clang  5.0.0
CGExprScalar.cpp
Go to the documentation of this file.
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/TargetInfo.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Module.h"
37 #include <cstdarg>
38 
39 using namespace clang;
40 using namespace CodeGen;
41 using llvm::Value;
42 
43 //===----------------------------------------------------------------------===//
44 // Scalar Expression Emitter
45 //===----------------------------------------------------------------------===//
46 
47 namespace {
48 
49 /// Determine whether the given binary operation may overflow.
50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
52 /// the returned overflow check is precise. The returned value is 'true' for
53 /// all other opcodes, to be conservative.
54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
55  BinaryOperator::Opcode Opcode, bool Signed,
56  llvm::APInt &Result) {
57  // Assume overflow is possible, unless we can prove otherwise.
58  bool Overflow = true;
59  const auto &LHSAP = LHS->getValue();
60  const auto &RHSAP = RHS->getValue();
61  if (Opcode == BO_Add) {
62  if (Signed)
63  Result = LHSAP.sadd_ov(RHSAP, Overflow);
64  else
65  Result = LHSAP.uadd_ov(RHSAP, Overflow);
66  } else if (Opcode == BO_Sub) {
67  if (Signed)
68  Result = LHSAP.ssub_ov(RHSAP, Overflow);
69  else
70  Result = LHSAP.usub_ov(RHSAP, Overflow);
71  } else if (Opcode == BO_Mul) {
72  if (Signed)
73  Result = LHSAP.smul_ov(RHSAP, Overflow);
74  else
75  Result = LHSAP.umul_ov(RHSAP, Overflow);
76  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77  if (Signed && !RHS->isZero())
78  Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79  else
80  return false;
81  }
82  return Overflow;
83 }
84 
85 struct BinOpInfo {
86  Value *LHS;
87  Value *RHS;
88  QualType Ty; // Computation Type.
89  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90  FPOptions FPFeatures;
91  const Expr *E; // Entire expr, for error unsupported. May not be binop.
92 
93  /// Check if the binop can result in integer overflow.
94  bool mayHaveIntegerOverflow() const {
95  // Without constant input, we can't rule out overflow.
96  auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97  auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98  if (!LHSCI || !RHSCI)
99  return true;
100 
101  llvm::APInt Result;
102  return ::mayHaveIntegerOverflow(
103  LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104  }
105 
106  /// Check if the binop computes a division or a remainder.
107  bool isDivremOp() const {
108  return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109  Opcode == BO_RemAssign;
110  }
111 
112  /// Check if the binop can result in an integer division by zero.
113  bool mayHaveIntegerDivisionByZero() const {
114  if (isDivremOp())
115  if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116  return CI->isZero();
117  return true;
118  }
119 
120  /// Check if the binop can result in a float division by zero.
121  bool mayHaveFloatDivisionByZero() const {
122  if (isDivremOp())
123  if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124  return CFP->isZero();
125  return true;
126  }
127 };
128 
129 static bool MustVisitNullValue(const Expr *E) {
130  // If a null pointer expression's type is the C++0x nullptr_t, then
131  // it's not necessarily a simple constant and it must be evaluated
132  // for its potential side effects.
133  return E->getType()->isNullPtrType();
134 }
135 
136 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
138  const Expr *E) {
139  const Expr *Base = E->IgnoreImpCasts();
140  if (E == Base)
141  return llvm::None;
142 
143  QualType BaseTy = Base->getType();
144  if (!BaseTy->isPromotableIntegerType() ||
145  Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
146  return llvm::None;
147 
148  return BaseTy;
149 }
150 
151 /// Check if \p E is a widened promoted integer.
152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
153  return getUnwidenedIntegerType(Ctx, E).hasValue();
154 }
155 
156 /// Check if we can skip the overflow check for \p Op.
157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
158  assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
159  "Expected a unary or binary operator");
160 
161  // If the binop has constant inputs and we can prove there is no overflow,
162  // we can elide the overflow check.
163  if (!Op.mayHaveIntegerOverflow())
164  return true;
165 
166  // If a unary op has a widened operand, the op cannot overflow.
167  if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
168  return IsWidenedIntegerOp(Ctx, UO->getSubExpr());
169 
170  // We usually don't need overflow checks for binops with widened operands.
171  // Multiplication with promoted unsigned operands is a special case.
172  const auto *BO = cast<BinaryOperator>(Op.E);
173  auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
174  if (!OptionalLHSTy)
175  return false;
176 
177  auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
178  if (!OptionalRHSTy)
179  return false;
180 
181  QualType LHSTy = *OptionalLHSTy;
182  QualType RHSTy = *OptionalRHSTy;
183 
184  // This is the simple case: binops without unsigned multiplication, and with
185  // widened operands. No overflow check is needed here.
186  if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
187  !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
188  return true;
189 
190  // For unsigned multiplication the overflow check can be elided if either one
191  // of the unpromoted types are less than half the size of the promoted type.
192  unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
193  return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
194  (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
195 }
196 
197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
198 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
199  FPOptions FPFeatures) {
200  FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
201 }
202 
203 /// Propagate fast-math flags from \p Op to the instruction in \p V.
204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
205  if (auto *I = dyn_cast<llvm::Instruction>(V)) {
206  llvm::FastMathFlags FMF = I->getFastMathFlags();
207  updateFastMathFlags(FMF, Op.FPFeatures);
208  I->setFastMathFlags(FMF);
209  }
210  return V;
211 }
212 
213 class ScalarExprEmitter
214  : public StmtVisitor<ScalarExprEmitter, Value*> {
215  CodeGenFunction &CGF;
217  bool IgnoreResultAssign;
218  llvm::LLVMContext &VMContext;
219 public:
220 
221  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
222  : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
223  VMContext(cgf.getLLVMContext()) {
224  }
225 
226  //===--------------------------------------------------------------------===//
227  // Utilities
228  //===--------------------------------------------------------------------===//
229 
230  bool TestAndClearIgnoreResultAssign() {
231  bool I = IgnoreResultAssign;
232  IgnoreResultAssign = false;
233  return I;
234  }
235 
236  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
237  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
238  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
239  return CGF.EmitCheckedLValue(E, TCK);
240  }
241 
242  void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
243  const BinOpInfo &Info);
244 
245  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
246  return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
247  }
248 
249  void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
250  const AlignValueAttr *AVAttr = nullptr;
251  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
252  const ValueDecl *VD = DRE->getDecl();
253 
254  if (VD->getType()->isReferenceType()) {
255  if (const auto *TTy =
256  dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
257  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
258  } else {
259  // Assumptions for function parameters are emitted at the start of the
260  // function, so there is no need to repeat that here.
261  if (isa<ParmVarDecl>(VD))
262  return;
263 
264  AVAttr = VD->getAttr<AlignValueAttr>();
265  }
266  }
267 
268  if (!AVAttr)
269  if (const auto *TTy =
270  dyn_cast<TypedefType>(E->getType()))
271  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
272 
273  if (!AVAttr)
274  return;
275 
276  Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
277  llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
278  CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
279  }
280 
281  /// EmitLoadOfLValue - Given an expression with complex type that represents a
282  /// value l-value, this method emits the address of the l-value, then loads
283  /// and returns the result.
284  Value *EmitLoadOfLValue(const Expr *E) {
285  Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
286  E->getExprLoc());
287 
288  EmitLValueAlignmentAssumption(E, V);
289  return V;
290  }
291 
292  /// EmitConversionToBool - Convert the specified expression value to a
293  /// boolean (i1) truth value. This is equivalent to "Val != 0".
294  Value *EmitConversionToBool(Value *Src, QualType DstTy);
295 
296  /// Emit a check that a conversion to or from a floating-point type does not
297  /// overflow.
298  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
299  Value *Src, QualType SrcType, QualType DstType,
300  llvm::Type *DstTy, SourceLocation Loc);
301 
302  /// Emit a conversion from the specified type to the specified destination
303  /// type, both of which are LLVM scalar types.
304  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
305  SourceLocation Loc);
306 
307  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
308  SourceLocation Loc, bool TreatBooleanAsSigned);
309 
310  /// Emit a conversion from the specified complex type to the specified
311  /// destination type, where the destination type is an LLVM scalar type.
312  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
313  QualType SrcTy, QualType DstTy,
314  SourceLocation Loc);
315 
316  /// EmitNullValue - Emit a value that corresponds to null for the given type.
317  Value *EmitNullValue(QualType Ty);
318 
319  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
320  Value *EmitFloatToBoolConversion(Value *V) {
321  // Compare against 0.0 for fp scalars.
322  llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
323  return Builder.CreateFCmpUNE(V, Zero, "tobool");
324  }
325 
326  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
327  Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
328  Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
329 
330  return Builder.CreateICmpNE(V, Zero, "tobool");
331  }
332 
333  Value *EmitIntToBoolConversion(Value *V) {
334  // Because of the type rules of C, we often end up computing a
335  // logical value, then zero extending it to int, then wanting it
336  // as a logical value again. Optimize this common case.
337  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
338  if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
339  Value *Result = ZI->getOperand(0);
340  // If there aren't any more uses, zap the instruction to save space.
341  // Note that there can be more uses, for example if this
342  // is the result of an assignment.
343  if (ZI->use_empty())
344  ZI->eraseFromParent();
345  return Result;
346  }
347  }
348 
349  return Builder.CreateIsNotNull(V, "tobool");
350  }
351 
352  //===--------------------------------------------------------------------===//
353  // Visitor Methods
354  //===--------------------------------------------------------------------===//
355 
356  Value *Visit(Expr *E) {
357  ApplyDebugLocation DL(CGF, E);
359  }
360 
361  Value *VisitStmt(Stmt *S) {
362  S->dump(CGF.getContext().getSourceManager());
363  llvm_unreachable("Stmt can't have complex result type!");
364  }
365  Value *VisitExpr(Expr *S);
366 
367  Value *VisitParenExpr(ParenExpr *PE) {
368  return Visit(PE->getSubExpr());
369  }
370  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
371  return Visit(E->getReplacement());
372  }
373  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
374  return Visit(GE->getResultExpr());
375  }
376  Value *VisitCoawaitExpr(CoawaitExpr *S) {
377  return CGF.EmitCoawaitExpr(*S).getScalarVal();
378  }
379  Value *VisitCoyieldExpr(CoyieldExpr *S) {
380  return CGF.EmitCoyieldExpr(*S).getScalarVal();
381  }
382  Value *VisitUnaryCoawait(const UnaryOperator *E) {
383  return Visit(E->getSubExpr());
384  }
385 
386  // Leaves.
387  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
388  return Builder.getInt(E->getValue());
389  }
390  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
391  return llvm::ConstantFP::get(VMContext, E->getValue());
392  }
393  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
394  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
395  }
396  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
397  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
398  }
399  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
400  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
401  }
402  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
403  return EmitNullValue(E->getType());
404  }
405  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
406  return EmitNullValue(E->getType());
407  }
408  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
409  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
410  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
411  llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
412  return Builder.CreateBitCast(V, ConvertType(E->getType()));
413  }
414 
415  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
416  return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
417  }
418 
419  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
420  return CGF.EmitPseudoObjectRValue(E).getScalarVal();
421  }
422 
423  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
424  if (E->isGLValue())
425  return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
426 
427  // Otherwise, assume the mapping is the scalar directly.
428  return CGF.getOpaqueRValueMapping(E).getScalarVal();
429  }
430 
431  // l-values.
432  Value *VisitDeclRefExpr(DeclRefExpr *E) {
433  if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
434  if (result.isReference())
435  return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
436  E->getExprLoc());
437  return result.getValue();
438  }
439  return EmitLoadOfLValue(E);
440  }
441 
442  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
443  return CGF.EmitObjCSelectorExpr(E);
444  }
445  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
446  return CGF.EmitObjCProtocolExpr(E);
447  }
448  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
449  return EmitLoadOfLValue(E);
450  }
451  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
452  if (E->getMethodDecl() &&
454  return EmitLoadOfLValue(E);
455  return CGF.EmitObjCMessageExpr(E).getScalarVal();
456  }
457 
458  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
459  LValue LV = CGF.EmitObjCIsaExpr(E);
460  Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
461  return V;
462  }
463 
464  Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
465  VersionTuple Version = E->getVersion();
466 
467  // If we're checking for a platform older than our minimum deployment
468  // target, we can fold the check away.
469  if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
470  return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
471 
472  Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
473  llvm::Value *Args[] = {
474  llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
475  llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
476  llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
477  };
478 
479  return CGF.EmitBuiltinAvailable(Args);
480  }
481 
482  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
483  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
484  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
485  Value *VisitMemberExpr(MemberExpr *E);
486  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
487  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
488  return EmitLoadOfLValue(E);
489  }
490 
491  Value *VisitInitListExpr(InitListExpr *E);
492 
493  Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
494  assert(CGF.getArrayInitIndex() &&
495  "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
496  return CGF.getArrayInitIndex();
497  }
498 
499  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
500  return EmitNullValue(E->getType());
501  }
502  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
503  CGF.CGM.EmitExplicitCastExprType(E, &CGF);
504  return VisitCastExpr(E);
505  }
506  Value *VisitCastExpr(CastExpr *E);
507 
508  Value *VisitCallExpr(const CallExpr *E) {
509  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
510  return EmitLoadOfLValue(E);
511 
512  Value *V = CGF.EmitCallExpr(E).getScalarVal();
513 
514  EmitLValueAlignmentAssumption(E, V);
515  return V;
516  }
517 
518  Value *VisitStmtExpr(const StmtExpr *E);
519 
520  // Unary Operators.
521  Value *VisitUnaryPostDec(const UnaryOperator *E) {
522  LValue LV = EmitLValue(E->getSubExpr());
523  return EmitScalarPrePostIncDec(E, LV, false, false);
524  }
525  Value *VisitUnaryPostInc(const UnaryOperator *E) {
526  LValue LV = EmitLValue(E->getSubExpr());
527  return EmitScalarPrePostIncDec(E, LV, true, false);
528  }
529  Value *VisitUnaryPreDec(const UnaryOperator *E) {
530  LValue LV = EmitLValue(E->getSubExpr());
531  return EmitScalarPrePostIncDec(E, LV, false, true);
532  }
533  Value *VisitUnaryPreInc(const UnaryOperator *E) {
534  LValue LV = EmitLValue(E->getSubExpr());
535  return EmitScalarPrePostIncDec(E, LV, true, true);
536  }
537 
538  llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
539  llvm::Value *InVal,
540  bool IsInc);
541 
542  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
543  bool isInc, bool isPre);
544 
545 
546  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
547  if (isa<MemberPointerType>(E->getType())) // never sugared
548  return CGF.CGM.getMemberPointerConstant(E);
549 
550  return EmitLValue(E->getSubExpr()).getPointer();
551  }
552  Value *VisitUnaryDeref(const UnaryOperator *E) {
553  if (E->getType()->isVoidType())
554  return Visit(E->getSubExpr()); // the actual value should be unused
555  return EmitLoadOfLValue(E);
556  }
557  Value *VisitUnaryPlus(const UnaryOperator *E) {
558  // This differs from gcc, though, most likely due to a bug in gcc.
559  TestAndClearIgnoreResultAssign();
560  return Visit(E->getSubExpr());
561  }
562  Value *VisitUnaryMinus (const UnaryOperator *E);
563  Value *VisitUnaryNot (const UnaryOperator *E);
564  Value *VisitUnaryLNot (const UnaryOperator *E);
565  Value *VisitUnaryReal (const UnaryOperator *E);
566  Value *VisitUnaryImag (const UnaryOperator *E);
567  Value *VisitUnaryExtension(const UnaryOperator *E) {
568  return Visit(E->getSubExpr());
569  }
570 
571  // C++
572  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
573  return EmitLoadOfLValue(E);
574  }
575 
576  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
577  return Visit(DAE->getExpr());
578  }
579  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
581  return Visit(DIE->getExpr());
582  }
583  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
584  return CGF.LoadCXXThis();
585  }
586 
587  Value *VisitExprWithCleanups(ExprWithCleanups *E);
588  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
589  return CGF.EmitCXXNewExpr(E);
590  }
591  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
592  CGF.EmitCXXDeleteExpr(E);
593  return nullptr;
594  }
595 
596  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
597  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
598  }
599 
600  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
601  return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
602  }
603 
604  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
605  return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
606  }
607 
608  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
609  // C++ [expr.pseudo]p1:
610  // The result shall only be used as the operand for the function call
611  // operator (), and the result of such a call has type void. The only
612  // effect is the evaluation of the postfix-expression before the dot or
613  // arrow.
614  CGF.EmitScalarExpr(E->getBase());
615  return nullptr;
616  }
617 
618  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
619  return EmitNullValue(E->getType());
620  }
621 
622  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
623  CGF.EmitCXXThrowExpr(E);
624  return nullptr;
625  }
626 
627  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
628  return Builder.getInt1(E->getValue());
629  }
630 
631  // Binary Operators.
632  Value *EmitMul(const BinOpInfo &Ops) {
633  if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
634  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
636  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
638  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
639  return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
640  // Fall through.
642  if (CanElideOverflowCheck(CGF.getContext(), Ops))
643  return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
644  return EmitOverflowCheckedBinOp(Ops);
645  }
646  }
647 
648  if (Ops.Ty->isUnsignedIntegerType() &&
649  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
650  !CanElideOverflowCheck(CGF.getContext(), Ops))
651  return EmitOverflowCheckedBinOp(Ops);
652 
653  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
654  Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
655  return propagateFMFlags(V, Ops);
656  }
657  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
658  }
659  /// Create a binary op that checks for overflow.
660  /// Currently only supports +, - and *.
661  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
662 
663  // Check for undefined division and modulus behaviors.
664  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
665  llvm::Value *Zero,bool isDiv);
666  // Common helper for getting how wide LHS of shift is.
667  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
668  Value *EmitDiv(const BinOpInfo &Ops);
669  Value *EmitRem(const BinOpInfo &Ops);
670  Value *EmitAdd(const BinOpInfo &Ops);
671  Value *EmitSub(const BinOpInfo &Ops);
672  Value *EmitShl(const BinOpInfo &Ops);
673  Value *EmitShr(const BinOpInfo &Ops);
674  Value *EmitAnd(const BinOpInfo &Ops) {
675  return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
676  }
677  Value *EmitXor(const BinOpInfo &Ops) {
678  return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
679  }
680  Value *EmitOr (const BinOpInfo &Ops) {
681  return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
682  }
683 
684  BinOpInfo EmitBinOps(const BinaryOperator *E);
685  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
686  Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
687  Value *&Result);
688 
689  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
690  Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
691 
692  // Binary operators and binary compound assignment operators.
693 #define HANDLEBINOP(OP) \
694  Value *VisitBin ## OP(const BinaryOperator *E) { \
695  return Emit ## OP(EmitBinOps(E)); \
696  } \
697  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
698  return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
699  }
700  HANDLEBINOP(Mul)
701  HANDLEBINOP(Div)
702  HANDLEBINOP(Rem)
703  HANDLEBINOP(Add)
704  HANDLEBINOP(Sub)
705  HANDLEBINOP(Shl)
706  HANDLEBINOP(Shr)
708  HANDLEBINOP(Xor)
709  HANDLEBINOP(Or)
710 #undef HANDLEBINOP
711 
712  // Comparisons.
713  Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
714  llvm::CmpInst::Predicate SICmpOpc,
715  llvm::CmpInst::Predicate FCmpOpc);
716 #define VISITCOMP(CODE, UI, SI, FP) \
717  Value *VisitBin##CODE(const BinaryOperator *E) { \
718  return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
719  llvm::FCmpInst::FP); }
720  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
721  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
722  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
723  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
724  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
725  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
726 #undef VISITCOMP
727 
728  Value *VisitBinAssign (const BinaryOperator *E);
729 
730  Value *VisitBinLAnd (const BinaryOperator *E);
731  Value *VisitBinLOr (const BinaryOperator *E);
732  Value *VisitBinComma (const BinaryOperator *E);
733 
734  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
735  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
736 
737  // Other Operators.
738  Value *VisitBlockExpr(const BlockExpr *BE);
739  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
740  Value *VisitChooseExpr(ChooseExpr *CE);
741  Value *VisitVAArgExpr(VAArgExpr *VE);
742  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
743  return CGF.EmitObjCStringLiteral(E);
744  }
745  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
746  return CGF.EmitObjCBoxedExpr(E);
747  }
748  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
749  return CGF.EmitObjCArrayLiteral(E);
750  }
751  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
752  return CGF.EmitObjCDictionaryLiteral(E);
753  }
754  Value *VisitAsTypeExpr(AsTypeExpr *CE);
755  Value *VisitAtomicExpr(AtomicExpr *AE);
756 };
757 } // end anonymous namespace.
758 
759 //===----------------------------------------------------------------------===//
760 // Utilities
761 //===----------------------------------------------------------------------===//
762 
763 /// EmitConversionToBool - Convert the specified expression value to a
764 /// boolean (i1) truth value. This is equivalent to "Val != 0".
765 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
766  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
767 
768  if (SrcType->isRealFloatingType())
769  return EmitFloatToBoolConversion(Src);
770 
771  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
772  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
773 
774  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
775  "Unknown scalar type to convert");
776 
777  if (isa<llvm::IntegerType>(Src->getType()))
778  return EmitIntToBoolConversion(Src);
779 
780  assert(isa<llvm::PointerType>(Src->getType()));
781  return EmitPointerToBoolConversion(Src, SrcType);
782 }
783 
784 void ScalarExprEmitter::EmitFloatConversionCheck(
785  Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
786  QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
787  CodeGenFunction::SanitizerScope SanScope(&CGF);
788  using llvm::APFloat;
789  using llvm::APSInt;
790 
791  llvm::Type *SrcTy = Src->getType();
792 
793  llvm::Value *Check = nullptr;
794  if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
795  // Integer to floating-point. This can fail for unsigned short -> __half
796  // or unsigned __int128 -> float.
797  assert(DstType->isFloatingType());
798  bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
799 
800  APFloat LargestFloat =
801  APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
802  APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
803 
804  bool IsExact;
805  if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
806  &IsExact) != APFloat::opOK)
807  // The range of representable values of this floating point type includes
808  // all values of this integer type. Don't need an overflow check.
809  return;
810 
811  llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
812  if (SrcIsUnsigned)
813  Check = Builder.CreateICmpULE(Src, Max);
814  else {
815  llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
816  llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
817  llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
818  Check = Builder.CreateAnd(GE, LE);
819  }
820  } else {
821  const llvm::fltSemantics &SrcSema =
822  CGF.getContext().getFloatTypeSemantics(OrigSrcType);
823  if (isa<llvm::IntegerType>(DstTy)) {
824  // Floating-point to integer. This has undefined behavior if the source is
825  // +-Inf, NaN, or doesn't fit into the destination type (after truncation
826  // to an integer).
827  unsigned Width = CGF.getContext().getIntWidth(DstType);
828  bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
829 
830  APSInt Min = APSInt::getMinValue(Width, Unsigned);
831  APFloat MinSrc(SrcSema, APFloat::uninitialized);
832  if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
833  APFloat::opOverflow)
834  // Don't need an overflow check for lower bound. Just check for
835  // -Inf/NaN.
836  MinSrc = APFloat::getInf(SrcSema, true);
837  else
838  // Find the largest value which is too small to represent (before
839  // truncation toward zero).
840  MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
841 
842  APSInt Max = APSInt::getMaxValue(Width, Unsigned);
843  APFloat MaxSrc(SrcSema, APFloat::uninitialized);
844  if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
845  APFloat::opOverflow)
846  // Don't need an overflow check for upper bound. Just check for
847  // +Inf/NaN.
848  MaxSrc = APFloat::getInf(SrcSema, false);
849  else
850  // Find the smallest value which is too large to represent (before
851  // truncation toward zero).
852  MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
853 
854  // If we're converting from __half, convert the range to float to match
855  // the type of src.
856  if (OrigSrcType->isHalfType()) {
857  const llvm::fltSemantics &Sema =
858  CGF.getContext().getFloatTypeSemantics(SrcType);
859  bool IsInexact;
860  MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
861  MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
862  }
863 
864  llvm::Value *GE =
865  Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
866  llvm::Value *LE =
867  Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
868  Check = Builder.CreateAnd(GE, LE);
869  } else {
870  // FIXME: Maybe split this sanitizer out from float-cast-overflow.
871  //
872  // Floating-point to floating-point. This has undefined behavior if the
873  // source is not in the range of representable values of the destination
874  // type. The C and C++ standards are spectacularly unclear here. We
875  // diagnose finite out-of-range conversions, but allow infinities and NaNs
876  // to convert to the corresponding value in the smaller type.
877  //
878  // C11 Annex F gives all such conversions defined behavior for IEC 60559
879  // conforming implementations. Unfortunately, LLVM's fptrunc instruction
880  // does not.
881 
882  // Converting from a lower rank to a higher rank can never have
883  // undefined behavior, since higher-rank types must have a superset
884  // of values of lower-rank types.
885  if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
886  return;
887 
888  assert(!OrigSrcType->isHalfType() &&
889  "should not check conversion from __half, it has the lowest rank");
890 
891  const llvm::fltSemantics &DstSema =
892  CGF.getContext().getFloatTypeSemantics(DstType);
893  APFloat MinBad = APFloat::getLargest(DstSema, false);
894  APFloat MaxBad = APFloat::getInf(DstSema, false);
895 
896  bool IsInexact;
897  MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
898  MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
899 
900  Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
901  CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
902  llvm::Value *GE =
903  Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
904  llvm::Value *LE =
905  Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
906  Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
907  }
908  }
909 
910  llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
911  CGF.EmitCheckTypeDescriptor(OrigSrcType),
912  CGF.EmitCheckTypeDescriptor(DstType)};
913  CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
914  SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
915 }
916 
917 /// Emit a conversion from the specified type to the specified destination type,
918 /// both of which are LLVM scalar types.
919 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
920  QualType DstType,
921  SourceLocation Loc) {
922  return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
923 }
924 
925 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
926  QualType DstType,
927  SourceLocation Loc,
928  bool TreatBooleanAsSigned) {
929  SrcType = CGF.getContext().getCanonicalType(SrcType);
930  DstType = CGF.getContext().getCanonicalType(DstType);
931  if (SrcType == DstType) return Src;
932 
933  if (DstType->isVoidType()) return nullptr;
934 
935  llvm::Value *OrigSrc = Src;
936  QualType OrigSrcType = SrcType;
937  llvm::Type *SrcTy = Src->getType();
938 
939  // Handle conversions to bool first, they are special: comparisons against 0.
940  if (DstType->isBooleanType())
941  return EmitConversionToBool(Src, SrcType);
942 
943  llvm::Type *DstTy = ConvertType(DstType);
944 
945  // Cast from half through float if half isn't a native type.
946  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
947  // Cast to FP using the intrinsic if the half type itself isn't supported.
948  if (DstTy->isFloatingPointTy()) {
949  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
950  return Builder.CreateCall(
951  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
952  Src);
953  } else {
954  // Cast to other types through float, using either the intrinsic or FPExt,
955  // depending on whether the half type itself is supported
956  // (as opposed to operations on half, available with NativeHalfType).
957  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
958  Src = Builder.CreateCall(
959  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
960  CGF.CGM.FloatTy),
961  Src);
962  } else {
963  Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
964  }
965  SrcType = CGF.getContext().FloatTy;
966  SrcTy = CGF.FloatTy;
967  }
968  }
969 
970  // Ignore conversions like int -> uint.
971  if (SrcTy == DstTy)
972  return Src;
973 
974  // Handle pointer conversions next: pointers can only be converted to/from
975  // other pointers and integers. Check for pointer types in terms of LLVM, as
976  // some native types (like Obj-C id) may map to a pointer type.
977  if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
978  // The source value may be an integer, or a pointer.
979  if (isa<llvm::PointerType>(SrcTy))
980  return Builder.CreateBitCast(Src, DstTy, "conv");
981 
982  assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
983  // First, convert to the correct width so that we control the kind of
984  // extension.
985  llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
986  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
987  llvm::Value* IntResult =
988  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
989  // Then, cast to pointer.
990  return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
991  }
992 
993  if (isa<llvm::PointerType>(SrcTy)) {
994  // Must be an ptr to int cast.
995  assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
996  return Builder.CreatePtrToInt(Src, DstTy, "conv");
997  }
998 
999  // A scalar can be splatted to an extended vector of the same element type
1000  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1001  // Sema should add casts to make sure that the source expression's type is
1002  // the same as the vector's element type (sans qualifiers)
1003  assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1004  SrcType.getTypePtr() &&
1005  "Splatted expr doesn't match with vector element type?");
1006 
1007  // Splat the element across to all elements
1008  unsigned NumElements = DstTy->getVectorNumElements();
1009  return Builder.CreateVectorSplat(NumElements, Src, "splat");
1010  }
1011 
1012  // Allow bitcast from vector to integer/fp of the same size.
1013  if (isa<llvm::VectorType>(SrcTy) ||
1014  isa<llvm::VectorType>(DstTy))
1015  return Builder.CreateBitCast(Src, DstTy, "conv");
1016 
1017  // Finally, we have the arithmetic types: real int/float.
1018  Value *Res = nullptr;
1019  llvm::Type *ResTy = DstTy;
1020 
1021  // An overflowing conversion has undefined behavior if either the source type
1022  // or the destination type is a floating-point type.
1023  if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1024  (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1025  EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1026  Loc);
1027 
1028  // Cast to half through float if half isn't a native type.
1029  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1030  // Make sure we cast in a single step if from another FP type.
1031  if (SrcTy->isFloatingPointTy()) {
1032  // Use the intrinsic if the half type itself isn't supported
1033  // (as opposed to operations on half, available with NativeHalfType).
1034  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
1035  return Builder.CreateCall(
1036  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1037  // If the half type is supported, just use an fptrunc.
1038  return Builder.CreateFPTrunc(Src, DstTy);
1039  }
1040  DstTy = CGF.FloatTy;
1041  }
1042 
1043  if (isa<llvm::IntegerType>(SrcTy)) {
1044  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1045  if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
1046  InputSigned = true;
1047  }
1048  if (isa<llvm::IntegerType>(DstTy))
1049  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1050  else if (InputSigned)
1051  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1052  else
1053  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1054  } else if (isa<llvm::IntegerType>(DstTy)) {
1055  assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1056  if (DstType->isSignedIntegerOrEnumerationType())
1057  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1058  else
1059  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1060  } else {
1061  assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1062  "Unknown real conversion");
1063  if (DstTy->getTypeID() < SrcTy->getTypeID())
1064  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1065  else
1066  Res = Builder.CreateFPExt(Src, DstTy, "conv");
1067  }
1068 
1069  if (DstTy != ResTy) {
1070  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1071  assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1072  Res = Builder.CreateCall(
1073  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1074  Res);
1075  } else {
1076  Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1077  }
1078  }
1079 
1080  return Res;
1081 }
1082 
1083 /// Emit a conversion from the specified complex type to the specified
1084 /// destination type, where the destination type is an LLVM scalar type.
1085 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1087  SourceLocation Loc) {
1088  // Get the source element type.
1089  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1090 
1091  // Handle conversions to bool first, they are special: comparisons against 0.
1092  if (DstTy->isBooleanType()) {
1093  // Complex != 0 -> (Real != 0) | (Imag != 0)
1094  Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1095  Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1096  return Builder.CreateOr(Src.first, Src.second, "tobool");
1097  }
1098 
1099  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1100  // the imaginary part of the complex value is discarded and the value of the
1101  // real part is converted according to the conversion rules for the
1102  // corresponding real type.
1103  return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1104 }
1105 
1106 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1107  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1108 }
1109 
1110 /// \brief Emit a sanitization check for the given "binary" operation (which
1111 /// might actually be a unary increment which has been lowered to a binary
1112 /// operation). The check passes if all values in \p Checks (which are \c i1),
1113 /// are \c true.
1114 void ScalarExprEmitter::EmitBinOpCheck(
1115  ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1116  assert(CGF.IsSanitizerScope);
1117  SanitizerHandler Check;
1119  SmallVector<llvm::Value *, 2> DynamicData;
1120 
1121  BinaryOperatorKind Opcode = Info.Opcode;
1124 
1125  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1126  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1127  if (UO && UO->getOpcode() == UO_Minus) {
1128  Check = SanitizerHandler::NegateOverflow;
1129  StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1130  DynamicData.push_back(Info.RHS);
1131  } else {
1132  if (BinaryOperator::isShiftOp(Opcode)) {
1133  // Shift LHS negative or too large, or RHS out of bounds.
1134  Check = SanitizerHandler::ShiftOutOfBounds;
1135  const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1136  StaticData.push_back(
1137  CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1138  StaticData.push_back(
1139  CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1140  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1141  // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1142  Check = SanitizerHandler::DivremOverflow;
1143  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1144  } else {
1145  // Arithmetic overflow (+, -, *).
1146  switch (Opcode) {
1147  case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1148  case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1149  case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1150  default: llvm_unreachable("unexpected opcode for bin op check");
1151  }
1152  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1153  }
1154  DynamicData.push_back(Info.LHS);
1155  DynamicData.push_back(Info.RHS);
1156  }
1157 
1158  CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1159 }
1160 
1161 //===----------------------------------------------------------------------===//
1162 // Visitor Methods
1163 //===----------------------------------------------------------------------===//
1164 
1165 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1166  CGF.ErrorUnsupported(E, "scalar expression");
1167  if (E->getType()->isVoidType())
1168  return nullptr;
1169  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1170 }
1171 
1172 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1173  // Vector Mask Case
1174  if (E->getNumSubExprs() == 2) {
1175  Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1176  Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1177  Value *Mask;
1178 
1179  llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1180  unsigned LHSElts = LTy->getNumElements();
1181 
1182  Mask = RHS;
1183 
1184  llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1185 
1186  // Mask off the high bits of each shuffle index.
1187  Value *MaskBits =
1188  llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1189  Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1190 
1191  // newv = undef
1192  // mask = mask & maskbits
1193  // for each elt
1194  // n = extract mask i
1195  // x = extract val n
1196  // newv = insert newv, x, i
1197  llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1198  MTy->getNumElements());
1199  Value* NewV = llvm::UndefValue::get(RTy);
1200  for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1201  Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1202  Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1203 
1204  Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1205  NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1206  }
1207  return NewV;
1208  }
1209 
1210  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1211  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1212 
1214  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1215  llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1216  // Check for -1 and output it as undef in the IR.
1217  if (Idx.isSigned() && Idx.isAllOnesValue())
1218  indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1219  else
1220  indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1221  }
1222 
1223  Value *SV = llvm::ConstantVector::get(indices);
1224  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1225 }
1226 
1227 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1228  QualType SrcType = E->getSrcExpr()->getType(),
1229  DstType = E->getType();
1230 
1231  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1232 
1233  SrcType = CGF.getContext().getCanonicalType(SrcType);
1234  DstType = CGF.getContext().getCanonicalType(DstType);
1235  if (SrcType == DstType) return Src;
1236 
1237  assert(SrcType->isVectorType() &&
1238  "ConvertVector source type must be a vector");
1239  assert(DstType->isVectorType() &&
1240  "ConvertVector destination type must be a vector");
1241 
1242  llvm::Type *SrcTy = Src->getType();
1243  llvm::Type *DstTy = ConvertType(DstType);
1244 
1245  // Ignore conversions like int -> uint.
1246  if (SrcTy == DstTy)
1247  return Src;
1248 
1249  QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1250  DstEltType = DstType->getAs<VectorType>()->getElementType();
1251 
1252  assert(SrcTy->isVectorTy() &&
1253  "ConvertVector source IR type must be a vector");
1254  assert(DstTy->isVectorTy() &&
1255  "ConvertVector destination IR type must be a vector");
1256 
1257  llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1258  *DstEltTy = DstTy->getVectorElementType();
1259 
1260  if (DstEltType->isBooleanType()) {
1261  assert((SrcEltTy->isFloatingPointTy() ||
1262  isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1263 
1264  llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1265  if (SrcEltTy->isFloatingPointTy()) {
1266  return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1267  } else {
1268  return Builder.CreateICmpNE(Src, Zero, "tobool");
1269  }
1270  }
1271 
1272  // We have the arithmetic types: real int/float.
1273  Value *Res = nullptr;
1274 
1275  if (isa<llvm::IntegerType>(SrcEltTy)) {
1276  bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1277  if (isa<llvm::IntegerType>(DstEltTy))
1278  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1279  else if (InputSigned)
1280  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1281  else
1282  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1283  } else if (isa<llvm::IntegerType>(DstEltTy)) {
1284  assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1285  if (DstEltType->isSignedIntegerOrEnumerationType())
1286  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1287  else
1288  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1289  } else {
1290  assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1291  "Unknown real conversion");
1292  if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1293  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1294  else
1295  Res = Builder.CreateFPExt(Src, DstTy, "conv");
1296  }
1297 
1298  return Res;
1299 }
1300 
1301 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1302  llvm::APSInt Value;
1303  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1304  if (E->isArrow())
1305  CGF.EmitScalarExpr(E->getBase());
1306  else
1307  EmitLValue(E->getBase());
1308  return Builder.getInt(Value);
1309  }
1310 
1311  return EmitLoadOfLValue(E);
1312 }
1313 
1314 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1315  TestAndClearIgnoreResultAssign();
1316 
1317  // Emit subscript expressions in rvalue context's. For most cases, this just
1318  // loads the lvalue formed by the subscript expr. However, we have to be
1319  // careful, because the base of a vector subscript is occasionally an rvalue,
1320  // so we can't get it as an lvalue.
1321  if (!E->getBase()->getType()->isVectorType())
1322  return EmitLoadOfLValue(E);
1323 
1324  // Handle the vector case. The base must be a vector, the index must be an
1325  // integer value.
1326  Value *Base = Visit(E->getBase());
1327  Value *Idx = Visit(E->getIdx());
1328  QualType IdxTy = E->getIdx()->getType();
1329 
1330  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1331  CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1332 
1333  return Builder.CreateExtractElement(Base, Idx, "vecext");
1334 }
1335 
1336 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1337  unsigned Off, llvm::Type *I32Ty) {
1338  int MV = SVI->getMaskValue(Idx);
1339  if (MV == -1)
1340  return llvm::UndefValue::get(I32Ty);
1341  return llvm::ConstantInt::get(I32Ty, Off+MV);
1342 }
1343 
1344 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1345  if (C->getBitWidth() != 32) {
1346  assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1347  C->getZExtValue()) &&
1348  "Index operand too large for shufflevector mask!");
1349  return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1350  }
1351  return C;
1352 }
1353 
1354 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1355  bool Ignore = TestAndClearIgnoreResultAssign();
1356  (void)Ignore;
1357  assert (Ignore == false && "init list ignored");
1358  unsigned NumInitElements = E->getNumInits();
1359 
1360  if (E->hadArrayRangeDesignator())
1361  CGF.ErrorUnsupported(E, "GNU array range designator extension");
1362 
1363  llvm::VectorType *VType =
1364  dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1365 
1366  if (!VType) {
1367  if (NumInitElements == 0) {
1368  // C++11 value-initialization for the scalar.
1369  return EmitNullValue(E->getType());
1370  }
1371  // We have a scalar in braces. Just use the first element.
1372  return Visit(E->getInit(0));
1373  }
1374 
1375  unsigned ResElts = VType->getNumElements();
1376 
1377  // Loop over initializers collecting the Value for each, and remembering
1378  // whether the source was swizzle (ExtVectorElementExpr). This will allow
1379  // us to fold the shuffle for the swizzle into the shuffle for the vector
1380  // initializer, since LLVM optimizers generally do not want to touch
1381  // shuffles.
1382  unsigned CurIdx = 0;
1383  bool VIsUndefShuffle = false;
1384  llvm::Value *V = llvm::UndefValue::get(VType);
1385  for (unsigned i = 0; i != NumInitElements; ++i) {
1386  Expr *IE = E->getInit(i);
1387  Value *Init = Visit(IE);
1389 
1390  llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1391 
1392  // Handle scalar elements. If the scalar initializer is actually one
1393  // element of a different vector of the same width, use shuffle instead of
1394  // extract+insert.
1395  if (!VVT) {
1396  if (isa<ExtVectorElementExpr>(IE)) {
1397  llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1398 
1399  if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1400  llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1401  Value *LHS = nullptr, *RHS = nullptr;
1402  if (CurIdx == 0) {
1403  // insert into undef -> shuffle (src, undef)
1404  // shufflemask must use an i32
1405  Args.push_back(getAsInt32(C, CGF.Int32Ty));
1406  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1407 
1408  LHS = EI->getVectorOperand();
1409  RHS = V;
1410  VIsUndefShuffle = true;
1411  } else if (VIsUndefShuffle) {
1412  // insert into undefshuffle && size match -> shuffle (v, src)
1413  llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1414  for (unsigned j = 0; j != CurIdx; ++j)
1415  Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1416  Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1417  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1418 
1419  LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1420  RHS = EI->getVectorOperand();
1421  VIsUndefShuffle = false;
1422  }
1423  if (!Args.empty()) {
1424  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1425  V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1426  ++CurIdx;
1427  continue;
1428  }
1429  }
1430  }
1431  V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1432  "vecinit");
1433  VIsUndefShuffle = false;
1434  ++CurIdx;
1435  continue;
1436  }
1437 
1438  unsigned InitElts = VVT->getNumElements();
1439 
1440  // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1441  // input is the same width as the vector being constructed, generate an
1442  // optimized shuffle of the swizzle input into the result.
1443  unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1444  if (isa<ExtVectorElementExpr>(IE)) {
1445  llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1446  Value *SVOp = SVI->getOperand(0);
1447  llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1448 
1449  if (OpTy->getNumElements() == ResElts) {
1450  for (unsigned j = 0; j != CurIdx; ++j) {
1451  // If the current vector initializer is a shuffle with undef, merge
1452  // this shuffle directly into it.
1453  if (VIsUndefShuffle) {
1454  Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1455  CGF.Int32Ty));
1456  } else {
1457  Args.push_back(Builder.getInt32(j));
1458  }
1459  }
1460  for (unsigned j = 0, je = InitElts; j != je; ++j)
1461  Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1462  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1463 
1464  if (VIsUndefShuffle)
1465  V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1466 
1467  Init = SVOp;
1468  }
1469  }
1470 
1471  // Extend init to result vector length, and then shuffle its contribution
1472  // to the vector initializer into V.
1473  if (Args.empty()) {
1474  for (unsigned j = 0; j != InitElts; ++j)
1475  Args.push_back(Builder.getInt32(j));
1476  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1477  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1478  Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1479  Mask, "vext");
1480 
1481  Args.clear();
1482  for (unsigned j = 0; j != CurIdx; ++j)
1483  Args.push_back(Builder.getInt32(j));
1484  for (unsigned j = 0; j != InitElts; ++j)
1485  Args.push_back(Builder.getInt32(j+Offset));
1486  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1487  }
1488 
1489  // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1490  // merging subsequent shuffles into this one.
1491  if (CurIdx == 0)
1492  std::swap(V, Init);
1493  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1494  V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1495  VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1496  CurIdx += InitElts;
1497  }
1498 
1499  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1500  // Emit remaining default initializers.
1501  llvm::Type *EltTy = VType->getElementType();
1502 
1503  // Emit remaining default initializers
1504  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1505  Value *Idx = Builder.getInt32(CurIdx);
1506  llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1507  V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1508  }
1509  return V;
1510 }
1511 
1513  const Expr *E = CE->getSubExpr();
1514 
1515  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1516  return false;
1517 
1518  if (isa<CXXThisExpr>(E->IgnoreParens())) {
1519  // We always assume that 'this' is never null.
1520  return false;
1521  }
1522 
1523  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1524  // And that glvalue casts are never null.
1525  if (ICE->getValueKind() != VK_RValue)
1526  return false;
1527  }
1528 
1529  return true;
1530 }
1531 
1532 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1533 // have to handle a more broad range of conversions than explicit casts, as they
1534 // handle things like function to ptr-to-function decay etc.
1535 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1536  Expr *E = CE->getSubExpr();
1537  QualType DestTy = CE->getType();
1538  CastKind Kind = CE->getCastKind();
1539 
1540  // These cases are generally not written to ignore the result of
1541  // evaluating their sub-expressions, so we clear this now.
1542  bool Ignored = TestAndClearIgnoreResultAssign();
1543 
1544  // Since almost all cast kinds apply to scalars, this switch doesn't have
1545  // a default case, so the compiler will warn on a missing case. The cases
1546  // are in the same order as in the CastKind enum.
1547  switch (Kind) {
1548  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1549  case CK_BuiltinFnToFnPtr:
1550  llvm_unreachable("builtin functions are handled elsewhere");
1551 
1552  case CK_LValueBitCast:
1553  case CK_ObjCObjectLValueCast: {
1554  Address Addr = EmitLValue(E).getAddress();
1555  Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1556  LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1557  return EmitLoadOfLValue(LV, CE->getExprLoc());
1558  }
1559 
1560  case CK_CPointerToObjCPointerCast:
1561  case CK_BlockPointerToObjCPointerCast:
1562  case CK_AnyPointerToBlockPointerCast:
1563  case CK_BitCast: {
1564  Value *Src = Visit(const_cast<Expr*>(E));
1565  llvm::Type *SrcTy = Src->getType();
1566  llvm::Type *DstTy = ConvertType(DestTy);
1567  if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1568  SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1569  llvm_unreachable("wrong cast for pointers in different address spaces"
1570  "(must be an address space cast)!");
1571  }
1572 
1573  if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1574  if (auto PT = DestTy->getAs<PointerType>())
1575  CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1576  /*MayBeNull=*/true,
1578  CE->getLocStart());
1579  }
1580 
1581  return Builder.CreateBitCast(Src, DstTy);
1582  }
1583  case CK_AddressSpaceConversion: {
1584  Expr::EvalResult Result;
1585  if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1586  Result.Val.isNullPointer()) {
1587  // If E has side effect, it is emitted even if its final result is a
1588  // null pointer. In that case, a DCE pass should be able to
1589  // eliminate the useless instructions emitted during translating E.
1590  if (Result.HasSideEffects)
1591  Visit(E);
1592  return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1593  ConvertType(DestTy)), DestTy);
1594  }
1595  // Since target may map different address spaces in AST to the same address
1596  // space, an address space conversion may end up as a bitcast.
1597  return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
1598  CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
1599  DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
1600  }
1601  case CK_AtomicToNonAtomic:
1602  case CK_NonAtomicToAtomic:
1603  case CK_NoOp:
1604  case CK_UserDefinedConversion:
1605  return Visit(const_cast<Expr*>(E));
1606 
1607  case CK_BaseToDerived: {
1608  const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1609  assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1610 
1611  Address Base = CGF.EmitPointerWithAlignment(E);
1612  Address Derived =
1613  CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1614  CE->path_begin(), CE->path_end(),
1615  CGF.ShouldNullCheckClassCastValue(CE));
1616 
1617  // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1618  // performed and the object is not of the derived type.
1619  if (CGF.sanitizePerformTypeCheck())
1620  CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1621  Derived.getPointer(), DestTy->getPointeeType());
1622 
1623  if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1624  CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1625  Derived.getPointer(),
1626  /*MayBeNull=*/true,
1628  CE->getLocStart());
1629 
1630  return Derived.getPointer();
1631  }
1632  case CK_UncheckedDerivedToBase:
1633  case CK_DerivedToBase: {
1634  // The EmitPointerWithAlignment path does this fine; just discard
1635  // the alignment.
1636  return CGF.EmitPointerWithAlignment(CE).getPointer();
1637  }
1638 
1639  case CK_Dynamic: {
1640  Address V = CGF.EmitPointerWithAlignment(E);
1641  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1642  return CGF.EmitDynamicCast(V, DCE);
1643  }
1644 
1645  case CK_ArrayToPointerDecay:
1646  return CGF.EmitArrayToPointerDecay(E).getPointer();
1647  case CK_FunctionToPointerDecay:
1648  return EmitLValue(E).getPointer();
1649 
1650  case CK_NullToPointer:
1651  if (MustVisitNullValue(E))
1652  (void) Visit(E);
1653 
1654  return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1655  DestTy);
1656 
1657  case CK_NullToMemberPointer: {
1658  if (MustVisitNullValue(E))
1659  (void) Visit(E);
1660 
1661  const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1662  return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1663  }
1664 
1665  case CK_ReinterpretMemberPointer:
1666  case CK_BaseToDerivedMemberPointer:
1667  case CK_DerivedToBaseMemberPointer: {
1668  Value *Src = Visit(E);
1669 
1670  // Note that the AST doesn't distinguish between checked and
1671  // unchecked member pointer conversions, so we always have to
1672  // implement checked conversions here. This is inefficient when
1673  // actual control flow may be required in order to perform the
1674  // check, which it is for data member pointers (but not member
1675  // function pointers on Itanium and ARM).
1676  return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1677  }
1678 
1679  case CK_ARCProduceObject:
1680  return CGF.EmitARCRetainScalarExpr(E);
1681  case CK_ARCConsumeObject:
1682  return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1683  case CK_ARCReclaimReturnedObject:
1684  return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1685  case CK_ARCExtendBlockObject:
1686  return CGF.EmitARCExtendBlockObject(E);
1687 
1688  case CK_CopyAndAutoreleaseBlockObject:
1689  return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1690 
1691  case CK_FloatingRealToComplex:
1692  case CK_FloatingComplexCast:
1693  case CK_IntegralRealToComplex:
1694  case CK_IntegralComplexCast:
1695  case CK_IntegralComplexToFloatingComplex:
1696  case CK_FloatingComplexToIntegralComplex:
1697  case CK_ConstructorConversion:
1698  case CK_ToUnion:
1699  llvm_unreachable("scalar cast to non-scalar value");
1700 
1701  case CK_LValueToRValue:
1702  assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1703  assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1704  return Visit(const_cast<Expr*>(E));
1705 
1706  case CK_IntegralToPointer: {
1707  Value *Src = Visit(const_cast<Expr*>(E));
1708 
1709  // First, convert to the correct width so that we control the kind of
1710  // extension.
1711  auto DestLLVMTy = ConvertType(DestTy);
1712  llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1713  bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1714  llvm::Value* IntResult =
1715  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1716 
1717  return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1718  }
1719  case CK_PointerToIntegral:
1720  assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1721  return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1722 
1723  case CK_ToVoid: {
1724  CGF.EmitIgnoredExpr(E);
1725  return nullptr;
1726  }
1727  case CK_VectorSplat: {
1728  llvm::Type *DstTy = ConvertType(DestTy);
1729  Value *Elt = Visit(const_cast<Expr*>(E));
1730  // Splat the element across to all elements
1731  unsigned NumElements = DstTy->getVectorNumElements();
1732  return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1733  }
1734 
1735  case CK_IntegralCast:
1736  case CK_IntegralToFloating:
1737  case CK_FloatingToIntegral:
1738  case CK_FloatingCast:
1739  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1740  CE->getExprLoc());
1741  case CK_BooleanToSignedIntegral:
1742  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1743  CE->getExprLoc(),
1744  /*TreatBooleanAsSigned=*/true);
1745  case CK_IntegralToBoolean:
1746  return EmitIntToBoolConversion(Visit(E));
1747  case CK_PointerToBoolean:
1748  return EmitPointerToBoolConversion(Visit(E), E->getType());
1749  case CK_FloatingToBoolean:
1750  return EmitFloatToBoolConversion(Visit(E));
1751  case CK_MemberPointerToBoolean: {
1752  llvm::Value *MemPtr = Visit(E);
1753  const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1754  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1755  }
1756 
1757  case CK_FloatingComplexToReal:
1758  case CK_IntegralComplexToReal:
1759  return CGF.EmitComplexExpr(E, false, true).first;
1760 
1761  case CK_FloatingComplexToBoolean:
1762  case CK_IntegralComplexToBoolean: {
1763  CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1764 
1765  // TODO: kill this function off, inline appropriate case here
1766  return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1767  CE->getExprLoc());
1768  }
1769 
1770  case CK_ZeroToOCLEvent: {
1771  assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1772  return llvm::Constant::getNullValue(ConvertType(DestTy));
1773  }
1774 
1775  case CK_ZeroToOCLQueue: {
1776  assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type");
1777  return llvm::Constant::getNullValue(ConvertType(DestTy));
1778  }
1779 
1780  case CK_IntToOCLSampler:
1781  return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1782 
1783  } // end of switch
1784 
1785  llvm_unreachable("unknown scalar cast");
1786 }
1787 
1788 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1790  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1791  !E->getType()->isVoidType());
1792  if (!RetAlloca.isValid())
1793  return nullptr;
1794  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1795  E->getExprLoc());
1796 }
1797 
1798 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1799  CGF.enterFullExpression(E);
1801  Value *V = Visit(E->getSubExpr());
1802  // Defend against dominance problems caused by jumps out of expression
1803  // evaluation through the shared cleanup block.
1804  Scope.ForceCleanup({&V});
1805  return V;
1806 }
1807 
1808 //===----------------------------------------------------------------------===//
1809 // Unary Operators
1810 //===----------------------------------------------------------------------===//
1811 
1812 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1813  llvm::Value *InVal, bool IsInc) {
1814  BinOpInfo BinOp;
1815  BinOp.LHS = InVal;
1816  BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1817  BinOp.Ty = E->getType();
1818  BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1819  // FIXME: once UnaryOperator carries FPFeatures, copy it here.
1820  BinOp.E = E;
1821  return BinOp;
1822 }
1823 
1824 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1825  const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1826  llvm::Value *Amount =
1827  llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1828  StringRef Name = IsInc ? "inc" : "dec";
1829  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1831  return Builder.CreateAdd(InVal, Amount, Name);
1833  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1834  return Builder.CreateNSWAdd(InVal, Amount, Name);
1835  // Fall through.
1837  if (IsWidenedIntegerOp(CGF.getContext(), E->getSubExpr()))
1838  return Builder.CreateNSWAdd(InVal, Amount, Name);
1839  return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1840  }
1841  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1842 }
1843 
1844 llvm::Value *
1845 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1846  bool isInc, bool isPre) {
1847 
1848  QualType type = E->getSubExpr()->getType();
1849  llvm::PHINode *atomicPHI = nullptr;
1850  llvm::Value *value;
1851  llvm::Value *input;
1852 
1853  int amount = (isInc ? 1 : -1);
1854  bool isSubtraction = !isInc;
1855 
1856  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1857  type = atomicTy->getValueType();
1858  if (isInc && type->isBooleanType()) {
1859  llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1860  if (isPre) {
1861  Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1862  ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1863  return Builder.getTrue();
1864  }
1865  // For atomic bool increment, we just store true and return it for
1866  // preincrement, do an atomic swap with true for postincrement
1867  return Builder.CreateAtomicRMW(
1868  llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1869  llvm::AtomicOrdering::SequentiallyConsistent);
1870  }
1871  // Special case for atomic increment / decrement on integers, emit
1872  // atomicrmw instructions. We skip this if we want to be doing overflow
1873  // checking, and fall into the slow path with the atomic cmpxchg loop.
1874  if (!type->isBooleanType() && type->isIntegerType() &&
1875  !(type->isUnsignedIntegerType() &&
1876  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1877  CGF.getLangOpts().getSignedOverflowBehavior() !=
1879  llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1880  llvm::AtomicRMWInst::Sub;
1881  llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1882  llvm::Instruction::Sub;
1883  llvm::Value *amt = CGF.EmitToMemory(
1884  llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1885  llvm::Value *old = Builder.CreateAtomicRMW(aop,
1886  LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1887  return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1888  }
1889  value = EmitLoadOfLValue(LV, E->getExprLoc());
1890  input = value;
1891  // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1892  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1893  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1894  value = CGF.EmitToMemory(value, type);
1895  Builder.CreateBr(opBB);
1896  Builder.SetInsertPoint(opBB);
1897  atomicPHI = Builder.CreatePHI(value->getType(), 2);
1898  atomicPHI->addIncoming(value, startBB);
1899  value = atomicPHI;
1900  } else {
1901  value = EmitLoadOfLValue(LV, E->getExprLoc());
1902  input = value;
1903  }
1904 
1905  // Special case of integer increment that we have to check first: bool++.
1906  // Due to promotion rules, we get:
1907  // bool++ -> bool = bool + 1
1908  // -> bool = (int)bool + 1
1909  // -> bool = ((int)bool + 1 != 0)
1910  // An interesting aspect of this is that increment is always true.
1911  // Decrement does not have this property.
1912  if (isInc && type->isBooleanType()) {
1913  value = Builder.getTrue();
1914 
1915  // Most common case by far: integer increment.
1916  } else if (type->isIntegerType()) {
1917  // Note that signed integer inc/dec with width less than int can't
1918  // overflow because of promotion rules; we're just eliding a few steps here.
1919  bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1920  CGF.IntTy->getIntegerBitWidth();
1921  if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1922  value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1923  } else if (CanOverflow && type->isUnsignedIntegerType() &&
1924  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1925  value =
1926  EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1927  } else {
1928  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1929  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1930  }
1931 
1932  // Next most common: pointer increment.
1933  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1934  QualType type = ptr->getPointeeType();
1935 
1936  // VLA types don't have constant size.
1937  if (const VariableArrayType *vla
1938  = CGF.getContext().getAsVariableArrayType(type)) {
1939  llvm::Value *numElts = CGF.getVLASize(vla).first;
1940  if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1941  if (CGF.getLangOpts().isSignedOverflowDefined())
1942  value = Builder.CreateGEP(value, numElts, "vla.inc");
1943  else
1944  value = CGF.EmitCheckedInBoundsGEP(
1945  value, numElts, /*SignedIndices=*/false, isSubtraction,
1946  E->getExprLoc(), "vla.inc");
1947 
1948  // Arithmetic on function pointers (!) is just +-1.
1949  } else if (type->isFunctionType()) {
1950  llvm::Value *amt = Builder.getInt32(amount);
1951 
1952  value = CGF.EmitCastToVoidPtr(value);
1953  if (CGF.getLangOpts().isSignedOverflowDefined())
1954  value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1955  else
1956  value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
1957  isSubtraction, E->getExprLoc(),
1958  "incdec.funcptr");
1959  value = Builder.CreateBitCast(value, input->getType());
1960 
1961  // For everything else, we can just do a simple increment.
1962  } else {
1963  llvm::Value *amt = Builder.getInt32(amount);
1964  if (CGF.getLangOpts().isSignedOverflowDefined())
1965  value = Builder.CreateGEP(value, amt, "incdec.ptr");
1966  else
1967  value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
1968  isSubtraction, E->getExprLoc(),
1969  "incdec.ptr");
1970  }
1971 
1972  // Vector increment/decrement.
1973  } else if (type->isVectorType()) {
1974  if (type->hasIntegerRepresentation()) {
1975  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1976 
1977  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1978  } else {
1979  value = Builder.CreateFAdd(
1980  value,
1981  llvm::ConstantFP::get(value->getType(), amount),
1982  isInc ? "inc" : "dec");
1983  }
1984 
1985  // Floating point.
1986  } else if (type->isRealFloatingType()) {
1987  // Add the inc/dec to the real part.
1988  llvm::Value *amt;
1989 
1990  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1991  // Another special case: half FP increment should be done via float
1992  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1993  value = Builder.CreateCall(
1994  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1995  CGF.CGM.FloatTy),
1996  input, "incdec.conv");
1997  } else {
1998  value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1999  }
2000  }
2001 
2002  if (value->getType()->isFloatTy())
2003  amt = llvm::ConstantFP::get(VMContext,
2004  llvm::APFloat(static_cast<float>(amount)));
2005  else if (value->getType()->isDoubleTy())
2006  amt = llvm::ConstantFP::get(VMContext,
2007  llvm::APFloat(static_cast<double>(amount)));
2008  else {
2009  // Remaining types are Half, LongDouble or __float128. Convert from float.
2010  llvm::APFloat F(static_cast<float>(amount));
2011  bool ignored;
2012  const llvm::fltSemantics *FS;
2013  // Don't use getFloatTypeSemantics because Half isn't
2014  // necessarily represented using the "half" LLVM type.
2015  if (value->getType()->isFP128Ty())
2016  FS = &CGF.getTarget().getFloat128Format();
2017  else if (value->getType()->isHalfTy())
2018  FS = &CGF.getTarget().getHalfFormat();
2019  else
2020  FS = &CGF.getTarget().getLongDoubleFormat();
2021  F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2022  amt = llvm::ConstantFP::get(VMContext, F);
2023  }
2024  value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2025 
2026  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2027  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
2028  value = Builder.CreateCall(
2029  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2030  CGF.CGM.FloatTy),
2031  value, "incdec.conv");
2032  } else {
2033  value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2034  }
2035  }
2036 
2037  // Objective-C pointer types.
2038  } else {
2039  const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2040  value = CGF.EmitCastToVoidPtr(value);
2041 
2042  CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2043  if (!isInc) size = -size;
2044  llvm::Value *sizeValue =
2045  llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2046 
2047  if (CGF.getLangOpts().isSignedOverflowDefined())
2048  value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2049  else
2050  value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2051  /*SignedIndices=*/false, isSubtraction,
2052  E->getExprLoc(), "incdec.objptr");
2053  value = Builder.CreateBitCast(value, input->getType());
2054  }
2055 
2056  if (atomicPHI) {
2057  llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2058  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2059  auto Pair = CGF.EmitAtomicCompareExchange(
2060  LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2061  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2062  llvm::Value *success = Pair.second;
2063  atomicPHI->addIncoming(old, opBB);
2064  Builder.CreateCondBr(success, contBB, opBB);
2065  Builder.SetInsertPoint(contBB);
2066  return isPre ? value : input;
2067  }
2068 
2069  // Store the updated result through the lvalue.
2070  if (LV.isBitField())
2071  CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2072  else
2073  CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2074 
2075  // If this is a postinc, return the value read from memory, otherwise use the
2076  // updated value.
2077  return isPre ? value : input;
2078 }
2079 
2080 
2081 
2082 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2083  TestAndClearIgnoreResultAssign();
2084  // Emit unary minus with EmitSub so we handle overflow cases etc.
2085  BinOpInfo BinOp;
2086  BinOp.RHS = Visit(E->getSubExpr());
2087 
2088  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2089  BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2090  else
2091  BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2092  BinOp.Ty = E->getType();
2093  BinOp.Opcode = BO_Sub;
2094  // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2095  BinOp.E = E;
2096  return EmitSub(BinOp);
2097 }
2098 
2099 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2100  TestAndClearIgnoreResultAssign();
2101  Value *Op = Visit(E->getSubExpr());
2102  return Builder.CreateNot(Op, "neg");
2103 }
2104 
2105 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2106  // Perform vector logical not on comparison with zero vector.
2107  if (E->getType()->isExtVectorType()) {
2108  Value *Oper = Visit(E->getSubExpr());
2109  Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2110  Value *Result;
2111  if (Oper->getType()->isFPOrFPVectorTy())
2112  Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2113  else
2114  Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2115  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2116  }
2117 
2118  // Compare operand to zero.
2119  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2120 
2121  // Invert value.
2122  // TODO: Could dynamically modify easy computations here. For example, if
2123  // the operand is an icmp ne, turn into icmp eq.
2124  BoolVal = Builder.CreateNot(BoolVal, "lnot");
2125 
2126  // ZExt result to the expr type.
2127  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2128 }
2129 
2130 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2131  // Try folding the offsetof to a constant.
2132  llvm::APSInt Value;
2133  if (E->EvaluateAsInt(Value, CGF.getContext()))
2134  return Builder.getInt(Value);
2135 
2136  // Loop over the components of the offsetof to compute the value.
2137  unsigned n = E->getNumComponents();
2138  llvm::Type* ResultType = ConvertType(E->getType());
2139  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2140  QualType CurrentType = E->getTypeSourceInfo()->getType();
2141  for (unsigned i = 0; i != n; ++i) {
2142  OffsetOfNode ON = E->getComponent(i);
2143  llvm::Value *Offset = nullptr;
2144  switch (ON.getKind()) {
2145  case OffsetOfNode::Array: {
2146  // Compute the index
2147  Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2148  llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2149  bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2150  Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2151 
2152  // Save the element type
2153  CurrentType =
2154  CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2155 
2156  // Compute the element size
2157  llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2158  CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2159 
2160  // Multiply out to compute the result
2161  Offset = Builder.CreateMul(Idx, ElemSize);
2162  break;
2163  }
2164 
2165  case OffsetOfNode::Field: {
2166  FieldDecl *MemberDecl = ON.getField();
2167  RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2168  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2169 
2170  // Compute the index of the field in its parent.
2171  unsigned i = 0;
2172  // FIXME: It would be nice if we didn't have to loop here!
2173  for (RecordDecl::field_iterator Field = RD->field_begin(),
2174  FieldEnd = RD->field_end();
2175  Field != FieldEnd; ++Field, ++i) {
2176  if (*Field == MemberDecl)
2177  break;
2178  }
2179  assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2180 
2181  // Compute the offset to the field
2182  int64_t OffsetInt = RL.getFieldOffset(i) /
2183  CGF.getContext().getCharWidth();
2184  Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2185 
2186  // Save the element type.
2187  CurrentType = MemberDecl->getType();
2188  break;
2189  }
2190 
2192  llvm_unreachable("dependent __builtin_offsetof");
2193 
2194  case OffsetOfNode::Base: {
2195  if (ON.getBase()->isVirtual()) {
2196  CGF.ErrorUnsupported(E, "virtual base in offsetof");
2197  continue;
2198  }
2199 
2200  RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2201  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2202 
2203  // Save the element type.
2204  CurrentType = ON.getBase()->getType();
2205 
2206  // Compute the offset to the base.
2207  const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2208  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2209  CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2210  Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2211  break;
2212  }
2213  }
2214  Result = Builder.CreateAdd(Result, Offset);
2215  }
2216  return Result;
2217 }
2218 
2219 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2220 /// argument of the sizeof expression as an integer.
2221 Value *
2222 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2223  const UnaryExprOrTypeTraitExpr *E) {
2224  QualType TypeToSize = E->getTypeOfArgument();
2225  if (E->getKind() == UETT_SizeOf) {
2226  if (const VariableArrayType *VAT =
2227  CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2228  if (E->isArgumentType()) {
2229  // sizeof(type) - make sure to emit the VLA size.
2230  CGF.EmitVariablyModifiedType(TypeToSize);
2231  } else {
2232  // C99 6.5.3.4p2: If the argument is an expression of type
2233  // VLA, it is evaluated.
2234  CGF.EmitIgnoredExpr(E->getArgumentExpr());
2235  }
2236 
2237  QualType eltType;
2238  llvm::Value *numElts;
2239  std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2240 
2241  llvm::Value *size = numElts;
2242 
2243  // Scale the number of non-VLA elements by the non-VLA element size.
2244  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2245  if (!eltSize.isOne())
2246  size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2247 
2248  return size;
2249  }
2250  } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2251  auto Alignment =
2252  CGF.getContext()
2253  .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2255  .getQuantity();
2256  return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2257  }
2258 
2259  // If this isn't sizeof(vla), the result must be constant; use the constant
2260  // folding logic so we don't have to duplicate it here.
2261  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2262 }
2263 
2264 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2265  Expr *Op = E->getSubExpr();
2266  if (Op->getType()->isAnyComplexType()) {
2267  // If it's an l-value, load through the appropriate subobject l-value.
2268  // Note that we have to ask E because Op might be an l-value that
2269  // this won't work for, e.g. an Obj-C property.
2270  if (E->isGLValue())
2271  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2272  E->getExprLoc()).getScalarVal();
2273 
2274  // Otherwise, calculate and project.
2275  return CGF.EmitComplexExpr(Op, false, true).first;
2276  }
2277 
2278  return Visit(Op);
2279 }
2280 
2281 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2282  Expr *Op = E->getSubExpr();
2283  if (Op->getType()->isAnyComplexType()) {
2284  // If it's an l-value, load through the appropriate subobject l-value.
2285  // Note that we have to ask E because Op might be an l-value that
2286  // this won't work for, e.g. an Obj-C property.
2287  if (Op->isGLValue())
2288  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2289  E->getExprLoc()).getScalarVal();
2290 
2291  // Otherwise, calculate and project.
2292  return CGF.EmitComplexExpr(Op, true, false).second;
2293  }
2294 
2295  // __imag on a scalar returns zero. Emit the subexpr to ensure side
2296  // effects are evaluated, but not the actual value.
2297  if (Op->isGLValue())
2298  CGF.EmitLValue(Op);
2299  else
2300  CGF.EmitScalarExpr(Op, true);
2301  return llvm::Constant::getNullValue(ConvertType(E->getType()));
2302 }
2303 
2304 //===----------------------------------------------------------------------===//
2305 // Binary Operators
2306 //===----------------------------------------------------------------------===//
2307 
2308 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2309  TestAndClearIgnoreResultAssign();
2310  BinOpInfo Result;
2311  Result.LHS = Visit(E->getLHS());
2312  Result.RHS = Visit(E->getRHS());
2313  Result.Ty = E->getType();
2314  Result.Opcode = E->getOpcode();
2315  Result.FPFeatures = E->getFPFeatures();
2316  Result.E = E;
2317  return Result;
2318 }
2319 
2320 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2321  const CompoundAssignOperator *E,
2322  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2323  Value *&Result) {
2324  QualType LHSTy = E->getLHS()->getType();
2325  BinOpInfo OpInfo;
2326 
2328  return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2329 
2330  // Emit the RHS first. __block variables need to have the rhs evaluated
2331  // first, plus this should improve codegen a little.
2332  OpInfo.RHS = Visit(E->getRHS());
2333  OpInfo.Ty = E->getComputationResultType();
2334  OpInfo.Opcode = E->getOpcode();
2335  OpInfo.FPFeatures = E->getFPFeatures();
2336  OpInfo.E = E;
2337  // Load/convert the LHS.
2338  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2339 
2340  llvm::PHINode *atomicPHI = nullptr;
2341  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2342  QualType type = atomicTy->getValueType();
2343  if (!type->isBooleanType() && type->isIntegerType() &&
2344  !(type->isUnsignedIntegerType() &&
2345  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2346  CGF.getLangOpts().getSignedOverflowBehavior() !=
2348  llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2349  switch (OpInfo.Opcode) {
2350  // We don't have atomicrmw operands for *, %, /, <<, >>
2351  case BO_MulAssign: case BO_DivAssign:
2352  case BO_RemAssign:
2353  case BO_ShlAssign:
2354  case BO_ShrAssign:
2355  break;
2356  case BO_AddAssign:
2357  aop = llvm::AtomicRMWInst::Add;
2358  break;
2359  case BO_SubAssign:
2360  aop = llvm::AtomicRMWInst::Sub;
2361  break;
2362  case BO_AndAssign:
2364  break;
2365  case BO_XorAssign:
2366  aop = llvm::AtomicRMWInst::Xor;
2367  break;
2368  case BO_OrAssign:
2369  aop = llvm::AtomicRMWInst::Or;
2370  break;
2371  default:
2372  llvm_unreachable("Invalid compound assignment type");
2373  }
2374  if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2375  llvm::Value *amt = CGF.EmitToMemory(
2376  EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2377  E->getExprLoc()),
2378  LHSTy);
2379  Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2380  llvm::AtomicOrdering::SequentiallyConsistent);
2381  return LHSLV;
2382  }
2383  }
2384  // FIXME: For floating point types, we should be saving and restoring the
2385  // floating point environment in the loop.
2386  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2387  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2388  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2389  OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2390  Builder.CreateBr(opBB);
2391  Builder.SetInsertPoint(opBB);
2392  atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2393  atomicPHI->addIncoming(OpInfo.LHS, startBB);
2394  OpInfo.LHS = atomicPHI;
2395  }
2396  else
2397  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2398 
2399  SourceLocation Loc = E->getExprLoc();
2400  OpInfo.LHS =
2401  EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2402 
2403  // Expand the binary operator.
2404  Result = (this->*Func)(OpInfo);
2405 
2406  // Convert the result back to the LHS type.
2407  Result =
2408  EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2409 
2410  if (atomicPHI) {
2411  llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2412  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2413  auto Pair = CGF.EmitAtomicCompareExchange(
2414  LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2415  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2416  llvm::Value *success = Pair.second;
2417  atomicPHI->addIncoming(old, opBB);
2418  Builder.CreateCondBr(success, contBB, opBB);
2419  Builder.SetInsertPoint(contBB);
2420  return LHSLV;
2421  }
2422 
2423  // Store the result value into the LHS lvalue. Bit-fields are handled
2424  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2425  // 'An assignment expression has the value of the left operand after the
2426  // assignment...'.
2427  if (LHSLV.isBitField())
2428  CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2429  else
2430  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2431 
2432  return LHSLV;
2433 }
2434 
2435 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2436  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2437  bool Ignore = TestAndClearIgnoreResultAssign();
2438  Value *RHS;
2439  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2440 
2441  // If the result is clearly ignored, return now.
2442  if (Ignore)
2443  return nullptr;
2444 
2445  // The result of an assignment in C is the assigned r-value.
2446  if (!CGF.getLangOpts().CPlusPlus)
2447  return RHS;
2448 
2449  // If the lvalue is non-volatile, return the computed value of the assignment.
2450  if (!LHS.isVolatileQualified())
2451  return RHS;
2452 
2453  // Otherwise, reload the value.
2454  return EmitLoadOfLValue(LHS, E->getExprLoc());
2455 }
2456 
2457 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2458  const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2460 
2461  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2462  Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2463  SanitizerKind::IntegerDivideByZero));
2464  }
2465 
2466  const auto *BO = cast<BinaryOperator>(Ops.E);
2467  if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2468  Ops.Ty->hasSignedIntegerRepresentation() &&
2469  !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2470  Ops.mayHaveIntegerOverflow()) {
2471  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2472 
2473  llvm::Value *IntMin =
2474  Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2475  llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2476 
2477  llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2478  llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2479  llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2480  Checks.push_back(
2481  std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2482  }
2483 
2484  if (Checks.size() > 0)
2485  EmitBinOpCheck(Checks, Ops);
2486 }
2487 
2488 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2489  {
2490  CodeGenFunction::SanitizerScope SanScope(&CGF);
2491  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2492  CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2493  Ops.Ty->isIntegerType() &&
2494  (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2495  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2496  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2497  } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2498  Ops.Ty->isRealFloatingType() &&
2499  Ops.mayHaveFloatDivisionByZero()) {
2500  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2501  llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2502  EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2503  Ops);
2504  }
2505  }
2506 
2507  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2508  llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2509  if (CGF.getLangOpts().OpenCL &&
2510  !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2511  // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2512  // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2513  // build option allows an application to specify that single precision
2514  // floating-point divide (x/y and 1/x) and sqrt used in the program
2515  // source are correctly rounded.
2516  llvm::Type *ValTy = Val->getType();
2517  if (ValTy->isFloatTy() ||
2518  (isa<llvm::VectorType>(ValTy) &&
2519  cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2520  CGF.SetFPAccuracy(Val, 2.5);
2521  }
2522  return Val;
2523  }
2524  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2525  return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2526  else
2527  return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2528 }
2529 
2530 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2531  // Rem in C can't be a floating point type: C99 6.5.5p2.
2532  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2533  CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2534  Ops.Ty->isIntegerType() &&
2535  (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2536  CodeGenFunction::SanitizerScope SanScope(&CGF);
2537  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2538  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2539  }
2540 
2541  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2542  return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2543  else
2544  return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2545 }
2546 
2547 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2548  unsigned IID;
2549  unsigned OpID = 0;
2550 
2551  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2552  switch (Ops.Opcode) {
2553  case BO_Add:
2554  case BO_AddAssign:
2555  OpID = 1;
2556  IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2557  llvm::Intrinsic::uadd_with_overflow;
2558  break;
2559  case BO_Sub:
2560  case BO_SubAssign:
2561  OpID = 2;
2562  IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2563  llvm::Intrinsic::usub_with_overflow;
2564  break;
2565  case BO_Mul:
2566  case BO_MulAssign:
2567  OpID = 3;
2568  IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2569  llvm::Intrinsic::umul_with_overflow;
2570  break;
2571  default:
2572  llvm_unreachable("Unsupported operation for overflow detection");
2573  }
2574  OpID <<= 1;
2575  if (isSigned)
2576  OpID |= 1;
2577 
2578  CodeGenFunction::SanitizerScope SanScope(&CGF);
2579  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2580 
2581  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2582 
2583  Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2584  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2585  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2586 
2587  // Handle overflow with llvm.trap if no custom handler has been specified.
2588  const std::string *handlerName =
2589  &CGF.getLangOpts().OverflowHandler;
2590  if (handlerName->empty()) {
2591  // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2592  // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2593  if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2594  llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2595  SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2596  : SanitizerKind::UnsignedIntegerOverflow;
2597  EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2598  } else
2599  CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2600  return result;
2601  }
2602 
2603  // Branch in case of overflow.
2604  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2605  llvm::BasicBlock *continueBB =
2606  CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2607  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2608 
2609  Builder.CreateCondBr(overflow, overflowBB, continueBB);
2610 
2611  // If an overflow handler is set, then we want to call it and then use its
2612  // result, if it returns.
2613  Builder.SetInsertPoint(overflowBB);
2614 
2615  // Get the overflow handler.
2616  llvm::Type *Int8Ty = CGF.Int8Ty;
2617  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2618  llvm::FunctionType *handlerTy =
2619  llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2620  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2621 
2622  // Sign extend the args to 64-bit, so that we can use the same handler for
2623  // all types of overflow.
2624  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2625  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2626 
2627  // Call the handler with the two arguments, the operation, and the size of
2628  // the result.
2629  llvm::Value *handlerArgs[] = {
2630  lhs,
2631  rhs,
2632  Builder.getInt8(OpID),
2633  Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2634  };
2635  llvm::Value *handlerResult =
2636  CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2637 
2638  // Truncate the result back to the desired size.
2639  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2640  Builder.CreateBr(continueBB);
2641 
2642  Builder.SetInsertPoint(continueBB);
2643  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2644  phi->addIncoming(result, initialBB);
2645  phi->addIncoming(handlerResult, overflowBB);
2646 
2647  return phi;
2648 }
2649 
2650 /// Emit pointer + index arithmetic.
2652  const BinOpInfo &op,
2653  bool isSubtraction) {
2654  // Must have binary (not unary) expr here. Unary pointer
2655  // increment/decrement doesn't use this path.
2656  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2657 
2658  Value *pointer = op.LHS;
2659  Expr *pointerOperand = expr->getLHS();
2660  Value *index = op.RHS;
2661  Expr *indexOperand = expr->getRHS();
2662 
2663  // In a subtraction, the LHS is always the pointer.
2664  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2665  std::swap(pointer, index);
2666  std::swap(pointerOperand, indexOperand);
2667  }
2668 
2669  bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2670 
2671  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2672  auto &DL = CGF.CGM.getDataLayout();
2673  auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2674  if (width != DL.getTypeSizeInBits(PtrTy)) {
2675  // Zero-extend or sign-extend the pointer value according to
2676  // whether the index is signed or not.
2677  index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2678  "idx.ext");
2679  }
2680 
2681  // If this is subtraction, negate the index.
2682  if (isSubtraction)
2683  index = CGF.Builder.CreateNeg(index, "idx.neg");
2684 
2685  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2686  CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2687  /*Accessed*/ false);
2688 
2689  const PointerType *pointerType
2690  = pointerOperand->getType()->getAs<PointerType>();
2691  if (!pointerType) {
2692  QualType objectType = pointerOperand->getType()
2694  ->getPointeeType();
2695  llvm::Value *objectSize
2696  = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2697 
2698  index = CGF.Builder.CreateMul(index, objectSize);
2699 
2700  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2701  result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2702  return CGF.Builder.CreateBitCast(result, pointer->getType());
2703  }
2704 
2705  QualType elementType = pointerType->getPointeeType();
2706  if (const VariableArrayType *vla
2707  = CGF.getContext().getAsVariableArrayType(elementType)) {
2708  // The element count here is the total number of non-VLA elements.
2709  llvm::Value *numElements = CGF.getVLASize(vla).first;
2710 
2711  // Effectively, the multiply by the VLA size is part of the GEP.
2712  // GEP indexes are signed, and scaling an index isn't permitted to
2713  // signed-overflow, so we use the same semantics for our explicit
2714  // multiply. We suppress this if overflow is not undefined behavior.
2715  if (CGF.getLangOpts().isSignedOverflowDefined()) {
2716  index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2717  pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2718  } else {
2719  index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2720  pointer =
2721  CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2722  op.E->getExprLoc(), "add.ptr");
2723  }
2724  return pointer;
2725  }
2726 
2727  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2728  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2729  // future proof.
2730  if (elementType->isVoidType() || elementType->isFunctionType()) {
2731  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2732  result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2733  return CGF.Builder.CreateBitCast(result, pointer->getType());
2734  }
2735 
2737  return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2738 
2739  return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2740  op.E->getExprLoc(), "add.ptr");
2741 }
2742 
2743 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2744 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2745 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2746 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2747 // efficient operations.
2748 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2749  const CodeGenFunction &CGF, CGBuilderTy &Builder,
2750  bool negMul, bool negAdd) {
2751  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2752 
2753  Value *MulOp0 = MulOp->getOperand(0);
2754  Value *MulOp1 = MulOp->getOperand(1);
2755  if (negMul) {
2756  MulOp0 =
2757  Builder.CreateFSub(
2758  llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2759  "neg");
2760  } else if (negAdd) {
2761  Addend =
2762  Builder.CreateFSub(
2763  llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2764  "neg");
2765  }
2766 
2767  Value *FMulAdd = Builder.CreateCall(
2768  CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2769  {MulOp0, MulOp1, Addend});
2770  MulOp->eraseFromParent();
2771 
2772  return FMulAdd;
2773 }
2774 
2775 // Check whether it would be legal to emit an fmuladd intrinsic call to
2776 // represent op and if so, build the fmuladd.
2777 //
2778 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2779 // Does NOT check the type of the operation - it's assumed that this function
2780 // will be called from contexts where it's known that the type is contractable.
2781 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2782  const CodeGenFunction &CGF, CGBuilderTy &Builder,
2783  bool isSub=false) {
2784 
2785  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2786  op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2787  "Only fadd/fsub can be the root of an fmuladd.");
2788 
2789  // Check whether this op is marked as fusable.
2790  if (!op.FPFeatures.allowFPContractWithinStatement())
2791  return nullptr;
2792 
2793  // We have a potentially fusable op. Look for a mul on one of the operands.
2794  // Also, make sure that the mul result isn't used directly. In that case,
2795  // there's no point creating a muladd operation.
2796  if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2797  if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2798  LHSBinOp->use_empty())
2799  return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2800  }
2801  if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2802  if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2803  RHSBinOp->use_empty())
2804  return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2805  }
2806 
2807  return nullptr;
2808 }
2809 
2810 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2811  if (op.LHS->getType()->isPointerTy() ||
2812  op.RHS->getType()->isPointerTy())
2814 
2815  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2816  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2818  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2820  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2821  return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2822  // Fall through.
2824  if (CanElideOverflowCheck(CGF.getContext(), op))
2825  return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2826  return EmitOverflowCheckedBinOp(op);
2827  }
2828  }
2829 
2830  if (op.Ty->isUnsignedIntegerType() &&
2831  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2832  !CanElideOverflowCheck(CGF.getContext(), op))
2833  return EmitOverflowCheckedBinOp(op);
2834 
2835  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2836  // Try to form an fmuladd.
2837  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2838  return FMulAdd;
2839 
2840  Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
2841  return propagateFMFlags(V, op);
2842  }
2843 
2844  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2845 }
2846 
2847 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2848  // The LHS is always a pointer if either side is.
2849  if (!op.LHS->getType()->isPointerTy()) {
2850  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2851  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2853  return Builder.CreateSub(op.LHS, op.RHS, "sub");
2855  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2856  return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2857  // Fall through.
2859  if (CanElideOverflowCheck(CGF.getContext(), op))
2860  return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2861  return EmitOverflowCheckedBinOp(op);
2862  }
2863  }
2864 
2865  if (op.Ty->isUnsignedIntegerType() &&
2866  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2867  !CanElideOverflowCheck(CGF.getContext(), op))
2868  return EmitOverflowCheckedBinOp(op);
2869 
2870  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2871  // Try to form an fmuladd.
2872  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2873  return FMulAdd;
2874  Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
2875  return propagateFMFlags(V, op);
2876  }
2877 
2878  return Builder.CreateSub(op.LHS, op.RHS, "sub");
2879  }
2880 
2881  // If the RHS is not a pointer, then we have normal pointer
2882  // arithmetic.
2883  if (!op.RHS->getType()->isPointerTy())
2885 
2886  // Otherwise, this is a pointer subtraction.
2887 
2888  // Do the raw subtraction part.
2889  llvm::Value *LHS
2890  = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2891  llvm::Value *RHS
2892  = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2893  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2894 
2895  // Okay, figure out the element size.
2896  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2897  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2898 
2899  llvm::Value *divisor = nullptr;
2900 
2901  // For a variable-length array, this is going to be non-constant.
2902  if (const VariableArrayType *vla
2903  = CGF.getContext().getAsVariableArrayType(elementType)) {
2904  llvm::Value *numElements;
2905  std::tie(numElements, elementType) = CGF.getVLASize(vla);
2906 
2907  divisor = numElements;
2908 
2909  // Scale the number of non-VLA elements by the non-VLA element size.
2910  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2911  if (!eltSize.isOne())
2912  divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2913 
2914  // For everything elese, we can just compute it, safe in the
2915  // assumption that Sema won't let anything through that we can't
2916  // safely compute the size of.
2917  } else {
2918  CharUnits elementSize;
2919  // Handle GCC extension for pointer arithmetic on void* and
2920  // function pointer types.
2921  if (elementType->isVoidType() || elementType->isFunctionType())
2922  elementSize = CharUnits::One();
2923  else
2924  elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2925 
2926  // Don't even emit the divide for element size of 1.
2927  if (elementSize.isOne())
2928  return diffInChars;
2929 
2930  divisor = CGF.CGM.getSize(elementSize);
2931  }
2932 
2933  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2934  // pointer difference in C is only defined in the case where both operands
2935  // are pointing to elements of an array.
2936  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2937 }
2938 
2939 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2940  llvm::IntegerType *Ty;
2941  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2942  Ty = cast<llvm::IntegerType>(VT->getElementType());
2943  else
2944  Ty = cast<llvm::IntegerType>(LHS->getType());
2945  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2946 }
2947 
2948 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2949  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2950  // RHS to the same size as the LHS.
2951  Value *RHS = Ops.RHS;
2952  if (Ops.LHS->getType() != RHS->getType())
2953  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2954 
2955  bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2956  Ops.Ty->hasSignedIntegerRepresentation() &&
2957  !CGF.getLangOpts().isSignedOverflowDefined();
2958  bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2959  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2960  if (CGF.getLangOpts().OpenCL)
2961  RHS =
2962  Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2963  else if ((SanitizeBase || SanitizeExponent) &&
2964  isa<llvm::IntegerType>(Ops.LHS->getType())) {
2965  CodeGenFunction::SanitizerScope SanScope(&CGF);
2967  llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
2968  llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
2969 
2970  if (SanitizeExponent) {
2971  Checks.push_back(
2972  std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2973  }
2974 
2975  if (SanitizeBase) {
2976  // Check whether we are shifting any non-zero bits off the top of the
2977  // integer. We only emit this check if exponent is valid - otherwise
2978  // instructions below will have undefined behavior themselves.
2979  llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2980  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2981  llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2982  Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2983  llvm::Value *PromotedWidthMinusOne =
2984  (RHS == Ops.RHS) ? WidthMinusOne
2985  : GetWidthMinusOneValue(Ops.LHS, RHS);
2986  CGF.EmitBlock(CheckShiftBase);
2987  llvm::Value *BitsShiftedOff = Builder.CreateLShr(
2988  Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
2989  /*NUW*/ true, /*NSW*/ true),
2990  "shl.check");
2991  if (CGF.getLangOpts().CPlusPlus) {
2992  // In C99, we are not permitted to shift a 1 bit into the sign bit.
2993  // Under C++11's rules, shifting a 1 bit into the sign bit is
2994  // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2995  // define signed left shifts, so we use the C99 and C++11 rules there).
2996  llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2997  BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2998  }
2999  llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3000  llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3001  CGF.EmitBlock(Cont);
3002  llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3003  BaseCheck->addIncoming(Builder.getTrue(), Orig);
3004  BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3005  Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3006  }
3007 
3008  assert(!Checks.empty());
3009  EmitBinOpCheck(Checks, Ops);
3010  }
3011 
3012  return Builder.CreateShl(Ops.LHS, RHS, "shl");
3013 }
3014 
3015 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3016  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3017  // RHS to the same size as the LHS.
3018  Value *RHS = Ops.RHS;
3019  if (Ops.LHS->getType() != RHS->getType())
3020  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3021 
3022  // OpenCL 6.3j: shift values are effectively % word size of LHS.
3023  if (CGF.getLangOpts().OpenCL)
3024  RHS =
3025  Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3026  else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3027  isa<llvm::IntegerType>(Ops.LHS->getType())) {
3028  CodeGenFunction::SanitizerScope SanScope(&CGF);
3029  llvm::Value *Valid =
3030  Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3031  EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3032  }
3033 
3034  if (Ops.Ty->hasUnsignedIntegerRepresentation())
3035  return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3036  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3037 }
3038 
3040 // return corresponding comparison intrinsic for given vector type
3042  BuiltinType::Kind ElemKind) {
3043  switch (ElemKind) {
3044  default: llvm_unreachable("unexpected element type");
3045  case BuiltinType::Char_U:
3046  case BuiltinType::UChar:
3047  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3048  llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3049  case BuiltinType::Char_S:
3050  case BuiltinType::SChar:
3051  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3052  llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3053  case BuiltinType::UShort:
3054  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3055  llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3056  case BuiltinType::Short:
3057  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3058  llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3059  case BuiltinType::UInt:
3060  case BuiltinType::ULong:
3061  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3062  llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3063  case BuiltinType::Int:
3064  case BuiltinType::Long:
3065  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3066  llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3067  case BuiltinType::Float:
3068  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3069  llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3070  }
3071 }
3072 
3073 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3074  llvm::CmpInst::Predicate UICmpOpc,
3075  llvm::CmpInst::Predicate SICmpOpc,
3076  llvm::CmpInst::Predicate FCmpOpc) {
3077  TestAndClearIgnoreResultAssign();
3078  Value *Result;
3079  QualType LHSTy = E->getLHS()->getType();
3080  QualType RHSTy = E->getRHS()->getType();
3081  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3082  assert(E->getOpcode() == BO_EQ ||
3083  E->getOpcode() == BO_NE);
3084  Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3085  Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3086  Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3087  CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3088  } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3089  Value *LHS = Visit(E->getLHS());
3090  Value *RHS = Visit(E->getRHS());
3091 
3092  // If AltiVec, the comparison results in a numeric type, so we use
3093  // intrinsics comparing vectors and giving 0 or 1 as a result
3094  if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3095  // constants for mapping CR6 register bits to predicate result
3096  enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3097 
3098  llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3099 
3100  // in several cases vector arguments order will be reversed
3101  Value *FirstVecArg = LHS,
3102  *SecondVecArg = RHS;
3103 
3104  QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3105  const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3106  BuiltinType::Kind ElementKind = BTy->getKind();
3107 
3108  switch(E->getOpcode()) {
3109  default: llvm_unreachable("is not a comparison operation");
3110  case BO_EQ:
3111  CR6 = CR6_LT;
3112  ID = GetIntrinsic(VCMPEQ, ElementKind);
3113  break;
3114  case BO_NE:
3115  CR6 = CR6_EQ;
3116  ID = GetIntrinsic(VCMPEQ, ElementKind);
3117  break;
3118  case BO_LT:
3119  CR6 = CR6_LT;
3120  ID = GetIntrinsic(VCMPGT, ElementKind);
3121  std::swap(FirstVecArg, SecondVecArg);
3122  break;
3123  case BO_GT:
3124  CR6 = CR6_LT;
3125  ID = GetIntrinsic(VCMPGT, ElementKind);
3126  break;
3127  case BO_LE:
3128  if (ElementKind == BuiltinType::Float) {
3129  CR6 = CR6_LT;
3130  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3131  std::swap(FirstVecArg, SecondVecArg);
3132  }
3133  else {
3134  CR6 = CR6_EQ;
3135  ID = GetIntrinsic(VCMPGT, ElementKind);
3136  }
3137  break;
3138  case BO_GE:
3139  if (ElementKind == BuiltinType::Float) {
3140  CR6 = CR6_LT;
3141  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3142  }
3143  else {
3144  CR6 = CR6_EQ;
3145  ID = GetIntrinsic(VCMPGT, ElementKind);
3146  std::swap(FirstVecArg, SecondVecArg);
3147  }
3148  break;
3149  }
3150 
3151  Value *CR6Param = Builder.getInt32(CR6);
3152  llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3153  Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3154  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3155  E->getExprLoc());
3156  }
3157 
3158  if (LHS->getType()->isFPOrFPVectorTy()) {
3159  Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3160  } else if (LHSTy->hasSignedIntegerRepresentation()) {
3161  Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3162  } else {
3163  // Unsigned integers and pointers.
3164  Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3165  }
3166 
3167  // If this is a vector comparison, sign extend the result to the appropriate
3168  // vector integer type and return it (don't convert to bool).
3169  if (LHSTy->isVectorType())
3170  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3171 
3172  } else {
3173  // Complex Comparison: can only be an equality comparison.
3175  QualType CETy;
3176  if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3177  LHS = CGF.EmitComplexExpr(E->getLHS());
3178  CETy = CTy->getElementType();
3179  } else {
3180  LHS.first = Visit(E->getLHS());
3181  LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3182  CETy = LHSTy;
3183  }
3184  if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3185  RHS = CGF.EmitComplexExpr(E->getRHS());
3186  assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3187  CTy->getElementType()) &&
3188  "The element types must always match.");
3189  (void)CTy;
3190  } else {
3191  RHS.first = Visit(E->getRHS());
3192  RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3193  assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3194  "The element types must always match.");
3195  }
3196 
3197  Value *ResultR, *ResultI;
3198  if (CETy->isRealFloatingType()) {
3199  ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3200  ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3201  } else {
3202  // Complex comparisons can only be equality comparisons. As such, signed
3203  // and unsigned opcodes are the same.
3204  ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3205  ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3206  }
3207 
3208  if (E->getOpcode() == BO_EQ) {
3209  Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3210  } else {
3211  assert(E->getOpcode() == BO_NE &&
3212  "Complex comparison other than == or != ?");
3213  Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3214  }
3215  }
3216 
3217  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3218  E->getExprLoc());
3219 }
3220 
3221 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3222  bool Ignore = TestAndClearIgnoreResultAssign();
3223 
3224  Value *RHS;
3225  LValue LHS;
3226 
3227  switch (E->getLHS()->getType().getObjCLifetime()) {
3229  std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3230  break;
3231 
3233  std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3234  break;
3235 
3237  std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3238  break;
3239 
3240  case Qualifiers::OCL_Weak:
3241  RHS = Visit(E->getRHS());
3242  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3243  RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3244  break;
3245 
3246  case Qualifiers::OCL_None:
3247  // __block variables need to have the rhs evaluated first, plus
3248  // this should improve codegen just a little.
3249  RHS = Visit(E->getRHS());
3250  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3251 
3252  // Store the value into the LHS. Bit-fields are handled specially
3253  // because the result is altered by the store, i.e., [C99 6.5.16p1]
3254  // 'An assignment expression has the value of the left operand after
3255  // the assignment...'.
3256  if (LHS.isBitField()) {
3257  CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3258  } else {
3259  CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3260  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3261  }
3262  }
3263 
3264  // If the result is clearly ignored, return now.
3265  if (Ignore)
3266  return nullptr;
3267 
3268  // The result of an assignment in C is the assigned r-value.
3269  if (!CGF.getLangOpts().CPlusPlus)
3270  return RHS;
3271 
3272  // If the lvalue is non-volatile, return the computed value of the assignment.
3273  if (!LHS.isVolatileQualified())
3274  return RHS;
3275 
3276  // Otherwise, reload the value.
3277  return EmitLoadOfLValue(LHS, E->getExprLoc());
3278 }
3279 
3280 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3281  // Perform vector logical and on comparisons with zero vectors.
3282  if (E->getType()->isVectorType()) {
3283  CGF.incrementProfileCounter(E);
3284 
3285  Value *LHS = Visit(E->getLHS());
3286  Value *RHS = Visit(E->getRHS());
3287  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3288  if (LHS->getType()->isFPOrFPVectorTy()) {
3289  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3290  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3291  } else {
3292  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3293  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3294  }
3295  Value *And = Builder.CreateAnd(LHS, RHS);
3296  return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3297  }
3298 
3299  llvm::Type *ResTy = ConvertType(E->getType());
3300 
3301  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3302  // If we have 1 && X, just emit X without inserting the control flow.
3303  bool LHSCondVal;
3304  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3305  if (LHSCondVal) { // If we have 1 && X, just emit X.
3306  CGF.incrementProfileCounter(E);
3307 
3308  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3309  // ZExt result to int or bool.
3310  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3311  }
3312 
3313  // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3314  if (!CGF.ContainsLabel(E->getRHS()))
3315  return llvm::Constant::getNullValue(ResTy);
3316  }
3317 
3318  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3319  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
3320 
3322 
3323  // Branch on the LHS first. If it is false, go to the failure (cont) block.
3324  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3325  CGF.getProfileCount(E->getRHS()));
3326 
3327  // Any edges into the ContBlock are now from an (indeterminate number of)
3328  // edges from this first condition. All of these values will be false. Start
3329  // setting up the PHI node in the Cont Block for this.
3330  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3331  "", ContBlock);
3332  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3333  PI != PE; ++PI)
3334  PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3335 
3336  eval.begin(CGF);
3337  CGF.EmitBlock(RHSBlock);
3338  CGF.incrementProfileCounter(E);
3339  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3340  eval.end(CGF);
3341 
3342  // Reaquire the RHS block, as there may be subblocks inserted.
3343  RHSBlock = Builder.GetInsertBlock();
3344 
3345  // Emit an unconditional branch from this block to ContBlock.
3346  {
3347  // There is no need to emit line number for unconditional branch.
3348  auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3349  CGF.EmitBlock(ContBlock);
3350  }
3351  // Insert an entry into the phi node for the edge with the value of RHSCond.
3352  PN->addIncoming(RHSCond, RHSBlock);
3353 
3354  // ZExt result to int.
3355  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3356 }
3357 
3358 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3359  // Perform vector logical or on comparisons with zero vectors.
3360  if (E->getType()->isVectorType()) {
3361  CGF.incrementProfileCounter(E);
3362 
3363  Value *LHS = Visit(E->getLHS());
3364  Value *RHS = Visit(E->getRHS());
3365  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3366  if (LHS->getType()->isFPOrFPVectorTy()) {
3367  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3368  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3369  } else {
3370  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3371  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3372  }
3373  Value *Or = Builder.CreateOr(LHS, RHS);
3374  return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3375  }
3376 
3377  llvm::Type *ResTy = ConvertType(E->getType());
3378 
3379  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3380  // If we have 0 || X, just emit X without inserting the control flow.
3381  bool LHSCondVal;
3382  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3383  if (!LHSCondVal) { // If we have 0 || X, just emit X.
3384  CGF.incrementProfileCounter(E);
3385 
3386  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3387  // ZExt result to int or bool.
3388  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3389  }
3390 
3391  // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3392  if (!CGF.ContainsLabel(E->getRHS()))
3393  return llvm::ConstantInt::get(ResTy, 1);
3394  }
3395 
3396  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3397  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3398 
3400 
3401  // Branch on the LHS first. If it is true, go to the success (cont) block.
3402  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3403  CGF.getCurrentProfileCount() -
3404  CGF.getProfileCount(E->getRHS()));
3405 
3406  // Any edges into the ContBlock are now from an (indeterminate number of)
3407  // edges from this first condition. All of these values will be true. Start
3408  // setting up the PHI node in the Cont Block for this.
3409  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3410  "", ContBlock);
3411  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3412  PI != PE; ++PI)
3413  PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3414 
3415  eval.begin(CGF);
3416 
3417  // Emit the RHS condition as a bool value.
3418  CGF.EmitBlock(RHSBlock);
3419  CGF.incrementProfileCounter(E);
3420  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3421 
3422  eval.end(CGF);
3423 
3424  // Reaquire the RHS block, as there may be subblocks inserted.
3425  RHSBlock = Builder.GetInsertBlock();
3426 
3427  // Emit an unconditional branch from this block to ContBlock. Insert an entry
3428  // into the phi node for the edge with the value of RHSCond.
3429  CGF.EmitBlock(ContBlock);
3430  PN->addIncoming(RHSCond, RHSBlock);
3431 
3432  // ZExt result to int.
3433  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3434 }
3435 
3436 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3437  CGF.EmitIgnoredExpr(E->getLHS());
3438  CGF.EnsureInsertPoint();
3439  return Visit(E->getRHS());
3440 }
3441 
3442 //===----------------------------------------------------------------------===//
3443 // Other Operators
3444 //===----------------------------------------------------------------------===//
3445 
3446 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3447 /// expression is cheap enough and side-effect-free enough to evaluate
3448 /// unconditionally instead of conditionally. This is used to convert control
3449 /// flow into selects in some cases.
3451  CodeGenFunction &CGF) {
3452  // Anything that is an integer or floating point constant is fine.
3453  return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3454 
3455  // Even non-volatile automatic variables can't be evaluated unconditionally.
3456  // Referencing a thread_local may cause non-trivial initialization work to
3457  // occur. If we're inside a lambda and one of the variables is from the scope
3458  // outside the lambda, that function may have returned already. Reading its
3459  // locals is a bad idea. Also, these reads may introduce races there didn't
3460  // exist in the source-level program.
3461 }
3462 
3463 
3464 Value *ScalarExprEmitter::
3465 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3466  TestAndClearIgnoreResultAssign();
3467 
3468  // Bind the common expression if necessary.
3469  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3470 
3471  Expr *condExpr = E->getCond();
3472  Expr *lhsExpr = E->getTrueExpr();
3473  Expr *rhsExpr = E->getFalseExpr();
3474 
3475  // If the condition constant folds and can be elided, try to avoid emitting
3476  // the condition and the dead arm.
3477  bool CondExprBool;
3478  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3479  Expr *live = lhsExpr, *dead = rhsExpr;
3480  if (!CondExprBool) std::swap(live, dead);
3481 
3482  // If the dead side doesn't have labels we need, just emit the Live part.
3483  if (!CGF.ContainsLabel(dead)) {
3484  if (CondExprBool)
3485  CGF.incrementProfileCounter(E);
3486  Value *Result = Visit(live);
3487 
3488  // If the live part is a throw expression, it acts like it has a void
3489  // type, so evaluating it returns a null Value*. However, a conditional
3490  // with non-void type must return a non-null Value*.
3491  if (!Result && !E->getType()->isVoidType())
3492  Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3493 
3494  return Result;
3495  }
3496  }
3497 
3498  // OpenCL: If the condition is a vector, we can treat this condition like
3499  // the select function.
3500  if (CGF.getLangOpts().OpenCL
3501  && condExpr->getType()->isVectorType()) {
3502  CGF.incrementProfileCounter(E);
3503 
3504  llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3505  llvm::Value *LHS = Visit(lhsExpr);
3506  llvm::Value *RHS = Visit(rhsExpr);
3507 
3508  llvm::Type *condType = ConvertType(condExpr->getType());
3509  llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3510 
3511  unsigned numElem = vecTy->getNumElements();
3512  llvm::Type *elemType = vecTy->getElementType();
3513 
3514  llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3515  llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3516  llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3517  llvm::VectorType::get(elemType,
3518  numElem),
3519  "sext");
3520  llvm::Value *tmp2 = Builder.CreateNot(tmp);
3521 
3522  // Cast float to int to perform ANDs if necessary.
3523  llvm::Value *RHSTmp = RHS;
3524  llvm::Value *LHSTmp = LHS;
3525  bool wasCast = false;
3526  llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3527  if (rhsVTy->getElementType()->isFloatingPointTy()) {
3528  RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3529  LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3530  wasCast = true;
3531  }
3532 
3533  llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3534  llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3535  llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3536  if (wasCast)
3537  tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3538 
3539  return tmp5;
3540  }
3541 
3542  // If this is a really simple expression (like x ? 4 : 5), emit this as a
3543  // select instead of as control flow. We can only do this if it is cheap and
3544  // safe to evaluate the LHS and RHS unconditionally.
3545  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3547  llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3548  llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
3549 
3550  CGF.incrementProfileCounter(E, StepV);
3551 
3552  llvm::Value *LHS = Visit(lhsExpr);
3553  llvm::Value *RHS = Visit(rhsExpr);
3554  if (!LHS) {
3555  // If the conditional has void type, make sure we return a null Value*.
3556  assert(!RHS && "LHS and RHS types must match");
3557  return nullptr;
3558  }
3559  return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3560  }
3561 
3562  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3563  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3564  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3565 
3567  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3568  CGF.getProfileCount(lhsExpr));
3569 
3570  CGF.EmitBlock(LHSBlock);
3571  CGF.incrementProfileCounter(E);
3572  eval.begin(CGF);
3573  Value *LHS = Visit(lhsExpr);
3574  eval.end(CGF);
3575 
3576  LHSBlock = Builder.GetInsertBlock();
3577  Builder.CreateBr(ContBlock);
3578 
3579  CGF.EmitBlock(RHSBlock);
3580  eval.begin(CGF);
3581  Value *RHS = Visit(rhsExpr);
3582  eval.end(CGF);
3583 
3584  RHSBlock = Builder.GetInsertBlock();
3585  CGF.EmitBlock(ContBlock);
3586 
3587  // If the LHS or RHS is a throw expression, it will be legitimately null.
3588  if (!LHS)
3589  return RHS;
3590  if (!RHS)
3591  return LHS;
3592 
3593  // Create a PHI node for the real part.
3594  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3595  PN->addIncoming(LHS, LHSBlock);
3596  PN->addIncoming(RHS, RHSBlock);
3597  return PN;
3598 }
3599 
3600 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3601  return Visit(E->getChosenSubExpr());
3602 }
3603 
3604 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3605  QualType Ty = VE->getType();
3606 
3607  if (Ty->isVariablyModifiedType())
3608  CGF.EmitVariablyModifiedType(Ty);
3609 
3610  Address ArgValue = Address::invalid();
3611  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3612 
3613  llvm::Type *ArgTy = ConvertType(VE->getType());
3614 
3615  // If EmitVAArg fails, emit an error.
3616  if (!ArgPtr.isValid()) {
3617  CGF.ErrorUnsupported(VE, "va_arg expression");
3618  return llvm::UndefValue::get(ArgTy);
3619  }
3620 
3621  // FIXME Volatility.
3622  llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3623 
3624  // If EmitVAArg promoted the type, we must truncate it.
3625  if (ArgTy != Val->getType()) {
3626  if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3627  Val = Builder.CreateIntToPtr(Val, ArgTy);
3628  else
3629  Val = Builder.CreateTrunc(Val, ArgTy);
3630  }
3631 
3632  return Val;
3633 }
3634 
3635 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3636  return CGF.EmitBlockLiteral(block);
3637 }
3638 
3639 // Convert a vec3 to vec4, or vice versa.
3641  Value *Src, unsigned NumElementsDst) {
3642  llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3644  Args.push_back(Builder.getInt32(0));
3645  Args.push_back(Builder.getInt32(1));
3646  Args.push_back(Builder.getInt32(2));
3647  if (NumElementsDst == 4)
3648  Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3649  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3650  return Builder.CreateShuffleVector(Src, UnV, Mask);
3651 }
3652 
3653 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3654 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3655 // but could be scalar or vectors of different lengths, and either can be
3656 // pointer.
3657 // There are 4 cases:
3658 // 1. non-pointer -> non-pointer : needs 1 bitcast
3659 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
3660 // 3. pointer -> non-pointer
3661 // a) pointer -> intptr_t : needs 1 ptrtoint
3662 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
3663 // 4. non-pointer -> pointer
3664 // a) intptr_t -> pointer : needs 1 inttoptr
3665 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
3666 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3667 // allow casting directly between pointer types and non-integer non-pointer
3668 // types.
3670  const llvm::DataLayout &DL,
3671  Value *Src, llvm::Type *DstTy,
3672  StringRef Name = "") {
3673  auto SrcTy = Src->getType();
3674 
3675  // Case 1.
3676  if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3677  return Builder.CreateBitCast(Src, DstTy, Name);
3678 
3679  // Case 2.
3680  if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3681  return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3682 
3683  // Case 3.
3684  if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3685  // Case 3b.
3686  if (!DstTy->isIntegerTy())
3687  Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3688  // Cases 3a and 3b.
3689  return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3690  }
3691 
3692  // Case 4b.
3693  if (!SrcTy->isIntegerTy())
3694  Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3695  // Cases 4a and 4b.
3696  return Builder.CreateIntToPtr(Src, DstTy, Name);
3697 }
3698 
3699 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3700  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
3701  llvm::Type *DstTy = ConvertType(E->getType());
3702 
3703  llvm::Type *SrcTy = Src->getType();
3704  unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3705  cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3706  unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3707  cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3708 
3709  // Going from vec3 to non-vec3 is a special case and requires a shuffle
3710  // vector to get a vec4, then a bitcast if the target type is different.
3711  if (NumElementsSrc == 3 && NumElementsDst != 3) {
3712  Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3713 
3714  if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3715  Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3716  DstTy);
3717  }
3718 
3719  Src->setName("astype");
3720  return Src;
3721  }
3722 
3723  // Going from non-vec3 to vec3 is a special case and requires a bitcast
3724  // to vec4 if the original type is not vec4, then a shuffle vector to
3725  // get a vec3.
3726  if (NumElementsSrc != 3 && NumElementsDst == 3) {
3727  if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3728  auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3729  Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3730  Vec4Ty);
3731  }
3732 
3733  Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3734  Src->setName("astype");
3735  return Src;
3736  }
3737 
3738  return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3739  Src, DstTy, "astype");
3740 }
3741 
3742 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3743  return CGF.EmitAtomicExpr(E).getScalarVal();
3744 }
3745 
3746 //===----------------------------------------------------------------------===//
3747 // Entry Point into this File
3748 //===----------------------------------------------------------------------===//
3749 
3750 /// Emit the computation of the specified expression of scalar type, ignoring
3751 /// the result.
3752 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3753  assert(E && hasScalarEvaluationKind(E->getType()) &&
3754  "Invalid scalar expression to emit");
3755 
3756  return ScalarExprEmitter(*this, IgnoreResultAssign)
3757  .Visit(const_cast<Expr *>(E));
3758 }
3759 
3760 /// Emit a conversion from the specified type to the specified destination type,
3761 /// both of which are LLVM scalar types.
3763  QualType DstTy,
3764  SourceLocation Loc) {
3765  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3766  "Invalid scalar expression to emit");
3767  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3768 }
3769 
3770 /// Emit a conversion from the specified complex type to the specified
3771 /// destination type, where the destination type is an LLVM scalar type.
3773  QualType SrcTy,
3774  QualType DstTy,
3775  SourceLocation Loc) {
3776  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3777  "Invalid complex -> scalar conversion");
3778  return ScalarExprEmitter(*this)
3779  .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3780 }
3781 
3782 
3785  bool isInc, bool isPre) {
3786  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3787 }
3788 
3790  // object->isa or (*object).isa
3791  // Generate code as for: *(Class*)object
3792 
3793  Expr *BaseExpr = E->getBase();
3794  Address Addr = Address::invalid();
3795  if (BaseExpr->isRValue()) {
3796  Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3797  } else {
3798  Addr = EmitLValue(BaseExpr).getAddress();
3799  }
3800 
3801  // Cast the address to Class*.
3802  Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3803  return MakeAddrLValue(Addr, E->getType());
3804 }
3805 
3806 
3808  const CompoundAssignOperator *E) {
3809  ScalarExprEmitter Scalar(*this);
3810  Value *Result = nullptr;
3811  switch (E->getOpcode()) {
3812 #define COMPOUND_OP(Op) \
3813  case BO_##Op##Assign: \
3814  return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3815  Result)
3816  COMPOUND_OP(Mul);
3817  COMPOUND_OP(Div);
3818  COMPOUND_OP(Rem);
3819  COMPOUND_OP(Add);
3820  COMPOUND_OP(Sub);
3821  COMPOUND_OP(Shl);
3822  COMPOUND_OP(Shr);
3823  COMPOUND_OP(And);
3824  COMPOUND_OP(Xor);
3825  COMPOUND_OP(Or);
3826 #undef COMPOUND_OP
3827 
3828  case BO_PtrMemD:
3829  case BO_PtrMemI:
3830  case BO_Mul:
3831  case BO_Div:
3832  case BO_Rem:
3833  case BO_Add:
3834  case BO_Sub:
3835  case BO_Shl:
3836  case BO_Shr:
3837  case BO_LT:
3838  case BO_GT:
3839  case BO_LE:
3840  case BO_GE:
3841  case BO_EQ:
3842  case BO_NE:
3843  case BO_And:
3844  case BO_Xor:
3845  case BO_Or:
3846  case BO_LAnd:
3847  case BO_LOr:
3848  case BO_Assign:
3849  case BO_Comma:
3850  llvm_unreachable("Not valid compound assignment operators");
3851  }
3852 
3853  llvm_unreachable("Unhandled compound assignment operator");
3854 }
3855 
3857  ArrayRef<Value *> IdxList,
3858  bool SignedIndices,
3859  bool IsSubtraction,
3860  SourceLocation Loc,
3861  const Twine &Name) {
3862  Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
3863 
3864  // If the pointer overflow sanitizer isn't enabled, do nothing.
3865  if (!SanOpts.has(SanitizerKind::PointerOverflow))
3866  return GEPVal;
3867 
3868  // If the GEP has already been reduced to a constant, leave it be.
3869  if (isa<llvm::Constant>(GEPVal))
3870  return GEPVal;
3871 
3872  // Only check for overflows in the default address space.
3873  if (GEPVal->getType()->getPointerAddressSpace())
3874  return GEPVal;
3875 
3876  auto *GEP = cast<llvm::GEPOperator>(GEPVal);
3877  assert(GEP->isInBounds() && "Expected inbounds GEP");
3878 
3879  SanitizerScope SanScope(this);
3880  auto &VMContext = getLLVMContext();
3881  const auto &DL = CGM.getDataLayout();
3882  auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
3883 
3884  // Grab references to the signed add/mul overflow intrinsics for intptr_t.
3885  auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
3886  auto *SAddIntrinsic =
3887  CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
3888  auto *SMulIntrinsic =
3889  CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
3890 
3891  // The total (signed) byte offset for the GEP.
3892  llvm::Value *TotalOffset = nullptr;
3893  // The offset overflow flag - true if the total offset overflows.
3894  llvm::Value *OffsetOverflows = Builder.getFalse();
3895 
3896  /// Return the result of the given binary operation.
3897  auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
3898  llvm::Value *RHS) -> llvm::Value * {
3899  assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
3900 
3901  // If the operands are constants, return a constant result.
3902  if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
3903  if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
3904  llvm::APInt N;
3905  bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
3906  /*Signed=*/true, N);
3907  if (HasOverflow)
3908  OffsetOverflows = Builder.getTrue();
3909  return llvm::ConstantInt::get(VMContext, N);
3910  }
3911  }
3912 
3913  // Otherwise, compute the result with checked arithmetic.
3914  auto *ResultAndOverflow = Builder.CreateCall(
3915  (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
3916  OffsetOverflows = Builder.CreateOr(
3917  Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
3918  return Builder.CreateExtractValue(ResultAndOverflow, 0);
3919  };
3920 
3921  // Determine the total byte offset by looking at each GEP operand.
3922  for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
3923  GTI != GTE; ++GTI) {
3924  llvm::Value *LocalOffset;
3925  auto *Index = GTI.getOperand();
3926  // Compute the local offset contributed by this indexing step:
3927  if (auto *STy = GTI.getStructTypeOrNull()) {
3928  // For struct indexing, the local offset is the byte position of the
3929  // specified field.
3930  unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
3931  LocalOffset = llvm::ConstantInt::get(
3932  IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
3933  } else {
3934  // Otherwise this is array-like indexing. The local offset is the index
3935  // multiplied by the element size.
3936  auto *ElementSize = llvm::ConstantInt::get(
3937  IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
3938  auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
3939  LocalOffset = eval(BO_Mul, ElementSize, IndexS);
3940  }
3941 
3942  // If this is the first offset, set it as the total offset. Otherwise, add
3943  // the local offset into the running total.
3944  if (!TotalOffset || TotalOffset == Zero)
3945  TotalOffset = LocalOffset;
3946  else
3947  TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
3948  }
3949 
3950  // Common case: if the total offset is zero, don't emit a check.
3951  if (TotalOffset == Zero)
3952  return GEPVal;
3953 
3954  // Now that we've computed the total offset, add it to the base pointer (with
3955  // wrapping semantics).
3956  auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
3957  auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
3958 
3959  // The GEP is valid if:
3960  // 1) The total offset doesn't overflow, and
3961  // 2) The sign of the difference between the computed address and the base
3962  // pointer matches the sign of the total offset.
3963  llvm::Value *ValidGEP;
3964  auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
3965  if (SignedIndices) {
3966  auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
3967  auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
3968  llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
3969  ValidGEP = Builder.CreateAnd(
3970  Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
3971  NoOffsetOverflow);
3972  } else if (!SignedIndices && !IsSubtraction) {
3973  auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
3974  ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
3975  } else {
3976  auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
3977  ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
3978  }
3979 
3980  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
3981  // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
3982  llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
3983  EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
3984  SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
3985 
3986  return GEPVal;
3987 }
Kind getKind() const
Definition: Type.h:2105
unsigned getAddressSpace() const
Return the address space of this type.
Definition: Type.h:5605
Defines the clang::ASTContext interface.
unsigned getNumInits() const
Definition: Expr.h:3878
CastKind getCastKind() const
Definition: Expr.h:2749
The null pointer literal (C++11 [lex.nullptr])
Definition: ExprCXX.h:520
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
Definition: ASTMatchers.h:1510
static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, llvm::Value *InVal, bool IsInc)
bool isNullPtrType() const
Definition: Type.h:5919
bool isSignedOverflowDefined() const
Definition: LangOptions.h:175
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2224
A (possibly-)qualified type.
Definition: Type.h:616
bool isVirtual() const
Determines whether the base class is a virtual base class (or not).
Definition: DeclCXX.h:212
llvm::Value * getPointer() const
Definition: CGValue.h:342
unsigned getFieldCount() const
getFieldCount - Get the number of fields in the layout.
Definition: RecordLayout.h:173
static Opcode getOpForCompoundAssignment(Opcode Opc)
Definition: Expr.h:3101
Represents a version number in the form major[.minor[.subminor[.build]]].
Definition: VersionTuple.h:26
bool getValue() const
Definition: ExprCXX.h:498
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:258
Expr * getExpr(unsigned Index)
getExpr - Return the Expr at the specified index.
Definition: Expr.h:3549
A type trait used in the implementation of various C++11 and Library TR1 trait templates.
Definition: ExprCXX.h:2256
CompoundStmt * getSubStmt()
Definition: Expr.h:3480
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E)
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
static llvm::Constant * getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty)
Stmt - This represents one statement.
Definition: Stmt.h:60
bool isArgumentType() const
Definition: Expr.h:2064
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
TypeSourceInfo * getTypeSourceInfo() const
Definition: Expr.h:1965
unsigned getPackLength() const
Retrieve the length of the parameter pack.
Definition: ExprCXX.h:3714
Address getAddress() const
Definition: CGValue.h:346
Represents the index of the current element of an array being initialized by an ArrayInitLoopExpr.
Definition: Expr.h:4514
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1662
const llvm::DataLayout & getDataLayout() const
Optional< unsigned > getMinor() const
Retrieve the minor version number, if provided.
Definition: VersionTuple.h:77
unsigned getArrayExprIndex() const
For an array element node, returns the index into the array of expressions.
Definition: Expr.h:1877
const Expr * getResultExpr() const
The generic selection's result expression.
Definition: Expr.h:4729
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5260
An Embarcadero array type trait, as used in the implementation of __array_rank and __array_extent...
Definition: ExprCXX.h:2340
bool isBooleanType() const
Definition: Type.h:5969
Floating point control options.
Definition: LangOptions.h:203
const LangOptions & getLangOpts() const
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:3946
static Value * buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool negMul, bool negAdd)
#define COMPOUND_OP(Op)
Expr * getIndexExpr(unsigned Idx)
Definition: Expr.h:1986
bool hadArrayRangeDesignator() const
Definition: Expr.h:4009
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC 'id' type.
Definition: ExprObjC.h:1383
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2628
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
bool isCanonical() const
Definition: Type.h:5533
field_iterator field_begin() const
Definition: Decl.cpp:3912
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:1924
UnaryExprOrTypeTrait getKind() const
Definition: Expr.h:2059
unsigned getValue() const
Definition: Expr.h:1369
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:928
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:2920
bool isVoidType() const
Definition: Type.h:5906
Expr * IgnoreImpCasts() LLVM_READONLY
IgnoreImpCasts - Skip past any implicit casts which might surround this expression.
Definition: Expr.h:2847
void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, QualType IndexType, bool Accessed)
Emit a check that Base points into an array object, which we can access at index Index.
Definition: CGExpr.cpp:819
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3354
An object to manage conditionally-evaluated expressions.
bool isNullPointer() const
Definition: APValue.cpp:584
llvm::Value * EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre)
void EmitCheck(ArrayRef< std::pair< llvm::Value *, SanitizerMask >> Checked, SanitizerHandler Check, ArrayRef< llvm::Constant * > StaticArgs, ArrayRef< llvm::Value * > DynamicArgs)
Create a basic block that will call a handler function in a sanitizer runtime with the provided argum...
Definition: CGExpr.cpp:2719
ShuffleVectorExpr - clang-specific builtin-in function __builtin_shufflevector.
Definition: Expr.h:3509
bool isVolatileQualified() const
Definition: CGValue.h:271
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:1813
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:128
bool getValue() const
Definition: ExprCXX.h:3538
bool isReferenceType() const
Definition: Type.h:5721
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2366
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that that type refers to...
Definition: Type.cpp:1533
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:3720
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const
Definition: Expr.h:3560
Expr * getSubExpr()
Definition: Expr.h:2753
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:144
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:106
Expr * getLHS() const
Definition: Expr.h:3011
T * getAttr() const
Definition: DeclBase.h:518
Describes an C or C++ initializer list.
Definition: Expr.h:3848
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:3681
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
Expr * getTrueExpr() const
Definition: Expr.h:3407
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:150
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:570
uint32_t Offset
Definition: CacheTokens.cpp:43
path_iterator path_begin()
Definition: Expr.h:2769
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2967
RecordDecl * getDecl() const
Definition: Type.h:3793
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1784
static Value * tryEmitFMulAdd(const BinOpInfo &op, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool isSub=false)
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:29
static llvm::Constant * getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, unsigned Off, llvm::Type *I32Ty)
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:177
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2701
Helper class for OffsetOfExpr.
Definition: Expr.h:1819
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
bool isExtVectorType() const
Definition: Type.h:5781
bool isValid() const
Definition: Address.h:36
detail::InMemoryDirectory::const_iterator I
llvm::Value * EmitCheckedInBoundsGEP(llvm::Value *Ptr, ArrayRef< llvm::Value * > IdxList, bool SignedIndices, bool IsSubtraction, SourceLocation Loc, const Twine &Name="")
Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to detect undefined behavior whe...
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:982
QualType getType() const
Definition: Decl.h:589
static bool ShouldNullCheckClassCastValue(const CastExpr *Cast)
Checking the operand of a load. Must be suitably sized and aligned.
This object can be modified without requiring retains or releases.
Definition: Type.h:139
Represents the this expression in C++.
Definition: ExprCXX.h:888
field_iterator field_end() const
Definition: Decl.h:3486
#define HANDLEBINOP(OP)
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:269
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
llvm::APInt getValue() const
Definition: Expr.h:1276
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2113
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1028
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const
EvaluateAsRValue - Return true if this is a constant which we can fold to an rvalue using any crazy t...
CastKind
CastKind - The kind of operation required for a conversion.
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2028
const Expr * getExpr() const
Get the initialization expression that will be used.
Definition: ExprCXX.h:1077
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3754
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:414
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1837
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:34
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1251
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1760
An expression "T()" which creates a value-initialized rvalue of type T, which is a non-class type...
Definition: ExprCXX.h:1740
llvm::Value * getPointer() const
Definition: Address.h:38
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:580
Expr - This represents one expression.
Definition: Expr.h:105
bool isQueueT() const
Definition: Type.h:5845
Allow any unmodeled side effect.
Definition: Expr.h:595
static Address invalid()
Definition: Address.h:35
bool isAnyComplexType() const
Definition: Type.h:5775
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
llvm::Value * EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified complex type to the specified destination type, where the destination type is an LLVM scalar type.
bool getValue() const
Definition: ExprCXX.h:2295
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprObjC.h:1431
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4820
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:257
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:219
bool isFloatingType() const
Definition: Type.cpp:1821
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:397
Represents an expression that computes the length of a parameter pack.
Definition: ExprCXX.h:3637
AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2] This AST node provides support ...
Definition: Expr.h:4865
llvm::LLVMContext & getLLVMContext()
An RAII object to record that we're evaluating a statement expression.
void dump() const
Dumps the specified AST fragment and all subtrees to llvm::errs().
Definition: ASTDumper.cpp:2584
Expr * getSubExpr() const
Definition: Expr.h:1741
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:3601
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:860
unsigned getNumComponents() const
Definition: Expr.h:1982
CXXBaseSpecifier * getBase() const
For a base class node, returns the base specifier.
Definition: Expr.h:1893
UnaryOperator - This represents the unary-expression's (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1714
Represents a GCC generic vector type.
Definition: Type.h:2797
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type * > Tys=None)
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:3751
QualType getElementType() const
Definition: Type.h:2821
bool isGLValue() const
Definition: Expr.h:251
QualType getComputationLHSType() const
Definition: Expr.h:3190
bool isUnsignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is unsigned or an enumeration types whose underlying ...
Definition: Type.cpp:1800
QualType getComputationResultType() const
Definition: Expr.h:3193
unsigned getNumSubExprs() const
getNumSubExprs - Return the size of the SubExprs array.
Definition: Expr.h:3543
The l-value was considered opaque, so the alignment was determined from a type.
Expr * getBase() const
Definition: ExprObjC.h:1408
There is no lifetime qualification on this type.
Definition: Type.h:135
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:305
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:865
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:142
ConvertVectorExpr - Clang builtin function __builtin_convertvector This AST node provides support for...
Definition: Expr.h:3577
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:146
Kind
A field in a dependent type, known only by its name.
Definition: Expr.h:1828
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4938
bool getValue() const
Definition: ExprObjC.h:71
ASTContext & getContext() const
Encodes a location in the source.
bool hasIntegerRepresentation() const
Determine whether this type has an integer representation of some sort, e.g., it is an integer type o...
Definition: Type.cpp:1637
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5489
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:1803
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1780
const std::string ID
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr * > VL, ArrayRef< Expr * > PL, ArrayRef< Expr * > IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:617
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:4888
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:178
bool isCompoundAssignmentOp() const
Definition: Expr.h:3098
SanitizerSet SanOpts
Sanitizers enabled for this function.
bool getValue() const
Definition: ExprCXX.h:2450
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
Definition: Expr.h:5070
unsigned getMajor() const
Retrieve the major version number.
Definition: VersionTuple.h:74
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:441
TypeCheckKind
Situations in which we might emit a check for the suitability of a pointer or glvalue.
An aligned address.
Definition: Address.h:25
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2804
bool isRValue() const
Definition: Expr.h:249
QualType getReturnType() const
Definition: DeclObjC.h:330
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6105
bool isVectorType() const
Definition: Type.h:5778
An expression trait intrinsic.
Definition: ExprCXX.h:2412
bool isPromotableIntegerType() const
More type predicates useful for type checking/promotion.
Definition: Type.cpp:2325
uint64_t getValue() const
Definition: ExprCXX.h:2389
Assigning into this object requires a lifetime extension.
Definition: Type.h:152
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3464
bool isBitField() const
Definition: CGValue.h:267
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:94
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:70
static Value * createCastsForTypeOfSameSize(CGBuilderTy &Builder, const llvm::DataLayout &DL, Value *Src, llvm::Type *DstTy, StringRef Name="")
Opcode getOpcode() const
Definition: Expr.h:1738
const OffsetOfNode & getComponent(unsigned Idx) const
Definition: Expr.h:1972
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
QualType getPointeeType() const
Definition: Type.h:2238
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3167
Represents a C11 generic selection.
Definition: Expr.h:4653
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1307
bool isArrow() const
Definition: Expr.h:2573
AddrLabelExpr - The GNU address of label extension, representing &&label.
Definition: Expr.h:3420
QualType getType() const
Definition: Expr.h:127
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:902
uint64_t SanitizerMask
Definition: Sanitizers.h:24
bool allowFPContractAcrossStatement() const
Definition: LangOptions.h:217
const Expr * getExpr() const
Definition: ExprCXX.h:1013
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:568
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:1992
StringRef Name
Definition: USRFinder.cpp:123
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Definition: ASTMatchers.h:2126
bool isShiftOp() const
Definition: Expr.h:3046
A runtime availability query.
Definition: ExprObjC.h:1579
Represents a 'co_yield' expression.
Definition: ExprCXX.h:4276
static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, BuiltinType::Kind ElemKind)
static Value * emitPointerArithmetic(CodeGenFunction &CGF, const BinOpInfo &op, bool isSubtraction)
Emit pointer + index arithmetic.
Checking the destination of a store. Must be suitably sized and aligned.
detail::InMemoryDirectory::const_iterator E
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2442
bool isHalfType() const
Definition: Type.h:5912
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:2870
static Value * ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, Value *Src, unsigned NumElementsDst)
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1557
llvm::APFloat getValue() const
Definition: Expr.h:1402
const VariableArrayType * getAsVariableArrayType(QualType T) const
Definition: ASTContext.h:2238
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:5662
#define VISITCOMP(CODE, UI, SI, FP)
Represents a pointer to an Objective C object.
Definition: Type.h:5220
path_iterator path_end()
Definition: Expr.h:2770
Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
Definition: ExprCXX.h:3510
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
bool HasSideEffects
Whether the evaluated expression has side effects.
Definition: Expr.h:541
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3784
Complex values, per C99 6.2.5p11.
Definition: Type.h:2164
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:6042
Checking the operand of a static_cast to a derived pointer type.
Expr * getFalseExpr() const
Definition: Expr.h:3413
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2118
QualType getTypeOfArgument() const
Gets the argument type, or the type of the argument expression, whichever is appropriate.
Definition: Expr.h:2091
QualType getCanonicalType() const
Definition: Type.h:5528
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3203
An implicit indirection through a C++ base class, when the field found is in a base class...
Definition: Expr.h:1831
Represents a 'co_await' expression.
Definition: ExprCXX.h:4199
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:50
bool isFunctionType() const
Definition: Type.h:5709
ExtVectorType - Extended vector type.
Definition: Type.h:2858
Optional< unsigned > getSubminor() const
Retrieve the subminor version number, if provided.
Definition: VersionTuple.h:84
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:3004
LabelDecl * getLabel() const
Definition: Expr.h:3442
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:479
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1052
Expr * getBase() const
Definition: Expr.h:2468
Reading or writing from this object requires a barrier call.
Definition: Type.h:149
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2378
const Expr * getSubExpr() const
Definition: Expr.h:1678
Represents a C++ struct/union/class.
Definition: DeclCXX.h:267
BoundNodesTreeBuilder *const Builder
Opcode getOpcode() const
Definition: Expr.h:3008
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:3640
llvm::Type * ConvertType(QualType T)
An index into an array.
Definition: Expr.h:1824
FPOptions getFPFeatures() const
Definition: Expr.h:3133
LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo=LValueBaseInfo(AlignmentSource::Type))
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1082
FieldDecl * getField() const
For a field offsetof node, returns the field.
Definition: Expr.h:1883
bool isEventT() const
Definition: Type.h:5837
This class is used for builtin types like 'int'.
Definition: Type.h:2084
#define fabs(__x)
Definition: tgmath.h:565
std::pair< llvm::Value *, QualType > getVLASize(const VariableArrayType *vla)
getVLASize - Returns an LLVM value that corresponds to the size, in non-variably-sized elements...
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2206
Expr * getRHS() const
Definition: Expr.h:3013
LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E)
llvm::Value * EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified type to the specified destination type, both of which are LLVM s...
ObjCBoolLiteralExpr - Objective-C Boolean Literal.
Definition: ExprObjC.h:60
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:953
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
IntrinsicType
static ApplyDebugLocation CreateEmpty(CodeGenFunction &CGF)
Set the IRBuilder to not attach debug locations.
Definition: CGDebugInfo.h:665
const Expr * getInit(unsigned Init) const
Definition: Expr.h:3896
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
Definition: CGExpr.cpp:2591
LValue - This represents an lvalue references.
Definition: CGValue.h:171
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:486
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type, member-designator).
Definition: Expr.h:1923
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2648
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g., it is an signed integer type or a vector.
Definition: Type.cpp:1774
Address CreatePointerBitCastOrAddrSpaceCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:157
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.cpp:257
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, CodeGenFunction &CGF)
isCheapEnoughToEvaluateUnconditionally - Return true if the specified expression is cheap enough and ...
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4549
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:5928
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:1873
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2368