clang  7.0.0
Driver.cpp
Go to the documentation of this file.
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/Driver/Driver.h"
11 #include "InputInfo.h"
12 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Lanai.h"
30 #include "ToolChains/Linux.h"
31 #include "ToolChains/MSVC.h"
32 #include "ToolChains/MinGW.h"
33 #include "ToolChains/Minix.h"
34 #include "ToolChains/MipsLinux.h"
35 #include "ToolChains/Myriad.h"
36 #include "ToolChains/NaCl.h"
37 #include "ToolChains/NetBSD.h"
38 #include "ToolChains/OpenBSD.h"
39 #include "ToolChains/PS4CPU.h"
40 #include "ToolChains/RISCV.h"
41 #include "ToolChains/Solaris.h"
42 #include "ToolChains/TCE.h"
43 #include "ToolChains/WebAssembly.h"
44 #include "ToolChains/XCore.h"
45 #include "clang/Basic/Version.h"
47 #include "clang/Config/config.h"
48 #include "clang/Driver/Action.h"
51 #include "clang/Driver/Job.h"
52 #include "clang/Driver/Options.h"
54 #include "clang/Driver/Tool.h"
55 #include "clang/Driver/ToolChain.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallSet.h"
59 #include "llvm/ADT/StringExtras.h"
60 #include "llvm/ADT/StringSet.h"
61 #include "llvm/ADT/StringSwitch.h"
62 #include "llvm/Config/llvm-config.h"
63 #include "llvm/Option/Arg.h"
64 #include "llvm/Option/ArgList.h"
65 #include "llvm/Option/OptSpecifier.h"
66 #include "llvm/Option/OptTable.h"
67 #include "llvm/Option/Option.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/FileSystem.h"
71 #include "llvm/Support/Path.h"
72 #include "llvm/Support/PrettyStackTrace.h"
73 #include "llvm/Support/Process.h"
74 #include "llvm/Support/Program.h"
75 #include "llvm/Support/StringSaver.h"
76 #include "llvm/Support/TargetRegistry.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <map>
79 #include <memory>
80 #include <utility>
81 #if LLVM_ON_UNIX
82 #include <unistd.h> // getpid
83 #endif
84 
85 using namespace clang::driver;
86 using namespace clang;
87 using namespace llvm::opt;
88 
89 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
90  DiagnosticsEngine &Diags,
92  : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
93  Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
94  LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
95  SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"),
96  CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr),
97  CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false),
98  CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
99  CCGenDiagnostics(false), TargetTriple(TargetTriple),
100  CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
101  CCCUsePCH(true), GenReproducer(false),
102  SuppressMissingInputWarning(false) {
103 
104  // Provide a sane fallback if no VFS is specified.
105  if (!this->VFS)
106  this->VFS = vfs::getRealFileSystem();
107 
108  Name = llvm::sys::path::filename(ClangExecutable);
109  Dir = llvm::sys::path::parent_path(ClangExecutable);
110  InstalledDir = Dir; // Provide a sensible default installed dir.
111 
112 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
113  SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
114 #endif
115 #if defined(CLANG_CONFIG_FILE_USER_DIR)
116  UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
117 #endif
118 
119  // Compute the path to the resource directory.
120  StringRef ClangResourceDir(CLANG_RESOURCE_DIR);
122  if (ClangResourceDir != "") {
123  llvm::sys::path::append(P, ClangResourceDir);
124  } else {
125  StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX);
126  P = llvm::sys::path::parent_path(Dir);
127  llvm::sys::path::append(P, Twine("lib") + ClangLibdirSuffix, "clang",
128  CLANG_VERSION_STRING);
129  }
130  ResourceDir = P.str();
131 }
132 
133 void Driver::ParseDriverMode(StringRef ProgramName,
134  ArrayRef<const char *> Args) {
135  if (ClangNameParts.isEmpty())
137  setDriverModeFromOption(ClangNameParts.DriverMode);
138 
139  for (const char *ArgPtr : Args) {
140  // Ignore nullptrs, they are the response file's EOL markers.
141  if (ArgPtr == nullptr)
142  continue;
143  const StringRef Arg = ArgPtr;
144  setDriverModeFromOption(Arg);
145  }
146 }
147 
148 void Driver::setDriverModeFromOption(StringRef Opt) {
149  const std::string OptName =
150  getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
151  if (!Opt.startswith(OptName))
152  return;
153  StringRef Value = Opt.drop_front(OptName.size());
154 
155  if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
156  .Case("gcc", GCCMode)
157  .Case("g++", GXXMode)
158  .Case("cpp", CPPMode)
159  .Case("cl", CLMode)
160  .Default(None))
161  Mode = *M;
162  else
163  Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
164 }
165 
167  bool &ContainsError) {
168  llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
169  ContainsError = false;
170 
171  unsigned IncludedFlagsBitmask;
172  unsigned ExcludedFlagsBitmask;
173  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
174  getIncludeExcludeOptionFlagMasks();
175 
176  unsigned MissingArgIndex, MissingArgCount;
177  InputArgList Args =
178  getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
179  IncludedFlagsBitmask, ExcludedFlagsBitmask);
180 
181  // Check for missing argument error.
182  if (MissingArgCount) {
183  Diag(diag::err_drv_missing_argument)
184  << Args.getArgString(MissingArgIndex) << MissingArgCount;
185  ContainsError |=
186  Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
188  }
189 
190  // Check for unsupported options.
191  for (const Arg *A : Args) {
192  if (A->getOption().hasFlag(options::Unsupported)) {
193  unsigned DiagID;
194  auto ArgString = A->getAsString(Args);
195  std::string Nearest;
196  if (getOpts().findNearest(
197  ArgString, Nearest, IncludedFlagsBitmask,
198  ExcludedFlagsBitmask | options::Unsupported) > 1) {
199  DiagID = diag::err_drv_unsupported_opt;
200  Diag(DiagID) << ArgString;
201  } else {
202  DiagID = diag::err_drv_unsupported_opt_with_suggestion;
203  Diag(DiagID) << ArgString << Nearest;
204  }
205  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
207  continue;
208  }
209 
210  // Warn about -mcpu= without an argument.
211  if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
212  Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
213  ContainsError |= Diags.getDiagnosticLevel(
214  diag::warn_drv_empty_joined_argument,
216  }
217  }
218 
219  for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
220  unsigned DiagID;
221  auto ArgString = A->getAsString(Args);
222  std::string Nearest;
223  if (getOpts().findNearest(
224  ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
225  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
226  : diag::err_drv_unknown_argument;
227  Diags.Report(DiagID) << ArgString;
228  } else {
229  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
230  : diag::err_drv_unknown_argument_with_suggestion;
231  Diags.Report(DiagID) << ArgString << Nearest;
232  }
233  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
235  }
236 
237  return Args;
238 }
239 
240 // Determine which compilation mode we are in. We look for options which
241 // affect the phase, starting with the earliest phases, and record which
242 // option we used to determine the final phase.
243 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
244  Arg **FinalPhaseArg) const {
245  Arg *PhaseArg = nullptr;
246  phases::ID FinalPhase;
247 
248  // -{E,EP,P,M,MM} only run the preprocessor.
249  if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
250  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
251  (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
252  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
253  FinalPhase = phases::Preprocess;
254 
255  // --precompile only runs up to precompilation.
256  } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
257  FinalPhase = phases::Precompile;
258 
259  // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
260  } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
261  (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
262  (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
263  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
264  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
265  (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
266  (PhaseArg = DAL.getLastArg(options::OPT__analyze,
267  options::OPT__analyze_auto)) ||
268  (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
269  FinalPhase = phases::Compile;
270 
271  // -S only runs up to the backend.
272  } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
273  FinalPhase = phases::Backend;
274 
275  // -c compilation only runs up to the assembler.
276  } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
277  FinalPhase = phases::Assemble;
278 
279  // Otherwise do everything.
280  } else
281  FinalPhase = phases::Link;
282 
283  if (FinalPhaseArg)
284  *FinalPhaseArg = PhaseArg;
285 
286  return FinalPhase;
287 }
288 
289 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts,
290  StringRef Value, bool Claim = true) {
291  Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
292  Args.getBaseArgs().MakeIndex(Value), Value.data());
293  Args.AddSynthesizedArg(A);
294  if (Claim)
295  A->claim();
296  return A;
297 }
298 
299 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
300  DerivedArgList *DAL = new DerivedArgList(Args);
301 
302  bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
303  bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
304  for (Arg *A : Args) {
305  // Unfortunately, we have to parse some forwarding options (-Xassembler,
306  // -Xlinker, -Xpreprocessor) because we either integrate their functionality
307  // (assembler and preprocessor), or bypass a previous driver ('collect2').
308 
309  // Rewrite linker options, to replace --no-demangle with a custom internal
310  // option.
311  if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
312  A->getOption().matches(options::OPT_Xlinker)) &&
313  A->containsValue("--no-demangle")) {
314  // Add the rewritten no-demangle argument.
315  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
316 
317  // Add the remaining values as Xlinker arguments.
318  for (StringRef Val : A->getValues())
319  if (Val != "--no-demangle")
320  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
321 
322  continue;
323  }
324 
325  // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
326  // some build systems. We don't try to be complete here because we don't
327  // care to encourage this usage model.
328  if (A->getOption().matches(options::OPT_Wp_COMMA) &&
329  (A->getValue(0) == StringRef("-MD") ||
330  A->getValue(0) == StringRef("-MMD"))) {
331  // Rewrite to -MD/-MMD along with -MF.
332  if (A->getValue(0) == StringRef("-MD"))
333  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
334  else
335  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
336  if (A->getNumValues() == 2)
337  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
338  A->getValue(1));
339  continue;
340  }
341 
342  // Rewrite reserved library names.
343  if (A->getOption().matches(options::OPT_l)) {
344  StringRef Value = A->getValue();
345 
346  // Rewrite unless -nostdlib is present.
347  if (!HasNostdlib && !HasNodefaultlib && Value == "stdc++") {
348  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
349  continue;
350  }
351 
352  // Rewrite unconditionally.
353  if (Value == "cc_kext") {
354  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
355  continue;
356  }
357  }
358 
359  // Pick up inputs via the -- option.
360  if (A->getOption().matches(options::OPT__DASH_DASH)) {
361  A->claim();
362  for (StringRef Val : A->getValues())
363  DAL->append(MakeInputArg(*DAL, *Opts, Val, false));
364  continue;
365  }
366 
367  DAL->append(A);
368  }
369 
370  // Enforce -static if -miamcu is present.
371  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
372  DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
373 
374 // Add a default value of -mlinker-version=, if one was given and the user
375 // didn't specify one.
376 #if defined(HOST_LINK_VERSION)
377  if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
378  strlen(HOST_LINK_VERSION) > 0) {
379  DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
380  HOST_LINK_VERSION);
381  DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
382  }
383 #endif
384 
385  return DAL;
386 }
387 
388 /// Compute target triple from args.
389 ///
390 /// This routine provides the logic to compute a target triple from various
391 /// args passed to the driver and the default triple string.
392 static llvm::Triple computeTargetTriple(const Driver &D,
393  StringRef TargetTriple,
394  const ArgList &Args,
395  StringRef DarwinArchName = "") {
396  // FIXME: Already done in Compilation *Driver::BuildCompilation
397  if (const Arg *A = Args.getLastArg(options::OPT_target))
398  TargetTriple = A->getValue();
399 
400  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
401 
402  // Handle Apple-specific options available here.
403  if (Target.isOSBinFormatMachO()) {
404  // If an explicit Darwin arch name is given, that trumps all.
405  if (!DarwinArchName.empty()) {
406  tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
407  return Target;
408  }
409 
410  // Handle the Darwin '-arch' flag.
411  if (Arg *A = Args.getLastArg(options::OPT_arch)) {
412  StringRef ArchName = A->getValue();
414  }
415  }
416 
417  // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
418  // '-mbig-endian'/'-EB'.
419  if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
420  options::OPT_mbig_endian)) {
421  if (A->getOption().matches(options::OPT_mlittle_endian)) {
422  llvm::Triple LE = Target.getLittleEndianArchVariant();
423  if (LE.getArch() != llvm::Triple::UnknownArch)
424  Target = std::move(LE);
425  } else {
426  llvm::Triple BE = Target.getBigEndianArchVariant();
427  if (BE.getArch() != llvm::Triple::UnknownArch)
428  Target = std::move(BE);
429  }
430  }
431 
432  // Skip further flag support on OSes which don't support '-m32' or '-m64'.
433  if (Target.getArch() == llvm::Triple::tce ||
434  Target.getOS() == llvm::Triple::Minix)
435  return Target;
436 
437  // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
438  Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
439  options::OPT_m32, options::OPT_m16);
440  if (A) {
441  llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
442 
443  if (A->getOption().matches(options::OPT_m64)) {
444  AT = Target.get64BitArchVariant().getArch();
445  if (Target.getEnvironment() == llvm::Triple::GNUX32)
446  Target.setEnvironment(llvm::Triple::GNU);
447  } else if (A->getOption().matches(options::OPT_mx32) &&
448  Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
449  AT = llvm::Triple::x86_64;
450  Target.setEnvironment(llvm::Triple::GNUX32);
451  } else if (A->getOption().matches(options::OPT_m32)) {
452  AT = Target.get32BitArchVariant().getArch();
453  if (Target.getEnvironment() == llvm::Triple::GNUX32)
454  Target.setEnvironment(llvm::Triple::GNU);
455  } else if (A->getOption().matches(options::OPT_m16) &&
456  Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
457  AT = llvm::Triple::x86;
458  Target.setEnvironment(llvm::Triple::CODE16);
459  }
460 
461  if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
462  Target.setArch(AT);
463  }
464 
465  // Handle -miamcu flag.
466  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
467  if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
468  D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
469  << Target.str();
470 
471  if (A && !A->getOption().matches(options::OPT_m32))
472  D.Diag(diag::err_drv_argument_not_allowed_with)
473  << "-miamcu" << A->getBaseArg().getAsString(Args);
474 
475  Target.setArch(llvm::Triple::x86);
476  Target.setArchName("i586");
477  Target.setEnvironment(llvm::Triple::UnknownEnvironment);
478  Target.setEnvironmentName("");
479  Target.setOS(llvm::Triple::ELFIAMCU);
480  Target.setVendor(llvm::Triple::UnknownVendor);
481  Target.setVendorName("intel");
482  }
483 
484  return Target;
485 }
486 
487 // Parse the LTO options and record the type of LTO compilation
488 // based on which -f(no-)?lto(=.*)? option occurs last.
489 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
490  LTOMode = LTOK_None;
491  if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
492  options::OPT_fno_lto, false))
493  return;
494 
495  StringRef LTOName("full");
496 
497  const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
498  if (A)
499  LTOName = A->getValue();
500 
501  LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
502  .Case("full", LTOK_Full)
503  .Case("thin", LTOK_Thin)
504  .Default(LTOK_Unknown);
505 
506  if (LTOMode == LTOK_Unknown) {
507  assert(A);
508  Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
509  << A->getValue();
510  }
511 }
512 
513 /// Compute the desired OpenMP runtime from the flags provided.
515  StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
516 
517  const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
518  if (A)
519  RuntimeName = A->getValue();
520 
521  auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
522  .Case("libomp", OMPRT_OMP)
523  .Case("libgomp", OMPRT_GOMP)
524  .Case("libiomp5", OMPRT_IOMP5)
525  .Default(OMPRT_Unknown);
526 
527  if (RT == OMPRT_Unknown) {
528  if (A)
529  Diag(diag::err_drv_unsupported_option_argument)
530  << A->getOption().getName() << A->getValue();
531  else
532  // FIXME: We could use a nicer diagnostic here.
533  Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
534  }
535 
536  return RT;
537 }
538 
540  InputList &Inputs) {
541 
542  //
543  // CUDA/HIP
544  //
545  // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
546  // or HIP type. However, mixed CUDA/HIP compilation is not supported.
547  bool IsCuda =
548  llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
549  return types::isCuda(I.first);
550  });
551  bool IsHIP =
552  llvm::any_of(Inputs,
553  [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
554  return types::isHIP(I.first);
555  }) ||
556  C.getInputArgs().hasArg(options::OPT_hip_link);
557  if (IsCuda && IsHIP) {
558  Diag(clang::diag::err_drv_mix_cuda_hip);
559  return;
560  }
561  if (IsCuda) {
563  const llvm::Triple &HostTriple = HostTC->getTriple();
564  StringRef DeviceTripleStr;
565  auto OFK = Action::OFK_Cuda;
566  DeviceTripleStr =
567  HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
568  llvm::Triple CudaTriple(DeviceTripleStr);
569  // Use the CUDA and host triples as the key into the ToolChains map,
570  // because the device toolchain we create depends on both.
571  auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
572  if (!CudaTC) {
573  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
574  *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
575  }
576  C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
577  } else if (IsHIP) {
579  const llvm::Triple &HostTriple = HostTC->getTriple();
580  StringRef DeviceTripleStr;
581  auto OFK = Action::OFK_HIP;
582  DeviceTripleStr = "amdgcn-amd-amdhsa";
583  llvm::Triple HIPTriple(DeviceTripleStr);
584  // Use the HIP and host triples as the key into the ToolChains map,
585  // because the device toolchain we create depends on both.
586  auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
587  if (!HIPTC) {
588  HIPTC = llvm::make_unique<toolchains::HIPToolChain>(
589  *this, HIPTriple, *HostTC, C.getInputArgs());
590  }
591  C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
592  }
593 
594  //
595  // OpenMP
596  //
597  // We need to generate an OpenMP toolchain if the user specified targets with
598  // the -fopenmp-targets option.
599  if (Arg *OpenMPTargets =
600  C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
601  if (OpenMPTargets->getNumValues()) {
602  // We expect that -fopenmp-targets is always used in conjunction with the
603  // option -fopenmp specifying a valid runtime with offloading support,
604  // i.e. libomp or libiomp.
605  bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
606  options::OPT_fopenmp, options::OPT_fopenmp_EQ,
607  options::OPT_fno_openmp, false);
608  if (HasValidOpenMPRuntime) {
610  HasValidOpenMPRuntime =
611  OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
612  }
613 
614  if (HasValidOpenMPRuntime) {
615  llvm::StringMap<const char *> FoundNormalizedTriples;
616  for (const char *Val : OpenMPTargets->getValues()) {
617  llvm::Triple TT(Val);
618  std::string NormalizedName = TT.normalize();
619 
620  // Make sure we don't have a duplicate triple.
621  auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
622  if (Duplicate != FoundNormalizedTriples.end()) {
623  Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
624  << Val << Duplicate->second;
625  continue;
626  }
627 
628  // Store the current triple so that we can check for duplicates in the
629  // following iterations.
630  FoundNormalizedTriples[NormalizedName] = Val;
631 
632  // If the specified target is invalid, emit a diagnostic.
633  if (TT.getArch() == llvm::Triple::UnknownArch)
634  Diag(clang::diag::err_drv_invalid_omp_target) << Val;
635  else {
636  const ToolChain *TC;
637  // CUDA toolchains have to be selected differently. They pair host
638  // and device in their implementation.
639  if (TT.isNVPTX()) {
640  const ToolChain *HostTC =
642  assert(HostTC && "Host toolchain should be always defined.");
643  auto &CudaTC =
644  ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
645  if (!CudaTC)
646  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
647  *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
648  TC = CudaTC.get();
649  } else
650  TC = &getToolChain(C.getInputArgs(), TT);
652  }
653  }
654  } else
655  Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
656  } else
657  Diag(clang::diag::warn_drv_empty_joined_argument)
658  << OpenMPTargets->getAsString(C.getInputArgs());
659  }
660 
661  //
662  // TODO: Add support for other offloading programming models here.
663  //
664 }
665 
666 /// Looks the given directories for the specified file.
667 ///
668 /// \param[out] FilePath File path, if the file was found.
669 /// \param[in] Dirs Directories used for the search.
670 /// \param[in] FileName Name of the file to search for.
671 /// \return True if file was found.
672 ///
673 /// Looks for file specified by FileName sequentially in directories specified
674 /// by Dirs.
675 ///
676 static bool searchForFile(SmallVectorImpl<char> &FilePath,
678  StringRef FileName) {
679  SmallString<128> WPath;
680  for (const StringRef &Dir : Dirs) {
681  if (Dir.empty())
682  continue;
683  WPath.clear();
684  llvm::sys::path::append(WPath, Dir, FileName);
685  llvm::sys::path::native(WPath);
686  if (llvm::sys::fs::is_regular_file(WPath)) {
687  FilePath = std::move(WPath);
688  return true;
689  }
690  }
691  return false;
692 }
693 
694 bool Driver::readConfigFile(StringRef FileName) {
695  // Try reading the given file.
697  if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
698  Diag(diag::err_drv_cannot_read_config_file) << FileName;
699  return true;
700  }
701 
702  // Read options from config file.
703  llvm::SmallString<128> CfgFileName(FileName);
704  llvm::sys::path::native(CfgFileName);
705  ConfigFile = CfgFileName.str();
706  bool ContainErrors;
707  CfgOptions = llvm::make_unique<InputArgList>(
708  ParseArgStrings(NewCfgArgs, ContainErrors));
709  if (ContainErrors) {
710  CfgOptions.reset();
711  return true;
712  }
713 
714  if (CfgOptions->hasArg(options::OPT_config)) {
715  CfgOptions.reset();
716  Diag(diag::err_drv_nested_config_file);
717  return true;
718  }
719 
720  // Claim all arguments that come from a configuration file so that the driver
721  // does not warn on any that is unused.
722  for (Arg *A : *CfgOptions)
723  A->claim();
724  return false;
725 }
726 
727 bool Driver::loadConfigFile() {
728  std::string CfgFileName;
729  bool FileSpecifiedExplicitly = false;
730 
731  // Process options that change search path for config files.
732  if (CLOptions) {
733  if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
734  SmallString<128> CfgDir;
735  CfgDir.append(
736  CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
737  if (!CfgDir.empty()) {
738  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
739  SystemConfigDir.clear();
740  else
741  SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
742  }
743  }
744  if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
745  SmallString<128> CfgDir;
746  CfgDir.append(
747  CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
748  if (!CfgDir.empty()) {
749  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
750  UserConfigDir.clear();
751  else
752  UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
753  }
754  }
755  }
756 
757  // First try to find config file specified in command line.
758  if (CLOptions) {
759  std::vector<std::string> ConfigFiles =
760  CLOptions->getAllArgValues(options::OPT_config);
761  if (ConfigFiles.size() > 1) {
762  Diag(diag::err_drv_duplicate_config);
763  return true;
764  }
765 
766  if (!ConfigFiles.empty()) {
767  CfgFileName = ConfigFiles.front();
768  assert(!CfgFileName.empty());
769 
770  // If argument contains directory separator, treat it as a path to
771  // configuration file.
772  if (llvm::sys::path::has_parent_path(CfgFileName)) {
773  SmallString<128> CfgFilePath;
774  if (llvm::sys::path::is_relative(CfgFileName))
775  llvm::sys::fs::current_path(CfgFilePath);
776  llvm::sys::path::append(CfgFilePath, CfgFileName);
777  if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
778  Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
779  return true;
780  }
781  return readConfigFile(CfgFilePath);
782  }
783 
784  FileSpecifiedExplicitly = true;
785  }
786  }
787 
788  // If config file is not specified explicitly, try to deduce configuration
789  // from executable name. For instance, an executable 'armv7l-clang' will
790  // search for config file 'armv7l-clang.cfg'.
791  if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
793 
794  if (CfgFileName.empty())
795  return false;
796 
797  // Determine architecture part of the file name, if it is present.
798  StringRef CfgFileArch = CfgFileName;
799  size_t ArchPrefixLen = CfgFileArch.find('-');
800  if (ArchPrefixLen == StringRef::npos)
801  ArchPrefixLen = CfgFileArch.size();
802  llvm::Triple CfgTriple;
803  CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
804  CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
805  if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
806  ArchPrefixLen = 0;
807 
808  if (!StringRef(CfgFileName).endswith(".cfg"))
809  CfgFileName += ".cfg";
810 
811  // If config file starts with architecture name and command line options
812  // redefine architecture (with options like -m32 -LE etc), try finding new
813  // config file with that architecture.
814  SmallString<128> FixedConfigFile;
815  size_t FixedArchPrefixLen = 0;
816  if (ArchPrefixLen) {
817  // Get architecture name from config file name like 'i386.cfg' or
818  // 'armv7l-clang.cfg'.
819  // Check if command line options changes effective triple.
820  llvm::Triple EffectiveTriple = computeTargetTriple(*this,
821  CfgTriple.getTriple(), *CLOptions);
822  if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
823  FixedConfigFile = EffectiveTriple.getArchName();
824  FixedArchPrefixLen = FixedConfigFile.size();
825  // Append the rest of original file name so that file name transforms
826  // like: i386-clang.cfg -> x86_64-clang.cfg.
827  if (ArchPrefixLen < CfgFileName.size())
828  FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
829  }
830  }
831 
832  // Prepare list of directories where config file is searched for.
833  SmallVector<std::string, 3> CfgFileSearchDirs;
834  CfgFileSearchDirs.push_back(UserConfigDir);
835  CfgFileSearchDirs.push_back(SystemConfigDir);
836  CfgFileSearchDirs.push_back(Dir);
837 
838  // Try to find config file. First try file with corrected architecture.
839  llvm::SmallString<128> CfgFilePath;
840  if (!FixedConfigFile.empty()) {
841  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
842  return readConfigFile(CfgFilePath);
843  // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
844  FixedConfigFile.resize(FixedArchPrefixLen);
845  FixedConfigFile.append(".cfg");
846  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
847  return readConfigFile(CfgFilePath);
848  }
849 
850  // Then try original file name.
851  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
852  return readConfigFile(CfgFilePath);
853 
854  // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
855  if (!ClangNameParts.ModeSuffix.empty() &&
856  !ClangNameParts.TargetPrefix.empty()) {
857  CfgFileName.assign(ClangNameParts.TargetPrefix);
858  CfgFileName.append(".cfg");
859  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
860  return readConfigFile(CfgFilePath);
861  }
862 
863  // Report error but only if config file was specified explicitly, by option
864  // --config. If it was deduced from executable name, it is not an error.
865  if (FileSpecifiedExplicitly) {
866  Diag(diag::err_drv_config_file_not_found) << CfgFileName;
867  for (const std::string &SearchDir : CfgFileSearchDirs)
868  if (!SearchDir.empty())
869  Diag(diag::note_drv_config_file_searched_in) << SearchDir;
870  return true;
871  }
872 
873  return false;
874 }
875 
877  llvm::PrettyStackTraceString CrashInfo("Compilation construction");
878 
879  // FIXME: Handle environment options which affect driver behavior, somewhere
880  // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
881 
882  if (Optional<std::string> CompilerPathValue =
883  llvm::sys::Process::GetEnv("COMPILER_PATH")) {
884  StringRef CompilerPath = *CompilerPathValue;
885  while (!CompilerPath.empty()) {
886  std::pair<StringRef, StringRef> Split =
887  CompilerPath.split(llvm::sys::EnvPathSeparator);
888  PrefixDirs.push_back(Split.first);
889  CompilerPath = Split.second;
890  }
891  }
892 
893  // We look for the driver mode option early, because the mode can affect
894  // how other options are parsed.
895  ParseDriverMode(ClangExecutable, ArgList.slice(1));
896 
897  // FIXME: What are we going to do with -V and -b?
898 
899  // Arguments specified in command line.
900  bool ContainsError;
901  CLOptions = llvm::make_unique<InputArgList>(
902  ParseArgStrings(ArgList.slice(1), ContainsError));
903 
904  // Try parsing configuration file.
905  if (!ContainsError)
906  ContainsError = loadConfigFile();
907  bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
908 
909  // All arguments, from both config file and command line.
910  InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
911  : std::move(*CLOptions));
912  if (HasConfigFile)
913  for (auto *Opt : *CLOptions) {
914  if (Opt->getOption().matches(options::OPT_config))
915  continue;
916  unsigned Index = Args.MakeIndex(Opt->getSpelling());
917  const Arg *BaseArg = &Opt->getBaseArg();
918  if (BaseArg == Opt)
919  BaseArg = nullptr;
920  Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
921  Index, BaseArg);
922  Copy->getValues() = Opt->getValues();
923  if (Opt->isClaimed())
924  Copy->claim();
925  Args.append(Copy);
926  }
927 
928  // FIXME: This stuff needs to go into the Compilation, not the driver.
929  bool CCCPrintPhases;
930 
931  // Silence driver warnings if requested
932  Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
933 
934  // -no-canonical-prefixes is used very early in main.
935  Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
936 
937  // Ignore -pipe.
938  Args.ClaimAllArgs(options::OPT_pipe);
939 
940  // Extract -ccc args.
941  //
942  // FIXME: We need to figure out where this behavior should live. Most of it
943  // should be outside in the client; the parts that aren't should have proper
944  // options, either by introducing new ones or by overloading gcc ones like -V
945  // or -b.
946  CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
947  CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
948  if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
949  CCCGenericGCCName = A->getValue();
950  CCCUsePCH =
951  Args.hasFlag(options::OPT_ccc_pch_is_pch, options::OPT_ccc_pch_is_pth);
952  GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
953  options::OPT_fno_crash_diagnostics,
954  !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
955  // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
956  // and getToolChain is const.
957  if (IsCLMode()) {
958  // clang-cl targets MSVC-style Win32.
959  llvm::Triple T(TargetTriple);
960  T.setOS(llvm::Triple::Win32);
961  T.setVendor(llvm::Triple::PC);
962  T.setEnvironment(llvm::Triple::MSVC);
963  T.setObjectFormat(llvm::Triple::COFF);
964  TargetTriple = T.str();
965  }
966  if (const Arg *A = Args.getLastArg(options::OPT_target))
967  TargetTriple = A->getValue();
968  if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
969  Dir = InstalledDir = A->getValue();
970  for (const Arg *A : Args.filtered(options::OPT_B)) {
971  A->claim();
972  PrefixDirs.push_back(A->getValue(0));
973  }
974  if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
975  SysRoot = A->getValue();
976  if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
977  DyldPrefix = A->getValue();
978 
979  if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
980  ResourceDir = A->getValue();
981 
982  if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
983  SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
984  .Case("cwd", SaveTempsCwd)
985  .Case("obj", SaveTempsObj)
986  .Default(SaveTempsCwd);
987  }
988 
989  setLTOMode(Args);
990 
991  // Process -fembed-bitcode= flags.
992  if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
993  StringRef Name = A->getValue();
994  unsigned Model = llvm::StringSwitch<unsigned>(Name)
995  .Case("off", EmbedNone)
996  .Case("all", EmbedBitcode)
997  .Case("bitcode", EmbedBitcode)
998  .Case("marker", EmbedMarker)
999  .Default(~0U);
1000  if (Model == ~0U) {
1001  Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1002  << Name;
1003  } else
1004  BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1005  }
1006 
1007  std::unique_ptr<llvm::opt::InputArgList> UArgs =
1008  llvm::make_unique<InputArgList>(std::move(Args));
1009 
1010  // Perform the default argument translations.
1011  DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1012 
1013  // Owned by the host.
1014  const ToolChain &TC = getToolChain(
1015  *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1016 
1017  // The compilation takes ownership of Args.
1018  Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1019  ContainsError);
1020 
1021  if (!HandleImmediateArgs(*C))
1022  return C;
1023 
1024  // Construct the list of inputs.
1025  InputList Inputs;
1026  BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1027 
1028  // Populate the tool chains for the offloading devices, if any.
1030 
1031  // Construct the list of abstract actions to perform for this compilation. On
1032  // MachO targets this uses the driver-driver and universal actions.
1033  if (TC.getTriple().isOSBinFormatMachO())
1034  BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1035  else
1036  BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1037 
1038  if (CCCPrintPhases) {
1039  PrintActions(*C);
1040  return C;
1041  }
1042 
1043  BuildJobs(*C);
1044 
1045  return C;
1046 }
1047 
1048 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1049  llvm::opt::ArgStringList ASL;
1050  for (const auto *A : Args)
1051  A->render(Args, ASL);
1052 
1053  for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1054  if (I != ASL.begin())
1055  OS << ' ';
1056  Command::printArg(OS, *I, true);
1057  }
1058  OS << '\n';
1059 }
1060 
1061 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1062  SmallString<128> &CrashDiagDir) {
1063  using namespace llvm::sys;
1064  assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1065  "Only knows about .crash files on Darwin");
1066 
1067  // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1068  // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1069  // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1070  path::home_directory(CrashDiagDir);
1071  if (CrashDiagDir.startswith("/var/root"))
1072  CrashDiagDir = "/";
1073  path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1074  int PID =
1075 #if LLVM_ON_UNIX
1076  getpid();
1077 #else
1078  0;
1079 #endif
1080  std::error_code EC;
1081  fs::file_status FileStatus;
1082  TimePoint<> LastAccessTime;
1083  SmallString<128> CrashFilePath;
1084  // Lookup the .crash files and get the one generated by a subprocess spawned
1085  // by this driver invocation.
1086  for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1087  File != FileEnd && !EC; File.increment(EC)) {
1088  StringRef FileName = path::filename(File->path());
1089  if (!FileName.startswith(Name))
1090  continue;
1091  if (fs::status(File->path(), FileStatus))
1092  continue;
1093  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1094  llvm::MemoryBuffer::getFile(File->path());
1095  if (!CrashFile)
1096  continue;
1097  // The first line should start with "Process:", otherwise this isn't a real
1098  // .crash file.
1099  StringRef Data = CrashFile.get()->getBuffer();
1100  if (!Data.startswith("Process:"))
1101  continue;
1102  // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1103  size_t ParentProcPos = Data.find("Parent Process:");
1104  if (ParentProcPos == StringRef::npos)
1105  continue;
1106  size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1107  if (LineEnd == StringRef::npos)
1108  continue;
1109  StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1110  int OpenBracket = -1, CloseBracket = -1;
1111  for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1112  if (ParentProcess[i] == '[')
1113  OpenBracket = i;
1114  if (ParentProcess[i] == ']')
1115  CloseBracket = i;
1116  }
1117  // Extract the parent process PID from the .crash file and check whether
1118  // it matches this driver invocation pid.
1119  int CrashPID;
1120  if (OpenBracket < 0 || CloseBracket < 0 ||
1121  ParentProcess.slice(OpenBracket + 1, CloseBracket)
1122  .getAsInteger(10, CrashPID) || CrashPID != PID) {
1123  continue;
1124  }
1125 
1126  // Found a .crash file matching the driver pid. To avoid getting an older
1127  // and misleading crash file, continue looking for the most recent.
1128  // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1129  // multiple crashes poiting to the same parent process. Since the driver
1130  // does not collect pid information for the dispatched invocation there's
1131  // currently no way to distinguish among them.
1132  const auto FileAccessTime = FileStatus.getLastModificationTime();
1133  if (FileAccessTime > LastAccessTime) {
1134  CrashFilePath.assign(File->path());
1135  LastAccessTime = FileAccessTime;
1136  }
1137  }
1138 
1139  // If found, copy it over to the location of other reproducer files.
1140  if (!CrashFilePath.empty()) {
1141  EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1142  if (EC)
1143  return false;
1144  return true;
1145  }
1146 
1147  return false;
1148 }
1149 
1150 // When clang crashes, produce diagnostic information including the fully
1151 // preprocessed source file(s). Request that the developer attach the
1152 // diagnostic information to a bug report.
1154  Compilation &C, const Command &FailingCommand,
1155  StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1156  if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1157  return;
1158 
1159  // Don't try to generate diagnostics for link or dsymutil jobs.
1160  if (FailingCommand.getCreator().isLinkJob() ||
1161  FailingCommand.getCreator().isDsymutilJob())
1162  return;
1163 
1164  // Print the version of the compiler.
1165  PrintVersion(C, llvm::errs());
1166 
1167  Diag(clang::diag::note_drv_command_failed_diag_msg)
1168  << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1169  "crash backtrace, preprocessed source, and associated run script.";
1170 
1171  // Suppress driver output and emit preprocessor output to temp file.
1172  Mode = CPPMode;
1173  CCGenDiagnostics = true;
1174 
1175  // Save the original job command(s).
1176  Command Cmd = FailingCommand;
1177 
1178  // Keep track of whether we produce any errors while trying to produce
1179  // preprocessed sources.
1180  DiagnosticErrorTrap Trap(Diags);
1181 
1182  // Suppress tool output.
1184 
1185  // Construct the list of inputs.
1186  InputList Inputs;
1187  BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1188 
1189  for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1190  bool IgnoreInput = false;
1191 
1192  // Ignore input from stdin or any inputs that cannot be preprocessed.
1193  // Check type first as not all linker inputs have a value.
1194  if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1195  IgnoreInput = true;
1196  } else if (!strcmp(it->second->getValue(), "-")) {
1197  Diag(clang::diag::note_drv_command_failed_diag_msg)
1198  << "Error generating preprocessed source(s) - "
1199  "ignoring input from stdin.";
1200  IgnoreInput = true;
1201  }
1202 
1203  if (IgnoreInput) {
1204  it = Inputs.erase(it);
1205  ie = Inputs.end();
1206  } else {
1207  ++it;
1208  }
1209  }
1210 
1211  if (Inputs.empty()) {
1212  Diag(clang::diag::note_drv_command_failed_diag_msg)
1213  << "Error generating preprocessed source(s) - "
1214  "no preprocessable inputs.";
1215  return;
1216  }
1217 
1218  // Don't attempt to generate preprocessed files if multiple -arch options are
1219  // used, unless they're all duplicates.
1220  llvm::StringSet<> ArchNames;
1221  for (const Arg *A : C.getArgs()) {
1222  if (A->getOption().matches(options::OPT_arch)) {
1223  StringRef ArchName = A->getValue();
1224  ArchNames.insert(ArchName);
1225  }
1226  }
1227  if (ArchNames.size() > 1) {
1228  Diag(clang::diag::note_drv_command_failed_diag_msg)
1229  << "Error generating preprocessed source(s) - cannot generate "
1230  "preprocessed source with multiple -arch options.";
1231  return;
1232  }
1233 
1234  // Construct the list of abstract actions to perform for this compilation. On
1235  // Darwin OSes this uses the driver-driver and builds universal actions.
1236  const ToolChain &TC = C.getDefaultToolChain();
1237  if (TC.getTriple().isOSBinFormatMachO())
1238  BuildUniversalActions(C, TC, Inputs);
1239  else
1240  BuildActions(C, C.getArgs(), Inputs, C.getActions());
1241 
1242  BuildJobs(C);
1243 
1244  // If there were errors building the compilation, quit now.
1245  if (Trap.hasErrorOccurred()) {
1246  Diag(clang::diag::note_drv_command_failed_diag_msg)
1247  << "Error generating preprocessed source(s).";
1248  return;
1249  }
1250 
1251  // Generate preprocessed output.
1252  SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1253  C.ExecuteJobs(C.getJobs(), FailingCommands);
1254 
1255  // If any of the preprocessing commands failed, clean up and exit.
1256  if (!FailingCommands.empty()) {
1257  Diag(clang::diag::note_drv_command_failed_diag_msg)
1258  << "Error generating preprocessed source(s).";
1259  return;
1260  }
1261 
1262  const ArgStringList &TempFiles = C.getTempFiles();
1263  if (TempFiles.empty()) {
1264  Diag(clang::diag::note_drv_command_failed_diag_msg)
1265  << "Error generating preprocessed source(s).";
1266  return;
1267  }
1268 
1269  Diag(clang::diag::note_drv_command_failed_diag_msg)
1270  << "\n********************\n\n"
1271  "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1272  "Preprocessed source(s) and associated run script(s) are located at:";
1273 
1274  SmallString<128> VFS;
1275  SmallString<128> ReproCrashFilename;
1276  for (const char *TempFile : TempFiles) {
1277  Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1278  if (Report)
1279  Report->TemporaryFiles.push_back(TempFile);
1280  if (ReproCrashFilename.empty()) {
1281  ReproCrashFilename = TempFile;
1282  llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1283  }
1284  if (StringRef(TempFile).endswith(".cache")) {
1285  // In some cases (modules) we'll dump extra data to help with reproducing
1286  // the crash into a directory next to the output.
1287  VFS = llvm::sys::path::filename(TempFile);
1288  llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1289  }
1290  }
1291 
1292  // Assume associated files are based off of the first temporary file.
1293  CrashReportInfo CrashInfo(TempFiles[0], VFS);
1294 
1295  llvm::SmallString<128> Script(CrashInfo.Filename);
1296  llvm::sys::path::replace_extension(Script, "sh");
1297  std::error_code EC;
1298  llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1299  if (EC) {
1300  Diag(clang::diag::note_drv_command_failed_diag_msg)
1301  << "Error generating run script: " << Script << " " << EC.message();
1302  } else {
1303  ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1304  << "# Driver args: ";
1305  printArgList(ScriptOS, C.getInputArgs());
1306  ScriptOS << "# Original command: ";
1307  Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1308  Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1309  if (!AdditionalInformation.empty())
1310  ScriptOS << "\n# Additional information: " << AdditionalInformation
1311  << "\n";
1312  if (Report)
1313  Report->TemporaryFiles.push_back(Script.str());
1314  Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1315  }
1316 
1317  // On darwin, provide information about the .crash diagnostic report.
1318  if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1319  SmallString<128> CrashDiagDir;
1320  if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1321  Diag(clang::diag::note_drv_command_failed_diag_msg)
1322  << ReproCrashFilename.str();
1323  } else { // Suggest a directory for the user to look for .crash files.
1324  llvm::sys::path::append(CrashDiagDir, Name);
1325  CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1326  Diag(clang::diag::note_drv_command_failed_diag_msg)
1327  << "Crash backtrace is located in";
1328  Diag(clang::diag::note_drv_command_failed_diag_msg)
1329  << CrashDiagDir.str();
1330  Diag(clang::diag::note_drv_command_failed_diag_msg)
1331  << "(choose the .crash file that corresponds to your crash)";
1332  }
1333  }
1334 
1335  for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1336  options::OPT_frewrite_map_file_EQ))
1337  Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1338 
1339  Diag(clang::diag::note_drv_command_failed_diag_msg)
1340  << "\n\n********************";
1341 }
1342 
1343 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1344  // Since commandLineFitsWithinSystemLimits() may underestimate system's capacity
1345  // if the tool does not support response files, there is a chance/ that things
1346  // will just work without a response file, so we silently just skip it.
1348  llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments()))
1349  return;
1350 
1351  std::string TmpName = GetTemporaryPath("response", "txt");
1352  Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1353 }
1354 
1356  Compilation &C,
1357  SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1358  // Just print if -### was present.
1359  if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1360  C.getJobs().Print(llvm::errs(), "\n", true);
1361  return 0;
1362  }
1363 
1364  // If there were errors building the compilation, quit now.
1365  if (Diags.hasErrorOccurred())
1366  return 1;
1367 
1368  // Set up response file names for each command, if necessary
1369  for (auto &Job : C.getJobs())
1370  setUpResponseFiles(C, Job);
1371 
1372  C.ExecuteJobs(C.getJobs(), FailingCommands);
1373 
1374  // If the command succeeded, we are done.
1375  if (FailingCommands.empty())
1376  return 0;
1377 
1378  // Otherwise, remove result files and print extra information about abnormal
1379  // failures.
1380  for (const auto &CmdPair : FailingCommands) {
1381  int Res = CmdPair.first;
1382  const Command *FailingCommand = CmdPair.second;
1383 
1384  // Remove result files if we're not saving temps.
1385  if (!isSaveTempsEnabled()) {
1386  const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1387  C.CleanupFileMap(C.getResultFiles(), JA, true);
1388 
1389  // Failure result files are valid unless we crashed.
1390  if (Res < 0)
1391  C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1392  }
1393 
1394  // Print extra information about abnormal failures, if possible.
1395  //
1396  // This is ad-hoc, but we don't want to be excessively noisy. If the result
1397  // status was 1, assume the command failed normally. In particular, if it
1398  // was the compiler then assume it gave a reasonable error code. Failures
1399  // in other tools are less common, and they generally have worse
1400  // diagnostics, so always print the diagnostic there.
1401  const Tool &FailingTool = FailingCommand->getCreator();
1402 
1403  if (!FailingCommand->getCreator().hasGoodDiagnostics() || Res != 1) {
1404  // FIXME: See FIXME above regarding result code interpretation.
1405  if (Res < 0)
1406  Diag(clang::diag::err_drv_command_signalled)
1407  << FailingTool.getShortName();
1408  else
1409  Diag(clang::diag::err_drv_command_failed) << FailingTool.getShortName()
1410  << Res;
1411  }
1412  }
1413  return 0;
1414 }
1415 
1416 void Driver::PrintHelp(bool ShowHidden) const {
1417  unsigned IncludedFlagsBitmask;
1418  unsigned ExcludedFlagsBitmask;
1419  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1420  getIncludeExcludeOptionFlagMasks();
1421 
1422  ExcludedFlagsBitmask |= options::NoDriverOption;
1423  if (!ShowHidden)
1424  ExcludedFlagsBitmask |= HelpHidden;
1425 
1426  getOpts().PrintHelp(llvm::outs(), Name.c_str(), DriverTitle.c_str(),
1427  IncludedFlagsBitmask, ExcludedFlagsBitmask,
1428  /*ShowAllAliases=*/false);
1429 }
1430 
1431 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1432  // FIXME: The following handlers should use a callback mechanism, we don't
1433  // know what the client would like to do.
1434  OS << getClangFullVersion() << '\n';
1435  const ToolChain &TC = C.getDefaultToolChain();
1436  OS << "Target: " << TC.getTripleString() << '\n';
1437 
1438  // Print the threading model.
1439  if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1440  // Don't print if the ToolChain would have barfed on it already
1441  if (TC.isThreadModelSupported(A->getValue()))
1442  OS << "Thread model: " << A->getValue();
1443  } else
1444  OS << "Thread model: " << TC.getThreadModel();
1445  OS << '\n';
1446 
1447  // Print out the install directory.
1448  OS << "InstalledDir: " << InstalledDir << '\n';
1449 
1450  // If configuration file was used, print its path.
1451  if (!ConfigFile.empty())
1452  OS << "Configuration file: " << ConfigFile << '\n';
1453 }
1454 
1455 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1456 /// option.
1457 static void PrintDiagnosticCategories(raw_ostream &OS) {
1458  // Skip the empty category.
1459  for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1460  ++i)
1461  OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1462 }
1463 
1464 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1465  if (PassedFlags == "")
1466  return;
1467  // Print out all options that start with a given argument. This is used for
1468  // shell autocompletion.
1469  std::vector<std::string> SuggestedCompletions;
1470  std::vector<std::string> Flags;
1471 
1472  unsigned short DisableFlags =
1474 
1475  // Parse PassedFlags by "," as all the command-line flags are passed to this
1476  // function separated by ","
1477  StringRef TargetFlags = PassedFlags;
1478  while (TargetFlags != "") {
1479  StringRef CurFlag;
1480  std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1481  Flags.push_back(std::string(CurFlag));
1482  }
1483 
1484  // We want to show cc1-only options only when clang is invoked with -cc1 or
1485  // -Xclang.
1486  if (std::find(Flags.begin(), Flags.end(), "-Xclang") != Flags.end() ||
1487  std::find(Flags.begin(), Flags.end(), "-cc1") != Flags.end())
1488  DisableFlags &= ~options::NoDriverOption;
1489 
1490  StringRef Cur;
1491  Cur = Flags.at(Flags.size() - 1);
1492  StringRef Prev;
1493  if (Flags.size() >= 2) {
1494  Prev = Flags.at(Flags.size() - 2);
1495  SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur);
1496  }
1497 
1498  if (SuggestedCompletions.empty())
1499  SuggestedCompletions = Opts->suggestValueCompletions(Cur, "");
1500 
1501  if (SuggestedCompletions.empty()) {
1502  // If the flag is in the form of "--autocomplete=-foo",
1503  // we were requested to print out all option names that start with "-foo".
1504  // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1505  SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags);
1506 
1507  // We have to query the -W flags manually as they're not in the OptTable.
1508  // TODO: Find a good way to add them to OptTable instead and them remove
1509  // this code.
1510  for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1511  if (S.startswith(Cur))
1512  SuggestedCompletions.push_back(S);
1513  }
1514 
1515  // Sort the autocomplete candidates so that shells print them out in a
1516  // deterministic order. We could sort in any way, but we chose
1517  // case-insensitive sorting for consistency with the -help option
1518  // which prints out options in the case-insensitive alphabetical order.
1519  llvm::sort(SuggestedCompletions.begin(), SuggestedCompletions.end(),
1520  [](StringRef A, StringRef B) {
1521  if (int X = A.compare_lower(B))
1522  return X < 0;
1523  return A.compare(B) > 0;
1524  });
1525 
1526  llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1527 }
1528 
1530  // The order these options are handled in gcc is all over the place, but we
1531  // don't expect inconsistencies w.r.t. that to matter in practice.
1532 
1533  if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1534  llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1535  return false;
1536  }
1537 
1538  if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1539  // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1540  // return an answer which matches our definition of __VERSION__.
1541  //
1542  // If we want to return a more correct answer some day, then we should
1543  // introduce a non-pedantically GCC compatible mode to Clang in which we
1544  // provide sensible definitions for -dumpversion, __VERSION__, etc.
1545  llvm::outs() << "4.2.1\n";
1546  return false;
1547  }
1548 
1549  if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1550  PrintDiagnosticCategories(llvm::outs());
1551  return false;
1552  }
1553 
1554  if (C.getArgs().hasArg(options::OPT_help) ||
1555  C.getArgs().hasArg(options::OPT__help_hidden)) {
1556  PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1557  return false;
1558  }
1559 
1560  if (C.getArgs().hasArg(options::OPT__version)) {
1561  // Follow gcc behavior and use stdout for --version and stderr for -v.
1562  PrintVersion(C, llvm::outs());
1563  return false;
1564  }
1565 
1566  if (C.getArgs().hasArg(options::OPT_v) ||
1567  C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1568  PrintVersion(C, llvm::errs());
1569  SuppressMissingInputWarning = true;
1570  }
1571 
1572  if (C.getArgs().hasArg(options::OPT_v)) {
1573  if (!SystemConfigDir.empty())
1574  llvm::errs() << "System configuration file directory: "
1575  << SystemConfigDir << "\n";
1576  if (!UserConfigDir.empty())
1577  llvm::errs() << "User configuration file directory: "
1578  << UserConfigDir << "\n";
1579  }
1580 
1581  const ToolChain &TC = C.getDefaultToolChain();
1582 
1583  if (C.getArgs().hasArg(options::OPT_v))
1584  TC.printVerboseInfo(llvm::errs());
1585 
1586  if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1587  llvm::outs() << ResourceDir << '\n';
1588  return false;
1589  }
1590 
1591  if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1592  llvm::outs() << "programs: =";
1593  bool separator = false;
1594  for (const std::string &Path : TC.getProgramPaths()) {
1595  if (separator)
1596  llvm::outs() << ':';
1597  llvm::outs() << Path;
1598  separator = true;
1599  }
1600  llvm::outs() << "\n";
1601  llvm::outs() << "libraries: =" << ResourceDir;
1602 
1603  StringRef sysroot = C.getSysRoot();
1604 
1605  for (const std::string &Path : TC.getFilePaths()) {
1606  // Always print a separator. ResourceDir was the first item shown.
1607  llvm::outs() << ':';
1608  // Interpretation of leading '=' is needed only for NetBSD.
1609  if (Path[0] == '=')
1610  llvm::outs() << sysroot << Path.substr(1);
1611  else
1612  llvm::outs() << Path;
1613  }
1614  llvm::outs() << "\n";
1615  return false;
1616  }
1617 
1618  // FIXME: The following handlers should use a callback mechanism, we don't
1619  // know what the client would like to do.
1620  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1621  llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1622  return false;
1623  }
1624 
1625  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1626  StringRef ProgName = A->getValue();
1627 
1628  // Null program name cannot have a path.
1629  if (! ProgName.empty())
1630  llvm::outs() << GetProgramPath(ProgName, TC);
1631 
1632  llvm::outs() << "\n";
1633  return false;
1634  }
1635 
1636  if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1637  StringRef PassedFlags = A->getValue();
1638  HandleAutocompletions(PassedFlags);
1639  return false;
1640  }
1641 
1642  if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1644  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1645  RegisterEffectiveTriple TripleRAII(TC, Triple);
1646  switch (RLT) {
1648  llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1649  break;
1650  case ToolChain::RLT_Libgcc:
1651  llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1652  break;
1653  }
1654  return false;
1655  }
1656 
1657  if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1658  for (const Multilib &Multilib : TC.getMultilibs())
1659  llvm::outs() << Multilib << "\n";
1660  return false;
1661  }
1662 
1663  if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1664  for (const Multilib &Multilib : TC.getMultilibs()) {
1665  if (Multilib.gccSuffix().empty())
1666  llvm::outs() << ".\n";
1667  else {
1668  StringRef Suffix(Multilib.gccSuffix());
1669  assert(Suffix.front() == '/');
1670  llvm::outs() << Suffix.substr(1) << "\n";
1671  }
1672  }
1673  return false;
1674  }
1675  return true;
1676 }
1677 
1678 // Display an action graph human-readably. Action A is the "sink" node
1679 // and latest-occuring action. Traversal is in pre-order, visiting the
1680 // inputs to each action before printing the action itself.
1681 static unsigned PrintActions1(const Compilation &C, Action *A,
1682  std::map<Action *, unsigned> &Ids) {
1683  if (Ids.count(A)) // A was already visited.
1684  return Ids[A];
1685 
1686  std::string str;
1687  llvm::raw_string_ostream os(str);
1688 
1689  os << Action::getClassName(A->getKind()) << ", ";
1690  if (InputAction *IA = dyn_cast<InputAction>(A)) {
1691  os << "\"" << IA->getInputArg().getValue() << "\"";
1692  } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1693  os << '"' << BIA->getArchName() << '"' << ", {"
1694  << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1695  } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1696  bool IsFirst = true;
1697  OA->doOnEachDependence(
1698  [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1699  // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1700  // sm_35 this will generate:
1701  // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1702  // (nvptx64-nvidia-cuda:sm_35) {#ID}
1703  if (!IsFirst)
1704  os << ", ";
1705  os << '"';
1706  if (TC)
1707  os << A->getOffloadingKindPrefix();
1708  else
1709  os << "host";
1710  os << " (";
1711  os << TC->getTriple().normalize();
1712 
1713  if (BoundArch)
1714  os << ":" << BoundArch;
1715  os << ")";
1716  os << '"';
1717  os << " {" << PrintActions1(C, A, Ids) << "}";
1718  IsFirst = false;
1719  });
1720  } else {
1721  const ActionList *AL = &A->getInputs();
1722 
1723  if (AL->size()) {
1724  const char *Prefix = "{";
1725  for (Action *PreRequisite : *AL) {
1726  os << Prefix << PrintActions1(C, PreRequisite, Ids);
1727  Prefix = ", ";
1728  }
1729  os << "}";
1730  } else
1731  os << "{}";
1732  }
1733 
1734  // Append offload info for all options other than the offloading action
1735  // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1736  std::string offload_str;
1737  llvm::raw_string_ostream offload_os(offload_str);
1738  if (!isa<OffloadAction>(A)) {
1739  auto S = A->getOffloadingKindPrefix();
1740  if (!S.empty()) {
1741  offload_os << ", (" << S;
1742  if (A->getOffloadingArch())
1743  offload_os << ", " << A->getOffloadingArch();
1744  offload_os << ")";
1745  }
1746  }
1747 
1748  unsigned Id = Ids.size();
1749  Ids[A] = Id;
1750  llvm::errs() << Id << ": " << os.str() << ", "
1751  << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1752 
1753  return Id;
1754 }
1755 
1756 // Print the action graphs in a compilation C.
1757 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1758 void Driver::PrintActions(const Compilation &C) const {
1759  std::map<Action *, unsigned> Ids;
1760  for (Action *A : C.getActions())
1761  PrintActions1(C, A, Ids);
1762 }
1763 
1764 /// Check whether the given input tree contains any compilation or
1765 /// assembly actions.
1767  if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1768  isa<AssembleJobAction>(A))
1769  return true;
1770 
1771  for (const Action *Input : A->inputs())
1773  return true;
1774 
1775  return false;
1776 }
1777 
1779  const InputList &BAInputs) const {
1780  DerivedArgList &Args = C.getArgs();
1781  ActionList &Actions = C.getActions();
1782  llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1783  // Collect the list of architectures. Duplicates are allowed, but should only
1784  // be handled once (in the order seen).
1785  llvm::StringSet<> ArchNames;
1787  for (Arg *A : Args) {
1788  if (A->getOption().matches(options::OPT_arch)) {
1789  // Validate the option here; we don't save the type here because its
1790  // particular spelling may participate in other driver choices.
1791  llvm::Triple::ArchType Arch =
1793  if (Arch == llvm::Triple::UnknownArch) {
1794  Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1795  continue;
1796  }
1797 
1798  A->claim();
1799  if (ArchNames.insert(A->getValue()).second)
1800  Archs.push_back(A->getValue());
1801  }
1802  }
1803 
1804  // When there is no explicit arch for this platform, make sure we still bind
1805  // the architecture (to the default) so that -Xarch_ is handled correctly.
1806  if (!Archs.size())
1807  Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1808 
1809  ActionList SingleActions;
1810  BuildActions(C, Args, BAInputs, SingleActions);
1811 
1812  // Add in arch bindings for every top level action, as well as lipo and
1813  // dsymutil steps if needed.
1814  for (Action* Act : SingleActions) {
1815  // Make sure we can lipo this kind of output. If not (and it is an actual
1816  // output) then we disallow, since we can't create an output file with the
1817  // right name without overwriting it. We could remove this oddity by just
1818  // changing the output names to include the arch, which would also fix
1819  // -save-temps. Compatibility wins for now.
1820 
1821  if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1822  Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1823  << types::getTypeName(Act->getType());
1824 
1825  ActionList Inputs;
1826  for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1827  Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1828 
1829  // Lipo if necessary, we do it this way because we need to set the arch flag
1830  // so that -Xarch_ gets overwritten.
1831  if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1832  Actions.append(Inputs.begin(), Inputs.end());
1833  else
1834  Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1835 
1836  // Handle debug info queries.
1837  Arg *A = Args.getLastArg(options::OPT_g_Group);
1838  if (A && !A->getOption().matches(options::OPT_g0) &&
1839  !A->getOption().matches(options::OPT_gstabs) &&
1840  ContainsCompileOrAssembleAction(Actions.back())) {
1841 
1842  // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1843  // have a compile input. We need to run 'dsymutil' ourselves in such cases
1844  // because the debug info will refer to a temporary object file which
1845  // will be removed at the end of the compilation process.
1846  if (Act->getType() == types::TY_Image) {
1847  ActionList Inputs;
1848  Inputs.push_back(Actions.back());
1849  Actions.pop_back();
1850  Actions.push_back(
1851  C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1852  }
1853 
1854  // Verify the debug info output.
1855  if (Args.hasArg(options::OPT_verify_debug_info)) {
1856  Action* LastAction = Actions.back();
1857  Actions.pop_back();
1858  Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1859  LastAction, types::TY_Nothing));
1860  }
1861  }
1862  }
1863 }
1864 
1865 /// Check that the file referenced by Value exists. If it doesn't,
1866 /// issue a diagnostic and return false.
1867 static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args,
1868  StringRef Value, types::ID Ty) {
1869  if (!D.getCheckInputsExist())
1870  return true;
1871 
1872  // stdin always exists.
1873  if (Value == "-")
1874  return true;
1875 
1876  SmallString<64> Path(Value);
1877  if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
1878  if (!llvm::sys::path::is_absolute(Path)) {
1879  SmallString<64> Directory(WorkDir->getValue());
1880  llvm::sys::path::append(Directory, Value);
1881  Path.assign(Directory);
1882  }
1883  }
1884 
1885  if (llvm::sys::fs::exists(Twine(Path)))
1886  return true;
1887 
1888  if (D.IsCLMode()) {
1889  if (!llvm::sys::path::is_absolute(Twine(Path)) &&
1890  llvm::sys::Process::FindInEnvPath("LIB", Value))
1891  return true;
1892 
1893  if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
1894  // Arguments to the /link flag might cause the linker to search for object
1895  // and library files in paths we don't know about. Don't error in such
1896  // cases.
1897  return true;
1898  }
1899  }
1900 
1901  D.Diag(clang::diag::err_drv_no_such_file) << Path;
1902  return false;
1903 }
1904 
1905 // Construct a the list of inputs and their types.
1906 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
1907  InputList &Inputs) const {
1908  // Track the current user specified (-x) input. We also explicitly track the
1909  // argument used to set the type; we only want to claim the type when we
1910  // actually use it, so we warn about unused -x arguments.
1911  types::ID InputType = types::TY_Nothing;
1912  Arg *InputTypeArg = nullptr;
1913 
1914  // The last /TC or /TP option sets the input type to C or C++ globally.
1915  if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
1916  options::OPT__SLASH_TP)) {
1917  InputTypeArg = TCTP;
1918  InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
1919  ? types::TY_C
1920  : types::TY_CXX;
1921 
1922  Arg *Previous = nullptr;
1923  bool ShowNote = false;
1924  for (Arg *A : Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
1925  if (Previous) {
1926  Diag(clang::diag::warn_drv_overriding_flag_option)
1927  << Previous->getSpelling() << A->getSpelling();
1928  ShowNote = true;
1929  }
1930  Previous = A;
1931  }
1932  if (ShowNote)
1933  Diag(clang::diag::note_drv_t_option_is_global);
1934 
1935  // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
1936  assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
1937  }
1938 
1939  for (Arg *A : Args) {
1940  if (A->getOption().getKind() == Option::InputClass) {
1941  const char *Value = A->getValue();
1943 
1944  // Infer the input type if necessary.
1945  if (InputType == types::TY_Nothing) {
1946  // If there was an explicit arg for this, claim it.
1947  if (InputTypeArg)
1948  InputTypeArg->claim();
1949 
1950  // stdin must be handled specially.
1951  if (memcmp(Value, "-", 2) == 0) {
1952  // If running with -E, treat as a C input (this changes the builtin
1953  // macros, for example). This may be overridden by -ObjC below.
1954  //
1955  // Otherwise emit an error but still use a valid type to avoid
1956  // spurious errors (e.g., no inputs).
1957  if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
1958  Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
1959  : clang::diag::err_drv_unknown_stdin_type);
1960  Ty = types::TY_C;
1961  } else {
1962  // Otherwise lookup by extension.
1963  // Fallback is C if invoked as C preprocessor or Object otherwise.
1964  // We use a host hook here because Darwin at least has its own
1965  // idea of what .s is.
1966  if (const char *Ext = strrchr(Value, '.'))
1967  Ty = TC.LookupTypeForExtension(Ext + 1);
1968 
1969  if (Ty == types::TY_INVALID) {
1970  if (CCCIsCPP())
1971  Ty = types::TY_C;
1972  else
1973  Ty = types::TY_Object;
1974  }
1975 
1976  // If the driver is invoked as C++ compiler (like clang++ or c++) it
1977  // should autodetect some input files as C++ for g++ compatibility.
1978  if (CCCIsCXX()) {
1979  types::ID OldTy = Ty;
1981 
1982  if (Ty != OldTy)
1983  Diag(clang::diag::warn_drv_treating_input_as_cxx)
1984  << getTypeName(OldTy) << getTypeName(Ty);
1985  }
1986  }
1987 
1988  // -ObjC and -ObjC++ override the default language, but only for "source
1989  // files". We just treat everything that isn't a linker input as a
1990  // source file.
1991  //
1992  // FIXME: Clean this up if we move the phase sequence into the type.
1993  if (Ty != types::TY_Object) {
1994  if (Args.hasArg(options::OPT_ObjC))
1995  Ty = types::TY_ObjC;
1996  else if (Args.hasArg(options::OPT_ObjCXX))
1997  Ty = types::TY_ObjCXX;
1998  }
1999  } else {
2000  assert(InputTypeArg && "InputType set w/o InputTypeArg");
2001  if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2002  // If emulating cl.exe, make sure that /TC and /TP don't affect input
2003  // object files.
2004  const char *Ext = strrchr(Value, '.');
2005  if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2006  Ty = types::TY_Object;
2007  }
2008  if (Ty == types::TY_INVALID) {
2009  Ty = InputType;
2010  InputTypeArg->claim();
2011  }
2012  }
2013 
2014  if (DiagnoseInputExistence(*this, Args, Value, Ty))
2015  Inputs.push_back(std::make_pair(Ty, A));
2016 
2017  } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2018  StringRef Value = A->getValue();
2019  if (DiagnoseInputExistence(*this, Args, Value, types::TY_C)) {
2020  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2021  Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2022  }
2023  A->claim();
2024  } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2025  StringRef Value = A->getValue();
2026  if (DiagnoseInputExistence(*this, Args, Value, types::TY_CXX)) {
2027  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2028  Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2029  }
2030  A->claim();
2031  } else if (A->getOption().hasFlag(options::LinkerInput)) {
2032  // Just treat as object type, we could make a special type for this if
2033  // necessary.
2034  Inputs.push_back(std::make_pair(types::TY_Object, A));
2035 
2036  } else if (A->getOption().matches(options::OPT_x)) {
2037  InputTypeArg = A;
2038  InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2039  A->claim();
2040 
2041  // Follow gcc behavior and treat as linker input for invalid -x
2042  // options. Its not clear why we shouldn't just revert to unknown; but
2043  // this isn't very important, we might as well be bug compatible.
2044  if (!InputType) {
2045  Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2046  InputType = types::TY_Object;
2047  }
2048  } else if (A->getOption().getID() == options::OPT__SLASH_U) {
2049  assert(A->getNumValues() == 1 && "The /U option has one value.");
2050  StringRef Val = A->getValue(0);
2051  if (Val.find_first_of("/\\") != StringRef::npos) {
2052  // Warn about e.g. "/Users/me/myfile.c".
2053  Diag(diag::warn_slash_u_filename) << Val;
2054  Diag(diag::note_use_dashdash);
2055  }
2056  }
2057  }
2058  if (CCCIsCPP() && Inputs.empty()) {
2059  // If called as standalone preprocessor, stdin is processed
2060  // if no other input is present.
2061  Arg *A = MakeInputArg(Args, *Opts, "-");
2062  Inputs.push_back(std::make_pair(types::TY_C, A));
2063  }
2064 }
2065 
2066 namespace {
2067 /// Provides a convenient interface for different programming models to generate
2068 /// the required device actions.
2069 class OffloadingActionBuilder final {
2070  /// Flag used to trace errors in the builder.
2071  bool IsValid = false;
2072 
2073  /// The compilation that is using this builder.
2074  Compilation &C;
2075 
2076  /// Map between an input argument and the offload kinds used to process it.
2077  std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2078 
2079  /// Builder interface. It doesn't build anything or keep any state.
2080  class DeviceActionBuilder {
2081  public:
2083 
2084  enum ActionBuilderReturnCode {
2085  // The builder acted successfully on the current action.
2086  ABRT_Success,
2087  // The builder didn't have to act on the current action.
2088  ABRT_Inactive,
2089  // The builder was successful and requested the host action to not be
2090  // generated.
2091  ABRT_Ignore_Host,
2092  };
2093 
2094  protected:
2095  /// Compilation associated with this builder.
2096  Compilation &C;
2097 
2098  /// Tool chains associated with this builder. The same programming
2099  /// model may have associated one or more tool chains.
2101 
2102  /// The derived arguments associated with this builder.
2103  DerivedArgList &Args;
2104 
2105  /// The inputs associated with this builder.
2106  const Driver::InputList &Inputs;
2107 
2108  /// The associated offload kind.
2109  Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2110 
2111  public:
2112  DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2113  const Driver::InputList &Inputs,
2114  Action::OffloadKind AssociatedOffloadKind)
2115  : C(C), Args(Args), Inputs(Inputs),
2116  AssociatedOffloadKind(AssociatedOffloadKind) {}
2117  virtual ~DeviceActionBuilder() {}
2118 
2119  /// Fill up the array \a DA with all the device dependences that should be
2120  /// added to the provided host action \a HostAction. By default it is
2121  /// inactive.
2122  virtual ActionBuilderReturnCode
2123  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2124  phases::ID CurPhase, phases::ID FinalPhase,
2125  PhasesTy &Phases) {
2126  return ABRT_Inactive;
2127  }
2128 
2129  /// Update the state to include the provided host action \a HostAction as a
2130  /// dependency of the current device action. By default it is inactive.
2131  virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2132  return ABRT_Inactive;
2133  }
2134 
2135  /// Append top level actions generated by the builder. Return true if errors
2136  /// were found.
2137  virtual void appendTopLevelActions(ActionList &AL) {}
2138 
2139  /// Append linker actions generated by the builder. Return true if errors
2140  /// were found.
2141  virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2142 
2143  /// Initialize the builder. Return true if any initialization errors are
2144  /// found.
2145  virtual bool initialize() { return false; }
2146 
2147  /// Return true if the builder can use bundling/unbundling.
2148  virtual bool canUseBundlerUnbundler() const { return false; }
2149 
2150  /// Return true if this builder is valid. We have a valid builder if we have
2151  /// associated device tool chains.
2152  bool isValid() { return !ToolChains.empty(); }
2153 
2154  /// Return the associated offload kind.
2155  Action::OffloadKind getAssociatedOffloadKind() {
2156  return AssociatedOffloadKind;
2157  }
2158  };
2159 
2160  /// Base class for CUDA/HIP action builder. It injects device code in
2161  /// the host backend action.
2162  class CudaActionBuilderBase : public DeviceActionBuilder {
2163  protected:
2164  /// Flags to signal if the user requested host-only or device-only
2165  /// compilation.
2166  bool CompileHostOnly = false;
2167  bool CompileDeviceOnly = false;
2168 
2169  /// List of GPU architectures to use in this compilation.
2170  SmallVector<CudaArch, 4> GpuArchList;
2171 
2172  /// The CUDA actions for the current input.
2173  ActionList CudaDeviceActions;
2174 
2175  /// The CUDA fat binary if it was generated for the current input.
2176  Action *CudaFatBinary = nullptr;
2177 
2178  /// Flag that is set to true if this builder acted on the current input.
2179  bool IsActive = false;
2180  public:
2181  CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2182  const Driver::InputList &Inputs,
2183  Action::OffloadKind OFKind)
2184  : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2185 
2186  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2187  // While generating code for CUDA, we only depend on the host input action
2188  // to trigger the creation of all the CUDA device actions.
2189 
2190  // If we are dealing with an input action, replicate it for each GPU
2191  // architecture. If we are in host-only mode we return 'success' so that
2192  // the host uses the CUDA offload kind.
2193  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2194  assert(!GpuArchList.empty() &&
2195  "We should have at least one GPU architecture.");
2196 
2197  // If the host input is not CUDA or HIP, we don't need to bother about
2198  // this input.
2199  if (IA->getType() != types::TY_CUDA &&
2200  IA->getType() != types::TY_HIP) {
2201  // The builder will ignore this input.
2202  IsActive = false;
2203  return ABRT_Inactive;
2204  }
2205 
2206  // Set the flag to true, so that the builder acts on the current input.
2207  IsActive = true;
2208 
2209  if (CompileHostOnly)
2210  return ABRT_Success;
2211 
2212  // Replicate inputs for each GPU architecture.
2213  auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2214  : types::TY_CUDA_DEVICE;
2215  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2216  CudaDeviceActions.push_back(
2217  C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2218  }
2219 
2220  return ABRT_Success;
2221  }
2222 
2223  // If this is an unbundling action use it as is for each CUDA toolchain.
2224  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2225  CudaDeviceActions.clear();
2226  for (auto Arch : GpuArchList) {
2227  CudaDeviceActions.push_back(UA);
2228  UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2229  AssociatedOffloadKind);
2230  }
2231  return ABRT_Success;
2232  }
2233 
2234  return IsActive ? ABRT_Success : ABRT_Inactive;
2235  }
2236 
2237  void appendTopLevelActions(ActionList &AL) override {
2238  // Utility to append actions to the top level list.
2239  auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2241  Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2242  AssociatedOffloadKind);
2243  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2244  };
2245 
2246  // If we have a fat binary, add it to the list.
2247  if (CudaFatBinary) {
2248  AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2249  CudaDeviceActions.clear();
2250  CudaFatBinary = nullptr;
2251  return;
2252  }
2253 
2254  if (CudaDeviceActions.empty())
2255  return;
2256 
2257  // If we have CUDA actions at this point, that's because we have a have
2258  // partial compilation, so we should have an action for each GPU
2259  // architecture.
2260  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2261  "Expecting one action per GPU architecture.");
2262  assert(ToolChains.size() == 1 &&
2263  "Expecting to have a sing CUDA toolchain.");
2264  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2265  AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2266 
2267  CudaDeviceActions.clear();
2268  }
2269 
2270  bool initialize() override {
2271  assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2272  AssociatedOffloadKind == Action::OFK_HIP);
2273 
2274  // We don't need to support CUDA.
2275  if (AssociatedOffloadKind == Action::OFK_Cuda &&
2277  return false;
2278 
2279  // We don't need to support HIP.
2280  if (AssociatedOffloadKind == Action::OFK_HIP &&
2282  return false;
2283 
2285  assert(HostTC && "No toolchain for host compilation.");
2286  if (HostTC->getTriple().isNVPTX() ||
2287  HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2288  // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2289  // an error and abort pipeline construction early so we don't trip
2290  // asserts that assume device-side compilation.
2291  C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2292  << HostTC->getTriple().getArchName();
2293  return true;
2294  }
2295 
2296  ToolChains.push_back(
2297  AssociatedOffloadKind == Action::OFK_Cuda
2300 
2301  Arg *PartialCompilationArg = Args.getLastArg(
2302  options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2303  options::OPT_cuda_compile_host_device);
2304  CompileHostOnly = PartialCompilationArg &&
2305  PartialCompilationArg->getOption().matches(
2306  options::OPT_cuda_host_only);
2307  CompileDeviceOnly = PartialCompilationArg &&
2308  PartialCompilationArg->getOption().matches(
2309  options::OPT_cuda_device_only);
2310 
2311  // Collect all cuda_gpu_arch parameters, removing duplicates.
2312  std::set<CudaArch> GpuArchs;
2313  bool Error = false;
2314  for (Arg *A : Args) {
2315  if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2316  A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2317  continue;
2318  A->claim();
2319 
2320  const StringRef ArchStr = A->getValue();
2321  if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2322  ArchStr == "all") {
2323  GpuArchs.clear();
2324  continue;
2325  }
2326  CudaArch Arch = StringToCudaArch(ArchStr);
2327  if (Arch == CudaArch::UNKNOWN) {
2328  C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2329  Error = true;
2330  } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2331  GpuArchs.insert(Arch);
2332  else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2333  GpuArchs.erase(Arch);
2334  else
2335  llvm_unreachable("Unexpected option.");
2336  }
2337 
2338  // Collect list of GPUs remaining in the set.
2339  for (CudaArch Arch : GpuArchs)
2340  GpuArchList.push_back(Arch);
2341 
2342  // Default to sm_20 which is the lowest common denominator for
2343  // supported GPUs. sm_20 code should work correctly, if
2344  // suboptimally, on all newer GPUs.
2345  if (GpuArchList.empty())
2346  GpuArchList.push_back(CudaArch::SM_20);
2347 
2348  return Error;
2349  }
2350  };
2351 
2352  /// \brief CUDA action builder. It injects device code in the host backend
2353  /// action.
2354  class CudaActionBuilder final : public CudaActionBuilderBase {
2355  public:
2356  CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2357  const Driver::InputList &Inputs)
2358  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2359 
2360  ActionBuilderReturnCode
2361  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2362  phases::ID CurPhase, phases::ID FinalPhase,
2363  PhasesTy &Phases) override {
2364  if (!IsActive)
2365  return ABRT_Inactive;
2366 
2367  // If we don't have more CUDA actions, we don't have any dependences to
2368  // create for the host.
2369  if (CudaDeviceActions.empty())
2370  return ABRT_Success;
2371 
2372  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2373  "Expecting one action per GPU architecture.");
2374  assert(!CompileHostOnly &&
2375  "Not expecting CUDA actions in host-only compilation.");
2376 
2377  // If we are generating code for the device or we are in a backend phase,
2378  // we attempt to generate the fat binary. We compile each arch to ptx and
2379  // assemble to cubin, then feed the cubin *and* the ptx into a device
2380  // "link" action, which uses fatbinary to combine these cubins into one
2381  // fatbin. The fatbin is then an input to the host action if not in
2382  // device-only mode.
2383  if (CompileDeviceOnly || CurPhase == phases::Backend) {
2384  ActionList DeviceActions;
2385  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2386  // Produce the device action from the current phase up to the assemble
2387  // phase.
2388  for (auto Ph : Phases) {
2389  // Skip the phases that were already dealt with.
2390  if (Ph < CurPhase)
2391  continue;
2392  // We have to be consistent with the host final phase.
2393  if (Ph > FinalPhase)
2394  break;
2395 
2396  CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2397  C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2398 
2399  if (Ph == phases::Assemble)
2400  break;
2401  }
2402 
2403  // If we didn't reach the assemble phase, we can't generate the fat
2404  // binary. We don't need to generate the fat binary if we are not in
2405  // device-only mode.
2406  if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2407  CompileDeviceOnly)
2408  continue;
2409 
2410  Action *AssembleAction = CudaDeviceActions[I];
2411  assert(AssembleAction->getType() == types::TY_Object);
2412  assert(AssembleAction->getInputs().size() == 1);
2413 
2414  Action *BackendAction = AssembleAction->getInputs()[0];
2415  assert(BackendAction->getType() == types::TY_PP_Asm);
2416 
2417  for (auto &A : {AssembleAction, BackendAction}) {
2419  DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2421  DeviceActions.push_back(
2422  C.MakeAction<OffloadAction>(DDep, A->getType()));
2423  }
2424  }
2425 
2426  // We generate the fat binary if we have device input actions.
2427  if (!DeviceActions.empty()) {
2428  CudaFatBinary =
2429  C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2430 
2431  if (!CompileDeviceOnly) {
2432  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2434  // Clear the fat binary, it is already a dependence to an host
2435  // action.
2436  CudaFatBinary = nullptr;
2437  }
2438 
2439  // Remove the CUDA actions as they are already connected to an host
2440  // action or fat binary.
2441  CudaDeviceActions.clear();
2442  }
2443 
2444  // We avoid creating host action in device-only mode.
2445  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2446  } else if (CurPhase > phases::Backend) {
2447  // If we are past the backend phase and still have a device action, we
2448  // don't have to do anything as this action is already a device
2449  // top-level action.
2450  return ABRT_Success;
2451  }
2452 
2453  assert(CurPhase < phases::Backend && "Generating single CUDA "
2454  "instructions should only occur "
2455  "before the backend phase!");
2456 
2457  // By default, we produce an action for each device arch.
2458  for (Action *&A : CudaDeviceActions)
2459  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2460 
2461  return ABRT_Success;
2462  }
2463  };
2464  /// \brief HIP action builder. It injects device code in the host backend
2465  /// action.
2466  class HIPActionBuilder final : public CudaActionBuilderBase {
2467  /// The linker inputs obtained for each device arch.
2468  SmallVector<ActionList, 8> DeviceLinkerInputs;
2469 
2470  public:
2471  HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2472  const Driver::InputList &Inputs)
2473  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {}
2474 
2475  bool canUseBundlerUnbundler() const override { return true; }
2476 
2477  ActionBuilderReturnCode
2478  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2479  phases::ID CurPhase, phases::ID FinalPhase,
2480  PhasesTy &Phases) override {
2481  // amdgcn does not support linking of object files, therefore we skip
2482  // backend and assemble phases to output LLVM IR.
2483  if (CudaDeviceActions.empty() || CurPhase == phases::Backend ||
2484  CurPhase == phases::Assemble)
2485  return ABRT_Success;
2486 
2487  assert((CurPhase == phases::Link ||
2488  CudaDeviceActions.size() == GpuArchList.size()) &&
2489  "Expecting one action per GPU architecture.");
2490  assert(!CompileHostOnly &&
2491  "Not expecting CUDA actions in host-only compilation.");
2492 
2493  // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2494  // This happens to each device action originated from each input file.
2495  // Later on, device actions in DeviceLinkerInputs are used to create
2496  // device link actions in appendLinkDependences and the created device
2497  // link actions are passed to the offload action as device dependence.
2498  if (CurPhase == phases::Link) {
2499  DeviceLinkerInputs.resize(CudaDeviceActions.size());
2500  auto LI = DeviceLinkerInputs.begin();
2501  for (auto *A : CudaDeviceActions) {
2502  LI->push_back(A);
2503  ++LI;
2504  }
2505 
2506  // We will pass the device action as a host dependence, so we don't
2507  // need to do anything else with them.
2508  CudaDeviceActions.clear();
2509  return ABRT_Success;
2510  }
2511 
2512  // By default, we produce an action for each device arch.
2513  for (Action *&A : CudaDeviceActions)
2514  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2515  AssociatedOffloadKind);
2516 
2517  return ABRT_Success;
2518  }
2519 
2520  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2521  // Append a new link action for each device.
2522  unsigned I = 0;
2523  for (auto &LI : DeviceLinkerInputs) {
2524  auto *DeviceLinkAction =
2525  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2526  DA.add(*DeviceLinkAction, *ToolChains[0],
2527  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2528  ++I;
2529  }
2530  }
2531  };
2532 
2533  /// OpenMP action builder. The host bitcode is passed to the device frontend
2534  /// and all the device linked images are passed to the host link phase.
2535  class OpenMPActionBuilder final : public DeviceActionBuilder {
2536  /// The OpenMP actions for the current input.
2537  ActionList OpenMPDeviceActions;
2538 
2539  /// The linker inputs obtained for each toolchain.
2540  SmallVector<ActionList, 8> DeviceLinkerInputs;
2541 
2542  public:
2543  OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2544  const Driver::InputList &Inputs)
2545  : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2546 
2547  ActionBuilderReturnCode
2548  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2549  phases::ID CurPhase, phases::ID FinalPhase,
2550  PhasesTy &Phases) override {
2551 
2552  // We should always have an action for each input.
2553  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2554  "Number of OpenMP actions and toolchains do not match.");
2555 
2556  // The host only depends on device action in the linking phase, when all
2557  // the device images have to be embedded in the host image.
2558  if (CurPhase == phases::Link) {
2559  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2560  "Toolchains and linker inputs sizes do not match.");
2561  auto LI = DeviceLinkerInputs.begin();
2562  for (auto *A : OpenMPDeviceActions) {
2563  LI->push_back(A);
2564  ++LI;
2565  }
2566 
2567  // We passed the device action as a host dependence, so we don't need to
2568  // do anything else with them.
2569  OpenMPDeviceActions.clear();
2570  return ABRT_Success;
2571  }
2572 
2573  // By default, we produce an action for each device arch.
2574  for (Action *&A : OpenMPDeviceActions)
2575  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2576 
2577  return ABRT_Success;
2578  }
2579 
2580  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2581 
2582  // If this is an input action replicate it for each OpenMP toolchain.
2583  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2584  OpenMPDeviceActions.clear();
2585  for (unsigned I = 0; I < ToolChains.size(); ++I)
2586  OpenMPDeviceActions.push_back(
2587  C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2588  return ABRT_Success;
2589  }
2590 
2591  // If this is an unbundling action use it as is for each OpenMP toolchain.
2592  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2593  OpenMPDeviceActions.clear();
2594  for (unsigned I = 0; I < ToolChains.size(); ++I) {
2595  OpenMPDeviceActions.push_back(UA);
2596  UA->registerDependentActionInfo(
2597  ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2598  }
2599  return ABRT_Success;
2600  }
2601 
2602  // When generating code for OpenMP we use the host compile phase result as
2603  // a dependence to the device compile phase so that it can learn what
2604  // declarations should be emitted. However, this is not the only use for
2605  // the host action, so we prevent it from being collapsed.
2606  if (isa<CompileJobAction>(HostAction)) {
2608  assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2609  "Toolchains and device action sizes do not match.");
2611  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2612  /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2613  auto TC = ToolChains.begin();
2614  for (Action *&A : OpenMPDeviceActions) {
2615  assert(isa<CompileJobAction>(A));
2617  DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2618  A = C.MakeAction<OffloadAction>(HDep, DDep);
2619  ++TC;
2620  }
2621  }
2622  return ABRT_Success;
2623  }
2624 
2625  void appendTopLevelActions(ActionList &AL) override {
2626  if (OpenMPDeviceActions.empty())
2627  return;
2628 
2629  // We should always have an action for each input.
2630  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2631  "Number of OpenMP actions and toolchains do not match.");
2632 
2633  // Append all device actions followed by the proper offload action.
2634  auto TI = ToolChains.begin();
2635  for (auto *A : OpenMPDeviceActions) {
2637  Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2638  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2639  ++TI;
2640  }
2641  // We no longer need the action stored in this builder.
2642  OpenMPDeviceActions.clear();
2643  }
2644 
2645  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2646  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2647  "Toolchains and linker inputs sizes do not match.");
2648 
2649  // Append a new link action for each device.
2650  auto TC = ToolChains.begin();
2651  for (auto &LI : DeviceLinkerInputs) {
2652  auto *DeviceLinkAction =
2653  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2654  DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2656  ++TC;
2657  }
2658  }
2659 
2660  bool initialize() override {
2661  // Get the OpenMP toolchains. If we don't get any, the action builder will
2662  // know there is nothing to do related to OpenMP offloading.
2663  auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2664  for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2665  ++TI)
2666  ToolChains.push_back(TI->second);
2667 
2668  DeviceLinkerInputs.resize(ToolChains.size());
2669  return false;
2670  }
2671 
2672  bool canUseBundlerUnbundler() const override {
2673  // OpenMP should use bundled files whenever possible.
2674  return true;
2675  }
2676  };
2677 
2678  ///
2679  /// TODO: Add the implementation for other specialized builders here.
2680  ///
2681 
2682  /// Specialized builders being used by this offloading action builder.
2683  SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2684 
2685  /// Flag set to true if all valid builders allow file bundling/unbundling.
2686  bool CanUseBundler;
2687 
2688 public:
2689  OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2690  const Driver::InputList &Inputs)
2691  : C(C) {
2692  // Create a specialized builder for each device toolchain.
2693 
2694  IsValid = true;
2695 
2696  // Create a specialized builder for CUDA.
2697  SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2698 
2699  // Create a specialized builder for HIP.
2700  SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2701 
2702  // Create a specialized builder for OpenMP.
2703  SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2704 
2705  //
2706  // TODO: Build other specialized builders here.
2707  //
2708 
2709  // Initialize all the builders, keeping track of errors. If all valid
2710  // builders agree that we can use bundling, set the flag to true.
2711  unsigned ValidBuilders = 0u;
2712  unsigned ValidBuildersSupportingBundling = 0u;
2713  for (auto *SB : SpecializedBuilders) {
2714  IsValid = IsValid && !SB->initialize();
2715 
2716  // Update the counters if the builder is valid.
2717  if (SB->isValid()) {
2718  ++ValidBuilders;
2719  if (SB->canUseBundlerUnbundler())
2720  ++ValidBuildersSupportingBundling;
2721  }
2722  }
2723  CanUseBundler =
2724  ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2725  }
2726 
2727  ~OffloadingActionBuilder() {
2728  for (auto *SB : SpecializedBuilders)
2729  delete SB;
2730  }
2731 
2732  /// Generate an action that adds device dependences (if any) to a host action.
2733  /// If no device dependence actions exist, just return the host action \a
2734  /// HostAction. If an error is found or if no builder requires the host action
2735  /// to be generated, return nullptr.
2736  Action *
2737  addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2738  phases::ID CurPhase, phases::ID FinalPhase,
2739  DeviceActionBuilder::PhasesTy &Phases) {
2740  if (!IsValid)
2741  return nullptr;
2742 
2743  if (SpecializedBuilders.empty())
2744  return HostAction;
2745 
2746  assert(HostAction && "Invalid host action!");
2747 
2749  // Check if all the programming models agree we should not emit the host
2750  // action. Also, keep track of the offloading kinds employed.
2751  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2752  unsigned InactiveBuilders = 0u;
2753  unsigned IgnoringBuilders = 0u;
2754  for (auto *SB : SpecializedBuilders) {
2755  if (!SB->isValid()) {
2756  ++InactiveBuilders;
2757  continue;
2758  }
2759 
2760  auto RetCode =
2761  SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2762 
2763  // If the builder explicitly says the host action should be ignored,
2764  // we need to increment the variable that tracks the builders that request
2765  // the host object to be ignored.
2766  if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
2767  ++IgnoringBuilders;
2768 
2769  // Unless the builder was inactive for this action, we have to record the
2770  // offload kind because the host will have to use it.
2771  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2772  OffloadKind |= SB->getAssociatedOffloadKind();
2773  }
2774 
2775  // If all builders agree that the host object should be ignored, just return
2776  // nullptr.
2777  if (IgnoringBuilders &&
2778  SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
2779  return nullptr;
2780 
2781  if (DDeps.getActions().empty())
2782  return HostAction;
2783 
2784  // We have dependences we need to bundle together. We use an offload action
2785  // for that.
2787  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2788  /*BoundArch=*/nullptr, DDeps);
2789  return C.MakeAction<OffloadAction>(HDep, DDeps);
2790  }
2791 
2792  /// Generate an action that adds a host dependence to a device action. The
2793  /// results will be kept in this action builder. Return true if an error was
2794  /// found.
2795  bool addHostDependenceToDeviceActions(Action *&HostAction,
2796  const Arg *InputArg) {
2797  if (!IsValid)
2798  return true;
2799 
2800  // If we are supporting bundling/unbundling and the current action is an
2801  // input action of non-source file, we replace the host action by the
2802  // unbundling action. The bundler tool has the logic to detect if an input
2803  // is a bundle or not and if the input is not a bundle it assumes it is a
2804  // host file. Therefore it is safe to create an unbundling action even if
2805  // the input is not a bundle.
2806  if (CanUseBundler && isa<InputAction>(HostAction) &&
2807  InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
2808  !types::isSrcFile(HostAction->getType())) {
2809  auto UnbundlingHostAction =
2810  C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
2811  UnbundlingHostAction->registerDependentActionInfo(
2813  /*BoundArch=*/StringRef(), Action::OFK_Host);
2814  HostAction = UnbundlingHostAction;
2815  }
2816 
2817  assert(HostAction && "Invalid host action!");
2818 
2819  // Register the offload kinds that are used.
2820  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2821  for (auto *SB : SpecializedBuilders) {
2822  if (!SB->isValid())
2823  continue;
2824 
2825  auto RetCode = SB->addDeviceDepences(HostAction);
2826 
2827  // Host dependences for device actions are not compatible with that same
2828  // action being ignored.
2829  assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
2830  "Host dependence not expected to be ignored.!");
2831 
2832  // Unless the builder was inactive for this action, we have to record the
2833  // offload kind because the host will have to use it.
2834  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2835  OffloadKind |= SB->getAssociatedOffloadKind();
2836  }
2837 
2838  return false;
2839  }
2840 
2841  /// Add the offloading top level actions to the provided action list. This
2842  /// function can replace the host action by a bundling action if the
2843  /// programming models allow it.
2844  bool appendTopLevelActions(ActionList &AL, Action *HostAction,
2845  const Arg *InputArg) {
2846  // Get the device actions to be appended.
2847  ActionList OffloadAL;
2848  for (auto *SB : SpecializedBuilders) {
2849  if (!SB->isValid())
2850  continue;
2851  SB->appendTopLevelActions(OffloadAL);
2852  }
2853 
2854  // If we can use the bundler, replace the host action by the bundling one in
2855  // the resulting list. Otherwise, just append the device actions.
2856  if (CanUseBundler && !OffloadAL.empty()) {
2857  // Add the host action to the list in order to create the bundling action.
2858  OffloadAL.push_back(HostAction);
2859 
2860  // We expect that the host action was just appended to the action list
2861  // before this method was called.
2862  assert(HostAction == AL.back() && "Host action not in the list??");
2863  HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
2864  AL.back() = HostAction;
2865  } else
2866  AL.append(OffloadAL.begin(), OffloadAL.end());
2867 
2868  // Propagate to the current host action (if any) the offload information
2869  // associated with the current input.
2870  if (HostAction)
2871  HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
2872  /*BoundArch=*/nullptr);
2873  return false;
2874  }
2875 
2876  /// Processes the host linker action. This currently consists of replacing it
2877  /// with an offload action if there are device link objects and propagate to
2878  /// the host action all the offload kinds used in the current compilation. The
2879  /// resulting action is returned.
2880  Action *processHostLinkAction(Action *HostAction) {
2881  // Add all the dependences from the device linking actions.
2883  for (auto *SB : SpecializedBuilders) {
2884  if (!SB->isValid())
2885  continue;
2886 
2887  SB->appendLinkDependences(DDeps);
2888  }
2889 
2890  // Calculate all the offload kinds used in the current compilation.
2891  unsigned ActiveOffloadKinds = 0u;
2892  for (auto &I : InputArgToOffloadKindMap)
2893  ActiveOffloadKinds |= I.second;
2894 
2895  // If we don't have device dependencies, we don't have to create an offload
2896  // action.
2897  if (DDeps.getActions().empty()) {
2898  // Propagate all the active kinds to host action. Given that it is a link
2899  // action it is assumed to depend on all actions generated so far.
2900  HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
2901  /*BoundArch=*/nullptr);
2902  return HostAction;
2903  }
2904 
2905  // Create the offload action with all dependences. When an offload action
2906  // is created the kinds are propagated to the host action, so we don't have
2907  // to do that explicitly here.
2909  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2910  /*BoundArch*/ nullptr, ActiveOffloadKinds);
2911  return C.MakeAction<OffloadAction>(HDep, DDeps);
2912  }
2913 };
2914 } // anonymous namespace.
2915 
2916 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
2917  const InputList &Inputs, ActionList &Actions) const {
2918  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
2919 
2920  if (!SuppressMissingInputWarning && Inputs.empty()) {
2921  Diag(clang::diag::err_drv_no_input_files);
2922  return;
2923  }
2924 
2925  Arg *FinalPhaseArg;
2926  phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
2927 
2928  if (FinalPhase == phases::Link) {
2929  if (Args.hasArg(options::OPT_emit_llvm))
2930  Diag(clang::diag::err_drv_emit_llvm_link);
2931  if (IsCLMode() && LTOMode != LTOK_None &&
2932  !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
2933  Diag(clang::diag::err_drv_lto_without_lld);
2934  }
2935 
2936  // Reject -Z* at the top level, these options should never have been exposed
2937  // by gcc.
2938  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
2939  Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
2940 
2941  // Diagnose misuse of /Fo.
2942  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
2943  StringRef V = A->getValue();
2944  if (Inputs.size() > 1 && !V.empty() &&
2945  !llvm::sys::path::is_separator(V.back())) {
2946  // Check whether /Fo tries to name an output file for multiple inputs.
2947  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
2948  << A->getSpelling() << V;
2949  Args.eraseArg(options::OPT__SLASH_Fo);
2950  }
2951  }
2952 
2953  // Diagnose misuse of /Fa.
2954  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
2955  StringRef V = A->getValue();
2956  if (Inputs.size() > 1 && !V.empty() &&
2957  !llvm::sys::path::is_separator(V.back())) {
2958  // Check whether /Fa tries to name an asm file for multiple inputs.
2959  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
2960  << A->getSpelling() << V;
2961  Args.eraseArg(options::OPT__SLASH_Fa);
2962  }
2963  }
2964 
2965  // Diagnose misuse of /o.
2966  if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
2967  if (A->getValue()[0] == '\0') {
2968  // It has to have a value.
2969  Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
2970  Args.eraseArg(options::OPT__SLASH_o);
2971  }
2972  }
2973 
2974  // Diagnose unsupported forms of /Yc /Yu. Ignore /Yc/Yu for now if:
2975  // * no filename after it
2976  // * both /Yc and /Yu passed but with different filenames
2977  // * corresponding file not also passed as /FI
2978  Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
2979  Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
2980  if (YcArg && YcArg->getValue()[0] == '\0') {
2981  Diag(clang::diag::warn_drv_ycyu_no_arg_clang_cl) << YcArg->getSpelling();
2982  Args.eraseArg(options::OPT__SLASH_Yc);
2983  YcArg = nullptr;
2984  }
2985  if (YuArg && YuArg->getValue()[0] == '\0') {
2986  Diag(clang::diag::warn_drv_ycyu_no_arg_clang_cl) << YuArg->getSpelling();
2987  Args.eraseArg(options::OPT__SLASH_Yu);
2988  YuArg = nullptr;
2989  }
2990  if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
2991  Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
2992  Args.eraseArg(options::OPT__SLASH_Yc);
2993  Args.eraseArg(options::OPT__SLASH_Yu);
2994  YcArg = YuArg = nullptr;
2995  }
2996  if (YcArg && Inputs.size() > 1) {
2997  Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
2998  Args.eraseArg(options::OPT__SLASH_Yc);
2999  YcArg = nullptr;
3000  }
3001  if (Args.hasArg(options::OPT__SLASH_Y_)) {
3002  // /Y- disables all pch handling. Rather than check for it everywhere,
3003  // just remove clang-cl pch-related flags here.
3004  Args.eraseArg(options::OPT__SLASH_Fp);
3005  Args.eraseArg(options::OPT__SLASH_Yc);
3006  Args.eraseArg(options::OPT__SLASH_Yu);
3007  YcArg = YuArg = nullptr;
3008  }
3009 
3010  // Builder to be used to build offloading actions.
3011  OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3012 
3013  // Construct the actions to perform.
3014  ActionList LinkerInputs;
3015 
3017  for (auto &I : Inputs) {
3018  types::ID InputType = I.first;
3019  const Arg *InputArg = I.second;
3020 
3021  PL.clear();
3022  types::getCompilationPhases(InputType, PL);
3023 
3024  // If the first step comes after the final phase we are doing as part of
3025  // this compilation, warn the user about it.
3026  phases::ID InitialPhase = PL[0];
3027  if (InitialPhase > FinalPhase) {
3028  if (InputArg->isClaimed())
3029  continue;
3030 
3031  // Claim here to avoid the more general unused warning.
3032  InputArg->claim();
3033 
3034  // Suppress all unused style warnings with -Qunused-arguments
3035  if (Args.hasArg(options::OPT_Qunused_arguments))
3036  continue;
3037 
3038  // Special case when final phase determined by binary name, rather than
3039  // by a command-line argument with a corresponding Arg.
3040  if (CCCIsCPP())
3041  Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3042  << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3043  // Special case '-E' warning on a previously preprocessed file to make
3044  // more sense.
3045  else if (InitialPhase == phases::Compile &&
3046  FinalPhase == phases::Preprocess &&
3047  getPreprocessedType(InputType) == types::TY_INVALID)
3048  Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3049  << InputArg->getAsString(Args) << !!FinalPhaseArg
3050  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3051  else
3052  Diag(clang::diag::warn_drv_input_file_unused)
3053  << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3054  << !!FinalPhaseArg
3055  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3056  continue;
3057  }
3058 
3059  if (YcArg) {
3060  // Add a separate precompile phase for the compile phase.
3061  if (FinalPhase >= phases::Compile) {
3062  const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3064  types::getCompilationPhases(HeaderType, PCHPL);
3065  // Build the pipeline for the pch file.
3066  Action *ClangClPch =
3067  C.MakeAction<InputAction>(*InputArg, HeaderType);
3068  for (phases::ID Phase : PCHPL)
3069  ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3070  assert(ClangClPch);
3071  Actions.push_back(ClangClPch);
3072  // The driver currently exits after the first failed command. This
3073  // relies on that behavior, to make sure if the pch generation fails,
3074  // the main compilation won't run.
3075  // FIXME: If the main compilation fails, the PCH generation should
3076  // probably not be considered successful either.
3077  }
3078  }
3079 
3080  // Build the pipeline for this file.
3081  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3082 
3083  // Use the current host action in any of the offloading actions, if
3084  // required.
3085  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3086  break;
3087 
3088  for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
3089  i != e; ++i) {
3090  phases::ID Phase = *i;
3091 
3092  // We are done if this step is past what the user requested.
3093  if (Phase > FinalPhase)
3094  break;
3095 
3096  // Add any offload action the host action depends on.
3097  Current = OffloadBuilder.addDeviceDependencesToHostAction(
3098  Current, InputArg, Phase, FinalPhase, PL);
3099  if (!Current)
3100  break;
3101 
3102  // Queue linker inputs.
3103  if (Phase == phases::Link) {
3104  assert((i + 1) == e && "linking must be final compilation step.");
3105  LinkerInputs.push_back(Current);
3106  Current = nullptr;
3107  break;
3108  }
3109 
3110  // Otherwise construct the appropriate action.
3111  auto *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3112 
3113  // We didn't create a new action, so we will just move to the next phase.
3114  if (NewCurrent == Current)
3115  continue;
3116 
3117  Current = NewCurrent;
3118 
3119  // Use the current host action in any of the offloading actions, if
3120  // required.
3121  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3122  break;
3123 
3124  if (Current->getType() == types::TY_Nothing)
3125  break;
3126  }
3127 
3128  // If we ended with something, add to the output list.
3129  if (Current)
3130  Actions.push_back(Current);
3131 
3132  // Add any top level actions generated for offloading.
3133  OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3134  }
3135 
3136  // Add a link action if necessary.
3137  if (!LinkerInputs.empty()) {
3138  Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3139  LA = OffloadBuilder.processHostLinkAction(LA);
3140  Actions.push_back(LA);
3141  }
3142 
3143  // If we are linking, claim any options which are obviously only used for
3144  // compilation.
3145  if (FinalPhase == phases::Link && PL.size() == 1) {
3146  Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3147  Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3148  }
3149 
3150  // Claim ignored clang-cl options.
3151  Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3152 
3153  // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3154  // to non-CUDA compilations and should not trigger warnings there.
3155  Args.ClaimAllArgs(options::OPT_cuda_host_only);
3156  Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3157 }
3158 
3160  Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3161  Action::OffloadKind TargetDeviceOffloadKind) const {
3162  llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3163 
3164  // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3165  // encode this in the steps because the intermediate type depends on
3166  // arguments. Just special case here.
3167  if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3168  return Input;
3169 
3170  // Build the appropriate action.
3171  switch (Phase) {
3172  case phases::Link:
3173  llvm_unreachable("link action invalid here.");
3174  case phases::Preprocess: {
3175  types::ID OutputTy;
3176  // -{M, MM} alter the output type.
3177  if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
3178  OutputTy = types::TY_Dependencies;
3179  } else {
3180  OutputTy = Input->getType();
3181  if (!Args.hasFlag(options::OPT_frewrite_includes,
3182  options::OPT_fno_rewrite_includes, false) &&
3183  !Args.hasFlag(options::OPT_frewrite_imports,
3184  options::OPT_fno_rewrite_imports, false) &&
3186  OutputTy = types::getPreprocessedType(OutputTy);
3187  assert(OutputTy != types::TY_INVALID &&
3188  "Cannot preprocess this input type!");
3189  }
3190  return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3191  }
3192  case phases::Precompile: {
3193  types::ID OutputTy = getPrecompiledType(Input->getType());
3194  assert(OutputTy != types::TY_INVALID &&
3195  "Cannot precompile this input type!");
3196  if (Args.hasArg(options::OPT_fsyntax_only)) {
3197  // Syntax checks should not emit a PCH file
3198  OutputTy = types::TY_Nothing;
3199  }
3200  return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3201  }
3202  case phases::Compile: {
3203  if (Args.hasArg(options::OPT_fsyntax_only))
3204  return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3205  if (Args.hasArg(options::OPT_rewrite_objc))
3206  return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3207  if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3208  return C.MakeAction<CompileJobAction>(Input,
3209  types::TY_RewrittenLegacyObjC);
3210  if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3211  return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3212  if (Args.hasArg(options::OPT__migrate))
3213  return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3214  if (Args.hasArg(options::OPT_emit_ast))
3215  return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3216  if (Args.hasArg(options::OPT_module_file_info))
3217  return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3218  if (Args.hasArg(options::OPT_verify_pch))
3219  return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3220  return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3221  }
3222  case phases::Backend: {
3223  if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3224  types::ID Output =
3225  Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3226  return C.MakeAction<BackendJobAction>(Input, Output);
3227  }
3228  if (Args.hasArg(options::OPT_emit_llvm)) {
3229  types::ID Output =
3230  Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3231  return C.MakeAction<BackendJobAction>(Input, Output);
3232  }
3233  return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3234  }
3235  case phases::Assemble:
3236  return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3237  }
3238 
3239  llvm_unreachable("invalid phase in ConstructPhaseAction");
3240 }
3241 
3243  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3244 
3245  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3246 
3247  // It is an error to provide a -o option if we are making multiple output
3248  // files.
3249  if (FinalOutput) {
3250  unsigned NumOutputs = 0;
3251  for (const Action *A : C.getActions())
3252  if (A->getType() != types::TY_Nothing)
3253  ++NumOutputs;
3254 
3255  if (NumOutputs > 1) {
3256  Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3257  FinalOutput = nullptr;
3258  }
3259  }
3260 
3261  // Collect the list of architectures.
3262  llvm::StringSet<> ArchNames;
3263  if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3264  for (const Arg *A : C.getArgs())
3265  if (A->getOption().matches(options::OPT_arch))
3266  ArchNames.insert(A->getValue());
3267 
3268  // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3269  std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3270  for (Action *A : C.getActions()) {
3271  // If we are linking an image for multiple archs then the linker wants
3272  // -arch_multiple and -final_output <final image name>. Unfortunately, this
3273  // doesn't fit in cleanly because we have to pass this information down.
3274  //
3275  // FIXME: This is a hack; find a cleaner way to integrate this into the
3276  // process.
3277  const char *LinkingOutput = nullptr;
3278  if (isa<LipoJobAction>(A)) {
3279  if (FinalOutput)
3280  LinkingOutput = FinalOutput->getValue();
3281  else
3282  LinkingOutput = getDefaultImageName();
3283  }
3284 
3286  /*BoundArch*/ StringRef(),
3287  /*AtTopLevel*/ true,
3288  /*MultipleArchs*/ ArchNames.size() > 1,
3289  /*LinkingOutput*/ LinkingOutput, CachedResults,
3290  /*TargetDeviceOffloadKind*/ Action::OFK_None);
3291  }
3292 
3293  // If the user passed -Qunused-arguments or there were errors, don't warn
3294  // about any unused arguments.
3295  if (Diags.hasErrorOccurred() ||
3296  C.getArgs().hasArg(options::OPT_Qunused_arguments))
3297  return;
3298 
3299  // Claim -### here.
3300  (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3301 
3302  // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3303  (void)C.getArgs().hasArg(options::OPT_driver_mode);
3304  (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3305 
3306  for (Arg *A : C.getArgs()) {
3307  // FIXME: It would be nice to be able to send the argument to the
3308  // DiagnosticsEngine, so that extra values, position, and so on could be
3309  // printed.
3310  if (!A->isClaimed()) {
3311  if (A->getOption().hasFlag(options::NoArgumentUnused))
3312  continue;
3313 
3314  // Suppress the warning automatically if this is just a flag, and it is an
3315  // instance of an argument we already claimed.
3316  const Option &Opt = A->getOption();
3317  if (Opt.getKind() == Option::FlagClass) {
3318  bool DuplicateClaimed = false;
3319 
3320  for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3321  if (AA->isClaimed()) {
3322  DuplicateClaimed = true;
3323  break;
3324  }
3325  }
3326 
3327  if (DuplicateClaimed)
3328  continue;
3329  }
3330 
3331  // In clang-cl, don't mention unknown arguments here since they have
3332  // already been warned about.
3333  if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3334  Diag(clang::diag::warn_drv_unused_argument)
3335  << A->getAsString(C.getArgs());
3336  }
3337  }
3338 }
3339 
3340 namespace {
3341 /// Utility class to control the collapse of dependent actions and select the
3342 /// tools accordingly.
3343 class ToolSelector final {
3344  /// The tool chain this selector refers to.
3345  const ToolChain &TC;
3346 
3347  /// The compilation this selector refers to.
3348  const Compilation &C;
3349 
3350  /// The base action this selector refers to.
3351  const JobAction *BaseAction;
3352 
3353  /// Set to true if the current toolchain refers to host actions.
3354  bool IsHostSelector;
3355 
3356  /// Set to true if save-temps and embed-bitcode functionalities are active.
3357  bool SaveTemps;
3358  bool EmbedBitcode;
3359 
3360  /// Get previous dependent action or null if that does not exist. If
3361  /// \a CanBeCollapsed is false, that action must be legal to collapse or
3362  /// null will be returned.
3363  const JobAction *getPrevDependentAction(const ActionList &Inputs,
3364  ActionList &SavedOffloadAction,
3365  bool CanBeCollapsed = true) {
3366  // An option can be collapsed only if it has a single input.
3367  if (Inputs.size() != 1)
3368  return nullptr;
3369 
3370  Action *CurAction = *Inputs.begin();
3371  if (CanBeCollapsed &&
3373  return nullptr;
3374 
3375  // If the input action is an offload action. Look through it and save any
3376  // offload action that can be dropped in the event of a collapse.
3377  if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3378  // If the dependent action is a device action, we will attempt to collapse
3379  // only with other device actions. Otherwise, we would do the same but
3380  // with host actions only.
3381  if (!IsHostSelector) {
3382  if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3383  CurAction =
3384  OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3385  if (CanBeCollapsed &&
3387  return nullptr;
3388  SavedOffloadAction.push_back(OA);
3389  return dyn_cast<JobAction>(CurAction);
3390  }
3391  } else if (OA->hasHostDependence()) {
3392  CurAction = OA->getHostDependence();
3393  if (CanBeCollapsed &&
3395  return nullptr;
3396  SavedOffloadAction.push_back(OA);
3397  return dyn_cast<JobAction>(CurAction);
3398  }
3399  return nullptr;
3400  }
3401 
3402  return dyn_cast<JobAction>(CurAction);
3403  }
3404 
3405  /// Return true if an assemble action can be collapsed.
3406  bool canCollapseAssembleAction() const {
3407  return TC.useIntegratedAs() && !SaveTemps &&
3408  !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3409  !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3410  !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3411  }
3412 
3413  /// Return true if a preprocessor action can be collapsed.
3414  bool canCollapsePreprocessorAction() const {
3415  return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3416  !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3417  !C.getArgs().hasArg(options::OPT_rewrite_objc);
3418  }
3419 
3420  /// Struct that relates an action with the offload actions that would be
3421  /// collapsed with it.
3422  struct JobActionInfo final {
3423  /// The action this info refers to.
3424  const JobAction *JA = nullptr;
3425  /// The offload actions we need to take care off if this action is
3426  /// collapsed.
3427  ActionList SavedOffloadAction;
3428  };
3429 
3430  /// Append collapsed offload actions from the give nnumber of elements in the
3431  /// action info array.
3432  static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3433  ArrayRef<JobActionInfo> &ActionInfo,
3434  unsigned ElementNum) {
3435  assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3436  for (unsigned I = 0; I < ElementNum; ++I)
3437  CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3438  ActionInfo[I].SavedOffloadAction.end());
3439  }
3440 
3441  /// Functions that attempt to perform the combining. They detect if that is
3442  /// legal, and if so they update the inputs \a Inputs and the offload action
3443  /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3444  /// the combined action is returned. If the combining is not legal or if the
3445  /// tool does not exist, null is returned.
3446  /// Currently three kinds of collapsing are supported:
3447  /// - Assemble + Backend + Compile;
3448  /// - Assemble + Backend ;
3449  /// - Backend + Compile.
3450  const Tool *
3451  combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3452  const ActionList *&Inputs,
3453  ActionList &CollapsedOffloadAction) {
3454  if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3455  return nullptr;
3456  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3457  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3458  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3459  if (!AJ || !BJ || !CJ)
3460  return nullptr;
3461 
3462  // Get compiler tool.
3463  const Tool *T = TC.SelectTool(*CJ);
3464  if (!T)
3465  return nullptr;
3466 
3467  // When using -fembed-bitcode, it is required to have the same tool (clang)
3468  // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3469  if (EmbedBitcode) {
3470  const Tool *BT = TC.SelectTool(*BJ);
3471  if (BT == T)
3472  return nullptr;
3473  }
3474 
3475  if (!T->hasIntegratedAssembler())
3476  return nullptr;
3477 
3478  Inputs = &CJ->getInputs();
3479  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3480  /*NumElements=*/3);
3481  return T;
3482  }
3483  const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3484  const ActionList *&Inputs,
3485  ActionList &CollapsedOffloadAction) {
3486  if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3487  return nullptr;
3488  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3489  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3490  if (!AJ || !BJ)
3491  return nullptr;
3492 
3493  // Retrieve the compile job, backend action must always be preceded by one.
3494  ActionList CompileJobOffloadActions;
3495  auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3496  /*CanBeCollapsed=*/false);
3497  if (!AJ || !BJ || !CJ)
3498  return nullptr;
3499 
3500  assert(isa<CompileJobAction>(CJ) &&
3501  "Expecting compile job preceding backend job.");
3502 
3503  // Get compiler tool.
3504  const Tool *T = TC.SelectTool(*CJ);
3505  if (!T)
3506  return nullptr;
3507 
3508  if (!T->hasIntegratedAssembler())
3509  return nullptr;
3510 
3511  Inputs = &BJ->getInputs();
3512  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3513  /*NumElements=*/2);
3514  return T;
3515  }
3516  const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3517  const ActionList *&Inputs,
3518  ActionList &CollapsedOffloadAction) {
3519  if (ActionInfo.size() < 2)
3520  return nullptr;
3521  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3522  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3523  if (!BJ || !CJ)
3524  return nullptr;
3525 
3526  // Check if the initial input (to the compile job or its predessor if one
3527  // exists) is LLVM bitcode. In that case, no preprocessor step is required
3528  // and we can still collapse the compile and backend jobs when we have
3529  // -save-temps. I.e. there is no need for a separate compile job just to
3530  // emit unoptimized bitcode.
3531  bool InputIsBitcode = true;
3532  for (size_t i = 1; i < ActionInfo.size(); i++)
3533  if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3534  ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3535  InputIsBitcode = false;
3536  break;
3537  }
3538  if (!InputIsBitcode && !canCollapsePreprocessorAction())
3539  return nullptr;
3540 
3541  // Get compiler tool.
3542  const Tool *T = TC.SelectTool(*CJ);
3543  if (!T)
3544  return nullptr;
3545 
3546  if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3547  return nullptr;
3548 
3549  Inputs = &CJ->getInputs();
3550  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3551  /*NumElements=*/2);
3552  return T;
3553  }
3554 
3555  /// Updates the inputs if the obtained tool supports combining with
3556  /// preprocessor action, and the current input is indeed a preprocessor
3557  /// action. If combining results in the collapse of offloading actions, those
3558  /// are appended to \a CollapsedOffloadAction.
3559  void combineWithPreprocessor(const Tool *T, const ActionList *&Inputs,
3560  ActionList &CollapsedOffloadAction) {
3561  if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3562  return;
3563 
3564  // Attempt to get a preprocessor action dependence.
3565  ActionList PreprocessJobOffloadActions;
3566  auto *PJ = getPrevDependentAction(*Inputs, PreprocessJobOffloadActions);
3567  if (!PJ || !isa<PreprocessJobAction>(PJ))
3568  return;
3569 
3570  // This is legal to combine. Append any offload action we found and set the
3571  // current inputs to preprocessor inputs.
3572  CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3573  PreprocessJobOffloadActions.end());
3574  Inputs = &PJ->getInputs();
3575  }
3576 
3577 public:
3578  ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3579  const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3580  : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3581  EmbedBitcode(EmbedBitcode) {
3582  assert(BaseAction && "Invalid base action.");
3583  IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3584  }
3585 
3586  /// Check if a chain of actions can be combined and return the tool that can
3587  /// handle the combination of actions. The pointer to the current inputs \a
3588  /// Inputs and the list of offload actions \a CollapsedOffloadActions
3589  /// connected to collapsed actions are updated accordingly. The latter enables
3590  /// the caller of the selector to process them afterwards instead of just
3591  /// dropping them. If no suitable tool is found, null will be returned.
3592  const Tool *getTool(const ActionList *&Inputs,
3593  ActionList &CollapsedOffloadAction) {
3594  //
3595  // Get the largest chain of actions that we could combine.
3596  //
3597 
3598  SmallVector<JobActionInfo, 5> ActionChain(1);
3599  ActionChain.back().JA = BaseAction;
3600  while (ActionChain.back().JA) {
3601  const Action *CurAction = ActionChain.back().JA;
3602 
3603  // Grow the chain by one element.
3604  ActionChain.resize(ActionChain.size() + 1);
3605  JobActionInfo &AI = ActionChain.back();
3606 
3607  // Attempt to fill it with the
3608  AI.JA =
3609  getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3610  }
3611 
3612  // Pop the last action info as it could not be filled.
3613  ActionChain.pop_back();
3614 
3615  //
3616  // Attempt to combine actions. If all combining attempts failed, just return
3617  // the tool of the provided action. At the end we attempt to combine the
3618  // action with any preprocessor action it may depend on.
3619  //
3620 
3621  const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3622  CollapsedOffloadAction);
3623  if (!T)
3624  T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3625  if (!T)
3626  T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3627  if (!T) {
3628  Inputs = &BaseAction->getInputs();
3629  T = TC.SelectTool(*BaseAction);
3630  }
3631 
3632  combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3633  return T;
3634  }
3635 };
3636 }
3637 
3638 /// Return a string that uniquely identifies the result of a job. The bound arch
3639 /// is not necessarily represented in the toolchain's triple -- for example,
3640 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3641 /// Also, we need to add the offloading device kind, as the same tool chain can
3642 /// be used for host and device for some programming models, e.g. OpenMP.
3643 static std::string GetTriplePlusArchString(const ToolChain *TC,
3644  StringRef BoundArch,
3645  Action::OffloadKind OffloadKind) {
3646  std::string TriplePlusArch = TC->getTriple().normalize();
3647  if (!BoundArch.empty()) {
3648  TriplePlusArch += "-";
3649  TriplePlusArch += BoundArch;
3650  }
3651  TriplePlusArch += "-";
3652  TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3653  return TriplePlusArch;
3654 }
3655 
3657  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3658  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3659  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3660  Action::OffloadKind TargetDeviceOffloadKind) const {
3661  std::pair<const Action *, std::string> ActionTC = {
3662  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3663  auto CachedResult = CachedResults.find(ActionTC);
3664  if (CachedResult != CachedResults.end()) {
3665  return CachedResult->second;
3666  }
3667  InputInfo Result = BuildJobsForActionNoCache(
3668  C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3669  CachedResults, TargetDeviceOffloadKind);
3670  CachedResults[ActionTC] = Result;
3671  return Result;
3672 }
3673 
3674 InputInfo Driver::BuildJobsForActionNoCache(
3675  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3676  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3677  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3678  Action::OffloadKind TargetDeviceOffloadKind) const {
3679  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3680 
3681  InputInfoList OffloadDependencesInputInfo;
3682  bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3683  if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3684  // The 'Darwin' toolchain is initialized only when its arguments are
3685  // computed. Get the default arguments for OFK_None to ensure that
3686  // initialization is performed before processing the offload action.
3687  // FIXME: Remove when darwin's toolchain is initialized during construction.
3688  C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3689 
3690  // The offload action is expected to be used in four different situations.
3691  //
3692  // a) Set a toolchain/architecture/kind for a host action:
3693  // Host Action 1 -> OffloadAction -> Host Action 2
3694  //
3695  // b) Set a toolchain/architecture/kind for a device action;
3696  // Device Action 1 -> OffloadAction -> Device Action 2
3697  //
3698  // c) Specify a device dependence to a host action;
3699  // Device Action 1 _
3700  // \
3701  // Host Action 1 ---> OffloadAction -> Host Action 2
3702  //
3703  // d) Specify a host dependence to a device action.
3704  // Host Action 1 _
3705  // \
3706  // Device Action 1 ---> OffloadAction -> Device Action 2
3707  //
3708  // For a) and b), we just return the job generated for the dependence. For
3709  // c) and d) we override the current action with the host/device dependence
3710  // if the current toolchain is host/device and set the offload dependences
3711  // info with the jobs obtained from the device/host dependence(s).
3712 
3713  // If there is a single device option, just generate the job for it.
3714  if (OA->hasSingleDeviceDependence()) {
3715  InputInfo DevA;
3716  OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
3717  const char *DepBoundArch) {
3718  DevA =
3719  BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
3720  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
3721  CachedResults, DepA->getOffloadingDeviceKind());
3722  });
3723  return DevA;
3724  }
3725 
3726  // If 'Action 2' is host, we generate jobs for the device dependences and
3727  // override the current action with the host dependence. Otherwise, we
3728  // generate the host dependences and override the action with the device
3729  // dependence. The dependences can't therefore be a top-level action.
3730  OA->doOnEachDependence(
3731  /*IsHostDependence=*/BuildingForOffloadDevice,
3732  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3733  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
3734  C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
3735  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
3736  DepA->getOffloadingDeviceKind()));
3737  });
3738 
3739  A = BuildingForOffloadDevice
3740  ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
3741  : OA->getHostDependence();
3742  }
3743 
3744  if (const InputAction *IA = dyn_cast<InputAction>(A)) {
3745  // FIXME: It would be nice to not claim this here; maybe the old scheme of
3746  // just using Args was better?
3747  const Arg &Input = IA->getInputArg();
3748  Input.claim();
3749  if (Input.getOption().matches(options::OPT_INPUT)) {
3750  const char *Name = Input.getValue();
3751  return InputInfo(A, Name, /* BaseInput = */ Name);
3752  }
3753  return InputInfo(A, &Input, /* BaseInput = */ "");
3754  }
3755 
3756  if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
3757  const ToolChain *TC;
3758  StringRef ArchName = BAA->getArchName();
3759 
3760  if (!ArchName.empty())
3761  TC = &getToolChain(C.getArgs(),
3762  computeTargetTriple(*this, TargetTriple,
3763  C.getArgs(), ArchName));
3764  else
3765  TC = &C.getDefaultToolChain();
3766 
3767  return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
3768  MultipleArchs, LinkingOutput, CachedResults,
3769  TargetDeviceOffloadKind);
3770  }
3771 
3772 
3773  const ActionList *Inputs = &A->getInputs();
3774 
3775  const JobAction *JA = cast<JobAction>(A);
3776  ActionList CollapsedOffloadActions;
3777 
3778  ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
3780  const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
3781 
3782  if (!T)
3783  return InputInfo();
3784 
3785  // If we've collapsed action list that contained OffloadAction we
3786  // need to build jobs for host/device-side inputs it may have held.
3787  for (const auto *OA : CollapsedOffloadActions)
3788  cast<OffloadAction>(OA)->doOnEachDependence(
3789  /*IsHostDependence=*/BuildingForOffloadDevice,
3790  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3791  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
3792  C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
3793  /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
3794  DepA->getOffloadingDeviceKind()));
3795  });
3796 
3797  // Only use pipes when there is exactly one input.
3798  InputInfoList InputInfos;
3799  for (const Action *Input : *Inputs) {
3800  // Treat dsymutil and verify sub-jobs as being at the top-level too, they
3801  // shouldn't get temporary output names.
3802  // FIXME: Clean this up.
3803  bool SubJobAtTopLevel =
3804  AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
3805  InputInfos.push_back(BuildJobsForAction(
3806  C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
3807  CachedResults, A->getOffloadingDeviceKind()));
3808  }
3809 
3810  // Always use the first input as the base input.
3811  const char *BaseInput = InputInfos[0].getBaseInput();
3812 
3813  // ... except dsymutil actions, which use their actual input as the base
3814  // input.
3815  if (JA->getType() == types::TY_dSYM)
3816  BaseInput = InputInfos[0].getFilename();
3817 
3818  // Append outputs of offload device jobs to the input list
3819  if (!OffloadDependencesInputInfo.empty())
3820  InputInfos.append(OffloadDependencesInputInfo.begin(),
3821  OffloadDependencesInputInfo.end());
3822 
3823  // Set the effective triple of the toolchain for the duration of this job.
3824  llvm::Triple EffectiveTriple;
3825  const ToolChain &ToolTC = T->getToolChain();
3826  const ArgList &Args =
3827  C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
3828  if (InputInfos.size() != 1) {
3829  EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
3830  } else {
3831  // Pass along the input type if it can be unambiguously determined.
3832  EffectiveTriple = llvm::Triple(
3833  ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
3834  }
3835  RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
3836 
3837  // Determine the place to write output to, if any.
3838  InputInfo Result;
3839  InputInfoList UnbundlingResults;
3840  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
3841  // If we have an unbundling job, we need to create results for all the
3842  // outputs. We also update the results cache so that other actions using
3843  // this unbundling action can get the right results.
3844  for (auto &UI : UA->getDependentActionsInfo()) {
3845  assert(UI.DependentOffloadKind != Action::OFK_None &&
3846  "Unbundling with no offloading??");
3847 
3848  // Unbundling actions are never at the top level. When we generate the
3849  // offloading prefix, we also do that for the host file because the
3850  // unbundling action does not change the type of the output which can
3851  // cause a overwrite.
3852  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
3853  UI.DependentOffloadKind,
3854  UI.DependentToolChain->getTriple().normalize(),
3855  /*CreatePrefixForHost=*/true);
3856  auto CurI = InputInfo(
3857  UA,
3858  GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
3859  /*AtTopLevel=*/false,
3860  MultipleArchs ||
3861  UI.DependentOffloadKind == Action::OFK_HIP,
3862  OffloadingPrefix),
3863  BaseInput);
3864  // Save the unbundling result.
3865  UnbundlingResults.push_back(CurI);
3866 
3867  // Get the unique string identifier for this dependence and cache the
3868  // result.
3869  StringRef Arch;
3870  if (TargetDeviceOffloadKind == Action::OFK_HIP) {
3871  if (UI.DependentOffloadKind == Action::OFK_Host)
3872  Arch = StringRef();
3873  else
3874  Arch = UI.DependentBoundArch;
3875  } else
3876  Arch = BoundArch;
3877 
3878  CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
3879  UI.DependentOffloadKind)}] =
3880  CurI;
3881  }
3882 
3883  // Now that we have all the results generated, select the one that should be
3884  // returned for the current depending action.
3885  std::pair<const Action *, std::string> ActionTC = {
3886  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3887  assert(CachedResults.find(ActionTC) != CachedResults.end() &&
3888  "Result does not exist??");
3889  Result = CachedResults[ActionTC];
3890  } else if (JA->getType() == types::TY_Nothing)
3891  Result = InputInfo(A, BaseInput);
3892  else {
3893  // We only have to generate a prefix for the host if this is not a top-level
3894  // action.
3895  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
3896  A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
3897  /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
3898  !AtTopLevel);
3899  Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
3900  AtTopLevel, MultipleArchs,
3901  OffloadingPrefix),
3902  BaseInput);
3903  }
3904 
3906  llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
3907  << " - \"" << T->getName() << "\", inputs: [";
3908  for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
3909  llvm::errs() << InputInfos[i].getAsString();
3910  if (i + 1 != e)
3911  llvm::errs() << ", ";
3912  }
3913  if (UnbundlingResults.empty())
3914  llvm::errs() << "], output: " << Result.getAsString() << "\n";
3915  else {
3916  llvm::errs() << "], outputs: [";
3917  for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
3918  llvm::errs() << UnbundlingResults[i].getAsString();
3919  if (i + 1 != e)
3920  llvm::errs() << ", ";
3921  }
3922  llvm::errs() << "] \n";
3923  }
3924  } else {
3925  if (UnbundlingResults.empty())
3926  T->ConstructJob(
3927  C, *JA, Result, InputInfos,
3928  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
3929  LinkingOutput);
3930  else
3932  C, *JA, UnbundlingResults, InputInfos,
3933  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
3934  LinkingOutput);
3935  }
3936  return Result;
3937 }
3938 
3939 const char *Driver::getDefaultImageName() const {
3940  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
3941  return Target.isOSWindows() ? "a.exe" : "a.out";
3942 }
3943 
3944 /// Create output filename based on ArgValue, which could either be a
3945 /// full filename, filename without extension, or a directory. If ArgValue
3946 /// does not provide a filename, then use BaseName, and use the extension
3947 /// suitable for FileType.
3948 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
3949  StringRef BaseName,
3950  types::ID FileType) {
3951  SmallString<128> Filename = ArgValue;
3952 
3953  if (ArgValue.empty()) {
3954  // If the argument is empty, output to BaseName in the current dir.
3955  Filename = BaseName;
3956  } else if (llvm::sys::path::is_separator(Filename.back())) {
3957  // If the argument is a directory, output to BaseName in that dir.
3958  llvm::sys::path::append(Filename, BaseName);
3959  }
3960 
3961  if (!llvm::sys::path::has_extension(ArgValue)) {
3962  // If the argument didn't provide an extension, then set it.
3963  const char *Extension = types::getTypeTempSuffix(FileType, true);
3964 
3965  if (FileType == types::TY_Image &&
3966  Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
3967  // The output file is a dll.
3968  Extension = "dll";
3969  }
3970 
3971  llvm::sys::path::replace_extension(Filename, Extension);
3972  }
3973 
3974  return Args.MakeArgString(Filename.c_str());
3975 }
3976 
3978  const char *BaseInput,
3979  StringRef BoundArch, bool AtTopLevel,
3980  bool MultipleArchs,
3981  StringRef OffloadingPrefix) const {
3982  llvm::PrettyStackTraceString CrashInfo("Computing output path");
3983  // Output to a user requested destination?
3984  if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
3985  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
3986  return C.addResultFile(FinalOutput->getValue(), &JA);
3987  }
3988 
3989  // For /P, preprocess to file named after BaseInput.
3990  if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
3991  assert(AtTopLevel && isa<PreprocessJobAction>(JA));
3992  StringRef BaseName = llvm::sys::path::filename(BaseInput);
3993  StringRef NameArg;
3994  if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
3995  NameArg = A->getValue();
3996  return C.addResultFile(
3997  MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
3998  &JA);
3999  }
4000 
4001  // Default to writing to stdout?
4002  if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4003  return "-";
4004 
4005  // Is this the assembly listing for /FA?
4006  if (JA.getType() == types::TY_PP_Asm &&
4007  (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4008  C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4009  // Use /Fa and the input filename to determine the asm file name.
4010  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4011  StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4012  return C.addResultFile(
4013  MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4014  &JA);
4015  }
4016 
4017  // Output to a temporary file?
4018  if ((!AtTopLevel && !isSaveTempsEnabled() &&
4019  !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4020  CCGenDiagnostics) {
4021  StringRef Name = llvm::sys::path::filename(BaseInput);
4022  std::pair<StringRef, StringRef> Split = Name.split('.');
4023  SmallString<128> TmpName;
4024  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4025  Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4026  if (CCGenDiagnostics && A) {
4027  SmallString<128> CrashDirectory(A->getValue());
4028  llvm::sys::path::append(CrashDirectory, Split.first);
4029  const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4030  std::error_code EC =
4031  llvm::sys::fs::createUniqueFile(CrashDirectory + Middle + Suffix, TmpName);
4032  if (EC) {
4033  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4034  return "";
4035  }
4036  } else {
4037  TmpName = GetTemporaryPath(Split.first, Suffix);
4038  }
4039  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4040  }
4041 
4042  SmallString<128> BasePath(BaseInput);
4043  StringRef BaseName;
4044 
4045  // Dsymutil actions should use the full path.
4046  if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4047  BaseName = BasePath;
4048  else
4049  BaseName = llvm::sys::path::filename(BasePath);
4050 
4051  // Determine what the derived output name should be.
4052  const char *NamedOutput;
4053 
4054  if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4055  C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4056  // The /Fo or /o flag decides the object filename.
4057  StringRef Val =
4058  C.getArgs()
4059  .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4060  ->getValue();
4061  NamedOutput =
4062  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4063  } else if (JA.getType() == types::TY_Image &&
4064  C.getArgs().hasArg(options::OPT__SLASH_Fe,
4065  options::OPT__SLASH_o)) {
4066  // The /Fe or /o flag names the linked file.
4067  StringRef Val =
4068  C.getArgs()
4069  .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4070  ->getValue();
4071  NamedOutput =
4072  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4073  } else if (JA.getType() == types::TY_Image) {
4074  if (IsCLMode()) {
4075  // clang-cl uses BaseName for the executable name.
4076  NamedOutput =
4077  MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4078  } else {
4080  Output += OffloadingPrefix;
4081  if (MultipleArchs && !BoundArch.empty()) {
4082  Output += "-";
4083  Output.append(BoundArch);
4084  }
4085  NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4086  }
4087  } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4088  NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4089  } else {
4090  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4091  assert(Suffix && "All types used for output should have a suffix.");
4092 
4093  std::string::size_type End = std::string::npos;
4095  End = BaseName.rfind('.');
4096  SmallString<128> Suffixed(BaseName.substr(0, End));
4097  Suffixed += OffloadingPrefix;
4098  if (MultipleArchs && !BoundArch.empty()) {
4099  Suffixed += "-";
4100  Suffixed.append(BoundArch);
4101  }
4102  // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4103  // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4104  // optimized bitcode output.
4105  if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4106  JA.getType() == types::TY_LLVM_BC)
4107  Suffixed += ".tmp";
4108  Suffixed += '.';
4109  Suffixed += Suffix;
4110  NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4111  }
4112 
4113  // Prepend object file path if -save-temps=obj
4114  if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4115  JA.getType() != types::TY_PCH) {
4116  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4117  SmallString<128> TempPath(FinalOutput->getValue());
4118  llvm::sys::path::remove_filename(TempPath);
4119  StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4120  llvm::sys::path::append(TempPath, OutputFileName);
4121  NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4122  }
4123 
4124  // If we're saving temps and the temp file conflicts with the input file,
4125  // then avoid overwriting input file.
4126  if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4127  bool SameFile = false;
4128  SmallString<256> Result;
4129  llvm::sys::fs::current_path(Result);
4130  llvm::sys::path::append(Result, BaseName);
4131  llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4132  // Must share the same path to conflict.
4133  if (SameFile) {
4134  StringRef Name = llvm::sys::path::filename(BaseInput);
4135  std::pair<StringRef, StringRef> Split = Name.split('.');
4136  std::string TmpName = GetTemporaryPath(
4137  Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4138  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4139  }
4140  }
4141 
4142  // As an annoying special case, PCH generation doesn't strip the pathname.
4143  if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4144  llvm::sys::path::remove_filename(BasePath);
4145  if (BasePath.empty())
4146  BasePath = NamedOutput;
4147  else
4148  llvm::sys::path::append(BasePath, NamedOutput);
4149  return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4150  } else {
4151  return C.addResultFile(NamedOutput, &JA);
4152  }
4153 }
4154 
4155 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4156  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4157  // attempting to use this prefix when looking for file paths.
4158  for (const std::string &Dir : PrefixDirs) {
4159  if (Dir.empty())
4160  continue;
4161  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4162  llvm::sys::path::append(P, Name);
4163  if (llvm::sys::fs::exists(Twine(P)))
4164  return P.str();
4165  }
4166 
4168  llvm::sys::path::append(R, Name);
4169  if (llvm::sys::fs::exists(Twine(R)))
4170  return R.str();
4171 
4173  llvm::sys::path::append(P, Name);
4174  if (llvm::sys::fs::exists(Twine(P)))
4175  return P.str();
4176 
4177  for (const std::string &Dir : TC.getFilePaths()) {
4178  if (Dir.empty())
4179  continue;
4180  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4181  llvm::sys::path::append(P, Name);
4182  if (llvm::sys::fs::exists(Twine(P)))
4183  return P.str();
4184  }
4185 
4186  return Name;
4187 }
4188 
4189 void Driver::generatePrefixedToolNames(
4190  StringRef Tool, const ToolChain &TC,
4191  SmallVectorImpl<std::string> &Names) const {
4192  // FIXME: Needs a better variable than TargetTriple
4193  Names.emplace_back((TargetTriple + "-" + Tool).str());
4194  Names.emplace_back(Tool);
4195 
4196  // Allow the discovery of tools prefixed with LLVM's default target triple.
4197  std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4198  if (DefaultTargetTriple != TargetTriple)
4199  Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4200 }
4201 
4203  ArrayRef<std::string> Names) {
4204  for (const auto &Name : Names) {
4205  llvm::sys::path::append(Dir, Name);
4206  if (llvm::sys::fs::can_execute(Twine(Dir)))
4207  return true;
4208  llvm::sys::path::remove_filename(Dir);
4209  }
4210  return false;
4211 }
4212 
4213 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4214  SmallVector<std::string, 2> TargetSpecificExecutables;
4215  generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4216 
4217  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4218  // attempting to use this prefix when looking for program paths.
4219  for (const auto &PrefixDir : PrefixDirs) {
4220  if (llvm::sys::fs::is_directory(PrefixDir)) {
4221  SmallString<128> P(PrefixDir);
4222  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4223  return P.str();
4224  } else {
4225  SmallString<128> P((PrefixDir + Name).str());
4226  if (llvm::sys::fs::can_execute(Twine(P)))
4227  return P.str();
4228  }
4229  }
4230 
4231  const ToolChain::path_list &List = TC.getProgramPaths();
4232  for (const auto &Path : List) {
4233  SmallString<128> P(Path);
4234  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4235  return P.str();
4236  }
4237 
4238  // If all else failed, search the path.
4239  for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4240  if (llvm::ErrorOr<std::string> P =
4241  llvm::sys::findProgramByName(TargetSpecificExecutable))
4242  return *P;
4243 
4244  return Name;
4245 }
4246 
4247 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4248  SmallString<128> Path;
4249  std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4250  if (EC) {
4251  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4252  return "";
4253  }
4254 
4255  return Path.str();
4256 }
4257 
4258 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4259  SmallString<128> Output;
4260  if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4261  // FIXME: If anybody needs it, implement this obscure rule:
4262  // "If you specify a directory without a file name, the default file name
4263  // is VCx0.pch., where x is the major version of Visual C++ in use."
4264  Output = FpArg->getValue();
4265 
4266  // "If you do not specify an extension as part of the path name, an
4267  // extension of .pch is assumed. "
4268  if (!llvm::sys::path::has_extension(Output))
4269  Output += ".pch";
4270  } else if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) {
4271  Output = YcArg->getValue();
4272  llvm::sys::path::replace_extension(Output, ".pch");
4273  } else {
4274  Output = BaseName;
4275  llvm::sys::path::replace_extension(Output, ".pch");
4276  }
4277  return Output.str();
4278 }
4279 
4280 const ToolChain &Driver::getToolChain(const ArgList &Args,
4281  const llvm::Triple &Target) const {
4282 
4283  auto &TC = ToolChains[Target.str()];
4284  if (!TC) {
4285  switch (Target.getOS()) {
4286  case llvm::Triple::Haiku:
4287  TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args);
4288  break;
4289  case llvm::Triple::Ananas:
4290  TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args);
4291  break;
4292  case llvm::Triple::CloudABI:
4293  TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args);
4294  break;
4295  case llvm::Triple::Darwin:
4296  case llvm::Triple::MacOSX:
4297  case llvm::Triple::IOS:
4298  case llvm::Triple::TvOS:
4299  case llvm::Triple::WatchOS:
4300  TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4301  break;
4302  case llvm::Triple::DragonFly:
4303  TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args);
4304  break;
4305  case llvm::Triple::OpenBSD:
4306  TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4307  break;
4308  case llvm::Triple::NetBSD:
4309  TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args);
4310  break;
4311  case llvm::Triple::FreeBSD:
4312  TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4313  break;
4314  case llvm::Triple::Minix:
4315  TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args);
4316  break;
4317  case llvm::Triple::Linux:
4318  case llvm::Triple::ELFIAMCU:
4319  if (Target.getArch() == llvm::Triple::hexagon)
4320  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4321  Args);
4322  else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4323  !Target.hasEnvironment())
4324  TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4325  Args);
4326  else
4327  TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args);
4328  break;
4329  case llvm::Triple::NaCl:
4330  TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4331  break;
4332  case llvm::Triple::Fuchsia:
4333  TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4334  break;
4335  case llvm::Triple::Solaris:
4336  TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args);
4337  break;
4338  case llvm::Triple::AMDHSA:
4339  TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4340  break;
4341  case llvm::Triple::Win32:
4342  switch (Target.getEnvironment()) {
4343  default:
4344  if (Target.isOSBinFormatELF())
4345  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4346  else if (Target.isOSBinFormatMachO())
4347  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4348  else
4349  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4350  break;
4351  case llvm::Triple::GNU:
4352  TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args);
4353  break;
4354  case llvm::Triple::Itanium:
4355  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4356  Args);
4357  break;
4358  case llvm::Triple::MSVC:
4359  case llvm::Triple::UnknownEnvironment:
4360  if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4361  .startswith_lower("bfd"))
4362  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(
4363  *this, Target, Args);
4364  else
4365  TC =
4366  llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4367  break;
4368  }
4369  break;
4370  case llvm::Triple::PS4:
4371  TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4372  break;
4373  case llvm::Triple::Contiki:
4374  TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args);
4375  break;
4376  default:
4377  // Of these targets, Hexagon is the only one that might have
4378  // an OS of Linux, in which case it got handled above already.
4379  switch (Target.getArch()) {
4380  case llvm::Triple::tce:
4381  TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4382  break;
4383  case llvm::Triple::tcele:
4384  TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4385  break;
4386  case llvm::Triple::hexagon:
4387  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4388  Args);
4389  break;
4390  case llvm::Triple::lanai:
4391  TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4392  break;
4393  case llvm::Triple::xcore:
4394  TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4395  break;
4396  case llvm::Triple::wasm32:
4397  case llvm::Triple::wasm64:
4398  TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4399  break;
4400  case llvm::Triple::avr:
4401  TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4402  break;
4403  case llvm::Triple::riscv32:
4404  case llvm::Triple::riscv64:
4405  TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4406  break;
4407  default:
4408  if (Target.getVendor() == llvm::Triple::Myriad)
4409  TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target,
4410  Args);
4411  else if (toolchains::BareMetal::handlesTarget(Target))
4412  TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args);
4413  else if (Target.isOSBinFormatELF())
4414  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4415  else if (Target.isOSBinFormatMachO())
4416  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4417  else
4418  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4419  }
4420  }
4421  }
4422 
4423  // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
4424  // compiles always need two toolchains, the CUDA toolchain and the host
4425  // toolchain. So the only valid way to create a CUDA toolchain is via
4426  // CreateOffloadingDeviceToolChains.
4427 
4428  return *TC;
4429 }
4430 
4432  // Say "no" if there is not exactly one input of a type clang understands.
4433  if (JA.size() != 1 ||
4434  !types::isAcceptedByClang((*JA.input_begin())->getType()))
4435  return false;
4436 
4437  // And say "no" if this is not a kind of action clang understands.
4438  if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4439  !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4440  return false;
4441 
4442  return true;
4443 }
4444 
4445 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4446 /// grouped values as integers. Numbers which are not provided are set to 0.
4447 ///
4448 /// \return True if the entire string was parsed (9.2), or all groups were
4449 /// parsed (10.3.5extrastuff).
4450 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4451  unsigned &Micro, bool &HadExtra) {
4452  HadExtra = false;
4453 
4454  Major = Minor = Micro = 0;
4455  if (Str.empty())
4456  return false;
4457 
4458  if (Str.consumeInteger(10, Major))
4459  return false;
4460  if (Str.empty())
4461  return true;
4462  if (Str[0] != '.')
4463  return false;
4464 
4465  Str = Str.drop_front(1);
4466 
4467  if (Str.consumeInteger(10, Minor))
4468  return false;
4469  if (Str.empty())
4470  return true;
4471  if (Str[0] != '.')
4472  return false;
4473  Str = Str.drop_front(1);
4474 
4475  if (Str.consumeInteger(10, Micro))
4476  return false;
4477  if (!Str.empty())
4478  HadExtra = true;
4479  return true;
4480 }
4481 
4482 /// Parse digits from a string \p Str and fulfill \p Digits with
4483 /// the parsed numbers. This method assumes that the max number of
4484 /// digits to look for is equal to Digits.size().
4485 ///
4486 /// \return True if the entire string was parsed and there are
4487 /// no extra characters remaining at the end.
4488 bool Driver::GetReleaseVersion(StringRef Str,
4489  MutableArrayRef<unsigned> Digits) {
4490  if (Str.empty())
4491  return false;
4492 
4493  unsigned CurDigit = 0;
4494  while (CurDigit < Digits.size()) {
4495  unsigned Digit;
4496  if (Str.consumeInteger(10, Digit))
4497  return false;
4498  Digits[CurDigit] = Digit;
4499  if (Str.empty())
4500  return true;
4501  if (Str[0] != '.')
4502  return false;
4503  Str = Str.drop_front(1);
4504  CurDigit++;
4505  }
4506 
4507  // More digits than requested, bail out...
4508  return false;
4509 }
4510 
4511 std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks() const {
4512  unsigned IncludedFlagsBitmask = 0;
4513  unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4514 
4515  if (Mode == CLMode) {
4516  // Include CL and Core options.
4517  IncludedFlagsBitmask |= options::CLOption;
4518  IncludedFlagsBitmask |= options::CoreOption;
4519  } else {
4520  ExcludedFlagsBitmask |= options::CLOption;
4521  }
4522 
4523  return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4524 }
4525 
4526 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4527  return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4528 }
StringRef getSysRoot() const
Returns the sysroot path.
static bool GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra)
GetReleaseVersion - Parse (([0-9]+)(.
Definition: Driver.cpp:4450
static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args, StringRef Value, types::ID Ty)
Check that the file referenced by Value exists.
Definition: Driver.cpp:1867
ID
ID - Ordered values for successive stages in the compilation process which interact with user options...
Definition: Phases.h:18
static bool ContainsCompileOrAssembleAction(const Action *A)
Check whether the given input tree contains any compilation or assembly actions.
Definition: Driver.cpp:1766
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
SmallVector< std::string, 16 > path_list
Definition: ToolChain.h:90
bool isCollapsingWithNextDependentActionLegal() const
Return true if this function can be collapsed with others.
Definition: Action.h:162
const llvm::opt::ArgStringList & getTempFiles() const
Definition: Compilation.h:208
std::string ModeSuffix
Driver mode part of the executable name, as g++.
Definition: ToolChain.h:66
CudaArch
Definition: Cuda.h:34
const char * CudaArchToString(CudaArch A)
Definition: Cuda.cpp:29
OpenMPRuntimeKind getOpenMPRuntime(const llvm::opt::ArgList &Args) const
Compute the desired OpenMP runtime from the flags provided.
Definition: Driver.cpp:514
std::string getClangFullVersion()
Retrieves a string representing the complete clang version, which includes the clang version number...
Definition: Version.cpp:118
prefix_list PrefixDirs
Definition: Driver.h:146
std::string GetTemporaryPath(StringRef Prefix, StringRef Suffix) const
GetTemporaryPath - Return the pathname of a temporary file to use as part of compilation; the file wi...
Definition: Driver.cpp:4247
const MultilibSet & getMultilibs() const
Definition: ToolChain.h:222
StringRef getArchName() const
Definition: ToolChain.h:198
T * MakeAction(Args &&... Arg)
Creates a new Action owned by this Compilation.
Definition: Compilation.h:197
bool canLipoType(ID Id)
canLipoType - Is this type acceptable as the output of a universal build (currently, just the Nothing, Image, and Object types).
Definition: Types.cpp:88
Set a ToolChain&#39;s effective triple.
Definition: ToolChain.h:544
IntrusiveRefCntPtr< FileSystem > getRealFileSystem()
Gets an vfs::FileSystem for the &#39;real&#39; file system, as seen by the operating system.
const char * getTypeTempSuffix(ID Id, bool CLMode=false)
getTypeTempSuffix - Return the suffix to use when creating a temp file of this type, or null if unspecified.
Definition: Types.cpp:55
unsigned CCCUsePCH
Use lazy precompiled headers for PCH support.
Definition: Driver.h:232
void BuildInputs(const ToolChain &TC, llvm::opt::DerivedArgList &Args, InputList &Inputs) const
BuildInputs - Construct the list of inputs and their types from the given arguments.
Definition: Driver.cpp:1906
StringRef P
void setResponseFile(const char *FileName)
Set to pass arguments via a response file when launching the command.
Definition: Job.cpp:304
bool isUsingLTO() const
Returns true if we are performing any kind of LTO.
Definition: Driver.h:519
virtual std::string getThreadModel() const
getThreadModel() - Which thread model does this target use?
Definition: ToolChain.h:429
virtual void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const =0
ConstructJob - Construct jobs to perform the action JA, writing to Output and with Inputs...
input_range inputs()
Definition: Action.h:149
virtual bool isLinkJob() const
Definition: Tool.h:89
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
std::string GetProgramPath(StringRef Name, const ToolChain &TC) const
GetProgramPath - Lookup Name in the list of program search paths.
Definition: Driver.cpp:4213
virtual bool isThreadModelSupported(const StringRef Model) const
isThreadModelSupported() - Does this target support a thread model?
Definition: ToolChain.cpp:490
std::string DyldPrefix
Dynamic loader prefix, if present.
Definition: Driver.h:152
virtual void printVerboseInfo(raw_ostream &OS) const
Dispatch to the specific toolchain for verbose printing.
Definition: ToolChain.h:293
static StringRef getCategoryNameFromID(unsigned CategoryID)
Given a category ID, return the name of the category.
DiagnosticBuilder Diag(unsigned DiagID) const
Definition: Driver.h:110
InputInfo BuildJobsForAction(Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map< std::pair< const Action *, std::string >, InputInfo > &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const
BuildJobsForAction - Construct the jobs to perform for the action A and return an InputInfo for the r...
Definition: Driver.cpp:3656
static ParsedClangName getTargetAndModeFromProgramName(StringRef ProgName)
Return any implicit target and/or mode flag for an invocation of the compiler driver as ProgName...
Definition: ToolChain.cpp:195
ResponseFileSupport getResponseFilesSupport() const
Returns the level of support for response files of this tool, whether it accepts arguments to be pass...
Definition: Tool.h:93
CudaArch StringToCudaArch(llvm::StringRef S)
Definition: Cuda.cpp:93
Type used to communicate device actions.
Definition: Action.h:253
const char * getClassName() const
Definition: Action.h:137
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:998
virtual void ConstructJobMultipleOutputs(Compilation &C, const JobAction &JA, const InputInfoList &Outputs, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const
Construct jobs to perform the action JA, writing to the Outputs and with Inputs, and add the jobs to ...
Definition: Tool.cpp:26
void registerDependentActionInfo(const ToolChain *TC, StringRef BoundArch, OffloadKind Kind)
Register information about a dependent action.
Definition: Action.h:577
const ArgStringMap & getFailureResultFiles() const
Definition: Compilation.h:212
float __ovld __cnfn normalize(float p)
Returns a vector in the same direction as p but with a length of 1.
Driver(StringRef ClangExecutable, StringRef TargetTriple, DiagnosticsEngine &Diags, IntrusiveRefCntPtr< vfs::FileSystem > VFS=nullptr)
Definition: Driver.cpp:89
const llvm::opt::DerivedArgList & getArgsForToolChain(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind)
getArgsForToolChain - Return the derived argument list for the tool chain TC (or the default tool cha...
Definition: Compilation.cpp:63
void addOffloadDeviceToolChain(const ToolChain *DeviceToolChain, Action::OffloadKind OffloadKind)
Definition: Compilation.h:174
Compilation * BuildCompilation(ArrayRef< const char *> Args)
BuildCompilation - Construct a compilation object for a command line argument vector.
Definition: Driver.cpp:876
std::string TargetPrefix
Target part of the executable name, as i686-linux-android.
Definition: ToolChain.h:63
path_list & getProgramPaths()
Definition: ToolChain.h:219
Contains the files in the compilation diagnostic report generated by generateCompilationDiagnostics.
Definition: Driver.h:412
static bool ScanDirForExecutable(SmallString< 128 > &Dir, ArrayRef< std::string > Names)
Definition: Driver.cpp:4202
Definition: Format.h:2031
ActionList & getInputs()
Definition: Action.h:142
std::string Dir
The path the driver executable was in, as invoked from the command line.
Definition: Driver.h:121
ID lookupCXXTypeForCType(ID Id)
lookupCXXTypeForCType - Lookup CXX input type that corresponds to given C type (used for clang++ emul...
Definition: Types.cpp:294
const std::string & gccSuffix() const
Get the detected GCC installation path suffix for the multi-arch target variant.
Definition: Multilib.h:45
Type used to communicate host actions.
Definition: Action.h:294
static unsigned getNumberOfCategories()
Return the number of diagnostic categories.
BackendAction
Definition: BackendUtil.h:31
std::string GetClPchPath(Compilation &C, StringRef BaseName) const
Return the pathname of the pch file in clang-cl mode.
Definition: Driver.cpp:4258
Action - Represent an abstract compilation step to perform.
Definition: Action.h:48
std::string getTripleString() const
Definition: ToolChain.h:206
bool HandleImmediateArgs(const Compilation &C)
HandleImmediateArgs - Handle any arguments which should be treated before building actions or binding...
Definition: Driver.cpp:1529
InputInfo - Wrapper for information about an input source.
Definition: InputInfo.h:23
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
types::ID getType() const
Definition: Action.h:140
bool isOptimizationLevelFast(const llvm::opt::ArgList &Args)
path_list & getFilePaths()
Definition: ToolChain.h:216
CompileCommand Cmd
The LLVM OpenMP runtime.
Definition: Driver.h:96
OffloadKind getOffloadingDeviceKind() const
Definition: Action.h:196
std::unique_ptr< llvm::opt::OptTable > createDriverOptTable()
virtual bool isDsymutilJob() const
Definition: Tool.h:90
Driver - Encapsulate logic for constructing compilation processes from a set of gcc-driver-like comma...
Definition: Driver.h:59
An unknown OpenMP runtime.
Definition: Driver.h:92
const llvm::opt::InputArgList & getInputArgs() const
Definition: Compilation.h:185
input_iterator input_begin()
Definition: Action.h:147
bool isHIP(ID Id)
isHIP - Is this a HIP input.
Definition: Types.cpp:179
static Arg * MakeInputArg(DerivedArgList &Args, OptTable &Opts, StringRef Value, bool Claim=true)
Definition: Driver.cpp:289
bool hasOffloadToolChain() const
Return true if an offloading tool chain of a given kind exists.
Definition: Compilation.h:156
ID getPreprocessedType(ID Id)
getPreprocessedType - Get the ID of the type for this input when it has been preprocessed, or INVALID if this input is not preprocessed.
Definition: Types.cpp:43
StringRef Filename
Definition: Format.cpp:1605
void add(Action &A, const ToolChain &TC, const char *BoundArch, OffloadKind OKind)
Add a action along with the associated toolchain, bound arch, and offload kind.
Definition: Action.cpp:287
void PrintActions(const Compilation &C) const
PrintActions - Print the list of actions.
Definition: Driver.cpp:1758
const ToolChain & getDefaultToolChain() const
Definition: Compilation.h:136
const ArgStringMap & getResultFiles() const
Definition: Compilation.h:210
unsigned GenReproducer
Force clang to emit reproducer for driver invocation.
Definition: Driver.h:237
ID lookupHeaderTypeForSourceType(ID Id)
Lookup header file input type that corresponds to given source file type (used for clang-cl emulation...
Definition: Types.cpp:310
const char * getTypeName(ID Id)
getTypeName - Return the name of the type for Id.
Definition: Types.cpp:39
std::string getAsString() const
getAsString - Return a string name for this input, for debugging.
Definition: InputInfo.h:95
ActionClass getKind() const
Definition: Action.h:139
SourceLocation End
const char * getPhaseName(ID Id)
Definition: Phases.cpp:16
int Id
Definition: ASTDiff.cpp:191
const Tool & getCreator() const
getCreator - Return the Tool which caused the creation of this job.
Definition: Job.h:108
StateNode * Previous
bool isSaveTempsObj() const
Definition: Driver.h:330
Defines version macros and version-related utility functions for Clang.
bool IsCLMode() const
Whether the driver should follow cl.exe like behavior.
Definition: Driver.h:183
virtual types::ID LookupTypeForExtension(StringRef Ext) const
LookupTypeForExtension - Return the default language type to use for the given extension.
Definition: ToolChain.cpp:456
This corresponds to a single GCC Multilib, or a segment of one controlled by a command line flag...
Definition: Multilib.h:29
static std::string GetTriplePlusArchString(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind OffloadKind)
Return a string that uniquely identifies the result of a job.
Definition: Driver.cpp:3643
void HandleAutocompletions(StringRef PassedFlags) const
HandleAutocompletions - Handle –autocomplete by searching and printing possible flags, descriptions, and its arguments.
Definition: Driver.cpp:1464
virtual std::string getCompilerRT(const llvm::opt::ArgList &Args, StringRef Component, bool Shared=false) const
Definition: ToolChain.cpp:355
void getCompilationPhases(ID Id, llvm::SmallVectorImpl< phases::ID > &Phases)
getCompilationPhases - Get the list of compilation phases (&#39;Phases&#39;) to be done for type &#39;Id&#39;...
Definition: Types.cpp:268
void BuildUniversalActions(Compilation &C, const ToolChain &TC, const InputList &BAInputs) const
BuildUniversalActions - Construct the list of actions to perform for the given arguments, which may require a universal build.
Definition: Driver.cpp:1778
size_type size() const
Definition: Action.h:145
llvm::opt::InputArgList ParseArgStrings(ArrayRef< const char *> Args, bool &ContainsError)
ParseArgStrings - Parse the given list of strings into an ArgList.
Definition: Driver.cpp:166
void setCannotBeCollapsedWithNextDependentAction()
Mark this action as not legal to collapse.
Definition: Action.h:157
Action * ConstructPhaseAction(Compilation &C, const llvm::opt::ArgList &Args, phases::ID Phase, Action *Input, Action::OffloadKind TargetDeviceOffloadKind=Action::OFK_None) const
ConstructAction - Construct the appropriate action to do for Phase on the Input, taking in to account...
Definition: Driver.cpp:3159
llvm::Triple::ArchType getArchTypeForMachOArchName(StringRef Str)
Definition: Darwin.cpp:34
const ActionList & getActions() const
Get each of the individual arrays.
Definition: Action.h:284
const_offload_toolchains_range getOffloadToolChains() const
Definition: Compilation.h:151
static void PrintDiagnosticCategories(raw_ostream &OS)
PrintDiagnosticCategories - Implement the –print-diagnostic-categories option.
Definition: Driver.cpp:1457
void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:431
void PrintHelp(bool ShowHidden) const
PrintHelp - Print the help text.
Definition: Driver.cpp:1416
virtual bool canEmitIR() const
Definition: Tool.h:87
static void printArg(llvm::raw_ostream &OS, StringRef Arg, bool Quote)
Print a command argument, and optionally quote it.
Definition: Job.cpp:101
#define false
Definition: stdbool.h:33
virtual bool hasIntegratedCPP() const =0
void generateCompilationDiagnostics(Compilation &C, const Command &FailingCommand, StringRef AdditionalInformation="", CompilationDiagnosticReport *GeneratedReport=nullptr)
generateCompilationDiagnostics - Generate diagnostics information including preprocessed source file(...
Definition: Driver.cpp:1153
static unsigned PrintActions1(const Compilation &C, Action *A, std::map< Action *, unsigned > &Ids)
Definition: Driver.cpp:1681
bool embedBitcodeInObject() const
Definition: Driver.h:333
Encodes a location in the source.
const llvm::opt::DerivedArgList & getArgs() const
Definition: Compilation.h:187
bool hasErrorOccurred() const
Determine whether any errors have occurred since this object instance was created.
Definition: Diagnostic.h:1009
Command - An executable path/name and argument vector to execute.
Definition: Job.h:45
bool isCuda(ID Id)
isCuda - Is this a CUDA input.
Definition: Types.cpp:167
The legacy name for the LLVM OpenMP runtime from when it was the Intel OpenMP runtime.
Definition: Driver.h:106
std::string InstalledDir
The path to the installed clang directory, if any.
Definition: Driver.h:130
bool CCCIsCXX() const
Whether the driver should follow g++ like behavior.
Definition: Driver.h:174
const char * addResultFile(const char *Name, const JobAction *JA)
addResultFile - Add a file to remove on failure, and returns its argument.
Definition: Compilation.h:240
bool isSaveTempsEnabled() const
Definition: Driver.h:329
static std::vector< std::string > getDiagnosticFlags()
Get the string of all diagnostic flags.
std::string UserConfigDir
User directory for config files.
Definition: Driver.h:139
bool isAcceptedByClang(ID Id)
isAcceptedByClang - Can clang handle this input type.
Definition: Types.cpp:95
virtual bool hasIntegratedAssembler() const
Definition: Tool.h:86
An offload action combines host or/and device actions according to the programming model implementati...
Definition: Action.h:247
const char * getDefaultImageName() const
Returns the default name for linked images (e.g., "a.out").
Definition: Driver.cpp:3939
virtual RuntimeLibType GetRuntimeLibType(const llvm::opt::ArgList &Args) const
Definition: ToolChain.cpp:649
void ExecuteJobs(const JobList &Jobs, SmallVectorImpl< std::pair< int, const Command *>> &FailingCommands) const
ExecuteJob - Execute a single job.
const char * getShortName() const
Definition: Tool.h:82
void setIgnoreAllWarnings(bool Val)
When set to true, any unmapped warnings are ignored.
Definition: Diagnostic.h:587
static bool searchForFile(SmallVectorImpl< char > &FilePath, ArrayRef< std::string > Dirs, StringRef FileName)
Looks the given directories for the specified file.
Definition: Driver.cpp:676
unsigned getOffloadingHostActiveKinds() const
Definition: Action.h:192
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
const Action & getSource() const
getSource - Return the Action which caused the creation of this job.
Definition: Job.h:105
Dataflow Directional Tag Classes.
Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const
Based on the way the client configured the DiagnosticsEngine object, classify the specified diagnosti...
Definition: Diagnostic.h:833
const char * getExecutable() const
Definition: Job.h:125
unsigned CCCPrintBindings
Only print tool bindings, don&#39;t build any jobs.
Definition: Driver.h:186
static llvm::Triple computeTargetTriple(const Driver &D, StringRef TargetTriple, const ArgList &Args, StringRef DarwinArchName="")
Compute target triple from args.
Definition: Driver.cpp:392
virtual std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType=types::TY_INVALID) const
ComputeEffectiveClangTriple - Return the Clang triple to use for this target, which may take into acc...
Definition: ToolChain.cpp:626
const llvm::opt::ArgStringList & getArguments() const
Definition: Job.h:127
virtual bool hasGoodDiagnostics() const
Does this tool have "good" standardized diagnostics, or should the driver add an additional "command ...
Definition: Tool.h:117
std::string SysRoot
sysroot, if present
Definition: Driver.h:149
Tool - Information on a specific compilation tool.
Definition: Tool.h:34
void setTripleTypeForMachOArchName(llvm::Triple &T, StringRef Str)
Definition: Darwin.cpp:69
std::string Name
The name the driver was invoked as.
Definition: Driver.h:117
Defines the virtual file system interface vfs::FileSystem.
static bool handlesTarget(const llvm::Triple &Triple)
Definition: BareMetal.cpp:60
The GNU OpenMP runtime.
Definition: Driver.h:101
llvm::SmallVector< std::string, 4 > TemporaryFiles
Definition: Driver.h:413
int ExecuteCompilation(Compilation &C, SmallVectorImpl< std::pair< int, const Command *> > &FailingCommands)
ExecuteCompilation - Execute the compilation according to the command line arguments and return an ap...
Definition: Driver.cpp:1355
ActionList & getActions()
Definition: Compilation.h:191
ParsedClangName ClangNameParts
Target and driver mode components extracted from clang executable name.
Definition: Driver.h:127
bool getCheckInputsExist() const
Definition: Driver.h:303
std::string ClangExecutable
The original path to the clang executable.
Definition: Driver.h:124
void BuildJobs(Compilation &C) const
BuildJobs - Bind actions to concrete tools and translate arguments to form the list of jobs to run...
Definition: Driver.cpp:3242
ID getPrecompiledType(ID Id)
getPrecompiledType - Get the ID of the type for this input when it has been precompiled, or INVALID if this input is not precompiled.
Definition: Types.cpp:47
bool ShouldUseClangCompiler(const JobAction &JA) const
ShouldUseClangCompiler - Should the clang compiler be used to handle this action. ...
Definition: Driver.cpp:4431
StringRef getDefaultUniversalArchName() const
Provide the default architecture name (as expected by -arch) for this toolchain.
Definition: ToolChain.cpp:217
Compilation - A set of tasks to perform for a single driver invocation.
Definition: Compilation.h:46
void BuildActions(Compilation &C, llvm::opt::DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const
BuildActions - Construct the list of actions to perform for the given arguments, which are only done ...
Definition: Driver.cpp:2916
const Driver & getDriver() const
Definition: Compilation.h:134
const llvm::Triple & getTriple() const
Definition: ToolChain.h:183
static StringRef GetOffloadKindName(OffloadKind Kind)
Return a string containing a offload kind name.
Definition: Action.cpp:143
std::string GetFilePath(StringRef Name, const ToolChain &TC) const
GetFilePath - Lookup Name in the list of file search paths.
Definition: Driver.cpp:4155
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args)
Definition: Driver.cpp:1048
const ToolChain & getToolChain() const
Definition: Tool.h:84
bool CleanupFileMap(const ArgStringMap &Files, const JobAction *JA, bool IssueErrors=false) const
CleanupFileMap - Remove the files in the given map.
virtual std::string getCompilerRTPath() const
Definition: ToolChain.cpp:345
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:13820
void propagateHostOffloadInfo(unsigned OKinds, const char *OArch)
Append the host offload info of this action and propagate it to its dependences.
Definition: Action.cpp:66
static std::string GetOffloadingFileNamePrefix(OffloadKind Kind, StringRef NormalizedTriple, bool CreatePrefixForHost=false)
Return a string that can be used as prefix in order to generate unique files for each offloading kind...
Definition: Action.cpp:127
void ParseDriverMode(StringRef ProgramName, ArrayRef< const char *> Args)
ParseDriverMode - Look for and handle the driver mode option in Args.
Definition: Driver.cpp:133
const char * getName() const
Definition: Tool.h:80
const llvm::opt::OptTable & getOpts() const
Definition: Driver.h:297
virtual Tool * SelectTool(const JobAction &JA) const
Choose a tool to use to handle the action JA.
Definition: ToolChain.cpp:408
const char * addTempFile(const char *Name)
addTempFile - Add a file to remove on exit, and returns its argument.
Definition: Compilation.h:233
std::string getOffloadingKindPrefix() const
Return a string containing the offload kind of the action.
Definition: Action.cpp:88
const ToolChain * getSingleOffloadToolChain() const
Return an offload toolchain of the provided kind.
Definition: Compilation.h:164
__DEVICE__ int max(int __a, int __b)
std::string DriverTitle
Driver title to use with help.
Definition: Driver.h:155
static const char * MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, StringRef BaseName, types::ID FileType)
Create output filename based on ArgValue, which could either be a full filename, filename without ext...
Definition: Driver.cpp:3948
void initialize(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema)
bool CCCIsCPP() const
Whether the driver is just the preprocessor.
Definition: Driver.h:177
void PrintVersion(const Compilation &C, raw_ostream &OS) const
PrintVersion - Print the driver version.
Definition: Driver.cpp:1431
void CreateOffloadingDeviceToolChains(Compilation &C, InputList &Inputs)
CreateOffloadingDeviceToolChains - create all the toolchains required to support offloading devices g...
Definition: Driver.cpp:539
bool appendSuffixForType(ID Id)
appendSuffixForType - When generating outputs of this type, should the suffix be appended (instead of...
Definition: Types.cpp:84
ID lookupTypeForTypeSpecifier(const char *Name)
lookupTypeForTypSpecifier - Lookup the type to use for a user specified type name.
Definition: Types.cpp:256
const char * GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, StringRef NormalizedTriple) const
GetNamedOutputPath - Return the name to use for the output of the action JA.
Definition: Driver.cpp:3977
#define true
Definition: stdbool.h:32
void initCompilationForDiagnostics()
initCompilationForDiagnostics - Remove stale state and suppress output so compilation can be reexecut...
bool isSrcFile(ID Id)
isSrcFile - Is this a source file, i.e.
Definition: Types.cpp:191
const char * DriverMode
Corresponding driver mode argument, as &#39;–driver-mode=g++&#39;.
Definition: ToolChain.h:69
const char * getOffloadingArch() const
Definition: Action.h:197
virtual void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:214
unsigned CCGenDiagnostics
Whether the driver is generating diagnostics for debugging purposes.
Definition: Driver.h:202
std::string SystemConfigDir
System directory for config files.
Definition: Driver.h:136
ToolChain - Access to tools for a single platform.
Definition: ToolChain.h:88
std::string ResourceDir
The path to the compiler resource directory.
Definition: Driver.h:133