clang  7.0.0
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
33 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 class CallSite;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 
80 namespace analyze_os_log {
81 class OSLogBufferLayout;
82 }
83 
84 namespace CodeGen {
85 class CodeGenTypes;
86 class CGCallee;
87 class CGFunctionInfo;
88 class CGRecordLayout;
89 class CGBlockInfo;
90 class CGCXXABI;
91 class BlockByrefHelpers;
92 class BlockByrefInfo;
93 class BlockFlags;
94 class BlockFieldFlags;
95 class RegionCodeGenTy;
96 class TargetCodeGenInfo;
97 struct OMPTaskDataTy;
98 struct CGCoroData;
99 
100 /// The kind of evaluation to perform on values of a particular
101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
102 /// CGExprAgg?
103 ///
104 /// TODO: should vectors maybe be split out into their own thing?
109 };
110 
111 #define LIST_SANITIZER_CHECKS \
112  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
113  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
114  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
115  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
116  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
117  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
118  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \
119  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \
120  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
121  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
122  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
123  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
124  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
125  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
126  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
127  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
128  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
129  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
130  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
131  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
132  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
133  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
134  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
135 
137 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
139 #undef SANITIZER_CHECK
140 };
141 
142 /// Helper class with most of the code for saving a value for a
143 /// conditional expression cleanup.
145  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
146 
147  /// Answer whether the given value needs extra work to be saved.
148  static bool needsSaving(llvm::Value *value) {
149  // If it's not an instruction, we don't need to save.
150  if (!isa<llvm::Instruction>(value)) return false;
151 
152  // If it's an instruction in the entry block, we don't need to save.
153  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
154  return (block != &block->getParent()->getEntryBlock());
155  }
156 
157  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
158  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
159 };
160 
161 /// A partial specialization of DominatingValue for llvm::Values that
162 /// might be llvm::Instructions.
163 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
164  typedef T *type;
165  static type restore(CodeGenFunction &CGF, saved_type value) {
166  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
167  }
168 };
169 
170 /// A specialization of DominatingValue for Address.
171 template <> struct DominatingValue<Address> {
172  typedef Address type;
173 
174  struct saved_type {
177  };
178 
179  static bool needsSaving(type value) {
180  return DominatingLLVMValue::needsSaving(value.getPointer());
181  }
182  static saved_type save(CodeGenFunction &CGF, type value) {
183  return { DominatingLLVMValue::save(CGF, value.getPointer()),
184  value.getAlignment() };
185  }
186  static type restore(CodeGenFunction &CGF, saved_type value) {
187  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
188  value.Alignment);
189  }
190 };
191 
192 /// A specialization of DominatingValue for RValue.
193 template <> struct DominatingValue<RValue> {
194  typedef RValue type;
195  class saved_type {
196  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
197  AggregateAddress, ComplexAddress };
198 
200  unsigned K : 3;
201  unsigned Align : 29;
202  saved_type(llvm::Value *v, Kind k, unsigned a = 0)
203  : Value(v), K(k), Align(a) {}
204 
205  public:
206  static bool needsSaving(RValue value);
207  static saved_type save(CodeGenFunction &CGF, RValue value);
208  RValue restore(CodeGenFunction &CGF);
209 
210  // implementations in CGCleanup.cpp
211  };
212 
213  static bool needsSaving(type value) {
214  return saved_type::needsSaving(value);
215  }
216  static saved_type save(CodeGenFunction &CGF, type value) {
217  return saved_type::save(CGF, value);
218  }
219  static type restore(CodeGenFunction &CGF, saved_type value) {
220  return value.restore(CGF);
221  }
222 };
223 
224 /// CodeGenFunction - This class organizes the per-function state that is used
225 /// while generating LLVM code.
227  CodeGenFunction(const CodeGenFunction &) = delete;
228  void operator=(const CodeGenFunction &) = delete;
229 
230  friend class CGCXXABI;
231 public:
232  /// A jump destination is an abstract label, branching to which may
233  /// require a jump out through normal cleanups.
234  struct JumpDest {
235  JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
236  JumpDest(llvm::BasicBlock *Block,
238  unsigned Index)
239  : Block(Block), ScopeDepth(Depth), Index(Index) {}
240 
241  bool isValid() const { return Block != nullptr; }
242  llvm::BasicBlock *getBlock() const { return Block; }
243  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
244  unsigned getDestIndex() const { return Index; }
245 
246  // This should be used cautiously.
248  ScopeDepth = depth;
249  }
250 
251  private:
252  llvm::BasicBlock *Block;
254  unsigned Index;
255  };
256 
257  CodeGenModule &CGM; // Per-module state.
259 
260  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
263 
264  // Stores variables for which we can't generate correct lifetime markers
265  // because of jumps.
267 
268  // CodeGen lambda for loops and support for ordered clause
269  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
270  JumpDest)>
272  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
273  const unsigned, const bool)>
275 
276  // Codegen lambda for loop bounds in worksharing loop constructs
277  typedef llvm::function_ref<std::pair<LValue, LValue>(
280 
281  // Codegen lambda for loop bounds in dispatch-based loop implementation
282  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
283  CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
284  Address UB)>
286 
287  /// CGBuilder insert helper. This function is called after an
288  /// instruction is created using Builder.
289  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
290  llvm::BasicBlock *BB,
291  llvm::BasicBlock::iterator InsertPt) const;
292 
293  /// CurFuncDecl - Holds the Decl for the current outermost
294  /// non-closure context.
296  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
300  llvm::Function *CurFn = nullptr;
301 
302  // Holds coroutine data if the current function is a coroutine. We use a
303  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
304  // in this header.
305  struct CGCoroInfo {
306  std::unique_ptr<CGCoroData> Data;
307  CGCoroInfo();
308  ~CGCoroInfo();
309  };
311 
312  bool isCoroutine() const {
313  return CurCoro.Data != nullptr;
314  }
315 
316  /// CurGD - The GlobalDecl for the current function being compiled.
318 
319  /// PrologueCleanupDepth - The cleanup depth enclosing all the
320  /// cleanups associated with the parameters.
322 
323  /// ReturnBlock - Unified return block.
325 
326  /// ReturnValue - The temporary alloca to hold the return
327  /// value. This is invalid iff the function has no return value.
328  Address ReturnValue = Address::invalid();
329 
330  /// Return true if a label was seen in the current scope.
332  if (CurLexicalScope)
333  return CurLexicalScope->hasLabels();
334  return !LabelMap.empty();
335  }
336 
337  /// AllocaInsertPoint - This is an instruction in the entry block before which
338  /// we prefer to insert allocas.
339  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
340 
341  /// API for captured statement code generation.
343  public:
345  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
346  explicit CGCapturedStmtInfo(const CapturedStmt &S,
348  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
349 
353  E = S.capture_end();
354  I != E; ++I, ++Field) {
355  if (I->capturesThis())
356  CXXThisFieldDecl = *Field;
357  else if (I->capturesVariable())
358  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
359  else if (I->capturesVariableByCopy())
360  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
361  }
362  }
363 
364  virtual ~CGCapturedStmtInfo();
365 
366  CapturedRegionKind getKind() const { return Kind; }
367 
368  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
369  // Retrieve the value of the context parameter.
370  virtual llvm::Value *getContextValue() const { return ThisValue; }
371 
372  /// Lookup the captured field decl for a variable.
373  virtual const FieldDecl *lookup(const VarDecl *VD) const {
374  return CaptureFields.lookup(VD->getCanonicalDecl());
375  }
376 
377  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
378  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
379 
380  static bool classof(const CGCapturedStmtInfo *) {
381  return true;
382  }
383 
384  /// Emit the captured statement body.
385  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
387  CGF.EmitStmt(S);
388  }
389 
390  /// Get the name of the capture helper.
391  virtual StringRef getHelperName() const { return "__captured_stmt"; }
392 
393  private:
394  /// The kind of captured statement being generated.
396 
397  /// Keep the map between VarDecl and FieldDecl.
398  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
399 
400  /// The base address of the captured record, passed in as the first
401  /// argument of the parallel region function.
402  llvm::Value *ThisValue;
403 
404  /// Captured 'this' type.
405  FieldDecl *CXXThisFieldDecl;
406  };
407  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
408 
409  /// RAII for correct setting/restoring of CapturedStmtInfo.
411  private:
412  CodeGenFunction &CGF;
413  CGCapturedStmtInfo *PrevCapturedStmtInfo;
414  public:
415  CGCapturedStmtRAII(CodeGenFunction &CGF,
416  CGCapturedStmtInfo *NewCapturedStmtInfo)
417  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
418  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
419  }
420  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
421  };
422 
423  /// An abstract representation of regular/ObjC call/message targets.
425  /// The function declaration of the callee.
426  const Decl *CalleeDecl;
427 
428  public:
429  AbstractCallee() : CalleeDecl(nullptr) {}
430  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
431  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
432  bool hasFunctionDecl() const {
433  return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
434  }
435  const Decl *getDecl() const { return CalleeDecl; }
436  unsigned getNumParams() const {
437  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
438  return FD->getNumParams();
439  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
440  }
441  const ParmVarDecl *getParamDecl(unsigned I) const {
442  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
443  return FD->getParamDecl(I);
444  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
445  }
446  };
447 
448  /// Sanitizers enabled for this function.
450 
451  /// True if CodeGen currently emits code implementing sanitizer checks.
452  bool IsSanitizerScope = false;
453 
454  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
456  CodeGenFunction *CGF;
457  public:
458  SanitizerScope(CodeGenFunction *CGF);
459  ~SanitizerScope();
460  };
461 
462  /// In C++, whether we are code generating a thunk. This controls whether we
463  /// should emit cleanups.
464  bool CurFuncIsThunk = false;
465 
466  /// In ARC, whether we should autorelease the return value.
467  bool AutoreleaseResult = false;
468 
469  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
470  /// potentially set the return value.
471  bool SawAsmBlock = false;
472 
473  const NamedDecl *CurSEHParent = nullptr;
474 
475  /// True if the current function is an outlined SEH helper. This can be a
476  /// finally block or filter expression.
477  bool IsOutlinedSEHHelper = false;
478 
479  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
480  llvm::Value *BlockPointer = nullptr;
481 
482  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
483  FieldDecl *LambdaThisCaptureField = nullptr;
484 
485  /// A mapping from NRVO variables to the flags used to indicate
486  /// when the NRVO has been applied to this variable.
487  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
488 
492 
493  llvm::Instruction *CurrentFuncletPad = nullptr;
494 
495  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
496  llvm::Value *Addr;
497  llvm::Value *Size;
498 
499  public:
501  : Addr(addr.getPointer()), Size(size) {}
502 
503  void Emit(CodeGenFunction &CGF, Flags flags) override {
504  CGF.EmitLifetimeEnd(Size, Addr);
505  }
506  };
507 
508  /// Header for data within LifetimeExtendedCleanupStack.
510  /// The size of the following cleanup object.
511  unsigned Size;
512  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
513  unsigned Kind : 31;
514  /// Whether this is a conditional cleanup.
515  unsigned IsConditional : 1;
516 
517  size_t getSize() const { return Size; }
518  CleanupKind getKind() const { return (CleanupKind)Kind; }
519  bool isConditional() const { return IsConditional; }
520  };
521 
522  /// i32s containing the indexes of the cleanup destinations.
523  Address NormalCleanupDest = Address::invalid();
524 
525  unsigned NextCleanupDestIndex = 1;
526 
527  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
528  CGBlockInfo *FirstBlockInfo = nullptr;
529 
530  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
531  llvm::BasicBlock *EHResumeBlock = nullptr;
532 
533  /// The exception slot. All landing pads write the current exception pointer
534  /// into this alloca.
535  llvm::Value *ExceptionSlot = nullptr;
536 
537  /// The selector slot. Under the MandatoryCleanup model, all landing pads
538  /// write the current selector value into this alloca.
539  llvm::AllocaInst *EHSelectorSlot = nullptr;
540 
541  /// A stack of exception code slots. Entering an __except block pushes a slot
542  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
543  /// a value from the top of the stack.
545 
546  /// Value returned by __exception_info intrinsic.
547  llvm::Value *SEHInfo = nullptr;
548 
549  /// Emits a landing pad for the current EH stack.
550  llvm::BasicBlock *EmitLandingPad();
551 
552  llvm::BasicBlock *getInvokeDestImpl();
553 
554  template <class T>
556  return DominatingValue<T>::save(*this, value);
557  }
558 
559 public:
560  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
561  /// rethrows.
563 
564  /// A class controlling the emission of a finally block.
565  class FinallyInfo {
566  /// Where the catchall's edge through the cleanup should go.
567  JumpDest RethrowDest;
568 
569  /// A function to call to enter the catch.
570  llvm::Constant *BeginCatchFn;
571 
572  /// An i1 variable indicating whether or not the @finally is
573  /// running for an exception.
574  llvm::AllocaInst *ForEHVar;
575 
576  /// An i8* variable into which the exception pointer to rethrow
577  /// has been saved.
578  llvm::AllocaInst *SavedExnVar;
579 
580  public:
581  void enter(CodeGenFunction &CGF, const Stmt *Finally,
582  llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
583  llvm::Constant *rethrowFn);
584  void exit(CodeGenFunction &CGF);
585  };
586 
587  /// Returns true inside SEH __try blocks.
588  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
589 
590  /// Returns true while emitting a cleanuppad.
591  bool isCleanupPadScope() const {
592  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
593  }
594 
595  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
596  /// current full-expression. Safe against the possibility that
597  /// we're currently inside a conditionally-evaluated expression.
598  template <class T, class... As>
600  // If we're not in a conditional branch, or if none of the
601  // arguments requires saving, then use the unconditional cleanup.
602  if (!isInConditionalBranch())
603  return EHStack.pushCleanup<T>(kind, A...);
604 
605  // Stash values in a tuple so we can guarantee the order of saves.
606  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
607  SavedTuple Saved{saveValueInCond(A)...};
608 
609  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
610  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
611  initFullExprCleanup();
612  }
613 
614  /// Queue a cleanup to be pushed after finishing the current
615  /// full-expression.
616  template <class T, class... As>
618  if (!isInConditionalBranch())
619  return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
620 
621  Address ActiveFlag = createCleanupActiveFlag();
622  assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
623  "cleanup active flag should never need saving");
624 
625  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
626  SavedTuple Saved{saveValueInCond(A)...};
627 
628  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
629  pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
630  }
631 
632  template <class T, class... As>
634  As... A) {
635  LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
636  ActiveFlag.isValid()};
637 
638  size_t OldSize = LifetimeExtendedCleanupStack.size();
639  LifetimeExtendedCleanupStack.resize(
640  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
641  (Header.IsConditional ? sizeof(ActiveFlag) : 0));
642 
643  static_assert(sizeof(Header) % alignof(T) == 0,
644  "Cleanup will be allocated on misaligned address");
645  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
646  new (Buffer) LifetimeExtendedCleanupHeader(Header);
647  new (Buffer + sizeof(Header)) T(A...);
648  if (Header.IsConditional)
649  new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
650  }
651 
652  /// Set up the last cleanup that was pushed as a conditional
653  /// full-expression cleanup.
655  initFullExprCleanupWithFlag(createCleanupActiveFlag());
656  }
657 
658  void initFullExprCleanupWithFlag(Address ActiveFlag);
659  Address createCleanupActiveFlag();
660 
661  /// PushDestructorCleanup - Push a cleanup to call the
662  /// complete-object destructor of an object of the given type at the
663  /// given address. Does nothing if T is not a C++ class type with a
664  /// non-trivial destructor.
665  void PushDestructorCleanup(QualType T, Address Addr);
666 
667  /// PushDestructorCleanup - Push a cleanup to call the
668  /// complete-object variant of the given destructor on the object at
669  /// the given address.
670  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
671 
672  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
673  /// process all branch fixups.
674  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
675 
676  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
677  /// The block cannot be reactivated. Pops it if it's the top of the
678  /// stack.
679  ///
680  /// \param DominatingIP - An instruction which is known to
681  /// dominate the current IP (if set) and which lies along
682  /// all paths of execution between the current IP and the
683  /// the point at which the cleanup comes into scope.
684  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
685  llvm::Instruction *DominatingIP);
686 
687  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
688  /// Cannot be used to resurrect a deactivated cleanup.
689  ///
690  /// \param DominatingIP - An instruction which is known to
691  /// dominate the current IP (if set) and which lies along
692  /// all paths of execution between the current IP and the
693  /// the point at which the cleanup comes into scope.
694  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
695  llvm::Instruction *DominatingIP);
696 
697  /// Enters a new scope for capturing cleanups, all of which
698  /// will be executed once the scope is exited.
700  EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
701  size_t LifetimeExtendedCleanupStackSize;
702  bool OldDidCallStackSave;
703  protected:
705  private:
706 
707  RunCleanupsScope(const RunCleanupsScope &) = delete;
708  void operator=(const RunCleanupsScope &) = delete;
709 
710  protected:
711  CodeGenFunction& CGF;
712 
713  public:
714  /// Enter a new cleanup scope.
715  explicit RunCleanupsScope(CodeGenFunction &CGF)
716  : PerformCleanup(true), CGF(CGF)
717  {
718  CleanupStackDepth = CGF.EHStack.stable_begin();
719  LifetimeExtendedCleanupStackSize =
720  CGF.LifetimeExtendedCleanupStack.size();
721  OldDidCallStackSave = CGF.DidCallStackSave;
722  CGF.DidCallStackSave = false;
723  OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
724  CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
725  }
726 
727  /// Exit this cleanup scope, emitting any accumulated cleanups.
729  if (PerformCleanup)
730  ForceCleanup();
731  }
732 
733  /// Determine whether this scope requires any cleanups.
734  bool requiresCleanups() const {
735  return CGF.EHStack.stable_begin() != CleanupStackDepth;
736  }
737 
738  /// Force the emission of cleanups now, instead of waiting
739  /// until this object is destroyed.
740  /// \param ValuesToReload - A list of values that need to be available at
741  /// the insertion point after cleanup emission. If cleanup emission created
742  /// a shared cleanup block, these value pointers will be rewritten.
743  /// Otherwise, they not will be modified.
744  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
745  assert(PerformCleanup && "Already forced cleanup");
746  CGF.DidCallStackSave = OldDidCallStackSave;
747  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
748  ValuesToReload);
749  PerformCleanup = false;
750  CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
751  }
752  };
753 
754  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
755  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
756  EHScopeStack::stable_end();
757 
759  SourceRange Range;
761  LexicalScope *ParentScope;
762 
763  LexicalScope(const LexicalScope &) = delete;
764  void operator=(const LexicalScope &) = delete;
765 
766  public:
767  /// Enter a new cleanup scope.
768  explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
769  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
770  CGF.CurLexicalScope = this;
771  if (CGDebugInfo *DI = CGF.getDebugInfo())
772  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
773  }
774 
775  void addLabel(const LabelDecl *label) {
776  assert(PerformCleanup && "adding label to dead scope?");
777  Labels.push_back(label);
778  }
779 
780  /// Exit this cleanup scope, emitting any accumulated
781  /// cleanups.
783  if (CGDebugInfo *DI = CGF.getDebugInfo())
784  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
785 
786  // If we should perform a cleanup, force them now. Note that
787  // this ends the cleanup scope before rescoping any labels.
788  if (PerformCleanup) {
789  ApplyDebugLocation DL(CGF, Range.getEnd());
790  ForceCleanup();
791  }
792  }
793 
794  /// Force the emission of cleanups now, instead of waiting
795  /// until this object is destroyed.
796  void ForceCleanup() {
797  CGF.CurLexicalScope = ParentScope;
798  RunCleanupsScope::ForceCleanup();
799 
800  if (!Labels.empty())
801  rescopeLabels();
802  }
803 
804  bool hasLabels() const {
805  return !Labels.empty();
806  }
807 
808  void rescopeLabels();
809  };
810 
811  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
812 
813  /// The class used to assign some variables some temporarily addresses.
814  class OMPMapVars {
815  DeclMapTy SavedLocals;
816  DeclMapTy SavedTempAddresses;
817  OMPMapVars(const OMPMapVars &) = delete;
818  void operator=(const OMPMapVars &) = delete;
819 
820  public:
821  explicit OMPMapVars() = default;
823  assert(SavedLocals.empty() && "Did not restored original addresses.");
824  };
825 
826  /// Sets the address of the variable \p LocalVD to be \p TempAddr in
827  /// function \p CGF.
828  /// \return true if at least one variable was set already, false otherwise.
829  bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
830  Address TempAddr) {
831  LocalVD = LocalVD->getCanonicalDecl();
832  // Only save it once.
833  if (SavedLocals.count(LocalVD)) return false;
834 
835  // Copy the existing local entry to SavedLocals.
836  auto it = CGF.LocalDeclMap.find(LocalVD);
837  if (it != CGF.LocalDeclMap.end())
838  SavedLocals.try_emplace(LocalVD, it->second);
839  else
840  SavedLocals.try_emplace(LocalVD, Address::invalid());
841 
842  // Generate the private entry.
843  QualType VarTy = LocalVD->getType();
844  if (VarTy->isReferenceType()) {
845  Address Temp = CGF.CreateMemTemp(VarTy);
846  CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
847  TempAddr = Temp;
848  }
849  SavedTempAddresses.try_emplace(LocalVD, TempAddr);
850 
851  return true;
852  }
853 
854  /// Applies new addresses to the list of the variables.
855  /// \return true if at least one variable is using new address, false
856  /// otherwise.
857  bool apply(CodeGenFunction &CGF) {
858  copyInto(SavedTempAddresses, CGF.LocalDeclMap);
859  SavedTempAddresses.clear();
860  return !SavedLocals.empty();
861  }
862 
863  /// Restores original addresses of the variables.
864  void restore(CodeGenFunction &CGF) {
865  if (!SavedLocals.empty()) {
866  copyInto(SavedLocals, CGF.LocalDeclMap);
867  SavedLocals.clear();
868  }
869  }
870 
871  private:
872  /// Copy all the entries in the source map over the corresponding
873  /// entries in the destination, which must exist.
874  static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
875  for (auto &Pair : Src) {
876  if (!Pair.second.isValid()) {
877  Dest.erase(Pair.first);
878  continue;
879  }
880 
881  auto I = Dest.find(Pair.first);
882  if (I != Dest.end())
883  I->second = Pair.second;
884  else
885  Dest.insert(Pair);
886  }
887  }
888  };
889 
890  /// The scope used to remap some variables as private in the OpenMP loop body
891  /// (or other captured region emitted without outlining), and to restore old
892  /// vars back on exit.
894  OMPMapVars MappedVars;
895  OMPPrivateScope(const OMPPrivateScope &) = delete;
896  void operator=(const OMPPrivateScope &) = delete;
897 
898  public:
899  /// Enter a new OpenMP private scope.
900  explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
901 
902  /// Registers \p LocalVD variable as a private and apply \p PrivateGen
903  /// function for it to generate corresponding private variable. \p
904  /// PrivateGen returns an address of the generated private variable.
905  /// \return true if the variable is registered as private, false if it has
906  /// been privatized already.
907  bool addPrivate(const VarDecl *LocalVD,
908  const llvm::function_ref<Address()> PrivateGen) {
909  assert(PerformCleanup && "adding private to dead scope");
910  return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
911  }
912 
913  /// Privatizes local variables previously registered as private.
914  /// Registration is separate from the actual privatization to allow
915  /// initializers use values of the original variables, not the private one.
916  /// This is important, for example, if the private variable is a class
917  /// variable initialized by a constructor that references other private
918  /// variables. But at initialization original variables must be used, not
919  /// private copies.
920  /// \return true if at least one variable was privatized, false otherwise.
921  bool Privatize() { return MappedVars.apply(CGF); }
922 
923  void ForceCleanup() {
924  RunCleanupsScope::ForceCleanup();
925  MappedVars.restore(CGF);
926  }
927 
928  /// Exit scope - all the mapped variables are restored.
930  if (PerformCleanup)
931  ForceCleanup();
932  }
933 
934  /// Checks if the global variable is captured in current function.
935  bool isGlobalVarCaptured(const VarDecl *VD) const {
936  VD = VD->getCanonicalDecl();
937  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
938  }
939  };
940 
941  /// Takes the old cleanup stack size and emits the cleanup blocks
942  /// that have been added.
943  void
944  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
945  std::initializer_list<llvm::Value **> ValuesToReload = {});
946 
947  /// Takes the old cleanup stack size and emits the cleanup blocks
948  /// that have been added, then adds all lifetime-extended cleanups from
949  /// the given position to the stack.
950  void
951  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
952  size_t OldLifetimeExtendedStackSize,
953  std::initializer_list<llvm::Value **> ValuesToReload = {});
954 
955  void ResolveBranchFixups(llvm::BasicBlock *Target);
956 
957  /// The given basic block lies in the current EH scope, but may be a
958  /// target of a potentially scope-crossing jump; get a stable handle
959  /// to which we can perform this jump later.
960  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
961  return JumpDest(Target,
962  EHStack.getInnermostNormalCleanup(),
963  NextCleanupDestIndex++);
964  }
965 
966  /// The given basic block lies in the current EH scope, but may be a
967  /// target of a potentially scope-crossing jump; get a stable handle
968  /// to which we can perform this jump later.
969  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
970  return getJumpDestInCurrentScope(createBasicBlock(Name));
971  }
972 
973  /// EmitBranchThroughCleanup - Emit a branch from the current insert
974  /// block through the normal cleanup handling code (if any) and then
975  /// on to \arg Dest.
976  void EmitBranchThroughCleanup(JumpDest Dest);
977 
978  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
979  /// specified destination obviously has no cleanups to run. 'false' is always
980  /// a conservatively correct answer for this method.
981  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
982 
983  /// popCatchScope - Pops the catch scope at the top of the EHScope
984  /// stack, emitting any required code (other than the catch handlers
985  /// themselves).
986  void popCatchScope();
987 
988  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
989  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
990  llvm::BasicBlock *
991  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
992 
993  /// An object to manage conditionally-evaluated expressions.
995  llvm::BasicBlock *StartBB;
996 
997  public:
998  ConditionalEvaluation(CodeGenFunction &CGF)
999  : StartBB(CGF.Builder.GetInsertBlock()) {}
1000 
1001  void begin(CodeGenFunction &CGF) {
1002  assert(CGF.OutermostConditional != this);
1003  if (!CGF.OutermostConditional)
1004  CGF.OutermostConditional = this;
1005  }
1006 
1007  void end(CodeGenFunction &CGF) {
1008  assert(CGF.OutermostConditional != nullptr);
1009  if (CGF.OutermostConditional == this)
1010  CGF.OutermostConditional = nullptr;
1011  }
1012 
1013  /// Returns a block which will be executed prior to each
1014  /// evaluation of the conditional code.
1015  llvm::BasicBlock *getStartingBlock() const {
1016  return StartBB;
1017  }
1018  };
1019 
1020  /// isInConditionalBranch - Return true if we're currently emitting
1021  /// one branch or the other of a conditional expression.
1022  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1023 
1025  assert(isInConditionalBranch());
1026  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1027  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1028  store->setAlignment(addr.getAlignment().getQuantity());
1029  }
1030 
1031  /// An RAII object to record that we're evaluating a statement
1032  /// expression.
1034  CodeGenFunction &CGF;
1035 
1036  /// We have to save the outermost conditional: cleanups in a
1037  /// statement expression aren't conditional just because the
1038  /// StmtExpr is.
1039  ConditionalEvaluation *SavedOutermostConditional;
1040 
1041  public:
1042  StmtExprEvaluation(CodeGenFunction &CGF)
1043  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1044  CGF.OutermostConditional = nullptr;
1045  }
1046 
1048  CGF.OutermostConditional = SavedOutermostConditional;
1049  CGF.EnsureInsertPoint();
1050  }
1051  };
1052 
1053  /// An object which temporarily prevents a value from being
1054  /// destroyed by aggressive peephole optimizations that assume that
1055  /// all uses of a value have been realized in the IR.
1057  llvm::Instruction *Inst;
1058  friend class CodeGenFunction;
1059 
1060  public:
1061  PeepholeProtection() : Inst(nullptr) {}
1062  };
1063 
1064  /// A non-RAII class containing all the information about a bound
1065  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
1066  /// this which makes individual mappings very simple; using this
1067  /// class directly is useful when you have a variable number of
1068  /// opaque values or don't want the RAII functionality for some
1069  /// reason.
1071  const OpaqueValueExpr *OpaqueValue;
1072  bool BoundLValue;
1074 
1076  bool boundLValue)
1077  : OpaqueValue(ov), BoundLValue(boundLValue) {}
1078  public:
1079  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1080 
1081  static bool shouldBindAsLValue(const Expr *expr) {
1082  // gl-values should be bound as l-values for obvious reasons.
1083  // Records should be bound as l-values because IR generation
1084  // always keeps them in memory. Expressions of function type
1085  // act exactly like l-values but are formally required to be
1086  // r-values in C.
1087  return expr->isGLValue() ||
1088  expr->getType()->isFunctionType() ||
1089  hasAggregateEvaluationKind(expr->getType());
1090  }
1091 
1092  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1093  const OpaqueValueExpr *ov,
1094  const Expr *e) {
1095  if (shouldBindAsLValue(ov))
1096  return bind(CGF, ov, CGF.EmitLValue(e));
1097  return bind(CGF, ov, CGF.EmitAnyExpr(e));
1098  }
1099 
1100  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1101  const OpaqueValueExpr *ov,
1102  const LValue &lv) {
1103  assert(shouldBindAsLValue(ov));
1104  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1105  return OpaqueValueMappingData(ov, true);
1106  }
1107 
1108  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1109  const OpaqueValueExpr *ov,
1110  const RValue &rv) {
1111  assert(!shouldBindAsLValue(ov));
1112  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1113 
1114  OpaqueValueMappingData data(ov, false);
1115 
1116  // Work around an extremely aggressive peephole optimization in
1117  // EmitScalarConversion which assumes that all other uses of a
1118  // value are extant.
1119  data.Protection = CGF.protectFromPeepholes(rv);
1120 
1121  return data;
1122  }
1123 
1124  bool isValid() const { return OpaqueValue != nullptr; }
1125  void clear() { OpaqueValue = nullptr; }
1126 
1127  void unbind(CodeGenFunction &CGF) {
1128  assert(OpaqueValue && "no data to unbind!");
1129 
1130  if (BoundLValue) {
1131  CGF.OpaqueLValues.erase(OpaqueValue);
1132  } else {
1133  CGF.OpaqueRValues.erase(OpaqueValue);
1134  CGF.unprotectFromPeepholes(Protection);
1135  }
1136  }
1137  };
1138 
1139  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1141  CodeGenFunction &CGF;
1143 
1144  public:
1145  static bool shouldBindAsLValue(const Expr *expr) {
1146  return OpaqueValueMappingData::shouldBindAsLValue(expr);
1147  }
1148 
1149  /// Build the opaque value mapping for the given conditional
1150  /// operator if it's the GNU ?: extension. This is a common
1151  /// enough pattern that the convenience operator is really
1152  /// helpful.
1153  ///
1154  OpaqueValueMapping(CodeGenFunction &CGF,
1155  const AbstractConditionalOperator *op) : CGF(CGF) {
1156  if (isa<ConditionalOperator>(op))
1157  // Leave Data empty.
1158  return;
1159 
1160  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1161  Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1162  e->getCommon());
1163  }
1164 
1165  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1166  /// expression is set to the expression the OVE represents.
1167  OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1168  : CGF(CGF) {
1169  if (OV) {
1170  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1171  "for OVE with no source expression");
1172  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1173  }
1174  }
1175 
1176  OpaqueValueMapping(CodeGenFunction &CGF,
1177  const OpaqueValueExpr *opaqueValue,
1178  LValue lvalue)
1179  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1180  }
1181 
1182  OpaqueValueMapping(CodeGenFunction &CGF,
1183  const OpaqueValueExpr *opaqueValue,
1184  RValue rvalue)
1185  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1186  }
1187 
1188  void pop() {
1189  Data.unbind(CGF);
1190  Data.clear();
1191  }
1192 
1194  if (Data.isValid()) Data.unbind(CGF);
1195  }
1196  };
1197 
1198 private:
1199  CGDebugInfo *DebugInfo;
1200  bool DisableDebugInfo = false;
1201 
1202  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1203  /// calling llvm.stacksave for multiple VLAs in the same scope.
1204  bool DidCallStackSave = false;
1205 
1206  /// IndirectBranch - The first time an indirect goto is seen we create a block
1207  /// with an indirect branch. Every time we see the address of a label taken,
1208  /// we add the label to the indirect goto. Every subsequent indirect goto is
1209  /// codegen'd as a jump to the IndirectBranch's basic block.
1210  llvm::IndirectBrInst *IndirectBranch = nullptr;
1211 
1212  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1213  /// decls.
1214  DeclMapTy LocalDeclMap;
1215 
1216  // Keep track of the cleanups for callee-destructed parameters pushed to the
1217  // cleanup stack so that they can be deactivated later.
1218  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1219  CalleeDestructedParamCleanups;
1220 
1221  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1222  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1223  /// parameter.
1224  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1225  SizeArguments;
1226 
1227  /// Track escaped local variables with auto storage. Used during SEH
1228  /// outlining to produce a call to llvm.localescape.
1229  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1230 
1231  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1232  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1233 
1234  // BreakContinueStack - This keeps track of where break and continue
1235  // statements should jump to.
1236  struct BreakContinue {
1237  BreakContinue(JumpDest Break, JumpDest Continue)
1238  : BreakBlock(Break), ContinueBlock(Continue) {}
1239 
1240  JumpDest BreakBlock;
1241  JumpDest ContinueBlock;
1242  };
1243  SmallVector<BreakContinue, 8> BreakContinueStack;
1244 
1245  /// Handles cancellation exit points in OpenMP-related constructs.
1246  class OpenMPCancelExitStack {
1247  /// Tracks cancellation exit point and join point for cancel-related exit
1248  /// and normal exit.
1249  struct CancelExit {
1250  CancelExit() = default;
1251  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1252  JumpDest ContBlock)
1253  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1255  /// true if the exit block has been emitted already by the special
1256  /// emitExit() call, false if the default codegen is used.
1257  bool HasBeenEmitted = false;
1258  JumpDest ExitBlock;
1259  JumpDest ContBlock;
1260  };
1261 
1263 
1264  public:
1265  OpenMPCancelExitStack() : Stack(1) {}
1266  ~OpenMPCancelExitStack() = default;
1267  /// Fetches the exit block for the current OpenMP construct.
1268  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1269  /// Emits exit block with special codegen procedure specific for the related
1270  /// OpenMP construct + emits code for normal construct cleanup.
1271  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1272  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1273  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1274  assert(CGF.getOMPCancelDestination(Kind).isValid());
1275  assert(CGF.HaveInsertPoint());
1276  assert(!Stack.back().HasBeenEmitted);
1277  auto IP = CGF.Builder.saveAndClearIP();
1278  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1279  CodeGen(CGF);
1280  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1281  CGF.Builder.restoreIP(IP);
1282  Stack.back().HasBeenEmitted = true;
1283  }
1284  CodeGen(CGF);
1285  }
1286  /// Enter the cancel supporting \a Kind construct.
1287  /// \param Kind OpenMP directive that supports cancel constructs.
1288  /// \param HasCancel true, if the construct has inner cancel directive,
1289  /// false otherwise.
1290  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1291  Stack.push_back({Kind,
1292  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1293  : JumpDest(),
1294  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1295  : JumpDest()});
1296  }
1297  /// Emits default exit point for the cancel construct (if the special one
1298  /// has not be used) + join point for cancel/normal exits.
1299  void exit(CodeGenFunction &CGF) {
1300  if (getExitBlock().isValid()) {
1301  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1302  bool HaveIP = CGF.HaveInsertPoint();
1303  if (!Stack.back().HasBeenEmitted) {
1304  if (HaveIP)
1305  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1306  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1307  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1308  }
1309  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1310  if (!HaveIP) {
1311  CGF.Builder.CreateUnreachable();
1312  CGF.Builder.ClearInsertionPoint();
1313  }
1314  }
1315  Stack.pop_back();
1316  }
1317  };
1318  OpenMPCancelExitStack OMPCancelStack;
1319 
1320  CodeGenPGO PGO;
1321 
1322  /// Calculate branch weights appropriate for PGO data
1323  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1324  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1325  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1326  uint64_t LoopCount);
1327 
1328 public:
1329  /// Increment the profiler's counter for the given statement by \p StepV.
1330  /// If \p StepV is null, the default increment is 1.
1331  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1333  PGO.emitCounterIncrement(Builder, S, StepV);
1334  PGO.setCurrentStmt(S);
1335  }
1336 
1337  /// Get the profiler's count for the given statement.
1338  uint64_t getProfileCount(const Stmt *S) {
1339  Optional<uint64_t> Count = PGO.getStmtCount(S);
1340  if (!Count.hasValue())
1341  return 0;
1342  return *Count;
1343  }
1344 
1345  /// Set the profiler's current count.
1346  void setCurrentProfileCount(uint64_t Count) {
1347  PGO.setCurrentRegionCount(Count);
1348  }
1349 
1350  /// Get the profiler's current count. This is generally the count for the most
1351  /// recently incremented counter.
1353  return PGO.getCurrentRegionCount();
1354  }
1355 
1356 private:
1357 
1358  /// SwitchInsn - This is nearest current switch instruction. It is null if
1359  /// current context is not in a switch.
1360  llvm::SwitchInst *SwitchInsn = nullptr;
1361  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1362  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1363 
1364  /// CaseRangeBlock - This block holds if condition check for last case
1365  /// statement range in current switch instruction.
1366  llvm::BasicBlock *CaseRangeBlock = nullptr;
1367 
1368  /// OpaqueLValues - Keeps track of the current set of opaque value
1369  /// expressions.
1370  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1371  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1372 
1373  // VLASizeMap - This keeps track of the associated size for each VLA type.
1374  // We track this by the size expression rather than the type itself because
1375  // in certain situations, like a const qualifier applied to an VLA typedef,
1376  // multiple VLA types can share the same size expression.
1377  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1378  // enter/leave scopes.
1379  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1380 
1381  /// A block containing a single 'unreachable' instruction. Created
1382  /// lazily by getUnreachableBlock().
1383  llvm::BasicBlock *UnreachableBlock = nullptr;
1384 
1385  /// Counts of the number return expressions in the function.
1386  unsigned NumReturnExprs = 0;
1387 
1388  /// Count the number of simple (constant) return expressions in the function.
1389  unsigned NumSimpleReturnExprs = 0;
1390 
1391  /// The last regular (non-return) debug location (breakpoint) in the function.
1392  SourceLocation LastStopPoint;
1393 
1394 public:
1395  /// A scope within which we are constructing the fields of an object which
1396  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1397  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1399  public:
1400  FieldConstructionScope(CodeGenFunction &CGF, Address This)
1401  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1402  CGF.CXXDefaultInitExprThis = This;
1403  }
1405  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1406  }
1407 
1408  private:
1409  CodeGenFunction &CGF;
1410  Address OldCXXDefaultInitExprThis;
1411  };
1412 
1413  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1414  /// is overridden to be the object under construction.
1416  public:
1417  CXXDefaultInitExprScope(CodeGenFunction &CGF)
1418  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1419  OldCXXThisAlignment(CGF.CXXThisAlignment) {
1420  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1421  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1422  }
1424  CGF.CXXThisValue = OldCXXThisValue;
1425  CGF.CXXThisAlignment = OldCXXThisAlignment;
1426  }
1427 
1428  public:
1429  CodeGenFunction &CGF;
1432  };
1433 
1434  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1435  /// current loop index is overridden.
1437  public:
1438  ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1439  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1440  CGF.ArrayInitIndex = Index;
1441  }
1443  CGF.ArrayInitIndex = OldArrayInitIndex;
1444  }
1445 
1446  private:
1447  CodeGenFunction &CGF;
1448  llvm::Value *OldArrayInitIndex;
1449  };
1450 
1452  public:
1454  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1455  OldCurCodeDecl(CGF.CurCodeDecl),
1456  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1457  OldCXXABIThisValue(CGF.CXXABIThisValue),
1458  OldCXXThisValue(CGF.CXXThisValue),
1459  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1460  OldCXXThisAlignment(CGF.CXXThisAlignment),
1461  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1462  OldCXXInheritedCtorInitExprArgs(
1463  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1464  CGF.CurGD = GD;
1465  CGF.CurFuncDecl = CGF.CurCodeDecl =
1466  cast<CXXConstructorDecl>(GD.getDecl());
1467  CGF.CXXABIThisDecl = nullptr;
1468  CGF.CXXABIThisValue = nullptr;
1469  CGF.CXXThisValue = nullptr;
1470  CGF.CXXABIThisAlignment = CharUnits();
1471  CGF.CXXThisAlignment = CharUnits();
1472  CGF.ReturnValue = Address::invalid();
1473  CGF.FnRetTy = QualType();
1474  CGF.CXXInheritedCtorInitExprArgs.clear();
1475  }
1477  CGF.CurGD = OldCurGD;
1478  CGF.CurFuncDecl = OldCurFuncDecl;
1479  CGF.CurCodeDecl = OldCurCodeDecl;
1480  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1481  CGF.CXXABIThisValue = OldCXXABIThisValue;
1482  CGF.CXXThisValue = OldCXXThisValue;
1483  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1484  CGF.CXXThisAlignment = OldCXXThisAlignment;
1485  CGF.ReturnValue = OldReturnValue;
1486  CGF.FnRetTy = OldFnRetTy;
1487  CGF.CXXInheritedCtorInitExprArgs =
1488  std::move(OldCXXInheritedCtorInitExprArgs);
1489  }
1490 
1491  private:
1492  CodeGenFunction &CGF;
1493  GlobalDecl OldCurGD;
1494  const Decl *OldCurFuncDecl;
1495  const Decl *OldCurCodeDecl;
1496  ImplicitParamDecl *OldCXXABIThisDecl;
1497  llvm::Value *OldCXXABIThisValue;
1498  llvm::Value *OldCXXThisValue;
1499  CharUnits OldCXXABIThisAlignment;
1500  CharUnits OldCXXThisAlignment;
1501  Address OldReturnValue;
1502  QualType OldFnRetTy;
1503  CallArgList OldCXXInheritedCtorInitExprArgs;
1504  };
1505 
1506 private:
1507  /// CXXThisDecl - When generating code for a C++ member function,
1508  /// this will hold the implicit 'this' declaration.
1509  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1510  llvm::Value *CXXABIThisValue = nullptr;
1511  llvm::Value *CXXThisValue = nullptr;
1512  CharUnits CXXABIThisAlignment;
1513  CharUnits CXXThisAlignment;
1514 
1515  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1516  /// this expression.
1517  Address CXXDefaultInitExprThis = Address::invalid();
1518 
1519  /// The current array initialization index when evaluating an
1520  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1521  llvm::Value *ArrayInitIndex = nullptr;
1522 
1523  /// The values of function arguments to use when evaluating
1524  /// CXXInheritedCtorInitExprs within this context.
1525  CallArgList CXXInheritedCtorInitExprArgs;
1526 
1527  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1528  /// destructor, this will hold the implicit argument (e.g. VTT).
1529  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1530  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1531 
1532  /// OutermostConditional - Points to the outermost active
1533  /// conditional control. This is used so that we know if a
1534  /// temporary should be destroyed conditionally.
1535  ConditionalEvaluation *OutermostConditional = nullptr;
1536 
1537  /// The current lexical scope.
1538  LexicalScope *CurLexicalScope = nullptr;
1539 
1540  /// The current source location that should be used for exception
1541  /// handling code.
1542  SourceLocation CurEHLocation;
1543 
1544  /// BlockByrefInfos - For each __block variable, contains
1545  /// information about the layout of the variable.
1546  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1547 
1548  /// Used by -fsanitize=nullability-return to determine whether the return
1549  /// value can be checked.
1550  llvm::Value *RetValNullabilityPrecondition = nullptr;
1551 
1552  /// Check if -fsanitize=nullability-return instrumentation is required for
1553  /// this function.
1554  bool requiresReturnValueNullabilityCheck() const {
1555  return RetValNullabilityPrecondition;
1556  }
1557 
1558  /// Used to store precise source locations for return statements by the
1559  /// runtime return value checks.
1560  Address ReturnLocation = Address::invalid();
1561 
1562  /// Check if the return value of this function requires sanitization.
1563  bool requiresReturnValueCheck() const {
1564  return requiresReturnValueNullabilityCheck() ||
1565  (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1566  CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1567  }
1568 
1569  llvm::BasicBlock *TerminateLandingPad = nullptr;
1570  llvm::BasicBlock *TerminateHandler = nullptr;
1571  llvm::BasicBlock *TrapBB = nullptr;
1572 
1573  /// Terminate funclets keyed by parent funclet pad.
1574  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1575 
1576  /// Largest vector width used in ths function. Will be used to create a
1577  /// function attribute.
1578  unsigned LargestVectorWidth = 0;
1579 
1580  /// True if we need emit the life-time markers.
1581  const bool ShouldEmitLifetimeMarkers;
1582 
1583  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1584  /// the function metadata.
1585  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1586  llvm::Function *Fn);
1587 
1588 public:
1589  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1590  ~CodeGenFunction();
1591 
1592  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1593  ASTContext &getContext() const { return CGM.getContext(); }
1595  if (DisableDebugInfo)
1596  return nullptr;
1597  return DebugInfo;
1598  }
1599  void disableDebugInfo() { DisableDebugInfo = true; }
1600  void enableDebugInfo() { DisableDebugInfo = false; }
1601 
1603  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1604  }
1605 
1606  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1607 
1608  /// Returns a pointer to the function's exception object and selector slot,
1609  /// which is assigned in every landing pad.
1610  Address getExceptionSlot();
1611  Address getEHSelectorSlot();
1612 
1613  /// Returns the contents of the function's exception object and selector
1614  /// slots.
1615  llvm::Value *getExceptionFromSlot();
1616  llvm::Value *getSelectorFromSlot();
1617 
1618  Address getNormalCleanupDestSlot();
1619 
1620  llvm::BasicBlock *getUnreachableBlock() {
1621  if (!UnreachableBlock) {
1622  UnreachableBlock = createBasicBlock("unreachable");
1623  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1624  }
1625  return UnreachableBlock;
1626  }
1627 
1628  llvm::BasicBlock *getInvokeDest() {
1629  if (!EHStack.requiresLandingPad()) return nullptr;
1630  return getInvokeDestImpl();
1631  }
1632 
1633  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1634 
1635  const TargetInfo &getTarget() const { return Target; }
1636  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1638  return CGM.getTargetCodeGenInfo();
1639  }
1640 
1641  //===--------------------------------------------------------------------===//
1642  // Cleanups
1643  //===--------------------------------------------------------------------===//
1644 
1645  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1646 
1647  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1648  Address arrayEndPointer,
1649  QualType elementType,
1650  CharUnits elementAlignment,
1651  Destroyer *destroyer);
1652  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1653  llvm::Value *arrayEnd,
1654  QualType elementType,
1655  CharUnits elementAlignment,
1656  Destroyer *destroyer);
1657 
1658  void pushDestroy(QualType::DestructionKind dtorKind,
1659  Address addr, QualType type);
1660  void pushEHDestroy(QualType::DestructionKind dtorKind,
1661  Address addr, QualType type);
1662  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1663  Destroyer *destroyer, bool useEHCleanupForArray);
1664  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1665  QualType type, Destroyer *destroyer,
1666  bool useEHCleanupForArray);
1667  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1668  llvm::Value *CompletePtr,
1669  QualType ElementType);
1670  void pushStackRestore(CleanupKind kind, Address SPMem);
1671  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1672  bool useEHCleanupForArray);
1673  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1674  Destroyer *destroyer,
1675  bool useEHCleanupForArray,
1676  const VarDecl *VD);
1677  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1678  QualType elementType, CharUnits elementAlign,
1679  Destroyer *destroyer,
1680  bool checkZeroLength, bool useEHCleanup);
1681 
1682  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1683 
1684  /// Determines whether an EH cleanup is required to destroy a type
1685  /// with the given destruction kind.
1687  switch (kind) {
1688  case QualType::DK_none:
1689  return false;
1690  case QualType::DK_cxx_destructor:
1691  case QualType::DK_objc_weak_lifetime:
1692  case QualType::DK_nontrivial_c_struct:
1693  return getLangOpts().Exceptions;
1694  case QualType::DK_objc_strong_lifetime:
1695  return getLangOpts().Exceptions &&
1696  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1697  }
1698  llvm_unreachable("bad destruction kind");
1699  }
1700 
1702  return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1703  }
1704 
1705  //===--------------------------------------------------------------------===//
1706  // Objective-C
1707  //===--------------------------------------------------------------------===//
1708 
1709  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1710 
1711  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1712 
1713  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1714  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1715  const ObjCPropertyImplDecl *PID);
1716  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1717  const ObjCPropertyImplDecl *propImpl,
1718  const ObjCMethodDecl *GetterMothodDecl,
1719  llvm::Constant *AtomicHelperFn);
1720 
1721  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1722  ObjCMethodDecl *MD, bool ctor);
1723 
1724  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1725  /// for the given property.
1726  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1727  const ObjCPropertyImplDecl *PID);
1728  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1729  const ObjCPropertyImplDecl *propImpl,
1730  llvm::Constant *AtomicHelperFn);
1731 
1732  //===--------------------------------------------------------------------===//
1733  // Block Bits
1734  //===--------------------------------------------------------------------===//
1735 
1736  /// Emit block literal.
1737  /// \return an LLVM value which is a pointer to a struct which contains
1738  /// information about the block, including the block invoke function, the
1739  /// captured variables, etc.
1740  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1741  static void destroyBlockInfos(CGBlockInfo *info);
1742 
1743  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1744  const CGBlockInfo &Info,
1745  const DeclMapTy &ldm,
1746  bool IsLambdaConversionToBlock,
1747  bool BuildGlobalBlock);
1748 
1749  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1750  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1751  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1752  const ObjCPropertyImplDecl *PID);
1753  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1754  const ObjCPropertyImplDecl *PID);
1755  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1756 
1757  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1758 
1759  class AutoVarEmission;
1760 
1761  void emitByrefStructureInit(const AutoVarEmission &emission);
1762 
1763  /// Enter a cleanup to destroy a __block variable. Note that this
1764  /// cleanup should be a no-op if the variable hasn't left the stack
1765  /// yet; if a cleanup is required for the variable itself, that needs
1766  /// to be done externally.
1767  ///
1768  /// \param Kind Cleanup kind.
1769  ///
1770  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
1771  /// structure that will be passed to _Block_object_dispose. When
1772  /// \p LoadBlockVarAddr is true, the address of the field of the block
1773  /// structure that holds the address of the __block structure.
1774  ///
1775  /// \param Flags The flag that will be passed to _Block_object_dispose.
1776  ///
1777  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
1778  /// \p Addr to get the address of the __block structure.
1779  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
1780  bool LoadBlockVarAddr);
1781 
1782  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1783  llvm::Value *ptr);
1784 
1785  Address LoadBlockStruct();
1786  Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1787 
1788  /// BuildBlockByrefAddress - Computes the location of the
1789  /// data in a variable which is declared as __block.
1790  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1791  bool followForward = true);
1792  Address emitBlockByrefAddress(Address baseAddr,
1793  const BlockByrefInfo &info,
1794  bool followForward,
1795  const llvm::Twine &name);
1796 
1797  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1798 
1799  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1800 
1801  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1802  const CGFunctionInfo &FnInfo);
1803  /// Emit code for the start of a function.
1804  /// \param Loc The location to be associated with the function.
1805  /// \param StartLoc The location of the function body.
1806  void StartFunction(GlobalDecl GD,
1807  QualType RetTy,
1808  llvm::Function *Fn,
1809  const CGFunctionInfo &FnInfo,
1810  const FunctionArgList &Args,
1812  SourceLocation StartLoc = SourceLocation());
1813 
1814  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1815 
1816  void EmitConstructorBody(FunctionArgList &Args);
1817  void EmitDestructorBody(FunctionArgList &Args);
1818  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1819  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1820  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1821 
1822  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1823  CallArgList &CallArgs);
1824  void EmitLambdaBlockInvokeBody();
1825  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1826  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1827  void EmitAsanPrologueOrEpilogue(bool Prologue);
1828 
1829  /// Emit the unified return block, trying to avoid its emission when
1830  /// possible.
1831  /// \return The debug location of the user written return statement if the
1832  /// return block is is avoided.
1833  llvm::DebugLoc EmitReturnBlock();
1834 
1835  /// FinishFunction - Complete IR generation of the current function. It is
1836  /// legal to call this function even if there is no current insertion point.
1837  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1838 
1839  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1840  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1841 
1842  void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk,
1843  bool IsUnprototyped);
1844 
1845  void FinishThunk();
1846 
1847  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1848  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1849  llvm::Value *Callee);
1850 
1851  /// Generate a thunk for the given method.
1852  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1853  GlobalDecl GD, const ThunkInfo &Thunk,
1854  bool IsUnprototyped);
1855 
1856  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1857  const CGFunctionInfo &FnInfo,
1858  GlobalDecl GD, const ThunkInfo &Thunk);
1859 
1860  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1861  FunctionArgList &Args);
1862 
1863  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1864 
1865  /// Struct with all information about dynamic [sub]class needed to set vptr.
1866  struct VPtr {
1871  };
1872 
1873  /// Initialize the vtable pointer of the given subobject.
1874  void InitializeVTablePointer(const VPtr &vptr);
1875 
1877 
1878  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1879  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1880 
1881  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1882  CharUnits OffsetFromNearestVBase,
1883  bool BaseIsNonVirtualPrimaryBase,
1884  const CXXRecordDecl *VTableClass,
1885  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1886 
1887  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1888 
1889  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1890  /// to by This.
1891  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1892  const CXXRecordDecl *VTableClass);
1893 
1902  };
1903 
1904  /// Derived is the presumed address of an object of type T after a
1905  /// cast. If T is a polymorphic class type, emit a check that the virtual
1906  /// table for Derived belongs to a class derived from T.
1907  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1908  bool MayBeNull, CFITypeCheckKind TCK,
1909  SourceLocation Loc);
1910 
1911  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1912  /// If vptr CFI is enabled, emit a check that VTable is valid.
1913  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1914  CFITypeCheckKind TCK, SourceLocation Loc);
1915 
1916  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1917  /// RD using llvm.type.test.
1918  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1919  CFITypeCheckKind TCK, SourceLocation Loc);
1920 
1921  /// If whole-program virtual table optimization is enabled, emit an assumption
1922  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1923  /// enabled, emit a check that VTable is a member of RD's type identifier.
1924  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1925  llvm::Value *VTable, SourceLocation Loc);
1926 
1927  /// Returns whether we should perform a type checked load when loading a
1928  /// virtual function for virtual calls to members of RD. This is generally
1929  /// true when both vcall CFI and whole-program-vtables are enabled.
1930  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1931 
1932  /// Emit a type checked load from the given vtable.
1933  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1934  uint64_t VTableByteOffset);
1935 
1936  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1937  /// given phase of destruction for a destructor. The end result
1938  /// should call destructors on members and base classes in reverse
1939  /// order of their construction.
1940  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1941 
1942  /// ShouldInstrumentFunction - Return true if the current function should be
1943  /// instrumented with __cyg_profile_func_* calls
1944  bool ShouldInstrumentFunction();
1945 
1946  /// ShouldXRayInstrument - Return true if the current function should be
1947  /// instrumented with XRay nop sleds.
1948  bool ShouldXRayInstrumentFunction() const;
1949 
1950  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1951  /// XRay custom event handling calls.
1952  bool AlwaysEmitXRayCustomEvents() const;
1953 
1954  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
1955  /// XRay typed event handling calls.
1956  bool AlwaysEmitXRayTypedEvents() const;
1957 
1958  /// Encode an address into a form suitable for use in a function prologue.
1959  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1960  llvm::Constant *Addr);
1961 
1962  /// Decode an address used in a function prologue, encoded by \c
1963  /// EncodeAddrForUseInPrologue.
1964  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1965  llvm::Value *EncodedAddr);
1966 
1967  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1968  /// arguments for the given function. This is also responsible for naming the
1969  /// LLVM function arguments.
1970  void EmitFunctionProlog(const CGFunctionInfo &FI,
1971  llvm::Function *Fn,
1972  const FunctionArgList &Args);
1973 
1974  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1975  /// given temporary.
1976  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1977  SourceLocation EndLoc);
1978 
1979  /// Emit a test that checks if the return value \p RV is nonnull.
1980  void EmitReturnValueCheck(llvm::Value *RV);
1981 
1982  /// EmitStartEHSpec - Emit the start of the exception spec.
1983  void EmitStartEHSpec(const Decl *D);
1984 
1985  /// EmitEndEHSpec - Emit the end of the exception spec.
1986  void EmitEndEHSpec(const Decl *D);
1987 
1988  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1989  llvm::BasicBlock *getTerminateLandingPad();
1990 
1991  /// getTerminateLandingPad - Return a cleanup funclet that just calls
1992  /// terminate.
1993  llvm::BasicBlock *getTerminateFunclet();
1994 
1995  /// getTerminateHandler - Return a handler (not a landing pad, just
1996  /// a catch handler) that just calls terminate. This is used when
1997  /// a terminate scope encloses a try.
1998  llvm::BasicBlock *getTerminateHandler();
1999 
2000  llvm::Type *ConvertTypeForMem(QualType T);
2001  llvm::Type *ConvertType(QualType T);
2002  llvm::Type *ConvertType(const TypeDecl *T) {
2003  return ConvertType(getContext().getTypeDeclType(T));
2004  }
2005 
2006  /// LoadObjCSelf - Load the value of self. This function is only valid while
2007  /// generating code for an Objective-C method.
2008  llvm::Value *LoadObjCSelf();
2009 
2010  /// TypeOfSelfObject - Return type of object that this self represents.
2011  QualType TypeOfSelfObject();
2012 
2013  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2014  static TypeEvaluationKind getEvaluationKind(QualType T);
2015 
2017  return getEvaluationKind(T) == TEK_Scalar;
2018  }
2019 
2021  return getEvaluationKind(T) == TEK_Aggregate;
2022  }
2023 
2024  /// createBasicBlock - Create an LLVM basic block.
2025  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2026  llvm::Function *parent = nullptr,
2027  llvm::BasicBlock *before = nullptr) {
2028  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2029  }
2030 
2031  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2032  /// label maps to.
2033  JumpDest getJumpDestForLabel(const LabelDecl *S);
2034 
2035  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2036  /// another basic block, simplify it. This assumes that no other code could
2037  /// potentially reference the basic block.
2038  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2039 
2040  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2041  /// adding a fall-through branch from the current insert block if
2042  /// necessary. It is legal to call this function even if there is no current
2043  /// insertion point.
2044  ///
2045  /// IsFinished - If true, indicates that the caller has finished emitting
2046  /// branches to the given block and does not expect to emit code into it. This
2047  /// means the block can be ignored if it is unreachable.
2048  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2049 
2050  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2051  /// near its uses, and leave the insertion point in it.
2052  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2053 
2054  /// EmitBranch - Emit a branch to the specified basic block from the current
2055  /// insert block, taking care to avoid creation of branches from dummy
2056  /// blocks. It is legal to call this function even if there is no current
2057  /// insertion point.
2058  ///
2059  /// This function clears the current insertion point. The caller should follow
2060  /// calls to this function with calls to Emit*Block prior to generation new
2061  /// code.
2062  void EmitBranch(llvm::BasicBlock *Block);
2063 
2064  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2065  /// indicates that the current code being emitted is unreachable.
2066  bool HaveInsertPoint() const {
2067  return Builder.GetInsertBlock() != nullptr;
2068  }
2069 
2070  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2071  /// emitted IR has a place to go. Note that by definition, if this function
2072  /// creates a block then that block is unreachable; callers may do better to
2073  /// detect when no insertion point is defined and simply skip IR generation.
2075  if (!HaveInsertPoint())
2076  EmitBlock(createBasicBlock());
2077  }
2078 
2079  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2080  /// specified stmt yet.
2081  void ErrorUnsupported(const Stmt *S, const char *Type);
2082 
2083  //===--------------------------------------------------------------------===//
2084  // Helpers
2085  //===--------------------------------------------------------------------===//
2086 
2089  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2090  CGM.getTBAAAccessInfo(T));
2091  }
2092 
2094  TBAAAccessInfo TBAAInfo) {
2095  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2096  }
2097 
2100  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2101  LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2102  }
2103 
2105  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2106  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2107  BaseInfo, TBAAInfo);
2108  }
2109 
2110  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2111  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2112  CharUnits getNaturalTypeAlignment(QualType T,
2113  LValueBaseInfo *BaseInfo = nullptr,
2114  TBAAAccessInfo *TBAAInfo = nullptr,
2115  bool forPointeeType = false);
2116  CharUnits getNaturalPointeeTypeAlignment(QualType T,
2117  LValueBaseInfo *BaseInfo = nullptr,
2118  TBAAAccessInfo *TBAAInfo = nullptr);
2119 
2120  Address EmitLoadOfReference(LValue RefLVal,
2121  LValueBaseInfo *PointeeBaseInfo = nullptr,
2122  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2123  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2125  AlignmentSource Source =
2127  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2128  CGM.getTBAAAccessInfo(RefTy));
2129  return EmitLoadOfReferenceLValue(RefLVal);
2130  }
2131 
2132  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2133  LValueBaseInfo *BaseInfo = nullptr,
2134  TBAAAccessInfo *TBAAInfo = nullptr);
2135  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2136 
2137  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2138  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2139  /// insertion point of the builder. The caller is responsible for setting an
2140  /// appropriate alignment on
2141  /// the alloca.
2142  ///
2143  /// \p ArraySize is the number of array elements to be allocated if it
2144  /// is not nullptr.
2145  ///
2146  /// LangAS::Default is the address space of pointers to local variables and
2147  /// temporaries, as exposed in the source language. In certain
2148  /// configurations, this is not the same as the alloca address space, and a
2149  /// cast is needed to lift the pointer from the alloca AS into
2150  /// LangAS::Default. This can happen when the target uses a restricted
2151  /// address space for the stack but the source language requires
2152  /// LangAS::Default to be a generic address space. The latter condition is
2153  /// common for most programming languages; OpenCL is an exception in that
2154  /// LangAS::Default is the private address space, which naturally maps
2155  /// to the stack.
2156  ///
2157  /// Because the address of a temporary is often exposed to the program in
2158  /// various ways, this function will perform the cast. The original alloca
2159  /// instruction is returned through \p Alloca if it is not nullptr.
2160  ///
2161  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2162  /// more efficient if the caller knows that the address will not be exposed.
2163  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2164  llvm::Value *ArraySize = nullptr);
2165  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2166  const Twine &Name = "tmp",
2167  llvm::Value *ArraySize = nullptr,
2168  Address *Alloca = nullptr);
2169  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2170  const Twine &Name = "tmp",
2171  llvm::Value *ArraySize = nullptr);
2172 
2173  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2174  /// default ABI alignment of the given LLVM type.
2175  ///
2176  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2177  /// any given AST type that happens to have been lowered to the
2178  /// given IR type. This should only ever be used for function-local,
2179  /// IR-driven manipulations like saving and restoring a value. Do
2180  /// not hand this address off to arbitrary IRGen routines, and especially
2181  /// do not pass it as an argument to a function that might expect a
2182  /// properly ABI-aligned value.
2183  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2184  const Twine &Name = "tmp");
2185 
2186  /// InitTempAlloca - Provide an initial value for the given alloca which
2187  /// will be observable at all locations in the function.
2188  ///
2189  /// The address should be something that was returned from one of
2190  /// the CreateTempAlloca or CreateMemTemp routines, and the
2191  /// initializer must be valid in the entry block (i.e. it must
2192  /// either be a constant or an argument value).
2193  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2194 
2195  /// CreateIRTemp - Create a temporary IR object of the given type, with
2196  /// appropriate alignment. This routine should only be used when an temporary
2197  /// value needs to be stored into an alloca (for example, to avoid explicit
2198  /// PHI construction), but the type is the IR type, not the type appropriate
2199  /// for storing in memory.
2200  ///
2201  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2202  /// ConvertType instead of ConvertTypeForMem.
2203  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2204 
2205  /// CreateMemTemp - Create a temporary memory object of the given type, with
2206  /// appropriate alignmen and cast it to the default address space. Returns
2207  /// the original alloca instruction by \p Alloca if it is not nullptr.
2208  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2209  Address *Alloca = nullptr);
2210  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2211  Address *Alloca = nullptr);
2212 
2213  /// CreateMemTemp - Create a temporary memory object of the given type, with
2214  /// appropriate alignmen without casting it to the default address space.
2215  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2216  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2217  const Twine &Name = "tmp");
2218 
2219  /// CreateAggTemp - Create a temporary memory object for the given
2220  /// aggregate type.
2221  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2222  return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2223  T.getQualifiers(),
2224  AggValueSlot::IsNotDestructed,
2225  AggValueSlot::DoesNotNeedGCBarriers,
2226  AggValueSlot::IsNotAliased,
2227  AggValueSlot::DoesNotOverlap);
2228  }
2229 
2230  /// Emit a cast to void* in the appropriate address space.
2231  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2232 
2233  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2234  /// expression and compare the result against zero, returning an Int1Ty value.
2235  llvm::Value *EvaluateExprAsBool(const Expr *E);
2236 
2237  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2238  void EmitIgnoredExpr(const Expr *E);
2239 
2240  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2241  /// any type. The result is returned as an RValue struct. If this is an
2242  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2243  /// the result should be returned.
2244  ///
2245  /// \param ignoreResult True if the resulting value isn't used.
2246  RValue EmitAnyExpr(const Expr *E,
2247  AggValueSlot aggSlot = AggValueSlot::ignored(),
2248  bool ignoreResult = false);
2249 
2250  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2251  // or the value of the expression, depending on how va_list is defined.
2252  Address EmitVAListRef(const Expr *E);
2253 
2254  /// Emit a "reference" to a __builtin_ms_va_list; this is
2255  /// always the value of the expression, because a __builtin_ms_va_list is a
2256  /// pointer to a char.
2257  Address EmitMSVAListRef(const Expr *E);
2258 
2259  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2260  /// always be accessible even if no aggregate location is provided.
2261  RValue EmitAnyExprToTemp(const Expr *E);
2262 
2263  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2264  /// arbitrary expression into the given memory location.
2265  void EmitAnyExprToMem(const Expr *E, Address Location,
2266  Qualifiers Quals, bool IsInitializer);
2267 
2268  void EmitAnyExprToExn(const Expr *E, Address Addr);
2269 
2270  /// EmitExprAsInit - Emits the code necessary to initialize a
2271  /// location in memory with the given initializer.
2272  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2273  bool capturedByInit);
2274 
2275  /// hasVolatileMember - returns true if aggregate type has a volatile
2276  /// member.
2278  if (const RecordType *RT = T->getAs<RecordType>()) {
2279  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2280  return RD->hasVolatileMember();
2281  }
2282  return false;
2283  }
2284 
2285  /// Determine whether a return value slot may overlap some other object.
2287  // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2288  // class subobjects. These cases may need to be revisited depending on the
2289  // resolution of the relevant core issue.
2290  return AggValueSlot::DoesNotOverlap;
2291  }
2292 
2293  /// Determine whether a field initialization may overlap some other object.
2295  // FIXME: These cases can result in overlap as a result of P0840R0's
2296  // [[no_unique_address]] attribute. We can still infer NoOverlap in the
2297  // presence of that attribute if the field is within the nvsize of its
2298  // containing class, because non-virtual subobjects are initialized in
2299  // address order.
2300  return AggValueSlot::DoesNotOverlap;
2301  }
2302 
2303  /// Determine whether a base class initialization may overlap some other
2304  /// object.
2305  AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD,
2306  const CXXRecordDecl *BaseRD,
2307  bool IsVirtual);
2308 
2309  /// Emit an aggregate assignment.
2310  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2311  bool IsVolatile = hasVolatileMember(EltTy);
2312  EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2313  }
2314 
2316  AggValueSlot::Overlap_t MayOverlap) {
2317  EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2318  }
2319 
2320  /// EmitAggregateCopy - Emit an aggregate copy.
2321  ///
2322  /// \param isVolatile \c true iff either the source or the destination is
2323  /// volatile.
2324  /// \param MayOverlap Whether the tail padding of the destination might be
2325  /// occupied by some other object. More efficient code can often be
2326  /// generated if not.
2327  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2328  AggValueSlot::Overlap_t MayOverlap,
2329  bool isVolatile = false);
2330 
2331  /// GetAddrOfLocalVar - Return the address of a local variable.
2333  auto it = LocalDeclMap.find(VD);
2334  assert(it != LocalDeclMap.end() &&
2335  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2336  return it->second;
2337  }
2338 
2339  /// Given an opaque value expression, return its LValue mapping if it exists,
2340  /// otherwise create one.
2341  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2342 
2343  /// Given an opaque value expression, return its RValue mapping if it exists,
2344  /// otherwise create one.
2345  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2346 
2347  /// Get the index of the current ArrayInitLoopExpr, if any.
2348  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2349 
2350  /// getAccessedFieldNo - Given an encoded value and a result number, return
2351  /// the input field number being accessed.
2352  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2353 
2354  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2355  llvm::BasicBlock *GetIndirectGotoBlock();
2356 
2357  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2358  static bool IsWrappedCXXThis(const Expr *E);
2359 
2360  /// EmitNullInitialization - Generate code to set a value of the given type to
2361  /// null, If the type contains data member pointers, they will be initialized
2362  /// to -1 in accordance with the Itanium C++ ABI.
2363  void EmitNullInitialization(Address DestPtr, QualType Ty);
2364 
2365  /// Emits a call to an LLVM variable-argument intrinsic, either
2366  /// \c llvm.va_start or \c llvm.va_end.
2367  /// \param ArgValue A reference to the \c va_list as emitted by either
2368  /// \c EmitVAListRef or \c EmitMSVAListRef.
2369  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2370  /// calls \c llvm.va_end.
2371  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2372 
2373  /// Generate code to get an argument from the passed in pointer
2374  /// and update it accordingly.
2375  /// \param VE The \c VAArgExpr for which to generate code.
2376  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2377  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2378  /// \returns A pointer to the argument.
2379  // FIXME: We should be able to get rid of this method and use the va_arg
2380  // instruction in LLVM instead once it works well enough.
2381  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2382 
2383  /// emitArrayLength - Compute the length of an array, even if it's a
2384  /// VLA, and drill down to the base element type.
2385  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2386  QualType &baseType,
2387  Address &addr);
2388 
2389  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2390  /// the given variably-modified type and store them in the VLASizeMap.
2391  ///
2392  /// This function can be called with a null (unreachable) insert point.
2393  void EmitVariablyModifiedType(QualType Ty);
2394 
2395  struct VlaSizePair {
2398 
2399  VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2400  };
2401 
2402  /// Return the number of elements for a single dimension
2403  /// for the given array type.
2404  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2405  VlaSizePair getVLAElements1D(QualType vla);
2406 
2407  /// Returns an LLVM value that corresponds to the size,
2408  /// in non-variably-sized elements, of a variable length array type,
2409  /// plus that largest non-variably-sized element type. Assumes that
2410  /// the type has already been emitted with EmitVariablyModifiedType.
2411  VlaSizePair getVLASize(const VariableArrayType *vla);
2412  VlaSizePair getVLASize(QualType vla);
2413 
2414  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2415  /// generating code for an C++ member function.
2417  assert(CXXThisValue && "no 'this' value for this function");
2418  return CXXThisValue;
2419  }
2420  Address LoadCXXThisAddress();
2421 
2422  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2423  /// virtual bases.
2424  // FIXME: Every place that calls LoadCXXVTT is something
2425  // that needs to be abstracted properly.
2427  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2428  return CXXStructorImplicitParamValue;
2429  }
2430 
2431  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2432  /// complete class to the given direct base.
2433  Address
2434  GetAddressOfDirectBaseInCompleteClass(Address Value,
2435  const CXXRecordDecl *Derived,
2436  const CXXRecordDecl *Base,
2437  bool BaseIsVirtual);
2438 
2439  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2440 
2441  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2442  /// load of 'this' and returns address of the base class.
2443  Address GetAddressOfBaseClass(Address Value,
2444  const CXXRecordDecl *Derived,
2447  bool NullCheckValue, SourceLocation Loc);
2448 
2449  Address GetAddressOfDerivedClass(Address Value,
2450  const CXXRecordDecl *Derived,
2453  bool NullCheckValue);
2454 
2455  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2456  /// base constructor/destructor with virtual bases.
2457  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2458  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2459  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2460  bool Delegating);
2461 
2462  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2463  CXXCtorType CtorType,
2464  const FunctionArgList &Args,
2465  SourceLocation Loc);
2466  // It's important not to confuse this and the previous function. Delegating
2467  // constructors are the C++0x feature. The constructor delegate optimization
2468  // is used to reduce duplication in the base and complete consturctors where
2469  // they are substantially the same.
2470  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2471  const FunctionArgList &Args);
2472 
2473  /// Emit a call to an inheriting constructor (that is, one that invokes a
2474  /// constructor inherited from a base class) by inlining its definition. This
2475  /// is necessary if the ABI does not support forwarding the arguments to the
2476  /// base class constructor (because they're variadic or similar).
2477  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2478  CXXCtorType CtorType,
2479  bool ForVirtualBase,
2480  bool Delegating,
2481  CallArgList &Args);
2482 
2483  /// Emit a call to a constructor inherited from a base class, passing the
2484  /// current constructor's arguments along unmodified (without even making
2485  /// a copy).
2486  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2487  bool ForVirtualBase, Address This,
2488  bool InheritedFromVBase,
2489  const CXXInheritedCtorInitExpr *E);
2490 
2491  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2492  bool ForVirtualBase, bool Delegating,
2493  Address This, const CXXConstructExpr *E,
2494  AggValueSlot::Overlap_t Overlap,
2495  bool NewPointerIsChecked);
2496 
2497  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2498  bool ForVirtualBase, bool Delegating,
2499  Address This, CallArgList &Args,
2500  AggValueSlot::Overlap_t Overlap,
2501  SourceLocation Loc,
2502  bool NewPointerIsChecked);
2503 
2504  /// Emit assumption load for all bases. Requires to be be called only on
2505  /// most-derived class and not under construction of the object.
2506  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2507 
2508  /// Emit assumption that vptr load == global vtable.
2509  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2510 
2511  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2512  Address This, Address Src,
2513  const CXXConstructExpr *E);
2514 
2515  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2516  const ArrayType *ArrayTy,
2517  Address ArrayPtr,
2518  const CXXConstructExpr *E,
2519  bool NewPointerIsChecked,
2520  bool ZeroInitialization = false);
2521 
2522  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2523  llvm::Value *NumElements,
2524  Address ArrayPtr,
2525  const CXXConstructExpr *E,
2526  bool NewPointerIsChecked,
2527  bool ZeroInitialization = false);
2528 
2529  static Destroyer destroyCXXObject;
2530 
2531  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2532  bool ForVirtualBase, bool Delegating,
2533  Address This);
2534 
2535  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2536  llvm::Type *ElementTy, Address NewPtr,
2537  llvm::Value *NumElements,
2538  llvm::Value *AllocSizeWithoutCookie);
2539 
2540  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2541  Address Ptr);
2542 
2543  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2544  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2545 
2546  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2547  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2548 
2549  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2550  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2551  CharUnits CookieSize = CharUnits());
2552 
2553  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2554  const CallExpr *TheCallExpr, bool IsDelete);
2555 
2556  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2557  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2558  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2559 
2560  /// Situations in which we might emit a check for the suitability of a
2561  /// pointer or glvalue.
2563  /// Checking the operand of a load. Must be suitably sized and aligned.
2565  /// Checking the destination of a store. Must be suitably sized and aligned.
2567  /// Checking the bound value in a reference binding. Must be suitably sized
2568  /// and aligned, but is not required to refer to an object (until the
2569  /// reference is used), per core issue 453.
2571  /// Checking the object expression in a non-static data member access. Must
2572  /// be an object within its lifetime.
2574  /// Checking the 'this' pointer for a call to a non-static member function.
2575  /// Must be an object within its lifetime.
2577  /// Checking the 'this' pointer for a constructor call.
2579  /// Checking the operand of a static_cast to a derived pointer type. Must be
2580  /// null or an object within its lifetime.
2582  /// Checking the operand of a static_cast to a derived reference type. Must
2583  /// be an object within its lifetime.
2585  /// Checking the operand of a cast to a base object. Must be suitably sized
2586  /// and aligned.
2588  /// Checking the operand of a cast to a virtual base object. Must be an
2589  /// object within its lifetime.
2591  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2593  /// Checking the operand of a dynamic_cast or a typeid expression. Must be
2594  /// null or an object within its lifetime.
2595  TCK_DynamicOperation
2596  };
2597 
2598  /// Determine whether the pointer type check \p TCK permits null pointers.
2599  static bool isNullPointerAllowed(TypeCheckKind TCK);
2600 
2601  /// Determine whether the pointer type check \p TCK requires a vptr check.
2602  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2603 
2604  /// Whether any type-checking sanitizers are enabled. If \c false,
2605  /// calls to EmitTypeCheck can be skipped.
2606  bool sanitizePerformTypeCheck() const;
2607 
2608  /// Emit a check that \p V is the address of storage of the
2609  /// appropriate size and alignment for an object of type \p Type.
2610  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2611  QualType Type, CharUnits Alignment = CharUnits::Zero(),
2612  SanitizerSet SkippedChecks = SanitizerSet());
2613 
2614  /// Emit a check that \p Base points into an array object, which
2615  /// we can access at index \p Index. \p Accessed should be \c false if we
2616  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2617  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2618  QualType IndexType, bool Accessed);
2619 
2620  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2621  bool isInc, bool isPre);
2622  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2623  bool isInc, bool isPre);
2624 
2625  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2626  llvm::Value *OffsetValue = nullptr) {
2627  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2628  OffsetValue);
2629  }
2630 
2631  /// Converts Location to a DebugLoc, if debug information is enabled.
2632  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2633 
2634 
2635  //===--------------------------------------------------------------------===//
2636  // Declaration Emission
2637  //===--------------------------------------------------------------------===//
2638 
2639  /// EmitDecl - Emit a declaration.
2640  ///
2641  /// This function can be called with a null (unreachable) insert point.
2642  void EmitDecl(const Decl &D);
2643 
2644  /// EmitVarDecl - Emit a local variable declaration.
2645  ///
2646  /// This function can be called with a null (unreachable) insert point.
2647  void EmitVarDecl(const VarDecl &D);
2648 
2649  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2650  bool capturedByInit);
2651 
2652  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2653  llvm::Value *Address);
2654 
2655  /// Determine whether the given initializer is trivial in the sense
2656  /// that it requires no code to be generated.
2657  bool isTrivialInitializer(const Expr *Init);
2658 
2659  /// EmitAutoVarDecl - Emit an auto variable declaration.
2660  ///
2661  /// This function can be called with a null (unreachable) insert point.
2662  void EmitAutoVarDecl(const VarDecl &D);
2663 
2665  friend class CodeGenFunction;
2666 
2667  const VarDecl *Variable;
2668 
2669  /// The address of the alloca for languages with explicit address space
2670  /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2671  /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2672  /// as a global constant.
2673  Address Addr;
2674 
2675  llvm::Value *NRVOFlag;
2676 
2677  /// True if the variable is a __block variable.
2678  bool IsByRef;
2679 
2680  /// True if the variable is of aggregate type and has a constant
2681  /// initializer.
2682  bool IsConstantAggregate;
2683 
2684  /// Non-null if we should use lifetime annotations.
2685  llvm::Value *SizeForLifetimeMarkers;
2686 
2687  /// Address with original alloca instruction. Invalid if the variable was
2688  /// emitted as a global constant.
2689  Address AllocaAddr;
2690 
2691  struct Invalid {};
2692  AutoVarEmission(Invalid)
2693  : Variable(nullptr), Addr(Address::invalid()),
2694  AllocaAddr(Address::invalid()) {}
2695 
2696  AutoVarEmission(const VarDecl &variable)
2697  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2698  IsByRef(false), IsConstantAggregate(false),
2699  SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2700 
2701  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2702 
2703  public:
2704  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2705 
2706  bool useLifetimeMarkers() const {
2707  return SizeForLifetimeMarkers != nullptr;
2708  }
2710  assert(useLifetimeMarkers());
2711  return SizeForLifetimeMarkers;
2712  }
2713 
2714  /// Returns the raw, allocated address, which is not necessarily
2715  /// the address of the object itself. It is casted to default
2716  /// address space for address space agnostic languages.
2718  return Addr;
2719  }
2720 
2721  /// Returns the address for the original alloca instruction.
2722  Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2723 
2724  /// Returns the address of the object within this declaration.
2725  /// Note that this does not chase the forwarding pointer for
2726  /// __block decls.
2727  Address getObjectAddress(CodeGenFunction &CGF) const {
2728  if (!IsByRef) return Addr;
2729 
2730  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2731  }
2732  };
2733  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2734  void EmitAutoVarInit(const AutoVarEmission &emission);
2735  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2736  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2737  QualType::DestructionKind dtorKind);
2738 
2739  /// Emits the alloca and debug information for the size expressions for each
2740  /// dimension of an array. It registers the association of its (1-dimensional)
2741  /// QualTypes and size expression's debug node, so that CGDebugInfo can
2742  /// reference this node when creating the DISubrange object to describe the
2743  /// array types.
2744  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2745  const VarDecl &D,
2746  bool EmitDebugInfo);
2747 
2748  void EmitStaticVarDecl(const VarDecl &D,
2749  llvm::GlobalValue::LinkageTypes Linkage);
2750 
2751  class ParamValue {
2752  llvm::Value *Value;
2753  unsigned Alignment;
2754  ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2755  public:
2757  return ParamValue(value, 0);
2758  }
2760  assert(!addr.getAlignment().isZero());
2761  return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2762  }
2763 
2764  bool isIndirect() const { return Alignment != 0; }
2765  llvm::Value *getAnyValue() const { return Value; }
2766 
2768  assert(!isIndirect());
2769  return Value;
2770  }
2771 
2773  assert(isIndirect());
2774  return Address(Value, CharUnits::fromQuantity(Alignment));
2775  }
2776  };
2777 
2778  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2779  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2780 
2781  /// protectFromPeepholes - Protect a value that we're intending to
2782  /// store to the side, but which will probably be used later, from
2783  /// aggressive peepholing optimizations that might delete it.
2784  ///
2785  /// Pass the result to unprotectFromPeepholes to declare that
2786  /// protection is no longer required.
2787  ///
2788  /// There's no particular reason why this shouldn't apply to
2789  /// l-values, it's just that no existing peepholes work on pointers.
2790  PeepholeProtection protectFromPeepholes(RValue rvalue);
2791  void unprotectFromPeepholes(PeepholeProtection protection);
2792 
2794  llvm::Value *OffsetValue = nullptr) {
2795  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2796  OffsetValue);
2797  }
2798 
2799  //===--------------------------------------------------------------------===//
2800  // Statement Emission
2801  //===--------------------------------------------------------------------===//
2802 
2803  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2804  void EmitStopPoint(const Stmt *S);
2805 
2806  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2807  /// this function even if there is no current insertion point.
2808  ///
2809  /// This function may clear the current insertion point; callers should use
2810  /// EnsureInsertPoint if they wish to subsequently generate code without first
2811  /// calling EmitBlock, EmitBranch, or EmitStmt.
2812  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2813 
2814  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2815  /// necessarily require an insertion point or debug information; typically
2816  /// because the statement amounts to a jump or a container of other
2817  /// statements.
2818  ///
2819  /// \return True if the statement was handled.
2820  bool EmitSimpleStmt(const Stmt *S);
2821 
2822  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2823  AggValueSlot AVS = AggValueSlot::ignored());
2824  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2825  bool GetLast = false,
2826  AggValueSlot AVS =
2827  AggValueSlot::ignored());
2828 
2829  /// EmitLabel - Emit the block for the given label. It is legal to call this
2830  /// function even if there is no current insertion point.
2831  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2832 
2833  void EmitLabelStmt(const LabelStmt &S);
2834  void EmitAttributedStmt(const AttributedStmt &S);
2835  void EmitGotoStmt(const GotoStmt &S);
2836  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2837  void EmitIfStmt(const IfStmt &S);
2838 
2839  void EmitWhileStmt(const WhileStmt &S,
2840  ArrayRef<const Attr *> Attrs = None);
2841  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2842  void EmitForStmt(const ForStmt &S,
2843  ArrayRef<const Attr *> Attrs = None);
2844  void EmitReturnStmt(const ReturnStmt &S);
2845  void EmitDeclStmt(const DeclStmt &S);
2846  void EmitBreakStmt(const BreakStmt &S);
2847  void EmitContinueStmt(const ContinueStmt &S);
2848  void EmitSwitchStmt(const SwitchStmt &S);
2849  void EmitDefaultStmt(const DefaultStmt &S);
2850  void EmitCaseStmt(const CaseStmt &S);
2851  void EmitCaseStmtRange(const CaseStmt &S);
2852  void EmitAsmStmt(const AsmStmt &S);
2853 
2854  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2855  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2856  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2857  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2858  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2859 
2860  void EmitCoroutineBody(const CoroutineBodyStmt &S);
2861  void EmitCoreturnStmt(const CoreturnStmt &S);
2862  RValue EmitCoawaitExpr(const CoawaitExpr &E,
2863  AggValueSlot aggSlot = AggValueSlot::ignored(),
2864  bool ignoreResult = false);
2865  LValue EmitCoawaitLValue(const CoawaitExpr *E);
2866  RValue EmitCoyieldExpr(const CoyieldExpr &E,
2867  AggValueSlot aggSlot = AggValueSlot::ignored(),
2868  bool ignoreResult = false);
2869  LValue EmitCoyieldLValue(const CoyieldExpr *E);
2870  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2871 
2872  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2873  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2874 
2875  void EmitCXXTryStmt(const CXXTryStmt &S);
2876  void EmitSEHTryStmt(const SEHTryStmt &S);
2877  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2878  void EnterSEHTryStmt(const SEHTryStmt &S);
2879  void ExitSEHTryStmt(const SEHTryStmt &S);
2880 
2881  void pushSEHCleanup(CleanupKind kind,
2882  llvm::Function *FinallyFunc);
2883  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2884  const Stmt *OutlinedStmt);
2885 
2886  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2887  const SEHExceptStmt &Except);
2888 
2889  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2890  const SEHFinallyStmt &Finally);
2891 
2892  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2893  llvm::Value *ParentFP,
2894  llvm::Value *EntryEBP);
2895  llvm::Value *EmitSEHExceptionCode();
2896  llvm::Value *EmitSEHExceptionInfo();
2897  llvm::Value *EmitSEHAbnormalTermination();
2898 
2899  /// Emit simple code for OpenMP directives in Simd-only mode.
2900  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2901 
2902  /// Scan the outlined statement for captures from the parent function. For
2903  /// each capture, mark the capture as escaped and emit a call to
2904  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2905  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2906  bool IsFilter);
2907 
2908  /// Recovers the address of a local in a parent function. ParentVar is the
2909  /// address of the variable used in the immediate parent function. It can
2910  /// either be an alloca or a call to llvm.localrecover if there are nested
2911  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2912  /// frame.
2913  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2914  Address ParentVar,
2915  llvm::Value *ParentFP);
2916 
2917  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2918  ArrayRef<const Attr *> Attrs = None);
2919 
2920  /// Controls insertion of cancellation exit blocks in worksharing constructs.
2922  CodeGenFunction &CGF;
2923 
2924  public:
2925  OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2926  bool HasCancel)
2927  : CGF(CGF) {
2928  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2929  }
2930  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2931  };
2932 
2933  /// Returns calculated size of the specified type.
2934  llvm::Value *getTypeSize(QualType Ty);
2935  LValue InitCapturedStruct(const CapturedStmt &S);
2936  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2937  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2938  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2939  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2940  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2941  SmallVectorImpl<llvm::Value *> &CapturedVars);
2942  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2943  SourceLocation Loc);
2944  /// Perform element by element copying of arrays with type \a
2945  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2946  /// generated by \a CopyGen.
2947  ///
2948  /// \param DestAddr Address of the destination array.
2949  /// \param SrcAddr Address of the source array.
2950  /// \param OriginalType Type of destination and source arrays.
2951  /// \param CopyGen Copying procedure that copies value of single array element
2952  /// to another single array element.
2953  void EmitOMPAggregateAssign(
2954  Address DestAddr, Address SrcAddr, QualType OriginalType,
2955  const llvm::function_ref<void(Address, Address)> CopyGen);
2956  /// Emit proper copying of data from one variable to another.
2957  ///
2958  /// \param OriginalType Original type of the copied variables.
2959  /// \param DestAddr Destination address.
2960  /// \param SrcAddr Source address.
2961  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2962  /// type of the base array element).
2963  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2964  /// the base array element).
2965  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2966  /// DestVD.
2967  void EmitOMPCopy(QualType OriginalType,
2968  Address DestAddr, Address SrcAddr,
2969  const VarDecl *DestVD, const VarDecl *SrcVD,
2970  const Expr *Copy);
2971  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2972  /// \a X = \a E \a BO \a E.
2973  ///
2974  /// \param X Value to be updated.
2975  /// \param E Update value.
2976  /// \param BO Binary operation for update operation.
2977  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2978  /// expression, false otherwise.
2979  /// \param AO Atomic ordering of the generated atomic instructions.
2980  /// \param CommonGen Code generator for complex expressions that cannot be
2981  /// expressed through atomicrmw instruction.
2982  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2983  /// generated, <false, RValue::get(nullptr)> otherwise.
2984  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2985  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2986  llvm::AtomicOrdering AO, SourceLocation Loc,
2987  const llvm::function_ref<RValue(RValue)> CommonGen);
2988  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2989  OMPPrivateScope &PrivateScope);
2990  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2991  OMPPrivateScope &PrivateScope);
2992  void EmitOMPUseDevicePtrClause(
2993  const OMPClause &C, OMPPrivateScope &PrivateScope,
2994  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2995  /// Emit code for copyin clause in \a D directive. The next code is
2996  /// generated at the start of outlined functions for directives:
2997  /// \code
2998  /// threadprivate_var1 = master_threadprivate_var1;
2999  /// operator=(threadprivate_var2, master_threadprivate_var2);
3000  /// ...
3001  /// __kmpc_barrier(&loc, global_tid);
3002  /// \endcode
3003  ///
3004  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3005  /// \returns true if at least one copyin variable is found, false otherwise.
3006  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3007  /// Emit initial code for lastprivate variables. If some variable is
3008  /// not also firstprivate, then the default initialization is used. Otherwise
3009  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3010  /// method.
3011  ///
3012  /// \param D Directive that may have 'lastprivate' directives.
3013  /// \param PrivateScope Private scope for capturing lastprivate variables for
3014  /// proper codegen in internal captured statement.
3015  ///
3016  /// \returns true if there is at least one lastprivate variable, false
3017  /// otherwise.
3018  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3019  OMPPrivateScope &PrivateScope);
3020  /// Emit final copying of lastprivate values to original variables at
3021  /// the end of the worksharing or simd directive.
3022  ///
3023  /// \param D Directive that has at least one 'lastprivate' directives.
3024  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3025  /// it is the last iteration of the loop code in associated directive, or to
3026  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3027  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3028  bool NoFinals,
3029  llvm::Value *IsLastIterCond = nullptr);
3030  /// Emit initial code for linear clauses.
3031  void EmitOMPLinearClause(const OMPLoopDirective &D,
3032  CodeGenFunction::OMPPrivateScope &PrivateScope);
3033  /// Emit final code for linear clauses.
3034  /// \param CondGen Optional conditional code for final part of codegen for
3035  /// linear clause.
3036  void EmitOMPLinearClauseFinal(
3037  const OMPLoopDirective &D,
3038  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3039  /// Emit initial code for reduction variables. Creates reduction copies
3040  /// and initializes them with the values according to OpenMP standard.
3041  ///
3042  /// \param D Directive (possibly) with the 'reduction' clause.
3043  /// \param PrivateScope Private scope for capturing reduction variables for
3044  /// proper codegen in internal captured statement.
3045  ///
3046  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3047  OMPPrivateScope &PrivateScope);
3048  /// Emit final update of reduction values to original variables at
3049  /// the end of the directive.
3050  ///
3051  /// \param D Directive that has at least one 'reduction' directives.
3052  /// \param ReductionKind The kind of reduction to perform.
3053  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3054  const OpenMPDirectiveKind ReductionKind);
3055  /// Emit initial code for linear variables. Creates private copies
3056  /// and initializes them with the values according to OpenMP standard.
3057  ///
3058  /// \param D Directive (possibly) with the 'linear' clause.
3059  /// \return true if at least one linear variable is found that should be
3060  /// initialized with the value of the original variable, false otherwise.
3061  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3062 
3063  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3064  llvm::Value * /*OutlinedFn*/,
3065  const OMPTaskDataTy & /*Data*/)>
3067  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3068  const OpenMPDirectiveKind CapturedRegion,
3069  const RegionCodeGenTy &BodyGen,
3070  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3072  Address BasePointersArray = Address::invalid();
3073  Address PointersArray = Address::invalid();
3074  Address SizesArray = Address::invalid();
3075  unsigned NumberOfTargetItems = 0;
3076  explicit OMPTargetDataInfo() = default;
3077  OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3078  Address SizesArray, unsigned NumberOfTargetItems)
3079  : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3080  SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3081  };
3082  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3083  const RegionCodeGenTy &BodyGen,
3084  OMPTargetDataInfo &InputInfo);
3085 
3086  void EmitOMPParallelDirective(const OMPParallelDirective &S);
3087  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3088  void EmitOMPForDirective(const OMPForDirective &S);
3089  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3090  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3091  void EmitOMPSectionDirective(const OMPSectionDirective &S);
3092  void EmitOMPSingleDirective(const OMPSingleDirective &S);
3093  void EmitOMPMasterDirective(const OMPMasterDirective &S);
3094  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3095  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3096  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3097  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3098  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3099  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3100  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3101  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3102  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3103  void EmitOMPFlushDirective(const OMPFlushDirective &S);
3104  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3105  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3106  void EmitOMPTargetDirective(const OMPTargetDirective &S);
3107  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3108  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3109  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3110  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3111  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3112  void
3113  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3114  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3115  void
3116  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3117  void EmitOMPCancelDirective(const OMPCancelDirective &S);
3118  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3119  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3120  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3121  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3122  void EmitOMPDistributeParallelForDirective(
3124  void EmitOMPDistributeParallelForSimdDirective(
3126  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3127  void EmitOMPTargetParallelForSimdDirective(
3129  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3130  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3131  void
3132  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3133  void EmitOMPTeamsDistributeParallelForSimdDirective(
3135  void EmitOMPTeamsDistributeParallelForDirective(
3137  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3138  void EmitOMPTargetTeamsDistributeDirective(
3140  void EmitOMPTargetTeamsDistributeParallelForDirective(
3142  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3144  void EmitOMPTargetTeamsDistributeSimdDirective(
3146 
3147  /// Emit device code for the target directive.
3148  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3149  StringRef ParentName,
3150  const OMPTargetDirective &S);
3151  static void
3152  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3153  const OMPTargetParallelDirective &S);
3154  /// Emit device code for the target parallel for directive.
3155  static void EmitOMPTargetParallelForDeviceFunction(
3156  CodeGenModule &CGM, StringRef ParentName,
3158  /// Emit device code for the target parallel for simd directive.
3159  static void EmitOMPTargetParallelForSimdDeviceFunction(
3160  CodeGenModule &CGM, StringRef ParentName,
3162  /// Emit device code for the target teams directive.
3163  static void
3164  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3165  const OMPTargetTeamsDirective &S);
3166  /// Emit device code for the target teams distribute directive.
3167  static void EmitOMPTargetTeamsDistributeDeviceFunction(
3168  CodeGenModule &CGM, StringRef ParentName,
3170  /// Emit device code for the target teams distribute simd directive.
3171  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3172  CodeGenModule &CGM, StringRef ParentName,
3174  /// Emit device code for the target simd directive.
3175  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3176  StringRef ParentName,
3177  const OMPTargetSimdDirective &S);
3178  /// Emit device code for the target teams distribute parallel for simd
3179  /// directive.
3180  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3181  CodeGenModule &CGM, StringRef ParentName,
3183 
3184  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3185  CodeGenModule &CGM, StringRef ParentName,
3187  /// Emit inner loop of the worksharing/simd construct.
3188  ///
3189  /// \param S Directive, for which the inner loop must be emitted.
3190  /// \param RequiresCleanup true, if directive has some associated private
3191  /// variables.
3192  /// \param LoopCond Bollean condition for loop continuation.
3193  /// \param IncExpr Increment expression for loop control variable.
3194  /// \param BodyGen Generator for the inner body of the inner loop.
3195  /// \param PostIncGen Genrator for post-increment code (required for ordered
3196  /// loop directvies).
3197  void EmitOMPInnerLoop(
3198  const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3199  const Expr *IncExpr,
3200  const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3201  const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3202 
3203  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3204  /// Emit initial code for loop counters of loop-based directives.
3205  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3206  OMPPrivateScope &LoopScope);
3207 
3208  /// Helper for the OpenMP loop directives.
3209  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3210 
3211  /// Emit code for the worksharing loop-based directive.
3212  /// \return true, if this construct has any lastprivate clause, false -
3213  /// otherwise.
3214  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3215  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3216  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3217 
3218  /// Emit code for the distribute loop-based directive.
3219  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3220  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3221 
3222  /// Helpers for the OpenMP loop directives.
3223  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3224  void EmitOMPSimdFinal(
3225  const OMPLoopDirective &D,
3226  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3227 
3228  /// Emits the lvalue for the expression with possibly captured variable.
3229  LValue EmitOMPSharedLValue(const Expr *E);
3230 
3231 private:
3232  /// Helpers for blocks.
3233  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3234 
3235  /// struct with the values to be passed to the OpenMP loop-related functions
3236  struct OMPLoopArguments {
3237  /// loop lower bound
3238  Address LB = Address::invalid();
3239  /// loop upper bound
3240  Address UB = Address::invalid();
3241  /// loop stride
3242  Address ST = Address::invalid();
3243  /// isLastIteration argument for runtime functions
3244  Address IL = Address::invalid();
3245  /// Chunk value generated by sema
3246  llvm::Value *Chunk = nullptr;
3247  /// EnsureUpperBound
3248  Expr *EUB = nullptr;
3249  /// IncrementExpression
3250  Expr *IncExpr = nullptr;
3251  /// Loop initialization
3252  Expr *Init = nullptr;
3253  /// Loop exit condition
3254  Expr *Cond = nullptr;
3255  /// Update of LB after a whole chunk has been executed
3256  Expr *NextLB = nullptr;
3257  /// Update of UB after a whole chunk has been executed
3258  Expr *NextUB = nullptr;
3259  OMPLoopArguments() = default;
3260  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3261  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3262  Expr *IncExpr = nullptr, Expr *Init = nullptr,
3263  Expr *Cond = nullptr, Expr *NextLB = nullptr,
3264  Expr *NextUB = nullptr)
3265  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3266  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3267  NextUB(NextUB) {}
3268  };
3269  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3270  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3271  const OMPLoopArguments &LoopArgs,
3272  const CodeGenLoopTy &CodeGenLoop,
3273  const CodeGenOrderedTy &CodeGenOrdered);
3274  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3275  bool IsMonotonic, const OMPLoopDirective &S,
3276  OMPPrivateScope &LoopScope, bool Ordered,
3277  const OMPLoopArguments &LoopArgs,
3278  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3279  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3280  const OMPLoopDirective &S,
3281  OMPPrivateScope &LoopScope,
3282  const OMPLoopArguments &LoopArgs,
3283  const CodeGenLoopTy &CodeGenLoopContent);
3284  /// Emit code for sections directive.
3285  void EmitSections(const OMPExecutableDirective &S);
3286 
3287 public:
3288 
3289  //===--------------------------------------------------------------------===//
3290  // LValue Expression Emission
3291  //===--------------------------------------------------------------------===//
3292 
3293  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3294  RValue GetUndefRValue(QualType Ty);
3295 
3296  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3297  /// and issue an ErrorUnsupported style diagnostic (using the
3298  /// provided Name).
3299  RValue EmitUnsupportedRValue(const Expr *E,
3300  const char *Name);
3301 
3302  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3303  /// an ErrorUnsupported style diagnostic (using the provided Name).
3304  LValue EmitUnsupportedLValue(const Expr *E,
3305  const char *Name);
3306 
3307  /// EmitLValue - Emit code to compute a designator that specifies the location
3308  /// of the expression.
3309  ///
3310  /// This can return one of two things: a simple address or a bitfield
3311  /// reference. In either case, the LLVM Value* in the LValue structure is
3312  /// guaranteed to be an LLVM pointer type.
3313  ///
3314  /// If this returns a bitfield reference, nothing about the pointee type of
3315  /// the LLVM value is known: For example, it may not be a pointer to an
3316  /// integer.
3317  ///
3318  /// If this returns a normal address, and if the lvalue's C type is fixed
3319  /// size, this method guarantees that the returned pointer type will point to
3320  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3321  /// variable length type, this is not possible.
3322  ///
3323  LValue EmitLValue(const Expr *E);
3324 
3325  /// Same as EmitLValue but additionally we generate checking code to
3326  /// guard against undefined behavior. This is only suitable when we know
3327  /// that the address will be used to access the object.
3328  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3329 
3330  RValue convertTempToRValue(Address addr, QualType type,
3331  SourceLocation Loc);
3332 
3333  void EmitAtomicInit(Expr *E, LValue lvalue);
3334 
3335  bool LValueIsSuitableForInlineAtomic(LValue Src);
3336 
3337  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3338  AggValueSlot Slot = AggValueSlot::ignored());
3339 
3340  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3341  llvm::AtomicOrdering AO, bool IsVolatile = false,
3342  AggValueSlot slot = AggValueSlot::ignored());
3343 
3344  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3345 
3346  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3347  bool IsVolatile, bool isInit);
3348 
3349  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3350  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3351  llvm::AtomicOrdering Success =
3352  llvm::AtomicOrdering::SequentiallyConsistent,
3353  llvm::AtomicOrdering Failure =
3354  llvm::AtomicOrdering::SequentiallyConsistent,
3355  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3356 
3357  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3358  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3359  bool IsVolatile);
3360 
3361  /// EmitToMemory - Change a scalar value from its value
3362  /// representation to its in-memory representation.
3363  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3364 
3365  /// EmitFromMemory - Change a scalar value from its memory
3366  /// representation to its value representation.
3367  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3368 
3369  /// Check if the scalar \p Value is within the valid range for the given
3370  /// type \p Ty.
3371  ///
3372  /// Returns true if a check is needed (even if the range is unknown).
3373  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3374  SourceLocation Loc);
3375 
3376  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3377  /// care to appropriately convert from the memory representation to
3378  /// the LLVM value representation.
3379  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3380  SourceLocation Loc,
3382  bool isNontemporal = false) {
3383  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3384  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3385  }
3386 
3387  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3388  SourceLocation Loc, LValueBaseInfo BaseInfo,
3389  TBAAAccessInfo TBAAInfo,
3390  bool isNontemporal = false);
3391 
3392  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3393  /// care to appropriately convert from the memory representation to
3394  /// the LLVM value representation. The l-value must be a simple
3395  /// l-value.
3396  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3397 
3398  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3399  /// care to appropriately convert from the memory representation to
3400  /// the LLVM value representation.
3402  bool Volatile, QualType Ty,
3404  bool isInit = false, bool isNontemporal = false) {
3405  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3406  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3407  }
3408 
3409  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3410  bool Volatile, QualType Ty,
3411  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3412  bool isInit = false, bool isNontemporal = false);
3413 
3414  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3415  /// care to appropriately convert from the memory representation to
3416  /// the LLVM value representation. The l-value must be a simple
3417  /// l-value. The isInit flag indicates whether this is an initialization.
3418  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3419  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3420 
3421  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3422  /// this method emits the address of the lvalue, then loads the result as an
3423  /// rvalue, returning the rvalue.
3424  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3425  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3426  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3427  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3428 
3429  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3430  /// lvalue, where both are guaranteed to the have the same type, and that type
3431  /// is 'Ty'.
3432  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3433  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3434  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3435 
3436  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3437  /// as EmitStoreThroughLValue.
3438  ///
3439  /// \param Result [out] - If non-null, this will be set to a Value* for the
3440  /// bit-field contents after the store, appropriate for use as the result of
3441  /// an assignment to the bit-field.
3442  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3443  llvm::Value **Result=nullptr);
3444 
3445  /// Emit an l-value for an assignment (simple or compound) of complex type.
3446  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3447  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3448  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3449  llvm::Value *&Result);
3450 
3451  // Note: only available for agg return types
3452  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3453  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3454  // Note: only available for agg return types
3455  LValue EmitCallExprLValue(const CallExpr *E);
3456  // Note: only available for agg return types
3457  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3458  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3459  LValue EmitStringLiteralLValue(const StringLiteral *E);
3460  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3461  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3462  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3463  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3464  bool Accessed = false);
3465  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3466  bool IsLowerBound = true);
3467  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3468  LValue EmitMemberExpr(const MemberExpr *E);
3469  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3470  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3471  LValue EmitInitListLValue(const InitListExpr *E);
3472  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3473  LValue EmitCastLValue(const CastExpr *E);
3474  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3475  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3476 
3477  Address EmitExtVectorElementLValue(LValue V);
3478 
3479  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3480 
3481  Address EmitArrayToPointerDecay(const Expr *Array,
3482  LValueBaseInfo *BaseInfo = nullptr,
3483  TBAAAccessInfo *TBAAInfo = nullptr);
3484 
3486  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3487  ConstantEmission(llvm::Constant *C, bool isReference)
3488  : ValueAndIsReference(C, isReference) {}
3489  public:
3491  static ConstantEmission forReference(llvm::Constant *C) {
3492  return ConstantEmission(C, true);
3493  }
3494  static ConstantEmission forValue(llvm::Constant *C) {
3495  return ConstantEmission(C, false);
3496  }
3497 
3498  explicit operator bool() const {
3499  return ValueAndIsReference.getOpaqueValue() != nullptr;
3500  }
3501 
3502  bool isReference() const { return ValueAndIsReference.getInt(); }
3503  LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3504  assert(isReference());
3505  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3506  refExpr->getType());
3507  }
3508 
3509  llvm::Constant *getValue() const {
3510  assert(!isReference());
3511  return ValueAndIsReference.getPointer();
3512  }
3513  };
3514 
3515  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3516  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3517 
3518  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3519  AggValueSlot slot = AggValueSlot::ignored());
3520  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3521 
3522  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3523  const ObjCIvarDecl *Ivar);
3524  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3525  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3526 
3527  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3528  /// if the Field is a reference, this will return the address of the reference
3529  /// and not the address of the value stored in the reference.
3530  LValue EmitLValueForFieldInitialization(LValue Base,
3531  const FieldDecl* Field);
3532 
3533  LValue EmitLValueForIvar(QualType ObjectTy,
3534  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3535  unsigned CVRQualifiers);
3536 
3537  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3538  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3539  LValue EmitLambdaLValue(const LambdaExpr *E);
3540  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3541  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3542 
3543  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3544  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3545  LValue EmitStmtExprLValue(const StmtExpr *E);
3546  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3547  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3548  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3549 
3550  //===--------------------------------------------------------------------===//
3551  // Scalar Expression Emission
3552  //===--------------------------------------------------------------------===//
3553 
3554  /// EmitCall - Generate a call of the given function, expecting the given
3555  /// result type, and using the given argument list which specifies both the
3556  /// LLVM arguments and the types they were derived from.
3557  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3558  ReturnValueSlot ReturnValue, const CallArgList &Args,
3559  llvm::Instruction **callOrInvoke, SourceLocation Loc);
3560  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3561  ReturnValueSlot ReturnValue, const CallArgList &Args,
3562  llvm::Instruction **callOrInvoke = nullptr) {
3563  return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3564  SourceLocation());
3565  }
3566  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3567  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3568  RValue EmitCallExpr(const CallExpr *E,
3569  ReturnValueSlot ReturnValue = ReturnValueSlot());
3570  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3571  CGCallee EmitCallee(const Expr *E);
3572 
3573  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3574 
3575  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3576  const Twine &name = "");
3577  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3579  const Twine &name = "");
3580  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3581  const Twine &name = "");
3582  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3584  const Twine &name = "");
3585 
3587  getBundlesForFunclet(llvm::Value *Callee);
3588 
3589  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3591  const Twine &Name = "");
3592  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3594  const Twine &name = "");
3595  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3596  const Twine &name = "");
3597  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3598  ArrayRef<llvm::Value*> args);
3599 
3601  NestedNameSpecifier *Qual,
3602  llvm::Type *Ty);
3603 
3604  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3605  CXXDtorType Type,
3606  const CXXRecordDecl *RD);
3607 
3608  // These functions emit calls to the special functions of non-trivial C
3609  // structs.
3610  void defaultInitNonTrivialCStructVar(LValue Dst);
3611  void callCStructDefaultConstructor(LValue Dst);
3612  void callCStructDestructor(LValue Dst);
3613  void callCStructCopyConstructor(LValue Dst, LValue Src);
3614  void callCStructMoveConstructor(LValue Dst, LValue Src);
3615  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3616  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3617 
3618  RValue
3619  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3620  const CGCallee &Callee,
3621  ReturnValueSlot ReturnValue, llvm::Value *This,
3622  llvm::Value *ImplicitParam,
3623  QualType ImplicitParamTy, const CallExpr *E,
3624  CallArgList *RtlArgs);
3625  RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3626  const CGCallee &Callee,
3627  llvm::Value *This, llvm::Value *ImplicitParam,
3628  QualType ImplicitParamTy, const CallExpr *E,
3629  StructorType Type);
3630  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3631  ReturnValueSlot ReturnValue);
3632  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3633  const CXXMethodDecl *MD,
3634  ReturnValueSlot ReturnValue,
3635  bool HasQualifier,
3636  NestedNameSpecifier *Qualifier,
3637  bool IsArrow, const Expr *Base);
3638  // Compute the object pointer.
3639  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3640  llvm::Value *memberPtr,
3641  const MemberPointerType *memberPtrType,
3642  LValueBaseInfo *BaseInfo = nullptr,
3643  TBAAAccessInfo *TBAAInfo = nullptr);
3644  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3645  ReturnValueSlot ReturnValue);
3646 
3647  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3648  const CXXMethodDecl *MD,
3649  ReturnValueSlot ReturnValue);
3650  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3651 
3652  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3653  ReturnValueSlot ReturnValue);
3654 
3655  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3656  ReturnValueSlot ReturnValue);
3657 
3658  RValue EmitBuiltinExpr(const FunctionDecl *FD,
3659  unsigned BuiltinID, const CallExpr *E,
3660  ReturnValueSlot ReturnValue);
3661 
3662  /// Emit IR for __builtin_os_log_format.
3663  RValue emitBuiltinOSLogFormat(const CallExpr &E);
3664 
3665  llvm::Function *generateBuiltinOSLogHelperFunction(
3666  const analyze_os_log::OSLogBufferLayout &Layout,
3667  CharUnits BufferAlignment);
3668 
3669  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3670 
3671  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3672  /// is unhandled by the current target.
3673  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3674 
3675  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3676  const llvm::CmpInst::Predicate Fp,
3677  const llvm::CmpInst::Predicate Ip,
3678  const llvm::Twine &Name = "");
3679  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3680  llvm::Triple::ArchType Arch);
3681 
3682  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3683  unsigned LLVMIntrinsic,
3684  unsigned AltLLVMIntrinsic,
3685  const char *NameHint,
3686  unsigned Modifier,
3687  const CallExpr *E,
3689  Address PtrOp0, Address PtrOp1,
3690  llvm::Triple::ArchType Arch);
3691 
3692  llvm::Value *EmitISOVolatileLoad(const CallExpr *E);
3693  llvm::Value *EmitISOVolatileStore(const CallExpr *E);
3694 
3695  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3696  unsigned Modifier, llvm::Type *ArgTy,
3697  const CallExpr *E);
3698  llvm::Value *EmitNeonCall(llvm::Function *F,
3700  const char *name,
3701  unsigned shift = 0, bool rightshift = false);
3702  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3703  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3704  bool negateForRightShift);
3705  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3706  llvm::Type *Ty, bool usgn, const char *name);
3707  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3708  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3709  llvm::Triple::ArchType Arch);
3710 
3711  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3712  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3713  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3714  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3715  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3716  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3717  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3718  const CallExpr *E);
3719  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3720 
3721 private:
3722  enum class MSVCIntrin;
3723 
3724 public:
3725  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3726 
3727  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3728 
3729  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3730  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3731  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3732  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3733  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3734  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3735  const ObjCMethodDecl *MethodWithObjects);
3736  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3737  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3738  ReturnValueSlot Return = ReturnValueSlot());
3739 
3740  /// Retrieves the default cleanup kind for an ARC cleanup.
3741  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3743  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3745  }
3746 
3747  // ARC primitives.
3748  void EmitARCInitWeak(Address addr, llvm::Value *value);
3749  void EmitARCDestroyWeak(Address addr);
3750  llvm::Value *EmitARCLoadWeak(Address addr);
3751  llvm::Value *EmitARCLoadWeakRetained(Address addr);
3752  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3753  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3754  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3755  void EmitARCCopyWeak(Address dst, Address src);
3756  void EmitARCMoveWeak(Address dst, Address src);
3757  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3758  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3759  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3760  bool resultIgnored);
3761  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3762  bool resultIgnored);
3763  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3764  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3765  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3766  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3767  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3768  llvm::Value *EmitARCAutorelease(llvm::Value *value);
3769  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3770  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3771  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3772  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3773 
3774  std::pair<LValue,llvm::Value*>
3775  EmitARCStoreAutoreleasing(const BinaryOperator *e);
3776  std::pair<LValue,llvm::Value*>
3777  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3778  std::pair<LValue,llvm::Value*>
3779  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3780 
3781  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3782  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3783  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3784 
3785  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3786  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3787  bool allowUnsafeClaim);
3788  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3789  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3790  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3791 
3792  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3793 
3794  static Destroyer destroyARCStrongImprecise;
3795  static Destroyer destroyARCStrongPrecise;
3796  static Destroyer destroyARCWeak;
3797  static Destroyer emitARCIntrinsicUse;
3798  static Destroyer destroyNonTrivialCStruct;
3799 
3800  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3801  llvm::Value *EmitObjCAutoreleasePoolPush();
3802  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3803  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3804  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3805 
3806  /// Emits a reference binding to the passed in expression.
3807  RValue EmitReferenceBindingToExpr(const Expr *E);
3808 
3809  //===--------------------------------------------------------------------===//
3810  // Expression Emission
3811  //===--------------------------------------------------------------------===//
3812 
3813  // Expressions are broken into three classes: scalar, complex, aggregate.
3814 
3815  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3816  /// scalar type, returning the result.
3817  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3818 
3819  /// Emit a conversion from the specified type to the specified destination
3820  /// type, both of which are LLVM scalar types.
3821  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3822  QualType DstTy, SourceLocation Loc);
3823 
3824  /// Emit a conversion from the specified complex type to the specified
3825  /// destination type, where the destination type is an LLVM scalar type.
3826  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3827  QualType DstTy,
3828  SourceLocation Loc);
3829 
3830  /// EmitAggExpr - Emit the computation of the specified expression
3831  /// of aggregate type. The result is computed into the given slot,
3832  /// which may be null to indicate that the value is not needed.
3833  void EmitAggExpr(const Expr *E, AggValueSlot AS);
3834 
3835  /// EmitAggExprToLValue - Emit the computation of the specified expression of
3836  /// aggregate type into a temporary LValue.
3837  LValue EmitAggExprToLValue(const Expr *E);
3838 
3839  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3840  /// make sure it survives garbage collection until this point.
3841  void EmitExtendGCLifetime(llvm::Value *object);
3842 
3843  /// EmitComplexExpr - Emit the computation of the specified expression of
3844  /// complex type, returning the result.
3845  ComplexPairTy EmitComplexExpr(const Expr *E,
3846  bool IgnoreReal = false,
3847  bool IgnoreImag = false);
3848 
3849  /// EmitComplexExprIntoLValue - Emit the given expression of complex
3850  /// type and place its result into the specified l-value.
3851  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3852 
3853  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3854  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3855 
3856  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3857  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3858 
3859  Address emitAddrOfRealComponent(Address complex, QualType complexType);
3860  Address emitAddrOfImagComponent(Address complex, QualType complexType);
3861 
3862  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3863  /// global variable that has already been created for it. If the initializer
3864  /// has a different type than GV does, this may free GV and return a different
3865  /// one. Otherwise it just returns GV.
3866  llvm::GlobalVariable *
3867  AddInitializerToStaticVarDecl(const VarDecl &D,
3868  llvm::GlobalVariable *GV);
3869 
3870 
3871  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3872  /// variable with global storage.
3873  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3874  bool PerformInit);
3875 
3876  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3877  llvm::Constant *Addr);
3878 
3879  /// Call atexit() with a function that passes the given argument to
3880  /// the given function.
3881  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3882  llvm::Constant *addr);
3883 
3884  /// Call atexit() with function dtorStub.
3885  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3886 
3887  /// Emit code in this function to perform a guarded variable
3888  /// initialization. Guarded initializations are used when it's not
3889  /// possible to prove that an initialization will be done exactly
3890  /// once, e.g. with a static local variable or a static data member
3891  /// of a class template.
3892  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3893  bool PerformInit);
3894 
3895  enum class GuardKind { VariableGuard, TlsGuard };
3896 
3897  /// Emit a branch to select whether or not to perform guarded initialization.
3898  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3899  llvm::BasicBlock *InitBlock,
3900  llvm::BasicBlock *NoInitBlock,
3901  GuardKind Kind, const VarDecl *D);
3902 
3903  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3904  /// variables.
3905  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3906  ArrayRef<llvm::Function *> CXXThreadLocals,
3907  Address Guard = Address::invalid());
3908 
3909  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3910  /// variables.
3911  void GenerateCXXGlobalDtorsFunc(
3912  llvm::Function *Fn,
3913  const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3914  &DtorsAndObjects);
3915 
3916  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3917  const VarDecl *D,
3918  llvm::GlobalVariable *Addr,
3919  bool PerformInit);
3920 
3921  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3922 
3923  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3924 
3926  if (E->getNumObjects() == 0) return;
3927  enterNonTrivialFullExpression(E);
3928  }
3929  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3930 
3931  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3932 
3933  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3934 
3935  RValue EmitAtomicExpr(AtomicExpr *E);
3936 
3937  //===--------------------------------------------------------------------===//
3938  // Annotations Emission
3939  //===--------------------------------------------------------------------===//
3940 
3941  /// Emit an annotation call (intrinsic or builtin).
3942  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3943  llvm::Value *AnnotatedVal,
3944  StringRef AnnotationStr,
3945  SourceLocation Location);
3946 
3947  /// Emit local annotations for the local variable V, declared by D.
3948  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3949 
3950  /// Emit field annotations for the given field & value. Returns the
3951  /// annotation result.
3952  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3953 
3954  //===--------------------------------------------------------------------===//
3955  // Internal Helpers
3956  //===--------------------------------------------------------------------===//
3957 
3958  /// ContainsLabel - Return true if the statement contains a label in it. If
3959  /// this statement is not executed normally, it not containing a label means
3960  /// that we can just remove the code.
3961  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3962 
3963  /// containsBreak - Return true if the statement contains a break out of it.
3964  /// If the statement (recursively) contains a switch or loop with a break
3965  /// inside of it, this is fine.
3966  static bool containsBreak(const Stmt *S);
3967 
3968  /// Determine if the given statement might introduce a declaration into the
3969  /// current scope, by being a (possibly-labelled) DeclStmt.
3970  static bool mightAddDeclToScope(const Stmt *S);
3971 
3972  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3973  /// to a constant, or if it does but contains a label, return false. If it
3974  /// constant folds return true and set the boolean result in Result.
3975  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3976  bool AllowLabels = false);
3977 
3978  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3979  /// to a constant, or if it does but contains a label, return false. If it
3980  /// constant folds return true and set the folded value.
3981  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3982  bool AllowLabels = false);
3983 
3984  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3985  /// if statement) to the specified blocks. Based on the condition, this might
3986  /// try to simplify the codegen of the conditional based on the branch.
3987  /// TrueCount should be the number of times we expect the condition to
3988  /// evaluate to true based on PGO data.
3989  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3990  llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3991 
3992  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3993  /// nonnull, if \p LHS is marked _Nonnull.
3994  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3995 
3996  /// An enumeration which makes it easier to specify whether or not an
3997  /// operation is a subtraction.
3998  enum { NotSubtraction = false, IsSubtraction = true };
3999 
4000  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4001  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4002  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4003  /// \p IsSubtraction indicates whether the expression used to form the GEP
4004  /// is a subtraction.
4005  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4006  ArrayRef<llvm::Value *> IdxList,
4007  bool SignedIndices,
4008  bool IsSubtraction,
4009  SourceLocation Loc,
4010  const Twine &Name = "");
4011 
4012  /// Specifies which type of sanitizer check to apply when handling a
4013  /// particular builtin.
4017  };
4018 
4019  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4020  /// enabled, a runtime check specified by \p Kind is also emitted.
4021  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4022 
4023  /// Emit a description of a type in a format suitable for passing to
4024  /// a runtime sanitizer handler.
4025  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4026 
4027  /// Convert a value into a format suitable for passing to a runtime
4028  /// sanitizer handler.
4029  llvm::Value *EmitCheckValue(llvm::Value *V);
4030 
4031  /// Emit a description of a source location in a format suitable for
4032  /// passing to a runtime sanitizer handler.
4033  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4034 
4035  /// Create a basic block that will call a handler function in a
4036  /// sanitizer runtime with the provided arguments, and create a conditional
4037  /// branch to it.
4038  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4039  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4040  ArrayRef<llvm::Value *> DynamicArgs);
4041 
4042  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4043  /// if Cond if false.
4044  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4045  llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4046  ArrayRef<llvm::Constant *> StaticArgs);
4047 
4048  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4049  /// checking is enabled. Otherwise, just emit an unreachable instruction.
4050  void EmitUnreachable(SourceLocation Loc);
4051 
4052  /// Create a basic block that will call the trap intrinsic, and emit a
4053  /// conditional branch to it, for the -ftrapv checks.
4054  void EmitTrapCheck(llvm::Value *Checked);
4055 
4056  /// Emit a call to trap or debugtrap and attach function attribute
4057  /// "trap-func-name" if specified.
4058  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4059 
4060  /// Emit a stub for the cross-DSO CFI check function.
4061  void EmitCfiCheckStub();
4062 
4063  /// Emit a cross-DSO CFI failure handling function.
4064  void EmitCfiCheckFail();
4065 
4066  /// Create a check for a function parameter that may potentially be
4067  /// declared as non-null.
4068  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4069  AbstractCallee AC, unsigned ParmNum);
4070 
4071  /// EmitCallArg - Emit a single call argument.
4072  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4073 
4074  /// EmitDelegateCallArg - We are performing a delegate call; that
4075  /// is, the current function is delegating to another one. Produce
4076  /// a r-value suitable for passing the given parameter.
4077  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4078  SourceLocation loc);
4079 
4080  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4081  /// point operation, expressed as the maximum relative error in ulp.
4082  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4083 
4084 private:
4085  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4086  void EmitReturnOfRValue(RValue RV, QualType Ty);
4087 
4088  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4089 
4091  DeferredReplacements;
4092 
4093  /// Set the address of a local variable.
4094  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4095  assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4096  LocalDeclMap.insert({VD, Addr});
4097  }
4098 
4099  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4100  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4101  ///
4102  /// \param AI - The first function argument of the expansion.
4103  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4105 
4106  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4107  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4108  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4109  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4110  SmallVectorImpl<llvm::Value *> &IRCallArgs,
4111  unsigned &IRCallArgPos);
4112 
4113  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4114  const Expr *InputExpr, std::string &ConstraintStr);
4115 
4116  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4117  LValue InputValue, QualType InputType,
4118  std::string &ConstraintStr,
4119  SourceLocation Loc);
4120 
4121  /// Attempts to statically evaluate the object size of E. If that
4122  /// fails, emits code to figure the size of E out for us. This is
4123  /// pass_object_size aware.
4124  ///
4125  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4126  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4127  llvm::IntegerType *ResType,
4128  llvm::Value *EmittedE);
4129 
4130  /// Emits the size of E, as required by __builtin_object_size. This
4131  /// function is aware of pass_object_size parameters, and will act accordingly
4132  /// if E is a parameter with the pass_object_size attribute.
4133  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4134  llvm::IntegerType *ResType,
4135  llvm::Value *EmittedE);
4136 
4137 public:
4138 #ifndef NDEBUG
4139  // Determine whether the given argument is an Objective-C method
4140  // that may have type parameters in its signature.
4141  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4142  const DeclContext *dc = method->getDeclContext();
4143  if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4144  return classDecl->getTypeParamListAsWritten();
4145  }
4146 
4147  if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4148  return catDecl->getTypeParamList();
4149  }
4150 
4151  return false;
4152  }
4153 
4154  template<typename T>
4155  static bool isObjCMethodWithTypeParams(const T *) { return false; }
4156 #endif
4157 
4158  enum class EvaluationOrder {
4159  ///! No language constraints on evaluation order.
4160  Default,
4161  ///! Language semantics require left-to-right evaluation.
4162  ForceLeftToRight,
4163  ///! Language semantics require right-to-left evaluation.
4164  ForceRightToLeft
4165  };
4166 
4167  /// EmitCallArgs - Emit call arguments for a function.
4168  template <typename T>
4169  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4170  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4172  unsigned ParamsToSkip = 0,
4173  EvaluationOrder Order = EvaluationOrder::Default) {
4174  SmallVector<QualType, 16> ArgTypes;
4175  CallExpr::const_arg_iterator Arg = ArgRange.begin();
4176 
4177  assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4178  "Can't skip parameters if type info is not provided");
4179  if (CallArgTypeInfo) {
4180 #ifndef NDEBUG
4181  bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4182 #endif
4183 
4184  // First, use the argument types that the type info knows about
4185  for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4186  E = CallArgTypeInfo->param_type_end();
4187  I != E; ++I, ++Arg) {
4188  assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4189  assert((isGenericMethod ||
4190  ((*I)->isVariablyModifiedType() ||
4191  (*I).getNonReferenceType()->isObjCRetainableType() ||
4192  getContext()
4193  .getCanonicalType((*I).getNonReferenceType())
4194  .getTypePtr() ==
4195  getContext()
4196  .getCanonicalType((*Arg)->getType())
4197  .getTypePtr())) &&
4198  "type mismatch in call argument!");
4199  ArgTypes.push_back(*I);
4200  }
4201  }
4202 
4203  // Either we've emitted all the call args, or we have a call to variadic
4204  // function.
4205  assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4206  CallArgTypeInfo->isVariadic()) &&
4207  "Extra arguments in non-variadic function!");
4208 
4209  // If we still have any arguments, emit them using the type of the argument.
4210  for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4211  ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4212 
4213  EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4214  }
4215 
4216  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4217  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4219  unsigned ParamsToSkip = 0,
4220  EvaluationOrder Order = EvaluationOrder::Default);
4221 
4222  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4223  /// emit the value and compute our best estimate of the alignment of the
4224  /// pointee.
4225  ///
4226  /// \param BaseInfo - If non-null, this will be initialized with
4227  /// information about the source of the alignment and the may-alias
4228  /// attribute. Note that this function will conservatively fall back on
4229  /// the type when it doesn't recognize the expression and may-alias will
4230  /// be set to false.
4231  ///
4232  /// One reasonable way to use this information is when there's a language
4233  /// guarantee that the pointer must be aligned to some stricter value, and
4234  /// we're simply trying to ensure that sufficiently obvious uses of under-
4235  /// aligned objects don't get miscompiled; for example, a placement new
4236  /// into the address of a local variable. In such a case, it's quite
4237  /// reasonable to just ignore the returned alignment when it isn't from an
4238  /// explicit source.
4239  Address EmitPointerWithAlignment(const Expr *Addr,
4240  LValueBaseInfo *BaseInfo = nullptr,
4241  TBAAAccessInfo *TBAAInfo = nullptr);
4242 
4243  /// If \p E references a parameter with pass_object_size info or a constant
4244  /// array size modifier, emit the object size divided by the size of \p EltTy.
4245  /// Otherwise return null.
4246  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4247 
4248  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4249 
4251  llvm::Function *Function;
4252  TargetAttr::ParsedTargetAttr ParsedAttribute;
4253  unsigned Priority;
4255  const TargetInfo &TargInfo, llvm::Function *F,
4256  const clang::TargetAttr::ParsedTargetAttr &PT)
4257  : Function(F), ParsedAttribute(PT), Priority(0u) {
4258  for (StringRef Feat : PT.Features)
4259  Priority = std::max(Priority,
4260  TargInfo.multiVersionSortPriority(Feat.substr(1)));
4261 
4262  if (!PT.Architecture.empty())
4263  Priority = std::max(Priority,
4264  TargInfo.multiVersionSortPriority(PT.Architecture));
4265  }
4266 
4267  bool operator>(const TargetMultiVersionResolverOption &Other) const {
4268  return Priority > Other.Priority;
4269  }
4270  };
4271  void EmitTargetMultiVersionResolver(
4272  llvm::Function *Resolver,
4274 
4276  llvm::Function *Function;
4277  // Note: EmitX86CPUSupports only has 32 bits available, so we store the mask
4278  // as 32 bits here. When 64-bit support is added to __builtin_cpu_supports,
4279  // this can be extended to 64 bits.
4280  uint32_t FeatureMask;
4281  CPUDispatchMultiVersionResolverOption(llvm::Function *F, uint64_t Mask)
4282  : Function(F), FeatureMask(static_cast<uint32_t>(Mask)) {}
4284  return FeatureMask > Other.FeatureMask;
4285  }
4286  };
4287  void EmitCPUDispatchMultiVersionResolver(
4288  llvm::Function *Resolver,
4290  static uint32_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4291 
4292 private:
4293  QualType getVarArgType(const Expr *Arg);
4294 
4295  void EmitDeclMetadata();
4296 
4297  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4298  const AutoVarEmission &emission);
4299 
4300  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4301 
4302  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4303  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4304  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4305  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4306  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4307  llvm::Value *EmitX86CpuSupports(uint32_t Mask);
4308  llvm::Value *EmitX86CpuInit();
4309  llvm::Value *
4310  FormResolverCondition(const TargetMultiVersionResolverOption &RO);
4311 };
4312 
4314 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4315  if (!needsSaving(value)) return saved_type(value, false);
4316 
4317  // Otherwise, we need an alloca.
4318  auto align = CharUnits::fromQuantity(
4319  CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4320  Address alloca =
4321  CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4322  CGF.Builder.CreateStore(value, alloca);
4323 
4324  return saved_type(alloca.getPointer(), true);
4325 }
4326 
4327 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4328  saved_type value) {
4329  // If the value says it wasn't saved, trust that it's still dominating.
4330  if (!value.getInt()) return value.getPointer();
4331 
4332  // Otherwise, it should be an alloca instruction, as set up in save().
4333  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4334  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4335 }
4336 
4337 } // end namespace CodeGen
4338 } // end namespace clang
4339 
4340 #endif
const llvm::DataLayout & getDataLayout() const
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:361
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
Optional< uint64_t > getStmtCount(const Stmt *S)
Check if an execution count is known for a given statement.
Definition: CodeGenPGO.h:64
This represents &#39;#pragma omp distribute simd&#39; composite directive.
Definition: StmtOpenMP.h:3216
Information about the layout of a __block variable.
Definition: CGBlocks.h:141
This represents &#39;#pragma omp master&#39; directive.
Definition: StmtOpenMP.h:1399
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents &#39;#pragma omp task&#39; directive.
Definition: StmtOpenMP.h:1739
Represents a function declaration or definition.
Definition: Decl.h:1716
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2393
Scheduling data for loop-based OpenMP directives.
Definition: OpenMPKinds.h:124
A (possibly-)qualified type.
Definition: Type.h:655
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:258
const CodeGenOptions & getCodeGenOpts() const
The class detects jumps which bypass local variables declaration: goto L; int a; L: ...
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition: CGExpr.cpp:139
AlignmentSource
The source of the alignment of an l-value; an expression of confidence in the alignment actually matc...
Definition: CGValue.h:126
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
bool isSEHTryScope() const
Returns true inside SEH __try blocks.
llvm::LLVMContext & getLLVMContext()
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:30
FieldConstructionScope(CodeGenFunction &CGF, Address This)
Represents a &#39;co_return&#39; statement in the C++ Coroutines TS.
Definition: StmtCXX.h:442
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:974
static T * buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, T &&generator)
Lazily build the copy and dispose helpers for a __block variable with the given information.
Definition: CGBlocks.cpp:2256
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
C Language Family Type Representation.
OpaqueValueMapping(CodeGenFunction &CGF, const AbstractConditionalOperator *op)
Build the opaque value mapping for the given conditional operator if it&#39;s the GNU ...
This represents &#39;#pragma omp for simd&#39; directive.
Definition: StmtOpenMP.h:1149
Checking the &#39;this&#39; pointer for a constructor call.
bool hasVolatileMember() const
Definition: Decl.h:3683
bool hasLabelBeenSeenInCurrentScope() const
Return true if a label was seen in the current scope.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
This represents &#39;#pragma omp teams distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3627
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
static bool classof(const CGCapturedStmtInfo *)
Represents an attribute applied to a statement.
Definition: Stmt.h:918
static Destroyer destroyARCStrongPrecise
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of &#39;this&#39;.
The base class of the type hierarchy.
Definition: Type.h:1428
This represents &#39;#pragma omp target teams distribute&#39; combined directive.
Definition: StmtOpenMP.h:3764
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:323
CGCapturedStmtInfo(const CapturedStmt &S, CapturedRegionKind K=CR_Default)
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:2243
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2668
void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, llvm::Value *Address)
virtual const FieldDecl * lookup(const VarDecl *VD) const
Lookup the captured field decl for a variable.
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1292
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:379
DominatingValue< T >::saved_type saveValueInCond(T value)
CGCapturedStmtInfo(CapturedRegionKind K=CR_Default)
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
const ParmVarDecl * getParamDecl(unsigned I) const
This represents &#39;#pragma omp parallel for&#39; directive.
Definition: StmtOpenMP.h:1520
void emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S, llvm::Value *StepV)
Definition: CodeGenPGO.cpp:886
This represents &#39;#pragma omp target teams distribute parallel for&#39; combined directive.
Definition: StmtOpenMP.h:3832
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2477
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4150
static bool needsSaving(llvm::Value *value)
Answer whether the given value needs extra work to be saved.
static type restore(CodeGenFunction &CGF, saved_type value)
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv)
Represents a point when we exit a loop.
Definition: ProgramPoint.h:687
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:2909
This represents &#39;#pragma omp target exit data&#39; directive.
Definition: StmtOpenMP.h:2431
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
Represents a variable declaration or definition.
Definition: Decl.h:814
Address getObjectAddress(CodeGenFunction &CGF) const
Returns the address of the object within this declaration.
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC &#39;id&#39; type.
Definition: ExprObjC.h:1460
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2752
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6526
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:54
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
void setCurrentProfileCount(uint64_t Count)
Set the profiler&#39;s current count.
llvm::Value * getPointer() const
Definition: Address.h:38
static ConstantEmission forValue(llvm::Constant *C)
capture_iterator capture_begin()
Retrieve an iterator pointing to the first capture.
Definition: Stmt.h:2268
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:1028
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3092
Represents a parameter to a function.
Definition: Decl.h:1535
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:24
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:154
EHScopeStack::stable_iterator PrologueCleanupDepth
PrologueCleanupDepth - The cleanup depth enclosing all the cleanups associated with the parameters...
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:875
Represents a struct/union/class.
Definition: Decl.h:3570
llvm::DenseMap< const VarDecl *, FieldDecl * > LambdaCaptureFields
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
const TargetInfo & getTarget() const
An object to manage conditionally-evaluated expressions.
PeepholeProtection protectFromPeepholes(RValue rvalue)
protectFromPeepholes - Protect a value that we&#39;re intending to store to the side, but which will prob...
ConditionalCleanup stores the saved form of its parameters, then restores them and performs the clean...
Definition: EHScopeStack.h:198
ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
void setScopeDepth(EHScopeStack::stable_iterator depth)
This represents &#39;#pragma omp parallel&#39; directive.
Definition: StmtOpenMP.h:278
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:150
llvm::SmallPtrSet< const CXXRecordDecl *, 4 > VisitedVirtualBasesSetTy
The scope used to remap some variables as private in the OpenMP loop body (or other captured region e...
SmallVector< Address, 1 > SEHCodeSlotStack
A stack of exception code slots.
Represents a member of a struct/union/class.
Definition: Decl.h:2534
Definition: Format.h:2031
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
bool isReferenceType() const
Definition: Type.h:6125
Helper class with most of the code for saving a value for a conditional expression cleanup...
llvm::BasicBlock * getStartingBlock() const
Returns a block which will be executed prior to each evaluation of the conditional code...
This represents &#39;#pragma omp target simd&#39; directive.
Definition: StmtOpenMP.h:3352
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:936
Defines some OpenMP-specific enums and functions.
ExtVectorElementExpr - This represents access to specific elements of a vector, and may occur on the ...
Definition: Expr.h:4988
Address getAllocatedAddress() const
Returns the raw, allocated address, which is not necessarily the address of the object itself...
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
This represents &#39;#pragma omp barrier&#39; directive.
Definition: StmtOpenMP.h:1851
CleanupKind getCleanupKind(QualType::DestructionKind kind)
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:177
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
This is a common base class for loop directives (&#39;omp simd&#39;, &#39;omp for&#39;, &#39;omp for simd&#39; etc...
Definition: StmtOpenMP.h:340
This represents &#39;#pragma omp critical&#39; directive.
Definition: StmtOpenMP.h:1446
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
bool isCleanupPadScope() const
Returns true while emitting a cleanuppad.
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:194
void pushFullExprCleanup(CleanupKind kind, As... A)
pushFullExprCleanup - Push a cleanup to be run at the end of the current full-expression.
OpenMPDistScheduleClauseKind
OpenMP attributes for &#39;dist_schedule&#39; clause.
Definition: OpenMPKinds.h:100
bool isGLValue() const
Definition: Expr.h:252
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1365
Describes an C or C++ initializer list.
Definition: Expr.h:4050
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:671
This represents &#39;#pragma omp distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3067
void setCurrentRegionCount(uint64_t Count)
Set the counter value for the current region.
Definition: CodeGenPGO.h:60
A class controlling the emission of a finally block.
This represents &#39;#pragma omp teams distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3556
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:1256
InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:988
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::function_ref< std::pair< LValue, LValue > CodeGenFunction &, const OMPExecutableDirective &S)> CodeGenLoopBoundsTy
CGCapturedStmtRAII(CodeGenFunction &CGF, CGCapturedStmtInfo *NewCapturedStmtInfo)
LexicalScope(CodeGenFunction &CGF, SourceRange Range)
Enter a new cleanup scope.
RAII for correct setting/restoring of CapturedStmtInfo.
TBAAAccessInfo getTBAAAccessInfo(QualType AccessType)
getTBAAAccessInfo - Get TBAA information that describes an access to an object of the given type...
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
EHScopeStack::stable_iterator CurrentCleanupScopeDepth
Represents a declaration of a type.
Definition: Decl.h:2829
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3143
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv)
void restore(CodeGenFunction &CGF)
Restores original addresses of the variables.
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:130
#define LIST_SANITIZER_CHECKS
This represents &#39;#pragma omp cancellation point&#39; directive.
Definition: StmtOpenMP.h:2686
bool operator>(const TargetMultiVersionResolverOption &Other) const
TargetMultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F, const clang::TargetAttr::ParsedTargetAttr &PT)
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
field_iterator field_begin() const
Definition: Decl.cpp:4040
A stack of scopes which respond to exceptions, including cleanups and catch blocks.
Definition: EHScopeStack.h:100
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
This represents &#39;#pragma omp teams&#39; directive.
Definition: StmtOpenMP.h:2629
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:85
Enums/classes describing ABI related information about constructors, destructors and thunks...
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2827
This represents &#39;#pragma omp teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3486
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1245
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1649
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
Controls insertion of cancellation exit blocks in worksharing constructs.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
CallLifetimeEnd(Address addr, llvm::Value *size)
llvm::function_ref< std::pair< llvm::Value *, llvm::Value * > CodeGenFunction &, const OMPExecutableDirective &S, Address LB, Address UB)> CodeGenDispatchBoundsTy
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:106
Represents an ObjC class declaration.
Definition: DeclObjC.h:1193
Checking the operand of a cast to a virtual base object.
JumpDest getJumpDestInCurrentScope(StringRef Name=StringRef())
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
Checking the operand of a load. Must be suitably sized and aligned.
~LexicalScope()
Exit this cleanup scope, emitting any accumulated cleanups.
Checking the &#39;this&#39; pointer for a call to a non-static member function.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2780
This represents &#39;#pragma omp target parallel for simd&#39; directive.
Definition: StmtOpenMP.h:3284
OpenMP 4.0 [2.4, Array Sections].
Definition: ExprOpenMP.h:45
Const iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:359
bool isValid() const
Definition: Address.h:36
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2275
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:616
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3432
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:2138
void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, llvm::Value *OffsetValue=nullptr)
This represents &#39;#pragma omp taskgroup&#39; directive.
Definition: StmtOpenMP.h:1939
const TargetCodeGenInfo & getTargetCodeGenInfo()
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:150
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
bool isGlobalVarCaptured(const VarDecl *VD) const
Checks if the global variable is captured in current function.
The class used to assign some variables some temporarily addresses.
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3954
AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD)
Determine whether a field initialization may overlap some other object.
void pushCleanupAfterFullExpr(CleanupKind Kind, As... A)
Queue a cleanup to be pushed after finishing the current full-expression.
LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
This represents &#39;#pragma omp distribute&#39; directive.
Definition: StmtOpenMP.h:2940
Exposes information about the current target.
Definition: TargetInfo.h:54
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
bool addPrivate(const VarDecl *LocalVD, const llvm::function_ref< Address()> PrivateGen)
Registers LocalVD variable as a private and apply PrivateGen function for it to generate correspondin...
EHScopeStack::stable_iterator getScopeDepth() const
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:637
Expr - This represents one expression.
Definition: Expr.h:106
Address getOriginalAllocatedAddress() const
Returns the address for the original alloca instruction.
stable_iterator getInnermostNormalCleanup() const
Returns the innermost normal cleanup on the stack, or stable_end() if there are no normal cleanups...
Definition: EHScopeStack.h:356
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
llvm::function_ref< void(CodeGenFunction &, SourceLocation, const unsigned, const bool)> CodeGenOrderedTy
static ParamValue forIndirect(Address addr)
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, RValue rvalue)
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
void ForceCleanup()
Force the emission of cleanups now, instead of waiting until this object is destroyed.
static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method)
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:5051
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2700
This represents &#39;#pragma omp target teams distribute parallel for simd&#39; combined directive.
Definition: StmtOpenMP.h:3916
static saved_type save(CodeGenFunction &CGF, type value)
AggValueSlot CreateAggTemp(QualType T, const Twine &Name="tmp")
CreateAggTemp - Create a temporary memory object for the given aggregate type.
#define bool
Definition: stdbool.h:31
unsigned Kind
The kind of cleanup to push: a value from the CleanupKind enumeration.
unsigned Size
The size of the following cleanup object.
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:296
DeclContext * getDeclContext()
Definition: DeclBase.h:428
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:270
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:441
CXXTryStmt - A C++ try block, including all handlers.
Definition: StmtCXX.h:67
~OMPPrivateScope()
Exit scope - all the mapped variables are restored.
This represents &#39;#pragma omp target teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3989
int Depth
Definition: ASTDiff.cpp:191
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
llvm::LLVMContext & getLLVMContext()
QualType getType() const
Definition: Expr.h:128
Checking the value assigned to a _Nonnull pointer. Must not be null.
An RAII object to record that we&#39;re evaluating a statement expression.
This represents &#39;#pragma omp for&#39; directive.
Definition: StmtOpenMP.h:1072
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1476
This represents &#39;#pragma omp target teams&#39; directive.
Definition: StmtOpenMP.h:3705
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:925
JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, unsigned Index)
SourceLocation getEnd() const
An object which temporarily prevents a value from being destroyed by aggressive peephole optimization...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1805
OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, Address SizesArray, unsigned NumberOfTargetItems)
This represents &#39;#pragma omp cancel&#39; directive.
Definition: StmtOpenMP.h:2744
RunCleanupsScope(CodeGenFunction &CGF)
Enter a new cleanup scope.
const LangOptions & getLangOpts() const
ASTContext & getContext() const
do v
Definition: arm_acle.h:78
VarDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:2006
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
This represents &#39;#pragma omp flush&#39; directive.
Definition: StmtOpenMP.h:2012
This represents &#39;#pragma omp parallel for simd&#39; directive.
Definition: StmtOpenMP.h:1600
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:1205
AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
Definition: Stmt.h:1526
void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, llvm::Value *OffsetValue=nullptr)
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value **> ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
Definition: CGCleanup.cpp:424
llvm::function_ref< void(CodeGenFunction &, const OMPLoopDirective &, JumpDest)> CodeGenLoopTy
This represents &#39;#pragma omp target enter data&#39; directive.
Definition: StmtOpenMP.h:2372
OMPPrivateScope(CodeGenFunction &CGF)
Enter a new OpenMP private scope.
llvm::SmallVector< VPtr, 4 > VPtrsVector
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:347
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:875
#define false
Definition: stdbool.h:33
MSVCIntrin
Definition: CGBuiltin.cpp:737
Kind
This captures a statement into a function.
Definition: Stmt.h:2125
Represents a call to an inherited base class constructor from an inheriting constructor.
Definition: ExprCXX.h:1455
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5177
void initFullExprCleanup()
Set up the last cleanup that was pushed as a conditional full-expression cleanup. ...
This represents &#39;#pragma omp single&#39; directive.
Definition: StmtOpenMP.h:1344
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
Represents a C++ temporary.
Definition: ExprCXX.h:1213
~RunCleanupsScope()
Exit this cleanup scope, emitting any accumulated cleanups.
llvm::BasicBlock * getUnreachableBlock()
AggValueSlot::Overlap_t overlapForReturnValue()
Determine whether a return value slot may overlap some other object.
void setBeforeOutermostConditional(llvm::Value *value, Address addr)
This is a basic class for representing single OpenMP executable directive.
Definition: StmtOpenMP.h:33
SmallVector< llvm::Value *, 8 > ObjCEHValueStack
ObjCEHValueStack - Stack of Objective-C exception values, used for rethrows.
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1915
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:166
const Decl * getDecl() const
Definition: GlobalDecl.h:64
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:503
Checking the operand of a cast to a base object.
OpenMPDirectiveKind
OpenMP directives.
Definition: OpenMPKinds.h:23
Represents the declaration of a label.
Definition: Decl.h:468
An aggregate value slot.
Definition: CGValue.h:437
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:642
Per-function PGO state.
Definition: CodeGenPGO.h:29
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2045
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:48
static type restore(CodeGenFunction &CGF, saved_type value)
OpenMPLinearClauseKind Modifier
Modifier of &#39;linear&#39; clause.
Definition: OpenMPClause.h:96
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
This represents &#39;#pragma omp taskwait&#39; directive.
Definition: StmtOpenMP.h:1895
SanitizerSet SanOpts
Sanitizers enabled for this function.
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2301
This is a basic class for representing single OpenMP clause.
Definition: OpenMPClause.h:51
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5313
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:488
TypeCheckKind
Situations in which we might emit a check for the suitability of a pointer or glvalue.
An aligned address.
Definition: Address.h:25
This represents &#39;#pragma omp target&#39; directive.
Definition: StmtOpenMP.h:2256
All available information about a concrete callee.
Definition: CGCall.h:67
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, AlignmentSource Source=AlignmentSource::Type)
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
TargetCodeGenInfo - This class organizes various target-specific codegeneration issues, like target-specific attributes, builtins and so on.
Definition: TargetInfo.h:46
Checking the object expression in a non-static data member access.
This represents &#39;#pragma omp ordered&#39; directive.
Definition: StmtOpenMP.h:2067
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3654
void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy)
Emit an aggregate assignment.
static ParamValue forDirect(llvm::Value *value)
QualType getType() const
Definition: CGValue.h:264
This represents &#39;#pragma omp target update&#39; directive.
Definition: StmtOpenMP.h:3008
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:121
uint64_t getCurrentRegionCount() const
Return the counter value of the current region.
Definition: CodeGenPGO.h:55
const CGFunctionInfo * CurFnInfo
void Emit(CodeGenFunction &CGF, Flags flags) override
Emit the cleanup.
static ConstantEmission forReference(llvm::Constant *C)
void enterFullExpression(const ExprWithCleanups *E)
const TargetCodeGenInfo & getTargetHooks() const
static Destroyer destroyARCStrongImprecise
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
bool operator>(const CPUDispatchMultiVersionResolverOption &Other) const
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3351
JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind)
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:356
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3547
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
Dataflow Directional Tag Classes.
Class provides a way to call simple version of codegen for OpenMP region, or an advanced with possibl...
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1208
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1264
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2145
This represents &#39;#pragma omp section&#39; directive.
Definition: StmtOpenMP.h:1282
This represents &#39;#pragma omp teams distribute&#39; directive.
Definition: StmtOpenMP.h:3418
A scope within which we are constructing the fields of an object which might use a CXXDefaultInitExpr...
llvm::LoadInst * CreateAlignedLoad(llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:91
Checking the bound value in a reference binding.
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
This represents &#39;#pragma omp simd&#39; directive.
Definition: StmtOpenMP.h:1007
Represents a &#39;co_yield&#39; expression.
Definition: ExprCXX.h:4504
Header for data within LifetimeExtendedCleanupStack.
Checking the destination of a store. Must be suitably sized and aligned.
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2612
llvm::SmallVector< char, 256 > LifetimeExtendedCleanupStack
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:108
This represents &#39;#pragma omp atomic&#39; directive.
Definition: StmtOpenMP.h:2122
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1608
Represents a __leave statement.
Definition: Stmt.h:2088
JumpDest ReturnBlock
ReturnBlock - Unified return block.
llvm::DenseMap< const Decl *, Address > DeclMapTy
Checking the operand of a static_cast to a derived reference type.
virtual StringRef getHelperName() const
Get the name of the capture helper.
static bool hasAggregateEvaluationKind(QualType T)
uint64_t SanitizerMask
Definition: Sanitizers.h:26
SwitchStmt - This represents a &#39;switch&#39; stmt.
Definition: Stmt.h:1054
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2573
API for captured statement code generation.
static saved_type save(CodeGenFunction &CGF, type value)
static bool isObjCMethodWithTypeParams(const T *)
Represents the body of a coroutine.
Definition: StmtCXX.h:307
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4135
llvm::Type * ConvertType(const TypeDecl *T)
Checking the operand of a static_cast to a derived pointer type.
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2226
Represents Objective-C&#39;s collection statement.
Definition: StmtObjC.h:24
CodeGenTypes & getTypes() const
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3387
Implements C++ ABI-specific code generation functions.
Definition: CGCXXABI.h:44
unsigned getNumObjects() const
Definition: ExprCXX.h:3125
ObjCEncodeExpr, used for @encode in Objective-C.
Definition: ExprObjC.h:396
T * getAttr() const
Definition: DeclBase.h:534
A stack of loop information corresponding to loop nesting levels.
Definition: CGLoopInfo.h:93
virtual unsigned multiVersionSortPriority(StringRef Name) const
Definition: TargetInfo.h:1087
This class organizes the cross-module state that is used while lowering AST types to LLVM types...
Definition: CodeGenTypes.h:120
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:205
bool isFunctionType() const
Definition: Type.h:6109
Represents a &#39;co_await&#39; expression.
Definition: ExprCXX.h:4419
llvm::AssertingVH< llvm::Instruction > AllocaInsertPt
AllocaInsertPoint - This is an instruction in the entry block before which we prefer to insert alloca...
void pushCleanupTuple(CleanupKind Kind, std::tuple< As... > A)
Push a lazily-created cleanup on the stack. Tuple version.
Definition: EHScopeStack.h:283
bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, Address TempAddr)
Sets the address of the variable LocalVD to be TempAddr in function CGF.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:445
static Destroyer destroyNonTrivialCStruct
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat]...
Definition: APValue.h:38
llvm::Value * LoadCXXVTT()
LoadCXXVTT - Load the VTT parameter to base constructors/destructors have virtual bases...
ARCPreciseLifetime_t
Does an ARC strong l-value have precise lifetime?
Definition: CGValue.h:120
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:529
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
A pair of helper functions for a __block variable.
GotoStmt - This represents a direct goto.
Definition: Stmt.h:1329
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const Expr *e)
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:13820
void setCurrentStmt(const Stmt *S)
If the execution count for the current statement is known, record that as the current count...
Definition: CodeGenPGO.h:75
llvm::DenseMap< const VarDecl *, llvm::Value * > NRVOFlags
A mapping from NRVO variables to the flags used to indicate when the NRVO has been applied to this va...
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2500
void unprotectFromPeepholes(PeepholeProtection protection)
A non-RAII class containing all the information about a bound opaque value.
This represents &#39;#pragma omp target parallel&#39; directive.
Definition: StmtOpenMP.h:2489
Represents a C++ struct/union/class.
Definition: DeclCXX.h:302
ContinueStmt - This represents a continue.
Definition: Stmt.h:1410
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block, taking care to avoid creation of branches from dummy blocks.
Definition: CGStmt.cpp:465
void EmitAggregateCopyCtor(LValue Dest, LValue Src, AggValueSlot::Overlap_t MayOverlap)
llvm::PointerIntPair< llvm::Value *, 1, bool > saved_type
llvm::BasicBlock * getInvokeDest()
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:3504
LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, AlignmentSource Source=AlignmentSource::Type)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5916
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1966
static type restore(CodeGenFunction &CGF, saved_type value)
BuiltinCheckKind
Specifies which type of sanitizer check to apply when handling a particular builtin.
WhileStmt - This represents a &#39;while&#39; stmt.
Definition: Stmt.h:1147
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1199
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel)
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:61
Represents Objective-C&#39;s @try ... @catch ... @finally statement.
Definition: StmtObjC.h:160
capture_iterator capture_end() const
Retrieve an iterator pointing past the end of the sequence of captures.
Definition: Stmt.h:2273
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:52
This represents &#39;#pragma omp taskloop simd&#39; directive.
Definition: StmtOpenMP.h:2874
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1585
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2316
CGCapturedStmtInfo * CapturedStmtInfo
void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, As... A)
__DEVICE__ int max(int __a, int __b)
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke=nullptr)
const llvm::function_ref< void(CodeGenFunction &, llvm::Value *, const OMPTaskDataTy &)> TaskGenTy
This represents &#39;#pragma omp sections&#39; directive.
Definition: StmtOpenMP.h:1214
Struct with all information about dynamic [sub]class needed to set vptr.
bool hasVolatileMember(QualType T)
hasVolatileMember - returns true if aggregate type has a volatile member.
This represents &#39;#pragma omp target data&#39; directive.
Definition: StmtOpenMP.h:2314
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:974
This structure provides a set of types that are commonly used during IR emission. ...
BreakStmt - This represents a break.
Definition: Stmt.h:1438
void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr)
Definition: CGDecl.cpp:1086
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:17
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
Definition: CGCleanup.cpp:1050
QualType getType() const
Definition: Decl.h:648
#define true
Definition: stdbool.h:32
A trivial tuple used to represent a source range.
LValue - This represents an lvalue references.
Definition: CGValue.h:167
An abstract representation of regular/ObjC call/message targets.
This represents &#39;#pragma omp taskyield&#39; directive.
Definition: StmtOpenMP.h:1807
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:147
This represents a decl that may have a name.
Definition: Decl.h:248
This represents &#39;#pragma omp distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3147
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2827
This represents &#39;#pragma omp parallel sections&#39; directive.
Definition: StmtOpenMP.h:1668
A Microsoft C++ __uuidof expression, which gets the _GUID that corresponds to the supplied type or ex...
Definition: ExprCXX.h:895
const LangOptions & getLangOpts() const
Expr * getCommon() const
getCommon - Return the common expression, written to the left of the condition.
Definition: Expr.h:3544
bool apply(CodeGenFunction &CGF)
Applies new addresses to the list of the variables.
SourceLocation getBegin() const
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:260
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, LValue lvalue)
Represents Objective-C&#39;s @autoreleasepool Statement.
Definition: StmtObjC.h:357
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
Build the opaque value mapping for an OpaqueValueExpr whose source expression is set to the expressio...
Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, bool followForward=true)
BuildBlockByrefAddress - Computes the location of the data in a variable which is declared as __block...
Definition: CGBlocks.cpp:2362
bool isLocalVarDeclOrParm() const
Similar to isLocalVarDecl but also includes parameters.
Definition: Decl.h:1113
This represents &#39;#pragma omp target parallel for&#39; directive.
Definition: StmtOpenMP.h:2549
llvm::SmallVector< const JumpDest *, 2 > SEHTryEpilogueStack
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
bool Privatize()
Privatizes local variables previously registered as private.
void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty)
unsigned IsConditional
Whether this is a conditional cleanup.
This represents &#39;#pragma omp taskloop&#39; directive.
Definition: StmtOpenMP.h:2809