clang  7.0.0
SemaStmt.cpp
Go to the documentation of this file.
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/AST/TypeOrdering.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallString.h"
40 #include "llvm/ADT/SmallVector.h"
41 
42 using namespace clang;
43 using namespace sema;
44 
46  if (FE.isInvalid())
47  return StmtError();
48 
49  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
50  /*DiscardedValue*/ true);
51  if (FE.isInvalid())
52  return StmtError();
53 
54  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
55  // void expression for its side effects. Conversion to void allows any
56  // operand, even incomplete types.
57 
58  // Same thing in for stmt first clause (when expr) and third clause.
59  return StmtResult(FE.getAs<Stmt>());
60 }
61 
62 
64  DiscardCleanupsInEvaluationContext();
65  return StmtError();
66 }
67 
69  bool HasLeadingEmptyMacro) {
70  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
71 }
72 
74  SourceLocation EndLoc) {
75  DeclGroupRef DG = dg.get();
76 
77  // If we have an invalid decl, just return an error.
78  if (DG.isNull()) return StmtError();
79 
80  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
81 }
82 
84  DeclGroupRef DG = dg.get();
85 
86  // If we don't have a declaration, or we have an invalid declaration,
87  // just return.
88  if (DG.isNull() || !DG.isSingleDecl())
89  return;
90 
91  Decl *decl = DG.getSingleDecl();
92  if (!decl || decl->isInvalidDecl())
93  return;
94 
95  // Only variable declarations are permitted.
96  VarDecl *var = dyn_cast<VarDecl>(decl);
97  if (!var) {
98  Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
99  decl->setInvalidDecl();
100  return;
101  }
102 
103  // foreach variables are never actually initialized in the way that
104  // the parser came up with.
105  var->setInit(nullptr);
106 
107  // In ARC, we don't need to retain the iteration variable of a fast
108  // enumeration loop. Rather than actually trying to catch that
109  // during declaration processing, we remove the consequences here.
110  if (getLangOpts().ObjCAutoRefCount) {
111  QualType type = var->getType();
112 
113  // Only do this if we inferred the lifetime. Inferred lifetime
114  // will show up as a local qualifier because explicit lifetime
115  // should have shown up as an AttributedType instead.
117  // Add 'const' and mark the variable as pseudo-strong.
118  var->setType(type.withConst());
119  var->setARCPseudoStrong(true);
120  }
121  }
122 }
123 
124 /// Diagnose unused comparisons, both builtin and overloaded operators.
125 /// For '==' and '!=', suggest fixits for '=' or '|='.
126 ///
127 /// Adding a cast to void (or other expression wrappers) will prevent the
128 /// warning from firing.
129 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
130  SourceLocation Loc;
131  bool CanAssign;
132  enum { Equality, Inequality, Relational, ThreeWay } Kind;
133 
134  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
135  if (!Op->isComparisonOp())
136  return false;
137 
138  if (Op->getOpcode() == BO_EQ)
139  Kind = Equality;
140  else if (Op->getOpcode() == BO_NE)
141  Kind = Inequality;
142  else if (Op->getOpcode() == BO_Cmp)
143  Kind = ThreeWay;
144  else {
145  assert(Op->isRelationalOp());
146  Kind = Relational;
147  }
148  Loc = Op->getOperatorLoc();
149  CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
150  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
151  switch (Op->getOperator()) {
152  case OO_EqualEqual:
153  Kind = Equality;
154  break;
155  case OO_ExclaimEqual:
156  Kind = Inequality;
157  break;
158  case OO_Less:
159  case OO_Greater:
160  case OO_GreaterEqual:
161  case OO_LessEqual:
162  Kind = Relational;
163  break;
164  case OO_Spaceship:
165  Kind = ThreeWay;
166  break;
167  default:
168  return false;
169  }
170 
171  Loc = Op->getOperatorLoc();
172  CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
173  } else {
174  // Not a typo-prone comparison.
175  return false;
176  }
177 
178  // Suppress warnings when the operator, suspicious as it may be, comes from
179  // a macro expansion.
180  if (S.SourceMgr.isMacroBodyExpansion(Loc))
181  return false;
182 
183  S.Diag(Loc, diag::warn_unused_comparison)
184  << (unsigned)Kind << E->getSourceRange();
185 
186  // If the LHS is a plausible entity to assign to, provide a fixit hint to
187  // correct common typos.
188  if (CanAssign) {
189  if (Kind == Inequality)
190  S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
191  << FixItHint::CreateReplacement(Loc, "|=");
192  else if (Kind == Equality)
193  S.Diag(Loc, diag::note_equality_comparison_to_assign)
194  << FixItHint::CreateReplacement(Loc, "=");
195  }
196 
197  return true;
198 }
199 
201  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
202  return DiagnoseUnusedExprResult(Label->getSubStmt());
203 
204  const Expr *E = dyn_cast_or_null<Expr>(S);
205  if (!E)
206  return;
207 
208  // If we are in an unevaluated expression context, then there can be no unused
209  // results because the results aren't expected to be used in the first place.
210  if (isUnevaluatedContext())
211  return;
212 
213  SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
214  // In most cases, we don't want to warn if the expression is written in a
215  // macro body, or if the macro comes from a system header. If the offending
216  // expression is a call to a function with the warn_unused_result attribute,
217  // we warn no matter the location. Because of the order in which the various
218  // checks need to happen, we factor out the macro-related test here.
219  bool ShouldSuppress =
220  SourceMgr.isMacroBodyExpansion(ExprLoc) ||
221  SourceMgr.isInSystemMacro(ExprLoc);
222 
223  const Expr *WarnExpr;
224  SourceLocation Loc;
225  SourceRange R1, R2;
226  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
227  return;
228 
229  // If this is a GNU statement expression expanded from a macro, it is probably
230  // unused because it is a function-like macro that can be used as either an
231  // expression or statement. Don't warn, because it is almost certainly a
232  // false positive.
233  if (isa<StmtExpr>(E) && Loc.isMacroID())
234  return;
235 
236  // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
237  // That macro is frequently used to suppress "unused parameter" warnings,
238  // but its implementation makes clang's -Wunused-value fire. Prevent this.
239  if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
240  SourceLocation SpellLoc = Loc;
241  if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
242  return;
243  }
244 
245  // Okay, we have an unused result. Depending on what the base expression is,
246  // we might want to make a more specific diagnostic. Check for one of these
247  // cases now.
248  unsigned DiagID = diag::warn_unused_expr;
249  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
250  E = Temps->getSubExpr();
251  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
252  E = TempExpr->getSubExpr();
253 
254  if (DiagnoseUnusedComparison(*this, E))
255  return;
256 
257  E = WarnExpr;
258  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
259  if (E->getType()->isVoidType())
260  return;
261 
262  // If the callee has attribute pure, const, or warn_unused_result, warn with
263  // a more specific message to make it clear what is happening. If the call
264  // is written in a macro body, only warn if it has the warn_unused_result
265  // attribute.
266  if (const Decl *FD = CE->getCalleeDecl()) {
267  if (const Attr *A = isa<FunctionDecl>(FD)
268  ? cast<FunctionDecl>(FD)->getUnusedResultAttr()
269  : FD->getAttr<WarnUnusedResultAttr>()) {
270  Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
271  return;
272  }
273  if (ShouldSuppress)
274  return;
275  if (FD->hasAttr<PureAttr>()) {
276  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
277  return;
278  }
279  if (FD->hasAttr<ConstAttr>()) {
280  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
281  return;
282  }
283  }
284  } else if (ShouldSuppress)
285  return;
286 
287  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
288  if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
289  Diag(Loc, diag::err_arc_unused_init_message) << R1;
290  return;
291  }
292  const ObjCMethodDecl *MD = ME->getMethodDecl();
293  if (MD) {
294  if (const auto *A = MD->getAttr<WarnUnusedResultAttr>()) {
295  Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
296  return;
297  }
298  }
299  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
300  const Expr *Source = POE->getSyntacticForm();
301  if (isa<ObjCSubscriptRefExpr>(Source))
302  DiagID = diag::warn_unused_container_subscript_expr;
303  else
304  DiagID = diag::warn_unused_property_expr;
305  } else if (const CXXFunctionalCastExpr *FC
306  = dyn_cast<CXXFunctionalCastExpr>(E)) {
307  const Expr *E = FC->getSubExpr();
308  if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
309  E = TE->getSubExpr();
310  if (isa<CXXTemporaryObjectExpr>(E))
311  return;
312  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
313  if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
314  if (!RD->getAttr<WarnUnusedAttr>())
315  return;
316  }
317  // Diagnose "(void*) blah" as a typo for "(void) blah".
318  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
319  TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
320  QualType T = TI->getType();
321 
322  // We really do want to use the non-canonical type here.
323  if (T == Context.VoidPtrTy) {
325 
326  Diag(Loc, diag::warn_unused_voidptr)
328  return;
329  }
330  }
331 
332  if (E->isGLValue() && E->getType().isVolatileQualified()) {
333  Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
334  return;
335  }
336 
337  DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
338 }
339 
340 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
341  PushCompoundScope(IsStmtExpr);
342 }
343 
345  PopCompoundScope();
346 }
347 
349  return getCurFunction()->CompoundScopes.back();
350 }
351 
353  ArrayRef<Stmt *> Elts, bool isStmtExpr) {
354  const unsigned NumElts = Elts.size();
355 
356  // If we're in C89 mode, check that we don't have any decls after stmts. If
357  // so, emit an extension diagnostic.
358  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
359  // Note that __extension__ can be around a decl.
360  unsigned i = 0;
361  // Skip over all declarations.
362  for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
363  /*empty*/;
364 
365  // We found the end of the list or a statement. Scan for another declstmt.
366  for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
367  /*empty*/;
368 
369  if (i != NumElts) {
370  Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
371  Diag(D->getLocation(), diag::ext_mixed_decls_code);
372  }
373  }
374  // Warn about unused expressions in statements.
375  for (unsigned i = 0; i != NumElts; ++i) {
376  // Ignore statements that are last in a statement expression.
377  if (isStmtExpr && i == NumElts - 1)
378  continue;
379 
380  DiagnoseUnusedExprResult(Elts[i]);
381  }
382 
383  // Check for suspicious empty body (null statement) in `for' and `while'
384  // statements. Don't do anything for template instantiations, this just adds
385  // noise.
386  if (NumElts != 0 && !CurrentInstantiationScope &&
387  getCurCompoundScope().HasEmptyLoopBodies) {
388  for (unsigned i = 0; i != NumElts - 1; ++i)
389  DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
390  }
391 
392  return CompoundStmt::Create(Context, Elts, L, R);
393 }
394 
397  if (!Val.get())
398  return Val;
399 
400  if (DiagnoseUnexpandedParameterPack(Val.get()))
401  return ExprError();
402 
403  // If we're not inside a switch, let the 'case' statement handling diagnose
404  // this. Just clean up after the expression as best we can.
405  if (!getCurFunction()->SwitchStack.empty()) {
406  Expr *CondExpr =
407  getCurFunction()->SwitchStack.back().getPointer()->getCond();
408  if (!CondExpr)
409  return ExprError();
410  QualType CondType = CondExpr->getType();
411 
412  auto CheckAndFinish = [&](Expr *E) {
413  if (CondType->isDependentType() || E->isTypeDependent())
414  return ExprResult(E);
415 
416  if (getLangOpts().CPlusPlus11) {
417  // C++11 [stmt.switch]p2: the constant-expression shall be a converted
418  // constant expression of the promoted type of the switch condition.
419  llvm::APSInt TempVal;
420  return CheckConvertedConstantExpression(E, CondType, TempVal,
421  CCEK_CaseValue);
422  }
423 
424  ExprResult ER = E;
425  if (!E->isValueDependent())
426  ER = VerifyIntegerConstantExpression(E);
427  if (!ER.isInvalid())
428  ER = DefaultLvalueConversion(ER.get());
429  if (!ER.isInvalid())
430  ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
431  return ER;
432  };
433 
434  ExprResult Converted = CorrectDelayedTyposInExpr(Val, CheckAndFinish);
435  if (Converted.get() == Val.get())
436  Converted = CheckAndFinish(Val.get());
437  if (Converted.isInvalid())
438  return ExprError();
439  Val = Converted;
440  }
441 
442  return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
443  getLangOpts().CPlusPlus11);
444 }
445 
448  SourceLocation DotDotDotLoc, ExprResult RHSVal,
450  assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
451  assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
452  : RHSVal.isInvalid() || RHSVal.get()) &&
453  "missing RHS value");
454 
455  if (getCurFunction()->SwitchStack.empty()) {
456  Diag(CaseLoc, diag::err_case_not_in_switch);
457  return StmtError();
458  }
459 
460  if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
461  getCurFunction()->SwitchStack.back().setInt(true);
462  return StmtError();
463  }
464 
465  CaseStmt *CS = new (Context)
466  CaseStmt(LHSVal.get(), RHSVal.get(), CaseLoc, DotDotDotLoc, ColonLoc);
467  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
468  return CS;
469 }
470 
471 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
473  DiagnoseUnusedExprResult(SubStmt);
474 
475  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
476  CS->setSubStmt(SubStmt);
477 }
478 
481  Stmt *SubStmt, Scope *CurScope) {
482  DiagnoseUnusedExprResult(SubStmt);
483 
484  if (getCurFunction()->SwitchStack.empty()) {
485  Diag(DefaultLoc, diag::err_default_not_in_switch);
486  return SubStmt;
487  }
488 
489  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
490  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
491  return DS;
492 }
493 
496  SourceLocation ColonLoc, Stmt *SubStmt) {
497  // If the label was multiply defined, reject it now.
498  if (TheDecl->getStmt()) {
499  Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
500  Diag(TheDecl->getLocation(), diag::note_previous_definition);
501  return SubStmt;
502  }
503 
504  // Otherwise, things are good. Fill in the declaration and return it.
505  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
506  TheDecl->setStmt(LS);
507  if (!TheDecl->isGnuLocal()) {
508  TheDecl->setLocStart(IdentLoc);
509  if (!TheDecl->isMSAsmLabel()) {
510  // Don't update the location of MS ASM labels. These will result in
511  // a diagnostic, and changing the location here will mess that up.
512  TheDecl->setLocation(IdentLoc);
513  }
514  }
515  return LS;
516 }
517 
519  ArrayRef<const Attr*> Attrs,
520  Stmt *SubStmt) {
521  // Fill in the declaration and return it.
522  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
523  return LS;
524 }
525 
526 namespace {
527 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
528  typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
529  Sema &SemaRef;
530 public:
531  CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
532  void VisitBinaryOperator(BinaryOperator *E) {
533  if (E->getOpcode() == BO_Comma)
534  SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
536  }
537 };
538 }
539 
541 Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt,
542  ConditionResult Cond,
543  Stmt *thenStmt, SourceLocation ElseLoc,
544  Stmt *elseStmt) {
545  if (Cond.isInvalid())
546  Cond = ConditionResult(
547  *this, nullptr,
548  MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
549  Context.BoolTy, VK_RValue),
550  IfLoc),
551  false);
552 
553  Expr *CondExpr = Cond.get().second;
554  if (!Diags.isIgnored(diag::warn_comma_operator,
555  CondExpr->getExprLoc()))
556  CommaVisitor(*this).Visit(CondExpr);
557 
558  if (!elseStmt)
559  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), thenStmt,
560  diag::warn_empty_if_body);
561 
562  return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc,
563  elseStmt);
564 }
565 
567  Stmt *InitStmt, ConditionResult Cond,
568  Stmt *thenStmt, SourceLocation ElseLoc,
569  Stmt *elseStmt) {
570  if (Cond.isInvalid())
571  return StmtError();
572 
573  if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
574  setFunctionHasBranchProtectedScope();
575 
576  DiagnoseUnusedExprResult(thenStmt);
577  DiagnoseUnusedExprResult(elseStmt);
578 
579  return new (Context)
580  IfStmt(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
581  Cond.get().second, thenStmt, ElseLoc, elseStmt);
582 }
583 
584 namespace {
585  struct CaseCompareFunctor {
586  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
587  const llvm::APSInt &RHS) {
588  return LHS.first < RHS;
589  }
590  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
591  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
592  return LHS.first < RHS.first;
593  }
594  bool operator()(const llvm::APSInt &LHS,
595  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
596  return LHS < RHS.first;
597  }
598  };
599 }
600 
601 /// CmpCaseVals - Comparison predicate for sorting case values.
602 ///
603 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
604  const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
605  if (lhs.first < rhs.first)
606  return true;
607 
608  if (lhs.first == rhs.first &&
609  lhs.second->getCaseLoc().getRawEncoding()
610  < rhs.second->getCaseLoc().getRawEncoding())
611  return true;
612  return false;
613 }
614 
615 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
616 ///
617 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
618  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
619 {
620  return lhs.first < rhs.first;
621 }
622 
623 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
624 ///
625 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
626  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
627 {
628  return lhs.first == rhs.first;
629 }
630 
631 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
632 /// potentially integral-promoted expression @p expr.
634  if (const auto *CleanUps = dyn_cast<ExprWithCleanups>(E))
635  E = CleanUps->getSubExpr();
636  while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
637  if (ImpCast->getCastKind() != CK_IntegralCast) break;
638  E = ImpCast->getSubExpr();
639  }
640  return E->getType();
641 }
642 
644  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
645  Expr *Cond;
646 
647  public:
648  SwitchConvertDiagnoser(Expr *Cond)
649  : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
650  Cond(Cond) {}
651 
652  SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
653  QualType T) override {
654  return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
655  }
656 
657  SemaDiagnosticBuilder diagnoseIncomplete(
658  Sema &S, SourceLocation Loc, QualType T) override {
659  return S.Diag(Loc, diag::err_switch_incomplete_class_type)
660  << T << Cond->getSourceRange();
661  }
662 
663  SemaDiagnosticBuilder diagnoseExplicitConv(
664  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
665  return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
666  }
667 
668  SemaDiagnosticBuilder noteExplicitConv(
669  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
670  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
671  << ConvTy->isEnumeralType() << ConvTy;
672  }
673 
674  SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
675  QualType T) override {
676  return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
677  }
678 
679  SemaDiagnosticBuilder noteAmbiguous(
680  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
681  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
682  << ConvTy->isEnumeralType() << ConvTy;
683  }
684 
685  SemaDiagnosticBuilder diagnoseConversion(
686  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
687  llvm_unreachable("conversion functions are permitted");
688  }
689  } SwitchDiagnoser(Cond);
690 
691  ExprResult CondResult =
692  PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
693  if (CondResult.isInvalid())
694  return ExprError();
695 
696  // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
697  // failed and produced a diagnostic.
698  Cond = CondResult.get();
699  if (!Cond->isTypeDependent() &&
701  return ExprError();
702 
703  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
704  return UsualUnaryConversions(Cond);
705 }
706 
708  Stmt *InitStmt, ConditionResult Cond) {
709  Expr *CondExpr = Cond.get().second;
710  assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
711 
712  if (CondExpr && !CondExpr->isTypeDependent()) {
713  // We have already converted the expression to an integral or enumeration
714  // type, when we parsed the switch condition. If we don't have an
715  // appropriate type now, enter the switch scope but remember that it's
716  // invalid.
717  assert(CondExpr->getType()->isIntegralOrEnumerationType() &&
718  "invalid condition type");
719  if (CondExpr->isKnownToHaveBooleanValue()) {
720  // switch(bool_expr) {...} is often a programmer error, e.g.
721  // switch(n && mask) { ... } // Doh - should be "n & mask".
722  // One can always use an if statement instead of switch(bool_expr).
723  Diag(SwitchLoc, diag::warn_bool_switch_condition)
724  << CondExpr->getSourceRange();
725  }
726  }
727 
728  setFunctionHasBranchIntoScope();
729 
730  SwitchStmt *SS = new (Context)
731  SwitchStmt(Context, InitStmt, Cond.get().first, CondExpr);
732  getCurFunction()->SwitchStack.push_back(
733  FunctionScopeInfo::SwitchInfo(SS, false));
734  return SS;
735 }
736 
737 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
738  Val = Val.extOrTrunc(BitWidth);
739  Val.setIsSigned(IsSigned);
740 }
741 
742 /// Check the specified case value is in range for the given unpromoted switch
743 /// type.
744 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
745  unsigned UnpromotedWidth, bool UnpromotedSign) {
746  // In C++11 onwards, this is checked by the language rules.
747  if (S.getLangOpts().CPlusPlus11)
748  return;
749 
750  // If the case value was signed and negative and the switch expression is
751  // unsigned, don't bother to warn: this is implementation-defined behavior.
752  // FIXME: Introduce a second, default-ignored warning for this case?
753  if (UnpromotedWidth < Val.getBitWidth()) {
754  llvm::APSInt ConvVal(Val);
755  AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
756  AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
757  // FIXME: Use different diagnostics for overflow in conversion to promoted
758  // type versus "switch expression cannot have this value". Use proper
759  // IntRange checking rather than just looking at the unpromoted type here.
760  if (ConvVal != Val)
761  S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
762  << ConvVal.toString(10);
763  }
764 }
765 
767 
768 /// Returns true if we should emit a diagnostic about this case expression not
769 /// being a part of the enum used in the switch controlling expression.
771  const EnumDecl *ED,
772  const Expr *CaseExpr,
773  EnumValsTy::iterator &EI,
774  EnumValsTy::iterator &EIEnd,
775  const llvm::APSInt &Val) {
776  if (!ED->isClosed())
777  return false;
778 
779  if (const DeclRefExpr *DRE =
780  dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
781  if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
782  QualType VarType = VD->getType();
784  if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
785  S.Context.hasSameUnqualifiedType(EnumType, VarType))
786  return false;
787  }
788  }
789 
790  if (ED->hasAttr<FlagEnumAttr>())
791  return !S.IsValueInFlagEnum(ED, Val, false);
792 
793  while (EI != EIEnd && EI->first < Val)
794  EI++;
795 
796  if (EI != EIEnd && EI->first == Val)
797  return false;
798 
799  return true;
800 }
801 
802 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
803  const Expr *Case) {
804  QualType CondType = Cond->getType();
805  QualType CaseType = Case->getType();
806 
807  const EnumType *CondEnumType = CondType->getAs<EnumType>();
808  const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
809  if (!CondEnumType || !CaseEnumType)
810  return;
811 
812  // Ignore anonymous enums.
813  if (!CondEnumType->getDecl()->getIdentifier() &&
814  !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
815  return;
816  if (!CaseEnumType->getDecl()->getIdentifier() &&
817  !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
818  return;
819 
820  if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
821  return;
822 
823  S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
824  << CondType << CaseType << Cond->getSourceRange()
825  << Case->getSourceRange();
826 }
827 
830  Stmt *BodyStmt) {
831  SwitchStmt *SS = cast<SwitchStmt>(Switch);
832  bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
833  assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
834  "switch stack missing push/pop!");
835 
836  getCurFunction()->SwitchStack.pop_back();
837 
838  if (!BodyStmt) return StmtError();
839  SS->setBody(BodyStmt, SwitchLoc);
840 
841  Expr *CondExpr = SS->getCond();
842  if (!CondExpr) return StmtError();
843 
844  QualType CondType = CondExpr->getType();
845 
846  // C++ 6.4.2.p2:
847  // Integral promotions are performed (on the switch condition).
848  //
849  // A case value unrepresentable by the original switch condition
850  // type (before the promotion) doesn't make sense, even when it can
851  // be represented by the promoted type. Therefore we need to find
852  // the pre-promotion type of the switch condition.
853  const Expr *CondExprBeforePromotion = CondExpr;
854  QualType CondTypeBeforePromotion =
855  GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
856 
857  // Get the bitwidth of the switched-on value after promotions. We must
858  // convert the integer case values to this width before comparison.
859  bool HasDependentValue
860  = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
861  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
862  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
863 
864  // Get the width and signedness that the condition might actually have, for
865  // warning purposes.
866  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
867  // type.
868  unsigned CondWidthBeforePromotion
869  = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
870  bool CondIsSignedBeforePromotion
871  = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
872 
873  // Accumulate all of the case values in a vector so that we can sort them
874  // and detect duplicates. This vector contains the APInt for the case after
875  // it has been converted to the condition type.
876  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
877  CaseValsTy CaseVals;
878 
879  // Keep track of any GNU case ranges we see. The APSInt is the low value.
880  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
881  CaseRangesTy CaseRanges;
882 
883  DefaultStmt *TheDefaultStmt = nullptr;
884 
885  bool CaseListIsErroneous = false;
886 
887  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
888  SC = SC->getNextSwitchCase()) {
889 
890  if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
891  if (TheDefaultStmt) {
892  Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
893  Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
894 
895  // FIXME: Remove the default statement from the switch block so that
896  // we'll return a valid AST. This requires recursing down the AST and
897  // finding it, not something we are set up to do right now. For now,
898  // just lop the entire switch stmt out of the AST.
899  CaseListIsErroneous = true;
900  }
901  TheDefaultStmt = DS;
902 
903  } else {
904  CaseStmt *CS = cast<CaseStmt>(SC);
905 
906  Expr *Lo = CS->getLHS();
907 
908  if (Lo->isValueDependent()) {
909  HasDependentValue = true;
910  break;
911  }
912 
913  // We already verified that the expression has a constant value;
914  // get that value (prior to conversions).
915  const Expr *LoBeforePromotion = Lo;
916  GetTypeBeforeIntegralPromotion(LoBeforePromotion);
917  llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
918 
919  // Check the unconverted value is within the range of possible values of
920  // the switch expression.
921  checkCaseValue(*this, Lo->getLocStart(), LoVal,
922  CondWidthBeforePromotion, CondIsSignedBeforePromotion);
923 
924  // FIXME: This duplicates the check performed for warn_not_in_enum below.
925  checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
926  LoBeforePromotion);
927 
928  // Convert the value to the same width/sign as the condition.
929  AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
930 
931  // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
932  if (CS->getRHS()) {
933  if (CS->getRHS()->isValueDependent()) {
934  HasDependentValue = true;
935  break;
936  }
937  CaseRanges.push_back(std::make_pair(LoVal, CS));
938  } else
939  CaseVals.push_back(std::make_pair(LoVal, CS));
940  }
941  }
942 
943  if (!HasDependentValue) {
944  // If we don't have a default statement, check whether the
945  // condition is constant.
946  llvm::APSInt ConstantCondValue;
947  bool HasConstantCond = false;
948  if (!HasDependentValue && !TheDefaultStmt) {
949  HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
951  assert(!HasConstantCond ||
952  (ConstantCondValue.getBitWidth() == CondWidth &&
953  ConstantCondValue.isSigned() == CondIsSigned));
954  }
955  bool ShouldCheckConstantCond = HasConstantCond;
956 
957  // Sort all the scalar case values so we can easily detect duplicates.
958  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
959 
960  if (!CaseVals.empty()) {
961  for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
962  if (ShouldCheckConstantCond &&
963  CaseVals[i].first == ConstantCondValue)
964  ShouldCheckConstantCond = false;
965 
966  if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
967  // If we have a duplicate, report it.
968  // First, determine if either case value has a name
969  StringRef PrevString, CurrString;
970  Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
971  Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
972  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
973  PrevString = DeclRef->getDecl()->getName();
974  }
975  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
976  CurrString = DeclRef->getDecl()->getName();
977  }
978  SmallString<16> CaseValStr;
979  CaseVals[i-1].first.toString(CaseValStr);
980 
981  if (PrevString == CurrString)
982  Diag(CaseVals[i].second->getLHS()->getLocStart(),
983  diag::err_duplicate_case) <<
984  (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
985  else
986  Diag(CaseVals[i].second->getLHS()->getLocStart(),
987  diag::err_duplicate_case_differing_expr) <<
988  (PrevString.empty() ? StringRef(CaseValStr) : PrevString) <<
989  (CurrString.empty() ? StringRef(CaseValStr) : CurrString) <<
990  CaseValStr;
991 
992  Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
993  diag::note_duplicate_case_prev);
994  // FIXME: We really want to remove the bogus case stmt from the
995  // substmt, but we have no way to do this right now.
996  CaseListIsErroneous = true;
997  }
998  }
999  }
1000 
1001  // Detect duplicate case ranges, which usually don't exist at all in
1002  // the first place.
1003  if (!CaseRanges.empty()) {
1004  // Sort all the case ranges by their low value so we can easily detect
1005  // overlaps between ranges.
1006  std::stable_sort(CaseRanges.begin(), CaseRanges.end());
1007 
1008  // Scan the ranges, computing the high values and removing empty ranges.
1009  std::vector<llvm::APSInt> HiVals;
1010  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1011  llvm::APSInt &LoVal = CaseRanges[i].first;
1012  CaseStmt *CR = CaseRanges[i].second;
1013  Expr *Hi = CR->getRHS();
1014 
1015  const Expr *HiBeforePromotion = Hi;
1016  GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1017  llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1018 
1019  // Check the unconverted value is within the range of possible values of
1020  // the switch expression.
1021  checkCaseValue(*this, Hi->getLocStart(), HiVal,
1022  CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1023 
1024  // Convert the value to the same width/sign as the condition.
1025  AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1026 
1027  // If the low value is bigger than the high value, the case is empty.
1028  if (LoVal > HiVal) {
1029  Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
1030  << SourceRange(CR->getLHS()->getLocStart(),
1031  Hi->getLocEnd());
1032  CaseRanges.erase(CaseRanges.begin()+i);
1033  --i;
1034  --e;
1035  continue;
1036  }
1037 
1038  if (ShouldCheckConstantCond &&
1039  LoVal <= ConstantCondValue &&
1040  ConstantCondValue <= HiVal)
1041  ShouldCheckConstantCond = false;
1042 
1043  HiVals.push_back(HiVal);
1044  }
1045 
1046  // Rescan the ranges, looking for overlap with singleton values and other
1047  // ranges. Since the range list is sorted, we only need to compare case
1048  // ranges with their neighbors.
1049  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1050  llvm::APSInt &CRLo = CaseRanges[i].first;
1051  llvm::APSInt &CRHi = HiVals[i];
1052  CaseStmt *CR = CaseRanges[i].second;
1053 
1054  // Check to see whether the case range overlaps with any
1055  // singleton cases.
1056  CaseStmt *OverlapStmt = nullptr;
1057  llvm::APSInt OverlapVal(32);
1058 
1059  // Find the smallest value >= the lower bound. If I is in the
1060  // case range, then we have overlap.
1061  CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
1062  CaseVals.end(), CRLo,
1063  CaseCompareFunctor());
1064  if (I != CaseVals.end() && I->first < CRHi) {
1065  OverlapVal = I->first; // Found overlap with scalar.
1066  OverlapStmt = I->second;
1067  }
1068 
1069  // Find the smallest value bigger than the upper bound.
1070  I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1071  if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1072  OverlapVal = (I-1)->first; // Found overlap with scalar.
1073  OverlapStmt = (I-1)->second;
1074  }
1075 
1076  // Check to see if this case stmt overlaps with the subsequent
1077  // case range.
1078  if (i && CRLo <= HiVals[i-1]) {
1079  OverlapVal = HiVals[i-1]; // Found overlap with range.
1080  OverlapStmt = CaseRanges[i-1].second;
1081  }
1082 
1083  if (OverlapStmt) {
1084  // If we have a duplicate, report it.
1085  Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
1086  << OverlapVal.toString(10);
1087  Diag(OverlapStmt->getLHS()->getLocStart(),
1088  diag::note_duplicate_case_prev);
1089  // FIXME: We really want to remove the bogus case stmt from the
1090  // substmt, but we have no way to do this right now.
1091  CaseListIsErroneous = true;
1092  }
1093  }
1094  }
1095 
1096  // Complain if we have a constant condition and we didn't find a match.
1097  if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1098  ShouldCheckConstantCond) {
1099  // TODO: it would be nice if we printed enums as enums, chars as
1100  // chars, etc.
1101  Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1102  << ConstantCondValue.toString(10)
1103  << CondExpr->getSourceRange();
1104  }
1105 
1106  // Check to see if switch is over an Enum and handles all of its
1107  // values. We only issue a warning if there is not 'default:', but
1108  // we still do the analysis to preserve this information in the AST
1109  // (which can be used by flow-based analyes).
1110  //
1111  const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1112 
1113  // If switch has default case, then ignore it.
1114  if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1115  ET && ET->getDecl()->isCompleteDefinition()) {
1116  const EnumDecl *ED = ET->getDecl();
1117  EnumValsTy EnumVals;
1118 
1119  // Gather all enum values, set their type and sort them,
1120  // allowing easier comparison with CaseVals.
1121  for (auto *EDI : ED->enumerators()) {
1122  llvm::APSInt Val = EDI->getInitVal();
1123  AdjustAPSInt(Val, CondWidth, CondIsSigned);
1124  EnumVals.push_back(std::make_pair(Val, EDI));
1125  }
1126  std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1127  auto EI = EnumVals.begin(), EIEnd =
1128  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1129 
1130  // See which case values aren't in enum.
1131  for (CaseValsTy::const_iterator CI = CaseVals.begin();
1132  CI != CaseVals.end(); CI++) {
1133  Expr *CaseExpr = CI->second->getLHS();
1134  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1135  CI->first))
1136  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1137  << CondTypeBeforePromotion;
1138  }
1139 
1140  // See which of case ranges aren't in enum
1141  EI = EnumVals.begin();
1142  for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1143  RI != CaseRanges.end(); RI++) {
1144  Expr *CaseExpr = RI->second->getLHS();
1145  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1146  RI->first))
1147  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1148  << CondTypeBeforePromotion;
1149 
1150  llvm::APSInt Hi =
1151  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1152  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1153 
1154  CaseExpr = RI->second->getRHS();
1155  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1156  Hi))
1157  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1158  << CondTypeBeforePromotion;
1159  }
1160 
1161  // Check which enum vals aren't in switch
1162  auto CI = CaseVals.begin();
1163  auto RI = CaseRanges.begin();
1164  bool hasCasesNotInSwitch = false;
1165 
1166  SmallVector<DeclarationName,8> UnhandledNames;
1167 
1168  for (EI = EnumVals.begin(); EI != EIEnd; EI++){
1169  // Drop unneeded case values
1170  while (CI != CaseVals.end() && CI->first < EI->first)
1171  CI++;
1172 
1173  if (CI != CaseVals.end() && CI->first == EI->first)
1174  continue;
1175 
1176  // Drop unneeded case ranges
1177  for (; RI != CaseRanges.end(); RI++) {
1178  llvm::APSInt Hi =
1179  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1180  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1181  if (EI->first <= Hi)
1182  break;
1183  }
1184 
1185  if (RI == CaseRanges.end() || EI->first < RI->first) {
1186  hasCasesNotInSwitch = true;
1187  UnhandledNames.push_back(EI->second->getDeclName());
1188  }
1189  }
1190 
1191  if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1192  Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1193 
1194  // Produce a nice diagnostic if multiple values aren't handled.
1195  if (!UnhandledNames.empty()) {
1196  DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1197  TheDefaultStmt ? diag::warn_def_missing_case
1198  : diag::warn_missing_case)
1199  << (int)UnhandledNames.size();
1200 
1201  for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1202  I != E; ++I)
1203  DB << UnhandledNames[I];
1204  }
1205 
1206  if (!hasCasesNotInSwitch)
1207  SS->setAllEnumCasesCovered();
1208  }
1209  }
1210 
1211  if (BodyStmt)
1212  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1213  diag::warn_empty_switch_body);
1214 
1215  // FIXME: If the case list was broken is some way, we don't have a good system
1216  // to patch it up. Instead, just return the whole substmt as broken.
1217  if (CaseListIsErroneous)
1218  return StmtError();
1219 
1220  return SS;
1221 }
1222 
1223 void
1225  Expr *SrcExpr) {
1226  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1227  return;
1228 
1229  if (const EnumType *ET = DstType->getAs<EnumType>())
1230  if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1231  SrcType->isIntegerType()) {
1232  if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1233  SrcExpr->isIntegerConstantExpr(Context)) {
1234  // Get the bitwidth of the enum value before promotions.
1235  unsigned DstWidth = Context.getIntWidth(DstType);
1236  bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1237 
1238  llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1239  AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1240  const EnumDecl *ED = ET->getDecl();
1241 
1242  if (!ED->isClosed())
1243  return;
1244 
1245  if (ED->hasAttr<FlagEnumAttr>()) {
1246  if (!IsValueInFlagEnum(ED, RhsVal, true))
1247  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1248  << DstType.getUnqualifiedType();
1249  } else {
1251  EnumValsTy;
1252  EnumValsTy EnumVals;
1253 
1254  // Gather all enum values, set their type and sort them,
1255  // allowing easier comparison with rhs constant.
1256  for (auto *EDI : ED->enumerators()) {
1257  llvm::APSInt Val = EDI->getInitVal();
1258  AdjustAPSInt(Val, DstWidth, DstIsSigned);
1259  EnumVals.push_back(std::make_pair(Val, EDI));
1260  }
1261  if (EnumVals.empty())
1262  return;
1263  std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1264  EnumValsTy::iterator EIend =
1265  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1266 
1267  // See which values aren't in the enum.
1268  EnumValsTy::const_iterator EI = EnumVals.begin();
1269  while (EI != EIend && EI->first < RhsVal)
1270  EI++;
1271  if (EI == EIend || EI->first != RhsVal) {
1272  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1273  << DstType.getUnqualifiedType();
1274  }
1275  }
1276  }
1277  }
1278 }
1279 
1281  Stmt *Body) {
1282  if (Cond.isInvalid())
1283  return StmtError();
1284 
1285  auto CondVal = Cond.get();
1286  CheckBreakContinueBinding(CondVal.second);
1287 
1288  if (CondVal.second &&
1289  !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1290  CommaVisitor(*this).Visit(CondVal.second);
1291 
1292  DiagnoseUnusedExprResult(Body);
1293 
1294  if (isa<NullStmt>(Body))
1295  getCurCompoundScope().setHasEmptyLoopBodies();
1296 
1297  return new (Context)
1298  WhileStmt(Context, CondVal.first, CondVal.second, Body, WhileLoc);
1299 }
1300 
1301 StmtResult
1303  SourceLocation WhileLoc, SourceLocation CondLParen,
1304  Expr *Cond, SourceLocation CondRParen) {
1305  assert(Cond && "ActOnDoStmt(): missing expression");
1306 
1307  CheckBreakContinueBinding(Cond);
1308  ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1309  if (CondResult.isInvalid())
1310  return StmtError();
1311  Cond = CondResult.get();
1312 
1313  CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1314  if (CondResult.isInvalid())
1315  return StmtError();
1316  Cond = CondResult.get();
1317 
1318  DiagnoseUnusedExprResult(Body);
1319 
1320  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1321 }
1322 
1323 namespace {
1324  // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1325  using DeclSetVector =
1326  llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1327  llvm::SmallPtrSet<VarDecl *, 8>>;
1328 
1329  // This visitor will traverse a conditional statement and store all
1330  // the evaluated decls into a vector. Simple is set to true if none
1331  // of the excluded constructs are used.
1332  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1333  DeclSetVector &Decls;
1335  bool Simple;
1336  public:
1337  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1338 
1339  DeclExtractor(Sema &S, DeclSetVector &Decls,
1340  SmallVectorImpl<SourceRange> &Ranges) :
1341  Inherited(S.Context),
1342  Decls(Decls),
1343  Ranges(Ranges),
1344  Simple(true) {}
1345 
1346  bool isSimple() { return Simple; }
1347 
1348  // Replaces the method in EvaluatedExprVisitor.
1349  void VisitMemberExpr(MemberExpr* E) {
1350  Simple = false;
1351  }
1352 
1353  // Any Stmt not whitelisted will cause the condition to be marked complex.
1354  void VisitStmt(Stmt *S) {
1355  Simple = false;
1356  }
1357 
1358  void VisitBinaryOperator(BinaryOperator *E) {
1359  Visit(E->getLHS());
1360  Visit(E->getRHS());
1361  }
1362 
1363  void VisitCastExpr(CastExpr *E) {
1364  Visit(E->getSubExpr());
1365  }
1366 
1367  void VisitUnaryOperator(UnaryOperator *E) {
1368  // Skip checking conditionals with derefernces.
1369  if (E->getOpcode() == UO_Deref)
1370  Simple = false;
1371  else
1372  Visit(E->getSubExpr());
1373  }
1374 
1375  void VisitConditionalOperator(ConditionalOperator *E) {
1376  Visit(E->getCond());
1377  Visit(E->getTrueExpr());
1378  Visit(E->getFalseExpr());
1379  }
1380 
1381  void VisitParenExpr(ParenExpr *E) {
1382  Visit(E->getSubExpr());
1383  }
1384 
1385  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1386  Visit(E->getOpaqueValue()->getSourceExpr());
1387  Visit(E->getFalseExpr());
1388  }
1389 
1390  void VisitIntegerLiteral(IntegerLiteral *E) { }
1391  void VisitFloatingLiteral(FloatingLiteral *E) { }
1392  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1393  void VisitCharacterLiteral(CharacterLiteral *E) { }
1394  void VisitGNUNullExpr(GNUNullExpr *E) { }
1395  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1396 
1397  void VisitDeclRefExpr(DeclRefExpr *E) {
1398  VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1399  if (!VD) return;
1400 
1401  Ranges.push_back(E->getSourceRange());
1402 
1403  Decls.insert(VD);
1404  }
1405 
1406  }; // end class DeclExtractor
1407 
1408  // DeclMatcher checks to see if the decls are used in a non-evaluated
1409  // context.
1410  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1411  DeclSetVector &Decls;
1412  bool FoundDecl;
1413 
1414  public:
1415  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1416 
1417  DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1418  Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1419  if (!Statement) return;
1420 
1421  Visit(Statement);
1422  }
1423 
1424  void VisitReturnStmt(ReturnStmt *S) {
1425  FoundDecl = true;
1426  }
1427 
1428  void VisitBreakStmt(BreakStmt *S) {
1429  FoundDecl = true;
1430  }
1431 
1432  void VisitGotoStmt(GotoStmt *S) {
1433  FoundDecl = true;
1434  }
1435 
1436  void VisitCastExpr(CastExpr *E) {
1437  if (E->getCastKind() == CK_LValueToRValue)
1438  CheckLValueToRValueCast(E->getSubExpr());
1439  else
1440  Visit(E->getSubExpr());
1441  }
1442 
1443  void CheckLValueToRValueCast(Expr *E) {
1444  E = E->IgnoreParenImpCasts();
1445 
1446  if (isa<DeclRefExpr>(E)) {
1447  return;
1448  }
1449 
1450  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1451  Visit(CO->getCond());
1452  CheckLValueToRValueCast(CO->getTrueExpr());
1453  CheckLValueToRValueCast(CO->getFalseExpr());
1454  return;
1455  }
1456 
1457  if (BinaryConditionalOperator *BCO =
1458  dyn_cast<BinaryConditionalOperator>(E)) {
1459  CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1460  CheckLValueToRValueCast(BCO->getFalseExpr());
1461  return;
1462  }
1463 
1464  Visit(E);
1465  }
1466 
1467  void VisitDeclRefExpr(DeclRefExpr *E) {
1468  if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1469  if (Decls.count(VD))
1470  FoundDecl = true;
1471  }
1472 
1473  void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1474  // Only need to visit the semantics for POE.
1475  // SyntaticForm doesn't really use the Decal.
1476  for (auto *S : POE->semantics()) {
1477  if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1478  // Look past the OVE into the expression it binds.
1479  Visit(OVE->getSourceExpr());
1480  else
1481  Visit(S);
1482  }
1483  }
1484 
1485  bool FoundDeclInUse() { return FoundDecl; }
1486 
1487  }; // end class DeclMatcher
1488 
1489  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1490  Expr *Third, Stmt *Body) {
1491  // Condition is empty
1492  if (!Second) return;
1493 
1494  if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1495  Second->getLocStart()))
1496  return;
1497 
1498  PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1499  DeclSetVector Decls;
1501  DeclExtractor DE(S, Decls, Ranges);
1502  DE.Visit(Second);
1503 
1504  // Don't analyze complex conditionals.
1505  if (!DE.isSimple()) return;
1506 
1507  // No decls found.
1508  if (Decls.size() == 0) return;
1509 
1510  // Don't warn on volatile, static, or global variables.
1511  for (auto *VD : Decls)
1512  if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1513  return;
1514 
1515  if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1516  DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1517  DeclMatcher(S, Decls, Body).FoundDeclInUse())
1518  return;
1519 
1520  // Load decl names into diagnostic.
1521  if (Decls.size() > 4) {
1522  PDiag << 0;
1523  } else {
1524  PDiag << (unsigned)Decls.size();
1525  for (auto *VD : Decls)
1526  PDiag << VD->getDeclName();
1527  }
1528 
1529  for (auto Range : Ranges)
1530  PDiag << Range;
1531 
1532  S.Diag(Ranges.begin()->getBegin(), PDiag);
1533  }
1534 
1535  // If Statement is an incemement or decrement, return true and sets the
1536  // variables Increment and DRE.
1537  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1538  DeclRefExpr *&DRE) {
1539  if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1540  if (!Cleanups->cleanupsHaveSideEffects())
1541  Statement = Cleanups->getSubExpr();
1542 
1543  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1544  switch (UO->getOpcode()) {
1545  default: return false;
1546  case UO_PostInc:
1547  case UO_PreInc:
1548  Increment = true;
1549  break;
1550  case UO_PostDec:
1551  case UO_PreDec:
1552  Increment = false;
1553  break;
1554  }
1555  DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1556  return DRE;
1557  }
1558 
1559  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1560  FunctionDecl *FD = Call->getDirectCallee();
1561  if (!FD || !FD->isOverloadedOperator()) return false;
1562  switch (FD->getOverloadedOperator()) {
1563  default: return false;
1564  case OO_PlusPlus:
1565  Increment = true;
1566  break;
1567  case OO_MinusMinus:
1568  Increment = false;
1569  break;
1570  }
1571  DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1572  return DRE;
1573  }
1574 
1575  return false;
1576  }
1577 
1578  // A visitor to determine if a continue or break statement is a
1579  // subexpression.
1580  class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1581  SourceLocation BreakLoc;
1582  SourceLocation ContinueLoc;
1583  bool InSwitch = false;
1584 
1585  public:
1586  BreakContinueFinder(Sema &S, const Stmt* Body) :
1587  Inherited(S.Context) {
1588  Visit(Body);
1589  }
1590 
1592 
1593  void VisitContinueStmt(const ContinueStmt* E) {
1594  ContinueLoc = E->getContinueLoc();
1595  }
1596 
1597  void VisitBreakStmt(const BreakStmt* E) {
1598  if (!InSwitch)
1599  BreakLoc = E->getBreakLoc();
1600  }
1601 
1602  void VisitSwitchStmt(const SwitchStmt* S) {
1603  if (const Stmt *Init = S->getInit())
1604  Visit(Init);
1605  if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
1606  Visit(CondVar);
1607  if (const Stmt *Cond = S->getCond())
1608  Visit(Cond);
1609 
1610  // Don't return break statements from the body of a switch.
1611  InSwitch = true;
1612  if (const Stmt *Body = S->getBody())
1613  Visit(Body);
1614  InSwitch = false;
1615  }
1616 
1617  void VisitForStmt(const ForStmt *S) {
1618  // Only visit the init statement of a for loop; the body
1619  // has a different break/continue scope.
1620  if (const Stmt *Init = S->getInit())
1621  Visit(Init);
1622  }
1623 
1624  void VisitWhileStmt(const WhileStmt *) {
1625  // Do nothing; the children of a while loop have a different
1626  // break/continue scope.
1627  }
1628 
1629  void VisitDoStmt(const DoStmt *) {
1630  // Do nothing; the children of a while loop have a different
1631  // break/continue scope.
1632  }
1633 
1634  void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
1635  // Only visit the initialization of a for loop; the body
1636  // has a different break/continue scope.
1637  if (const Stmt *Range = S->getRangeStmt())
1638  Visit(Range);
1639  if (const Stmt *Begin = S->getBeginStmt())
1640  Visit(Begin);
1641  if (const Stmt *End = S->getEndStmt())
1642  Visit(End);
1643  }
1644 
1645  void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
1646  // Only visit the initialization of a for loop; the body
1647  // has a different break/continue scope.
1648  if (const Stmt *Element = S->getElement())
1649  Visit(Element);
1650  if (const Stmt *Collection = S->getCollection())
1651  Visit(Collection);
1652  }
1653 
1654  bool ContinueFound() { return ContinueLoc.isValid(); }
1655  bool BreakFound() { return BreakLoc.isValid(); }
1656  SourceLocation GetContinueLoc() { return ContinueLoc; }
1657  SourceLocation GetBreakLoc() { return BreakLoc; }
1658 
1659  }; // end class BreakContinueFinder
1660 
1661  // Emit a warning when a loop increment/decrement appears twice per loop
1662  // iteration. The conditions which trigger this warning are:
1663  // 1) The last statement in the loop body and the third expression in the
1664  // for loop are both increment or both decrement of the same variable
1665  // 2) No continue statements in the loop body.
1666  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1667  // Return when there is nothing to check.
1668  if (!Body || !Third) return;
1669 
1670  if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1671  Third->getLocStart()))
1672  return;
1673 
1674  // Get the last statement from the loop body.
1675  CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1676  if (!CS || CS->body_empty()) return;
1677  Stmt *LastStmt = CS->body_back();
1678  if (!LastStmt) return;
1679 
1680  bool LoopIncrement, LastIncrement;
1681  DeclRefExpr *LoopDRE, *LastDRE;
1682 
1683  if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1684  if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1685 
1686  // Check that the two statements are both increments or both decrements
1687  // on the same variable.
1688  if (LoopIncrement != LastIncrement ||
1689  LoopDRE->getDecl() != LastDRE->getDecl()) return;
1690 
1691  if (BreakContinueFinder(S, Body).ContinueFound()) return;
1692 
1693  S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1694  << LastDRE->getDecl() << LastIncrement;
1695  S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1696  << LoopIncrement;
1697  }
1698 
1699 } // end namespace
1700 
1701 
1702 void Sema::CheckBreakContinueBinding(Expr *E) {
1703  if (!E || getLangOpts().CPlusPlus)
1704  return;
1705  BreakContinueFinder BCFinder(*this, E);
1706  Scope *BreakParent = CurScope->getBreakParent();
1707  if (BCFinder.BreakFound() && BreakParent) {
1708  if (BreakParent->getFlags() & Scope::SwitchScope) {
1709  Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1710  } else {
1711  Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1712  << "break";
1713  }
1714  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1715  Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1716  << "continue";
1717  }
1718 }
1719 
1721  Stmt *First, ConditionResult Second,
1722  FullExprArg third, SourceLocation RParenLoc,
1723  Stmt *Body) {
1724  if (Second.isInvalid())
1725  return StmtError();
1726 
1727  if (!getLangOpts().CPlusPlus) {
1728  if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1729  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1730  // declare identifiers for objects having storage class 'auto' or
1731  // 'register'.
1732  for (auto *DI : DS->decls()) {
1733  VarDecl *VD = dyn_cast<VarDecl>(DI);
1734  if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1735  VD = nullptr;
1736  if (!VD) {
1737  Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1738  DI->setInvalidDecl();
1739  }
1740  }
1741  }
1742  }
1743 
1744  CheckBreakContinueBinding(Second.get().second);
1745  CheckBreakContinueBinding(third.get());
1746 
1747  if (!Second.get().first)
1748  CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
1749  Body);
1750  CheckForRedundantIteration(*this, third.get(), Body);
1751 
1752  if (Second.get().second &&
1753  !Diags.isIgnored(diag::warn_comma_operator,
1754  Second.get().second->getExprLoc()))
1755  CommaVisitor(*this).Visit(Second.get().second);
1756 
1757  Expr *Third = third.release().getAs<Expr>();
1758 
1759  DiagnoseUnusedExprResult(First);
1760  DiagnoseUnusedExprResult(Third);
1761  DiagnoseUnusedExprResult(Body);
1762 
1763  if (isa<NullStmt>(Body))
1764  getCurCompoundScope().setHasEmptyLoopBodies();
1765 
1766  return new (Context)
1767  ForStmt(Context, First, Second.get().second, Second.get().first, Third,
1768  Body, ForLoc, LParenLoc, RParenLoc);
1769 }
1770 
1771 /// In an Objective C collection iteration statement:
1772 /// for (x in y)
1773 /// x can be an arbitrary l-value expression. Bind it up as a
1774 /// full-expression.
1776  // Reduce placeholder expressions here. Note that this rejects the
1777  // use of pseudo-object l-values in this position.
1778  ExprResult result = CheckPlaceholderExpr(E);
1779  if (result.isInvalid()) return StmtError();
1780  E = result.get();
1781 
1782  ExprResult FullExpr = ActOnFinishFullExpr(E);
1783  if (FullExpr.isInvalid())
1784  return StmtError();
1785  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1786 }
1787 
1788 ExprResult
1790  if (!collection)
1791  return ExprError();
1792 
1793  ExprResult result = CorrectDelayedTyposInExpr(collection);
1794  if (!result.isUsable())
1795  return ExprError();
1796  collection = result.get();
1797 
1798  // Bail out early if we've got a type-dependent expression.
1799  if (collection->isTypeDependent()) return collection;
1800 
1801  // Perform normal l-value conversion.
1802  result = DefaultFunctionArrayLvalueConversion(collection);
1803  if (result.isInvalid())
1804  return ExprError();
1805  collection = result.get();
1806 
1807  // The operand needs to have object-pointer type.
1808  // TODO: should we do a contextual conversion?
1810  collection->getType()->getAs<ObjCObjectPointerType>();
1811  if (!pointerType)
1812  return Diag(forLoc, diag::err_collection_expr_type)
1813  << collection->getType() << collection->getSourceRange();
1814 
1815  // Check that the operand provides
1816  // - countByEnumeratingWithState:objects:count:
1817  const ObjCObjectType *objectType = pointerType->getObjectType();
1818  ObjCInterfaceDecl *iface = objectType->getInterface();
1819 
1820  // If we have a forward-declared type, we can't do this check.
1821  // Under ARC, it is an error not to have a forward-declared class.
1822  if (iface &&
1823  (getLangOpts().ObjCAutoRefCount
1824  ? RequireCompleteType(forLoc, QualType(objectType, 0),
1825  diag::err_arc_collection_forward, collection)
1826  : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1827  // Otherwise, if we have any useful type information, check that
1828  // the type declares the appropriate method.
1829  } else if (iface || !objectType->qual_empty()) {
1830  IdentifierInfo *selectorIdents[] = {
1831  &Context.Idents.get("countByEnumeratingWithState"),
1832  &Context.Idents.get("objects"),
1833  &Context.Idents.get("count")
1834  };
1835  Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1836 
1837  ObjCMethodDecl *method = nullptr;
1838 
1839  // If there's an interface, look in both the public and private APIs.
1840  if (iface) {
1841  method = iface->lookupInstanceMethod(selector);
1842  if (!method) method = iface->lookupPrivateMethod(selector);
1843  }
1844 
1845  // Also check protocol qualifiers.
1846  if (!method)
1847  method = LookupMethodInQualifiedType(selector, pointerType,
1848  /*instance*/ true);
1849 
1850  // If we didn't find it anywhere, give up.
1851  if (!method) {
1852  Diag(forLoc, diag::warn_collection_expr_type)
1853  << collection->getType() << selector << collection->getSourceRange();
1854  }
1855 
1856  // TODO: check for an incompatible signature?
1857  }
1858 
1859  // Wrap up any cleanups in the expression.
1860  return collection;
1861 }
1862 
1863 StmtResult
1865  Stmt *First, Expr *collection,
1866  SourceLocation RParenLoc) {
1867  setFunctionHasBranchProtectedScope();
1868 
1869  ExprResult CollectionExprResult =
1870  CheckObjCForCollectionOperand(ForLoc, collection);
1871 
1872  if (First) {
1873  QualType FirstType;
1874  if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1875  if (!DS->isSingleDecl())
1876  return StmtError(Diag((*DS->decl_begin())->getLocation(),
1877  diag::err_toomany_element_decls));
1878 
1879  VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1880  if (!D || D->isInvalidDecl())
1881  return StmtError();
1882 
1883  FirstType = D->getType();
1884  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1885  // declare identifiers for objects having storage class 'auto' or
1886  // 'register'.
1887  if (!D->hasLocalStorage())
1888  return StmtError(Diag(D->getLocation(),
1889  diag::err_non_local_variable_decl_in_for));
1890 
1891  // If the type contained 'auto', deduce the 'auto' to 'id'.
1892  if (FirstType->getContainedAutoType()) {
1893  OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1894  VK_RValue);
1895  Expr *DeducedInit = &OpaqueId;
1896  if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1897  DAR_Failed)
1898  DiagnoseAutoDeductionFailure(D, DeducedInit);
1899  if (FirstType.isNull()) {
1900  D->setInvalidDecl();
1901  return StmtError();
1902  }
1903 
1904  D->setType(FirstType);
1905 
1906  if (!inTemplateInstantiation()) {
1907  SourceLocation Loc =
1909  Diag(Loc, diag::warn_auto_var_is_id)
1910  << D->getDeclName();
1911  }
1912  }
1913 
1914  } else {
1915  Expr *FirstE = cast<Expr>(First);
1916  if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1917  return StmtError(Diag(First->getLocStart(),
1918  diag::err_selector_element_not_lvalue)
1919  << First->getSourceRange());
1920 
1921  FirstType = static_cast<Expr*>(First)->getType();
1922  if (FirstType.isConstQualified())
1923  Diag(ForLoc, diag::err_selector_element_const_type)
1924  << FirstType << First->getSourceRange();
1925  }
1926  if (!FirstType->isDependentType() &&
1927  !FirstType->isObjCObjectPointerType() &&
1928  !FirstType->isBlockPointerType())
1929  return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1930  << FirstType << First->getSourceRange());
1931  }
1932 
1933  if (CollectionExprResult.isInvalid())
1934  return StmtError();
1935 
1936  CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
1937  if (CollectionExprResult.isInvalid())
1938  return StmtError();
1939 
1940  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1941  nullptr, ForLoc, RParenLoc);
1942 }
1943 
1944 /// Finish building a variable declaration for a for-range statement.
1945 /// \return true if an error occurs.
1946 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1947  SourceLocation Loc, int DiagID) {
1948  if (Decl->getType()->isUndeducedType()) {
1949  ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1950  if (!Res.isUsable()) {
1951  Decl->setInvalidDecl();
1952  return true;
1953  }
1954  Init = Res.get();
1955  }
1956 
1957  // Deduce the type for the iterator variable now rather than leaving it to
1958  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1959  QualType InitType;
1960  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1961  SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1963  SemaRef.Diag(Loc, DiagID) << Init->getType();
1964  if (InitType.isNull()) {
1965  Decl->setInvalidDecl();
1966  return true;
1967  }
1968  Decl->setType(InitType);
1969 
1970  // In ARC, infer lifetime.
1971  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1972  // we're doing the equivalent of fast iteration.
1973  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1974  SemaRef.inferObjCARCLifetime(Decl))
1975  Decl->setInvalidDecl();
1976 
1977  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
1978  SemaRef.FinalizeDeclaration(Decl);
1979  SemaRef.CurContext->addHiddenDecl(Decl);
1980  return false;
1981 }
1982 
1983 namespace {
1984 // An enum to represent whether something is dealing with a call to begin()
1985 // or a call to end() in a range-based for loop.
1987  BEF_begin,
1988  BEF_end
1989 };
1990 
1991 /// Produce a note indicating which begin/end function was implicitly called
1992 /// by a C++11 for-range statement. This is often not obvious from the code,
1993 /// nor from the diagnostics produced when analysing the implicit expressions
1994 /// required in a for-range statement.
1995 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1996  BeginEndFunction BEF) {
1997  CallExpr *CE = dyn_cast<CallExpr>(E);
1998  if (!CE)
1999  return;
2000  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2001  if (!D)
2002  return;
2003  SourceLocation Loc = D->getLocation();
2004 
2005  std::string Description;
2006  bool IsTemplate = false;
2007  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2008  Description = SemaRef.getTemplateArgumentBindingsText(
2009  FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2010  IsTemplate = true;
2011  }
2012 
2013  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2014  << BEF << IsTemplate << Description << E->getType();
2015 }
2016 
2017 /// Build a variable declaration for a for-range statement.
2018 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2019  QualType Type, StringRef Name) {
2020  DeclContext *DC = SemaRef.CurContext;
2021  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2022  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2023  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2024  TInfo, SC_None);
2025  Decl->setImplicit();
2026  return Decl;
2027 }
2028 
2029 }
2030 
2031 static bool ObjCEnumerationCollection(Expr *Collection) {
2032  return !Collection->isTypeDependent()
2033  && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2034 }
2035 
2036 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2037 ///
2038 /// C++11 [stmt.ranged]:
2039 /// A range-based for statement is equivalent to
2040 ///
2041 /// {
2042 /// auto && __range = range-init;
2043 /// for ( auto __begin = begin-expr,
2044 /// __end = end-expr;
2045 /// __begin != __end;
2046 /// ++__begin ) {
2047 /// for-range-declaration = *__begin;
2048 /// statement
2049 /// }
2050 /// }
2051 ///
2052 /// The body of the loop is not available yet, since it cannot be analysed until
2053 /// we have determined the type of the for-range-declaration.
2055  SourceLocation CoawaitLoc, Stmt *First,
2056  SourceLocation ColonLoc, Expr *Range,
2057  SourceLocation RParenLoc,
2059  if (!First)
2060  return StmtError();
2061 
2062  if (Range && ObjCEnumerationCollection(Range))
2063  return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2064 
2065  DeclStmt *DS = dyn_cast<DeclStmt>(First);
2066  assert(DS && "first part of for range not a decl stmt");
2067 
2068  if (!DS->isSingleDecl()) {
2069  Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
2070  return StmtError();
2071  }
2072 
2073  Decl *LoopVar = DS->getSingleDecl();
2074  if (LoopVar->isInvalidDecl() || !Range ||
2075  DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2076  LoopVar->setInvalidDecl();
2077  return StmtError();
2078  }
2079 
2080  // Build the coroutine state immediately and not later during template
2081  // instantiation
2082  if (!CoawaitLoc.isInvalid()) {
2083  if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await"))
2084  return StmtError();
2085  }
2086 
2087  // Build auto && __range = range-init
2088  // Divide by 2, since the variables are in the inner scope (loop body).
2089  const auto DepthStr = std::to_string(S->getDepth() / 2);
2090  SourceLocation RangeLoc = Range->getLocStart();
2091  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2092  Context.getAutoRRefDeductType(),
2093  std::string("__range") + DepthStr);
2094  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2095  diag::err_for_range_deduction_failure)) {
2096  LoopVar->setInvalidDecl();
2097  return StmtError();
2098  }
2099 
2100  // Claim the type doesn't contain auto: we've already done the checking.
2101  DeclGroupPtrTy RangeGroup =
2102  BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2103  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2104  if (RangeDecl.isInvalid()) {
2105  LoopVar->setInvalidDecl();
2106  return StmtError();
2107  }
2108 
2109  return BuildCXXForRangeStmt(ForLoc, CoawaitLoc, ColonLoc, RangeDecl.get(),
2110  /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2111  /*Cond=*/nullptr, /*Inc=*/nullptr,
2112  DS, RParenLoc, Kind);
2113 }
2114 
2115 /// Create the initialization, compare, and increment steps for
2116 /// the range-based for loop expression.
2117 /// This function does not handle array-based for loops,
2118 /// which are created in Sema::BuildCXXForRangeStmt.
2119 ///
2120 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2121 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2122 /// CandidateSet and BEF are set and some non-success value is returned on
2123 /// failure.
2124 static Sema::ForRangeStatus
2125 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2126  QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2128  OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2129  ExprResult *EndExpr, BeginEndFunction *BEF) {
2130  DeclarationNameInfo BeginNameInfo(
2131  &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2132  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2133  ColonLoc);
2134 
2135  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2137  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2138 
2139  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2140  // - if _RangeT is a class type, the unqualified-ids begin and end are
2141  // looked up in the scope of class _RangeT as if by class member access
2142  // lookup (3.4.5), and if either (or both) finds at least one
2143  // declaration, begin-expr and end-expr are __range.begin() and
2144  // __range.end(), respectively;
2145  SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2146  SemaRef.LookupQualifiedName(EndMemberLookup, D);
2147 
2148  if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2149  SourceLocation RangeLoc = BeginVar->getLocation();
2150  *BEF = BeginMemberLookup.empty() ? BEF_end : BEF_begin;
2151 
2152  SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
2153  << RangeLoc << BeginRange->getType() << *BEF;
2155  }
2156  } else {
2157  // - otherwise, begin-expr and end-expr are begin(__range) and
2158  // end(__range), respectively, where begin and end are looked up with
2159  // argument-dependent lookup (3.4.2). For the purposes of this name
2160  // lookup, namespace std is an associated namespace.
2161 
2162  }
2163 
2164  *BEF = BEF_begin;
2165  Sema::ForRangeStatus RangeStatus =
2166  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2167  BeginMemberLookup, CandidateSet,
2168  BeginRange, BeginExpr);
2169 
2170  if (RangeStatus != Sema::FRS_Success) {
2171  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2172  SemaRef.Diag(BeginRange->getLocStart(), diag::note_in_for_range)
2173  << ColonLoc << BEF_begin << BeginRange->getType();
2174  return RangeStatus;
2175  }
2176  if (!CoawaitLoc.isInvalid()) {
2177  // FIXME: getCurScope() should not be used during template instantiation.
2178  // We should pick up the set of unqualified lookup results for operator
2179  // co_await during the initial parse.
2180  *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2181  BeginExpr->get());
2182  if (BeginExpr->isInvalid())
2184  }
2185  if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2186  diag::err_for_range_iter_deduction_failure)) {
2187  NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2189  }
2190 
2191  *BEF = BEF_end;
2192  RangeStatus =
2193  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2194  EndMemberLookup, CandidateSet,
2195  EndRange, EndExpr);
2196  if (RangeStatus != Sema::FRS_Success) {
2197  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2198  SemaRef.Diag(EndRange->getLocStart(), diag::note_in_for_range)
2199  << ColonLoc << BEF_end << EndRange->getType();
2200  return RangeStatus;
2201  }
2202  if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2203  diag::err_for_range_iter_deduction_failure)) {
2204  NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2206  }
2207  return Sema::FRS_Success;
2208 }
2209 
2210 /// Speculatively attempt to dereference an invalid range expression.
2211 /// If the attempt fails, this function will return a valid, null StmtResult
2212 /// and emit no diagnostics.
2214  SourceLocation ForLoc,
2215  SourceLocation CoawaitLoc,
2216  Stmt *LoopVarDecl,
2218  Expr *Range,
2219  SourceLocation RangeLoc,
2220  SourceLocation RParenLoc) {
2221  // Determine whether we can rebuild the for-range statement with a
2222  // dereferenced range expression.
2223  ExprResult AdjustedRange;
2224  {
2225  Sema::SFINAETrap Trap(SemaRef);
2226 
2227  AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2228  if (AdjustedRange.isInvalid())
2229  return StmtResult();
2230 
2231  StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2232  S, ForLoc, CoawaitLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(),
2233  RParenLoc, Sema::BFRK_Check);
2234  if (SR.isInvalid())
2235  return StmtResult();
2236  }
2237 
2238  // The attempt to dereference worked well enough that it could produce a valid
2239  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2240  // case there are any other (non-fatal) problems with it.
2241  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2242  << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2243  return SemaRef.ActOnCXXForRangeStmt(S, ForLoc, CoawaitLoc, LoopVarDecl,
2244  ColonLoc, AdjustedRange.get(), RParenLoc,
2246 }
2247 
2248 namespace {
2249 /// RAII object to automatically invalidate a declaration if an error occurs.
2250 struct InvalidateOnErrorScope {
2251  InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2252  : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2253  ~InvalidateOnErrorScope() {
2254  if (Enabled && Trap.hasErrorOccurred())
2255  D->setInvalidDecl();
2256  }
2257 
2258  DiagnosticErrorTrap Trap;
2259  Decl *D;
2260  bool Enabled;
2261 };
2262 }
2263 
2264 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2265 StmtResult
2267  SourceLocation ColonLoc, Stmt *RangeDecl,
2268  Stmt *Begin, Stmt *End, Expr *Cond,
2269  Expr *Inc, Stmt *LoopVarDecl,
2270  SourceLocation RParenLoc, BuildForRangeKind Kind) {
2271  // FIXME: This should not be used during template instantiation. We should
2272  // pick up the set of unqualified lookup results for the != and + operators
2273  // in the initial parse.
2274  //
2275  // Testcase (accepts-invalid):
2276  // template<typename T> void f() { for (auto x : T()) {} }
2277  // namespace N { struct X { X begin(); X end(); int operator*(); }; }
2278  // bool operator!=(N::X, N::X); void operator++(N::X);
2279  // void g() { f<N::X>(); }
2280  Scope *S = getCurScope();
2281 
2282  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2283  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2284  QualType RangeVarType = RangeVar->getType();
2285 
2286  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2287  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2288 
2289  // If we hit any errors, mark the loop variable as invalid if its type
2290  // contains 'auto'.
2291  InvalidateOnErrorScope Invalidate(*this, LoopVar,
2292  LoopVar->getType()->isUndeducedType());
2293 
2294  StmtResult BeginDeclStmt = Begin;
2295  StmtResult EndDeclStmt = End;
2296  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2297 
2298  if (RangeVarType->isDependentType()) {
2299  // The range is implicitly used as a placeholder when it is dependent.
2300  RangeVar->markUsed(Context);
2301 
2302  // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2303  // them in properly when we instantiate the loop.
2304  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2305  if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2306  for (auto *Binding : DD->bindings())
2307  Binding->setType(Context.DependentTy);
2308  LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2309  }
2310  } else if (!BeginDeclStmt.get()) {
2311  SourceLocation RangeLoc = RangeVar->getLocation();
2312 
2313  const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2314 
2315  ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2316  VK_LValue, ColonLoc);
2317  if (BeginRangeRef.isInvalid())
2318  return StmtError();
2319 
2320  ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2321  VK_LValue, ColonLoc);
2322  if (EndRangeRef.isInvalid())
2323  return StmtError();
2324 
2325  QualType AutoType = Context.getAutoDeductType();
2326  Expr *Range = RangeVar->getInit();
2327  if (!Range)
2328  return StmtError();
2329  QualType RangeType = Range->getType();
2330 
2331  if (RequireCompleteType(RangeLoc, RangeType,
2332  diag::err_for_range_incomplete_type))
2333  return StmtError();
2334 
2335  // Build auto __begin = begin-expr, __end = end-expr.
2336  // Divide by 2, since the variables are in the inner scope (loop body).
2337  const auto DepthStr = std::to_string(S->getDepth() / 2);
2338  VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2339  std::string("__begin") + DepthStr);
2340  VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2341  std::string("__end") + DepthStr);
2342 
2343  // Build begin-expr and end-expr and attach to __begin and __end variables.
2344  ExprResult BeginExpr, EndExpr;
2345  if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2346  // - if _RangeT is an array type, begin-expr and end-expr are __range and
2347  // __range + __bound, respectively, where __bound is the array bound. If
2348  // _RangeT is an array of unknown size or an array of incomplete type,
2349  // the program is ill-formed;
2350 
2351  // begin-expr is __range.
2352  BeginExpr = BeginRangeRef;
2353  if (!CoawaitLoc.isInvalid()) {
2354  BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2355  if (BeginExpr.isInvalid())
2356  return StmtError();
2357  }
2358  if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2359  diag::err_for_range_iter_deduction_failure)) {
2360  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2361  return StmtError();
2362  }
2363 
2364  // Find the array bound.
2365  ExprResult BoundExpr;
2366  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2367  BoundExpr = IntegerLiteral::Create(
2368  Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2369  else if (const VariableArrayType *VAT =
2370  dyn_cast<VariableArrayType>(UnqAT)) {
2371  // For a variably modified type we can't just use the expression within
2372  // the array bounds, since we don't want that to be re-evaluated here.
2373  // Rather, we need to determine what it was when the array was first
2374  // created - so we resort to using sizeof(vla)/sizeof(element).
2375  // For e.g.
2376  // void f(int b) {
2377  // int vla[b];
2378  // b = -1; <-- This should not affect the num of iterations below
2379  // for (int &c : vla) { .. }
2380  // }
2381 
2382  // FIXME: This results in codegen generating IR that recalculates the
2383  // run-time number of elements (as opposed to just using the IR Value
2384  // that corresponds to the run-time value of each bound that was
2385  // generated when the array was created.) If this proves too embarrassing
2386  // even for unoptimized IR, consider passing a magic-value/cookie to
2387  // codegen that then knows to simply use that initial llvm::Value (that
2388  // corresponds to the bound at time of array creation) within
2389  // getelementptr. But be prepared to pay the price of increasing a
2390  // customized form of coupling between the two components - which could
2391  // be hard to maintain as the codebase evolves.
2392 
2393  ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2394  EndVar->getLocation(), UETT_SizeOf,
2395  /*isType=*/true,
2396  CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2397  VAT->desugar(), RangeLoc))
2398  .getAsOpaquePtr(),
2399  EndVar->getSourceRange());
2400  if (SizeOfVLAExprR.isInvalid())
2401  return StmtError();
2402 
2403  ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2404  EndVar->getLocation(), UETT_SizeOf,
2405  /*isType=*/true,
2406  CreateParsedType(VAT->desugar(),
2407  Context.getTrivialTypeSourceInfo(
2408  VAT->getElementType(), RangeLoc))
2409  .getAsOpaquePtr(),
2410  EndVar->getSourceRange());
2411  if (SizeOfEachElementExprR.isInvalid())
2412  return StmtError();
2413 
2414  BoundExpr =
2415  ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2416  SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2417  if (BoundExpr.isInvalid())
2418  return StmtError();
2419 
2420  } else {
2421  // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2422  // UnqAT is not incomplete and Range is not type-dependent.
2423  llvm_unreachable("Unexpected array type in for-range");
2424  }
2425 
2426  // end-expr is __range + __bound.
2427  EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2428  BoundExpr.get());
2429  if (EndExpr.isInvalid())
2430  return StmtError();
2431  if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2432  diag::err_for_range_iter_deduction_failure)) {
2433  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2434  return StmtError();
2435  }
2436  } else {
2437  OverloadCandidateSet CandidateSet(RangeLoc,
2439  BeginEndFunction BEFFailure;
2440  ForRangeStatus RangeStatus = BuildNonArrayForRange(
2441  *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2442  EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2443  &BEFFailure);
2444 
2445  if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2446  BEFFailure == BEF_begin) {
2447  // If the range is being built from an array parameter, emit a
2448  // a diagnostic that it is being treated as a pointer.
2449  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2450  if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2451  QualType ArrayTy = PVD->getOriginalType();
2452  QualType PointerTy = PVD->getType();
2453  if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2454  Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
2455  << RangeLoc << PVD << ArrayTy << PointerTy;
2456  Diag(PVD->getLocation(), diag::note_declared_at);
2457  return StmtError();
2458  }
2459  }
2460  }
2461 
2462  // If building the range failed, try dereferencing the range expression
2463  // unless a diagnostic was issued or the end function is problematic.
2464  StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2465  CoawaitLoc,
2466  LoopVarDecl, ColonLoc,
2467  Range, RangeLoc,
2468  RParenLoc);
2469  if (SR.isInvalid() || SR.isUsable())
2470  return SR;
2471  }
2472 
2473  // Otherwise, emit diagnostics if we haven't already.
2474  if (RangeStatus == FRS_NoViableFunction) {
2475  Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2476  Diag(Range->getLocStart(), diag::err_for_range_invalid)
2477  << RangeLoc << Range->getType() << BEFFailure;
2478  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2479  }
2480  // Return an error if no fix was discovered.
2481  if (RangeStatus != FRS_Success)
2482  return StmtError();
2483  }
2484 
2485  assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2486  "invalid range expression in for loop");
2487 
2488  // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2489  // C++1z removes this restriction.
2490  QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2491  if (!Context.hasSameType(BeginType, EndType)) {
2492  Diag(RangeLoc, getLangOpts().CPlusPlus17
2493  ? diag::warn_for_range_begin_end_types_differ
2494  : diag::ext_for_range_begin_end_types_differ)
2495  << BeginType << EndType;
2496  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2497  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2498  }
2499 
2500  BeginDeclStmt =
2501  ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2502  EndDeclStmt =
2503  ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2504 
2505  const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2506  ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2507  VK_LValue, ColonLoc);
2508  if (BeginRef.isInvalid())
2509  return StmtError();
2510 
2511  ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2512  VK_LValue, ColonLoc);
2513  if (EndRef.isInvalid())
2514  return StmtError();
2515 
2516  // Build and check __begin != __end expression.
2517  NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2518  BeginRef.get(), EndRef.get());
2519  if (!NotEqExpr.isInvalid())
2520  NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2521  if (!NotEqExpr.isInvalid())
2522  NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2523  if (NotEqExpr.isInvalid()) {
2524  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2525  << RangeLoc << 0 << BeginRangeRef.get()->getType();
2526  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2527  if (!Context.hasSameType(BeginType, EndType))
2528  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2529  return StmtError();
2530  }
2531 
2532  // Build and check ++__begin expression.
2533  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2534  VK_LValue, ColonLoc);
2535  if (BeginRef.isInvalid())
2536  return StmtError();
2537 
2538  IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2539  if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2540  // FIXME: getCurScope() should not be used during template instantiation.
2541  // We should pick up the set of unqualified lookup results for operator
2542  // co_await during the initial parse.
2543  IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2544  if (!IncrExpr.isInvalid())
2545  IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2546  if (IncrExpr.isInvalid()) {
2547  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2548  << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2549  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2550  return StmtError();
2551  }
2552 
2553  // Build and check *__begin expression.
2554  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2555  VK_LValue, ColonLoc);
2556  if (BeginRef.isInvalid())
2557  return StmtError();
2558 
2559  ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2560  if (DerefExpr.isInvalid()) {
2561  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2562  << RangeLoc << 1 << BeginRangeRef.get()->getType();
2563  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2564  return StmtError();
2565  }
2566 
2567  // Attach *__begin as initializer for VD. Don't touch it if we're just
2568  // trying to determine whether this would be a valid range.
2569  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2570  AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2571  if (LoopVar->isInvalidDecl())
2572  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2573  }
2574  }
2575 
2576  // Don't bother to actually allocate the result if we're just trying to
2577  // determine whether it would be valid.
2578  if (Kind == BFRK_Check)
2579  return StmtResult();
2580 
2581  return new (Context) CXXForRangeStmt(
2582  RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
2583  cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
2584  IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2585  ColonLoc, RParenLoc);
2586 }
2587 
2588 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2589 /// statement.
2591  if (!S || !B)
2592  return StmtError();
2593  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2594 
2595  ForStmt->setBody(B);
2596  return S;
2597 }
2598 
2599 // Warn when the loop variable is a const reference that creates a copy.
2600 // Suggest using the non-reference type for copies. If a copy can be prevented
2601 // suggest the const reference type that would do so.
2602 // For instance, given "for (const &Foo : Range)", suggest
2603 // "for (const Foo : Range)" to denote a copy is made for the loop. If
2604 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2605 // the copy altogether.
2607  const VarDecl *VD,
2608  QualType RangeInitType) {
2609  const Expr *InitExpr = VD->getInit();
2610  if (!InitExpr)
2611  return;
2612 
2613  QualType VariableType = VD->getType();
2614 
2615  if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
2616  if (!Cleanups->cleanupsHaveSideEffects())
2617  InitExpr = Cleanups->getSubExpr();
2618 
2619  const MaterializeTemporaryExpr *MTE =
2620  dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2621 
2622  // No copy made.
2623  if (!MTE)
2624  return;
2625 
2626  const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
2627 
2628  // Searching for either UnaryOperator for dereference of a pointer or
2629  // CXXOperatorCallExpr for handling iterators.
2630  while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2631  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2632  E = CCE->getArg(0);
2633  } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2634  const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2635  E = ME->getBase();
2636  } else {
2637  const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2638  E = MTE->GetTemporaryExpr();
2639  }
2640  E = E->IgnoreImpCasts();
2641  }
2642 
2643  bool ReturnsReference = false;
2644  if (isa<UnaryOperator>(E)) {
2645  ReturnsReference = true;
2646  } else {
2647  const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2648  const FunctionDecl *FD = Call->getDirectCallee();
2649  QualType ReturnType = FD->getReturnType();
2650  ReturnsReference = ReturnType->isReferenceType();
2651  }
2652 
2653  if (ReturnsReference) {
2654  // Loop variable creates a temporary. Suggest either to go with
2655  // non-reference loop variable to indicate a copy is made, or
2656  // the correct time to bind a const reference.
2657  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2658  << VD << VariableType << E->getType();
2659  QualType NonReferenceType = VariableType.getNonReferenceType();
2660  NonReferenceType.removeLocalConst();
2661  QualType NewReferenceType =
2663  SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference)
2664  << NonReferenceType << NewReferenceType << VD->getSourceRange();
2665  } else {
2666  // The range always returns a copy, so a temporary is always created.
2667  // Suggest removing the reference from the loop variable.
2668  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2669  << VD << RangeInitType;
2670  QualType NonReferenceType = VariableType.getNonReferenceType();
2671  NonReferenceType.removeLocalConst();
2672  SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type)
2673  << NonReferenceType << VD->getSourceRange();
2674  }
2675 }
2676 
2677 // Warns when the loop variable can be changed to a reference type to
2678 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
2679 // "for (const Foo &x : Range)" if this form does not make a copy.
2681  const VarDecl *VD) {
2682  const Expr *InitExpr = VD->getInit();
2683  if (!InitExpr)
2684  return;
2685 
2686  QualType VariableType = VD->getType();
2687 
2688  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2689  if (!CE->getConstructor()->isCopyConstructor())
2690  return;
2691  } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2692  if (CE->getCastKind() != CK_LValueToRValue)
2693  return;
2694  } else {
2695  return;
2696  }
2697 
2698  // TODO: Determine a maximum size that a POD type can be before a diagnostic
2699  // should be emitted. Also, only ignore POD types with trivial copy
2700  // constructors.
2701  if (VariableType.isPODType(SemaRef.Context))
2702  return;
2703 
2704  // Suggest changing from a const variable to a const reference variable
2705  // if doing so will prevent a copy.
2706  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2707  << VD << VariableType << InitExpr->getType();
2708  SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type)
2709  << SemaRef.Context.getLValueReferenceType(VariableType)
2710  << VD->getSourceRange();
2711 }
2712 
2713 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2714 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
2715 /// using "const foo x" to show that a copy is made
2716 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
2717 /// Suggest either "const bar x" to keep the copying or "const foo& x" to
2718 /// prevent the copy.
2719 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
2720 /// Suggest "const foo &x" to prevent the copy.
2722  const CXXForRangeStmt *ForStmt) {
2723  if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2724  ForStmt->getLocStart()) &&
2725  SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2726  ForStmt->getLocStart()) &&
2727  SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2728  ForStmt->getLocStart())) {
2729  return;
2730  }
2731 
2732  const VarDecl *VD = ForStmt->getLoopVariable();
2733  if (!VD)
2734  return;
2735 
2736  QualType VariableType = VD->getType();
2737 
2738  if (VariableType->isIncompleteType())
2739  return;
2740 
2741  const Expr *InitExpr = VD->getInit();
2742  if (!InitExpr)
2743  return;
2744 
2745  if (VariableType->isReferenceType()) {
2747  ForStmt->getRangeInit()->getType());
2748  } else if (VariableType.isConstQualified()) {
2750  }
2751 }
2752 
2753 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2754 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2755 /// body cannot be performed until after the type of the range variable is
2756 /// determined.
2758  if (!S || !B)
2759  return StmtError();
2760 
2761  if (isa<ObjCForCollectionStmt>(S))
2762  return FinishObjCForCollectionStmt(S, B);
2763 
2764  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2765  ForStmt->setBody(B);
2766 
2767  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2768  diag::warn_empty_range_based_for_body);
2769 
2770  DiagnoseForRangeVariableCopies(*this, ForStmt);
2771 
2772  return S;
2773 }
2774 
2776  SourceLocation LabelLoc,
2777  LabelDecl *TheDecl) {
2778  setFunctionHasBranchIntoScope();
2779  TheDecl->markUsed(Context);
2780  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2781 }
2782 
2783 StmtResult
2785  Expr *E) {
2786  // Convert operand to void*
2787  if (!E->isTypeDependent()) {
2788  QualType ETy = E->getType();
2789  QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2790  ExprResult ExprRes = E;
2791  AssignConvertType ConvTy =
2792  CheckSingleAssignmentConstraints(DestTy, ExprRes);
2793  if (ExprRes.isInvalid())
2794  return StmtError();
2795  E = ExprRes.get();
2796  if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2797  return StmtError();
2798  }
2799 
2800  ExprResult ExprRes = ActOnFinishFullExpr(E);
2801  if (ExprRes.isInvalid())
2802  return StmtError();
2803  E = ExprRes.get();
2804 
2805  setFunctionHasIndirectGoto();
2806 
2807  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2808 }
2809 
2811  const Scope &DestScope) {
2812  if (!S.CurrentSEHFinally.empty() &&
2813  DestScope.Contains(*S.CurrentSEHFinally.back())) {
2814  S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2815  }
2816 }
2817 
2818 StmtResult
2820  Scope *S = CurScope->getContinueParent();
2821  if (!S) {
2822  // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2823  return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2824  }
2825  CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2826 
2827  return new (Context) ContinueStmt(ContinueLoc);
2828 }
2829 
2830 StmtResult
2832  Scope *S = CurScope->getBreakParent();
2833  if (!S) {
2834  // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2835  return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2836  }
2837  if (S->isOpenMPLoopScope())
2838  return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2839  << "break");
2840  CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2841 
2842  return new (Context) BreakStmt(BreakLoc);
2843 }
2844 
2845 /// Determine whether the given expression is a candidate for
2846 /// copy elision in either a return statement or a throw expression.
2847 ///
2848 /// \param ReturnType If we're determining the copy elision candidate for
2849 /// a return statement, this is the return type of the function. If we're
2850 /// determining the copy elision candidate for a throw expression, this will
2851 /// be a NULL type.
2852 ///
2853 /// \param E The expression being returned from the function or block, or
2854 /// being thrown.
2855 ///
2856 /// \param CESK Whether we allow function parameters or
2857 /// id-expressions that could be moved out of the function to be considered NRVO
2858 /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
2859 /// determine whether we should try to move as part of a return or throw (which
2860 /// does allow function parameters).
2861 ///
2862 /// \returns The NRVO candidate variable, if the return statement may use the
2863 /// NRVO, or NULL if there is no such candidate.
2865  CopyElisionSemanticsKind CESK) {
2866  // - in a return statement in a function [where] ...
2867  // ... the expression is the name of a non-volatile automatic object ...
2868  DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2869  if (!DR || DR->refersToEnclosingVariableOrCapture())
2870  return nullptr;
2871  VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2872  if (!VD)
2873  return nullptr;
2874 
2875  if (isCopyElisionCandidate(ReturnType, VD, CESK))
2876  return VD;
2877  return nullptr;
2878 }
2879 
2880 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2881  CopyElisionSemanticsKind CESK) {
2882  QualType VDType = VD->getType();
2883  // - in a return statement in a function with ...
2884  // ... a class return type ...
2885  if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2886  if (!ReturnType->isRecordType())
2887  return false;
2888  // ... the same cv-unqualified type as the function return type ...
2889  // When considering moving this expression out, allow dissimilar types.
2890  if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() &&
2891  !Context.hasSameUnqualifiedType(ReturnType, VDType))
2892  return false;
2893  }
2894 
2895  // ...object (other than a function or catch-clause parameter)...
2896  if (VD->getKind() != Decl::Var &&
2897  !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar))
2898  return false;
2899  if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable())
2900  return false;
2901 
2902  // ...automatic...
2903  if (!VD->hasLocalStorage()) return false;
2904 
2905  // Return false if VD is a __block variable. We don't want to implicitly move
2906  // out of a __block variable during a return because we cannot assume the
2907  // variable will no longer be used.
2908  if (VD->hasAttr<BlocksAttr>()) return false;
2909 
2910  if (CESK & CES_AllowDifferentTypes)
2911  return true;
2912 
2913  // ...non-volatile...
2914  if (VD->getType().isVolatileQualified()) return false;
2915 
2916  // Variables with higher required alignment than their type's ABI
2917  // alignment cannot use NRVO.
2918  if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
2919  Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2920  return false;
2921 
2922  return true;
2923 }
2924 
2925 /// Try to perform the initialization of a potentially-movable value,
2926 /// which is the operand to a return or throw statement.
2927 ///
2928 /// This routine implements C++14 [class.copy]p32, which attempts to treat
2929 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2930 /// then falls back to treating them as lvalues if that failed.
2931 ///
2932 /// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject
2933 /// resolutions that find non-constructors, such as derived-to-base conversions
2934 /// or `operator T()&&` member functions. If false, do consider such
2935 /// conversion sequences.
2936 ///
2937 /// \param Res We will fill this in if move-initialization was possible.
2938 /// If move-initialization is not possible, such that we must fall back to
2939 /// treating the operand as an lvalue, we will leave Res in its original
2940 /// invalid state.
2942  const InitializedEntity &Entity,
2943  const VarDecl *NRVOCandidate,
2944  QualType ResultType,
2945  Expr *&Value,
2946  bool ConvertingConstructorsOnly,
2947  ExprResult &Res) {
2949  CK_NoOp, Value, VK_XValue);
2950 
2951  Expr *InitExpr = &AsRvalue;
2952 
2954  Value->getLocStart(), Value->getLocStart());
2955 
2956  InitializationSequence Seq(S, Entity, Kind, InitExpr);
2957 
2958  if (!Seq)
2959  return;
2960 
2961  for (const InitializationSequence::Step &Step : Seq.steps()) {
2964  continue;
2965 
2966  FunctionDecl *FD = Step.Function.Function;
2967  if (ConvertingConstructorsOnly) {
2968  if (isa<CXXConstructorDecl>(FD)) {
2969  // C++14 [class.copy]p32:
2970  // [...] If the first overload resolution fails or was not performed,
2971  // or if the type of the first parameter of the selected constructor
2972  // is not an rvalue reference to the object's type (possibly
2973  // cv-qualified), overload resolution is performed again, considering
2974  // the object as an lvalue.
2975  const RValueReferenceType *RRefType =
2977  if (!RRefType)
2978  break;
2979  if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2980  NRVOCandidate->getType()))
2981  break;
2982  } else {
2983  continue;
2984  }
2985  } else {
2986  if (isa<CXXConstructorDecl>(FD)) {
2987  // Check that overload resolution selected a constructor taking an
2988  // rvalue reference. If it selected an lvalue reference, then we
2989  // didn't need to cast this thing to an rvalue in the first place.
2990  if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType()))
2991  break;
2992  } else if (isa<CXXMethodDecl>(FD)) {
2993  // Check that overload resolution selected a conversion operator
2994  // taking an rvalue reference.
2995  if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue)
2996  break;
2997  } else {
2998  continue;
2999  }
3000  }
3001 
3002  // Promote "AsRvalue" to the heap, since we now need this
3003  // expression node to persist.
3004  Value = ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp,
3005  Value, nullptr, VK_XValue);
3006 
3007  // Complete type-checking the initialization of the return type
3008  // using the constructor we found.
3009  Res = Seq.Perform(S, Entity, Kind, Value);
3010  }
3011 }
3012 
3013 /// Perform the initialization of a potentially-movable value, which
3014 /// is the result of return value.
3015 ///
3016 /// This routine implements C++14 [class.copy]p32, which attempts to treat
3017 /// returned lvalues as rvalues in certain cases (to prefer move construction),
3018 /// then falls back to treating them as lvalues if that failed.
3019 ExprResult
3021  const VarDecl *NRVOCandidate,
3022  QualType ResultType,
3023  Expr *Value,
3024  bool AllowNRVO) {
3025  // C++14 [class.copy]p32:
3026  // When the criteria for elision of a copy/move operation are met, but not for
3027  // an exception-declaration, and the object to be copied is designated by an
3028  // lvalue, or when the expression in a return statement is a (possibly
3029  // parenthesized) id-expression that names an object with automatic storage
3030  // duration declared in the body or parameter-declaration-clause of the
3031  // innermost enclosing function or lambda-expression, overload resolution to
3032  // select the constructor for the copy is first performed as if the object
3033  // were designated by an rvalue.
3034  ExprResult Res = ExprError();
3035 
3036  if (AllowNRVO) {
3037  bool AffectedByCWG1579 = false;
3038 
3039  if (!NRVOCandidate) {
3040  NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default);
3041  if (NRVOCandidate &&
3042  !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11,
3043  Value->getExprLoc())) {
3044  const VarDecl *NRVOCandidateInCXX11 =
3045  getCopyElisionCandidate(ResultType, Value, CES_FormerDefault);
3046  AffectedByCWG1579 = (!NRVOCandidateInCXX11);
3047  }
3048  }
3049 
3050  if (NRVOCandidate) {
3051  TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value,
3052  true, Res);
3053  }
3054 
3055  if (!Res.isInvalid() && AffectedByCWG1579) {
3056  QualType QT = NRVOCandidate->getType();
3057  if (QT.getNonReferenceType()
3059  .isTriviallyCopyableType(Context)) {
3060  // Adding 'std::move' around a trivially copyable variable is probably
3061  // pointless. Don't suggest it.
3062  } else {
3063  // Common cases for this are returning unique_ptr<Derived> from a
3064  // function of return type unique_ptr<Base>, or returning T from a
3065  // function of return type Expected<T>. This is totally fine in a
3066  // post-CWG1579 world, but was not fine before.
3067  assert(!ResultType.isNull());
3068  SmallString<32> Str;
3069  Str += "std::move(";
3070  Str += NRVOCandidate->getDeclName().getAsString();
3071  Str += ")";
3072  Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11)
3073  << Value->getSourceRange()
3074  << NRVOCandidate->getDeclName() << ResultType << QT;
3075  Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11)
3076  << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3077  }
3078  } else if (Res.isInvalid() &&
3079  !getDiagnostics().isIgnored(diag::warn_return_std_move,
3080  Value->getExprLoc())) {
3081  const VarDecl *FakeNRVOCandidate =
3082  getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove);
3083  if (FakeNRVOCandidate) {
3084  QualType QT = FakeNRVOCandidate->getType();
3085  if (QT->isLValueReferenceType()) {
3086  // Adding 'std::move' around an lvalue reference variable's name is
3087  // dangerous. Don't suggest it.
3088  } else if (QT.getNonReferenceType()
3090  .isTriviallyCopyableType(Context)) {
3091  // Adding 'std::move' around a trivially copyable variable is probably
3092  // pointless. Don't suggest it.
3093  } else {
3094  ExprResult FakeRes = ExprError();
3095  Expr *FakeValue = Value;
3096  TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType,
3097  FakeValue, false, FakeRes);
3098  if (!FakeRes.isInvalid()) {
3099  bool IsThrow =
3101  SmallString<32> Str;
3102  Str += "std::move(";
3103  Str += FakeNRVOCandidate->getDeclName().getAsString();
3104  Str += ")";
3105  Diag(Value->getExprLoc(), diag::warn_return_std_move)
3106  << Value->getSourceRange()
3107  << FakeNRVOCandidate->getDeclName() << IsThrow;
3108  Diag(Value->getExprLoc(), diag::note_add_std_move)
3109  << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3110  }
3111  }
3112  }
3113  }
3114  }
3115 
3116  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3117  // above, or overload resolution failed. Either way, we need to try
3118  // (again) now with the return value expression as written.
3119  if (Res.isInvalid())
3120  Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
3121 
3122  return Res;
3123 }
3124 
3125 /// Determine whether the declared return type of the specified function
3126 /// contains 'auto'.
3128  const FunctionProtoType *FPT =
3130  return FPT->getReturnType()->isUndeducedType();
3131 }
3132 
3133 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3134 /// for capturing scopes.
3135 ///
3136 StmtResult
3138  // If this is the first return we've seen, infer the return type.
3139  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3140  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3141  QualType FnRetType = CurCap->ReturnType;
3142  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3143  bool HasDeducedReturnType =
3144  CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3145 
3146  if (ExprEvalContexts.back().Context ==
3147  ExpressionEvaluationContext::DiscardedStatement &&
3148  (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3149  if (RetValExp) {
3150  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3151  if (ER.isInvalid())
3152  return StmtError();
3153  RetValExp = ER.get();
3154  }
3155  return new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3156  }
3157 
3158  if (HasDeducedReturnType) {
3159  // In C++1y, the return type may involve 'auto'.
3160  // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3161  FunctionDecl *FD = CurLambda->CallOperator;
3162  if (CurCap->ReturnType.isNull())
3163  CurCap->ReturnType = FD->getReturnType();
3164 
3165  AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3166  assert(AT && "lost auto type from lambda return type");
3167  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3168  FD->setInvalidDecl();
3169  return StmtError();
3170  }
3171  CurCap->ReturnType = FnRetType = FD->getReturnType();
3172  } else if (CurCap->HasImplicitReturnType) {
3173  // For blocks/lambdas with implicit return types, we check each return
3174  // statement individually, and deduce the common return type when the block
3175  // or lambda is completed.
3176  // FIXME: Fold this into the 'auto' codepath above.
3177  if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3178  ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3179  if (Result.isInvalid())
3180  return StmtError();
3181  RetValExp = Result.get();
3182 
3183  // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3184  // when deducing a return type for a lambda-expression (or by extension
3185  // for a block). These rules differ from the stated C++11 rules only in
3186  // that they remove top-level cv-qualifiers.
3187  if (!CurContext->isDependentContext())
3188  FnRetType = RetValExp->getType().getUnqualifiedType();
3189  else
3190  FnRetType = CurCap->ReturnType = Context.DependentTy;
3191  } else {
3192  if (RetValExp) {
3193  // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3194  // initializer list, because it is not an expression (even
3195  // though we represent it as one). We still deduce 'void'.
3196  Diag(ReturnLoc, diag::err_lambda_return_init_list)
3197  << RetValExp->getSourceRange();
3198  }
3199 
3200  FnRetType = Context.VoidTy;
3201  }
3202 
3203  // Although we'll properly infer the type of the block once it's completed,
3204  // make sure we provide a return type now for better error recovery.
3205  if (CurCap->ReturnType.isNull())
3206  CurCap->ReturnType = FnRetType;
3207  }
3208  assert(!FnRetType.isNull());
3209 
3210  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3211  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
3212  Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3213  return StmtError();
3214  }
3215  } else if (CapturedRegionScopeInfo *CurRegion =
3216  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3217  Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3218  return StmtError();
3219  } else {
3220  assert(CurLambda && "unknown kind of captured scope");
3221  if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
3222  ->getNoReturnAttr()) {
3223  Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3224  return StmtError();
3225  }
3226  }
3227 
3228  // Otherwise, verify that this result type matches the previous one. We are
3229  // pickier with blocks than for normal functions because we don't have GCC
3230  // compatibility to worry about here.
3231  const VarDecl *NRVOCandidate = nullptr;
3232  if (FnRetType->isDependentType()) {
3233  // Delay processing for now. TODO: there are lots of dependent
3234  // types we can conclusively prove aren't void.
3235  } else if (FnRetType->isVoidType()) {
3236  if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3237  !(getLangOpts().CPlusPlus &&
3238  (RetValExp->isTypeDependent() ||
3239  RetValExp->getType()->isVoidType()))) {
3240  if (!getLangOpts().CPlusPlus &&
3241  RetValExp->getType()->isVoidType())
3242  Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3243  else {
3244  Diag(ReturnLoc, diag::err_return_block_has_expr);
3245  RetValExp = nullptr;
3246  }
3247  }
3248  } else if (!RetValExp) {
3249  return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3250  } else if (!RetValExp->isTypeDependent()) {
3251  // we have a non-void block with an expression, continue checking
3252 
3253  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3254  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3255  // function return.
3256 
3257  // In C++ the return statement is handled via a copy initialization.
3258  // the C version of which boils down to CheckSingleAssignmentConstraints.
3259  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3261  FnRetType,
3262  NRVOCandidate != nullptr);
3263  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3264  FnRetType, RetValExp);
3265  if (Res.isInvalid()) {
3266  // FIXME: Cleanup temporaries here, anyway?
3267  return StmtError();
3268  }
3269  RetValExp = Res.get();
3270  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3271  } else {
3272  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3273  }
3274 
3275  if (RetValExp) {
3276  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3277  if (ER.isInvalid())
3278  return StmtError();
3279  RetValExp = ER.get();
3280  }
3281  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
3282  NRVOCandidate);
3283 
3284  // If we need to check for the named return value optimization,
3285  // or if we need to infer the return type,
3286  // save the return statement in our scope for later processing.
3287  if (CurCap->HasImplicitReturnType || NRVOCandidate)
3288  FunctionScopes.back()->Returns.push_back(Result);
3289 
3290  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3291  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3292 
3293  return Result;
3294 }
3295 
3296 namespace {
3297 /// Marks all typedefs in all local classes in a type referenced.
3298 ///
3299 /// In a function like
3300 /// auto f() {
3301 /// struct S { typedef int a; };
3302 /// return S();
3303 /// }
3304 ///
3305 /// the local type escapes and could be referenced in some TUs but not in
3306 /// others. Pretend that all local typedefs are always referenced, to not warn
3307 /// on this. This isn't necessary if f has internal linkage, or the typedef
3308 /// is private.
3309 class LocalTypedefNameReferencer
3310  : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3311 public:
3312  LocalTypedefNameReferencer(Sema &S) : S(S) {}
3313  bool VisitRecordType(const RecordType *RT);
3314 private:
3315  Sema &S;
3316 };
3317 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3318  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3319  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3320  R->isDependentType())
3321  return true;
3322  for (auto *TmpD : R->decls())
3323  if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3324  if (T->getAccess() != AS_private || R->hasFriends())
3325  S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3326  return true;
3327 }
3328 }
3329 
3332  while (auto ATL = TL.getAs<AttributedTypeLoc>())
3333  TL = ATL.getModifiedLoc().IgnoreParens();
3334  return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
3335 }
3336 
3337 /// Deduce the return type for a function from a returned expression, per
3338 /// C++1y [dcl.spec.auto]p6.
3340  SourceLocation ReturnLoc,
3341  Expr *&RetExpr,
3342  AutoType *AT) {
3343  // If this is the conversion function for a lambda, we choose to deduce it
3344  // type from the corresponding call operator, not from the synthesized return
3345  // statement within it. See Sema::DeduceReturnType.
3347  return false;
3348 
3349  TypeLoc OrigResultType = getReturnTypeLoc(FD);
3350  QualType Deduced;
3351 
3352  if (RetExpr && isa<InitListExpr>(RetExpr)) {
3353  // If the deduction is for a return statement and the initializer is
3354  // a braced-init-list, the program is ill-formed.
3355  Diag(RetExpr->getExprLoc(),
3356  getCurLambda() ? diag::err_lambda_return_init_list
3357  : diag::err_auto_fn_return_init_list)
3358  << RetExpr->getSourceRange();
3359  return true;
3360  }
3361 
3362  if (FD->isDependentContext()) {
3363  // C++1y [dcl.spec.auto]p12:
3364  // Return type deduction [...] occurs when the definition is
3365  // instantiated even if the function body contains a return
3366  // statement with a non-type-dependent operand.
3367  assert(AT->isDeduced() && "should have deduced to dependent type");
3368  return false;
3369  }
3370 
3371  if (RetExpr) {
3372  // Otherwise, [...] deduce a value for U using the rules of template
3373  // argument deduction.
3374  DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3375 
3376  if (DAR == DAR_Failed && !FD->isInvalidDecl())
3377  Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3378  << OrigResultType.getType() << RetExpr->getType();
3379 
3380  if (DAR != DAR_Succeeded)
3381  return true;
3382 
3383  // If a local type is part of the returned type, mark its fields as
3384  // referenced.
3385  LocalTypedefNameReferencer Referencer(*this);
3386  Referencer.TraverseType(RetExpr->getType());
3387  } else {
3388  // In the case of a return with no operand, the initializer is considered
3389  // to be void().
3390  //
3391  // Deduction here can only succeed if the return type is exactly 'cv auto'
3392  // or 'decltype(auto)', so just check for that case directly.
3393  if (!OrigResultType.getType()->getAs<AutoType>()) {
3394  Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3395  << OrigResultType.getType();
3396  return true;
3397  }
3398  // We always deduce U = void in this case.
3399  Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3400  if (Deduced.isNull())
3401  return true;
3402  }
3403 
3404  // If a function with a declared return type that contains a placeholder type
3405  // has multiple return statements, the return type is deduced for each return
3406  // statement. [...] if the type deduced is not the same in each deduction,
3407  // the program is ill-formed.
3408  QualType DeducedT = AT->getDeducedType();
3409  if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
3410  AutoType *NewAT = Deduced->getContainedAutoType();
3411  // It is possible that NewAT->getDeducedType() is null. When that happens,
3412  // we should not crash, instead we ignore this deduction.
3413  if (NewAT->getDeducedType().isNull())
3414  return false;
3415 
3416  CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3417  DeducedT);
3418  CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3419  NewAT->getDeducedType());
3420  if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3421  const LambdaScopeInfo *LambdaSI = getCurLambda();
3422  if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3423  Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3424  << NewAT->getDeducedType() << DeducedT
3425  << true /*IsLambda*/;
3426  } else {
3427  Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3428  << (AT->isDecltypeAuto() ? 1 : 0)
3429  << NewAT->getDeducedType() << DeducedT;
3430  }
3431  return true;
3432  }
3433  } else if (!FD->isInvalidDecl()) {
3434  // Update all declarations of the function to have the deduced return type.
3435  Context.adjustDeducedFunctionResultType(FD, Deduced);
3436  }
3437 
3438  return false;
3439 }
3440 
3441 StmtResult
3443  Scope *CurScope) {
3444  StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
3445  if (R.isInvalid() || ExprEvalContexts.back().Context ==
3446  ExpressionEvaluationContext::DiscardedStatement)
3447  return R;
3448 
3449  if (VarDecl *VD =
3450  const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3451  CurScope->addNRVOCandidate(VD);
3452  } else {
3453  CurScope->setNoNRVO();
3454  }
3455 
3456  CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3457 
3458  return R;
3459 }
3460 
3462  // Check for unexpanded parameter packs.
3463  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3464  return StmtError();
3465 
3466  if (isa<CapturingScopeInfo>(getCurFunction()))
3467  return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3468 
3469  QualType FnRetType;
3470  QualType RelatedRetType;
3471  const AttrVec *Attrs = nullptr;
3472  bool isObjCMethod = false;
3473 
3474  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3475  FnRetType = FD->getReturnType();
3476  if (FD->hasAttrs())
3477  Attrs = &FD->getAttrs();
3478  if (FD->isNoReturn())
3479  Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3480  << FD->getDeclName();
3481  if (FD->isMain() && RetValExp)
3482  if (isa<CXXBoolLiteralExpr>(RetValExp))
3483  Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3484  << RetValExp->getSourceRange();
3485  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3486  FnRetType = MD->getReturnType();
3487  isObjCMethod = true;
3488  if (MD->hasAttrs())
3489  Attrs = &MD->getAttrs();
3490  if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3491  // In the implementation of a method with a related return type, the
3492  // type used to type-check the validity of return statements within the
3493  // method body is a pointer to the type of the class being implemented.
3494  RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3495  RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3496  }
3497  } else // If we don't have a function/method context, bail.
3498  return StmtError();
3499 
3500  // C++1z: discarded return statements are not considered when deducing a
3501  // return type.
3502  if (ExprEvalContexts.back().Context ==
3503  ExpressionEvaluationContext::DiscardedStatement &&
3504  FnRetType->getContainedAutoType()) {
3505  if (RetValExp) {
3506  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3507  if (ER.isInvalid())
3508  return StmtError();
3509  RetValExp = ER.get();
3510  }
3511  return new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3512  }
3513 
3514  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3515  // deduction.
3516  if (getLangOpts().CPlusPlus14) {
3517  if (AutoType *AT = FnRetType->getContainedAutoType()) {
3518  FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3519  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3520  FD->setInvalidDecl();
3521  return StmtError();
3522  } else {
3523  FnRetType = FD->getReturnType();
3524  }
3525  }
3526  }
3527 
3528  bool HasDependentReturnType = FnRetType->isDependentType();
3529 
3530  ReturnStmt *Result = nullptr;
3531  if (FnRetType->isVoidType()) {
3532  if (RetValExp) {
3533  if (isa<InitListExpr>(RetValExp)) {
3534  // We simply never allow init lists as the return value of void
3535  // functions. This is compatible because this was never allowed before,
3536  // so there's no legacy code to deal with.
3537  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3538  int FunctionKind = 0;
3539  if (isa<ObjCMethodDecl>(CurDecl))
3540  FunctionKind = 1;
3541  else if (isa<CXXConstructorDecl>(CurDecl))
3542  FunctionKind = 2;
3543  else if (isa<CXXDestructorDecl>(CurDecl))
3544  FunctionKind = 3;
3545 
3546  Diag(ReturnLoc, diag::err_return_init_list)
3547  << CurDecl->getDeclName() << FunctionKind
3548  << RetValExp->getSourceRange();
3549 
3550  // Drop the expression.
3551  RetValExp = nullptr;
3552  } else if (!RetValExp->isTypeDependent()) {
3553  // C99 6.8.6.4p1 (ext_ since GCC warns)
3554  unsigned D = diag::ext_return_has_expr;
3555  if (RetValExp->getType()->isVoidType()) {
3556  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3557  if (isa<CXXConstructorDecl>(CurDecl) ||
3558  isa<CXXDestructorDecl>(CurDecl))
3559  D = diag::err_ctor_dtor_returns_void;
3560  else
3561  D = diag::ext_return_has_void_expr;
3562  }
3563  else {
3564  ExprResult Result = RetValExp;
3565  Result = IgnoredValueConversions(Result.get());
3566  if (Result.isInvalid())
3567  return StmtError();
3568  RetValExp = Result.get();
3569  RetValExp = ImpCastExprToType(RetValExp,
3570  Context.VoidTy, CK_ToVoid).get();
3571  }
3572  // return of void in constructor/destructor is illegal in C++.
3573  if (D == diag::err_ctor_dtor_returns_void) {
3574  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3575  Diag(ReturnLoc, D)
3576  << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3577  << RetValExp->getSourceRange();
3578  }
3579  // return (some void expression); is legal in C++.
3580  else if (D != diag::ext_return_has_void_expr ||
3581  !getLangOpts().CPlusPlus) {
3582  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3583 
3584  int FunctionKind = 0;
3585  if (isa<ObjCMethodDecl>(CurDecl))
3586  FunctionKind = 1;
3587  else if (isa<CXXConstructorDecl>(CurDecl))
3588  FunctionKind = 2;
3589  else if (isa<CXXDestructorDecl>(CurDecl))
3590  FunctionKind = 3;
3591 
3592  Diag(ReturnLoc, D)
3593  << CurDecl->getDeclName() << FunctionKind
3594  << RetValExp->getSourceRange();
3595  }
3596  }
3597 
3598  if (RetValExp) {
3599  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3600  if (ER.isInvalid())
3601  return StmtError();
3602  RetValExp = ER.get();
3603  }
3604  }
3605 
3606  Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3607  } else if (!RetValExp && !HasDependentReturnType) {
3608  FunctionDecl *FD = getCurFunctionDecl();
3609 
3610  unsigned DiagID;
3611  if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3612  // C++11 [stmt.return]p2
3613  DiagID = diag::err_constexpr_return_missing_expr;
3614  FD->setInvalidDecl();
3615  } else if (getLangOpts().C99) {
3616  // C99 6.8.6.4p1 (ext_ since GCC warns)
3617  DiagID = diag::ext_return_missing_expr;
3618  } else {
3619  // C90 6.6.6.4p4
3620  DiagID = diag::warn_return_missing_expr;
3621  }
3622 
3623  if (FD)
3624  Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
3625  else
3626  Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3627 
3628  Result = new (Context) ReturnStmt(ReturnLoc);
3629  } else {
3630  assert(RetValExp || HasDependentReturnType);
3631  const VarDecl *NRVOCandidate = nullptr;
3632 
3633  QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3634 
3635  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3636  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3637  // function return.
3638 
3639  // In C++ the return statement is handled via a copy initialization,
3640  // the C version of which boils down to CheckSingleAssignmentConstraints.
3641  if (RetValExp)
3642  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3643  if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3644  // we have a non-void function with an expression, continue checking
3646  RetType,
3647  NRVOCandidate != nullptr);
3648  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3649  RetType, RetValExp);
3650  if (Res.isInvalid()) {
3651  // FIXME: Clean up temporaries here anyway?
3652  return StmtError();
3653  }
3654  RetValExp = Res.getAs<Expr>();
3655 
3656  // If we have a related result type, we need to implicitly
3657  // convert back to the formal result type. We can't pretend to
3658  // initialize the result again --- we might end double-retaining
3659  // --- so instead we initialize a notional temporary.
3660  if (!RelatedRetType.isNull()) {
3661  Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3662  FnRetType);
3663  Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3664  if (Res.isInvalid()) {
3665  // FIXME: Clean up temporaries here anyway?
3666  return StmtError();
3667  }
3668  RetValExp = Res.getAs<Expr>();
3669  }
3670 
3671  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3672  getCurFunctionDecl());
3673  }
3674 
3675  if (RetValExp) {
3676  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3677  if (ER.isInvalid())
3678  return StmtError();
3679  RetValExp = ER.get();
3680  }
3681  Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
3682  }
3683 
3684  // If we need to check for the named return value optimization, save the
3685  // return statement in our scope for later processing.
3686  if (Result->getNRVOCandidate())
3687  FunctionScopes.back()->Returns.push_back(Result);
3688 
3689  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3690  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3691 
3692  return Result;
3693 }
3694 
3695 StmtResult
3697  SourceLocation RParen, Decl *Parm,
3698  Stmt *Body) {
3699  VarDecl *Var = cast_or_null<VarDecl>(Parm);
3700  if (Var && Var->isInvalidDecl())
3701  return StmtError();
3702 
3703  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3704 }
3705 
3706 StmtResult
3708  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3709 }
3710 
3711 StmtResult
3713  MultiStmtArg CatchStmts, Stmt *Finally) {
3714  if (!getLangOpts().ObjCExceptions)
3715  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3716 
3717  setFunctionHasBranchProtectedScope();
3718  unsigned NumCatchStmts = CatchStmts.size();
3719  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3720  NumCatchStmts, Finally);
3721 }
3722 
3724  if (Throw) {
3725  ExprResult Result = DefaultLvalueConversion(Throw);
3726  if (Result.isInvalid())
3727  return StmtError();
3728 
3729  Result = ActOnFinishFullExpr(Result.get());
3730  if (Result.isInvalid())
3731  return StmtError();
3732  Throw = Result.get();
3733 
3734  QualType ThrowType = Throw->getType();
3735  // Make sure the expression type is an ObjC pointer or "void *".
3736  if (!ThrowType->isDependentType() &&
3737  !ThrowType->isObjCObjectPointerType()) {
3738  const PointerType *PT = ThrowType->getAs<PointerType>();
3739  if (!PT || !PT->getPointeeType()->isVoidType())
3740  return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
3741  << Throw->getType() << Throw->getSourceRange());
3742  }
3743  }
3744 
3745  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3746 }
3747 
3748 StmtResult
3750  Scope *CurScope) {
3751  if (!getLangOpts().ObjCExceptions)
3752  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3753 
3754  if (!Throw) {
3755  // @throw without an expression designates a rethrow (which must occur
3756  // in the context of an @catch clause).
3757  Scope *AtCatchParent = CurScope;
3758  while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3759  AtCatchParent = AtCatchParent->getParent();
3760  if (!AtCatchParent)
3761  return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
3762  }
3763  return BuildObjCAtThrowStmt(AtLoc, Throw);
3764 }
3765 
3766 ExprResult
3768  ExprResult result = DefaultLvalueConversion(operand);
3769  if (result.isInvalid())
3770  return ExprError();
3771  operand = result.get();
3772 
3773  // Make sure the expression type is an ObjC pointer or "void *".
3774  QualType type = operand->getType();
3775  if (!type->isDependentType() &&
3776  !type->isObjCObjectPointerType()) {
3777  const PointerType *pointerType = type->getAs<PointerType>();
3778  if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3779  if (getLangOpts().CPlusPlus) {
3780  if (RequireCompleteType(atLoc, type,
3781  diag::err_incomplete_receiver_type))
3782  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3783  << type << operand->getSourceRange();
3784 
3785  ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3786  if (result.isInvalid())
3787  return ExprError();
3788  if (!result.isUsable())
3789  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3790  << type << operand->getSourceRange();
3791 
3792  operand = result.get();
3793  } else {
3794  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3795  << type << operand->getSourceRange();
3796  }
3797  }
3798  }
3799 
3800  // The operand to @synchronized is a full-expression.
3801  return ActOnFinishFullExpr(operand);
3802 }
3803 
3804 StmtResult
3806  Stmt *SyncBody) {
3807  // We can't jump into or indirect-jump out of a @synchronized block.
3808  setFunctionHasBranchProtectedScope();
3809  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3810 }
3811 
3812 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3813 /// and creates a proper catch handler from them.
3814 StmtResult
3816  Stmt *HandlerBlock) {
3817  // There's nothing to test that ActOnExceptionDecl didn't already test.
3818  return new (Context)
3819  CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3820 }
3821 
3822 StmtResult
3824  setFunctionHasBranchProtectedScope();
3825  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3826 }
3827 
3828 namespace {
3829 class CatchHandlerType {
3830  QualType QT;
3831  unsigned IsPointer : 1;
3832 
3833  // This is a special constructor to be used only with DenseMapInfo's
3834  // getEmptyKey() and getTombstoneKey() functions.
3835  friend struct llvm::DenseMapInfo<CatchHandlerType>;
3836  enum Unique { ForDenseMap };
3837  CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3838 
3839 public:
3840  /// Used when creating a CatchHandlerType from a handler type; will determine
3841  /// whether the type is a pointer or reference and will strip off the top
3842  /// level pointer and cv-qualifiers.
3843  CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3844  if (QT->isPointerType())
3845  IsPointer = true;
3846 
3847  if (IsPointer || QT->isReferenceType())
3848  QT = QT->getPointeeType();
3849  QT = QT.getUnqualifiedType();
3850  }
3851 
3852  /// Used when creating a CatchHandlerType from a base class type; pretends the
3853  /// type passed in had the pointer qualifier, does not need to get an
3854  /// unqualified type.
3855  CatchHandlerType(QualType QT, bool IsPointer)
3856  : QT(QT), IsPointer(IsPointer) {}
3857 
3858  QualType underlying() const { return QT; }
3859  bool isPointer() const { return IsPointer; }
3860 
3861  friend bool operator==(const CatchHandlerType &LHS,
3862  const CatchHandlerType &RHS) {
3863  // If the pointer qualification does not match, we can return early.
3864  if (LHS.IsPointer != RHS.IsPointer)
3865  return false;
3866  // Otherwise, check the underlying type without cv-qualifiers.
3867  return LHS.QT == RHS.QT;
3868  }
3869 };
3870 } // namespace
3871 
3872 namespace llvm {
3873 template <> struct DenseMapInfo<CatchHandlerType> {
3874  static CatchHandlerType getEmptyKey() {
3875  return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
3876  CatchHandlerType::ForDenseMap);
3877  }
3878 
3879  static CatchHandlerType getTombstoneKey() {
3880  return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
3881  CatchHandlerType::ForDenseMap);
3882  }
3883 
3884  static unsigned getHashValue(const CatchHandlerType &Base) {
3885  return DenseMapInfo<QualType>::getHashValue(Base.underlying());
3886  }
3887 
3888  static bool isEqual(const CatchHandlerType &LHS,
3889  const CatchHandlerType &RHS) {
3890  return LHS == RHS;
3891  }
3892 };
3893 }
3894 
3895 namespace {
3896 class CatchTypePublicBases {
3897  ASTContext &Ctx;
3898  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
3899  const bool CheckAgainstPointer;
3900 
3901  CXXCatchStmt *FoundHandler;
3902  CanQualType FoundHandlerType;
3903 
3904 public:
3905  CatchTypePublicBases(
3906  ASTContext &Ctx,
3907  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
3908  : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
3909  FoundHandler(nullptr) {}
3910 
3911  CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
3912  CanQualType getFoundHandlerType() const { return FoundHandlerType; }
3913 
3914  bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
3916  CatchHandlerType Check(S->getType(), CheckAgainstPointer);
3917  const auto &M = TypesToCheck;
3918  auto I = M.find(Check);
3919  if (I != M.end()) {
3920  FoundHandler = I->second;
3921  FoundHandlerType = Ctx.getCanonicalType(S->getType());
3922  return true;
3923  }
3924  }
3925  return false;
3926  }
3927 };
3928 }
3929 
3930 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3931 /// handlers and creates a try statement from them.
3933  ArrayRef<Stmt *> Handlers) {
3934  // Don't report an error if 'try' is used in system headers.
3935  if (!getLangOpts().CXXExceptions &&
3936  !getSourceManager().isInSystemHeader(TryLoc) &&
3937  (!getLangOpts().OpenMPIsDevice ||
3938  !getLangOpts().OpenMPHostCXXExceptions ||
3939  isInOpenMPTargetExecutionDirective() ||
3940  isInOpenMPDeclareTargetContext()))
3941  Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3942 
3943  // Exceptions aren't allowed in CUDA device code.
3944  if (getLangOpts().CUDA)
3945  CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
3946  << "try" << CurrentCUDATarget();
3947 
3948  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
3949  Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
3950 
3951  sema::FunctionScopeInfo *FSI = getCurFunction();
3952 
3953  // C++ try is incompatible with SEH __try.
3954  if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
3955  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3956  Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
3957  }
3958 
3959  const unsigned NumHandlers = Handlers.size();
3960  assert(!Handlers.empty() &&
3961  "The parser shouldn't call this if there are no handlers.");
3962 
3963  llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
3964  for (unsigned i = 0; i < NumHandlers; ++i) {
3965  CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
3966 
3967  // Diagnose when the handler is a catch-all handler, but it isn't the last
3968  // handler for the try block. [except.handle]p5. Also, skip exception
3969  // declarations that are invalid, since we can't usefully report on them.
3970  if (!H->getExceptionDecl()) {
3971  if (i < NumHandlers - 1)
3972  return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all));
3973  continue;
3974  } else if (H->getExceptionDecl()->isInvalidDecl())
3975  continue;
3976 
3977  // Walk the type hierarchy to diagnose when this type has already been
3978  // handled (duplication), or cannot be handled (derivation inversion). We
3979  // ignore top-level cv-qualifiers, per [except.handle]p3
3980  CatchHandlerType HandlerCHT =
3981  (QualType)Context.getCanonicalType(H->getCaughtType());
3982 
3983  // We can ignore whether the type is a reference or a pointer; we need the
3984  // underlying declaration type in order to get at the underlying record
3985  // decl, if there is one.
3986  QualType Underlying = HandlerCHT.underlying();
3987  if (auto *RD = Underlying->getAsCXXRecordDecl()) {
3988  if (!RD->hasDefinition())
3989  continue;
3990  // Check that none of the public, unambiguous base classes are in the
3991  // map ([except.handle]p1). Give the base classes the same pointer
3992  // qualification as the original type we are basing off of. This allows
3993  // comparison against the handler type using the same top-level pointer
3994  // as the original type.
3995  CXXBasePaths Paths;
3996  Paths.setOrigin(RD);
3997  CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
3998  if (RD->lookupInBases(CTPB, Paths)) {
3999  const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4000  if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
4002  diag::warn_exception_caught_by_earlier_handler)
4003  << H->getCaughtType();
4005  diag::note_previous_exception_handler)
4006  << Problem->getCaughtType();
4007  }
4008  }
4009  }
4010 
4011  // Add the type the list of ones we have handled; diagnose if we've already
4012  // handled it.
4013  auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
4014  if (!R.second) {
4015  const CXXCatchStmt *Problem = R.first->second;
4017  diag::warn_exception_caught_by_earlier_handler)
4018  << H->getCaughtType();
4020  diag::note_previous_exception_handler)
4021  << Problem->getCaughtType();
4022  }
4023  }
4024 
4025  FSI->setHasCXXTry(TryLoc);
4026 
4027  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
4028 }
4029 
4031  Stmt *TryBlock, Stmt *Handler) {
4032  assert(TryBlock && Handler);
4033 
4034  sema::FunctionScopeInfo *FSI = getCurFunction();
4035 
4036  // SEH __try is incompatible with C++ try. Borland appears to support this,
4037  // however.
4038  if (!getLangOpts().Borland) {
4039  if (FSI->FirstCXXTryLoc.isValid()) {
4040  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4041  Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
4042  }
4043  }
4044 
4045  FSI->setHasSEHTry(TryLoc);
4046 
4047  // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4048  // track if they use SEH.
4049  DeclContext *DC = CurContext;
4050  while (DC && !DC->isFunctionOrMethod())
4051  DC = DC->getParent();
4052  FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4053  if (FD)
4054  FD->setUsesSEHTry(true);
4055  else
4056  Diag(TryLoc, diag::err_seh_try_outside_functions);
4057 
4058  // Reject __try on unsupported targets.
4059  if (!Context.getTargetInfo().isSEHTrySupported())
4060  Diag(TryLoc, diag::err_seh_try_unsupported);
4061 
4062  return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4063 }
4064 
4065 StmtResult
4067  Expr *FilterExpr,
4068  Stmt *Block) {
4069  assert(FilterExpr && Block);
4070 
4071  if(!FilterExpr->getType()->isIntegerType()) {
4072  return StmtError(Diag(FilterExpr->getExprLoc(),
4073  diag::err_filter_expression_integral)
4074  << FilterExpr->getType());
4075  }
4076 
4077  return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
4078 }
4079 
4081  CurrentSEHFinally.push_back(CurScope);
4082 }
4083 
4085  CurrentSEHFinally.pop_back();
4086 }
4087 
4089  assert(Block);
4090  CurrentSEHFinally.pop_back();
4091  return SEHFinallyStmt::Create(Context, Loc, Block);
4092 }
4093 
4094 StmtResult
4096  Scope *SEHTryParent = CurScope;
4097  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4098  SEHTryParent = SEHTryParent->getParent();
4099  if (!SEHTryParent)
4100  return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4101  CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4102 
4103  return new (Context) SEHLeaveStmt(Loc);
4104 }
4105 
4107  bool IsIfExists,
4108  NestedNameSpecifierLoc QualifierLoc,
4109  DeclarationNameInfo NameInfo,
4110  Stmt *Nested)
4111 {
4112  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4113  QualifierLoc, NameInfo,
4114  cast<CompoundStmt>(Nested));
4115 }
4116 
4117 
4119  bool IsIfExists,
4120  CXXScopeSpec &SS,
4121  UnqualifiedId &Name,
4122  Stmt *Nested) {
4123  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4124  SS.getWithLocInContext(Context),
4125  GetNameFromUnqualifiedId(Name),
4126  Nested);
4127 }
4128 
4129 RecordDecl*
4131  unsigned NumParams) {
4132  DeclContext *DC = CurContext;
4133  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4134  DC = DC->getParent();
4135 
4136  RecordDecl *RD = nullptr;
4137  if (getLangOpts().CPlusPlus)
4138  RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4139  /*Id=*/nullptr);
4140  else
4141  RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4142 
4143  RD->setCapturedRecord();
4144  DC->addDecl(RD);
4145  RD->setImplicit();
4146  RD->startDefinition();
4147 
4148  assert(NumParams > 0 && "CapturedStmt requires context parameter");
4149  CD = CapturedDecl::Create(Context, CurContext, NumParams);
4150  DC->addDecl(CD);
4151  return RD;
4152 }
4153 
4154 static void
4156  SmallVectorImpl<Expr *> &CaptureInits,
4157  ArrayRef<sema::Capture> Candidates) {
4158  for (const sema::Capture &Cap : Candidates) {
4159  if (Cap.isThisCapture()) {
4160  Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4162  CaptureInits.push_back(Cap.getInitExpr());
4163  continue;
4164  } else if (Cap.isVLATypeCapture()) {
4165  Captures.push_back(
4166  CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4167  CaptureInits.push_back(nullptr);
4168  continue;
4169  }
4170 
4171  Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4172  Cap.isReferenceCapture()
4175  Cap.getVariable()));
4176  CaptureInits.push_back(Cap.getInitExpr());
4177  }
4178 }
4179 
4182  unsigned NumParams) {
4183  CapturedDecl *CD = nullptr;
4184  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4185 
4186  // Build the context parameter
4188  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4189  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4190  auto *Param =
4191  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4193  DC->addDecl(Param);
4194 
4195  CD->setContextParam(0, Param);
4196 
4197  // Enter the capturing scope for this captured region.
4198  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4199 
4200  if (CurScope)
4201  PushDeclContext(CurScope, CD);
4202  else
4203  CurContext = CD;
4204 
4205  PushExpressionEvaluationContext(
4206  ExpressionEvaluationContext::PotentiallyEvaluated);
4207 }
4208 
4212  CapturedDecl *CD = nullptr;
4213  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4214 
4215  // Build the context parameter
4217  bool ContextIsFound = false;
4218  unsigned ParamNum = 0;
4219  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4220  E = Params.end();
4221  I != E; ++I, ++ParamNum) {
4222  if (I->second.isNull()) {
4223  assert(!ContextIsFound &&
4224  "null type has been found already for '__context' parameter");
4225  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4226  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4227  .withConst()
4228  .withRestrict();
4229  auto *Param =
4230  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4232  DC->addDecl(Param);
4233  CD->setContextParam(ParamNum, Param);
4234  ContextIsFound = true;
4235  } else {
4236  IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4237  auto *Param =
4238  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4240  DC->addDecl(Param);
4241  CD->setParam(ParamNum, Param);
4242  }
4243  }
4244  assert(ContextIsFound && "no null type for '__context' parameter");
4245  if (!ContextIsFound) {
4246  // Add __context implicitly if it is not specified.
4247  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4248  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4249  auto *Param =
4250  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4252  DC->addDecl(Param);
4253  CD->setContextParam(ParamNum, Param);
4254  }
4255  // Enter the capturing scope for this captured region.
4256  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4257 
4258  if (CurScope)
4259  PushDeclContext(CurScope, CD);
4260  else
4261  CurContext = CD;
4262 
4263  PushExpressionEvaluationContext(
4264  ExpressionEvaluationContext::PotentiallyEvaluated);
4265 }
4266 
4268  DiscardCleanupsInEvaluationContext();
4269  PopExpressionEvaluationContext();
4270 
4271  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
4272  RecordDecl *Record = RSI->TheRecordDecl;
4273  Record->setInvalidDecl();
4274 
4275  SmallVector<Decl*, 4> Fields(Record->fields());
4276  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4278 
4279  PopDeclContext();
4280  PopFunctionScopeInfo();
4281 }
4282 
4284  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
4285 
4287  SmallVector<Expr *, 4> CaptureInits;
4288  buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
4289 
4290  CapturedDecl *CD = RSI->TheCapturedDecl;
4291  RecordDecl *RD = RSI->TheRecordDecl;
4292 
4294  getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4295  Captures, CaptureInits, CD, RD);
4296 
4297  CD->setBody(Res->getCapturedStmt());
4298  RD->completeDefinition();
4299 
4300  DiscardCleanupsInEvaluationContext();
4301  PopExpressionEvaluationContext();
4302 
4303  PopDeclContext();
4304  PopFunctionScopeInfo();
4305 
4306  return Res;
4307 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
Defines the clang::ASTContext interface.
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4548
QualType withConst() const
Retrieves a version of this type with const applied.
void setImplicit(bool I=true)
Definition: DeclBase.h:555
Represents a function declaration or definition.
Definition: Decl.h:1716
Stmt * body_back()
Definition: Stmt.h:652
SourceLocation getLocStart() const LLVM_READONLY
Definition: StmtCXX.h:200
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
void setOrigin(CXXRecordDecl *Rec)
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:3923
Smart pointer class that efficiently represents Objective-C method names.
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1834
PtrTy get() const
Definition: Ownership.h:81
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2393
EvaluatedExprVisitor - This class visits &#39;Expr *&#39;s.
QualType getPointeeType() const
Definition: Type.h:2406
CanQualType VoidPtrTy
Definition: ASTContext.h:1032
A (possibly-)qualified type.
Definition: Type.h:655
bool isBlockPointerType() const
Definition: Type.h:6121
static void TryMoveInitialization(Sema &S, const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *&Value, bool ConvertingConstructorsOnly, ExprResult &Res)
Try to perform the initialization of a potentially-movable value, which is the operand to a return or...
Definition: SemaStmt.cpp:2941
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2104
bool isArrayType() const
Definition: Type.h:6162
bool isLambdaConversionOperator(CXXConversionDecl *C)
Definition: ASTLambda.h:48
bool isOverloadedOperator() const
Whether this function declaration represents an C++ overloaded operator, e.g., "operator+".
Definition: Decl.h:2331
Instantiation or recovery rebuild of a for-range statement.
Definition: Sema.h:3785
static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned)
Definition: SemaStmt.cpp:737
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, unsigned NumParams)
Definition: SemaStmt.cpp:4180
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, Stmt *HandlerBlock)
ActOnCXXCatchBlock - Takes an exception declaration and a handler block and creates a proper catch ha...
Definition: SemaStmt.cpp:3815
bool operator==(CanQual< T > x, CanQual< U > y)
__SIZE_TYPE__ size_t
The unsigned integer type of the result of the sizeof operator.
Definition: opencl-c.h:60
static unsigned getHashValue(const CatchHandlerType &Base)
Definition: SemaStmt.cpp:3884
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:30
QualType getPointerDiffType() const
Return the unique type for "ptrdiff_t" (C99 7.17) defined in <stddef.h>.
Stmt - This represents one statement.
Definition: Stmt.h:66
VarDecl * getCopyElisionCandidate(QualType ReturnType, Expr *E, CopyElisionSemanticsKind CESK)
Determine whether the given expression is a candidate for copy elision in either a return statement o...
Definition: SemaStmt.cpp:2864
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3211
IfStmt - This represents an if/then/else.
Definition: Stmt.h:974
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:497
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, ArrayRef< Stmt *> Elts, bool isStmtExpr)
Definition: SemaStmt.cpp:352
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:633
StmtResult ActOnExprStmt(ExprResult Arg)
Definition: SemaStmt.cpp:45
void setParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:4088
StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, Stmt *First, Expr *collection, SourceLocation RParenLoc)
Definition: SemaStmt.cpp:1864
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:2090
bool isRecordType() const
Definition: Type.h:6186
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Stmt *InitStmt, ConditionResult Cond)
Definition: SemaStmt.cpp:707
Expr * getBase() const
Definition: Expr.h:2590
SmallVector< Scope *, 2 > CurrentSEHFinally
Stack of active SEH __finally scopes. Can be empty.
Definition: Sema.h:348
std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args)
Produces a formatted string that describes the binding of template parameters to template arguments...
bool isDecltypeAuto() const
Definition: Type.h:4573
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type...
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1281
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
void setType(QualType t)
Definition: Expr.h:129
AssignConvertType
AssignConvertType - All of the &#39;assignment&#39; semantic checks return this enum to indicate whether the ...
Definition: Sema.h:9428
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
Opcode getOpcode() const
Definition: Expr.h:3184
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4562
Represents an attribute applied to a statement.
Definition: Stmt.h:918
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1751
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6062
The base class of the type hierarchy.
Definition: Type.h:1428
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:323
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2668
ForRangeStatus
Definition: Sema.h:2915
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1292
StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body)
Definition: SemaStmt.cpp:3696
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4049
QualType withConst() const
Definition: Type.h:827
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:679
bool getNoReturnAttr() const
Determine whether this function type includes the GNU noreturn attribute.
Definition: Type.h:3373
A container of type source information.
Definition: Decl.h:86
Wrapper for void* pointer.
Definition: Ownership.h:51
static AttributedStmt * Create(const ASTContext &C, SourceLocation Loc, ArrayRef< const Attr *> Attrs, Stmt *SubStmt)
Definition: Stmt.cpp:337
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope)
Definition: SemaStmt.cpp:2819
Scope * getContinueParent()
getContinueParent - Return the closest scope that a continue statement would be affected by...
Definition: Scope.h:239
unsigned getDepth() const
Returns the depth of this scope. The translation-unit has scope depth 0.
Definition: Scope.h:263
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4150
Determining whether a for-range statement could be built.
Definition: Sema.h:3788
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3171
ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val)
Definition: SemaStmt.cpp:396
Retains information about a function, method, or block that is currently being parsed.
Definition: ScopeInfo.h:96
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen)
Definition: SemaStmt.cpp:1302
This file provides some common utility functions for processing Lambda related AST Constructs...
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
enumerator_range enumerators() const
Definition: Decl.h:3415
Represents a variable declaration or definition.
Definition: Decl.h:814
ActionResult< Stmt * > StmtResult
Definition: Ownership.h:268
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:25
const VarDecl * getNRVOCandidate() const
Retrieve the variable that might be used for the named return value optimization. ...
Definition: Stmt.h:1503
StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, MultiStmtArg Catch, Stmt *Finally)
Definition: SemaStmt.cpp:3712
QualType getReturnType() const
Definition: Decl.h:2271
DiagnosticsEngine & Diags
Definition: Sema.h:321
bool isEnumeralType() const
Definition: Type.h:6190
const AstTypeMatcher< PointerType > pointerType
Matches pointer types, but does not match Objective-C object pointer types.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6526
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl)
Definition: SemaStmt.cpp:83
SourceLocation getLocStart() const LLVM_READONLY
Definition: StmtCXX.h:44
static bool ObjCEnumerationCollection(Expr *Collection)
Definition: SemaStmt.cpp:2031
SourceLocation getStarLoc() const
Definition: TypeLoc.h:1274
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:998
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
bool isInvalidDecl() const
Definition: DeclBase.h:549
static InitializedEntity InitializeResult(SourceLocation ReturnLoc, QualType Type, bool NRVO)
Create the initialization entity for the result of a function.
Defines the Objective-C statement AST node classes.
EntityKind getKind() const
Determine the kind of initialization.
StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body)
FinishObjCForCollectionStmt - Attach the body to a objective-C foreach statement. ...
Definition: SemaStmt.cpp:2590
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input)
Definition: SemaExpr.cpp:12856
llvm::PointerIntPair< SwitchStmt *, 1, bool > SwitchInfo
A SwitchStmt, along with a flag indicating if its list of case statements is incomplete (because we d...
Definition: ScopeInfo.h:180
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3092
Represents a parameter to a function.
Definition: Decl.h:1535
Defines the clang::Expr interface and subclasses for C++ expressions.
bool isUnset() const
Definition: Ownership.h:172
CapturedDecl * TheCapturedDecl
The CapturedDecl for this statement.
Definition: ScopeInfo.h:723
static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, unsigned UnpromotedWidth, bool UnpromotedSign)
Check the specified case value is in range for the given unpromoted switch type.
Definition: SemaStmt.cpp:744
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:875
Expr * IgnoreImpCasts() LLVM_READONLY
IgnoreImpCasts - Skip past any implicit casts which might surround this expression.
Definition: Expr.h:3016
Represents a struct/union/class.
Definition: Decl.h:3570
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS, SourceLocation DotDotDotLoc, ExprResult RHS, SourceLocation ColonLoc)
Definition: SemaStmt.cpp:447
One of these records is kept for each identifier that is lexed.
bool isAtCatchScope() const
isAtCatchScope - Return true if this scope is @catch.
Definition: Scope.h:386
Expr * GetTemporaryExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue...
Definition: ExprCXX.h:4191
Expr * getFalseExpr() const
Definition: Expr.h:3472
Step
Definition: OpenMPClause.h:146
void DiagnoseUnusedExprResult(const Stmt *S)
DiagnoseUnusedExprResult - If the statement passed in is an expression whose result is unused...
Definition: SemaStmt.cpp:200
Represents a class type in Objective C.
Definition: Type.h:5355
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4002
static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *LoopVarDecl, SourceLocation ColonLoc, Expr *Range, SourceLocation RangeLoc, SourceLocation RParenLoc)
Speculatively attempt to dereference an invalid range expression.
Definition: SemaStmt.cpp:2213
ObjCMethodDecl * lookupInstanceMethod(Selector Sel) const
Lookup an instance method for a given selector.
Definition: DeclObjC.h:1868
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:150
A C++ nested-name-specifier augmented with source location information.
QualType getCaughtType() const
Definition: StmtCXX.cpp:20
field_range fields() const
Definition: Decl.h:3786
void setLocStart(SourceLocation L)
Definition: Decl.h:496
ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection)
Definition: SemaStmt.cpp:1789
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:3791
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:3918
bool isReferenceType() const
Definition: Type.h:6125
StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal)
Definition: SemaStmt.cpp:566
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:936
bool isInvalid() const
Definition: Sema.h:9811
void setNoNRVO()
Definition: Scope.h:480
std::pair< VarDecl *, Expr * > get() const
Definition: Sema.h:9812
Expr * getSubExpr()
Definition: Expr.h:2892
bool isGnuLocal() const
Definition: Decl.h:495
void setSubStmt(Stmt *S)
Definition: Stmt.h:805
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:6440
Scope * getBreakParent()
getBreakParent - Return the closest scope that a break statement would be affected by...
Definition: Scope.h:249
IdentifierTable & Idents
Definition: ASTContext.h:545
SourceLocation FirstSEHTryLoc
First SEH &#39;__try&#39; statement in the current function.
Definition: ScopeInfo.h:173
void ActOnAbortSEHFinallyBlock()
Definition: SemaStmt.cpp:4084
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:5908
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:110
StmtResult ActOnAttributedStmt(SourceLocation AttrLoc, ArrayRef< const Attr *> Attrs, Stmt *SubStmt)
Definition: SemaStmt.cpp:518
Represents Objective-C&#39;s @catch statement.
Definition: StmtObjC.h:76
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested)
Definition: SemaStmt.cpp:4106
void setBody(Stmt *S)
Definition: Stmt.h:1099
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1365
static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, SourceLocation ColonLoc, SourceLocation CoawaitLoc, OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, ExprResult *EndExpr, BeginEndFunction *BEF)
Create the initialization, compare, and increment steps for the range-based for loop expression...
Definition: SemaStmt.cpp:2125
static CapturedStmt * Create(const ASTContext &Context, Stmt *S, CapturedRegionKind Kind, ArrayRef< Capture > Captures, ArrayRef< Expr *> CaptureInits, CapturedDecl *CD, RecordDecl *RD)
Definition: Stmt.cpp:1054
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:922
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2594
static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, QualType T, APValue &Value, Sema::CCEKind CCE, bool RequireInt)
CheckConvertedConstantExpression - Check that the expression From is a converted constant expression ...
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:1256
Represents the results of name lookup.
Definition: Lookup.h:47
PtrTy get() const
Definition: Ownership.h:174
Decl * getSingleDecl()
Definition: DeclGroup.h:84
This is a scope that corresponds to a switch statement.
Definition: Scope.h:98
void ActOnStartSEHFinallyBlock()
Definition: SemaStmt.cpp:4080
AccessSpecifier getAccessSpecifier() const
Returns the access specifier for this base specifier.
Definition: DeclCXX.h:274
bool isTriviallyCopyableType(const ASTContext &Context) const
Return true if this is a trivially copyable type (C++0x [basic.types]p9)
Definition: Type.cpp:2208
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6575
Parameter for captured context.
Definition: Decl.h:1492
SourceLocation getRParenLoc() const
Definition: StmtCXX.h:198
An x-value expression is a reference to an object with independent storage but which can be "moved"...
Definition: Specifiers.h:119
ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl=nullptr, llvm::function_ref< ExprResult(Expr *)> Filter=[](Expr *E) -> ExprResult { return E;})
Process any TypoExprs in the given Expr and its children, generating diagnostics as appropriate and r...
RecordDecl * CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, unsigned NumParams)
Definition: SemaStmt.cpp:4130
StmtResult StmtError()
Definition: Ownership.h:284
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3143
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:5959
Stmt * getInit()
Definition: Stmt.h:1270
static CompoundStmt * Create(const ASTContext &C, ArrayRef< Stmt *> Stmts, SourceLocation LB, SourceLocation RB)
Definition: Stmt.cpp:317
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope)
Definition: SemaStmt.cpp:2831
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:130
SmallVector< std::pair< llvm::APSInt, EnumConstantDecl * >, 64 > EnumValsTy
Definition: SemaStmt.cpp:766
StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl)
Definition: SemaStmt.cpp:2775
CharUnits getDeclAlign(const Decl *D, bool ForAlignof=false) const
Return a conservative estimate of the alignment of the specified decl D.
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2544
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, const Expr *Case)
Definition: SemaStmt.cpp:802
bool isNull() const
Definition: DeclGroup.h:80
SourceLocation getContinueLoc() const
Definition: Stmt.h:1419
bool isMacroBodyExpansion(SourceLocation Loc) const
Tests whether the given source location represents the expansion of a macro body. ...
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2827
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, bool AllowMask) const
IsValueInFlagEnum - Determine if a value is allowed as part of a flag enum.
Definition: SemaDecl.cpp:16493
ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond)
Definition: SemaStmt.cpp:643
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1245
Preprocessor & PP
Definition: Sema.h:318
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1898
const LangOptions & getLangOpts() const
Definition: Sema.h:1204
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value &#39;V&#39; and type &#39;type&#39;.
Definition: Expr.cpp:752
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:167
static CatchHandlerType getTombstoneKey()
Definition: SemaStmt.cpp:3879
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block)
Definition: SemaStmt.cpp:4088
StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope)
Definition: SemaStmt.cpp:4095
Perform initialization via a constructor.
Perform a user-defined conversion, either via a conversion function or via a constructor.
A class that does preorder or postorder depth-first traversal on the entire Clang AST and visits each...
ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc, SourceLocation RangeLoc, const DeclarationNameInfo &NameInfo, LookupResult &MemberLookup, OverloadCandidateSet *CandidateSet, Expr *Range, ExprResult *CallExpr)
Build a call to &#39;begin&#39; or &#39;end&#39; for a C++11 for-range statement.
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4037
Represents an ObjC class declaration.
Definition: DeclObjC.h:1193
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:3024
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5590
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1745
StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, BuildForRangeKind Kind)
BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
Definition: SemaStmt.cpp:2266
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const
Retrieve a nested-name-specifier with location information, copied into the given AST context...
Definition: DeclSpec.cpp:143
StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, Scope *CurScope)
Definition: SemaStmt.cpp:3749
void setStmt(LabelStmt *T)
Definition: Decl.h:493
static SEHTryStmt * Create(const ASTContext &C, bool isCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler)
Definition: Stmt.cpp:942
bool isSEHTrySupported() const
Whether the target supports SEH __try.
Definition: TargetInfo.h:1139
Contains information about the compound statement currently being parsed.
Definition: ScopeInfo.h:66
SourceLocation FirstCXXTryLoc
First C++ &#39;try&#39; statement in the current function.
Definition: ScopeInfo.h:170
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3385
RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...
Definition: Sema.h:7516
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind)
Create implicit parameter.
Definition: Decl.cpp:4290
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:217
void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType)
Change the result type of a function type once it is deduced.
StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection, SourceLocation RParenLoc, BuildForRangeKind Kind)
ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
Definition: SemaStmt.cpp:2054
const internal::VariadicDynCastAllOfMatcher< Stmt, CaseStmt > caseStmt
Matches case statements inside switch statements.
bool hasAttr() const
Definition: DeclBase.h:538
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3429
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:277
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:1042
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc)
Definition: SemaStmt.cpp:73
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:616
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1627
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3432
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse)
Perform marking for a reference to an arbitrary declaration.
Definition: SemaExpr.cpp:15447
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:2138
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3230
Retains information about a captured region.
Definition: ScopeInfo.h:720
bool inferObjCARCLifetime(ValueDecl *decl)
Definition: SemaDecl.cpp:5906
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1785
StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp)
Definition: SemaStmt.cpp:3461
SourceLocation getLocation() const
Definition: Expr.h:1067
void ActOnFinishOfCompoundStmt()
Definition: SemaStmt.cpp:344
bool isClosed() const
Returns true if this enum is either annotated with enum_extensibility(closed) or isn&#39;t annotated with...
Definition: Decl.cpp:3913
QualType getAutoRRefDeductType() const
C++11 deduction pattern for &#39;auto &&&#39; type.
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body)
Definition: SemaStmt.cpp:3707
Scope * getCurScope() const
Retrieve the parser&#39;s current scope.
Definition: Sema.h:10618
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:190
Allows QualTypes to be sorted and hence used in maps and sets.
Retains information about a block that is currently being parsed.
Definition: ScopeInfo.h:694
CXXMethodDecl * CallOperator
The lambda&#39;s compiler-generated operator().
Definition: ScopeInfo.h:774
Expr * getCond() const
Definition: Expr.h:3463
Type source information for an attributed type.
Definition: TypeLoc.h:859
Expr - This represents one expression.
Definition: Expr.h:106
QualType getPointeeType() const
Definition: Type.h:2550
DeclStmt * getEndStmt()
Definition: StmtCXX.h:160
SourceLocation End
Allow any unmodeled side effect.
Definition: Expr.h:598
std::string Label
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1035
SourceLocation getDefaultLoc() const
Definition: Stmt.h:847
TypeLoc getReturnTypeLoc(FunctionDecl *FD) const
Definition: SemaStmt.cpp:3330
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt, Scope *CurScope)
Definition: SemaStmt.cpp:480
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6589
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:86
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
void setInit(Expr *I)
Definition: Decl.cpp:2185
VarDecl * getExceptionDecl() const
Definition: StmtCXX.h:52
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:132
std::string getAsString() const
getNameAsString - Retrieve the human-readable string for this name.
static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, const VarDecl *VD)
Definition: SemaStmt.cpp:2680
bool isExceptionVariable() const
Determine whether this variable is the exception variable in a C++ catch statememt or an Objective-C ...
Definition: Decl.h:1306
void setContextParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:4106
bool isSEHTryScope() const
Determine whether this scope is a SEH &#39;__try&#39; block.
Definition: Scope.h:437
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3405
QualType getTagDeclType(const TagDecl *Decl) const
Return the unique reference to the type for the specified TagDecl (struct/union/class/enum) decl...
Defines the clang::Preprocessor interface.
ObjCLifetime getObjCLifetime() const
Definition: Type.h:343
bool isFileContext() const
Definition: DeclBase.h:1409
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
Expr * getRHS()
Definition: Stmt.h:792
The entity being initialized is an exception object that is being thrown.
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:270
SourceLocation Begin
bool refersToEnclosingVariableOrCapture() const
Does this DeclRefExpr refer to an enclosing local or a captured variable?
Definition: Expr.h:1185
void removeLocalConst()
Definition: Type.h:5983
Defines the clang::TypeLoc interface and its subclasses.
static DeclContext * castToDeclContext(const CapturedDecl *D)
Definition: Decl.h:4124
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.h:2043
QualType getType() const
Definition: Expr.h:128
bool isFunctionOrMethod() const
Definition: DeclBase.h:1392
static CapturedDecl * Create(ASTContext &C, DeclContext *DC, unsigned NumParams)
Definition: Decl.cpp:4340
static bool isEqual(const CatchHandlerType &LHS, const CatchHandlerType &RHS)
Definition: SemaStmt.cpp:3888
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1343
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1476
StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro=false)
Definition: SemaStmt.cpp:68
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:925
bool isInvalid() const
Definition: Ownership.h:170
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl, ObjCInterfaceDecl *PrevDecl=nullptr) const
getObjCInterfaceType - Return the unique reference to the type for the specified ObjC interface decl...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1805
void setLocation(SourceLocation L)
Definition: DeclBase.h:420
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1040
void setHasCXXTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:413
ValueDecl * getDecl()
Definition: Expr.h:1059
bool isUsable() const
Definition: Ownership.h:171
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2762
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1381
const Expr * getSubExpr() const
Definition: Expr.h:1767
unsigned short CapRegionKind
The kind of captured region.
Definition: ScopeInfo.h:735
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr.cast]), which uses the syntax (Type)expr.
Definition: Expr.h:3073
llvm::iterator_range< semantics_iterator > semantics()
Definition: Expr.h:5258
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:720
bool Contains(const Scope &rhs) const
Returns if rhs has a higher scope depth than this.
Definition: Scope.h:451
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1535
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
static CXXRecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl=nullptr, bool DelayTypeCreation=false)
Definition: DeclCXX.cpp:124
static SEHFinallyStmt * Create(const ASTContext &C, SourceLocation FinallyLoc, Stmt *Block)
Definition: Stmt.cpp:970
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:1205
void setBody(Stmt *S)
Definition: StmtCXX.h:193
BuildForRangeKind
Definition: Sema.h:3780
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:5948
RecordDecl * getDecl() const
Definition: Type.h:4145
static void buildCapturedStmtCaptureList(SmallVectorImpl< CapturedStmt::Capture > &Captures, SmallVectorImpl< Expr *> &CaptureInits, ArrayRef< sema::Capture > Candidates)
Definition: SemaStmt.cpp:4155
static CatchHandlerType getEmptyKey()
Definition: SemaStmt.cpp:3874
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:875
The "struct" keyword.
Definition: Type.h:4849
SelectorTable & Selectors
Definition: ASTContext.h:546
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:182
Kind
This captures a statement into a function.
Definition: Stmt.h:2125
static bool EqEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl *> &lhs, const std::pair< llvm::APSInt, EnumConstantDecl *> &rhs)
EqEnumVals - Comparison preficate for uniqing enumeration values.
Definition: SemaStmt.cpp:625
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:157
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5177
TypeLoc IgnoreParens() const
Definition: TypeLoc.h:1196
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt)
ActOnCaseStmtBody - This installs a statement as the body of a case.
Definition: SemaStmt.cpp:472
void setHasSEHTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:418
bool isOpenMPLoopScope() const
Determine whether this scope is a loop having OpenMP loop directive attached.
Definition: Scope.h:428
DeduceAutoResult
Result type of DeduceAutoType.
Definition: Sema.h:7036
Encodes a location in the source.
QualType getReturnType() const
Definition: Type.h:3365
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4161
Expr * getSubExpr() const
Definition: Expr.h:1832
void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, Expr *SrcExpr)
DiagnoseAssignmentEnum - Warn if assignment to enum is a constant integer not in the range of enum va...
Definition: SemaStmt.cpp:1224
CastKind getCastKind() const
Definition: Expr.h:2886
void FinalizeDeclaration(Decl *D)
FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform any semantic actions neces...
Definition: SemaDecl.cpp:11945
const SwitchCase * getSwitchCaseList() const
Definition: Stmt.h:1094
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, Scope *CurScope)
Definition: SemaStmt.cpp:3442
Expr * getLHS()
Definition: Stmt.h:791
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt)
Definition: SemaStmt.cpp:495
StmtResult ActOnForEachLValueExpr(Expr *E)
In an Objective C collection iteration statement: for (x in y) x can be an arbitrary l-value expressi...
Definition: SemaStmt.cpp:1775
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:166
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.h:401
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:503
IdentifierTable & getIdentifierTable()
Definition: Preprocessor.h:829
Represents the declaration of a label.
Definition: Decl.h:468
StmtResult ActOnCapturedRegionEnd(Stmt *S)
Definition: SemaStmt.cpp:4283
void setAllEnumCasesCovered()
Set a flag in the SwitchStmt indicating that if the &#39;switch (X)&#39; is a switch over an enum value then ...
Definition: Stmt.h:1122
bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, SourceLocation ReturnLoc, Expr *&RetExpr, AutoType *AT)
Deduce the return type for a function from a returned expression, per C++1y [dcl.spec.auto]p6.
Definition: SemaStmt.cpp:3339
static QualType GetTypeBeforeIntegralPromotion(const Expr *&E)
GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of potentially integral-promoted expr...
Definition: SemaStmt.cpp:633
StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw)
Definition: SemaStmt.cpp:3723
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef< Stmt *> Handlers)
ActOnCXXTryBlock - Takes a try compound-statement and a number of handlers and creates a try statemen...
Definition: SemaStmt.cpp:3932
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2254
StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block)
Definition: SemaStmt.cpp:4066
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1864
CanQualType VoidTy
Definition: ASTContext.h:1004
Describes the kind of initialization being performed, along with location information for tokens rela...
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:149
bool isKnownToHaveBooleanValue() const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:135
bool isObjCObjectPointerType() const
Definition: Type.h:6210
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:625
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body)
Definition: SemaStmt.cpp:829
bool isMSAsmLabel() const
Definition: Decl.h:502
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2961
Stmt * getCapturedStmt()
Retrieve the statement being captured.
Definition: Stmt.h:2226
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language...
Definition: Expr.h:249
sema::CompoundScopeInfo & getCurCompoundScope() const
Definition: SemaStmt.cpp:348
Requests that all candidates be shown.
Definition: Overload.h:69
SourceLocation getLocEnd() const LLVM_READONLY
Definition: Stmt.h:403
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1938
StmtResult ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond, Stmt *Body)
Definition: SemaStmt.cpp:1280
EnumDecl * getDecl() const
Definition: Type.h:4168
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1387
OverloadCandidateSet - A set of overload candidates, used in C++ overload resolution (C++ 13...
Definition: Overload.h:830
StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SynchExpr, Stmt *SynchBody)
Definition: SemaStmt.cpp:3805
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2275
Representation of a Microsoft __if_exists or __if_not_exists statement with a dependent name...
Definition: StmtCXX.h:244
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, const VarDecl *VD, QualType RangeInitType)
Definition: SemaStmt.cpp:2606
Expr * getLHS() const
Definition: Expr.h:3187
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3547
LabelStmt * getStmt() const
Definition: Decl.h:492
void setCapturedRecord()
Mark the record as a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4036
bool isDeduced() const
Definition: Type.h:4551
QualType withRestrict() const
Definition: Type.h:843
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression which will be evaluated if the condnition evaluates to false;...
Definition: Expr.h:3563
NullStmt - This is the null statement ";": C99 6.8.3p3.
Definition: Stmt.h:575
Dataflow Directional Tag Classes.
StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body)
Definition: SemaStmt.cpp:3823
bool isValid() const
Return true if this is a valid SourceLocation object.
ObjCMethodDecl * lookupPrivateMethod(const Selector &Sel, bool Instance=true) const
Lookup a method in the classes implementation hierarchy.
Definition: DeclObjC.cpp:733
A single step in the initialization sequence.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1264
SourceLocation getStartLoc() const LLVM_READONLY
Definition: Stmt.h:527
const Scope * getParent() const
getParent - Return the scope that this is nested in.
Definition: Scope.h:225
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1251
QualType getType() const
Get the type for which this source info wrapper provides information.
Definition: TypeLoc.h:130
StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *First, ConditionResult Second, FullExprArg Third, SourceLocation RParenLoc, Stmt *Body)
Definition: SemaStmt.cpp:1720
void ActOnCapturedRegionError()
Definition: SemaStmt.cpp:4267
bool isRecord() const
Definition: DeclBase.h:1417
void addNRVOCandidate(VarDecl *VD)
Definition: Scope.h:469
void setARCPseudoStrong(bool ps)
Definition: Decl.h:1359
StmtResult ActOnExprStmtError()
Definition: SemaStmt.cpp:63
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:118
const Expr * getInit() const
Definition: Decl.h:1219
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *DestExp)
Definition: SemaStmt.cpp:2784
Kind getKind() const
Definition: DeclBase.h:422
bool isSingleDecl() const
Definition: DeclGroup.h:81
static void DiagnoseForRangeVariableCopies(Sema &SemaRef, const CXXForRangeStmt *ForStmt)
DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
Definition: SemaStmt.cpp:2721
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5652
SourceLocation getLocStart() const LLVM_READONLY
Definition: Decl.h:739
Represents an enum.
Definition: Decl.h:3313
const Decl * getSingleDecl() const
Definition: Stmt.h:520
bool isAmbiguous(CanQualType BaseType)
Determine whether the path from the most-derived type to the given base type is ambiguous (i...
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
Expr * get() const
Definition: Sema.h:3658
ConstEvaluatedExprVisitor - This class visits &#39;const Expr *&#39;s.
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
bool isSingleDecl() const
isSingleDecl - This method returns true if this DeclStmt refers to a single Decl. ...
Definition: Stmt.h:516
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit)
AddInitializerToDecl - Adds the initializer Init to the declaration dcl.
Definition: SemaDecl.cpp:10936
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 &#39;auto&#39; typ...
Definition: Type.h:6459
Expr * IgnoreParenImpCasts() LLVM_READONLY
IgnoreParenImpCasts - Ignore parentheses and implicit casts.
Definition: Expr.cpp:2631
const Stmt * getBody() const
Definition: Stmt.h:1093
Represents a __leave statement.
Definition: Stmt.h:2088
Decl * getCalleeDecl()
Definition: Expr.cpp:1255
Represents a pointer to an Objective C object.
Definition: Type.h:5611
SwitchStmt - This represents a &#39;switch&#39; stmt.
Definition: Stmt.h:1054
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name, Stmt *Nested)
Definition: SemaStmt.cpp:4118
unsigned getIntWidth(QualType T) const
RecordDecl * TheRecordDecl
The captured record type.
Definition: ScopeInfo.h:726
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4135
bool body_empty() const
Definition: Stmt.h:641
Represents Objective-C&#39;s collection statement.
Definition: StmtObjC.h:24
ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E)
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6374
T * getAttr() const
Definition: DeclBase.h:534
Selector getSelector(unsigned NumArgs, IdentifierInfo **IIV)
Can create any sort of selector.
CanQualType DependentTy
Definition: ASTContext.h:1033
static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, const EnumDecl *ED, const Expr *CaseExpr, EnumValsTy::iterator &EI, EnumValsTy::iterator &EIEnd, const llvm::APSInt &Val)
Returns true if we should emit a diagnostic about this case expression not being a part of the enum u...
Definition: SemaStmt.cpp:770
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:716
Stmt * getInit()
Definition: Stmt.h:1089
void setUsesSEHTry(bool UST)
Definition: Decl.h:2104
static bool CmpEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl *> &lhs, const std::pair< llvm::APSInt, EnumConstantDecl *> &rhs)
CmpEnumVals - Comparison predicate for sorting enumeration values.
Definition: SemaStmt.cpp:617
Opcode getOpcode() const
Definition: Expr.h:1829
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2251
QualType getAutoDeductType() const
C++11 deduction pattern for &#39;auto&#39; type.
DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result, Optional< unsigned > DependentDeductionDepth=None)
Represents Objective-C&#39;s @finally statement.
Definition: StmtObjC.h:124
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:92
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1460
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:3180
Represents a base class of a C++ class.
Definition: DeclCXX.h:192
static bool DiagnoseUnusedComparison(Sema &S, const Expr *E)
Diagnose unused comparisons, both builtin and overloaded operators.
Definition: SemaStmt.cpp:129
void ActOnStartOfCompoundStmt(bool IsStmtExpr)
Definition: SemaStmt.cpp:340
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:412
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2034
DeclStmt * getRangeStmt()
Definition: StmtCXX.h:156
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup=false)
Perform qualified name lookup into a given context.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2235
GotoStmt - This represents a direct goto.
Definition: Stmt.h:1329
bool isLValueReferenceType() const
Definition: Type.h:6129
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:239
static bool CmpCaseVals(const std::pair< llvm::APSInt, CaseStmt *> &lhs, const std::pair< llvm::APSInt, CaseStmt *> &rhs)
CmpCaseVals - Comparison predicate for sorting case values.
Definition: SemaStmt.cpp:603
const SwitchCase * getNextSwitchCase() const
Definition: Stmt.h:738
ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *Value, bool AllowNRVO=true)
Perform the initialization of a potentially-movable value, which is the result of return value...
Definition: SemaStmt.cpp:3020
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2500
static InitializedEntity InitializeRelatedResult(ObjCMethodDecl *MD, QualType Type)
Create the initialization entity for a related result.
Describes the sequence of initializations required to initialize a given object or reference with a s...
ActionResult< Expr * > ExprResult
Definition: Ownership.h:267
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5969
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3261
StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp)
ActOnCapScopeReturnStmt - Utility routine to type-check return statements for capturing scopes...
Definition: SemaStmt.cpp:3137
Represents a C++ struct/union/class.
Definition: DeclCXX.h:302
ContinueStmt - This represents a continue.
Definition: Stmt.h:1410
Expr * getTrueExpr() const
Definition: Expr.h:3467
bool isVoidType() const
Definition: Type.h:6340
static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, SourceLocation Loc, int DiagID)
Finish building a variable declaration for a for-range statement.
Definition: SemaStmt.cpp:1946
static CXXTryStmt * Create(const ASTContext &C, SourceLocation tryLoc, Stmt *tryBlock, ArrayRef< Stmt *> handlers)
Definition: StmtCXX.cpp:26
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:3504
CXXCatchStmt - This represents a C++ catch block.
Definition: StmtCXX.h:29
VarDecl * getLoopVariable()
Definition: StmtCXX.cpp:76
Represents an explicit C++ type conversion that uses "functional" notation (C++ [expr.type.conv]).
Definition: ExprCXX.h:1528
void addHiddenDecl(Decl *D)
Add the declaration D to this context without modifying any lookup tables.
Definition: DeclBase.cpp:1434
WhileStmt - This represents a &#39;while&#39; stmt.
Definition: Stmt.h:1147
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:331
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:129
SourceLocation getBreakLoc() const
Definition: Stmt.h:1450
bool qual_empty() const
Definition: Type.h:5259
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:266
void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc)
Definition: SemaExpr.cpp:11236
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2316
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body)
FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
Definition: SemaStmt.cpp:2757
ExprResult ExprError()
Definition: Ownership.h:283
ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand)
Definition: SemaStmt.cpp:3767
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:1942
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:974
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:229
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:818
Expr * getRHS() const
Definition: Expr.h:3189
bool isPointerType() const
Definition: Type.h:6113
BreakStmt - This represents a break.
Definition: Stmt.h:1438
__DEVICE__ int min(int __a, int __b)
SourceManager & SourceMgr
Definition: Sema.h:322
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:17
BasePaths - Represents the set of paths from a derived class to one of its (direct or indirect) bases...
bool isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, CopyElisionSemanticsKind CESK)
Definition: SemaStmt.cpp:2880
bool isLocalVarDecl() const
Returns true for local variable declarations other than parameters.
Definition: Decl.h:1104
QualType getType() const
Definition: Decl.h:648
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:114
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:328
static bool hasDeducedReturnType(FunctionDecl *FD)
Determine whether the declared return type of the specified function contains &#39;auto&#39;.
Definition: SemaStmt.cpp:3127
A trivial tuple used to represent a source range.
ASTContext & Context
Definition: Sema.h:319
This represents a decl that may have a name.
Definition: Decl.h:248
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:556
T castAs() const
Convert to the specified TypeLoc type, asserting that this TypeLoc is of the desired type...
Definition: TypeLoc.h:75
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2827
CanQualType BoolTy
Definition: ASTContext.h:1005
DeclStmt * getBeginStmt()
Definition: StmtCXX.h:157
Describes an entity that is being initialized.
const Expr * getCond() const
Definition: Stmt.h:1092
BeginEndFunction
Definition: SemaStmt.cpp:1986
ExprResult release()
Definition: Sema.h:3654
void setType(QualType newType)
Definition: Decl.h:649
Wrapper for source info for pointers.
Definition: TypeLoc.h:1271
StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal)
Definition: SemaStmt.cpp:541
SourceLocation ColonLoc
Location of &#39;:&#39;.
Definition: OpenMPClause.h:102
Represents Objective-C&#39;s @autoreleasepool Statement.
Definition: StmtObjC.h:357
CopyElisionSemanticsKind
Definition: Sema.h:3828
static SEHExceptStmt * Create(const ASTContext &C, SourceLocation ExceptLoc, Expr *FilterExpr, Stmt *Block)
Definition: Stmt.cpp:962
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2728
Declaration of a template function.
Definition: DeclTemplate.h:968
static ObjCAtTryStmt * Create(const ASTContext &Context, SourceLocation atTryLoc, Stmt *atTryStmt, Stmt **CatchStmts, unsigned NumCatchStmts, Stmt *atFinallyStmt)
Definition: StmtObjC.cpp:46
void setBody(Stmt *B)
Definition: Decl.cpp:4353
Attr - This represents one attribute.
Definition: Attr.h:43
SourceLocation getLocation() const
Definition: DeclBase.h:419
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:97
StmtResult ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler)
Definition: SemaStmt.cpp:4030
static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, const Scope &DestScope)
Definition: SemaStmt.cpp:2810
Helper class that creates diagnostics with optional template instantiation stacks.
Definition: Sema.h:1234
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2513
const DeclStmt * getConditionVariableDeclStmt() const
If this SwitchStmt has a condition variable, return the faux DeclStmt associated with the creation of...
Definition: Stmt.h:1085
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:293