clang  5.0.0
SemaLambda.cpp
Go to the documentation of this file.
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ lambda expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/DeclSpec.h"
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaLambda.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
65  VarDecl *VarToCapture) {
66  // Label failure to capture.
67  const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69  // Ignore all inner captured regions.
70  unsigned CurScopeIndex = FunctionScopes.size() - 1;
71  while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72  FunctionScopes[CurScopeIndex]))
73  --CurScopeIndex;
74  assert(
75  isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76  "The function on the top of sema's function-info stack must be a lambda");
77 
78  // If VarToCapture is null, we are attempting to capture 'this'.
79  const bool IsCapturingThis = !VarToCapture;
80  const bool IsCapturingVariable = !IsCapturingThis;
81 
82  // Start with the current lambda at the top of the stack (highest index).
83  DeclContext *EnclosingDC =
84  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86  do {
87  const clang::sema::LambdaScopeInfo *LSI =
88  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89  // IF we have climbed down to an intervening enclosing lambda that contains
90  // the variable declaration - it obviously can/must not capture the
91  // variable.
92  // Since its enclosing DC is dependent, all the lambdas between it and the
93  // innermost nested lambda are dependent (otherwise we wouldn't have
94  // arrived here) - so we don't yet have a lambda that can capture the
95  // variable.
96  if (IsCapturingVariable &&
97  VarToCapture->getDeclContext()->Equals(EnclosingDC))
98  return NoLambdaIsCaptureReady;
99 
100  // For an enclosing lambda to be capture ready for an entity, all
101  // intervening lambda's have to be able to capture that entity. If even
102  // one of the intervening lambda's is not capable of capturing the entity
103  // then no enclosing lambda can ever capture that entity.
104  // For e.g.
105  // const int x = 10;
106  // [=](auto a) { #1
107  // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
108  // [=](auto c) { #3
109  // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
110  // }; }; };
111  // If they do not have a default implicit capture, check to see
112  // if the entity has already been explicitly captured.
113  // If even a single dependent enclosing lambda lacks the capability
114  // to ever capture this variable, there is no further enclosing
115  // non-dependent lambda that can capture this variable.
117  if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118  return NoLambdaIsCaptureReady;
119  if (IsCapturingThis && !LSI->isCXXThisCaptured())
120  return NoLambdaIsCaptureReady;
121  }
122  EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124  assert(CurScopeIndex);
125  --CurScopeIndex;
126  } while (!EnclosingDC->isTranslationUnit() &&
127  EnclosingDC->isDependentContext() &&
128  isLambdaCallOperator(EnclosingDC));
129 
130  assert(CurScopeIndex < (FunctionScopes.size() - 1));
131  // If the enclosingDC is not dependent, then the immediately nested lambda
132  // (one index above) is capture-ready.
133  if (!EnclosingDC->isDependentContext())
134  return CurScopeIndex + 1;
135  return NoLambdaIsCaptureReady;
136 }
137 
138 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 /// - climb down the stack (i.e. starting from the innermost and examining
150 /// each outer lambda step by step) checking if each enclosing
151 /// lambda can either implicitly or explicitly capture the variable.
152 /// Record the first such lambda that is enclosed in a non-dependent
153 /// context. If no such lambda currently exists return failure.
154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 /// capture the variable by checking all its enclosing lambdas:
156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
157 /// identified above in 'a' can also capture the variable (this is done
158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
159 /// 'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable. If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
175  VarDecl *VarToCapture, Sema &S) {
176 
177  const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179  const Optional<unsigned> OptionalStackIndex =
181  VarToCapture);
182  if (!OptionalStackIndex)
183  return NoLambdaIsCaptureCapable;
184 
185  const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186  assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187  S.getCurGenericLambda()) &&
188  "The capture ready lambda for a potential capture can only be the "
189  "current lambda if it is a generic lambda");
190 
191  const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192  cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194  // If VarToCapture is null, we are attempting to capture 'this'
195  const bool IsCapturingThis = !VarToCapture;
196  const bool IsCapturingVariable = !IsCapturingThis;
197 
198  if (IsCapturingVariable) {
199  // Check if the capture-ready lambda can truly capture the variable, by
200  // checking whether all enclosing lambdas of the capture-ready lambda allow
201  // the capture - i.e. make sure it is capture-capable.
202  QualType CaptureType, DeclRefType;
203  const bool CanCaptureVariable =
204  !S.tryCaptureVariable(VarToCapture,
205  /*ExprVarIsUsedInLoc*/ SourceLocation(),
207  /*EllipsisLoc*/ SourceLocation(),
208  /*BuildAndDiagnose*/ false, CaptureType,
209  DeclRefType, &IndexOfCaptureReadyLambda);
210  if (!CanCaptureVariable)
211  return NoLambdaIsCaptureCapable;
212  } else {
213  // Check if the capture-ready lambda can truly capture 'this' by checking
214  // whether all enclosing lambdas of the capture-ready lambda can capture
215  // 'this'.
216  const bool CanCaptureThis =
218  CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219  /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220  &IndexOfCaptureReadyLambda);
221  if (!CanCaptureThis)
222  return NoLambdaIsCaptureCapable;
223  }
224  return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
229  if (LSI->GLTemplateParameterList)
230  return LSI->GLTemplateParameterList;
231 
232  if (!LSI->AutoTemplateParams.empty()) {
233  SourceRange IntroRange = LSI->IntroducerRange;
234  SourceLocation LAngleLoc = IntroRange.getBegin();
235  SourceLocation RAngleLoc = IntroRange.getEnd();
237  SemaRef.Context,
238  /*Template kw loc*/ SourceLocation(), LAngleLoc,
239  llvm::makeArrayRef((NamedDecl *const *)LSI->AutoTemplateParams.data(),
240  LSI->AutoTemplateParams.size()),
241  RAngleLoc, nullptr);
242  }
243  return LSI->GLTemplateParameterList;
244 }
245 
247  TypeSourceInfo *Info,
248  bool KnownDependent,
249  LambdaCaptureDefault CaptureDefault) {
250  DeclContext *DC = CurContext;
251  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
252  DC = DC->getParent();
253  bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
254  *this);
255  // Start constructing the lambda class.
257  IntroducerRange.getBegin(),
258  KnownDependent,
259  IsGenericLambda,
260  CaptureDefault);
261  DC->addDecl(Class);
262 
263  return Class;
264 }
265 
266 /// \brief Determine whether the given context is or is enclosed in an inline
267 /// function.
268 static bool isInInlineFunction(const DeclContext *DC) {
269  while (!DC->isFileContext()) {
270  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
271  if (FD->isInlined())
272  return true;
273 
274  DC = DC->getLexicalParent();
275  }
276 
277  return false;
278 }
279 
282  Decl *&ManglingContextDecl) {
283  // Compute the context for allocating mangling numbers in the current
284  // expression, if the ABI requires them.
285  ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
286 
287  enum ContextKind {
288  Normal,
289  DefaultArgument,
290  DataMember,
291  StaticDataMember
292  } Kind = Normal;
293 
294  // Default arguments of member function parameters that appear in a class
295  // definition, as well as the initializers of data members, receive special
296  // treatment. Identify them.
297  if (ManglingContextDecl) {
298  if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
299  if (const DeclContext *LexicalDC
300  = Param->getDeclContext()->getLexicalParent())
301  if (LexicalDC->isRecord())
302  Kind = DefaultArgument;
303  } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
304  if (Var->getDeclContext()->isRecord())
305  Kind = StaticDataMember;
306  } else if (isa<FieldDecl>(ManglingContextDecl)) {
307  Kind = DataMember;
308  }
309  }
310 
311  // Itanium ABI [5.1.7]:
312  // In the following contexts [...] the one-definition rule requires closure
313  // types in different translation units to "correspond":
314  bool IsInNonspecializedTemplate =
315  inTemplateInstantiation() || CurContext->isDependentContext();
316  switch (Kind) {
317  case Normal: {
318  // -- the bodies of non-exported nonspecialized template functions
319  // -- the bodies of inline functions
320  if ((IsInNonspecializedTemplate &&
321  !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
322  isInInlineFunction(CurContext)) {
323  ManglingContextDecl = nullptr;
324  while (auto *CD = dyn_cast<CapturedDecl>(DC))
325  DC = CD->getParent();
326  return &Context.getManglingNumberContext(DC);
327  }
328 
329  ManglingContextDecl = nullptr;
330  return nullptr;
331  }
332 
333  case StaticDataMember:
334  // -- the initializers of nonspecialized static members of template classes
335  if (!IsInNonspecializedTemplate) {
336  ManglingContextDecl = nullptr;
337  return nullptr;
338  }
339  // Fall through to get the current context.
340  LLVM_FALLTHROUGH;
341 
342  case DataMember:
343  // -- the in-class initializers of class members
344  case DefaultArgument:
345  // -- default arguments appearing in class definitions
346  return &ExprEvalContexts.back().getMangleNumberingContext(Context);
347  }
348 
349  llvm_unreachable("unexpected context");
350 }
351 
354  ASTContext &Ctx) {
355  assert(ManglingContextDecl && "Need to have a context declaration");
356  if (!MangleNumbering)
357  MangleNumbering = Ctx.createMangleNumberingContext();
358  return *MangleNumbering;
359 }
360 
362  SourceRange IntroducerRange,
363  TypeSourceInfo *MethodTypeInfo,
364  SourceLocation EndLoc,
366  const bool IsConstexprSpecified) {
367  QualType MethodType = MethodTypeInfo->getType();
368  TemplateParameterList *TemplateParams =
369  getGenericLambdaTemplateParameterList(getCurLambda(), *this);
370  // If a lambda appears in a dependent context or is a generic lambda (has
371  // template parameters) and has an 'auto' return type, deduce it to a
372  // dependent type.
373  if (Class->isDependentContext() || TemplateParams) {
374  const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
375  QualType Result = FPT->getReturnType();
376  if (Result->isUndeducedType()) {
377  Result = SubstAutoType(Result, Context.DependentTy);
378  MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
379  FPT->getExtProtoInfo());
380  }
381  }
382 
383  // C++11 [expr.prim.lambda]p5:
384  // The closure type for a lambda-expression has a public inline function
385  // call operator (13.5.4) whose parameters and return type are described by
386  // the lambda-expression's parameter-declaration-clause and
387  // trailing-return-type respectively.
388  DeclarationName MethodName
390  DeclarationNameLoc MethodNameLoc;
391  MethodNameLoc.CXXOperatorName.BeginOpNameLoc
392  = IntroducerRange.getBegin().getRawEncoding();
393  MethodNameLoc.CXXOperatorName.EndOpNameLoc
394  = IntroducerRange.getEnd().getRawEncoding();
395  CXXMethodDecl *Method
396  = CXXMethodDecl::Create(Context, Class, EndLoc,
397  DeclarationNameInfo(MethodName,
398  IntroducerRange.getBegin(),
399  MethodNameLoc),
400  MethodType, MethodTypeInfo,
401  SC_None,
402  /*isInline=*/true,
403  IsConstexprSpecified,
404  EndLoc);
405  Method->setAccess(AS_public);
406 
407  // Temporarily set the lexical declaration context to the current
408  // context, so that the Scope stack matches the lexical nesting.
409  Method->setLexicalDeclContext(CurContext);
410  // Create a function template if we have a template parameter list
411  FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
413  Method->getLocation(), MethodName,
414  TemplateParams,
415  Method) : nullptr;
416  if (TemplateMethod) {
417  TemplateMethod->setLexicalDeclContext(CurContext);
418  TemplateMethod->setAccess(AS_public);
419  Method->setDescribedFunctionTemplate(TemplateMethod);
420  }
421 
422  // Add parameters.
423  if (!Params.empty()) {
424  Method->setParams(Params);
425  CheckParmsForFunctionDef(Params,
426  /*CheckParameterNames=*/false);
427 
428  for (auto P : Method->parameters())
429  P->setOwningFunction(Method);
430  }
431 
432  Decl *ManglingContextDecl;
433  if (MangleNumberingContext *MCtx =
434  getCurrentMangleNumberContext(Class->getDeclContext(),
435  ManglingContextDecl)) {
436  unsigned ManglingNumber = MCtx->getManglingNumber(Method);
437  Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
438  }
439 
440  return Method;
441 }
442 
444  CXXMethodDecl *CallOperator,
445  SourceRange IntroducerRange,
446  LambdaCaptureDefault CaptureDefault,
447  SourceLocation CaptureDefaultLoc,
448  bool ExplicitParams,
449  bool ExplicitResultType,
450  bool Mutable) {
451  LSI->CallOperator = CallOperator;
452  CXXRecordDecl *LambdaClass = CallOperator->getParent();
453  LSI->Lambda = LambdaClass;
454  if (CaptureDefault == LCD_ByCopy)
456  else if (CaptureDefault == LCD_ByRef)
458  LSI->CaptureDefaultLoc = CaptureDefaultLoc;
459  LSI->IntroducerRange = IntroducerRange;
460  LSI->ExplicitParams = ExplicitParams;
461  LSI->Mutable = Mutable;
462 
463  if (ExplicitResultType) {
464  LSI->ReturnType = CallOperator->getReturnType();
465 
466  if (!LSI->ReturnType->isDependentType() &&
467  !LSI->ReturnType->isVoidType()) {
468  if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
469  diag::err_lambda_incomplete_result)) {
470  // Do nothing.
471  }
472  }
473  } else {
474  LSI->HasImplicitReturnType = true;
475  }
476 }
477 
480 }
481 
482 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
483  // Introduce our parameters into the function scope
484  for (unsigned p = 0, NumParams = CallOperator->getNumParams();
485  p < NumParams; ++p) {
486  ParmVarDecl *Param = CallOperator->getParamDecl(p);
487 
488  // If this has an identifier, add it to the scope stack.
489  if (CurScope && Param->getIdentifier()) {
490  CheckShadow(CurScope, Param);
491 
492  PushOnScopeChains(Param, CurScope);
493  }
494  }
495 }
496 
497 /// If this expression is an enumerator-like expression of some type
498 /// T, return the type T; otherwise, return null.
499 ///
500 /// Pointer comparisons on the result here should always work because
501 /// it's derived from either the parent of an EnumConstantDecl
502 /// (i.e. the definition) or the declaration returned by
503 /// EnumType::getDecl() (i.e. the definition).
505  // An expression is an enumerator-like expression of type T if,
506  // ignoring parens and parens-like expressions:
507  E = E->IgnoreParens();
508 
509  // - it is an enumerator whose enum type is T or
510  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
511  if (EnumConstantDecl *D
512  = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
513  return cast<EnumDecl>(D->getDeclContext());
514  }
515  return nullptr;
516  }
517 
518  // - it is a comma expression whose RHS is an enumerator-like
519  // expression of type T or
520  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
521  if (BO->getOpcode() == BO_Comma)
522  return findEnumForBlockReturn(BO->getRHS());
523  return nullptr;
524  }
525 
526  // - it is a statement-expression whose value expression is an
527  // enumerator-like expression of type T or
528  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
529  if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
530  return findEnumForBlockReturn(last);
531  return nullptr;
532  }
533 
534  // - it is a ternary conditional operator (not the GNU ?:
535  // extension) whose second and third operands are
536  // enumerator-like expressions of type T or
537  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
538  if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
539  if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
540  return ED;
541  return nullptr;
542  }
543 
544  // (implicitly:)
545  // - it is an implicit integral conversion applied to an
546  // enumerator-like expression of type T or
547  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
548  // We can sometimes see integral conversions in valid
549  // enumerator-like expressions.
550  if (ICE->getCastKind() == CK_IntegralCast)
551  return findEnumForBlockReturn(ICE->getSubExpr());
552 
553  // Otherwise, just rely on the type.
554  }
555 
556  // - it is an expression of that formal enum type.
557  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
558  return ET->getDecl();
559  }
560 
561  // Otherwise, nope.
562  return nullptr;
563 }
564 
565 /// Attempt to find a type T for which the returned expression of the
566 /// given statement is an enumerator-like expression of that type.
568  if (Expr *retValue = ret->getRetValue())
569  return findEnumForBlockReturn(retValue);
570  return nullptr;
571 }
572 
573 /// Attempt to find a common type T for which all of the returned
574 /// expressions in a block are enumerator-like expressions of that
575 /// type.
577  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
578 
579  // Try to find one for the first return.
581  if (!ED) return nullptr;
582 
583  // Check that the rest of the returns have the same enum.
584  for (++i; i != e; ++i) {
585  if (findEnumForBlockReturn(*i) != ED)
586  return nullptr;
587  }
588 
589  // Never infer an anonymous enum type.
590  if (!ED->hasNameForLinkage()) return nullptr;
591 
592  return ED;
593 }
594 
595 /// Adjust the given return statements so that they formally return
596 /// the given type. It should require, at most, an IntegralCast.
598  QualType returnType) {
600  i = returns.begin(), e = returns.end(); i != e; ++i) {
601  ReturnStmt *ret = *i;
602  Expr *retValue = ret->getRetValue();
603  if (S.Context.hasSameType(retValue->getType(), returnType))
604  continue;
605 
606  // Right now we only support integral fixup casts.
607  assert(returnType->isIntegralOrUnscopedEnumerationType());
608  assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
609 
610  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
611 
612  Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
613  E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
614  E, /*base path*/ nullptr, VK_RValue);
615  if (cleanups) {
616  cleanups->setSubExpr(E);
617  } else {
618  ret->setRetValue(E);
619  }
620  }
621 }
622 
624  assert(CSI.HasImplicitReturnType);
625  // If it was ever a placeholder, it had to been deduced to DependentTy.
626  assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
627  assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
628  "lambda expressions use auto deduction in C++14 onwards");
629 
630  // C++ core issue 975:
631  // If a lambda-expression does not include a trailing-return-type,
632  // it is as if the trailing-return-type denotes the following type:
633  // - if there are no return statements in the compound-statement,
634  // or all return statements return either an expression of type
635  // void or no expression or braced-init-list, the type void;
636  // - otherwise, if all return statements return an expression
637  // and the types of the returned expressions after
638  // lvalue-to-rvalue conversion (4.1 [conv.lval]),
639  // array-to-pointer conversion (4.2 [conv.array]), and
640  // function-to-pointer conversion (4.3 [conv.func]) are the
641  // same, that common type;
642  // - otherwise, the program is ill-formed.
643  //
644  // C++ core issue 1048 additionally removes top-level cv-qualifiers
645  // from the types of returned expressions to match the C++14 auto
646  // deduction rules.
647  //
648  // In addition, in blocks in non-C++ modes, if all of the return
649  // statements are enumerator-like expressions of some type T, where
650  // T has a name for linkage, then we infer the return type of the
651  // block to be that type.
652 
653  // First case: no return statements, implicit void return type.
654  ASTContext &Ctx = getASTContext();
655  if (CSI.Returns.empty()) {
656  // It's possible there were simply no /valid/ return statements.
657  // In this case, the first one we found may have at least given us a type.
658  if (CSI.ReturnType.isNull())
659  CSI.ReturnType = Ctx.VoidTy;
660  return;
661  }
662 
663  // Second case: at least one return statement has dependent type.
664  // Delay type checking until instantiation.
665  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
666  if (CSI.ReturnType->isDependentType())
667  return;
668 
669  // Try to apply the enum-fuzz rule.
670  if (!getLangOpts().CPlusPlus) {
671  assert(isa<BlockScopeInfo>(CSI));
673  if (ED) {
676  return;
677  }
678  }
679 
680  // Third case: only one return statement. Don't bother doing extra work!
682  E = CSI.Returns.end();
683  if (I+1 == E)
684  return;
685 
686  // General case: many return statements.
687  // Check that they all have compatible return types.
688 
689  // We require the return types to strictly match here.
690  // Note that we've already done the required promotions as part of
691  // processing the return statement.
692  for (; I != E; ++I) {
693  const ReturnStmt *RS = *I;
694  const Expr *RetE = RS->getRetValue();
695 
696  QualType ReturnType =
697  (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
698  if (Context.getCanonicalFunctionResultType(ReturnType) ==
700  continue;
701 
702  // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
703  // TODO: It's possible that the *first* return is the divergent one.
704  Diag(RS->getLocStart(),
705  diag::err_typecheck_missing_return_type_incompatible)
706  << ReturnType << CSI.ReturnType
707  << isa<LambdaScopeInfo>(CSI);
708  // Continue iterating so that we keep emitting diagnostics.
709  }
710 }
711 
713  bool ByRef,
714  IdentifierInfo *Id,
715  bool IsDirectInit,
716  Expr *&Init) {
717  // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
718  // deduce against.
719  QualType DeductType = Context.getAutoDeductType();
720  TypeLocBuilder TLB;
721  TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
722  if (ByRef) {
723  DeductType = BuildReferenceType(DeductType, true, Loc, Id);
724  assert(!DeductType.isNull() && "can't build reference to auto");
725  TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
726  }
727  TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
728 
729  // Deduce the type of the init capture.
730  QualType DeducedType = deduceVarTypeFromInitializer(
731  /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
732  SourceRange(Loc, Loc), IsDirectInit, Init);
733  if (DeducedType.isNull())
734  return QualType();
735 
736  // Are we a non-list direct initialization?
737  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
738 
739  // Perform initialization analysis and ensure any implicit conversions
740  // (such as lvalue-to-rvalue) are enforced.
741  InitializedEntity Entity =
742  InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
744  IsDirectInit
745  ? (CXXDirectInit ? InitializationKind::CreateDirect(
746  Loc, Init->getLocStart(), Init->getLocEnd())
749 
750  MultiExprArg Args = Init;
751  if (CXXDirectInit)
752  Args =
753  MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
754  QualType DclT;
755  InitializationSequence InitSeq(*this, Entity, Kind, Args);
756  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
757 
758  if (Result.isInvalid())
759  return QualType();
760  Init = Result.getAs<Expr>();
761 
762  // The init-capture initialization is a full-expression that must be
763  // processed as one before we enter the declcontext of the lambda's
764  // call-operator.
765  Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
766  /*IsConstexpr*/ false,
767  /*IsLambdaInitCaptureInitializer*/ true);
768  if (Result.isInvalid())
769  return QualType();
770 
771  Init = Result.getAs<Expr>();
772  return DeducedType;
773 }
774 
776  QualType InitCaptureType,
777  IdentifierInfo *Id,
778  unsigned InitStyle, Expr *Init) {
779  TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
780  Loc);
781  // Create a dummy variable representing the init-capture. This is not actually
782  // used as a variable, and only exists as a way to name and refer to the
783  // init-capture.
784  // FIXME: Pass in separate source locations for '&' and identifier.
785  VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
786  Loc, Id, InitCaptureType, TSI, SC_Auto);
787  NewVD->setInitCapture(true);
788  NewVD->setReferenced(true);
789  // FIXME: Pass in a VarDecl::InitializationStyle.
790  NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
791  NewVD->markUsed(Context);
792  NewVD->setInit(Init);
793  return NewVD;
794 }
795 
797  FieldDecl *Field = FieldDecl::Create(
798  Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
799  nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
800  ICIS_NoInit);
801  Field->setImplicit(true);
802  Field->setAccess(AS_private);
803  LSI->Lambda->addDecl(Field);
804 
805  LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
806  /*isNested*/false, Var->getLocation(), SourceLocation(),
807  Var->getType(), Var->getInit());
808  return Field;
809 }
810 
812  Declarator &ParamInfo,
813  Scope *CurScope) {
814  // Determine if we're within a context where we know that the lambda will
815  // be dependent, because there are template parameters in scope.
816  bool KnownDependent = false;
817  LambdaScopeInfo *const LSI = getCurLambda();
818  assert(LSI && "LambdaScopeInfo should be on stack!");
819 
820  // The lambda-expression's closure type might be dependent even if its
821  // semantic context isn't, if it appears within a default argument of a
822  // function template.
823  if (CurScope->getTemplateParamParent())
824  KnownDependent = true;
825 
826  // Determine the signature of the call operator.
827  TypeSourceInfo *MethodTyInfo;
828  bool ExplicitParams = true;
829  bool ExplicitResultType = true;
830  bool ContainsUnexpandedParameterPack = false;
831  SourceLocation EndLoc;
833  if (ParamInfo.getNumTypeObjects() == 0) {
834  // C++11 [expr.prim.lambda]p4:
835  // If a lambda-expression does not include a lambda-declarator, it is as
836  // if the lambda-declarator were ().
838  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
839  EPI.HasTrailingReturn = true;
840  EPI.TypeQuals |= DeclSpec::TQ_const;
841  // C++1y [expr.prim.lambda]:
842  // The lambda return type is 'auto', which is replaced by the
843  // trailing-return type if provided and/or deduced from 'return'
844  // statements
845  // We don't do this before C++1y, because we don't support deduced return
846  // types there.
847  QualType DefaultTypeForNoTrailingReturn =
848  getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
850  QualType MethodTy =
851  Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
852  MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
853  ExplicitParams = false;
854  ExplicitResultType = false;
855  EndLoc = Intro.Range.getEnd();
856  } else {
857  assert(ParamInfo.isFunctionDeclarator() &&
858  "lambda-declarator is a function");
860 
861  // C++11 [expr.prim.lambda]p5:
862  // This function call operator is declared const (9.3.1) if and only if
863  // the lambda-expression's parameter-declaration-clause is not followed
864  // by mutable. It is neither virtual nor declared volatile. [...]
865  if (!FTI.hasMutableQualifier())
867 
868  MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
869  assert(MethodTyInfo && "no type from lambda-declarator");
870  EndLoc = ParamInfo.getSourceRange().getEnd();
871 
872  ExplicitResultType = FTI.hasTrailingReturnType();
873 
874  if (FTIHasNonVoidParameters(FTI)) {
875  Params.reserve(FTI.NumParams);
876  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
877  Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
878  }
879 
880  // Check for unexpanded parameter packs in the method type.
881  if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
882  ContainsUnexpandedParameterPack = true;
883  }
884 
885  CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
886  KnownDependent, Intro.Default);
887 
888  CXXMethodDecl *Method =
889  startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
890  ParamInfo.getDeclSpec().isConstexprSpecified());
891  if (ExplicitParams)
892  CheckCXXDefaultArguments(Method);
893 
894  // Attributes on the lambda apply to the method.
895  ProcessDeclAttributes(CurScope, Method, ParamInfo);
896 
897  // CUDA lambdas get implicit attributes based on the scope in which they're
898  // declared.
899  if (getLangOpts().CUDA)
900  CUDASetLambdaAttrs(Method);
901 
902  // Introduce the function call operator as the current declaration context.
903  PushDeclContext(CurScope, Method);
904 
905  // Build the lambda scope.
906  buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
907  ExplicitParams, ExplicitResultType, !Method->isConst());
908 
909  // C++11 [expr.prim.lambda]p9:
910  // A lambda-expression whose smallest enclosing scope is a block scope is a
911  // local lambda expression; any other lambda expression shall not have a
912  // capture-default or simple-capture in its lambda-introducer.
913  //
914  // For simple-captures, this is covered by the check below that any named
915  // entity is a variable that can be captured.
916  //
917  // For DR1632, we also allow a capture-default in any context where we can
918  // odr-use 'this' (in particular, in a default initializer for a non-static
919  // data member).
920  if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
921  (getCurrentThisType().isNull() ||
922  CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
923  /*BuildAndDiagnose*/false)))
924  Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
925 
926  // Distinct capture names, for diagnostics.
927  llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
928 
929  // Handle explicit captures.
930  SourceLocation PrevCaptureLoc
931  = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
932  for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
933  PrevCaptureLoc = C->Loc, ++C) {
934  if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
935  if (C->Kind == LCK_StarThis)
936  Diag(C->Loc, !getLangOpts().CPlusPlus1z
937  ? diag::ext_star_this_lambda_capture_cxx1z
938  : diag::warn_cxx14_compat_star_this_lambda_capture);
939 
940  // C++11 [expr.prim.lambda]p8:
941  // An identifier or this shall not appear more than once in a
942  // lambda-capture.
943  if (LSI->isCXXThisCaptured()) {
944  Diag(C->Loc, diag::err_capture_more_than_once)
945  << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
947  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
948  continue;
949  }
950 
951  // C++1z [expr.prim.lambda]p8:
952  // If a lambda-capture includes a capture-default that is =, each
953  // simple-capture of that lambda-capture shall be of the form "&
954  // identifier" or "* this". [ Note: The form [&,this] is redundant but
955  // accepted for compatibility with ISO C++14. --end note ]
956  if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) {
957  Diag(C->Loc, diag::err_this_capture_with_copy_default)
959  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
960  continue;
961  }
962 
963  // C++11 [expr.prim.lambda]p12:
964  // If this is captured by a local lambda expression, its nearest
965  // enclosing function shall be a non-static member function.
966  QualType ThisCaptureType = getCurrentThisType();
967  if (ThisCaptureType.isNull()) {
968  Diag(C->Loc, diag::err_this_capture) << true;
969  continue;
970  }
971 
972  CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
973  /*FunctionScopeIndexToStopAtPtr*/ nullptr,
974  C->Kind == LCK_StarThis);
975  continue;
976  }
977 
978  assert(C->Id && "missing identifier for capture");
979 
980  if (C->Init.isInvalid())
981  continue;
982 
983  VarDecl *Var = nullptr;
984  if (C->Init.isUsable()) {
985  Diag(C->Loc, getLangOpts().CPlusPlus14
986  ? diag::warn_cxx11_compat_init_capture
987  : diag::ext_init_capture);
988 
989  if (C->Init.get()->containsUnexpandedParameterPack())
990  ContainsUnexpandedParameterPack = true;
991  // If the initializer expression is usable, but the InitCaptureType
992  // is not, then an error has occurred - so ignore the capture for now.
993  // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
994  // FIXME: we should create the init capture variable and mark it invalid
995  // in this case.
996  if (C->InitCaptureType.get().isNull())
997  continue;
998 
999  unsigned InitStyle;
1000  switch (C->InitKind) {
1002  llvm_unreachable("not an init-capture?");
1004  InitStyle = VarDecl::CInit;
1005  break;
1007  InitStyle = VarDecl::CallInit;
1008  break;
1010  InitStyle = VarDecl::ListInit;
1011  break;
1012  }
1013  Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1014  C->Id, InitStyle, C->Init.get());
1015  // C++1y [expr.prim.lambda]p11:
1016  // An init-capture behaves as if it declares and explicitly
1017  // captures a variable [...] whose declarative region is the
1018  // lambda-expression's compound-statement
1019  if (Var)
1020  PushOnScopeChains(Var, CurScope, false);
1021  } else {
1022  assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1023  "init capture has valid but null init?");
1024 
1025  // C++11 [expr.prim.lambda]p8:
1026  // If a lambda-capture includes a capture-default that is &, the
1027  // identifiers in the lambda-capture shall not be preceded by &.
1028  // If a lambda-capture includes a capture-default that is =, [...]
1029  // each identifier it contains shall be preceded by &.
1030  if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1031  Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1033  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1034  continue;
1035  } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1036  Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1038  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1039  continue;
1040  }
1041 
1042  // C++11 [expr.prim.lambda]p10:
1043  // The identifiers in a capture-list are looked up using the usual
1044  // rules for unqualified name lookup (3.4.1)
1045  DeclarationNameInfo Name(C->Id, C->Loc);
1046  LookupResult R(*this, Name, LookupOrdinaryName);
1047  LookupName(R, CurScope);
1048  if (R.isAmbiguous())
1049  continue;
1050  if (R.empty()) {
1051  // FIXME: Disable corrections that would add qualification?
1052  CXXScopeSpec ScopeSpec;
1053  if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
1054  llvm::make_unique<DeclFilterCCC<VarDecl>>()))
1055  continue;
1056  }
1057 
1058  Var = R.getAsSingle<VarDecl>();
1059  if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1060  continue;
1061  }
1062 
1063  // C++11 [expr.prim.lambda]p8:
1064  // An identifier or this shall not appear more than once in a
1065  // lambda-capture.
1066  if (!CaptureNames.insert(C->Id).second) {
1067  if (Var && LSI->isCaptured(Var)) {
1068  Diag(C->Loc, diag::err_capture_more_than_once)
1069  << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1071  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1072  } else
1073  // Previous capture captured something different (one or both was
1074  // an init-cpature): no fixit.
1075  Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1076  continue;
1077  }
1078 
1079  // C++11 [expr.prim.lambda]p10:
1080  // [...] each such lookup shall find a variable with automatic storage
1081  // duration declared in the reaching scope of the local lambda expression.
1082  // Note that the 'reaching scope' check happens in tryCaptureVariable().
1083  if (!Var) {
1084  Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1085  continue;
1086  }
1087 
1088  // Ignore invalid decls; they'll just confuse the code later.
1089  if (Var->isInvalidDecl())
1090  continue;
1091 
1092  if (!Var->hasLocalStorage()) {
1093  Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1094  Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1095  continue;
1096  }
1097 
1098  // C++11 [expr.prim.lambda]p23:
1099  // A capture followed by an ellipsis is a pack expansion (14.5.3).
1100  SourceLocation EllipsisLoc;
1101  if (C->EllipsisLoc.isValid()) {
1102  if (Var->isParameterPack()) {
1103  EllipsisLoc = C->EllipsisLoc;
1104  } else {
1105  Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1106  << SourceRange(C->Loc);
1107 
1108  // Just ignore the ellipsis.
1109  }
1110  } else if (Var->isParameterPack()) {
1111  ContainsUnexpandedParameterPack = true;
1112  }
1113 
1114  if (C->Init.isUsable()) {
1115  buildInitCaptureField(LSI, Var);
1116  } else {
1117  TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1118  TryCapture_ExplicitByVal;
1119  tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1120  }
1121  }
1122  finishLambdaExplicitCaptures(LSI);
1123 
1124  LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1125 
1126  // Add lambda parameters into scope.
1127  addLambdaParameters(Method, CurScope);
1128 
1129  // Enter a new evaluation context to insulate the lambda from any
1130  // cleanups from the enclosing full-expression.
1131  PushExpressionEvaluationContext(
1132  ExpressionEvaluationContext::PotentiallyEvaluated);
1133 }
1134 
1136  bool IsInstantiation) {
1137  LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1138 
1139  // Leave the expression-evaluation context.
1140  DiscardCleanupsInEvaluationContext();
1141  PopExpressionEvaluationContext();
1142 
1143  // Leave the context of the lambda.
1144  if (!IsInstantiation)
1145  PopDeclContext();
1146 
1147  // Finalize the lambda.
1148  CXXRecordDecl *Class = LSI->Lambda;
1149  Class->setInvalidDecl();
1150  SmallVector<Decl*, 4> Fields(Class->fields());
1151  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1152  SourceLocation(), nullptr);
1153  CheckCompletedCXXClass(Class);
1154 
1155  PopFunctionScopeInfo();
1156 }
1157 
1158 /// \brief Add a lambda's conversion to function pointer, as described in
1159 /// C++11 [expr.prim.lambda]p6.
1161  SourceRange IntroducerRange,
1162  CXXRecordDecl *Class,
1163  CXXMethodDecl *CallOperator) {
1164  // This conversion is explicitly disabled if the lambda's function has
1165  // pass_object_size attributes on any of its parameters.
1166  auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1167  return P->hasAttr<PassObjectSizeAttr>();
1168  };
1169  if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1170  return;
1171 
1172  // Add the conversion to function pointer.
1173  const FunctionProtoType *CallOpProto =
1174  CallOperator->getType()->getAs<FunctionProtoType>();
1175  const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1176  CallOpProto->getExtProtoInfo();
1177  QualType PtrToFunctionTy;
1178  QualType InvokerFunctionTy;
1179  {
1180  FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1182  CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1183  InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1184  InvokerExtInfo.TypeQuals = 0;
1185  assert(InvokerExtInfo.RefQualifier == RQ_None &&
1186  "Lambda's call operator should not have a reference qualifier");
1187  InvokerFunctionTy =
1188  S.Context.getFunctionType(CallOpProto->getReturnType(),
1189  CallOpProto->getParamTypes(), InvokerExtInfo);
1190  PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1191  }
1192 
1193  // Create the type of the conversion function.
1194  FunctionProtoType::ExtProtoInfo ConvExtInfo(
1196  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1197  // The conversion function is always const.
1198  ConvExtInfo.TypeQuals = Qualifiers::Const;
1199  QualType ConvTy =
1200  S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1201 
1202  SourceLocation Loc = IntroducerRange.getBegin();
1203  DeclarationName ConversionName
1205  S.Context.getCanonicalType(PtrToFunctionTy));
1206  DeclarationNameLoc ConvNameLoc;
1207  // Construct a TypeSourceInfo for the conversion function, and wire
1208  // all the parameters appropriately for the FunctionProtoTypeLoc
1209  // so that everything works during transformation/instantiation of
1210  // generic lambdas.
1211  // The main reason for wiring up the parameters of the conversion
1212  // function with that of the call operator is so that constructs
1213  // like the following work:
1214  // auto L = [](auto b) { <-- 1
1215  // return [](auto a) -> decltype(a) { <-- 2
1216  // return a;
1217  // };
1218  // };
1219  // int (*fp)(int) = L(5);
1220  // Because the trailing return type can contain DeclRefExprs that refer
1221  // to the original call operator's variables, we hijack the call
1222  // operators ParmVarDecls below.
1223  TypeSourceInfo *ConvNamePtrToFunctionTSI =
1224  S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1225  ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1226 
1227  // The conversion function is a conversion to a pointer-to-function.
1228  TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1229  FunctionProtoTypeLoc ConvTL =
1230  ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1231  // Get the result of the conversion function which is a pointer-to-function.
1232  PointerTypeLoc PtrToFunctionTL =
1233  ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1234  // Do the same for the TypeSourceInfo that is used to name the conversion
1235  // operator.
1236  PointerTypeLoc ConvNamePtrToFunctionTL =
1237  ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1238 
1239  // Get the underlying function types that the conversion function will
1240  // be converting to (should match the type of the call operator).
1241  FunctionProtoTypeLoc CallOpConvTL =
1242  PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1243  FunctionProtoTypeLoc CallOpConvNameTL =
1244  ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1245 
1246  // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1247  // These parameter's are essentially used to transform the name and
1248  // the type of the conversion operator. By using the same parameters
1249  // as the call operator's we don't have to fix any back references that
1250  // the trailing return type of the call operator's uses (such as
1251  // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1252  // - we can simply use the return type of the call operator, and
1253  // everything should work.
1254  SmallVector<ParmVarDecl *, 4> InvokerParams;
1255  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1256  ParmVarDecl *From = CallOperator->getParamDecl(I);
1257 
1258  InvokerParams.push_back(ParmVarDecl::Create(S.Context,
1259  // Temporarily add to the TU. This is set to the invoker below.
1261  From->getLocStart(),
1262  From->getLocation(),
1263  From->getIdentifier(),
1264  From->getType(),
1265  From->getTypeSourceInfo(),
1266  From->getStorageClass(),
1267  /*DefaultArg=*/nullptr));
1268  CallOpConvTL.setParam(I, From);
1269  CallOpConvNameTL.setParam(I, From);
1270  }
1271 
1272  CXXConversionDecl *Conversion
1273  = CXXConversionDecl::Create(S.Context, Class, Loc,
1274  DeclarationNameInfo(ConversionName,
1275  Loc, ConvNameLoc),
1276  ConvTy,
1277  ConvTSI,
1278  /*isInline=*/true, /*isExplicit=*/false,
1279  /*isConstexpr=*/S.getLangOpts().CPlusPlus1z,
1280  CallOperator->getBody()->getLocEnd());
1281  Conversion->setAccess(AS_public);
1282  Conversion->setImplicit(true);
1283 
1284  if (Class->isGenericLambda()) {
1285  // Create a template version of the conversion operator, using the template
1286  // parameter list of the function call operator.
1287  FunctionTemplateDecl *TemplateCallOperator =
1288  CallOperator->getDescribedFunctionTemplate();
1289  FunctionTemplateDecl *ConversionTemplate =
1291  Loc, ConversionName,
1292  TemplateCallOperator->getTemplateParameters(),
1293  Conversion);
1294  ConversionTemplate->setAccess(AS_public);
1295  ConversionTemplate->setImplicit(true);
1296  Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1297  Class->addDecl(ConversionTemplate);
1298  } else
1299  Class->addDecl(Conversion);
1300  // Add a non-static member function that will be the result of
1301  // the conversion with a certain unique ID.
1302  DeclarationName InvokerName = &S.Context.Idents.get(
1304  // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1305  // we should get a prebuilt TrivialTypeSourceInfo from Context
1306  // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1307  // then rewire the parameters accordingly, by hoisting up the InvokeParams
1308  // loop below and then use its Params to set Invoke->setParams(...) below.
1309  // This would avoid the 'const' qualifier of the calloperator from
1310  // contaminating the type of the invoker, which is currently adjusted
1311  // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1312  // trailing return type of the invoker would require a visitor to rebuild
1313  // the trailing return type and adjusting all back DeclRefExpr's to refer
1314  // to the new static invoker parameters - not the call operator's.
1315  CXXMethodDecl *Invoke
1316  = CXXMethodDecl::Create(S.Context, Class, Loc,
1317  DeclarationNameInfo(InvokerName, Loc),
1318  InvokerFunctionTy,
1319  CallOperator->getTypeSourceInfo(),
1320  SC_Static, /*IsInline=*/true,
1321  /*IsConstexpr=*/false,
1322  CallOperator->getBody()->getLocEnd());
1323  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1324  InvokerParams[I]->setOwningFunction(Invoke);
1325  Invoke->setParams(InvokerParams);
1326  Invoke->setAccess(AS_private);
1327  Invoke->setImplicit(true);
1328  if (Class->isGenericLambda()) {
1329  FunctionTemplateDecl *TemplateCallOperator =
1330  CallOperator->getDescribedFunctionTemplate();
1331  FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1332  S.Context, Class, Loc, InvokerName,
1333  TemplateCallOperator->getTemplateParameters(),
1334  Invoke);
1335  StaticInvokerTemplate->setAccess(AS_private);
1336  StaticInvokerTemplate->setImplicit(true);
1337  Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1338  Class->addDecl(StaticInvokerTemplate);
1339  } else
1340  Class->addDecl(Invoke);
1341 }
1342 
1343 /// \brief Add a lambda's conversion to block pointer.
1345  SourceRange IntroducerRange,
1346  CXXRecordDecl *Class,
1347  CXXMethodDecl *CallOperator) {
1348  const FunctionProtoType *Proto =
1349  CallOperator->getType()->getAs<FunctionProtoType>();
1350 
1351  // The function type inside the block pointer type is the same as the call
1352  // operator with some tweaks. The calling convention is the default free
1353  // function convention, and the type qualifications are lost.
1355  BlockEPI.ExtInfo =
1356  BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
1357  Proto->isVariadic(), /*IsCXXMethod=*/false));
1358  BlockEPI.TypeQuals = 0;
1359  QualType FunctionTy = S.Context.getFunctionType(
1360  Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
1361  QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1362 
1363  FunctionProtoType::ExtProtoInfo ConversionEPI(
1365  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1366  ConversionEPI.TypeQuals = Qualifiers::Const;
1367  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1368 
1369  SourceLocation Loc = IntroducerRange.getBegin();
1372  S.Context.getCanonicalType(BlockPtrTy));
1373  DeclarationNameLoc NameLoc;
1374  NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1375  CXXConversionDecl *Conversion
1376  = CXXConversionDecl::Create(S.Context, Class, Loc,
1377  DeclarationNameInfo(Name, Loc, NameLoc),
1378  ConvTy,
1379  S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1380  /*isInline=*/true, /*isExplicit=*/false,
1381  /*isConstexpr=*/false,
1382  CallOperator->getBody()->getLocEnd());
1383  Conversion->setAccess(AS_public);
1384  Conversion->setImplicit(true);
1385  Class->addDecl(Conversion);
1386 }
1387 
1389  Sema &S, const LambdaScopeInfo::Capture &Capture, FieldDecl *Field) {
1390  assert(Capture.isVariableCapture() && "not a variable capture");
1391 
1392  auto *Var = Capture.getVariable();
1393  SourceLocation Loc = Capture.getLocation();
1394 
1395  // C++11 [expr.prim.lambda]p21:
1396  // When the lambda-expression is evaluated, the entities that
1397  // are captured by copy are used to direct-initialize each
1398  // corresponding non-static data member of the resulting closure
1399  // object. (For array members, the array elements are
1400  // direct-initialized in increasing subscript order.) These
1401  // initializations are performed in the (unspecified) order in
1402  // which the non-static data members are declared.
1403 
1404  // C++ [expr.prim.lambda]p12:
1405  // An entity captured by a lambda-expression is odr-used (3.2) in
1406  // the scope containing the lambda-expression.
1407  ExprResult RefResult = S.BuildDeclarationNameExpr(
1408  CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1409  if (RefResult.isInvalid())
1410  return ExprError();
1411  Expr *Ref = RefResult.get();
1412 
1414  Var->getIdentifier(), Field->getType(), Loc);
1415  InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1416  InitializationSequence Init(S, Entity, InitKind, Ref);
1417  return Init.Perform(S, Entity, InitKind, Ref);
1418 }
1419 
1421  Scope *CurScope) {
1422  LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1423  ActOnFinishFunctionBody(LSI.CallOperator, Body);
1424  return BuildLambdaExpr(StartLoc, Body->getLocEnd(), &LSI);
1425 }
1426 
1427 static LambdaCaptureDefault
1429  switch (ICS) {
1431  return LCD_None;
1433  return LCD_ByCopy;
1436  return LCD_ByRef;
1438  llvm_unreachable("block capture in lambda");
1439  }
1440  llvm_unreachable("Unknown implicit capture style");
1441 }
1442 
1443 bool Sema::CaptureHasSideEffects(const LambdaScopeInfo::Capture &From) {
1444  if (!From.isVLATypeCapture()) {
1445  Expr *Init = From.getInitExpr();
1446  if (Init && Init->HasSideEffects(Context))
1447  return true;
1448  }
1449 
1450  if (!From.isCopyCapture())
1451  return false;
1452 
1453  const QualType T = From.isThisCapture()
1454  ? getCurrentThisType()->getPointeeType()
1455  : From.getCaptureType();
1456 
1457  if (T.isVolatileQualified())
1458  return true;
1459 
1460  const Type *BaseT = T->getBaseElementTypeUnsafe();
1461  if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1462  return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1463  !RD->hasTrivialDestructor();
1464 
1465  return false;
1466 }
1467 
1468 void Sema::DiagnoseUnusedLambdaCapture(const LambdaScopeInfo::Capture &From) {
1469  if (CaptureHasSideEffects(From))
1470  return;
1471 
1472  auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1473  if (From.isThisCapture())
1474  diag << "'this'";
1475  else
1476  diag << From.getVariable();
1477  diag << From.isNonODRUsed();
1478 }
1479 
1481  LambdaScopeInfo *LSI) {
1482  // Collect information from the lambda scope.
1484  SmallVector<Expr *, 4> CaptureInits;
1485  SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1486  LambdaCaptureDefault CaptureDefault =
1488  CXXRecordDecl *Class;
1489  CXXMethodDecl *CallOperator;
1490  SourceRange IntroducerRange;
1491  bool ExplicitParams;
1492  bool ExplicitResultType;
1493  CleanupInfo LambdaCleanup;
1494  bool ContainsUnexpandedParameterPack;
1495  bool IsGenericLambda;
1496  {
1497  CallOperator = LSI->CallOperator;
1498  Class = LSI->Lambda;
1499  IntroducerRange = LSI->IntroducerRange;
1500  ExplicitParams = LSI->ExplicitParams;
1501  ExplicitResultType = !LSI->HasImplicitReturnType;
1502  LambdaCleanup = LSI->Cleanup;
1503  ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1504  IsGenericLambda = Class->isGenericLambda();
1505 
1506  CallOperator->setLexicalDeclContext(Class);
1507  Decl *TemplateOrNonTemplateCallOperatorDecl =
1508  CallOperator->getDescribedFunctionTemplate()
1509  ? CallOperator->getDescribedFunctionTemplate()
1510  : cast<Decl>(CallOperator);
1511 
1512  TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1513  Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
1514 
1515  PopExpressionEvaluationContext();
1516 
1517  // Translate captures.
1518  auto CurField = Class->field_begin();
1519  for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I, ++CurField) {
1520  const LambdaScopeInfo::Capture &From = LSI->Captures[I];
1521  assert(!From.isBlockCapture() && "Cannot capture __block variables");
1522  bool IsImplicit = I >= LSI->NumExplicitCaptures;
1523 
1524  // Warn about unused explicit captures.
1525  if (!CurContext->isDependentContext() && !IsImplicit && !From.isODRUsed()) {
1526  // Initialized captures that are non-ODR used may not be eliminated.
1527  bool NonODRUsedInitCapture =
1528  IsGenericLambda && From.isNonODRUsed() && From.getInitExpr();
1529  if (!NonODRUsedInitCapture)
1530  DiagnoseUnusedLambdaCapture(From);
1531  }
1532 
1533  // Handle 'this' capture.
1534  if (From.isThisCapture()) {
1535  Captures.push_back(
1536  LambdaCapture(From.getLocation(), IsImplicit,
1537  From.isCopyCapture() ? LCK_StarThis : LCK_This));
1538  CaptureInits.push_back(From.getInitExpr());
1539  continue;
1540  }
1541  if (From.isVLATypeCapture()) {
1542  Captures.push_back(
1543  LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
1544  CaptureInits.push_back(nullptr);
1545  continue;
1546  }
1547 
1548  VarDecl *Var = From.getVariable();
1549  LambdaCaptureKind Kind = From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1550  Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
1551  Var, From.getEllipsisLoc()));
1552  Expr *Init = From.getInitExpr();
1553  if (!Init) {
1554  auto InitResult =
1555  performLambdaVarCaptureInitialization(*this, From, *CurField);
1556  if (InitResult.isInvalid())
1557  return ExprError();
1558  Init = InitResult.get();
1559  }
1560  CaptureInits.push_back(Init);
1561  }
1562 
1563  // C++11 [expr.prim.lambda]p6:
1564  // The closure type for a lambda-expression with no lambda-capture
1565  // has a public non-virtual non-explicit const conversion function
1566  // to pointer to function having the same parameter and return
1567  // types as the closure type's function call operator.
1568  if (Captures.empty() && CaptureDefault == LCD_None)
1569  addFunctionPointerConversion(*this, IntroducerRange, Class,
1570  CallOperator);
1571 
1572  // Objective-C++:
1573  // The closure type for a lambda-expression has a public non-virtual
1574  // non-explicit const conversion function to a block pointer having the
1575  // same parameter and return types as the closure type's function call
1576  // operator.
1577  // FIXME: Fix generic lambda to block conversions.
1578  if (getLangOpts().Blocks && getLangOpts().ObjC1 && !IsGenericLambda)
1579  addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1580 
1581  // Finalize the lambda class.
1582  SmallVector<Decl*, 4> Fields(Class->fields());
1583  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1584  SourceLocation(), nullptr);
1585  CheckCompletedCXXClass(Class);
1586  }
1587 
1588  Cleanup.mergeFrom(LambdaCleanup);
1589 
1590  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1591  CaptureDefault, CaptureDefaultLoc,
1592  Captures,
1593  ExplicitParams, ExplicitResultType,
1594  CaptureInits, EndLoc,
1595  ContainsUnexpandedParameterPack);
1596  // If the lambda expression's call operator is not explicitly marked constexpr
1597  // and we are not in a dependent context, analyze the call operator to infer
1598  // its constexpr-ness, suppressing diagnostics while doing so.
1599  if (getLangOpts().CPlusPlus1z && !CallOperator->isInvalidDecl() &&
1600  !CallOperator->isConstexpr() &&
1601  !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1602  !Class->getDeclContext()->isDependentContext()) {
1603  TentativeAnalysisScope DiagnosticScopeGuard(*this);
1604  CallOperator->setConstexpr(
1605  CheckConstexprFunctionDecl(CallOperator) &&
1606  CheckConstexprFunctionBody(CallOperator, CallOperator->getBody()));
1607  }
1608 
1609  // Emit delayed shadowing warnings now that the full capture list is known.
1610  DiagnoseShadowingLambdaDecls(LSI);
1611 
1612  if (!CurContext->isDependentContext()) {
1613  switch (ExprEvalContexts.back().Context) {
1614  // C++11 [expr.prim.lambda]p2:
1615  // A lambda-expression shall not appear in an unevaluated operand
1616  // (Clause 5).
1617  case ExpressionEvaluationContext::Unevaluated:
1618  case ExpressionEvaluationContext::UnevaluatedList:
1619  case ExpressionEvaluationContext::UnevaluatedAbstract:
1620  // C++1y [expr.const]p2:
1621  // A conditional-expression e is a core constant expression unless the
1622  // evaluation of e, following the rules of the abstract machine, would
1623  // evaluate [...] a lambda-expression.
1624  //
1625  // This is technically incorrect, there are some constant evaluated contexts
1626  // where this should be allowed. We should probably fix this when DR1607 is
1627  // ratified, it lays out the exact set of conditions where we shouldn't
1628  // allow a lambda-expression.
1629  case ExpressionEvaluationContext::ConstantEvaluated:
1630  // We don't actually diagnose this case immediately, because we
1631  // could be within a context where we might find out later that
1632  // the expression is potentially evaluated (e.g., for typeid).
1633  ExprEvalContexts.back().Lambdas.push_back(Lambda);
1634  break;
1635 
1636  case ExpressionEvaluationContext::DiscardedStatement:
1637  case ExpressionEvaluationContext::PotentiallyEvaluated:
1638  case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1639  break;
1640  }
1641  }
1642 
1643  return MaybeBindToTemporary(Lambda);
1644 }
1645 
1647  SourceLocation ConvLocation,
1648  CXXConversionDecl *Conv,
1649  Expr *Src) {
1650  // Make sure that the lambda call operator is marked used.
1651  CXXRecordDecl *Lambda = Conv->getParent();
1652  CXXMethodDecl *CallOperator
1653  = cast<CXXMethodDecl>(
1654  Lambda->lookup(
1655  Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1656  CallOperator->setReferenced();
1657  CallOperator->markUsed(Context);
1658 
1659  ExprResult Init = PerformCopyInitialization(
1661  /*NRVO=*/false),
1662  CurrentLocation, Src);
1663  if (!Init.isInvalid())
1664  Init = ActOnFinishFullExpr(Init.get());
1665 
1666  if (Init.isInvalid())
1667  return ExprError();
1668 
1669  // Create the new block to be returned.
1670  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1671 
1672  // Set the type information.
1673  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1674  Block->setIsVariadic(CallOperator->isVariadic());
1675  Block->setBlockMissingReturnType(false);
1676 
1677  // Add parameters.
1678  SmallVector<ParmVarDecl *, 4> BlockParams;
1679  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1680  ParmVarDecl *From = CallOperator->getParamDecl(I);
1681  BlockParams.push_back(ParmVarDecl::Create(Context, Block,
1682  From->getLocStart(),
1683  From->getLocation(),
1684  From->getIdentifier(),
1685  From->getType(),
1686  From->getTypeSourceInfo(),
1687  From->getStorageClass(),
1688  /*DefaultArg=*/nullptr));
1689  }
1690  Block->setParams(BlockParams);
1691 
1692  Block->setIsConversionFromLambda(true);
1693 
1694  // Add capture. The capture uses a fake variable, which doesn't correspond
1695  // to any actual memory location. However, the initializer copy-initializes
1696  // the lambda object.
1697  TypeSourceInfo *CapVarTSI =
1699  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1700  ConvLocation, nullptr,
1701  Src->getType(), CapVarTSI,
1702  SC_None);
1703  BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
1704  /*Nested=*/false, /*Copy=*/Init.get());
1705  Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
1706 
1707  // Add a fake function body to the block. IR generation is responsible
1708  // for filling in the actual body, which cannot be expressed as an AST.
1709  Block->setBody(new (Context) CompoundStmt(ConvLocation));
1710 
1711  // Create the block literal expression.
1712  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1713  ExprCleanupObjects.push_back(Block);
1714  Cleanup.setExprNeedsCleanups(true);
1715 
1716  return BuildBlock;
1717 }
SourceLocation getEnd() const
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:64
void setImplicit(bool I=true)
Definition: DeclBase.h:538
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1618
bool isVariadic() const
Definition: Type.h:3442
SourceRange IntroducerRange
Source range covering the lambda introducer [...].
Definition: ScopeInfo.h:747
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
getFunctionTypeInfo - Retrieves the function type info object (looking through parentheses).
Definition: DeclSpec.h:2245
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
A class which contains all the information about a particular captured value.
Definition: Decl.h:3561
A (possibly-)qualified type.
Definition: Type.h:616
bool isInvalid() const
Definition: Ownership.h:159
bool ExplicitParams
Whether the (empty) parameter list is explicit.
Definition: ScopeInfo.h:761
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3042
QualType getConversionType() const
Returns the type that this conversion function is converting to.
Definition: DeclCXX.h:2637
TemplateParameterList * GLTemplateParameterList
If this is a generic lambda, and the template parameter list has been created (from the AutoTemplateP...
Definition: ScopeInfo.h:783
IdentifierInfo * getIdentifier() const
getIdentifier - Get the identifier that names this declaration, if there is one.
Definition: Decl.h:232
VarDecl * createLambdaInitCaptureVarDecl(SourceLocation Loc, QualType InitCaptureType, IdentifierInfo *Id, unsigned InitStyle, Expr *Init)
Create a dummy variable within the declcontext of the lambda's call operator, for name lookup purpose...
Definition: SemaLambda.cpp:775
const LangOptions & getLangOpts() const
Definition: Sema.h:1166
DeclClass * getAsSingle() const
Definition: Lookup.h:493
Stmt - This represents one statement.
Definition: Stmt.h:60
static EnumDecl * findCommonEnumForBlockReturns(ArrayRef< ReturnStmt * > returns)
Attempt to find a common type T for which all of the returned expressions in a block are enumerator-l...
Definition: SemaLambda.cpp:576
EnumConstantDecl - An instance of this object exists for each enum constant that is defined...
Definition: Decl.h:2554
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:608
DeclarationName getCXXConversionFunctionName(CanQualType Ty)
getCXXConversionFunctionName - Returns the name of a C++ conversion function for the given Type...
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:81
LambdaCaptureDefault
The default, if any, capture method for a lambda expression.
Definition: Lambda.h:23
StringRef P
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src)
PtrTy get() const
Definition: Ownership.h:163
static InitializationKind CreateDirect(SourceLocation InitLoc, SourceLocation LParenLoc, SourceLocation RParenLoc)
Create a direct initialization.
The base class of the type hierarchy.
Definition: Type.h:1303
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1009
const Expr * getInit() const
Definition: Decl.h:1146
A container of type source information.
Definition: Decl.h:62
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.h:1422
unsigned getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it...
void setInitStyle(InitializationStyle Style)
Definition: Decl.h:1191
Describes the capture of a variable or of this, or of a C++1y init-capture.
Definition: LambdaCapture.h:26
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:2876
This file provides some common utility functions for processing Lambda related AST Constructs...
QualType getBlockPointerType(QualType T) const
Return the uniqued reference to the type for a block of the specified type.
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:758
static CXXConversionDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isExplicit, bool isConstexpr, SourceLocation EndLocation)
Definition: DeclCXX.cpp:2150
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1733
Extra information about a function prototype.
Definition: Type.h:3234
field_iterator field_begin() const
Definition: Decl.cpp:3912
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.cpp:4022
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:50
MangleNumberingContext & getMangleNumberingContext(ASTContext &Ctx)
Retrieve the mangling numbering context, used to consistently number constructs like lambdas for mang...
Definition: SemaLambda.cpp:353
static InitializationKind CreateDirectList(SourceLocation InitLoc)
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt)
Try to capture the given variable.
Definition: SemaExpr.cpp:14137
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:2920
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1575
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1434
CXXRecordDecl * createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, bool KnownDependent, LambdaCaptureDefault CaptureDefault)
Create a new lambda closure type.
Definition: SemaLambda.cpp:246
Defines the clang::Expr interface and subclasses for C++ expressions.
bool isCXXThisCaptured() const
Determine whether the C++ 'this' is captured.
Definition: ScopeInfo.h:632
bool isVoidType() const
Definition: Type.h:5906
tok::TokenKind ContextKind
bool FTIHasNonVoidParameters(const DeclaratorChunk::FunctionTypeInfo &FTI)
Definition: SemaInternal.h:37
Scope * getTemplateParamParent()
Definition: Scope.h:253
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3249
bool isConst() const
Definition: DeclCXX.h:1944
One of these records is kept for each identifier that is lexed.
sema::LambdaScopeInfo * getCurGenericLambda()
Retrieve the current generic lambda info, if any.
Definition: Sema.cpp:1323
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:128
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3343
bool isReferenceType() const
Definition: Type.h:5721
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
QualType getReturnType() const
Definition: Decl.h:2106
LambdaCaptureKind
The different capture forms in a lambda introducer.
Definition: Lambda.h:34
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2366
void setBlockMissingReturnType(bool val)
Definition: Decl.h:3689
unsigned TypeQuals
The type qualifiers: const/volatile/restrict/__unaligned The qualifier bitmask values are the same as...
Definition: DeclSpec.h:1256
bool isTranslationUnit() const
Definition: DeclBase.h:1364
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2103
static CXXRecordDecl * CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, bool DependentLambda, bool IsGeneric, LambdaCaptureDefault CaptureDefault)
Definition: DeclCXX.cpp:116
bool ContainsUnexpandedParameterPack
Whether the lambda contains an unexpanded parameter pack.
Definition: ScopeInfo.h:767
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1295
static ExprResult performLambdaVarCaptureInitialization(Sema &S, const LambdaScopeInfo::Capture &Capture, FieldDecl *Field)
IdentifierTable & Idents
Definition: ASTContext.h:513
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:947
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:106
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1677
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:505
Represents the results of name lookup.
Definition: Lookup.h:32
RAII class used to indicate that we are performing provisional semantic analysis to determine the val...
Definition: Sema.h:7401
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:2152
< Capturing the *this object by copy
Definition: Lambda.h:37
static LambdaCaptureDefault mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)
std::unique_ptr< MangleNumberingContext > createMangleNumberingContext() const
static Optional< unsigned > getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef< const clang::sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:63
void addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope)
Introduce the lambda parameters into scope.
Definition: SemaLambda.cpp:482
static InitializedEntity InitializeLambdaToBlock(SourceLocation BlockVarLoc, QualType Type, bool NRVO)
Keeps track of the mangled names of lambda expressions and block literals within a particular context...
QualType getReturnType() const
Definition: Type.h:3065
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2018
field_range fields() const
Definition: Decl.h:3483
bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit=false, bool BuildAndDiagnose=true, const unsigned *const FunctionScopeIndexToStopAt=nullptr, bool ByCopy=false)
Make sure the value of 'this' is actually available in the current context, if it is a potentially ev...
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2967
void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl)
Set the mangling number and context declaration for a lambda class.
Definition: DeclCXX.h:1790
void finishedExplicitCaptures()
Note when all explicit captures have been added.
Definition: ScopeInfo.h:828
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2555
DeclContext * getLambdaAwareParentOfDeclContext(DeclContext *DC)
Definition: ASTLambda.h:71
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
ExprResult Perform(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, QualType *ResultType=nullptr)
Perform the actual initialization of the given entity based on the computed initialization sequence...
Definition: SemaInit.cpp:6432
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1519
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1858
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:28
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3193
static FunctionTemplateDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName Name, TemplateParameterList *Params, NamedDecl *Decl)
Create a function template node.
StringRef getLambdaStaticInvokerName()
Definition: ASTLambda.h:23
detail::InMemoryDirectory::const_iterator I
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL, bool AcceptInvalidDecl=false)
Definition: SemaExpr.cpp:2721
static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to function pointer, as described in C++11 [expr.prim.lambda]p6.
SmallVector< TemplateTypeParmDecl *, 4 > AutoTemplateParams
Store the list of the auto parameters for a generic lambda.
Definition: ScopeInfo.h:778
QualType getType() const
Definition: Decl.h:589
TypeSpecTypeLoc pushTypeSpec(QualType T)
Pushes space for a typespec TypeLoc.
CleanupInfo Cleanup
Whether any of the capture expressions requires cleanups.
Definition: ScopeInfo.h:764
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
bool CaptureHasSideEffects(const sema::LambdaScopeInfo::Capture &From)
Does copying/destroying the captured variable have side effects?
ImplicitCaptureStyle ImpCaptureStyle
Definition: ScopeInfo.h:467
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3245
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:269
bool isFunctionDeclarator(unsigned &idx) const
isFunctionDeclarator - This method returns true if the declarator is a function declarator (looking t...
Definition: DeclSpec.h:2214
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:575
bool Mutable
Whether this is a mutable lambda.
Definition: ScopeInfo.h:758
SmallVector< ReturnStmt *, 4 > Returns
The list of return statements that occur within the function or block, if there is any chance of appl...
Definition: ScopeInfo.h:170
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3129
SourceLocation getLocEnd() const LLVM_READONLY
Definition: Stmt.cpp:270
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1698
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:516
bool isGenericLambda() const
Determine whether this class describes a generic lambda function object (i.e.
Definition: DeclCXX.cpp:1095
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI)
Note that we have finished the explicit captures for the given lambda.
Definition: SemaLambda.cpp:478
ASTContext * Context
SmallVector< LambdaCapture, 4 > Captures
Definition: DeclSpec.h:2506
SourceLocation PotentialThisCaptureLocation
Definition: ScopeInfo.h:816
unsigned NumExplicitCaptures
The number of captures in the Captures list that are explicit captures.
Definition: ScopeInfo.h:755
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:414
unsigned getNumExprs() const
Definition: Expr.h:4587
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1310
CXXMethodDecl * CallOperator
The lambda's compiler-generated operator().
Definition: ScopeInfo.h:744
QualType getAutoDeductType() const
C++11 deduction pattern for 'auto' type.
BlockDecl - This represents a block literal declaration, which is like an unnamed FunctionDecl...
Definition: Decl.h:3557
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope)
ActOnLambdaExpr - This is called when the body of a lambda expression was successfully completed...
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 'auto' typ...
Definition: Type.h:5975
Expr - This represents one expression.
Definition: Expr.h:105
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
QualType buildLambdaInitCaptureInitialization(SourceLocation Loc, bool ByRef, IdentifierInfo *Id, bool DirectInit, Expr *&Init)
Definition: SemaLambda.cpp:712
This file defines the classes used to store parsed information about declaration-specifiers and decla...
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4820
void setInit(Expr *I)
Definition: Decl.cpp:2142
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:111
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:956
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2088
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3347
void setRetValue(Expr *E)
Definition: Stmt.h:1409
DeclContext * getDeclContext()
Definition: DeclBase.h:416
static TemplateParameterList * Create(const ASTContext &C, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ArrayRef< NamedDecl * > Params, SourceLocation RAngleLoc, Expr *RequiresClause)
static TemplateParameterList * getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef)
Definition: SemaLambda.cpp:228
void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, bool Mutable)
Endow the lambda scope info with the relevant properties.
Definition: SemaLambda.cpp:443
bool isConstexprSpecified() const
Definition: DeclSpec.h:708
Capture & getCapture(VarDecl *Var)
Retrieve the capture of the given variable, if it has been captured already.
Definition: ScopeInfo.h:650
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:1797
Direct list-initialization (C++11)
Definition: Decl.h:770
bool isFunctionOrMethod() const
Definition: DeclBase.h:1343
static bool isInInlineFunction(const DeclContext *DC)
Determine whether the given context is or is enclosed in an inline function.
Definition: SemaLambda.cpp:268
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1294
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1392
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.h:2096
struct CXXOpName CXXOperatorName
Common base class for placeholders for types that get replaced by placeholder type deduction: C++11 a...
Definition: Type.h:4166
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2605
bool hasNameForLinkage() const
Is this tag type named, either directly or via being defined in a typedef of this type...
Definition: Decl.h:3046
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:661
CXXMethodDecl * startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, ArrayRef< ParmVarDecl * > Params, bool IsConstexprSpecified)
Start the definition of a lambda expression.
Definition: SemaLambda.cpp:361
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:232
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:1944
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
bool isAmbiguous() const
Definition: Lookup.h:287
FieldDecl * buildInitCaptureField(sema::LambdaScopeInfo *LSI, VarDecl *Var)
Build the implicit field for an init-capture.
Definition: SemaLambda.cpp:796
void setIsVariadic(bool value)
Definition: Decl.h:3634
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, sema::LambdaScopeInfo *LSI)
Complete a lambda-expression having processed and attached the lambda body.
Stmt * getBody(const FunctionDecl *&Definition) const
getBody - Retrieve the body (definition) of the function.
Definition: Decl.cpp:2597
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:222
SourceLocation DefaultLoc
Definition: DeclSpec.h:2504
Kind
void setIsConversionFromLambda(bool val)
Definition: Decl.h:3692
Encodes a location in the source.
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
unsigned getNumParams() const
getNumParams - Return the number of parameters this function must have based on its FunctionType...
Definition: Decl.cpp:2878
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:3810
static InitializedEntity InitializeLambdaCapture(IdentifierInfo *VarID, QualType FieldType, SourceLocation Loc)
Create the initialization entity for a lambda capture.
void DiagnoseUnusedLambdaCapture(const sema::LambdaScopeInfo::Capture &From)
Diagnose if an explicit lambda capture is unused.
CXXRecordDecl * Lambda
The class that describes the lambda.
Definition: ScopeInfo.h:741
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
void setReferenced(bool R=true)
Definition: DeclBase.h:567
Optional< unsigned > getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef< const sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture, Sema &S)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:173
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1903
No ref-qualifier was provided.
Definition: Type.h:1260
C-style initialization with assignment.
Definition: Decl.h:768
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2066
CanQualType VoidTy
Definition: ASTContext.h:963
Describes the kind of initialization being performed, along with location information for tokens rela...
const Type * getBaseElementTypeUnsafe() const
Get the base element type of this type, potentially discarding type qualifiers.
Definition: Type.h:6000
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:600
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2804
SourceLocation getBegin() const
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6105
MangleNumberingContext * getCurrentMangleNumberContext(const DeclContext *DC, Decl *&ManglingContextDecl)
Compute the mangling number context for a lambda expression or block literal.
Definition: SemaLambda.cpp:281
TypeLoc getReturnLoc() const
Definition: TypeLoc.h:1434
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1507
bool isFileContext() const
Definition: DeclBase.h:1360
SourceLocation CaptureDefaultLoc
Source location of the '&' or '=' specifying the default capture type, if any.
Definition: ScopeInfo.h:751
Expr ** getExprs()
Definition: Expr.h:4599
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3464
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:5559
static LambdaExpr * Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, ArrayRef< LambdaCapture > Captures, bool ExplicitParams, bool ExplicitResultType, ArrayRef< Expr * > CaptureInits, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack)
Construct a new lambda expression.
Definition: ExprCXX.cpp:910
MutableArrayRef< Expr * > MultiExprArg
Definition: Ownership.h:262
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:70
static EnumDecl * findEnumForBlockReturn(Expr *E)
If this expression is an enumerator-like expression of some type T, return the type T; otherwise...
Definition: SemaLambda.cpp:504
DeclarationNameLoc - Additional source/type location info for a declaration name. ...
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1884
QualType getType() const
Definition: Expr.h:127
This file provides some common utility functions for processing Lambdas.
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2435
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation=false)
ActOnLambdaError - If there is an error parsing a lambda, this callback is invoked to pop the informa...
void setBody(CompoundStmt *B)
Definition: Decl.h:3638
LambdaCaptureDefault Default
Definition: DeclSpec.h:2505
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1215
StringRef Name
Definition: USRFinder.cpp:123
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI)
Deduce a block or lambda's return type based on the return statements present in the body...
Definition: SemaLambda.cpp:623
bool isInvalidDecl() const
Definition: DeclBase.h:532
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:116
static void addBlockPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to block pointer.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
DeclarationName - The name of a declaration.
MangleNumberingContext & getManglingNumberContext(const DeclContext *DC)
Retrieve the context for computing mangling numbers in the given DeclContext.
SourceLocation getLocStart() const LLVM_READONLY
Definition: Decl.h:683
EnumDecl - Represents an enum.
Definition: Decl.h:3102
detail::InMemoryDirectory::const_iterator E
const Expr * getRetValue() const
Definition: Stmt.cpp:905
bool isCaptured(VarDecl *Var) const
Determine whether the given variable has been captured.
Definition: ScopeInfo.h:641
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2087
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
void setInitCapture(bool IC)
Definition: Decl.h:1311
Capturing variable-length array type.
Definition: Lambda.h:39
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:325
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope)
ActOnStartOfLambdaDefinition - This is called just before we start parsing the body of a lambda; it a...
Definition: SemaLambda.cpp:811
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:6042
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1281
CanQualType DependentTy
Definition: ASTContext.h:979
Simple template class for restricting typo correction candidates to ones having a single Decl* of the...
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1548
static CXXMethodDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, bool isConstexpr, SourceLocation EndLocation)
Definition: DeclCXX.cpp:1617
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1396
Capturing the *this object by reference.
Definition: Lambda.h:35
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:382
Capture & getCXXThisCapture()
Retrieve the capture of C++ 'this', if it has been captured.
Definition: ScopeInfo.h:635
void setSignatureAsWritten(TypeSourceInfo *Sig)
Definition: Decl.h:3640
static BlockDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L)
Definition: Decl.cpp:4199
Call-style initialization (C++98)
Definition: Decl.h:769
Describes the sequence of initializations required to initialize a given object or reference with a s...
Represents a C++ struct/union/class.
Definition: DeclCXX.h:267
void setConstexpr(bool IC)
Definition: Decl.h:1945
CallingConv getDefaultCallingConvention(bool isVariadic, bool IsCXXMethod) const
Retrieves the default calling convention for the current target.
Capturing by reference.
Definition: Lambda.h:38
TryCaptureKind
Definition: Sema.h:3950
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:410
Defines the clang::TargetInfo interface.
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC...
Definition: DeclBase.h:1414
Represents a complete lambda introducer.
Definition: DeclSpec.h:2485
bool HasImplicitReturnType
Whether the target type of return statements in this context is deduced (e.g.
Definition: ScopeInfo.h:604
ExprResult ExprError()
Definition: Ownership.h:268
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template)
Definition: Decl.cpp:3197
bool isRecord() const
Definition: DeclBase.h:1368
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:953
SourceLocation getLocation() const
Retrieve the location at which this variable was captured.
Definition: ScopeInfo.h:567
void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, Expr *Cpy)
Definition: ScopeInfo.h:610
void setCaptures(ASTContext &Context, ArrayRef< Capture > Captures, bool CapturesCXXThis)
Definition: Decl.cpp:4033
bool isParameterPack() const
Whether this declaration is a parameter pack.
Definition: DeclBase.cpp:192
A trivial tuple used to represent a source range.
SourceLocation getLocation() const
Definition: DeclBase.h:407
void setLexicalDeclContext(DeclContext *DC)
Definition: DeclBase.cpp:268
ASTContext & Context
Definition: Sema.h:305
NamedDecl - This represents a decl with a name.
Definition: Decl.h:213
void setAccess(AccessSpecifier AS)
Definition: DeclBase.h:446
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:683
Describes an entity that is being initialized.
static FieldDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle)
Definition: Decl.cpp:3574
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.cpp:257
Wrapper for source info for pointers.
Definition: TypeLoc.h:1236
No in-class initializer.
Definition: Specifiers.h:226
Declaration of a template function.
Definition: DeclTemplate.h:939
const NamedDecl * Result
Definition: USRFinder.cpp:70
bool hasLocalStorage() const
hasLocalStorage - Returns true if a variable with function scope is a non-static local variable...
Definition: Decl.h:963
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition: DeclSpec.h:1849
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2368
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef< ReturnStmt * > returns, QualType returnType)
Adjust the given return statements so that they formally return the given type.
Definition: SemaLambda.cpp:597
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
getCXXOperatorName - Get the name of the overloadable C++ operator corresponding to Op...