents a pointer to an Objective C object.
Definition: Type.h:5220
llvm::DenseSet< std::pair< Decl *, Decl * > > & NonEquivalentDecls
Declaration (from, to) pairs that are known not to be equivalent (which we have already complained ab...
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3784
unsigned getTypeQuals() const
Definition: Type.h:3454
QualType getIntegralType() const
Retrieve the type of the integral value.
Definition: TemplateBase.h:291
virtual void CompleteType(TagDecl *Tag)
Gives the external AST source an opportunity to complete an incomplete type.
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2360
TemplateDecl * getDecl() const
The template declaration that this qualified name refers to.
Definition: TemplateName.h:386
NestedNameSpecifier * getQualifier() const
Definition: Type.h:4725
const TemplateArgument & getArg(unsigned Idx) const
Retrieve a specific template argument as a type.
Definition: TemplateBase.h:660
Represents a base class of a C++ class.
Definition: DeclCXX.h:158
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DependentTemplateName * getAsDependentTemplateName() const
Retrieve the underlying dependent template name structure, if any.
llvm::DenseMap< Decl *, Decl * > TentativeEquivalences
The set of "tentative" equivalences between two canonical declarations, mapping from a declaration in...
const Type * getClass() const
Definition: Type.h:2475
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
Represents a type parameter type in Objective C.
Definition: Type.h:4900
unsigned pack_size() const
The number of template arguments in the given template argument pack.
Definition: TemplateBase.h:336
Represents a C++ struct/union/class.
Definition: DeclCXX.h:267
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:4695
ArraySizeModifier getSizeModifier() const
Definition: Type.h:2532
ElaboratedTypeKeyword getKeyword() const
Definition: Type.h:4537
A structure for storing the information associated with an overloaded template name.
Definition: TemplateName.h:93
std::deque< Decl * > DeclsToCheck
Queue of declarations in the first context whose equivalence with a declaration in the second context...
Declaration of a class template.
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:410
NestedNameSpecifier * getQualifier() const
Return the nested name specifier that qualifies this name.
Definition: TemplateName.h:378
QualType getPointeeTypeAsWritten() const
Definition: Type.h:2380
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:897
Represents a type template specialization; the template must be a class template, a type alias templa...
Definition: Type.h:4297
QualType getElementType() const
Definition: Type.h:2531
bool Complain
Whether to complain about failures.
SourceLocation getLocation() const
Definition: DeclBase.h:407
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2648
SourceRange getSourceRange() const LLVM_READONLY
Retrieves the source range that contains the entire base specifier.
Definition: DeclCXX.h:202
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:683
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2553
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5516
bool isInnerRef() const
Definition: Type.h:2378
unsigned getNumExceptions() const
Definition: Type.h:3401
SourceLocation getTemplateLoc() const
Definition: DeclTemplate.h:152