clang  7.0.0
SemaType.cpp
Go to the documentation of this file.
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements type-related semantic analysis.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/ScopeInfo.h"
33 #include "clang/Sema/Template.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/Support/ErrorHandling.h"
39 
40 using namespace clang;
41 
46 };
47 
48 /// isOmittedBlockReturnType - Return true if this declarator is missing a
49 /// return type because this is a omitted return type on a block literal.
50 static bool isOmittedBlockReturnType(const Declarator &D) {
53  return false;
54 
55  if (D.getNumTypeObjects() == 0)
56  return true; // ^{ ... }
57 
58  if (D.getNumTypeObjects() == 1 &&
60  return true; // ^(int X, float Y) { ... }
61 
62  return false;
63 }
64 
65 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
66 /// doesn't apply to the given type.
67 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
68  QualType type) {
69  TypeDiagSelector WhichType;
70  bool useExpansionLoc = true;
71  switch (attr.getKind()) {
72  case ParsedAttr::AT_ObjCGC:
73  WhichType = TDS_Pointer;
74  break;
75  case ParsedAttr::AT_ObjCOwnership:
76  WhichType = TDS_ObjCObjOrBlock;
77  break;
78  default:
79  // Assume everything else was a function attribute.
80  WhichType = TDS_Function;
81  useExpansionLoc = false;
82  break;
83  }
84 
85  SourceLocation loc = attr.getLoc();
86  StringRef name = attr.getName()->getName();
87 
88  // The GC attributes are usually written with macros; special-case them.
89  IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
90  : nullptr;
91  if (useExpansionLoc && loc.isMacroID() && II) {
92  if (II->isStr("strong")) {
93  if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
94  } else if (II->isStr("weak")) {
95  if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
96  }
97  }
98 
99  S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
100  << type;
101 }
102 
103 // objc_gc applies to Objective-C pointers or, otherwise, to the
104 // smallest available pointer type (i.e. 'void*' in 'void**').
105 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
106  case ParsedAttr::AT_ObjCGC: \
107  case ParsedAttr::AT_ObjCOwnership
108 
109 // Calling convention attributes.
110 #define CALLING_CONV_ATTRS_CASELIST \
111  case ParsedAttr::AT_CDecl: \
112  case ParsedAttr::AT_FastCall: \
113  case ParsedAttr::AT_StdCall: \
114  case ParsedAttr::AT_ThisCall: \
115  case ParsedAttr::AT_RegCall: \
116  case ParsedAttr::AT_Pascal: \
117  case ParsedAttr::AT_SwiftCall: \
118  case ParsedAttr::AT_VectorCall: \
119  case ParsedAttr::AT_MSABI: \
120  case ParsedAttr::AT_SysVABI: \
121  case ParsedAttr::AT_Pcs: \
122  case ParsedAttr::AT_IntelOclBicc: \
123  case ParsedAttr::AT_PreserveMost: \
124  case ParsedAttr::AT_PreserveAll
125 
126 // Function type attributes.
127 #define FUNCTION_TYPE_ATTRS_CASELIST \
128  case ParsedAttr::AT_NSReturnsRetained: \
129  case ParsedAttr::AT_NoReturn: \
130  case ParsedAttr::AT_Regparm: \
131  case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
132  case ParsedAttr::AT_AnyX86NoCfCheck: \
133  CALLING_CONV_ATTRS_CASELIST
134 
135 // Microsoft-specific type qualifiers.
136 #define MS_TYPE_ATTRS_CASELIST \
137  case ParsedAttr::AT_Ptr32: \
138  case ParsedAttr::AT_Ptr64: \
139  case ParsedAttr::AT_SPtr: \
140  case ParsedAttr::AT_UPtr
141 
142 // Nullability qualifiers.
143 #define NULLABILITY_TYPE_ATTRS_CASELIST \
144  case ParsedAttr::AT_TypeNonNull: \
145  case ParsedAttr::AT_TypeNullable: \
146  case ParsedAttr::AT_TypeNullUnspecified
147 
148 namespace {
149  /// An object which stores processing state for the entire
150  /// GetTypeForDeclarator process.
151  class TypeProcessingState {
152  Sema &sema;
153 
154  /// The declarator being processed.
155  Declarator &declarator;
156 
157  /// The index of the declarator chunk we're currently processing.
158  /// May be the total number of valid chunks, indicating the
159  /// DeclSpec.
160  unsigned chunkIndex;
161 
162  /// Whether there are non-trivial modifications to the decl spec.
163  bool trivial;
164 
165  /// Whether we saved the attributes in the decl spec.
166  bool hasSavedAttrs;
167 
168  /// The original set of attributes on the DeclSpec.
169  SmallVector<ParsedAttr *, 2> savedAttrs;
170 
171  /// A list of attributes to diagnose the uselessness of when the
172  /// processing is complete.
173  SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
174 
175  public:
176  TypeProcessingState(Sema &sema, Declarator &declarator)
177  : sema(sema), declarator(declarator),
178  chunkIndex(declarator.getNumTypeObjects()),
179  trivial(true), hasSavedAttrs(false) {}
180 
181  Sema &getSema() const {
182  return sema;
183  }
184 
185  Declarator &getDeclarator() const {
186  return declarator;
187  }
188 
189  bool isProcessingDeclSpec() const {
190  return chunkIndex == declarator.getNumTypeObjects();
191  }
192 
193  unsigned getCurrentChunkIndex() const {
194  return chunkIndex;
195  }
196 
197  void setCurrentChunkIndex(unsigned idx) {
198  assert(idx <= declarator.getNumTypeObjects());
199  chunkIndex = idx;
200  }
201 
202  ParsedAttributesView &getCurrentAttributes() const {
203  if (isProcessingDeclSpec())
204  return getMutableDeclSpec().getAttributes();
205  return declarator.getTypeObject(chunkIndex).getAttrs();
206  }
207 
208  /// Save the current set of attributes on the DeclSpec.
209  void saveDeclSpecAttrs() {
210  // Don't try to save them multiple times.
211  if (hasSavedAttrs) return;
212 
213  DeclSpec &spec = getMutableDeclSpec();
214  for (ParsedAttr &AL : spec.getAttributes())
215  savedAttrs.push_back(&AL);
216  trivial &= savedAttrs.empty();
217  hasSavedAttrs = true;
218  }
219 
220  /// Record that we had nowhere to put the given type attribute.
221  /// We will diagnose such attributes later.
222  void addIgnoredTypeAttr(ParsedAttr &attr) {
223  ignoredTypeAttrs.push_back(&attr);
224  }
225 
226  /// Diagnose all the ignored type attributes, given that the
227  /// declarator worked out to the given type.
228  void diagnoseIgnoredTypeAttrs(QualType type) const {
229  for (auto *Attr : ignoredTypeAttrs)
230  diagnoseBadTypeAttribute(getSema(), *Attr, type);
231  }
232 
233  ~TypeProcessingState() {
234  if (trivial) return;
235 
236  restoreDeclSpecAttrs();
237  }
238 
239  private:
240  DeclSpec &getMutableDeclSpec() const {
241  return const_cast<DeclSpec&>(declarator.getDeclSpec());
242  }
243 
244  void restoreDeclSpecAttrs() {
245  assert(hasSavedAttrs);
246 
247  getMutableDeclSpec().getAttributes().clearListOnly();
248  for (ParsedAttr *AL : savedAttrs)
249  getMutableDeclSpec().getAttributes().addAtStart(AL);
250  }
251  };
252 } // end anonymous namespace
253 
255  ParsedAttributesView &fromList,
256  ParsedAttributesView &toList) {
257  fromList.remove(&attr);
258  toList.addAtStart(&attr);
259 }
260 
261 /// The location of a type attribute.
263  /// The attribute is in the decl-specifier-seq.
265  /// The attribute is part of a DeclaratorChunk.
267  /// The attribute is immediately after the declaration's name.
269 };
270 
271 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
273 
274 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
275  QualType &type);
276 
277 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
278  ParsedAttr &attr, QualType &type);
279 
280 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
281  QualType &type);
282 
283 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
284  ParsedAttr &attr, QualType &type);
285 
286 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
287  ParsedAttr &attr, QualType &type) {
288  if (attr.getKind() == ParsedAttr::AT_ObjCGC)
289  return handleObjCGCTypeAttr(state, attr, type);
290  assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
291  return handleObjCOwnershipTypeAttr(state, attr, type);
292 }
293 
294 /// Given the index of a declarator chunk, check whether that chunk
295 /// directly specifies the return type of a function and, if so, find
296 /// an appropriate place for it.
297 ///
298 /// \param i - a notional index which the search will start
299 /// immediately inside
300 ///
301 /// \param onlyBlockPointers Whether we should only look into block
302 /// pointer types (vs. all pointer types).
304  unsigned i,
305  bool onlyBlockPointers) {
306  assert(i <= declarator.getNumTypeObjects());
307 
308  DeclaratorChunk *result = nullptr;
309 
310  // First, look inwards past parens for a function declarator.
311  for (; i != 0; --i) {
312  DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
313  switch (fnChunk.Kind) {
315  continue;
316 
317  // If we find anything except a function, bail out.
324  return result;
325 
326  // If we do find a function declarator, scan inwards from that,
327  // looking for a (block-)pointer declarator.
329  for (--i; i != 0; --i) {
330  DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
331  switch (ptrChunk.Kind) {
337  continue;
338 
341  if (onlyBlockPointers)
342  continue;
343 
344  LLVM_FALLTHROUGH;
345 
347  result = &ptrChunk;
348  goto continue_outer;
349  }
350  llvm_unreachable("bad declarator chunk kind");
351  }
352 
353  // If we run out of declarators doing that, we're done.
354  return result;
355  }
356  llvm_unreachable("bad declarator chunk kind");
357 
358  // Okay, reconsider from our new point.
359  continue_outer: ;
360  }
361 
362  // Ran out of chunks, bail out.
363  return result;
364 }
365 
366 /// Given that an objc_gc attribute was written somewhere on a
367 /// declaration *other* than on the declarator itself (for which, use
368 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
369 /// didn't apply in whatever position it was written in, try to move
370 /// it to a more appropriate position.
371 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
372  ParsedAttr &attr, QualType type) {
373  Declarator &declarator = state.getDeclarator();
374 
375  // Move it to the outermost normal or block pointer declarator.
376  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
377  DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
378  switch (chunk.Kind) {
381  // But don't move an ARC ownership attribute to the return type
382  // of a block.
383  DeclaratorChunk *destChunk = nullptr;
384  if (state.isProcessingDeclSpec() &&
385  attr.getKind() == ParsedAttr::AT_ObjCOwnership)
386  destChunk = maybeMovePastReturnType(declarator, i - 1,
387  /*onlyBlockPointers=*/true);
388  if (!destChunk) destChunk = &chunk;
389 
390  moveAttrFromListToList(attr, state.getCurrentAttributes(),
391  destChunk->getAttrs());
392  return;
393  }
394 
397  continue;
398 
399  // We may be starting at the return type of a block.
401  if (state.isProcessingDeclSpec() &&
402  attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
404  declarator, i,
405  /*onlyBlockPointers=*/true)) {
406  moveAttrFromListToList(attr, state.getCurrentAttributes(),
407  dest->getAttrs());
408  return;
409  }
410  }
411  goto error;
412 
413  // Don't walk through these.
417  goto error;
418  }
419  }
420  error:
421 
422  diagnoseBadTypeAttribute(state.getSema(), attr, type);
423 }
424 
425 /// Distribute an objc_gc type attribute that was written on the
426 /// declarator.
428  TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
429  Declarator &declarator = state.getDeclarator();
430 
431  // objc_gc goes on the innermost pointer to something that's not a
432  // pointer.
433  unsigned innermost = -1U;
434  bool considerDeclSpec = true;
435  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
436  DeclaratorChunk &chunk = declarator.getTypeObject(i);
437  switch (chunk.Kind) {
440  innermost = i;
441  continue;
442 
448  continue;
449 
451  considerDeclSpec = false;
452  goto done;
453  }
454  }
455  done:
456 
457  // That might actually be the decl spec if we weren't blocked by
458  // anything in the declarator.
459  if (considerDeclSpec) {
460  if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
461  // Splice the attribute into the decl spec. Prevents the
462  // attribute from being applied multiple times and gives
463  // the source-location-filler something to work with.
464  state.saveDeclSpecAttrs();
465  moveAttrFromListToList(attr, declarator.getAttributes(),
466  declarator.getMutableDeclSpec().getAttributes());
467  return;
468  }
469  }
470 
471  // Otherwise, if we found an appropriate chunk, splice the attribute
472  // into it.
473  if (innermost != -1U) {
474  moveAttrFromListToList(attr, declarator.getAttributes(),
475  declarator.getTypeObject(innermost).getAttrs());
476  return;
477  }
478 
479  // Otherwise, diagnose when we're done building the type.
480  declarator.getAttributes().remove(&attr);
481  state.addIgnoredTypeAttr(attr);
482 }
483 
484 /// A function type attribute was written somewhere in a declaration
485 /// *other* than on the declarator itself or in the decl spec. Given
486 /// that it didn't apply in whatever position it was written in, try
487 /// to move it to a more appropriate position.
488 static void distributeFunctionTypeAttr(TypeProcessingState &state,
489  ParsedAttr &attr, QualType type) {
490  Declarator &declarator = state.getDeclarator();
491 
492  // Try to push the attribute from the return type of a function to
493  // the function itself.
494  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
495  DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
496  switch (chunk.Kind) {
498  moveAttrFromListToList(attr, state.getCurrentAttributes(),
499  chunk.getAttrs());
500  return;
501 
509  continue;
510  }
511  }
512 
513  diagnoseBadTypeAttribute(state.getSema(), attr, type);
514 }
515 
516 /// Try to distribute a function type attribute to the innermost
517 /// function chunk or type. Returns true if the attribute was
518 /// distributed, false if no location was found.
520  TypeProcessingState &state, ParsedAttr &attr,
521  ParsedAttributesView &attrList, QualType &declSpecType) {
522  Declarator &declarator = state.getDeclarator();
523 
524  // Put it on the innermost function chunk, if there is one.
525  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
526  DeclaratorChunk &chunk = declarator.getTypeObject(i);
527  if (chunk.Kind != DeclaratorChunk::Function) continue;
528 
529  moveAttrFromListToList(attr, attrList, chunk.getAttrs());
530  return true;
531  }
532 
533  return handleFunctionTypeAttr(state, attr, declSpecType);
534 }
535 
536 /// A function type attribute was written in the decl spec. Try to
537 /// apply it somewhere.
538 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
539  ParsedAttr &attr,
540  QualType &declSpecType) {
541  state.saveDeclSpecAttrs();
542 
543  // C++11 attributes before the decl specifiers actually appertain to
544  // the declarators. Move them straight there. We don't support the
545  // 'put them wherever you like' semantics we allow for GNU attributes.
546  if (attr.isCXX11Attribute()) {
547  moveAttrFromListToList(attr, state.getCurrentAttributes(),
548  state.getDeclarator().getAttributes());
549  return;
550  }
551 
552  // Try to distribute to the innermost.
554  state, attr, state.getCurrentAttributes(), declSpecType))
555  return;
556 
557  // If that failed, diagnose the bad attribute when the declarator is
558  // fully built.
559  state.addIgnoredTypeAttr(attr);
560 }
561 
562 /// A function type attribute was written on the declarator. Try to
563 /// apply it somewhere.
564 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
565  ParsedAttr &attr,
566  QualType &declSpecType) {
567  Declarator &declarator = state.getDeclarator();
568 
569  // Try to distribute to the innermost.
571  state, attr, declarator.getAttributes(), declSpecType))
572  return;
573 
574  // If that failed, diagnose the bad attribute when the declarator is
575  // fully built.
576  declarator.getAttributes().remove(&attr);
577  state.addIgnoredTypeAttr(attr);
578 }
579 
580 /// Given that there are attributes written on the declarator
581 /// itself, try to distribute any type attributes to the appropriate
582 /// declarator chunk.
583 ///
584 /// These are attributes like the following:
585 /// int f ATTR;
586 /// int (f ATTR)();
587 /// but not necessarily this:
588 /// int f() ATTR;
589 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
590  QualType &declSpecType) {
591  // Collect all the type attributes from the declarator itself.
592  assert(!state.getDeclarator().getAttributes().empty() &&
593  "declarator has no attrs!");
594  // The called functions in this loop actually remove things from the current
595  // list, so iterating over the existing list isn't possible. Instead, make a
596  // non-owning copy and iterate over that.
597  ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
598  for (ParsedAttr &attr : AttrsCopy) {
599  // Do not distribute C++11 attributes. They have strict rules for what
600  // they appertain to.
601  if (attr.isCXX11Attribute())
602  continue;
603 
604  switch (attr.getKind()) {
606  distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
607  break;
608 
610  distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
611  break;
612 
614  // Microsoft type attributes cannot go after the declarator-id.
615  continue;
616 
618  // Nullability specifiers cannot go after the declarator-id.
619 
620  // Objective-C __kindof does not get distributed.
621  case ParsedAttr::AT_ObjCKindOf:
622  continue;
623 
624  default:
625  break;
626  }
627  }
628 }
629 
630 /// Add a synthetic '()' to a block-literal declarator if it is
631 /// required, given the return type.
632 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
633  QualType declSpecType) {
634  Declarator &declarator = state.getDeclarator();
635 
636  // First, check whether the declarator would produce a function,
637  // i.e. whether the innermost semantic chunk is a function.
638  if (declarator.isFunctionDeclarator()) {
639  // If so, make that declarator a prototyped declarator.
640  declarator.getFunctionTypeInfo().hasPrototype = true;
641  return;
642  }
643 
644  // If there are any type objects, the type as written won't name a
645  // function, regardless of the decl spec type. This is because a
646  // block signature declarator is always an abstract-declarator, and
647  // abstract-declarators can't just be parentheses chunks. Therefore
648  // we need to build a function chunk unless there are no type
649  // objects and the decl spec type is a function.
650  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
651  return;
652 
653  // Note that there *are* cases with invalid declarators where
654  // declarators consist solely of parentheses. In general, these
655  // occur only in failed efforts to make function declarators, so
656  // faking up the function chunk is still the right thing to do.
657 
658  // Otherwise, we need to fake up a function declarator.
659  SourceLocation loc = declarator.getLocStart();
660 
661  // ...and *prepend* it to the declarator.
662  SourceLocation NoLoc;
664  /*HasProto=*/true,
665  /*IsAmbiguous=*/false,
666  /*LParenLoc=*/NoLoc,
667  /*ArgInfo=*/nullptr,
668  /*NumArgs=*/0,
669  /*EllipsisLoc=*/NoLoc,
670  /*RParenLoc=*/NoLoc,
671  /*TypeQuals=*/0,
672  /*RefQualifierIsLvalueRef=*/true,
673  /*RefQualifierLoc=*/NoLoc,
674  /*ConstQualifierLoc=*/NoLoc,
675  /*VolatileQualifierLoc=*/NoLoc,
676  /*RestrictQualifierLoc=*/NoLoc,
677  /*MutableLoc=*/NoLoc, EST_None,
678  /*ESpecRange=*/SourceRange(),
679  /*Exceptions=*/nullptr,
680  /*ExceptionRanges=*/nullptr,
681  /*NumExceptions=*/0,
682  /*NoexceptExpr=*/nullptr,
683  /*ExceptionSpecTokens=*/nullptr,
684  /*DeclsInPrototype=*/None,
685  loc, loc, declarator));
686 
687  // For consistency, make sure the state still has us as processing
688  // the decl spec.
689  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
690  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
691 }
692 
694  unsigned &TypeQuals,
695  QualType TypeSoFar,
696  unsigned RemoveTQs,
697  unsigned DiagID) {
698  // If this occurs outside a template instantiation, warn the user about
699  // it; they probably didn't mean to specify a redundant qualifier.
700  typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
701  for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
704  QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
705  if (!(RemoveTQs & Qual.first))
706  continue;
707 
708  if (!S.inTemplateInstantiation()) {
709  if (TypeQuals & Qual.first)
710  S.Diag(Qual.second, DiagID)
711  << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
712  << FixItHint::CreateRemoval(Qual.second);
713  }
714 
715  TypeQuals &= ~Qual.first;
716  }
717 }
718 
719 /// Return true if this is omitted block return type. Also check type
720 /// attributes and type qualifiers when returning true.
721 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
722  QualType Result) {
723  if (!isOmittedBlockReturnType(declarator))
724  return false;
725 
726  // Warn if we see type attributes for omitted return type on a block literal.
727  SmallVector<ParsedAttr *, 2> ToBeRemoved;
728  for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
729  if (AL.isInvalid() || !AL.isTypeAttr())
730  continue;
731  S.Diag(AL.getLoc(),
732  diag::warn_block_literal_attributes_on_omitted_return_type)
733  << AL.getName();
734  ToBeRemoved.push_back(&AL);
735  }
736  // Remove bad attributes from the list.
737  for (ParsedAttr *AL : ToBeRemoved)
738  declarator.getMutableDeclSpec().getAttributes().remove(AL);
739 
740  // Warn if we see type qualifiers for omitted return type on a block literal.
741  const DeclSpec &DS = declarator.getDeclSpec();
742  unsigned TypeQuals = DS.getTypeQualifiers();
743  diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
744  diag::warn_block_literal_qualifiers_on_omitted_return_type);
746 
747  return true;
748 }
749 
750 /// Apply Objective-C type arguments to the given type.
753  SourceRange typeArgsRange,
754  bool failOnError = false) {
755  // We can only apply type arguments to an Objective-C class type.
756  const auto *objcObjectType = type->getAs<ObjCObjectType>();
757  if (!objcObjectType || !objcObjectType->getInterface()) {
758  S.Diag(loc, diag::err_objc_type_args_non_class)
759  << type
760  << typeArgsRange;
761 
762  if (failOnError)
763  return QualType();
764  return type;
765  }
766 
767  // The class type must be parameterized.
768  ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
769  ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
770  if (!typeParams) {
771  S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
772  << objcClass->getDeclName()
773  << FixItHint::CreateRemoval(typeArgsRange);
774 
775  if (failOnError)
776  return QualType();
777 
778  return type;
779  }
780 
781  // The type must not already be specialized.
782  if (objcObjectType->isSpecialized()) {
783  S.Diag(loc, diag::err_objc_type_args_specialized_class)
784  << type
785  << FixItHint::CreateRemoval(typeArgsRange);
786 
787  if (failOnError)
788  return QualType();
789 
790  return type;
791  }
792 
793  // Check the type arguments.
794  SmallVector<QualType, 4> finalTypeArgs;
795  unsigned numTypeParams = typeParams->size();
796  bool anyPackExpansions = false;
797  for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
798  TypeSourceInfo *typeArgInfo = typeArgs[i];
799  QualType typeArg = typeArgInfo->getType();
800 
801  // Type arguments cannot have explicit qualifiers or nullability.
802  // We ignore indirect sources of these, e.g. behind typedefs or
803  // template arguments.
804  if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
805  bool diagnosed = false;
806  SourceRange rangeToRemove;
807  if (auto attr = qual.getAs<AttributedTypeLoc>()) {
808  rangeToRemove = attr.getLocalSourceRange();
809  if (attr.getTypePtr()->getImmediateNullability()) {
810  typeArg = attr.getTypePtr()->getModifiedType();
811  S.Diag(attr.getLocStart(),
812  diag::err_objc_type_arg_explicit_nullability)
813  << typeArg << FixItHint::CreateRemoval(rangeToRemove);
814  diagnosed = true;
815  }
816  }
817 
818  if (!diagnosed) {
819  S.Diag(qual.getLocStart(), diag::err_objc_type_arg_qualified)
820  << typeArg << typeArg.getQualifiers().getAsString()
821  << FixItHint::CreateRemoval(rangeToRemove);
822  }
823  }
824 
825  // Remove qualifiers even if they're non-local.
826  typeArg = typeArg.getUnqualifiedType();
827 
828  finalTypeArgs.push_back(typeArg);
829 
830  if (typeArg->getAs<PackExpansionType>())
831  anyPackExpansions = true;
832 
833  // Find the corresponding type parameter, if there is one.
834  ObjCTypeParamDecl *typeParam = nullptr;
835  if (!anyPackExpansions) {
836  if (i < numTypeParams) {
837  typeParam = typeParams->begin()[i];
838  } else {
839  // Too many arguments.
840  S.Diag(loc, diag::err_objc_type_args_wrong_arity)
841  << false
842  << objcClass->getDeclName()
843  << (unsigned)typeArgs.size()
844  << numTypeParams;
845  S.Diag(objcClass->getLocation(), diag::note_previous_decl)
846  << objcClass;
847 
848  if (failOnError)
849  return QualType();
850 
851  return type;
852  }
853  }
854 
855  // Objective-C object pointer types must be substitutable for the bounds.
856  if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
857  // If we don't have a type parameter to match against, assume
858  // everything is fine. There was a prior pack expansion that
859  // means we won't be able to match anything.
860  if (!typeParam) {
861  assert(anyPackExpansions && "Too many arguments?");
862  continue;
863  }
864 
865  // Retrieve the bound.
866  QualType bound = typeParam->getUnderlyingType();
867  const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
868 
869  // Determine whether the type argument is substitutable for the bound.
870  if (typeArgObjC->isObjCIdType()) {
871  // When the type argument is 'id', the only acceptable type
872  // parameter bound is 'id'.
873  if (boundObjC->isObjCIdType())
874  continue;
875  } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
876  // Otherwise, we follow the assignability rules.
877  continue;
878  }
879 
880  // Diagnose the mismatch.
881  S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
882  diag::err_objc_type_arg_does_not_match_bound)
883  << typeArg << bound << typeParam->getDeclName();
884  S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
885  << typeParam->getDeclName();
886 
887  if (failOnError)
888  return QualType();
889 
890  return type;
891  }
892 
893  // Block pointer types are permitted for unqualified 'id' bounds.
894  if (typeArg->isBlockPointerType()) {
895  // If we don't have a type parameter to match against, assume
896  // everything is fine. There was a prior pack expansion that
897  // means we won't be able to match anything.
898  if (!typeParam) {
899  assert(anyPackExpansions && "Too many arguments?");
900  continue;
901  }
902 
903  // Retrieve the bound.
904  QualType bound = typeParam->getUnderlyingType();
906  continue;
907 
908  // Diagnose the mismatch.
909  S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
910  diag::err_objc_type_arg_does_not_match_bound)
911  << typeArg << bound << typeParam->getDeclName();
912  S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
913  << typeParam->getDeclName();
914 
915  if (failOnError)
916  return QualType();
917 
918  return type;
919  }
920 
921  // Dependent types will be checked at instantiation time.
922  if (typeArg->isDependentType()) {
923  continue;
924  }
925 
926  // Diagnose non-id-compatible type arguments.
927  S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
928  diag::err_objc_type_arg_not_id_compatible)
929  << typeArg
930  << typeArgInfo->getTypeLoc().getSourceRange();
931 
932  if (failOnError)
933  return QualType();
934 
935  return type;
936  }
937 
938  // Make sure we didn't have the wrong number of arguments.
939  if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
940  S.Diag(loc, diag::err_objc_type_args_wrong_arity)
941  << (typeArgs.size() < typeParams->size())
942  << objcClass->getDeclName()
943  << (unsigned)finalTypeArgs.size()
944  << (unsigned)numTypeParams;
945  S.Diag(objcClass->getLocation(), diag::note_previous_decl)
946  << objcClass;
947 
948  if (failOnError)
949  return QualType();
950 
951  return type;
952  }
953 
954  // Success. Form the specialized type.
955  return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
956 }
957 
959  SourceLocation ProtocolLAngleLoc,
961  ArrayRef<SourceLocation> ProtocolLocs,
962  SourceLocation ProtocolRAngleLoc,
963  bool FailOnError) {
964  QualType Result = QualType(Decl->getTypeForDecl(), 0);
965  if (!Protocols.empty()) {
966  bool HasError;
967  Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
968  HasError);
969  if (HasError) {
970  Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
971  << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
972  if (FailOnError) Result = QualType();
973  }
974  if (FailOnError && Result.isNull())
975  return QualType();
976  }
977 
978  return Result;
979 }
980 
982  SourceLocation Loc,
983  SourceLocation TypeArgsLAngleLoc,
985  SourceLocation TypeArgsRAngleLoc,
986  SourceLocation ProtocolLAngleLoc,
988  ArrayRef<SourceLocation> ProtocolLocs,
989  SourceLocation ProtocolRAngleLoc,
990  bool FailOnError) {
991  QualType Result = BaseType;
992  if (!TypeArgs.empty()) {
993  Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
994  SourceRange(TypeArgsLAngleLoc,
995  TypeArgsRAngleLoc),
996  FailOnError);
997  if (FailOnError && Result.isNull())
998  return QualType();
999  }
1000 
1001  if (!Protocols.empty()) {
1002  bool HasError;
1003  Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1004  HasError);
1005  if (HasError) {
1006  Diag(Loc, diag::err_invalid_protocol_qualifiers)
1007  << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1008  if (FailOnError) Result = QualType();
1009  }
1010  if (FailOnError && Result.isNull())
1011  return QualType();
1012  }
1013 
1014  return Result;
1015 }
1016 
1018  SourceLocation lAngleLoc,
1019  ArrayRef<Decl *> protocols,
1020  ArrayRef<SourceLocation> protocolLocs,
1021  SourceLocation rAngleLoc) {
1022  // Form id<protocol-list>.
1023  QualType Result = Context.getObjCObjectType(
1024  Context.ObjCBuiltinIdTy, { },
1025  llvm::makeArrayRef(
1026  (ObjCProtocolDecl * const *)protocols.data(),
1027  protocols.size()),
1028  false);
1029  Result = Context.getObjCObjectPointerType(Result);
1030 
1031  TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1032  TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1033 
1034  auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1035  ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1036 
1037  auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1038  .castAs<ObjCObjectTypeLoc>();
1039  ObjCObjectTL.setHasBaseTypeAsWritten(false);
1040  ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1041 
1042  // No type arguments.
1043  ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1044  ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1045 
1046  // Fill in protocol qualifiers.
1047  ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1048  ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1049  for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1050  ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1051 
1052  // We're done. Return the completed type to the parser.
1053  return CreateParsedType(Result, ResultTInfo);
1054 }
1055 
1057  Scope *S,
1058  SourceLocation Loc,
1059  ParsedType BaseType,
1060  SourceLocation TypeArgsLAngleLoc,
1061  ArrayRef<ParsedType> TypeArgs,
1062  SourceLocation TypeArgsRAngleLoc,
1063  SourceLocation ProtocolLAngleLoc,
1064  ArrayRef<Decl *> Protocols,
1065  ArrayRef<SourceLocation> ProtocolLocs,
1066  SourceLocation ProtocolRAngleLoc) {
1067  TypeSourceInfo *BaseTypeInfo = nullptr;
1068  QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1069  if (T.isNull())
1070  return true;
1071 
1072  // Handle missing type-source info.
1073  if (!BaseTypeInfo)
1074  BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1075 
1076  // Extract type arguments.
1077  SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1078  for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1079  TypeSourceInfo *TypeArgInfo = nullptr;
1080  QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1081  if (TypeArg.isNull()) {
1082  ActualTypeArgInfos.clear();
1083  break;
1084  }
1085 
1086  assert(TypeArgInfo && "No type source info?");
1087  ActualTypeArgInfos.push_back(TypeArgInfo);
1088  }
1089 
1090  // Build the object type.
1091  QualType Result = BuildObjCObjectType(
1092  T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1093  TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1094  ProtocolLAngleLoc,
1095  llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1096  Protocols.size()),
1097  ProtocolLocs, ProtocolRAngleLoc,
1098  /*FailOnError=*/false);
1099 
1100  if (Result == T)
1101  return BaseType;
1102 
1103  // Create source information for this type.
1104  TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1105  TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1106 
1107  // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1108  // object pointer type. Fill in source information for it.
1109  if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1110  // The '*' is implicit.
1111  ObjCObjectPointerTL.setStarLoc(SourceLocation());
1112  ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1113  }
1114 
1115  if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1116  // Protocol qualifier information.
1117  if (OTPTL.getNumProtocols() > 0) {
1118  assert(OTPTL.getNumProtocols() == Protocols.size());
1119  OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1120  OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1121  for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1122  OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1123  }
1124 
1125  // We're done. Return the completed type to the parser.
1126  return CreateParsedType(Result, ResultTInfo);
1127  }
1128 
1129  auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1130 
1131  // Type argument information.
1132  if (ObjCObjectTL.getNumTypeArgs() > 0) {
1133  assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
1134  ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1135  ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1136  for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1137  ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1138  } else {
1139  ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1140  ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1141  }
1142 
1143  // Protocol qualifier information.
1144  if (ObjCObjectTL.getNumProtocols() > 0) {
1145  assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
1146  ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1147  ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1148  for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1149  ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1150  } else {
1151  ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1152  ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1153  }
1154 
1155  // Base type.
1156  ObjCObjectTL.setHasBaseTypeAsWritten(true);
1157  if (ObjCObjectTL.getType() == T)
1158  ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1159  else
1160  ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1161 
1162  // We're done. Return the completed type to the parser.
1163  return CreateParsedType(Result, ResultTInfo);
1164 }
1165 
1166 static OpenCLAccessAttr::Spelling
1168  for (const ParsedAttr &AL : Attrs)
1169  if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1170  return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1171  return OpenCLAccessAttr::Keyword_read_only;
1172 }
1173 
1174 /// Convert the specified declspec to the appropriate type
1175 /// object.
1176 /// \param state Specifies the declarator containing the declaration specifier
1177 /// to be converted, along with other associated processing state.
1178 /// \returns The type described by the declaration specifiers. This function
1179 /// never returns null.
1180 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1181  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1182  // checking.
1183 
1184  Sema &S = state.getSema();
1185  Declarator &declarator = state.getDeclarator();
1186  DeclSpec &DS = declarator.getMutableDeclSpec();
1187  SourceLocation DeclLoc = declarator.getIdentifierLoc();
1188  if (DeclLoc.isInvalid())
1189  DeclLoc = DS.getLocStart();
1190 
1191  ASTContext &Context = S.Context;
1192 
1193  QualType Result;
1194  switch (DS.getTypeSpecType()) {
1195  case DeclSpec::TST_void:
1196  Result = Context.VoidTy;
1197  break;
1198  case DeclSpec::TST_char:
1200  Result = Context.CharTy;
1201  else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
1202  Result = Context.SignedCharTy;
1203  else {
1204  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1205  "Unknown TSS value");
1206  Result = Context.UnsignedCharTy;
1207  }
1208  break;
1209  case DeclSpec::TST_wchar:
1211  Result = Context.WCharTy;
1212  else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
1213  S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1214  << DS.getSpecifierName(DS.getTypeSpecType(),
1215  Context.getPrintingPolicy());
1216  Result = Context.getSignedWCharType();
1217  } else {
1218  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1219  "Unknown TSS value");
1220  S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1221  << DS.getSpecifierName(DS.getTypeSpecType(),
1222  Context.getPrintingPolicy());
1223  Result = Context.getUnsignedWCharType();
1224  }
1225  break;
1226  case DeclSpec::TST_char8:
1227  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1228  "Unknown TSS value");
1229  Result = Context.Char8Ty;
1230  break;
1231  case DeclSpec::TST_char16:
1232  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1233  "Unknown TSS value");
1234  Result = Context.Char16Ty;
1235  break;
1236  case DeclSpec::TST_char32:
1237  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1238  "Unknown TSS value");
1239  Result = Context.Char32Ty;
1240  break;
1242  // If this is a missing declspec in a block literal return context, then it
1243  // is inferred from the return statements inside the block.
1244  // The declspec is always missing in a lambda expr context; it is either
1245  // specified with a trailing return type or inferred.
1246  if (S.getLangOpts().CPlusPlus14 &&
1248  // In C++1y, a lambda's implicit return type is 'auto'.
1249  Result = Context.getAutoDeductType();
1250  break;
1251  } else if (declarator.getContext() ==
1253  checkOmittedBlockReturnType(S, declarator,
1254  Context.DependentTy)) {
1255  Result = Context.DependentTy;
1256  break;
1257  }
1258 
1259  // Unspecified typespec defaults to int in C90. However, the C90 grammar
1260  // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1261  // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1262  // Note that the one exception to this is function definitions, which are
1263  // allowed to be completely missing a declspec. This is handled in the
1264  // parser already though by it pretending to have seen an 'int' in this
1265  // case.
1266  if (S.getLangOpts().ImplicitInt) {
1267  // In C89 mode, we only warn if there is a completely missing declspec
1268  // when one is not allowed.
1269  if (DS.isEmpty()) {
1270  S.Diag(DeclLoc, diag::ext_missing_declspec)
1271  << DS.getSourceRange()
1272  << FixItHint::CreateInsertion(DS.getLocStart(), "int");
1273  }
1274  } else if (!DS.hasTypeSpecifier()) {
1275  // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1276  // "At least one type specifier shall be given in the declaration
1277  // specifiers in each declaration, and in the specifier-qualifier list in
1278  // each struct declaration and type name."
1279  if (S.getLangOpts().CPlusPlus) {
1280  S.Diag(DeclLoc, diag::err_missing_type_specifier)
1281  << DS.getSourceRange();
1282 
1283  // When this occurs in C++ code, often something is very broken with the
1284  // value being declared, poison it as invalid so we don't get chains of
1285  // errors.
1286  declarator.setInvalidType(true);
1287  } else if (S.getLangOpts().OpenCLVersion >= 200 && DS.isTypeSpecPipe()){
1288  S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1289  << DS.getSourceRange();
1290  declarator.setInvalidType(true);
1291  } else {
1292  S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1293  << DS.getSourceRange();
1294  }
1295  }
1296 
1297  LLVM_FALLTHROUGH;
1298  case DeclSpec::TST_int: {
1300  switch (DS.getTypeSpecWidth()) {
1301  case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
1302  case DeclSpec::TSW_short: Result = Context.ShortTy; break;
1303  case DeclSpec::TSW_long: Result = Context.LongTy; break;
1305  Result = Context.LongLongTy;
1306 
1307  // 'long long' is a C99 or C++11 feature.
1308  if (!S.getLangOpts().C99) {
1309  if (S.getLangOpts().CPlusPlus)
1310  S.Diag(DS.getTypeSpecWidthLoc(),
1311  S.getLangOpts().CPlusPlus11 ?
1312  diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1313  else
1314  S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1315  }
1316  break;
1317  }
1318  } else {
1319  switch (DS.getTypeSpecWidth()) {
1320  case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
1321  case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
1322  case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
1324  Result = Context.UnsignedLongLongTy;
1325 
1326  // 'long long' is a C99 or C++11 feature.
1327  if (!S.getLangOpts().C99) {
1328  if (S.getLangOpts().CPlusPlus)
1329  S.Diag(DS.getTypeSpecWidthLoc(),
1330  S.getLangOpts().CPlusPlus11 ?
1331  diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1332  else
1333  S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1334  }
1335  break;
1336  }
1337  }
1338  break;
1339  }
1340  case DeclSpec::TST_accum: {
1341  switch (DS.getTypeSpecWidth()) {
1342  case DeclSpec::TSW_short:
1343  Result = Context.ShortAccumTy;
1344  break;
1346  Result = Context.AccumTy;
1347  break;
1348  case DeclSpec::TSW_long:
1349  Result = Context.LongAccumTy;
1350  break;
1352  llvm_unreachable("Unable to specify long long as _Accum width");
1353  }
1354 
1356  Result = Context.getCorrespondingUnsignedType(Result);
1357 
1358  if (DS.isTypeSpecSat())
1359  Result = Context.getCorrespondingSaturatedType(Result);
1360 
1361  break;
1362  }
1363  case DeclSpec::TST_fract: {
1364  switch (DS.getTypeSpecWidth()) {
1365  case DeclSpec::TSW_short:
1366  Result = Context.ShortFractTy;
1367  break;
1369  Result = Context.FractTy;
1370  break;
1371  case DeclSpec::TSW_long:
1372  Result = Context.LongFractTy;
1373  break;
1375  llvm_unreachable("Unable to specify long long as _Fract width");
1376  }
1377 
1379  Result = Context.getCorrespondingUnsignedType(Result);
1380 
1381  if (DS.isTypeSpecSat())
1382  Result = Context.getCorrespondingSaturatedType(Result);
1383 
1384  break;
1385  }
1386  case DeclSpec::TST_int128:
1387  if (!S.Context.getTargetInfo().hasInt128Type())
1388  S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1389  << "__int128";
1391  Result = Context.UnsignedInt128Ty;
1392  else
1393  Result = Context.Int128Ty;
1394  break;
1395  case DeclSpec::TST_float16: Result = Context.Float16Ty; break;
1396  case DeclSpec::TST_half: Result = Context.HalfTy; break;
1397  case DeclSpec::TST_float: Result = Context.FloatTy; break;
1398  case DeclSpec::TST_double:
1400  Result = Context.LongDoubleTy;
1401  else
1402  Result = Context.DoubleTy;
1403  break;
1406  S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1407  << "__float128";
1408  Result = Context.Float128Ty;
1409  break;
1410  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
1411  break;
1412  case DeclSpec::TST_decimal32: // _Decimal32
1413  case DeclSpec::TST_decimal64: // _Decimal64
1414  case DeclSpec::TST_decimal128: // _Decimal128
1415  S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1416  Result = Context.IntTy;
1417  declarator.setInvalidType(true);
1418  break;
1419  case DeclSpec::TST_class:
1420  case DeclSpec::TST_enum:
1421  case DeclSpec::TST_union:
1422  case DeclSpec::TST_struct:
1423  case DeclSpec::TST_interface: {
1424  TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1425  if (!D) {
1426  // This can happen in C++ with ambiguous lookups.
1427  Result = Context.IntTy;
1428  declarator.setInvalidType(true);
1429  break;
1430  }
1431 
1432  // If the type is deprecated or unavailable, diagnose it.
1434 
1435  assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1436  DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
1437 
1438  // TypeQuals handled by caller.
1439  Result = Context.getTypeDeclType(D);
1440 
1441  // In both C and C++, make an ElaboratedType.
1442  ElaboratedTypeKeyword Keyword
1444  Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1445  DS.isTypeSpecOwned() ? D : nullptr);
1446  break;
1447  }
1448  case DeclSpec::TST_typename: {
1449  assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1450  DS.getTypeSpecSign() == 0 &&
1451  "Can't handle qualifiers on typedef names yet!");
1452  Result = S.GetTypeFromParser(DS.getRepAsType());
1453  if (Result.isNull()) {
1454  declarator.setInvalidType(true);
1455  }
1456 
1457  // TypeQuals handled by caller.
1458  break;
1459  }
1461  // FIXME: Preserve type source info.
1462  Result = S.GetTypeFromParser(DS.getRepAsType());
1463  assert(!Result.isNull() && "Didn't get a type for typeof?");
1464  if (!Result->isDependentType())
1465  if (const TagType *TT = Result->getAs<TagType>())
1466  S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1467  // TypeQuals handled by caller.
1468  Result = Context.getTypeOfType(Result);
1469  break;
1470  case DeclSpec::TST_typeofExpr: {
1471  Expr *E = DS.getRepAsExpr();
1472  assert(E && "Didn't get an expression for typeof?");
1473  // TypeQuals handled by caller.
1474  Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1475  if (Result.isNull()) {
1476  Result = Context.IntTy;
1477  declarator.setInvalidType(true);
1478  }
1479  break;
1480  }
1481  case DeclSpec::TST_decltype: {
1482  Expr *E = DS.getRepAsExpr();
1483  assert(E && "Didn't get an expression for decltype?");
1484  // TypeQuals handled by caller.
1485  Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1486  if (Result.isNull()) {
1487  Result = Context.IntTy;
1488  declarator.setInvalidType(true);
1489  }
1490  break;
1491  }
1493  Result = S.GetTypeFromParser(DS.getRepAsType());
1494  assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
1495  Result = S.BuildUnaryTransformType(Result,
1497  DS.getTypeSpecTypeLoc());
1498  if (Result.isNull()) {
1499  Result = Context.IntTy;
1500  declarator.setInvalidType(true);
1501  }
1502  break;
1503 
1504  case DeclSpec::TST_auto:
1505  Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
1506  break;
1507 
1509  Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1510  break;
1511 
1514  /*IsDependent*/ false);
1515  break;
1516 
1518  Result = Context.UnknownAnyTy;
1519  break;
1520 
1521  case DeclSpec::TST_atomic:
1522  Result = S.GetTypeFromParser(DS.getRepAsType());
1523  assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1524  Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1525  if (Result.isNull()) {
1526  Result = Context.IntTy;
1527  declarator.setInvalidType(true);
1528  }
1529  break;
1530 
1531 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
1532  case DeclSpec::TST_##ImgType##_t: \
1533  switch (getImageAccess(DS.getAttributes())) { \
1534  case OpenCLAccessAttr::Keyword_write_only: \
1535  Result = Context.Id##WOTy; \
1536  break; \
1537  case OpenCLAccessAttr::Keyword_read_write: \
1538  Result = Context.Id##RWTy; \
1539  break; \
1540  case OpenCLAccessAttr::Keyword_read_only: \
1541  Result = Context.Id##ROTy; \
1542  break; \
1543  } \
1544  break;
1545 #include "clang/Basic/OpenCLImageTypes.def"
1546 
1547  case DeclSpec::TST_error:
1548  Result = Context.IntTy;
1549  declarator.setInvalidType(true);
1550  break;
1551  }
1552 
1553  if (S.getLangOpts().OpenCL &&
1555  declarator.setInvalidType(true);
1556 
1557  bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1558  DS.getTypeSpecType() == DeclSpec::TST_fract;
1559 
1560  // Only fixed point types can be saturated
1561  if (DS.isTypeSpecSat() && !IsFixedPointType)
1562  S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1563  << DS.getSpecifierName(DS.getTypeSpecType(),
1564  Context.getPrintingPolicy());
1565 
1566  // Handle complex types.
1567  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1568  if (S.getLangOpts().Freestanding)
1569  S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1570  Result = Context.getComplexType(Result);
1571  } else if (DS.isTypeAltiVecVector()) {
1572  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1573  assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1575  if (DS.isTypeAltiVecPixel())
1576  VecKind = VectorType::AltiVecPixel;
1577  else if (DS.isTypeAltiVecBool())
1578  VecKind = VectorType::AltiVecBool;
1579  Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1580  }
1581 
1582  // FIXME: Imaginary.
1583  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1584  S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1585 
1586  // Before we process any type attributes, synthesize a block literal
1587  // function declarator if necessary.
1588  if (declarator.getContext() == DeclaratorContext::BlockLiteralContext)
1590 
1591  // Apply any type attributes from the decl spec. This may cause the
1592  // list of type attributes to be temporarily saved while the type
1593  // attributes are pushed around.
1594  // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1595  if (!DS.isTypeSpecPipe())
1596  processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1597 
1598  // Apply const/volatile/restrict qualifiers to T.
1599  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1600  // Warn about CV qualifiers on function types.
1601  // C99 6.7.3p8:
1602  // If the specification of a function type includes any type qualifiers,
1603  // the behavior is undefined.
1604  // C++11 [dcl.fct]p7:
1605  // The effect of a cv-qualifier-seq in a function declarator is not the
1606  // same as adding cv-qualification on top of the function type. In the
1607  // latter case, the cv-qualifiers are ignored.
1608  if (TypeQuals && Result->isFunctionType()) {
1610  S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1611  S.getLangOpts().CPlusPlus
1612  ? diag::warn_typecheck_function_qualifiers_ignored
1613  : diag::warn_typecheck_function_qualifiers_unspecified);
1614  // No diagnostic for 'restrict' or '_Atomic' applied to a
1615  // function type; we'll diagnose those later, in BuildQualifiedType.
1616  }
1617 
1618  // C++11 [dcl.ref]p1:
1619  // Cv-qualified references are ill-formed except when the
1620  // cv-qualifiers are introduced through the use of a typedef-name
1621  // or decltype-specifier, in which case the cv-qualifiers are ignored.
1622  //
1623  // There don't appear to be any other contexts in which a cv-qualified
1624  // reference type could be formed, so the 'ill-formed' clause here appears
1625  // to never happen.
1626  if (TypeQuals && Result->isReferenceType()) {
1628  S, DS, TypeQuals, Result,
1630  diag::warn_typecheck_reference_qualifiers);
1631  }
1632 
1633  // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1634  // than once in the same specifier-list or qualifier-list, either directly
1635  // or via one or more typedefs."
1636  if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1637  && TypeQuals & Result.getCVRQualifiers()) {
1638  if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1639  S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1640  << "const";
1641  }
1642 
1643  if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1644  S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1645  << "volatile";
1646  }
1647 
1648  // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1649  // produce a warning in this case.
1650  }
1651 
1652  QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1653 
1654  // If adding qualifiers fails, just use the unqualified type.
1655  if (Qualified.isNull())
1656  declarator.setInvalidType(true);
1657  else
1658  Result = Qualified;
1659  }
1660 
1661  assert(!Result.isNull() && "This function should not return a null type");
1662  return Result;
1663 }
1664 
1665 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1666  if (Entity)
1667  return Entity.getAsString();
1668 
1669  return "type name";
1670 }
1671 
1673  Qualifiers Qs, const DeclSpec *DS) {
1674  if (T.isNull())
1675  return QualType();
1676 
1677  // Ignore any attempt to form a cv-qualified reference.
1678  if (T->isReferenceType()) {
1679  Qs.removeConst();
1680  Qs.removeVolatile();
1681  }
1682 
1683  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1684  // object or incomplete types shall not be restrict-qualified."
1685  if (Qs.hasRestrict()) {
1686  unsigned DiagID = 0;
1687  QualType ProblemTy;
1688 
1689  if (T->isAnyPointerType() || T->isReferenceType() ||
1690  T->isMemberPointerType()) {
1691  QualType EltTy;
1692  if (T->isObjCObjectPointerType())
1693  EltTy = T;
1694  else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1695  EltTy = PTy->getPointeeType();
1696  else
1697  EltTy = T->getPointeeType();
1698 
1699  // If we have a pointer or reference, the pointee must have an object
1700  // incomplete type.
1701  if (!EltTy->isIncompleteOrObjectType()) {
1702  DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1703  ProblemTy = EltTy;
1704  }
1705  } else if (!T->isDependentType()) {
1706  DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1707  ProblemTy = T;
1708  }
1709 
1710  if (DiagID) {
1711  Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1712  Qs.removeRestrict();
1713  }
1714  }
1715 
1716  return Context.getQualifiedType(T, Qs);
1717 }
1718 
1720  unsigned CVRAU, const DeclSpec *DS) {
1721  if (T.isNull())
1722  return QualType();
1723 
1724  // Ignore any attempt to form a cv-qualified reference.
1725  if (T->isReferenceType())
1726  CVRAU &=
1728 
1729  // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1730  // TQ_unaligned;
1731  unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1732 
1733  // C11 6.7.3/5:
1734  // If the same qualifier appears more than once in the same
1735  // specifier-qualifier-list, either directly or via one or more typedefs,
1736  // the behavior is the same as if it appeared only once.
1737  //
1738  // It's not specified what happens when the _Atomic qualifier is applied to
1739  // a type specified with the _Atomic specifier, but we assume that this
1740  // should be treated as if the _Atomic qualifier appeared multiple times.
1741  if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1742  // C11 6.7.3/5:
1743  // If other qualifiers appear along with the _Atomic qualifier in a
1744  // specifier-qualifier-list, the resulting type is the so-qualified
1745  // atomic type.
1746  //
1747  // Don't need to worry about array types here, since _Atomic can't be
1748  // applied to such types.
1750  T = BuildAtomicType(QualType(Split.Ty, 0),
1751  DS ? DS->getAtomicSpecLoc() : Loc);
1752  if (T.isNull())
1753  return T;
1754  Split.Quals.addCVRQualifiers(CVR);
1755  return BuildQualifiedType(T, Loc, Split.Quals);
1756  }
1757 
1760  return BuildQualifiedType(T, Loc, Q, DS);
1761 }
1762 
1763 /// Build a paren type including \p T.
1765  return Context.getParenType(T);
1766 }
1767 
1768 /// Given that we're building a pointer or reference to the given
1770  SourceLocation loc,
1771  bool isReference) {
1772  // Bail out if retention is unrequired or already specified.
1773  if (!type->isObjCLifetimeType() ||
1775  return type;
1776 
1778 
1779  // If the object type is const-qualified, we can safely use
1780  // __unsafe_unretained. This is safe (because there are no read
1781  // barriers), and it'll be safe to coerce anything but __weak* to
1782  // the resulting type.
1783  if (type.isConstQualified()) {
1784  implicitLifetime = Qualifiers::OCL_ExplicitNone;
1785 
1786  // Otherwise, check whether the static type does not require
1787  // retaining. This currently only triggers for Class (possibly
1788  // protocol-qualifed, and arrays thereof).
1789  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1790  implicitLifetime = Qualifiers::OCL_ExplicitNone;
1791 
1792  // If we are in an unevaluated context, like sizeof, skip adding a
1793  // qualification.
1794  } else if (S.isUnevaluatedContext()) {
1795  return type;
1796 
1797  // If that failed, give an error and recover using __strong. __strong
1798  // is the option most likely to prevent spurious second-order diagnostics,
1799  // like when binding a reference to a field.
1800  } else {
1801  // These types can show up in private ivars in system headers, so
1802  // we need this to not be an error in those cases. Instead we
1803  // want to delay.
1807  diag::err_arc_indirect_no_ownership, type, isReference));
1808  } else {
1809  S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1810  }
1811  implicitLifetime = Qualifiers::OCL_Strong;
1812  }
1813  assert(implicitLifetime && "didn't infer any lifetime!");
1814 
1815  Qualifiers qs;
1816  qs.addObjCLifetime(implicitLifetime);
1817  return S.Context.getQualifiedType(type, qs);
1818 }
1819 
1820 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1821  std::string Quals =
1823 
1824  switch (FnTy->getRefQualifier()) {
1825  case RQ_None:
1826  break;
1827 
1828  case RQ_LValue:
1829  if (!Quals.empty())
1830  Quals += ' ';
1831  Quals += '&';
1832  break;
1833 
1834  case RQ_RValue:
1835  if (!Quals.empty())
1836  Quals += ' ';
1837  Quals += "&&";
1838  break;
1839  }
1840 
1841  return Quals;
1842 }
1843 
1844 namespace {
1845 /// Kinds of declarator that cannot contain a qualified function type.
1846 ///
1847 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1848 /// a function type with a cv-qualifier or a ref-qualifier can only appear
1849 /// at the topmost level of a type.
1850 ///
1851 /// Parens and member pointers are permitted. We don't diagnose array and
1852 /// function declarators, because they don't allow function types at all.
1853 ///
1854 /// The values of this enum are used in diagnostics.
1855 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1856 } // end anonymous namespace
1857 
1858 /// Check whether the type T is a qualified function type, and if it is,
1859 /// diagnose that it cannot be contained within the given kind of declarator.
1861  QualifiedFunctionKind QFK) {
1862  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1863  const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1864  if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
1865  return false;
1866 
1867  S.Diag(Loc, diag::err_compound_qualified_function_type)
1868  << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1870  return true;
1871 }
1872 
1873 /// Build a pointer type.
1874 ///
1875 /// \param T The type to which we'll be building a pointer.
1876 ///
1877 /// \param Loc The location of the entity whose type involves this
1878 /// pointer type or, if there is no such entity, the location of the
1879 /// type that will have pointer type.
1880 ///
1881 /// \param Entity The name of the entity that involves the pointer
1882 /// type, if known.
1883 ///
1884 /// \returns A suitable pointer type, if there are no
1885 /// errors. Otherwise, returns a NULL type.
1887  SourceLocation Loc, DeclarationName Entity) {
1888  if (T->isReferenceType()) {
1889  // C++ 8.3.2p4: There shall be no ... pointers to references ...
1890  Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1891  << getPrintableNameForEntity(Entity) << T;
1892  return QualType();
1893  }
1894 
1895  if (T->isFunctionType() && getLangOpts().OpenCL) {
1896  Diag(Loc, diag::err_opencl_function_pointer);
1897  return QualType();
1898  }
1899 
1900  if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1901  return QualType();
1902 
1903  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1904 
1905  // In ARC, it is forbidden to build pointers to unqualified pointers.
1906  if (getLangOpts().ObjCAutoRefCount)
1907  T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1908 
1909  // Build the pointer type.
1910  return Context.getPointerType(T);
1911 }
1912 
1913 /// Build a reference type.
1914 ///
1915 /// \param T The type to which we'll be building a reference.
1916 ///
1917 /// \param Loc The location of the entity whose type involves this
1918 /// reference type or, if there is no such entity, the location of the
1919 /// type that will have reference type.
1920 ///
1921 /// \param Entity The name of the entity that involves the reference
1922 /// type, if known.
1923 ///
1924 /// \returns A suitable reference type, if there are no
1925 /// errors. Otherwise, returns a NULL type.
1927  SourceLocation Loc,
1928  DeclarationName Entity) {
1929  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1930  "Unresolved overloaded function type");
1931 
1932  // C++0x [dcl.ref]p6:
1933  // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1934  // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1935  // type T, an attempt to create the type "lvalue reference to cv TR" creates
1936  // the type "lvalue reference to T", while an attempt to create the type
1937  // "rvalue reference to cv TR" creates the type TR.
1938  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1939 
1940  // C++ [dcl.ref]p4: There shall be no references to references.
1941  //
1942  // According to C++ DR 106, references to references are only
1943  // diagnosed when they are written directly (e.g., "int & &"),
1944  // but not when they happen via a typedef:
1945  //
1946  // typedef int& intref;
1947  // typedef intref& intref2;
1948  //
1949  // Parser::ParseDeclaratorInternal diagnoses the case where
1950  // references are written directly; here, we handle the
1951  // collapsing of references-to-references as described in C++0x.
1952  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1953 
1954  // C++ [dcl.ref]p1:
1955  // A declarator that specifies the type "reference to cv void"
1956  // is ill-formed.
1957  if (T->isVoidType()) {
1958  Diag(Loc, diag::err_reference_to_void);
1959  return QualType();
1960  }
1961 
1962  if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1963  return QualType();
1964 
1965  // In ARC, it is forbidden to build references to unqualified pointers.
1966  if (getLangOpts().ObjCAutoRefCount)
1967  T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1968 
1969  // Handle restrict on references.
1970  if (LValueRef)
1971  return Context.getLValueReferenceType(T, SpelledAsLValue);
1972  return Context.getRValueReferenceType(T);
1973 }
1974 
1975 /// Build a Read-only Pipe type.
1976 ///
1977 /// \param T The type to which we'll be building a Pipe.
1978 ///
1979 /// \param Loc We do not use it for now.
1980 ///
1981 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
1982 /// NULL type.
1984  return Context.getReadPipeType(T);
1985 }
1986 
1987 /// Build a Write-only Pipe type.
1988 ///
1989 /// \param T The type to which we'll be building a Pipe.
1990 ///
1991 /// \param Loc We do not use it for now.
1992 ///
1993 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
1994 /// NULL type.
1996  return Context.getWritePipeType(T);
1997 }
1998 
1999 /// Check whether the specified array size makes the array type a VLA. If so,
2000 /// return true, if not, return the size of the array in SizeVal.
2001 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
2002  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2003  // (like gnu99, but not c99) accept any evaluatable value as an extension.
2004  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2005  public:
2006  VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
2007 
2008  void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
2009  }
2010 
2011  void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
2012  S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
2013  }
2014  } Diagnoser;
2015 
2016  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
2017  S.LangOpts.GNUMode ||
2018  S.LangOpts.OpenCL).isInvalid();
2019 }
2020 
2021 /// Build an array type.
2022 ///
2023 /// \param T The type of each element in the array.
2024 ///
2025 /// \param ASM C99 array size modifier (e.g., '*', 'static').
2026 ///
2027 /// \param ArraySize Expression describing the size of the array.
2028 ///
2029 /// \param Brackets The range from the opening '[' to the closing ']'.
2030 ///
2031 /// \param Entity The name of the entity that involves the array
2032 /// type, if known.
2033 ///
2034 /// \returns A suitable array type, if there are no errors. Otherwise,
2035 /// returns a NULL type.
2037  Expr *ArraySize, unsigned Quals,
2038  SourceRange Brackets, DeclarationName Entity) {
2039 
2040  SourceLocation Loc = Brackets.getBegin();
2041  if (getLangOpts().CPlusPlus) {
2042  // C++ [dcl.array]p1:
2043  // T is called the array element type; this type shall not be a reference
2044  // type, the (possibly cv-qualified) type void, a function type or an
2045  // abstract class type.
2046  //
2047  // C++ [dcl.array]p3:
2048  // When several "array of" specifications are adjacent, [...] only the
2049  // first of the constant expressions that specify the bounds of the arrays
2050  // may be omitted.
2051  //
2052  // Note: function types are handled in the common path with C.
2053  if (T->isReferenceType()) {
2054  Diag(Loc, diag::err_illegal_decl_array_of_references)
2055  << getPrintableNameForEntity(Entity) << T;
2056  return QualType();
2057  }
2058 
2059  if (T->isVoidType() || T->isIncompleteArrayType()) {
2060  Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
2061  return QualType();
2062  }
2063 
2064  if (RequireNonAbstractType(Brackets.getBegin(), T,
2065  diag::err_array_of_abstract_type))
2066  return QualType();
2067 
2068  // Mentioning a member pointer type for an array type causes us to lock in
2069  // an inheritance model, even if it's inside an unused typedef.
2070  if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2071  if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2072  if (!MPTy->getClass()->isDependentType())
2073  (void)isCompleteType(Loc, T);
2074 
2075  } else {
2076  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2077  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2078  if (RequireCompleteType(Loc, T,
2079  diag::err_illegal_decl_array_incomplete_type))
2080  return QualType();
2081  }
2082 
2083  if (T->isFunctionType()) {
2084  Diag(Loc, diag::err_illegal_decl_array_of_functions)
2085  << getPrintableNameForEntity(Entity) << T;
2086  return QualType();
2087  }
2088 
2089  if (const RecordType *EltTy = T->getAs<RecordType>()) {
2090  // If the element type is a struct or union that contains a variadic
2091  // array, accept it as a GNU extension: C99 6.7.2.1p2.
2092  if (EltTy->getDecl()->hasFlexibleArrayMember())
2093  Diag(Loc, diag::ext_flexible_array_in_array) << T;
2094  } else if (T->isObjCObjectType()) {
2095  Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2096  return QualType();
2097  }
2098 
2099  // Do placeholder conversions on the array size expression.
2100  if (ArraySize && ArraySize->hasPlaceholderType()) {
2101  ExprResult Result = CheckPlaceholderExpr(ArraySize);
2102  if (Result.isInvalid()) return QualType();
2103  ArraySize = Result.get();
2104  }
2105 
2106  // Do lvalue-to-rvalue conversions on the array size expression.
2107  if (ArraySize && !ArraySize->isRValue()) {
2108  ExprResult Result = DefaultLvalueConversion(ArraySize);
2109  if (Result.isInvalid())
2110  return QualType();
2111 
2112  ArraySize = Result.get();
2113  }
2114 
2115  // C99 6.7.5.2p1: The size expression shall have integer type.
2116  // C++11 allows contextual conversions to such types.
2117  if (!getLangOpts().CPlusPlus11 &&
2118  ArraySize && !ArraySize->isTypeDependent() &&
2119  !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2120  Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
2121  << ArraySize->getType() << ArraySize->getSourceRange();
2122  return QualType();
2123  }
2124 
2125  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2126  if (!ArraySize) {
2127  if (ASM == ArrayType::Star)
2128  T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2129  else
2130  T = Context.getIncompleteArrayType(T, ASM, Quals);
2131  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2132  T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2133  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
2134  !T->isConstantSizeType()) ||
2135  isArraySizeVLA(*this, ArraySize, ConstVal)) {
2136  // Even in C++11, don't allow contextual conversions in the array bound
2137  // of a VLA.
2138  if (getLangOpts().CPlusPlus11 &&
2139  !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2140  Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
2141  << ArraySize->getType() << ArraySize->getSourceRange();
2142  return QualType();
2143  }
2144 
2145  // C99: an array with an element type that has a non-constant-size is a VLA.
2146  // C99: an array with a non-ICE size is a VLA. We accept any expression
2147  // that we can fold to a non-zero positive value as an extension.
2148  T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2149  } else {
2150  // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2151  // have a value greater than zero.
2152  if (ConstVal.isSigned() && ConstVal.isNegative()) {
2153  if (Entity)
2154  Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
2155  << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
2156  else
2157  Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
2158  << ArraySize->getSourceRange();
2159  return QualType();
2160  }
2161  if (ConstVal == 0) {
2162  // GCC accepts zero sized static arrays. We allow them when
2163  // we're not in a SFINAE context.
2164  Diag(ArraySize->getLocStart(),
2165  isSFINAEContext()? diag::err_typecheck_zero_array_size
2166  : diag::ext_typecheck_zero_array_size)
2167  << ArraySize->getSourceRange();
2168 
2169  if (ASM == ArrayType::Static) {
2170  Diag(ArraySize->getLocStart(),
2171  diag::warn_typecheck_zero_static_array_size)
2172  << ArraySize->getSourceRange();
2173  ASM = ArrayType::Normal;
2174  }
2175  } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
2176  !T->isIncompleteType() && !T->isUndeducedType()) {
2177  // Is the array too large?
2178  unsigned ActiveSizeBits
2179  = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
2180  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2181  Diag(ArraySize->getLocStart(), diag::err_array_too_large)
2182  << ConstVal.toString(10)
2183  << ArraySize->getSourceRange();
2184  return QualType();
2185  }
2186  }
2187 
2188  T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
2189  }
2190 
2191  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2192  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
2193  Diag(Loc, diag::err_opencl_vla);
2194  return QualType();
2195  }
2196 
2197  if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2198  if (getLangOpts().CUDA) {
2199  // CUDA device code doesn't support VLAs.
2200  CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget();
2201  } else if (!getLangOpts().OpenMP ||
2202  shouldDiagnoseTargetSupportFromOpenMP()) {
2203  // Some targets don't support VLAs.
2204  Diag(Loc, diag::err_vla_unsupported);
2205  return QualType();
2206  }
2207  }
2208 
2209  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
2210  if (!getLangOpts().C99) {
2211  if (T->isVariableArrayType()) {
2212  // Prohibit the use of VLAs during template argument deduction.
2213  if (isSFINAEContext()) {
2214  Diag(Loc, diag::err_vla_in_sfinae);
2215  return QualType();
2216  }
2217  // Just extwarn about VLAs.
2218  else
2219  Diag(Loc, diag::ext_vla);
2220  } else if (ASM != ArrayType::Normal || Quals != 0)
2221  Diag(Loc,
2222  getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
2223  : diag::ext_c99_array_usage) << ASM;
2224  }
2225 
2226  if (T->isVariableArrayType()) {
2227  // Warn about VLAs for -Wvla.
2228  Diag(Loc, diag::warn_vla_used);
2229  }
2230 
2231  // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2232  // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2233  // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2234  if (getLangOpts().OpenCL) {
2235  const QualType ArrType = Context.getBaseElementType(T);
2236  if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2237  ArrType->isSamplerT() || ArrType->isImageType()) {
2238  Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2239  return QualType();
2240  }
2241  }
2242 
2243  return T;
2244 }
2245 
2247  SourceLocation AttrLoc) {
2248  // The base type must be integer (not Boolean or enumeration) or float, and
2249  // can't already be a vector.
2250  if (!CurType->isDependentType() &&
2251  (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2252  (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) {
2253  Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2254  return QualType();
2255  }
2256 
2257  if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2258  return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2260 
2261  llvm::APSInt VecSize(32);
2262  if (!SizeExpr->isIntegerConstantExpr(VecSize, Context)) {
2263  Diag(AttrLoc, diag::err_attribute_argument_type)
2264  << "vector_size" << AANT_ArgumentIntegerConstant
2265  << SizeExpr->getSourceRange();
2266  return QualType();
2267  }
2268 
2269  if (CurType->isDependentType())
2270  return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2272 
2273  unsigned VectorSize = static_cast<unsigned>(VecSize.getZExtValue() * 8);
2274  unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2275 
2276  if (VectorSize == 0) {
2277  Diag(AttrLoc, diag::err_attribute_zero_size) << SizeExpr->getSourceRange();
2278  return QualType();
2279  }
2280 
2281  // vecSize is specified in bytes - convert to bits.
2282  if (VectorSize % TypeSize) {
2283  Diag(AttrLoc, diag::err_attribute_invalid_size)
2284  << SizeExpr->getSourceRange();
2285  return QualType();
2286  }
2287 
2288  if (VectorType::isVectorSizeTooLarge(VectorSize / TypeSize)) {
2289  Diag(AttrLoc, diag::err_attribute_size_too_large)
2290  << SizeExpr->getSourceRange();
2291  return QualType();
2292  }
2293 
2294  return Context.getVectorType(CurType, VectorSize / TypeSize,
2296 }
2297 
2298 /// Build an ext-vector type.
2299 ///
2300 /// Run the required checks for the extended vector type.
2302  SourceLocation AttrLoc) {
2303  // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2304  // in conjunction with complex types (pointers, arrays, functions, etc.).
2305  //
2306  // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2307  // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2308  // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2309  // of bool aren't allowed.
2310  if ((!T->isDependentType() && !T->isIntegerType() &&
2311  !T->isRealFloatingType()) ||
2312  T->isBooleanType()) {
2313  Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2314  return QualType();
2315  }
2316 
2317  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2318  llvm::APSInt vecSize(32);
2319  if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
2320  Diag(AttrLoc, diag::err_attribute_argument_type)
2321  << "ext_vector_type" << AANT_ArgumentIntegerConstant
2322  << ArraySize->getSourceRange();
2323  return QualType();
2324  }
2325 
2326  // Unlike gcc's vector_size attribute, the size is specified as the
2327  // number of elements, not the number of bytes.
2328  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2329 
2330  if (vectorSize == 0) {
2331  Diag(AttrLoc, diag::err_attribute_zero_size)
2332  << ArraySize->getSourceRange();
2333  return QualType();
2334  }
2335 
2336  if (VectorType::isVectorSizeTooLarge(vectorSize)) {
2337  Diag(AttrLoc, diag::err_attribute_size_too_large)
2338  << ArraySize->getSourceRange();
2339  return QualType();
2340  }
2341 
2342  return Context.getExtVectorType(T, vectorSize);
2343  }
2344 
2345  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2346 }
2347 
2349  if (T->isArrayType() || T->isFunctionType()) {
2350  Diag(Loc, diag::err_func_returning_array_function)
2351  << T->isFunctionType() << T;
2352  return true;
2353  }
2354 
2355  // Functions cannot return half FP.
2356  if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2357  Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2358  FixItHint::CreateInsertion(Loc, "*");
2359  return true;
2360  }
2361 
2362  // Methods cannot return interface types. All ObjC objects are
2363  // passed by reference.
2364  if (T->isObjCObjectType()) {
2365  Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2366  << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2367  return true;
2368  }
2369 
2370  return false;
2371 }
2372 
2373 /// Check the extended parameter information. Most of the necessary
2374 /// checking should occur when applying the parameter attribute; the
2375 /// only other checks required are positional restrictions.
2378  llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2379  assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2380 
2381  bool hasCheckedSwiftCall = false;
2382  auto checkForSwiftCC = [&](unsigned paramIndex) {
2383  // Only do this once.
2384  if (hasCheckedSwiftCall) return;
2385  hasCheckedSwiftCall = true;
2386  if (EPI.ExtInfo.getCC() == CC_Swift) return;
2387  S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2388  << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
2389  };
2390 
2391  for (size_t paramIndex = 0, numParams = paramTypes.size();
2392  paramIndex != numParams; ++paramIndex) {
2393  switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2394  // Nothing interesting to check for orindary-ABI parameters.
2396  continue;
2397 
2398  // swift_indirect_result parameters must be a prefix of the function
2399  // arguments.
2401  checkForSwiftCC(paramIndex);
2402  if (paramIndex != 0 &&
2403  EPI.ExtParameterInfos[paramIndex - 1].getABI()
2405  S.Diag(getParamLoc(paramIndex),
2406  diag::err_swift_indirect_result_not_first);
2407  }
2408  continue;
2409 
2411  checkForSwiftCC(paramIndex);
2412  continue;
2413 
2414  // swift_error parameters must be preceded by a swift_context parameter.
2416  checkForSwiftCC(paramIndex);
2417  if (paramIndex == 0 ||
2418  EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2420  S.Diag(getParamLoc(paramIndex),
2421  diag::err_swift_error_result_not_after_swift_context);
2422  }
2423  continue;
2424  }
2425  llvm_unreachable("bad ABI kind");
2426  }
2427 }
2428 
2430  MutableArrayRef<QualType> ParamTypes,
2431  SourceLocation Loc, DeclarationName Entity,
2432  const FunctionProtoType::ExtProtoInfo &EPI) {
2433  bool Invalid = false;
2434 
2435  Invalid |= CheckFunctionReturnType(T, Loc);
2436 
2437  for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2438  // FIXME: Loc is too inprecise here, should use proper locations for args.
2439  QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2440  if (ParamType->isVoidType()) {
2441  Diag(Loc, diag::err_param_with_void_type);
2442  Invalid = true;
2443  } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2444  // Disallow half FP arguments.
2445  Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2446  FixItHint::CreateInsertion(Loc, "*");
2447  Invalid = true;
2448  }
2449 
2450  ParamTypes[Idx] = ParamType;
2451  }
2452 
2453  if (EPI.ExtParameterInfos) {
2454  checkExtParameterInfos(*this, ParamTypes, EPI,
2455  [=](unsigned i) { return Loc; });
2456  }
2457 
2458  if (EPI.ExtInfo.getProducesResult()) {
2459  // This is just a warning, so we can't fail to build if we see it.
2460  checkNSReturnsRetainedReturnType(Loc, T);
2461  }
2462 
2463  if (Invalid)
2464  return QualType();
2465 
2466  return Context.getFunctionType(T, ParamTypes, EPI);
2467 }
2468 
2469 /// Build a member pointer type \c T Class::*.
2470 ///
2471 /// \param T the type to which the member pointer refers.
2472 /// \param Class the class type into which the member pointer points.
2473 /// \param Loc the location where this type begins
2474 /// \param Entity the name of the entity that will have this member pointer type
2475 ///
2476 /// \returns a member pointer type, if successful, or a NULL type if there was
2477 /// an error.
2479  SourceLocation Loc,
2480  DeclarationName Entity) {
2481  // Verify that we're not building a pointer to pointer to function with
2482  // exception specification.
2483  if (CheckDistantExceptionSpec(T)) {
2484  Diag(Loc, diag::err_distant_exception_spec);
2485  return QualType();
2486  }
2487 
2488  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2489  // with reference type, or "cv void."
2490  if (T->isReferenceType()) {
2491  Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2492  << getPrintableNameForEntity(Entity) << T;
2493  return QualType();
2494  }
2495 
2496  if (T->isVoidType()) {
2497  Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2498  << getPrintableNameForEntity(Entity);
2499  return QualType();
2500  }
2501 
2502  if (!Class->isDependentType() && !Class->isRecordType()) {
2503  Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2504  return QualType();
2505  }
2506 
2507  // Adjust the default free function calling convention to the default method
2508  // calling convention.
2509  bool IsCtorOrDtor =
2512  if (T->isFunctionType())
2513  adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2514 
2515  return Context.getMemberPointerType(T, Class.getTypePtr());
2516 }
2517 
2518 /// Build a block pointer type.
2519 ///
2520 /// \param T The type to which we'll be building a block pointer.
2521 ///
2522 /// \param Loc The source location, used for diagnostics.
2523 ///
2524 /// \param Entity The name of the entity that involves the block pointer
2525 /// type, if known.
2526 ///
2527 /// \returns A suitable block pointer type, if there are no
2528 /// errors. Otherwise, returns a NULL type.
2530  SourceLocation Loc,
2531  DeclarationName Entity) {
2532  if (!T->isFunctionType()) {
2533  Diag(Loc, diag::err_nonfunction_block_type);
2534  return QualType();
2535  }
2536 
2537  if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2538  return QualType();
2539 
2540  return Context.getBlockPointerType(T);
2541 }
2542 
2544  QualType QT = Ty.get();
2545  if (QT.isNull()) {
2546  if (TInfo) *TInfo = nullptr;
2547  return QualType();
2548  }
2549 
2550  TypeSourceInfo *DI = nullptr;
2551  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2552  QT = LIT->getType();
2553  DI = LIT->getTypeSourceInfo();
2554  }
2555 
2556  if (TInfo) *TInfo = DI;
2557  return QT;
2558 }
2559 
2560 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2561  Qualifiers::ObjCLifetime ownership,
2562  unsigned chunkIndex);
2563 
2564 /// Given that this is the declaration of a parameter under ARC,
2565 /// attempt to infer attributes and such for pointer-to-whatever
2566 /// types.
2567 static void inferARCWriteback(TypeProcessingState &state,
2568  QualType &declSpecType) {
2569  Sema &S = state.getSema();
2570  Declarator &declarator = state.getDeclarator();
2571 
2572  // TODO: should we care about decl qualifiers?
2573 
2574  // Check whether the declarator has the expected form. We walk
2575  // from the inside out in order to make the block logic work.
2576  unsigned outermostPointerIndex = 0;
2577  bool isBlockPointer = false;
2578  unsigned numPointers = 0;
2579  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2580  unsigned chunkIndex = i;
2581  DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2582  switch (chunk.Kind) {
2584  // Ignore parens.
2585  break;
2586 
2589  // Count the number of pointers. Treat references
2590  // interchangeably as pointers; if they're mis-ordered, normal
2591  // type building will discover that.
2592  outermostPointerIndex = chunkIndex;
2593  numPointers++;
2594  break;
2595 
2597  // If we have a pointer to block pointer, that's an acceptable
2598  // indirect reference; anything else is not an application of
2599  // the rules.
2600  if (numPointers != 1) return;
2601  numPointers++;
2602  outermostPointerIndex = chunkIndex;
2603  isBlockPointer = true;
2604 
2605  // We don't care about pointer structure in return values here.
2606  goto done;
2607 
2608  case DeclaratorChunk::Array: // suppress if written (id[])?
2611  case DeclaratorChunk::Pipe:
2612  return;
2613  }
2614  }
2615  done:
2616 
2617  // If we have *one* pointer, then we want to throw the qualifier on
2618  // the declaration-specifiers, which means that it needs to be a
2619  // retainable object type.
2620  if (numPointers == 1) {
2621  // If it's not a retainable object type, the rule doesn't apply.
2622  if (!declSpecType->isObjCRetainableType()) return;
2623 
2624  // If it already has lifetime, don't do anything.
2625  if (declSpecType.getObjCLifetime()) return;
2626 
2627  // Otherwise, modify the type in-place.
2628  Qualifiers qs;
2629 
2630  if (declSpecType->isObjCARCImplicitlyUnretainedType())
2632  else
2634  declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2635 
2636  // If we have *two* pointers, then we want to throw the qualifier on
2637  // the outermost pointer.
2638  } else if (numPointers == 2) {
2639  // If we don't have a block pointer, we need to check whether the
2640  // declaration-specifiers gave us something that will turn into a
2641  // retainable object pointer after we slap the first pointer on it.
2642  if (!isBlockPointer && !declSpecType->isObjCObjectType())
2643  return;
2644 
2645  // Look for an explicit lifetime attribute there.
2646  DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2647  if (chunk.Kind != DeclaratorChunk::Pointer &&
2649  return;
2650  for (const ParsedAttr &AL : chunk.getAttrs())
2651  if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2652  return;
2653 
2655  outermostPointerIndex);
2656 
2657  // Any other number of pointers/references does not trigger the rule.
2658  } else return;
2659 
2660  // TODO: mark whether we did this inference?
2661 }
2662 
2663 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2664  SourceLocation FallbackLoc,
2665  SourceLocation ConstQualLoc,
2666  SourceLocation VolatileQualLoc,
2667  SourceLocation RestrictQualLoc,
2668  SourceLocation AtomicQualLoc,
2669  SourceLocation UnalignedQualLoc) {
2670  if (!Quals)
2671  return;
2672 
2673  struct Qual {
2674  const char *Name;
2675  unsigned Mask;
2676  SourceLocation Loc;
2677  } const QualKinds[5] = {
2678  { "const", DeclSpec::TQ_const, ConstQualLoc },
2679  { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2680  { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2681  { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2682  { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2683  };
2684 
2685  SmallString<32> QualStr;
2686  unsigned NumQuals = 0;
2687  SourceLocation Loc;
2688  FixItHint FixIts[5];
2689 
2690  // Build a string naming the redundant qualifiers.
2691  for (auto &E : QualKinds) {
2692  if (Quals & E.Mask) {
2693  if (!QualStr.empty()) QualStr += ' ';
2694  QualStr += E.Name;
2695 
2696  // If we have a location for the qualifier, offer a fixit.
2697  SourceLocation QualLoc = E.Loc;
2698  if (QualLoc.isValid()) {
2699  FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2700  if (Loc.isInvalid() ||
2701  getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2702  Loc = QualLoc;
2703  }
2704 
2705  ++NumQuals;
2706  }
2707  }
2708 
2709  Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2710  << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2711 }
2712 
2713 // Diagnose pointless type qualifiers on the return type of a function.
2715  Declarator &D,
2716  unsigned FunctionChunkIndex) {
2717  if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2718  // FIXME: TypeSourceInfo doesn't preserve location information for
2719  // qualifiers.
2720  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2721  RetTy.getLocalCVRQualifiers(),
2722  D.getIdentifierLoc());
2723  return;
2724  }
2725 
2726  for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2727  End = D.getNumTypeObjects();
2728  OuterChunkIndex != End; ++OuterChunkIndex) {
2729  DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2730  switch (OuterChunk.Kind) {
2732  continue;
2733 
2734  case DeclaratorChunk::Pointer: {
2735  DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2737  diag::warn_qual_return_type,
2738  PTI.TypeQuals,
2739  SourceLocation(),
2745  return;
2746  }
2747 
2753  case DeclaratorChunk::Pipe:
2754  // FIXME: We can't currently provide an accurate source location and a
2755  // fix-it hint for these.
2756  unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2757  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2758  RetTy.getCVRQualifiers() | AtomicQual,
2759  D.getIdentifierLoc());
2760  return;
2761  }
2762 
2763  llvm_unreachable("unknown declarator chunk kind");
2764  }
2765 
2766  // If the qualifiers come from a conversion function type, don't diagnose
2767  // them -- they're not necessarily redundant, since such a conversion
2768  // operator can be explicitly called as "x.operator const int()".
2770  return;
2771 
2772  // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2773  // which are present there.
2774  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2776  D.getIdentifierLoc(),
2782 }
2783 
2784 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2785  TypeSourceInfo *&ReturnTypeInfo) {
2786  Sema &SemaRef = state.getSema();
2787  Declarator &D = state.getDeclarator();
2788  QualType T;
2789  ReturnTypeInfo = nullptr;
2790 
2791  // The TagDecl owned by the DeclSpec.
2792  TagDecl *OwnedTagDecl = nullptr;
2793 
2794  switch (D.getName().getKind()) {
2800  T = ConvertDeclSpecToType(state);
2801 
2802  if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2803  OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2804  // Owned declaration is embedded in declarator.
2805  OwnedTagDecl->setEmbeddedInDeclarator(true);
2806  }
2807  break;
2808 
2812  // Constructors and destructors don't have return types. Use
2813  // "void" instead.
2814  T = SemaRef.Context.VoidTy;
2815  processTypeAttrs(state, T, TAL_DeclSpec,
2817  break;
2818 
2820  // Deduction guides have a trailing return type and no type in their
2821  // decl-specifier sequence. Use a placeholder return type for now.
2822  T = SemaRef.Context.DependentTy;
2823  break;
2824 
2826  // The result type of a conversion function is the type that it
2827  // converts to.
2829  &ReturnTypeInfo);
2830  break;
2831  }
2832 
2833  if (!D.getAttributes().empty())
2835 
2836  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2837  if (DeducedType *Deduced = T->getContainedDeducedType()) {
2838  AutoType *Auto = dyn_cast<AutoType>(Deduced);
2839  int Error = -1;
2840 
2841  // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
2842  // class template argument deduction)?
2843  bool IsCXXAutoType =
2844  (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
2845 
2846  switch (D.getContext()) {
2848  // Declared return type of a lambda-declarator is implicit and is always
2849  // 'auto'.
2850  break;
2854  Error = 0;
2855  break;
2857  // In C++14, generic lambdas allow 'auto' in their parameters.
2858  if (!SemaRef.getLangOpts().CPlusPlus14 ||
2859  !Auto || Auto->getKeyword() != AutoTypeKeyword::Auto)
2860  Error = 16;
2861  else {
2862  // If auto is mentioned in a lambda parameter context, convert it to a
2863  // template parameter type.
2864  sema::LambdaScopeInfo *LSI = SemaRef.getCurLambda();
2865  assert(LSI && "No LambdaScopeInfo on the stack!");
2866  const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
2867  const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
2868  const bool IsParameterPack = D.hasEllipsis();
2869 
2870  // Create the TemplateTypeParmDecl here to retrieve the corresponding
2871  // template parameter type. Template parameters are temporarily added
2872  // to the TU until the associated TemplateDecl is created.
2873  TemplateTypeParmDecl *CorrespondingTemplateParam =
2875  SemaRef.Context, SemaRef.Context.getTranslationUnitDecl(),
2876  /*KeyLoc*/SourceLocation(), /*NameLoc*/D.getLocStart(),
2877  TemplateParameterDepth, AutoParameterPosition,
2878  /*Identifier*/nullptr, false, IsParameterPack);
2879  LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
2880  // Replace the 'auto' in the function parameter with this invented
2881  // template type parameter.
2882  // FIXME: Retain some type sugar to indicate that this was written
2883  // as 'auto'.
2884  T = SemaRef.ReplaceAutoType(
2885  T, QualType(CorrespondingTemplateParam->getTypeForDecl(), 0));
2886  }
2887  break;
2891  break;
2892  bool Cxx = SemaRef.getLangOpts().CPlusPlus;
2893  switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2894  case TTK_Enum: llvm_unreachable("unhandled tag kind");
2895  case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
2896  case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
2897  case TTK_Class: Error = 5; /* Class member */ break;
2898  case TTK_Interface: Error = 6; /* Interface member */ break;
2899  }
2900  if (D.getDeclSpec().isFriendSpecified())
2901  Error = 20; // Friend type
2902  break;
2903  }
2906  Error = 7; // Exception declaration
2907  break;
2909  if (isa<DeducedTemplateSpecializationType>(Deduced))
2910  Error = 19; // Template parameter
2911  else if (!SemaRef.getLangOpts().CPlusPlus17)
2912  Error = 8; // Template parameter (until C++17)
2913  break;
2915  Error = 9; // Block literal
2916  break;
2918  // Within a template argument list, a deduced template specialization
2919  // type will be reinterpreted as a template template argument.
2920  if (isa<DeducedTemplateSpecializationType>(Deduced) &&
2921  !D.getNumTypeObjects() &&
2923  break;
2924  LLVM_FALLTHROUGH;
2926  Error = 10; // Template type argument
2927  break;
2930  Error = 12; // Type alias
2931  break;
2934  if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
2935  Error = 13; // Function return type
2936  break;
2938  if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
2939  Error = 14; // conversion-type-id
2940  break;
2942  if (isa<DeducedTemplateSpecializationType>(Deduced))
2943  break;
2944  LLVM_FALLTHROUGH;
2946  Error = 15; // Generic
2947  break;
2953  // FIXME: P0091R3 (erroneously) does not permit class template argument
2954  // deduction in conditions, for-init-statements, and other declarations
2955  // that are not simple-declarations.
2956  break;
2958  // FIXME: P0091R3 does not permit class template argument deduction here,
2959  // but we follow GCC and allow it anyway.
2960  if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
2961  Error = 17; // 'new' type
2962  break;
2964  Error = 18; // K&R function parameter
2965  break;
2966  }
2967 
2969  Error = 11;
2970 
2971  // In Objective-C it is an error to use 'auto' on a function declarator
2972  // (and everywhere for '__auto_type').
2973  if (D.isFunctionDeclarator() &&
2974  (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
2975  Error = 13;
2976 
2977  bool HaveTrailing = false;
2978 
2979  // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2980  // contains a trailing return type. That is only legal at the outermost
2981  // level. Check all declarator chunks (outermost first) anyway, to give
2982  // better diagnostics.
2983  // We don't support '__auto_type' with trailing return types.
2984  // FIXME: Should we only do this for 'auto' and not 'decltype(auto)'?
2985  if (SemaRef.getLangOpts().CPlusPlus11 && IsCXXAutoType &&
2986  D.hasTrailingReturnType()) {
2987  HaveTrailing = true;
2988  Error = -1;
2989  }
2990 
2991  SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
2993  AutoRange = D.getName().getSourceRange();
2994 
2995  if (Error != -1) {
2996  unsigned Kind;
2997  if (Auto) {
2998  switch (Auto->getKeyword()) {
2999  case AutoTypeKeyword::Auto: Kind = 0; break;
3000  case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3001  case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3002  }
3003  } else {
3004  assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3005  "unknown auto type");
3006  Kind = 3;
3007  }
3008 
3009  auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3010  TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3011 
3012  SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3013  << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3014  << QualType(Deduced, 0) << AutoRange;
3015  if (auto *TD = TN.getAsTemplateDecl())
3016  SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3017 
3018  T = SemaRef.Context.IntTy;
3019  D.setInvalidType(true);
3020  } else if (!HaveTrailing &&
3022  // If there was a trailing return type, we already got
3023  // warn_cxx98_compat_trailing_return_type in the parser.
3024  // If this was a lambda, we already warned on that too.
3025  SemaRef.Diag(AutoRange.getBegin(),
3026  diag::warn_cxx98_compat_auto_type_specifier)
3027  << AutoRange;
3028  }
3029  }
3030 
3031  if (SemaRef.getLangOpts().CPlusPlus &&
3032  OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3033  // Check the contexts where C++ forbids the declaration of a new class
3034  // or enumeration in a type-specifier-seq.
3035  unsigned DiagID = 0;
3036  switch (D.getContext()) {
3039  // Class and enumeration definitions are syntactically not allowed in
3040  // trailing return types.
3041  llvm_unreachable("parser should not have allowed this");
3042  break;
3050  // C++11 [dcl.type]p3:
3051  // A type-specifier-seq shall not define a class or enumeration unless
3052  // it appears in the type-id of an alias-declaration (7.1.3) that is not
3053  // the declaration of a template-declaration.
3055  break;
3057  DiagID = diag::err_type_defined_in_alias_template;
3058  break;
3068  DiagID = diag::err_type_defined_in_type_specifier;
3069  break;
3075  // C++ [dcl.fct]p6:
3076  // Types shall not be defined in return or parameter types.
3077  DiagID = diag::err_type_defined_in_param_type;
3078  break;
3080  // C++ 6.4p2:
3081  // The type-specifier-seq shall not contain typedef and shall not declare
3082  // a new class or enumeration.
3083  DiagID = diag::err_type_defined_in_condition;
3084  break;
3085  }
3086 
3087  if (DiagID != 0) {
3088  SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3089  << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3090  D.setInvalidType(true);
3091  }
3092  }
3093 
3094  assert(!T.isNull() && "This function should not return a null type");
3095  return T;
3096 }
3097 
3098 /// Produce an appropriate diagnostic for an ambiguity between a function
3099 /// declarator and a C++ direct-initializer.
3101  DeclaratorChunk &DeclType, QualType RT) {
3102  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3103  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3104 
3105  // If the return type is void there is no ambiguity.
3106  if (RT->isVoidType())
3107  return;
3108 
3109  // An initializer for a non-class type can have at most one argument.
3110  if (!RT->isRecordType() && FTI.NumParams > 1)
3111  return;
3112 
3113  // An initializer for a reference must have exactly one argument.
3114  if (RT->isReferenceType() && FTI.NumParams != 1)
3115  return;
3116 
3117  // Only warn if this declarator is declaring a function at block scope, and
3118  // doesn't have a storage class (such as 'extern') specified.
3119  if (!D.isFunctionDeclarator() ||
3124  return;
3125 
3126  // Inside a condition, a direct initializer is not permitted. We allow one to
3127  // be parsed in order to give better diagnostics in condition parsing.
3129  return;
3130 
3131  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3132 
3133  S.Diag(DeclType.Loc,
3134  FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3135  : diag::warn_empty_parens_are_function_decl)
3136  << ParenRange;
3137 
3138  // If the declaration looks like:
3139  // T var1,
3140  // f();
3141  // and name lookup finds a function named 'f', then the ',' was
3142  // probably intended to be a ';'.
3143  if (!D.isFirstDeclarator() && D.getIdentifier()) {
3146  if (Comma.getFileID() != Name.getFileID() ||
3147  Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3150  if (S.LookupName(Result, S.getCurScope()))
3151  S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3153  << D.getIdentifier();
3154  Result.suppressDiagnostics();
3155  }
3156  }
3157 
3158  if (FTI.NumParams > 0) {
3159  // For a declaration with parameters, eg. "T var(T());", suggest adding
3160  // parens around the first parameter to turn the declaration into a
3161  // variable declaration.
3162  SourceRange Range = FTI.Params[0].Param->getSourceRange();
3163  SourceLocation B = Range.getBegin();
3164  SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3165  // FIXME: Maybe we should suggest adding braces instead of parens
3166  // in C++11 for classes that don't have an initializer_list constructor.
3167  S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3168  << FixItHint::CreateInsertion(B, "(")
3169  << FixItHint::CreateInsertion(E, ")");
3170  } else {
3171  // For a declaration without parameters, eg. "T var();", suggest replacing
3172  // the parens with an initializer to turn the declaration into a variable
3173  // declaration.
3174  const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3175 
3176  // Empty parens mean value-initialization, and no parens mean
3177  // default initialization. These are equivalent if the default
3178  // constructor is user-provided or if zero-initialization is a
3179  // no-op.
3180  if (RD && RD->hasDefinition() &&
3181  (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3182  S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3183  << FixItHint::CreateRemoval(ParenRange);
3184  else {
3185  std::string Init =
3186  S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3187  if (Init.empty() && S.LangOpts.CPlusPlus11)
3188  Init = "{}";
3189  if (!Init.empty())
3190  S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3191  << FixItHint::CreateReplacement(ParenRange, Init);
3192  }
3193  }
3194 }
3195 
3196 /// Produce an appropriate diagnostic for a declarator with top-level
3197 /// parentheses.
3200  assert(Paren.Kind == DeclaratorChunk::Paren &&
3201  "do not have redundant top-level parentheses");
3202 
3203  // This is a syntactic check; we're not interested in cases that arise
3204  // during template instantiation.
3205  if (S.inTemplateInstantiation())
3206  return;
3207 
3208  // Check whether this could be intended to be a construction of a temporary
3209  // object in C++ via a function-style cast.
3210  bool CouldBeTemporaryObject =
3211  S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3212  !D.isInvalidType() && D.getIdentifier() &&
3214  (T->isRecordType() || T->isDependentType()) &&
3216 
3217  bool StartsWithDeclaratorId = true;
3218  for (auto &C : D.type_objects()) {
3219  switch (C.Kind) {
3221  if (&C == &Paren)
3222  continue;
3223  LLVM_FALLTHROUGH;
3225  StartsWithDeclaratorId = false;
3226  continue;
3227 
3229  if (!C.Arr.NumElts)
3230  CouldBeTemporaryObject = false;
3231  continue;
3232 
3234  // FIXME: Suppress the warning here if there is no initializer; we're
3235  // going to give an error anyway.
3236  // We assume that something like 'T (&x) = y;' is highly likely to not
3237  // be intended to be a temporary object.
3238  CouldBeTemporaryObject = false;
3239  StartsWithDeclaratorId = false;
3240  continue;
3241 
3243  // In a new-type-id, function chunks require parentheses.
3245  return;
3246  // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3247  // redundant-parens warning, but we don't know whether the function
3248  // chunk was syntactically valid as an expression here.
3249  CouldBeTemporaryObject = false;
3250  continue;
3251 
3254  case DeclaratorChunk::Pipe:
3255  // These cannot appear in expressions.
3256  CouldBeTemporaryObject = false;
3257  StartsWithDeclaratorId = false;
3258  continue;
3259  }
3260  }
3261 
3262  // FIXME: If there is an initializer, assume that this is not intended to be
3263  // a construction of a temporary object.
3264 
3265  // Check whether the name has already been declared; if not, this is not a
3266  // function-style cast.
3267  if (CouldBeTemporaryObject) {
3270  if (!S.LookupName(Result, S.getCurScope()))
3271  CouldBeTemporaryObject = false;
3272  Result.suppressDiagnostics();
3273  }
3274 
3275  SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3276 
3277  if (!CouldBeTemporaryObject) {
3278  // If we have A (::B), the parentheses affect the meaning of the program.
3279  // Suppress the warning in that case. Don't bother looking at the DeclSpec
3280  // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3281  // formally unambiguous.
3282  if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3283  for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3284  NNS = NNS->getPrefix()) {
3285  if (NNS->getKind() == NestedNameSpecifier::Global)
3286  return;
3287  }
3288  }
3289 
3290  S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3291  << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3292  << FixItHint::CreateRemoval(Paren.EndLoc);
3293  return;
3294  }
3295 
3296  S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3297  << ParenRange << D.getIdentifier();
3298  auto *RD = T->getAsCXXRecordDecl();
3299  if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3300  S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3301  << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3302  << D.getIdentifier();
3303  // FIXME: A cast to void is probably a better suggestion in cases where it's
3304  // valid (when there is no initializer and we're not in a condition).
3305  S.Diag(D.getLocStart(), diag::note_function_style_cast_add_parentheses)
3308  S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3309  << FixItHint::CreateRemoval(Paren.Loc)
3310  << FixItHint::CreateRemoval(Paren.EndLoc);
3311 }
3312 
3313 /// Helper for figuring out the default CC for a function declarator type. If
3314 /// this is the outermost chunk, then we can determine the CC from the
3315 /// declarator context. If not, then this could be either a member function
3316 /// type or normal function type.
3318  Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3319  const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3320  assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3321 
3322  // Check for an explicit CC attribute.
3323  for (const ParsedAttr &AL : AttrList) {
3324  switch (AL.getKind()) {
3326  // Ignore attributes that don't validate or can't apply to the
3327  // function type. We'll diagnose the failure to apply them in
3328  // handleFunctionTypeAttr.
3329  CallingConv CC;
3330  if (!S.CheckCallingConvAttr(AL, CC) &&
3331  (!FTI.isVariadic || supportsVariadicCall(CC))) {
3332  return CC;
3333  }
3334  break;
3335  }
3336 
3337  default:
3338  break;
3339  }
3340  }
3341 
3342  bool IsCXXInstanceMethod = false;
3343 
3344  if (S.getLangOpts().CPlusPlus) {
3345  // Look inwards through parentheses to see if this chunk will form a
3346  // member pointer type or if we're the declarator. Any type attributes
3347  // between here and there will override the CC we choose here.
3348  unsigned I = ChunkIndex;
3349  bool FoundNonParen = false;
3350  while (I && !FoundNonParen) {
3351  --I;
3353  FoundNonParen = true;
3354  }
3355 
3356  if (FoundNonParen) {
3357  // If we're not the declarator, we're a regular function type unless we're
3358  // in a member pointer.
3359  IsCXXInstanceMethod =
3362  // This can only be a call operator for a lambda, which is an instance
3363  // method.
3364  IsCXXInstanceMethod = true;
3365  } else {
3366  // We're the innermost decl chunk, so must be a function declarator.
3367  assert(D.isFunctionDeclarator());
3368 
3369  // If we're inside a record, we're declaring a method, but it could be
3370  // explicitly or implicitly static.
3371  IsCXXInstanceMethod =
3374  !D.isStaticMember();
3375  }
3376  }
3377 
3379  IsCXXInstanceMethod);
3380 
3381  // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3382  // and AMDGPU targets, hence it cannot be treated as a calling
3383  // convention attribute. This is the simplest place to infer
3384  // calling convention for OpenCL kernels.
3385  if (S.getLangOpts().OpenCL) {
3386  for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3387  if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3388  CC = CC_OpenCLKernel;
3389  break;
3390  }
3391  }
3392  }
3393 
3394  return CC;
3395 }
3396 
3397 namespace {
3398  /// A simple notion of pointer kinds, which matches up with the various
3399  /// pointer declarators.
3400  enum class SimplePointerKind {
3401  Pointer,
3402  BlockPointer,
3403  MemberPointer,
3404  Array,
3405  };
3406 } // end anonymous namespace
3407 
3409  switch (nullability) {
3411  if (!Ident__Nonnull)
3412  Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3413  return Ident__Nonnull;
3414 
3416  if (!Ident__Nullable)
3417  Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3418  return Ident__Nullable;
3419 
3421  if (!Ident__Null_unspecified)
3422  Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3423  return Ident__Null_unspecified;
3424  }
3425  llvm_unreachable("Unknown nullability kind.");
3426 }
3427 
3428 /// Retrieve the identifier "NSError".
3430  if (!Ident_NSError)
3431  Ident_NSError = PP.getIdentifierInfo("NSError");
3432 
3433  return Ident_NSError;
3434 }
3435 
3436 /// Check whether there is a nullability attribute of any kind in the given
3437 /// attribute list.
3438 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3439  for (const ParsedAttr &AL : attrs) {
3440  if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3441  AL.getKind() == ParsedAttr::AT_TypeNullable ||
3442  AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3443  return true;
3444  }
3445 
3446  return false;
3447 }
3448 
3449 namespace {
3450  /// Describes the kind of a pointer a declarator describes.
3452  // Not a pointer.
3453  NonPointer,
3454  // Single-level pointer.
3455  SingleLevelPointer,
3456  // Multi-level pointer (of any pointer kind).
3457  MultiLevelPointer,
3458  // CFFooRef*
3459  MaybePointerToCFRef,
3460  // CFErrorRef*
3461  CFErrorRefPointer,
3462  // NSError**
3463  NSErrorPointerPointer,
3464  };
3465 
3466  /// Describes a declarator chunk wrapping a pointer that marks inference as
3467  /// unexpected.
3468  // These values must be kept in sync with diagnostics.
3470  /// Pointer is top-level.
3471  None = -1,
3472  /// Pointer is an array element.
3473  Array = 0,
3474  /// Pointer is the referent type of a C++ reference.
3475  Reference = 1
3476  };
3477 } // end anonymous namespace
3478 
3479 /// Classify the given declarator, whose type-specified is \c type, based on
3480 /// what kind of pointer it refers to.
3481 ///
3482 /// This is used to determine the default nullability.
3483 static PointerDeclaratorKind
3485  PointerWrappingDeclaratorKind &wrappingKind) {
3486  unsigned numNormalPointers = 0;
3487 
3488  // For any dependent type, we consider it a non-pointer.
3489  if (type->isDependentType())
3490  return PointerDeclaratorKind::NonPointer;
3491 
3492  // Look through the declarator chunks to identify pointers.
3493  for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3494  DeclaratorChunk &chunk = declarator.getTypeObject(i);
3495  switch (chunk.Kind) {
3497  if (numNormalPointers == 0)
3498  wrappingKind = PointerWrappingDeclaratorKind::Array;
3499  break;
3500 
3502  case DeclaratorChunk::Pipe:
3503  break;
3504 
3507  return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3508  : PointerDeclaratorKind::SingleLevelPointer;
3509 
3511  break;
3512 
3514  if (numNormalPointers == 0)
3515  wrappingKind = PointerWrappingDeclaratorKind::Reference;
3516  break;
3517 
3519  ++numNormalPointers;
3520  if (numNormalPointers > 2)
3521  return PointerDeclaratorKind::MultiLevelPointer;
3522  break;
3523  }
3524  }
3525 
3526  // Then, dig into the type specifier itself.
3527  unsigned numTypeSpecifierPointers = 0;
3528  do {
3529  // Decompose normal pointers.
3530  if (auto ptrType = type->getAs<PointerType>()) {
3531  ++numNormalPointers;
3532 
3533  if (numNormalPointers > 2)
3534  return PointerDeclaratorKind::MultiLevelPointer;
3535 
3536  type = ptrType->getPointeeType();
3537  ++numTypeSpecifierPointers;
3538  continue;
3539  }
3540 
3541  // Decompose block pointers.
3542  if (type->getAs<BlockPointerType>()) {
3543  return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3544  : PointerDeclaratorKind::SingleLevelPointer;
3545  }
3546 
3547  // Decompose member pointers.
3548  if (type->getAs<MemberPointerType>()) {
3549  return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3550  : PointerDeclaratorKind::SingleLevelPointer;
3551  }
3552 
3553  // Look at Objective-C object pointers.
3554  if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3555  ++numNormalPointers;
3556  ++numTypeSpecifierPointers;
3557 
3558  // If this is NSError**, report that.
3559  if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3560  if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
3561  numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3562  return PointerDeclaratorKind::NSErrorPointerPointer;
3563  }
3564  }
3565 
3566  break;
3567  }
3568 
3569  // Look at Objective-C class types.
3570  if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3571  if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
3572  if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3573  return PointerDeclaratorKind::NSErrorPointerPointer;
3574  }
3575 
3576  break;
3577  }
3578 
3579  // If at this point we haven't seen a pointer, we won't see one.
3580  if (numNormalPointers == 0)
3581  return PointerDeclaratorKind::NonPointer;
3582 
3583  if (auto recordType = type->getAs<RecordType>()) {
3584  RecordDecl *recordDecl = recordType->getDecl();
3585 
3586  bool isCFError = false;
3587  if (S.CFError) {
3588  // If we already know about CFError, test it directly.
3589  isCFError = (S.CFError == recordDecl);
3590  } else {
3591  // Check whether this is CFError, which we identify based on its bridge
3592  // to NSError. CFErrorRef used to be declared with "objc_bridge" but is
3593  // now declared with "objc_bridge_mutable", so look for either one of
3594  // the two attributes.
3595  if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
3596  IdentifierInfo *bridgedType = nullptr;
3597  if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>())
3598  bridgedType = bridgeAttr->getBridgedType();
3599  else if (auto bridgeAttr =
3600  recordDecl->getAttr<ObjCBridgeMutableAttr>())
3601  bridgedType = bridgeAttr->getBridgedType();
3602 
3603  if (bridgedType == S.getNSErrorIdent()) {
3604  S.CFError = recordDecl;
3605  isCFError = true;
3606  }
3607  }
3608  }
3609 
3610  // If this is CFErrorRef*, report it as such.
3611  if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3612  return PointerDeclaratorKind::CFErrorRefPointer;
3613  }
3614  break;
3615  }
3616 
3617  break;
3618  } while (true);
3619 
3620  switch (numNormalPointers) {
3621  case 0:
3622  return PointerDeclaratorKind::NonPointer;
3623 
3624  case 1:
3625  return PointerDeclaratorKind::SingleLevelPointer;
3626 
3627  case 2:
3628  return PointerDeclaratorKind::MaybePointerToCFRef;
3629 
3630  default:
3631  return PointerDeclaratorKind::MultiLevelPointer;
3632  }
3633 }
3634 
3636  SourceLocation loc) {
3637  // If we're anywhere in a function, method, or closure context, don't perform
3638  // completeness checks.
3639  for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3640  if (ctx->isFunctionOrMethod())
3641  return FileID();
3642 
3643  if (ctx->isFileContext())
3644  break;
3645  }
3646 
3647  // We only care about the expansion location.
3648  loc = S.SourceMgr.getExpansionLoc(loc);
3649  FileID file = S.SourceMgr.getFileID(loc);
3650  if (file.isInvalid())
3651  return FileID();
3652 
3653  // Retrieve file information.
3654  bool invalid = false;
3655  const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3656  if (invalid || !sloc.isFile())
3657  return FileID();
3658 
3659  // We don't want to perform completeness checks on the main file or in
3660  // system headers.
3661  const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3662  if (fileInfo.getIncludeLoc().isInvalid())
3663  return FileID();
3664  if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3666  return FileID();
3667  }
3668 
3669  return file;
3670 }
3671 
3672 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
3673 /// taking into account whitespace before and after.
3675  SourceLocation PointerLoc,
3677  assert(PointerLoc.isValid());
3678  if (PointerLoc.isMacroID())
3679  return;
3680 
3681  SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
3682  if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
3683  return;
3684 
3685  const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
3686  if (!NextChar)
3687  return;
3688 
3689  SmallString<32> InsertionTextBuf{" "};
3690  InsertionTextBuf += getNullabilitySpelling(Nullability);
3691  InsertionTextBuf += " ";
3692  StringRef InsertionText = InsertionTextBuf.str();
3693 
3694  if (isWhitespace(*NextChar)) {
3695  InsertionText = InsertionText.drop_back();
3696  } else if (NextChar[-1] == '[') {
3697  if (NextChar[0] == ']')
3698  InsertionText = InsertionText.drop_back().drop_front();
3699  else
3700  InsertionText = InsertionText.drop_front();
3701  } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
3702  !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
3703  InsertionText = InsertionText.drop_back().drop_front();
3704  }
3705 
3706  Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
3707 }
3708 
3710  SimplePointerKind PointerKind,
3711  SourceLocation PointerLoc,
3712  SourceLocation PointerEndLoc) {
3713  assert(PointerLoc.isValid());
3714 
3715  if (PointerKind == SimplePointerKind::Array) {
3716  S.Diag(PointerLoc, diag::warn_nullability_missing_array);
3717  } else {
3718  S.Diag(PointerLoc, diag::warn_nullability_missing)
3719  << static_cast<unsigned>(PointerKind);
3720  }
3721 
3722  auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
3723  if (FixItLoc.isMacroID())
3724  return;
3725 
3726  auto addFixIt = [&](NullabilityKind Nullability) {
3727  auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
3728  Diag << static_cast<unsigned>(Nullability);
3729  Diag << static_cast<unsigned>(PointerKind);
3730  fixItNullability(S, Diag, FixItLoc, Nullability);
3731  };
3732  addFixIt(NullabilityKind::Nullable);
3733  addFixIt(NullabilityKind::NonNull);
3734 }
3735 
3736 /// Complains about missing nullability if the file containing \p pointerLoc
3737 /// has other uses of nullability (either the keywords or the \c assume_nonnull
3738 /// pragma).
3739 ///
3740 /// If the file has \e not seen other uses of nullability, this particular
3741 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
3742 static void
3744  SourceLocation pointerLoc,
3745  SourceLocation pointerEndLoc = SourceLocation()) {
3746  // Determine which file we're performing consistency checking for.
3747  FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
3748  if (file.isInvalid())
3749  return;
3750 
3751  // If we haven't seen any type nullability in this file, we won't warn now
3752  // about anything.
3753  FileNullability &fileNullability = S.NullabilityMap[file];
3754  if (!fileNullability.SawTypeNullability) {
3755  // If this is the first pointer declarator in the file, and the appropriate
3756  // warning is on, record it in case we need to diagnose it retroactively.
3757  diag::kind diagKind;
3758  if (pointerKind == SimplePointerKind::Array)
3759  diagKind = diag::warn_nullability_missing_array;
3760  else
3761  diagKind = diag::warn_nullability_missing;
3762 
3763  if (fileNullability.PointerLoc.isInvalid() &&
3764  !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
3765  fileNullability.PointerLoc = pointerLoc;
3766  fileNullability.PointerEndLoc = pointerEndLoc;
3767  fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
3768  }
3769 
3770  return;
3771  }
3772 
3773  // Complain about missing nullability.
3774  emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
3775 }
3776 
3777 /// Marks that a nullability feature has been used in the file containing
3778 /// \p loc.
3779 ///
3780 /// If this file already had pointer types in it that were missing nullability,
3781 /// the first such instance is retroactively diagnosed.
3782 ///
3783 /// \sa checkNullabilityConsistency
3786  if (file.isInvalid())
3787  return;
3788 
3789  FileNullability &fileNullability = S.NullabilityMap[file];
3790  if (fileNullability.SawTypeNullability)
3791  return;
3792  fileNullability.SawTypeNullability = true;
3793 
3794  // If we haven't seen any type nullability before, now we have. Retroactively
3795  // diagnose the first unannotated pointer, if there was one.
3796  if (fileNullability.PointerLoc.isInvalid())
3797  return;
3798 
3799  auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
3801  fileNullability.PointerEndLoc);
3802 }
3803 
3804 /// Returns true if any of the declarator chunks before \p endIndex include a
3805 /// level of indirection: array, pointer, reference, or pointer-to-member.
3806 ///
3807 /// Because declarator chunks are stored in outer-to-inner order, testing
3808 /// every chunk before \p endIndex is testing all chunks that embed the current
3809 /// chunk as part of their type.
3810 ///
3811 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
3812 /// end index, in which case all chunks are tested.
3813 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
3814  unsigned i = endIndex;
3815  while (i != 0) {
3816  // Walk outwards along the declarator chunks.
3817  --i;
3818  const DeclaratorChunk &DC = D.getTypeObject(i);
3819  switch (DC.Kind) {
3821  break;
3826  return true;
3829  case DeclaratorChunk::Pipe:
3830  // These are invalid anyway, so just ignore.
3831  break;
3832  }
3833  }
3834  return false;
3835 }
3836 
3837 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
3838  QualType declSpecType,
3839  TypeSourceInfo *TInfo) {
3840  // The TypeSourceInfo that this function returns will not be a null type.
3841  // If there is an error, this function will fill in a dummy type as fallback.
3842  QualType T = declSpecType;
3843  Declarator &D = state.getDeclarator();
3844  Sema &S = state.getSema();
3845  ASTContext &Context = S.Context;
3846  const LangOptions &LangOpts = S.getLangOpts();
3847 
3848  // The name we're declaring, if any.
3849  DeclarationName Name;
3850  if (D.getIdentifier())
3851  Name = D.getIdentifier();
3852 
3853  // Does this declaration declare a typedef-name?
3854  bool IsTypedefName =
3858 
3859  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
3860  bool IsQualifiedFunction = T->isFunctionProtoType() &&
3861  (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
3862  T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
3863 
3864  // If T is 'decltype(auto)', the only declarators we can have are parens
3865  // and at most one function declarator if this is a function declaration.
3866  // If T is a deduced class template specialization type, we can have no
3867  // declarator chunks at all.
3868  if (auto *DT = T->getAs<DeducedType>()) {
3869  const AutoType *AT = T->getAs<AutoType>();
3870  bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
3871  if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
3872  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3873  unsigned Index = E - I - 1;
3874  DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
3875  unsigned DiagId = IsClassTemplateDeduction
3876  ? diag::err_deduced_class_template_compound_type
3877  : diag::err_decltype_auto_compound_type;
3878  unsigned DiagKind = 0;
3879  switch (DeclChunk.Kind) {
3881  // FIXME: Rejecting this is a little silly.
3882  if (IsClassTemplateDeduction) {
3883  DiagKind = 4;
3884  break;
3885  }
3886  continue;
3888  if (IsClassTemplateDeduction) {
3889  DiagKind = 3;
3890  break;
3891  }
3892  unsigned FnIndex;
3893  if (D.isFunctionDeclarationContext() &&
3894  D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
3895  continue;
3896  DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
3897  break;
3898  }
3902  DiagKind = 0;
3903  break;
3905  DiagKind = 1;
3906  break;
3908  DiagKind = 2;
3909  break;
3910  case DeclaratorChunk::Pipe:
3911  break;
3912  }
3913 
3914  S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
3915  D.setInvalidType(true);
3916  break;
3917  }
3918  }
3919  }
3920 
3921  // Determine whether we should infer _Nonnull on pointer types.
3922  Optional<NullabilityKind> inferNullability;
3923  bool inferNullabilityCS = false;
3924  bool inferNullabilityInnerOnly = false;
3925  bool inferNullabilityInnerOnlyComplete = false;
3926 
3927  // Are we in an assume-nonnull region?
3928  bool inAssumeNonNullRegion = false;
3929  SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
3930  if (assumeNonNullLoc.isValid()) {
3931  inAssumeNonNullRegion = true;
3932  recordNullabilitySeen(S, assumeNonNullLoc);
3933  }
3934 
3935  // Whether to complain about missing nullability specifiers or not.
3936  enum {
3937  /// Never complain.
3938  CAMN_No,
3939  /// Complain on the inner pointers (but not the outermost
3940  /// pointer).
3941  CAMN_InnerPointers,
3942  /// Complain about any pointers that don't have nullability
3943  /// specified or inferred.
3944  CAMN_Yes
3945  } complainAboutMissingNullability = CAMN_No;
3946  unsigned NumPointersRemaining = 0;
3947  auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
3948 
3949  if (IsTypedefName) {
3950  // For typedefs, we do not infer any nullability (the default),
3951  // and we only complain about missing nullability specifiers on
3952  // inner pointers.
3953  complainAboutMissingNullability = CAMN_InnerPointers;
3954 
3955  if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
3956  !T->getNullability(S.Context)) {
3957  // Note that we allow but don't require nullability on dependent types.
3958  ++NumPointersRemaining;
3959  }
3960 
3961  for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
3962  DeclaratorChunk &chunk = D.getTypeObject(i);
3963  switch (chunk.Kind) {
3966  case DeclaratorChunk::Pipe:
3967  break;
3968 
3971  ++NumPointersRemaining;
3972  break;
3973 
3976  continue;
3977 
3979  ++NumPointersRemaining;
3980  continue;
3981  }
3982  }
3983  } else {
3984  bool isFunctionOrMethod = false;
3985  switch (auto context = state.getDeclarator().getContext()) {
3991  isFunctionOrMethod = true;
3992  LLVM_FALLTHROUGH;
3993 
3995  if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
3996  complainAboutMissingNullability = CAMN_No;
3997  break;
3998  }
3999 
4000  // Weak properties are inferred to be nullable.
4001  if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4002  inferNullability = NullabilityKind::Nullable;
4003  break;
4004  }
4005 
4006  LLVM_FALLTHROUGH;
4007 
4010  complainAboutMissingNullability = CAMN_Yes;
4011 
4012  // Nullability inference depends on the type and declarator.
4013  auto wrappingKind = PointerWrappingDeclaratorKind::None;
4014  switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4015  case PointerDeclaratorKind::NonPointer:
4016  case PointerDeclaratorKind::MultiLevelPointer:
4017  // Cannot infer nullability.
4018  break;
4019 
4020  case PointerDeclaratorKind::SingleLevelPointer:
4021  // Infer _Nonnull if we are in an assumes-nonnull region.
4022  if (inAssumeNonNullRegion) {
4023  complainAboutInferringWithinChunk = wrappingKind;
4024  inferNullability = NullabilityKind::NonNull;
4025  inferNullabilityCS =
4028  }
4029  break;
4030 
4031  case PointerDeclaratorKind::CFErrorRefPointer:
4032  case PointerDeclaratorKind::NSErrorPointerPointer:
4033  // Within a function or method signature, infer _Nullable at both
4034  // levels.
4035  if (isFunctionOrMethod && inAssumeNonNullRegion)
4036  inferNullability = NullabilityKind::Nullable;
4037  break;
4038 
4039  case PointerDeclaratorKind::MaybePointerToCFRef:
4040  if (isFunctionOrMethod) {
4041  // On pointer-to-pointer parameters marked cf_returns_retained or
4042  // cf_returns_not_retained, if the outer pointer is explicit then
4043  // infer the inner pointer as _Nullable.
4044  auto hasCFReturnsAttr =
4045  [](const ParsedAttributesView &AttrList) -> bool {
4046  return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4047  AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4048  };
4049  if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4050  if (hasCFReturnsAttr(D.getAttributes()) ||
4051  hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4052  hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4053  inferNullability = NullabilityKind::Nullable;
4054  inferNullabilityInnerOnly = true;
4055  }
4056  }
4057  }
4058  break;
4059  }
4060  break;
4061  }
4062 
4064  complainAboutMissingNullability = CAMN_Yes;
4065  break;
4066 
4084  // Don't infer in these contexts.
4085  break;
4086  }
4087  }
4088 
4089  // Local function that returns true if its argument looks like a va_list.
4090  auto isVaList = [&S](QualType T) -> bool {
4091  auto *typedefTy = T->getAs<TypedefType>();
4092  if (!typedefTy)
4093  return false;
4094  TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4095  do {
4096  if (typedefTy->getDecl() == vaListTypedef)
4097  return true;
4098  if (auto *name = typedefTy->getDecl()->getIdentifier())
4099  if (name->isStr("va_list"))
4100  return true;
4101  typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4102  } while (typedefTy);
4103  return false;
4104  };
4105 
4106  // Local function that checks the nullability for a given pointer declarator.
4107  // Returns true if _Nonnull was inferred.
4108  auto inferPointerNullability =
4109  [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4110  SourceLocation pointerEndLoc,
4111  ParsedAttributesView &attrs) -> ParsedAttr * {
4112  // We've seen a pointer.
4113  if (NumPointersRemaining > 0)
4114  --NumPointersRemaining;
4115 
4116  // If a nullability attribute is present, there's nothing to do.
4117  if (hasNullabilityAttr(attrs))
4118  return nullptr;
4119 
4120  // If we're supposed to infer nullability, do so now.
4121  if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4122  ParsedAttr::Syntax syntax = inferNullabilityCS
4125  ParsedAttr *nullabilityAttr =
4126  state.getDeclarator().getAttributePool().create(
4127  S.getNullabilityKeyword(*inferNullability),
4128  SourceRange(pointerLoc), nullptr, SourceLocation(), nullptr, 0,
4129  syntax);
4130 
4131  attrs.addAtStart(nullabilityAttr);
4132 
4133  if (inferNullabilityCS) {
4134  state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4135  ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4136  }
4137 
4138  if (pointerLoc.isValid() &&
4139  complainAboutInferringWithinChunk !=
4141  auto Diag =
4142  S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4143  Diag << static_cast<int>(complainAboutInferringWithinChunk);
4145  }
4146 
4147  if (inferNullabilityInnerOnly)
4148  inferNullabilityInnerOnlyComplete = true;
4149  return nullabilityAttr;
4150  }
4151 
4152  // If we're supposed to complain about missing nullability, do so
4153  // now if it's truly missing.
4154  switch (complainAboutMissingNullability) {
4155  case CAMN_No:
4156  break;
4157 
4158  case CAMN_InnerPointers:
4159  if (NumPointersRemaining == 0)
4160  break;
4161  LLVM_FALLTHROUGH;
4162 
4163  case CAMN_Yes:
4164  checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4165  }
4166  return nullptr;
4167  };
4168 
4169  // If the type itself could have nullability but does not, infer pointer
4170  // nullability and perform consistency checking.
4171  if (S.CodeSynthesisContexts.empty()) {
4172  if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4173  !T->getNullability(S.Context)) {
4174  if (isVaList(T)) {
4175  // Record that we've seen a pointer, but do nothing else.
4176  if (NumPointersRemaining > 0)
4177  --NumPointersRemaining;
4178  } else {
4179  SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4180  if (T->isBlockPointerType())
4181  pointerKind = SimplePointerKind::BlockPointer;
4182  else if (T->isMemberPointerType())
4183  pointerKind = SimplePointerKind::MemberPointer;
4184 
4185  if (auto *attr = inferPointerNullability(
4186  pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4187  D.getDeclSpec().getLocEnd(),
4189  T = Context.getAttributedType(
4190  AttributedType::getNullabilityAttrKind(*inferNullability),T,T);
4191  attr->setUsedAsTypeAttr();
4192  }
4193  }
4194  }
4195 
4196  if (complainAboutMissingNullability == CAMN_Yes &&
4197  T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4198  D.isPrototypeContext() &&
4200  checkNullabilityConsistency(S, SimplePointerKind::Array,
4202  }
4203  }
4204 
4205  // Walk the DeclTypeInfo, building the recursive type as we go.
4206  // DeclTypeInfos are ordered from the identifier out, which is
4207  // opposite of what we want :).
4208  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4209  unsigned chunkIndex = e - i - 1;
4210  state.setCurrentChunkIndex(chunkIndex);
4211  DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4212  IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4213  switch (DeclType.Kind) {
4215  if (i == 0)
4216  warnAboutRedundantParens(S, D, T);
4217  T = S.BuildParenType(T);
4218  break;
4220  // If blocks are disabled, emit an error.
4221  if (!LangOpts.Blocks)
4222  S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4223 
4224  // Handle pointer nullability.
4225  inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4226  DeclType.EndLoc, DeclType.getAttrs());
4227 
4228  T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4229  if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4230  // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4231  // qualified with const.
4232  if (LangOpts.OpenCL)
4233  DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4234  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4235  }
4236  break;
4238  // Verify that we're not building a pointer to pointer to function with
4239  // exception specification.
4240  if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4241  S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4242  D.setInvalidType(true);
4243  // Build the type anyway.
4244  }
4245 
4246  // Handle pointer nullability
4247  inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4248  DeclType.EndLoc, DeclType.getAttrs());
4249 
4250  if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
4251  T = Context.getObjCObjectPointerType(T);
4252  if (DeclType.Ptr.TypeQuals)
4253  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4254  break;
4255  }
4256 
4257  // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4258  // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4259  // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4260  if (LangOpts.OpenCL) {
4261  if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4262  T->isBlockPointerType()) {
4263  S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4264  D.setInvalidType(true);
4265  }
4266  }
4267 
4268  T = S.BuildPointerType(T, DeclType.Loc, Name);
4269  if (DeclType.Ptr.TypeQuals)
4270  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4271  break;
4273  // Verify that we're not building a reference to pointer to function with
4274  // exception specification.
4275  if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4276  S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4277  D.setInvalidType(true);
4278  // Build the type anyway.
4279  }
4280  T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4281 
4282  if (DeclType.Ref.HasRestrict)
4283  T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4284  break;
4285  }
4286  case DeclaratorChunk::Array: {
4287  // Verify that we're not building an array of pointers to function with
4288  // exception specification.
4289  if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4290  S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4291  D.setInvalidType(true);
4292  // Build the type anyway.
4293  }
4294  DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4295  Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4297  if (ATI.isStar)
4298  ASM = ArrayType::Star;
4299  else if (ATI.hasStatic)
4300  ASM = ArrayType::Static;
4301  else
4302  ASM = ArrayType::Normal;
4303  if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4304  // FIXME: This check isn't quite right: it allows star in prototypes
4305  // for function definitions, and disallows some edge cases detailed
4306  // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4307  S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4308  ASM = ArrayType::Normal;
4309  D.setInvalidType(true);
4310  }
4311 
4312  // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4313  // shall appear only in a declaration of a function parameter with an
4314  // array type, ...
4315  if (ASM == ArrayType::Static || ATI.TypeQuals) {
4316  if (!(D.isPrototypeContext() ||
4318  S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4319  (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4320  // Remove the 'static' and the type qualifiers.
4321  if (ASM == ArrayType::Static)
4322  ASM = ArrayType::Normal;
4323  ATI.TypeQuals = 0;
4324  D.setInvalidType(true);
4325  }
4326 
4327  // C99 6.7.5.2p1: ... and then only in the outermost array type
4328  // derivation.
4329  if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4330  S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4331  (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4332  if (ASM == ArrayType::Static)
4333  ASM = ArrayType::Normal;
4334  ATI.TypeQuals = 0;
4335  D.setInvalidType(true);
4336  }
4337  }
4338  const AutoType *AT = T->getContainedAutoType();
4339  // Allow arrays of auto if we are a generic lambda parameter.
4340  // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4341  if (AT &&
4343  // We've already diagnosed this for decltype(auto).
4344  if (!AT->isDecltypeAuto())
4345  S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4346  << getPrintableNameForEntity(Name) << T;
4347  T = QualType();
4348  break;
4349  }
4350 
4351  // Array parameters can be marked nullable as well, although it's not
4352  // necessary if they're marked 'static'.
4353  if (complainAboutMissingNullability == CAMN_Yes &&
4354  !hasNullabilityAttr(DeclType.getAttrs()) &&
4355  ASM != ArrayType::Static &&
4356  D.isPrototypeContext() &&
4357  !hasOuterPointerLikeChunk(D, chunkIndex)) {
4358  checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4359  }
4360 
4361  T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4362  SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4363  break;
4364  }
4366  // If the function declarator has a prototype (i.e. it is not () and
4367  // does not have a K&R-style identifier list), then the arguments are part
4368  // of the type, otherwise the argument list is ().
4369  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4370  IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
4371 
4372  // Check for auto functions and trailing return type and adjust the
4373  // return type accordingly.
4374  if (!D.isInvalidType()) {
4375  // trailing-return-type is only required if we're declaring a function,
4376  // and not, for instance, a pointer to a function.
4377  if (D.getDeclSpec().hasAutoTypeSpec() &&
4378  !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
4379  !S.getLangOpts().CPlusPlus14) {
4382  ? diag::err_auto_missing_trailing_return
4383  : diag::err_deduced_return_type);
4384  T = Context.IntTy;
4385  D.setInvalidType(true);
4386  } else if (FTI.hasTrailingReturnType()) {
4387  // T must be exactly 'auto' at this point. See CWG issue 681.
4388  if (isa<ParenType>(T)) {
4389  S.Diag(D.getLocStart(),
4390  diag::err_trailing_return_in_parens)
4391  << T << D.getSourceRange();
4392  D.setInvalidType(true);
4393  } else if (D.getName().getKind() ==
4395  if (T != Context.DependentTy) {
4396  S.Diag(D.getDeclSpec().getLocStart(),
4397  diag::err_deduction_guide_with_complex_decl)
4398  << D.getSourceRange();
4399  D.setInvalidType(true);
4400  }
4402  (T.hasQualifiers() || !isa<AutoType>(T) ||
4403  cast<AutoType>(T)->getKeyword() !=
4406  diag::err_trailing_return_without_auto)
4407  << T << D.getDeclSpec().getSourceRange();
4408  D.setInvalidType(true);
4409  }
4410  T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4411  if (T.isNull()) {
4412  // An error occurred parsing the trailing return type.
4413  T = Context.IntTy;
4414  D.setInvalidType(true);
4415  }
4416  }
4417  }
4418 
4419  // C99 6.7.5.3p1: The return type may not be a function or array type.
4420  // For conversion functions, we'll diagnose this particular error later.
4421  if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4422  (D.getName().getKind() !=
4424  unsigned diagID = diag::err_func_returning_array_function;
4425  // Last processing chunk in block context means this function chunk
4426  // represents the block.
4427  if (chunkIndex == 0 &&
4429  diagID = diag::err_block_returning_array_function;
4430  S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4431  T = Context.IntTy;
4432  D.setInvalidType(true);
4433  }
4434 
4435  // Do not allow returning half FP value.
4436  // FIXME: This really should be in BuildFunctionType.
4437  if (T->isHalfType()) {
4438  if (S.getLangOpts().OpenCL) {
4439  if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4440  S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4441  << T << 0 /*pointer hint*/;
4442  D.setInvalidType(true);
4443  }
4444  } else if (!S.getLangOpts().HalfArgsAndReturns) {
4445  S.Diag(D.getIdentifierLoc(),
4446  diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4447  D.setInvalidType(true);
4448  }
4449  }
4450 
4451  if (LangOpts.OpenCL) {
4452  // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4453  // function.
4454  if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4455  T->isPipeType()) {
4456  S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4457  << T << 1 /*hint off*/;
4458  D.setInvalidType(true);
4459  }
4460  // OpenCL doesn't support variadic functions and blocks
4461  // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4462  // We also allow here any toolchain reserved identifiers.
4463  if (FTI.isVariadic &&
4464  !(D.getIdentifier() &&
4465  ((D.getIdentifier()->getName() == "printf" &&
4466  LangOpts.OpenCLVersion >= 120) ||
4467  D.getIdentifier()->getName().startswith("__")))) {
4468  S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4469  D.setInvalidType(true);
4470  }
4471  }
4472 
4473  // Methods cannot return interface types. All ObjC objects are
4474  // passed by reference.
4475  if (T->isObjCObjectType()) {
4476  SourceLocation DiagLoc, FixitLoc;
4477  if (TInfo) {
4478  DiagLoc = TInfo->getTypeLoc().getLocStart();
4479  FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
4480  } else {
4481  DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4482  FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
4483  }
4484  S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4485  << 0 << T
4486  << FixItHint::CreateInsertion(FixitLoc, "*");
4487 
4488  T = Context.getObjCObjectPointerType(T);
4489  if (TInfo) {
4490  TypeLocBuilder TLB;
4491  TLB.pushFullCopy(TInfo->getTypeLoc());
4493  TLoc.setStarLoc(FixitLoc);
4494  TInfo = TLB.getTypeSourceInfo(Context, T);
4495  }
4496 
4497  D.setInvalidType(true);
4498  }
4499 
4500  // cv-qualifiers on return types are pointless except when the type is a
4501  // class type in C++.
4502  if ((T.getCVRQualifiers() || T->isAtomicType()) &&
4503  !(S.getLangOpts().CPlusPlus &&
4504  (T->isDependentType() || T->isRecordType()))) {
4505  if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
4507  // [6.9.1/3] qualified void return is invalid on a C
4508  // function definition. Apparently ok on declarations and
4509  // in C++ though (!)
4510  S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
4511  } else
4512  diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
4513  }
4514 
4515  // Objective-C ARC ownership qualifiers are ignored on the function
4516  // return type (by type canonicalization). Complain if this attribute
4517  // was written here.
4518  if (T.getQualifiers().hasObjCLifetime()) {
4519  SourceLocation AttrLoc;
4520  if (chunkIndex + 1 < D.getNumTypeObjects()) {
4521  DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
4522  for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
4523  if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4524  AttrLoc = AL.getLoc();
4525  break;
4526  }
4527  }
4528  }
4529  if (AttrLoc.isInvalid()) {
4530  for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4531  if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4532  AttrLoc = AL.getLoc();
4533  break;
4534  }
4535  }
4536  }
4537 
4538  if (AttrLoc.isValid()) {
4539  // The ownership attributes are almost always written via
4540  // the predefined
4541  // __strong/__weak/__autoreleasing/__unsafe_unretained.
4542  if (AttrLoc.isMacroID())
4543  AttrLoc =
4545 
4546  S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
4547  << T.getQualifiers().getObjCLifetime();
4548  }
4549  }
4550 
4551  if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
4552  // C++ [dcl.fct]p6:
4553  // Types shall not be defined in return or parameter types.
4554  TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
4555  S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
4556  << Context.getTypeDeclType(Tag);
4557  }
4558 
4559  // Exception specs are not allowed in typedefs. Complain, but add it
4560  // anyway.
4561  if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
4562  S.Diag(FTI.getExceptionSpecLocBeg(),
4563  diag::err_exception_spec_in_typedef)
4566 
4567  // If we see "T var();" or "T var(T());" at block scope, it is probably
4568  // an attempt to initialize a variable, not a function declaration.
4569  if (FTI.isAmbiguous)
4570  warnAboutAmbiguousFunction(S, D, DeclType, T);
4571 
4573  getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
4574 
4575  if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
4576  && !LangOpts.OpenCL) {
4577  // Simple void foo(), where the incoming T is the result type.
4578  T = Context.getFunctionNoProtoType(T, EI);
4579  } else {
4580  // We allow a zero-parameter variadic function in C if the
4581  // function is marked with the "overloadable" attribute. Scan
4582  // for this attribute now.
4583  if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
4584  if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
4585  S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
4586 
4587  if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
4588  // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
4589  // definition.
4590  S.Diag(FTI.Params[0].IdentLoc,
4591  diag::err_ident_list_in_fn_declaration);
4592  D.setInvalidType(true);
4593  // Recover by creating a K&R-style function type.
4594  T = Context.getFunctionNoProtoType(T, EI);
4595  break;
4596  }
4597 
4599  EPI.ExtInfo = EI;
4600  EPI.Variadic = FTI.isVariadic;
4602  EPI.TypeQuals = FTI.TypeQuals;
4603  EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
4605  : RQ_RValue;
4606 
4607  // Otherwise, we have a function with a parameter list that is
4608  // potentially variadic.
4609  SmallVector<QualType, 16> ParamTys;
4610  ParamTys.reserve(FTI.NumParams);
4611 
4613  ExtParameterInfos(FTI.NumParams);
4614  bool HasAnyInterestingExtParameterInfos = false;
4615 
4616  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
4617  ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
4618  QualType ParamTy = Param->getType();
4619  assert(!ParamTy.isNull() && "Couldn't parse type?");
4620 
4621  // Look for 'void'. void is allowed only as a single parameter to a
4622  // function with no other parameters (C99 6.7.5.3p10). We record
4623  // int(void) as a FunctionProtoType with an empty parameter list.
4624  if (ParamTy->isVoidType()) {
4625  // If this is something like 'float(int, void)', reject it. 'void'
4626  // is an incomplete type (C99 6.2.5p19) and function decls cannot
4627  // have parameters of incomplete type.
4628  if (FTI.NumParams != 1 || FTI.isVariadic) {
4629  S.Diag(DeclType.Loc, diag::err_void_only_param);
4630  ParamTy = Context.IntTy;
4631  Param->setType(ParamTy);
4632  } else if (FTI.Params[i].Ident) {
4633  // Reject, but continue to parse 'int(void abc)'.
4634  S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
4635  ParamTy = Context.IntTy;
4636  Param->setType(ParamTy);
4637  } else {
4638  // Reject, but continue to parse 'float(const void)'.
4639  if (ParamTy.hasQualifiers())
4640  S.Diag(DeclType.Loc, diag::err_void_param_qualified);
4641 
4642  // Do not add 'void' to the list.
4643  break;
4644  }
4645  } else if (ParamTy->isHalfType()) {
4646  // Disallow half FP parameters.
4647  // FIXME: This really should be in BuildFunctionType.
4648  if (S.getLangOpts().OpenCL) {
4649  if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4650  S.Diag(Param->getLocation(),
4651  diag::err_opencl_half_param) << ParamTy;
4652  D.setInvalidType();
4653  Param->setInvalidDecl();
4654  }
4655  } else if (!S.getLangOpts().HalfArgsAndReturns) {
4656  S.Diag(Param->getLocation(),
4657  diag::err_parameters_retval_cannot_have_fp16_type) << 0;
4658  D.setInvalidType();
4659  }
4660  } else if (!FTI.hasPrototype) {
4661  if (ParamTy->isPromotableIntegerType()) {
4662  ParamTy = Context.getPromotedIntegerType(ParamTy);
4663  Param->setKNRPromoted(true);
4664  } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
4665  if (BTy->getKind() == BuiltinType::Float) {
4666  ParamTy = Context.DoubleTy;
4667  Param->setKNRPromoted(true);
4668  }
4669  }
4670  }
4671 
4672  if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
4673  ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
4674  HasAnyInterestingExtParameterInfos = true;
4675  }
4676 
4677  if (auto attr = Param->getAttr<ParameterABIAttr>()) {
4678  ExtParameterInfos[i] =
4679  ExtParameterInfos[i].withABI(attr->getABI());
4680  HasAnyInterestingExtParameterInfos = true;
4681  }
4682 
4683  if (Param->hasAttr<PassObjectSizeAttr>()) {
4684  ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
4685  HasAnyInterestingExtParameterInfos = true;
4686  }
4687 
4688  if (Param->hasAttr<NoEscapeAttr>()) {
4689  ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
4690  HasAnyInterestingExtParameterInfos = true;
4691  }
4692 
4693  ParamTys.push_back(ParamTy);
4694  }
4695 
4696  if (HasAnyInterestingExtParameterInfos) {
4697  EPI.ExtParameterInfos = ExtParameterInfos.data();
4698  checkExtParameterInfos(S, ParamTys, EPI,
4699  [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
4700  }
4701 
4702  SmallVector<QualType, 4> Exceptions;
4703  SmallVector<ParsedType, 2> DynamicExceptions;
4704  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4705  Expr *NoexceptExpr = nullptr;
4706 
4707  if (FTI.getExceptionSpecType() == EST_Dynamic) {
4708  // FIXME: It's rather inefficient to have to split into two vectors
4709  // here.
4710  unsigned N = FTI.getNumExceptions();
4711  DynamicExceptions.reserve(N);
4712  DynamicExceptionRanges.reserve(N);
4713  for (unsigned I = 0; I != N; ++I) {
4714  DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
4715  DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
4716  }
4717  } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
4718  NoexceptExpr = FTI.NoexceptExpr;
4719  }
4720 
4722  FTI.getExceptionSpecType(),
4723  DynamicExceptions,
4724  DynamicExceptionRanges,
4725  NoexceptExpr,
4726  Exceptions,
4727  EPI.ExceptionSpec);
4728 
4729  T = Context.getFunctionType(T, ParamTys, EPI);
4730  }
4731  break;
4732  }
4734  // The scope spec must refer to a class, or be dependent.
4735  CXXScopeSpec &SS = DeclType.Mem.Scope();
4736  QualType ClsType;
4737 
4738  // Handle pointer nullability.
4739  inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
4740  DeclType.EndLoc, DeclType.getAttrs());
4741 
4742  if (SS.isInvalid()) {
4743  // Avoid emitting extra errors if we already errored on the scope.
4744  D.setInvalidType(true);
4745  } else if (S.isDependentScopeSpecifier(SS) ||
4746  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
4747  NestedNameSpecifier *NNS = SS.getScopeRep();
4748  NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
4749  switch (NNS->getKind()) {
4751  ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
4752  NNS->getAsIdentifier());
4753  break;
4754 
4759  llvm_unreachable("Nested-name-specifier must name a type");
4760 
4763  ClsType = QualType(NNS->getAsType(), 0);
4764  // Note: if the NNS has a prefix and ClsType is a nondependent
4765  // TemplateSpecializationType, then the NNS prefix is NOT included
4766  // in ClsType; hence we wrap ClsType into an ElaboratedType.
4767  // NOTE: in particular, no wrap occurs if ClsType already is an
4768  // Elaborated, DependentName, or DependentTemplateSpecialization.
4769  if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
4770  ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
4771  break;
4772  }
4773  } else {
4774  S.Diag(DeclType.Mem.Scope().getBeginLoc(),
4775  diag::err_illegal_decl_mempointer_in_nonclass)
4776  << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
4777  << DeclType.Mem.Scope().getRange();
4778  D.setInvalidType(true);
4779  }
4780 
4781  if (!ClsType.isNull())
4782  T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
4783  D.getIdentifier());
4784  if (T.isNull()) {
4785  T = Context.IntTy;
4786  D.setInvalidType(true);
4787  } else if (DeclType.Mem.TypeQuals) {
4788  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
4789  }
4790  break;
4791  }
4792 
4793  case DeclaratorChunk::Pipe: {
4794  T = S.BuildReadPipeType(T, DeclType.Loc);
4795  processTypeAttrs(state, T, TAL_DeclSpec,
4797  break;
4798  }
4799  }
4800 
4801  if (T.isNull()) {
4802  D.setInvalidType(true);
4803  T = Context.IntTy;
4804  }
4805 
4806  // See if there are any attributes on this declarator chunk.
4807  processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
4808  }
4809 
4810  // GNU warning -Wstrict-prototypes
4811  // Warn if a function declaration is without a prototype.
4812  // This warning is issued for all kinds of unprototyped function
4813  // declarations (i.e. function type typedef, function pointer etc.)
4814  // C99 6.7.5.3p14:
4815  // The empty list in a function declarator that is not part of a definition
4816  // of that function specifies that no information about the number or types
4817  // of the parameters is supplied.
4818  if (!LangOpts.CPlusPlus && D.getFunctionDefinitionKind() == FDK_Declaration) {
4819  bool IsBlock = false;
4820  for (const DeclaratorChunk &DeclType : D.type_objects()) {
4821  switch (DeclType.Kind) {
4823  IsBlock = true;
4824  break;
4826  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4827  if (FTI.NumParams == 0 && !FTI.isVariadic)
4828  S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
4829  << IsBlock
4830  << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
4831  IsBlock = false;
4832  break;
4833  }
4834  default:
4835  break;
4836  }
4837  }
4838  }
4839 
4840  assert(!T.isNull() && "T must not be null after this point");
4841 
4842  if (LangOpts.CPlusPlus && T->isFunctionType()) {
4843  const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
4844  assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
4845 
4846  // C++ 8.3.5p4:
4847  // A cv-qualifier-seq shall only be part of the function type
4848  // for a nonstatic member function, the function type to which a pointer
4849  // to member refers, or the top-level function type of a function typedef
4850  // declaration.
4851  //
4852  // Core issue 547 also allows cv-qualifiers on function types that are
4853  // top-level template type arguments.
4854  enum { NonMember, Member, DeductionGuide } Kind = NonMember;
4856  Kind = DeductionGuide;
4857  else if (!D.getCXXScopeSpec().isSet()) {
4861  Kind = Member;
4862  } else {
4864  if (!DC || DC->isRecord())
4865  Kind = Member;
4866  }
4867 
4868  // C++11 [dcl.fct]p6 (w/DR1417):
4869  // An attempt to specify a function type with a cv-qualifier-seq or a
4870  // ref-qualifier (including by typedef-name) is ill-formed unless it is:
4871  // - the function type for a non-static member function,
4872  // - the function type to which a pointer to member refers,
4873  // - the top-level function type of a function typedef declaration or
4874  // alias-declaration,
4875  // - the type-id in the default argument of a type-parameter, or
4876  // - the type-id of a template-argument for a type-parameter
4877  //
4878  // FIXME: Checking this here is insufficient. We accept-invalid on:
4879  //
4880  // template<typename T> struct S { void f(T); };
4881  // S<int() const> s;
4882  //
4883  // ... for instance.
4884  if (IsQualifiedFunction &&
4885  !(Kind == Member &&
4887  !IsTypedefName &&
4890  SourceLocation Loc = D.getLocStart();
4891  SourceRange RemovalRange;
4892  unsigned I;
4893  if (D.isFunctionDeclarator(I)) {
4894  SmallVector<SourceLocation, 4> RemovalLocs;
4895  const DeclaratorChunk &Chunk = D.getTypeObject(I);
4896  assert(Chunk.Kind == DeclaratorChunk::Function);
4897  if (Chunk.Fun.hasRefQualifier())
4898  RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
4899  if (Chunk.Fun.TypeQuals & Qualifiers::Const)
4900  RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
4901  if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
4902  RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
4903  if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
4904  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
4905  if (!RemovalLocs.empty()) {
4906  llvm::sort(RemovalLocs.begin(), RemovalLocs.end(),
4908  RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
4909  Loc = RemovalLocs.front();
4910  }
4911  }
4912 
4913  S.Diag(Loc, diag::err_invalid_qualified_function_type)
4914  << Kind << D.isFunctionDeclarator() << T
4916  << FixItHint::CreateRemoval(RemovalRange);
4917 
4918  // Strip the cv-qualifiers and ref-qualifiers from the type.
4920  EPI.TypeQuals = 0;
4921  EPI.RefQualifier = RQ_None;
4922 
4923  T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
4924  EPI);
4925  // Rebuild any parens around the identifier in the function type.
4926  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4928  break;
4929  T = S.BuildParenType(T);
4930  }
4931  }
4932  }
4933 
4934  // Apply any undistributed attributes from the declarator.
4936 
4937  // Diagnose any ignored type attributes.
4938  state.diagnoseIgnoredTypeAttrs(T);
4939 
4940  // C++0x [dcl.constexpr]p9:
4941  // A constexpr specifier used in an object declaration declares the object
4942  // as const.
4943  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
4944  T.addConst();
4945  }
4946 
4947  // If there was an ellipsis in the declarator, the declaration declares a
4948  // parameter pack whose type may be a pack expansion type.
4949  if (D.hasEllipsis()) {
4950  // C++0x [dcl.fct]p13:
4951  // A declarator-id or abstract-declarator containing an ellipsis shall
4952  // only be used in a parameter-declaration. Such a parameter-declaration
4953  // is a parameter pack (14.5.3). [...]
4954  switch (D.getContext()) {
4957  // C++0x [dcl.fct]p13:
4958  // [...] When it is part of a parameter-declaration-clause, the
4959  // parameter pack is a function parameter pack (14.5.3). The type T
4960  // of the declarator-id of the function parameter pack shall contain
4961  // a template parameter pack; each template parameter pack in T is
4962  // expanded by the function parameter pack.
4963  //
4964  // We represent function parameter packs as function parameters whose
4965  // type is a pack expansion.
4966  if (!T->containsUnexpandedParameterPack()) {
4967  S.Diag(D.getEllipsisLoc(),
4968  diag::err_function_parameter_pack_without_parameter_packs)
4969  << T << D.getSourceRange();
4971  } else {
4972  T = Context.getPackExpansionType(T, None);
4973  }
4974  break;
4976  // C++0x [temp.param]p15:
4977  // If a template-parameter is a [...] is a parameter-declaration that
4978  // declares a parameter pack (8.3.5), then the template-parameter is a
4979  // template parameter pack (14.5.3).
4980  //
4981  // Note: core issue 778 clarifies that, if there are any unexpanded
4982  // parameter packs in the type of the non-type template parameter, then
4983  // it expands those parameter packs.
4985  T = Context.getPackExpansionType(T, None);
4986  else
4987  S.Diag(D.getEllipsisLoc(),
4988  LangOpts.CPlusPlus11
4989  ? diag::warn_cxx98_compat_variadic_templates
4990  : diag::ext_variadic_templates);
4991  break;
4992 
4995  case DeclaratorContext::ObjCParameterContext: // FIXME: special diagnostic
4996  // here?
4997  case DeclaratorContext::ObjCResultContext: // FIXME: special diagnostic
4998  // here?
5018  // FIXME: We may want to allow parameter packs in block-literal contexts
5019  // in the future.
5020  S.Diag(D.getEllipsisLoc(),
5021  diag::err_ellipsis_in_declarator_not_parameter);
5023  break;
5024  }
5025  }
5026 
5027  assert(!T.isNull() && "T must not be null at the end of this function");
5028  if (D.isInvalidType())
5029  return Context.getTrivialTypeSourceInfo(T);
5030 
5031  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
5032 }
5033 
5034 /// GetTypeForDeclarator - Convert the type for the specified
5035 /// declarator to Type instances.
5036 ///
5037 /// The result of this call will never be null, but the associated
5038 /// type may be a null type if there's an unrecoverable error.
5040  // Determine the type of the declarator. Not all forms of declarator
5041  // have a type.
5042 
5043  TypeProcessingState state(*this, D);
5044 
5045  TypeSourceInfo *ReturnTypeInfo = nullptr;
5046  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5047  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5048  inferARCWriteback(state, T);
5049 
5050  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5051 }
5052 
5054  QualType &declSpecTy,
5055  Qualifiers::ObjCLifetime ownership) {
5056  if (declSpecTy->isObjCRetainableType() &&
5057  declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5058  Qualifiers qs;
5059  qs.addObjCLifetime(ownership);
5060  declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5061  }
5062 }
5063 
5064 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5065  Qualifiers::ObjCLifetime ownership,
5066  unsigned chunkIndex) {
5067  Sema &S = state.getSema();
5068  Declarator &D = state.getDeclarator();
5069 
5070  // Look for an explicit lifetime attribute.
5071  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5072  if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5073  return;
5074 
5075  const char *attrStr = nullptr;
5076  switch (ownership) {
5077  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5078  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5079  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5080  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5081  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5082  }
5083 
5084  IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5085  Arg->Ident = &S.Context.Idents.get(attrStr);
5086  Arg->Loc = SourceLocation();
5087 
5088  ArgsUnion Args(Arg);
5089 
5090  // If there wasn't one, add one (with an invalid source location
5091  // so that we don't make an AttributedType for it).
5092  ParsedAttr *attr = D.getAttributePool().create(
5093  &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5094  /*scope*/ nullptr, SourceLocation(),
5095  /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5096  chunk.getAttrs().addAtStart(attr);
5097  // TODO: mark whether we did this inference?
5098 }
5099 
5100 /// Used for transferring ownership in casts resulting in l-values.
5101 static void transferARCOwnership(TypeProcessingState &state,
5102  QualType &declSpecTy,
5103  Qualifiers::ObjCLifetime ownership) {
5104  Sema &S = state.getSema();
5105  Declarator &D = state.getDeclarator();
5106 
5107  int inner = -1;
5108  bool hasIndirection = false;
5109  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5110  DeclaratorChunk &chunk = D.getTypeObject(i);
5111  switch (chunk.Kind) {
5113  // Ignore parens.
5114  break;
5115 
5119  if (inner != -1)
5120  hasIndirection = true;
5121  inner = i;
5122  break;
5123 
5125  if (inner != -1)
5126  transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5127  return;
5128 
5131  case DeclaratorChunk::Pipe:
5132  return;
5133  }
5134  }
5135 
5136  if (inner == -1)
5137  return;
5138 
5139  DeclaratorChunk &chunk = D.getTypeObject(inner);
5140  if (chunk.Kind == DeclaratorChunk::Pointer) {
5141  if (declSpecTy->isObjCRetainableType())
5142  return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5143  if (declSpecTy->isObjCObjectType() && hasIndirection)
5144  return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5145  } else {
5146  assert(chunk.Kind == DeclaratorChunk::Array ||
5147  chunk.Kind == DeclaratorChunk::Reference);
5148  return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5149  }
5150 }
5151 
5153  TypeProcessingState state(*this, D);
5154 
5155  TypeSourceInfo *ReturnTypeInfo = nullptr;
5156  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5157 
5158  if (getLangOpts().ObjC1) {
5159  Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5160  if (ownership != Qualifiers::OCL_None)
5161  transferARCOwnership(state, declSpecTy, ownership);
5162  }
5163 
5164  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5165 }
5166 
5167 /// Map an AttributedType::Kind to an ParsedAttr::Kind.
5169  switch (kind) {
5171  return ParsedAttr::AT_AddressSpace;
5173  return ParsedAttr::AT_Regparm;
5175  return ParsedAttr::AT_VectorSize;
5177  return ParsedAttr::AT_NeonVectorType;
5179  return ParsedAttr::AT_NeonPolyVectorType;
5181  return ParsedAttr::AT_ObjCGC;
5184  return ParsedAttr::AT_ObjCOwnership;
5186  return ParsedAttr::AT_NoReturn;
5188  return ParsedAttr::AT_AnyX86NoCfCheck;
5190  return ParsedAttr::AT_CDecl;
5192  return ParsedAttr::AT_FastCall;
5194  return ParsedAttr::AT_StdCall;
5196  return ParsedAttr::AT_ThisCall;
5198  return ParsedAttr::AT_RegCall;
5200  return ParsedAttr::AT_Pascal;
5202  return ParsedAttr::AT_SwiftCall;
5204  return ParsedAttr::AT_VectorCall;
5207  return ParsedAttr::AT_Pcs;
5209  return ParsedAttr::AT_IntelOclBicc;
5211  return ParsedAttr::AT_MSABI;
5213  return ParsedAttr::AT_SysVABI;
5215  return ParsedAttr::AT_PreserveMost;
5217  return ParsedAttr::AT_PreserveAll;
5219  return ParsedAttr::AT_Ptr32;
5221  return ParsedAttr::AT_Ptr64;
5223  return ParsedAttr::AT_SPtr;
5225  return ParsedAttr::AT_UPtr;
5227  return ParsedAttr::AT_TypeNonNull;
5229  return ParsedAttr::AT_TypeNullable;
5231  return ParsedAttr::AT_TypeNullUnspecified;
5233  return ParsedAttr::AT_ObjCKindOf;
5235  return ParsedAttr::AT_NSReturnsRetained;
5237  return ParsedAttr::AT_LifetimeBound;
5238  }
5239  llvm_unreachable("unexpected attribute kind!");
5240 }
5241 
5242 static void setAttributedTypeLoc(AttributedTypeLoc TL, const ParsedAttr &attr) {
5243  TL.setAttrNameLoc(attr.getLoc());
5244  if (TL.hasAttrExprOperand()) {
5245  assert(attr.isArgExpr(0) && "mismatched attribute operand kind");
5246  TL.setAttrExprOperand(attr.getArgAsExpr(0));
5247  } else if (TL.hasAttrEnumOperand()) {
5248  assert((attr.isArgIdent(0) || attr.isArgExpr(0)) &&
5249  "unexpected attribute operand kind");
5250  if (attr.isArgIdent(0))
5252  else
5254  }
5255 
5256  // FIXME: preserve this information to here.
5257  if (TL.hasAttrOperand())
5259 }
5260 
5262  const ParsedAttributesView &Attrs,
5263  const ParsedAttributesView &DeclAttrs) {
5264  // DeclAttrs and Attrs cannot be both empty.
5265  assert((!Attrs.empty() || !DeclAttrs.empty()) &&
5266  "no type attributes in the expected location!");
5267 
5268  ParsedAttr::Kind parsedKind = getAttrListKind(TL.getAttrKind());
5269  // Try to search for an attribute of matching kind in Attrs list.
5270  for (const ParsedAttr &AL : Attrs)
5271  if (AL.getKind() == parsedKind)
5272  return setAttributedTypeLoc(TL, AL);
5273 
5274  for (const ParsedAttr &AL : DeclAttrs)
5275  if (AL.isCXX11Attribute() || AL.getKind() == parsedKind)
5276  return setAttributedTypeLoc(TL, AL);
5277  llvm_unreachable("no matching type attribute in expected location!");
5278 }
5279 
5280 namespace {
5281  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5282  ASTContext &Context;
5283  const DeclSpec &DS;
5284 
5285  public:
5286  TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
5287  : Context(Context), DS(DS) {}
5288 
5289  void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5291  Visit(TL.getModifiedLoc());
5292  }
5293  void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5294  Visit(TL.getUnqualifiedLoc());
5295  }
5296  void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5297  TL.setNameLoc(DS.getTypeSpecTypeLoc());
5298  }
5299  void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5300  TL.setNameLoc(DS.getTypeSpecTypeLoc());
5301  // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5302  // addition field. What we have is good enough for dispay of location
5303  // of 'fixit' on interface name.
5304  TL.setNameEndLoc(DS.getLocEnd());
5305  }
5306  void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5307  TypeSourceInfo *RepTInfo = nullptr;
5308  Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5309  TL.copy(RepTInfo->getTypeLoc());
5310  }
5311  void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5312  TypeSourceInfo *RepTInfo = nullptr;
5313  Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5314  TL.copy(RepTInfo->getTypeLoc());
5315  }
5316  void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5317  TypeSourceInfo *TInfo = nullptr;
5318  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5319 
5320  // If we got no declarator info from previous Sema routines,
5321  // just fill with the typespec loc.
5322  if (!TInfo) {
5323  TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5324  return;
5325  }
5326 
5327  TypeLoc OldTL = TInfo->getTypeLoc();
5328  if (TInfo->getType()->getAs<ElaboratedType>()) {
5329  ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5332  TL.copy(NamedTL);
5333  } else {
5335  assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5336  }
5337 
5338  }
5339  void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5340  assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
5343  }
5344  void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5345  assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
5348  assert(DS.getRepAsType());
5349  TypeSourceInfo *TInfo = nullptr;
5350  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5351  TL.setUnderlyingTInfo(TInfo);
5352  }
5353  void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5354  // FIXME: This holds only because we only have one unary transform.
5356  TL.setKWLoc(DS.getTypeSpecTypeLoc());
5358  assert(DS.getRepAsType());
5359  TypeSourceInfo *TInfo = nullptr;
5360  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5361  TL.setUnderlyingTInfo(TInfo);
5362  }
5363  void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5364  // By default, use the source location of the type specifier.
5366  if (TL.needsExtraLocalData()) {
5367  // Set info for the written builtin specifiers.
5369  // Try to have a meaningful source location.
5370  if (TL.getWrittenSignSpec() != TSS_unspecified)
5374  }
5375  }
5376  void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5377  ElaboratedTypeKeyword Keyword
5379  if (DS.getTypeSpecType() == TST_typename) {
5380  TypeSourceInfo *TInfo = nullptr;
5381  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5382  if (TInfo) {
5383  TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5384  return;
5385  }
5386  }
5387  TL.setElaboratedKeywordLoc(Keyword != ETK_None
5388  ? DS.getTypeSpecTypeLoc()
5389  : SourceLocation());
5390  const CXXScopeSpec& SS = DS.getTypeSpecScope();
5391  TL.setQualifierLoc(SS.getWithLocInContext(Context));
5392  Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5393  }
5394  void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5395  assert(DS.getTypeSpecType() == TST_typename);
5396  TypeSourceInfo *TInfo = nullptr;
5397  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5398  assert(TInfo);
5399  TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5400  }
5401  void VisitDependentTemplateSpecializationTypeLoc(
5403  assert(DS.getTypeSpecType() == TST_typename);
5404  TypeSourceInfo *TInfo = nullptr;
5405  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5406  assert(TInfo);
5407  TL.copy(
5408  TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5409  }
5410  void VisitTagTypeLoc(TagTypeLoc TL) {
5412  }
5413  void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
5414  // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
5415  // or an _Atomic qualifier.
5416  if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
5417  TL.setKWLoc(DS.getTypeSpecTypeLoc());
5419 
5420  TypeSourceInfo *TInfo = nullptr;
5421  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5422  assert(TInfo);
5423  TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5424  } else {
5425  TL.setKWLoc(DS.getAtomicSpecLoc());
5426  // No parens, to indicate this was spelled as an _Atomic qualifier.
5428  Visit(TL.getValueLoc());
5429  }
5430  }
5431 
5432  void VisitPipeTypeLoc(PipeTypeLoc TL) {
5433  TL.setKWLoc(DS.getTypeSpecTypeLoc());
5434 
5435  TypeSourceInfo *TInfo = nullptr;
5436  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5437  TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5438  }
5439 
5440  void VisitTypeLoc(TypeLoc TL) {
5441  // FIXME: add other typespec types and change this to an assert.
5442  TL.initialize(Context, DS.getTypeSpecTypeLoc());
5443  }
5444  };
5445 
5446  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
5447  ASTContext &Context;
5448  const DeclaratorChunk &Chunk;
5449 
5450  public:
5451  DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
5452  : Context(Context), Chunk(Chunk) {}
5453 
5454  void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5455  llvm_unreachable("qualified type locs not expected here!");
5456  }
5457  void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
5458  llvm_unreachable("decayed type locs not expected here!");
5459  }
5460 
5461  void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5463  }
5464  void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
5465  // nothing
5466  }
5467  void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
5468  assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
5469  TL.setCaretLoc(Chunk.Loc);
5470  }
5471  void VisitPointerTypeLoc(PointerTypeLoc TL) {
5472  assert(Chunk.Kind == DeclaratorChunk::Pointer);
5473  TL.setStarLoc(Chunk.Loc);
5474  }
5475  void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5476  assert(Chunk.Kind == DeclaratorChunk::Pointer);
5477  TL.setStarLoc(Chunk.Loc);
5478  }
5479  void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
5480  assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
5481  const CXXScopeSpec& SS = Chunk.Mem.Scope();
5482  NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
5483 
5484  const Type* ClsTy = TL.getClass();
5485  QualType ClsQT = QualType(ClsTy, 0);
5486  TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
5487  // Now copy source location info into the type loc component.
5488  TypeLoc ClsTL = ClsTInfo->getTypeLoc();
5489  switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
5491  assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
5492  {
5495  DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
5496  DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
5497  }
5498  break;
5499 
5502  if (isa<ElaboratedType>(ClsTy)) {
5503  ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
5505  ETLoc.setQualifierLoc(NNSLoc.getPrefix());
5506  TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
5507  NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
5508  } else {
5509  ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
5510  }
5511  break;
5512 
5517  llvm_unreachable("Nested-name-specifier must name a type");
5518  }
5519 
5520  // Finally fill in MemberPointerLocInfo fields.
5521  TL.setStarLoc(Chunk.Loc);
5522  TL.setClassTInfo(ClsTInfo);
5523  }
5524  void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
5525  assert(Chunk.Kind == DeclaratorChunk::Reference);
5526  // 'Amp' is misleading: this might have been originally
5527  /// spelled with AmpAmp.
5528  TL.setAmpLoc(Chunk.Loc);
5529  }
5530  void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
5531  assert(Chunk.Kind == DeclaratorChunk::Reference);
5532  assert(!Chunk.Ref.LValueRef);
5533  TL.setAmpAmpLoc(Chunk.Loc);
5534  }
5535  void VisitArrayTypeLoc(ArrayTypeLoc TL) {
5536  assert(Chunk.Kind == DeclaratorChunk::Array);
5537  TL.setLBracketLoc(Chunk.Loc);
5538  TL.setRBracketLoc(Chunk.EndLoc);
5539  TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
5540  }
5541  void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
5542  assert(Chunk.Kind == DeclaratorChunk::Function);
5543  TL.setLocalRangeBegin(Chunk.Loc);
5544  TL.setLocalRangeEnd(Chunk.EndLoc);
5545 
5546  const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
5547  TL.setLParenLoc(FTI.getLParenLoc());
5548  TL.setRParenLoc(FTI.getRParenLoc());
5549  for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
5550  ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5551  TL.setParam(tpi++, Param);
5552  }
5554  }
5555  void VisitParenTypeLoc(ParenTypeLoc TL) {
5556  assert(Chunk.Kind == DeclaratorChunk::Paren);
5557  TL.setLParenLoc(Chunk.Loc);
5558  TL.setRParenLoc(Chunk.EndLoc);
5559  }
5560  void VisitPipeTypeLoc(PipeTypeLoc TL) {
5561  assert(Chunk.Kind == DeclaratorChunk::Pipe);
5562  TL.setKWLoc(Chunk.Loc);
5563  }
5564 
5565  void VisitTypeLoc(TypeLoc TL) {
5566  llvm_unreachable("unsupported TypeLoc kind in declarator!");
5567  }
5568  };
5569 } // end anonymous namespace
5570 
5571 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
5572  SourceLocation Loc;
5573  switch (Chunk.Kind) {
5577  case DeclaratorChunk::Pipe:
5578  llvm_unreachable("cannot be _Atomic qualified");
5579 
5582  break;
5583 
5587  // FIXME: Provide a source location for the _Atomic keyword.
5588  break;
5589  }
5590 
5591  ATL.setKWLoc(Loc);
5592  ATL.setParensRange(SourceRange());
5593 }
5594 
5595 static void
5597  const ParsedAttributesView &Attrs) {
5598  for (const ParsedAttr &AL : Attrs) {
5599  if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
5600  DASTL.setAttrNameLoc(AL.getLoc());
5601  DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
5603  return;
5604  }
5605  }
5606 
5607  llvm_unreachable(
5608  "no address_space attribute found at the expected location!");
5609 }
5610 
5611 /// Create and instantiate a TypeSourceInfo with type source information.
5612 ///
5613 /// \param T QualType referring to the type as written in source code.
5614 ///
5615 /// \param ReturnTypeInfo For declarators whose return type does not show
5616 /// up in the normal place in the declaration specifiers (such as a C++
5617 /// conversion function), this pointer will refer to a type source information
5618 /// for that return type.
5621  TypeSourceInfo *ReturnTypeInfo) {
5622  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
5623  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
5624 
5625  // Handle parameter packs whose type is a pack expansion.
5626  if (isa<PackExpansionType>(T)) {
5627  CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
5628  CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5629  }
5630 
5631  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5632 
5633  if (DependentAddressSpaceTypeLoc DASTL =
5634  CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
5636  CurrTL = DASTL.getPointeeTypeLoc().getUnqualifiedLoc();
5637  }
5638 
5639  // An AtomicTypeLoc might be produced by an atomic qualifier in this
5640  // declarator chunk.
5641  if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
5642  fillAtomicQualLoc(ATL, D.getTypeObject(i));
5643  CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
5644  }
5645 
5646  while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
5648  D.getAttributes());
5649  CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5650  }
5651 
5652  // FIXME: Ordering here?
5653  while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
5654  CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5655 
5656  DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
5657  CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5658  }
5659 
5660  // If we have different source information for the return type, use
5661  // that. This really only applies to C++ conversion functions.
5662  if (ReturnTypeInfo) {
5663  TypeLoc TL = ReturnTypeInfo->getTypeLoc();
5664  assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
5665  memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
5666  } else {
5667  TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
5668  }
5669 
5670  return TInfo;
5671 }
5672 
5673 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
5675  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
5676  // and Sema during declaration parsing. Try deallocating/caching them when
5677  // it's appropriate, instead of allocating them and keeping them around.
5678  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
5679  TypeAlignment);
5680  new (LocT) LocInfoType(T, TInfo);
5681  assert(LocT->getTypeClass() != T->getTypeClass() &&
5682  "LocInfoType's TypeClass conflicts with an existing Type class");
5683  return ParsedType::make(QualType(LocT, 0));
5684 }
5685 
5686 void LocInfoType::getAsStringInternal(std::string &Str,
5687  const PrintingPolicy &Policy) const {
5688  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
5689  " was used directly instead of getting the QualType through"
5690  " GetTypeFromParser");
5691 }
5692 
5694  // C99 6.7.6: Type names have no identifier. This is already validated by
5695  // the parser.
5696  assert(D.getIdentifier() == nullptr &&
5697  "Type name should have no identifier!");
5698 
5699  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5700  QualType T = TInfo->getType();
5701  if (D.isInvalidType())
5702  return true;
5703 
5704  // Make sure there are no unused decl attributes on the declarator.
5705  // We don't want to do this for ObjC parameters because we're going
5706  // to apply them to the actual parameter declaration.
5707  // Likewise, we don't want to do this for alias declarations, because
5708  // we are actually going to build a declaration from this eventually.
5713 
5714  if (getLangOpts().CPlusPlus) {
5715  // Check that there are no default arguments (C++ only).
5716  CheckExtraCXXDefaultArguments(D);
5717  }
5718 
5719  return CreateParsedType(T, TInfo);
5720 }
5721 
5723  QualType T = Context.getObjCInstanceType();
5724  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
5725  return CreateParsedType(T, TInfo);
5726 }
5727 
5728 //===----------------------------------------------------------------------===//
5729 // Type Attribute Processing
5730 //===----------------------------------------------------------------------===//
5731 
5732 /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
5733 /// is uninstantiated. If instantiated it will apply the appropriate address space
5734 /// to the type. This function allows dependent template variables to be used in
5735 /// conjunction with the address_space attribute
5737  SourceLocation AttrLoc) {
5738  if (!AddrSpace->isValueDependent()) {
5739 
5740  llvm::APSInt addrSpace(32);
5741  if (!AddrSpace->isIntegerConstantExpr(addrSpace, Context)) {
5742  Diag(AttrLoc, diag::err_attribute_argument_type)
5743  << "'address_space'" << AANT_ArgumentIntegerConstant
5744  << AddrSpace->getSourceRange();
5745  return QualType();
5746  }
5747 
5748  // Bounds checking.
5749  if (addrSpace.isSigned()) {
5750  if (addrSpace.isNegative()) {
5751  Diag(AttrLoc, diag::err_attribute_address_space_negative)
5752  << AddrSpace->getSourceRange();
5753  return QualType();
5754  }
5755  addrSpace.setIsSigned(false);
5756  }
5757 
5758  llvm::APSInt max(addrSpace.getBitWidth());
5759  max =
5761  if (addrSpace > max) {
5762  Diag(AttrLoc, diag::err_attribute_address_space_too_high)
5763  << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
5764  return QualType();
5765  }
5766 
5767  LangAS ASIdx =
5768  getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
5769 
5770  // If this type is already address space qualified with a different
5771  // address space, reject it.
5772  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
5773  // by qualifiers for two or more different address spaces."
5774  if (T.getAddressSpace() != LangAS::Default) {
5775  if (T.getAddressSpace() != ASIdx) {
5776  Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
5777  return QualType();
5778  } else
5779  // Emit a warning if they are identical; it's likely unintended.
5780  Diag(AttrLoc,
5781  diag::warn_attribute_address_multiple_identical_qualifiers);
5782  }
5783 
5784  return Context.getAddrSpaceQualType(T, ASIdx);
5785  }
5786 
5787  // A check with similar intentions as checking if a type already has an
5788  // address space except for on a dependent types, basically if the
5789  // current type is already a DependentAddressSpaceType then its already
5790  // lined up to have another address space on it and we can't have
5791  // multiple address spaces on the one pointer indirection
5792  if (T->getAs<DependentAddressSpaceType>()) {
5793  Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
5794  return QualType();
5795  }
5796 
5797  return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
5798 }
5799 
5800 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
5801 /// specified type. The attribute contains 1 argument, the id of the address
5802 /// space for the type.
5804  const ParsedAttr &Attr, Sema &S) {
5805  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
5806  // qualified by an address-space qualifier."
5807  if (Type->isFunctionType()) {
5808  S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
5809  Attr.setInvalid();
5810  return;
5811  }
5812 
5813  LangAS ASIdx;
5814  if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
5815 
5816  // Check the attribute arguments.
5817  if (Attr.getNumArgs() != 1) {
5818  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
5819  << Attr.getName() << 1;
5820  Attr.setInvalid();
5821  return;
5822  }
5823 
5824  Expr *ASArgExpr;
5825  if (Attr.isArgIdent(0)) {
5826  // Special case where the argument is a template id.
5827  CXXScopeSpec SS;
5828  SourceLocation TemplateKWLoc;
5829  UnqualifiedId id;
5830  id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
5831 
5832  ExprResult AddrSpace = S.ActOnIdExpression(
5833  S.getCurScope(), SS, TemplateKWLoc, id, false, false);
5834  if (AddrSpace.isInvalid())
5835  return;
5836 
5837  ASArgExpr = static_cast<Expr *>(AddrSpace.get());
5838  } else {
5839  ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
5840  }
5841 
5842  // Create the DependentAddressSpaceType or append an address space onto
5843  // the type.
5844  QualType T = S.BuildAddressSpaceAttr(Type, ASArgExpr, Attr.getLoc());
5845 
5846  if (!T.isNull())
5847  Type = T;
5848  else
5849  Attr.setInvalid();
5850  } else {
5851  // The keyword-based type attributes imply which address space to use.
5852  switch (Attr.getKind()) {
5853  case ParsedAttr::AT_OpenCLGlobalAddressSpace:
5854  ASIdx = LangAS::opencl_global; break;
5855  case ParsedAttr::AT_OpenCLLocalAddressSpace:
5856  ASIdx = LangAS::opencl_local; break;
5857  case ParsedAttr::AT_OpenCLConstantAddressSpace:
5858  ASIdx = LangAS::opencl_constant; break;
5859  case ParsedAttr::AT_OpenCLGenericAddressSpace:
5860  ASIdx = LangAS::opencl_generic; break;
5861  case ParsedAttr::AT_OpenCLPrivateAddressSpace:
5862  ASIdx = LangAS::opencl_private; break;
5863  default:
5864  llvm_unreachable("Invalid address space");
5865  }
5866 
5867  // If this type is already address space qualified with a different
5868  // address space, reject it.
5869  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
5870  // qualifiers for two or more different address spaces."
5871  if (Type.getAddressSpace() != LangAS::Default) {
5872  if (Type.getAddressSpace() != ASIdx) {
5873  S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
5874  Attr.setInvalid();
5875  return;
5876  } else
5877  // Emit a warning if they are identical; it's likely unintended.
5878  S.Diag(Attr.getLoc(),
5879  diag::warn_attribute_address_multiple_identical_qualifiers);
5880  }
5881 
5882  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
5883  }
5884 }
5885 
5886 /// Does this type have a "direct" ownership qualifier? That is,
5887 /// is it written like "__strong id", as opposed to something like
5888 /// "typeof(foo)", where that happens to be strong?
5890  // Fast path: no qualifier at all.
5891  assert(type.getQualifiers().hasObjCLifetime());
5892 
5893  while (true) {
5894  // __strong id
5895  if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
5896  if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
5897  return true;
5898 
5899  type = attr->getModifiedType();
5900 
5901  // X *__strong (...)
5902  } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
5903  type = paren->getInnerType();
5904 
5905  // That's it for things we want to complain about. In particular,
5906  // we do not want to look through typedefs, typeof(expr),
5907  // typeof(type), or any other way that the type is somehow
5908  // abstracted.
5909  } else {
5910 
5911  return false;
5912  }
5913  }
5914 }
5915 
5916 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
5917 /// attribute on the specified type.
5918 ///
5919 /// Returns 'true' if the attribute was handled.
5920 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
5921  ParsedAttr &attr, QualType &type) {
5922  bool NonObjCPointer = false;
5923 
5924  if (!type->isDependentType() && !type->isUndeducedType()) {
5925  if (const PointerType *ptr = type->getAs<PointerType>()) {
5926  QualType pointee = ptr->getPointeeType();
5927  if (pointee->isObjCRetainableType() || pointee->isPointerType())
5928  return false;
5929  // It is important not to lose the source info that there was an attribute
5930  // applied to non-objc pointer. We will create an attributed type but
5931  // its type will be the same as the original type.
5932  NonObjCPointer = true;
5933  } else if (!type->isObjCRetainableType()) {
5934  return false;
5935  }
5936 
5937  // Don't accept an ownership attribute in the declspec if it would
5938  // just be the return type of a block pointer.
5939  if (state.isProcessingDeclSpec()) {
5940  Declarator &D = state.getDeclarator();
5942  /*onlyBlockPointers=*/true))
5943  return false;
5944  }
5945  }
5946 
5947  Sema &S = state.getSema();
5948  SourceLocation AttrLoc = attr.getLoc();
5949  if (AttrLoc.isMacroID())
5950  AttrLoc =
5952 
5953  if (!attr.isArgIdent(0)) {
5954  S.Diag(AttrLoc, diag::err_attribute_argument_type)
5955  << attr.getName() << AANT_ArgumentString;
5956  attr.setInvalid();
5957  return true;
5958  }
5959 
5960  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
5961  Qualifiers::ObjCLifetime lifetime;
5962  if (II->isStr("none"))
5963  lifetime = Qualifiers::OCL_ExplicitNone;
5964  else if (II->isStr("strong"))
5965  lifetime = Qualifiers::OCL_Strong;
5966  else if (II->isStr("weak"))
5967  lifetime = Qualifiers::OCL_Weak;
5968  else if (II->isStr("autoreleasing"))
5969  lifetime = Qualifiers::OCL_Autoreleasing;
5970  else {
5971  S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
5972  << attr.getName() << II;
5973  attr.setInvalid();
5974  return true;
5975  }
5976 
5977  // Just ignore lifetime attributes other than __weak and __unsafe_unretained
5978  // outside of ARC mode.
5979  if (!S.getLangOpts().ObjCAutoRefCount &&
5980  lifetime != Qualifiers::OCL_Weak &&
5981  lifetime != Qualifiers::OCL_ExplicitNone) {
5982  return true;
5983  }
5984 
5985  SplitQualType underlyingType = type.split();
5986 
5987  // Check for redundant/conflicting ownership qualifiers.
5988  if (Qualifiers::ObjCLifetime previousLifetime
5989  = type.getQualifiers().getObjCLifetime()) {
5990  // If it's written directly, that's an error.
5991  if (hasDirectOwnershipQualifier(type)) {
5992  S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
5993  << type;
5994  return true;
5995  }
5996 
5997  // Otherwise, if the qualifiers actually conflict, pull sugar off
5998  // and remove the ObjCLifetime qualifiers.
5999  if (previousLifetime != lifetime) {
6000  // It's possible to have multiple local ObjCLifetime qualifiers. We
6001  // can't stop after we reach a type that is directly qualified.
6002  const Type *prevTy = nullptr;
6003  while (!prevTy || prevTy != underlyingType.Ty) {
6004  prevTy = underlyingType.Ty;
6005  underlyingType = underlyingType.getSingleStepDesugaredType();
6006  }
6007  underlyingType.Quals.removeObjCLifetime();
6008  }
6009  }
6010 
6011  underlyingType.Quals.addObjCLifetime(lifetime);
6012 
6013  if (NonObjCPointer) {
6014  StringRef name = attr.getName()->getName();
6015  switch (lifetime) {
6016  case Qualifiers::OCL_None:
6018  break;
6019  case Qualifiers::OCL_Strong: name = "__strong"; break;
6020  case Qualifiers::OCL_Weak: name = "__weak"; break;
6021  case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6022  }
6023  S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6024  << TDS_ObjCObjOrBlock << type;
6025  }
6026 
6027  // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6028  // because having both 'T' and '__unsafe_unretained T' exist in the type
6029  // system causes unfortunate widespread consistency problems. (For example,
6030  // they're not considered compatible types, and we mangle them identicially
6031  // as template arguments.) These problems are all individually fixable,
6032  // but it's easier to just not add the qualifier and instead sniff it out
6033  // in specific places using isObjCInertUnsafeUnretainedType().
6034  //
6035  // Doing this does means we miss some trivial consistency checks that
6036  // would've triggered in ARC, but that's better than trying to solve all
6037  // the coexistence problems with __unsafe_unretained.
6038  if (!S.getLangOpts().ObjCAutoRefCount &&
6039  lifetime == Qualifiers::OCL_ExplicitNone) {
6040  type = S.Context.getAttributedType(
6042  type, type);
6043  return true;
6044  }
6045 
6046  QualType origType = type;
6047  if (!NonObjCPointer)
6048  type = S.Context.getQualifiedType(underlyingType);
6049 
6050  // If we have a valid source location for the attribute, use an
6051  // AttributedType instead.
6052  if (AttrLoc.isValid())
6054  origType, type);
6055 
6056  auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6057  unsigned diagnostic, QualType type) {
6062  diagnostic, type, /*ignored*/ 0));
6063  } else {
6064  S.Diag(loc, diagnostic);
6065  }
6066  };
6067 
6068  // Sometimes, __weak isn't allowed.
6069  if (lifetime == Qualifiers::OCL_Weak &&
6070  !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6071 
6072  // Use a specialized diagnostic if the runtime just doesn't support them.
6073  unsigned diagnostic =
6074  (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6075  : diag::err_arc_weak_no_runtime);
6076 
6077  // In any case, delay the diagnostic until we know what we're parsing.
6078  diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6079 
6080  attr.setInvalid();
6081  return true;
6082  }
6083 
6084  // Forbid __weak for class objects marked as
6085  // objc_arc_weak_reference_unavailable
6086  if (lifetime == Qualifiers::OCL_Weak) {
6087  if (const ObjCObjectPointerType *ObjT =
6088  type->getAs<ObjCObjectPointerType>()) {
6089  if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6090  if (Class->isArcWeakrefUnavailable()) {
6091  S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6092  S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6093  diag::note_class_declared);
6094  }
6095  }
6096  }
6097  }
6098 
6099  return true;
6100 }
6101 
6102 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6103 /// attribute on the specified type. Returns true to indicate that
6104 /// the attribute was handled, false to indicate that the type does
6105 /// not permit the attribute.
6106 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6107  QualType &type) {
6108  Sema &S = state.getSema();
6109 
6110  // Delay if this isn't some kind of pointer.
6111  if (!type->isPointerType() &&
6112  !type->isObjCObjectPointerType() &&
6113  !type->isBlockPointerType())
6114  return false;
6115 
6116  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6117  S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6118  attr.setInvalid();
6119  return true;
6120  }
6121 
6122  // Check the attribute arguments.
6123  if (!attr.isArgIdent(0)) {
6124  S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6125  << attr.getName() << AANT_ArgumentString;
6126  attr.setInvalid();
6127  return true;
6128  }
6129  Qualifiers::GC GCAttr;
6130  if (attr.getNumArgs() > 1) {
6131  S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6132  << attr.getName() << 1;
6133  attr.setInvalid();
6134  return true;
6135  }
6136 
6137  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6138  if (II->isStr("weak"))
6139  GCAttr = Qualifiers::Weak;
6140  else if (II->isStr("strong"))
6141  GCAttr = Qualifiers::Strong;
6142  else {
6143  S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6144  << attr.getName() << II;
6145  attr.setInvalid();
6146  return true;
6147  }
6148 
6149  QualType origType = type;
6150  type = S.Context.getObjCGCQualType(origType, GCAttr);
6151 
6152  // Make an attributed type to preserve the source information.
6153  if (attr.getLoc().isValid())
6155  origType, type);
6156 
6157  return true;
6158 }
6159 
6160 namespace {
6161  /// A helper class to unwrap a type down to a function for the
6162  /// purposes of applying attributes there.
6163  ///
6164  /// Use:
6165  /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
6166  /// if (unwrapped.isFunctionType()) {
6167  /// const FunctionType *fn = unwrapped.get();
6168  /// // change fn somehow
6169  /// T = unwrapped.wrap(fn);
6170  /// }
6171  struct FunctionTypeUnwrapper {
6172  enum WrapKind {
6173  Desugar,
6174  Attributed,
6175  Parens,
6176  Pointer,
6177  BlockPointer,
6178  Reference,
6179  MemberPointer
6180  };
6181 
6182  QualType Original;
6183  const FunctionType *Fn;
6184  SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6185 
6186  FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6187  while (true) {
6188  const Type *Ty = T.getTypePtr();
6189  if (isa<FunctionType>(Ty)) {
6190  Fn = cast<FunctionType>(Ty);
6191  return;
6192  } else if (isa<ParenType>(Ty)) {
6193  T = cast<ParenType>(Ty)->getInnerType();
6194  Stack.push_back(Parens);
6195  } else if (isa<PointerType>(Ty)) {
6196  T = cast<PointerType>(Ty)->getPointeeType();
6197  Stack.push_back(Pointer);
6198  } else if (isa<BlockPointerType>(Ty)) {
6199  T = cast<BlockPointerType>(Ty)->getPointeeType();
6200  Stack.push_back(BlockPointer);
6201  } else if (isa<MemberPointerType>(Ty)) {
6202  T = cast<MemberPointerType>(Ty)->getPointeeType();
6203  Stack.push_back(MemberPointer);
6204  } else if (isa<ReferenceType>(Ty)) {
6205  T = cast<ReferenceType>(Ty)->getPointeeType();
6206  Stack.push_back(Reference);
6207  } else if (isa<AttributedType>(Ty)) {
6208  T = cast<AttributedType>(Ty)->getEquivalentType();
6209  Stack.push_back(Attributed);
6210  } else {
6211  const Type *DTy = Ty->getUnqualifiedDesugaredType();
6212  if (Ty == DTy) {
6213  Fn = nullptr;
6214  return;
6215  }
6216 
6217  T = QualType(DTy, 0);
6218  Stack.push_back(Desugar);
6219  }
6220  }
6221  }
6222 
6223  bool isFunctionType() const { return (Fn != nullptr); }
6224  const FunctionType *get() const { return Fn; }
6225 
6226  QualType wrap(Sema &S, const FunctionType *New) {
6227  // If T wasn't modified from the unwrapped type, do nothing.
6228  if (New == get()) return Original;
6229 
6230  Fn = New;
6231  return wrap(S.Context, Original, 0);
6232  }
6233 
6234  private:
6235  QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6236  if (I == Stack.size())
6237  return C.getQualifiedType(Fn, Old.getQualifiers());
6238 
6239  // Build up the inner type, applying the qualifiers from the old
6240  // type to the new type.
6241  SplitQualType SplitOld = Old.split();
6242 
6243  // As a special case, tail-recurse if there are no qualifiers.
6244  if (SplitOld.Quals.empty())
6245  return wrap(C, SplitOld.Ty, I);
6246  return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6247  }
6248 
6249  QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6250  if (I == Stack.size()) return QualType(Fn, 0);
6251 
6252  switch (static_cast<WrapKind>(Stack[I++])) {
6253  case Desugar:
6254  // This is the point at which we potentially lose source
6255  // information.
6256  return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6257 
6258  case Attributed:
6259  return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6260 
6261  case Parens: {
6262  QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6263  return C.getParenType(New);
6264  }
6265 
6266  case Pointer: {
6267  QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6268  return C.getPointerType(New);
6269  }
6270 
6271  case BlockPointer: {
6272  QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6273  return C.getBlockPointerType(New);
6274  }
6275 
6276  case MemberPointer: {
6277  const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6278  QualType New = wrap(C, OldMPT->getPointeeType(), I);
6279  return C.getMemberPointerType(New, OldMPT->getClass());
6280  }
6281 
6282  case Reference: {
6283  const ReferenceType *OldRef = cast<ReferenceType>(Old);
6284  QualType New = wrap(C, OldRef->getPointeeType(), I);
6285  if (isa<LValueReferenceType>(OldRef))
6286  return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6287  else
6288  return C.getRValueReferenceType(New);
6289  }
6290  }
6291 
6292  llvm_unreachable("unknown wrapping kind");
6293  }
6294  };
6295 } // end anonymous namespace
6296 
6297 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6299  Sema &S = State.getSema();
6300 
6301  ParsedAttr::Kind Kind = Attr.getKind();
6302  QualType Desugared = Type;
6303  const AttributedType *AT = dyn_cast<AttributedType>(Type);
6304  while (AT) {
6305  AttributedType::Kind CurAttrKind = AT->getAttrKind();
6306 
6307  // You cannot specify duplicate type attributes, so if the attribute has
6308  // already been applied, flag it.
6309  if (getAttrListKind(CurAttrKind) == Kind) {
6310  S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
6311  << Attr.getName();
6312  return true;
6313  }
6314 
6315  // You cannot have both __sptr and __uptr on the same type, nor can you
6316  // have __ptr32 and __ptr64.
6317  if ((CurAttrKind == AttributedType::attr_ptr32 &&
6318  Kind == ParsedAttr::AT_Ptr64) ||
6319  (CurAttrKind == AttributedType::attr_ptr64 &&
6320  Kind == ParsedAttr::AT_Ptr32)) {
6321  S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
6322  << "'__ptr32'" << "'__ptr64'";
6323  return true;
6324  } else if ((CurAttrKind == AttributedType::attr_sptr &&
6325  Kind == ParsedAttr::AT_UPtr) ||
6326  (CurAttrKind == AttributedType::attr_uptr &&
6327  Kind == ParsedAttr::AT_SPtr)) {
6328  S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
6329  << "'__sptr'" << "'__uptr'";
6330  return true;
6331  }
6332 
6333  Desugared = AT->getEquivalentType();
6334  AT = dyn_cast<AttributedType>(Desugared);
6335  }
6336 
6337  // Pointer type qualifiers can only operate on pointer types, but not
6338  // pointer-to-member types.
6339  if (!isa<PointerType>(Desugared)) {
6340  if (Type->isMemberPointerType())
6341  S.Diag(Attr.getLoc(), diag::err_attribute_no_member_pointers)
6342  << Attr.getName();
6343  else
6344  S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
6345  << Attr.getName() << 0;
6346  return true;
6347  }
6348 
6350  switch (Kind) {
6351  default: llvm_unreachable("Unknown attribute kind");
6352  case ParsedAttr::AT_Ptr32:
6354  break;
6355  case ParsedAttr::AT_Ptr64:
6357  break;
6358  case ParsedAttr::AT_SPtr:
6360  break;
6361  case ParsedAttr::AT_UPtr:
6363  break;
6364  }
6365 
6366  Type = S.Context.getAttributedType(TAK, Type, Type);
6367  return false;
6368 }
6369 
6371  NullabilityKind nullability,
6372  SourceLocation nullabilityLoc,
6373  bool isContextSensitive,
6374  bool allowOnArrayType) {
6375  recordNullabilitySeen(*this, nullabilityLoc);
6376 
6377  // Check for existing nullability attributes on the type.
6378  QualType desugared = type;
6379  while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
6380  // Check whether there is already a null
6381  if (auto existingNullability = attributed->getImmediateNullability()) {
6382  // Duplicated nullability.
6383  if (nullability == *existingNullability) {
6384  Diag(nullabilityLoc, diag::warn_nullability_duplicate)
6385  << DiagNullabilityKind(nullability, isContextSensitive)
6386  << FixItHint::CreateRemoval(nullabilityLoc);
6387 
6388  break;
6389  }
6390 
6391  // Conflicting nullability.
6392  Diag(nullabilityLoc, diag::err_nullability_conflicting)
6393  << DiagNullabilityKind(nullability, isContextSensitive)
6394  << DiagNullabilityKind(*existingNullability, false);
6395  return true;
6396  }
6397 
6398  desugared = attributed->getModifiedType();
6399  }
6400 
6401  // If there is already a different nullability specifier, complain.
6402  // This (unlike the code above) looks through typedefs that might
6403  // have nullability specifiers on them, which means we cannot
6404  // provide a useful Fix-It.
6405  if (auto existingNullability = desugared->getNullability(Context)) {
6406  if (nullability != *existingNullability) {
6407  Diag(nullabilityLoc, diag::err_nullability_conflicting)
6408  << DiagNullabilityKind(nullability, isContextSensitive)
6409  << DiagNullabilityKind(*existingNullability, false);
6410 
6411  // Try to find the typedef with the existing nullability specifier.
6412  if (auto typedefType = desugared->getAs<TypedefType>()) {
6413  TypedefNameDecl *typedefDecl = typedefType->getDecl();
6414  QualType underlyingType = typedefDecl->getUnderlyingType();
6415  if (auto typedefNullability
6416  = AttributedType::stripOuterNullability(underlyingType)) {
6417  if (*typedefNullability == *existingNullability) {
6418  Diag(typedefDecl->getLocation(), diag::note_nullability_here)
6419  << DiagNullabilityKind(*existingNullability, false);
6420  }
6421  }
6422  }
6423 
6424  return true;
6425  }
6426  }
6427 
6428  // If this definitely isn't a pointer type, reject the specifier.
6429  if (!desugared->canHaveNullability() &&
6430  !(allowOnArrayType && desugared->isArrayType())) {
6431  Diag(nullabilityLoc, diag::err_nullability_nonpointer)
6432  << DiagNullabilityKind(nullability, isContextSensitive) << type;
6433  return true;
6434  }
6435 
6436  // For the context-sensitive keywords/Objective-C property
6437  // attributes, require that the type be a single-level pointer.
6438  if (isContextSensitive) {
6439  // Make sure that the pointee isn't itself a pointer type.
6440  const Type *pointeeType;
6441  if (desugared->isArrayType())
6442  pointeeType = desugared->getArrayElementTypeNoTypeQual();
6443  else
6444  pointeeType = desugared->getPointeeType().getTypePtr();
6445 
6446  if (pointeeType->isAnyPointerType() ||
6447  pointeeType->isObjCObjectPointerType() ||
6448  pointeeType->isMemberPointerType()) {
6449  Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
6450  << DiagNullabilityKind(nullability, true)
6451  << type;
6452  Diag(nullabilityLoc, diag::note_nullability_type_specifier)
6453  << DiagNullabilityKind(nullability, false)
6454  << type
6455  << FixItHint::CreateReplacement(nullabilityLoc,
6456  getNullabilitySpelling(nullability));
6457  return true;
6458  }
6459  }
6460 
6461  // Form the attributed type.
6462  type = Context.getAttributedType(
6463  AttributedType::getNullabilityAttrKind(nullability), type, type);
6464  return false;
6465 }
6466 
6468  if (isa<ObjCTypeParamType>(type)) {
6469  // Build the attributed type to record where __kindof occurred.
6471  type, type);
6472  return false;
6473  }
6474 
6475  // Find out if it's an Objective-C object or object pointer type;
6476  const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
6477  const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
6478  : type->getAs<ObjCObjectType>();
6479 
6480  // If not, we can't apply __kindof.
6481  if (!objType) {
6482  // FIXME: Handle dependent types that aren't yet object types.
6483  Diag(loc, diag::err_objc_kindof_nonobject)
6484  << type;
6485  return true;
6486  }
6487 
6488  // Rebuild the "equivalent" type, which pushes __kindof down into
6489  // the object type.
6490  // There is no need to apply kindof on an unqualified id type.
6491  QualType equivType = Context.getObjCObjectType(
6492  objType->getBaseType(), objType->getTypeArgsAsWritten(),
6493  objType->getProtocols(),
6494  /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
6495 
6496  // If we started with an object pointer type, rebuild it.
6497  if (ptrType) {
6498  equivType = Context.getObjCObjectPointerType(equivType);
6499  if (auto nullability = type->getNullability(Context)) {
6500  auto attrKind = AttributedType::getNullabilityAttrKind(*nullability);
6501  equivType = Context.getAttributedType(attrKind, equivType, equivType);
6502  }
6503  }
6504 
6505  // Build the attributed type to record where __kindof occurred.
6507  type,
6508  equivType);
6509 
6510  return false;
6511 }
6512 
6513 /// Map a nullability attribute kind to a nullability kind.
6515  switch (kind) {
6516  case ParsedAttr::AT_TypeNonNull:
6517  return NullabilityKind::NonNull;
6518 
6519  case ParsedAttr::AT_TypeNullable:
6521 
6522  case ParsedAttr::AT_TypeNullUnspecified:
6524 
6525  default:
6526  llvm_unreachable("not a nullability attribute kind");
6527  }
6528 }
6529 
6530 /// Distribute a nullability type attribute that cannot be applied to
6531 /// the type specifier to a pointer, block pointer, or member pointer
6532 /// declarator, complaining if necessary.
6533 ///
6534 /// \returns true if the nullability annotation was distributed, false
6535 /// otherwise.
6536 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
6537  QualType type, ParsedAttr &attr) {
6538  Declarator &declarator = state.getDeclarator();
6539 
6540  /// Attempt to move the attribute to the specified chunk.
6541  auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
6542  // If there is already a nullability attribute there, don't add
6543  // one.
6544  if (hasNullabilityAttr(chunk.getAttrs()))
6545  return false;
6546 
6547  // Complain about the nullability qualifier being in the wrong
6548  // place.
6549  enum {
6550  PK_Pointer,
6551  PK_BlockPointer,
6552  PK_MemberPointer,
6553  PK_FunctionPointer,
6554  PK_MemberFunctionPointer,
6555  } pointerKind
6556  = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
6557  : PK_Pointer)
6558  : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
6559  : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
6560 
6561  auto diag = state.getSema().Diag(attr.getLoc(),
6562  diag::warn_nullability_declspec)
6565  << type
6566  << static_cast<unsigned>(pointerKind);
6567 
6568  // FIXME: MemberPointer chunks don't carry the location of the *.
6569  if (chunk.Kind != DeclaratorChunk::MemberPointer) {
6570  diag << FixItHint::CreateRemoval(attr.getLoc())
6572  state.getSema().getPreprocessor()
6573  .getLocForEndOfToken(chunk.Loc),
6574  " " + attr.getName()->getName().str() + " ");
6575  }
6576 
6577  moveAttrFromListToList(attr, state.getCurrentAttributes(),
6578  chunk.getAttrs());
6579  return true;
6580  };
6581 
6582  // Move it to the outermost pointer, member pointer, or block
6583  // pointer declarator.
6584  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
6585  DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
6586  switch (chunk.Kind) {
6590  return moveToChunk(chunk, false);
6591 
6594  continue;
6595 
6597  // Try to move past the return type to a function/block/member
6598  // function pointer.
6600  declarator, i,
6601  /*onlyBlockPointers=*/false)) {
6602  return moveToChunk(*dest, true);
6603  }
6604 
6605  return false;
6606 
6607  // Don't walk through these.
6609  case DeclaratorChunk::Pipe:
6610  return false;
6611  }
6612  }
6613 
6614  return false;
6615 }
6616 
6618  assert(!Attr.isInvalid());
6619  switch (Attr.getKind()) {
6620  default:
6621  llvm_unreachable("not a calling convention attribute");
6622  case ParsedAttr::AT_CDecl:
6624  case ParsedAttr::AT_FastCall:
6626  case ParsedAttr::AT_StdCall:
6628  case ParsedAttr::AT_ThisCall:
6630  case ParsedAttr::AT_RegCall:
6632  case ParsedAttr::AT_Pascal:
6634  case ParsedAttr::AT_SwiftCall:
6636  case ParsedAttr::AT_VectorCall:
6638  case ParsedAttr::AT_Pcs: {
6639  // The attribute may have had a fixit applied where we treated an
6640  // identifier as a string literal. The contents of the string are valid,
6641  // but the form may not be.
6642  StringRef Str;
6643  if (Attr.isArgExpr(0))
6644  Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
6645  else
6646  Str = Attr.getArgAsIdent(0)->Ident->getName();
6647  return llvm::StringSwitch<AttributedType::Kind>(Str)
6648  .Case("aapcs", AttributedType::attr_pcs)
6649  .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
6650  }
6651  case ParsedAttr::AT_IntelOclBicc:
6653  case ParsedAttr::AT_MSABI:
6655  case ParsedAttr::AT_SysVABI:
6657  case ParsedAttr::AT_PreserveMost:
6659  case ParsedAttr::AT_PreserveAll:
6661  }
6662  llvm_unreachable("unexpected attribute kind!");
6663 }
6664 
6665 /// Process an individual function attribute. Returns true to
6666 /// indicate that the attribute was handled, false if it wasn't.
6667 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6668  QualType &type) {
6669  Sema &S = state.getSema();
6670 
6671  FunctionTypeUnwrapper unwrapped(S, type);
6672 
6673  if (attr.getKind() == ParsedAttr::AT_NoReturn) {
6674  if (S.CheckAttrNoArgs(attr))
6675  return true;
6676 
6677  // Delay if this is not a function type.
6678  if (!unwrapped.isFunctionType())
6679  return false;
6680 
6681  // Otherwise we can process right away.
6682  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
6683  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6684  return true;
6685  }
6686 
6687  // ns_returns_retained is not always a type attribute, but if we got
6688  // here, we're treating it as one right now.
6689  if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
6690  if (attr.getNumArgs()) return true;
6691 
6692  // Delay if this is not a function type.
6693  if (!unwrapped.isFunctionType())
6694  return false;
6695 
6696  // Check whether the return type is reasonable.
6698  unwrapped.get()->getReturnType()))
6699  return true;
6700 
6701  // Only actually change the underlying type in ARC builds.
6702  QualType origType = type;
6703  if (state.getSema().getLangOpts().ObjCAutoRefCount) {
6705  = unwrapped.get()->getExtInfo().withProducesResult(true);
6706  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6707  }
6709  origType, type);
6710  return true;
6711  }
6712 
6713  if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
6714  if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
6715  return true;
6716 
6717  // Delay if this is not a function type.
6718  if (!unwrapped.isFunctionType())
6719  return false;
6720 
6722  unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
6723  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6724  return true;
6725  }
6726 
6727  if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
6728  if (!S.getLangOpts().CFProtectionBranch) {
6729  S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
6730  attr.setInvalid();
6731  return true;
6732  }
6733 
6734  if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
6735  return true;
6736 
6737  // If this is not a function type, warning will be asserted by subject
6738  // check.
6739  if (!unwrapped.isFunctionType())
6740  return true;
6741 
6743  unwrapped.get()->getExtInfo().withNoCfCheck(true);
6744  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6745  return true;
6746  }
6747 
6748  if (attr.getKind() == ParsedAttr::AT_Regparm) {
6749  unsigned value;
6750  if (S.CheckRegparmAttr(attr, value))
6751  return true;
6752 
6753  // Delay if this is not a function type.
6754  if (!unwrapped.isFunctionType())
6755  return false;
6756 
6757  // Diagnose regparm with fastcall.
6758  const FunctionType *fn = unwrapped.get();
6759  CallingConv CC = fn->getCallConv();
6760  if (CC == CC_X86FastCall) {
6761  S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6763  << "regparm";
6764  attr.setInvalid();
6765  return true;
6766  }
6767 
6769  unwrapped.get()->getExtInfo().withRegParm(value);
6770  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6771  return true;
6772  }
6773 
6774  // Delay if the type didn't work out to a function.
6775  if (!unwrapped.isFunctionType()) return false;
6776 
6777  // Otherwise, a calling convention.
6778  CallingConv CC;
6779  if (S.CheckCallingConvAttr(attr, CC))
6780  return true;
6781 
6782  const FunctionType *fn = unwrapped.get();
6783  CallingConv CCOld = fn->getCallConv();
6784  AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
6785 
6786  if (CCOld != CC) {
6787  // Error out on when there's already an attribute on the type
6788  // and the CCs don't match.
6789  const AttributedType *AT = S.getCallingConvAttributedType(type);
6790  if (AT && AT->getAttrKind() != CCAttrKind) {
6791  S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6794  attr.setInvalid();
6795  return true;
6796  }
6797  }
6798 
6799  // Diagnose use of variadic functions with calling conventions that
6800  // don't support them (e.g. because they're callee-cleanup).
6801  // We delay warning about this on unprototyped function declarations
6802  // until after redeclaration checking, just in case we pick up a
6803  // prototype that way. And apparently we also "delay" warning about
6804  // unprototyped function types in general, despite not necessarily having
6805  // much ability to diagnose it later.
6806  if (!supportsVariadicCall(CC)) {
6807  const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
6808  if (FnP && FnP->isVariadic()) {
6809  unsigned DiagID = diag::err_cconv_varargs;
6810 
6811  // stdcall and fastcall are ignored with a warning for GCC and MS
6812  // compatibility.
6813  bool IsInvalid = true;
6814  if (CC == CC_X86StdCall || CC == CC_X86FastCall) {
6815  DiagID = diag::warn_cconv_varargs;
6816  IsInvalid = false;
6817  }
6818 
6819  S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
6820  if (IsInvalid) attr.setInvalid();
6821  return true;
6822  }
6823  }
6824 
6825  // Also diagnose fastcall with regparm.
6826  if (CC == CC_X86FastCall && fn->getHasRegParm()) {
6827  S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6829  attr.setInvalid();
6830  return true;
6831  }
6832 
6833  // Modify the CC from the wrapped function type, wrap it all back, and then
6834  // wrap the whole thing in an AttributedType as written. The modified type
6835  // might have a different CC if we ignored the attribute.
6837  if (CCOld == CC) {
6838  Equivalent = type;
6839  } else {
6840  auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
6841  Equivalent =
6842  unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6843  }
6844  type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
6845  return true;
6846 }
6847 
6849  QualType R = T.IgnoreParens();
6850  while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
6851  if (AT->isCallingConv())
6852  return true;
6853  R = AT->getModifiedType().IgnoreParens();
6854  }
6855  return false;
6856 }
6857 
6858 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
6859  SourceLocation Loc) {
6860  FunctionTypeUnwrapper Unwrapped(*this, T);
6861  const FunctionType *FT = Unwrapped.get();
6862  bool IsVariadic = (isa<FunctionProtoType>(FT) &&
6863  cast<FunctionProtoType>(FT)->isVariadic());
6864  CallingConv CurCC = FT->getCallConv();
6865  CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
6866 
6867  if (CurCC == ToCC)
6868  return;
6869 
6870  // MS compiler ignores explicit calling convention attributes on structors. We
6871  // should do the same.
6872  if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
6873  // Issue a warning on ignored calling convention -- except of __stdcall.
6874  // Again, this is what MS compiler does.
6875  if (CurCC != CC_X86StdCall)
6876  Diag(Loc, diag::warn_cconv_structors)
6878  // Default adjustment.
6879  } else {
6880  // Only adjust types with the default convention. For example, on Windows
6881  // we should adjust a __cdecl type to __thiscall for instance methods, and a
6882  // __thiscall type to __cdecl for static methods.
6883  CallingConv DefaultCC =
6884  Context.getDefaultCallingConvention(IsVariadic, IsStatic);
6885 
6886  if (CurCC != DefaultCC || DefaultCC == ToCC)
6887  return;
6888 
6889  if (hasExplicitCallingConv(T))
6890  return;
6891  }
6892 
6893  FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
6894  QualType Wrapped = Unwrapped.wrap(*this, FT);
6895  T = Context.getAdjustedType(T, Wrapped);
6896 }
6897 
6898 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
6899 /// and float scalars, although arrays, pointers, and function return values are
6900 /// allowed in conjunction with this construct. Aggregates with this attribute
6901 /// are invalid, even if they are of the same size as a corresponding scalar.
6902 /// The raw attribute should contain precisely 1 argument, the vector size for
6903 /// the variable, measured in bytes. If curType and rawAttr are well formed,
6904 /// this routine will return a new vector type.
6905 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
6906  Sema &S) {
6907  // Check the attribute arguments.
6908  if (Attr.getNumArgs() != 1) {
6909  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6910  << Attr.getName() << 1;
6911  Attr.setInvalid();
6912  return;
6913  }
6914 
6915  Expr *SizeExpr;
6916  // Special case where the argument is a template id.
6917  if (Attr.isArgIdent(0)) {
6918  CXXScopeSpec SS;
6919  SourceLocation TemplateKWLoc;
6920  UnqualifiedId Id;
6921  Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
6922 
6923  ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
6924  Id, false, false);
6925 
6926  if (Size.isInvalid())
6927  return;
6928  SizeExpr = Size.get();
6929  } else {
6930  SizeExpr = Attr.getArgAsExpr(0);
6931  }
6932 
6933  QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
6934  if (!T.isNull())
6935  CurType = T;
6936  else
6937  Attr.setInvalid();
6938 }
6939 
6940 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
6941 /// a type.
6942 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
6943  Sema &S) {
6944  // check the attribute arguments.
6945  if (Attr.getNumArgs() != 1) {
6946  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6947  << Attr.getName() << 1;
6948  return;
6949  }
6950 
6951  Expr *sizeExpr;
6952 
6953  // Special case where the argument is a template id.
6954  if (Attr.isArgIdent(0)) {
6955  CXXScopeSpec SS;
6956  SourceLocation TemplateKWLoc;
6957  UnqualifiedId id;
6958  id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
6959 
6960  ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
6961  id, false, false);
6962  if (Size.isInvalid())
6963  return;
6964 
6965  sizeExpr = Size.get();
6966  } else {
6967  sizeExpr = Attr.getArgAsExpr(0);
6968  }
6969 
6970  // Create the vector type.
6971  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
6972  if (!T.isNull())
6973  CurType = T;
6974 }
6975 
6977  VectorType::VectorKind VecKind, Sema &S) {
6978  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
6979  if (!BTy)
6980  return false;
6981 
6982  llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
6983 
6984  // Signed poly is mathematically wrong, but has been baked into some ABIs by
6985  // now.
6986  bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
6987  Triple.getArch() == llvm::Triple::aarch64_be;
6988  if (VecKind == VectorType::NeonPolyVector) {
6989  if (IsPolyUnsigned) {
6990  // AArch64 polynomial vectors are unsigned and support poly64.
6991  return BTy->getKind() == BuiltinType::UChar ||
6992  BTy->getKind() == BuiltinType::UShort ||
6993  BTy->getKind() == BuiltinType::ULong ||
6994  BTy->getKind() == BuiltinType::ULongLong;
6995  } else {
6996  // AArch32 polynomial vector are signed.
6997  return BTy->getKind() == BuiltinType::SChar ||
6998  BTy->getKind() == BuiltinType::Short;
6999  }
7000  }
7001 
7002  // Non-polynomial vector types: the usual suspects are allowed, as well as
7003  // float64_t on AArch64.
7004  bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
7005  Triple.getArch() == llvm::Triple::aarch64_be;
7006 
7007  if (Is64Bit && BTy->getKind() == BuiltinType::Double)
7008  return true;
7009 
7010  return BTy->getKind() == BuiltinType::SChar ||
7011  BTy->getKind() == BuiltinType::UChar ||
7012  BTy->getKind() == BuiltinType::Short ||
7013  BTy->getKind() == BuiltinType::UShort ||
7014  BTy->getKind() == BuiltinType::Int ||
7015  BTy->getKind() == BuiltinType::UInt ||
7016  BTy->getKind() == BuiltinType::Long ||
7017  BTy->getKind() == BuiltinType::ULong ||
7018  BTy->getKind() == BuiltinType::LongLong ||
7019  BTy->getKind() == BuiltinType::ULongLong ||
7020  BTy->getKind() == BuiltinType::Float ||
7021  BTy->getKind() == BuiltinType::Half;
7022 }
7023 
7024 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7025 /// "neon_polyvector_type" attributes are used to create vector types that
7026 /// are mangled according to ARM's ABI. Otherwise, these types are identical
7027 /// to those created with the "vector_size" attribute. Unlike "vector_size"
7028 /// the argument to these Neon attributes is the number of vector elements,
7029 /// not the vector size in bytes. The vector width and element type must
7030 /// match one of the standard Neon vector types.
7031 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7032  Sema &S, VectorType::VectorKind VecKind) {
7033  // Target must have NEON
7034  if (!S.Context.getTargetInfo().hasFeature("neon")) {
7035  S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
7036  Attr.setInvalid();
7037  return;
7038  }
7039  // Check the attribute arguments.
7040  if (Attr.getNumArgs() != 1) {
7041  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
7042  << Attr.getName() << 1;
7043  Attr.setInvalid();
7044  return;
7045  }
7046  // The number of elements must be an ICE.
7047  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
7048  llvm::APSInt numEltsInt(32);
7049  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
7050  !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
7051  S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7053  << numEltsExpr->getSourceRange();
7054  Attr.setInvalid();
7055  return;
7056  }
7057  // Only certain element types are supported for Neon vectors.
7058  if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7059  S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7060  Attr.setInvalid();
7061  return;
7062  }
7063 
7064  // The total size of the vector must be 64 or 128 bits.
7065  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7066  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7067  unsigned vecSize = typeSize * numElts;
7068  if (vecSize != 64 && vecSize != 128) {
7069  S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7070  Attr.setInvalid();
7071  return;
7072  }
7073 
7074  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7075 }
7076 
7077 /// Handle OpenCL Access Qualifier Attribute.
7078 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
7079  Sema &S) {
7080  // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7081  if (!(CurType->isImageType() || CurType->isPipeType())) {
7082  S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7083  Attr.setInvalid();
7084  return;
7085  }
7086 
7087  if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7088  QualType PointeeTy = TypedefTy->desugar();
7089  S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
7090 
7091  std::string PrevAccessQual;
7092  switch (cast<BuiltinType>(PointeeTy.getTypePtr())->getKind()) {
7093  #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7094  case BuiltinType::Id: \
7095  PrevAccessQual = #Access; \
7096  break;
7097  #include "clang/Basic/OpenCLImageTypes.def"
7098  default:
7099  assert(0 && "Unable to find corresponding image type.");
7100  }
7101 
7102  S.Diag(TypedefTy->getDecl()->getLocStart(),
7103  diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
7104  } else if (CurType->isPipeType()) {
7105  if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
7106  QualType ElemType = CurType->getAs<PipeType>()->getElementType();
7107  CurType = S.Context.getWritePipeType(ElemType);
7108  }
7109  }
7110 }
7111 
7112 static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State,
7113  QualType &T, TypeAttrLocation TAL) {
7114  Declarator &D = State.getDeclarator();
7115 
7116  // Handle the cases where address space should not be deduced.
7117  //
7118  // The pointee type of a pointer type is always deduced since a pointer always
7119  // points to some memory location which should has an address space.
7120  //
7121  // There are situations that at the point of certain declarations, the address
7122  // space may be unknown and better to be left as default. For example, when
7123  // defining a typedef or struct type, they are not associated with any
7124  // specific address space. Later on, they may be used with any address space
7125  // to declare a variable.
7126  //
7127  // The return value of a function is r-value, therefore should not have
7128  // address space.
7129  //
7130  // The void type does not occupy memory, therefore should not have address
7131  // space, except when it is used as a pointee type.
7132  //
7133  // Since LLVM assumes function type is in default address space, it should not
7134  // have address space.
7135  auto ChunkIndex = State.getCurrentChunkIndex();
7136  bool IsPointee =
7137  ChunkIndex > 0 &&
7138  (D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Pointer ||
7139  D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::BlockPointer);
7140  bool IsFuncReturnType =
7141  ChunkIndex > 0 &&
7142  D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Function;
7143  bool IsFuncType =
7144  ChunkIndex < D.getNumTypeObjects() &&
7145  D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function;
7146  if ( // Do not deduce addr space for function return type and function type,
7147  // otherwise it will fail some sema check.
7148  IsFuncReturnType || IsFuncType ||
7149  // Do not deduce addr space for member types of struct, except the pointee
7150  // type of a pointer member type.
7151  (D.getContext() == DeclaratorContext::MemberContext && !IsPointee) ||
7152  // Do not deduce addr space for types used to define a typedef and the
7153  // typedef itself, except the pointee type of a pointer type which is used
7154  // to define the typedef.
7156  !IsPointee) ||
7157  // Do not deduce addr space of the void type, e.g. in f(void), otherwise
7158  // it will fail some sema check.
7159  (T->isVoidType() && !IsPointee))
7160  return;
7161 
7162  LangAS ImpAddr;
7163  // Put OpenCL automatic variable in private address space.
7164  // OpenCL v1.2 s6.5:
7165  // The default address space name for arguments to a function in a
7166  // program, or local variables of a function is __private. All function
7167  // arguments shall be in the __private address space.
7168  if (State.getSema().getLangOpts().OpenCLVersion <= 120 &&
7169  !State.getSema().getLangOpts().OpenCLCPlusPlus) {
7170  ImpAddr = LangAS::opencl_private;
7171  } else {
7172  // If address space is not set, OpenCL 2.0 defines non private default
7173  // address spaces for some cases:
7174  // OpenCL 2.0, section 6.5:
7175  // The address space for a variable at program scope or a static variable
7176  // inside a function can either be __global or __constant, but defaults to
7177  // __global if not specified.
7178  // (...)
7179  // Pointers that are declared without pointing to a named address space
7180  // point to the generic address space.
7181  if (IsPointee) {
7182  ImpAddr = LangAS::opencl_generic;
7183  } else {
7185  ImpAddr = LangAS::opencl_global;
7186  } else {
7189  ImpAddr = LangAS::opencl_global;
7190  } else {
7191  ImpAddr = LangAS::opencl_private;
7192  }
7193  }
7194  }
7195  }
7196  T = State.getSema().Context.getAddrSpaceQualType(T, ImpAddr);
7197 }
7198 
7199 static void HandleLifetimeBoundAttr(QualType &CurType,
7200  const ParsedAttr &Attr,
7201  Sema &S, Declarator &D) {
7202  if (D.isDeclarationOfFunction()) {
7204  CurType, CurType);
7205  } else {
7206  Attr.diagnoseAppertainsTo(S, nullptr);
7207  }
7208 }
7209 
7210 
7211 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
7212  TypeAttrLocation TAL,
7213  ParsedAttributesView &attrs) {
7214  // Scan through and apply attributes to this type where it makes sense. Some
7215  // attributes (such as __address_space__, __vector_size__, etc) apply to the
7216  // type, but others can be present in the type specifiers even though they
7217  // apply to the decl. Here we apply type attributes and ignore the rest.
7218 
7219  // This loop modifies the list pretty frequently, but we still need to make
7220  // sure we visit every element once. Copy the attributes list, and iterate
7221  // over that.
7222  ParsedAttributesView AttrsCopy{attrs};
7223  for (ParsedAttr &attr : AttrsCopy) {
7224 
7225  // Skip attributes that were marked to be invalid.
7226  if (attr.isInvalid())
7227  continue;
7228 
7229  if (attr.isCXX11Attribute()) {
7230  // [[gnu::...]] attributes are treated as declaration attributes, so may
7231  // not appertain to a DeclaratorChunk. If we handle them as type
7232  // attributes, accept them in that position and diagnose the GCC
7233  // incompatibility.
7234  if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
7235  bool IsTypeAttr = attr.isTypeAttr();
7236  if (TAL == TAL_DeclChunk) {
7237  state.getSema().Diag(attr.getLoc(),
7238  IsTypeAttr
7239  ? diag::warn_gcc_ignores_type_attr
7240  : diag::warn_cxx11_gnu_attribute_on_type)
7241  << attr.getName();
7242  if (!IsTypeAttr)
7243  continue;
7244  }
7245  } else if (TAL != TAL_DeclChunk) {
7246  // Otherwise, only consider type processing for a C++11 attribute if
7247  // it's actually been applied to a type.
7248  continue;
7249  }
7250  }
7251 
7252  // If this is an attribute we can handle, do so now,
7253  // otherwise, add it to the FnAttrs list for rechaining.
7254  switch (attr.getKind()) {
7255  default:
7256  // A C++11 attribute on a declarator chunk must appertain to a type.
7257  if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
7258  state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
7259  << attr.getName();
7260  attr.setUsedAsTypeAttr();
7261  }
7262  break;
7263 
7265  if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
7266  state.getSema().Diag(attr.getLoc(),
7267  diag::warn_unknown_attribute_ignored)
7268  << attr.getName();
7269  break;
7270 
7272  break;
7273 
7274  case ParsedAttr::AT_MayAlias:
7275  // FIXME: This attribute needs to actually be handled, but if we ignore
7276  // it it breaks large amounts of Linux software.
7277  attr.setUsedAsTypeAttr();
7278  break;
7279  case ParsedAttr::AT_OpenCLPrivateAddressSpace:
7280  case ParsedAttr::AT_OpenCLGlobalAddressSpace:
7281  case ParsedAttr::AT_OpenCLLocalAddressSpace:
7282  case ParsedAttr::AT_OpenCLConstantAddressSpace:
7283  case ParsedAttr::AT_OpenCLGenericAddressSpace:
7284  case ParsedAttr::AT_AddressSpace:
7285  HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
7286  attr.setUsedAsTypeAttr();
7287  break;
7289  if (!handleObjCPointerTypeAttr(state, attr, type))
7290  distributeObjCPointerTypeAttr(state, attr, type);
7291  attr.setUsedAsTypeAttr();
7292  break;
7293  case ParsedAttr::AT_VectorSize:
7294  HandleVectorSizeAttr(type, attr, state.getSema());
7295  attr.setUsedAsTypeAttr();
7296  break;
7297  case ParsedAttr::AT_ExtVectorType:
7298  HandleExtVectorTypeAttr(type, attr, state.getSema());
7299  attr.setUsedAsTypeAttr();
7300  break;
7301  case ParsedAttr::AT_NeonVectorType:
7302  HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7304  attr.setUsedAsTypeAttr();
7305  break;
7306  case ParsedAttr::AT_NeonPolyVectorType:
7307  HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7309  attr.setUsedAsTypeAttr();
7310  break;
7311  case ParsedAttr::AT_OpenCLAccess:
7312  HandleOpenCLAccessAttr(type, attr, state.getSema());
7313  attr.setUsedAsTypeAttr();
7314  break;
7315  case ParsedAttr::AT_LifetimeBound:
7316  if (TAL == TAL_DeclChunk) {
7317  HandleLifetimeBoundAttr(type, attr, state.getSema(),
7318  state.getDeclarator());
7319  attr.setUsedAsTypeAttr();
7320  }
7321  break;
7322 
7324  if (!handleMSPointerTypeQualifierAttr(state, attr, type))
7325  attr.setUsedAsTypeAttr();
7326  break;
7327 
7328 
7330  // Either add nullability here or try to distribute it. We
7331  // don't want to distribute the nullability specifier past any
7332  // dependent type, because that complicates the user model.
7333  if (type->canHaveNullability() || type->isDependentType() ||
7334  type->isArrayType() ||
7335  !distributeNullabilityTypeAttr(state, type, attr)) {
7336  unsigned endIndex;
7337  if (TAL == TAL_DeclChunk)
7338  endIndex = state.getCurrentChunkIndex();
7339  else
7340  endIndex = state.getDeclarator().getNumTypeObjects();
7341  bool allowOnArrayType =
7342  state.getDeclarator().isPrototypeContext() &&
7343  !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
7344  if (state.getSema().checkNullabilityTypeSpecifier(
7345  type,
7346  mapNullabilityAttrKind(attr.getKind()),
7347  attr.getLoc(),
7348  attr.isContextSensitiveKeywordAttribute(),
7349  allowOnArrayType)) {
7350  attr.setInvalid();
7351  }
7352 
7353  attr.setUsedAsTypeAttr();
7354  }
7355  break;
7356 
7357  case ParsedAttr::AT_ObjCKindOf:
7358  // '__kindof' must be part of the decl-specifiers.
7359  switch (TAL) {
7360  case TAL_DeclSpec:
7361  break;
7362 
7363  case TAL_DeclChunk:
7364  case TAL_DeclName:
7365  state.getSema().Diag(attr.getLoc(),
7366  diag::err_objc_kindof_wrong_position)
7367  << FixItHint::CreateRemoval(attr.getLoc())
7369  state.getDeclarator().getDeclSpec().getLocStart(), "__kindof ");
7370  break;
7371  }
7372 
7373  // Apply it regardless.
7374  if (state.getSema().checkObjCKindOfType(type, attr.getLoc()))
7375  attr.setInvalid();
7376  attr.setUsedAsTypeAttr();
7377  break;
7378 
7380  attr.setUsedAsTypeAttr();
7381 
7382  // Never process function type attributes as part of the
7383  // declaration-specifiers.
7384  if (TAL == TAL_DeclSpec)
7385  distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
7386 
7387  // Otherwise, handle the possible delays.
7388  else if (!handleFunctionTypeAttr(state, attr, type))
7389  distributeFunctionTypeAttr(state, attr, type);
7390  break;
7391  }
7392  }
7393 
7394  if (!state.getSema().getLangOpts().OpenCL ||
7395  type.getAddressSpace() != LangAS::Default)
7396  return;
7397 
7398  deduceOpenCLImplicitAddrSpace(state, type, TAL);
7399 }
7400 
7402  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
7403  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
7404  if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
7405  auto *Def = Var->getDefinition();
7406  if (!Def) {
7407  SourceLocation PointOfInstantiation = E->getExprLoc();
7408  InstantiateVariableDefinition(PointOfInstantiation, Var);
7409  Def = Var->getDefinition();
7410 
7411  // If we don't already have a point of instantiation, and we managed
7412  // to instantiate a definition, this is the point of instantiation.
7413  // Otherwise, we don't request an end-of-TU instantiation, so this is
7414  // not a point of instantiation.
7415  // FIXME: Is this really the right behavior?
7416  if (Var->getPointOfInstantiation().isInvalid() && Def) {
7417  assert(Var->getTemplateSpecializationKind() ==
7419  "explicit instantiation with no point of instantiation");
7420  Var->setTemplateSpecializationKind(
7421  Var->getTemplateSpecializationKind(), PointOfInstantiation);
7422  }
7423  }
7424 
7425  // Update the type to the definition's type both here and within the
7426  // expression.
7427  if (Def) {
7428  DRE->setDecl(Def);
7429  QualType T = Def->getType();
7430  DRE->setType(T);
7431  // FIXME: Update the type on all intervening expressions.
7432  E->setType(T);
7433  }
7434 
7435  // We still go on to try to complete the type independently, as it
7436  // may also require instantiations or diagnostics if it remains
7437  // incomplete.
7438  }
7439  }
7440  }
7441 }
7442 
7443 /// Ensure that the type of the given expression is complete.
7444 ///
7445 /// This routine checks whether the expression \p E has a complete type. If the
7446 /// expression refers to an instantiable construct, that instantiation is
7447 /// performed as needed to complete its type. Furthermore
7448 /// Sema::RequireCompleteType is called for the expression's type (or in the
7449 /// case of a reference type, the referred-to type).
7450 ///
7451 /// \param E The expression whose type is required to be complete.
7452 /// \param Diagnoser The object that will emit a diagnostic if the type is
7453 /// incomplete.
7454 ///
7455 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
7456 /// otherwise.
7458  QualType T = E->getType();
7459 
7460  // Incomplete array types may be completed by the initializer attached to
7461  // their definitions. For static data members of class templates and for
7462  // variable templates, we need to instantiate the definition to get this
7463  // initializer and complete the type.
7464  if (T->isIncompleteArrayType()) {
7465  completeExprArrayBound(E);
7466  T = E->getType();
7467  }
7468 
7469  // FIXME: Are there other cases which require instantiating something other
7470  // than the type to complete the type of an expression?
7471 
7472  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
7473 }
7474 
7475 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
7476  BoundTypeDiagnoser<> Diagnoser(DiagID);
7477  return RequireCompleteExprType(E, Diagnoser);
7478 }
7479 
7480 /// Ensure that the type T is a complete type.
7481 ///
7482 /// This routine checks whether the type @p T is complete in any
7483 /// context where a complete type is required. If @p T is a complete
7484 /// type, returns false. If @p T is a class template specialization,
7485 /// this routine then attempts to perform class template
7486 /// instantiation. If instantiation fails, or if @p T is incomplete
7487 /// and cannot be completed, issues the diagnostic @p diag (giving it
7488 /// the type @p T) and returns true.
7489 ///
7490 /// @param Loc The location in the source that the incomplete type
7491 /// diagnostic should refer to.
7492 ///
7493 /// @param T The type that this routine is examining for completeness.
7494 ///
7495 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
7496 /// @c false otherwise.
7498  TypeDiagnoser &Diagnoser) {
7499  if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
7500  return true;
7501  if (const TagType *Tag = T->getAs<TagType>()) {
7502  if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
7503  Tag->getDecl()->setCompleteDefinitionRequired();
7504  Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
7505  }
7506  }
7507  return false;
7508 }
7509 
7511  llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
7512  if (!Suggested)
7513  return false;
7514 
7515  // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
7516  // and isolate from other C++ specific checks.
7518  D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
7520  false /*StrictTypeSpelling*/, true /*Complain*/,
7521  true /*ErrorOnTagTypeMismatch*/);
7522  return Ctx.IsEquivalent(D, Suggested);
7523 }
7524 
7525 /// Determine whether there is any declaration of \p D that was ever a
7526 /// definition (perhaps before module merging) and is currently visible.
7527 /// \param D The definition of the entity.
7528 /// \param Suggested Filled in with the declaration that should be made visible
7529 /// in order to provide a definition of this entity.
7530 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
7531 /// not defined. This only matters for enums with a fixed underlying
7532 /// type, since in all other cases, a type is complete if and only if it
7533 /// is defined.
7535  bool OnlyNeedComplete) {
7536  // Easy case: if we don't have modules, all declarations are visible.
7537  if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
7538  return true;
7539 
7540  // If this definition was instantiated from a template, map back to the
7541  // pattern from which it was instantiated.
7542  if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
7543  // We're in the middle of defining it; this definition should be treated
7544  // as visible.
7545  return true;
7546  } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
7547  if (auto *Pattern = RD->getTemplateInstantiationPattern())
7548  RD = Pattern;
7549  D = RD->getDefinition();
7550  } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
7551  if (auto *Pattern = ED->getTemplateInstantiationPattern())
7552  ED = Pattern;
7553  if (OnlyNeedComplete && ED->isFixed()) {
7554  // If the enum has a fixed underlying type, and we're only looking for a
7555  // complete type (not a definition), any visible declaration of it will
7556  // do.
7557  *Suggested = nullptr;
7558  for (auto *Redecl : ED->redecls()) {
7559  if (isVisible(Redecl))
7560  return true;
7561  if (Redecl->isThisDeclarationADefinition() ||
7562  (Redecl->isCanonicalDecl() && !*Suggested))
7563  *Suggested = Redecl;
7564  }
7565  return false;
7566  }
7567  D = ED->getDefinition();
7568  } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7569  if (auto *Pattern = FD->getTemplateInstantiationPattern())
7570  FD = Pattern;
7571  D = FD->getDefinition();
7572  } else if (auto *VD = dyn_cast<VarDecl>(D)) {
7573  if (auto *Pattern = VD->getTemplateInstantiationPattern())
7574  VD = Pattern;
7575  D = VD->getDefinition();
7576  }
7577  assert(D && "missing definition for pattern of instantiated definition");
7578 
7579  *Suggested = D;
7580  if (isVisible(D))
7581  return true;
7582 
7583  // The external source may have additional definitions of this entity that are
7584  // visible, so complete the redeclaration chain now and ask again.
7585  if (auto *Source = Context.getExternalSource()) {
7586  Source->CompleteRedeclChain(D);
7587  return isVisible(D);
7588  }
7589 
7590  return false;
7591 }
7592 
7593 /// Locks in the inheritance model for the given class and all of its bases.
7595  RD = RD->getMostRecentNonInjectedDecl();
7596  if (!RD->hasAttr<MSInheritanceAttr>()) {
7597  MSInheritanceAttr::Spelling IM;
7598 
7601  IM = RD->calculateInheritanceModel();
7602  break;
7604  IM = MSInheritanceAttr::Keyword_single_inheritance;
7605  break;
7607  IM = MSInheritanceAttr::Keyword_multiple_inheritance;
7608  break;
7610  IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
7611  break;
7612  }
7613 
7614  RD->addAttr(MSInheritanceAttr::CreateImplicit(
7615  S.getASTContext(), IM,
7616  /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
7620  : RD->getSourceRange()));
7622  }
7623 }
7624 
7625 /// The implementation of RequireCompleteType
7626 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
7627  TypeDiagnoser *Diagnoser) {
7628  // FIXME: Add this assertion to make sure we always get instantiation points.
7629  // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
7630  // FIXME: Add this assertion to help us flush out problems with
7631  // checking for dependent types and type-dependent expressions.
7632  //
7633  // assert(!T->isDependentType() &&
7634  // "Can't ask whether a dependent type is complete");
7635 
7636  if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
7637  if (!MPTy->getClass()->isDependentType()) {
7638  if (getLangOpts().CompleteMemberPointers &&
7639  !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
7640  RequireCompleteType(Loc, QualType(MPTy->getClass(), 0),
7641  diag::err_memptr_incomplete))
7642  return true;
7643 
7644  // We lock in the inheritance model once somebody has asked us to ensure
7645  // that a pointer-to-member type is complete.
7646  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7647  (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
7648  assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
7649  }
7650  }
7651  }
7652 
7653  NamedDecl *Def = nullptr;
7654  bool Incomplete = T->isIncompleteType(&Def);
7655 
7656  // Check that any necessary explicit specializations are visible. For an
7657  // enum, we just need the declaration, so don't check this.
7658  if (Def && !isa<EnumDecl>(Def))
7659  checkSpecializationVisibility(Loc, Def);
7660 
7661  // If we have a complete type, we're done.
7662  if (!Incomplete) {
7663  // If we know about the definition but it is not visible, complain.
7664  NamedDecl *SuggestedDef = nullptr;
7665  if (Def &&
7666  !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
7667  // If the user is going to see an error here, recover by making the
7668  // definition visible.
7669  bool TreatAsComplete = Diagnoser && !isSFINAEContext();
7670  if (Diagnoser && SuggestedDef)
7671  diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
7672  /*Recover*/TreatAsComplete);
7673  return !TreatAsComplete;
7674  } else if (Def && !TemplateInstCallbacks.empty()) {
7675  CodeSynthesisContext TempInst;
7676  TempInst.Kind = CodeSynthesisContext::Memoization;
7677  TempInst.Template = Def;
7678  TempInst.Entity = Def;
7679  TempInst.PointOfInstantiation = Loc;
7680  atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
7681  atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
7682  }
7683 
7684  return false;
7685  }
7686 
7687  const TagType *Tag = T->getAs<TagType>();
7688  const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
7689 
7690  // If there's an unimported definition of this type in a module (for
7691  // instance, because we forward declared it, then imported the definition),
7692  // import that definition now.
7693  //
7694  // FIXME: What about other cases where an import extends a redeclaration
7695  // chain for a declaration that can be accessed through a mechanism other
7696  // than name lookup (eg, referenced in a template, or a variable whose type
7697  // could be completed by the module)?
7698  //
7699  // FIXME: Should we map through to the base array element type before
7700  // checking for a tag type?
7701  if (Tag || IFace) {
7702  NamedDecl *D =
7703  Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
7704 
7705  // Avoid diagnosing invalid decls as incomplete.
7706  if (D->isInvalidDecl())
7707  return true;
7708 
7709  // Give the external AST source a chance to complete the type.
7710  if (auto *Source = Context.getExternalSource()) {
7711  if (Tag) {
7712  TagDecl *TagD = Tag->getDecl();
7713  if (TagD->hasExternalLexicalStorage())
7714  Source->CompleteType(TagD);
7715  } else {
7716  ObjCInterfaceDecl *IFaceD = IFace->getDecl();
7717  if (IFaceD->hasExternalLexicalStorage())
7718  Source->CompleteType(IFace->getDecl());
7719  }
7720  // If the external source completed the type, go through the motions
7721  // again to ensure we're allowed to use the completed type.
7722  if (!T->isIncompleteType())
7723  return RequireCompleteTypeImpl(Loc, T, Diagnoser);
7724  }
7725  }
7726 
7727  // If we have a class template specialization or a class member of a
7728  // class template specialization, or an array with known size of such,
7729  // try to instantiate it.
7730  QualType MaybeTemplate = T;
7731  while (const ConstantArrayType *Array
7732  = Context.getAsConstantArrayType(MaybeTemplate))
7733  MaybeTemplate = Array->getElementType();
7734  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
7735  bool Instantiated = false;
7736  bool Diagnosed = false;
7737  if (ClassTemplateSpecializationDecl *ClassTemplateSpec
7738  = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
7739  if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
7740  Diagnosed = InstantiateClassTemplateSpecialization(
7741  Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
7742  /*Complain=*/Diagnoser);
7743  Instantiated = true;
7744  }
7745  } else if (CXXRecordDecl *Rec
7746  = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
7748  if (!Rec->isBeingDefined() && Pattern) {
7749  MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
7750  assert(MSI && "Missing member specialization information?");
7751  // This record was instantiated from a class within a template.
7752  if (MSI->getTemplateSpecializationKind() !=
7754  Diagnosed = InstantiateClass(Loc, Rec, Pattern,
7755  getTemplateInstantiationArgs(Rec),
7757  /*Complain=*/Diagnoser);
7758  Instantiated = true;
7759  }
7760  }
7761  }
7762 
7763  if (Instantiated) {
7764  // Instantiate* might have already complained that the template is not
7765  // defined, if we asked it to.
7766  if (Diagnoser && Diagnosed)
7767  return true;
7768  // If we instantiated a definition, check that it's usable, even if
7769  // instantiation produced an error, so that repeated calls to this
7770  // function give consistent answers.
7771  if (!T->isIncompleteType())
7772  return RequireCompleteTypeImpl(Loc, T, Diagnoser);
7773  }
7774  }
7775 
7776  // FIXME: If we didn't instantiate a definition because of an explicit
7777  // specialization declaration, check that it's visible.
7778 
7779  if (!Diagnoser)
7780  return true;
7781 
7782  Diagnoser->diagnose(*this, Loc, T);
7783 
7784  // If the type was a forward declaration of a class/struct/union
7785  // type, produce a note.
7786  if (Tag && !Tag->getDecl()->isInvalidDecl())
7787  Diag(Tag->getDecl()->getLocation(),
7788  Tag->isBeingDefined() ? diag::note_type_being_defined
7789  : diag::note_forward_declaration)
7790  << QualType(Tag, 0);
7791 
7792  // If the Objective-C class was a forward declaration, produce a note.
7793  if (IFace && !IFace->getDecl()->isInvalidDecl())
7794  Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
7795 
7796  // If we have external information that we can use to suggest a fix,
7797  // produce a note.
7798  if (ExternalSource)
7799  ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
7800 
7801  return true;
7802 }
7803 
7805  unsigned DiagID) {
7806  BoundTypeDiagnoser<> Diagnoser(DiagID);
7807  return RequireCompleteType(Loc, T, Diagnoser);
7808 }
7809 
7810 /// Get diagnostic %select index for tag kind for
7811 /// literal type diagnostic message.
7812 /// WARNING: Indexes apply to particular diagnostics only!
7813 ///
7814 /// \returns diagnostic %select index.
7816  switch (Tag) {
7817  case TTK_Struct: return 0;
7818  case TTK_Interface: return 1;
7819  case TTK_Class: return 2;
7820  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
7821  }
7822 }
7823 
7824 /// Ensure that the type T is a literal type.
7825 ///
7826 /// This routine checks whether the type @p T is a literal type. If @p T is an
7827 /// incomplete type, an attempt is made to complete it. If @p T is a literal
7828 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
7829 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
7830 /// it the type @p T), along with notes explaining why the type is not a
7831 /// literal type, and returns true.
7832 ///
7833 /// @param Loc The location in the source that the non-literal type
7834 /// diagnostic should refer to.
7835 ///
7836 /// @param T The type that this routine is examining for literalness.
7837 ///
7838 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
7839 ///
7840 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
7841 /// @c false otherwise.
7843  TypeDiagnoser &Diagnoser) {
7844  assert(!T->isDependentType() && "type should not be dependent");
7845 
7846  QualType ElemType = Context.getBaseElementType(T);
7847  if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
7848  T->isLiteralType(Context))
7849  return false;
7850 
7851  Diagnoser.diagnose(*this, Loc, T);
7852 
7853  if (T->isVariableArrayType())
7854  return true;
7855 
7856  const RecordType *RT = ElemType->getAs<RecordType>();
7857  if (!RT)
7858  return true;
7859 
7860  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7861 
7862  // A partially-defined class type can't be a literal type, because a literal
7863  // class type must have a trivial destructor (which can't be checked until
7864  // the class definition is complete).
7865  if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
7866  return true;
7867 
7868  // [expr.prim.lambda]p3:
7869  // This class type is [not] a literal type.
7870  if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
7871  Diag(RD->getLocation(), diag::note_non_literal_lambda);
7872  return true;
7873  }
7874 
7875  // If the class has virtual base classes, then it's not an aggregate, and
7876  // cannot have any constexpr constructors or a trivial default constructor,
7877  // so is non-literal. This is better to diagnose than the resulting absence
7878  // of constexpr constructors.
7879  if (RD->getNumVBases()) {
7880  Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
7882  for (const auto &I : RD->vbases())
7883  Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
7884  << I.getSourceRange();
7885  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
7887  Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
7888  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
7889  for (const auto &I : RD->bases()) {
7890  if (!I.getType()->isLiteralType(Context)) {
7891  Diag(I.getLocStart(),
7892  diag::note_non_literal_base_class)
7893  << RD << I.getType() << I.getSourceRange();
7894  return true;
7895  }
7896  }
7897  for (const auto *I : RD->fields()) {
7898  if (!I->getType()->isLiteralType(Context) ||
7899  I->getType().isVolatileQualified()) {
7900  Diag(I->getLocation(), diag::note_non_literal_field)
7901  << RD << I << I->getType()
7902  << I->getType().isVolatileQualified();
7903  return true;
7904  }
7905  }
7906  } else if (!RD->hasTrivialDestructor()) {
7907  // All fields and bases are of literal types, so have trivial destructors.
7908  // If this class's destructor is non-trivial it must be user-declared.
7909  CXXDestructorDecl *Dtor = RD->getDestructor();
7910  assert(Dtor && "class has literal fields and bases but no dtor?");
7911  if (!Dtor)
7912  return true;
7913 
7914  Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
7915  diag::note_non_literal_user_provided_dtor :
7916  diag::note_non_literal_nontrivial_dtor) << RD;
7917  if (!Dtor->isUserProvided())
7918  SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
7919  /*Diagnose*/true);
7920  }
7921 
7922  return true;
7923 }
7924 
7925 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
7926  BoundTypeDiagnoser<> Diagnoser(DiagID);
7927  return RequireLiteralType(Loc, T, Diagnoser);
7928 }
7929 
7930 /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
7931 /// by the nested-name-specifier contained in SS, and that is (re)declared by
7932 /// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
7934  const CXXScopeSpec &SS, QualType T,
7935  TagDecl *OwnedTagDecl) {
7936  if (T.isNull())
7937  return T;
7938  NestedNameSpecifier *NNS;
7939  if (SS.isValid())
7940  NNS = SS.getScopeRep();
7941  else {
7942  if (Keyword == ETK_None)
7943  return T;
7944  NNS = nullptr;
7945  }
7946  return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
7947 }
7948 
7950  ExprResult ER = CheckPlaceholderExpr(E);
7951  if (ER.isInvalid()) return QualType();
7952  E = ER.get();
7953 
7954  if (!getLangOpts().CPlusPlus && E->refersToBitField())
7955  Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
7956 
7957  if (!E->isTypeDependent()) {
7958  QualType T = E->getType();
7959  if (const TagType *TT = T->getAs<TagType>())
7960  DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
7961  }
7962  return Context.getTypeOfExprType(E);
7963 }
7964 
7965 /// getDecltypeForExpr - Given an expr, will return the decltype for
7966 /// that expression, according to the rules in C++11
7967 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
7969  if (E->isTypeDependent())
7970  return S.Context.DependentTy;
7971 
7972  // C++11 [dcl.type.simple]p4:
7973  // The type denoted by decltype(e) is defined as follows:
7974  //
7975  // - if e is an unparenthesized id-expression or an unparenthesized class
7976  // member access (5.2.5), decltype(e) is the type of the entity named
7977  // by e. If there is no such entity, or if e names a set of overloaded
7978  // functions, the program is ill-formed;
7979  //
7980  // We apply the same rules for Objective-C ivar and property references.
7981  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
7982  const ValueDecl *VD = DRE->getDecl();
7983  return VD->getType();
7984  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
7985  if (const ValueDecl *VD = ME->getMemberDecl())
7986  if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
7987  return VD->getType();
7988  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
7989  return IR->getDecl()->getType();
7990  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
7991  if (PR->isExplicitProperty())
7992  return PR->getExplicitProperty()->getType();
7993  } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
7994  return PE->getType();
7995  }
7996 
7997  // C++11 [expr.lambda.prim]p18:
7998  // Every occurrence of decltype((x)) where x is a possibly
7999  // parenthesized id-expression that names an entity of automatic
8000  // storage duration is treated as if x were transformed into an
8001  // access to a corresponding data member of the closure type that
8002  // would have been declared if x were an odr-use of the denoted
8003  // entity.
8004  using namespace sema;
8005  if (S.getCurLambda()) {
8006  if (isa<ParenExpr>(E)) {
8007  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8008  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8009  QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
8010  if (!T.isNull())
8011  return S.Context.getLValueReferenceType(T);
8012  }
8013  }
8014  }
8015  }
8016 
8017 
8018  // C++11 [dcl.type.simple]p4:
8019  // [...]
8020  QualType T = E->getType();
8021  switch (E->getValueKind()) {
8022  // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
8023  // type of e;
8024  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
8025  // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
8026  // type of e;
8027  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
8028  // - otherwise, decltype(e) is the type of e.
8029  case VK_RValue: break;
8030  }
8031 
8032  return T;
8033 }
8034 
8036  bool AsUnevaluated) {
8037  ExprResult ER = CheckPlaceholderExpr(E);
8038  if (ER.isInvalid()) return QualType();
8039  E = ER.get();
8040 
8041  if (AsUnevaluated && CodeSynthesisContexts.empty() &&
8042  E->HasSideEffects(Context, false)) {
8043  // The expression operand for decltype is in an unevaluated expression
8044  // context, so side effects could result in unintended consequences.
8045  Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8046  }
8047 
8048  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
8049 }
8050 
8053  SourceLocation Loc) {
8054  switch (UKind) {
8056  if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
8057  Diag(Loc, diag::err_only_enums_have_underlying_types);
8058  return QualType();
8059  } else {
8060  QualType Underlying = BaseType;
8061  if (!BaseType->isDependentType()) {
8062  // The enum could be incomplete if we're parsing its definition or
8063  // recovering from an error.
8064  NamedDecl *FwdDecl = nullptr;
8065  if (BaseType->isIncompleteType(&FwdDecl)) {
8066  Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
8067  Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
8068  return QualType();
8069  }
8070 
8071  EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
8072  assert(ED && "EnumType has no EnumDecl");
8073 
8074  DiagnoseUseOfDecl(ED, Loc);
8075 
8076  Underlying = ED->getIntegerType();
8077  assert(!Underlying.isNull());
8078  }
8079  return Context.getUnaryTransformType(BaseType, Underlying,
8081  }
8082  }
8083  llvm_unreachable("unknown unary transform type");
8084 }
8085 
8087  if (!T->isDependentType()) {
8088  // FIXME: It isn't entirely clear whether incomplete atomic types
8089  // are allowed or not; for simplicity, ban them for the moment.
8090  if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
8091  return QualType();
8092 
8093  int DisallowedKind = -1;
8094  if (T->isArrayType())
8095  DisallowedKind = 1;
8096  else if (T->isFunctionType())
8097  DisallowedKind = 2;
8098  else if (T->isReferenceType())
8099  DisallowedKind = 3;
8100  else if (T->isAtomicType())
8101  DisallowedKind = 4;
8102  else if (T.hasQualifiers())
8103  DisallowedKind = 5;
8104  else if (!T.isTriviallyCopyableType(Context))
8105  // Some other non-trivially-copyable type (probably a C++ class)
8106  DisallowedKind = 6;
8107 
8108  if (DisallowedKind != -1) {
8109  Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
8110  return QualType();
8111  }
8112 
8113  // FIXME: Do we need any handling for ARC here?
8114  }
8115 
8116  // Build the pointer type.
8117  return Context.getAtomicType(T);
8118 }
FileNullabilityMap NullabilityMap
A mapping that describes the nullability we&#39;ve seen in each header file.
Definition: Sema.h:484
Abstract class used to diagnose incomplete types.
Definition: Sema.h:1484
ParsedType getTrailingReturnType() const
Get the trailing-return-type for this function declarator.
Definition: DeclSpec.h:1464
ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC property.
Definition: ExprObjC.h:595
static void checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind, SourceLocation pointerLoc, SourceLocation pointerEndLoc=SourceLocation())
Complains about missing nullability if the file containing pointerLoc has other uses of nullability (...
Definition: SemaType.cpp:3743
QualType getDecltypeType(Expr *e, QualType UnderlyingType) const
C++11 decltype.
AttributePool & getAttributePool() const
Definition: DeclSpec.h:1850
ParameterABI getABI() const
Return the ABI treatment of this parameter.
Definition: Type.h:3466
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const
Return the uniqued reference to the type for an address space qualified type with the specified type ...
Represents a type that was referred to using an elaborated type keyword, e.g., struct S...
Definition: Type.h:4945
TypeLoc getValueLoc() const
Definition: TypeLoc.h:2277
unsigned UnalignedQualLoc
The location of the __unaligned-qualifier, if any.
Definition: DeclSpec.h:1173
const Type * Ty
The locally-unqualified type.
Definition: Type.h:596
bool diagnoseAppertainsTo(class Sema &S, const Decl *D) const
Definition: ParsedAttr.cpp:187
QualType getObjCObjectType(QualType Base, ObjCProtocolDecl *const *Protocols, unsigned NumProtocols) const
Legacy interface: cannot provide type arguments or __kindof.
CanQualType LongLongTy
Definition: ASTContext.h:1013
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag)
Get diagnostic select index for tag kind for literal type diagnostic message.
Definition: SemaType.cpp:7815
const internal::VariadicDynCastAllOfMatcher< Decl, TypedefDecl > typedefDecl
Matches typedef declarations.
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo)
Package the given type and TSI into a ParsedType.
Definition: SemaType.cpp:5674
QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, SourceLocation ProtocolLAngleLoc, ArrayRef< ObjCProtocolDecl *> Protocols, ArrayRef< SourceLocation > ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError=false)
Build an Objective-C type parameter type.
Definition: SemaType.cpp:958
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
getFunctionTypeInfo - Retrieves the function type info object (looking through parentheses).
Definition: DeclSpec.h:2257
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
unsigned RefQualifierIsLValueRef
Whether the ref-qualifier (if any) is an lvalue reference.
Definition: DeclSpec.h:1255
static bool isOmittedBlockReturnType(const Declarator &D)
isOmittedBlockReturnType - Return true if this declarator is missing a return type because this is a ...
Definition: SemaType.cpp:50
CanQualType AccumTy
Definition: ASTContext.h:1017
no exception specification
QualType BuildFunctionType(QualType T, MutableArrayRef< QualType > ParamTypes, SourceLocation Loc, DeclarationName Entity, const FunctionProtoType::ExtProtoInfo &EPI)
Build a function type.
Definition: SemaType.cpp:2429
This is a discriminated union of FileInfo and ExpansionInfo.
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
PtrTy get() const
Definition: Ownership.h:81
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2393
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:3789
QualType BuildWritePipeType(QualType T, SourceLocation Loc)
Build a Write-only Pipe type.
Definition: SemaType.cpp:1995
A (possibly-)qualified type.
Definition: Type.h:655
ASTConsumer & Consumer
Definition: Sema.h:320
bool isBlockPointerType() const
Definition: Type.h:6121
base_class_range bases()
Definition: DeclCXX.h:825
bool isArrayType() const
Definition: Type.h:6162
bool isMemberPointerType() const
Definition: Type.h:6144
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1347
Wrapper for source info for tag types.
Definition: TypeLoc.h:702
SourceRange getSourceRange() const LLVM_READONLY
Return the source range that covers this unqualified-id.
Definition: DeclSpec.h:1122
static const TSS TSS_unsigned
Definition: DeclSpec.h:268
static bool hasNullabilityAttr(const ParsedAttributesView &attrs)
Check whether there is a nullability attribute of any kind in the given attribute list...
Definition: SemaType.cpp:3438
QualType BuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc)
Definition: SemaType.cpp:8051
__auto_type (GNU extension)
const DeclaratorChunk & getTypeObject(unsigned i) const
Return the specified TypeInfo from this declarator.
Definition: DeclSpec.h:2168
CanQualType FractTy
Definition: ASTContext.h:1020
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:3016
void setNameEndLoc(SourceLocation Loc)
Definition: TypeLoc.h:1143
static const TST TST_wchar
Definition: DeclSpec.h:275
llvm::PointerUnion< Expr *, IdentifierLoc * > ArgsUnion
A union of the various pointer types that can be passed to an ParsedAttr as an argument.
Definition: ParsedAttr.h:93
CanQualType Char32Ty
Definition: ASTContext.h:1012
#define CALLING_CONV_ATTRS_CASELIST
Definition: SemaType.cpp:110
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
void setKWLoc(SourceLocation Loc)
Definition: TypeLoc.h:2341
The attribute is immediately after the declaration&#39;s name.
Definition: SemaType.cpp:268
void setRParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1443
TypeLoc getNextTypeLoc() const
Get the next TypeLoc pointed by this TypeLoc, e.g for "int*" the TypeLoc is a PointerLoc and next Typ...
Definition: TypeLoc.h:169
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1278
const internal::VariadicDynCastAllOfMatcher< Decl, RecordDecl > recordDecl
Matches class, struct, and union declarations.
NullabilityKind
Describes the nullability of a particular type.
Definition: Specifiers.h:285
void setExceptionSpecRange(SourceRange R)
Definition: TypeLoc.h:1457
Kind getKind() const
Definition: Type.h:2274
QualType BuildObjCObjectType(QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc, ArrayRef< TypeSourceInfo *> TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef< ObjCProtocolDecl *> Protocols, ArrayRef< SourceLocation > ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError=false)
Build an Objective-C object pointer type.
Definition: SemaType.cpp:981
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3211
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:497
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:941
TypeLoc getValueLoc() const
Definition: TypeLoc.h:2336
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1941
void setEmbeddedInDeclarator(bool isInDeclarator)
Definition: Decl.h:3189
unsigned getNumVBases() const
Retrieves the number of virtual base classes of this class.
Definition: DeclCXX.h:840
bool hasPlaceholderType() const
Returns whether this expression has a placeholder type.
Definition: Expr.h:472
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:2974
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:824
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
bool isRecordType() const
Definition: Type.h:6186
bool isDecltypeAuto() const
Definition: Type.h:4573
static const TST TST_typeofExpr
Definition: DeclSpec.h:299
QualType getQualifiedType(SplitQualType split) const
Un-split a SplitQualType.
Definition: ASTContext.h:1918
static void fillAttributedTypeLoc(AttributedTypeLoc TL, const ParsedAttributesView &Attrs, const ParsedAttributesView &DeclAttrs)
Definition: SemaType.cpp:5261
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type...
QualType getElaboratedType(ElaboratedTypeKeyword Keyword, const CXXScopeSpec &SS, QualType T, TagDecl *OwnedTagDecl=nullptr)
Retrieve a version of the type &#39;T&#39; that is elaborated by Keyword, qualified by the nested-name-specif...
Definition: SemaType.cpp:7933
const Type * getTypeForDecl() const
Definition: Decl.h:2853
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1281
static const TST TST_char16
Definition: DeclSpec.h:277
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr, QualType type)
diagnoseBadTypeAttribute - Diagnoses a type attribute which doesn&#39;t apply to the given type...
Definition: SemaType.cpp:67
bool isVariadic() const
Definition: Type.h:3774
TagDecl * getDecl() const
Definition: Type.cpp:3148
static void HandleAddressSpaceTypeAttribute(QualType &Type, const ParsedAttr &Attr, Sema &S)
HandleAddressSpaceTypeAttribute - Process an address_space attribute on the specified type...
Definition: SemaType.cpp:5803
WrittenBuiltinSpecs & getWrittenBuiltinSpecs()
Definition: TypeLoc.h:570
void setType(QualType t)
Definition: Expr.h:129
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
Defines the C++ template declaration subclasses.
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4562
IdentifierInfo * Ident
Definition: ParsedAttr.h:85
SmallVector< CodeSynthesisContext, 16 > CodeSynthesisContexts
List of active code synthesis contexts.
Definition: Sema.h:7244
QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, Expr *ArraySize, unsigned Quals, SourceRange Brackets, DeclarationName Entity)
Build an array type.
Definition: SemaType.cpp:2036
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:301
const char * getCharacterData(SourceLocation SL, bool *Invalid=nullptr) const
Return a pointer to the start of the specified location in the appropriate spelling MemoryBuffer...
SourceLocation getVolatileQualifierLoc() const
Retrieve the location of the &#39;volatile&#39; qualifier, if any.
Definition: DeclSpec.h:1419
A constructor named via a template-id.
Expr * getArgAsExpr(unsigned Arg) const
Definition: ParsedAttr.h:440
QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr, SourceLocation AttrLoc, VectorType::VectorKind VecKind) const
Return the unique reference to the type for a dependently sized vector of the specified element type...
QualType getBlockPointerType(QualType T) const
Return the uniqued reference to the type for a block of the specified type.
SourceLocation getLParenLoc() const
Definition: DeclSpec.h:1384
The base class of the type hierarchy.
Definition: Type.h:1428
bool hasTrailingReturnType() const
Determine whether a trailing return type was written (at any level) within this declarator.
Definition: DeclSpec.h:2374
CanQualType LongTy
Definition: ASTContext.h:1013
DiagnosticsEngine & getDiagnostics() const
One instance of this struct is used for each type in a declarator that is parsed. ...
Definition: DeclSpec.h:1138
QualType getCorrespondingUnsignedType(QualType T) const
SourceLocation EndLoc
EndLoc - If valid, the place where this chunck ends.
Definition: DeclSpec.h:1146
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition: Sema.cpp:46
bool isFunctionDeclarator(unsigned &idx) const
isFunctionDeclarator - This method returns true if the declarator is a function declarator (looking t...
Definition: DeclSpec.h:2226
Wrapper for source info for typedefs.
Definition: TypeLoc.h:665
static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk)
Definition: SemaType.cpp:5571
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:499
bool isTypeSpecSat() const
Definition: DeclSpec.h:490
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:679
The attribute is part of a DeclaratorChunk.
Definition: SemaType.cpp:266
A container of type source information.
Definition: Decl.h:86
bool getHasRegParm() const
Definition: Type.h:3367
bool hasConstexprNonCopyMoveConstructor() const
Determine whether this class has at least one constexpr constructor other than the copy or move const...
Definition: DeclCXX.h:1382
static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS, unsigned &TypeQuals, QualType TypeSoFar, unsigned RemoveTQs, unsigned DiagID)
Definition: SemaType.cpp:693
static void fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL, const ParsedAttributesView &Attrs)
Definition: SemaType.cpp:5596
static void transferARCOwnership(TypeProcessingState &state, QualType &declSpecTy, Qualifiers::ObjCLifetime ownership)
Used for transferring ownership in casts resulting in l-values.
Definition: SemaType.cpp:5101
An overloaded operator name, e.g., operator+.
bool getSuppressSystemWarnings() const
Definition: Diagnostic.h:625
Wrapper for source info for pointers decayed from arrays and functions.
Definition: TypeLoc.h:1232
Abstract base class used for diagnosing integer constant expression violations.
Definition: Sema.h:9880
QualType getAtomicType(QualType T) const
Return the uniqued reference to the atomic type for the specified type.
SourceLocation getEllipsisLoc() const
Definition: DeclSpec.h:1388
SourceLocation getLocalBeginLoc() const
Retrieve the location of the beginning of this component of the nested-name-specifier.
#define NULLABILITY_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:143
CanQualType HalfTy
Definition: ASTContext.h:1028
const ParsedAttributes & getAttributes() const
Definition: DeclSpec.h:2398
unsigned RestrictQualLoc
The location of the restrict-qualifier, if any.
Definition: DeclSpec.h:1167
bool hasAttribute(ParsedAttr::Kind K) const
Definition: ParsedAttr.h:788
const AttributedType * getCallingConvAttributedType(QualType T) const
Get the outermost AttributedType node that sets a calling convention.
Definition: SemaDecl.cpp:2861
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3171
bool checkObjCKindOfType(QualType &type, SourceLocation loc)
Check the application of the Objective-C &#39;__kindof&#39; qualifier to the given type.
Definition: SemaType.cpp:6467
void setParensRange(SourceRange range)
Definition: TypeLoc.h:1873
static ParsedAttr::Kind getAttrListKind(AttributedType::Kind kind)
Map an AttributedType::Kind to an ParsedAttr::Kind.
Definition: SemaType.cpp:5168
An identifier, stored as an IdentifierInfo*.
QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, SourceLocation AttrLoc)
BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression is uninstantiated.
Definition: SemaType.cpp:5736
bool isFunctionDeclarationContext() const
Return true if this declaration appears in a context where a function declarator would be a function ...
Definition: DeclSpec.h:2280
Represents a variable declaration or definition.
Definition: Decl.h:814
static bool handleObjCPointerTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType &type)
Definition: SemaType.cpp:286
static OpenCLAccessAttr::Spelling getImageAccess(const ParsedAttributesView &Attrs)
Definition: SemaType.cpp:1167
unsigned isStar
True if this dimension was [*]. In this case, NumElts is null.
Definition: DeclSpec.h:1197
static DeclaratorChunk * maybeMovePastReturnType(Declarator &declarator, unsigned i, bool onlyBlockPointers)
Given the index of a declarator chunk, check whether that chunk directly specifies the return type of...
Definition: SemaType.cpp:303
static const TST TST_underlyingType
Definition: DeclSpec.h:302
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1752
void removeObjCLifetime()
Definition: Type.h:349
LangAS getLangASFromTargetAS(unsigned TargetAS)
Definition: AddressSpaces.h:67
void initialize(ASTContext &Context, SourceLocation Loc) const
Initializes this to state that every location in this type is the given location. ...
Definition: TypeLoc.h:191
DiagnosticsEngine & Diags
Definition: Sema.h:321
Wrapper for source info for member pointers.
Definition: TypeLoc.h:1301
bool isEnumeralType() const
Definition: Type.h:6190
Wrapper of type source information for a type with non-trivial direct qualifiers. ...
Definition: TypeLoc.h:272
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6526
CanQualType Float128Ty
Definition: ASTContext.h:1016
DeclContext * computeDeclContext(QualType T)
Compute the DeclContext that is associated with the given type.
The "union" keyword.
Definition: Type.h:4855
unsigned getParsedSpecifiers() const
Return a bitmask of which flavors of specifiers this DeclSpec includes.
Definition: DeclSpec.cpp:415
Extra information about a function prototype.
Definition: Type.h:3551
CanQualType ShortAccumTy
Definition: ASTContext.h:1017
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:26
Represents a C++17 deduced template specialization type.
Definition: Type.h:4598
The "__interface" keyword.
Definition: Type.h:4852
attribute((...))
Definition: ParsedAttr.h:110
bool isCXX11Attribute() const
Definition: ParsedAttr.h:386
static const TST TST_interface
Definition: DeclSpec.h:295
static const TST TST_char
Definition: DeclSpec.h:274
A namespace, stored as a NamespaceDecl*.
QualType getMemberPointerType(QualType T, const Type *Cls) const
Return the uniqued reference to the type for a member pointer to the specified type in the specified ...
bool hasTrivialDefaultConstructor() const
Determine whether this class has a trivial default constructor (C++11 [class.ctor]p5).
Definition: DeclCXX.h:1367
TypeLoc getNamedTypeLoc() const
Definition: TypeLoc.h:2041
bool isInvalidDecl() const
Definition: DeclBase.h:549
void setAttrOperandParensRange(SourceRange range)
Definition: TypeLoc.h:1759
bool hasTypeSpecifier() const
Return true if any type-specifier has been found.
Definition: DeclSpec.h:599
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:38
CanQualType ShortFractTy
Definition: ASTContext.h:1020
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
bool hasDefinition() const
Definition: DeclCXX.h:778
unsigned getNumExceptions() const
Get the number of dynamic exception specifications.
Definition: DeclSpec.h:1447
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:630
Represents a parameter to a function.
Definition: Decl.h:1535
OpenCLOptions & getOpenCLOptions()
Definition: Sema.h:1205
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc)
Definition: TypeLoc.h:2021
SourceLocation Loc
Definition: ParsedAttr.h:84
The collection of all-type qualifiers we support.
Definition: Type.h:154
bool isVariableArrayType() const
Definition: Type.h:6174
PipeType - OpenCL20.
Definition: Type.h:5819
bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value)
Checks a regparm attribute, returning true if it is ill-formed and otherwise setting numParams to the...
bool needsExtraLocalData() const
Definition: TypeLoc.h:577
SourceRange getTypeSpecWidthRange() const
Definition: DeclSpec.h:514
void setParensRange(SourceRange Range)
Definition: TypeLoc.h:2313
static const TST TST_unknown_anytype
Definition: DeclSpec.h:305
bool canHaveNullability(bool ResultIfUnknown=true) const
Determine whether the given type can have a nullability specifier applied to it, i.e., if it is any kind of pointer type.
Definition: Type.cpp:3730
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
MSInheritanceAttr::Spelling calculateInheritanceModel() const
Calculate what the inheritance model would be for this class.
QualType BuildMemberPointerType(QualType T, QualType Class, SourceLocation Loc, DeclarationName Entity)
Build a member pointer type T Class::*.
Definition: SemaType.cpp:2478
const AstTypeMatcher< RecordType > recordType
Matches record types (e.g.
Represents a struct/union/class.
Definition: Decl.h:3570
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1331
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
bool isDependentScopeSpecifier(const CXXScopeSpec &SS)
Expr * NoexceptExpr
Pointer to the expression in the noexcept-specifier of this function, if it has one.
Definition: DeclSpec.h:1332
TypeSpecifierSign getWrittenSignSpec() const
Definition: TypeLoc.h:597
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3552
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1010
void setLocalRangeEnd(SourceLocation L)
Definition: TypeLoc.h:1427
static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc, QualifiedFunctionKind QFK)
Check whether the type T is a qualified function type, and if it is, diagnose that it cannot be conta...
Definition: SemaType.cpp:1860
static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex)
Returns true if any of the declarator chunks before endIndex include a level of indirection: array...
Definition: SemaType.cpp:3813
static void HandleLifetimeBoundAttr(QualType &CurType, const ParsedAttr &Attr, Sema &S, Declarator &D)
Definition: SemaType.cpp:7199
SourceLocation getExceptionSpecLocBeg() const
Definition: DeclSpec.h:1396
const WrittenBuiltinSpecs & getWrittenBuiltinSpecs() const
Definition: DeclSpec.h:762
SourceLocation getBegin() const
static const TST TST_decimal32
Definition: DeclSpec.h:289
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
QualType IgnoreParens() const
Returns the specified type after dropping any outer-level parentheses.
Definition: Type.h:974
UnionParsedType ConversionFunctionId
When Kind == IK_ConversionFunctionId, the type that the conversion function names.
Definition: DeclSpec.h:958
void removeRestrict()
Definition: Type.h:289
Represents a class type in Objective C.
Definition: Type.h:5355
static const TST TST_char8
Definition: DeclSpec.h:276
static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State, QualType &T, TypeAttrLocation TAL)
Definition: SemaType.cpp:7112
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:150
A C++ nested-name-specifier augmented with source location information.
is ARM Neon vector
Definition: Type.h:3040
bool inTemplateInstantiation() const
Determine whether we are currently performing template instantiation.
Definition: Sema.h:7478
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3675
LineState State
SourceLocation getTypeSpecTypeLoc() const
Definition: DeclSpec.h:517
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:3958
QualType BuildParenType(QualType T)
Build a paren type including T.
Definition: SemaType.cpp:1764
void setBuiltinLoc(SourceLocation Loc)
Definition: TypeLoc.h:554
QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc)
Definition: SemaType.cpp:2246
bool isSpelledAsLValue() const
Definition: Type.h:2545
field_range fields() const
Definition: Decl.h:3786
void setRBracketLoc(SourceLocation Loc)
Definition: TypeLoc.h:1546
static SourceLocation getFromRawEncoding(unsigned Encoding)
Turn a raw encoding of a SourceLocation object into a real SourceLocation.
static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr, Sema &S)
HandleVectorSizeAttribute - this attribute is only applicable to integral and float scalars...
Definition: SemaType.cpp:6905
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
QualType getDependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, const IdentifierInfo *Name, QualType Canon=QualType()) const
static const TST TST_class
Definition: DeclSpec.h:296
void checkExceptionSpecification(bool IsTopLevel, ExceptionSpecificationType EST, ArrayRef< ParsedType > DynamicExceptions, ArrayRef< SourceRange > DynamicExceptionRanges, Expr *NoexceptExpr, SmallVectorImpl< QualType > &Exceptions, FunctionProtoType::ExceptionSpecInfo &ESI)
Check the given exception-specification and update the exception specification information with the r...
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
void removeConst()
Definition: Type.h:275
unsigned TypeQuals
The type qualifiers: const/volatile/restrict/__unaligned The qualifier bitmask values are the same as...
Definition: DeclSpec.h:1259
static const TST TST_double
Definition: DeclSpec.h:283
bool hasAutoTypeSpec() const
Definition: DeclSpec.h:529
CanQualType LongAccumTy
Definition: ASTContext.h:1017
bool isReferenceType() const
Definition: Type.h:6125
void setElaboratedKeywordLoc(SourceLocation Loc)
Definition: TypeLoc.h:2071
static std::string getPrintableNameForEntity(DeclarationName Entity)
Definition: SemaType.cpp:1665
virtual SourceRange getSourceRange() const LLVM_READONLY
Source range that this declaration covers.
Definition: DeclBase.h:405
ParsedType ActOnObjCInstanceType(SourceLocation Loc)
The parser has parsed the context-sensitive type &#39;instancetype&#39; in an Objective-C message declaration...
Definition: SemaType.cpp:5722
static const TST TST_error
Definition: DeclSpec.h:310
bool hasStructuralCompatLayout(Decl *D, Decl *Suggested)
Determine if D and Suggested have a structurally compatible layout as described in C11 6...
Definition: SemaType.cpp:7510
static const TST TST_enum
Definition: DeclSpec.h:292
static void maybeSynthesizeBlockSignature(TypeProcessingState &state, QualType declSpecType)
Add a synthetic &#39;()&#39; to a block-literal declarator if it is required, given the return type...
Definition: SemaType.cpp:632
SourceLocation getLocStart() const LLVM_READONLY
Definition: DeclSpec.h:1877
TypeLoc getNextTypeLoc() const
Definition: TypeLoc.h:400
static const TSW TSW_unspecified
Definition: DeclSpec.h:253
void copy(DependentTemplateSpecializationTypeLoc Loc)
Definition: TypeLoc.h:2215
bool hasTagDefinition() const
Definition: DeclSpec.cpp:406
void setUnderlyingTInfo(TypeSourceInfo *TInfo)
Definition: TypeLoc.h:1954
TSC getTypeSpecComplex() const
Definition: DeclSpec.h:481
Wrapper of type source information for a type with no direct qualifiers.
Definition: TypeLoc.h:246
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
const AstTypeMatcher< TypedefType > typedefType
Matches typedef types.
i32 captured_struct **param SharedsTy A type which contains references the shared variables *param Shareds Context with the list of shared variables from the p *TaskFunction *param Data Additional data for task generation like final * state
static const TST TST_accum
Definition: DeclSpec.h:285
SourceLocation getRestrictQualifierLoc() const
Retrieve the location of the &#39;restrict&#39; qualifier, if any.
Definition: DeclSpec.h:1424
A user-defined literal name, e.g., operator "" _i.
IdentifierTable & Idents
Definition: ASTContext.h:545
unsigned getTypeQuals() const
Definition: Type.h:3786
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this attribute.
Definition: ParsedAttr.h:428
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:110
bool isInvalidType() const
Definition: DeclSpec.h:2432
Values of this type can be null.
static void inferARCWriteback(TypeProcessingState &state, QualType &declSpecType)
Given that this is the declaration of a parameter under ARC, attempt to infer attributes and such for...
Definition: SemaType.cpp:2567
CanQualType LongFractTy
Definition: ASTContext.h:1020
bool getProducesResult() const
Definition: Type.h:3283
PointerTypeInfo Ptr
Definition: DeclSpec.h:1501
void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor, SourceLocation Loc)
Adjust the calling convention of a method to be the ABI default if it wasn&#39;t specified explicitly...
Definition: SemaType.cpp:6858
bool isInvalid() const
TypeSpecifierWidth getWrittenWidthSpec() const
Definition: TypeLoc.h:613
This parameter (which must have pointer type) uses the special Swift context-pointer ABI treatment...
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:922
bool findMacroSpelling(SourceLocation &loc, StringRef name)
Looks through the macro-expansion chain for the given location, looking for a macro expansion with th...
Definition: Sema.cpp:1323
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
bool hasNonLiteralTypeFieldsOrBases() const
Determine whether this class has a non-literal or/ volatile type non-static data member or base class...
Definition: DeclCXX.h:1524
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:522
static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state, TypeSourceInfo *&ReturnTypeInfo)
Definition: SemaType.cpp:2784
Represents the results of name lookup.
Definition: Lookup.h:47
PtrTy get() const
Definition: Ownership.h:174
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1384
unsigned ConstQualLoc
The location of the const-qualifier, if any.
Definition: DeclSpec.h:1161
bool refersToBitField() const
Returns true if this expression is a gl-value that potentially refers to a bit-field.
Definition: Expr.h:437
static void fixItNullability(Sema &S, DiagnosticBuilder &Diag, SourceLocation PointerLoc, NullabilityKind Nullability)
Creates a fix-it to insert a C-style nullability keyword at pointerLoc, taking into account whitespac...
Definition: SemaType.cpp:3674
LLVM_READONLY bool isWhitespace(unsigned char c)
Return true if this character is horizontal or vertical ASCII whitespace: &#39; &#39;, &#39;\t&#39;, &#39;\f&#39;, &#39;\v&#39;, &#39;\n&#39;, &#39;\r&#39;.
Definition: CharInfo.h:88
void setCaretLoc(SourceLocation Loc)
Definition: TypeLoc.h:1291
TagKind getTagKind() const
Definition: Decl.h:3230
static PointerDeclaratorKind classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator, PointerWrappingDeclaratorKind &wrappingKind)
Classify the given declarator, whose type-specified is type, based on what kind of pointer it refers ...
Definition: SemaType.cpp:3484
const FileInfo & getFile() const
bool checkOpenCLDisabledTypeDeclSpec(const DeclSpec &DS, QualType T)
Check if type T corresponding to declaration specifier DS is disabled due to required OpenCL extensio...
Definition: Sema.cpp:1884
bool isTriviallyCopyableType(const ASTContext &Context) const
Return true if this is a trivially copyable type (C++0x [basic.types]p9)
Definition: Type.cpp:2208
bool isTypeSpecPipe() const
Definition: DeclSpec.h:489
const Type * getClass() const
Definition: TypeLoc.h:1313
Wrapper for source info for functions.
Definition: TypeLoc.h:1396
static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec)
Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
Definition: Type.cpp:2517
ArrayTypeInfo Arr
Definition: DeclSpec.h:1503
static bool hasDirectOwnershipQualifier(QualType type)
Does this type have a "direct" ownership qualifier? That is, is it written like "__strong id"...
Definition: SemaType.cpp:5889
Whether values of this type can be null is (explicitly) unspecified.
An x-value expression is a reference to an object with independent storage but which can be "moved"...
Definition: Specifiers.h:119
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:405
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state, QualType &declSpecType)
Given that there are attributes written on the declarator itself, try to distribute any type attribut...
Definition: SemaType.cpp:589
SourceLocation getExpansionLoc(SourceLocation Loc) const
Given a SourceLocation object Loc, return the expansion location referenced by the ID...
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:2164
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:643
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1711
void addCVRQualifiers(unsigned mask)
Definition: Type.h:305
static TemplateTypeParmDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation KeyLoc, SourceLocation NameLoc, unsigned D, unsigned P, IdentifierInfo *Id, bool Typename, bool ParameterPack)
void AddInnermostTypeInfo(const DeclaratorChunk &TI)
Add a new innermost chunk to this declarator.
Definition: DeclSpec.h:2159
const Type * getClass() const
Definition: Type.h:2646
void expandBuiltinRange(SourceRange Range)
Definition: TypeLoc.h:558
TSS getTypeSpecSign() const
Definition: DeclSpec.h:482
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1204
CanQualType LongDoubleTy
Definition: ASTContext.h:1016
Values of this type can never be null.
QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc)
Given a variable, determine the type that a reference to that variable will have in the given scope...
Definition: SemaExpr.cpp:15153
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
Wrapper for source info for ObjC interfaces.
Definition: TypeLoc.h:1118
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5889
QualType BuildExtVectorType(QualType T, Expr *ArraySize, SourceLocation AttrLoc)
Build an ext-vector type.
Definition: SemaType.cpp:2301
static unsigned getNumAddressingBits(const ASTContext &Context, QualType ElementType, const llvm::APInt &NumElements)
Determine the number of bits required to address a member of.
Definition: Type.cpp:111
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
enum clang::DeclaratorChunk::@196 Kind
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2085
#define MS_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:136
void setUnaligned(bool flag)
Definition: Type.h:315
static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType)
A function type attribute was written on the declarator.
Definition: SemaType.cpp:564
bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const
Definition: Type.cpp:3861
static FileID getNullabilityCompletenessCheckFileID(Sema &S, SourceLocation loc)
Definition: SemaType.cpp:3635
Preprocessor & PP
Definition: Sema.h:318
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1482
const LangOptions & getLangOpts() const
Definition: Sema.h:1204
SourceLocation getConstSpecLoc() const
Definition: DeclSpec.h:550
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:167
const CXXScopeSpec & getCXXScopeSpec() const
getCXXScopeSpec - Return the C++ scope specifier (global scope or nested-name-specifier) that is part...
Definition: DeclSpec.h:1856
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1663
void setLocalRangeBegin(SourceLocation L)
Definition: TypeLoc.h:1419
static void transferARCOwnershipToDeclSpec(Sema &S, QualType &declSpecTy, Qualifiers::ObjCLifetime ownership)
Definition: SemaType.cpp:5053
bool isUnevaluatedContext() const
Determines whether we are currently in a context that is not evaluated as per C++ [expr] p5...
Definition: Sema.h:7507
Represents an ObjC class declaration.
Definition: DeclObjC.h:1193
const Type * getUnqualifiedDesugaredType() const
Return the specified type with any "sugar" removed from the type, removing any typedefs, typeofs, etc., as well as any qualifiers.
Definition: Type.cpp:411
void copy(ElaboratedTypeLoc Loc)
Definition: TypeLoc.h:2049
SourceLocation getLocStart() const LLVM_READONLY
Definition: DeclSpec.h:508
SourceLocation getIncludeLoc() const
SourceRange getSourceRange() const LLVM_READONLY
Definition: DeclSpec.h:507
static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType &type)
handleObjCGCTypeAttr - Process the attribute((objc_gc)) type attribute on the specified type...
Definition: SemaType.cpp:6106
is ARM Neon polynomial vector
Definition: Type.h:3043
static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind)
Map a nullability attribute kind to a nullability kind.
Definition: SemaType.cpp:6514
SmallVector< TemplateTypeParmDecl *, 4 > AutoTemplateParams
Store the list of the auto parameters for a generic lambda.
Definition: ScopeInfo.h:808
void removeVolatile()
Definition: Type.h:282
NameKind getNameKind() const
getNameKind - Determine what kind of name this is.
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const
Retrieve a nested-name-specifier with location information, copied into the given AST context...
Definition: DeclSpec.cpp:143
IdentifierInfo * getIdentifier() const
Definition: DeclSpec.h:2116
CanQualType UnsignedCharTy
Definition: ASTContext.h:1014
void setAttrNameLoc(SourceLocation loc)
Definition: TypeLoc.h:1738
const LangOptions & LangOpts
Definition: Sema.h:317
static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy)
Definition: SemaType.cpp:1820
void setKWLoc(SourceLocation Loc)
Definition: TypeLoc.h:1942
This parameter (which must have pointer-to-pointer type) uses the special Swift error-result ABI trea...
uint8_t PointerKind
Which kind of pointer declarator we saw.
Definition: Sema.h:240
This object can be modified without requiring retains or releases.
Definition: Type.h:175
static const TST TST_float
Definition: DeclSpec.h:282
CXXRecordDecl * getMostRecentNonInjectedDecl()
Definition: DeclCXX.h:756
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
void setInvalid(bool b=true) const
Definition: ParsedAttr.h:403
void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const
Definition: SemaType.cpp:5686
bool isExpressionContext() const
Determine whether this declaration appears in a context where an expression could appear...
Definition: DeclSpec.h:2320
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3341
void * getOpaqueData() const
Get the pointer where source information is stored.
Definition: TypeLoc.h:139
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1776
bool isHalfType() const
Definition: Type.h:6346
QualType BuildBlockPointerType(QualType T, SourceLocation Loc, DeclarationName Entity)
Build a block pointer type.
Definition: SemaType.cpp:2529
TypeResult actOnObjCTypeArgsAndProtocolQualifiers(Scope *S, SourceLocation Loc, ParsedType BaseType, SourceLocation TypeArgsLAngleLoc, ArrayRef< ParsedType > TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef< Decl *> Protocols, ArrayRef< SourceLocation > ProtocolLocs, SourceLocation ProtocolRAngleLoc)
Build a specialized and/or protocol-qualified Objective-C type.
Definition: SemaType.cpp:1056
llvm::StringRef getParameterABISpelling(ParameterABI kind)
bool hasAttr() const
Definition: DeclBase.h:538
bool hasUserProvidedDefaultConstructor() const
Whether this class has a user-provided default constructor per C++11.
Definition: DeclCXX.h:994
DeclSpec & getMutableDeclSpec()
getMutableDeclSpec - Return a non-const version of the DeclSpec.
Definition: DeclSpec.h:1848
QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType, UnaryTransformType::UTTKind UKind) const
Unary type transforms.
QualType getCorrespondingSaturatedType(QualType Ty) const
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:277
static const TSW TSW_long
Definition: DeclSpec.h:255
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:1042
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1627
SourceLocation getUnalignedSpecLoc() const
Definition: DeclSpec.h:554
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3432
void setParensRange(SourceRange Range)
Definition: TypeLoc.h:1966
Holds a QualType and a TypeSourceInfo* that came out of a declarator parsing.
Definition: LocInfoType.h:29
QualType getDependentAddressSpaceType(QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttrLoc) const
QualType applyObjCProtocolQualifiers(QualType type, ArrayRef< ObjCProtocolDecl *> protocols, bool &hasError, bool allowOnPointerType=false) const
Apply Objective-C protocol qualifiers to the given type.
static void checkExtParameterInfos(Sema &S, ArrayRef< QualType > paramTypes, const FunctionProtoType::ExtProtoInfo &EPI, llvm::function_ref< SourceLocation(unsigned)> getParamLoc)
Check the extended parameter information.
Definition: SemaType.cpp:2376
bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef< SourceLocation > Locs, const ObjCInterfaceDecl *UnknownObjCClass=nullptr, bool ObjCPropertyAccess=false, bool AvoidPartialAvailabilityChecks=false)
Determine whether the use of this declaration is valid, and emit any corresponding diagnostics...
Definition: SemaExpr.cpp:205
bool isDeclarationOfFunction() const
Determine whether the declaration that will be produced from this declaration will be a function...
Definition: DeclSpec.cpp:309
unsigned NumParams
NumParams - This is the number of formal parameters specified by the declarator.
Definition: DeclSpec.h:1282
ArraySizeModifier
Capture whether this is a normal array (e.g.
Definition: Type.h:2674
const ParsedAttributesView & getAttrs() const
If there are attributes applied to this declaratorchunk, return them.
Definition: DeclSpec.h:1525
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition: Type.h:5964
unsigned TypeQuals
The type qualifiers: const/volatile/restrict/unaligned/atomic.
Definition: DeclSpec.h:1158
void addObjCLifetime(ObjCLifetime type)
Definition: Type.h:350
static QualType ConvertDeclSpecToType(TypeProcessingState &state)
Convert the specified declspec to the appropriate type object.
Definition: SemaType.cpp:1180
bool isEnabled(llvm::StringRef Ext) const
Definition: OpenCLOptions.h:39
void setSizeExpr(Expr *Size)
Definition: TypeLoc.h:1558
A conversion function name, e.g., operator int.
SourceRange getRange() const
Definition: DeclSpec.h:68
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
TST getTypeSpecType() const
Definition: DeclSpec.h:483
QualType getPromotedIntegerType(QualType PromotableType) const
Return the type that PromotableType will promote to: C99 6.3.1.1p2, assuming that PromotableType is a...
void setAttrNameLoc(SourceLocation loc)
Definition: TypeLoc.h:900
Scope * getCurScope() const
Retrieve the parser&#39;s current scope.
Definition: Sema.h:10618
CharacteristicKind getFileCharacteristic() const
Return whether this is a system header or not.
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:3033
void setAttrExprOperand(Expr *e)
Definition: TypeLoc.h:911
unsigned hasStatic
True if this dimension included the &#39;static&#39; keyword.
Definition: DeclSpec.h:1194
Type source information for an attributed type.
Definition: TypeLoc.h:859
QualType getVectorType(QualType VectorType, unsigned NumElts, VectorType::VectorKind VecKind) const
Return the unique reference to a vector type of the specified element type and size.
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:637
Expr - This represents one expression.
Definition: Expr.h:106
QualType getPointeeType() const
Definition: Type.h:2550
SourceLocation End
llvm::StringRef getAsString(SyncScope S)
Definition: SyncScope.h:51
static DeclaratorChunk getFunction(bool HasProto, bool IsAmbiguous, SourceLocation LParenLoc, ParamInfo *Params, unsigned NumParams, SourceLocation EllipsisLoc, SourceLocation RParenLoc, unsigned TypeQuals, bool RefQualifierIsLvalueRef, SourceLocation RefQualifierLoc, SourceLocation ConstQualifierLoc, SourceLocation VolatileQualifierLoc, SourceLocation RestrictQualifierLoc, SourceLocation MutableLoc, ExceptionSpecificationType ESpecType, SourceRange ESpecRange, ParsedType *Exceptions, SourceRange *ExceptionRanges, unsigned NumExceptions, Expr *NoexceptExpr, CachedTokens *ExceptionSpecTokens, ArrayRef< NamedDecl *> DeclsInPrototype, SourceLocation LocalRangeBegin, SourceLocation LocalRangeEnd, Declarator &TheDeclarator, TypeResult TrailingReturnType=TypeResult())
DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
Definition: DeclSpec.cpp:152
int Id
Definition: ASTDiff.cpp:191
Kind getKind() const
Definition: ParsedAttr.h:423
static Kind getNullabilityAttrKind(NullabilityKind kind)
Retrieve the attribute kind corresponding to the given nullability kind.
Definition: Type.h:4295
Declaration of a template type parameter.
bool isObjCARCImplicitlyUnretainedType() const
Determines if this type, which must satisfy isObjCLifetimeType(), is implicitly __unsafe_unretained r...
Definition: Type.cpp:3900
unsigned VolatileQualLoc
The location of the volatile-qualifier, if any.
Definition: DeclSpec.h:1164
UnqualTypeLoc getUnqualifiedLoc() const
Skips past any qualifiers, if this is qualified.
Definition: TypeLoc.h:321
This file defines the classes used to store parsed information about declaration-specifiers and decla...
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6589
ElaboratedTypeKeyword
The elaboration keyword that precedes a qualified type name or introduces an elaborated-type-specifie...
Definition: Type.h:4866
bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC, const FunctionDecl *FD=nullptr)
TypeResult ActOnTypeName(Scope *S, Declarator &D)
Definition: SemaType.cpp:5693
bool isObjCRetainableType() const
Definition: Type.cpp:3938
QualType getTypeOfExprType(Expr *e) const
GCC extension.
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:86
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2700
Qualifiers::GC getObjCGCAttr() const
Returns gc attribute of this type.
Definition: Type.h:6010
QualType getParenType(QualType NamedType) const
static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, Sema &S)
Process the OpenCL-like ext_vector_type attribute when it occurs on a type.
Definition: SemaType.cpp:6942
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:132
std::string getAsString() const
getNameAsString - Retrieve the human-readable string for this name.
TypeResult actOnObjCProtocolQualifierType(SourceLocation lAngleLoc, ArrayRef< Decl *> protocols, ArrayRef< SourceLocation > protocolLocs, SourceLocation rAngleLoc)
Build a an Objective-C protocol-qualified &#39;id&#39; type where no base type was specified.
Definition: SemaType.cpp:1017
SourceLocation getVolatileSpecLoc() const
Definition: DeclSpec.h:552
QualType BuildAtomicType(QualType T, SourceLocation Loc)
Definition: SemaType.cpp:8086
void ClearTypeQualifiers()
Clear out all of the type qualifiers.
Definition: DeclSpec.h:558
Defines the clang::Preprocessor interface.
static DelayedDiagnostic makeForbiddenType(SourceLocation loc, unsigned diagnostic, QualType type, unsigned argument)
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, VerifyICEDiagnoser &Diagnoser, bool AllowFold=true)
VerifyIntegerConstantExpression - Verifies that an expression is an ICE, and reports the appropriate ...
Definition: SemaExpr.cpp:13963
Defines the classes clang::DelayedDiagnostic and clang::AccessedEntity.
void completeExprArrayBound(Expr *E)
Definition: SemaType.cpp:7401
ObjCLifetime getObjCLifetime() const
Definition: Type.h:343
bool supportsVariadicCall(CallingConv CC)
Checks whether the given calling convention supports variadic calls.
Definition: Specifiers.h:258
SourceLocation getBeginLoc() const
Definition: DeclSpec.h:72
bool isConstexprSpecified() const
Definition: DeclSpec.h:715
bool hasEllipsis() const
Definition: DeclSpec.h:2443
CanQualType ShortTy
Definition: ASTContext.h:1013
NestedNameSpecifierLoc getPrefix() const
Return the prefix of this nested-name-specifier.
internal::Matcher< T > id(StringRef ID, const internal::BindableMatcher< T > &InnerMatcher)
If the provided matcher matches a node, binds the node to ID.
Definition: ASTMatchers.h:137
virtual void AssignInheritanceModel(CXXRecordDecl *RD)
Callback invoked when an MSInheritanceAttr has been attached to a CXXRecordDecl.
Definition: ASTConsumer.h:108
Represents a C++ template name within the type system.
Definition: TemplateName.h:178
static const TST TST_decimal64
Definition: DeclSpec.h:290
bool RequireCompleteType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser)
Ensure that the type T is a complete type.
Definition: SemaType.cpp:7497
Defines the clang::TypeLoc interface and its subclasses.
static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T)
Produce an appropriate diagnostic for a declarator with top-level parentheses.
Definition: SemaType.cpp:3198
A namespace alias, stored as a NamespaceAliasDecl*.
UnqualifiedIdKind getKind() const
Determine what kind of name we have.
Definition: DeclSpec.h:1004
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.h:2043
static QualType getDecltypeForExpr(Sema &S, Expr *E)
getDecltypeForExpr - Given an expr, will return the decltype for that expression, according to the ru...
Definition: SemaType.cpp:7968
CanQualType UnsignedInt128Ty
Definition: ASTContext.h:1015
A std::pair-like structure for storing a qualified type split into its local qualifiers and its local...
Definition: Type.h:594
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:1131
TypeDiagSelector
Definition: SemaType.cpp:42
QualType getType() const
Definition: Expr.h:128
bool isFunctionOrMethod() const
Definition: DeclBase.h:1392
static Optional< NullabilityKind > stripOuterNullability(QualType &T)
Strip off the top-level nullability annotation on the given type, if it&#39;s there.
Definition: Type.cpp:3850
CharSourceRange getImmediateExpansionRange(SourceLocation Loc) const
Return the start/end of the expansion information for an expansion location.
bool LValueRef
True if this is an lvalue reference, false if it&#39;s an rvalue reference.
Definition: DeclSpec.h:1183
SourceLocation Loc
Loc - The place where this type was defined.
Definition: DeclSpec.h:1144
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return the unique reference to the type for a constant array of the specified element type...
Qualifiers Quals
The local qualifiers.
Definition: Type.h:599
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1343
ProtocolLAngleLoc, ProtocolRAngleLoc, and the source locations for protocol qualifiers are stored aft...
Definition: TypeLoc.h:747
static const TST TST_int
Definition: DeclSpec.h:279
void setHasBaseTypeAsWritten(bool HasBaseType)
Definition: TypeLoc.h:1076
void setEllipsisLoc(SourceLocation EL)
Definition: DeclSpec.h:2445
static QualType inferARCLifetimeForPointee(Sema &S, QualType type, SourceLocation loc, bool isReference)
Given that we&#39;re building a pointer or reference to the given.
Definition: SemaType.cpp:1769
TypeSourceInfo * GetTypeSourceInfoForDeclarator(Declarator &D, QualType T, TypeSourceInfo *ReturnTypeInfo)
Create and instantiate a TypeSourceInfo with type source information.
Definition: SemaType.cpp:5620
bool isInvalid() const
Definition: Ownership.h:170
SourceLocation getEnd() const
Compare two source locations.
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1365
bool RequireLiteralType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser)
Ensure that the type T is a literal type.
Definition: SemaType.cpp:7842
bool CheckAttrNoArgs(const ParsedAttr &CurrAttr)
static const TST TST_half
Definition: DeclSpec.h:281
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2576
TypedefDecl * getBuiltinVaListDecl() const
Retrieve the C type declaration corresponding to the predefined __builtin_va_list type...
bool isFriendSpecified() const
Definition: DeclSpec.h:709
Common base class for placeholders for types that get replaced by placeholder type deduction: C++11 a...
Definition: Type.h:4522
Wraps an identifier and optional source location for the identifier.
Definition: ParsedAttr.h:83
static void moveAttrFromListToList(ParsedAttr &attr, ParsedAttributesView &fromList, ParsedAttributesView &toList)
Definition: SemaType.cpp:254
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1381
static QualType Desugar(ASTContext &Context, QualType QT, bool &ShouldAKA)
The result type of a method or function.
This template specialization was implicitly instantiated from a template.
Definition: Specifiers.h:152
SourceLocation getCommaLoc() const
Definition: DeclSpec.h:2440
SourceLocation getLocEnd() const LLVM_READONLY
Definition: TypeLoc.h:155
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc)
Definition: TypeLoc.h:2080
bool RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser)
Ensure that the type of the given expression is complete.
Definition: SemaType.cpp:7457
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:720
QualType getDependentSizedExtVectorType(QualType VectorType, Expr *SizeExpr, SourceLocation AttrLoc) const
static const TSW TSW_short
Definition: DeclSpec.h:254
bool isTemplateInstantiation(TemplateSpecializationKind Kind)
Determine whether this template specialization kind refers to an instantiation of an entity (as oppos...
Definition: Specifiers.h:170
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:236
SourceLocation PointerLoc
The first pointer declarator (of any pointer kind) in the file that does not have a corresponding nul...
Definition: Sema.h:233
CanQualType SignedCharTy
Definition: ASTContext.h:1013
bool isFirstDeclarator() const
Definition: DeclSpec.h:2439
AttributedType::Kind getAttrKind() const
Definition: TypeLoc.h:864
TypeSourceInfo * GetTypeForDeclaratorCast(Declarator &D, QualType FromTy)
Definition: SemaType.cpp:5152
unsigned getCVRQualifiers() const
Retrieve the set of CVR (const-volatile-restrict) qualifiers applied to this type.
Definition: Type.h:5922
bool hasAttrExprOperand() const
Definition: TypeLoc.h:868
QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const
Return the uniqued reference to the type for an Objective-C gc-qualified type.
bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type)
TypeAndRange * Exceptions
Pointer to a new[]&#39;d array of TypeAndRange objects that contain the types in the function&#39;s dynamic e...
Definition: DeclSpec.h:1328
SourceLocation getRefQualifierLoc() const
Retrieve the location of the ref-qualifier, if any.
Definition: DeclSpec.h:1409
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:5948
QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent) const
C++11 deduced auto type.
SplitQualType split() const
Divides a QualType into its unqualified type and a set of local qualifiers.
Definition: Type.h:5897
unsigned getSemanticSpelling() const
If the parsed attribute has a semantic equivalent, and it would have a semantic Spelling enumeration ...
Definition: ParsedAttr.cpp:225
RecordDecl * getDecl() const
Definition: Type.h:4145
static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator, QualType Result)
Return true if this is omitted block return type.
Definition: SemaType.cpp:721
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1309
static const TST TST_char32
Definition: DeclSpec.h:278
NestedNameSpecifier * getScopeRep() const
Retrieve the representation of the nested-name-specifier.
Definition: DeclSpec.h:76
void addAttr(Attr *A)
Definition: DeclBase.h:487
QualType getPackExpansionType(QualType Pattern, Optional< unsigned > NumExpansions)
static const TST TST_fract
Definition: DeclSpec.h:286
void setTypeofLoc(SourceLocation Loc)
Definition: TypeLoc.h:1849
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType &type)
handleObjCOwnershipTypeAttr - Process an objc_ownership attribute on the specified type...
Definition: SemaType.cpp:5920
bool SawTypeNullability
Whether we saw any type nullability annotations in the given file.
Definition: Sema.h:243
static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy, Declarator &D, unsigned FunctionChunkIndex)
Definition: SemaType.cpp:2714
void addAtStart(ParsedAttr *newAttr)
Definition: ParsedAttr.h:731
A parameter attribute which changes the argument-passing ABI rule for the parameter.
Definition: Attr.h:170
Wrapper for source info for arrays.
Definition: TypeLoc.h:1529
bool isComputedNoexcept(ExceptionSpecificationType ESpecType)
CanQualType OverloadTy
Definition: ASTContext.h:1033
There is no lifetime qualification on this type.
Definition: Type.h:171
Information about a FileID, basically just the logical file that it represents and include stack info...
void setAttrOperandParensRange(SourceRange range)
Definition: TypeLoc.h:936
is AltiVec &#39;vector Pixel&#39;
Definition: Type.h:3034
#define false
Definition: stdbool.h:33
static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type, ArrayRef< TypeSourceInfo *> typeArgs, SourceRange typeArgsRange, bool failOnError=false)
Apply Objective-C type arguments to the given type.
Definition: SemaType.cpp:751
The "struct" keyword.
Definition: Type.h:4849
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:182
Kind
bool isBuiltinType() const
Helper methods to distinguish type categories.
Definition: Type.h:6182
not a target-specific vector type
Definition: Type.h:3028
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:157
QualType getElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, QualType NamedType, TagDecl *OwnedTagDecl=nullptr) const
The attribute is in the decl-specifier-seq.
Definition: SemaType.cpp:264
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3679
SCS getStorageClassSpec() const
Definition: DeclSpec.h:451
void setKNRPromoted(bool promoted)
Definition: Decl.h:1612
ASTContext & getASTContext() const
Definition: Sema.h:1211
SourceLocation getRParenLoc() const
Definition: DeclSpec.h:1392
static bool isPermittedNeonBaseType(QualType &Ty, VectorType::VectorKind VecKind, Sema &S)
Definition: SemaType.cpp:6976
static const TST TST_float16
Definition: DeclSpec.h:284
static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType &type)
Process an individual function attribute.
Definition: SemaType.cpp:6667
const ExtParameterInfo * ExtParameterInfos
Definition: Type.h:3558
static void distributeObjCPointerTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType type)
Given that an objc_gc attribute was written somewhere on a declaration other than on the declarator i...
Definition: SemaType.cpp:371
Encodes a location in the source.
bool isTypeSpecOwned() const
Definition: DeclSpec.h:487
Sugar for parentheses used when specifying types.
Definition: Type.h:2363
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
QualType getReturnType() const
Definition: Type.h:3365
static const TST TST_auto_type
Definition: DeclSpec.h:304
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4161
void atTemplateBegin(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema, const Sema::CodeSynthesisContext &Inst)
bool CheckDistantExceptionSpec(QualType T)
CheckDistantExceptionSpec - Check if the given type is a pointer or pointer to member to a function w...
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6005
ReferenceTypeInfo Ref
Definition: DeclSpec.h:1502
static void distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType)
Distribute an objc_gc type attribute that was written on the declarator.
Definition: SemaType.cpp:427
PointerDeclaratorKind
Describes the kind of a pointer a declarator describes.
Definition: SemaType.cpp:3451
CanQualType Int128Ty
Definition: ASTContext.h:1013
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5555
FunctionDefinitionKind getFunctionDefinitionKind() const
Definition: DeclSpec.h:2455
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:1958
std::pair< NullabilityKind, bool > DiagNullabilityKind
A nullability kind paired with a bit indicating whether it used a context-sensitive keyword...
Definition: Diagnostic.h:1289
UnqualifiedId & getName()
Retrieve the name specified by this declarator.
Definition: DeclSpec.h:1860
bool isLiteralType(const ASTContext &Ctx) const
Return true if this is a literal type (C++11 [basic.types]p10)
Definition: Type.cpp:2290
Syntax
The style used to specify an attribute.
Definition: ParsedAttr.h:108
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3020
TypeSourceInfo * CreateTypeSourceInfo(QualType T, unsigned Size=0) const
Allocate an uninitialized TypeSourceInfo.
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, Qualifiers::ObjCLifetime ownership, unsigned chunkIndex)
Definition: SemaType.cpp:5064
static void distributeFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType type)
A function type attribute was written somewhere in a declaration other than on the declarator itself ...
Definition: SemaType.cpp:488
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:376
FunctionTypeInfo Fun
Definition: DeclSpec.h:1504
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.h:401
static const TST TST_union
Definition: DeclSpec.h:293
CallingConv getCC() const
Definition: Type.h:3295
ParsedAttr - Represents a syntactic attribute.
Definition: ParsedAttr.h:105
QualType getWritePipeType(QualType T) const
Return a write_only pipe type for the specified type.
unsigned getLocalCVRQualifiers() const
Retrieve the set of CVR (const-volatile-restrict) qualifiers local to this particular QualType instan...
Definition: Type.h:782
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
static const TSS TSS_signed
Definition: DeclSpec.h:267
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2395
bool shouldDelayDiagnostics()
Determines whether diagnostics should be delayed.
Definition: Sema.h:666
QualType getExtVectorType(QualType VectorType, unsigned NumElts) const
Return the unique reference to an extended vector type of the specified element type and size...
RecordDecl * CFError
The struct behind the CFErrorRef pointer.
Definition: Sema.h:10605
bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, bool OnlyNeedComplete=false)
Determine if D has a visible definition.
Definition: SemaType.cpp:7534
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
No ref-qualifier was provided.
Definition: Type.h:1381
CanQualType FloatTy
Definition: ASTContext.h:1016
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:3774
MemberPointerTypeInfo Mem
Definition: DeclSpec.h:1506
SimplePointerKind
A simple notion of pointer kinds, which matches up with the various pointer declarators.
Definition: SemaType.cpp:3400
QualType getEquivalentType() const
Definition: Type.h:4265
static CallingConv getCCForDeclaratorChunk(Sema &S, Declarator &D, const ParsedAttributesView &AttrList, const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex)
Helper for figuring out the default CC for a function declarator type.
Definition: SemaType.cpp:3317
bool hasExternalLexicalStorage() const
Whether this DeclContext has external storage containing additional declarations that are lexically i...
Definition: DeclBase.h:1903
CanQualType VoidTy
Definition: ASTContext.h:1004
void remove(ParsedAttr *ToBeRemoved)
Definition: ParsedAttr.h:740
bool hasRestrict() const
Definition: Type.h:285
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:149
bool isContextSensitiveKeywordAttribute() const
Definition: ParsedAttr.h:398
bool hasTrailingReturnType() const
Determine whether this function declarator had a trailing-return-type.
Definition: DeclSpec.h:1461
CanQualType Float16Ty
Definition: ASTContext.h:1029
QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs, const DeclSpec *DS=nullptr)
Definition: SemaType.cpp:1672
bool isObjCObjectPointerType() const
Definition: Type.h:6210
bool isAnyPointerType() const
Definition: Type.h:6117
static bool distributeFunctionTypeAttrToInnermost(TypeProcessingState &state, ParsedAttr &attr, ParsedAttributesView &attrList, QualType &declSpecType)
Try to distribute a function type attribute to the innermost function chunk or type.
Definition: SemaType.cpp:519
bool isArgExpr(unsigned Arg) const
Definition: ParsedAttr.h:436
Decl * getRepAsDecl() const
Definition: DeclSpec.h:496
static bool isBlockPointer(Expr *Arg)
is AltiVec &#39;vector bool ...&#39;
Definition: Type.h:3037
SplitQualType getSplitUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5976
bool isFunctionProtoType() const
Definition: Type.h:1827
static const TST TST_typeofType
Definition: DeclSpec.h:298
is AltiVec vector
Definition: Type.h:3031
void setAmpLoc(SourceLocation Loc)
Definition: TypeLoc.h:1369
void setLBracketLoc(SourceLocation Loc)
Definition: TypeLoc.h:1538
AutoTypeKeyword getKeyword() const
Definition: Type.h:4577
TypeClass getTypeClass() const
Definition: Type.h:1691
QualType getAttributedType(AttributedType::Kind attrKind, QualType modifiedType, QualType equivalentType)
This template specialization was formed from a template-id but has not yet been declared, defined, or instantiated.
Definition: Specifiers.h:149
QualType BuildReferenceType(QualType T, bool LValueRef, SourceLocation Loc, DeclarationName Entity)
Build a reference type.
Definition: SemaType.cpp:1926
bool HasRestrict
The type qualifier: restrict. [GNU] C++ extension.
Definition: DeclSpec.h:1181
SourceLocation getRAngleLoc() const
Definition: TypeLoc.h:1641
TypeLoc findExplicitQualifierLoc() const
Find a type with the location of an explicit type qualifier.
Definition: TypeLoc.cpp:417
unsigned TypeQuals
The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
Definition: DeclSpec.h:1478
static bool isVectorSizeTooLarge(unsigned NumElements)
Definition: Type.h:3062
SourceLocation getPragmaAssumeNonNullLoc() const
The location of the currently-active #pragma clang assume_nonnull begin.
SourceLocation getConstQualifierLoc() const
Retrieve the location of the &#39;const&#39; qualifier, if any.
Definition: DeclSpec.h:1414
bool isStaticMember()
Returns true if this declares a static member.
Definition: DeclSpec.cpp:393
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1387
Assigning into this object requires a lifetime extension.
Definition: Type.h:188
unsigned getFullDataSize() const
Returns the size of the type source info data block.
Definition: TypeLoc.h:163
bool isInvalid() const
An error occurred during parsing of the scope specifier.
Definition: DeclSpec.h:194
bool isVLASupported() const
Whether target supports variable-length arrays.
Definition: TargetInfo.h:1136
std::string getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const
Get a string to suggest for zero-initialization of a type.
static void recordNullabilitySeen(Sema &S, SourceLocation loc)
Marks that a nullability feature has been used in the file containing loc.
Definition: SemaType.cpp:3784
std::string getAsString() const
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
static AttributedType::Kind getCCTypeAttrKind(ParsedAttr &Attr)
Definition: SemaType.cpp:6617
QualType getObjCInstanceType()
Retrieve the Objective-C "instancetype" type, if already known; otherwise, returns a NULL type;...
Definition: ASTContext.h:1715
Represents a pack expansion of types.
Definition: Type.h:5165
void setLParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1435
StringRef getName() const
Return the actual identifier string.
void setTypeArgsLAngleLoc(SourceLocation Loc)
Definition: TypeLoc.h:1006
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1876
CanQualType UnsignedShortTy
Definition: ASTContext.h:1014
static unsigned getMaxSizeBits(const ASTContext &Context)
Determine the maximum number of active bits that an array&#39;s size can require, which limits the maximu...
Definition: Type.cpp:146
CallingConv getDefaultCallingConvention(bool IsVariadic, bool IsCXXMethod) const
Retrieves the default calling convention for the current target.
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:2872
An opaque identifier used by SourceManager which refers to a source file (MemoryBuffer) along with it...
CanQualType CharTy
Definition: ASTContext.h:1006
TSW getTypeSpecWidth() const
Definition: DeclSpec.h:480
bool isPipeType() const
Definition: Type.h:6294
static void setAttributedTypeLoc(AttributedTypeLoc TL, const ParsedAttr &attr)
Definition: SemaType.cpp:5242
static const TST TST_decltype_auto
Definition: DeclSpec.h:301
void setClassTInfo(TypeSourceInfo *TI)
Definition: TypeLoc.h:1321
TagTypeKind
The kind of a tag type.
Definition: Type.h:4847
QualType getTypeOfType(QualType t) const
getTypeOfType - Unlike many "get<Type>" functions, we don&#39;t unique TypeOfType nodes.
CanQualType ObjCBuiltinIdTy
Definition: ASTContext.h:1036
Dataflow Directional Tag Classes.
unsigned TypeQuals
The type qualifiers for the array: const/volatile/restrict/__unaligned/_Atomic.
Definition: DeclSpec.h:1191
NestedNameSpecifier * getNestedNameSpecifier() const
Retrieve the nested-name-specifier to which this instance refers.
bool isValid() const
Return true if this is a valid SourceLocation object.
SourceLocation ImplicitMSInheritanceAttrLoc
Source location for newly created implicit MSInheritanceAttrs.
Definition: Sema.h:351
DeducedType * getContainedDeducedType() const
Get the DeducedType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.cpp:1727
static const TSS TSS_unspecified
Definition: DeclSpec.h:266
SourceLocation getTypeSpecWidthLoc() const
Definition: DeclSpec.h:513
ExtInfo getExtInfo() const
Definition: Type.h:3376
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1264
void setAmpAmpLoc(SourceLocation Loc)
Definition: TypeLoc.h:1383
bool CheckFunctionReturnType(QualType T, SourceLocation Loc)
Definition: SemaType.cpp:2348
void diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, SourceLocation FallbackLoc, SourceLocation ConstQualLoc=SourceLocation(), SourceLocation VolatileQualLoc=SourceLocation(), SourceLocation RestrictQualLoc=SourceLocation(), SourceLocation AtomicQualLoc=SourceLocation(), SourceLocation UnalignedQualLoc=SourceLocation())
Definition: SemaType.cpp:2663
static const TST TST_decltype
Definition: DeclSpec.h:300
static const TST TST_auto
Definition: DeclSpec.h:303
static const TST TST_void
Definition: DeclSpec.h:273
SourceLocation getLocStart() const LLVM_READONLY
Definition: TypeLoc.h:154
unsigned isVariadic
isVariadic - If this function has a prototype, and if that proto ends with &#39;,...)&#39;, this is true.
Definition: DeclSpec.h:1248
const DeclaratorChunk * getInnermostNonParenChunk() const
Return the innermost (closest to the declarator) chunk of this declarator that is not a parens chunk...
Definition: DeclSpec.h:2194
bool isRecord() const
Definition: DeclBase.h:1417
static bool distributeNullabilityTypeAttr(TypeProcessingState &state, QualType type, ParsedAttr &attr)
Distribute a nullability type attribute that cannot be applied to the type specifier to a pointer...
Definition: SemaType.cpp:6536
static const TST TST_int128
Definition: DeclSpec.h:280
SourceLocation PointerEndLoc
The end location for the first pointer declarator in the file.
Definition: Sema.h:237
QualType getUnderlyingType() const
Definition: Decl.h:2927
CanQualType UnsignedLongLongTy
Definition: ASTContext.h:1015
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:118
QualType BuildPointerType(QualType T, SourceLocation Loc, DeclarationName Entity)
Build a pointer type.
Definition: SemaType.cpp:1886
const Type * getArrayElementTypeNoTypeQual() const
If this is an array type, return the element type of the array, potentially with type qualifiers miss...
Definition: Type.cpp:261
DeclarationName - The name of a declaration.
Represents the declaration of an Objective-C type parameter.
Definition: DeclObjC.h:578
SourceLocation getLoc() const
Definition: ParsedAttr.h:364
bool isBooleanType() const
Definition: Type.h:6453
QualType getFunctionNoProtoType(QualType ResultTy, const FunctionType::ExtInfo &Info) const
Return a K&R style C function type like &#39;int()&#39;.
CXXRecordDecl * getInstantiatedFromMemberClass() const
If this record is an instantiation of a member class, retrieves the member class from which it was in...
Definition: DeclCXX.cpp:1564
LLVM_READONLY bool isIdentifierBody(unsigned char c, bool AllowDollar=false)
Returns true if this is a body character of a C identifier, which is [a-zA-Z0-9_].
Definition: CharInfo.h:59
SourceLocation getTypeSpecSignLoc() const
Definition: DeclSpec.h:516
SourceLocation getLocEnd() const LLVM_READONLY
Definition: DeclSpec.h:510
ParsedAttr * create(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ArgsUnion *args, unsigned numArgs, ParsedAttr::Syntax syntax, SourceLocation ellipsisLoc=SourceLocation())
Definition: ParsedAttr.h:654
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5652
QualType BuildReadPipeType(QualType T, SourceLocation Loc)
Build a Read-only Pipe type.
Definition: SemaType.cpp:1983
Represents an enum.
Definition: Decl.h:3313
#define FUNCTION_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:127
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal)
Check whether the specified array size makes the array type a VLA.
Definition: SemaType.cpp:2001
The maximum supported address space number.
Definition: Type.h:194
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2612
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
const FunctionType * adjustFunctionType(const FunctionType *Fn, FunctionType::ExtInfo EInfo)
Change the ExtInfo on a function type.
bool hasObjCLifetime() const
Definition: Type.h:342
static void processTypeAttrs(TypeProcessingState &state, QualType &type, TypeAttrLocation TAL, ParsedAttributesView &attrs)
Definition: SemaType.cpp:7211
SplitQualType getSingleStepDesugaredType() const
Definition: Type.h:5882
TypeLoc getModifiedLoc() const
The modified type, which is generally canonically different from the attribute type.
Definition: TypeLoc.h:890
IdentifierInfo * getName() const
Definition: ParsedAttr.h:363
bool isUserProvided() const
True if this method is user-declared and was not deleted or defaulted on its first declaration...
Definition: DeclCXX.h:2143
static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr, Sema &S)
Handle OpenCL Access Qualifier Attribute.
Definition: SemaType.cpp:7078
ExternalASTSource * getExternalSource() const
Retrieve a pointer to the external AST source associated with this AST context, if any...
Definition: ASTContext.h:1068
A type that was preceded by the &#39;template&#39; keyword, stored as a Type*.
static const TST TST_unspecified
Definition: DeclSpec.h:272
virtual bool hasFeature(StringRef Feature) const
Determine whether the given target has the given feature.
Definition: TargetInfo.h:1073
QualType getUnsignedWCharType() const
Return the type of "unsigned wchar_t".
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 &#39;auto&#39; typ...
Definition: Type.h:6459
bool isValid() const
A scope specifier is present, and it refers to a real scope.
Definition: DeclSpec.h:196
TemplateNameKindForDiagnostics getTemplateNameKindForDiagnostics(TemplateName Name)
Definition: SemaDecl.cpp:1153
unsigned getNumParams() const
Definition: TypeLoc.h:1471
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:2091
bool hasAttrEnumOperand() const
Definition: TypeLoc.h:873
Represents a pointer to an Objective C object.
Definition: Type.h:5611
SourceRange getSourceRange() const LLVM_READONLY
Get the full source range.
Definition: TypeLoc.h:150
Pointer to a block type.
Definition: Type.h:2495
IdentifierInfo * getNSErrorIdent()
Retrieve the identifier "NSError".
Definition: SemaType.cpp:3429
bool IsEquivalent(Decl *D1, Decl *D2)
Determine whether the two declarations are structurally equivalent.
FileID getFileID(SourceLocation SpellingLoc) const
Return the FileID for a SourceLocation.
QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals, SourceRange Brackets) const
Return a non-unique reference to the type for a dependently-sized array of the specified element type...
static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, Sema &S, VectorType::VectorKind VecKind)
HandleNeonVectorTypeAttr - The "neon_vector_type" and "neon_polyvector_type" attributes are used to c...
Definition: SemaType.cpp:7031
bool isIncompleteArrayType() const
Definition: Type.h:6170
void setAttrEnumOperandLoc(SourceLocation loc)
Definition: TypeLoc.h:923
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4135
static const TST TST_decimal128
Definition: DeclSpec.h:291
static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType)
A function type attribute was written in the decl spec.
Definition: SemaType.cpp:538
CanQualType UnknownAnyTy
Definition: ASTContext.h:1033
bool empty() const
Definition: Type.h:431
bool isConstantSizeType() const
Return true if this is not a variable sized type, according to the rules of C99 6.7.5p3.
Definition: Type.cpp:2024
unsigned getTypeQualifiers() const
getTypeQualifiers - Return a set of TQs.
Definition: DeclSpec.h:549
void add(const sema::DelayedDiagnostic &diag)
Adds a delayed diagnostic.
unsigned hasPrototype
hasPrototype - This is true if the function had at least one typed parameter.
Definition: DeclSpec.h:1243
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6374
This template specialization was declared or defined by an explicit specialization (C++ [temp...
Definition: Specifiers.h:156
#define OBJC_POINTER_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:105
CanQualType UnsignedLongTy
Definition: ASTContext.h:1014
static bool isFunctionOrMethod(const Decl *D)
isFunctionOrMethod - Return true if the given decl has function type (function or function-typed vari...
T * getAttr() const
Definition: DeclBase.h:534
type_object_range type_objects() const
Returns the range of type objects, from the identifier outwards.
Definition: DeclSpec.h:2181
CanQualType DependentTy
Definition: ASTContext.h:1033
bool isImageType() const
Definition: Type.h:6287
Kind getAttrKind() const
Definition: Type.h:4260
bool isAtomicType() const
Definition: Type.h:6223
CanQualType WCharTy
Definition: ASTContext.h:1007
bool isFunctionType() const
Definition: Type.h:6109
static const TST TST_typename
Definition: DeclSpec.h:297
QualType BuildDecltypeType(Expr *E, SourceLocation Loc, bool AsUnevaluated=true)
If AsUnevaluated is false, E is treated as though it were an evaluated context, such as when building...
Definition: SemaType.cpp:8035
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2529
QualType getAutoDeductType() const
C++11 deduction pattern for &#39;auto&#39; type.
void copy(TemplateSpecializationTypeLoc Loc)
Definition: TypeLoc.h:1674
Wraps an ObjCPointerType with source location information.
Definition: TypeLoc.h:1339
unsigned AtomicQualLoc
The location of the _Atomic-qualifier, if any.
Definition: DeclSpec.h:1170
virtual bool hasFloat128Type() const
Determine whether the __float128 type is supported on this target.
Definition: TargetInfo.h:510
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:92
bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, const ObjCObjectPointerType *RHSOPT)
canAssignObjCInterfaces - Return true if the two interface types are compatible for assignment from R...
Implements a partial diagnostic that can be emitted anwyhere in a DiagnosticBuilder stream...
ExceptionSpecificationType getExceptionSpecType() const
Get the type of exception specification this function has.
Definition: DeclSpec.h:1442
Optional< NullabilityKind > getNullability(const ASTContext &context) const
Determine the nullability of the given type.
Definition: Type.cpp:3711
The "class" keyword.
Definition: Type.h:4858
bool isBeingDefined() const
Determines whether this type is in the process of being defined.
Definition: Type.cpp:3152
SourceLocation getTypeSpecTypeNameLoc() const
Definition: DeclSpec.h:521
virtual bool hasInt128Type() const
Determine whether the __int128 type is supported on this target.
Definition: TargetInfo.h:502
CXXScopeSpec & getTypeSpecScope()
Definition: DeclSpec.h:504
BlockPointerTypeInfo Cls
Definition: DeclSpec.h:1505
static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo=nullptr)
Definition: SemaType.cpp:2543
SourceRange getExceptionSpecRange() const
Definition: DeclSpec.h:1404
bool isObjectType() const
Determine whether this type is an object type.
Definition: Type.h:1746
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2052
const SrcMgr::SLocEntry & getSLocEntry(FileID FID, bool *Invalid=nullptr) const
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:529
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D, DeclaratorChunk &DeclType, QualType RT)
Produce an appropriate diagnostic for an ambiguity between a function declarator and a C++ direct-ini...
Definition: SemaType.cpp:3100
bool isObjCObjectType() const
Definition: Type.h:6214
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2034
ExprResult ActOnIdExpression(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand, std::unique_ptr< CorrectionCandidateCallback > CCC=nullptr, bool IsInlineAsmIdentifier=false, Token *KeywordReplacement=nullptr)
Definition: SemaExpr.cpp:2023
Describes whether we&#39;ve seen any nullability information for the given file.
Definition: Sema.h:230
CanQualType Char8Ty
Definition: ASTContext.h:1010
bool CheckAttrTarget(const ParsedAttr &CurrAttr)
UnqualTypeLoc getUnqualifiedLoc() const
Definition: TypeLoc.h:276
SourceLocation getIdentifierLoc() const
Definition: DeclSpec.h:2122
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2235
bool isSet() const
Deprecated.
Definition: DeclSpec.h:209
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:239
PointerWrappingDeclaratorKind
Describes a declarator chunk wrapping a pointer that marks inference as unexpected.
Definition: SemaType.cpp:3469
void setInvalidType(bool Val=true)
Definition: DeclSpec.h:2431
Reading or writing from this object requires a barrier call.
Definition: Type.h:185
bool isInvalid() const
Definition: ParsedAttr.h:402
Context-sensitive version of a keyword attribute.
Definition: ParsedAttr.h:133
unsigned AutoTemplateParameterDepth
If this is a generic lambda, use this as the depth of each &#39;auto&#39; parameter, during initial AST const...
Definition: ScopeInfo.h:801
An attributed type is a type to which a type attribute has been applied.
Definition: Type.h:4190
void setKWLoc(SourceLocation Loc)
Definition: TypeLoc.h:2289
unsigned TypeQuals
For now, sema will catch these as invalid.
Definition: DeclSpec.h:1470
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:997
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2500
CallingConv getCallConv() const
Definition: Type.h:3375
Captures information about "declaration specifiers".
Definition: DeclSpec.h:228
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5969
SourceLocation getRestrictSpecLoc() const
Definition: DeclSpec.h:551
Represents a C++ struct/union/class.
Definition: DeclCXX.h:302
SourceLocation getEllipsisLoc() const
Definition: DeclSpec.h:2444
QualType getRValueReferenceType(QualType T) const
Return the uniqued reference to the type for an rvalue reference to the specified type...
bool isVoidType() const
Definition: Type.h:6340
Expr * NumElts
This is the size of the array, or null if [] or [*] was specified.
Definition: DeclSpec.h:1202
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5916
bool checkNullabilityTypeSpecifier(QualType &type, NullabilityKind nullability, SourceLocation nullabilityLoc, bool isContextSensitive, bool allowArrayTypes)
Check whether a nullability type specifier can be added to the given type.
Definition: SemaType.cpp:6370
void setParam(unsigned i, ParmVarDecl *VD)
Definition: TypeLoc.h:1478
Provides information a specialization of a member of a class template, which may be a member function...
Definition: DeclTemplate.h:608
CanQualType Char16Ty
Definition: ASTContext.h:1011
LangOptions::PragmaMSPointersToMembersKind MSPointerToMemberRepresentationMethod
Controls member pointer representation format under the MS ABI.
Definition: Sema.h:345
static const TST TST_float128
Definition: DeclSpec.h:287
void atTemplateEnd(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema, const Sema::CodeSynthesisContext &Inst)
void setLParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1170
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition: DeclSpec.h:1841
static const TST TST_bool
Definition: DeclSpec.h:288
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:331
bool isSamplerT() const
Definition: Type.h:6267
The "enum" keyword.
Definition: Type.h:4861
bool isRValue() const
Definition: Expr.h:250
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
Stores a list of Objective-C type parameters for a parameterized class or a category/extension thereo...
Definition: DeclObjC.h:656
static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD)
Locks in the inheritance model for the given class and all of its bases.
Definition: SemaType.cpp:7594
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:61
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:129
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2250
IdentifierInfo * getNullabilityKeyword(NullabilityKind nullability)
Retrieve the keyword associated.
Definition: SemaType.cpp:3408
TypeLoc getTypeLoc() const
For a nested-name-specifier that refers to a type, retrieve the type with source-location information...
bool hasAttrOperand() const
Definition: TypeLoc.h:878
SourceManager & getSourceManager() const
Definition: Sema.h:1209
A template-id, e.g., f<int>.
static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A)
checkUnusedDeclAttributes - Check a list of attributes to see if it contains any decl attributes that...
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:266
ParsedType getRepAsType() const
Definition: DeclSpec.h:492
Defines the clang::TargetInfo interface.
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:154
A SourceLocation and its associated SourceManager.
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition: Decl.h:3442
SourceLocation getAtomicSpecLoc() const
Definition: DeclSpec.h:553
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement)
Completely replace the auto in TypeWithAuto by Replacement.
static Qualifiers fromCVRMask(unsigned CVR)
Definition: Type.h:247
Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const
Recurses in pointer/array types until it finds an Objective-C retainable type and returns its ownersh...
static const TSW TSW_longlong
Definition: DeclSpec.h:256
__DEVICE__ int max(int __a, int __b)
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:930
CanQualType IntTy
Definition: ASTContext.h:1013
QualType getSignedWCharType() const
Return the type of "signed wchar_t".
static OpaquePtr make(QualType P)
Definition: Ownership.h:61
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:1942
static void emitNullabilityConsistencyWarning(Sema &S, SimplePointerKind PointerKind, SourceLocation PointerLoc, SourceLocation PointerEndLoc)
Definition: SemaType.cpp:3709
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:974
bool hasRefQualifier() const
Determine whether this function declaration contains a ref-qualifier.
Definition: DeclSpec.h:1435
Represents an extended address space qualifier where the input address space value is dependent...
Definition: Type.h:2942
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:818
void copy(TypeLoc other)
Copies the other type loc into this one.
Definition: TypeLoc.cpp:166
static const TST TST_atomic
Definition: DeclSpec.h:306
bool isPointerType() const
Definition: Type.h:6113
SourceManager & SourceMgr
Definition: Sema.h:322
bool isEmpty() const
isEmpty - Return true if this declaration specifier is completely empty: no tokens were parsed in the...
Definition: DeclSpec.h:612
static const TST TST_struct
Definition: DeclSpec.h:294
Annotates a diagnostic with some code that should be inserted, removed, or replaced to fix the proble...
Definition: Diagnostic.h:66
class clang::Sema::DelayedDiagnostics DelayedDiagnostics
void initializeFullCopy(TypeLoc Other)
Initializes this by copying its information from another TypeLoc of the same type.
Definition: TypeLoc.h:197
DeclaratorContext getContext() const
Definition: DeclSpec.h:1866
static StringRef getNameForCallConv(CallingConv CC)
Definition: Type.cpp:2820
QualType getType() const
Definition: Decl.h:648
Wrapper for source info for builtin types.
Definition: TypeLoc.h:545
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:114
void setRParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1174
bool isArgIdent(unsigned Arg) const
Definition: ParsedAttr.h:444
A trivial tuple used to represent a source range.
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state, ParsedAttr &attr, QualType &type)
Definition: SemaType.cpp:6297
ASTContext & Context
Definition: Sema.h:319
This represents a decl that may have a name.
Definition: Decl.h:248
void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc)
Specify that this unqualified-id was parsed as an identifier.
Definition: DeclSpec.h:1011
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T)=0
void copy(DependentNameTypeLoc Loc)
Definition: TypeLoc.h:2102
Expr * getRepAsExpr() const
Definition: DeclSpec.h:500
QualifiedFunctionKind
Kinds of declarator that cannot contain a qualified function type.
Definition: SemaType.cpp:1855
T castAs() const
Convert to the specified TypeLoc type, asserting that this TypeLoc is of the desired type...
Definition: TypeLoc.h:75
bool hasExplicitCallingConv(QualType &T)
Definition: SemaType.cpp:6848
CanQualType BoolTy
Definition: ASTContext.h:1005
__ptr16, alignas(...), etc.
Definition: ParsedAttr.h:125
No keyword precedes the qualified type name.
Definition: Type.h:4887
QualType getVariableArrayType(QualType EltTy, Expr *NumElts, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals, SourceRange Brackets) const
Return a non-unique reference to the type for a variable array of the specified element type...
sema::LambdaScopeInfo * getCurLambda(bool IgnoreNonLambdaCapturingScope=false)
Retrieve the current lambda scope info, if any.
Definition: Sema.cpp:1481
TypeAttrLocation
The location of a type attribute.
Definition: SemaType.cpp:262
CanQualType DoubleTy
Definition: ASTContext.h:1016
static TypeSourceInfo * GetFullTypeForDeclarator(TypeProcessingState &state, QualType declSpecType, TypeSourceInfo *TInfo)
Definition: SemaType.cpp:3837
bool isAggregate() const
Determine whether this class is an aggregate (C++ [dcl.init.aggr]), which is a class with no user-dec...
Definition: DeclCXX.h:1288
bool isFirstDeclarationOfMember()
Returns true if this declares a real member and not a friend.
Definition: DeclSpec.h:2460
llvm::StringRef getNullabilitySpelling(NullabilityKind kind, bool isContextSensitive=false)
Retrieve the spelling of the given nullability kind.
SourceLocation getLocEnd() const LLVM_READONLY
Definition: DeclSpec.h:1879
The global specifier &#39;::&#39;. There is no stored value.
bool isPrototypeContext() const
Definition: DeclSpec.h:1868
void pushFullCopy(TypeLoc L)
Pushes a copy of the given TypeLoc onto this builder.
void setType(QualType newType)
Definition: Decl.h:649
Wrapper for source info for pointers.
Definition: TypeLoc.h:1271
SourceLocation getBegin() const
QualType getReadPipeType(QualType T) const
Return a read_only pipe type for the specified type.
Wrapper for source info for block pointers.
Definition: TypeLoc.h:1284
unsigned size() const
Determine the number of type parameters in this list.
Definition: DeclObjC.h:696
An implicit &#39;self&#39; parameter.
base_class_range vbases()
Definition: DeclCXX.h:842
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2728
ExceptionSpecInfo ExceptionSpec
Definition: Type.h:3557
A deduction-guide name (a template-name)
QualType getAdjustedType(QualType Orig, QualType New) const
Return the uniqued reference to a type adjusted from the original type to a new type.
IdentifierLoc * getArgAsIdent(unsigned Arg) const
Definition: ParsedAttr.h:448
A class which abstracts out some details necessary for making a call.
Definition: Type.h:3236
ParamInfo * Params
Params - This is a pointer to a new[]&#39;d array of ParamInfo objects that describe the parameters speci...
Definition: DeclSpec.h:1322
void setElaboratedKeywordLoc(SourceLocation Loc)
Definition: TypeLoc.h:2012
Attr - This represents one attribute.
Definition: Attr.h:43
ParsedAttributes & getAttributes()
Definition: DeclSpec.h:750
SourceLocation getLocation() const
Definition: DeclBase.h:419
bool isIncompleteOrObjectType() const
Return true if this is an incomplete or object type, in other words, not a function type...
Definition: Type.h:1741
SourceRange getTypeofParensRange() const
Definition: DeclSpec.h:526
QualType getPointeeType() const
Definition: Type.h:2632
TypeSourceInfo * GetTypeForDeclarator(Declarator &D, Scope *S)
GetTypeForDeclarator - Convert the type for the specified declarator to Type instances.
Definition: SemaType.cpp:5039
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:97
This parameter (which must have pointer type) is a Swift indirect result parameter.
QualType BuildTypeofExprType(Expr *E, SourceLocation Loc)
Definition: SemaType.cpp:7949
void setUnderlyingTInfo(TypeSourceInfo *TI) const
Definition: TypeLoc.h:1914
QualType getComplexType(QualType T) const
Return the uniqued reference to the type for a complex number with the specified element type...
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2513
CanQualType UnsignedIntTy
Definition: ASTContext.h:1014
QualType getIncompleteArrayType(QualType EltTy, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return a unique reference to the type for an incomplete array of the specified element type...
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1079
unsigned isAmbiguous
Can this declaration be a constructor-style initializer?
Definition: DeclSpec.h:1251