clang  7.0.0
MicrosoftMangle.cpp
Go to the documentation of this file.
1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Mangle.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
27 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Support/JamCRC.h"
32 #include "llvm/Support/xxhash.h"
33 #include "llvm/Support/MD5.h"
34 #include "llvm/Support/MathExtras.h"
35 
36 using namespace clang;
37 
38 namespace {
39 
40 struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
41  raw_ostream &OS;
42  llvm::SmallString<64> Buffer;
43 
44  msvc_hashing_ostream(raw_ostream &OS)
45  : llvm::raw_svector_ostream(Buffer), OS(OS) {}
46  ~msvc_hashing_ostream() override {
47  StringRef MangledName = str();
48  bool StartsWithEscape = MangledName.startswith("\01");
49  if (StartsWithEscape)
50  MangledName = MangledName.drop_front(1);
51  if (MangledName.size() <= 4096) {
52  OS << str();
53  return;
54  }
55 
56  llvm::MD5 Hasher;
57  llvm::MD5::MD5Result Hash;
58  Hasher.update(MangledName);
59  Hasher.final(Hash);
60 
61  SmallString<32> HexString;
62  llvm::MD5::stringifyResult(Hash, HexString);
63 
64  if (StartsWithEscape)
65  OS << '\01';
66  OS << "??@" << HexString << '@';
67  }
68 };
69 
70 static const DeclContext *
71 getLambdaDefaultArgumentDeclContext(const Decl *D) {
72  if (const auto *RD = dyn_cast<CXXRecordDecl>(D))
73  if (RD->isLambda())
74  if (const auto *Parm =
75  dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
76  return Parm->getDeclContext();
77  return nullptr;
78 }
79 
80 /// Retrieve the declaration context that should be used when mangling
81 /// the given declaration.
82 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
83  // The ABI assumes that lambda closure types that occur within
84  // default arguments live in the context of the function. However, due to
85  // the way in which Clang parses and creates function declarations, this is
86  // not the case: the lambda closure type ends up living in the context
87  // where the function itself resides, because the function declaration itself
88  // had not yet been created. Fix the context here.
89  if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D))
90  return LDADC;
91 
92  // Perform the same check for block literals.
93  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
94  if (ParmVarDecl *ContextParam =
95  dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
96  return ContextParam->getDeclContext();
97  }
98 
99  const DeclContext *DC = D->getDeclContext();
100  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) {
101  return getEffectiveDeclContext(cast<Decl>(DC));
102  }
103 
104  return DC->getRedeclContext();
105 }
106 
107 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
108  return getEffectiveDeclContext(cast<Decl>(DC));
109 }
110 
111 static const FunctionDecl *getStructor(const NamedDecl *ND) {
112  if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
113  return FTD->getTemplatedDecl()->getCanonicalDecl();
114 
115  const auto *FD = cast<FunctionDecl>(ND);
116  if (const auto *FTD = FD->getPrimaryTemplate())
117  return FTD->getTemplatedDecl()->getCanonicalDecl();
118 
119  return FD->getCanonicalDecl();
120 }
121 
122 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
123 /// Microsoft Visual C++ ABI.
124 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
125  typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
126  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
127  llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
128  llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
129  llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
130  llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
131  SmallString<16> AnonymousNamespaceHash;
132 
133 public:
134  MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags);
135  bool shouldMangleCXXName(const NamedDecl *D) override;
136  bool shouldMangleStringLiteral(const StringLiteral *SL) override;
137  void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
138  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
139  const MethodVFTableLocation &ML,
140  raw_ostream &Out) override;
141  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
142  raw_ostream &) override;
143  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
145  raw_ostream &) override;
146  void mangleCXXVFTable(const CXXRecordDecl *Derived,
148  raw_ostream &Out) override;
149  void mangleCXXVBTable(const CXXRecordDecl *Derived,
151  raw_ostream &Out) override;
152  void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
153  const CXXRecordDecl *DstRD,
154  raw_ostream &Out) override;
155  void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
156  bool IsUnaligned, uint32_t NumEntries,
157  raw_ostream &Out) override;
158  void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
159  raw_ostream &Out) override;
160  void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
161  CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
162  int32_t VBPtrOffset, uint32_t VBIndex,
163  raw_ostream &Out) override;
164  void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
165  void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
166  void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
167  uint32_t NVOffset, int32_t VBPtrOffset,
168  uint32_t VBTableOffset, uint32_t Flags,
169  raw_ostream &Out) override;
170  void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
171  raw_ostream &Out) override;
172  void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
173  raw_ostream &Out) override;
174  void
175  mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
177  raw_ostream &Out) override;
178  void mangleTypeName(QualType T, raw_ostream &) override;
179  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
180  raw_ostream &) override;
181  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
182  raw_ostream &) override;
183  void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
184  raw_ostream &) override;
185  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
186  void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
187  raw_ostream &Out) override;
188  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
189  void mangleDynamicAtExitDestructor(const VarDecl *D,
190  raw_ostream &Out) override;
191  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
192  raw_ostream &Out) override;
193  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
194  raw_ostream &Out) override;
195  void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
196  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
197  const DeclContext *DC = getEffectiveDeclContext(ND);
198  if (!DC->isFunctionOrMethod())
199  return false;
200 
201  // Lambda closure types are already numbered, give out a phony number so
202  // that they demangle nicely.
203  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
204  if (RD->isLambda()) {
205  disc = 1;
206  return true;
207  }
208  }
209 
210  // Use the canonical number for externally visible decls.
211  if (ND->isExternallyVisible()) {
212  disc = getASTContext().getManglingNumber(ND);
213  return true;
214  }
215 
216  // Anonymous tags are already numbered.
217  if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
218  if (!Tag->hasNameForLinkage() &&
219  !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
220  !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
221  return false;
222  }
223 
224  // Make up a reasonable number for internal decls.
225  unsigned &discriminator = Uniquifier[ND];
226  if (!discriminator)
227  discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
228  disc = discriminator + 1;
229  return true;
230  }
231 
232  unsigned getLambdaId(const CXXRecordDecl *RD) {
233  assert(RD->isLambda() && "RD must be a lambda!");
234  assert(!RD->isExternallyVisible() && "RD must not be visible!");
235  assert(RD->getLambdaManglingNumber() == 0 &&
236  "RD must not have a mangling number!");
237  std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
238  Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
239  return Result.first->second;
240  }
241 
242  /// Return a character sequence that is (somewhat) unique to the TU suitable
243  /// for mangling anonymous namespaces.
244  StringRef getAnonymousNamespaceHash() const {
245  return AnonymousNamespaceHash;
246  }
247 
248 private:
249  void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
250 };
251 
252 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
253 /// Microsoft Visual C++ ABI.
254 class MicrosoftCXXNameMangler {
255  MicrosoftMangleContextImpl &Context;
256  raw_ostream &Out;
257 
258  /// The "structor" is the top-level declaration being mangled, if
259  /// that's not a template specialization; otherwise it's the pattern
260  /// for that specialization.
261  const NamedDecl *Structor;
262  unsigned StructorType;
263 
264  typedef llvm::SmallVector<std::string, 10> BackRefVec;
265  BackRefVec NameBackReferences;
266 
267  typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
268  ArgBackRefMap TypeBackReferences;
269 
270  typedef std::set<int> PassObjectSizeArgsSet;
271  PassObjectSizeArgsSet PassObjectSizeArgs;
272 
273  ASTContext &getASTContext() const { return Context.getASTContext(); }
274 
275  // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
276  // this check into mangleQualifiers().
277  const bool PointersAre64Bit;
278 
279 public:
280  enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
281 
282  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
283  : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
284  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
285  64) {}
286 
287  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
289  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
290  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
291  64) {}
292 
293  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
295  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
296  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
297  64) {}
298 
299  raw_ostream &getStream() const { return Out; }
300 
301  void mangle(const NamedDecl *D, StringRef Prefix = "?");
302  void mangleName(const NamedDecl *ND);
303  void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
304  void mangleVariableEncoding(const VarDecl *VD);
305  void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
306  void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
307  const CXXMethodDecl *MD);
308  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
309  const MethodVFTableLocation &ML);
310  void mangleNumber(int64_t Number);
311  void mangleTagTypeKind(TagTypeKind TK);
312  void mangleArtificalTagType(TagTypeKind TK, StringRef UnqualifiedName,
313  ArrayRef<StringRef> NestedNames = None);
314  void mangleType(QualType T, SourceRange Range,
315  QualifierMangleMode QMM = QMM_Mangle);
316  void mangleFunctionType(const FunctionType *T,
317  const FunctionDecl *D = nullptr,
318  bool ForceThisQuals = false);
319  void mangleNestedName(const NamedDecl *ND);
320 
321 private:
322  bool isStructorDecl(const NamedDecl *ND) const {
323  return ND == Structor || getStructor(ND) == Structor;
324  }
325 
326  void mangleUnqualifiedName(const NamedDecl *ND) {
327  mangleUnqualifiedName(ND, ND->getDeclName());
328  }
329  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
330  void mangleSourceName(StringRef Name);
331  void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
332  void mangleCXXDtorType(CXXDtorType T);
333  void mangleQualifiers(Qualifiers Quals, bool IsMember);
334  void mangleRefQualifier(RefQualifierKind RefQualifier);
335  void manglePointerCVQualifiers(Qualifiers Quals);
336  void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
337 
338  void mangleUnscopedTemplateName(const TemplateDecl *ND);
339  void
340  mangleTemplateInstantiationName(const TemplateDecl *TD,
341  const TemplateArgumentList &TemplateArgs);
342  void mangleObjCMethodName(const ObjCMethodDecl *MD);
343 
344  void mangleArgumentType(QualType T, SourceRange Range);
345  void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
346 
347  bool isArtificialTagType(QualType T) const;
348 
349  // Declare manglers for every type class.
350 #define ABSTRACT_TYPE(CLASS, PARENT)
351 #define NON_CANONICAL_TYPE(CLASS, PARENT)
352 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
353  Qualifiers Quals, \
354  SourceRange Range);
355 #include "clang/AST/TypeNodes.def"
356 #undef ABSTRACT_TYPE
357 #undef NON_CANONICAL_TYPE
358 #undef TYPE
359 
360  void mangleType(const TagDecl *TD);
361  void mangleDecayedArrayType(const ArrayType *T);
362  void mangleArrayType(const ArrayType *T);
363  void mangleFunctionClass(const FunctionDecl *FD);
364  void mangleCallingConvention(CallingConv CC);
365  void mangleCallingConvention(const FunctionType *T);
366  void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
367  void mangleExpression(const Expr *E);
368  void mangleThrowSpecification(const FunctionProtoType *T);
369 
370  void mangleTemplateArgs(const TemplateDecl *TD,
371  const TemplateArgumentList &TemplateArgs);
372  void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
373  const NamedDecl *Parm);
374 
375  void mangleObjCProtocol(const ObjCProtocolDecl *PD);
376  void mangleObjCLifetime(const QualType T, Qualifiers Quals,
377  SourceRange Range);
378 };
379 }
380 
381 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context,
382  DiagnosticsEngine &Diags)
383  : MicrosoftMangleContext(Context, Diags) {
384  // To mangle anonymous namespaces, hash the path to the main source file. The
385  // path should be whatever (probably relative) path was passed on the command
386  // line. The goal is for the compiler to produce the same output regardless of
387  // working directory, so use the uncanonicalized relative path.
388  //
389  // It's important to make the mangled names unique because, when CodeView
390  // debug info is in use, the debugger uses mangled type names to distinguish
391  // between otherwise identically named types in anonymous namespaces.
392  //
393  // These symbols are always internal, so there is no need for the hash to
394  // match what MSVC produces. For the same reason, clang is free to change the
395  // hash at any time without breaking compatibility with old versions of clang.
396  // The generated names are intended to look similar to what MSVC generates,
397  // which are something like "?A0x01234567@".
398  SourceManager &SM = Context.getSourceManager();
399  if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) {
400  // Truncate the hash so we get 8 characters of hexadecimal.
401  uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName()));
402  AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash);
403  } else {
404  // If we don't have a path to the main file, we'll just use 0.
405  AnonymousNamespaceHash = "0";
406  }
407 }
408 
409 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
410  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
411  LanguageLinkage L = FD->getLanguageLinkage();
412  // Overloadable functions need mangling.
413  if (FD->hasAttr<OverloadableAttr>())
414  return true;
415 
416  // The ABI expects that we would never mangle "typical" user-defined entry
417  // points regardless of visibility or freestanding-ness.
418  //
419  // N.B. This is distinct from asking about "main". "main" has a lot of
420  // special rules associated with it in the standard while these
421  // user-defined entry points are outside of the purview of the standard.
422  // For example, there can be only one definition for "main" in a standards
423  // compliant program; however nothing forbids the existence of wmain and
424  // WinMain in the same translation unit.
425  if (FD->isMSVCRTEntryPoint())
426  return false;
427 
428  // C++ functions and those whose names are not a simple identifier need
429  // mangling.
430  if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
431  return true;
432 
433  // C functions are not mangled.
434  if (L == CLanguageLinkage)
435  return false;
436  }
437 
438  // Otherwise, no mangling is done outside C++ mode.
439  if (!getASTContext().getLangOpts().CPlusPlus)
440  return false;
441 
442  const VarDecl *VD = dyn_cast<VarDecl>(D);
443  if (VD && !isa<DecompositionDecl>(D)) {
444  // C variables are not mangled.
445  if (VD->isExternC())
446  return false;
447 
448  // Variables at global scope with non-internal linkage are not mangled.
449  const DeclContext *DC = getEffectiveDeclContext(D);
450  // Check for extern variable declared locally.
451  if (DC->isFunctionOrMethod() && D->hasLinkage())
452  while (!DC->isNamespace() && !DC->isTranslationUnit())
453  DC = getEffectiveParentContext(DC);
454 
455  if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
456  !isa<VarTemplateSpecializationDecl>(D) &&
457  D->getIdentifier() != nullptr)
458  return false;
459  }
460 
461  return true;
462 }
463 
464 bool
465 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
466  return true;
467 }
468 
469 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
470  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
471  // Therefore it's really important that we don't decorate the
472  // name with leading underscores or leading/trailing at signs. So, by
473  // default, we emit an asm marker at the start so we get the name right.
474  // Callers can override this with a custom prefix.
475 
476  // <mangled-name> ::= ? <name> <type-encoding>
477  Out << Prefix;
478  mangleName(D);
479  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
480  mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
481  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
482  mangleVariableEncoding(VD);
483  else if (!isa<ObjCInterfaceDecl>(D))
484  llvm_unreachable("Tried to mangle unexpected NamedDecl!");
485 }
486 
487 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
488  bool ShouldMangle) {
489  // <type-encoding> ::= <function-class> <function-type>
490 
491  // Since MSVC operates on the type as written and not the canonical type, it
492  // actually matters which decl we have here. MSVC appears to choose the
493  // first, since it is most likely to be the declaration in a header file.
494  FD = FD->getFirstDecl();
495 
496  // We should never ever see a FunctionNoProtoType at this point.
497  // We don't even know how to mangle their types anyway :).
498  const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
499 
500  // extern "C" functions can hold entities that must be mangled.
501  // As it stands, these functions still need to get expressed in the full
502  // external name. They have their class and type omitted, replaced with '9'.
503  if (ShouldMangle) {
504  // We would like to mangle all extern "C" functions using this additional
505  // component but this would break compatibility with MSVC's behavior.
506  // Instead, do this when we know that compatibility isn't important (in
507  // other words, when it is an overloaded extern "C" function).
508  if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
509  Out << "$$J0";
510 
511  mangleFunctionClass(FD);
512 
513  mangleFunctionType(FT, FD);
514  } else {
515  Out << '9';
516  }
517 }
518 
519 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
520  // <type-encoding> ::= <storage-class> <variable-type>
521  // <storage-class> ::= 0 # private static member
522  // ::= 1 # protected static member
523  // ::= 2 # public static member
524  // ::= 3 # global
525  // ::= 4 # static local
526 
527  // The first character in the encoding (after the name) is the storage class.
528  if (VD->isStaticDataMember()) {
529  // If it's a static member, it also encodes the access level.
530  switch (VD->getAccess()) {
531  default:
532  case AS_private: Out << '0'; break;
533  case AS_protected: Out << '1'; break;
534  case AS_public: Out << '2'; break;
535  }
536  }
537  else if (!VD->isStaticLocal())
538  Out << '3';
539  else
540  Out << '4';
541  // Now mangle the type.
542  // <variable-type> ::= <type> <cvr-qualifiers>
543  // ::= <type> <pointee-cvr-qualifiers> # pointers, references
544  // Pointers and references are odd. The type of 'int * const foo;' gets
545  // mangled as 'QAHA' instead of 'PAHB', for example.
546  SourceRange SR = VD->getSourceRange();
547  QualType Ty = VD->getType();
548  if (Ty->isPointerType() || Ty->isReferenceType() ||
549  Ty->isMemberPointerType()) {
550  mangleType(Ty, SR, QMM_Drop);
551  manglePointerExtQualifiers(
552  Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
553  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
554  mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
555  // Member pointers are suffixed with a back reference to the member
556  // pointer's class name.
557  mangleName(MPT->getClass()->getAsCXXRecordDecl());
558  } else
559  mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
560  } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
561  // Global arrays are funny, too.
562  mangleDecayedArrayType(AT);
563  if (AT->getElementType()->isArrayType())
564  Out << 'A';
565  else
566  mangleQualifiers(Ty.getQualifiers(), false);
567  } else {
568  mangleType(Ty, SR, QMM_Drop);
569  mangleQualifiers(Ty.getQualifiers(), false);
570  }
571 }
572 
573 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
574  const ValueDecl *VD) {
575  // <member-data-pointer> ::= <integer-literal>
576  // ::= $F <number> <number>
577  // ::= $G <number> <number> <number>
578 
579  int64_t FieldOffset;
580  int64_t VBTableOffset;
581  MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
582  if (VD) {
583  FieldOffset = getASTContext().getFieldOffset(VD);
584  assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
585  "cannot take address of bitfield");
586  FieldOffset /= getASTContext().getCharWidth();
587 
588  VBTableOffset = 0;
589 
590  if (IM == MSInheritanceAttr::Keyword_virtual_inheritance)
591  FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
592  } else {
593  FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
594 
595  VBTableOffset = -1;
596  }
597 
598  char Code = '\0';
599  switch (IM) {
600  case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break;
601  case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break;
602  case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break;
603  case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
604  }
605 
606  Out << '$' << Code;
607 
608  mangleNumber(FieldOffset);
609 
610  // The C++ standard doesn't allow base-to-derived member pointer conversions
611  // in template parameter contexts, so the vbptr offset of data member pointers
612  // is always zero.
613  if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
614  mangleNumber(0);
615  if (MSInheritanceAttr::hasVBTableOffsetField(IM))
616  mangleNumber(VBTableOffset);
617 }
618 
619 void
620 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
621  const CXXMethodDecl *MD) {
622  // <member-function-pointer> ::= $1? <name>
623  // ::= $H? <name> <number>
624  // ::= $I? <name> <number> <number>
625  // ::= $J? <name> <number> <number> <number>
626 
627  MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
628 
629  char Code = '\0';
630  switch (IM) {
631  case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break;
632  case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break;
633  case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break;
634  case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
635  }
636 
637  // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
638  // thunk.
639  uint64_t NVOffset = 0;
640  uint64_t VBTableOffset = 0;
641  uint64_t VBPtrOffset = 0;
642  if (MD) {
643  Out << '$' << Code << '?';
644  if (MD->isVirtual()) {
645  MicrosoftVTableContext *VTContext =
646  cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
648  VTContext->getMethodVFTableLocation(GlobalDecl(MD));
649  mangleVirtualMemPtrThunk(MD, ML);
650  NVOffset = ML.VFPtrOffset.getQuantity();
651  VBTableOffset = ML.VBTableIndex * 4;
652  if (ML.VBase) {
653  const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
654  VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
655  }
656  } else {
657  mangleName(MD);
658  mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
659  }
660 
661  if (VBTableOffset == 0 &&
662  IM == MSInheritanceAttr::Keyword_virtual_inheritance)
663  NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
664  } else {
665  // Null single inheritance member functions are encoded as a simple nullptr.
666  if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
667  Out << "$0A@";
668  return;
669  }
670  if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
671  VBTableOffset = -1;
672  Out << '$' << Code;
673  }
674 
675  if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
676  mangleNumber(static_cast<uint32_t>(NVOffset));
677  if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
678  mangleNumber(VBPtrOffset);
679  if (MSInheritanceAttr::hasVBTableOffsetField(IM))
680  mangleNumber(VBTableOffset);
681 }
682 
683 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
684  const CXXMethodDecl *MD, const MethodVFTableLocation &ML) {
685  // Get the vftable offset.
686  CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
687  getASTContext().getTargetInfo().getPointerWidth(0));
688  uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
689 
690  Out << "?_9";
691  mangleName(MD->getParent());
692  Out << "$B";
693  mangleNumber(OffsetInVFTable);
694  Out << 'A';
695  mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
696 }
697 
698 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
699  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
700 
701  // Always start with the unqualified name.
702  mangleUnqualifiedName(ND);
703 
704  mangleNestedName(ND);
705 
706  // Terminate the whole name with an '@'.
707  Out << '@';
708 }
709 
710 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
711  // <non-negative integer> ::= A@ # when Number == 0
712  // ::= <decimal digit> # when 1 <= Number <= 10
713  // ::= <hex digit>+ @ # when Number >= 10
714  //
715  // <number> ::= [?] <non-negative integer>
716 
717  uint64_t Value = static_cast<uint64_t>(Number);
718  if (Number < 0) {
719  Value = -Value;
720  Out << '?';
721  }
722 
723  if (Value == 0)
724  Out << "A@";
725  else if (Value >= 1 && Value <= 10)
726  Out << (Value - 1);
727  else {
728  // Numbers that are not encoded as decimal digits are represented as nibbles
729  // in the range of ASCII characters 'A' to 'P'.
730  // The number 0x123450 would be encoded as 'BCDEFA'
731  char EncodedNumberBuffer[sizeof(uint64_t) * 2];
732  MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
733  MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
734  for (; Value != 0; Value >>= 4)
735  *I++ = 'A' + (Value & 0xf);
736  Out.write(I.base(), I - BufferRef.rbegin());
737  Out << '@';
738  }
739 }
740 
741 static const TemplateDecl *
742 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
743  // Check if we have a function template.
744  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
745  if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
746  TemplateArgs = FD->getTemplateSpecializationArgs();
747  return TD;
748  }
749  }
750 
751  // Check if we have a class template.
752  if (const ClassTemplateSpecializationDecl *Spec =
753  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
754  TemplateArgs = &Spec->getTemplateArgs();
755  return Spec->getSpecializedTemplate();
756  }
757 
758  // Check if we have a variable template.
759  if (const VarTemplateSpecializationDecl *Spec =
760  dyn_cast<VarTemplateSpecializationDecl>(ND)) {
761  TemplateArgs = &Spec->getTemplateArgs();
762  return Spec->getSpecializedTemplate();
763  }
764 
765  return nullptr;
766 }
767 
768 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
769  DeclarationName Name) {
770  // <unqualified-name> ::= <operator-name>
771  // ::= <ctor-dtor-name>
772  // ::= <source-name>
773  // ::= <template-name>
774 
775  // Check if we have a template.
776  const TemplateArgumentList *TemplateArgs = nullptr;
777  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
778  // Function templates aren't considered for name back referencing. This
779  // makes sense since function templates aren't likely to occur multiple
780  // times in a symbol.
781  if (isa<FunctionTemplateDecl>(TD)) {
782  mangleTemplateInstantiationName(TD, *TemplateArgs);
783  Out << '@';
784  return;
785  }
786 
787  // Here comes the tricky thing: if we need to mangle something like
788  // void foo(A::X<Y>, B::X<Y>),
789  // the X<Y> part is aliased. However, if you need to mangle
790  // void foo(A::X<A::Y>, A::X<B::Y>),
791  // the A::X<> part is not aliased.
792  // That said, from the mangler's perspective we have a structure like this:
793  // namespace[s] -> type[ -> template-parameters]
794  // but from the Clang perspective we have
795  // type [ -> template-parameters]
796  // \-> namespace[s]
797  // What we do is we create a new mangler, mangle the same type (without
798  // a namespace suffix) to a string using the extra mangler and then use
799  // the mangled type name as a key to check the mangling of different types
800  // for aliasing.
801 
802  llvm::SmallString<64> TemplateMangling;
803  llvm::raw_svector_ostream Stream(TemplateMangling);
804  MicrosoftCXXNameMangler Extra(Context, Stream);
805  Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
806 
807  mangleSourceName(TemplateMangling);
808  return;
809  }
810 
811  switch (Name.getNameKind()) {
812  case DeclarationName::Identifier: {
813  if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
814  mangleSourceName(II->getName());
815  break;
816  }
817 
818  // Otherwise, an anonymous entity. We must have a declaration.
819  assert(ND && "mangling empty name without declaration");
820 
821  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
822  if (NS->isAnonymousNamespace()) {
823  Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@';
824  break;
825  }
826  }
827 
828  if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) {
829  // FIXME: Invented mangling for decomposition declarations:
830  // [X,Y,Z]
831  // where X,Y,Z are the names of the bindings.
832  llvm::SmallString<128> Name("[");
833  for (auto *BD : DD->bindings()) {
834  if (Name.size() > 1)
835  Name += ',';
836  Name += BD->getDeclName().getAsIdentifierInfo()->getName();
837  }
838  Name += ']';
839  mangleSourceName(Name);
840  break;
841  }
842 
843  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
844  // We must have an anonymous union or struct declaration.
845  const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
846  assert(RD && "expected variable decl to have a record type");
847  // Anonymous types with no tag or typedef get the name of their
848  // declarator mangled in. If they have no declarator, number them with
849  // a $S prefix.
850  llvm::SmallString<64> Name("$S");
851  // Get a unique id for the anonymous struct.
852  Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
853  mangleSourceName(Name.str());
854  break;
855  }
856 
857  // We must have an anonymous struct.
858  const TagDecl *TD = cast<TagDecl>(ND);
859  if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
860  assert(TD->getDeclContext() == D->getDeclContext() &&
861  "Typedef should not be in another decl context!");
862  assert(D->getDeclName().getAsIdentifierInfo() &&
863  "Typedef was not named!");
864  mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
865  break;
866  }
867 
868  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
869  if (Record->isLambda()) {
870  llvm::SmallString<10> Name("<lambda_");
871 
872  Decl *LambdaContextDecl = Record->getLambdaContextDecl();
873  unsigned LambdaManglingNumber = Record->getLambdaManglingNumber();
874  unsigned LambdaId;
875  const ParmVarDecl *Parm =
876  dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
877  const FunctionDecl *Func =
878  Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
879 
880  if (Func) {
881  unsigned DefaultArgNo =
882  Func->getNumParams() - Parm->getFunctionScopeIndex();
883  Name += llvm::utostr(DefaultArgNo);
884  Name += "_";
885  }
886 
887  if (LambdaManglingNumber)
888  LambdaId = LambdaManglingNumber;
889  else
890  LambdaId = Context.getLambdaId(Record);
891 
892  Name += llvm::utostr(LambdaId);
893  Name += ">";
894 
895  mangleSourceName(Name);
896 
897  // If the context of a closure type is an initializer for a class
898  // member (static or nonstatic), it is encoded in a qualified name.
899  if (LambdaManglingNumber && LambdaContextDecl) {
900  if ((isa<VarDecl>(LambdaContextDecl) ||
901  isa<FieldDecl>(LambdaContextDecl)) &&
902  LambdaContextDecl->getDeclContext()->isRecord()) {
903  mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl));
904  }
905  }
906  break;
907  }
908  }
909 
911  if (DeclaratorDecl *DD =
912  Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
913  // Anonymous types without a name for linkage purposes have their
914  // declarator mangled in if they have one.
915  Name += "<unnamed-type-";
916  Name += DD->getName();
917  } else if (TypedefNameDecl *TND =
918  Context.getASTContext().getTypedefNameForUnnamedTagDecl(
919  TD)) {
920  // Anonymous types without a name for linkage purposes have their
921  // associate typedef mangled in if they have one.
922  Name += "<unnamed-type-";
923  Name += TND->getName();
924  } else if (isa<EnumDecl>(TD) &&
925  cast<EnumDecl>(TD)->enumerator_begin() !=
926  cast<EnumDecl>(TD)->enumerator_end()) {
927  // Anonymous non-empty enums mangle in the first enumerator.
928  auto *ED = cast<EnumDecl>(TD);
929  Name += "<unnamed-enum-";
930  Name += ED->enumerator_begin()->getName();
931  } else {
932  // Otherwise, number the types using a $S prefix.
933  Name += "<unnamed-type-$S";
934  Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
935  }
936  Name += ">";
937  mangleSourceName(Name.str());
938  break;
939  }
940 
941  case DeclarationName::ObjCZeroArgSelector:
942  case DeclarationName::ObjCOneArgSelector:
943  case DeclarationName::ObjCMultiArgSelector: {
944  // This is reachable only when constructing an outlined SEH finally
945  // block. Nothing depends on this mangling and it's used only with
946  // functinos with internal linkage.
948  mangleSourceName(Name.str());
949  break;
950  }
951 
952  case DeclarationName::CXXConstructorName:
953  if (isStructorDecl(ND)) {
954  if (StructorType == Ctor_CopyingClosure) {
955  Out << "?_O";
956  return;
957  }
958  if (StructorType == Ctor_DefaultClosure) {
959  Out << "?_F";
960  return;
961  }
962  }
963  Out << "?0";
964  return;
965 
966  case DeclarationName::CXXDestructorName:
967  if (isStructorDecl(ND))
968  // If the named decl is the C++ destructor we're mangling,
969  // use the type we were given.
970  mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
971  else
972  // Otherwise, use the base destructor name. This is relevant if a
973  // class with a destructor is declared within a destructor.
974  mangleCXXDtorType(Dtor_Base);
975  break;
976 
977  case DeclarationName::CXXConversionFunctionName:
978  // <operator-name> ::= ?B # (cast)
979  // The target type is encoded as the return type.
980  Out << "?B";
981  break;
982 
983  case DeclarationName::CXXOperatorName:
984  mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
985  break;
986 
987  case DeclarationName::CXXLiteralOperatorName: {
988  Out << "?__K";
989  mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
990  break;
991  }
992 
993  case DeclarationName::CXXDeductionGuideName:
994  llvm_unreachable("Can't mangle a deduction guide name!");
995 
996  case DeclarationName::CXXUsingDirective:
997  llvm_unreachable("Can't mangle a using directive name!");
998  }
999 }
1000 
1001 // <postfix> ::= <unqualified-name> [<postfix>]
1002 // ::= <substitution> [<postfix>]
1003 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
1004  const DeclContext *DC = getEffectiveDeclContext(ND);
1005  while (!DC->isTranslationUnit()) {
1006  if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
1007  unsigned Disc;
1008  if (Context.getNextDiscriminator(ND, Disc)) {
1009  Out << '?';
1010  mangleNumber(Disc);
1011  Out << '?';
1012  }
1013  }
1014 
1015  if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
1016  auto Discriminate =
1017  [](StringRef Name, const unsigned Discriminator,
1018  const unsigned ParameterDiscriminator) -> std::string {
1019  std::string Buffer;
1020  llvm::raw_string_ostream Stream(Buffer);
1021  Stream << Name;
1022  if (Discriminator)
1023  Stream << '_' << Discriminator;
1024  if (ParameterDiscriminator)
1025  Stream << '_' << ParameterDiscriminator;
1026  return Stream.str();
1027  };
1028 
1029  unsigned Discriminator = BD->getBlockManglingNumber();
1030  if (!Discriminator)
1031  Discriminator = Context.getBlockId(BD, /*Local=*/false);
1032 
1033  // Mangle the parameter position as a discriminator to deal with unnamed
1034  // parameters. Rather than mangling the unqualified parameter name,
1035  // always use the position to give a uniform mangling.
1036  unsigned ParameterDiscriminator = 0;
1037  if (const auto *MC = BD->getBlockManglingContextDecl())
1038  if (const auto *P = dyn_cast<ParmVarDecl>(MC))
1039  if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext()))
1040  ParameterDiscriminator =
1041  F->getNumParams() - P->getFunctionScopeIndex();
1042 
1043  DC = getEffectiveDeclContext(BD);
1044 
1045  Out << '?';
1046  mangleSourceName(Discriminate("_block_invoke", Discriminator,
1047  ParameterDiscriminator));
1048  // If we have a block mangling context, encode that now. This allows us
1049  // to discriminate between named static data initializers in the same
1050  // scope. This is handled differently from parameters, which use
1051  // positions to discriminate between multiple instances.
1052  if (const auto *MC = BD->getBlockManglingContextDecl())
1053  if (!isa<ParmVarDecl>(MC))
1054  if (const auto *ND = dyn_cast<NamedDecl>(MC))
1055  mangleUnqualifiedName(ND);
1056  // MS ABI and Itanium manglings are in inverted scopes. In the case of a
1057  // RecordDecl, mangle the entire scope hierarchy at this point rather than
1058  // just the unqualified name to get the ordering correct.
1059  if (const auto *RD = dyn_cast<RecordDecl>(DC))
1060  mangleName(RD);
1061  else
1062  Out << '@';
1063  // void __cdecl
1064  Out << "YAX";
1065  // struct __block_literal *
1066  Out << 'P';
1067  // __ptr64
1068  if (PointersAre64Bit)
1069  Out << 'E';
1070  Out << 'A';
1071  mangleArtificalTagType(TTK_Struct,
1072  Discriminate("__block_literal", Discriminator,
1073  ParameterDiscriminator));
1074  Out << "@Z";
1075 
1076  // If the effective context was a Record, we have fully mangled the
1077  // qualified name and do not need to continue.
1078  if (isa<RecordDecl>(DC))
1079  break;
1080  continue;
1081  } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
1082  mangleObjCMethodName(Method);
1083  } else if (isa<NamedDecl>(DC)) {
1084  ND = cast<NamedDecl>(DC);
1085  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1086  mangle(FD, "?");
1087  break;
1088  } else {
1089  mangleUnqualifiedName(ND);
1090  // Lambdas in default arguments conceptually belong to the function the
1091  // parameter corresponds to.
1092  if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) {
1093  DC = LDADC;
1094  continue;
1095  }
1096  }
1097  }
1098  DC = DC->getParent();
1099  }
1100 }
1101 
1102 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
1103  // Microsoft uses the names on the case labels for these dtor variants. Clang
1104  // uses the Itanium terminology internally. Everything in this ABI delegates
1105  // towards the base dtor.
1106  switch (T) {
1107  // <operator-name> ::= ?1 # destructor
1108  case Dtor_Base: Out << "?1"; return;
1109  // <operator-name> ::= ?_D # vbase destructor
1110  case Dtor_Complete: Out << "?_D"; return;
1111  // <operator-name> ::= ?_G # scalar deleting destructor
1112  case Dtor_Deleting: Out << "?_G"; return;
1113  // <operator-name> ::= ?_E # vector deleting destructor
1114  // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
1115  // it.
1116  case Dtor_Comdat:
1117  llvm_unreachable("not expecting a COMDAT");
1118  }
1119  llvm_unreachable("Unsupported dtor type?");
1120 }
1121 
1122 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
1123  SourceLocation Loc) {
1124  switch (OO) {
1125  // ?0 # constructor
1126  // ?1 # destructor
1127  // <operator-name> ::= ?2 # new
1128  case OO_New: Out << "?2"; break;
1129  // <operator-name> ::= ?3 # delete
1130  case OO_Delete: Out << "?3"; break;
1131  // <operator-name> ::= ?4 # =
1132  case OO_Equal: Out << "?4"; break;
1133  // <operator-name> ::= ?5 # >>
1134  case OO_GreaterGreater: Out << "?5"; break;
1135  // <operator-name> ::= ?6 # <<
1136  case OO_LessLess: Out << "?6"; break;
1137  // <operator-name> ::= ?7 # !
1138  case OO_Exclaim: Out << "?7"; break;
1139  // <operator-name> ::= ?8 # ==
1140  case OO_EqualEqual: Out << "?8"; break;
1141  // <operator-name> ::= ?9 # !=
1142  case OO_ExclaimEqual: Out << "?9"; break;
1143  // <operator-name> ::= ?A # []
1144  case OO_Subscript: Out << "?A"; break;
1145  // ?B # conversion
1146  // <operator-name> ::= ?C # ->
1147  case OO_Arrow: Out << "?C"; break;
1148  // <operator-name> ::= ?D # *
1149  case OO_Star: Out << "?D"; break;
1150  // <operator-name> ::= ?E # ++
1151  case OO_PlusPlus: Out << "?E"; break;
1152  // <operator-name> ::= ?F # --
1153  case OO_MinusMinus: Out << "?F"; break;
1154  // <operator-name> ::= ?G # -
1155  case OO_Minus: Out << "?G"; break;
1156  // <operator-name> ::= ?H # +
1157  case OO_Plus: Out << "?H"; break;
1158  // <operator-name> ::= ?I # &
1159  case OO_Amp: Out << "?I"; break;
1160  // <operator-name> ::= ?J # ->*
1161  case OO_ArrowStar: Out << "?J"; break;
1162  // <operator-name> ::= ?K # /
1163  case OO_Slash: Out << "?K"; break;
1164  // <operator-name> ::= ?L # %
1165  case OO_Percent: Out << "?L"; break;
1166  // <operator-name> ::= ?M # <
1167  case OO_Less: Out << "?M"; break;
1168  // <operator-name> ::= ?N # <=
1169  case OO_LessEqual: Out << "?N"; break;
1170  // <operator-name> ::= ?O # >
1171  case OO_Greater: Out << "?O"; break;
1172  // <operator-name> ::= ?P # >=
1173  case OO_GreaterEqual: Out << "?P"; break;
1174  // <operator-name> ::= ?Q # ,
1175  case OO_Comma: Out << "?Q"; break;
1176  // <operator-name> ::= ?R # ()
1177  case OO_Call: Out << "?R"; break;
1178  // <operator-name> ::= ?S # ~
1179  case OO_Tilde: Out << "?S"; break;
1180  // <operator-name> ::= ?T # ^
1181  case OO_Caret: Out << "?T"; break;
1182  // <operator-name> ::= ?U # |
1183  case OO_Pipe: Out << "?U"; break;
1184  // <operator-name> ::= ?V # &&
1185  case OO_AmpAmp: Out << "?V"; break;
1186  // <operator-name> ::= ?W # ||
1187  case OO_PipePipe: Out << "?W"; break;
1188  // <operator-name> ::= ?X # *=
1189  case OO_StarEqual: Out << "?X"; break;
1190  // <operator-name> ::= ?Y # +=
1191  case OO_PlusEqual: Out << "?Y"; break;
1192  // <operator-name> ::= ?Z # -=
1193  case OO_MinusEqual: Out << "?Z"; break;
1194  // <operator-name> ::= ?_0 # /=
1195  case OO_SlashEqual: Out << "?_0"; break;
1196  // <operator-name> ::= ?_1 # %=
1197  case OO_PercentEqual: Out << "?_1"; break;
1198  // <operator-name> ::= ?_2 # >>=
1199  case OO_GreaterGreaterEqual: Out << "?_2"; break;
1200  // <operator-name> ::= ?_3 # <<=
1201  case OO_LessLessEqual: Out << "?_3"; break;
1202  // <operator-name> ::= ?_4 # &=
1203  case OO_AmpEqual: Out << "?_4"; break;
1204  // <operator-name> ::= ?_5 # |=
1205  case OO_PipeEqual: Out << "?_5"; break;
1206  // <operator-name> ::= ?_6 # ^=
1207  case OO_CaretEqual: Out << "?_6"; break;
1208  // ?_7 # vftable
1209  // ?_8 # vbtable
1210  // ?_9 # vcall
1211  // ?_A # typeof
1212  // ?_B # local static guard
1213  // ?_C # string
1214  // ?_D # vbase destructor
1215  // ?_E # vector deleting destructor
1216  // ?_F # default constructor closure
1217  // ?_G # scalar deleting destructor
1218  // ?_H # vector constructor iterator
1219  // ?_I # vector destructor iterator
1220  // ?_J # vector vbase constructor iterator
1221  // ?_K # virtual displacement map
1222  // ?_L # eh vector constructor iterator
1223  // ?_M # eh vector destructor iterator
1224  // ?_N # eh vector vbase constructor iterator
1225  // ?_O # copy constructor closure
1226  // ?_P<name> # udt returning <name>
1227  // ?_Q # <unknown>
1228  // ?_R0 # RTTI Type Descriptor
1229  // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1230  // ?_R2 # RTTI Base Class Array
1231  // ?_R3 # RTTI Class Hierarchy Descriptor
1232  // ?_R4 # RTTI Complete Object Locator
1233  // ?_S # local vftable
1234  // ?_T # local vftable constructor closure
1235  // <operator-name> ::= ?_U # new[]
1236  case OO_Array_New: Out << "?_U"; break;
1237  // <operator-name> ::= ?_V # delete[]
1238  case OO_Array_Delete: Out << "?_V"; break;
1239  // <operator-name> ::= ?__L # co_await
1240  case OO_Coawait: Out << "?__L"; break;
1241 
1242  case OO_Spaceship: {
1243  // FIXME: Once MS picks a mangling, use it.
1244  DiagnosticsEngine &Diags = Context.getDiags();
1245  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1246  "cannot mangle this three-way comparison operator yet");
1247  Diags.Report(Loc, DiagID);
1248  break;
1249  }
1250 
1251  case OO_Conditional: {
1252  DiagnosticsEngine &Diags = Context.getDiags();
1253  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1254  "cannot mangle this conditional operator yet");
1255  Diags.Report(Loc, DiagID);
1256  break;
1257  }
1258 
1259  case OO_None:
1261  llvm_unreachable("Not an overloaded operator");
1262  }
1263 }
1264 
1265 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1266  // <source name> ::= <identifier> @
1267  BackRefVec::iterator Found =
1268  std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
1269  if (Found == NameBackReferences.end()) {
1270  if (NameBackReferences.size() < 10)
1271  NameBackReferences.push_back(Name);
1272  Out << Name << '@';
1273  } else {
1274  Out << (Found - NameBackReferences.begin());
1275  }
1276 }
1277 
1278 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1279  Context.mangleObjCMethodName(MD, Out);
1280 }
1281 
1282 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1283  const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1284  // <template-name> ::= <unscoped-template-name> <template-args>
1285  // ::= <substitution>
1286  // Always start with the unqualified name.
1287 
1288  // Templates have their own context for back references.
1289  ArgBackRefMap OuterArgsContext;
1290  BackRefVec OuterTemplateContext;
1291  PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1292  NameBackReferences.swap(OuterTemplateContext);
1293  TypeBackReferences.swap(OuterArgsContext);
1294  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1295 
1296  mangleUnscopedTemplateName(TD);
1297  mangleTemplateArgs(TD, TemplateArgs);
1298 
1299  // Restore the previous back reference contexts.
1300  NameBackReferences.swap(OuterTemplateContext);
1301  TypeBackReferences.swap(OuterArgsContext);
1302  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1303 }
1304 
1305 void
1306 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1307  // <unscoped-template-name> ::= ?$ <unqualified-name>
1308  Out << "?$";
1309  mangleUnqualifiedName(TD);
1310 }
1311 
1312 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1313  bool IsBoolean) {
1314  // <integer-literal> ::= $0 <number>
1315  Out << "$0";
1316  // Make sure booleans are encoded as 0/1.
1317  if (IsBoolean && Value.getBoolValue())
1318  mangleNumber(1);
1319  else if (Value.isSigned())
1320  mangleNumber(Value.getSExtValue());
1321  else
1322  mangleNumber(Value.getZExtValue());
1323 }
1324 
1325 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1326  // See if this is a constant expression.
1327  llvm::APSInt Value;
1328  if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1329  mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1330  return;
1331  }
1332 
1333  // Look through no-op casts like template parameter substitutions.
1334  E = E->IgnoreParenNoopCasts(Context.getASTContext());
1335 
1336  const CXXUuidofExpr *UE = nullptr;
1337  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1338  if (UO->getOpcode() == UO_AddrOf)
1339  UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1340  } else
1341  UE = dyn_cast<CXXUuidofExpr>(E);
1342 
1343  if (UE) {
1344  // If we had to peek through an address-of operator, treat this like we are
1345  // dealing with a pointer type. Otherwise, treat it like a const reference.
1346  //
1347  // N.B. This matches up with the handling of TemplateArgument::Declaration
1348  // in mangleTemplateArg
1349  if (UE == E)
1350  Out << "$E?";
1351  else
1352  Out << "$1?";
1353 
1354  // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1355  // const __s_GUID _GUID_{lower case UUID with underscores}
1356  StringRef Uuid = UE->getUuidStr();
1357  std::string Name = "_GUID_" + Uuid.lower();
1358  std::replace(Name.begin(), Name.end(), '-', '_');
1359 
1360  mangleSourceName(Name);
1361  // Terminate the whole name with an '@'.
1362  Out << '@';
1363  // It's a global variable.
1364  Out << '3';
1365  // It's a struct called __s_GUID.
1366  mangleArtificalTagType(TTK_Struct, "__s_GUID");
1367  // It's const.
1368  Out << 'B';
1369  return;
1370  }
1371 
1372  // As bad as this diagnostic is, it's better than crashing.
1373  DiagnosticsEngine &Diags = Context.getDiags();
1374  unsigned DiagID = Diags.getCustomDiagID(
1375  DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1376  Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1377  << E->getSourceRange();
1378 }
1379 
1380 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1381  const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1382  // <template-args> ::= <template-arg>+
1383  const TemplateParameterList *TPL = TD->getTemplateParameters();
1384  assert(TPL->size() == TemplateArgs.size() &&
1385  "size mismatch between args and parms!");
1386 
1387  unsigned Idx = 0;
1388  for (const TemplateArgument &TA : TemplateArgs.asArray())
1389  mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
1390 }
1391 
1392 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1393  const TemplateArgument &TA,
1394  const NamedDecl *Parm) {
1395  // <template-arg> ::= <type>
1396  // ::= <integer-literal>
1397  // ::= <member-data-pointer>
1398  // ::= <member-function-pointer>
1399  // ::= $E? <name> <type-encoding>
1400  // ::= $1? <name> <type-encoding>
1401  // ::= $0A@
1402  // ::= <template-args>
1403 
1404  switch (TA.getKind()) {
1405  case TemplateArgument::Null:
1406  llvm_unreachable("Can't mangle null template arguments!");
1407  case TemplateArgument::TemplateExpansion:
1408  llvm_unreachable("Can't mangle template expansion arguments!");
1409  case TemplateArgument::Type: {
1410  QualType T = TA.getAsType();
1411  mangleType(T, SourceRange(), QMM_Escape);
1412  break;
1413  }
1414  case TemplateArgument::Declaration: {
1415  const NamedDecl *ND = TA.getAsDecl();
1416  if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1417  mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext())
1418  ->getMostRecentNonInjectedDecl(),
1419  cast<ValueDecl>(ND));
1420  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1421  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1422  if (MD && MD->isInstance()) {
1423  mangleMemberFunctionPointer(
1425  } else {
1426  Out << "$1?";
1427  mangleName(FD);
1428  mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1429  }
1430  } else {
1431  mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1432  }
1433  break;
1434  }
1435  case TemplateArgument::Integral:
1436  mangleIntegerLiteral(TA.getAsIntegral(),
1437  TA.getIntegralType()->isBooleanType());
1438  break;
1439  case TemplateArgument::NullPtr: {
1440  QualType T = TA.getNullPtrType();
1441  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1442  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1443  if (MPT->isMemberFunctionPointerType() &&
1444  !isa<FunctionTemplateDecl>(TD)) {
1445  mangleMemberFunctionPointer(RD, nullptr);
1446  return;
1447  }
1448  if (MPT->isMemberDataPointer()) {
1449  if (!isa<FunctionTemplateDecl>(TD)) {
1450  mangleMemberDataPointer(RD, nullptr);
1451  return;
1452  }
1453  // nullptr data pointers are always represented with a single field
1454  // which is initialized with either 0 or -1. Why -1? Well, we need to
1455  // distinguish the case where the data member is at offset zero in the
1456  // record.
1457  // However, we are free to use 0 *if* we would use multiple fields for
1458  // non-nullptr member pointers.
1459  if (!RD->nullFieldOffsetIsZero()) {
1460  mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
1461  return;
1462  }
1463  }
1464  }
1465  mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
1466  break;
1467  }
1468  case TemplateArgument::Expression:
1469  mangleExpression(TA.getAsExpr());
1470  break;
1471  case TemplateArgument::Pack: {
1472  ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1473  if (TemplateArgs.empty()) {
1474  if (isa<TemplateTypeParmDecl>(Parm) ||
1475  isa<TemplateTemplateParmDecl>(Parm))
1476  // MSVC 2015 changed the mangling for empty expanded template packs,
1477  // use the old mangling for link compatibility for old versions.
1478  Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1479  LangOptions::MSVC2015)
1480  ? "$$V"
1481  : "$$$V");
1482  else if (isa<NonTypeTemplateParmDecl>(Parm))
1483  Out << "$S";
1484  else
1485  llvm_unreachable("unexpected template parameter decl!");
1486  } else {
1487  for (const TemplateArgument &PA : TemplateArgs)
1488  mangleTemplateArg(TD, PA, Parm);
1489  }
1490  break;
1491  }
1492  case TemplateArgument::Template: {
1493  const NamedDecl *ND =
1495  if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1496  mangleType(TD);
1497  } else if (isa<TypeAliasDecl>(ND)) {
1498  Out << "$$Y";
1499  mangleName(ND);
1500  } else {
1501  llvm_unreachable("unexpected template template NamedDecl!");
1502  }
1503  break;
1504  }
1505  }
1506 }
1507 
1508 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) {
1509  llvm::SmallString<64> TemplateMangling;
1510  llvm::raw_svector_ostream Stream(TemplateMangling);
1511  MicrosoftCXXNameMangler Extra(Context, Stream);
1512 
1513  Stream << "?$";
1514  Extra.mangleSourceName("Protocol");
1515  Extra.mangleArtificalTagType(TTK_Struct, PD->getName());
1516 
1517  mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1518 }
1519 
1520 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type,
1521  Qualifiers Quals,
1522  SourceRange Range) {
1523  llvm::SmallString<64> TemplateMangling;
1524  llvm::raw_svector_ostream Stream(TemplateMangling);
1525  MicrosoftCXXNameMangler Extra(Context, Stream);
1526 
1527  Stream << "?$";
1528  switch (Quals.getObjCLifetime()) {
1529  case Qualifiers::OCL_None:
1530  case Qualifiers::OCL_ExplicitNone:
1531  break;
1532  case Qualifiers::OCL_Autoreleasing:
1533  Extra.mangleSourceName("Autoreleasing");
1534  break;
1535  case Qualifiers::OCL_Strong:
1536  Extra.mangleSourceName("Strong");
1537  break;
1538  case Qualifiers::OCL_Weak:
1539  Extra.mangleSourceName("Weak");
1540  break;
1541  }
1542  Extra.manglePointerCVQualifiers(Quals);
1543  Extra.manglePointerExtQualifiers(Quals, Type);
1544  Extra.mangleType(Type, Range);
1545 
1546  mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1547 }
1548 
1549 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1550  bool IsMember) {
1551  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1552  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1553  // 'I' means __restrict (32/64-bit).
1554  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1555  // keyword!
1556  // <base-cvr-qualifiers> ::= A # near
1557  // ::= B # near const
1558  // ::= C # near volatile
1559  // ::= D # near const volatile
1560  // ::= E # far (16-bit)
1561  // ::= F # far const (16-bit)
1562  // ::= G # far volatile (16-bit)
1563  // ::= H # far const volatile (16-bit)
1564  // ::= I # huge (16-bit)
1565  // ::= J # huge const (16-bit)
1566  // ::= K # huge volatile (16-bit)
1567  // ::= L # huge const volatile (16-bit)
1568  // ::= M <basis> # based
1569  // ::= N <basis> # based const
1570  // ::= O <basis> # based volatile
1571  // ::= P <basis> # based const volatile
1572  // ::= Q # near member
1573  // ::= R # near const member
1574  // ::= S # near volatile member
1575  // ::= T # near const volatile member
1576  // ::= U # far member (16-bit)
1577  // ::= V # far const member (16-bit)
1578  // ::= W # far volatile member (16-bit)
1579  // ::= X # far const volatile member (16-bit)
1580  // ::= Y # huge member (16-bit)
1581  // ::= Z # huge const member (16-bit)
1582  // ::= 0 # huge volatile member (16-bit)
1583  // ::= 1 # huge const volatile member (16-bit)
1584  // ::= 2 <basis> # based member
1585  // ::= 3 <basis> # based const member
1586  // ::= 4 <basis> # based volatile member
1587  // ::= 5 <basis> # based const volatile member
1588  // ::= 6 # near function (pointers only)
1589  // ::= 7 # far function (pointers only)
1590  // ::= 8 # near method (pointers only)
1591  // ::= 9 # far method (pointers only)
1592  // ::= _A <basis> # based function (pointers only)
1593  // ::= _B <basis> # based function (far?) (pointers only)
1594  // ::= _C <basis> # based method (pointers only)
1595  // ::= _D <basis> # based method (far?) (pointers only)
1596  // ::= _E # block (Clang)
1597  // <basis> ::= 0 # __based(void)
1598  // ::= 1 # __based(segment)?
1599  // ::= 2 <name> # __based(name)
1600  // ::= 3 # ?
1601  // ::= 4 # ?
1602  // ::= 5 # not really based
1603  bool HasConst = Quals.hasConst(),
1604  HasVolatile = Quals.hasVolatile();
1605 
1606  if (!IsMember) {
1607  if (HasConst && HasVolatile) {
1608  Out << 'D';
1609  } else if (HasVolatile) {
1610  Out << 'C';
1611  } else if (HasConst) {
1612  Out << 'B';
1613  } else {
1614  Out << 'A';
1615  }
1616  } else {
1617  if (HasConst && HasVolatile) {
1618  Out << 'T';
1619  } else if (HasVolatile) {
1620  Out << 'S';
1621  } else if (HasConst) {
1622  Out << 'R';
1623  } else {
1624  Out << 'Q';
1625  }
1626  }
1627 
1628  // FIXME: For now, just drop all extension qualifiers on the floor.
1629 }
1630 
1631 void
1632 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1633  // <ref-qualifier> ::= G # lvalue reference
1634  // ::= H # rvalue-reference
1635  switch (RefQualifier) {
1636  case RQ_None:
1637  break;
1638 
1639  case RQ_LValue:
1640  Out << 'G';
1641  break;
1642 
1643  case RQ_RValue:
1644  Out << 'H';
1645  break;
1646  }
1647 }
1648 
1649 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1650  QualType PointeeType) {
1651  if (PointersAre64Bit &&
1652  (PointeeType.isNull() || !PointeeType->isFunctionType()))
1653  Out << 'E';
1654 
1655  if (Quals.hasRestrict())
1656  Out << 'I';
1657 
1658  if (Quals.hasUnaligned() ||
1659  (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
1660  Out << 'F';
1661 }
1662 
1663 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1664  // <pointer-cv-qualifiers> ::= P # no qualifiers
1665  // ::= Q # const
1666  // ::= R # volatile
1667  // ::= S # const volatile
1668  bool HasConst = Quals.hasConst(),
1669  HasVolatile = Quals.hasVolatile();
1670 
1671  if (HasConst && HasVolatile) {
1672  Out << 'S';
1673  } else if (HasVolatile) {
1674  Out << 'R';
1675  } else if (HasConst) {
1676  Out << 'Q';
1677  } else {
1678  Out << 'P';
1679  }
1680 }
1681 
1682 void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
1683  SourceRange Range) {
1684  // MSVC will backreference two canonically equivalent types that have slightly
1685  // different manglings when mangled alone.
1686 
1687  // Decayed types do not match up with non-decayed versions of the same type.
1688  //
1689  // e.g.
1690  // void (*x)(void) will not form a backreference with void x(void)
1691  void *TypePtr;
1692  if (const auto *DT = T->getAs<DecayedType>()) {
1693  QualType OriginalType = DT->getOriginalType();
1694  // All decayed ArrayTypes should be treated identically; as-if they were
1695  // a decayed IncompleteArrayType.
1696  if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
1697  OriginalType = getASTContext().getIncompleteArrayType(
1698  AT->getElementType(), AT->getSizeModifier(),
1699  AT->getIndexTypeCVRQualifiers());
1700 
1701  TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
1702  // If the original parameter was textually written as an array,
1703  // instead treat the decayed parameter like it's const.
1704  //
1705  // e.g.
1706  // int [] -> int * const
1707  if (OriginalType->isArrayType())
1708  T = T.withConst();
1709  } else {
1710  TypePtr = T.getCanonicalType().getAsOpaquePtr();
1711  }
1712 
1713  ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1714 
1715  if (Found == TypeBackReferences.end()) {
1716  size_t OutSizeBefore = Out.tell();
1717 
1718  mangleType(T, Range, QMM_Drop);
1719 
1720  // See if it's worth creating a back reference.
1721  // Only types longer than 1 character are considered
1722  // and only 10 back references slots are available:
1723  bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
1724  if (LongerThanOneChar && TypeBackReferences.size() < 10) {
1725  size_t Size = TypeBackReferences.size();
1726  TypeBackReferences[TypePtr] = Size;
1727  }
1728  } else {
1729  Out << Found->second;
1730  }
1731 }
1732 
1733 void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
1734  const PassObjectSizeAttr *POSA) {
1735  int Type = POSA->getType();
1736 
1737  auto Iter = PassObjectSizeArgs.insert(Type).first;
1738  auto *TypePtr = (const void *)&*Iter;
1739  ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1740 
1741  if (Found == TypeBackReferences.end()) {
1742  mangleArtificalTagType(TTK_Enum, "__pass_object_size" + llvm::utostr(Type),
1743  {"__clang"});
1744 
1745  if (TypeBackReferences.size() < 10) {
1746  size_t Size = TypeBackReferences.size();
1747  TypeBackReferences[TypePtr] = Size;
1748  }
1749  } else {
1750  Out << Found->second;
1751  }
1752 }
1753 
1754 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1755  QualifierMangleMode QMM) {
1756  // Don't use the canonical types. MSVC includes things like 'const' on
1757  // pointer arguments to function pointers that canonicalization strips away.
1758  T = T.getDesugaredType(getASTContext());
1759  Qualifiers Quals = T.getLocalQualifiers();
1760  if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1761  // If there were any Quals, getAsArrayType() pushed them onto the array
1762  // element type.
1763  if (QMM == QMM_Mangle)
1764  Out << 'A';
1765  else if (QMM == QMM_Escape || QMM == QMM_Result)
1766  Out << "$$B";
1767  mangleArrayType(AT);
1768  return;
1769  }
1770 
1771  bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1772  T->isReferenceType() || T->isBlockPointerType();
1773 
1774  switch (QMM) {
1775  case QMM_Drop:
1776  if (Quals.hasObjCLifetime())
1777  Quals = Quals.withoutObjCLifetime();
1778  break;
1779  case QMM_Mangle:
1780  if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1781  Out << '6';
1782  mangleFunctionType(FT);
1783  return;
1784  }
1785  mangleQualifiers(Quals, false);
1786  break;
1787  case QMM_Escape:
1788  if (!IsPointer && Quals) {
1789  Out << "$$C";
1790  mangleQualifiers(Quals, false);
1791  }
1792  break;
1793  case QMM_Result:
1794  // Presence of __unaligned qualifier shouldn't affect mangling here.
1795  Quals.removeUnaligned();
1796  if (Quals.hasObjCLifetime())
1797  Quals = Quals.withoutObjCLifetime();
1798  if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) {
1799  Out << '?';
1800  mangleQualifiers(Quals, false);
1801  }
1802  break;
1803  }
1804 
1805  const Type *ty = T.getTypePtr();
1806 
1807  switch (ty->getTypeClass()) {
1808 #define ABSTRACT_TYPE(CLASS, PARENT)
1809 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1810  case Type::CLASS: \
1811  llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1812  return;
1813 #define TYPE(CLASS, PARENT) \
1814  case Type::CLASS: \
1815  mangleType(cast<CLASS##Type>(ty), Quals, Range); \
1816  break;
1817 #include "clang/AST/TypeNodes.def"
1818 #undef ABSTRACT_TYPE
1819 #undef NON_CANONICAL_TYPE
1820 #undef TYPE
1821  }
1822 }
1823 
1824 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
1825  SourceRange Range) {
1826  // <type> ::= <builtin-type>
1827  // <builtin-type> ::= X # void
1828  // ::= C # signed char
1829  // ::= D # char
1830  // ::= E # unsigned char
1831  // ::= F # short
1832  // ::= G # unsigned short (or wchar_t if it's not a builtin)
1833  // ::= H # int
1834  // ::= I # unsigned int
1835  // ::= J # long
1836  // ::= K # unsigned long
1837  // L # <none>
1838  // ::= M # float
1839  // ::= N # double
1840  // ::= O # long double (__float80 is mangled differently)
1841  // ::= _J # long long, __int64
1842  // ::= _K # unsigned long long, __int64
1843  // ::= _L # __int128
1844  // ::= _M # unsigned __int128
1845  // ::= _N # bool
1846  // _O # <array in parameter>
1847  // ::= _T # __float80 (Intel)
1848  // ::= _S # char16_t
1849  // ::= _U # char32_t
1850  // ::= _W # wchar_t
1851  // ::= _Z # __float80 (Digital Mars)
1852  switch (T->getKind()) {
1853  case BuiltinType::Void:
1854  Out << 'X';
1855  break;
1856  case BuiltinType::SChar:
1857  Out << 'C';
1858  break;
1859  case BuiltinType::Char_U:
1860  case BuiltinType::Char_S:
1861  Out << 'D';
1862  break;
1863  case BuiltinType::UChar:
1864  Out << 'E';
1865  break;
1866  case BuiltinType::Short:
1867  Out << 'F';
1868  break;
1869  case BuiltinType::UShort:
1870  Out << 'G';
1871  break;
1872  case BuiltinType::Int:
1873  Out << 'H';
1874  break;
1875  case BuiltinType::UInt:
1876  Out << 'I';
1877  break;
1878  case BuiltinType::Long:
1879  Out << 'J';
1880  break;
1881  case BuiltinType::ULong:
1882  Out << 'K';
1883  break;
1884  case BuiltinType::Float:
1885  Out << 'M';
1886  break;
1887  case BuiltinType::Double:
1888  Out << 'N';
1889  break;
1890  // TODO: Determine size and mangle accordingly
1891  case BuiltinType::LongDouble:
1892  Out << 'O';
1893  break;
1894  case BuiltinType::LongLong:
1895  Out << "_J";
1896  break;
1897  case BuiltinType::ULongLong:
1898  Out << "_K";
1899  break;
1900  case BuiltinType::Int128:
1901  Out << "_L";
1902  break;
1903  case BuiltinType::UInt128:
1904  Out << "_M";
1905  break;
1906  case BuiltinType::Bool:
1907  Out << "_N";
1908  break;
1909  case BuiltinType::Char16:
1910  Out << "_S";
1911  break;
1912  case BuiltinType::Char32:
1913  Out << "_U";
1914  break;
1915  case BuiltinType::WChar_S:
1916  case BuiltinType::WChar_U:
1917  Out << "_W";
1918  break;
1919 
1920 #define BUILTIN_TYPE(Id, SingletonId)
1921 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1922  case BuiltinType::Id:
1923 #include "clang/AST/BuiltinTypes.def"
1924  case BuiltinType::Dependent:
1925  llvm_unreachable("placeholder types shouldn't get to name mangling");
1926 
1927  case BuiltinType::ObjCId:
1928  mangleArtificalTagType(TTK_Struct, ".objc_object");
1929  break;
1930  case BuiltinType::ObjCClass:
1931  mangleArtificalTagType(TTK_Struct, ".objc_class");
1932  break;
1933  case BuiltinType::ObjCSel:
1934  mangleArtificalTagType(TTK_Struct, ".objc_selector");
1935  break;
1936 
1937 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1938  case BuiltinType::Id: \
1939  Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
1940  break;
1941 #include "clang/Basic/OpenCLImageTypes.def"
1942  case BuiltinType::OCLSampler:
1943  Out << "PA";
1944  mangleArtificalTagType(TTK_Struct, "ocl_sampler");
1945  break;
1946  case BuiltinType::OCLEvent:
1947  Out << "PA";
1948  mangleArtificalTagType(TTK_Struct, "ocl_event");
1949  break;
1950  case BuiltinType::OCLClkEvent:
1951  Out << "PA";
1952  mangleArtificalTagType(TTK_Struct, "ocl_clkevent");
1953  break;
1954  case BuiltinType::OCLQueue:
1955  Out << "PA";
1956  mangleArtificalTagType(TTK_Struct, "ocl_queue");
1957  break;
1958  case BuiltinType::OCLReserveID:
1959  Out << "PA";
1960  mangleArtificalTagType(TTK_Struct, "ocl_reserveid");
1961  break;
1962 
1963  case BuiltinType::NullPtr:
1964  Out << "$$T";
1965  break;
1966 
1967  case BuiltinType::Float16:
1968  mangleArtificalTagType(TTK_Struct, "_Float16", {"__clang"});
1969  break;
1970 
1971  case BuiltinType::Half:
1972  mangleArtificalTagType(TTK_Struct, "_Half", {"__clang"});
1973  break;
1974 
1975  case BuiltinType::ShortAccum:
1976  case BuiltinType::Accum:
1977  case BuiltinType::LongAccum:
1978  case BuiltinType::UShortAccum:
1979  case BuiltinType::UAccum:
1980  case BuiltinType::ULongAccum:
1981  case BuiltinType::ShortFract:
1982  case BuiltinType::Fract:
1983  case BuiltinType::LongFract:
1984  case BuiltinType::UShortFract:
1985  case BuiltinType::UFract:
1986  case BuiltinType::ULongFract:
1987  case BuiltinType::SatShortAccum:
1988  case BuiltinType::SatAccum:
1989  case BuiltinType::SatLongAccum:
1990  case BuiltinType::SatUShortAccum:
1991  case BuiltinType::SatUAccum:
1992  case BuiltinType::SatULongAccum:
1993  case BuiltinType::SatShortFract:
1994  case BuiltinType::SatFract:
1995  case BuiltinType::SatLongFract:
1996  case BuiltinType::SatUShortFract:
1997  case BuiltinType::SatUFract:
1998  case BuiltinType::SatULongFract:
1999  case BuiltinType::Char8:
2000  case BuiltinType::Float128: {
2001  DiagnosticsEngine &Diags = Context.getDiags();
2002  unsigned DiagID = Diags.getCustomDiagID(
2003  DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
2004  Diags.Report(Range.getBegin(), DiagID)
2005  << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
2006  break;
2007  }
2008  }
2009 }
2010 
2011 // <type> ::= <function-type>
2012 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
2013  SourceRange) {
2014  // Structors only appear in decls, so at this point we know it's not a
2015  // structor type.
2016  // FIXME: This may not be lambda-friendly.
2017  if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
2018  Out << "$$A8@@";
2019  mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
2020  } else {
2021  Out << "$$A6";
2022  mangleFunctionType(T);
2023  }
2024 }
2025 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
2027  Out << "$$A6";
2028  mangleFunctionType(T);
2029 }
2030 
2031 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
2032  const FunctionDecl *D,
2033  bool ForceThisQuals) {
2034  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
2035  // <return-type> <argument-list> <throw-spec>
2036  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
2037 
2038  SourceRange Range;
2039  if (D) Range = D->getSourceRange();
2040 
2041  bool IsInLambda = false;
2042  bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
2043  CallingConv CC = T->getCallConv();
2044  if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
2045  if (MD->getParent()->isLambda())
2046  IsInLambda = true;
2047  if (MD->isInstance())
2048  HasThisQuals = true;
2049  if (isa<CXXDestructorDecl>(MD)) {
2050  IsStructor = true;
2051  } else if (isa<CXXConstructorDecl>(MD)) {
2052  IsStructor = true;
2053  IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
2054  StructorType == Ctor_DefaultClosure) &&
2055  isStructorDecl(MD);
2056  if (IsCtorClosure)
2057  CC = getASTContext().getDefaultCallingConvention(
2058  /*IsVariadic=*/false, /*IsCXXMethod=*/true);
2059  }
2060  }
2061 
2062  // If this is a C++ instance method, mangle the CVR qualifiers for the
2063  // this pointer.
2064  if (HasThisQuals) {
2065  Qualifiers Quals = Qualifiers::fromCVRUMask(Proto->getTypeQuals());
2066  manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
2067  mangleRefQualifier(Proto->getRefQualifier());
2068  mangleQualifiers(Quals, /*IsMember=*/false);
2069  }
2070 
2071  mangleCallingConvention(CC);
2072 
2073  // <return-type> ::= <type>
2074  // ::= @ # structors (they have no declared return type)
2075  if (IsStructor) {
2076  if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) {
2077  // The scalar deleting destructor takes an extra int argument which is not
2078  // reflected in the AST.
2079  if (StructorType == Dtor_Deleting) {
2080  Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
2081  return;
2082  }
2083  // The vbase destructor returns void which is not reflected in the AST.
2084  if (StructorType == Dtor_Complete) {
2085  Out << "XXZ";
2086  return;
2087  }
2088  }
2089  if (IsCtorClosure) {
2090  // Default constructor closure and copy constructor closure both return
2091  // void.
2092  Out << 'X';
2093 
2094  if (StructorType == Ctor_DefaultClosure) {
2095  // Default constructor closure always has no arguments.
2096  Out << 'X';
2097  } else if (StructorType == Ctor_CopyingClosure) {
2098  // Copy constructor closure always takes an unqualified reference.
2099  mangleArgumentType(getASTContext().getLValueReferenceType(
2100  Proto->getParamType(0)
2102  ->getPointeeType(),
2103  /*SpelledAsLValue=*/true),
2104  Range);
2105  Out << '@';
2106  } else {
2107  llvm_unreachable("unexpected constructor closure!");
2108  }
2109  Out << 'Z';
2110  return;
2111  }
2112  Out << '@';
2113  } else {
2114  QualType ResultType = T->getReturnType();
2115  if (const auto *AT =
2116  dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
2117  Out << '?';
2118  mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
2119  Out << '?';
2120  assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2121  "shouldn't need to mangle __auto_type!");
2122  mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
2123  Out << '@';
2124  } else if (IsInLambda) {
2125  Out << '@';
2126  } else {
2127  if (ResultType->isVoidType())
2128  ResultType = ResultType.getUnqualifiedType();
2129  mangleType(ResultType, Range, QMM_Result);
2130  }
2131  }
2132 
2133  // <argument-list> ::= X # void
2134  // ::= <type>+ @
2135  // ::= <type>* Z # varargs
2136  if (!Proto) {
2137  // Function types without prototypes can arise when mangling a function type
2138  // within an overloadable function in C. We mangle these as the absence of
2139  // any parameter types (not even an empty parameter list).
2140  Out << '@';
2141  } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2142  Out << 'X';
2143  } else {
2144  // Happens for function pointer type arguments for example.
2145  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2146  mangleArgumentType(Proto->getParamType(I), Range);
2147  // Mangle each pass_object_size parameter as if it's a parameter of enum
2148  // type passed directly after the parameter with the pass_object_size
2149  // attribute. The aforementioned enum's name is __pass_object_size, and we
2150  // pretend it resides in a top-level namespace called __clang.
2151  //
2152  // FIXME: Is there a defined extension notation for the MS ABI, or is it
2153  // necessary to just cross our fingers and hope this type+namespace
2154  // combination doesn't conflict with anything?
2155  if (D)
2156  if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
2157  manglePassObjectSizeArg(P);
2158  }
2159  // <builtin-type> ::= Z # ellipsis
2160  if (Proto->isVariadic())
2161  Out << 'Z';
2162  else
2163  Out << '@';
2164  }
2165 
2166  mangleThrowSpecification(Proto);
2167 }
2168 
2169 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
2170  // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
2171  // # pointer. in 64-bit mode *all*
2172  // # 'this' pointers are 64-bit.
2173  // ::= <global-function>
2174  // <member-function> ::= A # private: near
2175  // ::= B # private: far
2176  // ::= C # private: static near
2177  // ::= D # private: static far
2178  // ::= E # private: virtual near
2179  // ::= F # private: virtual far
2180  // ::= I # protected: near
2181  // ::= J # protected: far
2182  // ::= K # protected: static near
2183  // ::= L # protected: static far
2184  // ::= M # protected: virtual near
2185  // ::= N # protected: virtual far
2186  // ::= Q # public: near
2187  // ::= R # public: far
2188  // ::= S # public: static near
2189  // ::= T # public: static far
2190  // ::= U # public: virtual near
2191  // ::= V # public: virtual far
2192  // <global-function> ::= Y # global near
2193  // ::= Z # global far
2194  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
2195  bool IsVirtual = MD->isVirtual();
2196  // When mangling vbase destructor variants, ignore whether or not the
2197  // underlying destructor was defined to be virtual.
2198  if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) &&
2199  StructorType == Dtor_Complete) {
2200  IsVirtual = false;
2201  }
2202  switch (MD->getAccess()) {
2203  case AS_none:
2204  llvm_unreachable("Unsupported access specifier");
2205  case AS_private:
2206  if (MD->isStatic())
2207  Out << 'C';
2208  else if (IsVirtual)
2209  Out << 'E';
2210  else
2211  Out << 'A';
2212  break;
2213  case AS_protected:
2214  if (MD->isStatic())
2215  Out << 'K';
2216  else if (IsVirtual)
2217  Out << 'M';
2218  else
2219  Out << 'I';
2220  break;
2221  case AS_public:
2222  if (MD->isStatic())
2223  Out << 'S';
2224  else if (IsVirtual)
2225  Out << 'U';
2226  else
2227  Out << 'Q';
2228  }
2229  } else {
2230  Out << 'Y';
2231  }
2232 }
2233 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
2234  // <calling-convention> ::= A # __cdecl
2235  // ::= B # __export __cdecl
2236  // ::= C # __pascal
2237  // ::= D # __export __pascal
2238  // ::= E # __thiscall
2239  // ::= F # __export __thiscall
2240  // ::= G # __stdcall
2241  // ::= H # __export __stdcall
2242  // ::= I # __fastcall
2243  // ::= J # __export __fastcall
2244  // ::= Q # __vectorcall
2245  // ::= w # __regcall
2246  // The 'export' calling conventions are from a bygone era
2247  // (*cough*Win16*cough*) when functions were declared for export with
2248  // that keyword. (It didn't actually export them, it just made them so
2249  // that they could be in a DLL and somebody from another module could call
2250  // them.)
2251 
2252  switch (CC) {
2253  default:
2254  llvm_unreachable("Unsupported CC for mangling");
2255  case CC_Win64:
2256  case CC_X86_64SysV:
2257  case CC_C: Out << 'A'; break;
2258  case CC_X86Pascal: Out << 'C'; break;
2259  case CC_X86ThisCall: Out << 'E'; break;
2260  case CC_X86StdCall: Out << 'G'; break;
2261  case CC_X86FastCall: Out << 'I'; break;
2262  case CC_X86VectorCall: Out << 'Q'; break;
2263  case CC_Swift: Out << 'S'; break;
2264  case CC_PreserveMost: Out << 'U'; break;
2265  case CC_X86RegCall: Out << 'w'; break;
2266  }
2267 }
2268 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2269  mangleCallingConvention(T->getCallConv());
2270 }
2271 void MicrosoftCXXNameMangler::mangleThrowSpecification(
2272  const FunctionProtoType *FT) {
2273  // <throw-spec> ::= Z # throw(...) (default)
2274  // ::= @ # throw() or __declspec/__attribute__((nothrow))
2275  // ::= <type>+
2276  // NOTE: Since the Microsoft compiler ignores throw specifications, they are
2277  // all actually mangled as 'Z'. (They're ignored because their associated
2278  // functionality isn't implemented, and probably never will be.)
2279  Out << 'Z';
2280 }
2281 
2282 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2283  Qualifiers, SourceRange Range) {
2284  // Probably should be mangled as a template instantiation; need to see what
2285  // VC does first.
2286  DiagnosticsEngine &Diags = Context.getDiags();
2287  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2288  "cannot mangle this unresolved dependent type yet");
2289  Diags.Report(Range.getBegin(), DiagID)
2290  << Range;
2291 }
2292 
2293 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2294 // <union-type> ::= T <name>
2295 // <struct-type> ::= U <name>
2296 // <class-type> ::= V <name>
2297 // <enum-type> ::= W4 <name>
2298 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2299  switch (TTK) {
2300  case TTK_Union:
2301  Out << 'T';
2302  break;
2303  case TTK_Struct:
2304  case TTK_Interface:
2305  Out << 'U';
2306  break;
2307  case TTK_Class:
2308  Out << 'V';
2309  break;
2310  case TTK_Enum:
2311  Out << "W4";
2312  break;
2313  }
2314 }
2315 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2316  SourceRange) {
2317  mangleType(cast<TagType>(T)->getDecl());
2318 }
2319 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2320  SourceRange) {
2321  mangleType(cast<TagType>(T)->getDecl());
2322 }
2323 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2324  mangleTagTypeKind(TD->getTagKind());
2325  mangleName(TD);
2326 }
2327 
2328 // If you add a call to this, consider updating isArtificialTagType() too.
2329 void MicrosoftCXXNameMangler::mangleArtificalTagType(
2330  TagTypeKind TK, StringRef UnqualifiedName,
2331  ArrayRef<StringRef> NestedNames) {
2332  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2333  mangleTagTypeKind(TK);
2334 
2335  // Always start with the unqualified name.
2336  mangleSourceName(UnqualifiedName);
2337 
2338  for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
2339  mangleSourceName(*I);
2340 
2341  // Terminate the whole name with an '@'.
2342  Out << '@';
2343 }
2344 
2345 // <type> ::= <array-type>
2346 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2347 // [Y <dimension-count> <dimension>+]
2348 // <element-type> # as global, E is never required
2349 // It's supposed to be the other way around, but for some strange reason, it
2350 // isn't. Today this behavior is retained for the sole purpose of backwards
2351 // compatibility.
2352 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2353  // This isn't a recursive mangling, so now we have to do it all in this
2354  // one call.
2355  manglePointerCVQualifiers(T->getElementType().getQualifiers());
2356  mangleType(T->getElementType(), SourceRange());
2357 }
2358 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2359  SourceRange) {
2360  llvm_unreachable("Should have been special cased");
2361 }
2362 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2363  SourceRange) {
2364  llvm_unreachable("Should have been special cased");
2365 }
2366 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2368  llvm_unreachable("Should have been special cased");
2369 }
2370 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2372  llvm_unreachable("Should have been special cased");
2373 }
2374 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2375  QualType ElementTy(T, 0);
2376  SmallVector<llvm::APInt, 3> Dimensions;
2377  for (;;) {
2378  if (ElementTy->isConstantArrayType()) {
2379  const ConstantArrayType *CAT =
2380  getASTContext().getAsConstantArrayType(ElementTy);
2381  Dimensions.push_back(CAT->getSize());
2382  ElementTy = CAT->getElementType();
2383  } else if (ElementTy->isIncompleteArrayType()) {
2384  const IncompleteArrayType *IAT =
2385  getASTContext().getAsIncompleteArrayType(ElementTy);
2386  Dimensions.push_back(llvm::APInt(32, 0));
2387  ElementTy = IAT->getElementType();
2388  } else if (ElementTy->isVariableArrayType()) {
2389  const VariableArrayType *VAT =
2390  getASTContext().getAsVariableArrayType(ElementTy);
2391  Dimensions.push_back(llvm::APInt(32, 0));
2392  ElementTy = VAT->getElementType();
2393  } else if (ElementTy->isDependentSizedArrayType()) {
2394  // The dependent expression has to be folded into a constant (TODO).
2395  const DependentSizedArrayType *DSAT =
2396  getASTContext().getAsDependentSizedArrayType(ElementTy);
2397  DiagnosticsEngine &Diags = Context.getDiags();
2398  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2399  "cannot mangle this dependent-length array yet");
2400  Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2401  << DSAT->getBracketsRange();
2402  return;
2403  } else {
2404  break;
2405  }
2406  }
2407  Out << 'Y';
2408  // <dimension-count> ::= <number> # number of extra dimensions
2409  mangleNumber(Dimensions.size());
2410  for (const llvm::APInt &Dimension : Dimensions)
2411  mangleNumber(Dimension.getLimitedValue());
2412  mangleType(ElementTy, SourceRange(), QMM_Escape);
2413 }
2414 
2415 // <type> ::= <pointer-to-member-type>
2416 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2417 // <class name> <type>
2418 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
2419  Qualifiers Quals, SourceRange Range) {
2420  QualType PointeeType = T->getPointeeType();
2421  manglePointerCVQualifiers(Quals);
2422  manglePointerExtQualifiers(Quals, PointeeType);
2423  if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2424  Out << '8';
2425  mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2426  mangleFunctionType(FPT, nullptr, true);
2427  } else {
2428  mangleQualifiers(PointeeType.getQualifiers(), true);
2429  mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2430  mangleType(PointeeType, Range, QMM_Drop);
2431  }
2432 }
2433 
2434 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2435  Qualifiers, SourceRange Range) {
2436  DiagnosticsEngine &Diags = Context.getDiags();
2437  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2438  "cannot mangle this template type parameter type yet");
2439  Diags.Report(Range.getBegin(), DiagID)
2440  << Range;
2441 }
2442 
2443 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2444  Qualifiers, SourceRange Range) {
2445  DiagnosticsEngine &Diags = Context.getDiags();
2446  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2447  "cannot mangle this substituted parameter pack yet");
2448  Diags.Report(Range.getBegin(), DiagID)
2449  << Range;
2450 }
2451 
2452 // <type> ::= <pointer-type>
2453 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2454 // # the E is required for 64-bit non-static pointers
2455 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2456  SourceRange Range) {
2457  QualType PointeeType = T->getPointeeType();
2458  manglePointerCVQualifiers(Quals);
2459  manglePointerExtQualifiers(Quals, PointeeType);
2460  mangleType(PointeeType, Range);
2461 }
2462 
2463 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
2464  Qualifiers Quals, SourceRange Range) {
2465  QualType PointeeType = T->getPointeeType();
2466  switch (Quals.getObjCLifetime()) {
2467  case Qualifiers::OCL_None:
2468  case Qualifiers::OCL_ExplicitNone:
2469  break;
2470  case Qualifiers::OCL_Autoreleasing:
2471  case Qualifiers::OCL_Strong:
2472  case Qualifiers::OCL_Weak:
2473  return mangleObjCLifetime(PointeeType, Quals, Range);
2474  }
2475  manglePointerCVQualifiers(Quals);
2476  manglePointerExtQualifiers(Quals, PointeeType);
2477  mangleType(PointeeType, Range);
2478 }
2479 
2480 // <type> ::= <reference-type>
2481 // <reference-type> ::= A E? <cvr-qualifiers> <type>
2482 // # the E is required for 64-bit non-static lvalue references
2483 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
2484  Qualifiers Quals, SourceRange Range) {
2485  QualType PointeeType = T->getPointeeType();
2486  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2487  Out << 'A';
2488  manglePointerExtQualifiers(Quals, PointeeType);
2489  mangleType(PointeeType, Range);
2490 }
2491 
2492 // <type> ::= <r-value-reference-type>
2493 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
2494 // # the E is required for 64-bit non-static rvalue references
2495 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
2496  Qualifiers Quals, SourceRange Range) {
2497  QualType PointeeType = T->getPointeeType();
2498  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2499  Out << "$$Q";
2500  manglePointerExtQualifiers(Quals, PointeeType);
2501  mangleType(PointeeType, Range);
2502 }
2503 
2504 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
2505  SourceRange Range) {
2506  QualType ElementType = T->getElementType();
2507 
2508  llvm::SmallString<64> TemplateMangling;
2509  llvm::raw_svector_ostream Stream(TemplateMangling);
2510  MicrosoftCXXNameMangler Extra(Context, Stream);
2511  Stream << "?$";
2512  Extra.mangleSourceName("_Complex");
2513  Extra.mangleType(ElementType, Range, QMM_Escape);
2514 
2515  mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
2516 }
2517 
2518 // Returns true for types that mangleArtificalTagType() gets called for with
2519 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's
2520 // mangling matters.
2521 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't
2522 // support.)
2523 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const {
2524  const Type *ty = T.getTypePtr();
2525  switch (ty->getTypeClass()) {
2526  default:
2527  return false;
2528 
2529  case Type::Vector: {
2530  // For ABI compatibility only __m64, __m128(id), and __m256(id) matter,
2531  // but since mangleType(VectorType*) always calls mangleArtificalTagType()
2532  // just always return true (the other vector types are clang-only).
2533  return true;
2534  }
2535  }
2536 }
2537 
2538 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
2539  SourceRange Range) {
2540  const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
2541  assert(ET && "vectors with non-builtin elements are unsupported");
2542  uint64_t Width = getASTContext().getTypeSize(T);
2543  // Pattern match exactly the typedefs in our intrinsic headers. Anything that
2544  // doesn't match the Intel types uses a custom mangling below.
2545  size_t OutSizeBefore = Out.tell();
2546  llvm::Triple::ArchType AT =
2547  getASTContext().getTargetInfo().getTriple().getArch();
2548  if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) {
2549  if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
2550  mangleArtificalTagType(TTK_Union, "__m64");
2551  } else if (Width >= 128) {
2552  if (ET->getKind() == BuiltinType::Float)
2553  mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width));
2554  else if (ET->getKind() == BuiltinType::LongLong)
2555  mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
2556  else if (ET->getKind() == BuiltinType::Double)
2557  mangleArtificalTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
2558  }
2559  }
2560 
2561  bool IsBuiltin = Out.tell() != OutSizeBefore;
2562  if (!IsBuiltin) {
2563  // The MS ABI doesn't have a special mangling for vector types, so we define
2564  // our own mangling to handle uses of __vector_size__ on user-specified
2565  // types, and for extensions like __v4sf.
2566 
2567  llvm::SmallString<64> TemplateMangling;
2568  llvm::raw_svector_ostream Stream(TemplateMangling);
2569  MicrosoftCXXNameMangler Extra(Context, Stream);
2570  Stream << "?$";
2571  Extra.mangleSourceName("__vector");
2572  Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
2573  Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()),
2574  /*IsBoolean=*/false);
2575 
2576  mangleArtificalTagType(TTK_Union, TemplateMangling, {"__clang"});
2577  }
2578 }
2579 
2580 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
2581  Qualifiers Quals, SourceRange Range) {
2582  mangleType(static_cast<const VectorType *>(T), Quals, Range);
2583 }
2584 
2585 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T,
2586  Qualifiers, SourceRange Range) {
2587  DiagnosticsEngine &Diags = Context.getDiags();
2588  unsigned DiagID = Diags.getCustomDiagID(
2590  "cannot mangle this dependent-sized vector type yet");
2591  Diags.Report(Range.getBegin(), DiagID) << Range;
2592 }
2593 
2594 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
2595  Qualifiers, SourceRange Range) {
2596  DiagnosticsEngine &Diags = Context.getDiags();
2597  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2598  "cannot mangle this dependent-sized extended vector type yet");
2599  Diags.Report(Range.getBegin(), DiagID)
2600  << Range;
2601 }
2602 
2603 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T,
2604  Qualifiers, SourceRange Range) {
2605  DiagnosticsEngine &Diags = Context.getDiags();
2606  unsigned DiagID = Diags.getCustomDiagID(
2608  "cannot mangle this dependent address space type yet");
2609  Diags.Report(Range.getBegin(), DiagID) << Range;
2610 }
2611 
2612 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
2613  SourceRange) {
2614  // ObjC interfaces are mangled as if they were structs with a name that is
2615  // not a valid C/C++ identifier
2616  mangleTagTypeKind(TTK_Struct);
2617  mangle(T->getDecl(), ".objc_cls_");
2618 }
2619 
2620 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers,
2621  SourceRange Range) {
2622  if (T->qual_empty())
2623  return mangleType(T->getBaseType(), Range, QMM_Drop);
2624 
2625  ArgBackRefMap OuterArgsContext;
2626  BackRefVec OuterTemplateContext;
2627 
2628  TypeBackReferences.swap(OuterArgsContext);
2629  NameBackReferences.swap(OuterTemplateContext);
2630 
2631  mangleTagTypeKind(TTK_Struct);
2632 
2633  Out << "?$";
2634  if (T->isObjCId())
2635  mangleSourceName(".objc_object");
2636  else if (T->isObjCClass())
2637  mangleSourceName(".objc_class");
2638  else
2639  mangleSourceName((".objc_cls_" + T->getInterface()->getName()).str());
2640 
2641  for (const auto &Q : T->quals())
2642  mangleObjCProtocol(Q);
2643  Out << '@';
2644 
2645  Out << '@';
2646 
2647  TypeBackReferences.swap(OuterArgsContext);
2648  NameBackReferences.swap(OuterTemplateContext);
2649 }
2650 
2651 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
2652  Qualifiers Quals, SourceRange Range) {
2653  QualType PointeeType = T->getPointeeType();
2654  manglePointerCVQualifiers(Quals);
2655  manglePointerExtQualifiers(Quals, PointeeType);
2656 
2657  Out << "_E";
2658 
2659  mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
2660 }
2661 
2662 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
2664  llvm_unreachable("Cannot mangle injected class name type.");
2665 }
2666 
2667 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
2668  Qualifiers, SourceRange Range) {
2669  DiagnosticsEngine &Diags = Context.getDiags();
2670  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2671  "cannot mangle this template specialization type yet");
2672  Diags.Report(Range.getBegin(), DiagID)
2673  << Range;
2674 }
2675 
2676 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
2677  SourceRange Range) {
2678  DiagnosticsEngine &Diags = Context.getDiags();
2679  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2680  "cannot mangle this dependent name type yet");
2681  Diags.Report(Range.getBegin(), DiagID)
2682  << Range;
2683 }
2684 
2685 void MicrosoftCXXNameMangler::mangleType(
2687  SourceRange Range) {
2688  DiagnosticsEngine &Diags = Context.getDiags();
2689  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2690  "cannot mangle this dependent template specialization type yet");
2691  Diags.Report(Range.getBegin(), DiagID)
2692  << Range;
2693 }
2694 
2695 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
2696  SourceRange Range) {
2697  DiagnosticsEngine &Diags = Context.getDiags();
2698  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2699  "cannot mangle this pack expansion yet");
2700  Diags.Report(Range.getBegin(), DiagID)
2701  << Range;
2702 }
2703 
2704 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
2705  SourceRange Range) {
2706  DiagnosticsEngine &Diags = Context.getDiags();
2707  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2708  "cannot mangle this typeof(type) yet");
2709  Diags.Report(Range.getBegin(), DiagID)
2710  << Range;
2711 }
2712 
2713 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
2714  SourceRange Range) {
2715  DiagnosticsEngine &Diags = Context.getDiags();
2716  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2717  "cannot mangle this typeof(expression) yet");
2718  Diags.Report(Range.getBegin(), DiagID)
2719  << Range;
2720 }
2721 
2722 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
2723  SourceRange Range) {
2724  DiagnosticsEngine &Diags = Context.getDiags();
2725  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2726  "cannot mangle this decltype() yet");
2727  Diags.Report(Range.getBegin(), DiagID)
2728  << Range;
2729 }
2730 
2731 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2732  Qualifiers, SourceRange Range) {
2733  DiagnosticsEngine &Diags = Context.getDiags();
2734  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2735  "cannot mangle this unary transform type yet");
2736  Diags.Report(Range.getBegin(), DiagID)
2737  << Range;
2738 }
2739 
2740 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
2741  SourceRange Range) {
2742  assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2743 
2744  DiagnosticsEngine &Diags = Context.getDiags();
2745  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2746  "cannot mangle this 'auto' type yet");
2747  Diags.Report(Range.getBegin(), DiagID)
2748  << Range;
2749 }
2750 
2751 void MicrosoftCXXNameMangler::mangleType(
2753  assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2754 
2755  DiagnosticsEngine &Diags = Context.getDiags();
2756  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2757  "cannot mangle this deduced class template specialization type yet");
2758  Diags.Report(Range.getBegin(), DiagID)
2759  << Range;
2760 }
2761 
2762 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
2763  SourceRange Range) {
2764  QualType ValueType = T->getValueType();
2765 
2766  llvm::SmallString<64> TemplateMangling;
2767  llvm::raw_svector_ostream Stream(TemplateMangling);
2768  MicrosoftCXXNameMangler Extra(Context, Stream);
2769  Stream << "?$";
2770  Extra.mangleSourceName("_Atomic");
2771  Extra.mangleType(ValueType, Range, QMM_Escape);
2772 
2773  mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
2774 }
2775 
2776 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
2777  SourceRange Range) {
2778  DiagnosticsEngine &Diags = Context.getDiags();
2779  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2780  "cannot mangle this OpenCL pipe type yet");
2781  Diags.Report(Range.getBegin(), DiagID)
2782  << Range;
2783 }
2784 
2785 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2786  raw_ostream &Out) {
2787  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2788  "Invalid mangleName() call, argument is not a variable or function!");
2789  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2790  "Invalid mangleName() call on 'structor decl!");
2791 
2792  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2793  getASTContext().getSourceManager(),
2794  "Mangling declaration");
2795 
2796  msvc_hashing_ostream MHO(Out);
2797  MicrosoftCXXNameMangler Mangler(*this, MHO);
2798  return Mangler.mangle(D);
2799 }
2800 
2801 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2802 // <virtual-adjustment>
2803 // <no-adjustment> ::= A # private near
2804 // ::= B # private far
2805 // ::= I # protected near
2806 // ::= J # protected far
2807 // ::= Q # public near
2808 // ::= R # public far
2809 // <static-adjustment> ::= G <static-offset> # private near
2810 // ::= H <static-offset> # private far
2811 // ::= O <static-offset> # protected near
2812 // ::= P <static-offset> # protected far
2813 // ::= W <static-offset> # public near
2814 // ::= X <static-offset> # public far
2815 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2816 // ::= $1 <virtual-shift> <static-offset> # private far
2817 // ::= $2 <virtual-shift> <static-offset> # protected near
2818 // ::= $3 <virtual-shift> <static-offset> # protected far
2819 // ::= $4 <virtual-shift> <static-offset> # public near
2820 // ::= $5 <virtual-shift> <static-offset> # public far
2821 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
2822 // <vtordisp-shift> ::= <offset-to-vtordisp>
2823 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
2824 // <offset-to-vtordisp>
2826  const ThisAdjustment &Adjustment,
2827  MicrosoftCXXNameMangler &Mangler,
2828  raw_ostream &Out) {
2829  if (!Adjustment.Virtual.isEmpty()) {
2830  Out << '$';
2831  char AccessSpec;
2832  switch (MD->getAccess()) {
2833  case AS_none:
2834  llvm_unreachable("Unsupported access specifier");
2835  case AS_private:
2836  AccessSpec = '0';
2837  break;
2838  case AS_protected:
2839  AccessSpec = '2';
2840  break;
2841  case AS_public:
2842  AccessSpec = '4';
2843  }
2844  if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
2845  Out << 'R' << AccessSpec;
2846  Mangler.mangleNumber(
2847  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
2848  Mangler.mangleNumber(
2849  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
2850  Mangler.mangleNumber(
2851  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2852  Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
2853  } else {
2854  Out << AccessSpec;
2855  Mangler.mangleNumber(
2856  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2857  Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2858  }
2859  } else if (Adjustment.NonVirtual != 0) {
2860  switch (MD->getAccess()) {
2861  case AS_none:
2862  llvm_unreachable("Unsupported access specifier");
2863  case AS_private:
2864  Out << 'G';
2865  break;
2866  case AS_protected:
2867  Out << 'O';
2868  break;
2869  case AS_public:
2870  Out << 'W';
2871  }
2872  Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2873  } else {
2874  switch (MD->getAccess()) {
2875  case AS_none:
2876  llvm_unreachable("Unsupported access specifier");
2877  case AS_private:
2878  Out << 'A';
2879  break;
2880  case AS_protected:
2881  Out << 'I';
2882  break;
2883  case AS_public:
2884  Out << 'Q';
2885  }
2886  }
2887 }
2888 
2889 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
2890  const CXXMethodDecl *MD, const MethodVFTableLocation &ML,
2891  raw_ostream &Out) {
2892  msvc_hashing_ostream MHO(Out);
2893  MicrosoftCXXNameMangler Mangler(*this, MHO);
2894  Mangler.getStream() << '?';
2895  Mangler.mangleVirtualMemPtrThunk(MD, ML);
2896 }
2897 
2898 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
2899  const ThunkInfo &Thunk,
2900  raw_ostream &Out) {
2901  msvc_hashing_ostream MHO(Out);
2902  MicrosoftCXXNameMangler Mangler(*this, MHO);
2903  Mangler.getStream() << '?';
2904  Mangler.mangleName(MD);
2905  mangleThunkThisAdjustment(MD, Thunk.This, Mangler, MHO);
2906  if (!Thunk.Return.isEmpty())
2907  assert(Thunk.Method != nullptr &&
2908  "Thunk info should hold the overridee decl");
2909 
2910  const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
2911  Mangler.mangleFunctionType(
2912  DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
2913 }
2914 
2915 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
2916  const CXXDestructorDecl *DD, CXXDtorType Type,
2917  const ThisAdjustment &Adjustment, raw_ostream &Out) {
2918  // FIXME: Actually, the dtor thunk should be emitted for vector deleting
2919  // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
2920  // mangling manually until we support both deleting dtor types.
2921  assert(Type == Dtor_Deleting);
2922  msvc_hashing_ostream MHO(Out);
2923  MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
2924  Mangler.getStream() << "??_E";
2925  Mangler.mangleName(DD->getParent());
2926  mangleThunkThisAdjustment(DD, Adjustment, Mangler, MHO);
2927  Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
2928 }
2929 
2930 void MicrosoftMangleContextImpl::mangleCXXVFTable(
2931  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2932  raw_ostream &Out) {
2933  // <mangled-name> ::= ?_7 <class-name> <storage-class>
2934  // <cvr-qualifiers> [<name>] @
2935  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2936  // is always '6' for vftables.
2937  msvc_hashing_ostream MHO(Out);
2938  MicrosoftCXXNameMangler Mangler(*this, MHO);
2939  if (Derived->hasAttr<DLLImportAttr>())
2940  Mangler.getStream() << "??_S";
2941  else
2942  Mangler.getStream() << "??_7";
2943  Mangler.mangleName(Derived);
2944  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2945  for (const CXXRecordDecl *RD : BasePath)
2946  Mangler.mangleName(RD);
2947  Mangler.getStream() << '@';
2948 }
2949 
2950 void MicrosoftMangleContextImpl::mangleCXXVBTable(
2951  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2952  raw_ostream &Out) {
2953  // <mangled-name> ::= ?_8 <class-name> <storage-class>
2954  // <cvr-qualifiers> [<name>] @
2955  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2956  // is always '7' for vbtables.
2957  msvc_hashing_ostream MHO(Out);
2958  MicrosoftCXXNameMangler Mangler(*this, MHO);
2959  Mangler.getStream() << "??_8";
2960  Mangler.mangleName(Derived);
2961  Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
2962  for (const CXXRecordDecl *RD : BasePath)
2963  Mangler.mangleName(RD);
2964  Mangler.getStream() << '@';
2965 }
2966 
2967 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
2968  msvc_hashing_ostream MHO(Out);
2969  MicrosoftCXXNameMangler Mangler(*this, MHO);
2970  Mangler.getStream() << "??_R0";
2971  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2972  Mangler.getStream() << "@8";
2973 }
2974 
2975 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
2976  raw_ostream &Out) {
2977  MicrosoftCXXNameMangler Mangler(*this, Out);
2978  Mangler.getStream() << '.';
2979  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2980 }
2981 
2982 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
2983  const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
2984  msvc_hashing_ostream MHO(Out);
2985  MicrosoftCXXNameMangler Mangler(*this, MHO);
2986  Mangler.getStream() << "??_K";
2987  Mangler.mangleName(SrcRD);
2988  Mangler.getStream() << "$C";
2989  Mangler.mangleName(DstRD);
2990 }
2991 
2992 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
2993  bool IsVolatile,
2994  bool IsUnaligned,
2995  uint32_t NumEntries,
2996  raw_ostream &Out) {
2997  msvc_hashing_ostream MHO(Out);
2998  MicrosoftCXXNameMangler Mangler(*this, MHO);
2999  Mangler.getStream() << "_TI";
3000  if (IsConst)
3001  Mangler.getStream() << 'C';
3002  if (IsVolatile)
3003  Mangler.getStream() << 'V';
3004  if (IsUnaligned)
3005  Mangler.getStream() << 'U';
3006  Mangler.getStream() << NumEntries;
3007  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3008 }
3009 
3010 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
3011  QualType T, uint32_t NumEntries, raw_ostream &Out) {
3012  msvc_hashing_ostream MHO(Out);
3013  MicrosoftCXXNameMangler Mangler(*this, MHO);
3014  Mangler.getStream() << "_CTA";
3015  Mangler.getStream() << NumEntries;
3016  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3017 }
3018 
3019 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
3020  QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
3021  uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
3022  raw_ostream &Out) {
3023  MicrosoftCXXNameMangler Mangler(*this, Out);
3024  Mangler.getStream() << "_CT";
3025 
3026  llvm::SmallString<64> RTTIMangling;
3027  {
3028  llvm::raw_svector_ostream Stream(RTTIMangling);
3029  msvc_hashing_ostream MHO(Stream);
3030  mangleCXXRTTI(T, MHO);
3031  }
3032  Mangler.getStream() << RTTIMangling;
3033 
3034  // VS2015 CTP6 omits the copy-constructor in the mangled name. This name is,
3035  // in fact, superfluous but I'm not sure the change was made consciously.
3036  llvm::SmallString<64> CopyCtorMangling;
3037  if (!getASTContext().getLangOpts().isCompatibleWithMSVC(
3038  LangOptions::MSVC2015) &&
3039  CD) {
3040  llvm::raw_svector_ostream Stream(CopyCtorMangling);
3041  msvc_hashing_ostream MHO(Stream);
3042  mangleCXXCtor(CD, CT, MHO);
3043  }
3044  Mangler.getStream() << CopyCtorMangling;
3045 
3046  Mangler.getStream() << Size;
3047  if (VBPtrOffset == -1) {
3048  if (NVOffset) {
3049  Mangler.getStream() << NVOffset;
3050  }
3051  } else {
3052  Mangler.getStream() << NVOffset;
3053  Mangler.getStream() << VBPtrOffset;
3054  Mangler.getStream() << VBIndex;
3055  }
3056 }
3057 
3058 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
3059  const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
3060  uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
3061  msvc_hashing_ostream MHO(Out);
3062  MicrosoftCXXNameMangler Mangler(*this, MHO);
3063  Mangler.getStream() << "??_R1";
3064  Mangler.mangleNumber(NVOffset);
3065  Mangler.mangleNumber(VBPtrOffset);
3066  Mangler.mangleNumber(VBTableOffset);
3067  Mangler.mangleNumber(Flags);
3068  Mangler.mangleName(Derived);
3069  Mangler.getStream() << "8";
3070 }
3071 
3072 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
3073  const CXXRecordDecl *Derived, raw_ostream &Out) {
3074  msvc_hashing_ostream MHO(Out);
3075  MicrosoftCXXNameMangler Mangler(*this, MHO);
3076  Mangler.getStream() << "??_R2";
3077  Mangler.mangleName(Derived);
3078  Mangler.getStream() << "8";
3079 }
3080 
3081 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
3082  const CXXRecordDecl *Derived, raw_ostream &Out) {
3083  msvc_hashing_ostream MHO(Out);
3084  MicrosoftCXXNameMangler Mangler(*this, MHO);
3085  Mangler.getStream() << "??_R3";
3086  Mangler.mangleName(Derived);
3087  Mangler.getStream() << "8";
3088 }
3089 
3090 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
3091  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3092  raw_ostream &Out) {
3093  // <mangled-name> ::= ?_R4 <class-name> <storage-class>
3094  // <cvr-qualifiers> [<name>] @
3095  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3096  // is always '6' for vftables.
3097  llvm::SmallString<64> VFTableMangling;
3098  llvm::raw_svector_ostream Stream(VFTableMangling);
3099  mangleCXXVFTable(Derived, BasePath, Stream);
3100 
3101  if (VFTableMangling.startswith("??@")) {
3102  assert(VFTableMangling.endswith("@"));
3103  Out << VFTableMangling << "??_R4@";
3104  return;
3105  }
3106 
3107  assert(VFTableMangling.startswith("??_7") ||
3108  VFTableMangling.startswith("??_S"));
3109 
3110  Out << "??_R4" << StringRef(VFTableMangling).drop_front(4);
3111 }
3112 
3113 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
3114  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3115  msvc_hashing_ostream MHO(Out);
3116  MicrosoftCXXNameMangler Mangler(*this, MHO);
3117  // The function body is in the same comdat as the function with the handler,
3118  // so the numbering here doesn't have to be the same across TUs.
3119  //
3120  // <mangled-name> ::= ?filt$ <filter-number> @0
3121  Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
3122  Mangler.mangleName(EnclosingDecl);
3123 }
3124 
3125 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
3126  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3127  msvc_hashing_ostream MHO(Out);
3128  MicrosoftCXXNameMangler Mangler(*this, MHO);
3129  // The function body is in the same comdat as the function with the handler,
3130  // so the numbering here doesn't have to be the same across TUs.
3131  //
3132  // <mangled-name> ::= ?fin$ <filter-number> @0
3133  Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
3134  Mangler.mangleName(EnclosingDecl);
3135 }
3136 
3137 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
3138  // This is just a made up unique string for the purposes of tbaa. undname
3139  // does *not* know how to demangle it.
3140  MicrosoftCXXNameMangler Mangler(*this, Out);
3141  Mangler.getStream() << '?';
3142  Mangler.mangleType(T, SourceRange());
3143 }
3144 
3145 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3146  CXXCtorType Type,
3147  raw_ostream &Out) {
3148  msvc_hashing_ostream MHO(Out);
3149  MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
3150  mangler.mangle(D);
3151 }
3152 
3153 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3154  CXXDtorType Type,
3155  raw_ostream &Out) {
3156  msvc_hashing_ostream MHO(Out);
3157  MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
3158  mangler.mangle(D);
3159 }
3160 
3161 void MicrosoftMangleContextImpl::mangleReferenceTemporary(
3162  const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
3163  msvc_hashing_ostream MHO(Out);
3164  MicrosoftCXXNameMangler Mangler(*this, MHO);
3165 
3166  Mangler.getStream() << "?$RT" << ManglingNumber << '@';
3167  Mangler.mangle(VD, "");
3168 }
3169 
3170 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
3171  const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
3172  msvc_hashing_ostream MHO(Out);
3173  MicrosoftCXXNameMangler Mangler(*this, MHO);
3174 
3175  Mangler.getStream() << "?$TSS" << GuardNum << '@';
3176  Mangler.mangleNestedName(VD);
3177  Mangler.getStream() << "@4HA";
3178 }
3179 
3180 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
3181  raw_ostream &Out) {
3182  // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
3183  // ::= ?__J <postfix> @5 <scope-depth>
3184  // ::= ?$S <guard-num> @ <postfix> @4IA
3185 
3186  // The first mangling is what MSVC uses to guard static locals in inline
3187  // functions. It uses a different mangling in external functions to support
3188  // guarding more than 32 variables. MSVC rejects inline functions with more
3189  // than 32 static locals. We don't fully implement the second mangling
3190  // because those guards are not externally visible, and instead use LLVM's
3191  // default renaming when creating a new guard variable.
3192  msvc_hashing_ostream MHO(Out);
3193  MicrosoftCXXNameMangler Mangler(*this, MHO);
3194 
3195  bool Visible = VD->isExternallyVisible();
3196  if (Visible) {
3197  Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B");
3198  } else {
3199  Mangler.getStream() << "?$S1@";
3200  }
3201  unsigned ScopeDepth = 0;
3202  if (Visible && !getNextDiscriminator(VD, ScopeDepth))
3203  // If we do not have a discriminator and are emitting a guard variable for
3204  // use at global scope, then mangling the nested name will not be enough to
3205  // remove ambiguities.
3206  Mangler.mangle(VD, "");
3207  else
3208  Mangler.mangleNestedName(VD);
3209  Mangler.getStream() << (Visible ? "@5" : "@4IA");
3210  if (ScopeDepth)
3211  Mangler.mangleNumber(ScopeDepth);
3212 }
3213 
3214 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
3215  char CharCode,
3216  raw_ostream &Out) {
3217  msvc_hashing_ostream MHO(Out);
3218  MicrosoftCXXNameMangler Mangler(*this, MHO);
3219  Mangler.getStream() << "??__" << CharCode;
3220  Mangler.mangleName(D);
3221  if (D->isStaticDataMember()) {
3222  Mangler.mangleVariableEncoding(D);
3223  Mangler.getStream() << '@';
3224  }
3225  // This is the function class mangling. These stubs are global, non-variadic,
3226  // cdecl functions that return void and take no args.
3227  Mangler.getStream() << "YAXXZ";
3228 }
3229 
3230 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
3231  raw_ostream &Out) {
3232  // <initializer-name> ::= ?__E <name> YAXXZ
3233  mangleInitFiniStub(D, 'E', Out);
3234 }
3235 
3236 void
3237 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3238  raw_ostream &Out) {
3239  // <destructor-name> ::= ?__F <name> YAXXZ
3240  mangleInitFiniStub(D, 'F', Out);
3241 }
3242 
3243 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
3244  raw_ostream &Out) {
3245  // <char-type> ::= 0 # char, char16_t, char32_t
3246  // # (little endian char data in mangling)
3247  // ::= 1 # wchar_t (big endian char data in mangling)
3248  //
3249  // <literal-length> ::= <non-negative integer> # the length of the literal
3250  //
3251  // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
3252  // # trailing null bytes
3253  //
3254  // <encoded-string> ::= <simple character> # uninteresting character
3255  // ::= '?$' <hex digit> <hex digit> # these two nibbles
3256  // # encode the byte for the
3257  // # character
3258  // ::= '?' [a-z] # \xe1 - \xfa
3259  // ::= '?' [A-Z] # \xc1 - \xda
3260  // ::= '?' [0-9] # [,/\:. \n\t'-]
3261  //
3262  // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
3263  // <encoded-string> '@'
3264  MicrosoftCXXNameMangler Mangler(*this, Out);
3265  Mangler.getStream() << "??_C@_";
3266 
3267  // The actual string length might be different from that of the string literal
3268  // in cases like:
3269  // char foo[3] = "foobar";
3270  // char bar[42] = "foobar";
3271  // Where it is truncated or zero-padded to fit the array. This is the length
3272  // used for mangling, and any trailing null-bytes also need to be mangled.
3273  unsigned StringLength = getASTContext()
3274  .getAsConstantArrayType(SL->getType())
3275  ->getSize()
3276  .getZExtValue();
3277  unsigned StringByteLength = StringLength * SL->getCharByteWidth();
3278 
3279  // <char-type>: The "kind" of string literal is encoded into the mangled name.
3280  if (SL->isWide())
3281  Mangler.getStream() << '1';
3282  else
3283  Mangler.getStream() << '0';
3284 
3285  // <literal-length>: The next part of the mangled name consists of the length
3286  // of the string in bytes.
3287  Mangler.mangleNumber(StringByteLength);
3288 
3289  auto GetLittleEndianByte = [&SL](unsigned Index) {
3290  unsigned CharByteWidth = SL->getCharByteWidth();
3291  if (Index / CharByteWidth >= SL->getLength())
3292  return static_cast<char>(0);
3293  uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3294  unsigned OffsetInCodeUnit = Index % CharByteWidth;
3295  return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3296  };
3297 
3298  auto GetBigEndianByte = [&SL](unsigned Index) {
3299  unsigned CharByteWidth = SL->getCharByteWidth();
3300  if (Index / CharByteWidth >= SL->getLength())
3301  return static_cast<char>(0);
3302  uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3303  unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
3304  return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3305  };
3306 
3307  // CRC all the bytes of the StringLiteral.
3308  llvm::JamCRC JC;
3309  for (unsigned I = 0, E = StringByteLength; I != E; ++I)
3310  JC.update(GetLittleEndianByte(I));
3311 
3312  // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
3313  // scheme.
3314  Mangler.mangleNumber(JC.getCRC());
3315 
3316  // <encoded-string>: The mangled name also contains the first 32 bytes
3317  // (including null-terminator bytes) of the encoded StringLiteral.
3318  // Each character is encoded by splitting them into bytes and then encoding
3319  // the constituent bytes.
3320  auto MangleByte = [&Mangler](char Byte) {
3321  // There are five different manglings for characters:
3322  // - [a-zA-Z0-9_$]: A one-to-one mapping.
3323  // - ?[a-z]: The range from \xe1 to \xfa.
3324  // - ?[A-Z]: The range from \xc1 to \xda.
3325  // - ?[0-9]: The set of [,/\:. \n\t'-].
3326  // - ?$XX: A fallback which maps nibbles.
3327  if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
3328  Mangler.getStream() << Byte;
3329  } else if (isLetter(Byte & 0x7f)) {
3330  Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
3331  } else {
3332  const char SpecialChars[] = {',', '/', '\\', ':', '.',
3333  ' ', '\n', '\t', '\'', '-'};
3334  const char *Pos =
3335  std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
3336  if (Pos != std::end(SpecialChars)) {
3337  Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
3338  } else {
3339  Mangler.getStream() << "?$";
3340  Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
3341  Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
3342  }
3343  }
3344  };
3345 
3346  // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead.
3347  unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U;
3348  unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength);
3349  for (unsigned I = 0; I != NumBytesToMangle; ++I) {
3350  if (SL->isWide())
3351  MangleByte(GetBigEndianByte(I));
3352  else
3353  MangleByte(GetLittleEndianByte(I));
3354  }
3355 
3356  Mangler.getStream() << '@';
3357 }
3358 
3361  return new MicrosoftMangleContextImpl(Context, Diags);
3362 }
Defines the clang::ASTContext interface.
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4548
Represents a function declaration or definition.
Definition: Decl.h:1716
void removeUnaligned()
Definition: Type.h:318
StringRef getName(const PrintingPolicy &Policy) const
Definition: Type.cpp:2658
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2393
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:3789
QualType getPointeeType() const
Definition: Type.h:2406
Represents the dependent type named by a dependently-scoped typename using declaration, e.g.
Definition: Type.h:3886
A (possibly-)qualified type.
Definition: Type.h:655
bool isBlockPointerType() const
Definition: Type.h:6121
bool isArrayType() const
Definition: Type.h:6162
bool isMemberPointerType() const
Definition: Type.h:6144
bool isCompatibleWithMSVC(MSVCMajorVersion MajorVersion) const
Definition: LangOptions.h:237
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2833
ArrayRef< TemplateArgument > getPackAsArray() const
Return the array of arguments in this template argument pack.
Definition: TemplateBase.h:366
QualType getDesugaredType(const ASTContext &Context) const
Return the specified type with any "sugar" removed from the type.
Definition: Type.h:955
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:30
Kind getKind() const
Definition: Type.h:2274
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3211
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:497
Represents a qualified type name for which the type name is dependent.
Definition: Type.h:5020
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:270
bool isEmpty() const
Definition: ABI.h:87
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
bool isVariadic() const
Definition: Type.h:3774
bool isVirtual() const
Definition: DeclCXX.h:2090
Defines the C++ template declaration subclasses.
StringRef P
NamedDecl * getTemplatedDecl() const
Get the underlying, templated declaration.
Definition: DeclTemplate.h:453
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4562
The base class of the type hierarchy.
Definition: Type.h:1428
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:111
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2668
Represent a C++ namespace.
Definition: Decl.h:514
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:133
QualType withConst() const
Definition: Type.h:827
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:5800
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2477
Default closure variant of a ctor.
Definition: ABI.h:30
MSInheritanceAttr::Spelling getMSInheritanceModel() const
Returns the inheritance model used for this record.
QualType getElementType() const
Definition: Type.h:2703
Represents a variable declaration or definition.
Definition: Decl.h:814
unsigned getNumParams() const
Definition: Type.h:3668
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6526
The "union" keyword.
Definition: Type.h:4855
Represents a C++17 deduced template specialization type.
Definition: Type.h:4598
A this pointer adjustment.
Definition: ABI.h:108
The "__interface" keyword.
Definition: Type.h:4852
Represents a variable template specialization, which refers to a variable template with a given set o...
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
const CXXMethodDecl * Method
Holds a pointer to the overridden method this thunk is for, if needed by the ABI to distinguish diffe...
Definition: ABI.h:191
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:68
Represents a parameter to a function.
Definition: Decl.h:1535
Defines the clang::Expr interface and subclasses for C++ expressions.
QualType getIntegralType() const
Retrieve the type of the integral value.
Definition: TemplateBase.h:315
The collection of all-type qualifiers we support.
Definition: Type.h:154
bool isVariableArrayType() const
Definition: Type.h:6174
PipeType - OpenCL20.
Definition: Type.h:5819
bool isDependentSizedArrayType() const
Definition: Type.h:6178
const char * getStmtClassName() const
Definition: Stmt.cpp:75
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
int32_t VBOffsetOffset
The offset (in bytes) of the vbase offset in the vbtable.
Definition: ABI.h:132
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.h:370
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
Represents a class type in Objective C.
Definition: Type.h:5355
QualType getPointeeType() const
Definition: Type.h:2510
Expr * getAsExpr() const
Retrieve the template argument as an expression.
Definition: TemplateBase.h:330
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:150
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
LLVM_READONLY bool isLetter(unsigned char c)
Return true if this character is an ASCII letter: [a-zA-Z].
Definition: CharInfo.h:112
bool isNamespace() const
Definition: DeclBase.h:1421
unsigned getFunctionScopeIndex() const
Returns the index of this parameter in its prototype or method scope.
Definition: Decl.h:1588
bool isReferenceType() const
Definition: Type.h:6125
Represents the result of substituting a set of types for a template type parameter pack...
Definition: Type.h:4473
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
unsigned getCharByteWidth() const
Definition: Expr.h:1667
QualType getParamTypeForDecl() const
Definition: TemplateBase.h:269
unsigned getTypeQuals() const
Definition: Type.h:3786
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:5908
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2594
unsigned getLength() const
Definition: Expr.h:1666
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1384
TagKind getTagKind() const
Definition: Decl.h:3230
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
QualType getNullPtrType() const
Retrieve the type for null non-type template argument.
Definition: TemplateBase.h:275
Deleting dtor.
Definition: ABI.h:35
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
Represents a typeof (or typeof) expression (a GCC extension).
Definition: Type.h:3941
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:643
const Type * getClass() const
Definition: Type.h:2646
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1204
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5889
Enums/classes describing ABI related information about constructors, destructors and thunks...
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2085
bool isInstance() const
Definition: DeclCXX.h:2073
void * getAsOpaquePtr() const
Definition: Type.h:700
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5590
NameKind getNameKind() const
getNameKind - Determine what kind of name this is.
bool hasConst() const
Definition: Type.h:271
Expr * getSizeExpr() const
Definition: Type.h:2904
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:2984
CXXRecordDecl * getMostRecentNonInjectedDecl()
Definition: DeclCXX.h:756
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3385
Represents a K&R-style &#39;int foo()&#39; function, which has no information available about its arguments...
Definition: Type.h:3397
bool isExternC() const
Determines whether this variable is a variable with external, C linkage.
Definition: Decl.cpp:1994
unsigned getLambdaManglingNumber() const
If this is the closure type of a lambda expression, retrieve the number to be used for name mangling ...
Definition: DeclCXX.h:1908
bool hasAttr() const
Definition: DeclBase.h:538
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:5418
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1627
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3432
Expr * IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY
IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the value (including ptr->int ...
Definition: Expr.cpp:2664
Represents a ValueDecl that came out of a declarator.
Definition: Decl.h:689
qual_range quals() const
Definition: Type.h:5255
OverloadedOperatorKind getCXXOverloadedOperator() const
getCXXOverloadedOperator - If this name is the name of an overloadable operator in C++ (e...
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
Definition: TemplateBase.h:264
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:39
Represents an array type in C++ whose size is a value-dependent expression.
Definition: Type.h:2882
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:432
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
QualType getElementType() const
Definition: Type.h:2346
Pepresents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:3860
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:637
Expr - This represents one expression.
Definition: Expr.h:106
QualType getPointeeType() const
Definition: Type.h:2550
const FileEntry * getFileEntryForID(FileID FID) const
Returns the FileEntry record for the provided FileID.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6589
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2700
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3405
ObjCLifetime getObjCLifetime() const
Definition: Type.h:343
DeclContext * getDeclContext()
Definition: DeclBase.h:428
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1655
TLSKind getTLSKind() const
Definition: Decl.cpp:1916
ArrayRef< TemplateArgument > asArray() const
Produce this as an array ref.
Definition: DeclTemplate.h:264
Represents the type decltype(expr) (C++11).
Definition: Type.h:4011
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.h:2043
IdentifierInfo * getAsIdentifierInfo() const
getAsIdentifierInfo - Retrieve the IdentifierInfo * stored in this declaration name, or NULL if this declaration name isn&#39;t a simple identifier.
Base object dtor.
Definition: ABI.h:37
QualType getType() const
Definition: Expr.h:128
bool isFunctionOrMethod() const
Definition: DeclBase.h:1392
bool isWide() const
Definition: Expr.h:1677
A unary type transform, which is a type constructed from another.
Definition: Type.h:4054
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1343
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1805
Represents a GCC generic vector type.
Definition: Type.h:3024
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2576
CharUnits getVBPtrOffset() const
getVBPtrOffset - Get the offset for virtual base table pointer.
Definition: RecordLayout.h:306
static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs)
The result type of a method or function.
bool isObjCClass() const
Definition: Type.h:5424
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:720
bool nullFieldOffsetIsZero() const
In the Microsoft C++ ABI, use zero for the field offset of a null data member pointer if we can guara...
Definition: DeclCXX.h:1943
The COMDAT used for dtors.
Definition: ABI.h:38
const SourceManager & SM
Definition: Format.cpp:1475
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:236
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
decl_type * getFirstDecl()
Return the first declaration of this declaration or itself if this is the only declaration.
Definition: Redeclarable.h:216
IdentifierInfo * getCXXLiteralIdentifier() const
getCXXLiteralIdentifier - If this name is the name of a literal operator, retrieve the identifier ass...
The "struct" keyword.
Definition: Type.h:4849
QualType getCanonicalType() const
Definition: Type.h:5928
Encodes a location in the source.
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.h:5568
QualType getReturnType() const
Definition: Type.h:3365
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4161
Represents typeof(type), a GCC extension.
Definition: Type.h:3984
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5555
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3020
LanguageLinkage
Describes the different kinds of language linkage (C++ [dcl.link]) that an entity may have...
Definition: Linkage.h:65
QualType getElementType() const
Definition: Type.h:3059
Represents a vector type where either the type or size is dependent.
Definition: Type.h:3101
Cached information about one file (either on disk or in the virtual file system). ...
Definition: FileManager.h:59
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2045
TypedefNameDecl * getTypedefNameForUnnamedTagDecl(const TagDecl *TD)
No ref-qualifier was provided.
Definition: Type.h:1381
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2254
This file defines OpenMP nodes for declarative directives.
bool hasRestrict() const
Definition: Type.h:285
Qualifiers withoutObjCLifetime() const
Definition: Type.h:336
bool isAnyPointerType() const
Definition: Type.h:6117
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1379
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:775
TypeClass getTypeClass() const
Definition: Type.h:1691
Complete object dtor.
Definition: ABI.h:36
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
Definition: TemplateBase.h:301
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1938
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1387
SourceRange getBracketsRange() const
Definition: Type.h:2910
Represents a pointer type decayed from an array or function type.
Definition: Type.h:2478
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
The injected class name of a C++ class template or class template partial specialization.
Definition: Type.h:4794
Represents a pack expansion of types.
Definition: Type.h:5165
StringRef getName() const
Return the actual identifier string.
static void mangleThunkThisAdjustment(const CXXMethodDecl *MD, const ThisAdjustment &Adjustment, MicrosoftCXXNameMangler &Mangler, raw_ostream &Out)
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:2872
Represents a template argument.
Definition: TemplateBase.h:51
TagTypeKind
The kind of a tag type.
Definition: Type.h:4847
struct clang::ThisAdjustment::VirtualAdjustment::@120 Microsoft
bool isObjCId() const
Definition: Type.h:5420
Dataflow Directional Tag Classes.
ThisAdjustment This
The this pointer adjustment.
Definition: ABI.h:181
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1264
uint64_t Index
Method&#39;s index in the vftable.
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:399
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
bool isRecord() const
Definition: DeclBase.h:1417
AccessSpecifier getAccess() const
Definition: DeclBase.h:463
A decomposition declaration.
Definition: DeclCXX.h:3851
FileID getMainFileID() const
Returns the FileID of the main source file.
std::unique_ptr< DiagnosticConsumer > create(StringRef OutputFile, DiagnosticOptions *Diags, bool MergeChildRecords=false)
Returns a DiagnosticConsumer that serializes diagnostics to a bitcode file.
DeclarationName - The name of a declaration.
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2165
bool isBooleanType() const
Definition: Type.h:6453
LLVM_READONLY bool isIdentifierBody(unsigned char c, bool AllowDollar=false)
Returns true if this is a body character of a C identifier, which is [a-zA-Z0-9_].
Definition: CharInfo.h:59
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2612
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
bool hasObjCLifetime() const
Definition: Type.h:342
union clang::ThisAdjustment::VirtualAdjustment Virtual
Represents a pointer to an Objective C object.
Definition: Type.h:5611
Pointer to a block type.
Definition: Type.h:2495
Not an overloaded operator.
Definition: OperatorKinds.h:23
bool isIncompleteArrayType() const
Definition: Type.h:6170
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4135
Complex values, per C99 6.2.5p11.
Definition: Type.h:2333
T * getAttr() const
Definition: DeclBase.h:534
const llvm::APInt & getSize() const
Definition: Type.h:2746
bool isFunctionType() const
Definition: Type.h:6109
bool isStaticLocal() const
Returns true if a variable with function scope is a static local variable.
Definition: Decl.h:1059
ExtVectorType - Extended vector type.
Definition: Type.h:3143
DeclaratorDecl * getDeclaratorForUnnamedTagDecl(const TagDecl *TD)
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
Definition: DeclBase.cpp:1675
ReturnAdjustment Return
The return adjustment.
Definition: ABI.h:184
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:32
The "class" keyword.
Definition: Type.h:4858
bool isConstantArrayType() const
Definition: Type.h:6166
SourceManager & getSourceManager()
Definition: ASTContext.h:651
A template argument list.
Definition: DeclTemplate.h:210
StringRef getUuidStr() const
Definition: ExprCXX.h:952
ArgKind getKind() const
Return the kind of stored template argument.
Definition: TemplateBase.h:235
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
QualType getParamType(unsigned i) const
Definition: Type.h:3670
CallingConv getCallConv() const
Definition: Type.h:3375
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5969
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3261
bool hasUnaligned() const
Definition: Type.h:314
Represents a C++ struct/union/class.
Definition: DeclCXX.h:302
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:5072
bool isVoidType() const
Definition: Type.h:6340
Represents a C array with an unspecified size.
Definition: Type.h:2782
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5916
int32_t VtordispOffset
The offset of the vtordisp (in bytes), relative to the ECX.
Definition: ABI.h:125
The "enum" keyword.
Definition: Type.h:4861
static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target)
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2250
bool qual_empty() const
Definition: Type.h:5259
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:266
Copying closure variant of a ctor.
Definition: ABI.h:29
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1585
Defines the clang::TargetInfo interface.
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:3567
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:275
bool hasVolatile() const
Definition: Type.h:278
unsigned getNumElements() const
Definition: Type.h:3060
QualType getAsType() const
Retrieve the type for a type template argument.
Definition: TemplateBase.h:257
MethodVFTableLocation getMethodVFTableLocation(GlobalDecl GD)
Represents an extended address space qualifier where the input address space value is dependent...
Definition: Type.h:2942
Represents a type template specialization; the template must be a class template, a type alias templa...
Definition: Type.h:4654
bool isPointerType() const
Definition: Type.h:6113
__DEVICE__ int min(int __a, int __b)
bool isStaticDataMember() const
Determines whether this is a static data member.
Definition: Decl.h:1134
QualType getType() const
Definition: Decl.h:648
A trivial tuple used to represent a source range.
FunctionDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:2899
This represents a decl that may have a name.
Definition: Decl.h:248
bool isTranslationUnit() const
Definition: DeclBase.h:1413
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2827
A Microsoft C++ __uuidof expression, which gets the _GUID that corresponds to the supplied type or ex...
Definition: ExprCXX.h:895
TemplateName getAsTemplate() const
Retrieve the template name for a template name argument.
Definition: TemplateBase.h:281
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:2971
SourceLocation getBegin() const
int32_t VBPtrOffset
The offset of the vbptr of the derived class (in bytes), relative to the ECX after vtordisp adjustmen...
Definition: ABI.h:129
const LangOptions & getLangOpts() const
Definition: ASTContext.h:696
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2728
This class handles loading and caching of source files into memory.
bool hasLinkage() const
Determine whether this declaration has linkage.
Definition: Decl.cpp:1700
SourceLocation getLocation() const
Definition: DeclBase.h:419
QualType getPointeeType() const
Definition: Type.h:2632
bool isExternallyVisible() const
Definition: Decl.h:379
PrettyStackTraceDecl - If a crash occurs, indicate that it happened when doing something to a specifi...
Definition: DeclBase.h:1173
QualType getPointeeType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5627