clang  9.0.0
SemaDecl.cpp
Go to the documentation of this file.
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
32 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
33 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
34 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Sema/DeclSpec.h"
39 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/Scope.h"
42 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/Template.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/ADT/Triple.h"
47 #include <algorithm>
48 #include <cstring>
49 #include <functional>
50 
51 using namespace clang;
52 using namespace sema;
53 
55  if (OwnedType) {
56  Decl *Group[2] = { OwnedType, Ptr };
57  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58  }
59 
60  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61 }
62 
63 namespace {
64 
65 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
66  public:
67  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
68  bool AllowTemplates = false,
69  bool AllowNonTemplates = true)
70  : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71  AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
72  WantExpressionKeywords = false;
73  WantCXXNamedCasts = false;
74  WantRemainingKeywords = false;
75  }
76 
77  bool ValidateCandidate(const TypoCorrection &candidate) override {
78  if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79  if (!AllowInvalidDecl && ND->isInvalidDecl())
80  return false;
81 
82  if (getAsTypeTemplateDecl(ND))
83  return AllowTemplates;
84 
85  bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
86  if (!IsType)
87  return false;
88 
89  if (AllowNonTemplates)
90  return true;
91 
92  // An injected-class-name of a class template (specialization) is valid
93  // as a template or as a non-template.
94  if (AllowTemplates) {
95  auto *RD = dyn_cast<CXXRecordDecl>(ND);
96  if (!RD || !RD->isInjectedClassName())
97  return false;
98  RD = cast<CXXRecordDecl>(RD->getDeclContext());
99  return RD->getDescribedClassTemplate() ||
100  isa<ClassTemplateSpecializationDecl>(RD);
101  }
102 
103  return false;
104  }
105 
106  return !WantClassName && candidate.isKeyword();
107  }
108 
109  std::unique_ptr<CorrectionCandidateCallback> clone() override {
110  return llvm::make_unique<TypeNameValidatorCCC>(*this);
111  }
112 
113  private:
114  bool AllowInvalidDecl;
115  bool WantClassName;
116  bool AllowTemplates;
117  bool AllowNonTemplates;
118 };
119 
120 } // end anonymous namespace
121 
122 /// Determine whether the token kind starts a simple-type-specifier.
124  switch (Kind) {
125  // FIXME: Take into account the current language when deciding whether a
126  // token kind is a valid type specifier
127  case tok::kw_short:
128  case tok::kw_long:
129  case tok::kw___int64:
130  case tok::kw___int128:
131  case tok::kw_signed:
132  case tok::kw_unsigned:
133  case tok::kw_void:
134  case tok::kw_char:
135  case tok::kw_int:
136  case tok::kw_half:
137  case tok::kw_float:
138  case tok::kw_double:
139  case tok::kw__Float16:
140  case tok::kw___float128:
141  case tok::kw_wchar_t:
142  case tok::kw_bool:
143  case tok::kw___underlying_type:
144  case tok::kw___auto_type:
145  return true;
146 
147  case tok::annot_typename:
148  case tok::kw_char16_t:
149  case tok::kw_char32_t:
150  case tok::kw_typeof:
151  case tok::annot_decltype:
152  case tok::kw_decltype:
153  return getLangOpts().CPlusPlus;
154 
155  case tok::kw_char8_t:
156  return getLangOpts().Char8;
157 
158  default:
159  break;
160  }
161 
162  return false;
163 }
164 
165 namespace {
167  NotFound,
168  FoundNonType,
169  FoundType
170 };
171 } // end anonymous namespace
172 
173 /// Tries to perform unqualified lookup of the type decls in bases for
174 /// dependent class.
175 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
176 /// type decl, \a FoundType if only type decls are found.
179  SourceLocation NameLoc,
180  const CXXRecordDecl *RD) {
181  if (!RD->hasDefinition())
182  return UnqualifiedTypeNameLookupResult::NotFound;
183  // Look for type decls in base classes.
184  UnqualifiedTypeNameLookupResult FoundTypeDecl =
185  UnqualifiedTypeNameLookupResult::NotFound;
186  for (const auto &Base : RD->bases()) {
187  const CXXRecordDecl *BaseRD = nullptr;
188  if (auto *BaseTT = Base.getType()->getAs<TagType>())
189  BaseRD = BaseTT->getAsCXXRecordDecl();
190  else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
191  // Look for type decls in dependent base classes that have known primary
192  // templates.
193  if (!TST || !TST->isDependentType())
194  continue;
195  auto *TD = TST->getTemplateName().getAsTemplateDecl();
196  if (!TD)
197  continue;
198  if (auto *BasePrimaryTemplate =
199  dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
200  if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
201  BaseRD = BasePrimaryTemplate;
202  else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
204  CTD->findPartialSpecialization(Base.getType()))
205  if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
206  BaseRD = PS;
207  }
208  }
209  }
210  if (BaseRD) {
211  for (NamedDecl *ND : BaseRD->lookup(&II)) {
212  if (!isa<TypeDecl>(ND))
213  return UnqualifiedTypeNameLookupResult::FoundNonType;
214  FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
215  }
216  if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
217  switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
218  case UnqualifiedTypeNameLookupResult::FoundNonType:
219  return UnqualifiedTypeNameLookupResult::FoundNonType;
220  case UnqualifiedTypeNameLookupResult::FoundType:
221  FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
222  break;
223  case UnqualifiedTypeNameLookupResult::NotFound:
224  break;
225  }
226  }
227  }
228  }
229 
230  return FoundTypeDecl;
231 }
232 
234  const IdentifierInfo &II,
235  SourceLocation NameLoc) {
236  // Lookup in the parent class template context, if any.
237  const CXXRecordDecl *RD = nullptr;
238  UnqualifiedTypeNameLookupResult FoundTypeDecl =
239  UnqualifiedTypeNameLookupResult::NotFound;
240  for (DeclContext *DC = S.CurContext;
241  DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
242  DC = DC->getParent()) {
243  // Look for type decls in dependent base classes that have known primary
244  // templates.
245  RD = dyn_cast<CXXRecordDecl>(DC);
246  if (RD && RD->getDescribedClassTemplate())
247  FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
248  }
249  if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
250  return nullptr;
251 
252  // We found some types in dependent base classes. Recover as if the user
253  // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
254  // lookup during template instantiation.
255  S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
256 
257  ASTContext &Context = S.Context;
258  auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
259  cast<Type>(Context.getRecordType(RD)));
260  QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
261 
262  CXXScopeSpec SS;
263  SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
264 
265  TypeLocBuilder Builder;
266  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
267  DepTL.setNameLoc(NameLoc);
269  DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
270  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
271 }
272 
273 /// If the identifier refers to a type name within this scope,
274 /// return the declaration of that type.
275 ///
276 /// This routine performs ordinary name lookup of the identifier II
277 /// within the given scope, with optional C++ scope specifier SS, to
278 /// determine whether the name refers to a type. If so, returns an
279 /// opaque pointer (actually a QualType) corresponding to that
280 /// type. Otherwise, returns NULL.
282  Scope *S, CXXScopeSpec *SS,
283  bool isClassName, bool HasTrailingDot,
284  ParsedType ObjectTypePtr,
285  bool IsCtorOrDtorName,
286  bool WantNontrivialTypeSourceInfo,
287  bool IsClassTemplateDeductionContext,
288  IdentifierInfo **CorrectedII) {
289  // FIXME: Consider allowing this outside C++1z mode as an extension.
290  bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
291  getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
292  !isClassName && !HasTrailingDot;
293 
294  // Determine where we will perform name lookup.
295  DeclContext *LookupCtx = nullptr;
296  if (ObjectTypePtr) {
297  QualType ObjectType = ObjectTypePtr.get();
298  if (ObjectType->isRecordType())
299  LookupCtx = computeDeclContext(ObjectType);
300  } else if (SS && SS->isNotEmpty()) {
301  LookupCtx = computeDeclContext(*SS, false);
302 
303  if (!LookupCtx) {
304  if (isDependentScopeSpecifier(*SS)) {
305  // C++ [temp.res]p3:
306  // A qualified-id that refers to a type and in which the
307  // nested-name-specifier depends on a template-parameter (14.6.2)
308  // shall be prefixed by the keyword typename to indicate that the
309  // qualified-id denotes a type, forming an
310  // elaborated-type-specifier (7.1.5.3).
311  //
312  // We therefore do not perform any name lookup if the result would
313  // refer to a member of an unknown specialization.
314  if (!isClassName && !IsCtorOrDtorName)
315  return nullptr;
316 
317  // We know from the grammar that this name refers to a type,
318  // so build a dependent node to describe the type.
319  if (WantNontrivialTypeSourceInfo)
320  return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
321 
322  NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
323  QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
324  II, NameLoc);
325  return ParsedType::make(T);
326  }
327 
328  return nullptr;
329  }
330 
331  if (!LookupCtx->isDependentContext() &&
332  RequireCompleteDeclContext(*SS, LookupCtx))
333  return nullptr;
334  }
335 
336  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
337  // lookup for class-names.
338  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
339  LookupOrdinaryName;
340  LookupResult Result(*this, &II, NameLoc, Kind);
341  if (LookupCtx) {
342  // Perform "qualified" name lookup into the declaration context we
343  // computed, which is either the type of the base of a member access
344  // expression or the declaration context associated with a prior
345  // nested-name-specifier.
346  LookupQualifiedName(Result, LookupCtx);
347 
348  if (ObjectTypePtr && Result.empty()) {
349  // C++ [basic.lookup.classref]p3:
350  // If the unqualified-id is ~type-name, the type-name is looked up
351  // in the context of the entire postfix-expression. If the type T of
352  // the object expression is of a class type C, the type-name is also
353  // looked up in the scope of class C. At least one of the lookups shall
354  // find a name that refers to (possibly cv-qualified) T.
355  LookupName(Result, S);
356  }
357  } else {
358  // Perform unqualified name lookup.
359  LookupName(Result, S);
360 
361  // For unqualified lookup in a class template in MSVC mode, look into
362  // dependent base classes where the primary class template is known.
363  if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
364  if (ParsedType TypeInBase =
365  recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
366  return TypeInBase;
367  }
368  }
369 
370  NamedDecl *IIDecl = nullptr;
371  switch (Result.getResultKind()) {
374  if (CorrectedII) {
375  TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
376  AllowDeducedTemplate);
377  TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
378  S, SS, CCC, CTK_ErrorRecovery);
379  IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
380  TemplateTy Template;
381  bool MemberOfUnknownSpecialization;
383  TemplateName.setIdentifier(NewII, NameLoc);
384  NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
385  CXXScopeSpec NewSS, *NewSSPtr = SS;
386  if (SS && NNS) {
387  NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
388  NewSSPtr = &NewSS;
389  }
390  if (Correction && (NNS || NewII != &II) &&
391  // Ignore a correction to a template type as the to-be-corrected
392  // identifier is not a template (typo correction for template names
393  // is handled elsewhere).
394  !(getLangOpts().CPlusPlus && NewSSPtr &&
395  isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
396  Template, MemberOfUnknownSpecialization))) {
397  ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
398  isClassName, HasTrailingDot, ObjectTypePtr,
399  IsCtorOrDtorName,
400  WantNontrivialTypeSourceInfo,
401  IsClassTemplateDeductionContext);
402  if (Ty) {
403  diagnoseTypo(Correction,
404  PDiag(diag::err_unknown_type_or_class_name_suggest)
405  << Result.getLookupName() << isClassName);
406  if (SS && NNS)
407  SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
408  *CorrectedII = NewII;
409  return Ty;
410  }
411  }
412  }
413  // If typo correction failed or was not performed, fall through
414  LLVM_FALLTHROUGH;
417  Result.suppressDiagnostics();
418  return nullptr;
419 
421  // Recover from type-hiding ambiguities by hiding the type. We'll
422  // do the lookup again when looking for an object, and we can
423  // diagnose the error then. If we don't do this, then the error
424  // about hiding the type will be immediately followed by an error
425  // that only makes sense if the identifier was treated like a type.
427  Result.suppressDiagnostics();
428  return nullptr;
429  }
430 
431  // Look to see if we have a type anywhere in the list of results.
432  for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
433  Res != ResEnd; ++Res) {
434  if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
435  (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
436  if (!IIDecl ||
437  (*Res)->getLocation().getRawEncoding() <
438  IIDecl->getLocation().getRawEncoding())
439  IIDecl = *Res;
440  }
441  }
442 
443  if (!IIDecl) {
444  // None of the entities we found is a type, so there is no way
445  // to even assume that the result is a type. In this case, don't
446  // complain about the ambiguity. The parser will either try to
447  // perform this lookup again (e.g., as an object name), which
448  // will produce the ambiguity, or will complain that it expected
449  // a type name.
450  Result.suppressDiagnostics();
451  return nullptr;
452  }
453 
454  // We found a type within the ambiguous lookup; diagnose the
455  // ambiguity and then return that type. This might be the right
456  // answer, or it might not be, but it suppresses any attempt to
457  // perform the name lookup again.
458  break;
459 
460  case LookupResult::Found:
461  IIDecl = Result.getFoundDecl();
462  break;
463  }
464 
465  assert(IIDecl && "Didn't find decl");
466 
467  QualType T;
468  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
469  // C++ [class.qual]p2: A lookup that would find the injected-class-name
470  // instead names the constructors of the class, except when naming a class.
471  // This is ill-formed when we're not actually forming a ctor or dtor name.
472  auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
473  auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
474  if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
475  FoundRD->isInjectedClassName() &&
476  declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
477  Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
478  << &II << /*Type*/1;
479 
480  DiagnoseUseOfDecl(IIDecl, NameLoc);
481 
482  T = Context.getTypeDeclType(TD);
483  MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
484  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
485  (void)DiagnoseUseOfDecl(IDecl, NameLoc);
486  if (!HasTrailingDot)
487  T = Context.getObjCInterfaceType(IDecl);
488  } else if (AllowDeducedTemplate) {
489  if (auto *TD = getAsTypeTemplateDecl(IIDecl))
491  QualType(), false);
492  }
493 
494  if (T.isNull()) {
495  // If it's not plausibly a type, suppress diagnostics.
496  Result.suppressDiagnostics();
497  return nullptr;
498  }
499 
500  // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
501  // constructor or destructor name (in such a case, the scope specifier
502  // will be attached to the enclosing Expr or Decl node).
503  if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
504  !isa<ObjCInterfaceDecl>(IIDecl)) {
505  if (WantNontrivialTypeSourceInfo) {
506  // Construct a type with type-source information.
507  TypeLocBuilder Builder;
508  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
509 
510  T = getElaboratedType(ETK_None, *SS, T);
511  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
513  ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
514  return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
515  } else {
516  T = getElaboratedType(ETK_None, *SS, T);
517  }
518  }
519 
520  return ParsedType::make(T);
521 }
522 
523 // Builds a fake NNS for the given decl context.
524 static NestedNameSpecifier *
526  for (;; DC = DC->getLookupParent()) {
527  DC = DC->getPrimaryContext();
528  auto *ND = dyn_cast<NamespaceDecl>(DC);
529  if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
530  return NestedNameSpecifier::Create(Context, nullptr, ND);
531  else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
532  return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
533  RD->getTypeForDecl());
534  else if (isa<TranslationUnitDecl>(DC))
535  return NestedNameSpecifier::GlobalSpecifier(Context);
536  }
537  llvm_unreachable("something isn't in TU scope?");
538 }
539 
540 /// Find the parent class with dependent bases of the innermost enclosing method
541 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
542 /// up allowing unqualified dependent type names at class-level, which MSVC
543 /// correctly rejects.
544 static const CXXRecordDecl *
546  for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
547  DC = DC->getPrimaryContext();
548  if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
549  if (MD->getParent()->hasAnyDependentBases())
550  return MD->getParent();
551  }
552  return nullptr;
553 }
554 
556  SourceLocation NameLoc,
557  bool IsTemplateTypeArg) {
558  assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
559 
560  NestedNameSpecifier *NNS = nullptr;
561  if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
562  // If we weren't able to parse a default template argument, delay lookup
563  // until instantiation time by making a non-dependent DependentTypeName. We
564  // pretend we saw a NestedNameSpecifier referring to the current scope, and
565  // lookup is retried.
566  // FIXME: This hurts our diagnostic quality, since we get errors like "no
567  // type named 'Foo' in 'current_namespace'" when the user didn't write any
568  // name specifiers.
569  NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
570  Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
571  } else if (const CXXRecordDecl *RD =
573  // Build a DependentNameType that will perform lookup into RD at
574  // instantiation time.
575  NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
576  RD->getTypeForDecl());
577 
578  // Diagnose that this identifier was undeclared, and retry the lookup during
579  // template instantiation.
580  Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
581  << RD;
582  } else {
583  // This is not a situation that we should recover from.
584  return ParsedType();
585  }
586 
587  QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
588 
589  // Build type location information. We synthesized the qualifier, so we have
590  // to build a fake NestedNameSpecifierLoc.
591  NestedNameSpecifierLocBuilder NNSLocBuilder;
592  NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
593  NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
594 
595  TypeLocBuilder Builder;
596  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
597  DepTL.setNameLoc(NameLoc);
599  DepTL.setQualifierLoc(QualifierLoc);
600  return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
601 }
602 
603 /// isTagName() - This method is called *for error recovery purposes only*
604 /// to determine if the specified name is a valid tag name ("struct foo"). If
605 /// so, this returns the TST for the tag corresponding to it (TST_enum,
606 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
607 /// cases in C where the user forgot to specify the tag.
609  // Do a tag name lookup in this scope.
610  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
611  LookupName(R, S, false);
614  if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
615  switch (TD->getTagKind()) {
616  case TTK_Struct: return DeclSpec::TST_struct;
618  case TTK_Union: return DeclSpec::TST_union;
619  case TTK_Class: return DeclSpec::TST_class;
620  case TTK_Enum: return DeclSpec::TST_enum;
621  }
622  }
623 
625 }
626 
627 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
628 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
629 /// then downgrade the missing typename error to a warning.
630 /// This is needed for MSVC compatibility; Example:
631 /// @code
632 /// template<class T> class A {
633 /// public:
634 /// typedef int TYPE;
635 /// };
636 /// template<class T> class B : public A<T> {
637 /// public:
638 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
639 /// };
640 /// @endcode
642  if (CurContext->isRecord()) {
644  return true;
645 
646  const Type *Ty = SS->getScopeRep()->getAsType();
647 
648  CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
649  for (const auto &Base : RD->bases())
650  if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
651  return true;
652  return S->isFunctionPrototypeScope();
653  }
654  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
655 }
656 
658  SourceLocation IILoc,
659  Scope *S,
660  CXXScopeSpec *SS,
661  ParsedType &SuggestedType,
662  bool IsTemplateName) {
663  // Don't report typename errors for editor placeholders.
664  if (II->isEditorPlaceholder())
665  return;
666  // We don't have anything to suggest (yet).
667  SuggestedType = nullptr;
668 
669  // There may have been a typo in the name of the type. Look up typo
670  // results, in case we have something that we can suggest.
671  TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
672  /*AllowTemplates=*/IsTemplateName,
673  /*AllowNonTemplates=*/!IsTemplateName);
674  if (TypoCorrection Corrected =
675  CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
676  CCC, CTK_ErrorRecovery)) {
677  // FIXME: Support error recovery for the template-name case.
678  bool CanRecover = !IsTemplateName;
679  if (Corrected.isKeyword()) {
680  // We corrected to a keyword.
681  diagnoseTypo(Corrected,
682  PDiag(IsTemplateName ? diag::err_no_template_suggest
683  : diag::err_unknown_typename_suggest)
684  << II);
685  II = Corrected.getCorrectionAsIdentifierInfo();
686  } else {
687  // We found a similarly-named type or interface; suggest that.
688  if (!SS || !SS->isSet()) {
689  diagnoseTypo(Corrected,
690  PDiag(IsTemplateName ? diag::err_no_template_suggest
691  : diag::err_unknown_typename_suggest)
692  << II, CanRecover);
693  } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
694  std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
695  bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
696  II->getName().equals(CorrectedStr);
697  diagnoseTypo(Corrected,
698  PDiag(IsTemplateName
699  ? diag::err_no_member_template_suggest
700  : diag::err_unknown_nested_typename_suggest)
701  << II << DC << DroppedSpecifier << SS->getRange(),
702  CanRecover);
703  } else {
704  llvm_unreachable("could not have corrected a typo here");
705  }
706 
707  if (!CanRecover)
708  return;
709 
710  CXXScopeSpec tmpSS;
711  if (Corrected.getCorrectionSpecifier())
712  tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
713  SourceRange(IILoc));
714  // FIXME: Support class template argument deduction here.
715  SuggestedType =
716  getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
717  tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
718  /*IsCtorOrDtorName=*/false,
719  /*WantNontrivialTypeSourceInfo=*/true);
720  }
721  return;
722  }
723 
724  if (getLangOpts().CPlusPlus && !IsTemplateName) {
725  // See if II is a class template that the user forgot to pass arguments to.
726  UnqualifiedId Name;
727  Name.setIdentifier(II, IILoc);
728  CXXScopeSpec EmptySS;
729  TemplateTy TemplateResult;
730  bool MemberOfUnknownSpecialization;
731  if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
732  Name, nullptr, true, TemplateResult,
733  MemberOfUnknownSpecialization) == TNK_Type_template) {
734  diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
735  return;
736  }
737  }
738 
739  // FIXME: Should we move the logic that tries to recover from a missing tag
740  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
741 
742  if (!SS || (!SS->isSet() && !SS->isInvalid()))
743  Diag(IILoc, IsTemplateName ? diag::err_no_template
744  : diag::err_unknown_typename)
745  << II;
746  else if (DeclContext *DC = computeDeclContext(*SS, false))
747  Diag(IILoc, IsTemplateName ? diag::err_no_member_template
748  : diag::err_typename_nested_not_found)
749  << II << DC << SS->getRange();
750  else if (isDependentScopeSpecifier(*SS)) {
751  unsigned DiagID = diag::err_typename_missing;
752  if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
753  DiagID = diag::ext_typename_missing;
754 
755  Diag(SS->getRange().getBegin(), DiagID)
756  << SS->getScopeRep() << II->getName()
757  << SourceRange(SS->getRange().getBegin(), IILoc)
758  << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
759  SuggestedType = ActOnTypenameType(S, SourceLocation(),
760  *SS, *II, IILoc).get();
761  } else {
762  assert(SS && SS->isInvalid() &&
763  "Invalid scope specifier has already been diagnosed");
764  }
765 }
766 
767 /// Determine whether the given result set contains either a type name
768 /// or
769 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
770  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
771  NextToken.is(tok::less);
772 
773  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
774  if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
775  return true;
776 
777  if (CheckTemplate && isa<TemplateDecl>(*I))
778  return true;
779  }
780 
781  return false;
782 }
783 
784 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
785  Scope *S, CXXScopeSpec &SS,
786  IdentifierInfo *&Name,
787  SourceLocation NameLoc) {
788  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
789  SemaRef.LookupParsedName(R, S, &SS);
790  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
791  StringRef FixItTagName;
792  switch (Tag->getTagKind()) {
793  case TTK_Class:
794  FixItTagName = "class ";
795  break;
796 
797  case TTK_Enum:
798  FixItTagName = "enum ";
799  break;
800 
801  case TTK_Struct:
802  FixItTagName = "struct ";
803  break;
804 
805  case TTK_Interface:
806  FixItTagName = "__interface ";
807  break;
808 
809  case TTK_Union:
810  FixItTagName = "union ";
811  break;
812  }
813 
814  StringRef TagName = FixItTagName.drop_back();
815  SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
816  << Name << TagName << SemaRef.getLangOpts().CPlusPlus
817  << FixItHint::CreateInsertion(NameLoc, FixItTagName);
818 
819  for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
820  I != IEnd; ++I)
821  SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
822  << Name << TagName;
823 
824  // Replace lookup results with just the tag decl.
825  Result.clear(Sema::LookupTagName);
826  SemaRef.LookupParsedName(Result, S, &SS);
827  return true;
828  }
829 
830  return false;
831 }
832 
833 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
835  QualType T, SourceLocation NameLoc) {
836  ASTContext &Context = S.Context;
837 
838  TypeLocBuilder Builder;
839  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
840 
841  T = S.getElaboratedType(ETK_None, SS, T);
842  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
844  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
845  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
846 }
847 
850  SourceLocation NameLoc, const Token &NextToken,
851  bool IsAddressOfOperand, CorrectionCandidateCallback *CCC) {
852  DeclarationNameInfo NameInfo(Name, NameLoc);
853  ObjCMethodDecl *CurMethod = getCurMethodDecl();
854 
855  if (NextToken.is(tok::coloncolon)) {
856  NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
857  BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
858  } else if (getLangOpts().CPlusPlus && SS.isSet() &&
859  isCurrentClassName(*Name, S, &SS)) {
860  // Per [class.qual]p2, this names the constructors of SS, not the
861  // injected-class-name. We don't have a classification for that.
862  // There's not much point caching this result, since the parser
863  // will reject it later.
865  }
866 
867  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
868  LookupParsedName(Result, S, &SS, !CurMethod);
869 
870  // For unqualified lookup in a class template in MSVC mode, look into
871  // dependent base classes where the primary class template is known.
872  if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
873  if (ParsedType TypeInBase =
874  recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
875  return TypeInBase;
876  }
877 
878  // Perform lookup for Objective-C instance variables (including automatically
879  // synthesized instance variables), if we're in an Objective-C method.
880  // FIXME: This lookup really, really needs to be folded in to the normal
881  // unqualified lookup mechanism.
882  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
883  ExprResult E = LookupInObjCMethod(Result, S, Name, true);
884  if (E.get() || E.isInvalid())
885  return E;
886  }
887 
888  bool SecondTry = false;
889  bool IsFilteredTemplateName = false;
890 
891 Corrected:
892  switch (Result.getResultKind()) {
894  // If an unqualified-id is followed by a '(', then we have a function
895  // call.
896  if (!SS.isSet() && NextToken.is(tok::l_paren)) {
897  // In C++, this is an ADL-only call.
898  // FIXME: Reference?
899  if (getLangOpts().CPlusPlus)
900  return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
901 
902  // C90 6.3.2.2:
903  // If the expression that precedes the parenthesized argument list in a
904  // function call consists solely of an identifier, and if no
905  // declaration is visible for this identifier, the identifier is
906  // implicitly declared exactly as if, in the innermost block containing
907  // the function call, the declaration
908  //
909  // extern int identifier ();
910  //
911  // appeared.
912  //
913  // We also allow this in C99 as an extension.
914  if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
915  Result.addDecl(D);
916  Result.resolveKind();
917  return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
918  }
919  }
920 
921  if (getLangOpts().CPlusPlus2a && !SS.isSet() && NextToken.is(tok::less)) {
922  // In C++20 onwards, this could be an ADL-only call to a function
923  // template, and we're required to assume that this is a template name.
924  //
925  // FIXME: Find a way to still do typo correction in this case.
926  TemplateName Template =
927  Context.getAssumedTemplateName(NameInfo.getName());
928  return NameClassification::UndeclaredTemplate(Template);
929  }
930 
931  // In C, we first see whether there is a tag type by the same name, in
932  // which case it's likely that the user just forgot to write "enum",
933  // "struct", or "union".
934  if (!getLangOpts().CPlusPlus && !SecondTry &&
935  isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
936  break;
937  }
938 
939  // Perform typo correction to determine if there is another name that is
940  // close to this name.
941  if (!SecondTry && CCC) {
942  SecondTry = true;
943  if (TypoCorrection Corrected =
944  CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
945  &SS, *CCC, CTK_ErrorRecovery)) {
946  unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
947  unsigned QualifiedDiag = diag::err_no_member_suggest;
948 
949  NamedDecl *FirstDecl = Corrected.getFoundDecl();
950  NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
951  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
952  UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
953  UnqualifiedDiag = diag::err_no_template_suggest;
954  QualifiedDiag = diag::err_no_member_template_suggest;
955  } else if (UnderlyingFirstDecl &&
956  (isa<TypeDecl>(UnderlyingFirstDecl) ||
957  isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
958  isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
959  UnqualifiedDiag = diag::err_unknown_typename_suggest;
960  QualifiedDiag = diag::err_unknown_nested_typename_suggest;
961  }
962 
963  if (SS.isEmpty()) {
964  diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
965  } else {// FIXME: is this even reachable? Test it.
966  std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
967  bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
968  Name->getName().equals(CorrectedStr);
969  diagnoseTypo(Corrected, PDiag(QualifiedDiag)
970  << Name << computeDeclContext(SS, false)
971  << DroppedSpecifier << SS.getRange());
972  }
973 
974  // Update the name, so that the caller has the new name.
975  Name = Corrected.getCorrectionAsIdentifierInfo();
976 
977  // Typo correction corrected to a keyword.
978  if (Corrected.isKeyword())
979  return Name;
980 
981  // Also update the LookupResult...
982  // FIXME: This should probably go away at some point
983  Result.clear();
984  Result.setLookupName(Corrected.getCorrection());
985  if (FirstDecl)
986  Result.addDecl(FirstDecl);
987 
988  // If we found an Objective-C instance variable, let
989  // LookupInObjCMethod build the appropriate expression to
990  // reference the ivar.
991  // FIXME: This is a gross hack.
992  if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
993  Result.clear();
994  ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
995  return E;
996  }
997 
998  goto Corrected;
999  }
1000  }
1001 
1002  // We failed to correct; just fall through and let the parser deal with it.
1003  Result.suppressDiagnostics();
1004  return NameClassification::Unknown();
1005 
1007  // We performed name lookup into the current instantiation, and there were
1008  // dependent bases, so we treat this result the same way as any other
1009  // dependent nested-name-specifier.
1010 
1011  // C++ [temp.res]p2:
1012  // A name used in a template declaration or definition and that is
1013  // dependent on a template-parameter is assumed not to name a type
1014  // unless the applicable name lookup finds a type name or the name is
1015  // qualified by the keyword typename.
1016  //
1017  // FIXME: If the next token is '<', we might want to ask the parser to
1018  // perform some heroics to see if we actually have a
1019  // template-argument-list, which would indicate a missing 'template'
1020  // keyword here.
1021  return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1022  NameInfo, IsAddressOfOperand,
1023  /*TemplateArgs=*/nullptr);
1024  }
1025 
1026  case LookupResult::Found:
1029  break;
1030 
1032  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1033  hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1034  /*AllowDependent=*/false)) {
1035  // C++ [temp.local]p3:
1036  // A lookup that finds an injected-class-name (10.2) can result in an
1037  // ambiguity in certain cases (for example, if it is found in more than
1038  // one base class). If all of the injected-class-names that are found
1039  // refer to specializations of the same class template, and if the name
1040  // is followed by a template-argument-list, the reference refers to the
1041  // class template itself and not a specialization thereof, and is not
1042  // ambiguous.
1043  //
1044  // This filtering can make an ambiguous result into an unambiguous one,
1045  // so try again after filtering out template names.
1046  FilterAcceptableTemplateNames(Result);
1047  if (!Result.isAmbiguous()) {
1048  IsFilteredTemplateName = true;
1049  break;
1050  }
1051  }
1052 
1053  // Diagnose the ambiguity and return an error.
1054  return NameClassification::Error();
1055  }
1056 
1057  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1058  (IsFilteredTemplateName ||
1059  hasAnyAcceptableTemplateNames(
1060  Result, /*AllowFunctionTemplates=*/true,
1061  /*AllowDependent=*/false,
1062  /*AllowNonTemplateFunctions*/ !SS.isSet() &&
1063  getLangOpts().CPlusPlus2a))) {
1064  // C++ [temp.names]p3:
1065  // After name lookup (3.4) finds that a name is a template-name or that
1066  // an operator-function-id or a literal- operator-id refers to a set of
1067  // overloaded functions any member of which is a function template if
1068  // this is followed by a <, the < is always taken as the delimiter of a
1069  // template-argument-list and never as the less-than operator.
1070  // C++2a [temp.names]p2:
1071  // A name is also considered to refer to a template if it is an
1072  // unqualified-id followed by a < and name lookup finds either one
1073  // or more functions or finds nothing.
1074  if (!IsFilteredTemplateName)
1075  FilterAcceptableTemplateNames(Result);
1076 
1077  bool IsFunctionTemplate;
1078  bool IsVarTemplate;
1079  TemplateName Template;
1080  if (Result.end() - Result.begin() > 1) {
1081  IsFunctionTemplate = true;
1082  Template = Context.getOverloadedTemplateName(Result.begin(),
1083  Result.end());
1084  } else if (!Result.empty()) {
1085  auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1086  *Result.begin(), /*AllowFunctionTemplates=*/true,
1087  /*AllowDependent=*/false));
1088  IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1089  IsVarTemplate = isa<VarTemplateDecl>(TD);
1090 
1091  if (SS.isSet() && !SS.isInvalid())
1092  Template =
1094  /*TemplateKeyword=*/false, TD);
1095  else
1096  Template = TemplateName(TD);
1097  } else {
1098  // All results were non-template functions. This is a function template
1099  // name.
1100  IsFunctionTemplate = true;
1101  Template = Context.getAssumedTemplateName(NameInfo.getName());
1102  }
1103 
1104  if (IsFunctionTemplate) {
1105  // Function templates always go through overload resolution, at which
1106  // point we'll perform the various checks (e.g., accessibility) we need
1107  // to based on which function we selected.
1108  Result.suppressDiagnostics();
1109 
1110  return NameClassification::FunctionTemplate(Template);
1111  }
1112 
1113  return IsVarTemplate ? NameClassification::VarTemplate(Template)
1114  : NameClassification::TypeTemplate(Template);
1115  }
1116 
1117  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1118  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1119  DiagnoseUseOfDecl(Type, NameLoc);
1120  MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1121  QualType T = Context.getTypeDeclType(Type);
1122  if (SS.isNotEmpty())
1123  return buildNestedType(*this, SS, T, NameLoc);
1124  return ParsedType::make(T);
1125  }
1126 
1127  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1128  if (!Class) {
1129  // FIXME: It's unfortunate that we don't have a Type node for handling this.
1130  if (ObjCCompatibleAliasDecl *Alias =
1131  dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1132  Class = Alias->getClassInterface();
1133  }
1134 
1135  if (Class) {
1136  DiagnoseUseOfDecl(Class, NameLoc);
1137 
1138  if (NextToken.is(tok::period)) {
1139  // Interface. <something> is parsed as a property reference expression.
1140  // Just return "unknown" as a fall-through for now.
1141  Result.suppressDiagnostics();
1142  return NameClassification::Unknown();
1143  }
1144 
1145  QualType T = Context.getObjCInterfaceType(Class);
1146  return ParsedType::make(T);
1147  }
1148 
1149  // We can have a type template here if we're classifying a template argument.
1150  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1151  !isa<VarTemplateDecl>(FirstDecl))
1152  return NameClassification::TypeTemplate(
1153  TemplateName(cast<TemplateDecl>(FirstDecl)));
1154 
1155  // Check for a tag type hidden by a non-type decl in a few cases where it
1156  // seems likely a type is wanted instead of the non-type that was found.
1157  bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1158  if ((NextToken.is(tok::identifier) ||
1159  (NextIsOp &&
1160  FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1161  isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1162  TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1163  DiagnoseUseOfDecl(Type, NameLoc);
1164  QualType T = Context.getTypeDeclType(Type);
1165  if (SS.isNotEmpty())
1166  return buildNestedType(*this, SS, T, NameLoc);
1167  return ParsedType::make(T);
1168  }
1169 
1170  if (FirstDecl->isCXXClassMember())
1171  return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1172  nullptr, S);
1173 
1174  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1175  return BuildDeclarationNameExpr(SS, Result, ADL);
1176 }
1177 
1180  auto *TD = Name.getAsTemplateDecl();
1181  if (!TD)
1182  return TemplateNameKindForDiagnostics::DependentTemplate;
1183  if (isa<ClassTemplateDecl>(TD))
1184  return TemplateNameKindForDiagnostics::ClassTemplate;
1185  if (isa<FunctionTemplateDecl>(TD))
1186  return TemplateNameKindForDiagnostics::FunctionTemplate;
1187  if (isa<VarTemplateDecl>(TD))
1188  return TemplateNameKindForDiagnostics::VarTemplate;
1189  if (isa<TypeAliasTemplateDecl>(TD))
1190  return TemplateNameKindForDiagnostics::AliasTemplate;
1191  if (isa<TemplateTemplateParmDecl>(TD))
1192  return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1193  if (isa<ConceptDecl>(TD))
1194  return TemplateNameKindForDiagnostics::Concept;
1195  return TemplateNameKindForDiagnostics::DependentTemplate;
1196 }
1197 
1198 // Determines the context to return to after temporarily entering a
1199 // context. This depends in an unnecessarily complicated way on the
1200 // exact ordering of callbacks from the parser.
1202 
1203  // Functions defined inline within classes aren't parsed until we've
1204  // finished parsing the top-level class, so the top-level class is
1205  // the context we'll need to return to.
1206  // A Lambda call operator whose parent is a class must not be treated
1207  // as an inline member function. A Lambda can be used legally
1208  // either as an in-class member initializer or a default argument. These
1209  // are parsed once the class has been marked complete and so the containing
1210  // context would be the nested class (when the lambda is defined in one);
1211  // If the class is not complete, then the lambda is being used in an
1212  // ill-formed fashion (such as to specify the width of a bit-field, or
1213  // in an array-bound) - in which case we still want to return the
1214  // lexically containing DC (which could be a nested class).
1215  if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1216  DC = DC->getLexicalParent();
1217 
1218  // A function not defined within a class will always return to its
1219  // lexical context.
1220  if (!isa<CXXRecordDecl>(DC))
1221  return DC;
1222 
1223  // A C++ inline method/friend is parsed *after* the topmost class
1224  // it was declared in is fully parsed ("complete"); the topmost
1225  // class is the context we need to return to.
1226  while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1227  DC = RD;
1228 
1229  // Return the declaration context of the topmost class the inline method is
1230  // declared in.
1231  return DC;
1232  }
1233 
1234  return DC->getLexicalParent();
1235 }
1236 
1238  assert(getContainingDC(DC) == CurContext &&
1239  "The next DeclContext should be lexically contained in the current one.");
1240  CurContext = DC;
1241  S->setEntity(DC);
1242 }
1243 
1245  assert(CurContext && "DeclContext imbalance!");
1246 
1247  CurContext = getContainingDC(CurContext);
1248  assert(CurContext && "Popped translation unit!");
1249 }
1250 
1252  Decl *D) {
1253  // Unlike PushDeclContext, the context to which we return is not necessarily
1254  // the containing DC of TD, because the new context will be some pre-existing
1255  // TagDecl definition instead of a fresh one.
1256  auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1257  CurContext = cast<TagDecl>(D)->getDefinition();
1258  assert(CurContext && "skipping definition of undefined tag");
1259  // Start lookups from the parent of the current context; we don't want to look
1260  // into the pre-existing complete definition.
1261  S->setEntity(CurContext->getLookupParent());
1262  return Result;
1263 }
1264 
1266  CurContext = static_cast<decltype(CurContext)>(Context);
1267 }
1268 
1269 /// EnterDeclaratorContext - Used when we must lookup names in the context
1270 /// of a declarator's nested name specifier.
1271 ///
1273  // C++0x [basic.lookup.unqual]p13:
1274  // A name used in the definition of a static data member of class
1275  // X (after the qualified-id of the static member) is looked up as
1276  // if the name was used in a member function of X.
1277  // C++0x [basic.lookup.unqual]p14:
1278  // If a variable member of a namespace is defined outside of the
1279  // scope of its namespace then any name used in the definition of
1280  // the variable member (after the declarator-id) is looked up as
1281  // if the definition of the variable member occurred in its
1282  // namespace.
1283  // Both of these imply that we should push a scope whose context
1284  // is the semantic context of the declaration. We can't use
1285  // PushDeclContext here because that context is not necessarily
1286  // lexically contained in the current context. Fortunately,
1287  // the containing scope should have the appropriate information.
1288 
1289  assert(!S->getEntity() && "scope already has entity");
1290 
1291 #ifndef NDEBUG
1292  Scope *Ancestor = S->getParent();
1293  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1294  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1295 #endif
1296 
1297  CurContext = DC;
1298  S->setEntity(DC);
1299 }
1300 
1302  assert(S->getEntity() == CurContext && "Context imbalance!");
1303 
1304  // Switch back to the lexical context. The safety of this is
1305  // enforced by an assert in EnterDeclaratorContext.
1306  Scope *Ancestor = S->getParent();
1307  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1308  CurContext = Ancestor->getEntity();
1309 
1310  // We don't need to do anything with the scope, which is going to
1311  // disappear.
1312 }
1313 
1315  // We assume that the caller has already called
1316  // ActOnReenterTemplateScope so getTemplatedDecl() works.
1317  FunctionDecl *FD = D->getAsFunction();
1318  if (!FD)
1319  return;
1320 
1321  // Same implementation as PushDeclContext, but enters the context
1322  // from the lexical parent, rather than the top-level class.
1323  assert(CurContext == FD->getLexicalParent() &&
1324  "The next DeclContext should be lexically contained in the current one.");
1325  CurContext = FD;
1326  S->setEntity(CurContext);
1327 
1328  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1329  ParmVarDecl *Param = FD->getParamDecl(P);
1330  // If the parameter has an identifier, then add it to the scope
1331  if (Param->getIdentifier()) {
1332  S->AddDecl(Param);
1333  IdResolver.AddDecl(Param);
1334  }
1335  }
1336 }
1337 
1339  // Same implementation as PopDeclContext, but returns to the lexical parent,
1340  // rather than the top-level class.
1341  assert(CurContext && "DeclContext imbalance!");
1342  CurContext = CurContext->getLexicalParent();
1343  assert(CurContext && "Popped translation unit!");
1344 }
1345 
1346 /// Determine whether we allow overloading of the function
1347 /// PrevDecl with another declaration.
1348 ///
1349 /// This routine determines whether overloading is possible, not
1350 /// whether some new function is actually an overload. It will return
1351 /// true in C++ (where we can always provide overloads) or, as an
1352 /// extension, in C when the previous function is already an
1353 /// overloaded function declaration or has the "overloadable"
1354 /// attribute.
1356  ASTContext &Context,
1357  const FunctionDecl *New) {
1358  if (Context.getLangOpts().CPlusPlus)
1359  return true;
1360 
1361  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1362  return true;
1363 
1364  return Previous.getResultKind() == LookupResult::Found &&
1365  (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1366  New->hasAttr<OverloadableAttr>());
1367 }
1368 
1369 /// Add this decl to the scope shadowed decl chains.
1370 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1371  // Move up the scope chain until we find the nearest enclosing
1372  // non-transparent context. The declaration will be introduced into this
1373  // scope.
1374  while (S->getEntity() && S->getEntity()->isTransparentContext())
1375  S = S->getParent();
1376 
1377  // Add scoped declarations into their context, so that they can be
1378  // found later. Declarations without a context won't be inserted
1379  // into any context.
1380  if (AddToContext)
1381  CurContext->addDecl(D);
1382 
1383  // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1384  // are function-local declarations.
1385  if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1389  return;
1390 
1391  // Template instantiations should also not be pushed into scope.
1392  if (isa<FunctionDecl>(D) &&
1393  cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1394  return;
1395 
1396  // If this replaces anything in the current scope,
1397  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1398  IEnd = IdResolver.end();
1399  for (; I != IEnd; ++I) {
1400  if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1401  S->RemoveDecl(*I);
1402  IdResolver.RemoveDecl(*I);
1403 
1404  // Should only need to replace one decl.
1405  break;
1406  }
1407  }
1408 
1409  S->AddDecl(D);
1410 
1411  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1412  // Implicitly-generated labels may end up getting generated in an order that
1413  // isn't strictly lexical, which breaks name lookup. Be careful to insert
1414  // the label at the appropriate place in the identifier chain.
1415  for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1416  DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1417  if (IDC == CurContext) {
1418  if (!S->isDeclScope(*I))
1419  continue;
1420  } else if (IDC->Encloses(CurContext))
1421  break;
1422  }
1423 
1424  IdResolver.InsertDeclAfter(I, D);
1425  } else {
1426  IdResolver.AddDecl(D);
1427  }
1428 }
1429 
1431  bool AllowInlineNamespace) {
1432  return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1433 }
1434 
1436  DeclContext *TargetDC = DC->getPrimaryContext();
1437  do {
1438  if (DeclContext *ScopeDC = S->getEntity())
1439  if (ScopeDC->getPrimaryContext() == TargetDC)
1440  return S;
1441  } while ((S = S->getParent()));
1442 
1443  return nullptr;
1444 }
1445 
1447  DeclContext*,
1448  ASTContext&);
1449 
1450 /// Filters out lookup results that don't fall within the given scope
1451 /// as determined by isDeclInScope.
1453  bool ConsiderLinkage,
1454  bool AllowInlineNamespace) {
1456  while (F.hasNext()) {
1457  NamedDecl *D = F.next();
1458 
1459  if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1460  continue;
1461 
1462  if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1463  continue;
1464 
1465  F.erase();
1466  }
1467 
1468  F.done();
1469 }
1470 
1471 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1472 /// have compatible owning modules.
1474  // FIXME: The Modules TS is not clear about how friend declarations are
1475  // to be treated. It's not meaningful to have different owning modules for
1476  // linkage in redeclarations of the same entity, so for now allow the
1477  // redeclaration and change the owning modules to match.
1478  if (New->getFriendObjectKind() &&
1481  makeMergedDefinitionVisible(New);
1482  return false;
1483  }
1484 
1485  Module *NewM = New->getOwningModule();
1486  Module *OldM = Old->getOwningModule();
1487 
1488  if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1489  NewM = NewM->Parent;
1490  if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1491  OldM = OldM->Parent;
1492 
1493  if (NewM == OldM)
1494  return false;
1495 
1496  bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1497  bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1498  if (NewIsModuleInterface || OldIsModuleInterface) {
1499  // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1500  // if a declaration of D [...] appears in the purview of a module, all
1501  // other such declarations shall appear in the purview of the same module
1502  Diag(New->getLocation(), diag::err_mismatched_owning_module)
1503  << New
1504  << NewIsModuleInterface
1505  << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1506  << OldIsModuleInterface
1507  << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1508  Diag(Old->getLocation(), diag::note_previous_declaration);
1509  New->setInvalidDecl();
1510  return true;
1511  }
1512 
1513  return false;
1514 }
1515 
1516 static bool isUsingDecl(NamedDecl *D) {
1517  return isa<UsingShadowDecl>(D) ||
1518  isa<UnresolvedUsingTypenameDecl>(D) ||
1519  isa<UnresolvedUsingValueDecl>(D);
1520 }
1521 
1522 /// Removes using shadow declarations from the lookup results.
1525  while (F.hasNext())
1526  if (isUsingDecl(F.next()))
1527  F.erase();
1528 
1529  F.done();
1530 }
1531 
1532 /// Check for this common pattern:
1533 /// @code
1534 /// class S {
1535 /// S(const S&); // DO NOT IMPLEMENT
1536 /// void operator=(const S&); // DO NOT IMPLEMENT
1537 /// };
1538 /// @endcode
1540  // FIXME: Should check for private access too but access is set after we get
1541  // the decl here.
1543  return false;
1544 
1545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1546  return CD->isCopyConstructor();
1547  return D->isCopyAssignmentOperator();
1548 }
1549 
1550 // We need this to handle
1551 //
1552 // typedef struct {
1553 // void *foo() { return 0; }
1554 // } A;
1555 //
1556 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1557 // for example. If 'A', foo will have external linkage. If we have '*A',
1558 // foo will have no linkage. Since we can't know until we get to the end
1559 // of the typedef, this function finds out if D might have non-external linkage.
1560 // Callers should verify at the end of the TU if it D has external linkage or
1561 // not.
1562 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1563  const DeclContext *DC = D->getDeclContext();
1564  while (!DC->isTranslationUnit()) {
1565  if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1566  if (!RD->hasNameForLinkage())
1567  return true;
1568  }
1569  DC = DC->getParent();
1570  }
1571 
1572  return !D->isExternallyVisible();
1573 }
1574 
1575 // FIXME: This needs to be refactored; some other isInMainFile users want
1576 // these semantics.
1577 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1578  if (S.TUKind != TU_Complete)
1579  return false;
1580  return S.SourceMgr.isInMainFile(Loc);
1581 }
1582 
1584  assert(D);
1585 
1586  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1587  return false;
1588 
1589  // Ignore all entities declared within templates, and out-of-line definitions
1590  // of members of class templates.
1591  if (D->getDeclContext()->isDependentContext() ||
1593  return false;
1594 
1595  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1596  if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1597  return false;
1598  // A non-out-of-line declaration of a member specialization was implicitly
1599  // instantiated; it's the out-of-line declaration that we're interested in.
1600  if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1601  FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1602  return false;
1603 
1604  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1605  if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1606  return false;
1607  } else {
1608  // 'static inline' functions are defined in headers; don't warn.
1609  if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1610  return false;
1611  }
1612 
1613  if (FD->doesThisDeclarationHaveABody() &&
1614  Context.DeclMustBeEmitted(FD))
1615  return false;
1616  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1617  // Constants and utility variables are defined in headers with internal
1618  // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1619  // like "inline".)
1620  if (!isMainFileLoc(*this, VD->getLocation()))
1621  return false;
1622 
1623  if (Context.DeclMustBeEmitted(VD))
1624  return false;
1625 
1626  if (VD->isStaticDataMember() &&
1627  VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1628  return false;
1629  if (VD->isStaticDataMember() &&
1630  VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1631  VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1632  return false;
1633 
1634  if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1635  return false;
1636  } else {
1637  return false;
1638  }
1639 
1640  // Only warn for unused decls internal to the translation unit.
1641  // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1642  // for inline functions defined in the main source file, for instance.
1643  return mightHaveNonExternalLinkage(D);
1644 }
1645 
1647  if (!D)
1648  return;
1649 
1650  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1651  const FunctionDecl *First = FD->getFirstDecl();
1652  if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1653  return; // First should already be in the vector.
1654  }
1655 
1656  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1657  const VarDecl *First = VD->getFirstDecl();
1658  if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1659  return; // First should already be in the vector.
1660  }
1661 
1662  if (ShouldWarnIfUnusedFileScopedDecl(D))
1663  UnusedFileScopedDecls.push_back(D);
1664 }
1665 
1666 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1667  if (D->isInvalidDecl())
1668  return false;
1669 
1670  bool Referenced = false;
1671  if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1672  // For a decomposition declaration, warn if none of the bindings are
1673  // referenced, instead of if the variable itself is referenced (which
1674  // it is, by the bindings' expressions).
1675  for (auto *BD : DD->bindings()) {
1676  if (BD->isReferenced()) {
1677  Referenced = true;
1678  break;
1679  }
1680  }
1681  } else if (!D->getDeclName()) {
1682  return false;
1683  } else if (D->isReferenced() || D->isUsed()) {
1684  Referenced = true;
1685  }
1686 
1687  if (Referenced || D->hasAttr<UnusedAttr>() ||
1688  D->hasAttr<ObjCPreciseLifetimeAttr>())
1689  return false;
1690 
1691  if (isa<LabelDecl>(D))
1692  return true;
1693 
1694  // Except for labels, we only care about unused decls that are local to
1695  // functions.
1696  bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1697  if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1698  // For dependent types, the diagnostic is deferred.
1699  WithinFunction =
1700  WithinFunction || (R->isLocalClass() && !R->isDependentType());
1701  if (!WithinFunction)
1702  return false;
1703 
1704  if (isa<TypedefNameDecl>(D))
1705  return true;
1706 
1707  // White-list anything that isn't a local variable.
1708  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1709  return false;
1710 
1711  // Types of valid local variables should be complete, so this should succeed.
1712  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1713 
1714  // White-list anything with an __attribute__((unused)) type.
1715  const auto *Ty = VD->getType().getTypePtr();
1716 
1717  // Only look at the outermost level of typedef.
1718  if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1719  if (TT->getDecl()->hasAttr<UnusedAttr>())
1720  return false;
1721  }
1722 
1723  // If we failed to complete the type for some reason, or if the type is
1724  // dependent, don't diagnose the variable.
1725  if (Ty->isIncompleteType() || Ty->isDependentType())
1726  return false;
1727 
1728  // Look at the element type to ensure that the warning behaviour is
1729  // consistent for both scalars and arrays.
1730  Ty = Ty->getBaseElementTypeUnsafe();
1731 
1732  if (const TagType *TT = Ty->getAs<TagType>()) {
1733  const TagDecl *Tag = TT->getDecl();
1734  if (Tag->hasAttr<UnusedAttr>())
1735  return false;
1736 
1737  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1738  if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1739  return false;
1740 
1741  if (const Expr *Init = VD->getInit()) {
1742  if (const ExprWithCleanups *Cleanups =
1743  dyn_cast<ExprWithCleanups>(Init))
1744  Init = Cleanups->getSubExpr();
1745  const CXXConstructExpr *Construct =
1746  dyn_cast<CXXConstructExpr>(Init);
1747  if (Construct && !Construct->isElidable()) {
1748  CXXConstructorDecl *CD = Construct->getConstructor();
1749  if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1750  (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1751  return false;
1752  }
1753  }
1754  }
1755  }
1756 
1757  // TODO: __attribute__((unused)) templates?
1758  }
1759 
1760  return true;
1761 }
1762 
1763 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1764  FixItHint &Hint) {
1765  if (isa<LabelDecl>(D)) {
1767  D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1768  true);
1769  if (AfterColon.isInvalid())
1770  return;
1771  Hint = FixItHint::CreateRemoval(
1772  CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1773  }
1774 }
1775 
1777  if (D->getTypeForDecl()->isDependentType())
1778  return;
1779 
1780  for (auto *TmpD : D->decls()) {
1781  if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1782  DiagnoseUnusedDecl(T);
1783  else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1784  DiagnoseUnusedNestedTypedefs(R);
1785  }
1786 }
1787 
1788 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1789 /// unless they are marked attr(unused).
1791  if (!ShouldDiagnoseUnusedDecl(D))
1792  return;
1793 
1794  if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1795  // typedefs can be referenced later on, so the diagnostics are emitted
1796  // at end-of-translation-unit.
1797  UnusedLocalTypedefNameCandidates.insert(TD);
1798  return;
1799  }
1800 
1801  FixItHint Hint;
1802  GenerateFixForUnusedDecl(D, Context, Hint);
1803 
1804  unsigned DiagID;
1805  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1806  DiagID = diag::warn_unused_exception_param;
1807  else if (isa<LabelDecl>(D))
1808  DiagID = diag::warn_unused_label;
1809  else
1810  DiagID = diag::warn_unused_variable;
1811 
1812  Diag(D->getLocation(), DiagID) << D << Hint;
1813 }
1814 
1815 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1816  // Verify that we have no forward references left. If so, there was a goto
1817  // or address of a label taken, but no definition of it. Label fwd
1818  // definitions are indicated with a null substmt which is also not a resolved
1819  // MS inline assembly label name.
1820  bool Diagnose = false;
1821  if (L->isMSAsmLabel())
1822  Diagnose = !L->isResolvedMSAsmLabel();
1823  else
1824  Diagnose = L->getStmt() == nullptr;
1825  if (Diagnose)
1826  S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1827 }
1828 
1830  S->mergeNRVOIntoParent();
1831 
1832  if (S->decl_empty()) return;
1833  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1834  "Scope shouldn't contain decls!");
1835 
1836  for (auto *TmpD : S->decls()) {
1837  assert(TmpD && "This decl didn't get pushed??");
1838 
1839  assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1840  NamedDecl *D = cast<NamedDecl>(TmpD);
1841 
1842  // Diagnose unused variables in this scope.
1843  if (!S->hasUnrecoverableErrorOccurred()) {
1844  DiagnoseUnusedDecl(D);
1845  if (const auto *RD = dyn_cast<RecordDecl>(D))
1846  DiagnoseUnusedNestedTypedefs(RD);
1847  }
1848 
1849  if (!D->getDeclName()) continue;
1850 
1851  // If this was a forward reference to a label, verify it was defined.
1852  if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1853  CheckPoppedLabel(LD, *this);
1854 
1855  // Remove this name from our lexical scope, and warn on it if we haven't
1856  // already.
1857  IdResolver.RemoveDecl(D);
1858  auto ShadowI = ShadowingDecls.find(D);
1859  if (ShadowI != ShadowingDecls.end()) {
1860  if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1861  Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1862  << D << FD << FD->getParent();
1863  Diag(FD->getLocation(), diag::note_previous_declaration);
1864  }
1865  ShadowingDecls.erase(ShadowI);
1866  }
1867  }
1868 }
1869 
1870 /// Look for an Objective-C class in the translation unit.
1871 ///
1872 /// \param Id The name of the Objective-C class we're looking for. If
1873 /// typo-correction fixes this name, the Id will be updated
1874 /// to the fixed name.
1875 ///
1876 /// \param IdLoc The location of the name in the translation unit.
1877 ///
1878 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1879 /// if there is no class with the given name.
1880 ///
1881 /// \returns The declaration of the named Objective-C class, or NULL if the
1882 /// class could not be found.
1884  SourceLocation IdLoc,
1885  bool DoTypoCorrection) {
1886  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1887  // creation from this context.
1888  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1889 
1890  if (!IDecl && DoTypoCorrection) {
1891  // Perform typo correction at the given location, but only if we
1892  // find an Objective-C class name.
1894  if (TypoCorrection C =
1895  CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1896  TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1897  diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1898  IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1899  Id = IDecl->getIdentifier();
1900  }
1901  }
1902  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1903  // This routine must always return a class definition, if any.
1904  if (Def && Def->getDefinition())
1905  Def = Def->getDefinition();
1906  return Def;
1907 }
1908 
1909 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1910 /// from S, where a non-field would be declared. This routine copes
1911 /// with the difference between C and C++ scoping rules in structs and
1912 /// unions. For example, the following code is well-formed in C but
1913 /// ill-formed in C++:
1914 /// @code
1915 /// struct S6 {
1916 /// enum { BAR } e;
1917 /// };
1918 ///
1919 /// void test_S6() {
1920 /// struct S6 a;
1921 /// a.e = BAR;
1922 /// }
1923 /// @endcode
1924 /// For the declaration of BAR, this routine will return a different
1925 /// scope. The scope S will be the scope of the unnamed enumeration
1926 /// within S6. In C++, this routine will return the scope associated
1927 /// with S6, because the enumeration's scope is a transparent
1928 /// context but structures can contain non-field names. In C, this
1929 /// routine will return the translation unit scope, since the
1930 /// enumeration's scope is a transparent context and structures cannot
1931 /// contain non-field names.
1933  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1934  (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1935  (S->isClassScope() && !getLangOpts().CPlusPlus))
1936  S = S->getParent();
1937  return S;
1938 }
1939 
1940 /// Looks up the declaration of "struct objc_super" and
1941 /// saves it for later use in building builtin declaration of
1942 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1943 /// pre-existing declaration exists no action takes place.
1944 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1945  IdentifierInfo *II) {
1946  if (!II->isStr("objc_msgSendSuper"))
1947  return;
1948  ASTContext &Context = ThisSema.Context;
1949 
1950  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1952  ThisSema.LookupName(Result, S);
1953  if (Result.getResultKind() == LookupResult::Found)
1954  if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1955  Context.setObjCSuperType(Context.getTagDeclType(TD));
1956 }
1957 
1958 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
1960  switch (Error) {
1961  case ASTContext::GE_None:
1962  return "";
1964  return BuiltinInfo.getHeaderName(ID);
1966  return "stdio.h";
1968  return "setjmp.h";
1970  return "ucontext.h";
1971  }
1972  llvm_unreachable("unhandled error kind");
1973 }
1974 
1975 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1976 /// file scope. lazily create a decl for it. ForRedeclaration is true
1977 /// if we're creating this built-in in anticipation of redeclaring the
1978 /// built-in.
1980  Scope *S, bool ForRedeclaration,
1981  SourceLocation Loc) {
1982  LookupPredefedObjCSuperType(*this, S, II);
1983 
1985  QualType R = Context.GetBuiltinType(ID, Error);
1986  if (Error) {
1987  if (!ForRedeclaration)
1988  return nullptr;
1989 
1990  // If we have a builtin without an associated type we should not emit a
1991  // warning when we were not able to find a type for it.
1992  if (Error == ASTContext::GE_Missing_type)
1993  return nullptr;
1994 
1995  // If we could not find a type for setjmp it is because the jmp_buf type was
1996  // not defined prior to the setjmp declaration.
1997  if (Error == ASTContext::GE_Missing_setjmp) {
1998  Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
1999  << Context.BuiltinInfo.getName(ID);
2000  return nullptr;
2001  }
2002 
2003  // Generally, we emit a warning that the declaration requires the
2004  // appropriate header.
2005  Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2006  << getHeaderName(Context.BuiltinInfo, ID, Error)
2007  << Context.BuiltinInfo.getName(ID);
2008  return nullptr;
2009  }
2010 
2011  if (!ForRedeclaration &&
2012  (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2013  Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2014  Diag(Loc, diag::ext_implicit_lib_function_decl)
2015  << Context.BuiltinInfo.getName(ID) << R;
2016  if (Context.BuiltinInfo.getHeaderName(ID) &&
2017  !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
2018  Diag(Loc, diag::note_include_header_or_declare)
2019  << Context.BuiltinInfo.getHeaderName(ID)
2020  << Context.BuiltinInfo.getName(ID);
2021  }
2022 
2023  if (R.isNull())
2024  return nullptr;
2025 
2027  if (getLangOpts().CPlusPlus) {
2028  LinkageSpecDecl *CLinkageDecl =
2029  LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
2030  LinkageSpecDecl::lang_c, false);
2031  CLinkageDecl->setImplicit();
2032  Parent->addDecl(CLinkageDecl);
2033  Parent = CLinkageDecl;
2034  }
2035 
2036  FunctionDecl *New = FunctionDecl::Create(Context,
2037  Parent,
2038  Loc, Loc, II, R, /*TInfo=*/nullptr,
2039  SC_Extern,
2040  false,
2041  R->isFunctionProtoType());
2042  New->setImplicit();
2043 
2044  // Create Decl objects for each parameter, adding them to the
2045  // FunctionDecl.
2046  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
2048  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2049  ParmVarDecl *parm =
2051  nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2052  SC_None, nullptr);
2053  parm->setScopeInfo(0, i);
2054  Params.push_back(parm);
2055  }
2056  New->setParams(Params);
2057  }
2058 
2059  AddKnownFunctionAttributes(New);
2060  RegisterLocallyScopedExternCDecl(New, S);
2061 
2062  // TUScope is the translation-unit scope to insert this function into.
2063  // FIXME: This is hideous. We need to teach PushOnScopeChains to
2064  // relate Scopes to DeclContexts, and probably eliminate CurContext
2065  // entirely, but we're not there yet.
2066  DeclContext *SavedContext = CurContext;
2067  CurContext = Parent;
2068  PushOnScopeChains(New, TUScope);
2069  CurContext = SavedContext;
2070  return New;
2071 }
2072 
2073 /// Typedef declarations don't have linkage, but they still denote the same
2074 /// entity if their types are the same.
2075 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2076 /// isSameEntity.
2080  // This is only interesting when modules are enabled.
2081  if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2082  return;
2083 
2084  // Empty sets are uninteresting.
2085  if (Previous.empty())
2086  return;
2087 
2088  LookupResult::Filter Filter = Previous.makeFilter();
2089  while (Filter.hasNext()) {
2090  NamedDecl *Old = Filter.next();
2091 
2092  // Non-hidden declarations are never ignored.
2093  if (S.isVisible(Old))
2094  continue;
2095 
2096  // Declarations of the same entity are not ignored, even if they have
2097  // different linkages.
2098  if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2099  if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2100  Decl->getUnderlyingType()))
2101  continue;
2102 
2103  // If both declarations give a tag declaration a typedef name for linkage
2104  // purposes, then they declare the same entity.
2105  if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2107  continue;
2108  }
2109 
2110  Filter.erase();
2111  }
2112 
2113  Filter.done();
2114 }
2115 
2117  QualType OldType;
2118  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2119  OldType = OldTypedef->getUnderlyingType();
2120  else
2121  OldType = Context.getTypeDeclType(Old);
2122  QualType NewType = New->getUnderlyingType();
2123 
2124  if (NewType->isVariablyModifiedType()) {
2125  // Must not redefine a typedef with a variably-modified type.
2126  int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2127  Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2128  << Kind << NewType;
2129  if (Old->getLocation().isValid())
2130  notePreviousDefinition(Old, New->getLocation());
2131  New->setInvalidDecl();
2132  return true;
2133  }
2134 
2135  if (OldType != NewType &&
2136  !OldType->isDependentType() &&
2137  !NewType->isDependentType() &&
2138  !Context.hasSameType(OldType, NewType)) {
2139  int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2140  Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2141  << Kind << NewType << OldType;
2142  if (Old->getLocation().isValid())
2143  notePreviousDefinition(Old, New->getLocation());
2144  New->setInvalidDecl();
2145  return true;
2146  }
2147  return false;
2148 }
2149 
2150 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2151 /// same name and scope as a previous declaration 'Old'. Figure out
2152 /// how to resolve this situation, merging decls or emitting
2153 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2154 ///
2156  LookupResult &OldDecls) {
2157  // If the new decl is known invalid already, don't bother doing any
2158  // merging checks.
2159  if (New->isInvalidDecl()) return;
2160 
2161  // Allow multiple definitions for ObjC built-in typedefs.
2162  // FIXME: Verify the underlying types are equivalent!
2163  if (getLangOpts().ObjC) {
2164  const IdentifierInfo *TypeID = New->getIdentifier();
2165  switch (TypeID->getLength()) {
2166  default: break;
2167  case 2:
2168  {
2169  if (!TypeID->isStr("id"))
2170  break;
2171  QualType T = New->getUnderlyingType();
2172  if (!T->isPointerType())
2173  break;
2174  if (!T->isVoidPointerType()) {
2175  QualType PT = T->getAs<PointerType>()->getPointeeType();
2176  if (!PT->isStructureType())
2177  break;
2178  }
2179  Context.setObjCIdRedefinitionType(T);
2180  // Install the built-in type for 'id', ignoring the current definition.
2181  New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2182  return;
2183  }
2184  case 5:
2185  if (!TypeID->isStr("Class"))
2186  break;
2188  // Install the built-in type for 'Class', ignoring the current definition.
2189  New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2190  return;
2191  case 3:
2192  if (!TypeID->isStr("SEL"))
2193  break;
2195  // Install the built-in type for 'SEL', ignoring the current definition.
2196  New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2197  return;
2198  }
2199  // Fall through - the typedef name was not a builtin type.
2200  }
2201 
2202  // Verify the old decl was also a type.
2203  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2204  if (!Old) {
2205  Diag(New->getLocation(), diag::err_redefinition_different_kind)
2206  << New->getDeclName();
2207 
2208  NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2209  if (OldD->getLocation().isValid())
2210  notePreviousDefinition(OldD, New->getLocation());
2211 
2212  return New->setInvalidDecl();
2213  }
2214 
2215  // If the old declaration is invalid, just give up here.
2216  if (Old->isInvalidDecl())
2217  return New->setInvalidDecl();
2218 
2219  if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2220  auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2221  auto *NewTag = New->getAnonDeclWithTypedefName();
2222  NamedDecl *Hidden = nullptr;
2223  if (OldTag && NewTag &&
2224  OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2225  !hasVisibleDefinition(OldTag, &Hidden)) {
2226  // There is a definition of this tag, but it is not visible. Use it
2227  // instead of our tag.
2228  New->setTypeForDecl(OldTD->getTypeForDecl());
2229  if (OldTD->isModed())
2230  New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2231  OldTD->getUnderlyingType());
2232  else
2233  New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2234 
2235  // Make the old tag definition visible.
2236  makeMergedDefinitionVisible(Hidden);
2237 
2238  // If this was an unscoped enumeration, yank all of its enumerators
2239  // out of the scope.
2240  if (isa<EnumDecl>(NewTag)) {
2241  Scope *EnumScope = getNonFieldDeclScope(S);
2242  for (auto *D : NewTag->decls()) {
2243  auto *ED = cast<EnumConstantDecl>(D);
2244  assert(EnumScope->isDeclScope(ED));
2245  EnumScope->RemoveDecl(ED);
2246  IdResolver.RemoveDecl(ED);
2247  ED->getLexicalDeclContext()->removeDecl(ED);
2248  }
2249  }
2250  }
2251  }
2252 
2253  // If the typedef types are not identical, reject them in all languages and
2254  // with any extensions enabled.
2255  if (isIncompatibleTypedef(Old, New))
2256  return;
2257 
2258  // The types match. Link up the redeclaration chain and merge attributes if
2259  // the old declaration was a typedef.
2260  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2261  New->setPreviousDecl(Typedef);
2262  mergeDeclAttributes(New, Old);
2263  }
2264 
2265  if (getLangOpts().MicrosoftExt)
2266  return;
2267 
2268  if (getLangOpts().CPlusPlus) {
2269  // C++ [dcl.typedef]p2:
2270  // In a given non-class scope, a typedef specifier can be used to
2271  // redefine the name of any type declared in that scope to refer
2272  // to the type to which it already refers.
2273  if (!isa<CXXRecordDecl>(CurContext))
2274  return;
2275 
2276  // C++0x [dcl.typedef]p4:
2277  // In a given class scope, a typedef specifier can be used to redefine
2278  // any class-name declared in that scope that is not also a typedef-name
2279  // to refer to the type to which it already refers.
2280  //
2281  // This wording came in via DR424, which was a correction to the
2282  // wording in DR56, which accidentally banned code like:
2283  //
2284  // struct S {
2285  // typedef struct A { } A;
2286  // };
2287  //
2288  // in the C++03 standard. We implement the C++0x semantics, which
2289  // allow the above but disallow
2290  //
2291  // struct S {
2292  // typedef int I;
2293  // typedef int I;
2294  // };
2295  //
2296  // since that was the intent of DR56.
2297  if (!isa<TypedefNameDecl>(Old))
2298  return;
2299 
2300  Diag(New->getLocation(), diag::err_redefinition)
2301  << New->getDeclName();
2302  notePreviousDefinition(Old, New->getLocation());
2303  return New->setInvalidDecl();
2304  }
2305 
2306  // Modules always permit redefinition of typedefs, as does C11.
2307  if (getLangOpts().Modules || getLangOpts().C11)
2308  return;
2309 
2310  // If we have a redefinition of a typedef in C, emit a warning. This warning
2311  // is normally mapped to an error, but can be controlled with
2312  // -Wtypedef-redefinition. If either the original or the redefinition is
2313  // in a system header, don't emit this for compatibility with GCC.
2314  if (getDiagnostics().getSuppressSystemWarnings() &&
2315  // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2316  (Old->isImplicit() ||
2317  Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2318  Context.getSourceManager().isInSystemHeader(New->getLocation())))
2319  return;
2320 
2321  Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2322  << New->getDeclName();
2323  notePreviousDefinition(Old, New->getLocation());
2324 }
2325 
2326 /// DeclhasAttr - returns true if decl Declaration already has the target
2327 /// attribute.
2328 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2329  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2330  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2331  for (const auto *i : D->attrs())
2332  if (i->getKind() == A->getKind()) {
2333  if (Ann) {
2334  if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2335  return true;
2336  continue;
2337  }
2338  // FIXME: Don't hardcode this check
2339  if (OA && isa<OwnershipAttr>(i))
2340  return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2341  return true;
2342  }
2343 
2344  return false;
2345 }
2346 
2348  if (VarDecl *VD = dyn_cast<VarDecl>(D))
2349  return VD->isThisDeclarationADefinition();
2350  if (TagDecl *TD = dyn_cast<TagDecl>(D))
2351  return TD->isCompleteDefinition() || TD->isBeingDefined();
2352  return true;
2353 }
2354 
2355 /// Merge alignment attributes from \p Old to \p New, taking into account the
2356 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2357 ///
2358 /// \return \c true if any attributes were added to \p New.
2359 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2360  // Look for alignas attributes on Old, and pick out whichever attribute
2361  // specifies the strictest alignment requirement.
2362  AlignedAttr *OldAlignasAttr = nullptr;
2363  AlignedAttr *OldStrictestAlignAttr = nullptr;
2364  unsigned OldAlign = 0;
2365  for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2366  // FIXME: We have no way of representing inherited dependent alignments
2367  // in a case like:
2368  // template<int A, int B> struct alignas(A) X;
2369  // template<int A, int B> struct alignas(B) X {};
2370  // For now, we just ignore any alignas attributes which are not on the
2371  // definition in such a case.
2372  if (I->isAlignmentDependent())
2373  return false;
2374 
2375  if (I->isAlignas())
2376  OldAlignasAttr = I;
2377 
2378  unsigned Align = I->getAlignment(S.Context);
2379  if (Align > OldAlign) {
2380  OldAlign = Align;
2381  OldStrictestAlignAttr = I;
2382  }
2383  }
2384 
2385  // Look for alignas attributes on New.
2386  AlignedAttr *NewAlignasAttr = nullptr;
2387  unsigned NewAlign = 0;
2388  for (auto *I : New->specific_attrs<AlignedAttr>()) {
2389  if (I->isAlignmentDependent())
2390  return false;
2391 
2392  if (I->isAlignas())
2393  NewAlignasAttr = I;
2394 
2395  unsigned Align = I->getAlignment(S.Context);
2396  if (Align > NewAlign)
2397  NewAlign = Align;
2398  }
2399 
2400  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2401  // Both declarations have 'alignas' attributes. We require them to match.
2402  // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2403  // fall short. (If two declarations both have alignas, they must both match
2404  // every definition, and so must match each other if there is a definition.)
2405 
2406  // If either declaration only contains 'alignas(0)' specifiers, then it
2407  // specifies the natural alignment for the type.
2408  if (OldAlign == 0 || NewAlign == 0) {
2409  QualType Ty;
2410  if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2411  Ty = VD->getType();
2412  else
2413  Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2414 
2415  if (OldAlign == 0)
2416  OldAlign = S.Context.getTypeAlign(Ty);
2417  if (NewAlign == 0)
2418  NewAlign = S.Context.getTypeAlign(Ty);
2419  }
2420 
2421  if (OldAlign != NewAlign) {
2422  S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2423  << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2424  << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2425  S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2426  }
2427  }
2428 
2429  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2430  // C++11 [dcl.align]p6:
2431  // if any declaration of an entity has an alignment-specifier,
2432  // every defining declaration of that entity shall specify an
2433  // equivalent alignment.
2434  // C11 6.7.5/7:
2435  // If the definition of an object does not have an alignment
2436  // specifier, any other declaration of that object shall also
2437  // have no alignment specifier.
2438  S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2439  << OldAlignasAttr;
2440  S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2441  << OldAlignasAttr;
2442  }
2443 
2444  bool AnyAdded = false;
2445 
2446  // Ensure we have an attribute representing the strictest alignment.
2447  if (OldAlign > NewAlign) {
2448  AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2449  Clone->setInherited(true);
2450  New->addAttr(Clone);
2451  AnyAdded = true;
2452  }
2453 
2454  // Ensure we have an alignas attribute if the old declaration had one.
2455  if (OldAlignasAttr && !NewAlignasAttr &&
2456  !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2457  AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2458  Clone->setInherited(true);
2459  New->addAttr(Clone);
2460  AnyAdded = true;
2461  }
2462 
2463  return AnyAdded;
2464 }
2465 
2466 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2467  const InheritableAttr *Attr,
2469  // This function copies an attribute Attr from a previous declaration to the
2470  // new declaration D if the new declaration doesn't itself have that attribute
2471  // yet or if that attribute allows duplicates.
2472  // If you're adding a new attribute that requires logic different from
2473  // "use explicit attribute on decl if present, else use attribute from
2474  // previous decl", for example if the attribute needs to be consistent
2475  // between redeclarations, you need to call a custom merge function here.
2476  InheritableAttr *NewAttr = nullptr;
2477  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2478  if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2479  NewAttr = S.mergeAvailabilityAttr(
2480  D, AA->getRange(), AA->getPlatform(), AA->isImplicit(),
2481  AA->getIntroduced(), AA->getDeprecated(), AA->getObsoleted(),
2482  AA->getUnavailable(), AA->getMessage(), AA->getStrict(),
2483  AA->getReplacement(), AMK, AA->getPriority(), AttrSpellingListIndex);
2484  else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2485  NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2486  AttrSpellingListIndex);
2487  else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2488  NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2489  AttrSpellingListIndex);
2490  else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2491  NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2492  AttrSpellingListIndex);
2493  else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2494  NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2495  AttrSpellingListIndex);
2496  else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2497  NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2498  FA->getFormatIdx(), FA->getFirstArg(),
2499  AttrSpellingListIndex);
2500  else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2501  NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2502  AttrSpellingListIndex);
2503  else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2504  NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(),
2505  AttrSpellingListIndex);
2506  else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2507  NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2508  AttrSpellingListIndex,
2509  IA->getSemanticSpelling());
2510  else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2511  NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2512  &S.Context.Idents.get(AA->getSpelling()),
2513  AttrSpellingListIndex);
2514  else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2515  (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2516  isa<CUDAGlobalAttr>(Attr))) {
2517  // CUDA target attributes are part of function signature for
2518  // overloading purposes and must not be merged.
2519  return false;
2520  } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2521  NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2522  else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2523  NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2524  else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2525  NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2526  else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2527  NewAttr = S.mergeCommonAttr(D, *CommonA);
2528  else if (isa<AlignedAttr>(Attr))
2529  // AlignedAttrs are handled separately, because we need to handle all
2530  // such attributes on a declaration at the same time.
2531  NewAttr = nullptr;
2532  else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2533  (AMK == Sema::AMK_Override ||
2535  NewAttr = nullptr;
2536  else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2537  NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2538  UA->getGuid());
2539  else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2540  NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2541  else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2542  NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2543  else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2544  NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2545 
2546  if (NewAttr) {
2547  NewAttr->setInherited(true);
2548  D->addAttr(NewAttr);
2549  if (isa<MSInheritanceAttr>(NewAttr))
2550  S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2551  return true;
2552  }
2553 
2554  return false;
2555 }
2556 
2557 static const NamedDecl *getDefinition(const Decl *D) {
2558  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2559  return TD->getDefinition();
2560  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2561  const VarDecl *Def = VD->getDefinition();
2562  if (Def)
2563  return Def;
2564  return VD->getActingDefinition();
2565  }
2566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2567  return FD->getDefinition();
2568  return nullptr;
2569 }
2570 
2571 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2572  for (const auto *Attribute : D->attrs())
2573  if (Attribute->getKind() == Kind)
2574  return true;
2575  return false;
2576 }
2577 
2578 /// checkNewAttributesAfterDef - If we already have a definition, check that
2579 /// there are no new attributes in this declaration.
2580 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2581  if (!New->hasAttrs())
2582  return;
2583 
2584  const NamedDecl *Def = getDefinition(Old);
2585  if (!Def || Def == New)
2586  return;
2587 
2588  AttrVec &NewAttributes = New->getAttrs();
2589  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2590  const Attr *NewAttribute = NewAttributes[I];
2591 
2592  if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2593  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2594  Sema::SkipBodyInfo SkipBody;
2595  S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2596 
2597  // If we're skipping this definition, drop the "alias" attribute.
2598  if (SkipBody.ShouldSkip) {
2599  NewAttributes.erase(NewAttributes.begin() + I);
2600  --E;
2601  continue;
2602  }
2603  } else {
2604  VarDecl *VD = cast<VarDecl>(New);
2605  unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2607  ? diag::err_alias_after_tentative
2608  : diag::err_redefinition;
2609  S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2610  if (Diag == diag::err_redefinition)
2611  S.notePreviousDefinition(Def, VD->getLocation());
2612  else
2613  S.Diag(Def->getLocation(), diag::note_previous_definition);
2614  VD->setInvalidDecl();
2615  }
2616  ++I;
2617  continue;
2618  }
2619 
2620  if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2621  // Tentative definitions are only interesting for the alias check above.
2622  if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2623  ++I;
2624  continue;
2625  }
2626  }
2627 
2628  if (hasAttribute(Def, NewAttribute->getKind())) {
2629  ++I;
2630  continue; // regular attr merging will take care of validating this.
2631  }
2632 
2633  if (isa<C11NoReturnAttr>(NewAttribute)) {
2634  // C's _Noreturn is allowed to be added to a function after it is defined.
2635  ++I;
2636  continue;
2637  } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2638  if (AA->isAlignas()) {
2639  // C++11 [dcl.align]p6:
2640  // if any declaration of an entity has an alignment-specifier,
2641  // every defining declaration of that entity shall specify an
2642  // equivalent alignment.
2643  // C11 6.7.5/7:
2644  // If the definition of an object does not have an alignment
2645  // specifier, any other declaration of that object shall also
2646  // have no alignment specifier.
2647  S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2648  << AA;
2649  S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2650  << AA;
2651  NewAttributes.erase(NewAttributes.begin() + I);
2652  --E;
2653  continue;
2654  }
2655  }
2656 
2657  S.Diag(NewAttribute->getLocation(),
2658  diag::warn_attribute_precede_definition);
2659  S.Diag(Def->getLocation(), diag::note_previous_definition);
2660  NewAttributes.erase(NewAttributes.begin() + I);
2661  --E;
2662  }
2663 }
2664 
2665 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2667  AvailabilityMergeKind AMK) {
2668  if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2669  UsedAttr *NewAttr = OldAttr->clone(Context);
2670  NewAttr->setInherited(true);
2671  New->addAttr(NewAttr);
2672  }
2673 
2674  if (!Old->hasAttrs() && !New->hasAttrs())
2675  return;
2676 
2677  // Attributes declared post-definition are currently ignored.
2678  checkNewAttributesAfterDef(*this, New, Old);
2679 
2680  if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2681  if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2682  if (OldA->getLabel() != NewA->getLabel()) {
2683  // This redeclaration changes __asm__ label.
2684  Diag(New->getLocation(), diag::err_different_asm_label);
2685  Diag(OldA->getLocation(), diag::note_previous_declaration);
2686  }
2687  } else if (Old->isUsed()) {
2688  // This redeclaration adds an __asm__ label to a declaration that has
2689  // already been ODR-used.
2690  Diag(New->getLocation(), diag::err_late_asm_label_name)
2691  << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2692  }
2693  }
2694 
2695  // Re-declaration cannot add abi_tag's.
2696  if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2697  if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2698  for (const auto &NewTag : NewAbiTagAttr->tags()) {
2699  if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2700  NewTag) == OldAbiTagAttr->tags_end()) {
2701  Diag(NewAbiTagAttr->getLocation(),
2702  diag::err_new_abi_tag_on_redeclaration)
2703  << NewTag;
2704  Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2705  }
2706  }
2707  } else {
2708  Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2709  Diag(Old->getLocation(), diag::note_previous_declaration);
2710  }
2711  }
2712 
2713  // This redeclaration adds a section attribute.
2714  if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2715  if (auto *VD = dyn_cast<VarDecl>(New)) {
2716  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2717  Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2718  Diag(Old->getLocation(), diag::note_previous_declaration);
2719  }
2720  }
2721  }
2722 
2723  // Redeclaration adds code-seg attribute.
2724  const auto *NewCSA = New->getAttr<CodeSegAttr>();
2725  if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2726  !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2727  Diag(New->getLocation(), diag::warn_mismatched_section)
2728  << 0 /*codeseg*/;
2729  Diag(Old->getLocation(), diag::note_previous_declaration);
2730  }
2731 
2732  if (!Old->hasAttrs())
2733  return;
2734 
2735  bool foundAny = New->hasAttrs();
2736 
2737  // Ensure that any moving of objects within the allocated map is done before
2738  // we process them.
2739  if (!foundAny) New->setAttrs(AttrVec());
2740 
2741  for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2742  // Ignore deprecated/unavailable/availability attributes if requested.
2743  AvailabilityMergeKind LocalAMK = AMK_None;
2744  if (isa<DeprecatedAttr>(I) ||
2745  isa<UnavailableAttr>(I) ||
2746  isa<AvailabilityAttr>(I)) {
2747  switch (AMK) {
2748  case AMK_None:
2749  continue;
2750 
2751  case AMK_Redeclaration:
2752  case AMK_Override:
2753  case AMK_ProtocolImplementation:
2754  LocalAMK = AMK;
2755  break;
2756  }
2757  }
2758 
2759  // Already handled.
2760  if (isa<UsedAttr>(I))
2761  continue;
2762 
2763  if (mergeDeclAttribute(*this, New, I, LocalAMK))
2764  foundAny = true;
2765  }
2766 
2767  if (mergeAlignedAttrs(*this, New, Old))
2768  foundAny = true;
2769 
2770  if (!foundAny) New->dropAttrs();
2771 }
2772 
2773 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2774 /// to the new one.
2776  const ParmVarDecl *oldDecl,
2777  Sema &S) {
2778  // C++11 [dcl.attr.depend]p2:
2779  // The first declaration of a function shall specify the
2780  // carries_dependency attribute for its declarator-id if any declaration
2781  // of the function specifies the carries_dependency attribute.
2782  const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2783  if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2784  S.Diag(CDA->getLocation(),
2785  diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2786  // Find the first declaration of the parameter.
2787  // FIXME: Should we build redeclaration chains for function parameters?
2788  const FunctionDecl *FirstFD =
2789  cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2790  const ParmVarDecl *FirstVD =
2791  FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2792  S.Diag(FirstVD->getLocation(),
2793  diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2794  }
2795 
2796  if (!oldDecl->hasAttrs())
2797  return;
2798 
2799  bool foundAny = newDecl->hasAttrs();
2800 
2801  // Ensure that any moving of objects within the allocated map is
2802  // done before we process them.
2803  if (!foundAny) newDecl->setAttrs(AttrVec());
2804 
2805  for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2806  if (!DeclHasAttr(newDecl, I)) {
2807  InheritableAttr *newAttr =
2808  cast<InheritableParamAttr>(I->clone(S.Context));
2809  newAttr->setInherited(true);
2810  newDecl->addAttr(newAttr);
2811  foundAny = true;
2812  }
2813  }
2814 
2815  if (!foundAny) newDecl->dropAttrs();
2816 }
2817 
2818 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2819  const ParmVarDecl *OldParam,
2820  Sema &S) {
2821  if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2822  if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2823  if (*Oldnullability != *Newnullability) {
2824  S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2826  *Newnullability,
2828  != 0))
2830  *Oldnullability,
2832  != 0));
2833  S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2834  }
2835  } else {
2836  QualType NewT = NewParam->getType();
2837  NewT = S.Context.getAttributedType(
2838  AttributedType::getNullabilityAttrKind(*Oldnullability),
2839  NewT, NewT);
2840  NewParam->setType(NewT);
2841  }
2842  }
2843 }
2844 
2845 namespace {
2846 
2847 /// Used in MergeFunctionDecl to keep track of function parameters in
2848 /// C.
2849 struct GNUCompatibleParamWarning {
2850  ParmVarDecl *OldParm;
2851  ParmVarDecl *NewParm;
2852  QualType PromotedType;
2853 };
2854 
2855 } // end anonymous namespace
2856 
2857 /// getSpecialMember - get the special member enum for a method.
2859  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2860  if (Ctor->isDefaultConstructor())
2862 
2863  if (Ctor->isCopyConstructor())
2864  return Sema::CXXCopyConstructor;
2865 
2866  if (Ctor->isMoveConstructor())
2867  return Sema::CXXMoveConstructor;
2868  } else if (isa<CXXDestructorDecl>(MD)) {
2869  return Sema::CXXDestructor;
2870  } else if (MD->isCopyAssignmentOperator()) {
2871  return Sema::CXXCopyAssignment;
2872  } else if (MD->isMoveAssignmentOperator()) {
2873  return Sema::CXXMoveAssignment;
2874  }
2875 
2876  return Sema::CXXInvalid;
2877 }
2878 
2879 // Determine whether the previous declaration was a definition, implicit
2880 // declaration, or a declaration.
2881 template <typename T>
2882 static std::pair<diag::kind, SourceLocation>
2883 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2884  diag::kind PrevDiag;
2885  SourceLocation OldLocation = Old->getLocation();
2886  if (Old->isThisDeclarationADefinition())
2887  PrevDiag = diag::note_previous_definition;
2888  else if (Old->isImplicit()) {
2889  PrevDiag = diag::note_previous_implicit_declaration;
2890  if (OldLocation.isInvalid())
2891  OldLocation = New->getLocation();
2892  } else
2893  PrevDiag = diag::note_previous_declaration;
2894  return std::make_pair(PrevDiag, OldLocation);
2895 }
2896 
2897 /// canRedefineFunction - checks if a function can be redefined. Currently,
2898 /// only extern inline functions can be redefined, and even then only in
2899 /// GNU89 mode.
2900 static bool canRedefineFunction(const FunctionDecl *FD,
2901  const LangOptions& LangOpts) {
2902  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2903  !LangOpts.CPlusPlus &&
2904  FD->isInlineSpecified() &&
2905  FD->getStorageClass() == SC_Extern);
2906 }
2907 
2909  const AttributedType *AT = T->getAs<AttributedType>();
2910  while (AT && !AT->isCallingConv())
2911  AT = AT->getModifiedType()->getAs<AttributedType>();
2912  return AT;
2913 }
2914 
2915 template <typename T>
2916 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2917  const DeclContext *DC = Old->getDeclContext();
2918  if (DC->isRecord())
2919  return false;
2920 
2921  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2922  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2923  return true;
2924  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2925  return true;
2926  return false;
2927 }
2928 
2929 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2930 static bool isExternC(VarTemplateDecl *) { return false; }
2931 
2932 /// Check whether a redeclaration of an entity introduced by a
2933 /// using-declaration is valid, given that we know it's not an overload
2934 /// (nor a hidden tag declaration).
2935 template<typename ExpectedDecl>
2937  ExpectedDecl *New) {
2938  // C++11 [basic.scope.declarative]p4:
2939  // Given a set of declarations in a single declarative region, each of
2940  // which specifies the same unqualified name,
2941  // -- they shall all refer to the same entity, or all refer to functions
2942  // and function templates; or
2943  // -- exactly one declaration shall declare a class name or enumeration
2944  // name that is not a typedef name and the other declarations shall all
2945  // refer to the same variable or enumerator, or all refer to functions
2946  // and function templates; in this case the class name or enumeration
2947  // name is hidden (3.3.10).
2948 
2949  // C++11 [namespace.udecl]p14:
2950  // If a function declaration in namespace scope or block scope has the
2951  // same name and the same parameter-type-list as a function introduced
2952  // by a using-declaration, and the declarations do not declare the same
2953  // function, the program is ill-formed.
2954 
2955  auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2956  if (Old &&
2957  !Old->getDeclContext()->getRedeclContext()->Equals(
2958  New->getDeclContext()->getRedeclContext()) &&
2959  !(isExternC(Old) && isExternC(New)))
2960  Old = nullptr;
2961 
2962  if (!Old) {
2963  S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2964  S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2965  S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2966  return true;
2967  }
2968  return false;
2969 }
2970 
2972  const FunctionDecl *B) {
2973  assert(A->getNumParams() == B->getNumParams());
2974 
2975  auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2976  const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2977  const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2978  if (AttrA == AttrB)
2979  return true;
2980  return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
2981  AttrA->isDynamic() == AttrB->isDynamic();
2982  };
2983 
2984  return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2985 }
2986 
2987 /// If necessary, adjust the semantic declaration context for a qualified
2988 /// declaration to name the correct inline namespace within the qualifier.
2990  DeclaratorDecl *OldD) {
2991  // The only case where we need to update the DeclContext is when
2992  // redeclaration lookup for a qualified name finds a declaration
2993  // in an inline namespace within the context named by the qualifier:
2994  //
2995  // inline namespace N { int f(); }
2996  // int ::f(); // Sema DC needs adjusting from :: to N::.
2997  //
2998  // For unqualified declarations, the semantic context *can* change
2999  // along the redeclaration chain (for local extern declarations,
3000  // extern "C" declarations, and friend declarations in particular).
3001  if (!NewD->getQualifier())
3002  return;
3003 
3004  // NewD is probably already in the right context.
3005  auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3006  auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3007  if (NamedDC->Equals(SemaDC))
3008  return;
3009 
3010  assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3011  NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3012  "unexpected context for redeclaration");
3013 
3014  auto *LexDC = NewD->getLexicalDeclContext();
3015  auto FixSemaDC = [=](NamedDecl *D) {
3016  if (!D)
3017  return;
3018  D->setDeclContext(SemaDC);
3019  D->setLexicalDeclContext(LexDC);
3020  };
3021 
3022  FixSemaDC(NewD);
3023  if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3024  FixSemaDC(FD->getDescribedFunctionTemplate());
3025  else if (auto *VD = dyn_cast<VarDecl>(NewD))
3026  FixSemaDC(VD->getDescribedVarTemplate());
3027 }
3028 
3029 /// MergeFunctionDecl - We just parsed a function 'New' from
3030 /// declarator D which has the same name and scope as a previous
3031 /// declaration 'Old'. Figure out how to resolve this situation,
3032 /// merging decls or emitting diagnostics as appropriate.
3033 ///
3034 /// In C++, New and Old must be declarations that are not
3035 /// overloaded. Use IsOverload to determine whether New and Old are
3036 /// overloaded, and to select the Old declaration that New should be
3037 /// merged with.
3038 ///
3039 /// Returns true if there was an error, false otherwise.
3041  Scope *S, bool MergeTypeWithOld) {
3042  // Verify the old decl was also a function.
3043  FunctionDecl *Old = OldD->getAsFunction();
3044  if (!Old) {
3045  if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3046  if (New->getFriendObjectKind()) {
3047  Diag(New->getLocation(), diag::err_using_decl_friend);
3048  Diag(Shadow->getTargetDecl()->getLocation(),
3049  diag::note_using_decl_target);
3050  Diag(Shadow->getUsingDecl()->getLocation(),
3051  diag::note_using_decl) << 0;
3052  return true;
3053  }
3054 
3055  // Check whether the two declarations might declare the same function.
3056  if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3057  return true;
3058  OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3059  } else {
3060  Diag(New->getLocation(), diag::err_redefinition_different_kind)
3061  << New->getDeclName();
3062  notePreviousDefinition(OldD, New->getLocation());
3063  return true;
3064  }
3065  }
3066 
3067  // If the old declaration is invalid, just give up here.
3068  if (Old->isInvalidDecl())
3069  return true;
3070 
3071  // Disallow redeclaration of some builtins.
3072  if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3073  Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3074  Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3075  << Old << Old->getType();
3076  return true;
3077  }
3078 
3079  diag::kind PrevDiag;
3080  SourceLocation OldLocation;
3081  std::tie(PrevDiag, OldLocation) =
3083 
3084  // Don't complain about this if we're in GNU89 mode and the old function
3085  // is an extern inline function.
3086  // Don't complain about specializations. They are not supposed to have
3087  // storage classes.
3088  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3089  New->getStorageClass() == SC_Static &&
3090  Old->hasExternalFormalLinkage() &&
3092  !canRedefineFunction(Old, getLangOpts())) {
3093  if (getLangOpts().MicrosoftExt) {
3094  Diag(New->getLocation(), diag::ext_static_non_static) << New;
3095  Diag(OldLocation, PrevDiag);
3096  } else {
3097  Diag(New->getLocation(), diag::err_static_non_static) << New;
3098  Diag(OldLocation, PrevDiag);
3099  return true;
3100  }
3101  }
3102 
3103  if (New->hasAttr<InternalLinkageAttr>() &&
3104  !Old->hasAttr<InternalLinkageAttr>()) {
3105  Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3106  << New->getDeclName();
3107  notePreviousDefinition(Old, New->getLocation());
3108  New->dropAttr<InternalLinkageAttr>();
3109  }
3110 
3111  if (CheckRedeclarationModuleOwnership(New, Old))
3112  return true;
3113 
3114  if (!getLangOpts().CPlusPlus) {
3115  bool OldOvl = Old->hasAttr<OverloadableAttr>();
3116  if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3117  Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3118  << New << OldOvl;
3119 
3120  // Try our best to find a decl that actually has the overloadable
3121  // attribute for the note. In most cases (e.g. programs with only one
3122  // broken declaration/definition), this won't matter.
3123  //
3124  // FIXME: We could do this if we juggled some extra state in
3125  // OverloadableAttr, rather than just removing it.
3126  const Decl *DiagOld = Old;
3127  if (OldOvl) {
3128  auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3129  const auto *A = D->getAttr<OverloadableAttr>();
3130  return A && !A->isImplicit();
3131  });
3132  // If we've implicitly added *all* of the overloadable attrs to this
3133  // chain, emitting a "previous redecl" note is pointless.
3134  DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3135  }
3136 
3137  if (DiagOld)
3138  Diag(DiagOld->getLocation(),
3139  diag::note_attribute_overloadable_prev_overload)
3140  << OldOvl;
3141 
3142  if (OldOvl)
3143  New->addAttr(OverloadableAttr::CreateImplicit(Context));
3144  else
3145  New->dropAttr<OverloadableAttr>();
3146  }
3147  }
3148 
3149  // If a function is first declared with a calling convention, but is later
3150  // declared or defined without one, all following decls assume the calling
3151  // convention of the first.
3152  //
3153  // It's OK if a function is first declared without a calling convention,
3154  // but is later declared or defined with the default calling convention.
3155  //
3156  // To test if either decl has an explicit calling convention, we look for
3157  // AttributedType sugar nodes on the type as written. If they are missing or
3158  // were canonicalized away, we assume the calling convention was implicit.
3159  //
3160  // Note also that we DO NOT return at this point, because we still have
3161  // other tests to run.
3162  QualType OldQType = Context.getCanonicalType(Old->getType());
3163  QualType NewQType = Context.getCanonicalType(New->getType());
3164  const FunctionType *OldType = cast<FunctionType>(OldQType);
3165  const FunctionType *NewType = cast<FunctionType>(NewQType);
3166  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3167  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3168  bool RequiresAdjustment = false;
3169 
3170  if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3171  FunctionDecl *First = Old->getFirstDecl();
3172  const FunctionType *FT =
3174  FunctionType::ExtInfo FI = FT->getExtInfo();
3175  bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3176  if (!NewCCExplicit) {
3177  // Inherit the CC from the previous declaration if it was specified
3178  // there but not here.
3179  NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3180  RequiresAdjustment = true;
3181  } else if (New->getBuiltinID()) {
3182  // Calling Conventions on a Builtin aren't really useful and setting a
3183  // default calling convention and cdecl'ing some builtin redeclarations is
3184  // common, so warn and ignore the calling convention on the redeclaration.
3185  Diag(New->getLocation(), diag::warn_cconv_unsupported)
3186  << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3187  << (int)CallingConventionIgnoredReason::BuiltinFunction;
3188  NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3189  RequiresAdjustment = true;
3190  } else {
3191  // Calling conventions aren't compatible, so complain.
3192  bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3193  Diag(New->getLocation(), diag::err_cconv_change)
3194  << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3195  << !FirstCCExplicit
3196  << (!FirstCCExplicit ? "" :
3197  FunctionType::getNameForCallConv(FI.getCC()));
3198 
3199  // Put the note on the first decl, since it is the one that matters.
3200  Diag(First->getLocation(), diag::note_previous_declaration);
3201  return true;
3202  }
3203  }
3204 
3205  // FIXME: diagnose the other way around?
3206  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3207  NewTypeInfo = NewTypeInfo.withNoReturn(true);
3208  RequiresAdjustment = true;
3209  }
3210 
3211  // Merge regparm attribute.
3212  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3213  OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3214  if (NewTypeInfo.getHasRegParm()) {
3215  Diag(New->getLocation(), diag::err_regparm_mismatch)
3216  << NewType->getRegParmType()
3217  << OldType->getRegParmType();
3218  Diag(OldLocation, diag::note_previous_declaration);
3219  return true;
3220  }
3221 
3222  NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3223  RequiresAdjustment = true;
3224  }
3225 
3226  // Merge ns_returns_retained attribute.
3227  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3228  if (NewTypeInfo.getProducesResult()) {
3229  Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3230  << "'ns_returns_retained'";
3231  Diag(OldLocation, diag::note_previous_declaration);
3232  return true;
3233  }
3234 
3235  NewTypeInfo = NewTypeInfo.withProducesResult(true);
3236  RequiresAdjustment = true;
3237  }
3238 
3239  if (OldTypeInfo.getNoCallerSavedRegs() !=
3240  NewTypeInfo.getNoCallerSavedRegs()) {
3241  if (NewTypeInfo.getNoCallerSavedRegs()) {
3242  AnyX86NoCallerSavedRegistersAttr *Attr =
3243  New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3244  Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3245  Diag(OldLocation, diag::note_previous_declaration);
3246  return true;
3247  }
3248 
3249  NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3250  RequiresAdjustment = true;
3251  }
3252 
3253  if (RequiresAdjustment) {
3254  const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3255  AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3256  New->setType(QualType(AdjustedType, 0));
3257  NewQType = Context.getCanonicalType(New->getType());
3258  }
3259 
3260  // If this redeclaration makes the function inline, we may need to add it to
3261  // UndefinedButUsed.
3262  if (!Old->isInlined() && New->isInlined() &&
3263  !New->hasAttr<GNUInlineAttr>() &&
3264  !getLangOpts().GNUInline &&
3265  Old->isUsed(false) &&
3266  !Old->isDefined() && !New->isThisDeclarationADefinition())
3267  UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3268  SourceLocation()));
3269 
3270  // If this redeclaration makes it newly gnu_inline, we don't want to warn
3271  // about it.
3272  if (New->hasAttr<GNUInlineAttr>() &&
3273  Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3274  UndefinedButUsed.erase(Old->getCanonicalDecl());
3275  }
3276 
3277  // If pass_object_size params don't match up perfectly, this isn't a valid
3278  // redeclaration.
3279  if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3280  !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3281  Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3282  << New->getDeclName();
3283  Diag(OldLocation, PrevDiag) << Old << Old->getType();
3284  return true;
3285  }
3286 
3287  if (getLangOpts().CPlusPlus) {
3288  // C++1z [over.load]p2
3289  // Certain function declarations cannot be overloaded:
3290  // -- Function declarations that differ only in the return type,
3291  // the exception specification, or both cannot be overloaded.
3292 
3293  // Check the exception specifications match. This may recompute the type of
3294  // both Old and New if it resolved exception specifications, so grab the
3295  // types again after this. Because this updates the type, we do this before
3296  // any of the other checks below, which may update the "de facto" NewQType
3297  // but do not necessarily update the type of New.
3298  if (CheckEquivalentExceptionSpec(Old, New))
3299  return true;
3300  OldQType = Context.getCanonicalType(Old->getType());
3301  NewQType = Context.getCanonicalType(New->getType());
3302 
3303  // Go back to the type source info to compare the declared return types,
3304  // per C++1y [dcl.type.auto]p13:
3305  // Redeclarations or specializations of a function or function template
3306  // with a declared return type that uses a placeholder type shall also
3307  // use that placeholder, not a deduced type.
3308  QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3309  QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3310  if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3311  canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3312  OldDeclaredReturnType)) {
3313  QualType ResQT;
3314  if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3315  OldDeclaredReturnType->isObjCObjectPointerType())
3316  // FIXME: This does the wrong thing for a deduced return type.
3317  ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3318  if (ResQT.isNull()) {
3319  if (New->isCXXClassMember() && New->isOutOfLine())
3320  Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3321  << New << New->getReturnTypeSourceRange();
3322  else
3323  Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3324  << New->getReturnTypeSourceRange();
3325  Diag(OldLocation, PrevDiag) << Old << Old->getType()
3326  << Old->getReturnTypeSourceRange();
3327  return true;
3328  }
3329  else
3330  NewQType = ResQT;
3331  }
3332 
3333  QualType OldReturnType = OldType->getReturnType();
3334  QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3335  if (OldReturnType != NewReturnType) {
3336  // If this function has a deduced return type and has already been
3337  // defined, copy the deduced value from the old declaration.
3338  AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3339  if (OldAT && OldAT->isDeduced()) {
3340  New->setType(
3341  SubstAutoType(New->getType(),
3342  OldAT->isDependentType() ? Context.DependentTy
3343  : OldAT->getDeducedType()));
3344  NewQType = Context.getCanonicalType(
3345  SubstAutoType(NewQType,
3346  OldAT->isDependentType() ? Context.DependentTy
3347  : OldAT->getDeducedType()));
3348  }
3349  }
3350 
3351  const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3352  CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3353  if (OldMethod && NewMethod) {
3354  // Preserve triviality.
3355  NewMethod->setTrivial(OldMethod->isTrivial());
3356 
3357  // MSVC allows explicit template specialization at class scope:
3358  // 2 CXXMethodDecls referring to the same function will be injected.
3359  // We don't want a redeclaration error.
3360  bool IsClassScopeExplicitSpecialization =
3361  OldMethod->isFunctionTemplateSpecialization() &&
3362  NewMethod->isFunctionTemplateSpecialization();
3363  bool isFriend = NewMethod->getFriendObjectKind();
3364 
3365  if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3366  !IsClassScopeExplicitSpecialization) {
3367  // -- Member function declarations with the same name and the
3368  // same parameter types cannot be overloaded if any of them
3369  // is a static member function declaration.
3370  if (OldMethod->isStatic() != NewMethod->isStatic()) {
3371  Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3372  Diag(OldLocation, PrevDiag) << Old << Old->getType();
3373  return true;
3374  }
3375 
3376  // C++ [class.mem]p1:
3377  // [...] A member shall not be declared twice in the
3378  // member-specification, except that a nested class or member
3379  // class template can be declared and then later defined.
3380  if (!inTemplateInstantiation()) {
3381  unsigned NewDiag;
3382  if (isa<CXXConstructorDecl>(OldMethod))
3383  NewDiag = diag::err_constructor_redeclared;
3384  else if (isa<CXXDestructorDecl>(NewMethod))
3385  NewDiag = diag::err_destructor_redeclared;
3386  else if (isa<CXXConversionDecl>(NewMethod))
3387  NewDiag = diag::err_conv_function_redeclared;
3388  else
3389  NewDiag = diag::err_member_redeclared;
3390 
3391  Diag(New->getLocation(), NewDiag);
3392  } else {
3393  Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3394  << New << New->getType();
3395  }
3396  Diag(OldLocation, PrevDiag) << Old << Old->getType();
3397  return true;
3398 
3399  // Complain if this is an explicit declaration of a special
3400  // member that was initially declared implicitly.
3401  //
3402  // As an exception, it's okay to befriend such methods in order
3403  // to permit the implicit constructor/destructor/operator calls.
3404  } else if (OldMethod->isImplicit()) {
3405  if (isFriend) {
3406  NewMethod->setImplicit();
3407  } else {
3408  Diag(NewMethod->getLocation(),
3409  diag::err_definition_of_implicitly_declared_member)
3410  << New << getSpecialMember(OldMethod);
3411  return true;
3412  }
3413  } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3414  Diag(NewMethod->getLocation(),
3415  diag::err_definition_of_explicitly_defaulted_member)
3416  << getSpecialMember(OldMethod);
3417  return true;
3418  }
3419  }
3420 
3421  // C++11 [dcl.attr.noreturn]p1:
3422  // The first declaration of a function shall specify the noreturn
3423  // attribute if any declaration of that function specifies the noreturn
3424  // attribute.
3425  const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3426  if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3427  Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3428  Diag(Old->getFirstDecl()->getLocation(),
3429  diag::note_noreturn_missing_first_decl);
3430  }
3431 
3432  // C++11 [dcl.attr.depend]p2:
3433  // The first declaration of a function shall specify the
3434  // carries_dependency attribute for its declarator-id if any declaration
3435  // of the function specifies the carries_dependency attribute.
3436  const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3437  if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3438  Diag(CDA->getLocation(),
3439  diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3440  Diag(Old->getFirstDecl()->getLocation(),
3441  diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3442  }
3443 
3444  // (C++98 8.3.5p3):
3445  // All declarations for a function shall agree exactly in both the
3446  // return type and the parameter-type-list.
3447  // We also want to respect all the extended bits except noreturn.
3448 
3449  // noreturn should now match unless the old type info didn't have it.
3450  QualType OldQTypeForComparison = OldQType;
3451  if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3452  auto *OldType = OldQType->castAs<FunctionProtoType>();
3453  const FunctionType *OldTypeForComparison
3454  = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3455  OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3456  assert(OldQTypeForComparison.isCanonical());
3457  }
3458 
3459  if (haveIncompatibleLanguageLinkages(Old, New)) {
3460  // As a special case, retain the language linkage from previous
3461  // declarations of a friend function as an extension.
3462  //
3463  // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3464  // and is useful because there's otherwise no way to specify language
3465  // linkage within class scope.
3466  //
3467  // Check cautiously as the friend object kind isn't yet complete.
3468  if (New->getFriendObjectKind() != Decl::FOK_None) {
3469  Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3470  Diag(OldLocation, PrevDiag);
3471  } else {
3472  Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3473  Diag(OldLocation, PrevDiag);
3474  return true;
3475  }
3476  }
3477 
3478  if (OldQTypeForComparison == NewQType)
3479  return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3480 
3481  // If the types are imprecise (due to dependent constructs in friends or
3482  // local extern declarations), it's OK if they differ. We'll check again
3483  // during instantiation.
3484  if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3485  return false;
3486 
3487  // Fall through for conflicting redeclarations and redefinitions.
3488  }
3489 
3490  // C: Function types need to be compatible, not identical. This handles
3491  // duplicate function decls like "void f(int); void f(enum X);" properly.
3492  if (!getLangOpts().CPlusPlus &&
3493  Context.typesAreCompatible(OldQType, NewQType)) {
3494  const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3495  const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3496  const FunctionProtoType *OldProto = nullptr;
3497  if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3498  (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3499  // The old declaration provided a function prototype, but the
3500  // new declaration does not. Merge in the prototype.
3501  assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3502  SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3503  NewQType =
3504  Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3505  OldProto->getExtProtoInfo());
3506  New->setType(NewQType);
3507  New->setHasInheritedPrototype();
3508 
3509  // Synthesize parameters with the same types.
3511  for (const auto &ParamType : OldProto->param_types()) {
3512  ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3513  SourceLocation(), nullptr,
3514  ParamType, /*TInfo=*/nullptr,
3515  SC_None, nullptr);
3516  Param->setScopeInfo(0, Params.size());
3517  Param->setImplicit();
3518  Params.push_back(Param);
3519  }
3520 
3521  New->setParams(Params);
3522  }
3523 
3524  return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3525  }
3526 
3527  // GNU C permits a K&R definition to follow a prototype declaration
3528  // if the declared types of the parameters in the K&R definition
3529  // match the types in the prototype declaration, even when the
3530  // promoted types of the parameters from the K&R definition differ
3531  // from the types in the prototype. GCC then keeps the types from
3532  // the prototype.
3533  //
3534  // If a variadic prototype is followed by a non-variadic K&R definition,
3535  // the K&R definition becomes variadic. This is sort of an edge case, but
3536  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3537  // C99 6.9.1p8.
3538  if (!getLangOpts().CPlusPlus &&
3539  Old->hasPrototype() && !New->hasPrototype() &&
3540  New->getType()->getAs<FunctionProtoType>() &&
3541  Old->getNumParams() == New->getNumParams()) {
3542  SmallVector<QualType, 16> ArgTypes;
3544  const FunctionProtoType *OldProto
3545  = Old->getType()->getAs<FunctionProtoType>();
3546  const FunctionProtoType *NewProto
3547  = New->getType()->getAs<FunctionProtoType>();
3548 
3549  // Determine whether this is the GNU C extension.
3550  QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3551  NewProto->getReturnType());
3552  bool LooseCompatible = !MergedReturn.isNull();
3553  for (unsigned Idx = 0, End = Old->getNumParams();
3554  LooseCompatible && Idx != End; ++Idx) {
3555  ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3556  ParmVarDecl *NewParm = New->getParamDecl(Idx);
3557  if (Context.typesAreCompatible(OldParm->getType(),
3558  NewProto->getParamType(Idx))) {
3559  ArgTypes.push_back(NewParm->getType());
3560  } else if (Context.typesAreCompatible(OldParm->getType(),
3561  NewParm->getType(),
3562  /*CompareUnqualified=*/true)) {
3563  GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3564  NewProto->getParamType(Idx) };
3565  Warnings.push_back(Warn);
3566  ArgTypes.push_back(NewParm->getType());
3567  } else
3568  LooseCompatible = false;
3569  }
3570 
3571  if (LooseCompatible) {
3572  for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3573  Diag(Warnings[Warn].NewParm->getLocation(),
3574  diag::ext_param_promoted_not_compatible_with_prototype)
3575  << Warnings[Warn].PromotedType
3576  << Warnings[Warn].OldParm->getType();
3577  if (Warnings[Warn].OldParm->getLocation().isValid())
3578  Diag(Warnings[Warn].OldParm->getLocation(),
3579  diag::note_previous_declaration);
3580  }
3581 
3582  if (MergeTypeWithOld)
3583  New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3584  OldProto->getExtProtoInfo()));
3585  return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3586  }
3587 
3588  // Fall through to diagnose conflicting types.
3589  }
3590 
3591  // A function that has already been declared has been redeclared or
3592  // defined with a different type; show an appropriate diagnostic.
3593 
3594  // If the previous declaration was an implicitly-generated builtin
3595  // declaration, then at the very least we should use a specialized note.
3596  unsigned BuiltinID;
3597  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3598  // If it's actually a library-defined builtin function like 'malloc'
3599  // or 'printf', just warn about the incompatible redeclaration.
3600  if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3601  Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3602  Diag(OldLocation, diag::note_previous_builtin_declaration)
3603  << Old << Old->getType();
3604 
3605  // If this is a global redeclaration, just forget hereafter
3606  // about the "builtin-ness" of the function.
3607  //
3608  // Doing this for local extern declarations is problematic. If
3609  // the builtin declaration remains visible, a second invalid
3610  // local declaration will produce a hard error; if it doesn't
3611  // remain visible, a single bogus local redeclaration (which is
3612  // actually only a warning) could break all the downstream code.
3614  New->getIdentifier()->revertBuiltin();
3615 
3616  return false;
3617  }
3618 
3619  PrevDiag = diag::note_previous_builtin_declaration;
3620  }
3621 
3622  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3623  Diag(OldLocation, PrevDiag) << Old << Old->getType();
3624  return true;
3625 }
3626 
3627 /// Completes the merge of two function declarations that are
3628 /// known to be compatible.
3629 ///
3630 /// This routine handles the merging of attributes and other
3631 /// properties of function declarations from the old declaration to
3632 /// the new declaration, once we know that New is in fact a
3633 /// redeclaration of Old.
3634 ///
3635 /// \returns false
3637  Scope *S, bool MergeTypeWithOld) {
3638  // Merge the attributes
3639  mergeDeclAttributes(New, Old);
3640 
3641  // Merge "pure" flag.
3642  if (Old->isPure())
3643  New->setPure();
3644 
3645  // Merge "used" flag.
3646  if (Old->getMostRecentDecl()->isUsed(false))
3647  New->setIsUsed();
3648 
3649  // Merge attributes from the parameters. These can mismatch with K&R
3650  // declarations.
3651  if (New->getNumParams() == Old->getNumParams())
3652  for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3653  ParmVarDecl *NewParam = New->getParamDecl(i);
3654  ParmVarDecl *OldParam = Old->getParamDecl(i);
3655  mergeParamDeclAttributes(NewParam, OldParam, *this);
3656  mergeParamDeclTypes(NewParam, OldParam, *this);
3657  }
3658 
3659  if (getLangOpts().CPlusPlus)
3660  return MergeCXXFunctionDecl(New, Old, S);
3661 
3662  // Merge the function types so the we get the composite types for the return
3663  // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3664  // was visible.
3665  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3666  if (!Merged.isNull() && MergeTypeWithOld)
3667  New->setType(Merged);
3668 
3669  return false;
3670 }
3671 
3673  ObjCMethodDecl *oldMethod) {
3674  // Merge the attributes, including deprecated/unavailable
3675  AvailabilityMergeKind MergeKind =
3676  isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3677  ? AMK_ProtocolImplementation
3678  : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3679  : AMK_Override;
3680 
3681  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3682 
3683  // Merge attributes from the parameters.
3685  oe = oldMethod->param_end();
3687  ni = newMethod->param_begin(), ne = newMethod->param_end();
3688  ni != ne && oi != oe; ++ni, ++oi)
3689  mergeParamDeclAttributes(*ni, *oi, *this);
3690 
3691  CheckObjCMethodOverride(newMethod, oldMethod);
3692 }
3693 
3694 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3695  assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3696 
3698  ? diag::err_redefinition_different_type
3699  : diag::err_redeclaration_different_type)
3700  << New->getDeclName() << New->getType() << Old->getType();
3701 
3702  diag::kind PrevDiag;
3703  SourceLocation OldLocation;
3704  std::tie(PrevDiag, OldLocation)
3706  S.Diag(OldLocation, PrevDiag);
3707  New->setInvalidDecl();
3708 }
3709 
3710 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3711 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
3712 /// emitting diagnostics as appropriate.
3713 ///
3714 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3715 /// to here in AddInitializerToDecl. We can't check them before the initializer
3716 /// is attached.
3718  bool MergeTypeWithOld) {
3719  if (New->isInvalidDecl() || Old->isInvalidDecl())
3720  return;
3721 
3722  QualType MergedT;
3723  if (getLangOpts().CPlusPlus) {
3724  if (New->getType()->isUndeducedType()) {
3725  // We don't know what the new type is until the initializer is attached.
3726  return;
3727  } else if (Context.hasSameType(New->getType(), Old->getType())) {
3728  // These could still be something that needs exception specs checked.
3729  return MergeVarDeclExceptionSpecs(New, Old);
3730  }
3731  // C++ [basic.link]p10:
3732  // [...] the types specified by all declarations referring to a given
3733  // object or function shall be identical, except that declarations for an
3734  // array object can specify array types that differ by the presence or
3735  // absence of a major array bound (8.3.4).
3736  else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3737  const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3738  const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3739 
3740  // We are merging a variable declaration New into Old. If it has an array
3741  // bound, and that bound differs from Old's bound, we should diagnose the
3742  // mismatch.
3743  if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3744  for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3745  PrevVD = PrevVD->getPreviousDecl()) {
3746  const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3747  if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3748  continue;
3749 
3750  if (!Context.hasSameType(NewArray, PrevVDTy))
3751  return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3752  }
3753  }
3754 
3755  if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3756  if (Context.hasSameType(OldArray->getElementType(),
3757  NewArray->getElementType()))
3758  MergedT = New->getType();
3759  }
3760  // FIXME: Check visibility. New is hidden but has a complete type. If New
3761  // has no array bound, it should not inherit one from Old, if Old is not
3762  // visible.
3763  else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3764  if (Context.hasSameType(OldArray->getElementType(),
3765  NewArray->getElementType()))
3766  MergedT = Old->getType();
3767  }
3768  }
3769  else if (New->getType()->isObjCObjectPointerType() &&
3770  Old->getType()->isObjCObjectPointerType()) {
3771  MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3772  Old->getType());
3773  }
3774  } else {
3775  // C 6.2.7p2:
3776  // All declarations that refer to the same object or function shall have
3777  // compatible type.
3778  MergedT = Context.mergeTypes(New->getType(), Old->getType());
3779  }
3780  if (MergedT.isNull()) {
3781  // It's OK if we couldn't merge types if either type is dependent, for a
3782  // block-scope variable. In other cases (static data members of class
3783  // templates, variable templates, ...), we require the types to be
3784  // equivalent.
3785  // FIXME: The C++ standard doesn't say anything about this.
3786  if ((New->getType()->isDependentType() ||
3787  Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3788  // If the old type was dependent, we can't merge with it, so the new type
3789  // becomes dependent for now. We'll reproduce the original type when we
3790  // instantiate the TypeSourceInfo for the variable.
3791  if (!New->getType()->isDependentType() && MergeTypeWithOld)
3792  New->setType(Context.DependentTy);
3793  return;
3794  }
3795  return diagnoseVarDeclTypeMismatch(*this, New, Old);
3796  }
3797 
3798  // Don't actually update the type on the new declaration if the old
3799  // declaration was an extern declaration in a different scope.
3800  if (MergeTypeWithOld)
3801  New->setType(MergedT);
3802 }
3803 
3804 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3806  // C11 6.2.7p4:
3807  // For an identifier with internal or external linkage declared
3808  // in a scope in which a prior declaration of that identifier is
3809  // visible, if the prior declaration specifies internal or
3810  // external linkage, the type of the identifier at the later
3811  // declaration becomes the composite type.
3812  //
3813  // If the variable isn't visible, we do not merge with its type.
3814  if (Previous.isShadowed())
3815  return false;
3816 
3817  if (S.getLangOpts().CPlusPlus) {
3818  // C++11 [dcl.array]p3:
3819  // If there is a preceding declaration of the entity in the same
3820  // scope in which the bound was specified, an omitted array bound
3821  // is taken to be the same as in that earlier declaration.
3822  return NewVD->isPreviousDeclInSameBlockScope() ||
3823  (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3825  } else {
3826  // If the old declaration was function-local, don't merge with its
3827  // type unless we're in the same function.
3828  return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3829  OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3830  }
3831 }
3832 
3833 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3834 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
3835 /// situation, merging decls or emitting diagnostics as appropriate.
3836 ///
3837 /// Tentative definition rules (C99 6.9.2p2) are checked by
3838 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3839 /// definitions here, since the initializer hasn't been attached.
3840 ///
3842  // If the new decl is already invalid, don't do any other checking.
3843  if (New->isInvalidDecl())
3844  return;
3845 
3846  if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3847  return;
3848 
3849  VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3850 
3851  // Verify the old decl was also a variable or variable template.
3852  VarDecl *Old = nullptr;
3853  VarTemplateDecl *OldTemplate = nullptr;
3854  if (Previous.isSingleResult()) {
3855  if (NewTemplate) {
3856  OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3857  Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3858 
3859  if (auto *Shadow =
3860  dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3861  if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3862  return New->setInvalidDecl();
3863  } else {
3864  Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3865 
3866  if (auto *Shadow =
3867  dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3868  if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3869  return New->setInvalidDecl();
3870  }
3871  }
3872  if (!Old) {
3873  Diag(New->getLocation(), diag::err_redefinition_different_kind)
3874  << New->getDeclName();
3875  notePreviousDefinition(Previous.getRepresentativeDecl(),
3876  New->getLocation());
3877  return New->setInvalidDecl();
3878  }
3879 
3880  // Ensure the template parameters are compatible.
3881  if (NewTemplate &&
3882  !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3883  OldTemplate->getTemplateParameters(),
3884  /*Complain=*/true, TPL_TemplateMatch))
3885  return New->setInvalidDecl();
3886 
3887  // C++ [class.mem]p1:
3888  // A member shall not be declared twice in the member-specification [...]
3889  //
3890  // Here, we need only consider static data members.
3891  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3892  Diag(New->getLocation(), diag::err_duplicate_member)
3893  << New->getIdentifier();
3894  Diag(Old->getLocation(), diag::note_previous_declaration);
3895  New->setInvalidDecl();
3896  }
3897 
3898  mergeDeclAttributes(New, Old);
3899  // Warn if an already-declared variable is made a weak_import in a subsequent
3900  // declaration
3901  if (New->hasAttr<WeakImportAttr>() &&
3902  Old->getStorageClass() == SC_None &&
3903  !Old->hasAttr<WeakImportAttr>()) {
3904  Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3905  notePreviousDefinition(Old, New->getLocation());
3906  // Remove weak_import attribute on new declaration.
3907  New->dropAttr<WeakImportAttr>();
3908  }
3909 
3910  if (New->hasAttr<InternalLinkageAttr>() &&
3911  !Old->hasAttr<InternalLinkageAttr>()) {
3912  Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3913  << New->getDeclName();
3914  notePreviousDefinition(Old, New->getLocation());
3915  New->dropAttr<InternalLinkageAttr>();
3916  }
3917 
3918  // Merge the types.
3919  VarDecl *MostRecent = Old->getMostRecentDecl();
3920  if (MostRecent != Old) {
3921  MergeVarDeclTypes(New, MostRecent,
3922  mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3923  if (New->isInvalidDecl())
3924  return;
3925  }
3926 
3927  MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3928  if (New->isInvalidDecl())
3929  return;
3930 
3931  diag::kind PrevDiag;
3932  SourceLocation OldLocation;
3933  std::tie(PrevDiag, OldLocation) =
3935 
3936  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3937  if (New->getStorageClass() == SC_Static &&
3938  !New->isStaticDataMember() &&
3939  Old->hasExternalFormalLinkage()) {
3940  if (getLangOpts().MicrosoftExt) {
3941  Diag(New->getLocation(), diag::ext_static_non_static)
3942  << New->getDeclName();
3943  Diag(OldLocation, PrevDiag);
3944  } else {
3945  Diag(New->getLocation(), diag::err_static_non_static)
3946  << New->getDeclName();
3947  Diag(OldLocation, PrevDiag);
3948  return New->setInvalidDecl();
3949  }
3950  }
3951  // C99 6.2.2p4:
3952  // For an identifier declared with the storage-class specifier
3953  // extern in a scope in which a prior declaration of that
3954  // identifier is visible,23) if the prior declaration specifies
3955  // internal or external linkage, the linkage of the identifier at
3956  // the later declaration is the same as the linkage specified at
3957  // the prior declaration. If no prior declaration is visible, or
3958  // if the prior declaration specifies no linkage, then the
3959  // identifier has external linkage.
3960  if (New->hasExternalStorage() && Old->hasLinkage())
3961  /* Okay */;
3962  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3963  !New->isStaticDataMember() &&
3965  Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3966  Diag(OldLocation, PrevDiag);
3967  return New->setInvalidDecl();
3968  }
3969 
3970  // Check if extern is followed by non-extern and vice-versa.
3971  if (New->hasExternalStorage() &&
3972  !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3973  Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3974  Diag(OldLocation, PrevDiag);
3975  return New->setInvalidDecl();
3976  }
3977  if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3978  !New->hasExternalStorage()) {
3979  Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3980  Diag(OldLocation, PrevDiag);
3981  return New->setInvalidDecl();
3982  }
3983 
3984  if (CheckRedeclarationModuleOwnership(New, Old))
3985  return;
3986 
3987  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3988 
3989  // FIXME: The test for external storage here seems wrong? We still
3990  // need to check for mismatches.
3991  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3992  // Don't complain about out-of-line definitions of static members.
3993  !(Old->getLexicalDeclContext()->isRecord() &&
3994  !New->getLexicalDeclContext()->isRecord())) {
3995  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3996  Diag(OldLocation, PrevDiag);
3997  return New->setInvalidDecl();
3998  }
3999 
4000  if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4001  if (VarDecl *Def = Old->getDefinition()) {
4002  // C++1z [dcl.fcn.spec]p4:
4003  // If the definition of a variable appears in a translation unit before
4004  // its first declaration as inline, the program is ill-formed.
4005  Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4006  Diag(Def->getLocation(), diag::note_previous_definition);
4007  }
4008  }
4009 
4010  // If this redeclaration makes the variable inline, we may need to add it to
4011  // UndefinedButUsed.
4012  if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4013  !Old->getDefinition() && !New->isThisDeclarationADefinition())
4014  UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4015  SourceLocation()));
4016 
4017  if (New->getTLSKind() != Old->getTLSKind()) {
4018  if (!Old->getTLSKind()) {
4019  Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4020  Diag(OldLocation, PrevDiag);
4021  } else if (!New->getTLSKind()) {
4022  Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4023  Diag(OldLocation, PrevDiag);
4024  } else {
4025  // Do not allow redeclaration to change the variable between requiring
4026  // static and dynamic initialization.
4027  // FIXME: GCC allows this, but uses the TLS keyword on the first
4028  // declaration to determine the kind. Do we need to be compatible here?
4029  Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4030  << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4031  Diag(OldLocation, PrevDiag);
4032  }
4033  }
4034 
4035  // C++ doesn't have tentative definitions, so go right ahead and check here.
4036  if (getLangOpts().CPlusPlus &&
4038  if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4039  Old->getCanonicalDecl()->isConstexpr()) {
4040  // This definition won't be a definition any more once it's been merged.
4041  Diag(New->getLocation(),
4042  diag::warn_deprecated_redundant_constexpr_static_def);
4043  } else if (VarDecl *Def = Old->getDefinition()) {
4044  if (checkVarDeclRedefinition(Def, New))
4045  return;
4046  }
4047  }
4048 
4049  if (haveIncompatibleLanguageLinkages(Old, New)) {
4050  Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4051  Diag(OldLocation, PrevDiag);
4052  New->setInvalidDecl();
4053  return;
4054  }
4055 
4056  // Merge "used" flag.
4057  if (Old->getMostRecentDecl()->isUsed(false))
4058  New->setIsUsed();
4059 
4060  // Keep a chain of previous declarations.
4061  New->setPreviousDecl(Old);
4062  if (NewTemplate)
4063  NewTemplate->setPreviousDecl(OldTemplate);
4065 
4066  // Inherit access appropriately.
4067  New->setAccess(Old->getAccess());
4068  if (NewTemplate)
4069  NewTemplate->setAccess(New->getAccess());
4070 
4071  if (Old->isInline())
4072  New->setImplicitlyInline();
4073 }
4074 
4076  SourceManager &SrcMgr = getSourceManager();
4077  auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4078  auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4079  auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4080  auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4081  auto &HSI = PP.getHeaderSearchInfo();
4082  StringRef HdrFilename =
4083  SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4084 
4085  auto noteFromModuleOrInclude = [&](Module *Mod,
4086  SourceLocation IncLoc) -> bool {
4087  // Redefinition errors with modules are common with non modular mapped
4088  // headers, example: a non-modular header H in module A that also gets
4089  // included directly in a TU. Pointing twice to the same header/definition
4090  // is confusing, try to get better diagnostics when modules is on.
4091  if (IncLoc.isValid()) {
4092  if (Mod) {
4093  Diag(IncLoc, diag::note_redefinition_modules_same_file)
4094  << HdrFilename.str() << Mod->getFullModuleName();
4095  if (!Mod->DefinitionLoc.isInvalid())
4096  Diag(Mod->DefinitionLoc, diag::note_defined_here)
4097  << Mod->getFullModuleName();
4098  } else {
4099  Diag(IncLoc, diag::note_redefinition_include_same_file)
4100  << HdrFilename.str();
4101  }
4102  return true;
4103  }
4104 
4105  return false;
4106  };
4107 
4108  // Is it the same file and same offset? Provide more information on why
4109  // this leads to a redefinition error.
4110  bool EmittedDiag = false;
4111  if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4112  SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4113  SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4114  EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4115  EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4116 
4117  // If the header has no guards, emit a note suggesting one.
4118  if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4119  Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4120 
4121  if (EmittedDiag)
4122  return;
4123  }
4124 
4125  // Redefinition coming from different files or couldn't do better above.
4126  if (Old->getLocation().isValid())
4127  Diag(Old->getLocation(), diag::note_previous_definition);
4128 }
4129 
4130 /// We've just determined that \p Old and \p New both appear to be definitions
4131 /// of the same variable. Either diagnose or fix the problem.
4133  if (!hasVisibleDefinition(Old) &&
4134  (New->getFormalLinkage() == InternalLinkage ||
4135  New->isInline() ||
4136  New->getDescribedVarTemplate() ||
4138  New->getDeclContext()->isDependentContext())) {
4139  // The previous definition is hidden, and multiple definitions are
4140  // permitted (in separate TUs). Demote this to a declaration.
4142 
4143  // Make the canonical definition visible.
4144  if (auto *OldTD = Old->getDescribedVarTemplate())
4145  makeMergedDefinitionVisible(OldTD);
4146  makeMergedDefinitionVisible(Old);
4147  return false;
4148  } else {
4149  Diag(New->getLocation(), diag::err_redefinition) << New;
4150  notePreviousDefinition(Old, New->getLocation());
4151  New->setInvalidDecl();
4152  return true;
4153  }
4154 }
4155 
4156 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4157 /// no declarator (e.g. "struct foo;") is parsed.
4158 Decl *
4160  RecordDecl *&AnonRecord) {
4161  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4162  AnonRecord);
4163 }
4164 
4165 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4166 // disambiguate entities defined in different scopes.
4167 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4168 // compatibility.
4169 // We will pick our mangling number depending on which version of MSVC is being
4170 // targeted.
4171 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4173  ? S->getMSCurManglingNumber()
4174  : S->getMSLastManglingNumber();
4175 }
4176 
4177 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4178  if (!Context.getLangOpts().CPlusPlus)
4179  return;
4180 
4181  if (isa<CXXRecordDecl>(Tag->getParent())) {
4182  // If this tag is the direct child of a class, number it if
4183  // it is anonymous.
4184  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4185  return;
4186  MangleNumberingContext &MCtx =
4187  Context.getManglingNumberContext(Tag->getParent());
4188  Context.setManglingNumber(
4189  Tag, MCtx.getManglingNumber(
4190  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4191  return;
4192  }
4193 
4194  // If this tag isn't a direct child of a class, number it if it is local.
4195  Decl *ManglingContextDecl;
4196  if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4197  Tag->getDeclContext(), ManglingContextDecl)) {
4198  Context.setManglingNumber(
4199  Tag, MCtx->getManglingNumber(
4200  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4201  }
4202 }
4203 
4205  TypedefNameDecl *NewTD) {
4206  if (TagFromDeclSpec->isInvalidDecl())
4207  return;
4208 
4209  // Do nothing if the tag already has a name for linkage purposes.
4210  if (TagFromDeclSpec->hasNameForLinkage())
4211  return;
4212 
4213  // A well-formed anonymous tag must always be a TUK_Definition.
4214  assert(TagFromDeclSpec->isThisDeclarationADefinition());
4215 
4216  // The type must match the tag exactly; no qualifiers allowed.
4217  if (!Context.hasSameType(NewTD->getUnderlyingType(),
4218  Context.getTagDeclType(TagFromDeclSpec))) {
4219  if (getLangOpts().CPlusPlus)
4220  Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4221  return;
4222  }
4223 
4224  // If we've already computed linkage for the anonymous tag, then
4225  // adding a typedef name for the anonymous decl can change that
4226  // linkage, which might be a serious problem. Diagnose this as
4227  // unsupported and ignore the typedef name. TODO: we should
4228  // pursue this as a language defect and establish a formal rule
4229  // for how to handle it.
4230  if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4231  Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4232 
4233  SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4234  tagLoc = getLocForEndOfToken(tagLoc);
4235 
4236  llvm::SmallString<40> textToInsert;
4237  textToInsert += ' ';
4238  textToInsert += NewTD->getIdentifier()->getName();
4239  Diag(tagLoc, diag::note_typedef_changes_linkage)
4240  << FixItHint::CreateInsertion(tagLoc, textToInsert);
4241  return;
4242  }
4243 
4244  // Otherwise, set this is the anon-decl typedef for the tag.
4245  TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4246 }
4247 
4249  switch (T) {
4250  case DeclSpec::TST_class:
4251  return 0;
4252  case DeclSpec::TST_struct:
4253  return 1;
4255  return 2;
4256  case DeclSpec::TST_union:
4257  return 3;
4258  case DeclSpec::TST_enum:
4259  return 4;
4260  default:
4261  llvm_unreachable("unexpected type specifier");
4262  }
4263 }
4264 
4265 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4266 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4267 /// parameters to cope with template friend declarations.
4268 Decl *
4270  MultiTemplateParamsArg TemplateParams,
4271  bool IsExplicitInstantiation,
4272  RecordDecl *&AnonRecord) {
4273  Decl *TagD = nullptr;
4274  TagDecl *Tag = nullptr;
4275  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4280  TagD = DS.getRepAsDecl();
4281 
4282  if (!TagD) // We probably had an error
4283  return nullptr;
4284 
4285  // Note that the above type specs guarantee that the
4286  // type rep is a Decl, whereas in many of the others
4287  // it's a Type.
4288  if (isa<TagDecl>(TagD))
4289  Tag = cast<TagDecl>(TagD);
4290  else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4291  Tag = CTD->getTemplatedDecl();
4292  }
4293 
4294  if (Tag) {
4295  handleTagNumbering(Tag, S);
4296  Tag->setFreeStanding();
4297  if (Tag->isInvalidDecl())
4298  return Tag;
4299  }
4300 
4301  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4302  // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4303  // or incomplete types shall not be restrict-qualified."
4304  if (TypeQuals & DeclSpec::TQ_restrict)
4305  Diag(DS.getRestrictSpecLoc(),
4306  diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4307  << DS.getSourceRange();
4308  }
4309 
4310  if (DS.isInlineSpecified())
4311  Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4312  << getLangOpts().CPlusPlus17;
4313 
4314  if (DS.hasConstexprSpecifier()) {
4315  // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4316  // and definitions of functions and variables.
4317  // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4318  // the declaration of a function or function template
4319  bool IsConsteval = DS.getConstexprSpecifier() == CSK_consteval;
4320  if (Tag)
4321  Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4322  << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << IsConsteval;
4323  else
4324  Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4325  << IsConsteval;
4326  // Don't emit warnings after this error.
4327  return TagD;
4328  }
4329 
4330  DiagnoseFunctionSpecifiers(DS);
4331 
4332  if (DS.isFriendSpecified()) {
4333  // If we're dealing with a decl but not a TagDecl, assume that
4334  // whatever routines created it handled the friendship aspect.
4335  if (TagD && !Tag)
4336  return nullptr;
4337  return ActOnFriendTypeDecl(S, DS, TemplateParams);
4338  }
4339 
4340  const CXXScopeSpec &SS = DS.getTypeSpecScope();
4341  bool IsExplicitSpecialization =
4342  !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4343  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4344  !IsExplicitInstantiation && !IsExplicitSpecialization &&
4345  !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4346  // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4347  // nested-name-specifier unless it is an explicit instantiation
4348  // or an explicit specialization.
4349  //
4350  // FIXME: We allow class template partial specializations here too, per the
4351  // obvious intent of DR1819.
4352  //
4353  // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4354  Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4356  return nullptr;
4357  }
4358 
4359  // Track whether this decl-specifier declares anything.
4360  bool DeclaresAnything = true;
4361 
4362  // Handle anonymous struct definitions.
4363  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4364  if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4366  if (getLangOpts().CPlusPlus ||
4367  Record->getDeclContext()->isRecord()) {
4368  // If CurContext is a DeclContext that can contain statements,
4369  // RecursiveASTVisitor won't visit the decls that
4370  // BuildAnonymousStructOrUnion() will put into CurContext.
4371  // Also store them here so that they can be part of the
4372  // DeclStmt that gets created in this case.
4373  // FIXME: Also return the IndirectFieldDecls created by
4374  // BuildAnonymousStructOr union, for the same reason?
4375  if (CurContext->isFunctionOrMethod())
4376  AnonRecord = Record;
4377  return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4378  Context.getPrintingPolicy());
4379  }
4380 
4381  DeclaresAnything = false;
4382  }
4383  }
4384 
4385  // C11 6.7.2.1p2:
4386  // A struct-declaration that does not declare an anonymous structure or
4387  // anonymous union shall contain a struct-declarator-list.
4388  //
4389  // This rule also existed in C89 and C99; the grammar for struct-declaration
4390  // did not permit a struct-declaration without a struct-declarator-list.
4391  if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4393  // Check for Microsoft C extension: anonymous struct/union member.
4394  // Handle 2 kinds of anonymous struct/union:
4395  // struct STRUCT;
4396  // union UNION;
4397  // and
4398  // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
4399  // UNION_TYPE; <- where UNION_TYPE is a typedef union.
4400  if ((Tag && Tag->getDeclName()) ||
4402  RecordDecl *Record = nullptr;
4403  if (Tag)
4404  Record = dyn_cast<RecordDecl>(Tag);
4405  else if (const RecordType *RT =
4407  Record = RT->getDecl();
4408  else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4409  Record = UT->getDecl();
4410 
4411  if (Record && getLangOpts().MicrosoftExt) {
4412  Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4413  << Record->isUnion() << DS.getSourceRange();
4414  return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4415  }
4416 
4417  DeclaresAnything = false;
4418  }
4419  }
4420 
4421  // Skip all the checks below if we have a type error.
4422  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4423  (TagD && TagD->isInvalidDecl()))
4424  return TagD;
4425 
4426  if (getLangOpts().CPlusPlus &&
4428  if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4429  if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4430  !Enum->getIdentifier() && !Enum->isInvalidDecl())
4431  DeclaresAnything = false;
4432 
4433  if (!DS.isMissingDeclaratorOk()) {
4434  // Customize diagnostic for a typedef missing a name.
4436  Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4437  << DS.getSourceRange();
4438  else
4439  DeclaresAnything = false;
4440  }
4441 
4442  if (DS.isModulePrivateSpecified() &&
4443  Tag && Tag->getDeclContext()->isFunctionOrMethod())
4444  Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4445  << Tag->getTagKind()
4447 
4448  ActOnDocumentableDecl(TagD);
4449 
4450  // C 6.7/2:
4451  // A declaration [...] shall declare at least a declarator [...], a tag,
4452  // or the members of an enumeration.
4453  // C++ [dcl.dcl]p3:
4454  // [If there are no declarators], and except for the declaration of an
4455  // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4456  // names into the program, or shall redeclare a name introduced by a
4457  // previous declaration.
4458  if (!DeclaresAnything) {
4459  // In C, we allow this as a (popular) extension / bug. Don't bother
4460  // producing further diagnostics for redundant qualifiers after this.
4461  Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4462  return TagD;
4463  }
4464 
4465  // C++ [dcl.stc]p1:
4466  // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4467  // init-declarator-list of the declaration shall not be empty.
4468  // C++ [dcl.fct.spec]p1:
4469  // If a cv-qualifier appears in a decl-specifier-seq, the
4470  // init-declarator-list of the declaration shall not be empty.
4471  //
4472  // Spurious qualifiers here appear to be valid in C.
4473  unsigned DiagID = diag::warn_standalone_specifier;
4474  if (getLangOpts().CPlusPlus)
4475  DiagID = diag::ext_standalone_specifier;
4476 
4477  // Note that a linkage-specification sets a storage class, but
4478  // 'extern "C" struct foo;' is actually valid and not theoretically
4479  // useless.
4480  if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4481  if (SCS == DeclSpec::SCS_mutable)
4482  // Since mutable is not a viable storage class specifier in C, there is
4483  // no reason to treat it as an extension. Instead, diagnose as an error.
4484  Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4485  else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4486  Diag(DS.getStorageClassSpecLoc(), DiagID)
4488  }
4489 
4490  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4491  Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4492  << DeclSpec::getSpecifierName(TSCS);
4493  if (DS.getTypeQualifiers()) {
4495  Diag(DS.getConstSpecLoc(), DiagID) << "const";
4497  Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4498  // Restrict is covered above.
4500  Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4502  Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4503  }
4504 
4505  // Warn about ignored type attributes, for example:
4506  // __attribute__((aligned)) struct A;
4507  // Attributes should be placed after tag to apply to type declaration.
4508  if (!DS.getAttributes().empty()) {
4509  DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4510  if (TypeSpecType == DeclSpec::TST_class ||
4511  TypeSpecType == DeclSpec::TST_struct ||
4512  TypeSpecType == DeclSpec::TST_interface ||
4513  TypeSpecType == DeclSpec::TST_union ||
4514  TypeSpecType == DeclSpec::TST_enum) {
4515  for (const ParsedAttr &AL : DS.getAttributes())
4516  Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4517  << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4518  }
4519  }
4520 
4521  return TagD;
4522 }
4523 
4524 /// We are trying to inject an anonymous member into the given scope;
4525 /// check if there's an existing declaration that can't be overloaded.
4526 ///
4527 /// \return true if this is a forbidden redeclaration
4528 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4529  Scope *S,
4530  DeclContext *Owner,
4531  DeclarationName Name,
4532  SourceLocation NameLoc,
4533  bool IsUnion) {
4534  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4536  if (!SemaRef.LookupName(R, S)) return false;
4537 
4538  // Pick a representative declaration.
4540  assert(PrevDecl && "Expected a non-null Decl");
4541 
4542  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4543  return false;
4544 
4545  SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4546  << IsUnion << Name;
4547  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4548 
4549  return true;
4550 }
4551 
4552 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4553 /// anonymous struct or union AnonRecord into the owning context Owner
4554 /// and scope S. This routine will be invoked just after we realize
4555 /// that an unnamed union or struct is actually an anonymous union or
4556 /// struct, e.g.,
4557 ///
4558 /// @code
4559 /// union {
4560 /// int i;
4561 /// float f;
4562 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4563 /// // f into the surrounding scope.x
4564 /// @endcode
4565 ///
4566 /// This routine is recursive, injecting the names of nested anonymous
4567 /// structs/unions into the owning context and scope as well.
4568 static bool
4570  RecordDecl *AnonRecord, AccessSpecifier AS,
4571  SmallVectorImpl<NamedDecl *> &Chaining) {
4572  bool Invalid = false;
4573 
4574  // Look every FieldDecl and IndirectFieldDecl with a name.
4575  for (auto *D : AnonRecord->decls()) {
4576  if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4577  cast<NamedDecl>(D)->getDeclName()) {
4578  ValueDecl *VD = cast<ValueDecl>(D);
4579  if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4580  VD->getLocation(),
4581  AnonRecord->isUnion())) {
4582  // C++ [class.union]p2:
4583  // The names of the members of an anonymous union shall be
4584  // distinct from the names of any other entity in the
4585  // scope in which the anonymous union is declared.
4586  Invalid = true;
4587  } else {
4588  // C++ [class.union]p2:
4589  // For the purpose of name lookup, after the anonymous union
4590  // definition, the members of the anonymous union are
4591  // considered to have been defined in the scope in which the
4592  // anonymous union is declared.
4593  unsigned OldChainingSize = Chaining.size();
4594  if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4595  Chaining.append(IF->chain_begin(), IF->chain_end());
4596  else
4597  Chaining.push_back(VD);
4598 
4599  assert(Chaining.size() >= 2);
4600  NamedDecl **NamedChain =
4601  new (SemaRef.Context)NamedDecl*[Chaining.size()];
4602  for (unsigned i = 0; i < Chaining.size(); i++)
4603  NamedChain[i] = Chaining[i];
4604 
4606  SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4607  VD->getType(), {NamedChain, Chaining.size()});
4608 
4609  for (const auto *Attr : VD->attrs())
4610  IndirectField->addAttr(Attr->clone(SemaRef.Context));
4611 
4612  IndirectField->setAccess(AS);
4613  IndirectField->setImplicit();
4614  SemaRef.PushOnScopeChains(IndirectField, S);
4615 
4616  // That includes picking up the appropriate access specifier.
4617  if (AS != AS_none) IndirectField->setAccess(AS);
4618 
4619  Chaining.resize(OldChainingSize);
4620  }
4621  }
4622  }
4623 
4624  return Invalid;
4625 }
4626 
4627 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4628 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4629 /// illegal input values are mapped to SC_None.
4630 static StorageClass
4632  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4633  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4634  "Parser allowed 'typedef' as storage class VarDecl.");
4635  switch (StorageClassSpec) {
4636  case DeclSpec::SCS_unspecified: return SC_None;
4637  case DeclSpec::SCS_extern:
4638  if (DS.isExternInLinkageSpec())
4639  return SC_None;
4640  return SC_Extern;
4641  case DeclSpec::SCS_static: return SC_Static;
4642  case DeclSpec::SCS_auto: return SC_Auto;
4643  case DeclSpec::SCS_register: return SC_Register;
4645  // Illegal SCSs map to None: error reporting is up to the caller.
4646  case DeclSpec::SCS_mutable: // Fall through.
4647  case DeclSpec::SCS_typedef: return SC_None;
4648  }
4649  llvm_unreachable("unknown storage class specifier");
4650 }
4651 
4653  assert(Record->hasInClassInitializer());
4654 
4655  for (const auto *I : Record->decls()) {
4656  const auto *FD = dyn_cast<FieldDecl>(I);
4657  if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4658  FD = IFD->getAnonField();
4659  if (FD && FD->hasInClassInitializer())
4660  return FD->getLocation();
4661  }
4662 
4663  llvm_unreachable("couldn't find in-class initializer");
4664 }
4665 
4667  SourceLocation DefaultInitLoc) {
4668  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4669  return;
4670 
4671  S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4672  S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4673 }
4674 
4676  CXXRecordDecl *AnonUnion) {
4677  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4678  return;
4679 
4680  checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4681 }
4682 
4683 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4684 /// anonymous structure or union. Anonymous unions are a C++ feature
4685 /// (C++ [class.union]) and a C11 feature; anonymous structures
4686 /// are a C11 feature and GNU C++ extension.
4688  AccessSpecifier AS,
4689  RecordDecl *Record,
4690  const PrintingPolicy &Policy) {
4691  DeclContext *Owner = Record->getDeclContext();
4692 
4693  // Diagnose whether this anonymous struct/union is an extension.
4694  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4695  Diag(Record->getLocation(), diag::ext_anonymous_union);
4696  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4697  Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4698  else if (!Record->isUnion() && !getLangOpts().C11)
4699  Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4700 
4701  // C and C++ require different kinds of checks for anonymous
4702  // structs/unions.
4703  bool Invalid = false;
4704  if (getLangOpts().CPlusPlus) {
4705  const char *PrevSpec = nullptr;
4706  unsigned DiagID;
4707  if (Record->isUnion()) {
4708  // C++ [class.union]p6:
4709  // C++17 [class.union.anon]p2:
4710  // Anonymous unions declared in a named namespace or in the
4711  // global namespace shall be declared static.
4712  DeclContext *OwnerScope = Owner->getRedeclContext();
4714  (OwnerScope->isTranslationUnit() ||
4715  (OwnerScope->isNamespace() &&
4716  !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4717  Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4718  << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4719 
4720  // Recover by adding 'static'.
4722  PrevSpec, DiagID, Policy);
4723  }
4724  // C++ [class.union]p6:
4725  // A storage class is not allowed in a declaration of an
4726  // anonymous union in a class scope.
4728  isa<RecordDecl>(Owner)) {
4730  diag::err_anonymous_union_with_storage_spec)
4732 
4733  // Recover by removing the storage specifier.
4735  SourceLocation(),
4736  PrevSpec, DiagID, Context.getPrintingPolicy());
4737  }
4738  }
4739 
4740  // Ignore const/volatile/restrict qualifiers.
4741  if (DS.getTypeQualifiers()) {
4743  Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4744  << Record->isUnion() << "const"
4747  Diag(DS.getVolatileSpecLoc(),
4748  diag::ext_anonymous_struct_union_qualified)
4749  << Record->isUnion() << "volatile"
4752  Diag(DS.getRestrictSpecLoc(),
4753  diag::ext_anonymous_struct_union_qualified)
4754  << Record->isUnion() << "restrict"
4757  Diag(DS.getAtomicSpecLoc(),
4758  diag::ext_anonymous_struct_union_qualified)
4759  << Record->isUnion() << "_Atomic"
4763  diag::ext_anonymous_struct_union_qualified)
4764  << Record->isUnion() << "__unaligned"
4766 
4767  DS.ClearTypeQualifiers();
4768  }
4769 
4770  // C++ [class.union]p2:
4771  // The member-specification of an anonymous union shall only
4772  // define non-static data members. [Note: nested types and
4773  // functions cannot be declared within an anonymous union. ]
4774  for (auto *Mem : Record->decls()) {
4775  if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4776  // C++ [class.union]p3:
4777  // An anonymous union shall not have private or protected
4778  // members (clause 11).
4779  assert(FD->getAccess() != AS_none);
4780  if (FD->getAccess() != AS_public) {
4781  Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4782  << Record->isUnion() << (FD->getAccess() == AS_protected);
4783  Invalid = true;
4784  }
4785 
4786  // C++ [class.union]p1
4787  // An object of a class with a non-trivial constructor, a non-trivial
4788  // copy constructor, a non-trivial destructor, or a non-trivial copy
4789  // assignment operator cannot be a member of a union, nor can an
4790  // array of such objects.
4791  if (CheckNontrivialField(FD))
4792  Invalid = true;
4793  } else if (Mem->isImplicit()) {
4794  // Any implicit members are fine.
4795  } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4796  // This is a type that showed up in an
4797  // elaborated-type-specifier inside the anonymous struct or
4798  // union, but which actually declares a type outside of the
4799  // anonymous struct or union. It's okay.
4800  } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4801  if (!MemRecord->isAnonymousStructOrUnion() &&
4802  MemRecord->getDeclName()) {
4803  // Visual C++ allows type definition in anonymous struct or union.
4804  if (getLangOpts().MicrosoftExt)
4805  Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4806  << Record->isUnion();
4807  else {
4808  // This is a nested type declaration.
4809  Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4810  << Record->isUnion();
4811  Invalid = true;
4812  }
4813  } else {
4814  // This is an anonymous type definition within another anonymous type.
4815  // This is a popular extension, provided by Plan9, MSVC and GCC, but
4816  // not part of standard C++.
4817  Diag(MemRecord->getLocation(),
4818  diag::ext_anonymous_record_with_anonymous_type)
4819  << Record->isUnion();
4820  }
4821  } else if (isa<AccessSpecDecl>(Mem)) {
4822  // Any access specifier is fine.
4823  } else if (isa<StaticAssertDecl>(Mem)) {
4824  // In C++1z, static_assert declarations are also fine.
4825  } else {
4826  // We have something that isn't a non-static data
4827  // member. Complain about it.
4828  unsigned DK = diag::err_anonymous_record_bad_member;
4829  if (isa<TypeDecl>(Mem))
4830  DK = diag::err_anonymous_record_with_type;
4831  else if (isa<FunctionDecl>(Mem))
4832  DK = diag::err_anonymous_record_with_function;
4833  else if (isa<VarDecl>(Mem))
4834  DK = diag::err_anonymous_record_with_static;
4835 
4836  // Visual C++ allows type definition in anonymous struct or union.
4837  if (getLangOpts().MicrosoftExt &&
4838  DK == diag::err_anonymous_record_with_type)
4839  Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4840  << Record->isUnion();
4841  else {
4842  Diag(Mem->getLocation(), DK) << Record->isUnion();
4843  Invalid = true;
4844  }
4845  }
4846  }
4847 
4848  // C++11 [class.union]p8 (DR1460):
4849  // At most one variant member of a union may have a
4850  // brace-or-equal-initializer.
4851  if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4852  Owner->isRecord())
4853  checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4854  cast<CXXRecordDecl>(Record));
4855  }
4856 
4857  if (!Record->isUnion() && !Owner->isRecord()) {
4858  Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4859  << getLangOpts().CPlusPlus;
4860  Invalid = true;
4861  }
4862 
4863  // C++ [dcl.dcl]p3:
4864  // [If there are no declarators], and except for the declaration of an
4865  // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4866  // names into the program
4867  // C++ [class.mem]p2:
4868  // each such member-declaration shall either declare at least one member
4869  // name of the class or declare at least one unnamed bit-field
4870  //
4871  // For C this is an error even for a named struct, and is diagnosed elsewhere.
4872  if (getLangOpts().CPlusPlus && Record->field_empty())
4873  Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4874 
4875  // Mock up a declarator.
4877  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4878  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4879 
4880  // Create a declaration for this anonymous struct/union.
4881  NamedDecl *Anon = nullptr;
4882  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4883  Anon = FieldDecl::Create(
4884  Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
4885  /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
4886  /*BitWidth=*/nullptr, /*Mutable=*/false,
4887  /*InitStyle=*/ICIS_NoInit);
4888  Anon->setAccess(AS);
4889  if (getLangOpts().CPlusPlus)
4890  FieldCollector->Add(cast<FieldDecl>(Anon));
4891  } else {
4892  DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4894  if (SCSpec == DeclSpec::SCS_mutable) {
4895  // mutable can only appear on non-static class members, so it's always
4896  // an error here
4897  Diag(Record->getLocation(), diag::err_mutable_nonmember);
4898  Invalid = true;
4899  SC = SC_None;
4900  }
4901 
4902  Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
4903  Record->getLocation(), /*IdentifierInfo=*/nullptr,
4904  Context.getTypeDeclType(Record), TInfo, SC);
4905 
4906  // Default-initialize the implicit variable. This initialization will be
4907  // trivial in almost all cases, except if a union member has an in-class
4908  // initializer:
4909  // union { int n = 0; };
4910  ActOnUninitializedDecl(Anon);
4911  }
4912  Anon->setImplicit();
4913 
4914  // Mark this as an anonymous struct/union type.
4915  Record->setAnonymousStructOrUnion(true);
4916 
4917  // Add the anonymous struct/union object to the current
4918  // context. We'll be referencing this object when we refer to one of
4919  // its members.
4920  Owner->addDecl(Anon);
4921 
4922  // Inject the members of the anonymous struct/union into the owning
4923  // context and into the identifier resolver chain for name lookup
4924  // purposes.
4926  Chain.push_back(Anon);
4927 
4928  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4929  Invalid = true;
4930 
4931  if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4932  if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4933  Decl *ManglingContextDecl;
4934  if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4935  NewVD->getDeclContext(), ManglingContextDecl)) {
4936  Context.setManglingNumber(
4937  NewVD, MCtx->getManglingNumber(
4938  NewVD, getMSManglingNumber(getLangOpts(), S)));
4939  Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4940  }
4941  }
4942  }
4943 
4944  if (Invalid)
4945  Anon->setInvalidDecl();
4946 
4947  return Anon;
4948 }
4949 
4950 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4951 /// Microsoft C anonymous structure.
4952 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4953 /// Example:
4954 ///
4955 /// struct A { int a; };
4956 /// struct B { struct A; int b; };
4957 ///
4958 /// void foo() {
4959 /// B var;
4960 /// var.a = 3;
4961 /// }
4962 ///
4964  RecordDecl *Record) {
4965  assert(Record && "expected a record!");
4966 
4967  // Mock up a declarator.
4969  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4970  assert(TInfo && "couldn't build declarator info for anonymous struct");
4971 
4972  auto *ParentDecl = cast<RecordDecl>(CurContext);
4973  QualType RecTy = Context.getTypeDeclType(Record);
4974 
4975  // Create a declaration for this anonymous struct.
4976  NamedDecl *Anon =
4977  FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
4978  /*IdentifierInfo=*/nullptr, RecTy, TInfo,
4979  /*BitWidth=*/nullptr, /*Mutable=*/false,
4980  /*InitStyle=*/ICIS_NoInit);
4981  Anon->setImplicit();
4982 
4983  // Add the anonymous struct object to the current context.
4984  CurContext->addDecl(Anon);
4985 
4986  // Inject the members of the anonymous struct into the current
4987  // context and into the identifier resolver chain for name lookup
4988  // purposes.
4990  Chain.push_back(Anon);
4991 
4992  RecordDecl *RecordDef = Record->getDefinition();
4993  if (RequireCompleteType(Anon->getLocation(), RecTy,
4994  diag::err_field_incomplete) ||
4995  InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4996  AS_none, Chain)) {
4997  Anon->setInvalidDecl();
4998  ParentDecl->setInvalidDecl();
4999  }
5000 
5001  return Anon;
5002 }
5003 
5004 /// GetNameForDeclarator - Determine the full declaration name for the
5005 /// given Declarator.
5007  return GetNameFromUnqualifiedId(D.getName());
5008 }
5009 
5010 /// Retrieves the declaration name from a parsed unqualified-id.
5013  DeclarationNameInfo NameInfo;
5014  NameInfo.setLoc(Name.StartLocation);
5015 
5016  switch (Name.getKind()) {
5017 
5020  NameInfo.setName(Name.Identifier);
5021  return NameInfo;
5022 
5024  // C++ [temp.deduct.guide]p3:
5025  // The simple-template-id shall name a class template specialization.
5026  // The template-name shall be the same identifier as the template-name
5027  // of the simple-template-id.
5028  // These together intend to imply that the template-name shall name a
5029  // class template.
5030  // FIXME: template<typename T> struct X {};
5031  // template<typename T> using Y = X<T>;
5032  // Y(int) -> Y<int>;
5033  // satisfies these rules but does not name a class template.
5034  TemplateName TN = Name.TemplateName.get().get();
5035  auto *Template = TN.getAsTemplateDecl();
5036  if (!Template || !isa<ClassTemplateDecl>(Template)) {
5037  Diag(Name.StartLocation,
5038  diag::err_deduction_guide_name_not_class_template)
5039  << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5040  if (Template)
5041  Diag(Template->getLocation(), diag::note_template_decl_here);
5042  return DeclarationNameInfo();
5043  }
5044 
5045  NameInfo.setName(
5046  Context.DeclarationNames.getCXXDeductionGuideName(Template));
5047  return NameInfo;
5048  }
5049 
5051  NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5056  = Name.EndLocation.getRawEncoding();
5057  return NameInfo;
5058 
5061  Name.Identifier));
5063  return NameInfo;
5064 
5066  TypeSourceInfo *TInfo;
5067  QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5068  if (Ty.isNull())
5069  return DeclarationNameInfo();
5071  Context.getCanonicalType(Ty)));
5072  NameInfo.setNamedTypeInfo(TInfo);
5073  return NameInfo;
5074  }
5075 
5077  TypeSourceInfo *TInfo;
5078  QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5079  if (Ty.isNull())
5080  return DeclarationNameInfo();
5082  Context.getCanonicalType(Ty)));
5083  NameInfo.setNamedTypeInfo(TInfo);
5084  return NameInfo;
5085  }
5086 
5088  // In well-formed code, we can only have a constructor
5089  // template-id that refers to the current context, so go there
5090  // to find the actual type being constructed.
5091  CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5092  if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5093  return DeclarationNameInfo();
5094 
5095  // Determine the type of the class being constructed.
5096  QualType CurClassType = Context.getTypeDeclType(CurClass);
5097 
5098  // FIXME: Check two things: that the template-id names the same type as
5099  // CurClassType, and that the template-id does not occur when the name
5100  // was qualified.
5101 
5103  Context.getCanonicalType(CurClassType)));
5104  // FIXME: should we retrieve TypeSourceInfo?
5105  NameInfo.setNamedTypeInfo(nullptr);
5106  return NameInfo;
5107  }
5108 
5110  TypeSourceInfo *TInfo;
5111  QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5112  if (Ty.isNull())
5113  return DeclarationNameInfo();
5115  Context.getCanonicalType(Ty)));
5116  NameInfo.setNamedTypeInfo(TInfo);
5117  return NameInfo;
5118  }
5119 
5121  TemplateName TName = Name.TemplateId->Template.get();
5122  SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5123  return Context.getNameForTemplate(TName, TNameLoc);
5124  }
5125 
5126  } // switch (Name.getKind())
5127 
5128  llvm_unreachable("Unknown name kind");
5129 }
5130 
5132  do {
5133  if (Ty->isPointerType() || Ty->isReferenceType())
5134  Ty = Ty->getPointeeType();
5135  else if (Ty->isArrayType())
5136  Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5137  else
5138  return Ty.withoutLocalFastQualifiers();
5139  } while (true);
5140 }
5141 
5142 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5143 /// and Definition have "nearly" matching parameters. This heuristic is
5144 /// used to improve diagnostics in the case where an out-of-line function
5145 /// definition doesn't match any declaration within the class or namespace.
5146 /// Also sets Params to the list of indices to the parameters that differ
5147 /// between the declaration and the definition. If hasSimilarParameters
5148 /// returns true and Params is empty, then all of the parameters match.
5149 static bool hasSimilarParameters(ASTContext &Context,
5150  FunctionDecl *Declaration,
5151  FunctionDecl *Definition,
5152  SmallVectorImpl<unsigned> &Params) {
5153  Params.clear();
5154  if (Declaration->param_size() != Definition->param_size())
5155  return false;
5156  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5157  QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5158  QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5159 
5160  // The parameter types are identical
5161  if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5162  continue;
5163 
5164  QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5165  QualType DefParamBaseTy = getCoreType(DefParamTy);
5166  const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5167  const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5168 
5169  if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5170  (DeclTyName && DeclTyName == DefTyName))
5171  Params.push_back(Idx);
5172  else // The two parameters aren't even close
5173  return false;
5174  }
5175 
5176  return true;
5177 }
5178 
5179 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5180 /// declarator needs to be rebuilt in the current instantiation.
5181 /// Any bits of declarator which appear before the name are valid for
5182 /// consideration here. That's specifically the type in the decl spec
5183 /// and the base type in any member-pointer chunks.
5185  DeclarationName Name) {
5186  // The types we specifically need to rebuild are:
5187  // - typenames, typeofs, and decltypes
5188  // - types which will become injected class names
5189  // Of course, we also need to rebuild any type referencing such a
5190  // type. It's safest to just say "dependent", but we call out a
5191  // few cases here.
5192 
5193  DeclSpec &DS = D.getMutableDeclSpec();
5194  switch (DS.getTypeSpecType()) {
5198  case DeclSpec::TST_atomic: {
5199  // Grab the type from the parser.
5200  TypeSourceInfo *TSI = nullptr;
5201  QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5202  if (T.isNull() || !T->isDependentType()) break;
5203 
5204  // Make sure there's a type source info. This isn't really much
5205  // of a waste; most dependent types should have type source info
5206  // attached already.
5207  if (!TSI)
5209 
5210  // Rebuild the type in the current instantiation.
5211  TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5212  if (!TSI) return true;
5213 
5214  // Store the new type back in the decl spec.
5215  ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5216  DS.UpdateTypeRep(LocType);
5217  break;
5218  }
5219 
5221  case DeclSpec::TST_typeofExpr: {
5222  Expr *E = DS.getRepAsExpr();
5224  if (Result.isInvalid()) return true;
5225  DS.UpdateExprRep(Result.get());
5226  break;
5227  }
5228 
5229  default:
5230  // Nothing to do for these decl specs.
5231  break;
5232  }
5233 
5234  // It doesn't matter what order we do this in.
5235  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5236  DeclaratorChunk &Chunk = D.getTypeObject(I);
5237 
5238  // The only type information in the declarator which can come
5239  // before the declaration name is the base type of a member
5240  // pointer.
5241  if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5242  continue;
5243 
5244  // Rebuild the scope specifier in-place.
5245  CXXScopeSpec &SS = Chunk.Mem.Scope();
5247  return true;
5248  }
5249 
5250  return false;
5251 }
5252 
5255  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5256 
5257  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5258  Dcl && Dcl->getDeclContext()->isFileContext())
5260 
5261  if (getLangOpts().OpenCL)
5262  setCurrentOpenCLExtensionForDecl(Dcl);
5263 
5264  return Dcl;
5265 }
5266 
5267 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5268 /// If T is the name of a class, then each of the following shall have a
5269 /// name different from T:
5270 /// - every static data member of class T;
5271 /// - every member function of class T
5272 /// - every member of class T that is itself a type;
5273 /// \returns true if the declaration name violates these rules.
5275  DeclarationNameInfo NameInfo) {
5276  DeclarationName Name = NameInfo.getName();
5277 
5278  CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5279  while (Record && Record->isAnonymousStructOrUnion())
5280  Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5281  if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5282  Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5283  return true;
5284  }
5285 
5286  return false;
5287 }
5288 
5289 /// Diagnose a declaration whose declarator-id has the given
5290 /// nested-name-specifier.
5291 ///
5292 /// \param SS The nested-name-specifier of the declarator-id.
5293 ///
5294 /// \param DC The declaration context to which the nested-name-specifier
5295 /// resolves.
5296 ///
5297 /// \param Name The name of the entity being declared.
5298 ///
5299 /// \param Loc The location of the name of the entity being declared.
5300 ///
5301 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5302 /// we're declaring an explicit / partial specialization / instantiation.
5303 ///
5304 /// \returns true if we cannot safely recover from this error, false otherwise.
5306  DeclarationName Name,
5307  SourceLocation Loc, bool IsTemplateId) {
5308  DeclContext *Cur = CurContext;
5309  while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5310  Cur = Cur->getParent();
5311 
5312  // If the user provided a superfluous scope specifier that refers back to the
5313  // class in which the entity is already declared, diagnose and ignore it.
5314  //
5315  // class X {
5316  // void X::f();
5317  // };
5318  //
5319  // Note, it was once ill-formed to give redundant qualification in all
5320  // contexts, but that rule was removed by DR482.
5321  if (Cur->Equals(DC)) {
5322  if (Cur->isRecord()) {
5323  Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5324  : diag::err_member_extra_qualification)
5325  << Name << FixItHint::CreateRemoval(SS.getRange());
5326  SS.clear();
5327  } else {
5328  Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5329  }
5330  return false;
5331  }
5332 
5333  // Check whether the qualifying scope encloses the scope of the original
5334  // declaration. For a template-id, we perform the checks in
5335  // CheckTemplateSpecializationScope.
5336  if (!Cur->Encloses(DC) && !IsTemplateId) {
5337  if (Cur->isRecord())
5338  Diag(Loc, diag::err_member_qualification)
5339  << Name << SS.getRange();
5340  else if (isa<TranslationUnitDecl>(DC))
5341  Diag(Loc, diag::err_invalid_declarator_global_scope)
5342  << Name << SS.getRange();
5343  else if (isa<FunctionDecl>(Cur))
5344  Diag(Loc, diag::err_invalid_declarator_in_function)
5345  << Name << SS.getRange();
5346  else if (isa<BlockDecl>(Cur))
5347  Diag(Loc, diag::err_invalid_declarator_in_block)
5348  << Name << SS.getRange();
5349  else
5350  Diag(Loc, diag::err_invalid_declarator_scope)
5351  << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5352 
5353  return true;
5354  }
5355 
5356  if (Cur->isRecord()) {
5357  // Cannot qualify members within a class.
5358  Diag(Loc, diag::err_member_qualification)
5359  << Name << SS.getRange();
5360  SS.clear();
5361 
5362  // C++ constructors and destructors with incorrect scopes can break
5363  // our AST invariants by having the wrong underlying types. If
5364  // that's the case, then drop this declaration entirely.
5367  !Context.hasSameType(Name.getCXXNameType(),
5368  Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5369  return true;
5370 
5371  return false;
5372  }
5373 
5374  // C++11 [dcl.meaning]p1:
5375  // [...] "The nested-name-specifier of the qualified declarator-id shall
5376  // not begin with a decltype-specifer"
5377  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5378  while (SpecLoc.getPrefix())
5379  SpecLoc = SpecLoc.getPrefix();
5380  if (dyn_cast_or_null<DecltypeType>(
5381  SpecLoc.getNestedNameSpecifier()->getAsType()))
5382  Diag(Loc, diag::err_decltype_in_declarator)
5383  << SpecLoc.getTypeLoc().getSourceRange();
5384 
5385  return false;
5386 }
5387 
5389  MultiTemplateParamsArg TemplateParamLists) {
5390  // TODO: consider using NameInfo for diagnostic.
5391  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5392  DeclarationName Name = NameInfo.getName();
5393 
5394  // All of these full declarators require an identifier. If it doesn't have
5395  // one, the ParsedFreeStandingDeclSpec action should be used.
5396  if (D.isDecompositionDeclarator()) {
5397  return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5398  } else if (!Name) {
5399  if (!D.isInvalidType()) // Reject this if we think it is valid.
5400  Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5401  << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5402  return nullptr;
5403  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5404  return nullptr;
5405 
5406  // The scope passed in may not be a decl scope. Zip up the scope tree until
5407  // we find one that is.
5408  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5409  (S->getFlags() & Scope::TemplateParamScope) != 0)
5410  S = S->getParent();
5411 
5412  DeclContext *DC = CurContext;
5413  if (D.getCXXScopeSpec().isInvalid())
5414  D.setInvalidType();
5415  else if (D.getCXXScopeSpec().isSet()) {
5416  if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5417  UPPC_DeclarationQualifier))
5418  return nullptr;
5419 
5420  bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5421  DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5422  if (!DC || isa<EnumDecl>(DC)) {
5423  // If we could not compute the declaration context, it's because the
5424  // declaration context is dependent but does not refer to a class,
5425  // class template, or class template partial specialization. Complain
5426  // and return early, to avoid the coming semantic disaster.
5427  Diag(D.getIdentifierLoc(),
5428  diag::err_template_qualified_declarator_no_match)
5429  << D.getCXXScopeSpec().getScopeRep()
5430  << D.getCXXScopeSpec().getRange();
5431  return nullptr;
5432  }
5433  bool IsDependentContext = DC->isDependentContext();
5434 
5435  if (!IsDependentContext &&
5436  RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5437  return nullptr;
5438 
5439  // If a class is incomplete, do not parse entities inside it.
5440  if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5441  Diag(D.getIdentifierLoc(),
5442  diag::err_member_def_undefined_record)
5443  << Name << DC << D.getCXXScopeSpec().getRange();
5444  return nullptr;
5445  }
5446  if (!D.getDeclSpec().isFriendSpecified()) {
5447  if (diagnoseQualifiedDeclaration(
5448  D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5450  if (DC->isRecord())
5451  return nullptr;
5452 
5453  D.setInvalidType();
5454  }
5455  }
5456 
5457  // Check whether we need to rebuild the type of the given
5458  // declaration in the current instantiation.
5459  if (EnteringContext && IsDependentContext &&
5460  TemplateParamLists.size() != 0) {
5461  ContextRAII SavedContext(*this, DC);
5462  if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5463  D.setInvalidType();
5464  }
5465  }
5466 
5467  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5468  QualType R = TInfo->getType();
5469 
5470  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5471  UPPC_DeclarationType))
5472  D.setInvalidType();
5473 
5474  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5475  forRedeclarationInCurContext());
5476 
5477  // See if this is a redefinition of a variable in the same scope.
5478  if (!D.getCXXScopeSpec().isSet()) {
5479  bool IsLinkageLookup = false;
5480  bool CreateBuiltins = false;
5481 
5482  // If the declaration we're planning to build will be a function
5483  // or object with linkage, then look for another declaration with
5484  // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5485  //
5486  // If the declaration we're planning to build will be declared with
5487  // external linkage in the translation unit, create any builtin with
5488  // the same name.
5490  /* Do nothing*/;
5491  else if (CurContext->isFunctionOrMethod() &&
5493  R->isFunctionType())) {
5494  IsLinkageLookup = true;
5495  CreateBuiltins =
5496  CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5497  } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5499  CreateBuiltins = true;
5500 
5501  if (IsLinkageLookup) {
5502  Previous.clear(LookupRedeclarationWithLinkage);
5503  Previous.setRedeclarationKind(ForExternalRedeclaration);
5504  }
5505 
5506  LookupName(Previous, S, CreateBuiltins);
5507  } else { // Something like "int foo::x;"
5508  LookupQualifiedName(Previous, DC);
5509 
5510  // C++ [dcl.meaning]p1:
5511  // When the declarator-id is qualified, the declaration shall refer to a
5512  // previously declared member of the class or namespace to which the
5513  // qualifier refers (or, in the case of a namespace, of an element of the
5514  // inline namespace set of that namespace (7.3.1)) or to a specialization
5515  // thereof; [...]
5516  //
5517  // Note that we already checked the context above, and that we do not have
5518  // enough information to make sure that Previous contains the declaration
5519  // we want to match. For example, given:
5520  //
5521  // class X {
5522  // void f();
5523  // void f(float);
5524  // };
5525  //
5526  // void X::f(int) { } // ill-formed
5527  //
5528  // In this case, Previous will point to the overload set
5529  // containing the two f's declared in X, but neither of them
5530  // matches.
5531 
5532  // C++ [dcl.meaning]p1:
5533  // [...] the member shall not merely have been introduced by a
5534  // using-declaration in the scope of the class or namespace nominated by
5535  // the nested-name-specifier of the declarator-id.
5536  RemoveUsingDecls(Previous);
5537  }
5538 
5539  if (Previous.isSingleResult() &&
5540  Previous.getFoundDecl()->isTemplateParameter()) {
5541  // Maybe we will complain about the shadowed template parameter.
5542  if (!D.isInvalidType())
5543  DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5544  Previous.getFoundDecl());
5545 
5546  // Just pretend that we didn't see the previous declaration.
5547  Previous.clear();
5548  }
5549 
5550  if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5551  // Forget that the previous declaration is the injected-class-name.
5552  Previous.clear();
5553 
5554  // In C++, the previous declaration we find might be a tag type
5555  // (class or enum). In this case, the new declaration will hide the
5556  // tag type. Note that this applies to functions, function templates, and
5557  // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5558  if (Previous.isSingleTagDecl() &&
5560  (TemplateParamLists.size() == 0 || R->isFunctionType()))
5561  Previous.clear();
5562 
5563  // Check that there are no default arguments other than in the parameters
5564  // of a function declaration (C++ only).
5565  if (getLangOpts().CPlusPlus)
5566  CheckExtraCXXDefaultArguments(D);
5567 
5568  NamedDecl *New;
5569 
5570  bool AddToScope = true;
5572  if (TemplateParamLists.size()) {
5573  Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5574  return nullptr;
5575  }
5576 
5577  New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5578  } else if (R->isFunctionType()) {
5579  New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5580  TemplateParamLists,
5581  AddToScope);
5582  } else {
5583  New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5584  AddToScope);
5585  }
5586 
5587  if (!New)
5588  return nullptr;
5589 
5590  // If this has an identifier and is not a function template specialization,
5591  // add it to the scope stack.
5592  if (New->getDeclName() && AddToScope)
5593  PushOnScopeChains(New, S);
5594 
5595  if (isInOpenMPDeclareTargetContext())
5596  checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5597 
5598  return New;
5599 }
5600 
5601 /// Helper method to turn variable array types into constant array
5602 /// types in certain situations which would otherwise be errors (for
5603 /// GCC compatibility).
5605  ASTContext &Context,
5606  bool &SizeIsNegative,
5607  llvm::APSInt &Oversized) {
5608  // This method tries to turn a variable array into a constant
5609  // array even when the size isn't an ICE. This is necessary
5610  // for compatibility with code that depends on gcc's buggy
5611  // constant expression folding, like struct {char x[(int)(char*)2];}
5612  SizeIsNegative = false;
5613  Oversized = 0;
5614 
5615  if (T->isDependentType())
5616  return QualType();
5617 
5618  QualifierCollector Qs;
5619  const Type *Ty = Qs.strip(T);
5620 
5621  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5622  QualType Pointee = PTy->getPointeeType();
5623  QualType FixedType =
5624  TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5625  Oversized);
5626  if (FixedType.isNull()) return FixedType;
5627  FixedType = Context.getPointerType(FixedType);
5628  return Qs.apply(Context, FixedType);
5629  }
5630  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5631  QualType Inner = PTy->getInnerType();
5632  QualType FixedType =
5633  TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5634  Oversized);
5635  if (FixedType.isNull()) return FixedType;
5636  FixedType = Context.getParenType(FixedType);
5637  return Qs.apply(Context, FixedType);
5638  }
5639 
5640  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5641  if (!VLATy)
5642  return QualType();
5643  // FIXME: We should probably handle this case
5644  if (VLATy->getElementType()->isVariablyModifiedType())
5645  return QualType();
5646 
5647  Expr::EvalResult Result;
5648  if (!VLATy->getSizeExpr() ||
5649  !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5650  return QualType();
5651 
5652  llvm::APSInt Res = Result.Val.getInt();
5653 
5654  // Check whether the array size is negative.
5655  if (Res.isSigned() && Res.isNegative()) {
5656  SizeIsNegative = true;
5657  return QualType();
5658  }
5659 
5660  // Check whether the array is too large to be addressed.
5661  unsigned ActiveSizeBits
5663  Res);
5664  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5665  Oversized = Res;
5666  return QualType();
5667  }
5668 
5669  return Context.getConstantArrayType(VLATy->getElementType(),
5670  Res, ArrayType::Normal, 0);
5671 }
5672 
5673 static void
5675  SrcTL = SrcTL.getUnqualifiedLoc();
5676  DstTL = DstTL.getUnqualifiedLoc();
5677  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5678  PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5679  FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5680  DstPTL.getPointeeLoc());
5681  DstPTL.setStarLoc(SrcPTL.getStarLoc());
5682  return;
5683  }
5684  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5685  ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5686  FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5687  DstPTL.getInnerLoc());
5688  DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5689  DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5690  return;
5691  }
5692  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5693  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5694  TypeLoc SrcElemTL = SrcATL.getElementLoc();
5695  TypeLoc DstElemTL = DstATL.getElementLoc();
5696  DstElemTL.initializeFullCopy(SrcElemTL);
5697  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5698  DstATL.setSizeExpr(SrcATL.getSizeExpr());
5699  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5700 }
5701 
5702 /// Helper method to turn variable array types into constant array
5703 /// types in certain situations which would otherwise be errors (for
5704 /// GCC compatibility).
5705 static TypeSourceInfo*
5707  ASTContext &Context,
5708  bool &SizeIsNegative,
5709  llvm::APSInt &Oversized) {
5710  QualType FixedTy
5711  = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5712  SizeIsNegative, Oversized);
5713  if (FixedTy.isNull())
5714  return nullptr;
5715  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5717  FixedTInfo->getTypeLoc());
5718  return FixedTInfo;
5719 }
5720 
5721 /// Register the given locally-scoped extern "C" declaration so
5722 /// that it can be found later for redeclarations. We include any extern "C"
5723 /// declaration that is not visible in the translation unit here, not just
5724 /// function-scope declarations.
5725 void
5727  if (!getLangOpts().CPlusPlus &&
5729  // Don't need to track declarations in the TU in C.
5730  return;
5731 
5732  // Note that we have a locally-scoped external with this name.
5734 }
5735 
5737  // FIXME: We can have multiple results via __attribute__((overloadable)).
5738  auto Result = Context.getExternCContextDecl()->lookup(Name);
5739  return Result.empty() ? nullptr : *Result.begin();
5740 }
5741 
5742 /// Diagnose function specifiers on a declaration of an identifier that
5743 /// does not identify a function.
5745  // FIXME: We should probably indicate the identifier in question to avoid
5746  // confusion for constructs like "virtual int a(), b;"
5747  if (DS.isVirtualSpecified())
5748  Diag(DS.getVirtualSpecLoc(),
5749  diag::err_virtual_non_function);
5750 
5751  if (DS.hasExplicitSpecifier())
5752  Diag(DS.getExplicitSpecLoc(),
5753  diag::err_explicit_non_function);
5754 
5755  if (DS.isNoreturnSpecified())
5756  Diag(DS.getNoreturnSpecLoc(),
5757  diag::err_noreturn_non_function);
5758 }
5759 
5760 NamedDecl*
5763  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5764  if (D.getCXXScopeSpec().isSet()) {
5765  Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5766  << D.getCXXScopeSpec().getRange();
5767  D.setInvalidType();
5768  // Pretend we didn't see the scope specifier.
5769  DC = CurContext;
5770  Previous.clear();
5771  }
5772 
5773  DiagnoseFunctionSpecifiers(D.getDeclSpec());
5774 
5775  if (D.getDeclSpec().isInlineSpecified())
5776  Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5777  << getLangOpts().CPlusPlus17;
5779  Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5780  << 1 << (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval);
5781 
5785  diag::err_deduction_guide_invalid_specifier)
5786  << "typedef";
5787  else
5788  Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5789  << D.getName().getSourceRange();
5790  return nullptr;
5791  }
5792 
5793  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5794  if (!NewTD) return nullptr;
5795 
5796  // Handle attributes prior to checking for duplicates in MergeVarDecl
5797  ProcessDeclAttributes(S, NewTD, D);
5798 
5799  CheckTypedefForVariablyModifiedType(S, NewTD);
5800 
5801  bool Redeclaration = D.isRedeclaration();
5802  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5803  D.setRedeclaration(Redeclaration);
5804  return ND;
5805 }
5806 
5807 void
5809  // C99 6.7.7p2: If a typedef name specifies a variably modified type
5810  // then it shall have block scope.
5811  // Note that variably modified types must be fixed before merging the decl so
5812  // that redeclarations will match.
5813  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5814  QualType T = TInfo->getType();
5815  if (T->isVariablyModifiedType()) {
5816  setFunctionHasBranchProtectedScope();
5817 
5818  if (S->getFnParent() == nullptr) {
5819  bool SizeIsNegative;
5820  llvm::APSInt Oversized;
5821  TypeSourceInfo *FixedTInfo =
5823  SizeIsNegative,
5824  Oversized);
5825  if (FixedTInfo) {
5826  Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5827  NewTD->setTypeSourceInfo(FixedTInfo);
5828  } else {
5829  if (SizeIsNegative)
5830  Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5831  else if (T->isVariableArrayType())
5832  Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5833  else if (Oversized.getBoolValue())
5834  Diag(NewTD->getLocation(), diag::err_array_too_large)
5835  << Oversized.toString(10);
5836  else
5837  Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5838  NewTD->setInvalidDecl();
5839  }
5840  }
5841  }
5842 }
5843 
5844 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5845 /// declares a typedef-name, either using the 'typedef' type specifier or via
5846 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5847 NamedDecl*
5849  LookupResult &Previous, bool &Redeclaration) {
5850 
5851  // Find the shadowed declaration before filtering for scope.
5852  NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5853 
5854  // Merge the decl with the existing one if appropriate. If the decl is
5855  // in an outer scope, it isn't the same thing.
5856  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5857  /*AllowInlineNamespace*/false);
5858  filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5859  if (!Previous.empty()) {
5860  Redeclaration = true;
5861  MergeTypedefNameDecl(S, NewTD, Previous);
5862  }
5863 
5864  if (ShadowedDecl && !Redeclaration)
5865  CheckShadow(NewTD, ShadowedDecl, Previous);
5866 
5867  // If this is the C FILE type, notify the AST context.
5868  if (IdentifierInfo *II = NewTD->getIdentifier())
5869  if (!NewTD->isInvalidDecl() &&
5871  if (II->isStr("FILE"))
5872  Context.setFILEDecl(NewTD);
5873  else if (II->isStr("jmp_buf"))
5874  Context.setjmp_bufDecl(NewTD);
5875  else if (II->isStr("sigjmp_buf"))
5876  Context.setsigjmp_bufDecl(NewTD);
5877  else if (II->isStr("ucontext_t"))
5878  Context.setucontext_tDecl(NewTD);
5879  }
5880 
5881  return NewTD;
5882 }
5883 
5884 /// Determines whether the given declaration is an out-of-scope
5885 /// previous declaration.
5886 ///
5887 /// This routine should be invoked when name lookup has found a
5888 /// previous declaration (PrevDecl) that is not in the scope where a
5889 /// new declaration by the same name is being introduced. If the new
5890 /// declaration occurs in a local scope, previous declarations with
5891 /// linkage may still be considered previous declarations (C99
5892 /// 6.2.2p4-5, C++ [basic.link]p6).
5893 ///
5894 /// \param PrevDecl the previous declaration found by name
5895 /// lookup
5896 ///
5897 /// \param DC the context in which the new declaration is being
5898 /// declared.
5899 ///
5900 /// \returns true if PrevDecl is an out-of-scope previous declaration
5901 /// for a new delcaration with the same name.
5902 static bool
5904  ASTContext &Context) {
5905  if (!PrevDecl)
5906  return false;
5907 
5908  if (!PrevDecl->hasLinkage())
5909  return false;
5910 
5911  if (Context.getLangOpts().CPlusPlus) {
5912  // C++ [basic.link]p6:
5913  // If there is a visible declaration of an entity with linkage
5914  // having the same name and type, ignoring entities declared
5915  // outside the innermost enclosing namespace scope, the block
5916  // scope declaration declares that same entity and receives the
5917  // linkage of the previous declaration.
5918  DeclContext *OuterContext = DC->getRedeclContext();
5919  if (!OuterContext->isFunctionOrMethod())
5920  // This rule only applies to block-scope declarations.
5921  return false;
5922 
5923  DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5924  if (PrevOuterContext->isRecord())
5925  // We found a member function: ignore it.
5926  return false;
5927 
5928  // Find the innermost enclosing namespace for the new and
5929  // previous declarations.
5930  OuterContext = OuterContext->getEnclosingNamespaceContext();
5931  PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5932 
5933  // The previous declaration is in a different namespace, so it
5934  // isn't the same function.
5935  if (!OuterContext->Equals(PrevOuterContext))
5936  return false;
5937  }
5938 
5939  return true;
5940 }
5941 
5943  CXXScopeSpec &SS = D.getCXXScopeSpec();
5944  if (!SS.isSet()) return;
5946 }
5947 
5949  QualType type = decl->getType();
5950  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5951  if (lifetime == Qualifiers::OCL_Autoreleasing) {
5952  // Various kinds of declaration aren't allowed to be __autoreleasing.
5953  unsigned kind = -1U;
5954  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5955  if (var->hasAttr<BlocksAttr>())
5956  kind = 0; // __block
5957  else if (!var->hasLocalStorage())
5958  kind = 1; // global
5959  } else if (isa<ObjCIvarDecl>(decl)) {
5960  kind = 3; // ivar
5961  } else if (isa<FieldDecl>(decl)) {
5962  kind = 2; // field
5963  }
5964 
5965  if (kind != -1U) {
5966  Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5967  << kind;
5968  }
5969  } else if (lifetime == Qualifiers::OCL_None) {
5970  // Try to infer lifetime.
5971  if (!type->isObjCLifetimeType())
5972  return false;
5973 
5974  lifetime = type->getObjCARCImplicitLifetime();
5975  type = Context.getLifetimeQualifiedType(type, lifetime);
5976  decl->setType(type);
5977  }
5978 
5979  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5980  // Thread-local variables cannot have lifetime.
5981  if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5982  var->getTLSKind()) {
5983  Diag(var->getLocation(), diag::err_arc_thread_ownership)
5984  << var->getType();
5985  return true;
5986  }
5987  }
5988 
5989  return false;
5990 }
5991 
5993  // Ensure that an auto decl is deduced otherwise the checks below might cache
5994  // the wrong linkage.
5995  assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5996 
5997  // 'weak' only applies to declarations with external linkage.
5998  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5999  if (!ND.isExternallyVisible()) {
6000  S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6001  ND.dropAttr<WeakAttr>();
6002  }
6003  }
6004  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6005  if (ND.isExternallyVisible()) {
6006  S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6007  ND.dropAttr<WeakRefAttr>();
6008  ND.dropAttr<AliasAttr>();
6009  }
6010  }
6011 
6012  if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6013  if (VD->hasInit()) {
6014  if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6015  assert(VD->isThisDeclarationADefinition() &&
6016  !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
6017  S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6018  VD->dropAttr<AliasAttr>();
6019  }
6020  }
6021  }
6022 
6023  // 'selectany' only applies to externally visible variable declarations.
6024  // It does not apply to functions.
6025  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6026  if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6027  S.Diag(Attr->getLocation(),
6028  diag::err_attribute_selectany_non_extern_data);
6029  ND.dropAttr<SelectAnyAttr>();
6030  }
6031  }
6032 
6033  if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6034  auto *VD = dyn_cast<VarDecl>(&ND);
6035  bool IsAnonymousNS = false;
6036  bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6037  if (VD) {
6038  const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6039  while (NS && !IsAnonymousNS) {
6040  IsAnonymousNS = NS->isAnonymousNamespace();
6041  NS = dyn_cast<NamespaceDecl>(NS->getParent());
6042  }
6043  }
6044  // dll attributes require external linkage. Static locals may have external
6045  // linkage but still cannot be explicitly imported or exported.
6046  // In Microsoft mode, a variable defined in anonymous namespace must have
6047  // external linkage in order to be exported.
6048  bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6049  if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6050  (!AnonNSInMicrosoftMode &&
6051  (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6052  S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6053  << &ND << Attr;
6054  ND.setInvalidDecl();
6055  }
6056  }
6057 
6058  // Virtual functions cannot be marked as 'notail'.
6059  if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6060  if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6061  if (MD->isVirtual()) {
6062  S.Diag(ND.getLocation(),
6063  diag::err_invalid_attribute_on_virtual_function)
6064  << Attr;
6065  ND.dropAttr<NotTailCalledAttr>();
6066  }
6067 
6068  // Check the attributes on the function type, if any.
6069  if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6070  // Don't declare this variable in the second operand of the for-statement;
6071  // GCC miscompiles that by ending its lifetime before evaluating the
6072  // third operand. See gcc.gnu.org/PR86769.
6073  AttributedTypeLoc ATL;
6074  for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6075  (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6076  TL = ATL.getModifiedLoc()) {
6077  // The [[lifetimebound]] attribute can be applied to the implicit object
6078  // parameter of a non-static member function (other than a ctor or dtor)
6079  // by applying it to the function type.
6080  if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6081  const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6082  if (!MD || MD->isStatic()) {
6083  S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6084  << !MD << A->getRange();
6085  } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6086  S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6087  << isa<CXXDestructorDecl>(MD) << A->getRange();
6088  }
6089  }
6090  }
6091  }
6092 }
6093 
6095  NamedDecl *NewDecl,
6096  bool IsSpecialization,
6097  bool IsDefinition) {
6098  if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6099  return;
6100 
6101  bool IsTemplate = false;
6102  if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6103  OldDecl = OldTD->getTemplatedDecl();
6104  IsTemplate = true;
6105  if (!IsSpecialization)
6106  IsDefinition = false;
6107  }
6108  if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6109  NewDecl = NewTD->getTemplatedDecl();
6110  IsTemplate = true;
6111  }
6112 
6113  if (!OldDecl || !NewDecl)
6114  return;
6115 
6116  const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6117  const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6118  const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6119  const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6120 
6121  // dllimport and dllexport are inheritable attributes so we have to exclude
6122  // inherited attribute instances.
6123  bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6124  (NewExportAttr && !NewExportAttr->isInherited());
6125 
6126  // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6127  // the only exception being explicit specializations.
6128  // Implicitly generated declarations are also excluded for now because there
6129  // is no other way to switch these to use dllimport or dllexport.
6130  bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6131 
6132  if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6133  // Allow with a warning for free functions and global variables.
6134  bool JustWarn = false;
6135  if (!OldDecl->isCXXClassMember()) {
6136  auto *VD = dyn_cast<VarDecl>(OldDecl);
6137  if (VD && !VD->getDescribedVarTemplate())
6138  JustWarn = true;
6139  auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6140  if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6141  JustWarn = true;
6142  }
6143 
6144  // We cannot change a declaration that's been used because IR has already
6145  // been emitted. Dllimported functions will still work though (modulo
6146  // address equality) as they can use the thunk.
6147  if (OldDecl->isUsed())
6148  if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6149  JustWarn = false;
6150 
6151  unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6152  : diag::err_attribute_dll_redeclaration;
6153  S.Diag(NewDecl->getLocation(), DiagID)
6154  << NewDecl
6155  << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6156  S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6157  if (!JustWarn) {
6158  NewDecl->setInvalidDecl();
6159  return;
6160  }
6161  }
6162 
6163  // A redeclaration is not allowed to drop a dllimport attribute, the only
6164  // exceptions being inline function definitions (except for function
6165  // templates), local extern declarations, qualified friend declarations or
6166  // special MSVC extension: in the last case, the declaration is treated as if
6167  // it were marked dllexport.
6168  bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6169  bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6170  if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6171  // Ignore static data because out-of-line definitions are diagnosed
6172  // separately.
6173  IsStaticDataMember = VD->isStaticDataMember();
6174  IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6176  } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6177  IsInline = FD->isInlined();
6178  IsQualifiedFriend = FD->getQualifier() &&
6179  FD->getFriendObjectKind() == Decl::FOK_Declared;
6180  }
6181 
6182  if (OldImportAttr && !HasNewAttr &&
6183  (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6184  !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6185  if (IsMicrosoft && IsDefinition) {
6186  S.Diag(NewDecl->getLocation(),
6187  diag::warn_redeclaration_without_import_attribute)
6188  << NewDecl;
6189  S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6190  NewDecl->dropAttr<DLLImportAttr>();
6191  NewDecl->addAttr(::new (S.Context) DLLExportAttr(
6192  NewImportAttr->getRange(), S.Context,
6193  NewImportAttr->getSpellingListIndex()));
6194  } else {
6195  S.Diag(NewDecl->getLocation(),
6196  diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6197  << NewDecl << OldImportAttr;
6198  S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6199  S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6200  OldDecl->dropAttr<DLLImportAttr>();
6201  NewDecl->dropAttr<DLLImportAttr>();
6202  }
6203  } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6204  // In MinGW, seeing a function declared inline drops the dllimport
6205  // attribute.
6206  OldDecl->dropAttr<DLLImportAttr>();
6207  NewDecl->dropAttr<DLLImportAttr>();
6208  S.Diag(NewDecl->getLocation(),
6209  diag::warn_dllimport_dropped_from_inline_function)
6210  << NewDecl << OldImportAttr;
6211  }
6212 
6213  // A specialization of a class template member function is processed here
6214  // since it's a redeclaration. If the parent class is dllexport, the
6215  // specialization inherits that attribute. This doesn't happen automatically
6216  // since the parent class isn't instantiated until later.
6217  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6218  if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6219  !NewImportAttr && !NewExportAttr) {
6220  if (const DLLExportAttr *ParentExportAttr =
6221  MD->getParent()->getAttr<DLLExportAttr>()) {
6222  DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6223  NewAttr->setInherited(true);
6224  NewDecl->addAttr(NewAttr);
6225  }
6226  }
6227  }
6228 }
6229 
6230 /// Given that we are within the definition of the given function,
6231 /// will that definition behave like C99's 'inline', where the
6232 /// definition is discarded except for optimization purposes?
6234  // Try to avoid calling GetGVALinkageForFunction.
6235 
6236  // All cases of this require the 'inline' keyword.
6237  if (!FD->isInlined()) return false;
6238 
6239  // This is only possible in C++ with the gnu_inline attribute.
6240  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6241  return false;
6242 
6243  // Okay, go ahead and call the relatively-more-expensive function.
6245 }
6246 
6247 /// Determine whether a variable is extern "C" prior to attaching
6248 /// an initializer. We can't just call isExternC() here, because that
6249 /// will also compute and cache whether the declaration is externally
6250 /// visible, which might change when we attach the initializer.
6251 ///
6252 /// This can only be used if the declaration is known to not be a
6253 /// redeclaration of an internal linkage declaration.
6254 ///
6255 /// For instance:
6256 ///
6257 /// auto x = []{};
6258 ///
6259 /// Attaching the initializer here makes this declaration not externally
6260 /// visible, because its type has internal linkage.
6261 ///
6262 /// FIXME: This is a hack.
6263 template<typename T>
6264 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6265  if (S.getLangOpts().CPlusPlus) {
6266  // In C++, the overloadable attribute negates the effects of extern "C".
6267  if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6268  return false;
6269 
6270  // So do CUDA's host/device attributes.
6271  if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6272  D->template hasAttr<CUDAHostAttr>()))
6273  return false;
6274  }
6275  return D->isExternC();
6276 }
6277 
6278 static bool shouldConsiderLinkage(const VarDecl *VD) {
6279  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6280  if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6281  isa<OMPDeclareMapperDecl>(DC))
6282  return VD->hasExternalStorage();
6283  if (DC->isFileContext())
6284  return true;
6285  if (DC->isRecord())
6286  return false;
6287  llvm_unreachable("Unexpected context");
6288 }
6289 
6290 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6291  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6292  if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6293  isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6294  return true;
6295  if (DC->isRecord())
6296  return false;
6297  llvm_unreachable("Unexpected context");
6298 }
6299 
6300 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6302  // Check decl attributes on the DeclSpec.
6303  if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6304  return true;
6305 
6306  // Walk the declarator structure, checking decl attributes that were in a type
6307  // position to the decl itself.
6308  for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6309  if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6310  return true;
6311  }
6312 
6313  // Finally, check attributes on the decl itself.
6314  return PD.getAttributes().hasAttribute(Kind);
6315 }
6316 
6317 /// Adjust the \c DeclContext for a function or variable that might be a
6318 /// function-local external declaration.
6320  if (!DC->isFunctionOrMethod())
6321  return false;
6322 
6323  // If this is a local extern function or variable declared within a function
6324  // template, don't add it into the enclosing namespace scope until it is
6325  // instantiated; it might have a dependent type right now.
6326  if (DC->isDependentContext())
6327  return true;
6328 
6329  // C++11 [basic.link]p7:
6330  // When a block scope declaration of an entity with linkage is not found to
6331  // refer to some other declaration, then that entity is a member of the
6332  // innermost enclosing namespace.
6333  //
6334  // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6335  // semantically-enclosing namespace, not a lexically-enclosing one.
6336  while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6337  DC = DC->getParent();
6338  return true;
6339 }
6340 
6341 /// Returns true if given declaration has external C language linkage.
6342 static bool isDeclExternC(const Decl *D) {
6343  if (const auto *FD = dyn_cast<FunctionDecl>(D))
6344  return FD->isExternC();
6345  if (const auto *VD = dyn_cast<VarDecl>(D))
6346  return VD->isExternC();
6347 
6348  llvm_unreachable("Unknown type of decl!");
6349 }
6350 
6352  Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6353  LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6354  bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6355  QualType R = TInfo->getType();
6356  DeclarationName Name = GetNameForDeclarator(D).getName();
6357 
6358  IdentifierInfo *II = Name.getAsIdentifierInfo();
6359 
6360  if (D.isDecompositionDeclarator()) {
6361  // Take the name of the first declarator as our name for diagnostic
6362  // purposes.
6363  auto &Decomp = D.getDecompositionDeclarator();
6364  if (!Decomp.bindings().empty()) {
6365  II = Decomp.bindings()[0].Name;
6366  Name = II;
6367  }
6368  } else if (!II) {
6369  Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6370  return nullptr;
6371  }
6372 
6373  if (getLangOpts().OpenCL) {
6374  // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6375  // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6376  // argument.
6377  if (R->isImageType() || R->isPipeType()) {
6378  Diag(D.getIdentifierLoc(),
6379  diag::err_opencl_type_can_only_be_used_as_function_parameter)
6380  << R;
6381  D.setInvalidType();
6382  return nullptr;
6383  }
6384 
6385  // OpenCL v1.2 s6.9.r:
6386  // The event type cannot be used to declare a program scope variable.
6387  // OpenCL v2.0 s6.9.q:
6388  // The clk_event_t and reserve_id_t types cannot be declared in program scope.
6389  if (NULL == S->getParent()) {
6390  if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6391  Diag(D.getIdentifierLoc(),
6392  diag::err_invalid_type_for_program_scope_var) << R;
6393  D.setInvalidType();
6394  return nullptr;
6395  }
6396  }
6397 
6398  // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6399  QualType NR = R;
6400  while (NR->isPointerType()) {
6401  if (NR->isFunctionPointerType()) {
6402  Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6403  D.setInvalidType();
6404  break;
6405  }
6406  NR = NR->getPointeeType();
6407  }
6408 
6409  if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6410  // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6411  // half array type (unless the cl_khr_fp16 extension is enabled).
6412  if (Context.getBaseElementType(R)->isHalfType()) {
6413  Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6414  D.setInvalidType();
6415  }
6416  }
6417 
6418  if (R->isSamplerT()) {
6419  // OpenCL v1.2 s6.9.b p4:
6420  // The sampler type cannot be used with the __local and __global address
6421  // space qualifiers.
6424  Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6425  }
6426 
6427  // OpenCL v1.2 s6.12.14.1:
6428  // A global sampler must be declared with either the constant address
6429  // space qualifier or with the const qualifier.
6430  if (DC->isTranslationUnit() &&
6432  R.isConstQualified())) {
6433  Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6434  D.setInvalidType();
6435  }
6436  }
6437 
6438  // OpenCL v1.2 s6.9.r:
6439  // The event type cannot be used with the __local, __constant and __global
6440  // address space qualifiers.
6441  if (R->isEventT()) {
6443  Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6444  D.setInvalidType();
6445  }
6446  }
6447 
6448  // C++ for OpenCL does not allow the thread_local storage qualifier.
6449  // OpenCL C does not support thread_local either, and
6450  // also reject all other thread storage class specifiers.
6452  if (TSC != TSCS_unspecified) {
6453  bool IsCXX = getLangOpts().OpenCLCPlusPlus;
6455  diag::err_opencl_unknown_type_specifier)
6456  << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString()
6457  << DeclSpec::getSpecifierName(TSC) << 1;
6458  D.setInvalidType();
6459  return nullptr;
6460  }
6461  }
6462 
6465 
6466  // dllimport globals without explicit storage class are treated as extern. We
6467  // have to change the storage class this early to get the right DeclContext.
6468  if (SC == SC_None && !DC->isRecord() &&
6469  hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6470  !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6471  SC = SC_Extern;
6472 
6473  DeclContext *OriginalDC = DC;
6474  bool IsLocalExternDecl = SC == SC_Extern &&
6475  adjustContextForLocalExternDecl(DC);
6476 
6477  if (SCSpec == DeclSpec::SCS_mutable) {
6478  // mutable can only appear on non-static class members, so it's always
6479  // an error here
6480  Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6481  D.setInvalidType();
6482  SC = SC_None;
6483  }
6484 
6485  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6486  !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6488  // In C++11, the 'register' storage class specifier is deprecated.
6489  // Suppress the warning in system macros, it's used in macros in some
6490  // popular C system headers, such as in glibc's htonl() macro.
6492  getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6493  : diag::warn_deprecated_register)
6495  }
6496 
6497  DiagnoseFunctionSpecifiers(D.getDeclSpec());
6498 
6499  if (!DC->isRecord() && S->getFnParent() == nullptr) {
6500  // C99 6.9p2: The storage-class specifiers auto and register shall not
6501  // appear in the declaration specifiers in an external declaration.
6502  // Global Register+Asm is a GNU extension we support.
6503  if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6504  Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6505  D.setInvalidType();
6506  }
6507  }
6508 
6509  bool IsMemberSpecialization = false;
6510  bool IsVariableTemplateSpecialization = false;
6511  bool IsPartialSpecialization = false;
6512  bool IsVariableTemplate = false;
6513  VarDecl *NewVD = nullptr;
6514  VarTemplateDecl *NewTemplate = nullptr;
6515  TemplateParameterList *TemplateParams = nullptr;
6516  if (!getLangOpts().CPlusPlus) {
6517  NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6518  II, R, TInfo, SC);
6519 
6520  if (R->getContainedDeducedType())
6521  ParsingInitForAutoVars.insert(NewVD);
6522 
6523  if (D.isInvalidType())
6524  NewVD->setInvalidDecl();
6525 
6527  NewVD->hasLocalStorage())
6528  checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
6529  NTCUC_AutoVar, NTCUK_Destruct);
6530  } else {
6531  bool Invalid = false;
6532 
6533  if (DC->isRecord() && !CurContext->isRecord()) {
6534  // This is an out-of-line definition of a static data member.
6535  switch (SC) {
6536  case SC_None:
6537  break;
6538  case SC_Static:
6540  diag::err_static_out_of_line)
6542  break;
6543  case SC_Auto:
6544  case SC_Register:
6545  case SC_Extern:
6546  // [dcl.stc] p2: The auto or register specifiers shall be applied only
6547  // to names of variables declared in a block or to function parameters.
6548  // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6549  // of class members
6550 
6552  diag::err_storage_class_for_static_member)
6554  break;
6555  case SC_PrivateExtern:
6556  llvm_unreachable("C storage class in c++!");
6557  }
6558  }
6559 
6560  if (SC == SC_Static && CurContext->isRecord()) {
6561  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6562  if (RD->isLocalClass())
6563  Diag(D.getIdentifierLoc(),
6564  diag::err_static_data_member_not_allowed_in_local_class)
6565  << Name << RD->getDeclName();
6566 
6567  // C++98 [class.union]p1: If a union contains a static data member,
6568  // the program is ill-formed. C++11 drops this restriction.
6569  if (RD->isUnion())
6570  Diag(D.getIdentifierLoc(),
6571  getLangOpts().CPlusPlus11
6572  ? diag::warn_cxx98_compat_static_data_member_in_union
6573  : diag::ext_static_data_member_in_union) << Name;
6574  // We conservatively disallow static data members in anonymous structs.
6575  else if (!RD->getDeclName())
6576  Diag(D.getIdentifierLoc(),
6577  diag::err_static_data_member_not_allowed_in_anon_struct)
6578  << Name << RD->isUnion();
6579  }
6580  }
6581 
6582  // Match up the template parameter lists with the scope specifier, then
6583  // determine whether we have a template or a template specialization.
6584  TemplateParams = MatchTemplateParametersToScopeSpecifier(
6586  D.getCXXScopeSpec(),
6588  ? D.getName().TemplateId
6589  : nullptr,
6590  TemplateParamLists,
6591  /*never a friend*/ false, IsMemberSpecialization, Invalid);
6592 
6593  if (TemplateParams) {
6594  if (!TemplateParams->size() &&
6596  // There is an extraneous 'template<>' for this variable. Complain
6597  // about it, but allow the declaration of the variable.
6598  Diag(TemplateParams->getTemplateLoc(),
6599  diag::err_template_variable_noparams)
6600  << II
6601  << SourceRange(TemplateParams->getTemplateLoc(),
6602  TemplateParams->getRAngleLoc());
6603  TemplateParams = nullptr;
6604  } else {
6606  // This is an explicit specialization or a partial specialization.
6607  // FIXME: Check that we can declare a specialization here.
6608  IsVariableTemplateSpecialization = true;
6609  IsPartialSpecialization = TemplateParams->size() > 0;
6610  } else { // if (TemplateParams->size() > 0)
6611  // This is a template declaration.
6612  IsVariableTemplate = true;
6613 
6614  // Check that we can declare a template here.
6615  if (CheckTemplateDeclScope(S, TemplateParams))
6616  return nullptr;
6617 
6618  // Only C++1y supports variable templates (N3651).
6619  Diag(D.getIdentifierLoc(),
6620  getLangOpts().CPlusPlus14
6621  ? diag::warn_cxx11_compat_variable_template
6622  : diag::ext_variable_template);
6623  }
6624  }
6625  } else {
6626  assert((Invalid ||
6628  "should have a 'template<>' for this decl");
6629  }
6630 
6631  if (IsVariableTemplateSpecialization) {
6632  SourceLocation TemplateKWLoc =
6633  TemplateParamLists.size() > 0
6634  ? TemplateParamLists[0]->getTemplateLoc()
6635  : SourceLocation();
6636  DeclResult Res = ActOnVarTemplateSpecialization(
6637  S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6638  IsPartialSpecialization);
6639  if (Res.isInvalid())
6640  return nullptr;
6641  NewVD = cast<VarDecl>(Res.get());
6642  AddToScope = false;
6643  } else if (D.isDecompositionDeclarator()) {
6644  NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
6645  D.getIdentifierLoc(), R, TInfo, SC,
6646  Bindings);
6647  } else
6648  NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
6649  D.getIdentifierLoc(), II, R, TInfo, SC);
6650 
6651  // If this is supposed to be a variable template, create it as such.
6652  if (IsVariableTemplate) {
6653  NewTemplate =
6654  VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6655  TemplateParams, NewVD);
6656  NewVD->setDescribedVarTemplate(NewTemplate);
6657  }
6658 
6659  // If this decl has an auto type in need of deduction, make a note of the
6660  // Decl so we can diagnose uses of it in its own initializer.
6661  if (R->getContainedDeducedType())
6662  ParsingInitForAutoVars.insert(NewVD);
6663 
6664  if (D.isInvalidType() || Invalid) {
6665  NewVD->setInvalidDecl();
6666  if (NewTemplate)
6667  NewTemplate->setInvalidDecl();
6668  }
6669 
6670  SetNestedNameSpecifier(*this, NewVD, D);
6671 
6672  // If we have any template parameter lists that don't directly belong to
6673  // the variable (matching the scope specifier), store them.
6674  unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6675  if (TemplateParamLists.size() > VDTemplateParamLists)
6676  NewVD->setTemplateParameterListsInfo(
6677  Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6678 
6679  if (D.getDeclSpec().hasConstexprSpecifier()) {
6680  NewVD->setConstexpr(true);
6681  // C++1z [dcl.spec.constexpr]p1:
6682  // A static data member declared with the constexpr specifier is
6683  // implicitly an inline variable.
6684  if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
6685  NewVD->setImplicitlyInline();
6688  diag::err_constexpr_wrong_decl_kind)
6689  << /*consteval*/ 1;
6690  }
6691  }
6692 
6693  if (D.getDeclSpec().isInlineSpecified()) {
6694  if (!getLangOpts().CPlusPlus) {
6695  Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6696  << 0;
6697  } else if (CurContext->isFunctionOrMethod()) {
6698  // 'inline' is not allowed on block scope variable declaration.
6700  diag::err_inline_declaration_block_scope) << Name
6702  } else {
6704  getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6705  : diag::ext_inline_variable);
6706  NewVD->setInlineSpecified();
6707  }
6708  }
6709 
6710  // Set the lexical context. If the declarator has a C++ scope specifier, the
6711  // lexical context will be different from the semantic context.
6712  NewVD->setLexicalDeclContext(CurContext);
6713  if (NewTemplate)
6714  NewTemplate->setLexicalDeclContext(CurContext);
6715 
6716  if (IsLocalExternDecl) {
6717  if (D.isDecompositionDeclarator())
6718  for (auto *B : Bindings)
6719  B->setLocalExternDecl();
6720  else
6721  NewVD->setLocalExternDecl();
6722  }
6723 
6724  bool EmitTLSUnsupportedError = false;
6726  // C++11 [dcl.stc]p4:
6727  // When thread_local is applied to a variable of block scope the
6728  // storage-class-specifier static is implied if it does not appear
6729  // explicitly.
6730  // Core issue: 'static' is not implied if the variable is declared
6731  // 'extern'.
6732  if (NewVD->hasLocalStorage() &&
6733  (SCSpec != DeclSpec::SCS_unspecified ||
6734  TSCS != DeclSpec::TSCS_thread_local ||
6735  !DC->isFunctionOrMethod()))
6737  diag::err_thread_non_global)
6738  << DeclSpec::getSpecifierName(TSCS);
6739  else if (!Context.getTargetInfo().isTLSSupported()) {
6740  if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6741  // Postpone error emission until we've collected attributes required to
6742  // figure out whether it's a host or device variable and whether the
6743  // error should be ignored.
6744  EmitTLSUnsupportedError = true;
6745  // We still need to mark the variable as TLS so it shows up in AST with
6746  // proper storage class for other tools to use even if we're not going
6747  // to emit any code for it.
6748  NewVD->setTSCSpec(TSCS);
6749  } else
6751  diag::err_thread_unsupported);
6752  } else
6753  NewVD->setTSCSpec(TSCS);
6754  }
6755 
6756  // C99 6.7.4p3
6757  // An inline definition of a function with external linkage shall
6758  // not contain a definition of a modifiable object with static or
6759  // thread storage duration...
6760  // We only apply this when the function is required to be defined
6761  // elsewhere, i.e. when the function is not 'extern inline'. Note
6762  // that a local variable with thread storage duration still has to
6763  // be marked 'static'. Also note that it's possible to get these
6764  // semantics in C++ using __attribute__((gnu_inline)).
6765  if (SC == SC_Static && S->getFnParent() != nullptr &&
6766  !NewVD->getType().isConstQualified()) {
6767  FunctionDecl *CurFD = getCurFunctionDecl();
6768  if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6770  diag::warn_static_local_in_extern_inline);
6771  MaybeSuggestAddingStaticToDecl(CurFD);
6772  }
6773  }
6774 
6776  if (IsVariableTemplateSpecialization)
6777  Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6778  << (IsPartialSpecialization ? 1 : 0)
6781  else if (IsMemberSpecialization)
6782  Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6783  << 2
6785  else if (NewVD->hasLocalStorage())
6786  Diag(NewVD->getLocation(), diag::err_module_private_local)
6787  << 0 << NewVD->getDeclName()
6790  else {
6791  NewVD->setModulePrivate();
6792  if (NewTemplate)
6793  NewTemplate->setModulePrivate();
6794  for (auto *B : Bindings)
6795  B->setModulePrivate();
6796  }
6797  }
6798 
6799  // Handle attributes prior to checking for duplicates in MergeVarDecl
6800  ProcessDeclAttributes(S, NewVD, D);
6801 
6802  if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6803  if (EmitTLSUnsupportedError &&
6804  ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
6805  (getLangOpts().OpenMPIsDevice &&
6806  NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
6808  diag::err_thread_unsupported);
6809  // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6810  // storage [duration]."
6811  if (SC == SC_None && S->getFnParent() != nullptr &&
6812  (NewVD->hasAttr<CUDASharedAttr>() ||
6813  NewVD->hasAttr<CUDAConstantAttr>())) {
6814  NewVD->setStorageClass(SC_Static);
6815  }
6816  }
6817 
6818  // Ensure that dllimport globals without explicit storage class are treated as
6819  // extern. The storage class is set above using parsed attributes. Now we can
6820  // check the VarDecl itself.
6821  assert(!NewVD->hasAttr<DLLImportAttr>() ||
6822  NewVD->getAttr<DLLImportAttr>()->isInherited() ||
6823  NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
6824 
6825  // In auto-retain/release, infer strong retension for variables of
6826  // retainable type.
6827  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6828  NewVD->setInvalidDecl();
6829 
6830  // Handle GNU asm-label extension (encoded as an attribute).
6831  if (Expr *E = (Expr*)D.getAsmLabel()) {
6832  // The parser guarantees this is a string.
6833  StringLiteral *SE = cast<StringLiteral>(E);
6834  StringRef Label = SE->getString();
6835  if (S->getFnParent() != nullptr) {
6836  switch (SC) {
6837  case SC_None:
6838  case SC_Auto:
6839  Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6840  break;
6841  case SC_Register:
6842  // Local Named register
6843  if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6844  DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6845  Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6846  break;
6847  case SC_Static:
6848  case SC_Extern:
6849  case SC_PrivateExtern:
6850  break;
6851  }
6852  } else if (SC == SC_Register) {
6853  // Global Named register
6854  if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6855  const auto &TI = Context.getTargetInfo();
6856  bool HasSizeMismatch;
6857 
6858  if (!TI.isValidGCCRegisterName(Label))
6859  Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6860  else if (!TI.validateGlobalRegisterVariable(Label,
6861  Context.getTypeSize(R),
6862  HasSizeMismatch))
6863  Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6864  else if (HasSizeMismatch)
6865  Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6866  }
6867 
6868  if (!R->isIntegralType(Context) && !R->isPointerType()) {
6869  Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
6870  NewVD->setInvalidDecl(true);
6871  }
6872  }
6873 
6874  NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6875  Context, Label, 0));
6876  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6877  llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6878  ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6879  if (I != ExtnameUndeclaredIdentifiers.end()) {
6880  if (isDeclExternC(NewVD)) {
6881  NewVD->addAttr(I->second);
6882  ExtnameUndeclaredIdentifiers.erase(I);
6883  } else
6884  Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6885  << /*Variable*/1 << NewVD;
6886  }
6887  }
6888 
6889  // Find the shadowed declaration before filtering for scope.
6890  NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
6891  ? getShadowedDeclaration(NewVD, Previous)
6892  : nullptr;
6893 
6894  // Don't consider existing declarations that are in a different
6895  // scope and are out-of-semantic-context declarations (if the new
6896  // declaration has linkage).
6897  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6898  D.getCXXScopeSpec().isNotEmpty() ||
6899  IsMemberSpecialization ||
6900  IsVariableTemplateSpecialization);
6901 
6902  // Check whether the previous declaration is in the same block scope. This
6903  // affects whether we merge types with it, per C++11 [dcl.array]p3.
6904  if (getLangOpts().CPlusPlus &&
6905  NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6907  Previous.isSingleResult() && !Previous.isShadowed() &&
6908  isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6909 
6910  if (!getLangOpts().CPlusPlus) {
6911  D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6912  } else {
6913  // If this is an explicit specialization of a static data member, check it.
6914  if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
6915  CheckMemberSpecialization(NewVD, Previous))
6916  NewVD->setInvalidDecl();
6917 
6918  // Merge the decl with the existing one if appropriate.
6919  if (!Previous.empty()) {
6920  if (Previous.isSingleResult() &&
6921  isa<FieldDecl>(Previous.getFoundDecl()) &&
6922  D.getCXXScopeSpec().isSet()) {
6923  // The user tried to define a non-static data member
6924  // out-of-line (C++ [dcl.meaning]p1).
6925  Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6926  << D.getCXXScopeSpec().getRange();
6927  Previous.clear();
6928  NewVD->setInvalidDecl();
6929  }
6930  } else if (D.getCXXScopeSpec().isSet()) {
6931  // No previous declaration in the qualifying scope.
6932  Diag(D.getIdentifierLoc(), diag::err_no_member)
6933  << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6934  << D.getCXXScopeSpec().getRange();
6935  NewVD->setInvalidDecl();
6936  }
6937 
6938  if (!IsVariableTemplateSpecialization)
6939  D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6940 
6941  if (NewTemplate) {
6942  VarTemplateDecl *PrevVarTemplate =
6943  NewVD->getPreviousDecl()
6945  : nullptr;
6946 
6947  // Check the template parameter list of this declaration, possibly
6948  // merging in the template parameter list from the previous variable
6949  // template declaration.
6950  if (CheckTemplateParameterList(
6951  TemplateParams,
6952  PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6953  : nullptr,
6954  (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6955  DC->isDependentContext())
6956  ? TPC_ClassTemplateMember
6957  : TPC_VarTemplate))
6958  NewVD->setInvalidDecl();
6959 
6960  // If we are providing an explicit specialization of a static variable
6961  // template, make a note of that.
6962  if (PrevVarTemplate &&
6963  PrevVarTemplate->getInstantiatedFromMemberTemplate())
6964  PrevVarTemplate->setMemberSpecialization();
6965  }
6966  }
6967 
6968  // Diagnose shadowed variables iff this isn't a redeclaration.
6969  if (ShadowedDecl && !D.isRedeclaration())
6970  CheckShadow(NewVD, ShadowedDecl, Previous);
6971 
6972  ProcessPragmaWeak(S, NewVD);
6973 
6974  // If this is the first declaration of an extern C variable, update
6975  // the map of such variables.
6976  if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6977  isIncompleteDeclExternC(*this, NewVD))
6978  RegisterLocallyScopedExternCDecl(NewVD, S);
6979 
6980  if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6981  Decl *ManglingContextDecl;
6982  if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6983  NewVD->getDeclContext(), ManglingContextDecl)) {
6984  Context.setManglingNumber(
6985  NewVD, MCtx->getManglingNumber(
6986  NewVD, getMSManglingNumber(getLangOpts(), S)));
6987  Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6988  }
6989  }
6990 
6991  // Special handling of variable named 'main'.
6992  if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
6994  !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6995 
6996  // C++ [basic.start.main]p3
6997  // A program that declares a variable main at global scope is ill-formed.
6998  if (getLangOpts().CPlusPlus)
6999  Diag(D.getBeginLoc(), diag::err_main_global_variable);
7000 
7001  // In C, and external-linkage variable named main results in undefined
7002  // behavior.
7003  else if (NewVD->hasExternalFormalLinkage())
7004  Diag(D.getBeginLoc(), diag::warn_main_redefined);
7005  }
7006 
7007  if (D.isRedeclaration() && !Previous.empty()) {
7008  NamedDecl *Prev = Previous.getRepresentativeDecl();
7009  checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7010  D.isFunctionDefinition());
7011  }
7012 
7013  if (NewTemplate) {
7014  if (NewVD->isInvalidDecl())
7015  NewTemplate->setInvalidDecl();
7016  ActOnDocumentableDecl(NewTemplate);
7017  return NewTemplate;
7018  }
7019 
7020  if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7021  CompleteMemberSpecialization(NewVD, Previous);
7022 
7023  return NewVD;
7024 }
7025 
7026 /// Enum describing the %select options in diag::warn_decl_shadow.
7034 };
7035 
7036 /// Determine what kind of declaration we're shadowing.
7038  const DeclContext *OldDC) {
7039  if (isa<TypeAliasDecl>(ShadowedDecl))
7040  return SDK_Using;
7041  else if (isa<TypedefDecl>(ShadowedDecl))
7042  return SDK_Typedef;
7043  else if (isa<RecordDecl>(OldDC))
7044  return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7045 
7046  return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7047 }
7048 
7049 /// Return the location of the capture if the given lambda captures the given
7050 /// variable \p VD, or an invalid source location otherwise.
7052  const VarDecl *VD) {
7053  for (const Capture &Capture : LSI->Captures) {
7054  if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7055  return Capture.getLocation();
7056  }
7057  return SourceLocation();
7058 }
7059 
7061  const LookupResult &R) {
7062  // Only diagnose if we're shadowing an unambiguous field or variable.
7064  return false;
7065 
7066  // Return false if warning is ignored.
7067  return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7068 }
7069 
7070 /// Return the declaration shadowed by the given variable \p D, or null
7071 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7073  const LookupResult &R) {
7074  if (!shouldWarnIfShadowedDecl(Diags, R))
7075  return nullptr;
7076 
7077  // Don't diagnose declarations at file scope.
7078  if (D->hasGlobalStorage())
7079  return nullptr;
7080 
7081  NamedDecl *ShadowedDecl = R.getFoundDecl();
7082  return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7083  ? ShadowedDecl
7084  : nullptr;
7085 }
7086 
7087 /// Return the declaration shadowed by the given typedef \p D, or null
7088 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7090  const LookupResult &R) {
7091  // Don't warn if typedef declaration is part of a class
7092  if (D->getDeclContext()->isRecord())
7093  return nullptr;
7094 
7095  if (!shouldWarnIfShadowedDecl(Diags, R))
7096  return nullptr;
7097 
7098  NamedDecl *ShadowedDecl = R.getFoundDecl();
7099  return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7100 }
7101 
7102 /// Diagnose variable or built-in function shadowing. Implements
7103 /// -Wshadow.
7104 ///
7105 /// This method is called whenever a VarDecl is added to a "useful"
7106 /// scope.
7107 ///
7108 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7109 /// \param R the lookup of the name
7110 ///
7111 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7112  const LookupResult &R) {
7113  DeclContext *NewDC = D->getDeclContext();
7114 
7115  if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7116  // Fields are not shadowed by variables in C++ static methods.
7117  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7118  if (MD->isStatic())
7119  return;
7120 
7121  // Fields shadowed by constructor parameters are a special case. Usually
7122  // the constructor initializes the field with the parameter.
7123  if (isa<CXXConstructorDecl>(NewDC))
7124  if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7125  // Remember that this was shadowed so we can either warn about its
7126  // modification or its existence depending on warning settings.
7127  ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7128  return;
7129  }
7130  }
7131 
7132  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7133  if (shadowedVar->isExternC()) {
7134  // For shadowing external vars, make sure that we point to the global
7135  // declaration, not a locally scoped extern declaration.
7136  for (auto I : shadowedVar->redecls())
7137  if (I->isFileVarDecl()) {
7138  ShadowedDecl = I;
7139  break;
7140  }
7141  }
7142 
7143  DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7144 
7145  unsigned WarningDiag = diag::warn_decl_shadow;
7146  SourceLocation CaptureLoc;
7147  if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7148  isa<CXXMethodDecl>(NewDC)) {
7149  if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7150  if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7151  if (RD->getLambdaCaptureDefault() == LCD_None) {
7152  // Try to avoid warnings for lambdas with an explicit capture list.
7153  const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7154  // Warn only when the lambda captures the shadowed decl explicitly.
7155  CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7156  if (CaptureLoc.isInvalid())
7157  WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7158  } else {
7159  // Remember that this was shadowed so we can avoid the warning if the
7160  // shadowed decl isn't captured and the warning settings allow it.
7161  cast<LambdaScopeInfo>(getCurFunction())
7162  ->ShadowingDecls.push_back(
7163  {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7164  return;
7165  }
7166  }
7167 
7168  if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7169  // A variable can't shadow a local variable in an enclosing scope, if
7170  // they are separated by a non-capturing declaration context.
7171  for (DeclContext *ParentDC = NewDC;
7172  ParentDC && !ParentDC->Equals(OldDC);
7173  ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7174  // Only block literals, captured statements, and lambda expressions
7175  // can capture; other scopes don't.
7176  if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7177  !isLambdaCallOperator(ParentDC)) {
7178  return;
7179  }
7180  }
7181  }
7182  }
7183  }
7184 
7185  // Only warn about certain kinds of shadowing for class members.
7186  if (NewDC && NewDC->isRecord()) {
7187  // In particular, don't warn about shadowing non-class members.
7188  if (!OldDC->isRecord())
7189  return;
7190 
7191  // TODO: should we warn about static data members shadowing
7192  // static data members from base classes?
7193 
7194  // TODO: don't diagnose for inaccessible shadowed members.
7195  // This is hard to do perfectly because we might friend the
7196  // shadowing context, but that's just a false negative.
7197  }
7198 
7199 
7200  DeclarationName Name = R.getLookupName();
7201 
7202  // Emit warning and note.
7203  if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7204  return;
7205  ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7206  Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7207  if (!CaptureLoc.isInvalid())
7208  Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7209  << Name << /*explicitly*/ 1;
7210  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7211 }
7212 
7213 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7214 /// when these variables are captured by the lambda.
7216  for (const auto &Shadow : LSI->ShadowingDecls) {
7217  const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7218  // Try to avoid the warning when the shadowed decl isn't captured.
7219  SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7220  const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7221  Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7222  ? diag::warn_decl_shadow_uncaptured_local
7223  : diag::warn_decl_shadow)
7224  << Shadow.VD->getDeclName()
7225  << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7226  if (!CaptureLoc.isInvalid())
7227  Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7228  << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7229  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7230  }
7231 }
7232 
7233 /// Check -Wshadow without the advantage of a previous lookup.
7235  if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7236  return;
7237 
7238  LookupResult R(*this, D->getDeclName(), D->getLocation(),
7240  LookupName(R, S);
7241  if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7242  CheckShadow(D, ShadowedDecl, R);
7243 }
7244 
7245 /// Check if 'E', which is an expression that is about to be modified, refers
7246 /// to a constructor parameter that shadows a field.
7248  // Quickly ignore expressions that can't be shadowing ctor parameters.
7249  if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7250  return;
7251  E = E->IgnoreParenImpCasts();
7252  auto *DRE = dyn_cast<DeclRefExpr>(E);
7253  if (!DRE)
7254  return;
7255  const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7256  auto I = ShadowingDecls.find(D);
7257  if (I == ShadowingDecls.end())
7258  return;
7259  const NamedDecl *ShadowedDecl = I->second;
7260  const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7261  Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7262  Diag(D->getLocation(), diag::note_var_declared_here) << D;
7263  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7264 
7265  // Avoid issuing multiple warnings about the same decl.
7266  ShadowingDecls.erase(I);
7267 }
7268 
7269 /// Check for conflict between this global or extern "C" declaration and
7270 /// previous global or extern "C" declarations. This is only used in C++.
7271 template<typename T>
7273  Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7274  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7275  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7276 
7277  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7278  // The common case: this global doesn't conflict with any extern "C"
7279  // declaration.
7280  return false;
7281  }
7282 
7283  if (Prev) {
7284  if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7285  // Both the old and new declarations have C language linkage. This is a
7286  // redeclaration.
7287  Previous.clear();
7288  Previous.addDecl(Prev);
7289  return true;
7290  }
7291 
7292  // This is a global, non-extern "C" declaration, and there is a previous
7293  // non-global extern "C" declaration. Diagnose if this is a variable
7294  // declaration.
7295  if (!isa<VarDecl>(ND))
7296  return false;
7297  } else {
7298  // The declaration is extern "C". Check for any declaration in the
7299  // translation unit which might conflict.
7300  if (IsGlobal) {
7301  // We have already performed the lookup into the translation unit.
7302  IsGlobal = false;
7303  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7304  I != E; ++I) {
7305  if (isa<VarDecl>(*I)) {
7306  Prev = *I;
7307  break;
7308  }
7309  }
7310  } else {
7312  S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7313  for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7314  I != E; ++I) {
7315  if (isa<VarDecl>(*I)) {
7316  Prev = *I;
7317  break;
7318  }
7319  // FIXME: If we have any other entity with this name in global scope,
7320  // the declaration is ill-formed, but that is a defect: it breaks the
7321  // 'stat' hack, for instance. Only variables can have mangled name
7322  // clashes with extern "C" declarations, so only they deserve a
7323  // diagnostic.
7324  }
7325  }
7326 
7327  if (!Prev)
7328  return false;
7329  }
7330 
7331  // Use the first declaration's location to ensure we point at something which
7332  // is lexically inside an extern "C" linkage-spec.
7333  assert(Prev && "should have found a previous declaration to diagnose");
7334  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7335  Prev = FD->getFirstDecl();
7336  else
7337  Prev = cast<VarDecl>(Prev)->getFirstDecl();
7338 
7339  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7340  << IsGlobal << ND;
7341  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7342  << IsGlobal;
7343  return false;
7344 }
7345 
7346 /// Apply special rules for handling extern "C" declarations. Returns \c true
7347 /// if we have found that this is a redeclaration of some prior entity.
7348 ///
7349 /// Per C++ [dcl.link]p6:
7350 /// Two declarations [for a function or variable] with C language linkage
7351 /// with the same name that appear in different scopes refer to the same
7352 /// [entity]. An entity with C language linkage shall not be declared with
7353 /// the same name as an entity in global scope.
7354 template<typename T>
7355 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7357  if (!S.getLangOpts().CPlusPlus) {
7358  // In C, when declaring a global variable, look for a corresponding 'extern'
7359  // variable declared in function scope. We don't need this in C++, because
7360  // we find local extern decls in the surrounding file-scope DeclContext.
7361  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7362  if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7363  Previous.clear();
7364  Previous.addDecl(Prev);
7365  return true;
7366  }
7367  }
7368  return false;
7369  }
7370 
7371  // A declaration in the translation unit can conflict with an extern "C"
7372  // declaration.
7373  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7374  return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7375 
7376  // An extern "C" declaration can conflict with a declaration in the
7377  // translation unit or can be a redeclaration of an extern "C" declaration
7378  // in another scope.
7379  if (isIncompleteDeclExternC(S,ND))
7380  return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7381 
7382  // Neither global nor extern "C": nothing to do.
7383  return false;
7384 }
7385 
7387  // If the decl is already known invalid, don't check it.
7388  if (NewVD->isInvalidDecl())
7389  return;
7390 
7391  QualType T = NewVD->getType();
7392 
7393  // Defer checking an 'auto' type until its initializer is attached.
7394  if (T->isUndeducedType())
7395  return;
7396 
7397  if (NewVD->hasAttrs())
7398  CheckAlignasUnderalignment(NewVD);
7399 
7400  if (T->isObjCObjectType()) {
7401  Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7402  << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7403  T = Context.getObjCObjectPointerType(T);
7404  NewVD->setType(T);
7405  }
7406 
7407  // Emit an error if an address space was applied to decl with local storage.
7408  // This includes arrays of objects with address space qualifiers, but not
7409  // automatic variables that point to other address spaces.
7410  // ISO/IEC TR 18037 S5.1.2
7411  if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7413  Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7414  NewVD->setInvalidDecl();
7415  return;
7416  }
7417 
7418  // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7419  // scope.
7420  if (getLangOpts().OpenCLVersion == 120 &&
7421  !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7422  NewVD->isStaticLocal()) {
7423  Diag(NewVD->getLocation(), diag::err_static_function_scope);
7424  NewVD->setInvalidDecl();
7425  return;
7426  }
7427 
7428  if (getLangOpts().OpenCL) {
7429  // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7430  if (NewVD->hasAttr<BlocksAttr>()) {
7431  Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7432  return;
7433  }
7434 
7435  if (T->isBlockPointerType()) {
7436  // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7437  // can't use 'extern' storage class.
7438  if (!T.isConstQualified()) {
7439  Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7440  << 0 /*const*/;
7441  NewVD->setInvalidDecl();
7442  return;
7443  }
7444  if (NewVD->hasExternalStorage()) {
7445  Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7446  NewVD->setInvalidDecl();
7447  return;
7448  }
7449  }
7450  // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7451  // __constant address space.
7452  // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7453  // variables inside a function can also be declared in the global
7454  // address space.
7455  // C++ for OpenCL inherits rule from OpenCL C v2.0.
7456  // FIXME: Adding local AS in C++ for OpenCL might make sense.
7457  if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7458  NewVD->hasExternalStorage()) {
7459  if (!T->isSamplerT() &&
7462  (getLangOpts().OpenCLVersion == 200 ||
7463  getLangOpts().OpenCLCPlusPlus)))) {
7464  int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7465  if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7466  Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7467  << Scope << "global or constant";
7468  else
7469  Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7470  << Scope << "constant";
7471  NewVD->setInvalidDecl();
7472  return;
7473  }
7474  } else {
7476  Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7477  << 1 /*is any function*/ << "global";
7478  NewVD->setInvalidDecl();
7479  return;
7480  }
7483  FunctionDecl *FD = getCurFunctionDecl();
7484  // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7485  // in functions.
7486  if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7488  Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7489  << 0 /*non-kernel only*/ << "constant";
7490  else
7491  Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7492  << 0 /*non-kernel only*/ << "local";
7493  NewVD->setInvalidDecl();
7494  return;
7495  }
7496  // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7497  // in the outermost scope of a kernel function.
7498  if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7499  if (!getCurScope()->isFunctionScope()) {
7501  Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7502  << "constant";
7503  else
7504  Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7505  << "local";
7506  NewVD->setInvalidDecl();
7507  return;
7508  }
7509  }
7510  } else if (T.getAddressSpace() != LangAS::opencl_private &&
7511  // If we are parsing a template we didn't deduce an addr
7512  // space yet.
7514  // Do not allow other address spaces on automatic variable.
7515  Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7516  NewVD->setInvalidDecl();
7517  return;
7518  }
7519  }
7520  }
7521 
7522  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7523  && !NewVD->hasAttr<BlocksAttr>()) {
7524  if (getLangOpts().getGC() != LangOptions::NonGC)
7525  Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7526  else {
7527  assert(!getLangOpts().ObjCAutoRefCount);
7528  Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7529  }
7530  }
7531 
7532  bool isVM = T->isVariablyModifiedType();
7533  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7534  NewVD->hasAttr<BlocksAttr>())
7535  setFunctionHasBranchProtectedScope();
7536 
7537  if ((isVM && NewVD->hasLinkage()) ||
7538  (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7539  bool SizeIsNegative;
7540  llvm::APSInt Oversized;
7542  NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7543  QualType FixedT;
7544  if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
7545  FixedT = FixedTInfo->getType();
7546  else if (FixedTInfo) {
7547  // Type and type-as-written are canonically different. We need to fix up
7548  // both types separately.
7549  FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7550  Oversized);
7551  }
7552  if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
7553  const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7554  // FIXME: This won't give the correct result for
7555  // int a[10][n];
7556  SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7557 
7558  if (NewVD->isFileVarDecl())
7559  Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7560  << SizeRange;
7561  else if (NewVD->isStaticLocal())
7562  Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7563  << SizeRange;
7564  else
7565  Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7566  << SizeRange;
7567  NewVD->setInvalidDecl();
7568  return;
7569  }
7570 
7571  if (!FixedTInfo) {
7572  if (NewVD->isFileVarDecl())
7573  Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7574  else
7575  Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7576  NewVD->setInvalidDecl();
7577  return;
7578  }
7579 
7580  Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7581  NewVD->setType(FixedT);
7582  NewVD->setTypeSourceInfo(FixedTInfo);
7583  }
7584 
7585  if (T->isVoidType()) {
7586  // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7587  // of objects and functions.
7588  if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7589  Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7590  << T;
7591  NewVD->setInvalidDecl();
7592  return;
7593  }
7594  }
7595 
7596  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7597  Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7598  NewVD->setInvalidDecl();
7599  return;
7600  }
7601 
7602  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7603  Diag(NewVD->getLocation(), diag::err_block_on_vm);
7604  NewVD->setInvalidDecl();
7605  return;
7606  }
7607 
7608  if (NewVD->isConstexpr() && !T->isDependentType() &&
7609  RequireLiteralType(NewVD->getLocation(), T,
7610  diag::err_constexpr_var_non_literal)) {
7611  NewVD->setInvalidDecl();
7612  return;
7613  }
7614 }
7615 
7616 /// Perform semantic checking on a newly-created variable
7617 /// declaration.
7618 ///
7619 /// This routine performs all of the type-checking required for a
7620 /// variable declaration once it has been built. It is used both to
7621 /// check variables after they have been parsed and their declarators
7622 /// have been translated into a declaration, and to check variables
7623 /// that have been instantiated from a template.
7624 ///
7625 /// Sets NewVD->isInvalidDecl() if an error was encountered.
7626 ///
7627 /// Returns true if the variable declaration is a redeclaration.
7629  CheckVariableDeclarationType(NewVD);
7630 
7631  // If the decl is already known invalid, don't check it.
7632  if (NewVD->isInvalidDecl())
7633  return false;
7634 
7635  // If we did not find anything by this name, look for a non-visible
7636  // extern "C" declaration with the same name.
7637  if (Previous.empty() &&
7638  checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7639  Previous.setShadowed();
7640 
7641  if (!Previous.empty()) {
7642  MergeVarDecl(NewVD, Previous);
7643  return true;
7644  }
7645  return false;
7646 }
7647 
7648 namespace {
7649 struct FindOverriddenMethod {
7650  Sema *S;
7651  CXXMethodDecl *Method;
7652 
7653  /// Member lookup function that determines whether a given C++
7654  /// method overrides a method in a base class, to be used with
7655  /// CXXRecordDecl::lookupInBases().
7656  bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7657  RecordDecl *BaseRecord =
7658  Specifier->getType()->getAs<RecordType>()->getDecl();
7659 
7660  DeclarationName Name = Method->getDeclName();
7661 
7662  // FIXME: Do we care about other names here too?
7664  // We really want to find the base class destructor here.
7665  QualType T = S->Context.getTypeDeclType(BaseRecord);
7667 
7669  }
7670 
7671  for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7672  Path.Decls = Path.Decls.slice(1)) {
7673  NamedDecl *D = Path.Decls.front();
7674  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7675  if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
7676  return true;
7677  }
7678  }
7679 
7680  return false;
7681  }
7682 };
7683 
7684 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7685 } // end anonymous namespace
7686 
7687 /// Report an error regarding overriding, along with any relevant
7688 /// overridden methods.
7689 ///
7690 /// \param DiagID the primary error to report.
7691 /// \param MD the overriding method.
7692 /// \param OEK which overrides to include as notes.
7693 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7694  OverrideErrorKind OEK = OEK_All) {
7695  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7696  for (const CXXMethodDecl *O : MD->overridden_methods()) {
7697  // This check (& the OEK parameter) could be replaced by a predicate, but
7698  // without lambdas that would be overkill. This is still nicer than writing
7699  // out the diag loop 3 times.
7700  if ((OEK == OEK_All) ||
7701  (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7702  (OEK == OEK_Deleted && O->isDeleted()))
7703  S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7704  }
7705 }
7706 
7707 /// AddOverriddenMethods - See if a method overrides any in the base classes,
7708 /// and if so, check that it's a valid override and remember it.
7710  // Look for methods in base classes that this method might override.
7711  CXXBasePaths Paths;
7712  FindOverriddenMethod FOM;
7713  FOM.Method = MD;
7714  FOM.S = this;
7715  bool hasDeletedOverridenMethods = false;
7716  bool hasNonDeletedOverridenMethods = false;
7717  bool AddedAny = false;
7718  if (DC->lookupInBases(FOM, Paths)) {
7719  for (auto *I : Paths.found_decls()) {
7720  if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7721  MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7722  if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7723  !CheckOverridingFunctionAttributes(MD, OldMD) &&
7724  !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7725  !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7726  hasDeletedOverridenMethods |= OldMD->isDeleted();
7727  hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7728  AddedAny = true;
7729  }
7730  }
7731  }
7732  }
7733 
7734  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7735  ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7736  }
7737  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7738  ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7739  }
7740 
7741  return AddedAny;
7742 }
7743 
7744 namespace {
7745  // Struct for holding all of the extra arguments needed by
7746  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7747  struct ActOnFDArgs {
7748  Scope *S;
7749  Declarator &D;
7750  MultiTemplateParamsArg TemplateParamLists;
7751  bool AddToScope;
7752  };
7753 } // end anonymous namespace
7754 
7755 namespace {
7756 
7757 // Callback to only accept typo corrections that have a non-zero edit distance.
7758 // Also only accept corrections that have the same parent decl.
7759 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
7760  public:
7761  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7763  : Context(Context), OriginalFD(TypoFD),
7764  ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
7765 
7766  bool ValidateCandidate(const TypoCorrection &candidate) override {
7767  if (candidate.getEditDistance() == 0)
7768  return false;
7769 
7770  SmallVector<unsigned, 1> MismatchedParams;
7771  for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
7772  CDeclEnd = candidate.end();
7773  CDecl != CDeclEnd; ++CDecl) {
7774  FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7775 
7776  if (FD && !FD->hasBody() &&
7777  hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
7778  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7779  CXXRecordDecl *Parent = MD->getParent();
7780  if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
7781  return true;
7782  } else if (!ExpectedParent) {
7783  return true;
7784  }
7785  }
7786  }
7787 
7788  return false;
7789  }
7790 
7791  std::unique_ptr<CorrectionCandidateCallback> clone() override {
7792  return llvm::make_unique<DifferentNameValidatorCCC>(*this);
7793  }
7794 
7795  private:
7796  ASTContext &Context;
7797  FunctionDecl *OriginalFD;
7798  CXXRecordDecl *ExpectedParent;
7799 };
7800 
7801 } // end anonymous namespace
7802 
7804  TypoCorrectedFunctionDefinitions.insert(F);
7805 }
7806 
7807 /// Generate diagnostics for an invalid function redeclaration.
7808 ///
7809 /// This routine handles generating the diagnostic messages for an invalid
7810 /// function redeclaration, including finding possible similar declarations
7811 /// or performing typo correction if there are no previous declarations with
7812 /// the same name.
7813 ///
7814 /// Returns a NamedDecl iff typo correction was performed and substituting in
7815 /// the new declaration name does not cause new errors.
7817  Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
7818  ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
7819  DeclarationName Name = NewFD->getDeclName();
7820  DeclContext *NewDC = NewFD->getDeclContext();
7821  SmallVector<unsigned, 1> MismatchedParams;
7823  TypoCorrection Correction;
7824  bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
7825  unsigned DiagMsg =
7826  IsLocalFriend ? diag::err_no_matching_local_friend :
7827  NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
7828  diag::err_member_decl_does_not_match;
7829  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
7830  IsLocalFriend ? Sema::LookupLocalFriendName
7833 
7834  NewFD->setInvalidDecl();
7835  if (IsLocalFriend)
7836  SemaRef.LookupName(Prev, S);
7837  else
7838  SemaRef.LookupQualifiedName(Prev, NewDC);
7839  assert(!Prev.isAmbiguous() &&
7840  "Cannot have an ambiguity in previous-declaration lookup");
7841  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7842  DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
7843  MD ? MD->getParent() : nullptr);
7844  if (!Prev.empty()) {
7845  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
7846  Func != FuncEnd; ++Func) {
7847  FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
7848  if (FD &&
7849  hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7850  // Add 1 to the index so that 0 can mean the mismatch didn't
7851  // involve a parameter
7852  unsigned ParamNum =
7853  MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
7854  NearMatches.push_back(std::make_pair(FD, ParamNum));
7855  }
7856  }
7857  // If the qualified name lookup yielded nothing, try typo correction
7858  } else if ((Correction = SemaRef.CorrectTypo(
7859  Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
7860  &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
7861  IsLocalFriend ? nullptr : NewDC))) {
7862  // Set up everything for the call to ActOnFunctionDeclarator
7863  ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
7864  ExtraArgs.D.getIdentifierLoc());
7865  Previous.clear();
7866  Previous.setLookupName(Correction.getCorrection());
7867  for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
7868  CDeclEnd = Correction.end();
7869  CDecl != CDeclEnd; ++CDecl) {
7870  FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7871  if (FD && !FD->hasBody() &&
7872  hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7873  Previous.addDecl(FD);
7874  }
7875  }
7876  bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
7877 
7878  NamedDecl *Result;
7879  // Retry building the function declaration with the new previous
7880  // declarations, and with errors suppressed.
7881  {
7882  // Trap errors.
7883  Sema::SFINAETrap Trap(SemaRef);
7884 
7885  // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
7886  // pieces need to verify the typo-corrected C++ declaration and hopefully
7887  // eliminate the need for the parameter pack ExtraArgs.
7888  Result = SemaRef.ActOnFunctionDeclarator(
7889  ExtraArgs.S, ExtraArgs.D,
7890  Correction.getCorrectionDecl()->getDeclContext(),
7891  NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
7892  ExtraArgs.AddToScope);
7893 
7894  if (Trap.hasErrorOccurred())
7895  Result = nullptr;
7896  }
7897 
7898  if (Result) {
7899  // Determine which correction we picked.
7900  Decl *Canonical = Result->getCanonicalDecl();
7901  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7902  I != E; ++I)
7903  if ((*I)->getCanonicalDecl() == Canonical)
7904  Correction.setCorrectionDecl(*I);
7905 
7906  // Let Sema know about the correction.
7907  SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
7908  SemaRef.diagnoseTypo(
7909  Correction,
7910  SemaRef.PDiag(IsLocalFriend
7911  ? diag::err_no_matching_local_friend_suggest
7912  : diag::err_member_decl_does_not_match_suggest)
7913  << Name << NewDC << IsDefinition);
7914  return Result;
7915  }
7916 
7917  // Pretend the typo correction never occurred
7918  ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
7919  ExtraArgs.D.getIdentifierLoc());
7920  ExtraArgs.D.setRedeclaration(wasRedeclaration);
7921  Previous.clear();
7922  Previous.setLookupName(Name);
7923  }
7924 
7925  SemaRef.Diag(NewFD->getLocation(), DiagMsg)
7926  << Name << NewDC << IsDefinition << NewFD->getLocation();
7927 
7928  bool NewFDisConst = false;
7929  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
7930  NewFDisConst = NewMD->isConst();
7931 
7932  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
7933  NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
7934  NearMatch != NearMatchEnd; ++NearMatch) {
7935  FunctionDecl *FD = NearMatch->first;
7936  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7937  bool FDisConst = MD && MD->isConst();
7938  bool IsMember = MD || !IsLocalFriend;
7939 
7940  // FIXME: These notes are poorly worded for the local friend case.
7941  if (unsigned Idx = NearMatch->second) {
7942  ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7943  SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7944  if (Loc.isInvalid()) Loc = FD->getLocation();
7945  SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7946  : diag::note_local_decl_close_param_match)
7947  << Idx << FDParam->getType()
7948  << NewFD->getParamDecl(Idx - 1)->getType();
7949  } else if (FDisConst != NewFDisConst) {
7950  SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7951  << NewFDisConst << FD->getSourceRange().getEnd();
7952  } else
7953  SemaRef.Diag(FD->getLocation(),
7954  IsMember ? diag::note_member_def_close_match
7955  : diag::note_local_decl_close_match);
7956  }
7957  return nullptr;
7958 }
7959 
7961  switch (D.getDeclSpec().getStorageClassSpec()) {
7962  default: llvm_unreachable("Unknown storage class!");
7963  case DeclSpec::SCS_auto:
7965  case DeclSpec::SCS_mutable:
7966  SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7967  diag::err_typecheck_sclass_func);
7969  D.setInvalidType();
7970  break;
7971  case DeclSpec::SCS_unspecified: break;
7972  case DeclSpec::SCS_extern:
7974  return SC_None;
7975  return SC_Extern;
7976  case DeclSpec::SCS_static: {
7977  if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7978  // C99 6.7.1p5:
7979  // The declaration of an identifier for a function that has
7980  // block scope shall have no explicit storage-class specifier
7981  // other than extern
7982  // See also (C++ [dcl.stc]p4).
7983  SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7984  diag::err_static_block_func);
7985  break;
7986  } else
7987  return SC_Static;
7988  }
7990  }
7991 
7992  // No explicit storage class has already been returned
7993  return SC_None;
7994 }
7995 
7997  DeclContext *DC, QualType &R,
7998  TypeSourceInfo *TInfo,
7999  StorageClass SC,
8000  bool &IsVirtualOkay) {
8001  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8002  DeclarationName Name = NameInfo.getName();
8003 
8004  FunctionDecl *NewFD = nullptr;
8005  bool isInline = D.getDeclSpec().isInlineSpecified();
8006 
8007  if (!SemaRef.getLangOpts().CPlusPlus) {
8008  // Determine whether the function was written with a
8009  // prototype. This true when:
8010  // - there is a prototype in the declarator, or
8011  // - the type R of the function is some kind of typedef or other non-
8012  // attributed reference to a type name (which eventually refers to a
8013  // function type).
8014  bool HasPrototype =
8017 
8018  NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8019  R, TInfo, SC, isInline, HasPrototype,
8020  CSK_unspecified);
8021  if (D.isInvalidType())
8022  NewFD->setInvalidDecl();
8023 
8024  return NewFD;
8025  }
8026 
8028  ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8029  // Check that the return type is not an abstract class type.
8030  // For record types, this is done by the AbstractClassUsageDiagnoser once
8031  // the class has been completely parsed.
8032  if (!DC->isRecord() &&
8033  SemaRef.RequireNonAbstractType(
8034  D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
8035  diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8036  D.setInvalidType();
8037 
8039  // This is a C++ constructor declaration.
8040  assert(DC->isRecord() &&
8041  "Constructors can only be declared in a member context");
8042 
8043  R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8045  SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8046  TInfo, ExplicitSpecifier, isInline,
8047  /*isImplicitlyDeclared=*/false, ConstexprKind);
8048 
8049  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8050  // This is a C++ destructor declaration.
8051  if (DC->isRecord()) {
8052  R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8053  CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8054  CXXDestructorDecl *NewDD =
8055  CXXDestructorDecl::Create(SemaRef.Context, Record, D.getBeginLoc(),
8056  NameInfo, R, TInfo, isInline,
8057  /*isImplicitlyDeclared=*/false);
8058 
8059  // If the destructor needs an implicit exception specification, set it
8060  // now. FIXME: It'd be nice to be able to create the right type to start
8061  // with, but the type needs to reference the destructor declaration.
8062  if (SemaRef.getLangOpts().CPlusPlus11)
8063  SemaRef.AdjustDestructorExceptionSpec(NewDD);
8064 
8065  IsVirtualOkay = true;
8066  return NewDD;
8067 
8068  } else {
8069  SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8070  D.setInvalidType();
8071 
8072  // Create a FunctionDecl to satisfy the function definition parsing
8073  // code path.
8074  return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8075  D.getIdentifierLoc(), Name, R, TInfo, SC,
8076  isInline,
8077  /*hasPrototype=*/true, ConstexprKind);
8078  }
8079 
8081  if (!DC->isRecord()) {
8082  SemaRef.Diag(D.getIdentifierLoc(),
8083  diag::err_conv_function_not_member);
8084  return nullptr;
8085  }
8086 
8087  SemaRef.CheckConversionDeclarator(D, R, SC);
8088  IsVirtualOkay = true;
8090  SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8091  TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation());
8092 
8093  } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8094  SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8095 
8096  return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8097  ExplicitSpecifier, NameInfo, R, TInfo,
8098  D.getEndLoc());
8099  } else if (DC->isRecord()) {
8100  // If the name of the function is the same as the name of the record,
8101  // then this must be an invalid constructor that has a return type.
8102  // (The parser checks for a return type and makes the declarator a
8103  // constructor if it has no return type).
8104  if (Name.getAsIdentifierInfo() &&
8105  Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8106  SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8108  << SourceRange(D.getIdentifierLoc());
8109  return nullptr;
8110  }
8111 
8112  // This is a C++ method declaration.
8114  SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8115  TInfo, SC, isInline, ConstexprKind, SourceLocation());
8116  IsVirtualOkay = !Ret->isStatic();
8117  return Ret;
8118  } else {
8119  bool isFriend =
8120  SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8121  if (!isFriend && SemaRef.CurContext->isRecord())
8122  return nullptr;
8123 
8124  // Determine whether the function was written with a
8125  // prototype. This true when:
8126  // - we're in C++ (where every function has a prototype),
8127  return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8128  R, TInfo, SC, isInline, true /*HasPrototype*/,
8129  ConstexprKind);
8130  }
8131 }
8132 
8140 };
8141 
8143  // Size dependent types are just typedefs to normal integer types
8144  // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8145  // integers other than by their names.
8146  StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8147 
8148  // Remove typedefs one by one until we reach a typedef
8149  // for a size dependent type.
8150  QualType DesugaredTy = Ty;
8151  do {
8152  ArrayRef<StringRef> Names(SizeTypeNames);
8153  auto Match = llvm::find(Names, DesugaredTy.getAsString());
8154  if (Names.end() != Match)
8155  return true;
8156 
8157  Ty = DesugaredTy;
8158  DesugaredTy = Ty.getSingleStepDesugaredType(C);
8159  } while (DesugaredTy != Ty);
8160 
8161  return false;
8162 }
8163 
8165  if (PT->isPointerType()) {
8166  QualType PointeeType = PT->getPointeeType();
8167  if (PointeeType->isPointerType())
8168  return PtrPtrKernelParam;
8169  if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8170  PointeeType.getAddressSpace() == LangAS::opencl_private ||
8171  PointeeType.getAddressSpace() == LangAS::Default)
8173  return PtrKernelParam;
8174  }
8175 
8176  // OpenCL v1.2 s6.9.k:
8177  // Arguments to kernel functions in a program cannot be declared with the
8178  // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8179  // uintptr_t or a struct and/or union that contain fields declared to be one
8180  // of these built-in scalar types.
8182  return InvalidKernelParam;
8183 
8184  if (PT->isImageType())
8185  return PtrKernelParam;
8186 
8187  if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8188  return InvalidKernelParam;
8189 
8190  // OpenCL extension spec v1.2 s9.5:
8191  // This extension adds support for half scalar and vector types as built-in
8192  // types that can be used for arithmetic operations, conversions etc.
8193  if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8194  return InvalidKernelParam;
8195 
8196  if (PT->isRecordType())
8197  return RecordKernelParam;
8198 
8199  // Look into an array argument to check if it has a forbidden type.
8200  if (PT->isArrayType()) {
8201  const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8202  // Call ourself to check an underlying type of an array. Since the
8203  // getPointeeOrArrayElementType returns an innermost type which is not an
8204  // array, this recursive call only happens once.
8205  return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8206  }
8207 
8208  return ValidKernelParam;
8209 }
8210 
8212  Sema &S,
8213  Declarator &D,
8214  ParmVarDecl *Param,
8215  llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8216  QualType PT = Param->getType();
8217 
8218  // Cache the valid types we encounter to avoid rechecking structs that are
8219  // used again
8220  if (ValidTypes.count(PT.getTypePtr()))
8221  return;
8222 
8223  switch (getOpenCLKernelParameterType(S, PT)) {
8224  case PtrPtrKernelParam:
8225  // OpenCL v1.2 s6.9.a:
8226  // A kernel function argument cannot be declared as a
8227  // pointer to a pointer type.
8228  S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8229  D.setInvalidType();
8230  return;
8231 
8233  // OpenCL v1.0 s6.5:
8234  // __kernel function arguments declared to be a pointer of a type can point
8235  // to one of the following address spaces only : __global, __local or
8236  // __constant.
8237  S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8238  D.setInvalidType();
8239  return;
8240 
8241  // OpenCL v1.2 s6.9.k:
8242  // Arguments to kernel functions in a program cannot be declared with the
8243  // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8244  // uintptr_t or a struct and/or union that contain fields declared to be
8245  // one of these built-in scalar types.
8246 
8247  case InvalidKernelParam:
8248  // OpenCL v1.2 s6.8 n:
8249  // A kernel function argument cannot be declared
8250  // of event_t type.
8251  // Do not diagnose half type since it is diagnosed as invalid argument
8252  // type for any function elsewhere.
8253  if (!PT->isHalfType()) {
8254  S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8255 
8256  // Explain what typedefs are involved.
8257  const TypedefType *Typedef = nullptr;
8258  while ((Typedef = PT->getAs<TypedefType>())) {
8259  SourceLocation Loc = Typedef->getDecl()->getLocation();
8260  // SourceLocation may be invalid for a built-in type.
8261  if (Loc.isValid())
8262  S.Diag(Loc, diag::note_entity_declared_at) << PT;
8263  PT = Typedef->desugar();
8264  }
8265  }
8266 
8267  D.setInvalidType();
8268  return;
8269 
8270  case PtrKernelParam:
8271  case ValidKernelParam:
8272  ValidTypes.insert(PT.getTypePtr());
8273  return;
8274 
8275  case RecordKernelParam:
8276  break;
8277  }
8278 
8279  // Track nested structs we will inspect
8280  SmallVector<const Decl *, 4> VisitStack;
8281 
8282  // Track where we are in the nested structs. Items will migrate from
8283  // VisitStack to HistoryStack as we do the DFS for bad field.
8284  SmallVector<const FieldDecl *, 4> HistoryStack;
8285  HistoryStack.push_back(nullptr);
8286 
8287  // At this point we already handled everything except of a RecordType or
8288  // an ArrayType of a RecordType.
8289  assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8290  const RecordType *RecTy =
8292  const RecordDecl *OrigRecDecl = RecTy->getDecl();
8293 
8294  VisitStack.push_back(RecTy->getDecl());
8295  assert(VisitStack.back() && "First decl null?");
8296 
8297  do {
8298  const Decl *Next = VisitStack.pop_back_val();
8299  if (!Next) {
8300  assert(!HistoryStack.empty());
8301  // Found a marker, we have gone up a level
8302  if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8303  ValidTypes.insert(Hist->getType().getTypePtr());
8304 
8305  continue;
8306  }
8307 
8308  // Adds everything except the original parameter declaration (which is not a
8309  // field itself) to the history stack.
8310  const RecordDecl *RD;
8311  if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8312  HistoryStack.push_back(Field);
8313 
8314  QualType FieldTy = Field->getType();
8315  // Other field types (known to be valid or invalid) are handled while we
8316  // walk around RecordDecl::fields().
8317  assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8318  "Unexpected type.");
8319  const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8320 
8321  RD = FieldRecTy->castAs<RecordType>()->getDecl();
8322  } else {
8323  RD = cast<RecordDecl>(Next);
8324  }
8325 
8326  // Add a null marker so we know when we've gone back up a level
8327  VisitStack.push_back(nullptr);
8328 
8329  for (const auto *FD : RD->fields()) {
8330  QualType QT = FD->getType();
8331 
8332  if (ValidTypes.count(QT.getTypePtr()))
8333  continue;
8334 
8335  OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8336  if (ParamType == ValidKernelParam)
8337  continue;
8338 
8339  if (ParamType == RecordKernelParam) {
8340  VisitStack.push_back(FD);
8341  continue;
8342  }
8343 
8344  // OpenCL v1.2 s6.9.p:
8345  // Arguments to kernel functions that are declared to be a struct or union
8346  // do not allow OpenCL objects to be passed as elements of the struct or
8347  // union.
8348  if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8349  ParamType == InvalidAddrSpacePtrKernelParam) {
8350  S.Diag(Param->getLocation(),
8351  diag::err_record_with_pointers_kernel_param)
8352  << PT->isUnionType()
8353  << PT;
8354  } else {
8355  S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8356  }
8357 
8358  S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8359  << OrigRecDecl->getDeclName();
8360 
8361  // We have an error, now let's go back up through history and show where
8362  // the offending field came from
8364  I = HistoryStack.begin() + 1,
8365  E = HistoryStack.end();
8366  I != E; ++I) {
8367  const FieldDecl *OuterField = *I;
8368  S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8369  << OuterField->getType();
8370  }
8371 
8372  S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8373  << QT->isPointerType()
8374  << QT;
8375  D.setInvalidType();
8376  return;
8377  }
8378  } while (!VisitStack.empty());
8379 }
8380 
8381 /// Find the DeclContext in which a tag is implicitly declared if we see an
8382 /// elaborated type specifier in the specified context, and lookup finds
8383 /// nothing.
8385  while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8386  DC = DC->getParent();
8387  return DC;
8388 }
8389 
8390 /// Find the Scope in which a tag is implicitly declared if we see an
8391 /// elaborated type specifier in the specified context, and lookup finds
8392 /// nothing.
8393 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8394  while (S->isClassScope() ||
8395  (LangOpts.CPlusPlus &&
8396  S->isFunctionPrototypeScope()) ||
8397  ((S->getFlags() & Scope::DeclScope) == 0) ||
8398  (S->getEntity() && S->getEntity()->isTransparentContext()))
8399  S = S->getParent();
8400  return S;
8401 }
8402 
8403 NamedDecl*
8406  MultiTemplateParamsArg TemplateParamLists,
8407  bool &AddToScope) {
8408  QualType R = TInfo->getType();
8409 
8410  assert(R->isFunctionType());
8411 
8412  // TODO: consider using NameInfo for diagnostic.
8413  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8414  DeclarationName Name = NameInfo.getName();
8415  StorageClass SC = getFunctionStorageClass(*this, D);
8416 
8419  diag::err_invalid_thread)
8420  << DeclSpec::getSpecifierName(TSCS);
8421 
8423  adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8424  D.getIdentifierLoc());
8425 
8426  bool isFriend = false;
8427  FunctionTemplateDecl *FunctionTemplate = nullptr;
8428  bool isMemberSpecialization = false;
8429  bool isFunctionTemplateSpecialization = false;
8430 
8431  bool isDependentClassScopeExplicitSpecialization = false;
8432  bool HasExplicitTemplateArgs = false;
8433  TemplateArgumentListInfo TemplateArgs;
8434 
8435  bool isVirtualOkay = false;
8436 
8437  DeclContext *OriginalDC = DC;
8438  bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8439 
8440  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8441  isVirtualOkay);
8442  if (!NewFD) return nullptr;
8443 
8444  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8446 
8447  // Set the lexical context. If this is a function-scope declaration, or has a
8448  // C++ scope specifier, or is the object of a friend declaration, the lexical
8449  // context will be different from the semantic context.
8450  NewFD->setLexicalDeclContext(CurContext);
8451 
8452  if (IsLocalExternDecl)
8453  NewFD->setLocalExternDecl();
8454 
8455  if (getLangOpts().CPlusPlus) {
8456  bool isInline = D.getDeclSpec().isInlineSpecified();
8457  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8458  bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8459  ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8460  isFriend = D.getDeclSpec().isFriendSpecified();
8461  if (isFriend && !isInline && D.isFunctionDefinition()) {
8462  // C++ [class.friend]p5
8463  // A function can be defined in a friend declaration of a
8464  // class . . . . Such a function is implicitly inline.
8465  NewFD->setImplicitlyInline();
8466  }
8467 
8468  // If this is a method defined in an __interface, and is not a constructor
8469  // or an overloaded operator, then set the pure flag (isVirtual will already
8470  // return true).
8471  if (const CXXRecordDecl *Parent =
8472  dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8473  if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8474  NewFD->setPure(true);
8475 
8476  // C++ [class.union]p2
8477  // A union can have member functions, but not virtual functions.
8478  if (isVirtual && Parent->isUnion())
8479  Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8480  }
8481 
8482  SetNestedNameSpecifier(*this, NewFD, D);
8483  isMemberSpecialization = false;
8484  isFunctionTemplateSpecialization = false;
8485  if (D.isInvalidType())
8486  NewFD->setInvalidDecl();
8487 
8488  // Match up the template parameter lists with the scope specifier, then
8489  // determine whether we have a template or a template specialization.
8490  bool Invalid = false;
8491  if (TemplateParameterList *TemplateParams =
8492  MatchTemplateParametersToScopeSpecifier(
8494  D.getCXXScopeSpec(),
8496  ? D.getName().TemplateId
8497  : nullptr,
8498  TemplateParamLists, isFriend, isMemberSpecialization,
8499  Invalid)) {
8500  if (TemplateParams->size() > 0) {
8501  // This is a function template
8502 
8503  // Check that we can declare a template here.
8504  if (CheckTemplateDeclScope(S, TemplateParams))
8505  NewFD->setInvalidDecl();
8506 
8507  // A destructor cannot be a template.
8509  Diag(NewFD->getLocation(), diag::err_destructor_template);
8510  NewFD->setInvalidDecl();
8511  }
8512 
8513  // If we're adding a template to a dependent context, we may need to
8514  // rebuilding some of the types used within the template parameter list,
8515  // now that we know what the current instantiation is.
8516  if (DC->isDependentContext()) {
8517  ContextRAII SavedContext(*this, DC);
8518  if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8519  Invalid = true;
8520  }
8521 
8522  FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8523  NewFD->getLocation(),
8524  Name, TemplateParams,
8525  NewFD);
8526  FunctionTemplate->setLexicalDeclContext(CurContext);
8527  NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8528 
8529  // For source fidelity, store the other template param lists.
8530  if (TemplateParamLists.size() > 1) {
8531  NewFD->setTemplateParameterListsInfo(Context,
8532  TemplateParamLists.drop_back(1));
8533  }
8534  } else {
8535  // This is a function template specialization.
8536  isFunctionTemplateSpecialization = true;
8537  // For source fidelity, store all the template param lists.
8538  if (TemplateParamLists.size() > 0)
8539  NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8540 
8541  // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8542  if (isFriend) {
8543  // We want to remove the "template<>", found here.
8544  SourceRange RemoveRange = TemplateParams->getSourceRange();
8545 
8546  // If we remove the template<> and the name is not a
8547  // template-id, we're actually silently creating a problem:
8548  // the friend declaration will refer to an untemplated decl,
8549  // and clearly the user wants a template specialization. So
8550  // we need to insert '<>' after the name.
8551  SourceLocation InsertLoc;
8553  InsertLoc = D.getName().getSourceRange().getEnd();
8554  InsertLoc = getLocForEndOfToken(InsertLoc);
8555  }
8556 
8557  Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8558  << Name << RemoveRange
8559  << FixItHint::CreateRemoval(RemoveRange)
8560  << FixItHint::CreateInsertion(InsertLoc, "<>");
8561  }
8562  }
8563  } else {
8564  // All template param lists were matched against the scope specifier:
8565  // this is NOT (an explicit specialization of) a template.
8566  if (TemplateParamLists.size() > 0)
8567  // For source fidelity, store all the template param lists.
8568  NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8569  }
8570 
8571  if (Invalid) {
8572  NewFD->setInvalidDecl();
8573  if (FunctionTemplate)
8574  FunctionTemplate->setInvalidDecl();
8575  }
8576 
8577  // C++ [dcl.fct.spec]p5:
8578  // The virtual specifier shall only be used in declarations of
8579  // nonstatic class member functions that appear within a
8580  // member-specification of a class declaration; see 10.3.
8581  //
8582  if (isVirtual && !NewFD->isInvalidDecl()) {
8583  if (!isVirtualOkay) {
8585  diag::err_virtual_non_function);
8586  } else if (!CurContext->isRecord()) {
8587  // 'virtual' was specified outside of the class.
8589  diag::err_virtual_out_of_class)
8591  } else if (NewFD->getDescribedFunctionTemplate()) {
8592  // C++ [temp.mem]p3:
8593  // A member function template shall not be virtual.
8595  diag::err_virtual_member_function_template)
8597  } else {
8598  // Okay: Add virtual to the method.
8599  NewFD->setVirtualAsWritten(true);
8600  }
8601 
8602  if (getLangOpts().CPlusPlus14 &&
8603  NewFD->getReturnType()->isUndeducedType())
8604  Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8605  }
8606 
8607  if (getLangOpts().CPlusPlus14 &&
8608  (NewFD->isDependentContext() ||
8609  (isFriend && CurContext->isDependentContext())) &&
8610  NewFD->getReturnType()->isUndeducedType()) {
8611  // If the function template is referenced directly (for instance, as a
8612  // member of the current instantiation), pretend it has a dependent type.
8613  // This is not really justified by the standard, but is the only sane
8614  // thing to do.
8615  // FIXME: For a friend function, we have not marked the function as being
8616  // a friend yet, so 'isDependentContext' on the FD doesn't work.
8617  const FunctionProtoType *FPT =
8618  NewFD->getType()->castAs<FunctionProtoType>();
8619  QualType Result =
8620  SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8621  NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8622  FPT->getExtProtoInfo()));
8623  }
8624 
8625  // C++ [dcl.fct.spec]p3:
8626  // The inline specifier shall not appear on a block scope function
8627  // declaration.
8628  if (isInline && !NewFD->isInvalidDecl()) {
8629  if (CurContext->isFunctionOrMethod()) {
8630  // 'inline' is not allowed on block scope function declaration.
8632  diag::err_inline_declaration_block_scope) << Name
8634  }
8635  }
8636 
8637  // C++ [dcl.fct.spec]p6:
8638  // The explicit specifier shall be used only in the declaration of a
8639  // constructor or conversion function within its class definition;
8640  // see 12.3.1 and 12.3.2.
8641  if (hasExplicit && !NewFD->isInvalidDecl() &&
8642  !isa<CXXDeductionGuideDecl>(NewFD)) {
8643  if (!CurContext->isRecord()) {
8644  // 'explicit' was specified outside of the class.
8646  diag::err_explicit_out_of_class)
8648  } else if (!isa<CXXConstructorDecl>(NewFD) &&
8649  !isa<CXXConversionDecl>(NewFD)) {
8650  // 'explicit' was specified on a function that wasn't a constructor
8651  // or conversion function.
8653  diag::err_explicit_non_ctor_or_conv_function)
8655  }
8656  }
8657 
8658  if (ConstexprKind != CSK_unspecified) {
8659  // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8660  // are implicitly inline.
8661  NewFD->setImplicitlyInline();
8662 
8663  // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8664  // be either constructors or to return a literal type. Therefore,
8665  // destructors cannot be declared constexpr.
8666  if (isa<CXXDestructorDecl>(NewFD))
8667  Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
8668  << (ConstexprKind == CSK_consteval);
8669  }
8670 
8671  // If __module_private__ was specified, mark the function accordingly.
8673  if (isFunctionTemplateSpecialization) {
8674  SourceLocation ModulePrivateLoc
8676  Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8677  << 0
8678  << FixItHint::CreateRemoval(ModulePrivateLoc);
8679  } else {
8680  NewFD->setModulePrivate();
8681  if (FunctionTemplate)
8682  FunctionTemplate->setModulePrivate();
8683  }
8684  }
8685 
8686  if (isFriend) {
8687  if (FunctionTemplate) {
8688  FunctionTemplate->setObjectOfFriendDecl();
8689  FunctionTemplate->setAccess(AS_public);
8690  }
8691  NewFD->setObjectOfFriendDecl();
8692  NewFD->setAccess(AS_public);
8693  }
8694 
8695  // If a function is defined as defaulted or deleted, mark it as such now.
8696  // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8697  // definition kind to FDK_Definition.
8698  switch (D.getFunctionDefinitionKind()) {
8699  case FDK_Declaration:
8700  case FDK_Definition:
8701  break;
8702 
8703  case FDK_Defaulted:
8704  NewFD->setDefaulted();
8705  break;
8706 
8707  case FDK_Deleted:
8708  NewFD->setDeletedAsWritten();
8709  break;
8710  }
8711 
8712  if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8713  D.isFunctionDefinition()) {
8714  // C++ [class.mfct]p2:
8715  // A member function may be defined (8.4) in its class definition, in
8716  // which case it is an inline member function (7.1.2)
8717  NewFD->setImplicitlyInline();
8718  }
8719 
8720  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8721  !CurContext->isRecord()) {
8722  // C++ [class.static]p1:
8723  // A data or function member of a class may be declared static
8724  // in a class definition, in which case it is a static member of
8725  // the class.
8726 
8727  // Complain about the 'static' specifier if it's on an out-of-line
8728  // member function definition.
8729 
8730  // MSVC permits the use of a 'static' storage specifier on an out-of-line
8731  // member function template declaration and class member template
8732  // declaration (MSVC versions before 2015), warn about this.
8734  ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
8735  cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
8736  (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
8737  ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
8739  }
8740 
8741  // C++11 [except.spec]p15:
8742  // A deallocation function with no exception-specification is treated
8743  // as if it were specified with noexcept(true).
8744  const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
8745  if ((Name.getCXXOverloadedOperator() == OO_Delete ||
8746  Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
8747  getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
8748  NewFD->setType(Context.getFunctionType(
8749  FPT->getReturnType(), FPT->getParamTypes(),
8750  FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
8751  }
8752 
8753  // Filter out previous declarations that don't match the scope.
8754  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
8755  D.getCXXScopeSpec().isNotEmpty() ||
8756  isMemberSpecialization ||
8757  isFunctionTemplateSpecialization);
8758 
8759  // Handle GNU asm-label extension (encoded as an attribute).
8760  if (Expr *E = (Expr*) D.getAsmLabel()) {
8761  // The parser guarantees this is a string.
8762  StringLiteral *SE = cast<StringLiteral>(E);
8763  NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
8764  SE->getString(), 0));
8765  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8766  llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8767  ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
8768  if (I != ExtnameUndeclaredIdentifiers.end()) {
8769  if (isDeclExternC(NewFD)) {
8770  NewFD->addAttr(I->second);
8771  ExtnameUndeclaredIdentifiers.erase(I);
8772  } else
8773  Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
8774  << /*Variable*/0 << NewFD;
8775  }
8776  }
8777 
8778  // Copy the parameter declarations from the declarator D to the function
8779  // declaration NewFD, if they are available. First scavenge them into Params.
8781  unsigned FTIIdx;
8782  if (D.isFunctionDeclarator(FTIIdx)) {
8784 
8785  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
8786  // function that takes no arguments, not a function that takes a
8787  // single void argument.
8788  // We let through "const void" here because Sema::GetTypeForDeclarator
8789  // already checks for that case.
8790  if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
8791  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
8792  ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
8793  assert(Param->getDeclContext() != NewFD && "Was set before ?");
8794  Param->setDeclContext(NewFD);
8795  Params.push_back(Param);
8796 
8797  if (Param->isInvalidDecl())
8798  NewFD->setInvalidDecl();
8799  }
8800  }
8801 
8802  if (!getLangOpts().CPlusPlus) {
8803  // In C, find all the tag declarations from the prototype and move them
8804  // into the function DeclContext. Remove them from the surrounding tag
8805  // injection context of the function, which is typically but not always
8806  // the TU.
8807  DeclContext *PrototypeTagContext =
8809  for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
8810  auto *TD = dyn_cast<TagDecl>(NonParmDecl);
8811 
8812  // We don't want to reparent enumerators. Look at their parent enum
8813  // instead.
8814  if (!TD) {
8815  if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
8816  TD = cast<EnumDecl>(ECD->getDeclContext());
8817  }
8818  if (!TD)
8819  continue;
8820  DeclContext *TagDC = TD->getLexicalDeclContext();
8821  if (!TagDC->containsDecl(TD))
8822  continue;
8823  TagDC->removeDecl(TD);
8824  TD->setDeclContext(NewFD);
8825  NewFD->addDecl(TD);
8826 
8827  // Preserve the lexical DeclContext if it is not the surrounding tag
8828  // injection context of the FD. In this example, the semantic context of
8829  // E will be f and the lexical context will be S, while both the
8830  // semantic and lexical contexts of S will be f:
8831  // void f(struct S { enum E { a } f; } s);
8832  if (TagDC != PrototypeTagContext)
8833  TD->setLexicalDeclContext(TagDC);
8834  }
8835  }
8836  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
8837  // When we're declaring a function with a typedef, typeof, etc as in the
8838  // following example, we'll need to synthesize (unnamed)
8839  // parameters for use in the declaration.
8840  //
8841  // @code
8842  // typedef void fn(int);
8843  // fn f;
8844  // @endcode
8845 
8846  // Synthesize a parameter for each argument type.
8847  for (const auto &AI : FT->param_types()) {
8848  ParmVarDecl *Param =
8849  BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
8850  Param->setScopeInfo(0, Params.size());
8851  Params.push_back(Param);
8852  }
8853  } else {
8854  assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
8855  "Should not need args for typedef of non-prototype fn");
8856  }
8857 
8858  // Finally, we know we have the right number of parameters, install them.
8859  NewFD->setParams(Params);
8860 
8861  if (D.getDeclSpec().isNoreturnSpecified())
8862  NewFD->addAttr(
8863  ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
8864  Context, 0));
8865 
8866  // Functions returning a variably modified type violate C99 6.7.5.2p2
8867  // because all functions have linkage.
8868  if (!NewFD->isInvalidDecl() &&
8869  NewFD->getReturnType()->isVariablyModifiedType()) {
8870  Diag(NewFD->getLocation(), diag::err_vm_func_decl);
8871  NewFD->setInvalidDecl();
8872  }
8873 
8874  // Apply an implicit SectionAttr if '#pragma clang section text' is active
8875  if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
8876  !NewFD->hasAttr<SectionAttr>()) {
8877  NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
8878  PragmaClangTextSection.SectionName,
8879  PragmaClangTextSection.PragmaLocation));
8880  }
8881 
8882  // Apply an implicit SectionAttr if #pragma code_seg is active.
8883  if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
8884  !NewFD->hasAttr<SectionAttr>()) {
8885  NewFD->addAttr(
8886  SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
8887  CodeSegStack.CurrentValue->getString(),
8888  CodeSegStack.CurrentPragmaLocation));
8889  if (UnifySection(CodeSegStack.CurrentValue->getString(),
8892  NewFD))
8893  NewFD->dropAttr<SectionAttr>();
8894  }
8895 
8896  // Apply an implicit CodeSegAttr from class declspec or
8897  // apply an implicit SectionAttr from #pragma code_seg if active.
8898  if (!NewFD->hasAttr<CodeSegAttr>()) {
8899  if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
8900  D.isFunctionDefinition())) {
8901  NewFD->addAttr(SAttr);
8902  }
8903  }
8904 
8905  // Handle attributes.
8906  ProcessDeclAttributes(S, NewFD, D);
8907 
8908  if (getLangOpts().OpenCL) {
8909  // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
8910  // type declaration will generate a compilation error.
8911  LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
8912  if (AddressSpace != LangAS::Default) {
8913  Diag(NewFD->getLocation(),
8914  diag::err_opencl_return_value_with_address_space);
8915  NewFD->setInvalidDecl();
8916  }
8917  }
8918 
8919  if (!getLangOpts().CPlusPlus) {
8920  // Perform semantic checking on the function declaration.
8921  if (!NewFD->isInvalidDecl() && NewFD->isMain())
8922  CheckMain(NewFD, D.getDeclSpec());
8923 
8924  if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8925  CheckMSVCRTEntryPoint(NewFD);
8926 
8927  if (!NewFD->isInvalidDecl())
8928  D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8929  isMemberSpecialization));
8930  else if (!Previous.empty())
8931  // Recover gracefully from an invalid redeclaration.
8932  D.setRedeclaration(true);
8933  assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8935  "previous declaration set still overloaded");
8936 
8937  // Diagnose no-prototype function declarations with calling conventions that
8938  // don't support variadic calls. Only do this in C and do it after merging
8939  // possibly prototyped redeclarations.
8940  const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
8941  if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
8942  CallingConv CC = FT->getExtInfo().getCC();
8943  if (!supportsVariadicCall(CC)) {
8944  // Windows system headers sometimes accidentally use stdcall without
8945  // (void) parameters, so we relax this to a warning.
8946  int DiagID =
8947  CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
8948  Diag(NewFD->getLocation(), DiagID)
8950  }
8951  }
8952 
8955  checkNonTrivialCUnion(NewFD->getReturnType(),
8957  NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
8958  } else {
8959  // C++11 [replacement.functions]p3:
8960  // The program's definitions shall not be specified as inline.
8961  //
8962  // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
8963  //
8964  // Suppress the diagnostic if the function is __attribute__((used)), since
8965  // that forces an external definition to be emitted.
8966  if (D.getDeclSpec().isInlineSpecified() &&
8968  !NewFD->hasAttr<UsedAttr>())
8970  diag::ext_operator_new_delete_declared_inline)
8971  << NewFD->getDeclName();
8972 
8973  // If the declarator is a template-id, translate the parser's template
8974  // argument list into our AST format.
8976  TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
8977  TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
8978  TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
8979  ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8980  TemplateId->NumArgs);
8981  translateTemplateArguments(TemplateArgsPtr,
8982  TemplateArgs);
8983 
8984  HasExplicitTemplateArgs = true;
8985 
8986  if (NewFD->isInvalidDecl()) {
8987  HasExplicitTemplateArgs = false;
8988  } else if (FunctionTemplate) {
8989  // Function template with explicit template arguments.
8990  Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
8991  << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
8992 
8993  HasExplicitTemplateArgs = false;
8994  } else {
8995  assert((isFunctionTemplateSpecialization ||
8996  D.getDeclSpec().isFriendSpecified()) &&
8997  "should have a 'template<>' for this decl");
8998  // "friend void foo<>(int);" is an implicit specialization decl.
8999  isFunctionTemplateSpecialization = true;
9000  }
9001  } else if (isFriend && isFunctionTemplateSpecialization) {
9002  // This combination is only possible in a recovery case; the user
9003  // wrote something like:
9004  // template <> friend void foo(int);
9005  // which we're recovering from as if the user had written:
9006  // friend void foo<>(int);
9007  // Go ahead and fake up a template id.
9008  HasExplicitTemplateArgs = true;
9009  TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9010  TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9011  }
9012 
9013  // We do not add HD attributes to specializations here because
9014  // they may have different constexpr-ness compared to their
9015  // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9016  // may end up with different effective targets. Instead, a
9017  // specialization inherits its target attributes from its template
9018  // in the CheckFunctionTemplateSpecialization() call below.
9019  if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
9020  maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9021 
9022  // If it's a friend (and only if it's a friend), it's possible
9023  // that either the specialized function type or the specialized
9024  // template is dependent, and therefore matching will fail. In
9025  // this case, don't check the specialization yet.
9026  bool InstantiationDependent = false;
9027  if (isFunctionTemplateSpecialization && isFriend &&
9028  (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9030  TemplateArgs,
9031  InstantiationDependent))) {
9032  assert(HasExplicitTemplateArgs &&
9033  "friend function specialization without template args");
9034  if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9035  Previous))
9036  NewFD->setInvalidDecl();
9037  } else if (isFunctionTemplateSpecialization) {
9038  if (CurContext->isDependentContext() && CurContext->isRecord()
9039  && !isFriend) {
9040  isDependentClassScopeExplicitSpecialization = true;
9041  } else if (!NewFD->isInvalidDecl() &&
9042  CheckFunctionTemplateSpecialization(
9043  NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9044  Previous))
9045  NewFD->setInvalidDecl();
9046 
9047  // C++ [dcl.stc]p1:
9048  // A storage-class-specifier shall not be specified in an explicit
9049  // specialization (14.7.3)
9052  if (Info && SC != SC_None) {
9053  if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9054  Diag(NewFD->getLocation(),
9055  diag::err_explicit_specialization_inconsistent_storage_class)
9056  << SC
9059 
9060  else
9061  Diag(NewFD->getLocation(),
9062  diag::ext_explicit_specialization_storage_class)
9065  }
9066  } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9067  if (CheckMemberSpecialization(NewFD, Previous))
9068  NewFD->setInvalidDecl();
9069  }
9070 
9071  // Perform semantic checking on the function declaration.
9072  if (!isDependentClassScopeExplicitSpecialization) {
9073  if (!NewFD->isInvalidDecl() && NewFD->isMain())
9074  CheckMain(NewFD, D.getDeclSpec());
9075 
9076  if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9077  CheckMSVCRTEntryPoint(NewFD);
9078 
9079  if (!NewFD->isInvalidDecl())
9080  D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9081  isMemberSpecialization));
9082  else if (!Previous.empty())
9083  // Recover gracefully from an invalid redeclaration.
9084  D.setRedeclaration(true);
9085  }
9086 
9087  assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9089  "previous declaration set still overloaded");
9090 
9091  NamedDecl *PrincipalDecl = (FunctionTemplate
9092  ? cast<NamedDecl>(FunctionTemplate)
9093  : NewFD);
9094 
9095  if (isFriend && NewFD->getPreviousDecl()) {
9096  AccessSpecifier Access = AS_public;
9097  if (!NewFD->isInvalidDecl())
9098  Access = NewFD->getPreviousDecl()->getAccess();
9099 
9100  NewFD->setAccess(Access);
9101  if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9102  }
9103 
9104  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9106  PrincipalDecl->setNonMemberOperator();
9107 
9108  // If we have a function template, check the template parameter
9109  // list. This will check and merge default template arguments.
9110  if (FunctionTemplate) {
9111  FunctionTemplateDecl *PrevTemplate =
9112  FunctionTemplate->getPreviousDecl();
9113  CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9114  PrevTemplate ? PrevTemplate->getTemplateParameters()
9115  : nullptr,
9117  ? (D.isFunctionDefinition()
9118  ? TPC_FriendFunctionTemplateDefinition
9119  : TPC_FriendFunctionTemplate)
9120  : (D.getCXXScopeSpec().isSet() &&
9121  DC && DC->isRecord() &&
9122  DC->isDependentContext())
9123  ? TPC_ClassTemplateMember
9124  : TPC_FunctionTemplate);
9125  }
9126 
9127  if (NewFD->isInvalidDecl()) {
9128  // Ignore all the rest of this.
9129  } else if (!D.isRedeclaration()) {
9130  struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9131  AddToScope };
9132  // Fake up an access specifier if it's supposed to be a class member.
9133  if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9134  NewFD->setAccess(AS_public);
9135 
9136  // Qualified decls generally require a previous declaration.
9137  if (D.getCXXScopeSpec().isSet()) {
9138  // ...with the major exception of templated-scope or
9139  // dependent-scope friend declarations.
9140 
9141  // TODO: we currently also suppress this check in dependent
9142  // contexts because (1) the parameter depth will be off when
9143  // matching friend templates and (2) we might actually be
9144  // selecting a friend based on a dependent factor. But there
9145  // are situations where these conditions don't apply and we
9146  // can actually do this check immediately.
9147  //
9148  // Unless the scope is dependent, it's always an error if qualified
9149  // redeclaration lookup found nothing at all. Diagnose that now;
9150  // nothing will diagnose that error later.
9151  if (isFriend &&
9153  (!Previous.empty() && CurContext->isDependentContext()))) {
9154  // ignore these
9155  } else {
9156  // The user tried to provide an out-of-line definition for a
9157  // function that is a member of a class or namespace, but there
9158  // was no such member function declared (C++ [class.mfct]p2,
9159  // C++ [namespace.memdef]p2). For example:
9160  //
9161  // class X {
9162  // void f() const;
9163  // };
9164  //
9165  // void X::f() { } // ill-formed
9166  //
9167  // Complain about this problem, and attempt to suggest close
9168  // matches (e.g., those that differ only in cv-qualifiers and
9169  // whether the parameter types are references).
9170 
9172  *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9173  AddToScope = ExtraArgs.AddToScope;
9174  return Result;
9175  }
9176  }
9177 
9178  // Unqualified local friend declarations are required to resolve
9179  // to something.
9180  } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9182  *this, Previous, NewFD, ExtraArgs, true, S)) {
9183  AddToScope = ExtraArgs.AddToScope;
9184  return Result;
9185  }
9186  }
9187  } else if (!D.isFunctionDefinition() &&
9188  isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9189  !isFriend && !isFunctionTemplateSpecialization &&
9190  !isMemberSpecialization) {
9191  // An out-of-line member function declaration must also be a
9192  // definition (C++ [class.mfct]p2).
9193  // Note that this is not the case for explicit specializations of
9194  // function templates or member functions of class templates, per
9195  // C++ [temp.expl.spec]p2. We also allow these declarations as an
9196  // extension for compatibility with old SWIG code which likes to
9197  // generate them.
9198  Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9199  << D.getCXXScopeSpec().getRange();
9200  }
9201  }
9202 
9203  ProcessPragmaWeak(S, NewFD);
9204  checkAttributesAfterMerging(*this, *NewFD);
9205 
9206  AddKnownFunctionAttributes(NewFD);
9207 
9208  if (NewFD->hasAttr<OverloadableAttr>() &&
9209  !NewFD->getType()->getAs<FunctionProtoType>()) {
9210  Diag(NewFD->getLocation(),
9211  diag::err_attribute_overloadable_no_prototype)
9212  << NewFD;
9213 
9214  // Turn this into a variadic function with no parameters.
9215  const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9217  Context.getDefaultCallingConvention(true, false));
9218  EPI.Variadic = true;
9219  EPI.ExtInfo = FT->getExtInfo();
9220 
9221  QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9222  NewFD->setType(R);
9223  }
9224 
9225  // If there's a #pragma GCC visibility in scope, and this isn't a class
9226  // member, set the visibility of this function.
9227  if (!DC->isRecord() && NewFD->isExternallyVisible())
9228  AddPushedVisibilityAttribute(NewFD);
9229 
9230  // If there's a #pragma clang arc_cf_code_audited in scope, consider
9231  // marking the function.
9232  AddCFAuditedAttribute(NewFD);
9233 
9234  // If this is a function definition, check if we have to apply optnone due to
9235  // a pragma.
9236  if(D.isFunctionDefinition())
9237  AddRangeBasedOptnone(NewFD);
9238 
9239  // If this is the first declaration of an extern C variable, update
9240  // the map of such variables.
9241  if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9242  isIncompleteDeclExternC(*this, NewFD))
9243  RegisterLocallyScopedExternCDecl(NewFD, S);
9244 
9245  // Set this FunctionDecl's range up to the right paren.
9246  NewFD->setRangeEnd(D.getSourceRange().getEnd());
9247 
9248  if (D.isRedeclaration() && !Previous.empty()) {
9249  NamedDecl *Prev = Previous.getRepresentativeDecl();
9250  checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9251  isMemberSpecialization ||
9252  isFunctionTemplateSpecialization,
9253  D.isFunctionDefinition());
9254  }
9255 
9256  if (getLangOpts().CUDA) {
9257  IdentifierInfo *II = NewFD->getIdentifier();
9258  if (II && II->isStr(getCudaConfigureFuncName()) &&
9259  !NewFD->isInvalidDecl() &&
9261  if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9262  Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9263  << getCudaConfigureFuncName();
9264  Context.setcudaConfigureCallDecl(NewFD);
9265  }
9266 
9267  // Variadic functions, other than a *declaration* of printf, are not allowed
9268  // in device-side CUDA code, unless someone passed
9269  // -fcuda-allow-variadic-functions.
9270  if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9271  (NewFD->hasAttr<CUDADeviceAttr>() ||
9272  NewFD->hasAttr<CUDAGlobalAttr>()) &&
9273  !(II && II->isStr("printf") && NewFD->isExternC() &&
9274  !D.isFunctionDefinition())) {
9275  Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9276  }
9277  }
9278 
9279  MarkUnusedFileScopedDecl(NewFD);
9280 
9281 
9282 
9283  if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9284  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9285  if ((getLangOpts().OpenCLVersion >= 120)
9286  && (SC == SC_Static)) {
9287  Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9288  D.setInvalidType();
9289  }
9290 
9291  // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9292  if (!NewFD->getReturnType()->isVoidType()) {
9293  SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9294  Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9295  << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9296  : FixItHint());
9297  D.setInvalidType();
9298  }
9299 
9300  llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9301  for (auto Param : NewFD->parameters())
9302  checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9303 
9304  if (getLangOpts().OpenCLCPlusPlus) {
9305  if (DC->isRecord()) {
9306  Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9307  D.setInvalidType();
9308  }
9309  if (FunctionTemplate) {
9310  Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9311  D.setInvalidType();
9312  }
9313  }
9314  }
9315 
9316  if (getLangOpts().CPlusPlus) {
9317  if (FunctionTemplate) {
9318  if (NewFD->isInvalidDecl())
9319  FunctionTemplate->setInvalidDecl();
9320  return FunctionTemplate;
9321  }
9322 
9323  if (isMemberSpecialization && !NewFD->isInvalidDecl())
9324  CompleteMemberSpecialization(NewFD, Previous);
9325  }
9326 
9327  for (const ParmVarDecl *Param : NewFD->parameters()) {
9328  QualType PT = Param->getType();
9329 
9330  // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9331  // types.
9332  if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9333  if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9334  QualType ElemTy = PipeTy->getElementType();
9335  if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9336  Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9337  D.setInvalidType();
9338  }
9339  }
9340  }
9341  }
9342 
9343  // Here we have an function template explicit specialization at class scope.
9344  // The actual specialization will be postponed to template instatiation
9345  // time via the ClassScopeFunctionSpecializationDecl node.
9346  if (isDependentClassScopeExplicitSpecialization) {
9349  Context, CurContext, NewFD->getLocation(),
9350  cast<CXXMethodDecl>(NewFD),
9351  HasExplicitTemplateArgs, TemplateArgs);
9352  CurContext->addDecl(NewSpec);
9353  AddToScope = false;
9354  }
9355 
9356  // Diagnose availability attributes. Availability cannot be used on functions
9357  // that are run during load/unload.
9358  if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9359  if (NewFD->hasAttr<ConstructorAttr>()) {
9360  Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9361  << 1;
9362  NewFD->dropAttr<AvailabilityAttr>();
9363  }
9364  if (NewFD->hasAttr<DestructorAttr>()) {
9365  Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9366  << 2;
9367  NewFD->dropAttr<AvailabilityAttr>();
9368  }
9369  }
9370 
9371  return NewFD;
9372 }
9373 
9374 /// Return a CodeSegAttr from a containing class. The Microsoft docs say
9375 /// when __declspec(code_seg) "is applied to a class, all member functions of
9376 /// the class and nested classes -- this includes compiler-generated special
9377 /// member functions -- are put in the specified segment."
9378 /// The actual behavior is a little more complicated. The Microsoft compiler
9379 /// won't check outer classes if there is an active value from #pragma code_seg.
9380 /// The CodeSeg is always applied from the direct parent but only from outer
9381 /// classes when the #pragma code_seg stack is empty. See:
9382 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9383 /// available since MS has removed the page.
9385  const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9386  if (!Method)
9387  return nullptr;
9388  const CXXRecordDecl *Parent = Method->getParent();
9389  if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9390  Attr *NewAttr = SAttr->clone(S.getASTContext());
9391  NewAttr->setImplicit(true);
9392  return NewAttr;
9393  }
9394 
9395  // The Microsoft compiler won't check outer classes for the CodeSeg
9396  // when the #pragma code_seg stack is active.
9397  if (S.CodeSegStack.CurrentValue)
9398  return nullptr;
9399 
9400  while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9401  if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9402  Attr *NewAttr = SAttr->clone(S.getASTContext());
9403  NewAttr->setImplicit(true);
9404  return NewAttr;
9405  }
9406  }
9407  return nullptr;
9408 }
9409 
9410 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9411 /// containing class. Otherwise it will return implicit SectionAttr if the
9412 /// function is a definition and there is an active value on CodeSegStack
9413 /// (from the current #pragma code-seg value).
9414 ///
9415 /// \param FD Function being declared.
9416 /// \param IsDefinition Whether it is a definition or just a declarartion.
9417 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
9418 /// nullptr if no attribute should be added.
9420  bool IsDefinition) {
9421  if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9422  return A;
9423  if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9424  CodeSegStack.CurrentValue) {
9425  return SectionAttr::CreateImplicit(getASTContext(),
9426  SectionAttr::Declspec_allocate,
9427  CodeSegStack.CurrentValue->getString(),
9428  CodeSegStack.CurrentPragmaLocation);
9429  }
9430  return nullptr;
9431 }
9432 
9433 /// Determines if we can perform a correct type check for \p D as a
9434 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
9435 /// best-effort check.
9436 ///
9437 /// \param NewD The new declaration.
9438 /// \param OldD The old declaration.
9439 /// \param NewT The portion of the type of the new declaration to check.
9440 /// \param OldT The portion of the type of the old declaration to check.
9442  QualType NewT, QualType OldT) {
9443  if (!NewD->getLexicalDeclContext()->isDependentContext())
9444  return true;
9445 
9446  // For dependently-typed local extern declarations and friends, we can't
9447  // perform a correct type check in general until instantiation:
9448  //
9449  // int f();
9450  // template<typename T> void g() { T f(); }
9451  //
9452  // (valid if g() is only instantiated with T = int).
9453  if (NewT->isDependentType() &&
9454  (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9455  return false;
9456 
9457  // Similarly, if the previous declaration was a dependent local extern
9458  // declaration, we don't really know its type yet.
9459  if (OldT->isDependentType() && OldD->isLocalExternDecl())
9460  return false;
9461 
9462  return true;
9463 }
9464 
9465 /// Checks if the new declaration declared in dependent context must be
9466 /// put in the same redeclaration chain as the specified declaration.
9467 ///
9468 /// \param D Declaration that is checked.
9469 /// \param PrevDecl Previous declaration found with proper lookup method for the
9470 /// same declaration name.
9471 /// \returns True if D must be added to the redeclaration chain which PrevDecl
9472 /// belongs to.
9473 ///
9476  return true;
9477 
9478  // Don't chain dependent friend function definitions until instantiation, to
9479  // permit cases like
9480  //
9481  // void func();
9482  // template<typename T> class C1 { friend void func() {} };
9483  // template<typename T> class C2 { friend void func() {} };
9484  //
9485  // ... which is valid if only one of C1 and C2 is ever instantiated.
9486  //
9487  // FIXME: This need only apply to function definitions. For now, we proxy
9488  // this by checking for a file-scope function. We do not want this to apply
9489  // to friend declarations nominating member functions, because that gets in
9490  // the way of access checks.
9491  if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
9492  return false;
9493 
9494  auto *VD = dyn_cast<ValueDecl>(D);
9495  auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
9496  return !VD || !PrevVD ||
9497  canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
9498  PrevVD->getType());
9499 }
9500 
9501 /// Check the target attribute of the function for MultiVersion
9502 /// validity.
9503 ///
9504 /// Returns true if there was an error, false otherwise.
9505 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9506  const auto *TA = FD->getAttr<TargetAttr>();
9507  assert(TA && "MultiVersion Candidate requires a target attribute");
9508  TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
9510  enum ErrType { Feature = 0, Architecture = 1 };
9511 
9512  if (!ParseInfo.Architecture.empty() &&
9513  !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9514  S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9515  << Architecture << ParseInfo.Architecture;
9516  return true;
9517  }
9518 
9519  for (const auto &Feat : ParseInfo.Features) {
9520  auto BareFeat = StringRef{Feat}.substr(1);
9521  if (Feat[0] == '-') {
9522  S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9523  << Feature << ("no-" + BareFeat).str();
9524  return true;
9525  }
9526 
9527  if (!TargetInfo.validateCpuSupports(BareFeat) ||
9528  !TargetInfo.isValidFeatureName(BareFeat)) {
9529  S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9530  << Feature << BareFeat;
9531  return true;
9532  }
9533  }
9534  return false;
9535 }
9536 
9538  MultiVersionKind MVType) {
9539  for (const Attr *A : FD->attrs()) {
9540  switch (A->getKind()) {
9541  case attr::CPUDispatch:
9542  case attr::CPUSpecific:
9543  if (MVType != MultiVersionKind::CPUDispatch &&
9545  return true;
9546  break;
9547  case attr::Target:
9548  if (MVType != MultiVersionKind::Target)
9549  return true;
9550  break;
9551  default:
9552  return true;
9553  }
9554  }
9555  return false;
9556 }
9557 
9559  const FunctionDecl *NewFD,
9560  bool CausesMV,
9561  MultiVersionKind MVType) {
9562  enum DoesntSupport {
9563  FuncTemplates = 0,
9564  VirtFuncs = 1,
9565  DeducedReturn = 2,
9566  Constructors = 3,
9567  Destructors = 4,
9568  DeletedFuncs = 5,
9569  DefaultedFuncs = 6,
9570  ConstexprFuncs = 7,
9571  ConstevalFuncs = 8,
9572  };
9573  enum Different {
9574  CallingConv = 0,
9575  ReturnType = 1,
9576  ConstexprSpec = 2,
9577  InlineSpec = 3,
9578  StorageClass = 4,
9579  Linkage = 5
9580  };
9581 
9582  bool IsCPUSpecificCPUDispatchMVType =
9583  MVType == MultiVersionKind::CPUDispatch ||
9585 
9586  if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) {
9587  S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
9588  S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9589  return true;
9590  }
9591 
9592  if (!NewFD->getType()->getAs<FunctionProtoType>())
9593  return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
9594 
9596  S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9597  if (OldFD)
9598  S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9599  return true;
9600  }
9601 
9602  // For now, disallow all other attributes. These should be opt-in, but
9603  // an analysis of all of them is a future FIXME.
9604  if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
9605  S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
9606  << IsCPUSpecificCPUDispatchMVType;
9607  S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9608  return true;
9609  }
9610 
9611  if (HasNonMultiVersionAttributes(NewFD, MVType))
9612  return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
9613  << IsCPUSpecificCPUDispatchMVType;
9614 
9616  return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9617  << IsCPUSpecificCPUDispatchMVType << FuncTemplates;
9618 
9619  if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9620  if (NewCXXFD->isVirtual())
9621  return S.Diag(NewCXXFD->getLocation(),
9622  diag::err_multiversion_doesnt_support)
9623  << IsCPUSpecificCPUDispatchMVType << VirtFuncs;
9624 
9625  if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
9626  return S.Diag(NewCXXCtor->getLocation(),
9627  diag::err_multiversion_doesnt_support)
9628  << IsCPUSpecificCPUDispatchMVType << Constructors;
9629 
9630  if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
9631  return S.Diag(NewCXXDtor->getLocation(),
9632  diag::err_multiversion_doesnt_support)
9633  << IsCPUSpecificCPUDispatchMVType << Destructors;
9634  }
9635 
9636  if (NewFD->isDeleted())
9637  return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9638  << IsCPUSpecificCPUDispatchMVType << DeletedFuncs;
9639 
9640  if (NewFD->isDefaulted())
9641  return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9642  << IsCPUSpecificCPUDispatchMVType << DefaultedFuncs;
9643 
9644  if (NewFD->isConstexpr() && (MVType == MultiVersionKind::CPUDispatch ||
9645  MVType == MultiVersionKind::CPUSpecific))
9646  return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9647  << IsCPUSpecificCPUDispatchMVType
9648  << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
9649 
9650  QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
9651  const auto *NewType = cast<FunctionType>(NewQType);
9652  QualType NewReturnType = NewType->getReturnType();
9653 
9654  if (NewReturnType->isUndeducedType())
9655  return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9656  << IsCPUSpecificCPUDispatchMVType << DeducedReturn;
9657 
9658  // Only allow transition to MultiVersion if it hasn't been used.
9659  if (OldFD && CausesMV && OldFD->isUsed(false))
9660  return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9661 
9662  // Ensure the return type is identical.
9663  if (OldFD) {
9664  QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
9665  const auto *OldType = cast<FunctionType>(OldQType);
9666  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9667  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9668 
9669  if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9670  return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9671  << CallingConv;
9672 
9673  QualType OldReturnType = OldType->getReturnType();
9674 
9675  if (OldReturnType != NewReturnType)
9676  return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9677  << ReturnType;
9678 
9679  if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
9680  return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9681  << ConstexprSpec;
9682 
9683  if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9684  return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9685  << InlineSpec;
9686 
9687  if (OldFD->getStorageClass() != NewFD->getStorageClass())
9688  return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9689  << StorageClass;
9690 
9691  if (OldFD->isExternC() != NewFD->isExternC())
9692  return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9693  << Linkage;
9694 
9696  OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9697  NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9698  return true;
9699  }
9700  return false;
9701 }
9702 
9703 /// Check the validity of a multiversion function declaration that is the
9704 /// first of its kind. Also sets the multiversion'ness' of the function itself.
9705 ///
9706 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9707 ///
9708 /// Returns true if there was an error, false otherwise.
9710  MultiVersionKind MVType,
9711  const TargetAttr *TA) {
9712  assert(MVType != MultiVersionKind::None &&
9713  "Function lacks multiversion attribute");
9714 
9715  // Target only causes MV if it is default, otherwise this is a normal
9716  // function.
9717  if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
9718  return false;
9719 
9720  if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
9721  FD->setInvalidDecl();
9722  return true;
9723  }
9724 
9725  if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
9726  FD->setInvalidDecl();
9727  return true;
9728  }
9729 
9730  FD->setIsMultiVersion();
9731  return false;
9732 }
9733 
9735  for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
9737  return true;
9738  }
9739 
9740  return false;
9741 }
9742 
9744  Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
9745  bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9747  const auto *OldTA = OldFD->getAttr<TargetAttr>();
9748  TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
9749  // Sort order doesn't matter, it just needs to be consistent.
9750  llvm::sort(NewParsed.Features);
9751 
9752  // If the old decl is NOT MultiVersioned yet, and we don't cause that
9753  // to change, this is a simple redeclaration.
9754  if (!NewTA->isDefaultVersion() &&
9755  (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
9756  return false;
9757 
9758  // Otherwise, this decl causes MultiVersioning.
9760  S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9761  S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9762  NewFD->setInvalidDecl();
9763  return true;
9764  }
9765 
9766  if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
9768  NewFD->setInvalidDecl();
9769  return true;
9770  }
9771 
9772  if (CheckMultiVersionValue(S, NewFD)) {
9773  NewFD->setInvalidDecl();
9774  return true;
9775  }
9776 
9777  // If this is 'default', permit the forward declaration.
9778  if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
9779  Redeclaration = true;
9780  OldDecl = OldFD;
9781  OldFD->setIsMultiVersion();
9782  NewFD->setIsMultiVersion();
9783  return false;
9784  }
9785 
9786  if (CheckMultiVersionValue(S, OldFD)) {
9787  S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9788  NewFD->setInvalidDecl();
9789  return true;
9790  }
9791 
9792  TargetAttr::ParsedTargetAttr OldParsed =
9793  OldTA->parse(std::less<std::string>());
9794 
9795  if (OldParsed == NewParsed) {
9796  S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9797  S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9798  NewFD->setInvalidDecl();
9799  return true;
9800  }
9801 
9802  for (const auto *FD : OldFD->redecls()) {
9803  const auto *CurTA = FD->getAttr<TargetAttr>();
9804  // We allow forward declarations before ANY multiversioning attributes, but
9805  // nothing after the fact.
9807  (!CurTA || CurTA->isInherited())) {
9808  S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
9809  << 0;
9810  S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9811  NewFD->setInvalidDecl();
9812  return true;
9813  }
9814  }
9815 
9816  OldFD->setIsMultiVersion();
9817  NewFD->setIsMultiVersion();
9818  Redeclaration = false;
9819  MergeTypeWithPrevious = false;
9820  OldDecl = nullptr;
9821  Previous.clear();
9822  return false;
9823 }
9824 
9825 /// Check the validity of a new function declaration being added to an existing
9826 /// multiversioned declaration collection.
9828  Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
9829  MultiVersionKind NewMVType, const TargetAttr *NewTA,
9830  const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
9831  bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9833 
9834  MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
9835  // Disallow mixing of multiversioning types.
9836  if ((OldMVType == MultiVersionKind::Target &&
9837  NewMVType != MultiVersionKind::Target) ||
9838  (NewMVType == MultiVersionKind::Target &&
9839  OldMVType != MultiVersionKind::Target)) {
9840  S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9841  S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9842  NewFD->setInvalidDecl();
9843  return true;
9844  }
9845 
9846  TargetAttr::ParsedTargetAttr NewParsed;
9847  if (NewTA) {
9848  NewParsed = NewTA->parse();
9849  llvm::sort(NewParsed.Features);
9850  }
9851 
9852  bool UseMemberUsingDeclRules =
9853  S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
9854 
9855  // Next, check ALL non-overloads to see if this is a redeclaration of a
9856  // previous member of the MultiVersion set.
9857  for (NamedDecl *ND : Previous) {
9858  FunctionDecl *CurFD = ND->getAsFunction();
9859  if (!CurFD)
9860  continue;
9861  if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
9862  continue;
9863 
9864  if (NewMVType == MultiVersionKind::Target) {
9865  const auto *CurTA = CurFD->getAttr<TargetAttr>();
9866  if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
9867  NewFD->setIsMultiVersion();
9868  Redeclaration = true;
9869  OldDecl = ND;
9870  return false;
9871  }
9872 
9873  TargetAttr::ParsedTargetAttr CurParsed =
9874  CurTA->parse(std::less<std::string>());
9875  if (CurParsed == NewParsed) {
9876  S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9877  S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9878  NewFD->setInvalidDecl();
9879  return true;
9880  }
9881  } else {
9882  const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
9883  const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
9884  // Handle CPUDispatch/CPUSpecific versions.
9885  // Only 1 CPUDispatch function is allowed, this will make it go through
9886  // the redeclaration errors.
9887  if (NewMVType == MultiVersionKind::CPUDispatch &&
9888  CurFD->hasAttr<CPUDispatchAttr>()) {
9889  if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
9890  std::equal(
9891  CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
9892  NewCPUDisp->cpus_begin(),
9893  [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9894  return Cur->getName() == New->getName();
9895  })) {
9896  NewFD->setIsMultiVersion();
9897  Redeclaration = true;
9898  OldDecl = ND;
9899  return false;
9900  }
9901 
9902  // If the declarations don't match, this is an error condition.
9903  S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
9904  S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9905  NewFD->setInvalidDecl();
9906  return true;
9907  }
9908  if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
9909 
9910  if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
9911  std::equal(
9912  CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
9913  NewCPUSpec->cpus_begin(),
9914  [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9915  return Cur->getName() == New->getName();
9916  })) {
9917  NewFD->setIsMultiVersion();
9918  Redeclaration = true;
9919  OldDecl = ND;
9920  return false;
9921  }
9922 
9923  // Only 1 version of CPUSpecific is allowed for each CPU.
9924  for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
9925  for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
9926  if (CurII == NewII) {
9927  S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
9928  << NewII;
9929  S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9930  NewFD->setInvalidDecl();
9931  return true;
9932  }
9933  }
9934  }
9935  }
9936  // If the two decls aren't the same MVType, there is no possible error
9937  // condition.
9938  }
9939  }
9940 
9941  // Else, this is simply a non-redecl case. Checking the 'value' is only
9942  // necessary in the Target case, since The CPUSpecific/Dispatch cases are
9943  // handled in the attribute adding step.
9944  if (NewMVType == MultiVersionKind::Target &&
9945  CheckMultiVersionValue(S, NewFD)) {
9946  NewFD->setInvalidDecl();
9947  return true;
9948  }
9949 
9950  if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
9951  !OldFD->isMultiVersion(), NewMVType)) {
9952  NewFD->setInvalidDecl();
9953  return true;
9954  }
9955 
9956  // Permit forward declarations in the case where these two are compatible.
9957  if (!OldFD->isMultiVersion()) {
9958  OldFD->setIsMultiVersion();
9959  NewFD->setIsMultiVersion();
9960  Redeclaration = true;
9961  OldDecl = OldFD;
9962  return false;
9963  }
9964 
9965  NewFD->setIsMultiVersion();
9966  Redeclaration = false;
9967  MergeTypeWithPrevious = false;
9968  OldDecl = nullptr;
9969  Previous.clear();
9970  return false;
9971 }
9972 
9973 
9974 /// Check the validity of a mulitversion function declaration.
9975 /// Also sets the multiversion'ness' of the function itself.
9976 ///
9977 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9978 ///
9979 /// Returns true if there was an error, false otherwise.
9981  bool &Redeclaration, NamedDecl *&OldDecl,
9982  bool &MergeTypeWithPrevious,
9984  const auto *NewTA = NewFD->getAttr<TargetAttr>();
9985  const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
9986  const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
9987 
9988  // Mixing Multiversioning types is prohibited.
9989  if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
9990  (NewCPUDisp && NewCPUSpec)) {
9991  S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9992  NewFD->setInvalidDecl();
9993  return true;
9994  }
9995 
9996  MultiVersionKind MVType = NewFD->getMultiVersionKind();
9997 
9998  // Main isn't allowed to become a multiversion function, however it IS
9999  // permitted to have 'main' be marked with the 'target' optimization hint.
10000  if (NewFD->isMain()) {
10001  if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10002  MVType == MultiVersionKind::CPUDispatch ||
10003  MVType == MultiVersionKind::CPUSpecific) {
10004  S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10005  NewFD->setInvalidDecl();
10006  return true;
10007  }
10008  return false;
10009  }
10010 
10011  if (!OldDecl || !OldDecl->getAsFunction() ||
10012  OldDecl->getDeclContext()->getRedeclContext() !=
10013  NewFD->getDeclContext()->getRedeclContext()) {
10014  // If there's no previous declaration, AND this isn't attempting to cause
10015  // multiversioning, this isn't an error condition.
10016  if (MVType == MultiVersionKind::None)
10017  return false;
10018  return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10019  }
10020 
10021  FunctionDecl *OldFD = OldDecl->getAsFunction();
10022 
10023  if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10024  return false;
10025 
10026  if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10027  S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10029  NewFD->setInvalidDecl();
10030  return true;
10031  }
10032 
10033  // Handle the target potentially causes multiversioning case.
10034  if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10035  return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10036  Redeclaration, OldDecl,
10037  MergeTypeWithPrevious, Previous);
10038 
10039  // At this point, we have a multiversion function decl (in OldFD) AND an
10040  // appropriate attribute in the current function decl. Resolve that these are
10041  // still compatible with previous declarations.
10043  S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10044  OldDecl, MergeTypeWithPrevious, Previous);
10045 }
10046 
10047 /// Perform semantic checking of a new function declaration.
10048 ///
10049 /// Performs semantic analysis of the new function declaration
10050 /// NewFD. This routine performs all semantic checking that does not
10051 /// require the actual declarator involved in the declaration, and is
10052 /// used both for the declaration of functions as they are parsed
10053 /// (called via ActOnDeclarator) and for the declaration of functions
10054 /// that have been instantiated via C++ template instantiation (called
10055 /// via InstantiateDecl).
10056 ///
10057 /// \param IsMemberSpecialization whether this new function declaration is
10058 /// a member specialization (that replaces any definition provided by the
10059 /// previous declaration).
10060 ///
10061 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10062 ///
10063 /// \returns true if the function declaration is a redeclaration.
10066  bool IsMemberSpecialization) {
10067  assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
10068  "Variably modified return types are not handled here");
10069 
10070  // Determine whether the type of this function should be merged with
10071  // a previous visible declaration. This never happens for functions in C++,
10072  // and always happens in C if the previous declaration was visible.
10073  bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10074  !Previous.isShadowed();
10075 
10076  bool Redeclaration = false;
10077  NamedDecl *OldDecl = nullptr;
10078  bool MayNeedOverloadableChecks = false;
10079 
10080  // Merge or overload the declaration with an existing declaration of
10081  // the same name, if appropriate.
10082  if (!Previous.empty()) {
10083  // Determine whether NewFD is an overload of PrevDecl or
10084  // a declaration that requires merging. If it's an overload,
10085  // there's no more work to do here; we'll just add the new
10086  // function to the scope.
10087  if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10088  NamedDecl *Candidate = Previous.getRepresentativeDecl();
10089  if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10090  Redeclaration = true;
10091  OldDecl = Candidate;
10092  }
10093  } else {
10094  MayNeedOverloadableChecks = true;
10095  switch (CheckOverload(S, NewFD, Previous, OldDecl,
10096  /*NewIsUsingDecl*/ false)) {
10097  case Ovl_Match:
10098  Redeclaration = true;
10099  break;
10100 
10101  case Ovl_NonFunction:
10102  Redeclaration = true;
10103  break;
10104 
10105  case Ovl_Overload:
10106  Redeclaration = false;
10107  break;
10108  }
10109  }
10110  }
10111 
10112  // Check for a previous extern "C" declaration with this name.
10113  if (!Redeclaration &&
10114  checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10115  if (!Previous.empty()) {
10116  // This is an extern "C" declaration with the same name as a previous
10117  // declaration, and thus redeclares that entity...
10118  Redeclaration = true;
10119  OldDecl = Previous.getFoundDecl();
10120  MergeTypeWithPrevious = false;
10121 
10122  // ... except in the presence of __attribute__((overloadable)).
10123  if (OldDecl->hasAttr<OverloadableAttr>() ||
10124  NewFD->hasAttr<OverloadableAttr>()) {
10125  if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10126  MayNeedOverloadableChecks = true;
10127  Redeclaration = false;
10128  OldDecl = nullptr;
10129  }
10130  }
10131  }
10132  }
10133 
10134  if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10135  MergeTypeWithPrevious, Previous))
10136  return Redeclaration;
10137 
10138  // C++11 [dcl.constexpr]p8:
10139  // A constexpr specifier for a non-static member function that is not
10140  // a constructor declares that member function to be const.
10141  //
10142  // This needs to be delayed until we know whether this is an out-of-line
10143  // definition of a static member function.
10144  //
10145  // This rule is not present in C++1y, so we produce a backwards
10146  // compatibility warning whenever it happens in C++11.
10147  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10148  if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10149  !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10150  !MD->getMethodQualifiers().hasConst()) {
10151  CXXMethodDecl *OldMD = nullptr;
10152  if (OldDecl)
10153  OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10154  if (!OldMD || !OldMD->isStatic()) {
10155  const FunctionProtoType *FPT =
10156  MD->getType()->castAs<FunctionProtoType>();
10158  EPI.TypeQuals.addConst();
10159  MD->setType(Context.getFunctionType(FPT->getReturnType(),
10160  FPT->getParamTypes(), EPI));
10161 
10162  // Warn that we did this, if we're not performing template instantiation.
10163  // In that case, we'll have warned already when the template was defined.
10164  if (!inTemplateInstantiation()) {
10165  SourceLocation AddConstLoc;
10166  if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10168  AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10169 
10170  Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10171  << FixItHint::CreateInsertion(AddConstLoc, " const");
10172  }
10173  }
10174  }
10175 
10176  if (Redeclaration) {
10177  // NewFD and OldDecl represent declarations that need to be
10178  // merged.
10179  if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10180  NewFD->setInvalidDecl();
10181  return Redeclaration;
10182  }
10183 
10184  Previous.clear();
10185  Previous.addDecl(OldDecl);
10186 
10187  if (FunctionTemplateDecl *OldTemplateDecl =
10188  dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10189  auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10190  FunctionTemplateDecl *NewTemplateDecl
10191  = NewFD->getDescribedFunctionTemplate();
10192  assert(NewTemplateDecl && "Template/non-template mismatch");
10193 
10194  // The call to MergeFunctionDecl above may have created some state in
10195  // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10196  // can add it as a redeclaration.
10197  NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10198 
10199  NewFD->setPreviousDeclaration(OldFD);
10200  adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10201  if (NewFD->isCXXClassMember()) {
10202  NewFD->setAccess(OldTemplateDecl->getAccess());
10203  NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10204  }
10205 
10206  // If this is an explicit specialization of a member that is a function
10207  // template, mark it as a member specialization.
10208  if (IsMemberSpecialization &&
10209  NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10210  NewTemplateDecl->setMemberSpecialization();
10211  assert(OldTemplateDecl->isMemberSpecialization());
10212  // Explicit specializations of a member template do not inherit deleted
10213  // status from the parent member template that they are specializing.
10214  if (OldFD->isDeleted()) {
10215  // FIXME: This assert will not hold in the presence of modules.
10216  assert(OldFD->getCanonicalDecl() == OldFD);
10217  // FIXME: We need an update record for this AST mutation.
10218  OldFD->setDeletedAsWritten(false);
10219  }
10220  }
10221 
10222  } else {
10223  if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10224  auto *OldFD = cast<FunctionDecl>(OldDecl);
10225  // This needs to happen first so that 'inline' propagates.
10226  NewFD->setPreviousDeclaration(OldFD);
10227  adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10228  if (NewFD->isCXXClassMember())
10229  NewFD->setAccess(OldFD->getAccess());
10230  }
10231  }
10232  } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10233  !NewFD->getAttr<OverloadableAttr>()) {
10234  assert((Previous.empty() ||
10235  llvm::any_of(Previous,
10236  [](const NamedDecl *ND) {
10237  return ND->hasAttr<OverloadableAttr>();
10238  })) &&
10239  "Non-redecls shouldn't happen without overloadable present");
10240 
10241  auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10242  const auto *FD = dyn_cast<FunctionDecl>(ND);
10243  return FD && !FD->hasAttr<OverloadableAttr>();
10244  });
10245 
10246  if (OtherUnmarkedIter != Previous.end()) {
10247  Diag(NewFD->getLocation(),
10248  diag::err_attribute_overloadable_multiple_unmarked_overloads);
10249  Diag((*OtherUnmarkedIter)->getLocation(),
10250  diag::note_attribute_overloadable_prev_overload)
10251  << false;
10252 
10253  NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10254  }
10255  }
10256 
10257  // Semantic checking for this function declaration (in isolation).
10258 
10259  if (getLangOpts().CPlusPlus) {
10260  // C++-specific checks.
10261  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10262  CheckConstructor(Constructor);
10263  } else if (CXXDestructorDecl *Destructor =
10264  dyn_cast<CXXDestructorDecl>(NewFD)) {
10265  CXXRecordDecl *Record = Destructor->getParent();
10266  QualType ClassType = Context.getTypeDeclType(Record);
10267 
10268  // FIXME: Shouldn't we be able to perform this check even when the class
10269  // type is dependent? Both gcc and edg can handle that.
10270  if (!ClassType->isDependentType()) {
10271  DeclarationName Name
10273  Context.getCanonicalType(ClassType));
10274  if (NewFD->getDeclName() != Name) {
10275  Diag(NewFD->getLocation(), diag::err_destructor_name);
10276  NewFD->setInvalidDecl();
10277  return Redeclaration;
10278  }
10279  }
10280  } else if (CXXConversionDecl *Conversion
10281  = dyn_cast<CXXConversionDecl>(NewFD)) {
10282  ActOnConversionDeclarator(Conversion);
10283  } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10284  if (auto *TD = Guide->getDescribedFunctionTemplate())
10285  CheckDeductionGuideTemplate(TD);
10286 
10287  // A deduction guide is not on the list of entities that can be
10288  // explicitly specialized.
10289  if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10290  Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10291  << /*explicit specialization*/ 1;
10292  }
10293 
10294  // Find any virtual functions that this function overrides.
10295  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10296  if (!Method->isFunctionTemplateSpecialization() &&
10297  !Method->getDescribedFunctionTemplate() &&
10298  Method->isCanonicalDecl()) {
10299  if (AddOverriddenMethods(Method->getParent(), Method)) {
10300  // If the function was marked as "static", we have a problem.
10301  if (NewFD->getStorageClass() == SC_Static) {
10302  ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
10303  }
10304  }
10305  }
10306 
10307  if (Method->isStatic())
10308  checkThisInStaticMemberFunctionType(Method);
10309  }
10310 
10311  // Extra checking for C++ overloaded operators (C++ [over.oper]).
10312  if (NewFD->isOverloadedOperator() &&
10313  CheckOverloadedOperatorDeclaration(NewFD)) {
10314  NewFD->setInvalidDecl();
10315  return Redeclaration;
10316  }
10317 
10318  // Extra checking for C++0x literal operators (C++0x [over.literal]).
10319  if (NewFD->getLiteralIdentifier() &&
10320  CheckLiteralOperatorDeclaration(NewFD)) {
10321  NewFD->setInvalidDecl();
10322  return Redeclaration;
10323  }
10324 
10325  // In C++, check default arguments now that we have merged decls. Unless
10326  // the lexical context is the class, because in this case this is done
10327  // during delayed parsing anyway.
10328  if (!CurContext->isRecord())
10329  CheckCXXDefaultArguments(NewFD);
10330 
10331  // If this function declares a builtin function, check the type of this
10332  // declaration against the expected type for the builtin.
10333  if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10335  LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
10336  QualType T = Context.GetBuiltinType(BuiltinID, Error);
10337  // If the type of the builtin differs only in its exception
10338  // specification, that's OK.
10339  // FIXME: If the types do differ in this way, it would be better to
10340  // retain the 'noexcept' form of the type.
10341  if (!T.isNull() &&
10343  NewFD->getType()))
10344  // The type of this function differs from the type of the builtin,
10345  // so forget about the builtin entirely.
10346  Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10347  }
10348 
10349  // If this function is declared as being extern "C", then check to see if
10350  // the function returns a UDT (class, struct, or union type) that is not C
10351  // compatible, and if it does, warn the user.
10352  // But, issue any diagnostic on the first declaration only.
10353  if (Previous.empty() && NewFD->isExternC()) {
10354  QualType R = NewFD->getReturnType();
10355  if (R->isIncompleteType() && !R->isVoidType())
10356  Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10357  << NewFD << R;
10358  else if (!R.isPODType(Context) && !R->isVoidType() &&
10360  Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10361  }
10362 
10363  // C++1z [dcl.fct]p6:
10364  // [...] whether the function has a non-throwing exception-specification
10365  // [is] part of the function type
10366  //
10367  // This results in an ABI break between C++14 and C++17 for functions whose
10368  // declared type includes an exception-specification in a parameter or
10369  // return type. (Exception specifications on the function itself are OK in
10370  // most cases, and exception specifications are not permitted in most other
10371  // contexts where they could make it into a mangling.)
10372  if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10373  auto HasNoexcept = [&](QualType T) -> bool {
10374  // Strip off declarator chunks that could be between us and a function
10375  // type. We don't need to look far, exception specifications are very
10376  // restricted prior to C++17.
10377  if (auto *RT = T->getAs<ReferenceType>())
10378  T = RT->getPointeeType();
10379  else if (T->isAnyPointerType())
10380  T = T->getPointeeType();
10381  else if (auto *MPT = T->getAs<MemberPointerType>())
10382  T = MPT->getPointeeType();
10383  if (auto *FPT = T->getAs<FunctionProtoType>())
10384  if (FPT->isNothrow())
10385  return true;
10386  return false;
10387  };
10388 
10389  auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10390  bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10391  for (QualType T : FPT->param_types())
10392  AnyNoexcept |= HasNoexcept(T);
10393  if (AnyNoexcept)
10394  Diag(NewFD->getLocation(),
10395  diag::warn_cxx17_compat_exception_spec_in_signature)
10396  << NewFD;
10397  }
10398 
10399  if (!Redeclaration && LangOpts.CUDA)
10400  checkCUDATargetOverload(NewFD, Previous);
10401  }
10402  return Redeclaration;
10403 }
10404 
10405 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10406  // C++11 [basic.start.main]p3:
10407  // A program that [...] declares main to be inline, static or
10408  // constexpr is ill-formed.
10409  // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
10410  // appear in a declaration of main.
10411  // static main is not an error under C99, but we should warn about it.
10412  // We accept _Noreturn main as an extension.
10413  if (FD->getStorageClass() == SC_Static)
10414  Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
10415  ? diag::err_static_main : diag::warn_static_main)
10417  if (FD->isInlineSpecified())
10418  Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
10420  if (DS.isNoreturnSpecified()) {
10421  SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
10422  SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
10423  Diag(NoreturnLoc, diag::ext_noreturn_main);
10424  Diag(NoreturnLoc, diag::note_main_remove_noreturn)
10425  << FixItHint::CreateRemoval(NoreturnRange);
10426  }
10427  if (FD->isConstexpr()) {
10428  Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
10429  << FD->isConsteval()
10432  }
10433 
10434  if (getLangOpts().OpenCL) {
10435  Diag(FD->getLocation(), diag::err_opencl_no_main)
10436  << FD->hasAttr<OpenCLKernelAttr>();
10437  FD->setInvalidDecl();
10438  return;
10439  }
10440 
10441  QualType T = FD->getType();
10442  assert(T->isFunctionType() && "function decl is not of function type");
10443  const FunctionType* FT = T->castAs<FunctionType>();
10444 
10445  // Set default calling convention for main()
10446  if (FT->getCallConv() != CC_C) {
10447  FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
10448  FD->setType(QualType(FT, 0));
10449  T = Context.getCanonicalType(FD->getType());
10450  }
10451 
10452  if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
10453  // In C with GNU extensions we allow main() to have non-integer return
10454  // type, but we should warn about the extension, and we disable the
10455  // implicit-return-zero rule.
10456 
10457  // GCC in C mode accepts qualified 'int'.
10458  if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
10459  FD->setHasImplicitReturnZero(true);
10460  else {
10461  Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
10462  SourceRange RTRange = FD->getReturnTypeSourceRange();
10463  if (RTRange.isValid())
10464  Diag(RTRange.getBegin(), diag::note_main_change_return_type)
10465  << FixItHint::CreateReplacement(RTRange, "int");
10466  }
10467  } else {
10468  // In C and C++, main magically returns 0 if you fall off the end;
10469  // set the flag which tells us that.
10470  // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
10471 
10472  // All the standards say that main() should return 'int'.
10473  if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
10474  FD->setHasImplicitReturnZero(true);
10475  else {
10476  // Otherwise, this is just a flat-out error.
10477  SourceRange RTRange = FD->getReturnTypeSourceRange();
10478  Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
10479  << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
10480  : FixItHint());
10481  FD->setInvalidDecl(true);
10482  }
10483  }
10484 
10485  // Treat protoless main() as nullary.
10486  if (isa<FunctionNoProtoType>(FT)) return;
10487 
10488  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
10489  unsigned nparams = FTP->getNumParams();
10490  assert(FD->getNumParams() == nparams);
10491 
10492  bool HasExtraParameters = (nparams > 3);
10493 
10494  if (FTP->isVariadic()) {
10495  Diag(FD->getLocation(), diag::ext_variadic_main);
10496  // FIXME: if we had information about the location of the ellipsis, we
10497  // could add a FixIt hint to remove it as a parameter.
10498  }
10499 
10500  // Darwin passes an undocumented fourth argument of type char**. If
10501  // other platforms start sprouting these, the logic below will start
10502  // getting shifty.
10503  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
10504  HasExtraParameters = false;
10505 
10506  if (HasExtraParameters) {
10507  Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
10508  FD->setInvalidDecl(true);
10509  nparams = 3;
10510  }
10511 
10512  // FIXME: a lot of the following diagnostics would be improved
10513  // if we had some location information about types.
10514 
10515  QualType CharPP =
10516  Context.getPointerType(Context.getPointerType(Context.CharTy));
10517  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
10518 
10519  for (unsigned i = 0; i < nparams; ++i) {
10520  QualType AT = FTP->getParamType(i);
10521 
10522  bool mismatch = true;
10523 
10524  if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10525  mismatch = false;
10526  else if (Expected[i] == CharPP) {
10527  // As an extension, the following forms are okay:
10528  // char const **
10529  // char const * const *
10530  // char * const *
10531 
10532  QualifierCollector qs;
10533  const PointerType* PT;
10534  if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10535  (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10536  Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10537  Context.CharTy)) {
10538  qs.removeConst();
10539  mismatch = !qs.empty();
10540  }
10541  }
10542 
10543  if (mismatch) {
10544  Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
10545  // TODO: suggest replacing given type with expected type
10546  FD->setInvalidDecl(true);
10547  }
10548  }
10549 
10550  if (nparams == 1 && !FD->isInvalidDecl()) {
10551  Diag(FD->getLocation(), diag::warn_main_one_arg);
10552  }
10553 
10554  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10555  Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10556  FD->setInvalidDecl();
10557  }
10558 }
10559 
10561  QualType T = FD->getType();
10562  assert(T->isFunctionType() && "function decl is not of function type");
10563  const FunctionType *FT = T->castAs<FunctionType>();
10564 
10565  // Set an implicit return of 'zero' if the function can return some integral,
10566  // enumeration, pointer or nullptr type.
10567  if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10568  FT->getReturnType()->isAnyPointerType() ||
10569  FT->getReturnType()->isNullPtrType())
10570  // DllMain is exempt because a return value of zero means it failed.
10571  if (FD->getName() != "DllMain")
10572  FD->setHasImplicitReturnZero(true);
10573 
10574  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10575  Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10576  FD->setInvalidDecl();
10577  }
10578 }
10579 
10581  // FIXME: Need strict checking. In C89, we need to check for
10582  // any assignment, increment, decrement, function-calls, or
10583  // commas outside of a sizeof. In C99, it's the same list,
10584  // except that the aforementioned are allowed in unevaluated
10585  // expressions. Everything else falls under the
10586  // "may accept other forms of constant expressions" exception.
10587  // (We never end up here for C++, so the constant expression
10588  // rules there don't matter.)
10589  const Expr *Culprit;
10590  if (Init->isConstantInitializer(Context, false, &Culprit))
10591  return false;
10592  Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10593  << Culprit->getSourceRange();
10594  return true;
10595 }
10596 
10597 namespace {
10598  // Visits an initialization expression to see if OrigDecl is evaluated in
10599  // its own initialization and throws a warning if it does.
10600  class SelfReferenceChecker
10601  : public EvaluatedExprVisitor<SelfReferenceChecker> {
10602  Sema &S;
10603  Decl *OrigDecl;
10604  bool isRecordType;
10605  bool isPODType;
10606  bool isReferenceType;
10607 
10608  bool isInitList;
10609  llvm::SmallVector<unsigned, 4> InitFieldIndex;
10610 
10611  public:
10613 
10614  SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10615  S(S), OrigDecl(OrigDecl) {
10616  isPODType = false;
10617  isRecordType = false;
10618  isReferenceType = false;
10619  isInitList = false;
10620  if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10621  isPODType = VD->getType().isPODType(S.Context);
10622  isRecordType = VD->getType()->isRecordType();
10623  isReferenceType = VD->getType()->isReferenceType();
10624  }
10625  }
10626 
10627  // For most expressions, just call the visitor. For initializer lists,
10628  // track the index of the field being initialized since fields are
10629  // initialized in order allowing use of previously initialized fields.
10630  void CheckExpr(Expr *E) {
10631  InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10632  if (!InitList) {
10633  Visit(E);
10634  return;
10635  }
10636 
10637  // Track and increment the index here.
10638  isInitList = true;
10639  InitFieldIndex.push_back(0);
10640  for (auto Child : InitList->children()) {
10641  CheckExpr(cast<Expr>(Child));
10642  ++InitFieldIndex.back();
10643  }
10644  InitFieldIndex.pop_back();
10645  }
10646 
10647  // Returns true if MemberExpr is checked and no further checking is needed.
10648  // Returns false if additional checking is required.
10649  bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10651  Expr *Base = E;
10652  bool ReferenceField = false;
10653 
10654  // Get the field members used.
10655  while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10656  FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10657  if (!FD)
10658  return false;
10659  Fields.push_back(FD);
10660  if (FD->getType()->isReferenceType())
10661  ReferenceField = true;
10662  Base = ME->getBase()->IgnoreParenImpCasts();
10663  }
10664 
10665  // Keep checking only if the base Decl is the same.
10666  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10667  if (!DRE || DRE->getDecl() != OrigDecl)
10668  return false;
10669 
10670  // A reference field can be bound to an unininitialized field.
10671  if (CheckReference && !ReferenceField)
10672  return true;
10673 
10674  // Convert FieldDecls to their index number.
10675  llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10676  for (const FieldDecl *I : llvm::reverse(Fields))
10677  UsedFieldIndex.push_back(I->getFieldIndex());
10678 
10679  // See if a warning is needed by checking the first difference in index
10680  // numbers. If field being used has index less than the field being
10681  // initialized, then the use is safe.
10682  for (auto UsedIter = UsedFieldIndex.begin(),
10683  UsedEnd = UsedFieldIndex.end(),
10684  OrigIter = InitFieldIndex.begin(),
10685  OrigEnd = InitFieldIndex.end();
10686  UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10687  if (*UsedIter < *OrigIter)
10688  return true;
10689  if (*UsedIter > *OrigIter)
10690  break;
10691  }
10692 
10693  // TODO: Add a different warning which will print the field names.
10694  HandleDeclRefExpr(DRE);
10695  return true;
10696  }
10697 
10698  // For most expressions, the cast is directly above the DeclRefExpr.
10699  // For conditional operators, the cast can be outside the conditional
10700  // operator if both expressions are DeclRefExpr's.
10701  void HandleValue(Expr *E) {
10702  E = E->IgnoreParens();
10703  if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
10704  HandleDeclRefExpr(DRE);
10705  return;
10706  }
10707 
10708  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
10709  Visit(CO->getCond());
10710  HandleValue(CO->getTrueExpr());
10711  HandleValue(CO->getFalseExpr());
10712  return;
10713  }
10714 
10715  if (BinaryConditionalOperator *BCO =
10716  dyn_cast<BinaryConditionalOperator>(E)) {
10717  Visit(BCO->getCond());
10718  HandleValue(BCO->getFalseExpr());
10719  return;
10720  }
10721 
10722  if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
10723  HandleValue(OVE->getSourceExpr());
10724  return;
10725  }
10726 
10727  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10728  if (BO->getOpcode() == BO_Comma) {
10729  Visit(BO->getLHS());
10730  HandleValue(BO->getRHS());
10731  return;
10732  }
10733  }
10734 
10735  if (isa<MemberExpr>(E)) {
10736  if (isInitList) {
10737  if (CheckInitListMemberExpr(cast<MemberExpr>(E),
10738  false /*CheckReference*/))
10739  return;
10740  }
10741 
10742  Expr *Base = E->IgnoreParenImpCasts();
10743  while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10744  // Check for static member variables and don't warn on them.
10745  if (!isa<FieldDecl>(ME->getMemberDecl()))
10746  return;
10747  Base = ME->getBase()->IgnoreParenImpCasts();
10748  }
10749  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
10750  HandleDeclRefExpr(DRE);
10751  return;
10752  }
10753 
10754  Visit(E);
10755  }
10756 
10757  // Reference types not handled in HandleValue are handled here since all
10758  // uses of references are bad, not just r-value uses.
10759  void VisitDeclRefExpr(DeclRefExpr *E) {
10760  if (isReferenceType)
10761  HandleDeclRefExpr(E);
10762  }
10763 
10764  void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10765  if (E->getCastKind() == CK_LValueToRValue) {
10766  HandleValue(E->getSubExpr());
10767  return;
10768  }
10769 
10770  Inherited::VisitImplicitCastExpr(E);
10771  }
10772 
10773  void VisitMemberExpr(MemberExpr *E) {
10774  if (isInitList) {
10775  if (CheckInitListMemberExpr(E, true /*CheckReference*/))
10776  return;
10777  }
10778 
10779  // Don't warn on arrays since they can be treated as pointers.
10780  if (E->getType()->canDecayToPointerType()) return;
10781 
10782  // Warn when a non-static method call is followed by non-static member
10783  // field accesses, which is followed by a DeclRefExpr.
10784  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
10785  bool Warn = (MD && !MD->isStatic());
10786  Expr *Base = E->getBase()->IgnoreParenImpCasts();
10787  while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10788  if (!isa<FieldDecl>(ME->getMemberDecl()))
10789  Warn = false;
10790  Base = ME->getBase()->IgnoreParenImpCasts();
10791  }
10792 
10793  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
10794  if (Warn)
10795  HandleDeclRefExpr(DRE);
10796  return;
10797  }
10798 
10799  // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
10800  // Visit that expression.
10801  Visit(Base);
10802  }
10803 
10804  void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
10805  Expr *Callee = E->getCallee();
10806 
10807  if (isa<UnresolvedLookupExpr>(Callee))
10808  return Inherited::VisitCXXOperatorCallExpr(E);
10809 
10810  Visit(Callee);
10811  for (auto Arg: E->arguments())
10812  HandleValue(Arg->IgnoreParenImpCasts());
10813  }
10814 
10815  void VisitUnaryOperator(UnaryOperator *E) {
10816  // For POD record types, addresses of its own members are well-defined.
10817  if (E->getOpcode() == UO_AddrOf && isRecordType &&
10818  isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
10819  if (!isPODType)
10820  HandleValue(E->getSubExpr());
10821  return;
10822  }
10823 
10824  if (E->isIncrementDecrementOp()) {
10825  HandleValue(E->getSubExpr());
10826  return;
10827  }
10828 
10829  Inherited::VisitUnaryOperator(E);
10830  }
10831 
10832  void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
10833 
10834  void VisitCXXConstructExpr(CXXConstructExpr *E) {
10835  if (E->getConstructor()->isCopyConstructor()) {
10836  Expr *ArgExpr = E->getArg(0);
10837  if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
10838  if (ILE->getNumInits() == 1)
10839  ArgExpr = ILE->getInit(0);
10840  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
10841  if (ICE->getCastKind() == CK_NoOp)
10842  ArgExpr = ICE->getSubExpr();
10843  HandleValue(ArgExpr);
10844  return;
10845  }
10846  Inherited::VisitCXXConstructExpr(E);
10847  }
10848 
10849  void VisitCallExpr(CallExpr *E) {
10850  // Treat std::move as a use.
10851  if (E->isCallToStdMove()) {
10852  HandleValue(E->getArg(0));
10853  return;
10854  }
10855 
10856  Inherited::VisitCallExpr(E);
10857  }
10858 
10859  void VisitBinaryOperator(BinaryOperator *E) {
10860  if (E->isCompoundAssignmentOp()) {
10861  HandleValue(E->getLHS());
10862  Visit(E->getRHS());
10863  return;
10864  }
10865 
10866  Inherited::VisitBinaryOperator(E);
10867  }
10868 
10869  // A custom visitor for BinaryConditionalOperator is needed because the
10870  // regular visitor would check the condition and true expression separately
10871  // but both point to the same place giving duplicate diagnostics.
10872  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
10873  Visit(E->getCond());
10874  Visit(E->getFalseExpr());
10875  }
10876 
10877  void HandleDeclRefExpr(DeclRefExpr *DRE) {
10878  Decl* ReferenceDecl = DRE->getDecl();
10879  if (OrigDecl != ReferenceDecl) return;
10880  unsigned diag;
10881  if (isReferenceType) {
10882  diag = diag::warn_uninit_self_reference_in_reference_init;
10883  } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
10884  diag = diag::warn_static_self_reference_in_init;
10885  } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
10886  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
10887  DRE->getDecl()->getType()->isRecordType()) {
10888  diag = diag::warn_uninit_self_reference_in_init;
10889  } else {
10890  // Local variables will be handled by the CFG analysis.
10891  return;
10892  }
10893 
10894  S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
10895  S.PDiag(diag)
10896  << DRE->getDecl() << OrigDecl->getLocation()
10897  << DRE->getSourceRange());
10898  }
10899  };
10900 
10901  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
10902  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
10903  bool DirectInit) {
10904  // Parameters arguments are occassionially constructed with itself,
10905  // for instance, in recursive functions. Skip them.
10906  if (isa<ParmVarDecl>(OrigDecl))
10907  return;
10908 
10909  E = E->IgnoreParens();
10910 
10911  // Skip checking T a = a where T is not a record or reference type.
10912  // Doing so is a way to silence uninitialized warnings.
10913  if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
10914  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
10915  if (ICE->getCastKind() == CK_LValueToRValue)
10916  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
10917  if (DRE->getDecl() == OrigDecl)
10918  return;
10919 
10920  SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
10921  }
10922 } // end anonymous namespace
10923 
10924 namespace {
10925  // Simple wrapper to add the name of a variable or (if no variable is
10926  // available) a DeclarationName into a diagnostic.
10927  struct VarDeclOrName {
10928  VarDecl *VDecl;
10929  DeclarationName Name;
10930 
10931  friend const Sema::SemaDiagnosticBuilder &
10932  operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
10933  return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
10934  }
10935  };
10936 } // end anonymous namespace
10937 
10940  TypeSourceInfo *TSI,
10941  SourceRange Range, bool DirectInit,
10942  Expr *Init) {
10943  bool IsInitCapture = !VDecl;
10944  assert((!VDecl || !VDecl->isInitCapture()) &&
10945  "init captures are expected to be deduced prior to initialization");
10946 
10947  VarDeclOrName VN{VDecl, Name};
10948 
10949  DeducedType *Deduced = Type->getContainedDeducedType();
10950  assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
10951 
10952  // C++11 [dcl.spec.auto]p3
10953  if (!Init) {
10954  assert(VDecl && "no init for init capture deduction?");
10955 
10956  // Except for class argument deduction, and then for an initializing
10957  // declaration only, i.e. no static at class scope or extern.
10958  if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
10959  VDecl->hasExternalStorage() ||
10960  VDecl->isStaticDataMember()) {
10961  Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
10962  << VDecl->getDeclName() << Type;
10963  return QualType();
10964  }
10965  }
10966 
10967  ArrayRef<Expr*> DeduceInits;
10968  if (Init)
10969  DeduceInits = Init;
10970 
10971  if (DirectInit) {
10972  if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
10973  DeduceInits = PL->exprs();
10974  }
10975 
10976  if (isa<DeducedTemplateSpecializationType>(Deduced)) {
10977  assert(VDecl && "non-auto type for init capture deduction?");
10980  VDecl->getLocation(), DirectInit, Init);
10981  // FIXME: Initialization should not be taking a mutable list of inits.
10982  SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
10983  return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
10984  InitsCopy);
10985  }
10986 
10987  if (DirectInit) {
10988  if (auto *IL = dyn_cast<InitListExpr>(Init))
10989  DeduceInits = IL->inits();
10990  }
10991 
10992  // Deduction only works if we have exactly one source expression.
10993  if (DeduceInits.empty()) {
10994  // It isn't possible to write this directly, but it is possible to
10995  // end up in this situation with "auto x(some_pack...);"
10996  Diag(Init->getBeginLoc(), IsInitCapture
10997  ? diag::err_init_capture_no_expression
10998  : diag::err_auto_var_init_no_expression)
10999  << VN << Type << Range;
11000  return QualType();
11001  }
11002 
11003  if (DeduceInits.size() > 1) {
11004  Diag(DeduceInits[1]->getBeginLoc(),
11005  IsInitCapture ? diag::err_init_capture_multiple_expressions
11006  : diag::err_auto_var_init_multiple_expressions)
11007  << VN << Type << Range;
11008  return QualType();
11009  }
11010 
11011  Expr *DeduceInit = DeduceInits[0];
11012  if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11013  Diag(Init->getBeginLoc(), IsInitCapture
11014  ? diag::err_init_capture_paren_braces
11015  : diag::err_auto_var_init_paren_braces)
11016  << isa<InitListExpr>(Init) << VN << Type << Range;
11017  return QualType();
11018  }
11019 
11020  // Expressions default to 'id' when we're in a debugger.
11021  bool DefaultedAnyToId = false;
11022  if (getLangOpts().DebuggerCastResultToId &&
11023  Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11024  ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11025  if (Result.isInvalid()) {
11026  return QualType();
11027  }
11028  Init = Result.get();
11029  DefaultedAnyToId = true;
11030  }
11031 
11032  // C++ [dcl.decomp]p1:
11033  // If the assignment-expression [...] has array type A and no ref-qualifier
11034  // is present, e has type cv A
11035  if (VDecl && isa<DecompositionDecl>(VDecl) &&
11036  Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11037  DeduceInit->getType()->isConstantArrayType())
11038  return Context.getQualifiedType(DeduceInit->getType(),
11039  Type.getQualifiers());
11040 
11042  if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11043  if (!IsInitCapture)
11044  DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11045  else if (isa<InitListExpr>(Init))
11046  Diag(Range.getBegin(),
11047  diag::err_init_capture_deduction_failure_from_init_list)
11048  << VN
11049  << (DeduceInit->getType().isNull() ? TSI->getType()
11050  : DeduceInit->getType())
11051  << DeduceInit->getSourceRange();
11052  else
11053  Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11054  << VN << TSI->getType()
11055  << (DeduceInit->getType().isNull() ? TSI->getType()
11056  : DeduceInit->getType())
11057  << DeduceInit->getSourceRange();
11058  }
11059 
11060  // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11061  // 'id' instead of a specific object type prevents most of our usual
11062  // checks.
11063  // We only want to warn outside of template instantiations, though:
11064  // inside a template, the 'id' could have come from a parameter.
11065  if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11066  !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11067  SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11068  Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11069  }
11070 
11071  return DeducedType;
11072 }
11073 
11074 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11075  Expr *Init) {
11076  QualType DeducedType = deduceVarTypeFromInitializer(
11077  VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11078  VDecl->getSourceRange(), DirectInit, Init);
11079  if (DeducedType.isNull()) {
11080  VDecl->setInvalidDecl();
11081  return true;
11082  }
11083 
11084  VDecl->setType(DeducedType);
11085  assert(VDecl->isLinkageValid());
11086 
11087  // In ARC, infer lifetime.
11088  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11089  VDecl->setInvalidDecl();
11090 
11091  // If this is a redeclaration, check that the type we just deduced matches
11092  // the previously declared type.
11093  if (VarDecl *Old = VDecl->getPreviousDecl()) {
11094  // We never need to merge the type, because we cannot form an incomplete
11095  // array of auto, nor deduce such a type.
11096  MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11097  }
11098 
11099  // Check the deduced type is valid for a variable declaration.
11100  CheckVariableDeclarationType(VDecl);
11101  return VDecl->isInvalidDecl();
11102 }
11103 
11105  SourceLocation Loc) {
11106  if (auto *CE = dyn_cast<ConstantExpr>(Init))
11107  Init = CE->getSubExpr();
11108 
11109  QualType InitType = Init->getType();
11111  InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
11112  "shouldn't be called if type doesn't have a non-trivial C struct");
11113  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11114  for (auto I : ILE->inits()) {
11115  if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11116  !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11117  continue;
11118  SourceLocation SL = I->getExprLoc();
11119  checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11120  }
11121  return;
11122  }
11123 
11124  if (isa<ImplicitValueInitExpr>(Init)) {
11126  checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11127  NTCUK_Init);
11128  } else {
11129  // Assume all other explicit initializers involving copying some existing
11130  // object.
11131  // TODO: ignore any explicit initializers where we can guarantee
11132  // copy-elision.
11133  if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11134  checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11135  }
11136 }
11137 
11138 namespace {
11139 
11140 struct DiagNonTrivalCUnionDefaultInitializeVisitor
11141  : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11142  void> {
11143  using Super =
11144  DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11145  void>;
11146 
11147  DiagNonTrivalCUnionDefaultInitializeVisitor(
11148  QualType OrigTy, SourceLocation OrigLoc,
11149  Sema::NonTrivialCUnionContext UseContext, Sema &S)
11150  : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11151 
11152  void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11153  const FieldDecl *FD, bool InNonTrivialUnion) {
11154  if (const auto *AT = S.Context.getAsArrayType(QT))
11155  return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11156  InNonTrivialUnion);
11157  return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11158  }
11159 
11160  void visitARCStrong(QualType QT, const FieldDecl *FD,
11161  bool InNonTrivialUnion) {
11162  if (InNonTrivialUnion)
11163  S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11164  << 1 << 0 << QT << FD->getName();
11165  }
11166 
11167  void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11168  if (InNonTrivialUnion)
11169  S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11170  << 1 << 0 << QT << FD->getName();
11171  }
11172 
11173  void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11174  const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11175  if (RD->isUnion()) {
11176  if (OrigLoc.isValid()) {
11177  bool IsUnion = false;
11178  if (auto *OrigRD = OrigTy->getAsRecordDecl())
11179  IsUnion = OrigRD->isUnion();
11180  S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11181  << 0 << OrigTy << IsUnion << UseContext;
11182  // Reset OrigLoc so that this diagnostic is emitted only once.
11183  OrigLoc = SourceLocation();
11184  }
11185  InNonTrivialUnion = true;
11186  }
11187 
11188  if (InNonTrivialUnion)
11189  S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11190  << 0 << 0 << QT.getUnqualifiedType() << "";
11191 
11192  for (const FieldDecl *FD : RD->fields())
11193  asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11194  }
11195 
11196  void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11197 
11198  // The non-trivial C union type or the struct/union type that contains a
11199  // non-trivial C union.
11200  QualType OrigTy;
11201  SourceLocation OrigLoc;
11202  Sema::NonTrivialCUnionContext UseContext;
11203  Sema &S;
11204 };
11205 
11206 struct DiagNonTrivalCUnionDestructedTypeVisitor
11207  : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
11208  using Super =
11210 
11211  DiagNonTrivalCUnionDestructedTypeVisitor(
11212  QualType OrigTy, SourceLocation OrigLoc,
11213  Sema::NonTrivialCUnionContext UseContext, Sema &S)
11214  : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11215 
11216  void visitWithKind(QualType::DestructionKind DK, QualType QT,
11217  const FieldDecl *FD, bool InNonTrivialUnion) {
11218  if (const auto *AT = S.Context.getAsArrayType(QT))
11219  return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11220  InNonTrivialUnion);
11221  return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
11222  }
11223 
11224  void visitARCStrong(QualType QT, const FieldDecl *FD,
11225  bool InNonTrivialUnion) {
11226  if (InNonTrivialUnion)
11227  S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11228  << 1 << 1 << QT << FD->getName();
11229  }
11230 
11231  void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11232  if (InNonTrivialUnion)
11233  S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11234  << 1 << 1 << QT << FD->getName();
11235  }
11236 
11237  void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11238  const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11239  if (RD->isUnion()) {
11240  if (OrigLoc.isValid()) {
11241  bool IsUnion = false;
11242  if (auto *OrigRD = OrigTy->getAsRecordDecl())
11243  IsUnion = OrigRD->isUnion();
11244  S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11245  << 1 << OrigTy << IsUnion << UseContext;
11246  // Reset OrigLoc so that this diagnostic is emitted only once.
11247  OrigLoc = SourceLocation();
11248  }
11249  InNonTrivialUnion = true;
11250  }
11251 
11252  if (InNonTrivialUnion)
11253  S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11254  << 0 << 1 << QT.getUnqualifiedType() << "";
11255 
11256  for (const FieldDecl *FD : RD->fields())
11257  asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11258  }
11259 
11260  void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11261  void visitCXXDestructor(QualType QT, const FieldDecl *FD,
11262  bool InNonTrivialUnion) {}
11263 
11264  // The non-trivial C union type or the struct/union type that contains a
11265  // non-trivial C union.
11266  QualType OrigTy;
11267  SourceLocation OrigLoc;
11268  Sema::NonTrivialCUnionContext UseContext;
11269  Sema &S;
11270 };
11271 
11272 struct DiagNonTrivalCUnionCopyVisitor
11273  : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
11275 
11276  DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
11277  Sema::NonTrivialCUnionContext UseContext,
11278  Sema &S)
11279  : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11280 
11281  void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
11282  const FieldDecl *FD, bool InNonTrivialUnion) {
11283  if (const auto *AT = S.Context.getAsArrayType(QT))
11284  return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11285  InNonTrivialUnion);
11286  return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
11287  }
11288 
11289  void visitARCStrong(QualType QT, const FieldDecl *FD,
11290  bool InNonTrivialUnion) {
11291  if (InNonTrivialUnion)
11292  S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11293  << 1 << 2 << QT << FD->getName();
11294  }
11295 
11296  void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11297  if (InNonTrivialUnion)
11298  S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11299  << 1 << 2 << QT << FD->getName();
11300  }
11301 
11302  void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11303  const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11304  if (RD->isUnion()) {
11305  if (OrigLoc.isValid()) {
11306  bool IsUnion = false;
11307  if (auto *OrigRD = OrigTy->getAsRecordDecl())
11308  IsUnion = OrigRD->isUnion();
11309  S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11310  << 2 << OrigTy << IsUnion << UseContext;
11311  // Reset OrigLoc so that this diagnostic is emitted only once.
11312  OrigLoc = SourceLocation();
11313  }
11314  InNonTrivialUnion = true;
11315  }
11316 
11317  if (InNonTrivialUnion)
11318  S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11319  << 0 << 2 << QT.getUnqualifiedType() << "";
11320 
11321  for (const FieldDecl *FD : RD->fields())
11322  asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11323  }
11324 
11325  void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
11326  const FieldDecl *FD, bool InNonTrivialUnion) {}
11327  void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11328  void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
11329  bool InNonTrivialUnion) {}
11330 
11331  // The non-trivial C union type or the struct/union type that contains a
11332  // non-trivial C union.
11333  QualType OrigTy;
11334  SourceLocation OrigLoc;
11335  Sema::NonTrivialCUnionContext UseContext;
11336  Sema &S;
11337 };
11338 
11339 } // namespace
11340 
11342  NonTrivialCUnionContext UseContext,
11343  unsigned NonTrivialKind) {
11347  "shouldn't be called if type doesn't have a non-trivial C union");
11348 
11349  if ((NonTrivialKind & NTCUK_Init) &&
11351  DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
11352  .visit(QT, nullptr, false);
11353  if ((NonTrivialKind & NTCUK_Destruct) &&
11355  DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
11356  .visit(QT, nullptr, false);
11357  if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
11358  DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
11359  .visit(QT, nullptr, false);
11360 }
11361 
11362 /// AddInitializerToDecl - Adds the initializer Init to the
11363 /// declaration dcl. If DirectInit is true, this is C++ direct
11364 /// initialization rather than copy initialization.
11365 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11366  // If there is no declaration, there was an error parsing it. Just ignore
11367  // the initializer.
11368  if (!RealDecl || RealDecl->isInvalidDecl()) {
11369  CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11370  return;
11371  }
11372 
11373  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
11374  // Pure-specifiers are handled in ActOnPureSpecifier.
11375  Diag(Method->getLocation(), diag::err_member_function_initialization)
11376  << Method->getDeclName() << Init->getSourceRange();
11377  Method->setInvalidDecl();
11378  return;
11379  }
11380 
11381  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
11382  if (!VDecl) {
11383  assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
11384  Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
11385  RealDecl->setInvalidDecl();
11386  return;
11387  }
11388 
11389  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
11390  if (VDecl->getType()->isUndeducedType()) {
11391  // Attempt typo correction early so that the type of the init expression can
11392  // be deduced based on the chosen correction if the original init contains a
11393  // TypoExpr.
11394  ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
11395  if (!Res.isUsable()) {
11396  RealDecl->setInvalidDecl();
11397  return;
11398  }
11399  Init = Res.get();
11400 
11401  if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
11402  return;
11403  }
11404 
11405  // dllimport cannot be used on variable definitions.
11406  if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
11407  Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
11408  VDecl->setInvalidDecl();
11409  return;
11410  }
11411 
11412  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
11413  // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
11414  Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
11415  VDecl->setInvalidDecl();
11416  return;
11417  }
11418 
11419  if (!VDecl->getType()->isDependentType()) {
11420  // A definition must end up with a complete type, which means it must be
11421  // complete with the restriction that an array type might be completed by
11422  // the initializer; note that later code assumes this restriction.
11423  QualType BaseDeclType = VDecl->getType();
11424  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
11425  BaseDeclType = Array->getElementType();
11426  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
11427  diag::err_typecheck_decl_incomplete_type)) {
11428  RealDecl->setInvalidDecl();
11429  return;
11430  }
11431 
11432  // The variable can not have an abstract class type.
11433  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
11434  diag::err_abstract_type_in_decl,
11435  AbstractVariableType))
11436  VDecl->setInvalidDecl();
11437  }
11438 
11439  // If adding the initializer will turn this declaration into a definition,
11440  // and we already have a definition for this variable, diagnose or otherwise
11441  // handle the situation.
11442  VarDecl *Def;
11443  if ((Def = VDecl->getDefinition()) && Def != VDecl &&
11444  (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
11446  checkVarDeclRedefinition(Def, VDecl))
11447  return;
11448 
11449  if (getLangOpts().CPlusPlus) {
11450  // C++ [class.static.data]p4
11451  // If a static data member is of const integral or const
11452  // enumeration type, its declaration in the class definition can
11453  // specify a constant-initializer which shall be an integral
11454  // constant expression (5.19). In that case, the member can appear
11455  // in integral constant expressions. The member shall still be
11456  // defined in a namespace scope if it is used in the program and the
11457  // namespace scope definition shall not contain an initializer.
11458  //
11459  // We already performed a redefinition check above, but for static
11460  // data members we also need to check whether there was an in-class
11461  // declaration with an initializer.
11462  if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
11463  Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
11464  << VDecl->getDeclName();
11465  Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
11466  diag::note_previous_initializer)
11467  << 0;
11468  return;
11469  }
11470 
11471  if (VDecl->hasLocalStorage())
11472  setFunctionHasBranchProtectedScope();
11473 
11474  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
11475  VDecl->setInvalidDecl();
11476  return;
11477  }
11478  }
11479 
11480  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
11481  // a kernel function cannot be initialized."
11482  if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
11483  Diag(VDecl->getLocation(), diag::err_local_cant_init);
11484  VDecl->setInvalidDecl();
11485  return;
11486  }
11487 
11488  // Get the decls type and save a reference for later, since
11489  // CheckInitializerTypes may change it.
11490  QualType DclT = VDecl->getType(), SavT = DclT;
11491 
11492  // Expressions default to 'id' when we're in a debugger
11493  // and we are assigning it to a variable of Objective-C pointer type.
11494  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
11495  Init->getType() == Context.UnknownAnyTy) {
11496  ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11497  if (Result.isInvalid()) {
11498  VDecl->setInvalidDecl();
11499  return;
11500  }
11501  Init = Result.get();
11502  }
11503 
11504  // Perform the initialization.
11505  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
11506  if (!VDecl->isInvalidDecl()) {
11509  VDecl->getLocation(), DirectInit, Init);
11510 
11511  MultiExprArg Args = Init;
11512  if (CXXDirectInit)
11513  Args = MultiExprArg(CXXDirectInit->getExprs(),
11514  CXXDirectInit->getNumExprs());
11515 
11516  // Try to correct any TypoExprs in the initialization arguments.
11517  for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
11518  ExprResult Res = CorrectDelayedTyposInExpr(
11519  Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
11520  InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
11521  return Init.Failed() ? ExprError() : E;
11522  });
11523  if (Res.isInvalid()) {
11524  VDecl->setInvalidDecl();
11525  } else if (Res.get() != Args[Idx]) {
11526  Args[Idx] = Res.get();
11527  }
11528  }
11529  if (VDecl->isInvalidDecl())
11530  return;
11531 
11532  InitializationSequence InitSeq(*this, Entity, Kind, Args,
11533  /*TopLevelOfInitList=*/false,
11534  /*TreatUnavailableAsInvalid=*/false);
11535  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
11536  if (Result.isInvalid()) {
11537  VDecl->setInvalidDecl();
11538  return;
11539  }
11540 
11541  Init = Result.getAs<Expr>();
11542  }
11543 
11544  // Check for self-references within variable initializers.
11545  // Variables declared within a function/method body (except for references)
11546  // are handled by a dataflow analysis.
11547  // This is undefined behavior in C++, but valid in C.
11548  if (getLangOpts().CPlusPlus) {
11549  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
11550  VDecl->getType()->isReferenceType()) {
11551  CheckSelfReference(*this, RealDecl, Init, DirectInit);
11552  }
11553  }
11554 
11555  // If the type changed, it means we had an incomplete type that was
11556  // completed by the initializer. For example:
11557  // int ary[] = { 1, 3, 5 };
11558  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
11559  if (!VDecl->isInvalidDecl() && (DclT != SavT))
11560  VDecl->setType(DclT);
11561 
11562  if (!VDecl->isInvalidDecl()) {
11563  checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
11564 
11565  if (VDecl->hasAttr<BlocksAttr>())
11566  checkRetainCycles(VDecl, Init);
11567 
11568  // It is safe to assign a weak reference into a strong variable.
11569  // Although this code can still have problems:
11570  // id x = self.weakProp;
11571  // id y = self.weakProp;
11572  // we do not warn to warn spuriously when 'x' and 'y' are on separate
11573  // paths through the function. This should be revisited if
11574  // -Wrepeated-use-of-weak is made flow-sensitive.
11575  if (FunctionScopeInfo *FSI = getCurFunction())
11576  if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
11577  VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
11578  !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
11579  Init->getBeginLoc()))
11580  FSI->markSafeWeakUse(Init);
11581  }
11582 
11583  // The initialization is usually a full-expression.
11584  //
11585  // FIXME: If this is a braced initialization of an aggregate, it is not
11586  // an expression, and each individual field initializer is a separate
11587  // full-expression. For instance, in:
11588  //
11589  // struct Temp { ~Temp(); };
11590  // struct S { S(Temp); };
11591  // struct T { S a, b; } t = { Temp(), Temp() }
11592  //
11593  // we should destroy the first Temp before constructing the second.
11594  ExprResult Result =
11595  ActOnFinishFullExpr(Init, VDecl->getLocation(),
11596  /*DiscardedValue*/ false, VDecl->isConstexpr());
11597  if (Result.isInvalid()) {
11598  VDecl->setInvalidDecl();
11599  return;
11600  }
11601  Init = Result.get();
11602 
11603  // Attach the initializer to the decl.
11604  VDecl->setInit(Init);
11605 
11606  if (VDecl->isLocalVarDecl()) {
11607  // Don't check the initializer if the declaration is malformed.
11608  if (VDecl->isInvalidDecl()) {
11609  // do nothing
11610 
11611  // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
11612  // This is true even in C++ for OpenCL.
11613  } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
11614  CheckForConstantInitializer(Init, DclT);
11615 
11616  // Otherwise, C++ does not restrict the initializer.
11617  } else if (getLangOpts().CPlusPlus) {
11618  // do nothing
11619 
11620  // C99 6.7.8p4: All the expressions in an initializer for an object that has
11621  // static storage duration shall be constant expressions or string literals.
11622  } else if (VDecl->getStorageClass() == SC_Static) {
11623  CheckForConstantInitializer(Init, DclT);
11624 
11625  // C89 is stricter than C99 for aggregate initializers.
11626  // C89 6.5.7p3: All the expressions [...] in an initializer list
11627  // for an object that has aggregate or union type shall be
11628  // constant expressions.
11629  } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
11630  isa<InitListExpr>(Init)) {
11631  const Expr *Culprit;
11632  if (!Init->isConstantInitializer(Context, false, &Culprit)) {
11633  Diag(Culprit->getExprLoc(),
11634  diag::ext_aggregate_init_not_constant)
11635  << Culprit->getSourceRange();
11636  }
11637  }
11638 
11639  if (auto *E = dyn_cast<ExprWithCleanups>(Init))
11640  if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
11641  if (VDecl->hasLocalStorage())
11642  BE->getBlockDecl()->setCanAvoidCopyToHeap();
11643  } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
11644  VDecl->getLexicalDeclContext()->isRecord()) {
11645  // This is an in-class initialization for a static data member, e.g.,
11646  //
11647  // struct S {
11648  // static const int value = 17;
11649  // };
11650 
11651  // C++ [class.mem]p4:
11652  // A member-declarator can contain a constant-initializer only
11653  // if it declares a static member (9.4) of const integral or
11654  // const enumeration type, see 9.4.2.
11655  //
11656  // C++11 [class.static.data]p3:
11657  // If a non-volatile non-inline const static data member is of integral
11658  // or enumeration type, its declaration in the class definition can
11659  // specify a brace-or-equal-initializer in which every initializer-clause
11660  // that is an assignment-expression is a constant expression. A static
11661  // data member of literal type can be declared in the class definition
11662  // with the constexpr specifier; if so, its declaration shall specify a
11663  // brace-or-equal-initializer in which every initializer-clause that is
11664  // an assignment-expression is a constant expression.
11665 
11666  // Do nothing on dependent types.
11667  if (DclT->isDependentType()) {
11668 
11669  // Allow any 'static constexpr' members, whether or not they are of literal
11670  // type. We separately check that every constexpr variable is of literal
11671  // type.
11672  } else if (VDecl->isConstexpr()) {
11673 
11674  // Require constness.
11675  } else if (!DclT.isConstQualified()) {
11676  Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
11677  << Init->getSourceRange();
11678  VDecl->setInvalidDecl();
11679 
11680  // We allow integer constant expressions in all cases.
11681  } else if (DclT->isIntegralOrEnumerationType()) {
11682  // Check whether the expression is a constant expression.
11683  SourceLocation Loc;
11684  if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
11685  // In C++11, a non-constexpr const static data member with an
11686  // in-class initializer cannot be volatile.
11687  Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
11688  else if (Init->isValueDependent())
11689  ; // Nothing to check.
11690  else if (Init->isIntegerConstantExpr(Context, &Loc))
11691  ; // Ok, it's an ICE!
11692  else if (Init->getType()->isScopedEnumeralType() &&
11693  Init->isCXX11ConstantExpr(Context))
11694  ; // Ok, it is a scoped-enum constant expression.
11695  else if (Init->isEvaluatable(Context)) {
11696  // If we can constant fold the initializer through heroics, accept it,
11697  // but report this as a use of an extension for -pedantic.
11698  Diag(Loc, diag::ext_in_class_initializer_non_constant)
11699  << Init->getSourceRange();
11700  } else {
11701  // Otherwise, this is some crazy unknown case. Report the issue at the
11702  // location provided by the isIntegerConstantExpr failed check.
11703  Diag(Loc, diag::err_in_class_initializer_non_constant)
11704  << Init->getSourceRange();
11705  VDecl->setInvalidDecl();
11706  }
11707 
11708  // We allow foldable floating-point constants as an extension.
11709  } else if (DclT->isFloatingType()) { // also permits complex, which is ok
11710  // In C++98, this is a GNU extension. In C++11, it is not, but we support
11711  // it anyway and provide a fixit to add the 'constexpr'.
11712  if (getLangOpts().CPlusPlus11) {
11713  Diag(VDecl->getLocation(),
11714  diag::ext_in_class_initializer_float_type_cxx11)
11715  << DclT << Init->getSourceRange();
11716  Diag(VDecl->getBeginLoc(),
11717  diag::note_in_class_initializer_float_type_cxx11)
11718  << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11719  } else {
11720  Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
11721  << DclT << Init->getSourceRange();
11722 
11723  if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
11724  Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
11725  << Init->getSourceRange();
11726  VDecl->setInvalidDecl();
11727  }
11728  }
11729 
11730  // Suggest adding 'constexpr' in C++11 for literal types.
11731  } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
11732  Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
11733  << DclT << Init->getSourceRange()
11734  << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11735  VDecl->setConstexpr(true);
11736 
11737  } else {
11738  Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
11739  << DclT << Init->getSourceRange();
11740  VDecl->setInvalidDecl();
11741  }
11742  } else if (VDecl->isFileVarDecl()) {
11743  // In C, extern is typically used to avoid tentative definitions when
11744  // declaring variables in headers, but adding an intializer makes it a
11745  // definition. This is somewhat confusing, so GCC and Clang both warn on it.
11746  // In C++, extern is often used to give implictly static const variables
11747  // external linkage, so don't warn in that case. If selectany is present,
11748  // this might be header code intended for C and C++ inclusion, so apply the
11749  // C++ rules.
11750  if (VDecl->getStorageClass() == SC_Extern &&
11751  ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
11752  !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
11753  !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
11755  Diag(VDecl->getLocation(), diag::warn_extern_init);
11756 
11757  // In Microsoft C++ mode, a const variable defined in namespace scope has
11758  // external linkage by default if the variable is declared with
11759  // __declspec(dllexport).
11760  if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11761  getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
11762  VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
11763  VDecl->setStorageClass(SC_Extern);
11764 
11765  // C99 6.7.8p4. All file scoped initializers need to be constant.
11766  if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
11767  CheckForConstantInitializer(Init, DclT);
11768  }
11769 
11770  QualType InitType = Init->getType();
11771  if (!InitType.isNull() &&
11774  checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
11775 
11776  // We will represent direct-initialization similarly to copy-initialization:
11777  // int x(1); -as-> int x = 1;
11778  // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
11779  //
11780  // Clients that want to distinguish between the two forms, can check for
11781  // direct initializer using VarDecl::getInitStyle().
11782  // A major benefit is that clients that don't particularly care about which
11783  // exactly form was it (like the CodeGen) can handle both cases without
11784  // special case code.
11785 
11786  // C++ 8.5p11:
11787  // The form of initialization (using parentheses or '=') is generally
11788  // insignificant, but does matter when the entity being initialized has a
11789  // class type.
11790  if (CXXDirectInit) {
11791  assert(DirectInit && "Call-style initializer must be direct init.");
11793  } else if (DirectInit) {
11794  // This must be list-initialization. No other way is direct-initialization.
11796  }
11797 
11798  CheckCompleteVariableDeclaration(VDecl);
11799 }
11800 
11801 /// ActOnInitializerError - Given that there was an error parsing an
11802 /// initializer for the given declaration, try to return to some form
11803 /// of sanity.
11805  // Our main concern here is re-establishing invariants like "a
11806  // variable's type is either dependent or complete".
11807  if (!D || D->isInvalidDecl()) return;
11808 
11809  VarDecl *VD = dyn_cast<VarDecl>(D);
11810  if (!VD) return;
11811 
11812  // Bindings are not usable if we can't make sense of the initializer.
11813  if (auto *DD = dyn_cast<DecompositionDecl>(D))
11814  for (auto *BD : DD->bindings())
11815  BD->setInvalidDecl();
11816 
11817  // Auto types are meaningless if we can't make sense of the initializer.
11818  if (ParsingInitForAutoVars.count(D)) {
11819  D->setInvalidDecl();
11820  return;
11821  }
11822 
11823  QualType Ty = VD->getType();
11824  if (Ty->isDependentType()) return;
11825 
11826  // Require a complete type.
11827  if (RequireCompleteType(VD->getLocation(),
11828  Context.getBaseElementType(Ty),
11829  diag::err_typecheck_decl_incomplete_type)) {
11830  VD->setInvalidDecl();
11831  return;
11832  }
11833 
11834  // Require a non-abstract type.
11835  if (RequireNonAbstractType(VD->getLocation(), Ty,
11836  diag::err_abstract_type_in_decl,
11837  AbstractVariableType)) {
11838  VD->setInvalidDecl();
11839  return;
11840  }
11841 
11842  // Don't bother complaining about constructors or destructors,
11843  // though.
11844 }
11845 
11847  // If there is no declaration, there was an error parsing it. Just ignore it.
11848  if (!RealDecl)
11849  return;
11850 
11851  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
11852  QualType Type = Var->getType();
11853 
11854  // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
11855  if (isa<DecompositionDecl>(RealDecl)) {
11856  Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
11857  Var->setInvalidDecl();
11858  return;
11859  }
11860 
11861  if (Type->isUndeducedType() &&
11862  DeduceVariableDeclarationType(Var, false, nullptr))
11863  return;
11864 
11865  // C++11 [class.static.data]p3: A static data member can be declared with
11866  // the constexpr specifier; if so, its declaration shall specify
11867  // a brace-or-equal-initializer.
11868  // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
11869  // the definition of a variable [...] or the declaration of a static data
11870  // member.
11871  if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
11872  !Var->isThisDeclarationADemotedDefinition()) {
11873  if (Var->isStaticDataMember()) {
11874  // C++1z removes the relevant rule; the in-class declaration is always
11875  // a definition there.
11876  if (!getLangOpts().CPlusPlus17) {
11877  Diag(Var->getLocation(),
11878  diag::err_constexpr_static_mem_var_requires_init)
11879  << Var->getDeclName();
11880  Var->setInvalidDecl();
11881  return;
11882  }
11883  } else {
11884  Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
11885  Var->setInvalidDecl();
11886  return;
11887  }
11888  }
11889 
11890  // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
11891  // be initialized.
11892  if (!Var->isInvalidDecl() &&
11893  Var->getType().getAddressSpace() == LangAS::opencl_constant &&
11894  Var->getStorageClass() != SC_Extern && !Var->getInit()) {
11895  Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
11896  Var->setInvalidDecl();
11897  return;
11898  }
11899 
11900  VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
11901  if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
11902  Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11903  checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
11904  NTCUC_DefaultInitializedObject, NTCUK_Init);
11905 
11906 
11907  switch (DefKind) {
11908  case VarDecl::Definition:
11909  if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
11910  break;
11911 
11912  // We have an out-of-line definition of a static data member
11913  // that has an in-class initializer, so we type-check this like
11914  // a declaration.
11915  //
11916  LLVM_FALLTHROUGH;
11917 
11919  // It's only a declaration.
11920 
11921  // Block scope. C99 6.7p7: If an identifier for an object is
11922  // declared with no linkage (C99 6.2.2p6), the type for the
11923  // object shall be complete.
11924  if (!Type->isDependentType() && Var->isLocalVarDecl() &&
11925  !Var->hasLinkage() && !Var->isInvalidDecl() &&
11926  RequireCompleteType(Var->getLocation(), Type,
11927  diag::err_typecheck_decl_incomplete_type))
11928  Var->setInvalidDecl();
11929 
11930  // Make sure that the type is not abstract.
11931  if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11932  RequireNonAbstractType(Var->getLocation(), Type,
11933  diag::err_abstract_type_in_decl,
11934  AbstractVariableType))
11935  Var->setInvalidDecl();
11936  if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11937  Var->getStorageClass() == SC_PrivateExtern) {
11938  Diag(Var->getLocation(), diag::warn_private_extern);
11939  Diag(Var->getLocation(), diag::note_private_extern);
11940  }
11941 
11942  return;
11943 
11945  // File scope. C99 6.9.2p2: A declaration of an identifier for an
11946  // object that has file scope without an initializer, and without a
11947  // storage-class specifier or with the storage-class specifier "static",
11948  // constitutes a tentative definition. Note: A tentative definition with
11949  // external linkage is valid (C99 6.2.2p5).
11950  if (!Var->isInvalidDecl()) {
11951  if (const IncompleteArrayType *ArrayT
11952  = Context.getAsIncompleteArrayType(Type)) {
11953  if (RequireCompleteType(Var->getLocation(),
11954  ArrayT->getElementType(),
11955  diag::err_illegal_decl_array_incomplete_type))
11956  Var->setInvalidDecl();
11957  } else if (Var->getStorageClass() == SC_Static) {
11958  // C99 6.9.2p3: If the declaration of an identifier for an object is
11959  // a tentative definition and has internal linkage (C99 6.2.2p3), the
11960  // declared type shall not be an incomplete type.
11961  // NOTE: code such as the following
11962  // static struct s;
11963  // struct s { int a; };
11964  // is accepted by gcc. Hence here we issue a warning instead of
11965  // an error and we do not invalidate the static declaration.
11966  // NOTE: to avoid multiple warnings, only check the first declaration.
11967  if (Var->isFirstDecl())
11968  RequireCompleteType(Var->getLocation(), Type,
11969  diag::ext_typecheck_decl_incomplete_type);
11970  }
11971  }
11972 
11973  // Record the tentative definition; we're done.
11974  if (!Var->isInvalidDecl())
11975  TentativeDefinitions.push_back(Var);
11976  return;
11977  }
11978 
11979  // Provide a specific diagnostic for uninitialized variable
11980  // definitions with incomplete array type.
11981  if (Type->isIncompleteArrayType()) {
11982  Diag(Var->getLocation(),
11983  diag::err_typecheck_incomplete_array_needs_initializer);
11984  Var->setInvalidDecl();
11985  return;
11986  }
11987 
11988  // Provide a specific diagnostic for uninitialized variable
11989  // definitions with reference type.
11990  if (Type->isReferenceType()) {
11991  Diag(Var->getLocation(), diag::err_reference_var_requires_init)
11992  << Var->getDeclName()
11993  << SourceRange(Var->getLocation(), Var->getLocation());
11994  Var->setInvalidDecl();
11995  return;
11996  }
11997 
11998  // Do not attempt to type-check the default initializer for a
11999  // variable with dependent type.
12000  if (Type->isDependentType())
12001  return;
12002 
12003  if (Var->isInvalidDecl())
12004  return;
12005 
12006  if (!Var->hasAttr<AliasAttr>()) {
12007  if (RequireCompleteType(Var->getLocation(),
12008  Context.getBaseElementType(Type),
12009  diag::err_typecheck_decl_incomplete_type)) {
12010  Var->setInvalidDecl();
12011  return;
12012  }
12013  } else {
12014  return;
12015  }
12016 
12017  // The variable can not have an abstract class type.
12018  if (RequireNonAbstractType(Var->getLocation(), Type,
12019  diag::err_abstract_type_in_decl,
12020  AbstractVariableType)) {
12021  Var->setInvalidDecl();
12022  return;
12023  }
12024 
12025  // Check for jumps past the implicit initializer. C++0x
12026  // clarifies that this applies to a "variable with automatic
12027  // storage duration", not a "local variable".
12028  // C++11 [stmt.dcl]p3
12029  // A program that jumps from a point where a variable with automatic
12030  // storage duration is not in scope to a point where it is in scope is
12031  // ill-formed unless the variable has scalar type, class type with a
12032  // trivial default constructor and a trivial destructor, a cv-qualified
12033  // version of one of these types, or an array of one of the preceding
12034  // types and is declared without an initializer.
12035  if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12036  if (const RecordType *Record
12037  = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12038  CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12039  // Mark the function (if we're in one) for further checking even if the
12040  // looser rules of C++11 do not require such checks, so that we can
12041  // diagnose incompatibilities with C++98.
12042  if (!CXXRecord->isPOD())
12043  setFunctionHasBranchProtectedScope();
12044  }
12045  }
12046  // In OpenCL, we can't initialize objects in the __local address space,
12047  // even implicitly, so don't synthesize an implicit initializer.
12048  if (getLangOpts().OpenCL &&
12049  Var->getType().getAddressSpace() == LangAS::opencl_local)
12050  return;
12051  // C++03 [dcl.init]p9:
12052  // If no initializer is specified for an object, and the
12053  // object is of (possibly cv-qualified) non-POD class type (or
12054  // array thereof), the object shall be default-initialized; if
12055  // the object is of const-qualified type, the underlying class
12056  // type shall have a user-declared default
12057  // constructor. Otherwise, if no initializer is specified for
12058  // a non- static object, the object and its subobjects, if
12059  // any, have an indeterminate initial value); if the object
12060  // or any of its subobjects are of const-qualified type, the
12061  // program is ill-formed.
12062  // C++0x [dcl.init]p11:
12063  // If no initializer is specified for an object, the object is
12064  // default-initialized; [...].
12067  = InitializationKind::CreateDefault(Var->getLocation());
12068 
12069  InitializationSequence InitSeq(*this, Entity, Kind, None);
12070  ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12071  if (Init.isInvalid())
12072  Var->setInvalidDecl();
12073  else if (Init.get()) {
12074  Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12075  // This is important for template substitution.
12076  Var->setInitStyle(VarDecl::CallInit);
12077  }
12078 
12079  CheckCompleteVariableDeclaration(Var);
12080  }
12081 }
12082 
12084  // If there is no declaration, there was an error parsing it. Ignore it.
12085  if (!D)
12086  return;
12087 
12088  VarDecl *VD = dyn_cast<VarDecl>(D);
12089  if (!VD) {
12090  Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12091  D->setInvalidDecl();
12092  return;
12093  }
12094 
12095  VD->setCXXForRangeDecl(true);
12096 
12097  // for-range-declaration cannot be given a storage class specifier.
12098  int Error = -1;
12099  switch (VD->getStorageClass()) {
12100  case SC_None:
12101  break;
12102  case SC_Extern:
12103  Error = 0;
12104  break;
12105  case SC_Static:
12106  Error = 1;
12107  break;
12108  case SC_PrivateExtern:
12109  Error = 2;
12110  break;
12111  case SC_Auto:
12112  Error = 3;
12113  break;
12114  case SC_Register:
12115  Error = 4;
12116  break;
12117  }
12118  if (Error != -1) {
12119  Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12120  << VD->getDeclName() << Error;
12121  D->setInvalidDecl();
12122  }
12123 }
12124 
12125 StmtResult
12127  IdentifierInfo *Ident,
12128  ParsedAttributes &Attrs,
12129  SourceLocation AttrEnd) {
12130  // C++1y [stmt.iter]p1:
12131  // A range-based for statement of the form
12132  // for ( for-range-identifier : for-range-initializer ) statement
12133  // is equivalent to
12134  // for ( auto&& for-range-identifier : for-range-initializer ) statement
12135  DeclSpec DS(Attrs.getPool().getFactory());
12136 
12137  const char *PrevSpec;
12138  unsigned DiagID;
12139  DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
12140  getPrintingPolicy());
12141 
12143  D.SetIdentifier(Ident, IdentLoc);
12144  D.takeAttributes(Attrs, AttrEnd);
12145 
12146  D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
12147  IdentLoc);
12148  Decl *Var = ActOnDeclarator(S, D);
12149  cast<VarDecl>(Var)->setCXXForRangeDecl(true);
12150  FinalizeDeclaration(Var);
12151  return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
12152  AttrEnd.isValid() ? AttrEnd : IdentLoc);
12153 }
12154 
12156  if (var->isInvalidDecl()) return;
12157 
12158  if (getLangOpts().OpenCL) {
12159  // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
12160  // initialiser
12161  if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
12162  !var->hasInit()) {
12163  Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
12164  << 1 /*Init*/;
12165  var->setInvalidDecl();
12166  return;
12167  }
12168  }
12169 
12170  // In Objective-C, don't allow jumps past the implicit initialization of a
12171  // local retaining variable.
12172  if (getLangOpts().ObjC &&
12173  var->hasLocalStorage()) {
12174  switch (var->getType().getObjCLifetime()) {
12175  case Qualifiers::OCL_None:
12178  break;
12179 
12180  case Qualifiers::OCL_Weak:
12182  setFunctionHasBranchProtectedScope();
12183  break;
12184  }
12185  }
12186 
12187  if (var->hasLocalStorage() &&
12189  setFunctionHasBranchProtectedScope();
12190 
12191  // Warn about externally-visible variables being defined without a
12192  // prior declaration. We only want to do this for global
12193  // declarations, but we also specifically need to avoid doing it for
12194  // class members because the linkage of an anonymous class can
12195  // change if it's later given a typedef name.
12196  if (var->isThisDeclarationADefinition() &&
12198  var->isExternallyVisible() && var->hasLinkage() &&
12199  !var->isInline() && !var->getDescribedVarTemplate() &&
12201  !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
12202  var->getLocation())) {
12203  // Find a previous declaration that's not a definition.
12204  VarDecl *prev = var->getPreviousDecl();
12205  while (prev && prev->isThisDeclarationADefinition())
12206  prev = prev->getPreviousDecl();
12207 
12208  if (!prev) {
12209  Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
12210  Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
12211  << /* variable */ 0;
12212  }
12213  }
12214 
12215  // Cache the result of checking for constant initialization.
12216  Optional<bool> CacheHasConstInit;
12217  const Expr *CacheCulprit = nullptr;
12218  auto checkConstInit = [&]() mutable {
12219  if (!CacheHasConstInit)
12220  CacheHasConstInit = var->getInit()->isConstantInitializer(
12221  Context, var->getType()->isReferenceType(), &CacheCulprit);
12222  return *CacheHasConstInit;
12223  };
12224 
12225  if (var->getTLSKind() == VarDecl::TLS_Static) {
12226  if (var->getType().isDestructedType()) {
12227  // GNU C++98 edits for __thread, [basic.start.term]p3:
12228  // The type of an object with thread storage duration shall not
12229  // have a non-trivial destructor.
12230  Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
12231  if (getLangOpts().CPlusPlus11)
12232  Diag(var->getLocation(), diag::note_use_thread_local);
12233  } else if (getLangOpts().CPlusPlus && var->hasInit()) {
12234  if (!checkConstInit()) {
12235  // GNU C++98 edits for __thread, [basic.start.init]p4:
12236  // An object of thread storage duration shall not require dynamic
12237  // initialization.
12238  // FIXME: Need strict checking here.
12239  Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
12240  << CacheCulprit->getSourceRange();
12241  if (getLangOpts().CPlusPlus11)
12242  Diag(var->getLocation(), diag::note_use_thread_local);
12243  }
12244  }
12245  }
12246 
12247  // Apply section attributes and pragmas to global variables.
12248  bool GlobalStorage = var->hasGlobalStorage();
12249  if (GlobalStorage && var->isThisDeclarationADefinition() &&
12250  !inTemplateInstantiation()) {
12251  PragmaStack<StringLiteral *> *Stack = nullptr;
12252  int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
12253  if (var->getType().isConstQualified())
12254  Stack = &ConstSegStack;
12255  else if (!var->getInit()) {
12256  Stack = &BSSSegStack;
12257  SectionFlags |= ASTContext::PSF_Write;
12258  } else {
12259  Stack = &DataSegStack;
12260  SectionFlags |= ASTContext::PSF_Write;
12261  }
12262  if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
12263  var->addAttr(SectionAttr::CreateImplicit(
12264  Context, SectionAttr::Declspec_allocate,
12265  Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
12266  }
12267  if (const SectionAttr *SA = var->getAttr<SectionAttr>())
12268  if (UnifySection(SA->getName(), SectionFlags, var))
12269  var->dropAttr<SectionAttr>();
12270 
12271  // Apply the init_seg attribute if this has an initializer. If the
12272  // initializer turns out to not be dynamic, we'll end up ignoring this
12273  // attribute.
12274  if (CurInitSeg && var->getInit())
12275  var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
12276  CurInitSegLoc));
12277  }
12278 
12279  // All the following checks are C++ only.
12280  if (!getLangOpts().CPlusPlus) {
12281  // If this variable must be emitted, add it as an initializer for the
12282  // current module.
12283  if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12284  Context.addModuleInitializer(ModuleScopes.back().Module, var);
12285  return;
12286  }
12287 
12288  if (auto *DD = dyn_cast<DecompositionDecl>(var))
12289  CheckCompleteDecompositionDeclaration(DD);
12290 
12291  QualType type = var->getType();
12292  if (type->isDependentType()) return;
12293 
12294  if (var->hasAttr<BlocksAttr>())
12295  getCurFunction()->addByrefBlockVar(var);
12296 
12297  Expr *Init = var->getInit();
12298  bool IsGlobal = GlobalStorage && !var->isStaticLocal();
12299  QualType baseType = Context.getBaseElementType(type);
12300 
12301  if (Init && !Init->isValueDependent()) {
12302  if (var->isConstexpr()) {
12304  if (!var->evaluateValue(Notes) || !var->isInitICE()) {
12305  SourceLocation DiagLoc = var->getLocation();
12306  // If the note doesn't add any useful information other than a source
12307  // location, fold it into the primary diagnostic.
12308  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
12309  diag::note_invalid_subexpr_in_const_expr) {
12310  DiagLoc = Notes[0].first;
12311  Notes.clear();
12312  }
12313  Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
12314  << var << Init->getSourceRange();
12315  for (unsigned I = 0, N = Notes.size(); I != N; ++I)
12316  Diag(Notes[I].first, Notes[I].second);
12317  }
12318  } else if (var->mightBeUsableInConstantExpressions(Context)) {
12319  // Check whether the initializer of a const variable of integral or
12320  // enumeration type is an ICE now, since we can't tell whether it was
12321  // initialized by a constant expression if we check later.
12322  var->checkInitIsICE();
12323  }
12324 
12325  // Don't emit further diagnostics about constexpr globals since they
12326  // were just diagnosed.
12327  if (!var->isConstexpr() && GlobalStorage &&
12328  var->hasAttr<RequireConstantInitAttr>()) {
12329  // FIXME: Need strict checking in C++03 here.
12330  bool DiagErr = getLangOpts().CPlusPlus11
12331  ? !var->checkInitIsICE() : !checkConstInit();
12332  if (DiagErr) {
12333  auto attr = var->getAttr<RequireConstantInitAttr>();
12334  Diag(var->getLocation(), diag::err_require_constant_init_failed)
12335  << Init->getSourceRange();
12336  Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
12337  << attr->getRange();
12338  if (getLangOpts().CPlusPlus11) {
12339  APValue Value;
12341  Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
12342  for (auto &it : Notes)
12343  Diag(it.first, it.second);
12344  } else {
12345  Diag(CacheCulprit->getExprLoc(),
12346  diag::note_invalid_subexpr_in_const_expr)
12347  << CacheCulprit->getSourceRange();
12348  }
12349  }
12350  }
12351  else if (!var->isConstexpr() && IsGlobal &&
12352  !getDiagnostics().isIgnored(diag::warn_global_constructor,
12353  var->getLocation())) {
12354  // Warn about globals which don't have a constant initializer. Don't
12355  // warn about globals with a non-trivial destructor because we already
12356  // warned about them.
12357  CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
12358  if (!(RD && !RD->hasTrivialDestructor())) {
12359  if (!checkConstInit())
12360  Diag(var->getLocation(), diag::warn_global_constructor)
12361  << Init->getSourceRange();
12362  }
12363  }
12364  }
12365 
12366  // Require the destructor.
12367  if (const RecordType *recordType = baseType->getAs<RecordType>())
12368  FinalizeVarWithDestructor(var, recordType);
12369 
12370  // If this variable must be emitted, add it as an initializer for the current
12371  // module.
12372  if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12373  Context.addModuleInitializer(ModuleScopes.back().Module, var);
12374 }
12375 
12376 /// Determines if a variable's alignment is dependent.
12377 static bool hasDependentAlignment(VarDecl *VD) {
12378  if (VD->getType()->isDependentType())
12379  return true;
12380  for (auto *I : VD->specific_attrs<AlignedAttr>())
12381  if (I->isAlignmentDependent())
12382  return true;
12383  return false;
12384 }
12385 
12386 /// Check if VD needs to be dllexport/dllimport due to being in a
12387 /// dllexport/import function.
12389  assert(VD->isStaticLocal());
12390 
12391  auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12392 
12393  // Find outermost function when VD is in lambda function.
12394  while (FD && !getDLLAttr(FD) &&
12395  !FD->hasAttr<DLLExportStaticLocalAttr>() &&
12396  !FD->hasAttr<DLLImportStaticLocalAttr>()) {
12397  FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
12398  }
12399 
12400  if (!FD)
12401  return;
12402 
12403  // Static locals inherit dll attributes from their function.
12404  if (Attr *A = getDLLAttr(FD)) {
12405  auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
12406  NewAttr->setInherited(true);
12407  VD->addAttr(NewAttr);
12408  } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
12409  auto *NewAttr = ::new (getASTContext()) DLLExportAttr(A->getRange(),
12410  getASTContext(),
12411  A->getSpellingListIndex());
12412  NewAttr->setInherited(true);
12413  VD->addAttr(NewAttr);
12414 
12415  // Export this function to enforce exporting this static variable even
12416  // if it is not used in this compilation unit.
12417  if (!FD->hasAttr<DLLExportAttr>())
12418  FD->addAttr(NewAttr);
12419 
12420  } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
12421  auto *NewAttr = ::new (getASTContext()) DLLImportAttr(A->getRange(),
12422  getASTContext(),
12423  A->getSpellingListIndex());
12424  NewAttr->setInherited(true);
12425  VD->addAttr(NewAttr);
12426  }
12427 }
12428 
12429 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
12430 /// any semantic actions necessary after any initializer has been attached.
12432  // Note that we are no longer parsing the initializer for this declaration.
12433  ParsingInitForAutoVars.erase(ThisDecl);
12434 
12435  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
12436  if (!VD)
12437  return;
12438 
12439  // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
12440  if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
12441  !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
12442  if (PragmaClangBSSSection.Valid)
12443  VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
12444  PragmaClangBSSSection.SectionName,
12445  PragmaClangBSSSection.PragmaLocation));
12446  if (PragmaClangDataSection.Valid)
12447  VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
12448  PragmaClangDataSection.SectionName,
12449  PragmaClangDataSection.PragmaLocation));
12450  if (PragmaClangRodataSection.Valid)
12451  VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
12452  PragmaClangRodataSection.SectionName,
12453  PragmaClangRodataSection.PragmaLocation));
12454  }
12455 
12456  if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
12457  for (auto *BD : DD->bindings()) {
12458  FinalizeDeclaration(BD);
12459  }
12460  }
12461 
12462  checkAttributesAfterMerging(*this, *VD);
12463 
12464  // Perform TLS alignment check here after attributes attached to the variable
12465  // which may affect the alignment have been processed. Only perform the check
12466  // if the target has a maximum TLS alignment (zero means no constraints).
12467  if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
12468  // Protect the check so that it's not performed on dependent types and
12469  // dependent alignments (we can't determine the alignment in that case).
12470  if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
12471  !VD->isInvalidDecl()) {
12472  CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
12473  if (Context.getDeclAlign(VD) > MaxAlignChars) {
12474  Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
12475  << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
12476  << (unsigned)MaxAlignChars.getQuantity();
12477  }
12478  }
12479  }
12480 
12481  if (VD->isStaticLocal()) {
12482  CheckStaticLocalForDllExport(VD);
12483 
12484  if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
12485  // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
12486  // function, only __shared__ variables or variables without any device
12487  // memory qualifiers may be declared with static storage class.
12488  // Note: It is unclear how a function-scope non-const static variable
12489  // without device memory qualifier is implemented, therefore only static
12490  // const variable without device memory qualifier is allowed.
12491  [&]() {
12492  if (!getLangOpts().CUDA)
12493  return;
12494  if (VD->hasAttr<CUDASharedAttr>())
12495  return;
12496  if (VD->getType().isConstQualified() &&
12497  !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
12498  return;
12499  if (CUDADiagIfDeviceCode(VD->getLocation(),
12500  diag::err_device_static_local_var)
12501  << CurrentCUDATarget())
12502  VD->setInvalidDecl();
12503  }();
12504  }
12505  }
12506 
12507  // Perform check for initializers of device-side global variables.
12508  // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
12509  // 7.5). We must also apply the same checks to all __shared__
12510  // variables whether they are local or not. CUDA also allows
12511  // constant initializers for __constant__ and __device__ variables.
12512  if (getLangOpts().CUDA)
12513  checkAllowedCUDAInitializer(VD);
12514 
12515  // Grab the dllimport or dllexport attribute off of the VarDecl.
12516  const InheritableAttr *DLLAttr = getDLLAttr(VD);
12517 
12518  // Imported static data members cannot be defined out-of-line.
12519  if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
12520  if (VD->isStaticDataMember() && VD->isOutOfLine() &&
12522  // We allow definitions of dllimport class template static data members
12523  // with a warning.
12524  CXXRecordDecl *Context =
12525  cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
12526  bool IsClassTemplateMember =
12527  isa<ClassTemplatePartialSpecializationDecl>(Context) ||
12528  Context->getDescribedClassTemplate();
12529 
12530  Diag(VD->getLocation(),
12531  IsClassTemplateMember
12532  ? diag::warn_attribute_dllimport_static_field_definition
12533  : diag::err_attribute_dllimport_static_field_definition);
12534  Diag(IA->getLocation(), diag::note_attribute);
12535  if (!IsClassTemplateMember)
12536  VD->setInvalidDecl();
12537  }
12538  }
12539 
12540  // dllimport/dllexport variables cannot be thread local, their TLS index
12541  // isn't exported with the variable.
12542  if (DLLAttr && VD->getTLSKind()) {
12543  auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12544  if (F && getDLLAttr(F)) {
12545  assert(VD->isStaticLocal());
12546  // But if this is a static local in a dlimport/dllexport function, the
12547  // function will never be inlined, which means the var would never be
12548  // imported, so having it marked import/export is safe.
12549  } else {
12550  Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
12551  << DLLAttr;
12552  VD->setInvalidDecl();
12553  }
12554  }
12555 
12556  if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
12557  if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
12558  Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
12559  VD->dropAttr<UsedAttr>();
12560  }
12561  }
12562 
12563  const DeclContext *DC = VD->getDeclContext();
12564  // If there's a #pragma GCC visibility in scope, and this isn't a class
12565  // member, set the visibility of this variable.
12566  if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
12567  AddPushedVisibilityAttribute(VD);
12568 
12569  // FIXME: Warn on unused var template partial specializations.
12570  if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
12571  MarkUnusedFileScopedDecl(VD);
12572 
12573  // Now we have parsed the initializer and can update the table of magic
12574  // tag values.
12575  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
12577  return;
12578 
12579  for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
12580  const Expr *MagicValueExpr = VD->getInit();
12581  if (!MagicValueExpr) {
12582  continue;
12583  }
12584  llvm::APSInt MagicValueInt;
12585  if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
12586  Diag(I->getRange().getBegin(),
12587  diag::err_type_tag_for_datatype_not_ice)
12588  << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12589  continue;
12590  }
12591  if (MagicValueInt.getActiveBits() > 64) {
12592  Diag(I->getRange().getBegin(),
12593  diag::err_type_tag_for_datatype_too_large)
12594  << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12595  continue;
12596  }
12597  uint64_t MagicValue = MagicValueInt.getZExtValue();
12598  RegisterTypeTagForDatatype(I->getArgumentKind(),
12599  MagicValue,
12600  I->getMatchingCType(),
12601  I->getLayoutCompatible(),
12602  I->getMustBeNull());
12603  }
12604 }
12605 
12606 static bool hasDeducedAuto(DeclaratorDecl *DD) {
12607  auto *VD = dyn_cast<VarDecl>(DD);
12608  return VD && !VD->getType()->hasAutoForTrailingReturnType();
12609 }
12610 
12612  ArrayRef<Decl *> Group) {
12613  SmallVector<Decl*, 8> Decls;
12614 
12615  if (DS.isTypeSpecOwned())
12616  Decls.push_back(DS.getRepAsDecl());
12617 
12618  DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
12619  DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
12620  bool DiagnosedMultipleDecomps = false;
12621  DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
12622  bool DiagnosedNonDeducedAuto = false;
12623 
12624  for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12625  if (Decl *D = Group[i]) {
12626  // For declarators, there are some additional syntactic-ish checks we need
12627  // to perform.
12628  if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
12629  if (!FirstDeclaratorInGroup)
12630  FirstDeclaratorInGroup = DD;
12631  if (!FirstDecompDeclaratorInGroup)
12632  FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
12633  if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
12634  !hasDeducedAuto(DD))
12635  FirstNonDeducedAutoInGroup = DD;
12636 
12637  if (FirstDeclaratorInGroup != DD) {
12638  // A decomposition declaration cannot be combined with any other
12639  // declaration in the same group.
12640  if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
12641  Diag(FirstDecompDeclaratorInGroup->getLocation(),
12642  diag::err_decomp_decl_not_alone)
12643  << FirstDeclaratorInGroup->getSourceRange()
12644  << DD->getSourceRange();
12645  DiagnosedMultipleDecomps = true;
12646  }
12647 
12648  // A declarator that uses 'auto' in any way other than to declare a
12649  // variable with a deduced type cannot be combined with any other
12650  // declarator in the same group.
12651  if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
12652  Diag(FirstNonDeducedAutoInGroup->getLocation(),
12653  diag::err_auto_non_deduced_not_alone)
12654  << FirstNonDeducedAutoInGroup->getType()
12656  << FirstDeclaratorInGroup->getSourceRange()
12657  << DD->getSourceRange();
12658  DiagnosedNonDeducedAuto = true;
12659  }
12660  }
12661  }
12662 
12663  Decls.push_back(D);
12664  }
12665  }
12666 
12668  if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
12669  handleTagNumbering(Tag, S);
12670  if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
12671  getLangOpts().CPlusPlus)
12672  Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
12673  }
12674  }
12675 
12676  return BuildDeclaratorGroup(Decls);
12677 }
12678 
12679 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
12680 /// group, performing any necessary semantic checking.
12683  // C++14 [dcl.spec.auto]p7: (DR1347)
12684  // If the type that replaces the placeholder type is not the same in each
12685  // deduction, the program is ill-formed.
12686  if (Group.size() > 1) {
12687  QualType Deduced;
12688  VarDecl *DeducedDecl = nullptr;
12689  for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12690  VarDecl *D = dyn_cast<VarDecl>(Group[i]);
12691  if (!D || D->isInvalidDecl())
12692  break;
12694  if (!DT || DT->getDeducedType().isNull())
12695  continue;
12696  if (Deduced.isNull()) {
12697  Deduced = DT->getDeducedType();
12698  DeducedDecl = D;
12699  } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
12700  auto *AT = dyn_cast<AutoType>(DT);
12702  diag::err_auto_different_deductions)
12703  << (AT ? (unsigned)AT->getKeyword() : 3)
12704  << Deduced << DeducedDecl->getDeclName()
12705  << DT->getDeducedType() << D->getDeclName()
12706  << DeducedDecl->getInit()->getSourceRange()
12707  << D->getInit()->getSourceRange();
12708  D->setInvalidDecl();
12709  break;
12710  }
12711  }
12712  }
12713 
12714  ActOnDocumentableDecls(Group);
12715 
12716  return DeclGroupPtrTy::make(
12717  DeclGroupRef::Create(Context, Group.data(), Group.size()));
12718 }
12719 
12721  ActOnDocumentableDecls(D);
12722 }
12723 
12725  // Don't parse the comment if Doxygen diagnostics are ignored.
12726  if (Group.empty() || !Group[0])
12727  return;
12728 
12729  if (Diags.isIgnored(diag::warn_doc_param_not_found,
12730  Group[0]->getLocation()) &&
12731  Diags.isIgnored(diag::warn_unknown_comment_command_name,
12732  Group[0]->getLocation()))
12733  return;
12734 
12735  if (Group.size() >= 2) {
12736  // This is a decl group. Normally it will contain only declarations
12737  // produced from declarator list. But in case we have any definitions or
12738  // additional declaration references:
12739  // 'typedef struct S {} S;'
12740  // 'typedef struct S *S;'
12741  // 'struct S *pS;'
12742  // FinalizeDeclaratorGroup adds these as separate declarations.
12743  Decl *MaybeTagDecl = Group[0];
12744  if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
12745  Group = Group.slice(1);
12746  }
12747  }
12748 
12749  // See if there are any new comments that are not attached to a decl.
12750  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
12751  if (!Comments.empty() &&
12752  !Comments.back()->isAttached()) {
12753  // There is at least one comment that not attached to a decl.
12754  // Maybe it should be attached to one of these decls?
12755  //
12756  // Note that this way we pick up not only comments that precede the
12757  // declaration, but also comments that *follow* the declaration -- thanks to
12758  // the lookahead in the lexer: we've consumed the semicolon and looked
12759  // ahead through comments.
12760  for (unsigned i = 0, e = Group.size(); i != e; ++i)
12761  Context.getCommentForDecl(Group[i], &PP);
12762  }
12763 }
12764 
12765 /// Common checks for a parameter-declaration that should apply to both function
12766 /// parameters and non-type template parameters.
12768  // Check that there are no default arguments inside the type of this
12769  // parameter.
12770  if (getLangOpts().CPlusPlus)
12771  CheckExtraCXXDefaultArguments(D);
12772 
12773  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
12774  if (D.getCXXScopeSpec().isSet()) {
12775  Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
12776  << D.getCXXScopeSpec().getRange();
12777  }
12778 
12779  // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
12780  // simple identifier except [...irrelevant cases...].
12781  switch (D.getName().getKind()) {
12783  break;
12784 
12792  Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
12793  << GetNameForDeclarator(D).getName();
12794  break;
12795 
12798  // GetNameForDeclarator would not produce a useful name in this case.
12799  Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
12800  break;
12801  }
12802 }
12803 
12804 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
12805 /// to introduce parameters into function prototype scope.
12807  const DeclSpec &DS = D.getDeclSpec();
12808 
12809  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
12810 
12811  // C++03 [dcl.stc]p2 also permits 'auto'.
12812  StorageClass SC = SC_None;
12814  SC = SC_Register;
12815  // In C++11, the 'register' storage class specifier is deprecated.
12816  // In C++17, it is not allowed, but we tolerate it as an extension.
12817  if (getLangOpts().CPlusPlus11) {
12819  getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
12820  : diag::warn_deprecated_register)
12822  }
12823  } else if (getLangOpts().CPlusPlus &&
12825  SC = SC_Auto;
12826  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
12828  diag::err_invalid_storage_class_in_func_decl);
12830  }
12831 
12832  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
12833  Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
12834  << DeclSpec::getSpecifierName(TSCS);
12835  if (DS.isInlineSpecified())
12836  Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
12837  << getLangOpts().CPlusPlus17;
12838  if (DS.hasConstexprSpecifier())
12839  Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
12840  << 0 << (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval);
12841 
12842  DiagnoseFunctionSpecifiers(DS);
12843 
12844  CheckFunctionOrTemplateParamDeclarator(S, D);
12845 
12846  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12847  QualType parmDeclType = TInfo->getType();
12848 
12849  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
12850  IdentifierInfo *II = D.getIdentifier();
12851  if (II) {
12852  LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
12853  ForVisibleRedeclaration);
12854  LookupName(R, S);
12855  if (R.isSingleResult()) {
12856  NamedDecl *PrevDecl = R.getFoundDecl();
12857  if (PrevDecl->isTemplateParameter()) {
12858  // Maybe we will complain about the shadowed template parameter.
12859  DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12860  // Just pretend that we didn't see the previous declaration.
12861  PrevDecl = nullptr;
12862  } else if (S->isDeclScope(PrevDecl)) {
12863  Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
12864  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12865 
12866  // Recover by removing the name
12867  II = nullptr;
12868  D.SetIdentifier(nullptr, D.getIdentifierLoc());
12869  D.setInvalidType(true);
12870  }
12871  }
12872  }
12873 
12874  // Temporarily put parameter variables in the translation unit, not
12875  // the enclosing context. This prevents them from accidentally
12876  // looking like class members in C++.
12877  ParmVarDecl *New =
12878  CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
12879  D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
12880 
12881  if (D.isInvalidType())
12882  New->setInvalidDecl();
12883 
12884  assert(S->isFunctionPrototypeScope());
12885  assert(S->getFunctionPrototypeDepth() >= 1);
12888 
12889  // Add the parameter declaration into this scope.
12890  S->AddDecl(New);
12891  if (II)
12892  IdResolver.AddDecl(New);
12893 
12894  ProcessDeclAttributes(S, New, D);
12895 
12897  Diag(New->getLocation(), diag::err_module_private_local)
12898  << 1 << New->getDeclName()
12901 
12902  if (New->hasAttr<BlocksAttr>()) {
12903  Diag(New->getLocation(), diag::err_block_on_nonlocal);
12904  }
12905  return New;
12906 }
12907 
12908 /// Synthesizes a variable for a parameter arising from a
12909 /// typedef.
12911  SourceLocation Loc,
12912  QualType T) {
12913  /* FIXME: setting StartLoc == Loc.
12914  Would it be worth to modify callers so as to provide proper source
12915  location for the unnamed parameters, embedding the parameter's type? */
12916  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
12917  T, Context.getTrivialTypeSourceInfo(T, Loc),
12918  SC_None, nullptr);
12919  Param->setImplicit();
12920  return Param;
12921 }
12922 
12924  // Don't diagnose unused-parameter errors in template instantiations; we
12925  // will already have done so in the template itself.
12926  if (inTemplateInstantiation())
12927  return;
12928 
12929  for (const ParmVarDecl *Parameter : Parameters) {
12930  if (!Parameter->isReferenced() && Parameter->getDeclName() &&
12931  !Parameter->hasAttr<UnusedAttr>()) {
12932  Diag(Parameter->getLocation(), diag::warn_unused_parameter)
12933  << Parameter->getDeclName();
12934  }
12935  }
12936 }
12937 
12939  ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
12940  if (LangOpts.NumLargeByValueCopy == 0) // No check.
12941  return;
12942 
12943  // Warn if the return value is pass-by-value and larger than the specified
12944  // threshold.
12945  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
12946  unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
12947  if (Size > LangOpts.NumLargeByValueCopy)
12948  Diag(D->getLocation(), diag::warn_return_value_size)
12949  << D->getDeclName() << Size;
12950  }
12951 
12952  // Warn if any parameter is pass-by-value and larger than the specified
12953  // threshold.
12954  for (const ParmVarDecl *Parameter : Parameters) {
12955  QualType T = Parameter->getType();
12956  if (T->isDependentType() || !T.isPODType(Context))
12957  continue;
12958  unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
12959  if (Size > LangOpts.NumLargeByValueCopy)
12960  Diag(Parameter->getLocation(), diag::warn_parameter_size)
12961  << Parameter->getDeclName() << Size;
12962  }
12963 }
12964 
12966  SourceLocation NameLoc, IdentifierInfo *Name,
12967  QualType T, TypeSourceInfo *TSInfo,
12968  StorageClass SC) {
12969  // In ARC, infer a lifetime qualifier for appropriate parameter types.
12970  if (getLangOpts().ObjCAutoRefCount &&
12972  T->isObjCLifetimeType()) {
12973 
12974  Qualifiers::ObjCLifetime lifetime;
12975 
12976  // Special cases for arrays:
12977  // - if it's const, use __unsafe_unretained
12978  // - otherwise, it's an error
12979  if (T->isArrayType()) {
12980  if (!T.isConstQualified()) {
12984  NameLoc, diag::err_arc_array_param_no_ownership, T, false));
12985  else
12986  Diag(NameLoc, diag::err_arc_array_param_no_ownership)
12987  << TSInfo->getTypeLoc().getSourceRange();
12988  }
12989  lifetime = Qualifiers::OCL_ExplicitNone;
12990  } else {
12991  lifetime = T->getObjCARCImplicitLifetime();
12992  }
12993  T = Context.getLifetimeQualifiedType(T, lifetime);
12994  }
12995 
12996  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
12997  Context.getAdjustedParameterType(T),
12998  TSInfo, SC, nullptr);
12999 
13002  checkNonTrivialCUnion(New->getType(), New->getLocation(),
13003  NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13004 
13005  // Parameters can not be abstract class types.
13006  // For record types, this is done by the AbstractClassUsageDiagnoser once
13007  // the class has been completely parsed.
13008  if (!CurContext->isRecord() &&
13009  RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13010  AbstractParamType))
13011  New->setInvalidDecl();
13012 
13013  // Parameter declarators cannot be interface types. All ObjC objects are
13014  // passed by reference.
13015  if (T->isObjCObjectType()) {
13016  SourceLocation TypeEndLoc =
13017  getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13018  Diag(NameLoc,
13019  diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13020  << FixItHint::CreateInsertion(TypeEndLoc, "*");
13021  T = Context.getObjCObjectPointerType(T);
13022  New->setType(T);
13023  }
13024 
13025  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13026  // duration shall not be qualified by an address-space qualifier."
13027  // Since all parameters have automatic store duration, they can not have
13028  // an address space.
13029  if (T.getAddressSpace() != LangAS::Default &&
13030  // OpenCL allows function arguments declared to be an array of a type
13031  // to be qualified with an address space.
13032  !(getLangOpts().OpenCL &&
13034  Diag(NameLoc, diag::err_arg_with_address_space);
13035  New->setInvalidDecl();
13036  }
13037 
13038  return New;
13039 }
13040 
13042  SourceLocation LocAfterDecls) {
13044 
13045  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13046  // for a K&R function.
13047  if (!FTI.hasPrototype) {
13048  for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13049  --i;
13050  if (FTI.Params[i].Param == nullptr) {
13051  SmallString<256> Code;
13052  llvm::raw_svector_ostream(Code)
13053  << " int " << FTI.Params[i].Ident->getName() << ";\n";
13054  Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13055  << FTI.Params[i].Ident
13056  << FixItHint::CreateInsertion(LocAfterDecls, Code);
13057 
13058  // Implicitly declare the argument as type 'int' for lack of a better
13059  // type.
13060  AttributeFactory attrs;
13061  DeclSpec DS(attrs);
13062  const char* PrevSpec; // unused
13063  unsigned DiagID; // unused
13064  DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
13065  DiagID, Context.getPrintingPolicy());
13066  // Use the identifier location for the type source range.
13067  DS.SetRangeStart(FTI.Params[i].IdentLoc);
13068  DS.SetRangeEnd(FTI.Params[i].IdentLoc);
13070  ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
13071  FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
13072  }
13073  }
13074  }
13075 }
13076 
13077 Decl *
13079  MultiTemplateParamsArg TemplateParameterLists,
13080  SkipBodyInfo *SkipBody) {
13081  assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
13082  assert(D.isFunctionDeclarator() && "Not a function declarator!");
13083  Scope *ParentScope = FnBodyScope->getParent();
13084 
13086  Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
13087  return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
13088 }
13089 
13091  Consumer.HandleInlineFunctionDefinition(D);
13092 }
13093 
13094 static bool
13096  const FunctionDecl *&PossiblePrototype) {
13097  // Don't warn about invalid declarations.
13098  if (FD->isInvalidDecl())
13099  return false;
13100 
13101  // Or declarations that aren't global.
13102  if (!FD->isGlobal())
13103  return false;
13104 
13105  // Don't warn about C++ member functions.
13106  if (isa<CXXMethodDecl>(FD))
13107  return false;
13108 
13109  // Don't warn about 'main'.
13110  if (FD->isMain())
13111  return false;
13112 
13113  // Don't warn about inline functions.
13114  if (FD->isInlined())
13115  return false;
13116 
13117  // Don't warn about function templates.
13118  if (FD->getDescribedFunctionTemplate())
13119  return false;
13120 
13121  // Don't warn about function template specializations.
13123  return false;
13124 
13125  // Don't warn for OpenCL kernels.
13126  if (FD->hasAttr<OpenCLKernelAttr>())
13127  return false;
13128 
13129  // Don't warn on explicitly deleted functions.
13130  if (FD->isDeleted())
13131  return false;
13132 
13133  for (const FunctionDecl *Prev = FD->getPreviousDecl();
13134  Prev; Prev = Prev->getPreviousDecl()) {
13135  // Ignore any declarations that occur in function or method
13136  // scope, because they aren't visible from the header.
13137  if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
13138  continue;
13139 
13140  PossiblePrototype = Prev;
13141  return Prev->getType()->isFunctionNoProtoType();
13142  }
13143 
13144  return true;
13145 }
13146 
13147 void
13149  const FunctionDecl *EffectiveDefinition,
13150  SkipBodyInfo *SkipBody) {
13151  const FunctionDecl *Definition = EffectiveDefinition;
13152  if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
13153  // If this is a friend function defined in a class template, it does not
13154  // have a body until it is used, nevertheless it is a definition, see
13155  // [temp.inst]p2:
13156  //
13157  // ... for the purpose of determining whether an instantiated redeclaration
13158  // is valid according to [basic.def.odr] and [class.mem], a declaration that
13159  // corresponds to a definition in the template is considered to be a
13160  // definition.
13161  //
13162  // The following code must produce redefinition error:
13163  //
13164  // template<typename T> struct C20 { friend void func_20() {} };
13165  // C20<int> c20i;
13166  // void func_20() {}
13167  //
13168  for (auto I : FD->redecls()) {
13169  if (I != FD && !I->isInvalidDecl() &&
13170  I->getFriendObjectKind() != Decl::FOK_None) {
13171  if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
13172  if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
13173  // A merged copy of the same function, instantiated as a member of
13174  // the same class, is OK.
13175  if (declaresSameEntity(OrigFD, Original) &&
13176  declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
13177  cast<Decl>(FD->getLexicalDeclContext())))
13178  continue;
13179  }
13180 
13181  if (Original->isThisDeclarationADefinition()) {
13182  Definition = I;
13183  break;
13184  }
13185  }
13186  }
13187  }
13188  }
13189 
13190  if (!Definition)
13191  // Similar to friend functions a friend function template may be a
13192  // definition and do not have a body if it is instantiated in a class
13193  // template.
13195  for (auto I : FTD->redecls()) {
13196  auto D = cast<FunctionTemplateDecl>(I);
13197  if (D != FTD) {
13198  assert(!D->isThisDeclarationADefinition() &&
13199  "More than one definition in redeclaration chain");
13200  if (D->getFriendObjectKind() != Decl::FOK_None)
13201  if (FunctionTemplateDecl *FT =
13202  D->getInstantiatedFromMemberTemplate()) {
13203  if (FT->isThisDeclarationADefinition()) {
13204  Definition = D->getTemplatedDecl();
13205  break;
13206  }
13207  }
13208  }
13209  }
13210  }
13211 
13212  if (!Definition)
13213  return;
13214 
13215  if (canRedefineFunction(Definition, getLangOpts()))
13216  return;
13217 
13218  // Don't emit an error when this is redefinition of a typo-corrected
13219  // definition.
13220  if (TypoCorrectedFunctionDefinitions.count(Definition))
13221  return;
13222 
13223  // If we don't have a visible definition of the function, and it's inline or
13224  // a template, skip the new definition.
13225  if (SkipBody && !hasVisibleDefinition(Definition) &&
13226  (Definition->getFormalLinkage() == InternalLinkage ||
13227  Definition->isInlined() ||
13228  Definition->getDescribedFunctionTemplate() ||
13229  Definition->getNumTemplateParameterLists())) {
13230  SkipBody->ShouldSkip = true;
13231  SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
13232  if (auto *TD = Definition->getDescribedFunctionTemplate())
13233  makeMergedDefinitionVisible(TD);
13234  makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
13235  return;
13236  }
13237 
13238  if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
13239  Definition->getStorageClass() == SC_Extern)
13240  Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
13241  << FD->getDeclName() << getLangOpts().CPlusPlus;
13242  else
13243  Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
13244 
13245  Diag(Definition->getLocation(), diag::note_previous_definition);
13246  FD->setInvalidDecl();
13247 }
13248 
13249 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
13250  Sema &S) {
13251  CXXRecordDecl *const LambdaClass = CallOperator->getParent();
13252 
13253  LambdaScopeInfo *LSI = S.PushLambdaScope();
13254  LSI->CallOperator = CallOperator;
13255  LSI->Lambda = LambdaClass;
13256  LSI->ReturnType = CallOperator->getReturnType();
13257  const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
13258 
13259  if (LCD == LCD_None)
13261  else if (LCD == LCD_ByCopy)
13263  else if (LCD == LCD_ByRef)
13265  DeclarationNameInfo DNI = CallOperator->getNameInfo();
13266 
13268  LSI->Mutable = !CallOperator->isConst();
13269 
13270  // Add the captures to the LSI so they can be noted as already
13271  // captured within tryCaptureVar.
13272  auto I = LambdaClass->field_begin();
13273  for (const auto &C : LambdaClass->captures()) {
13274  if (C.capturesVariable()) {
13275  VarDecl *VD = C.getCapturedVar();
13276  if (VD->isInitCapture())
13278  QualType CaptureType = VD->getType();
13279  const bool ByRef = C.getCaptureKind() == LCK_ByRef;
13280  LSI->addCapture(VD, /*IsBlock*/false, ByRef,
13281  /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
13282  /*EllipsisLoc*/C.isPackExpansion()
13283  ? C.getEllipsisLoc() : SourceLocation(),
13284  CaptureType, /*Invalid*/false);
13285 
13286  } else if (C.capturesThis()) {
13287  LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
13288  C.getCaptureKind() == LCK_StarThis);
13289  } else {
13290  LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
13291  I->getType());
13292  }
13293  ++I;
13294  }
13295 }
13296 
13298  SkipBodyInfo *SkipBody) {
13299  if (!D) {
13300  // Parsing the function declaration failed in some way. Push on a fake scope
13301  // anyway so we can try to parse the function body.
13302  PushFunctionScope();
13303  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13304  return D;
13305  }
13306 
13307  FunctionDecl *FD = nullptr;
13308 
13309  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
13310  FD = FunTmpl->getTemplatedDecl();
13311  else
13312  FD = cast<FunctionDecl>(D);
13313 
13314  // Do not push if it is a lambda because one is already pushed when building
13315  // the lambda in ActOnStartOfLambdaDefinition().
13316  if (!isLambdaCallOperator(FD))
13317  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13318 
13319  // Check for defining attributes before the check for redefinition.
13320  if (const auto *Attr = FD->getAttr<AliasAttr>()) {
13321  Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
13322  FD->dropAttr<AliasAttr>();
13323  FD->setInvalidDecl();
13324  }
13325  if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
13326  Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
13327  FD->dropAttr<IFuncAttr>();
13328  FD->setInvalidDecl();
13329  }
13330 
13331  // See if this is a redefinition. If 'will have body' is already set, then
13332  // these checks were already performed when it was set.
13333  if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
13334  CheckForFunctionRedefinition(FD, nullptr, SkipBody);
13335 
13336  // If we're skipping the body, we're done. Don't enter the scope.
13337  if (SkipBody && SkipBody->ShouldSkip)
13338  return D;
13339  }
13340 
13341  // Mark this function as "will have a body eventually". This lets users to
13342  // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
13343  // this function.
13344  FD->setWillHaveBody();
13345 
13346  // If we are instantiating a generic lambda call operator, push
13347  // a LambdaScopeInfo onto the function stack. But use the information
13348  // that's already been calculated (ActOnLambdaExpr) to prime the current
13349  // LambdaScopeInfo.
13350  // When the template operator is being specialized, the LambdaScopeInfo,
13351  // has to be properly restored so that tryCaptureVariable doesn't try
13352  // and capture any new variables. In addition when calculating potential
13353  // captures during transformation of nested lambdas, it is necessary to
13354  // have the LSI properly restored.
13356  assert(inTemplateInstantiation() &&
13357  "There should be an active template instantiation on the stack "
13358  "when instantiating a generic lambda!");
13359  RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
13360  } else {
13361  // Enter a new function scope
13362  PushFunctionScope();
13363  }
13364 
13365  // Builtin functions cannot be defined.
13366  if (unsigned BuiltinID = FD->getBuiltinID()) {
13367  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
13368  !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
13369  Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
13370  FD->setInvalidDecl();
13371  }
13372  }
13373 
13374  // The return type of a function definition must be complete
13375  // (C99 6.9.1p3, C++ [dcl.fct]p6).
13376  QualType ResultType = FD->getReturnType();
13377  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
13378  !FD->isInvalidDecl() &&
13379  RequireCompleteType(FD->getLocation(), ResultType,
13380  diag::err_func_def_incomplete_result))
13381  FD->setInvalidDecl();
13382 
13383  if (FnBodyScope)
13384  PushDeclContext(FnBodyScope, FD);
13385 
13386  // Check the validity of our function parameters
13387  CheckParmsForFunctionDef(FD->parameters(),
13388  /*CheckParameterNames=*/true);
13389 
13390  // Add non-parameter declarations already in the function to the current
13391  // scope.
13392  if (FnBodyScope) {
13393  for (Decl *NPD : FD->decls()) {
13394  auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
13395  if (!NonParmDecl)
13396  continue;
13397  assert(!isa<ParmVarDecl>(NonParmDecl) &&
13398  "parameters should not be in newly created FD yet");
13399 
13400  // If the decl has a name, make it accessible in the current scope.
13401  if (NonParmDecl->getDeclName())
13402  PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
13403 
13404  // Similarly, dive into enums and fish their constants out, making them
13405  // accessible in this scope.
13406  if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
13407  for (auto *EI : ED->enumerators())
13408  PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
13409  }
13410  }
13411  }
13412 
13413  // Introduce our parameters into the function scope
13414  for (auto Param : FD->parameters()) {
13415  Param->setOwningFunction(FD);
13416 
13417  // If this has an identifier, add it to the scope stack.
13418  if (Param->getIdentifier() && FnBodyScope) {
13419  CheckShadow(FnBodyScope, Param);
13420 
13421  PushOnScopeChains(Param, FnBodyScope);
13422  }
13423  }
13424 
13425  // Ensure that the function's exception specification is instantiated.
13426  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
13427  ResolveExceptionSpec(D->getLocation(), FPT);
13428 
13429  // dllimport cannot be applied to non-inline function definitions.
13430  if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
13431  !FD->isTemplateInstantiation()) {
13432  assert(!FD->hasAttr<DLLExportAttr>());
13433  Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
13434  FD->setInvalidDecl();
13435  return D;
13436  }
13437  // We want to attach documentation to original Decl (which might be
13438  // a function template).
13439  ActOnDocumentableDecl(D);
13440  if (getCurLexicalContext()->isObjCContainer() &&
13441  getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
13442  getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
13443  Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
13444 
13445  return D;
13446 }
13447 
13448 /// Given the set of return statements within a function body,
13449 /// compute the variables that are subject to the named return value
13450 /// optimization.
13451 ///
13452 /// Each of the variables that is subject to the named return value
13453 /// optimization will be marked as NRVO variables in the AST, and any
13454 /// return statement that has a marked NRVO variable as its NRVO candidate can
13455 /// use the named return value optimization.
13456 ///
13457 /// This function applies a very simplistic algorithm for NRVO: if every return
13458 /// statement in the scope of a variable has the same NRVO candidate, that
13459 /// candidate is an NRVO variable.
13461  ReturnStmt **Returns = Scope->Returns.data();
13462 
13463  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
13464  if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
13465  if (!NRVOCandidate->isNRVOVariable())
13466  Returns[I]->setNRVOCandidate(nullptr);
13467  }
13468  }
13469 }
13470 
13472  // We can't delay parsing the body of a constexpr function template (yet).
13474  return false;
13475 
13476  // We can't delay parsing the body of a function template with a deduced
13477  // return type (yet).
13478  if (D.getDeclSpec().hasAutoTypeSpec()) {
13479  // If the placeholder introduces a non-deduced trailing return type,
13480  // we can still delay parsing it.
13481  if (D.getNumTypeObjects()) {
13482  const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
13483  if (Outer.Kind == DeclaratorChunk::Function &&
13484  Outer.Fun.hasTrailingReturnType()) {
13485  QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
13486  return Ty.isNull() || !Ty->isUndeducedType();
13487  }
13488  }
13489  return false;
13490  }
13491 
13492  return true;
13493 }
13494 
13496  // We cannot skip the body of a function (or function template) which is
13497  // constexpr, since we may need to evaluate its body in order to parse the
13498  // rest of the file.
13499  // We cannot skip the body of a function with an undeduced return type,
13500  // because any callers of that function need to know the type.
13501  if (const FunctionDecl *FD = D->getAsFunction()) {
13502  if (FD->isConstexpr())
13503  return false;
13504  // We can't simply call Type::isUndeducedType here, because inside template
13505  // auto can be deduced to a dependent type, which is not considered
13506  // "undeduced".
13507  if (FD->getReturnType()->getContainedDeducedType())
13508  return false;
13509  }
13510  return Consumer.shouldSkipFunctionBody(D);
13511 }
13512 
13514  if (!Decl)
13515  return nullptr;
13516  if (FunctionDecl *FD = Decl->getAsFunction())
13517  FD->setHasSkippedBody();
13518  else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
13519  MD->setHasSkippedBody();
13520  return Decl;
13521 }
13522 
13524  return ActOnFinishFunctionBody(D, BodyArg, false);
13525 }
13526 
13527 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
13528 /// body.
13530 public:
13531  ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
13533  if (!IsLambda)
13535  }
13536 
13537 private:
13538  Sema &S;
13539  bool IsLambda = false;
13540 };
13541 
13543  llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
13544 
13545  auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
13546  if (EscapeInfo.count(BD))
13547  return EscapeInfo[BD];
13548 
13549  bool R = false;
13550  const BlockDecl *CurBD = BD;
13551 
13552  do {
13553  R = !CurBD->doesNotEscape();
13554  if (R)
13555  break;
13556  CurBD = CurBD->getParent()->getInnermostBlockDecl();
13557  } while (CurBD);
13558 
13559  return EscapeInfo[BD] = R;
13560  };
13561 
13562  // If the location where 'self' is implicitly retained is inside a escaping
13563  // block, emit a diagnostic.
13564  for (const std::pair<SourceLocation, const BlockDecl *> &P :
13566  if (IsOrNestedInEscapingBlock(P.second))
13567  S.Diag(P.first, diag::warn_implicitly_retains_self)
13568  << FixItHint::CreateInsertion(P.first, "self->");
13569 }
13570 
13572  bool IsInstantiation) {
13573  FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
13574 
13575  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
13576  sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
13577 
13578  if (getLangOpts().Coroutines && getCurFunction()->isCoroutine())
13579  CheckCompletedCoroutineBody(FD, Body);
13580 
13581  // Do not call PopExpressionEvaluationContext() if it is a lambda because one
13582  // is already popped when finishing the lambda in BuildLambdaExpr(). This is
13583  // meant to pop the context added in ActOnStartOfFunctionDef().
13584  ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
13585 
13586  if (FD) {
13587  FD->setBody(Body);
13588  FD->setWillHaveBody(false);
13589 
13590  if (getLangOpts().CPlusPlus14) {
13591  if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
13592  FD->getReturnType()->isUndeducedType()) {
13593  // If the function has a deduced result type but contains no 'return'
13594  // statements, the result type as written must be exactly 'auto', and
13595  // the deduced result type is 'void'.
13596  if (!FD->getReturnType()->getAs<AutoType>()) {
13597  Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
13598  << FD->getReturnType();
13599  FD->setInvalidDecl();
13600  } else {
13601  // Substitute 'void' for the 'auto' in the type.
13602  TypeLoc ResultType = getReturnTypeLoc(FD);
13604  FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
13605  }
13606  }
13607  } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
13608  // In C++11, we don't use 'auto' deduction rules for lambda call
13609  // operators because we don't support return type deduction.
13610  auto *LSI = getCurLambda();
13611  if (LSI->HasImplicitReturnType) {
13612  deduceClosureReturnType(*LSI);
13613 
13614  // C++11 [expr.prim.lambda]p4:
13615  // [...] if there are no return statements in the compound-statement
13616  // [the deduced type is] the type void
13617  QualType RetType =
13618  LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
13619 
13620  // Update the return type to the deduced type.
13621  const FunctionProtoType *Proto =
13622  FD->getType()->getAs<FunctionProtoType>();
13623  FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
13624  Proto->getExtProtoInfo()));
13625  }
13626  }
13627 
13628  // If the function implicitly returns zero (like 'main') or is naked,
13629  // don't complain about missing return statements.
13630  if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
13632 
13633  // MSVC permits the use of pure specifier (=0) on function definition,
13634  // defined at class scope, warn about this non-standard construct.
13635  if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
13636  Diag(FD->getLocation(), diag::ext_pure_function_definition);
13637 
13638  if (!FD->isInvalidDecl()) {
13639  // Don't diagnose unused parameters of defaulted or deleted functions.
13640  if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
13641  DiagnoseUnusedParameters(FD->parameters());
13642  DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
13643  FD->getReturnType(), FD);
13644 
13645  // If this is a structor, we need a vtable.
13646  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
13647  MarkVTableUsed(FD->getLocation(), Constructor->getParent());
13648  else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
13649  MarkVTableUsed(FD->getLocation(), Destructor->getParent());
13650 
13651  // Try to apply the named return value optimization. We have to check
13652  // if we can do this here because lambdas keep return statements around
13653  // to deduce an implicit return type.
13654  if (FD->getReturnType()->isRecordType() &&
13655  (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
13656  computeNRVO(Body, getCurFunction());
13657  }
13658 
13659  // GNU warning -Wmissing-prototypes:
13660  // Warn if a global function is defined without a previous
13661  // prototype declaration. This warning is issued even if the
13662  // definition itself provides a prototype. The aim is to detect
13663  // global functions that fail to be declared in header files.
13664  const FunctionDecl *PossiblePrototype = nullptr;
13665  if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
13666  Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
13667 
13668  if (PossiblePrototype) {
13669  // We found a declaration that is not a prototype,
13670  // but that could be a zero-parameter prototype
13671  if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
13672  TypeLoc TL = TI->getTypeLoc();
13674  Diag(PossiblePrototype->getLocation(),
13675  diag::note_declaration_not_a_prototype)
13676  << (FD->getNumParams() != 0)
13677  << (FD->getNumParams() == 0
13678  ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
13679  : FixItHint{});
13680  }
13681  } else {
13682  Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
13683  << /* function */ 1
13684  << (FD->getStorageClass() == SC_None
13686  "static ")
13687  : FixItHint{});
13688  }
13689 
13690  // GNU warning -Wstrict-prototypes
13691  // Warn if K&R function is defined without a previous declaration.
13692  // This warning is issued only if the definition itself does not provide
13693  // a prototype. Only K&R definitions do not provide a prototype.
13694  // An empty list in a function declarator that is part of a definition
13695  // of that function specifies that the function has no parameters
13696  // (C99 6.7.5.3p14)
13697  if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
13698  !LangOpts.CPlusPlus) {
13699  TypeSourceInfo *TI = FD->getTypeSourceInfo();
13700  TypeLoc TL = TI->getTypeLoc();
13702  Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
13703  }
13704  }
13705 
13706  // Warn on CPUDispatch with an actual body.
13707  if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
13708  if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
13709  if (!CmpndBody->body_empty())
13710  Diag(CmpndBody->body_front()->getBeginLoc(),
13711  diag::warn_dispatch_body_ignored);
13712 
13713  if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
13714  const CXXMethodDecl *KeyFunction;
13715  if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
13716  MD->isVirtual() &&
13717  (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
13718  MD == KeyFunction->getCanonicalDecl()) {
13719  // Update the key-function state if necessary for this ABI.
13720  if (FD->isInlined() &&
13722  Context.setNonKeyFunction(MD);
13723 
13724  // If the newly-chosen key function is already defined, then we
13725  // need to mark the vtable as used retroactively.
13726  KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
13727  const FunctionDecl *Definition;
13728  if (KeyFunction && KeyFunction->isDefined(Definition))
13729  MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
13730  } else {
13731  // We just defined they key function; mark the vtable as used.
13732  MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
13733  }
13734  }
13735  }
13736 
13737  assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
13738  "Function parsing confused");
13739  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
13740  assert(MD == getCurMethodDecl() && "Method parsing confused");
13741  MD->setBody(Body);
13742  if (!MD->isInvalidDecl()) {
13743  DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
13744  MD->getReturnType(), MD);
13745 
13746  if (Body)
13747  computeNRVO(Body, getCurFunction());
13748  }
13749  if (getCurFunction()->ObjCShouldCallSuper) {
13750  Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
13751  << MD->getSelector().getAsString();
13752  getCurFunction()->ObjCShouldCallSuper = false;
13753  }
13754  if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
13755  const ObjCMethodDecl *InitMethod = nullptr;
13756  bool isDesignated =
13757  MD->isDesignatedInitializerForTheInterface(&InitMethod);
13758  assert(isDesignated && InitMethod);
13759  (void)isDesignated;
13760 
13761  auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
13762  auto IFace = MD->getClassInterface();
13763  if (!IFace)
13764  return false;
13765  auto SuperD = IFace->getSuperClass();
13766  if (!SuperD)
13767  return false;
13768  return SuperD->getIdentifier() ==
13769  NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
13770  };
13771  // Don't issue this warning for unavailable inits or direct subclasses
13772  // of NSObject.
13773  if (!MD->isUnavailable() && !superIsNSObject(MD)) {
13774  Diag(MD->getLocation(),
13775  diag::warn_objc_designated_init_missing_super_call);
13776  Diag(InitMethod->getLocation(),
13777  diag::note_objc_designated_init_marked_here);
13778  }
13779  getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
13780  }
13781  if (getCurFunction()->ObjCWarnForNoInitDelegation) {
13782  // Don't issue this warning for unavaialable inits.
13783  if (!MD->isUnavailable())
13784  Diag(MD->getLocation(),
13785  diag::warn_objc_secondary_init_missing_init_call);
13786  getCurFunction()->ObjCWarnForNoInitDelegation = false;
13787  }
13788 
13790  } else {
13791  // Parsing the function declaration failed in some way. Pop the fake scope
13792  // we pushed on.
13793  PopFunctionScopeInfo(ActivePolicy, dcl);
13794  return nullptr;
13795  }
13796 
13797  if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
13798  DiagnoseUnguardedAvailabilityViolations(dcl);
13799 
13800  assert(!getCurFunction()->ObjCShouldCallSuper &&
13801  "This should only be set for ObjC methods, which should have been "
13802  "handled in the block above.");
13803 
13804  // Verify and clean out per-function state.
13805  if (Body && (!FD || !FD->isDefaulted())) {
13806  // C++ constructors that have function-try-blocks can't have return
13807  // statements in the handlers of that block. (C++ [except.handle]p14)
13808  // Verify this.
13809  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
13810  DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
13811 
13812  // Verify that gotos and switch cases don't jump into scopes illegally.
13813  if (getCurFunction()->NeedsScopeChecking() &&
13814  !PP.isCodeCompletionEnabled())
13815  DiagnoseInvalidJumps(Body);
13816 
13817  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
13818  if (!Destructor->getParent()->isDependentType())
13819  CheckDestructor(Destructor);
13820 
13821  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13822  Destructor->getParent());
13823  }
13824 
13825  // If any errors have occurred, clear out any temporaries that may have
13826  // been leftover. This ensures that these temporaries won't be picked up for
13827  // deletion in some later function.
13828  if (getDiagnostics().hasErrorOccurred() ||
13829  getDiagnostics().getSuppressAllDiagnostics()) {
13830  DiscardCleanupsInEvaluationContext();
13831  }
13832  if (!getDiagnostics().hasUncompilableErrorOccurred() &&
13833  !isa<FunctionTemplateDecl>(dcl)) {
13834  // Since the body is valid, issue any analysis-based warnings that are
13835  // enabled.
13836  ActivePolicy = &WP;
13837  }
13838 
13839  if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
13840  (!CheckConstexprFunctionDecl(FD) ||
13841  !CheckConstexprFunctionBody(FD, Body)))
13842  FD->setInvalidDecl();
13843 
13844  if (FD && FD->hasAttr<NakedAttr>()) {
13845  for (const Stmt *S : Body->children()) {
13846  // Allow local register variables without initializer as they don't
13847  // require prologue.
13848  bool RegisterVariables = false;
13849  if (auto *DS = dyn_cast<DeclStmt>(S)) {
13850  for (const auto *Decl : DS->decls()) {
13851  if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
13852  RegisterVariables =
13853  Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
13854  if (!RegisterVariables)
13855  break;
13856  }
13857  }
13858  }
13859  if (RegisterVariables)
13860  continue;
13861  if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
13862  Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
13863  Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
13864  FD->setInvalidDecl();
13865  break;
13866  }
13867  }
13868  }
13869 
13870  assert(ExprCleanupObjects.size() ==
13871  ExprEvalContexts.back().NumCleanupObjects &&
13872  "Leftover temporaries in function");
13873  assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
13874  assert(MaybeODRUseExprs.empty() &&
13875  "Leftover expressions for odr-use checking");
13876  }
13877 
13878  if (!IsInstantiation)
13879  PopDeclContext();
13880 
13881  PopFunctionScopeInfo(ActivePolicy, dcl);
13882  // If any errors have occurred, clear out any temporaries that may have
13883  // been leftover. This ensures that these temporaries won't be picked up for
13884  // deletion in some later function.
13885  if (getDiagnostics().hasErrorOccurred()) {
13886  DiscardCleanupsInEvaluationContext();
13887  }
13888 
13889  return dcl;
13890 }
13891 
13892 /// When we finish delayed parsing of an attribute, we must attach it to the
13893 /// relevant Decl.
13895  ParsedAttributes &Attrs) {
13896  // Always attach attributes to the underlying decl.
13897  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
13898  D = TD->getTemplatedDecl();
13899  ProcessDeclAttributeList(S, D, Attrs);
13900 
13901  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
13902  if (Method->isStatic())
13903  checkThisInStaticMemberFunctionAttributes(Method);
13904 }
13905 
13906 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
13907 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
13909  IdentifierInfo &II, Scope *S) {
13910  // Find the scope in which the identifier is injected and the corresponding
13911  // DeclContext.
13912  // FIXME: C89 does not say what happens if there is no enclosing block scope.
13913  // In that case, we inject the declaration into the translation unit scope
13914  // instead.
13915  Scope *BlockScope = S;
13916  while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
13917  BlockScope = BlockScope->getParent();
13918 
13919  Scope *ContextScope = BlockScope;
13920  while (!ContextScope->getEntity())
13921  ContextScope = ContextScope->getParent();
13922  ContextRAII SavedContext(*this, ContextScope->getEntity());
13923 
13924  // Before we produce a declaration for an implicitly defined
13925  // function, see whether there was a locally-scoped declaration of
13926  // this name as a function or variable. If so, use that
13927  // (non-visible) declaration, and complain about it.
13928  NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
13929  if (ExternCPrev) {
13930  // We still need to inject the function into the enclosing block scope so
13931  // that later (non-call) uses can see it.
13932  PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
13933 
13934  // C89 footnote 38:
13935  // If in fact it is not defined as having type "function returning int",
13936  // the behavior is undefined.
13937  if (!isa<FunctionDecl>(ExternCPrev) ||
13938  !Context.typesAreCompatible(
13939  cast<FunctionDecl>(ExternCPrev)->getType(),
13940  Context.getFunctionNoProtoType(Context.IntTy))) {
13941  Diag(Loc, diag::ext_use_out_of_scope_declaration)
13942  << ExternCPrev << !getLangOpts().C99;
13943  Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
13944  return ExternCPrev;
13945  }
13946  }
13947 
13948  // Extension in C99. Legal in C90, but warn about it.
13949  unsigned diag_id;
13950  if (II.getName().startswith("__builtin_"))
13951  diag_id = diag::warn_builtin_unknown;
13952  // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
13953  else if (getLangOpts().OpenCL)
13954  diag_id = diag::err_opencl_implicit_function_decl;
13955  else if (getLangOpts().C99)
13956  diag_id = diag::ext_implicit_function_decl;
13957  else
13958  diag_id = diag::warn_implicit_function_decl;
13959  Diag(Loc, diag_id) << &II;
13960 
13961  // If we found a prior declaration of this function, don't bother building
13962  // another one. We've already pushed that one into scope, so there's nothing
13963  // more to do.
13964  if (ExternCPrev)
13965  return ExternCPrev;
13966 
13967  // Because typo correction is expensive, only do it if the implicit
13968  // function declaration is going to be treated as an error.
13969  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
13970  TypoCorrection Corrected;
13972  if (S && (Corrected =
13973  CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
13974  S, nullptr, CCC, CTK_NonError)))
13975  diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
13976  /*ErrorRecovery*/false);
13977  }
13978 
13979  // Set a Declarator for the implicit definition: int foo();
13980  const char *Dummy;
13981  AttributeFactory attrFactory;
13982  DeclSpec DS(attrFactory);
13983  unsigned DiagID;
13984  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
13985  Context.getPrintingPolicy());
13986  (void)Error; // Silence warning.
13987  assert(!Error && "Error setting up implicit decl!");
13988  SourceLocation NoLoc;
13990  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
13991  /*IsAmbiguous=*/false,
13992  /*LParenLoc=*/NoLoc,
13993  /*Params=*/nullptr,
13994  /*NumParams=*/0,
13995  /*EllipsisLoc=*/NoLoc,
13996  /*RParenLoc=*/NoLoc,
13997  /*RefQualifierIsLvalueRef=*/true,
13998  /*RefQualifierLoc=*/NoLoc,
13999  /*MutableLoc=*/NoLoc, EST_None,
14000  /*ESpecRange=*/SourceRange(),
14001  /*Exceptions=*/nullptr,
14002  /*ExceptionRanges=*/nullptr,
14003  /*NumExceptions=*/0,
14004  /*NoexceptExpr=*/nullptr,
14005  /*ExceptionSpecTokens=*/nullptr,
14006  /*DeclsInPrototype=*/None, Loc,
14007  Loc, D),
14008  std::move(DS.getAttributes()), SourceLocation());
14009  D.SetIdentifier(&II, Loc);
14010 
14011  // Insert this function into the enclosing block scope.
14012  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14013  FD->setImplicit();
14014 
14015  AddKnownFunctionAttributes(FD);
14016 
14017  return FD;
14018 }
14019 
14020 /// Adds any function attributes that we know a priori based on
14021 /// the declaration of this function.
14022 ///
14023 /// These attributes can apply both to implicitly-declared builtins
14024 /// (like __builtin___printf_chk) or to library-declared functions
14025 /// like NSLog or printf.
14026 ///
14027 /// We need to check for duplicate attributes both here and where user-written
14028 /// attributes are applied to declarations.
14030  if (FD->isInvalidDecl())
14031  return;
14032 
14033  // If this is a built-in function, map its builtin attributes to
14034  // actual attributes.
14035  if (unsigned BuiltinID = FD->getBuiltinID()) {
14036  // Handle printf-formatting attributes.
14037  unsigned FormatIdx;
14038  bool HasVAListArg;
14039  if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
14040  if (!FD->hasAttr<FormatAttr>()) {
14041  const char *fmt = "printf";
14042  unsigned int NumParams = FD->getNumParams();
14043  if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
14044  FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
14045  fmt = "NSString";
14046  FD->addAttr(FormatAttr::CreateImplicit(Context,
14047  &Context.Idents.get(fmt),
14048  FormatIdx+1,
14049  HasVAListArg ? 0 : FormatIdx+2,
14050  FD->getLocation()));
14051  }
14052  }
14053  if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
14054  HasVAListArg)) {
14055  if (!FD->hasAttr<FormatAttr>())
14056  FD->addAttr(FormatAttr::CreateImplicit(Context,
14057  &Context.Idents.get("scanf"),
14058  FormatIdx+1,
14059  HasVAListArg ? 0 : FormatIdx+2,
14060  FD->getLocation()));
14061  }
14062 
14063  // Handle automatically recognized callbacks.
14065  if (!FD->hasAttr<CallbackAttr>() &&
14066  Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
14067  FD->addAttr(CallbackAttr::CreateImplicit(
14068  Context, Encoding.data(), Encoding.size(), FD->getLocation()));
14069 
14070  // Mark const if we don't care about errno and that is the only thing
14071  // preventing the function from being const. This allows IRgen to use LLVM
14072  // intrinsics for such functions.
14073  if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
14074  Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
14075  FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14076 
14077  // We make "fma" on some platforms const because we know it does not set
14078  // errno in those environments even though it could set errno based on the
14079  // C standard.
14080  const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
14081  if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
14082  !FD->hasAttr<ConstAttr>()) {
14083  switch (BuiltinID) {
14084  case Builtin::BI__builtin_fma:
14085  case Builtin::BI__builtin_fmaf:
14086  case Builtin::BI__builtin_fmal:
14087  case Builtin::BIfma:
14088  case Builtin::BIfmaf:
14089  case Builtin::BIfmal:
14090  FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14091  break;
14092  default:
14093  break;
14094  }
14095  }
14096 
14097  if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
14098  !FD->hasAttr<ReturnsTwiceAttr>())
14099  FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
14100  FD->getLocation()));
14101  if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
14102  FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14103  if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
14104  FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
14105  if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
14106  FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14107  if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
14108  !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
14109  // Add the appropriate attribute, depending on the CUDA compilation mode
14110  // and which target the builtin belongs to. For example, during host
14111  // compilation, aux builtins are __device__, while the rest are __host__.
14112  if (getLangOpts().CUDAIsDevice !=
14113  Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
14114  FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
14115  else
14116  FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
14117  }
14118  }
14119 
14120  // If C++ exceptions are enabled but we are told extern "C" functions cannot
14121  // throw, add an implicit nothrow attribute to any extern "C" function we come
14122  // across.
14123  if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
14124  FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
14125  const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
14126  if (!FPT || FPT->getExceptionSpecType() == EST_None)
14127  FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14128  }
14129 
14130  IdentifierInfo *Name = FD->getIdentifier();
14131  if (!Name)
14132  return;
14133  if ((!getLangOpts().CPlusPlus &&
14134  FD->getDeclContext()->isTranslationUnit()) ||
14135  (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
14136  cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
14138  // Okay: this could be a libc/libm/Objective-C function we know
14139  // about.
14140  } else
14141  return;
14142 
14143  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
14144  // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
14145  // target-specific builtins, perhaps?
14146  if (!FD->hasAttr<FormatAttr>())
14147  FD->addAttr(FormatAttr::CreateImplicit(Context,
14148  &Context.Idents.get("printf"), 2,
14149  Name->isStr("vasprintf") ? 0 : 3,
14150  FD->getLocation()));
14151  }
14152 
14153  if (Name->isStr("__CFStringMakeConstantString")) {
14154  // We already have a __builtin___CFStringMakeConstantString,
14155  // but builds that use -fno-constant-cfstrings don't go through that.
14156  if (!FD->hasAttr<FormatArgAttr>())
14157  FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
14158  FD->getLocation()));
14159  }
14160 }
14161 
14163  TypeSourceInfo *TInfo) {
14164  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
14165  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
14166 
14167  if (!TInfo) {
14168  assert(D.isInvalidType() && "no declarator info for valid type");
14169  TInfo = Context.getTrivialTypeSourceInfo(T);
14170  }
14171 
14172  // Scope manipulation handled by caller.
14173  TypedefDecl *NewTD =
14174  TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
14175  D.getIdentifierLoc(), D.getIdentifier(), TInfo);
14176 
14177  // Bail out immediately if we have an invalid declaration.
14178  if (D.isInvalidType()) {
14179  NewTD->setInvalidDecl();
14180  return NewTD;
14181  }
14182 
14184  if (CurContext->isFunctionOrMethod())
14185  Diag(NewTD->getLocation(), diag::err_module_private_local)
14186  << 2 << NewTD->getDeclName()
14189  else
14190  NewTD->setModulePrivate();
14191  }
14192 
14193  // C++ [dcl.typedef]p8:
14194  // If the typedef declaration defines an unnamed class (or
14195  // enum), the first typedef-name declared by the declaration
14196  // to be that class type (or enum type) is used to denote the
14197  // class type (or enum type) for linkage purposes only.
14198  // We need to check whether the type was declared in the declaration.
14199  switch (D.getDeclSpec().getTypeSpecType()) {
14200  case TST_enum:
14201  case TST_struct:
14202  case TST_interface:
14203  case TST_union:
14204  case TST_class: {
14205  TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
14206  setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
14207  break;
14208  }
14209 
14210  default:
14211  break;
14212  }
14213 
14214  return NewTD;
14215 }
14216 
14217 /// Check that this is a valid underlying type for an enum declaration.
14219  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
14220  QualType T = TI->getType();
14221 
14222  if (T->isDependentType())
14223  return false;
14224 
14225  if (const BuiltinType *BT = T->getAs<BuiltinType>())
14226  if (BT->isInteger())
14227  return false;
14228 
14229  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
14230  return true;
14231 }
14232 
14233 /// Check whether this is a valid redeclaration of a previous enumeration.
14234 /// \return true if the redeclaration was invalid.
14235 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
14236  QualType EnumUnderlyingTy, bool IsFixed,
14237  const EnumDecl *Prev) {
14238  if (IsScoped != Prev->isScoped()) {
14239  Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
14240  << Prev->isScoped();
14241  Diag(Prev->getLocation(), diag::note_previous_declaration);
14242  return true;
14243  }
14244 
14245  if (IsFixed && Prev->isFixed()) {
14246  if (!EnumUnderlyingTy->isDependentType() &&
14247  !Prev->getIntegerType()->isDependentType() &&
14248  !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
14249  Prev->getIntegerType())) {
14250  // TODO: Highlight the underlying type of the redeclaration.
14251  Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
14252  << EnumUnderlyingTy << Prev->getIntegerType();
14253  Diag(Prev->getLocation(), diag::note_previous_declaration)
14254  << Prev->getIntegerTypeRange();
14255  return true;
14256  }
14257  } else if (IsFixed != Prev->isFixed()) {
14258  Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
14259  << Prev->isFixed();
14260  Diag(Prev->getLocation(), diag::note_previous_declaration);
14261  return true;
14262  }
14263 
14264  return false;
14265 }
14266 
14267 /// Get diagnostic %select index for tag kind for
14268 /// redeclaration diagnostic message.
14269 /// WARNING: Indexes apply to particular diagnostics only!
14270 ///
14271 /// \returns diagnostic %select index.
14273  switch (Tag) {
14274  case TTK_Struct: return 0;
14275  case TTK_Interface: return 1;
14276  case TTK_Class: return 2;
14277  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
14278  }
14279 }
14280 
14281 /// Determine if tag kind is a class-key compatible with
14282 /// class for redeclaration (class, struct, or __interface).
14283 ///
14284 /// \returns true iff the tag kind is compatible.
14286 {
14287  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
14288 }
14289 
14291  TagTypeKind TTK) {
14292  if (isa<TypedefDecl>(PrevDecl))
14293  return NTK_Typedef;
14294  else if (isa<TypeAliasDecl>(PrevDecl))
14295  return NTK_TypeAlias;
14296  else if (isa<ClassTemplateDecl>(PrevDecl))
14297  return NTK_Template;
14298  else if (isa<TypeAliasTemplateDecl>(PrevDecl))
14299  return NTK_TypeAliasTemplate;
14300  else if (isa<TemplateTemplateParmDecl>(PrevDecl))
14301  return NTK_TemplateTemplateArgument;
14302  switch (TTK) {
14303  case TTK_Struct:
14304  case TTK_Interface:
14305  case TTK_Class:
14306  return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
14307  case TTK_Union:
14308  return NTK_NonUnion;
14309  case TTK_Enum:
14310  return NTK_NonEnum;
14311  }
14312  llvm_unreachable("invalid TTK");
14313 }
14314 
14315 /// Determine whether a tag with a given kind is acceptable
14316 /// as a redeclaration of the given tag declaration.
14317 ///
14318 /// \returns true if the new tag kind is acceptable, false otherwise.
14320  TagTypeKind NewTag, bool isDefinition,
14321  SourceLocation NewTagLoc,
14322  const IdentifierInfo *Name) {
14323  // C++ [dcl.type.elab]p3:
14324  // The class-key or enum keyword present in the
14325  // elaborated-type-specifier shall agree in kind with the
14326  // declaration to which the name in the elaborated-type-specifier
14327  // refers. This rule also applies to the form of
14328  // elaborated-type-specifier that declares a class-name or
14329  // friend class since it can be construed as referring to the
14330  // definition of the class. Thus, in any
14331  // elaborated-type-specifier, the enum keyword shall be used to
14332  // refer to an enumeration (7.2), the union class-key shall be
14333  // used to refer to a union (clause 9), and either the class or
14334  // struct class-key shall be used to refer to a class (clause 9)
14335  // declared using the class or struct class-key.
14336  TagTypeKind OldTag = Previous->getTagKind();
14337  if (OldTag != NewTag &&
14338  !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
14339  return false;
14340 
14341  // Tags are compatible, but we might still want to warn on mismatched tags.
14342  // Non-class tags can't be mismatched at this point.
14343  if (!isClassCompatTagKind(NewTag))
14344  return true;
14345 
14346  // Declarations for which -Wmismatched-tags is disabled are entirely ignored
14347  // by our warning analysis. We don't want to warn about mismatches with (eg)
14348  // declarations in system headers that are designed to be specialized, but if
14349  // a user asks us to warn, we should warn if their code contains mismatched
14350  // declarations.
14351  auto IsIgnoredLoc = [&](SourceLocation Loc) {
14352  return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
14353  Loc);
14354  };
14355  if (IsIgnoredLoc(NewTagLoc))
14356  return true;
14357 
14358  auto IsIgnored = [&](const TagDecl *Tag) {
14359  return IsIgnoredLoc(Tag->getLocation());
14360  };
14361  while (IsIgnored(Previous)) {
14362  Previous = Previous->getPreviousDecl();
14363  if (!Previous)
14364  return true;
14365  OldTag = Previous->getTagKind();
14366  }
14367 
14368  bool isTemplate = false;
14369  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
14370  isTemplate = Record->getDescribedClassTemplate();
14371 
14372  if (inTemplateInstantiation()) {
14373  if (OldTag != NewTag) {
14374  // In a template instantiation, do not offer fix-its for tag mismatches
14375  // since they usually mess up the template instead of fixing the problem.
14376  Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14377  << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14378  << getRedeclDiagFromTagKind(OldTag);
14379  // FIXME: Note previous location?
14380  }
14381  return true;
14382  }
14383 
14384  if (isDefinition) {
14385  // On definitions, check all previous tags and issue a fix-it for each
14386  // one that doesn't match the current tag.
14387  if (Previous->getDefinition()) {
14388  // Don't suggest fix-its for redefinitions.
14389  return true;
14390  }
14391 
14392  bool previousMismatch = false;
14393  for (const TagDecl *I : Previous->redecls()) {
14394  if (I->getTagKind() != NewTag) {
14395  // Ignore previous declarations for which the warning was disabled.
14396  if (IsIgnored(I))
14397  continue;
14398 
14399  if (!previousMismatch) {
14400  previousMismatch = true;
14401  Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
14402  << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14403  << getRedeclDiagFromTagKind(I->getTagKind());
14404  }
14405  Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
14406  << getRedeclDiagFromTagKind(NewTag)
14407  << FixItHint::CreateReplacement(I->getInnerLocStart(),
14409  }
14410  }
14411  return true;
14412  }
14413 
14414  // Identify the prevailing tag kind: this is the kind of the definition (if
14415  // there is a non-ignored definition), or otherwise the kind of the prior
14416  // (non-ignored) declaration.
14417  const TagDecl *PrevDef = Previous->getDefinition();
14418  if (PrevDef && IsIgnored(PrevDef))
14419  PrevDef = nullptr;
14420  const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
14421  if (Redecl->getTagKind() != NewTag) {
14422  Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14423  << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14424  << getRedeclDiagFromTagKind(OldTag);
14425  Diag(Redecl->getLocation(), diag::note_previous_use);
14426 
14427  // If there is a previous definition, suggest a fix-it.
14428  if (PrevDef) {
14429  Diag(NewTagLoc, diag::note_struct_class_suggestion)
14430  << getRedeclDiagFromTagKind(Redecl->getTagKind())
14433  }
14434  }
14435 
14436  return true;
14437 }
14438 
14439 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
14440 /// from an outer enclosing namespace or file scope inside a friend declaration.
14441 /// This should provide the commented out code in the following snippet:
14442 /// namespace N {
14443 /// struct X;
14444 /// namespace M {
14445 /// struct Y { friend struct /*N::*/ X; };
14446 /// }
14447 /// }
14449  SourceLocation NameLoc) {
14450  // While the decl is in a namespace, do repeated lookup of that name and see
14451  // if we get the same namespace back. If we do not, continue until
14452  // translation unit scope, at which point we have a fully qualified NNS.
14455  for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
14456  // This tag should be declared in a namespace, which can only be enclosed by
14457  // other namespaces. Bail if there's an anonymous namespace in the chain.
14458  NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
14459  if (!Namespace || Namespace->isAnonymousNamespace())
14460  return FixItHint();
14461  IdentifierInfo *II = Namespace->getIdentifier();
14462  Namespaces.push_back(II);
14463  NamedDecl *Lookup = SemaRef.LookupSingleName(
14464  S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
14465  if (Lookup == Namespace)
14466  break;
14467  }
14468 
14469  // Once we have all the namespaces, reverse them to go outermost first, and
14470  // build an NNS.
14471  SmallString<64> Insertion;
14472  llvm::raw_svector_ostream OS(Insertion);
14473  if (DC->isTranslationUnit())
14474  OS << "::";
14475  std::reverse(Namespaces.begin(), Namespaces.end());
14476  for (auto *II : Namespaces)
14477  OS << II->getName() << "::";
14478  return FixItHint::CreateInsertion(NameLoc, Insertion);
14479 }
14480 
14481 /// Determine whether a tag originally declared in context \p OldDC can
14482 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
14483 /// found a declaration in \p OldDC as a previous decl, perhaps through a
14484 /// using-declaration).
14486  DeclContext *NewDC) {
14487  OldDC = OldDC->getRedeclContext();
14488  NewDC = NewDC->getRedeclContext();
14489 
14490  if (OldDC->Equals(NewDC))
14491  return true;
14492 
14493  // In MSVC mode, we allow a redeclaration if the contexts are related (either
14494  // encloses the other).
14495  if (S.getLangOpts().MSVCCompat &&
14496  (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
14497  return true;
14498 
14499  return false;
14500 }
14501 
14502 /// This is invoked when we see 'struct foo' or 'struct {'. In the
14503 /// former case, Name will be non-null. In the later case, Name will be null.
14504 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
14505 /// reference/declaration/definition of a tag.
14506 ///
14507 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
14508 /// trailing-type-specifier) other than one in an alias-declaration.
14509 ///
14510 /// \param SkipBody If non-null, will be set to indicate if the caller should
14511 /// skip the definition of this tag and treat it as if it were a declaration.
14512 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
14513  SourceLocation KWLoc, CXXScopeSpec &SS,
14514  IdentifierInfo *Name, SourceLocation NameLoc,
14515  const ParsedAttributesView &Attrs, AccessSpecifier AS,
14516  SourceLocation ModulePrivateLoc,
14517  MultiTemplateParamsArg TemplateParameterLists,
14518  bool &OwnedDecl, bool &IsDependent,
14519  SourceLocation ScopedEnumKWLoc,
14520  bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
14521  bool IsTypeSpecifier, bool IsTemplateParamOrArg,
14522  SkipBodyInfo *SkipBody) {
14523  // If this is not a definition, it must have a name.
14524  IdentifierInfo *OrigName = Name;
14525  assert((Name != nullptr || TUK == TUK_Definition) &&
14526  "Nameless record must be a definition!");
14527  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
14528 
14529  OwnedDecl = false;
14531  bool ScopedEnum = ScopedEnumKWLoc.isValid();
14532 
14533  // FIXME: Check member specializations more carefully.
14534  bool isMemberSpecialization = false;
14535  bool Invalid = false;
14536 
14537  // We only need to do this matching if we have template parameters
14538  // or a scope specifier, which also conveniently avoids this work
14539  // for non-C++ cases.
14540  if (TemplateParameterLists.size() > 0 ||
14541  (SS.isNotEmpty() && TUK != TUK_Reference)) {
14542  if (TemplateParameterList *TemplateParams =
14543  MatchTemplateParametersToScopeSpecifier(
14544  KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
14545  TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
14546  if (Kind == TTK_Enum) {
14547  Diag(KWLoc, diag::err_enum_template);
14548  return nullptr;
14549  }
14550 
14551  if (TemplateParams->size() > 0) {
14552  // This is a declaration or definition of a class template (which may
14553  // be a member of another template).
14554 
14555  if (Invalid)
14556  return nullptr;
14557 
14558  OwnedDecl = false;
14559  DeclResult Result = CheckClassTemplate(
14560  S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
14561  AS, ModulePrivateLoc,
14562  /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
14563  TemplateParameterLists.data(), SkipBody);
14564  return Result.get();
14565  } else {
14566  // The "template<>" header is extraneous.
14567  Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
14568  << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
14569  isMemberSpecialization = true;
14570  }
14571  }
14572  }
14573 
14574  // Figure out the underlying type if this a enum declaration. We need to do
14575  // this early, because it's needed to detect if this is an incompatible
14576  // redeclaration.
14577  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
14578  bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
14579 
14580  if (Kind == TTK_Enum) {
14581  if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
14582  // No underlying type explicitly specified, or we failed to parse the
14583  // type, default to int.
14584  EnumUnderlying = Context.IntTy.getTypePtr();
14585  } else if (UnderlyingType.get()) {
14586  // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
14587  // integral type; any cv-qualification is ignored.
14588  TypeSourceInfo *TI = nullptr;
14589  GetTypeFromParser(UnderlyingType.get(), &TI);
14590  EnumUnderlying = TI;
14591 
14592  if (CheckEnumUnderlyingType(TI))
14593  // Recover by falling back to int.
14594  EnumUnderlying = Context.IntTy.getTypePtr();
14595 
14596  if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
14597  UPPC_FixedUnderlyingType))
14598  EnumUnderlying = Context.IntTy.getTypePtr();
14599 
14600  } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14601  // For MSVC ABI compatibility, unfixed enums must use an underlying type
14602  // of 'int'. However, if this is an unfixed forward declaration, don't set
14603  // the underlying type unless the user enables -fms-compatibility. This
14604  // makes unfixed forward declared enums incomplete and is more conforming.
14605  if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
14606  EnumUnderlying = Context.IntTy.getTypePtr();
14607  }
14608  }
14609 
14610  DeclContext *SearchDC = CurContext;
14611  DeclContext *DC = CurContext;
14612  bool isStdBadAlloc = false;
14613  bool isStdAlignValT = false;
14614 
14615  RedeclarationKind Redecl = forRedeclarationInCurContext();
14616  if (TUK == TUK_Friend || TUK == TUK_Reference)
14617  Redecl = NotForRedeclaration;
14618 
14619  /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
14620  /// implemented asks for structural equivalence checking, the returned decl
14621  /// here is passed back to the parser, allowing the tag body to be parsed.
14622  auto createTagFromNewDecl = [&]() -> TagDecl * {
14623  assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
14624  // If there is an identifier, use the location of the identifier as the
14625  // location of the decl, otherwise use the location of the struct/union
14626  // keyword.
14627  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14628  TagDecl *New = nullptr;
14629 
14630  if (Kind == TTK_Enum) {
14631  New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
14632  ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
14633  // If this is an undefined enum, bail.
14634  if (TUK != TUK_Definition && !Invalid)
14635  return nullptr;
14636  if (EnumUnderlying) {
14637  EnumDecl *ED = cast<EnumDecl>(New);
14638  if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
14639  ED->setIntegerTypeSourceInfo(TI);
14640  else
14641  ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
14642  ED->setPromotionType(ED->getIntegerType());
14643  }
14644  } else { // struct/union
14645  New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14646  nullptr);
14647  }
14648 
14649  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14650  // Add alignment attributes if necessary; these attributes are checked
14651  // when the ASTContext lays out the structure.
14652  //
14653  // It is important for implementing the correct semantics that this
14654  // happen here (in ActOnTag). The #pragma pack stack is
14655  // maintained as a result of parser callbacks which can occur at
14656  // many points during the parsing of a struct declaration (because
14657  // the #pragma tokens are effectively skipped over during the
14658  // parsing of the struct).
14659  if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14660  AddAlignmentAttributesForRecord(RD);
14661  AddMsStructLayoutForRecord(RD);
14662  }
14663  }
14664  New->setLexicalDeclContext(CurContext);
14665  return New;
14666  };
14667 
14668  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
14669  if (Name && SS.isNotEmpty()) {
14670  // We have a nested-name tag ('struct foo::bar').
14671 
14672  // Check for invalid 'foo::'.
14673  if (SS.isInvalid()) {
14674  Name = nullptr;
14675  goto CreateNewDecl;
14676  }
14677 
14678  // If this is a friend or a reference to a class in a dependent
14679  // context, don't try to make a decl for it.
14680  if (TUK == TUK_Friend || TUK == TUK_Reference) {
14681  DC = computeDeclContext(SS, false);
14682  if (!DC) {
14683  IsDependent = true;
14684  return nullptr;
14685  }
14686  } else {
14687  DC = computeDeclContext(SS, true);
14688  if (!DC) {
14689  Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
14690  << SS.getRange();
14691  return nullptr;
14692  }
14693  }
14694 
14695  if (RequireCompleteDeclContext(SS, DC))
14696  return nullptr;
14697 
14698  SearchDC = DC;
14699  // Look-up name inside 'foo::'.
14700  LookupQualifiedName(Previous, DC);
14701 
14702  if (Previous.isAmbiguous())
14703  return nullptr;
14704 
14705  if (Previous.empty()) {
14706  // Name lookup did not find anything. However, if the
14707  // nested-name-specifier refers to the current instantiation,
14708  // and that current instantiation has any dependent base
14709  // classes, we might find something at instantiation time: treat
14710  // this as a dependent elaborated-type-specifier.
14711  // But this only makes any sense for reference-like lookups.
14712  if (Previous.wasNotFoundInCurrentInstantiation() &&
14713  (TUK == TUK_Reference || TUK == TUK_Friend)) {
14714  IsDependent = true;
14715  return nullptr;
14716  }
14717 
14718  // A tag 'foo::bar' must already exist.
14719  Diag(NameLoc, diag::err_not_tag_in_scope)
14720  << Kind << Name << DC << SS.getRange();
14721  Name = nullptr;
14722  Invalid = true;
14723  goto CreateNewDecl;
14724  }
14725  } else if (Name) {
14726  // C++14 [class.mem]p14:
14727  // If T is the name of a class, then each of the following shall have a
14728  // name different from T:
14729  // -- every member of class T that is itself a type
14730  if (TUK != TUK_Reference && TUK != TUK_Friend &&
14731  DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
14732  return nullptr;
14733 
14734  // If this is a named struct, check to see if there was a previous forward
14735  // declaration or definition.
14736  // FIXME: We're looking into outer scopes here, even when we
14737  // shouldn't be. Doing so can result in ambiguities that we
14738  // shouldn't be diagnosing.
14739  LookupName(Previous, S);
14740 
14741  // When declaring or defining a tag, ignore ambiguities introduced
14742  // by types using'ed into this scope.
14743  if (Previous.isAmbiguous() &&
14744  (TUK == TUK_Definition || TUK == TUK_Declaration)) {
14745  LookupResult::Filter F = Previous.makeFilter();
14746  while (F.hasNext()) {
14747  NamedDecl *ND = F.next();
14748  if (!ND->getDeclContext()->getRedeclContext()->Equals(
14749  SearchDC->getRedeclContext()))
14750  F.erase();
14751  }
14752  F.done();
14753  }
14754 
14755  // C++11 [namespace.memdef]p3:
14756  // If the name in a friend declaration is neither qualified nor
14757  // a template-id and the declaration is a function or an
14758  // elaborated-type-specifier, the lookup to determine whether
14759  // the entity has been previously declared shall not consider
14760  // any scopes outside the innermost enclosing namespace.
14761  //
14762  // MSVC doesn't implement the above rule for types, so a friend tag
14763  // declaration may be a redeclaration of a type declared in an enclosing
14764  // scope. They do implement this rule for friend functions.
14765  //
14766  // Does it matter that this should be by scope instead of by
14767  // semantic context?
14768  if (!Previous.empty() && TUK == TUK_Friend) {
14769  DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
14770  LookupResult::Filter F = Previous.makeFilter();
14771  bool FriendSawTagOutsideEnclosingNamespace = false;
14772  while (F.hasNext()) {
14773  NamedDecl *ND = F.next();
14775  if (DC->isFileContext() &&
14776  !EnclosingNS->Encloses(ND->getDeclContext())) {
14777  if (getLangOpts().MSVCCompat)
14778  FriendSawTagOutsideEnclosingNamespace = true;
14779  else
14780  F.erase();
14781  }
14782  }
14783  F.done();
14784 
14785  // Diagnose this MSVC extension in the easy case where lookup would have
14786  // unambiguously found something outside the enclosing namespace.
14787  if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
14788  NamedDecl *ND = Previous.getFoundDecl();
14789  Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
14790  << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
14791  }
14792  }
14793 
14794  // Note: there used to be some attempt at recovery here.
14795  if (Previous.isAmbiguous())
14796  return nullptr;
14797 
14798  if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
14799  // FIXME: This makes sure that we ignore the contexts associated
14800  // with C structs, unions, and enums when looking for a matching
14801  // tag declaration or definition. See the similar lookup tweak
14802  // in Sema::LookupName; is there a better way to deal with this?
14803  while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
14804  SearchDC = SearchDC->getParent();
14805  }
14806  }
14807 
14808  if (Previous.isSingleResult() &&
14809  Previous.getFoundDecl()->isTemplateParameter()) {
14810  // Maybe we will complain about the shadowed template parameter.
14811  DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
14812  // Just pretend that we didn't see the previous declaration.
14813  Previous.clear();
14814  }
14815 
14816  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
14817  DC->Equals(getStdNamespace())) {
14818  if (Name->isStr("bad_alloc")) {
14819  // This is a declaration of or a reference to "std::bad_alloc".
14820  isStdBadAlloc = true;
14821 
14822  // If std::bad_alloc has been implicitly declared (but made invisible to
14823  // name lookup), fill in this implicit declaration as the previous
14824  // declaration, so that the declarations get chained appropriately.
14825  if (Previous.empty() && StdBadAlloc)
14826  Previous.addDecl(getStdBadAlloc());
14827  } else if (Name->isStr("align_val_t")) {
14828  isStdAlignValT = true;
14829  if (Previous.empty() && StdAlignValT)
14830  Previous.addDecl(getStdAlignValT());
14831  }
14832  }
14833 
14834  // If we didn't find a previous declaration, and this is a reference
14835  // (or friend reference), move to the correct scope. In C++, we
14836  // also need to do a redeclaration lookup there, just in case
14837  // there's a shadow friend decl.
14838  if (Name && Previous.empty() &&
14839  (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
14840  if (Invalid) goto CreateNewDecl;
14841  assert(SS.isEmpty());
14842 
14843  if (TUK == TUK_Reference || IsTemplateParamOrArg) {
14844  // C++ [basic.scope.pdecl]p5:
14845  // -- for an elaborated-type-specifier of the form
14846  //
14847  // class-key identifier
14848  //
14849  // if the elaborated-type-specifier is used in the
14850  // decl-specifier-seq or parameter-declaration-clause of a
14851  // function defined in namespace scope, the identifier is
14852  // declared as a class-name in the namespace that contains
14853  // the declaration; otherwise, except as a friend
14854  // declaration, the identifier is declared in the smallest
14855  // non-class, non-function-prototype scope that contains the
14856  // declaration.
14857  //
14858  // C99 6.7.2.3p8 has a similar (but not identical!) provision for
14859  // C structs and unions.
14860  //
14861  // It is an error in C++ to declare (rather than define) an enum
14862  // type, including via an elaborated type specifier. We'll
14863  // diagnose that later; for now, declare the enum in the same
14864  // scope as we would have picked for any other tag type.
14865  //
14866  // GNU C also supports this behavior as part of its incomplete
14867  // enum types extension, while GNU C++ does not.
14868  //
14869  // Find the context where we'll be declaring the tag.
14870  // FIXME: We would like to maintain the current DeclContext as the
14871  // lexical context,
14872  SearchDC = getTagInjectionContext(SearchDC);
14873 
14874  // Find the scope where we'll be declaring the tag.
14875  S = getTagInjectionScope(S, getLangOpts());
14876  } else {
14877  assert(TUK == TUK_Friend);
14878  // C++ [namespace.memdef]p3:
14879  // If a friend declaration in a non-local class first declares a
14880  // class or function, the friend class or function is a member of
14881  // the innermost enclosing namespace.
14882  SearchDC = SearchDC->getEnclosingNamespaceContext();
14883  }
14884 
14885  // In C++, we need to do a redeclaration lookup to properly
14886  // diagnose some problems.
14887  // FIXME: redeclaration lookup is also used (with and without C++) to find a
14888  // hidden declaration so that we don't get ambiguity errors when using a
14889  // type declared by an elaborated-type-specifier. In C that is not correct
14890  // and we should instead merge compatible types found by lookup.
14891  if (getLangOpts().CPlusPlus) {
14892  Previous.setRedeclarationKind(forRedeclarationInCurContext());
14893  LookupQualifiedName(Previous, SearchDC);
14894  } else {
14895  Previous.setRedeclarationKind(forRedeclarationInCurContext());
14896  LookupName(Previous, S);
14897  }
14898  }
14899 
14900  // If we have a known previous declaration to use, then use it.
14901  if (Previous.empty() && SkipBody && SkipBody->Previous)
14902  Previous.addDecl(SkipBody->Previous);
14903 
14904  if (!Previous.empty()) {
14905  NamedDecl *PrevDecl = Previous.getFoundDecl();
14906  NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
14907 
14908  // It's okay to have a tag decl in the same scope as a typedef
14909  // which hides a tag decl in the same scope. Finding this
14910  // insanity with a redeclaration lookup can only actually happen
14911  // in C++.
14912  //
14913  // This is also okay for elaborated-type-specifiers, which is
14914  // technically forbidden by the current standard but which is
14915  // okay according to the likely resolution of an open issue;
14916  // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
14917  if (getLangOpts().CPlusPlus) {
14918  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14919  if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
14920  TagDecl *Tag = TT->getDecl();
14921  if (Tag->getDeclName() == Name &&
14923  ->Equals(TD->getDeclContext()->getRedeclContext())) {
14924  PrevDecl = Tag;
14925  Previous.clear();
14926  Previous.addDecl(Tag);
14927  Previous.resolveKind();
14928  }
14929  }
14930  }
14931  }
14932 
14933  // If this is a redeclaration of a using shadow declaration, it must
14934  // declare a tag in the same context. In MSVC mode, we allow a
14935  // redefinition if either context is within the other.
14936  if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
14937  auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
14938  if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
14939  isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
14940  !(OldTag && isAcceptableTagRedeclContext(
14941  *this, OldTag->getDeclContext(), SearchDC))) {
14942  Diag(KWLoc, diag::err_using_decl_conflict_reverse);
14943  Diag(Shadow->getTargetDecl()->getLocation(),
14944  diag::note_using_decl_target);
14945  Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
14946  << 0;
14947  // Recover by ignoring the old declaration.
14948  Previous.clear();
14949  goto CreateNewDecl;
14950  }
14951  }
14952 
14953  if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
14954  // If this is a use of a previous tag, or if the tag is already declared
14955  // in the same scope (so that the definition/declaration completes or
14956  // rementions the tag), reuse the decl.
14957  if (TUK == TUK_Reference || TUK == TUK_Friend ||
14958  isDeclInScope(DirectPrevDecl, SearchDC, S,
14959  SS.isNotEmpty() || isMemberSpecialization)) {
14960  // Make sure that this wasn't declared as an enum and now used as a
14961  // struct or something similar.
14962  if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
14963  TUK == TUK_Definition, KWLoc,
14964  Name)) {
14965  bool SafeToContinue
14966  = (PrevTagDecl->getTagKind() != TTK_Enum &&
14967  Kind != TTK_Enum);
14968  if (SafeToContinue)
14969  Diag(KWLoc, diag::err_use_with_wrong_tag)
14970  << Name
14972  PrevTagDecl->getKindName());
14973  else
14974  Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
14975  Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
14976 
14977  if (SafeToContinue)
14978  Kind = PrevTagDecl->getTagKind();
14979  else {
14980  // Recover by making this an anonymous redefinition.
14981  Name = nullptr;
14982  Previous.clear();
14983  Invalid = true;
14984  }
14985  }
14986 
14987  if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
14988  const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
14989 
14990  // If this is an elaborated-type-specifier for a scoped enumeration,
14991  // the 'class' keyword is not necessary and not permitted.
14992  if (TUK == TUK_Reference || TUK == TUK_Friend) {
14993  if (ScopedEnum)
14994  Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
14995  << PrevEnum->isScoped()
14996  << FixItHint::CreateRemoval(ScopedEnumKWLoc);
14997  return PrevTagDecl;
14998  }
14999 
15000  QualType EnumUnderlyingTy;
15001  if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15002  EnumUnderlyingTy = TI->getType().getUnqualifiedType();
15003  else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
15004  EnumUnderlyingTy = QualType(T, 0);
15005 
15006  // All conflicts with previous declarations are recovered by
15007  // returning the previous declaration, unless this is a definition,
15008  // in which case we want the caller to bail out.
15009  if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
15010  ScopedEnum, EnumUnderlyingTy,
15011  IsFixed, PrevEnum))
15012  return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
15013  }
15014 
15015  // C++11 [class.mem]p1:
15016  // A member shall not be declared twice in the member-specification,
15017  // except that a nested class or member class template can be declared
15018  // and then later defined.
15019  if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
15020  S->isDeclScope(PrevDecl)) {
15021  Diag(NameLoc, diag::ext_member_redeclared);
15022  Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
15023  }
15024 
15025  if (!Invalid) {
15026  // If this is a use, just return the declaration we found, unless
15027  // we have attributes.
15028  if (TUK == TUK_Reference || TUK == TUK_Friend) {
15029  if (!Attrs.empty()) {
15030  // FIXME: Diagnose these attributes. For now, we create a new
15031  // declaration to hold them.
15032  } else if (TUK == TUK_Reference &&
15033  (PrevTagDecl->getFriendObjectKind() ==
15035  PrevDecl->getOwningModule() != getCurrentModule()) &&
15036  SS.isEmpty()) {
15037  // This declaration is a reference to an existing entity, but
15038  // has different visibility from that entity: it either makes
15039  // a friend visible or it makes a type visible in a new module.
15040  // In either case, create a new declaration. We only do this if
15041  // the declaration would have meant the same thing if no prior
15042  // declaration were found, that is, if it was found in the same
15043  // scope where we would have injected a declaration.
15044  if (!getTagInjectionContext(CurContext)->getRedeclContext()
15045  ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
15046  return PrevTagDecl;
15047  // This is in the injected scope, create a new declaration in
15048  // that scope.
15049  S = getTagInjectionScope(S, getLangOpts());
15050  } else {
15051  return PrevTagDecl;
15052  }
15053  }
15054 
15055  // Diagnose attempts to redefine a tag.
15056  if (TUK == TUK_Definition) {
15057  if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
15058  // If we're defining a specialization and the previous definition
15059  // is from an implicit instantiation, don't emit an error
15060  // here; we'll catch this in the general case below.
15061  bool IsExplicitSpecializationAfterInstantiation = false;
15062  if (isMemberSpecialization) {
15063  if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
15064  IsExplicitSpecializationAfterInstantiation =
15065  RD->getTemplateSpecializationKind() !=
15067  else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
15068  IsExplicitSpecializationAfterInstantiation =
15069  ED->getTemplateSpecializationKind() !=
15071  }
15072 
15073  // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
15074  // not keep more that one definition around (merge them). However,
15075  // ensure the decl passes the structural compatibility check in
15076  // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
15077  NamedDecl *Hidden = nullptr;
15078  if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
15079  // There is a definition of this tag, but it is not visible. We
15080  // explicitly make use of C++'s one definition rule here, and
15081  // assume that this definition is identical to the hidden one
15082  // we already have. Make the existing definition visible and
15083  // use it in place of this one.
15084  if (!getLangOpts().CPlusPlus) {
15085  // Postpone making the old definition visible until after we
15086  // complete parsing the new one and do the structural
15087  // comparison.
15088  SkipBody->CheckSameAsPrevious = true;
15089  SkipBody->New = createTagFromNewDecl();
15090  SkipBody->Previous = Def;
15091  return Def;
15092  } else {
15093  SkipBody->ShouldSkip = true;
15094  SkipBody->Previous = Def;
15095  makeMergedDefinitionVisible(Hidden);
15096  // Carry on and handle it like a normal definition. We'll
15097  // skip starting the definitiion later.
15098  }
15099  } else if (!IsExplicitSpecializationAfterInstantiation) {
15100  // A redeclaration in function prototype scope in C isn't
15101  // visible elsewhere, so merely issue a warning.
15102  if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
15103  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
15104  else
15105  Diag(NameLoc, diag::err_redefinition) << Name;
15106  notePreviousDefinition(Def,
15107  NameLoc.isValid() ? NameLoc : KWLoc);
15108  // If this is a redefinition, recover by making this
15109  // struct be anonymous, which will make any later
15110  // references get the previous definition.
15111  Name = nullptr;
15112  Previous.clear();
15113  Invalid = true;
15114  }
15115  } else {
15116  // If the type is currently being defined, complain
15117  // about a nested redefinition.
15118  auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
15119  if (TD->isBeingDefined()) {
15120  Diag(NameLoc, diag::err_nested_redefinition) << Name;
15121  Diag(PrevTagDecl->getLocation(),
15122  diag::note_previous_definition);
15123  Name = nullptr;
15124  Previous.clear();
15125  Invalid = true;
15126  }
15127  }
15128 
15129  // Okay, this is definition of a previously declared or referenced
15130  // tag. We're going to create a new Decl for it.
15131  }
15132 
15133  // Okay, we're going to make a redeclaration. If this is some kind
15134  // of reference, make sure we build the redeclaration in the same DC
15135  // as the original, and ignore the current access specifier.
15136  if (TUK == TUK_Friend || TUK == TUK_Reference) {
15137  SearchDC = PrevTagDecl->getDeclContext();
15138  AS = AS_none;
15139  }
15140  }
15141  // If we get here we have (another) forward declaration or we
15142  // have a definition. Just create a new decl.
15143 
15144  } else {
15145  // If we get here, this is a definition of a new tag type in a nested
15146  // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
15147  // new decl/type. We set PrevDecl to NULL so that the entities
15148  // have distinct types.
15149  Previous.clear();
15150  }
15151  // If we get here, we're going to create a new Decl. If PrevDecl
15152  // is non-NULL, it's a definition of the tag declared by
15153  // PrevDecl. If it's NULL, we have a new definition.
15154 
15155  // Otherwise, PrevDecl is not a tag, but was found with tag
15156  // lookup. This is only actually possible in C++, where a few
15157  // things like templates still live in the tag namespace.
15158  } else {
15159  // Use a better diagnostic if an elaborated-type-specifier
15160  // found the wrong kind of type on the first
15161  // (non-redeclaration) lookup.
15162  if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
15163  !Previous.isForRedeclaration()) {
15164  NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
15165  Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
15166  << Kind;
15167  Diag(PrevDecl->getLocation(), diag::note_declared_at);
15168  Invalid = true;
15169 
15170  // Otherwise, only diagnose if the declaration is in scope.
15171  } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
15172  SS.isNotEmpty() || isMemberSpecialization)) {
15173  // do nothing
15174 
15175  // Diagnose implicit declarations introduced by elaborated types.
15176  } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
15177  NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
15178  Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
15179  Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
15180  Invalid = true;
15181 
15182  // Otherwise it's a declaration. Call out a particularly common
15183  // case here.
15184  } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15185  unsigned Kind = 0;
15186  if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
15187  Diag(NameLoc, diag::err_tag_definition_of_typedef)
15188  << Name << Kind << TND->getUnderlyingType();
15189  Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
15190  Invalid = true;
15191 
15192  // Otherwise, diagnose.
15193  } else {
15194  // The tag name clashes with something else in the target scope,
15195  // issue an error and recover by making this tag be anonymous.
15196  Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
15197  notePreviousDefinition(PrevDecl, NameLoc);
15198  Name = nullptr;
15199  Invalid = true;
15200  }
15201 
15202  // The existing declaration isn't relevant to us; we're in a
15203  // new scope, so clear out the previous declaration.
15204  Previous.clear();
15205  }
15206  }
15207 
15208 CreateNewDecl:
15209 
15210  TagDecl *PrevDecl = nullptr;
15211  if (Previous.isSingleResult())
15212  PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
15213 
15214  // If there is an identifier, use the location of the identifier as the
15215  // location of the decl, otherwise use the location of the struct/union
15216  // keyword.
15217  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15218 
15219  // Otherwise, create a new declaration. If there is a previous
15220  // declaration of the same entity, the two will be linked via
15221  // PrevDecl.
15222  TagDecl *New;
15223 
15224  if (Kind == TTK_Enum) {
15225  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
15226  // enum X { A, B, C } D; D should chain to X.
15227  New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
15228  cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
15229  ScopedEnumUsesClassTag, IsFixed);
15230 
15231  if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
15232  StdAlignValT = cast<EnumDecl>(New);
15233 
15234  // If this is an undefined enum, warn.
15235  if (TUK != TUK_Definition && !Invalid) {
15236  TagDecl *Def;
15237  if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
15238  // C++0x: 7.2p2: opaque-enum-declaration.
15239  // Conflicts are diagnosed above. Do nothing.
15240  }
15241  else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
15242  Diag(Loc, diag::ext_forward_ref_enum_def)
15243  << New;
15244  Diag(Def->getLocation(), diag::note_previous_definition);
15245  } else {
15246  unsigned DiagID = diag::ext_forward_ref_enum;
15247  if (getLangOpts().MSVCCompat)
15248  DiagID = diag::ext_ms_forward_ref_enum;
15249  else if (getLangOpts().CPlusPlus)
15250  DiagID = diag::err_forward_ref_enum;
15251  Diag(Loc, DiagID);
15252  }
15253  }
15254 
15255  if (EnumUnderlying) {
15256  EnumDecl *ED = cast<EnumDecl>(New);
15257  if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15258  ED->setIntegerTypeSourceInfo(TI);
15259  else
15260  ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
15261  ED->setPromotionType(ED->getIntegerType());
15262  assert(ED->isComplete() && "enum with type should be complete");
15263  }
15264  } else {
15265  // struct/union/class
15266 
15267  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
15268  // struct X { int A; } D; D should chain to X.
15269  if (getLangOpts().CPlusPlus) {
15270  // FIXME: Look for a way to use RecordDecl for simple structs.
15271  New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15272  cast_or_null<CXXRecordDecl>(PrevDecl));
15273 
15274  if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
15275  StdBadAlloc = cast<CXXRecordDecl>(New);
15276  } else
15277  New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15278  cast_or_null<RecordDecl>(PrevDecl));
15279  }
15280 
15281  // C++11 [dcl.type]p3:
15282  // A type-specifier-seq shall not define a class or enumeration [...].
15283  if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
15284  TUK == TUK_Definition) {
15285  Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
15286  << Context.getTagDeclType(New);
15287  Invalid = true;
15288  }
15289 
15290  if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
15291  DC->getDeclKind() == Decl::Enum) {
15292  Diag(New->getLocation(), diag::err_type_defined_in_enum)
15293  << Context.getTagDeclType(New);
15294  Invalid = true;
15295  }
15296 
15297  // Maybe add qualifier info.
15298  if (SS.isNotEmpty()) {
15299  if (SS.isSet()) {
15300  // If this is either a declaration or a definition, check the
15301  // nested-name-specifier against the current context.
15302  if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
15303  diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
15304  isMemberSpecialization))
15305  Invalid = true;
15306 
15307  New->setQualifierInfo(SS.getWithLocInContext(Context));
15308  if (TemplateParameterLists.size() > 0) {
15309  New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
15310  }
15311  }
15312  else
15313  Invalid = true;
15314  }
15315 
15316  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15317  // Add alignment attributes if necessary; these attributes are checked when
15318  // the ASTContext lays out the structure.
15319  //
15320  // It is important for implementing the correct semantics that this
15321  // happen here (in ActOnTag). The #pragma pack stack is
15322  // maintained as a result of parser callbacks which can occur at
15323  // many points during the parsing of a struct declaration (because
15324  // the #pragma tokens are effectively skipped over during the
15325  // parsing of the struct).
15326  if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15327  AddAlignmentAttributesForRecord(RD);
15328  AddMsStructLayoutForRecord(RD);
15329  }
15330  }
15331 
15332  if (ModulePrivateLoc.isValid()) {
15333  if (isMemberSpecialization)
15334  Diag(New->getLocation(), diag::err_module_private_specialization)
15335  << 2
15336  << FixItHint::CreateRemoval(ModulePrivateLoc);
15337  // __module_private__ does not apply to local classes. However, we only
15338  // diagnose this as an error when the declaration specifiers are
15339  // freestanding. Here, we just ignore the __module_private__.
15340  else if (!SearchDC->isFunctionOrMethod())
15341  New->setModulePrivate();
15342  }
15343 
15344  // If this is a specialization of a member class (of a class template),
15345  // check the specialization.
15346  if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
15347  Invalid = true;
15348 
15349  // If we're declaring or defining a tag in function prototype scope in C,
15350  // note that this type can only be used within the function and add it to
15351  // the list of decls to inject into the function definition scope.
15352  if ((Name || Kind == TTK_Enum) &&
15353  getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
15354  if (getLangOpts().CPlusPlus) {
15355  // C++ [dcl.fct]p6:
15356  // Types shall not be defined in return or parameter types.
15357  if (TUK == TUK_Definition && !IsTypeSpecifier) {
15358  Diag(Loc, diag::err_type_defined_in_param_type)
15359  << Name;
15360  Invalid = true;
15361  }
15362  } else if (!PrevDecl) {
15363  Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
15364  }
15365  }
15366 
15367  if (Invalid)
15368  New->setInvalidDecl();
15369 
15370  // Set the lexical context. If the tag has a C++ scope specifier, the
15371  // lexical context will be different from the semantic context.
15372  New->setLexicalDeclContext(CurContext);
15373 
15374  // Mark this as a friend decl if applicable.
15375  // In Microsoft mode, a friend declaration also acts as a forward
15376  // declaration so we always pass true to setObjectOfFriendDecl to make
15377  // the tag name visible.
15378  if (TUK == TUK_Friend)
15379  New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
15380 
15381  // Set the access specifier.
15382  if (!Invalid && SearchDC->isRecord())
15383  SetMemberAccessSpecifier(New, PrevDecl, AS);
15384 
15385  if (PrevDecl)
15386  CheckRedeclarationModuleOwnership(New, PrevDecl);
15387 
15388  if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
15389  New->startDefinition();
15390 
15391  ProcessDeclAttributeList(S, New, Attrs);
15392  AddPragmaAttributes(S, New);
15393 
15394  // If this has an identifier, add it to the scope stack.
15395  if (TUK == TUK_Friend) {
15396  // We might be replacing an existing declaration in the lookup tables;
15397  // if so, borrow its access specifier.
15398  if (PrevDecl)
15399  New->setAccess(PrevDecl->getAccess());
15400 
15402  DC->makeDeclVisibleInContext(New);
15403  if (Name) // can be null along some error paths
15404  if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
15405  PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
15406  } else if (Name) {
15407  S = getNonFieldDeclScope(S);
15408  PushOnScopeChains(New, S, true);
15409  } else {
15410  CurContext->addDecl(New);
15411  }
15412 
15413  // If this is the C FILE type, notify the AST context.
15414  if (IdentifierInfo *II = New->getIdentifier())
15415  if (!New->isInvalidDecl() &&
15417  II->isStr("FILE"))
15418  Context.setFILEDecl(New);
15419 
15420  if (PrevDecl)
15421  mergeDeclAttributes(New, PrevDecl);
15422 
15423  // If there's a #pragma GCC visibility in scope, set the visibility of this
15424  // record.
15425  AddPushedVisibilityAttribute(New);
15426 
15427  if (isMemberSpecialization && !New->isInvalidDecl())
15428  CompleteMemberSpecialization(New, Previous);
15429 
15430  OwnedDecl = true;
15431  // In C++, don't return an invalid declaration. We can't recover well from
15432  // the cases where we make the type anonymous.
15433  if (Invalid && getLangOpts().CPlusPlus) {
15434  if (New->isBeingDefined())
15435  if (auto RD = dyn_cast<RecordDecl>(New))
15436  RD->completeDefinition();
15437  return nullptr;
15438  } else if (SkipBody && SkipBody->ShouldSkip) {
15439  return SkipBody->Previous;
15440  } else {
15441  return New;
15442  }
15443 }
15444 
15446  AdjustDeclIfTemplate(TagD);
15447  TagDecl *Tag = cast<TagDecl>(TagD);
15448 
15449  // Enter the tag context.
15450  PushDeclContext(S, Tag);
15451 
15452  ActOnDocumentableDecl(TagD);
15453 
15454  // If there's a #pragma GCC visibility in scope, set the visibility of this
15455  // record.
15456  AddPushedVisibilityAttribute(Tag);
15457 }
15458 
15460  SkipBodyInfo &SkipBody) {
15461  if (!hasStructuralCompatLayout(Prev, SkipBody.New))
15462  return false;
15463 
15464  // Make the previous decl visible.
15465  makeMergedDefinitionVisible(SkipBody.Previous);
15466  return true;
15467 }
15468 
15470  assert(isa<ObjCContainerDecl>(IDecl) &&
15471  "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
15472  DeclContext *OCD = cast<DeclContext>(IDecl);
15473  assert(getContainingDC(OCD) == CurContext &&
15474  "The next DeclContext should be lexically contained in the current one.");
15475  CurContext = OCD;
15476  return IDecl;
15477 }
15478 
15480  SourceLocation FinalLoc,
15481  bool IsFinalSpelledSealed,
15482  SourceLocation LBraceLoc) {
15483  AdjustDeclIfTemplate(TagD);
15484  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
15485 
15486  FieldCollector->StartClass();
15487 
15488  if (!Record->getIdentifier())
15489  return;
15490 
15491  if (FinalLoc.isValid())
15492  Record->addAttr(new (Context)
15493  FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
15494 
15495  // C++ [class]p2:
15496  // [...] The class-name is also inserted into the scope of the
15497  // class itself; this is known as the injected-class-name. For
15498  // purposes of access checking, the injected-class-name is treated
15499  // as if it were a public member name.
15500  CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
15501  Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
15502  Record->getLocation(), Record->getIdentifier(),
15503  /*PrevDecl=*/nullptr,
15504  /*DelayTypeCreation=*/true);
15505  Context.getTypeDeclType(InjectedClassName, Record);
15506  InjectedClassName->setImplicit();
15507  InjectedClassName->setAccess(AS_public);
15508  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
15509  InjectedClassName->setDescribedClassTemplate(Template);
15510  PushOnScopeChains(InjectedClassName, S);
15511  assert(InjectedClassName->isInjectedClassName() &&
15512  "Broken injected-class-name");
15513 }
15514 
15516  SourceRange BraceRange) {
15517  AdjustDeclIfTemplate(TagD);
15518  TagDecl *Tag = cast<TagDecl>(TagD);
15519  Tag->setBraceRange(BraceRange);
15520 
15521  // Make sure we "complete" the definition even it is invalid.
15522  if (Tag->isBeingDefined()) {
15523  assert(Tag->isInvalidDecl() && "We should already have completed it");
15524  if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15525  RD->completeDefinition();
15526  }
15527 
15528  if (isa<CXXRecordDecl>(Tag)) {
15529  FieldCollector->FinishClass();
15530  }
15531 
15532  // Exit this scope of this tag's definition.
15533  PopDeclContext();
15534 
15535  if (getCurLexicalContext()->isObjCContainer() &&
15536  Tag->getDeclContext()->isFileContext())
15538 
15539  // Notify the consumer that we've defined a tag.
15540  if (!Tag->isInvalidDecl())
15541  Consumer.HandleTagDeclDefinition(Tag);
15542 }
15543 
15545  // Exit this scope of this interface definition.
15546  PopDeclContext();
15547 }
15548 
15550  assert(DC == CurContext && "Mismatch of container contexts");
15551  OriginalLexicalContext = DC;
15552  ActOnObjCContainerFinishDefinition();
15553 }
15554 
15556  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
15557  OriginalLexicalContext = nullptr;
15558 }
15559 
15561  AdjustDeclIfTemplate(TagD);
15562  TagDecl *Tag = cast<TagDecl>(TagD);
15563  Tag->setInvalidDecl();
15564 
15565  // Make sure we "complete" the definition even it is invalid.
15566  if (Tag->isBeingDefined()) {
15567  if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15568  RD->completeDefinition();
15569  }
15570 
15571  // We're undoing ActOnTagStartDefinition here, not
15572  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
15573  // the FieldCollector.
15574 
15575  PopDeclContext();
15576 }
15577 
15578 // Note that FieldName may be null for anonymous bitfields.
15580  IdentifierInfo *FieldName,
15581  QualType FieldTy, bool IsMsStruct,
15582  Expr *BitWidth, bool *ZeroWidth) {
15583  // Default to true; that shouldn't confuse checks for emptiness
15584  if (ZeroWidth)
15585  *ZeroWidth = true;
15586 
15587  // C99 6.7.2.1p4 - verify the field type.
15588  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
15589  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
15590  // Handle incomplete types with specific error.
15591  if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
15592  return ExprError();
15593  if (FieldName)
15594  return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
15595  << FieldName << FieldTy << BitWidth->getSourceRange();
15596  return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
15597  << FieldTy << BitWidth->getSourceRange();
15598  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
15599  UPPC_BitFieldWidth))
15600  return ExprError();
15601 
15602  // If the bit-width is type- or value-dependent, don't try to check
15603  // it now.
15604  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
15605  return BitWidth;
15606 
15607  llvm::APSInt Value;
15608  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
15609  if (ICE.isInvalid())
15610  return ICE;
15611  BitWidth = ICE.get();
15612 
15613  if (Value != 0 && ZeroWidth)
15614  *ZeroWidth = false;
15615 
15616  // Zero-width bitfield is ok for anonymous field.
15617  if (Value == 0 && FieldName)
15618  return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
15619 
15620  if (Value.isSigned() && Value.isNegative()) {
15621  if (FieldName)
15622  return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
15623  << FieldName << Value.toString(10);
15624  return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
15625  << Value.toString(10);
15626  }
15627 
15628  if (!FieldTy->isDependentType()) {
15629  uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
15630  uint64_t TypeWidth = Context.getIntWidth(FieldTy);
15631  bool BitfieldIsOverwide = Value.ugt(TypeWidth);
15632 
15633  // Over-wide bitfields are an error in C or when using the MSVC bitfield
15634  // ABI.
15635  bool CStdConstraintViolation =
15636  BitfieldIsOverwide && !getLangOpts().CPlusPlus;
15637  bool MSBitfieldViolation =
15638  Value.ugt(TypeStorageSize) &&
15639  (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
15640  if (CStdConstraintViolation || MSBitfieldViolation) {
15641  unsigned DiagWidth =
15642  CStdConstraintViolation ? TypeWidth : TypeStorageSize;
15643  if (FieldName)
15644  return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
15645  << FieldName << (unsigned)Value.getZExtValue()
15646  << !CStdConstraintViolation << DiagWidth;
15647 
15648  return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
15649  << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
15650  << DiagWidth;
15651  }
15652 
15653  // Warn on types where the user might conceivably expect to get all
15654  // specified bits as value bits: that's all integral types other than
15655  // 'bool'.
15656  if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
15657  if (FieldName)
15658  Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
15659  << FieldName << (unsigned)Value.getZExtValue()
15660  << (unsigned)TypeWidth;
15661  else
15662  Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
15663  << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
15664  }
15665  }
15666 
15667  return BitWidth;
15668 }
15669 
15670 /// ActOnField - Each field of a C struct/union is passed into this in order
15671 /// to create a FieldDecl object for it.
15673  Declarator &D, Expr *BitfieldWidth) {
15674  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
15675  DeclStart, D, static_cast<Expr*>(BitfieldWidth),
15676  /*InitStyle=*/ICIS_NoInit, AS_public);
15677  return Res;
15678 }
15679 
15680 /// HandleField - Analyze a field of a C struct or a C++ data member.
15681 ///
15683  SourceLocation DeclStart,
15684  Declarator &D, Expr *BitWidth,
15685  InClassInitStyle InitStyle,
15686  AccessSpecifier AS) {
15687  if (D.isDecompositionDeclarator()) {
15689  Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
15690  << Decomp.getSourceRange();
15691  return nullptr;
15692  }
15693 
15694  IdentifierInfo *II = D.getIdentifier();
15695  SourceLocation Loc = DeclStart;
15696  if (II) Loc = D.getIdentifierLoc();
15697 
15698  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15699  QualType T = TInfo->getType();
15700  if (getLangOpts().CPlusPlus) {
15701  CheckExtraCXXDefaultArguments(D);
15702 
15703  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15704  UPPC_DataMemberType)) {
15705  D.setInvalidType();
15706  T = Context.IntTy;
15707  TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
15708  }
15709  }
15710 
15711  DiagnoseFunctionSpecifiers(D.getDeclSpec());
15712 
15713  if (D.getDeclSpec().isInlineSpecified())
15714  Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
15715  << getLangOpts().CPlusPlus17;
15718  diag::err_invalid_thread)
15719  << DeclSpec::getSpecifierName(TSCS);
15720 
15721  // Check to see if this name was declared as a member previously
15722  NamedDecl *PrevDecl = nullptr;
15723  LookupResult Previous(*this, II, Loc, LookupMemberName,
15724  ForVisibleRedeclaration);
15725  LookupName(Previous, S);
15726  switch (Previous.getResultKind()) {
15727  case LookupResult::Found:
15729  PrevDecl = Previous.getAsSingle<NamedDecl>();
15730  break;
15731 
15733  PrevDecl = Previous.getRepresentativeDecl();
15734  break;
15735 
15739  break;
15740  }
15741  Previous.suppressDiagnostics();
15742 
15743  if (PrevDecl && PrevDecl->isTemplateParameter()) {
15744  // Maybe we will complain about the shadowed template parameter.
15745  DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15746  // Just pretend that we didn't see the previous declaration.
15747  PrevDecl = nullptr;
15748  }
15749 
15750  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
15751  PrevDecl = nullptr;
15752 
15753  bool Mutable
15755  SourceLocation TSSL = D.getBeginLoc();
15756  FieldDecl *NewFD
15757  = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
15758  TSSL, AS, PrevDecl, &D);
15759 
15760  if (NewFD->isInvalidDecl())
15761  Record->setInvalidDecl();
15762 
15764  NewFD->setModulePrivate();
15765 
15766  if (NewFD->isInvalidDecl() && PrevDecl) {
15767  // Don't introduce NewFD into scope; there's already something
15768  // with the same name in the same scope.
15769  } else if (II) {
15770  PushOnScopeChains(NewFD, S);
15771  } else
15772  Record->addDecl(NewFD);
15773 
15774  return NewFD;
15775 }
15776 
15777 /// Build a new FieldDecl and check its well-formedness.
15778 ///
15779 /// This routine builds a new FieldDecl given the fields name, type,
15780 /// record, etc. \p PrevDecl should refer to any previous declaration
15781 /// with the same name and in the same scope as the field to be
15782 /// created.
15783 ///
15784 /// \returns a new FieldDecl.
15785 ///
15786 /// \todo The Declarator argument is a hack. It will be removed once
15788  TypeSourceInfo *TInfo,
15789  RecordDecl *Record, SourceLocation Loc,
15790  bool Mutable, Expr *BitWidth,
15791  InClassInitStyle InitStyle,
15792  SourceLocation TSSL,
15793  AccessSpecifier AS, NamedDecl *PrevDecl,
15794  Declarator *D) {
15795  IdentifierInfo *II = Name.getAsIdentifierInfo();
15796  bool InvalidDecl = false;
15797  if (D) InvalidDecl = D->isInvalidType();
15798 
15799  // If we receive a broken type, recover by assuming 'int' and
15800  // marking this declaration as invalid.
15801  if (T.isNull()) {
15802  InvalidDecl = true;
15803  T = Context.IntTy;
15804  }
15805 
15806  QualType EltTy = Context.getBaseElementType(T);
15807  if (!EltTy->isDependentType()) {
15808  if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
15809  // Fields of incomplete type force their record to be invalid.
15810  Record->setInvalidDecl();
15811  InvalidDecl = true;
15812  } else {
15813  NamedDecl *Def;
15814  EltTy->isIncompleteType(&Def);
15815  if (Def && Def->isInvalidDecl()) {
15816  Record->setInvalidDecl();
15817  InvalidDecl = true;
15818  }
15819  }
15820  }
15821 
15822  // TR 18037 does not allow fields to be declared with address space
15825  Diag(Loc, diag::err_field_with_address_space);
15826  Record->setInvalidDecl();
15827  InvalidDecl = true;
15828  }
15829 
15830  if (LangOpts.OpenCL) {
15831  // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
15832  // used as structure or union field: image, sampler, event or block types.
15833  if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
15834  T->isBlockPointerType()) {
15835  Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
15836  Record->setInvalidDecl();
15837  InvalidDecl = true;
15838  }
15839  // OpenCL v1.2 s6.9.c: bitfields are not supported.
15840  if (BitWidth) {
15841  Diag(Loc, diag::err_opencl_bitfields);
15842  InvalidDecl = true;
15843  }
15844  }
15845 
15846  // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
15847  if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
15848  T.hasQualifiers()) {
15849  InvalidDecl = true;
15850  Diag(Loc, diag::err_anon_bitfield_qualifiers);
15851  }
15852 
15853  // C99 6.7.2.1p8: A member of a structure or union may have any type other
15854  // than a variably modified type.
15855  if (!InvalidDecl && T->isVariablyModifiedType()) {
15856  bool SizeIsNegative;
15857  llvm::APSInt Oversized;
15858 
15859  TypeSourceInfo *FixedTInfo =
15861  SizeIsNegative,
15862  Oversized);
15863  if (FixedTInfo) {
15864  Diag(Loc, diag::warn_illegal_constant_array_size);
15865  TInfo = FixedTInfo;
15866  T = FixedTInfo->getType();
15867  } else {
15868  if (SizeIsNegative)
15869  Diag(Loc, diag::err_typecheck_negative_array_size);
15870  else if (Oversized.getBoolValue())
15871  Diag(Loc, diag::err_array_too_large)
15872  << Oversized.toString(10);
15873  else
15874  Diag(Loc, diag::err_typecheck_field_variable_size);
15875  InvalidDecl = true;
15876  }
15877  }
15878 
15879  // Fields can not have abstract class types
15880  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
15881  diag::err_abstract_type_in_decl,
15882  AbstractFieldType))
15883  InvalidDecl = true;
15884 
15885  bool ZeroWidth = false;
15886  if (InvalidDecl)
15887  BitWidth = nullptr;
15888  // If this is declared as a bit-field, check the bit-field.
15889  if (BitWidth) {
15890  BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
15891  &ZeroWidth).get();
15892  if (!BitWidth) {
15893  InvalidDecl = true;
15894  BitWidth = nullptr;
15895  ZeroWidth = false;
15896  }
15897  }
15898 
15899  // Check that 'mutable' is consistent with the type of the declaration.
15900  if (!InvalidDecl && Mutable) {
15901  unsigned DiagID = 0;
15902  if (T->isReferenceType())
15903  DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
15904  : diag::err_mutable_reference;
15905  else if (T.isConstQualified())
15906  DiagID = diag::err_mutable_const;
15907 
15908  if (DiagID) {
15909  SourceLocation ErrLoc = Loc;
15910  if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
15911  ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
15912  Diag(ErrLoc, DiagID);
15913  if (DiagID != diag::ext_mutable_reference) {
15914  Mutable = false;
15915  InvalidDecl = true;
15916  }
15917  }
15918  }
15919 
15920  // C++11 [class.union]p8 (DR1460):
15921  // At most one variant member of a union may have a
15922  // brace-or-equal-initializer.
15923  if (InitStyle != ICIS_NoInit)
15924  checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
15925 
15926  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
15927  BitWidth, Mutable, InitStyle);
15928  if (InvalidDecl)
15929  NewFD->setInvalidDecl();
15930 
15931  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
15932  Diag(Loc, diag::err_duplicate_member) << II;
15933  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15934  NewFD->setInvalidDecl();
15935  }
15936 
15937  if (!InvalidDecl && getLangOpts().CPlusPlus) {
15938  if (Record->isUnion()) {
15939  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15940  CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
15941  if (RDecl->getDefinition()) {
15942  // C++ [class.union]p1: An object of a class with a non-trivial
15943  // constructor, a non-trivial copy constructor, a non-trivial
15944  // destructor, or a non-trivial copy assignment operator
15945  // cannot be a member of a union, nor can an array of such
15946  // objects.
15947  if (CheckNontrivialField(NewFD))
15948  NewFD->setInvalidDecl();
15949  }
15950  }
15951 
15952  // C++ [class.union]p1: If a union contains a member of reference type,
15953  // the program is ill-formed, except when compiling with MSVC extensions
15954  // enabled.
15955  if (EltTy->isReferenceType()) {
15956  Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
15957  diag::ext_union_member_of_reference_type :
15958  diag::err_union_member_of_reference_type)
15959  << NewFD->getDeclName() << EltTy;
15960  if (!getLangOpts().MicrosoftExt)
15961  NewFD->setInvalidDecl();
15962  }
15963  }
15964  }
15965 
15966  // FIXME: We need to pass in the attributes given an AST
15967  // representation, not a parser representation.
15968  if (D) {
15969  // FIXME: The current scope is almost... but not entirely... correct here.
15970  ProcessDeclAttributes(getCurScope(), NewFD, *D);
15971 
15972  if (NewFD->hasAttrs())
15973  CheckAlignasUnderalignment(NewFD);
15974  }
15975 
15976  // In auto-retain/release, infer strong retension for fields of
15977  // retainable type.
15978  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
15979  NewFD->setInvalidDecl();
15980 
15981  if (T.isObjCGCWeak())
15982  Diag(Loc, diag::warn_attribute_weak_on_field);
15983 
15984  NewFD->setAccess(AS);
15985  return NewFD;
15986 }
15987 
15989  assert(FD);
15990  assert(getLangOpts().CPlusPlus && "valid check only for C++");
15991 
15992  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
15993  return false;
15994 
15995  QualType EltTy = Context.getBaseElementType(FD->getType());
15996  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15997  CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
15998  if (RDecl->getDefinition()) {
15999  // We check for copy constructors before constructors
16000  // because otherwise we'll never get complaints about
16001  // copy constructors.
16002 
16003  CXXSpecialMember member = CXXInvalid;
16004  // We're required to check for any non-trivial constructors. Since the
16005  // implicit default constructor is suppressed if there are any
16006  // user-declared constructors, we just need to check that there is a
16007  // trivial default constructor and a trivial copy constructor. (We don't
16008  // worry about move constructors here, since this is a C++98 check.)
16009  if (RDecl->hasNonTrivialCopyConstructor())
16010  member = CXXCopyConstructor;
16011  else if (!RDecl->hasTrivialDefaultConstructor())
16012  member = CXXDefaultConstructor;
16013  else if (RDecl->hasNonTrivialCopyAssignment())
16014  member = CXXCopyAssignment;
16015  else if (RDecl->hasNonTrivialDestructor())
16016  member = CXXDestructor;
16017 
16018  if (member != CXXInvalid) {
16019  if (!getLangOpts().CPlusPlus11 &&
16020  getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
16021  // Objective-C++ ARC: it is an error to have a non-trivial field of
16022  // a union. However, system headers in Objective-C programs
16023  // occasionally have Objective-C lifetime objects within unions,
16024  // and rather than cause the program to fail, we make those
16025  // members unavailable.
16026  SourceLocation Loc = FD->getLocation();
16027  if (getSourceManager().isInSystemHeader(Loc)) {
16028  if (!FD->hasAttr<UnavailableAttr>())
16029  FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16030  UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
16031  return false;
16032  }
16033  }
16034 
16035  Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
16036  diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
16037  diag::err_illegal_union_or_anon_struct_member)
16038  << FD->getParent()->isUnion() << FD->getDeclName() << member;
16039  DiagnoseNontrivial(RDecl, member);
16040  return !getLangOpts().CPlusPlus11;
16041  }
16042  }
16043  }
16044 
16045  return false;
16046 }
16047 
16048 /// TranslateIvarVisibility - Translate visibility from a token ID to an
16049 /// AST enum value.
16052  switch (ivarVisibility) {
16053  default: llvm_unreachable("Unknown visitibility kind");
16054  case tok::objc_private: return ObjCIvarDecl::Private;
16055  case tok::objc_public: return ObjCIvarDecl::Public;
16056  case tok::objc_protected: return ObjCIvarDecl::Protected;
16057  case tok::objc_package: return ObjCIvarDecl::Package;
16058  }
16059 }
16060 
16061 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
16062 /// in order to create an IvarDecl object for it.
16064  SourceLocation DeclStart,
16065  Declarator &D, Expr *BitfieldWidth,
16067 
16068  IdentifierInfo *II = D.getIdentifier();
16069  Expr *BitWidth = (Expr*)BitfieldWidth;
16070  SourceLocation Loc = DeclStart;
16071  if (II) Loc = D.getIdentifierLoc();
16072 
16073  // FIXME: Unnamed fields can be handled in various different ways, for
16074  // example, unnamed unions inject all members into the struct namespace!
16075 
16076  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16077  QualType T = TInfo->getType();
16078 
16079  if (BitWidth) {
16080  // 6.7.2.1p3, 6.7.2.1p4
16081  BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
16082  if (!BitWidth)
16083  D.setInvalidType();
16084  } else {
16085  // Not a bitfield.
16086 
16087  // validate II.
16088 
16089  }
16090  if (T->isReferenceType()) {
16091  Diag(Loc, diag::err_ivar_reference_type);
16092  D.setInvalidType();
16093  }
16094  // C99 6.7.2.1p8: A member of a structure or union may have any type other
16095  // than a variably modified type.
16096  else if (T->isVariablyModifiedType()) {
16097  Diag(Loc, diag::err_typecheck_ivar_variable_size);
16098  D.setInvalidType();
16099  }
16100 
16101  // Get the visibility (access control) for this ivar.
16103  Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
16105  // Must set ivar's DeclContext to its enclosing interface.
16106  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
16107  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
16108  return nullptr;
16109  ObjCContainerDecl *EnclosingContext;
16110  if (ObjCImplementationDecl *IMPDecl =
16111  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16112  if (LangOpts.ObjCRuntime.isFragile()) {
16113  // Case of ivar declared in an implementation. Context is that of its class.
16114  EnclosingContext = IMPDecl->getClassInterface();
16115  assert(EnclosingContext && "Implementation has no class interface!");
16116  }
16117  else
16118  EnclosingContext = EnclosingDecl;
16119  } else {
16120  if (ObjCCategoryDecl *CDecl =
16121  dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16122  if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
16123  Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
16124  return nullptr;
16125  }
16126  }
16127  EnclosingContext = EnclosingDecl;
16128  }
16129 
16130  // Construct the decl.
16131  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
16132  DeclStart, Loc, II, T,
16133  TInfo, ac, (Expr *)BitfieldWidth);
16134 
16135  if (II) {
16136  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
16137  ForVisibleRedeclaration);
16138  if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
16139  && !isa<TagDecl>(PrevDecl)) {
16140  Diag(Loc, diag::err_duplicate_member) << II;
16141  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16142  NewID->setInvalidDecl();
16143  }
16144  }
16145 
16146  // Process attributes attached to the ivar.
16147  ProcessDeclAttributes(S, NewID, D);
16148 
16149  if (D.isInvalidType())
16150  NewID->setInvalidDecl();
16151 
16152  // In ARC, infer 'retaining' for ivars of retainable type.
16153  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
16154  NewID->setInvalidDecl();
16155 
16157  NewID->setModulePrivate();
16158 
16159  if (II) {
16160  // FIXME: When interfaces are DeclContexts, we'll need to add
16161  // these to the interface.
16162  S->AddDecl(NewID);
16163  IdResolver.AddDecl(NewID);
16164  }
16165 
16166  if (LangOpts.ObjCRuntime.isNonFragile() &&
16167  !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
16168  Diag(Loc, diag::warn_ivars_in_interface);
16169 
16170  return NewID;
16171 }
16172 
16173 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
16174 /// class and class extensions. For every class \@interface and class
16175 /// extension \@interface, if the last ivar is a bitfield of any type,
16176 /// then add an implicit `char :0` ivar to the end of that interface.
16178  SmallVectorImpl<Decl *> &AllIvarDecls) {
16179  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
16180  return;
16181 
16182  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
16183  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
16184 
16185  if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
16186  return;
16187  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
16188  if (!ID) {
16189  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
16190  if (!CD->IsClassExtension())
16191  return;
16192  }
16193  // No need to add this to end of @implementation.
16194  else
16195  return;
16196  }
16197  // All conditions are met. Add a new bitfield to the tail end of ivars.
16198  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
16199  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
16200 
16201  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
16202  DeclLoc, DeclLoc, nullptr,
16203  Context.CharTy,
16204  Context.getTrivialTypeSourceInfo(Context.CharTy,
16205  DeclLoc),
16207  true);
16208  AllIvarDecls.push_back(Ivar);
16209 }
16210 
16211 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
16212  ArrayRef<Decl *> Fields, SourceLocation LBrac,
16213  SourceLocation RBrac,
16214  const ParsedAttributesView &Attrs) {
16215  assert(EnclosingDecl && "missing record or interface decl");
16216 
16217  // If this is an Objective-C @implementation or category and we have
16218  // new fields here we should reset the layout of the interface since
16219  // it will now change.
16220  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
16221  ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
16222  switch (DC->getKind()) {
16223  default: break;
16224  case Decl::ObjCCategory:
16225  Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
16226  break;
16227  case Decl::ObjCImplementation:
16228  Context.
16229  ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
16230  break;
16231  }
16232  }
16233 
16234  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
16235  CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
16236 
16237  // Start counting up the number of named members; make sure to include
16238  // members of anonymous structs and unions in the total.
16239  unsigned NumNamedMembers = 0;
16240  if (Record) {
16241  for (const auto *I : Record->decls()) {
16242  if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
16243  if (IFD->getDeclName())
16244  ++NumNamedMembers;
16245  }
16246  }
16247 
16248  // Verify that all the fields are okay.
16249  SmallVector<FieldDecl*, 32> RecFields;
16250 
16251  for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
16252  i != end; ++i) {
16253  FieldDecl *FD = cast<FieldDecl>(*i);
16254 
16255  // Get the type for the field.
16256  const Type *FDTy = FD->getType().getTypePtr();
16257 
16258  if (!FD->isAnonymousStructOrUnion()) {
16259  // Remember all fields written by the user.
16260  RecFields.push_back(FD);
16261  }
16262 
16263  // If the field is already invalid for some reason, don't emit more
16264  // diagnostics about it.
16265  if (FD->isInvalidDecl()) {
16266  EnclosingDecl->setInvalidDecl();
16267  continue;
16268  }
16269 
16270  // C99 6.7.2.1p2:
16271  // A structure or union shall not contain a member with
16272  // incomplete or function type (hence, a structure shall not
16273  // contain an instance of itself, but may contain a pointer to
16274  // an instance of itself), except that the last member of a
16275  // structure with more than one named member may have incomplete
16276  // array type; such a structure (and any union containing,
16277  // possibly recursively, a member that is such a structure)
16278  // shall not be a member of a structure or an element of an
16279  // array.
16280  bool IsLastField = (i + 1 == Fields.end());
16281  if (FDTy->isFunctionType()) {
16282  // Field declared as a function.
16283  Diag(FD->getLocation(), diag::err_field_declared_as_function)
16284  << FD->getDeclName();
16285  FD->setInvalidDecl();
16286  EnclosingDecl->setInvalidDecl();
16287  continue;
16288  } else if (FDTy->isIncompleteArrayType() &&
16289  (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
16290  if (Record) {
16291  // Flexible array member.
16292  // Microsoft and g++ is more permissive regarding flexible array.
16293  // It will accept flexible array in union and also
16294  // as the sole element of a struct/class.
16295  unsigned DiagID = 0;
16296  if (!Record->isUnion() && !IsLastField) {
16297  Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
16298  << FD->getDeclName() << FD->getType() << Record->getTagKind();
16299  Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
16300  FD->setInvalidDecl();
16301  EnclosingDecl->setInvalidDecl();
16302  continue;
16303  } else if (Record->isUnion())
16304  DiagID = getLangOpts().MicrosoftExt
16305  ? diag::ext_flexible_array_union_ms
16306  : getLangOpts().CPlusPlus
16307  ? diag::ext_flexible_array_union_gnu
16308  : diag::err_flexible_array_union;
16309  else if (NumNamedMembers < 1)
16310  DiagID = getLangOpts().MicrosoftExt
16311  ? diag::ext_flexible_array_empty_aggregate_ms
16312  : getLangOpts().CPlusPlus
16313  ? diag::ext_flexible_array_empty_aggregate_gnu
16314  : diag::err_flexible_array_empty_aggregate;
16315 
16316  if (DiagID)
16317  Diag(FD->getLocation(), DiagID) << FD->getDeclName()
16318  << Record->getTagKind();
16319  // While the layout of types that contain virtual bases is not specified
16320  // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
16321  // virtual bases after the derived members. This would make a flexible
16322  // array member declared at the end of an object not adjacent to the end
16323  // of the type.
16324  if (CXXRecord && CXXRecord->getNumVBases() != 0)
16325  Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
16326  << FD->getDeclName() << Record->getTagKind();
16327  if (!getLangOpts().C99)
16328  Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
16329  << FD->getDeclName() << Record->getTagKind();
16330 
16331  // If the element type has a non-trivial destructor, we would not
16332  // implicitly destroy the elements, so disallow it for now.
16333  //
16334  // FIXME: GCC allows this. We should probably either implicitly delete
16335  // the destructor of the containing class, or just allow this.
16336  QualType BaseElem = Context.getBaseElementType(FD->getType());
16337  if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
16338  Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
16339  << FD->getDeclName() << FD->getType();
16340  FD->setInvalidDecl();
16341  EnclosingDecl->setInvalidDecl();
16342  continue;
16343  }
16344  // Okay, we have a legal flexible array member at the end of the struct.
16345  Record->setHasFlexibleArrayMember(true);
16346  } else {
16347  // In ObjCContainerDecl ivars with incomplete array type are accepted,
16348  // unless they are followed by another ivar. That check is done
16349  // elsewhere, after synthesized ivars are known.
16350  }
16351  } else if (!FDTy->isDependentType() &&
16352  RequireCompleteType(FD->getLocation(), FD->getType(),
16353  diag::err_field_incomplete)) {
16354  // Incomplete type
16355  FD->setInvalidDecl();
16356  EnclosingDecl->setInvalidDecl();
16357  continue;
16358  } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
16359  if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
16360  // A type which contains a flexible array member is considered to be a
16361  // flexible array member.
16362  Record->setHasFlexibleArrayMember(true);
16363  if (!Record->isUnion()) {
16364  // If this is a struct/class and this is not the last element, reject
16365  // it. Note that GCC supports variable sized arrays in the middle of
16366  // structures.
16367  if (!IsLastField)
16368  Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
16369  << FD->getDeclName() << FD->getType();
16370  else {
16371  // We support flexible arrays at the end of structs in
16372  // other structs as an extension.
16373  Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
16374  << FD->getDeclName();
16375  }
16376  }
16377  }
16378  if (isa<ObjCContainerDecl>(EnclosingDecl) &&
16379  RequireNonAbstractType(FD->getLocation(), FD->getType(),
16380  diag::err_abstract_type_in_decl,
16381  AbstractIvarType)) {
16382  // Ivars can not have abstract class types
16383  FD->setInvalidDecl();
16384  }
16385  if (Record && FDTTy->getDecl()->hasObjectMember())
16386  Record->setHasObjectMember(true);
16387  if (Record && FDTTy->getDecl()->hasVolatileMember())
16388  Record->setHasVolatileMember(true);
16389  } else if (FDTy->isObjCObjectType()) {
16390  /// A field cannot be an Objective-c object
16391  Diag(FD->getLocation(), diag::err_statically_allocated_object)
16392  << FixItHint::CreateInsertion(FD->getLocation(), "*");
16393  QualType T = Context.getObjCObjectPointerType(FD->getType());
16394  FD->setType(T);
16395  } else if (getLangOpts().ObjC &&
16396  getLangOpts().getGC() != LangOptions::NonGC &&
16397  Record && !Record->hasObjectMember()) {
16398  if (FD->getType()->isObjCObjectPointerType() ||
16399  FD->getType().isObjCGCStrong())
16400  Record->setHasObjectMember(true);
16401  else if (Context.getAsArrayType(FD->getType())) {
16402  QualType BaseType = Context.getBaseElementType(FD->getType());
16403  if (BaseType->isRecordType() &&
16404  BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
16405  Record->setHasObjectMember(true);
16406  else if (BaseType->isObjCObjectPointerType() ||
16407  BaseType.isObjCGCStrong())
16408  Record->setHasObjectMember(true);
16409  }
16410  }
16411 
16412  if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
16413  QualType FT = FD->getType();
16417  Record->isUnion())
16419  }
16422  Record->setNonTrivialToPrimitiveCopy(true);
16423  if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
16425  }
16426  if (FT.isDestructedType()) {
16427  Record->setNonTrivialToPrimitiveDestroy(true);
16428  Record->setParamDestroyedInCallee(true);
16429  if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
16431  }
16432 
16433  if (const auto *RT = FT->getAs<RecordType>()) {
16434  if (RT->getDecl()->getArgPassingRestrictions() ==
16437  } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
16439  }
16440 
16441  if (Record && FD->getType().isVolatileQualified())
16442  Record->setHasVolatileMember(true);
16443  // Keep track of the number of named members.
16444  if (FD->getIdentifier())
16445  ++NumNamedMembers;
16446  }
16447 
16448  // Okay, we successfully defined 'Record'.
16449  if (Record) {
16450  bool Completed = false;
16451  if (CXXRecord) {
16452  if (!CXXRecord->isInvalidDecl()) {
16453  // Set access bits correctly on the directly-declared conversions.
16455  I = CXXRecord->conversion_begin(),
16456  E = CXXRecord->conversion_end(); I != E; ++I)
16457  I.setAccess((*I)->getAccess());
16458  }
16459 
16460  if (!CXXRecord->isDependentType()) {
16461  // Add any implicitly-declared members to this class.
16462  AddImplicitlyDeclaredMembersToClass(CXXRecord);
16463 
16464  if (!CXXRecord->isInvalidDecl()) {
16465  // If we have virtual base classes, we may end up finding multiple
16466  // final overriders for a given virtual function. Check for this
16467  // problem now.
16468  if (CXXRecord->getNumVBases()) {
16469  CXXFinalOverriderMap FinalOverriders;
16470  CXXRecord->getFinalOverriders(FinalOverriders);
16471 
16472  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
16473  MEnd = FinalOverriders.end();
16474  M != MEnd; ++M) {
16475  for (OverridingMethods::iterator SO = M->second.begin(),
16476  SOEnd = M->second.end();
16477  SO != SOEnd; ++SO) {
16478  assert(SO->second.size() > 0 &&
16479  "Virtual function without overriding functions?");
16480  if (SO->second.size() == 1)
16481  continue;
16482 
16483  // C++ [class.virtual]p2:
16484  // In a derived class, if a virtual member function of a base
16485  // class subobject has more than one final overrider the
16486  // program is ill-formed.
16487  Diag(Record->getLocation(), diag::err_multiple_final_overriders)
16488  << (const NamedDecl *)M->first << Record;
16489  Diag(M->first->getLocation(),
16490  diag::note_overridden_virtual_function);
16492  OM = SO->second.begin(),
16493  OMEnd = SO->second.end();
16494  OM != OMEnd; ++OM)
16495  Diag(OM->Method->getLocation(), diag::note_final_overrider)
16496  << (const NamedDecl *)M->first << OM->Method->getParent();
16497 
16498  Record->setInvalidDecl();
16499  }
16500  }
16501  CXXRecord->completeDefinition(&FinalOverriders);
16502  Completed = true;
16503  }
16504  }
16505  }
16506  }
16507 
16508  if (!Completed)
16509  Record->completeDefinition();
16510 
16511  // Handle attributes before checking the layout.
16512  ProcessDeclAttributeList(S, Record, Attrs);
16513 
16514  // We may have deferred checking for a deleted destructor. Check now.
16515  if (CXXRecord) {
16516  auto *Dtor = CXXRecord->getDestructor();
16517  if (Dtor && Dtor->isImplicit() &&
16518  ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
16519  CXXRecord->setImplicitDestructorIsDeleted();
16520  SetDeclDeleted(Dtor, CXXRecord->getLocation());
16521  }
16522  }
16523 
16524  if (Record->hasAttrs()) {
16525  CheckAlignasUnderalignment(Record);
16526 
16527  if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
16528  checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
16529  IA->getRange(), IA->getBestCase(),
16530  IA->getSemanticSpelling());
16531  }
16532 
16533  // Check if the structure/union declaration is a type that can have zero
16534  // size in C. For C this is a language extension, for C++ it may cause
16535  // compatibility problems.
16536  bool CheckForZeroSize;
16537  if (!getLangOpts().CPlusPlus) {
16538  CheckForZeroSize = true;
16539  } else {
16540  // For C++ filter out types that cannot be referenced in C code.
16541  CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
16542  CheckForZeroSize =
16543  CXXRecord->getLexicalDeclContext()->isExternCContext() &&
16544  !CXXRecord->isDependentType() &&
16545  CXXRecord->isCLike();
16546  }
16547  if (CheckForZeroSize) {
16548  bool ZeroSize = true;
16549  bool IsEmpty = true;
16550  unsigned NonBitFields = 0;
16551  for (RecordDecl::field_iterator I = Record->field_begin(),
16552  E = Record->field_end();
16553  (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
16554  IsEmpty = false;
16555  if (I->isUnnamedBitfield()) {
16556  if (!I->isZeroLengthBitField(Context))
16557  ZeroSize = false;
16558  } else {
16559  ++NonBitFields;
16560  QualType FieldType = I->getType();
16561  if (FieldType->isIncompleteType() ||
16562  !Context.getTypeSizeInChars(FieldType).isZero())
16563  ZeroSize = false;
16564  }
16565  }
16566 
16567  // Empty structs are an extension in C (C99 6.7.2.1p7). They are
16568  // allowed in C++, but warn if its declaration is inside
16569  // extern "C" block.
16570  if (ZeroSize) {
16571  Diag(RecLoc, getLangOpts().CPlusPlus ?
16572  diag::warn_zero_size_struct_union_in_extern_c :
16573  diag::warn_zero_size_struct_union_compat)
16574  << IsEmpty << Record->isUnion() << (NonBitFields > 1);
16575  }
16576 
16577  // Structs without named members are extension in C (C99 6.7.2.1p7),
16578  // but are accepted by GCC.
16579  if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
16580  Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
16581  diag::ext_no_named_members_in_struct_union)
16582  << Record->isUnion();
16583  }
16584  }
16585  } else {
16586  ObjCIvarDecl **ClsFields =
16587  reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
16588  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
16589  ID->setEndOfDefinitionLoc(RBrac);
16590  // Add ivar's to class's DeclContext.
16591  for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16592  ClsFields[i]->setLexicalDeclContext(ID);
16593  ID->addDecl(ClsFields[i]);
16594  }
16595  // Must enforce the rule that ivars in the base classes may not be
16596  // duplicates.
16597  if (ID->getSuperClass())
16598  DiagnoseDuplicateIvars(ID, ID->getSuperClass());
16599  } else if (ObjCImplementationDecl *IMPDecl =
16600  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16601  assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
16602  for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
16603  // Ivar declared in @implementation never belongs to the implementation.
16604  // Only it is in implementation's lexical context.
16605  ClsFields[I]->setLexicalDeclContext(IMPDecl);
16606  CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
16607  IMPDecl->setIvarLBraceLoc(LBrac);
16608  IMPDecl->setIvarRBraceLoc(RBrac);
16609  } else if (ObjCCategoryDecl *CDecl =
16610  dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16611  // case of ivars in class extension; all other cases have been
16612  // reported as errors elsewhere.
16613  // FIXME. Class extension does not have a LocEnd field.
16614  // CDecl->setLocEnd(RBrac);
16615  // Add ivar's to class extension's DeclContext.
16616  // Diagnose redeclaration of private ivars.
16617  ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
16618  for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16619  if (IDecl) {
16620  if (const ObjCIvarDecl *ClsIvar =
16621  IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
16622  Diag(ClsFields[i]->getLocation(),
16623  diag::err_duplicate_ivar_declaration);
16624  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
16625  continue;
16626  }
16627  for (const auto *Ext : IDecl->known_extensions()) {
16628  if (const ObjCIvarDecl *ClsExtIvar
16629  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
16630  Diag(ClsFields[i]->getLocation(),
16631  diag::err_duplicate_ivar_declaration);
16632  Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
16633  continue;
16634  }
16635  }
16636  }
16637  ClsFields[i]->setLexicalDeclContext(CDecl);
16638  CDecl->addDecl(ClsFields[i]);
16639  }
16640  CDecl->setIvarLBraceLoc(LBrac);
16641  CDecl->setIvarRBraceLoc(RBrac);
16642  }
16643  }
16644 }
16645 
16646 /// Determine whether the given integral value is representable within
16647 /// the given type T.
16649  llvm::APSInt &Value,
16650  QualType T) {
16651  assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
16652  "Integral type required!");
16653  unsigned BitWidth = Context.getIntWidth(T);
16654 
16655  if (Value.isUnsigned() || Value.isNonNegative()) {
16657  --BitWidth;
16658  return Value.getActiveBits() <= BitWidth;
16659  }
16660  return Value.getMinSignedBits() <= BitWidth;
16661 }
16662 
16663 // Given an integral type, return the next larger integral type
16664 // (or a NULL type of no such type exists).
16666  // FIXME: Int128/UInt128 support, which also needs to be introduced into
16667  // enum checking below.
16668  assert((T->isIntegralType(Context) ||
16669  T->isEnumeralType()) && "Integral type required!");
16670  const unsigned NumTypes = 4;
16671  QualType SignedIntegralTypes[NumTypes] = {
16672  Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
16673  };
16674  QualType UnsignedIntegralTypes[NumTypes] = {
16675  Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
16676  Context.UnsignedLongLongTy
16677  };
16678 
16679  unsigned BitWidth = Context.getTypeSize(T);
16680  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
16681  : UnsignedIntegralTypes;
16682  for (unsigned I = 0; I != NumTypes; ++I)
16683  if (Context.getTypeSize(Types[I]) > BitWidth)
16684  return Types[I];
16685 
16686  return QualType();
16687 }
16688 
16690  EnumConstantDecl *LastEnumConst,
16691  SourceLocation IdLoc,
16692  IdentifierInfo *Id,
16693  Expr *Val) {
16694  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16695  llvm::APSInt EnumVal(IntWidth);
16696  QualType EltTy;
16697 
16698  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
16699  Val = nullptr;
16700 
16701  if (Val)
16702  Val = DefaultLvalueConversion(Val).get();
16703 
16704  if (Val) {
16705  if (Enum->isDependentType() || Val->isTypeDependent())
16706  EltTy = Context.DependentTy;
16707  else {
16708  if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
16709  !getLangOpts().MSVCCompat) {
16710  // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
16711  // constant-expression in the enumerator-definition shall be a converted
16712  // constant expression of the underlying type.
16713  EltTy = Enum->getIntegerType();
16714  ExprResult Converted =
16715  CheckConvertedConstantExpression(Val, EltTy, EnumVal,
16716  CCEK_Enumerator);
16717  if (Converted.isInvalid())
16718  Val = nullptr;
16719  else
16720  Val = Converted.get();
16721  } else if (!Val->isValueDependent() &&
16722  !(Val = VerifyIntegerConstantExpression(Val,
16723  &EnumVal).get())) {
16724  // C99 6.7.2.2p2: Make sure we have an integer constant expression.
16725  } else {
16726  if (Enum->isComplete()) {
16727  EltTy = Enum->getIntegerType();
16728 
16729  // In Obj-C and Microsoft mode, require the enumeration value to be
16730  // representable in the underlying type of the enumeration. In C++11,
16731  // we perform a non-narrowing conversion as part of converted constant
16732  // expression checking.
16733  if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16734  if (getLangOpts().MSVCCompat) {
16735  Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
16736  Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
16737  } else
16738  Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
16739  } else
16740  Val = ImpCastExprToType(Val, EltTy,
16741  EltTy->isBooleanType() ?
16742  CK_IntegralToBoolean : CK_IntegralCast)
16743  .get();
16744  } else if (getLangOpts().CPlusPlus) {
16745  // C++11 [dcl.enum]p5:
16746  // If the underlying type is not fixed, the type of each enumerator
16747  // is the type of its initializing value:
16748  // - If an initializer is specified for an enumerator, the
16749  // initializing value has the same type as the expression.
16750  EltTy = Val->getType();
16751  } else {
16752  // C99 6.7.2.2p2:
16753  // The expression that defines the value of an enumeration constant
16754  // shall be an integer constant expression that has a value
16755  // representable as an int.
16756 
16757  // Complain if the value is not representable in an int.
16758  if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
16759  Diag(IdLoc, diag::ext_enum_value_not_int)
16760  << EnumVal.toString(10) << Val->getSourceRange()
16761  << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
16762  else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
16763  // Force the type of the expression to 'int'.
16764  Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
16765  }
16766  EltTy = Val->getType();
16767  }
16768  }
16769  }
16770  }
16771 
16772  if (!Val) {
16773  if (Enum->isDependentType())
16774  EltTy = Context.DependentTy;
16775  else if (!LastEnumConst) {
16776  // C++0x [dcl.enum]p5:
16777  // If the underlying type is not fixed, the type of each enumerator
16778  // is the type of its initializing value:
16779  // - If no initializer is specified for the first enumerator, the
16780  // initializing value has an unspecified integral type.
16781  //
16782  // GCC uses 'int' for its unspecified integral type, as does
16783  // C99 6.7.2.2p3.
16784  if (Enum->isFixed()) {
16785  EltTy = Enum->getIntegerType();
16786  }
16787  else {
16788  EltTy = Context.IntTy;
16789  }
16790  } else {
16791  // Assign the last value + 1.
16792  EnumVal = LastEnumConst->getInitVal();
16793  ++EnumVal;
16794  EltTy = LastEnumConst->getType();
16795 
16796  // Check for overflow on increment.
16797  if (EnumVal < LastEnumConst->getInitVal()) {
16798  // C++0x [dcl.enum]p5:
16799  // If the underlying type is not fixed, the type of each enumerator
16800  // is the type of its initializing value:
16801  //
16802  // - Otherwise the type of the initializing value is the same as
16803  // the type of the initializing value of the preceding enumerator
16804  // unless the incremented value is not representable in that type,
16805  // in which case the type is an unspecified integral type
16806  // sufficient to contain the incremented value. If no such type
16807  // exists, the program is ill-formed.
16808  QualType T = getNextLargerIntegralType(Context, EltTy);
16809  if (T.isNull() || Enum->isFixed()) {
16810  // There is no integral type larger enough to represent this
16811  // value. Complain, then allow the value to wrap around.
16812  EnumVal = LastEnumConst->getInitVal();
16813  EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
16814  ++EnumVal;
16815  if (Enum->isFixed())
16816  // When the underlying type is fixed, this is ill-formed.
16817  Diag(IdLoc, diag::err_enumerator_wrapped)
16818  << EnumVal.toString(10)
16819  << EltTy;
16820  else
16821  Diag(IdLoc, diag::ext_enumerator_increment_too_large)
16822  << EnumVal.toString(10);
16823  } else {
16824  EltTy = T;
16825  }
16826 
16827  // Retrieve the last enumerator's value, extent that type to the
16828  // type that is supposed to be large enough to represent the incremented
16829  // value, then increment.
16830  EnumVal = LastEnumConst->getInitVal();
16831  EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16832  EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
16833  ++EnumVal;
16834 
16835  // If we're not in C++, diagnose the overflow of enumerator values,
16836  // which in C99 means that the enumerator value is not representable in
16837  // an int (C99 6.7.2.2p2). However, we support GCC's extension that
16838  // permits enumerator values that are representable in some larger
16839  // integral type.
16840  if (!getLangOpts().CPlusPlus && !T.isNull())
16841  Diag(IdLoc, diag::warn_enum_value_overflow);
16842  } else if (!getLangOpts().CPlusPlus &&
16843  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16844  // Enforce C99 6.7.2.2p2 even when we compute the next value.
16845  Diag(IdLoc, diag::ext_enum_value_not_int)
16846  << EnumVal.toString(10) << 1;
16847  }
16848  }
16849  }
16850 
16851  if (!EltTy->isDependentType()) {
16852  // Make the enumerator value match the signedness and size of the
16853  // enumerator's type.
16854  EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
16855  EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16856  }
16857 
16858  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
16859  Val, EnumVal);
16860 }
16861 
16863  SourceLocation IILoc) {
16864  if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
16865  !getLangOpts().CPlusPlus)
16866  return SkipBodyInfo();
16867 
16868  // We have an anonymous enum definition. Look up the first enumerator to
16869  // determine if we should merge the definition with an existing one and
16870  // skip the body.
16871  NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
16872  forRedeclarationInCurContext());
16873  auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
16874  if (!PrevECD)
16875  return SkipBodyInfo();
16876 
16877  EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
16878  NamedDecl *Hidden;
16879  if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
16880  SkipBodyInfo Skip;
16881  Skip.Previous = Hidden;
16882  return Skip;
16883  }
16884 
16885  return SkipBodyInfo();
16886 }
16887 
16888 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
16890  const ParsedAttributesView &Attrs,
16891  SourceLocation EqualLoc, Expr *Val) {
16892  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
16893  EnumConstantDecl *LastEnumConst =
16894  cast_or_null<EnumConstantDecl>(lastEnumConst);
16895 
16896  // The scope passed in may not be a decl scope. Zip up the scope tree until
16897  // we find one that is.
16898  S = getNonFieldDeclScope(S);
16899 
16900  // Verify that there isn't already something declared with this name in this
16901  // scope.
16902  LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
16903  LookupName(R, S);
16904  NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
16905 
16906  if (PrevDecl && PrevDecl->isTemplateParameter()) {
16907  // Maybe we will complain about the shadowed template parameter.
16908  DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
16909  // Just pretend that we didn't see the previous declaration.
16910  PrevDecl = nullptr;
16911  }
16912 
16913  // C++ [class.mem]p15:
16914  // If T is the name of a class, then each of the following shall have a name
16915  // different from T:
16916  // - every enumerator of every member of class T that is an unscoped
16917  // enumerated type
16918  if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
16919  DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
16920  DeclarationNameInfo(Id, IdLoc));
16921 
16922  EnumConstantDecl *New =
16923  CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
16924  if (!New)
16925  return nullptr;
16926 
16927  if (PrevDecl) {
16928  if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
16929  // Check for other kinds of shadowing not already handled.
16930  CheckShadow(New, PrevDecl, R);
16931  }
16932 
16933  // When in C++, we may get a TagDecl with the same name; in this case the
16934  // enum constant will 'hide' the tag.
16935  assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
16936  "Received TagDecl when not in C++!");
16937  if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
16938  if (isa<EnumConstantDecl>(PrevDecl))
16939  Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
16940  else
16941  Diag(IdLoc, diag::err_redefinition) << Id;
16942  notePreviousDefinition(PrevDecl, IdLoc);
16943  return nullptr;
16944  }
16945  }
16946 
16947  // Process attributes.
16948  ProcessDeclAttributeList(S, New, Attrs);
16949  AddPragmaAttributes(S, New);
16950 
16951  // Register this decl in the current scope stack.
16952  New->setAccess(TheEnumDecl->getAccess());
16953  PushOnScopeChains(New, S);
16954 
16955  ActOnDocumentableDecl(New);
16956 
16957  return New;
16958 }
16959 
16960 // Returns true when the enum initial expression does not trigger the
16961 // duplicate enum warning. A few common cases are exempted as follows:
16962 // Element2 = Element1
16963 // Element2 = Element1 + 1
16964 // Element2 = Element1 - 1
16965 // Where Element2 and Element1 are from the same enum.
16967  Expr *InitExpr = ECD->getInitExpr();
16968  if (!InitExpr)
16969  return true;
16970  InitExpr = InitExpr->IgnoreImpCasts();
16971 
16972  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
16973  if (!BO->isAdditiveOp())
16974  return true;
16975  IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
16976  if (!IL)
16977  return true;
16978  if (IL->getValue() != 1)
16979  return true;
16980 
16981  InitExpr = BO->getLHS();
16982  }
16983 
16984  // This checks if the elements are from the same enum.
16985  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
16986  if (!DRE)
16987  return true;
16988 
16989  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
16990  if (!EnumConstant)
16991  return true;
16992 
16993  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
16994  Enum)
16995  return true;
16996 
16997  return false;
16998 }
16999 
17000 // Emits a warning when an element is implicitly set a value that
17001 // a previous element has already been set to.
17003  EnumDecl *Enum, QualType EnumType) {
17004  // Avoid anonymous enums
17005  if (!Enum->getIdentifier())
17006  return;
17007 
17008  // Only check for small enums.
17009  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
17010  return;
17011 
17012  if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
17013  return;
17014 
17015  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
17016  typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
17017 
17018  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
17019  typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
17020 
17021  // Use int64_t as a key to avoid needing special handling for DenseMap keys.
17022  auto EnumConstantToKey = [](const EnumConstantDecl *D) {
17023  llvm::APSInt Val = D->getInitVal();
17024  return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
17025  };
17026 
17027  DuplicatesVector DupVector;
17028  ValueToVectorMap EnumMap;
17029 
17030  // Populate the EnumMap with all values represented by enum constants without
17031  // an initializer.
17032  for (auto *Element : Elements) {
17033  EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
17034 
17035  // Null EnumConstantDecl means a previous diagnostic has been emitted for
17036  // this constant. Skip this enum since it may be ill-formed.
17037  if (!ECD) {
17038  return;
17039  }
17040 
17041  // Constants with initalizers are handled in the next loop.
17042  if (ECD->getInitExpr())
17043  continue;
17044 
17045  // Duplicate values are handled in the next loop.
17046  EnumMap.insert({EnumConstantToKey(ECD), ECD});
17047  }
17048 
17049  if (EnumMap.size() == 0)
17050  return;
17051 
17052  // Create vectors for any values that has duplicates.
17053  for (auto *Element : Elements) {
17054  // The last loop returned if any constant was null.
17055  EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
17056  if (!ValidDuplicateEnum(ECD, Enum))
17057  continue;
17058 
17059  auto Iter = EnumMap.find(EnumConstantToKey(ECD));
17060  if (Iter == EnumMap.end())
17061  continue;
17062 
17063  DeclOrVector& Entry = Iter->second;
17064  if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
17065  // Ensure constants are different.
17066  if (D == ECD)
17067  continue;
17068 
17069  // Create new vector and push values onto it.
17070  auto Vec = llvm::make_unique<ECDVector>();
17071  Vec->push_back(D);
17072  Vec->push_back(ECD);
17073 
17074  // Update entry to point to the duplicates vector.
17075  Entry = Vec.get();
17076 
17077  // Store the vector somewhere we can consult later for quick emission of
17078  // diagnostics.
17079  DupVector.emplace_back(std::move(Vec));
17080  continue;
17081  }
17082 
17083  ECDVector *Vec = Entry.get<ECDVector*>();
17084  // Make sure constants are not added more than once.
17085  if (*Vec->begin() == ECD)
17086  continue;
17087 
17088  Vec->push_back(ECD);
17089  }
17090 
17091  // Emit diagnostics.
17092  for (const auto &Vec : DupVector) {
17093  assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
17094 
17095  // Emit warning for one enum constant.
17096  auto *FirstECD = Vec->front();
17097  S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
17098  << FirstECD << FirstECD->getInitVal().toString(10)
17099  << FirstECD->getSourceRange();
17100 
17101  // Emit one note for each of the remaining enum constants with
17102  // the same value.
17103  for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
17104  S.Diag(ECD->getLocation(), diag::note_duplicate_element)
17105  << ECD << ECD->getInitVal().toString(10)
17106  << ECD->getSourceRange();
17107  }
17108 }
17109 
17110 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
17111  bool AllowMask) const {
17112  assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
17113  assert(ED->isCompleteDefinition() && "expected enum definition");
17114 
17115  auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
17116  llvm::APInt &FlagBits = R.first->second;
17117 
17118  if (R.second) {
17119  for (auto *E : ED->enumerators()) {
17120  const auto &EVal = E->getInitVal();
17121  // Only single-bit enumerators introduce new flag values.
17122  if (EVal.isPowerOf2())
17123  FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
17124  }
17125  }
17126 
17127  // A value is in a flag enum if either its bits are a subset of the enum's
17128  // flag bits (the first condition) or we are allowing masks and the same is
17129  // true of its complement (the second condition). When masks are allowed, we
17130  // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
17131  //
17132  // While it's true that any value could be used as a mask, the assumption is
17133  // that a mask will have all of the insignificant bits set. Anything else is
17134  // likely a logic error.
17135  llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
17136  return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
17137 }
17138 
17140  Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
17141  const ParsedAttributesView &Attrs) {
17142  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
17143  QualType EnumType = Context.getTypeDeclType(Enum);
17144 
17145  ProcessDeclAttributeList(S, Enum, Attrs);
17146 
17147  if (Enum->isDependentType()) {
17148  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
17149  EnumConstantDecl *ECD =
17150  cast_or_null<EnumConstantDecl>(Elements[i]);
17151  if (!ECD) continue;
17152 
17153  ECD->setType(EnumType);
17154  }
17155 
17156  Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
17157  return;
17158  }
17159 
17160  // TODO: If the result value doesn't fit in an int, it must be a long or long
17161  // long value. ISO C does not support this, but GCC does as an extension,
17162  // emit a warning.
17163  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17164  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
17165  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
17166 
17167  // Verify that all the values are okay, compute the size of the values, and
17168  // reverse the list.
17169  unsigned NumNegativeBits = 0;
17170  unsigned NumPositiveBits = 0;
17171 
17172  // Keep track of whether all elements have type int.
17173  bool AllElementsInt = true;
17174 
17175  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
17176  EnumConstantDecl *ECD =
17177  cast_or_null<EnumConstantDecl>(Elements[i]);
17178  if (!ECD) continue; // Already issued a diagnostic.
17179 
17180  const llvm::APSInt &InitVal = ECD->getInitVal();
17181 
17182  // Keep track of the size of positive and negative values.
17183  if (InitVal.isUnsigned() || InitVal.isNonNegative())
17184  NumPositiveBits = std::max(NumPositiveBits,
17185  (unsigned)InitVal.getActiveBits());
17186  else
17187  NumNegativeBits = std::max(NumNegativeBits,
17188  (unsigned)InitVal.getMinSignedBits());
17189 
17190  // Keep track of whether every enum element has type int (very common).
17191  if (AllElementsInt)
17192  AllElementsInt = ECD->getType() == Context.IntTy;
17193  }
17194 
17195  // Figure out the type that should be used for this enum.
17196  QualType BestType;
17197  unsigned BestWidth;
17198 
17199  // C++0x N3000 [conv.prom]p3:
17200  // An rvalue of an unscoped enumeration type whose underlying
17201  // type is not fixed can be converted to an rvalue of the first
17202  // of the following types that can represent all the values of
17203  // the enumeration: int, unsigned int, long int, unsigned long
17204  // int, long long int, or unsigned long long int.
17205  // C99 6.4.4.3p2:
17206  // An identifier declared as an enumeration constant has type int.
17207  // The C99 rule is modified by a gcc extension
17208  QualType BestPromotionType;
17209 
17210  bool Packed = Enum->hasAttr<PackedAttr>();
17211  // -fshort-enums is the equivalent to specifying the packed attribute on all
17212  // enum definitions.
17213  if (LangOpts.ShortEnums)
17214  Packed = true;
17215 
17216  // If the enum already has a type because it is fixed or dictated by the
17217  // target, promote that type instead of analyzing the enumerators.
17218  if (Enum->isComplete()) {
17219  BestType = Enum->getIntegerType();
17220  if (BestType->isPromotableIntegerType())
17221  BestPromotionType = Context.getPromotedIntegerType(BestType);
17222  else
17223  BestPromotionType = BestType;
17224 
17225  BestWidth = Context.getIntWidth(BestType);
17226  }
17227  else if (NumNegativeBits) {
17228  // If there is a negative value, figure out the smallest integer type (of
17229  // int/long/longlong) that fits.
17230  // If it's packed, check also if it fits a char or a short.
17231  if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
17232  BestType = Context.SignedCharTy;
17233  BestWidth = CharWidth;
17234  } else if (Packed && NumNegativeBits <= ShortWidth &&
17235  NumPositiveBits < ShortWidth) {
17236  BestType = Context.ShortTy;
17237  BestWidth = ShortWidth;
17238  } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
17239  BestType = Context.IntTy;
17240  BestWidth = IntWidth;
17241  } else {
17242  BestWidth = Context.getTargetInfo().getLongWidth();
17243 
17244  if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
17245  BestType = Context.LongTy;
17246  } else {
17247  BestWidth = Context.getTargetInfo().getLongLongWidth();
17248 
17249  if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
17250  Diag(Enum->getLocation(), diag::ext_enum_too_large);
17251  BestType = Context.LongLongTy;
17252  }
17253  }
17254  BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
17255  } else {
17256  // If there is no negative value, figure out the smallest type that fits
17257  // all of the enumerator values.
17258  // If it's packed, check also if it fits a char or a short.
17259  if (Packed && NumPositiveBits <= CharWidth) {
17260  BestType = Context.UnsignedCharTy;
17261  BestPromotionType = Context.IntTy;
17262  BestWidth = CharWidth;
17263  } else if (Packed && NumPositiveBits <= ShortWidth) {
17264  BestType = Context.UnsignedShortTy;
17265  BestPromotionType = Context.IntTy;
17266  BestWidth = ShortWidth;
17267  } else if (NumPositiveBits <= IntWidth) {
17268  BestType = Context.UnsignedIntTy;
17269  BestWidth = IntWidth;
17270  BestPromotionType
17271  = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17272  ? Context.UnsignedIntTy : Context.IntTy;
17273  } else if (NumPositiveBits <=
17274  (BestWidth = Context.getTargetInfo().getLongWidth())) {
17275  BestType = Context.UnsignedLongTy;
17276  BestPromotionType
17277  = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17278  ? Context.UnsignedLongTy : Context.LongTy;
17279  } else {
17280  BestWidth = Context.getTargetInfo().getLongLongWidth();
17281  assert(NumPositiveBits <= BestWidth &&
17282  "How could an initializer get larger than ULL?");
17283  BestType = Context.UnsignedLongLongTy;
17284  BestPromotionType
17285  = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17286  ? Context.UnsignedLongLongTy : Context.LongLongTy;
17287  }
17288  }
17289 
17290  // Loop over all of the enumerator constants, changing their types to match
17291  // the type of the enum if needed.
17292  for (auto *D : Elements) {
17293  auto *ECD = cast_or_null<EnumConstantDecl>(D);
17294  if (!ECD) continue; // Already issued a diagnostic.
17295 
17296  // Standard C says the enumerators have int type, but we allow, as an
17297  // extension, the enumerators to be larger than int size. If each
17298  // enumerator value fits in an int, type it as an int, otherwise type it the
17299  // same as the enumerator decl itself. This means that in "enum { X = 1U }"
17300  // that X has type 'int', not 'unsigned'.
17301 
17302  // Determine whether the value fits into an int.
17303  llvm::APSInt InitVal = ECD->getInitVal();
17304 
17305  // If it fits into an integer type, force it. Otherwise force it to match
17306  // the enum decl type.
17307  QualType NewTy;
17308  unsigned NewWidth;
17309  bool NewSign;
17310  if (!getLangOpts().CPlusPlus &&
17311  !Enum->isFixed() &&
17312  isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
17313  NewTy = Context.IntTy;
17314  NewWidth = IntWidth;
17315  NewSign = true;
17316  } else if (ECD->getType() == BestType) {
17317  // Already the right type!
17318  if (getLangOpts().CPlusPlus)
17319  // C++ [dcl.enum]p4: Following the closing brace of an
17320  // enum-specifier, each enumerator has the type of its
17321  // enumeration.
17322  ECD->setType(EnumType);
17323  continue;
17324  } else {
17325  NewTy = BestType;
17326  NewWidth = BestWidth;
17327  NewSign = BestType->isSignedIntegerOrEnumerationType();
17328  }
17329 
17330  // Adjust the APSInt value.
17331  InitVal = InitVal.extOrTrunc(NewWidth);
17332  InitVal.setIsSigned(NewSign);
17333  ECD->setInitVal(InitVal);
17334 
17335  // Adjust the Expr initializer and type.
17336  if (ECD->getInitExpr() &&
17337  !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
17338  ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
17339  CK_IntegralCast,
17340  ECD->getInitExpr(),
17341  /*base paths*/ nullptr,
17342  VK_RValue));
17343  if (getLangOpts().CPlusPlus)
17344  // C++ [dcl.enum]p4: Following the closing brace of an
17345  // enum-specifier, each enumerator has the type of its
17346  // enumeration.
17347  ECD->setType(EnumType);
17348  else
17349  ECD->setType(NewTy);
17350  }
17351 
17352  Enum->completeDefinition(BestType, BestPromotionType,
17353  NumPositiveBits, NumNegativeBits);
17354 
17355  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
17356 
17357  if (Enum->isClosedFlag()) {
17358  for (Decl *D : Elements) {
17359  EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
17360  if (!ECD) continue; // Already issued a diagnostic.
17361 
17362  llvm::APSInt InitVal = ECD->getInitVal();
17363  if (InitVal != 0 && !InitVal.isPowerOf2() &&
17364  !IsValueInFlagEnum(Enum, InitVal, true))
17365  Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
17366  << ECD << Enum;
17367  }
17368  }
17369 
17370  // Now that the enum type is defined, ensure it's not been underaligned.
17371  if (Enum->hasAttrs())
17372  CheckAlignasUnderalignment(Enum);
17373 }
17374 
17376  SourceLocation StartLoc,
17377  SourceLocation EndLoc) {
17378  StringLiteral *AsmString = cast<StringLiteral>(expr);
17379 
17380  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
17381  AsmString, StartLoc,
17382  EndLoc);
17383  CurContext->addDecl(New);
17384  return New;
17385 }
17386 
17388  IdentifierInfo* AliasName,
17389  SourceLocation PragmaLoc,
17390  SourceLocation NameLoc,
17391  SourceLocation AliasNameLoc) {
17392  NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
17393  LookupOrdinaryName);
17394  AsmLabelAttr *Attr =
17395  AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
17396 
17397  // If a declaration that:
17398  // 1) declares a function or a variable
17399  // 2) has external linkage
17400  // already exists, add a label attribute to it.
17401  if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17402  if (isDeclExternC(PrevDecl))
17403  PrevDecl->addAttr(Attr);
17404  else
17405  Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
17406  << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
17407  // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
17408  } else
17409  (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
17410 }
17411 
17413  SourceLocation PragmaLoc,
17414  SourceLocation NameLoc) {
17415  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
17416 
17417  if (PrevDecl) {
17418  PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
17419  } else {
17420  (void)WeakUndeclaredIdentifiers.insert(
17421  std::pair<IdentifierInfo*,WeakInfo>
17422  (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
17423  }
17424 }
17425 
17427  IdentifierInfo* AliasName,
17428  SourceLocation PragmaLoc,
17429  SourceLocation NameLoc,
17430  SourceLocation AliasNameLoc) {
17431  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
17432  LookupOrdinaryName);
17433  WeakInfo W = WeakInfo(Name, NameLoc);
17434 
17435  if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17436  if (!PrevDecl->hasAttr<AliasAttr>())
17437  if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
17438  DeclApplyPragmaWeak(TUScope, ND, W);
17439  } else {
17440  (void)WeakUndeclaredIdentifiers.insert(
17441  std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
17442  }
17443 }
17444 
17446  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
17447 }
VarTemplateDecl * getDescribedVarTemplate() const
Retrieves the variable template that is described by this variable declaration.
Definition: Decl.cpp:2536
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:77
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
const IncompleteArrayType * getAsIncompleteArrayType(QualType T) const
Definition: ASTContext.h:2447
Defines the clang::ASTContext interface.
bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const
Definition: Type.cpp:2273
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4803
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:592
bool isCallToStdMove() const
Definition: Expr.h:2770
void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex)
Definition: Decl.h:1597
PragmaStack< StringLiteral * > CodeSegStack
Definition: Sema.h:523
const char * getHeaderName(unsigned ID) const
If this is a library function that comes from a specific header, retrieve that header name...
Definition: Builtins.h:182
NamedDecl * getTargetDecl() const
Gets the underlying declaration which has been brought into the local scope.
Definition: DeclCXX.h:3337
The lookup results will be used for redeclaration of a name, if an entity by that name already exists...
Definition: Sema.h:3277
CanQualType LongLongTy
Definition: ASTContext.h:1023
bool RequireNonAbstractType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser)
bool mightBeUsableInConstantExpressions(ASTContext &C) const
Determine whether this variable&#39;s value might be usable in a constant expression, according to the re...
Definition: Decl.cpp:2248
static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, ASTContext::GetBuiltinTypeError Error)
Definition: SemaDecl.cpp:1958
void setImplicit(bool I=true)
Definition: DeclBase.h:559
Represents a function declaration or definition.
Definition: Decl.h:1748
void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, const LookupResult &R)
Diagnose variable or built-in function shadowing.
Definition: SemaDecl.cpp:7111
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo)
Package the given type and TSI into a ParsedType.
Definition: SemaType.cpp:5796
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:571
Name lookup found a set of overloaded functions that met the criteria.
Definition: Lookup.h:63
SourceRange IntroducerRange
Source range covering the lambda introducer [...].
Definition: ScopeInfo.h:798
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
getFunctionTypeInfo - Retrieves the function type info object (looking through parentheses).
Definition: DeclSpec.h:2278
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
Decl * ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, AccessSpecifier AS, SourceLocation ModulePrivateLoc, MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, bool &IsDependent, SourceLocation ScopedEnumKWLoc, bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, bool IsTypeSpecifier, bool IsTemplateParamOrArg, SkipBodyInfo *SkipBody=nullptr)
This is invoked when we see &#39;struct foo&#39; or &#39;struct {&#39;.
Definition: SemaDecl.cpp:14512
bool isPure(unsigned ID) const
Return true if this function has no side effects.
Definition: Builtins.h:100
bool isThisDeclarationADemotedDefinition() const
If this definition should pretend to be a declaration.
Definition: Decl.h:1293
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=CSK_unspecified)
Definition: Decl.h:1895
void setNonTrivialToPrimitiveDestroy(bool V)
Definition: Decl.h:3745
bool isForRedeclaration() const
True if this lookup is just looking for an existing declaration.
Definition: Lookup.h:258
static void CheckForDuplicateEnumValues(Sema &S, ArrayRef< Decl *> Elements, EnumDecl *Enum, QualType EnumType)
Definition: SemaDecl.cpp:17002
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:140
bool CheckNontrivialField(FieldDecl *FD)
Definition: SemaDecl.cpp:15988
void setjmp_bufDecl(TypeDecl *jmp_bufDecl)
Set the type for the C jmp_buf type.
Definition: ASTContext.h:1754
no exception specification
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1854
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
void setAnonymousStructOrUnion(bool Anon)
Definition: Decl.h:3703
PtrTy get() const
Definition: Ownership.h:80
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:759
Holds information about both target-independent and target-specific builtins, allowing easy queries b...
Definition: Builtins.h:67
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2569
unsigned getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it...
EvaluatedExprVisitor - This class visits &#39;Expr *&#39;s.
QualType getPointeeType() const
Definition: Type.h:2582
A (possibly-)qualified type.
Definition: Type.h:643
ASTConsumer & Consumer
Definition: Sema.h:375
Keeps information about an identifier in a nested-name-spec.
Definition: Sema.h:5630
Decl * ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, tok::ObjCKeywordKind visibility)
ActOnIvar - Each ivar field of an objective-c class is passed into this in order to create an IvarDec...
Definition: SemaDecl.cpp:16063
bool isBlockPointerType() const
Definition: Type.h:6392
TagDecl * getDefinition() const
Returns the TagDecl that actually defines this struct/union/class/enum.
Definition: Decl.cpp:4053
Simple class containing the result of Sema::CorrectTypo.
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2132
void InstantiatedLocal(const Decl *D, Decl *Inst)
bool hasNonTrivialToPrimitiveCopyCUnion() const
Check if this is or contains a C union that is non-trivial to copy, which is a union that has a membe...
Definition: Type.h:6279
base_class_range bases()
Definition: DeclCXX.h:825
bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, DeclarationName Name, SourceLocation Loc, bool IsTemplateId)
Diagnose a declaration whose declarator-id has the given nested-name-specifier.
Definition: SemaDecl.cpp:5305
NoSpeculativeLoadHardeningAttr * mergeNoSpeculativeLoadHardeningAttr(Decl *D, const NoSpeculativeLoadHardeningAttr &AL)
bool isArrayType() const
Definition: Type.h:6440
void MakeTrivial(ASTContext &Context, NestedNameSpecifier *Qualifier, SourceRange R)
Make a new nested-name-specifier from incomplete source-location information.
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2890
virtual unsigned getManglingNumber(const CXXMethodDecl *CallOperator)=0
Retrieve the mangling number of a new lambda expression with the given call operator within this cont...
bool isOverloadedOperator() const
Whether this function declaration represents an C++ overloaded operator, e.g., "operator+".
Definition: Decl.h:2403
void ActOnPragmaWeakAlias(IdentifierInfo *WeakName, IdentifierInfo *AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc)
ActOnPragmaWeakAlias - Called on well formed #pragma weak ident = ident.
Definition: SemaDecl.cpp:17426
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2673
bool containedInPrototypeScope() const
containedInPrototypeScope - Return true if this or a parent scope is a FunctionPrototypeScope.
Definition: Scope.cpp:97
SourceRange getCXXOperatorNameRange() const
getCXXOperatorNameRange - Gets the range of the operator name (without the operator keyword)...
const DeclarationNameLoc & getInfo() const
bool isCompatibleWithMSVC(MSVCMajorVersion MajorVersion) const
Definition: LangOptions.h:281
SourceRange getSourceRange() const LLVM_READONLY
Return the source range that covers this unqualified-id.
Definition: DeclSpec.h:1144
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2979
void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D)
Definition: SemaDecl.cpp:5808
unsigned getLongWidth() const
getLongWidth/Align - Return the size of &#39;signed long&#39; and &#39;unsigned long&#39; for this target...
Definition: TargetInfo.h:398
SourceLocation StartLocation
The location of the first token that describes this unqualified-id, which will be the location of the...
Definition: DeclSpec.h:1002
static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, DeclaratorDecl *OldD)
If necessary, adjust the semantic declaration context for a qualified declaration to name the correct...
Definition: SemaDecl.cpp:2989
SpeculativeLoadHardeningAttr * mergeSpeculativeLoadHardeningAttr(Decl *D, const SpeculativeLoadHardeningAttr &AL)
const DeclaratorChunk & getTypeObject(unsigned i) const
Return the specified TypeInfo from this declarator.
Definition: DeclSpec.h:2189
PrimitiveDefaultInitializeKind isNonTrivialToPrimitiveDefaultInitialize() const
Functions to query basic properties of non-trivial C struct types.
Definition: Type.cpp:2292
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:3224
A class which encapsulates the logic for delaying diagnostics during parsing and other processing...
Definition: Sema.h:716
IdentifierInfo * Name
FIXME: Temporarily stores the name of a specialization.
bool willHaveBody() const
True if this function will eventually have a body, once it&#39;s fully parsed.
Definition: Decl.h:2248
DeclarationName getCXXConstructorName(CanQualType Ty)
Returns the name of a C++ constructor for the given Type.
void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, LookupResult &OldDecls)
MergeTypedefNameDecl - We just parsed a typedef &#39;New&#39; which has the same name and scope as a previous...
Definition: SemaDecl.cpp:2155
ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const
Definition: Type.h:3583
static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, const DeclContext *OldDC)
Determine what kind of declaration we&#39;re shadowing.
Definition: SemaDecl.cpp:7037
void setAttrs(const AttrVec &Attrs)
Definition: DeclBase.h:486
void CheckCompleteVariableDeclaration(VarDecl *VD)
Definition: SemaDecl.cpp:12155
void setLookupName(DeclarationName Name)
Sets the name to look up.
Definition: Lookup.h:248
SourceLocation TemplateNameLoc
TemplateNameLoc - The location of the template name within the source.
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1504
void setNonTrivialToPrimitiveDefaultInitialize(bool V)
Definition: Decl.h:3729
AmbiguityKind getAmbiguityKind() const
Definition: Lookup.h:326
static IndirectFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef< NamedDecl *> CH)
Definition: Decl.cpp:4656
Stmt - This represents one statement.
Definition: Stmt.h:66
IdentifierInfo * Identifier
When Kind == IK_Identifier, the parsed identifier, or when Kind == IK_UserLiteralId, the identifier suffix.
Definition: DeclSpec.h:972
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1244
bool isGenericLambdaCallOperatorSpecialization(const CXXMethodDecl *MD)
Definition: ASTLambda.h:38
Filter makeFilter()
Create a filter for this result set.
Definition: Lookup.h:682
void setPreviousDecl(decl_type *PrevDecl)
Set the previous declaration.
Definition: Decl.h:4355
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3387
VarDecl * getTemplatedDecl() const
Get the underlying variable declarations of the template.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2837
Merge availability attributes for an override, which requires an exact match or a weakening of constr...
Definition: Sema.h:2605
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a member function...
Definition: Decl.cpp:3728
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:985
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2819
bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx, const VarDecl *VD, SmallVectorImpl< PartialDiagnosticAt > &Notes) const
EvaluateAsInitializer - Evaluate an expression as if it were the initializer of the given declaration...
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:658
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:1019
bool is(tok::TokenKind K) const
is/isNot - Predicates to check if this token is a specific kind, as in "if (Tok.is(tok::l_brace)) {...
Definition: Token.h:97
RAII object that pops an ExpressionEvaluationContext when exiting a function body.
Definition: SemaDecl.cpp:13529
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD)
Definition: Decl.cpp:4021
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:3051
Defines the SourceManager interface.
static void diagnoseImplicitlyRetainedSelf(Sema &S)
Definition: SemaDecl.cpp:13542
void setObjCClassRedefinitionType(QualType RedefType)
Set the user-written type that redefines &#39;SEL&#39;.
Definition: ASTContext.h:1661
void ActOnDocumentableDecl(Decl *D)
Should be called on all declarations that might have attached documentation comments.
Definition: SemaDecl.cpp:12720
static const Builtin::Info BuiltinInfo[]
Definition: Builtins.cpp:20
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:2108
virtual bool isValidFeatureName(StringRef Feature) const
Determine whether this TargetInfo supports the given feature.
Definition: TargetInfo.h:1096
void setucontext_tDecl(TypeDecl *ucontext_tDecl)
Set the type for the C ucontext_t type.
Definition: ASTContext.h:1778
bool hasVolatileMember() const
Definition: Decl.h:3710
bool hasNonTrivialCopyConstructor() const
Determine whether this class has a non-trivial copy constructor (C++ [class.copy]p6, C++11 [class.copy]p12)
Definition: DeclCXX.h:1423
bool isRecordType() const
Definition: Type.h:6464
AvailabilityAttr * mergeAvailabilityAttr(NamedDecl *D, SourceRange Range, IdentifierInfo *Platform, bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, int Priority, unsigned AttrSpellingListIndex)
Attribute merging methods. Return true if a new attribute was added.
Expr * getBase() const
Definition: Expr.h:2884
bool isEmpty() const
No scope specifier.
Definition: DeclSpec.h:189
DeclarationName getCXXConversionFunctionName(CanQualType Ty)
Returns the name of a C++ conversion function for the given Type.
void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope)
Given the set of return statements within a function body, compute the variables that are subject to ...
Definition: SemaDecl.cpp:13460
bool isSingleTagDecl() const
Asks if the result is a single tag decl.
Definition: Lookup.h:530
bool isInitICE() const
Determines whether the initializer is an integral constant expression, or in C++11, whether the initializer is a constant expression.
Definition: Decl.cpp:2378
void erase()
Erase the last element returned from this iterator.
Definition: Lookup.h:654
static const TST TST_typeofExpr
Definition: DeclSpec.h:299
QualType getQualifiedType(SplitQualType split) const
Un-split a SplitQualType.
Definition: ASTContext.h:1938
QualType getElaboratedType(ElaboratedTypeKeyword Keyword, const CXXScopeSpec &SS, QualType T, TagDecl *OwnedTagDecl=nullptr)
Retrieve a version of the type &#39;T&#39; that is elaborated by Keyword, qualified by the nested-name-specif...
Definition: SemaType.cpp:8266
const Type * getTypeForDecl() const
Definition: Decl.h:2931
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1362
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
void setRangeEnd(SourceLocation E)
Definition: Decl.h:1922
NonTrivialCUnionContext
Definition: Sema.h:2119
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4035
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:421
void forgetBuiltin(unsigned ID, IdentifierTable &Table)
Completely forget that the given ID was ever considered a builtin, e.g., because the user provided a ...
Definition: Builtins.cpp:109
const RecordType * getAsStructureType() const
Definition: Type.cpp:521
CommonAttr * mergeCommonAttr(Decl *D, const ParsedAttr &AL)
LambdaCaptureDefault
The default, if any, capture method for a lambda expression.
Definition: Lambda.h:22
void setArgPassingRestrictions(ArgPassingKind Kind)
Definition: Decl.h:3784
VarDecl * getDefinition(ASTContext &)
Get the real (not just tentative) definition for this declaration.
Definition: Decl.cpp:2166
bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl, bool ConsiderCudaAttrs=true)
void DiagnoseFunctionSpecifiers(const DeclSpec &DS)
Diagnose function specifiers on a declaration of an identifier that does not identify a function...
Definition: SemaDecl.cpp:5744
bool isPrintfLike(unsigned ID, unsigned &FormatIdx, bool &HasVAListArg)
Determine whether this builtin is like printf in its formatting rules and, if so, set the index to th...
Definition: Builtins.cpp:152
SmallVectorImpl< NamedDecl * >::const_iterator const_decl_iterator
QualType getDeducedTemplateSpecializationType(TemplateName Template, QualType DeducedType, bool IsDependent) const
C++17 deduced class template specialization type.
SmallVectorImpl< NamedDecl * >::iterator decl_iterator
bool isPOD() const
Whether this class is a POD-type (C++ [class]p4)
Definition: DeclCXX.h:1317
Defines the C++ template declaration subclasses.
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, bool AllowBuiltinCreation=false, bool EnteringContext=false)
Performs name lookup for a name that was parsed in the source code, and may contain a C++ scope speci...
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4817
static bool canRedefineFunction(const FunctionDecl *FD, const LangOptions &LangOpts)
canRedefineFunction - checks if a function can be redefined.
Definition: SemaDecl.cpp:2900
void setPure(bool P=true)
Definition: Decl.cpp:2824
void setPreviousDeclaration(FunctionDecl *PrevDecl)
Definition: Decl.cpp:3048
bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS)
bool hasWrittenPrototype() const
Whether this function has a written prototype.
Definition: Decl.h:2086
Not a friend object.
Definition: DeclBase.h:1102
Decl * getPreviousDecl()
Retrieve the previous declaration that declares the same entity as this declaration, or NULL if there is no previous declaration.
Definition: DeclBase.h:960
static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, LookupResult &Previous)
Check the validity of a mulitversion function declaration.
Definition: SemaDecl.cpp:9980
void AddDecl(Decl *D)
Definition: Scope.h:289
A constructor named via a template-id.
const DiagnosticBuilder & operator<<(const DiagnosticBuilder &DB, const Attr *At)
Definition: Attr.h:335
const RecordDecl * getParent() const
Returns the parent of this field declaration, which is the struct in which this field is defined...
Definition: Decl.h:2796
The base class of the type hierarchy.
Definition: Type.h:1433
CanQualType LongTy
Definition: ASTContext.h:1023
static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New)
Definition: SemaDecl.cpp:2916
bool isClkEventT() const
Definition: Type.h:6557
static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, SourceLocation DefaultInitLoc)
Definition: SemaDecl.cpp:4666
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclSpec.h:1900
One instance of this struct is used for each type in a declarator that is parsed. ...
Definition: DeclSpec.h:1158
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2844
Declaration of a variable template.
static InitializationKind CreateDefault(SourceLocation InitLoc)
Create a default initialization.
Represent a C++ namespace.
Definition: Decl.h:514
RedeclarationKind
Specifies whether (or how) name lookup is being performed for a redeclaration (vs.
Definition: Sema.h:3271
bool isFunctionDeclarator(unsigned &idx) const
isFunctionDeclarator - This method returns true if the declarator is a function declarator (looking t...
Definition: DeclSpec.h:2247
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1331
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:520
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclSpec.h:1901
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4310
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:115
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:425
decl_iterator begin()
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:693
AccessSpecifier
A C++ access specifier (public, private, protected), plus the special value "none" which means differ...
Definition: Specifiers.h:112
void ActOnExitFunctionContext()
Definition: SemaDecl.cpp:1338
const NestedNameSpecifier * Specifier
void checkNonTrivialCUnion(QualType QT, SourceLocation Loc, NonTrivialCUnionContext UseContext, unsigned NonTrivialKind)
Emit diagnostics if a non-trivial C union type or a struct that contains a non-trivial C union is use...
Definition: SemaDecl.cpp:11341
A container of type source information.
Definition: Decl.h:86
Store information needed for an explicit specifier.
Definition: DeclCXX.h:2001
static Attr * getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD)
Return a CodeSegAttr from a containing class.
Definition: SemaDecl.cpp:9384
Wrapper for void* pointer.
Definition: Ownership.h:50
capture_const_range captures() const
Definition: DeclCXX.h:1253
Look up of a name that precedes the &#39;::&#39; scope resolution operator in C++.
Definition: Sema.h:3240
static NestedNameSpecifier * synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC)
Definition: SemaDecl.cpp:525
bool hasExplicitSpecifier() const
Definition: DeclSpec.h:572
SourceRange getIntegerTypeRange() const LLVM_READONLY
Retrieve the source range that covers the underlying type if specified.
Definition: Decl.cpp:4148
An overloaded operator name, e.g., operator+.
bool isDefined(const FunctionDecl *&Definition) const
Returns true if the function has a definition that does not need to be instantiated.
Definition: Decl.cpp:2797
static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T)
Definition: SemaDecl.cpp:4248
TSCS getThreadStorageClassSpec() const
Definition: DeclSpec.h:442
void SetIdentifier(IdentifierInfo *Id, SourceLocation IdLoc)
Set the name of this declarator to be the given identifier.
Definition: DeclSpec.h:2146
void PopDeclContext()
Definition: SemaDecl.cpp:1244
void setInitStyle(InitializationStyle Style)
Definition: Decl.h:1269
bool hasNext() const
Definition: Lookup.h:639
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
unsigned getCharWidth() const
Definition: TargetInfo.h:380
param_const_iterator param_end() const
Definition: DeclObjC.h:351
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2574
LLVM_ATTRIBUTE_REINITIALIZES void clear()
Clears out any current state.
Definition: Lookup.h:554
void mergePrevDecl(FunctionTemplateDecl *Prev)
Merge Prev with our RedeclarableTemplateDecl::Common.
const DeclContext * getParentFunctionOrMethod() const
If this decl is defined inside a function/method/block it returns the corresponding DeclContext...
Definition: DeclBase.cpp:253
size_t param_size() const
Definition: Decl.h:2305
SourceLocation getEndLoc() const
Get the end source location.
Definition: TypeLoc.cpp:226
const ParsedAttributes & getAttributes() const
Definition: DeclSpec.h:2419
bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous)
Perform semantic checking on a newly-created variable declaration.
Definition: SemaDecl.cpp:7628
bool hasAttribute(ParsedAttr::Kind K) const
Definition: ParsedAttr.h:891
QualType getElementType() const
Definition: Type.h:2879
const AttributedType * getCallingConvAttributedType(QualType T) const
Get the outermost AttributedType node that sets a calling convention.
Definition: SemaDecl.cpp:2908
DeclarationName getCXXDeductionGuideName(TemplateDecl *TD)
Returns the name of a C++ deduction guide for the given template.
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3202
const RecordType * getAsUnionType() const
NOTE: getAs*ArrayType are methods on ASTContext.
Definition: Type.cpp:540
unsigned getTypeAlign(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in bits.
Definition: ASTContext.h:2110
***static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, SourceLocation NameLoc)
Definition: SemaDecl.cpp:14448
ArrayRef< RawComment * > getComments() const
The type would be trivial except that it is volatile-qualified.
Definition: Type.h:1113
Retains information about a function, method, or block that is currently being parsed.
Definition: ScopeInfo.h:97
This file provides some common utility functions for processing Lambda related AST Constructs...
bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info)
DiagnoseClassNameShadow - Implement C++ [class.mem]p13: If T is the name of a class, then each of the following shall have a name different from T:
Definition: SemaDecl.cpp:5274
void setRAngleLoc(SourceLocation Loc)
Definition: TemplateBase.h:574
void ActOnObjCReenterContainerContext(DeclContext *DC)
Definition: SemaDecl.cpp:15555
DeclContext::lookup_result Decls
The set of declarations found inside this base class subobject.
enumerator_range enumerators() const
Definition: Decl.h:3486
Represents a variable declaration or definition.
Definition: Decl.h:812
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:24
bool isStructureType() const
Definition: Type.cpp:443
NamedDecl * LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc)
LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
Definition: SemaDecl.cpp:1979
RangeSelector member(std::string ID)
Given a MemberExpr, selects the member token.
static const TST TST_underlyingType
Definition: DeclSpec.h:302
static NestedNameSpecifier * Create(const ASTContext &Context, NestedNameSpecifier *Prefix, IdentifierInfo *II)
Builds a specifier combining a prefix and an identifier.
DeclarationName getLookupName() const
Gets the name to look up.
Definition: Lookup.h:243
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1775
QualType getReturnType() const
Definition: Decl.h:2329
DiagnosticsEngine & Diags
Definition: Sema.h:376
unsigned getNumParams() const
Definition: Type.h:3921
bool isEnumeralType() const
Definition: Type.h:6468
void setCXXLiteralOperatorNameLoc(SourceLocation Loc)
setCXXLiteralOperatorNameLoc - Sets the location of the literal operator name (not the operator keywo...
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
bool isFixed() const
Returns true if this is an Objective-C, C++11, or Microsoft-style enumeration with a fixed underlying...
Definition: Decl.h:3562
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6851
static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D)
Definition: SemaDecl.cpp:5942
The "union" keyword.
Definition: Type.h:5109
Extra information about a function prototype.
Definition: Type.h:3799
decl_range decls() const
decls_begin/decls_end - Iterate over the declarations stored in this context.
Definition: DeclBase.h:2028
const ArrayType * castAsArrayTypeUnsafe() const
A variant of castAs<> for array type which silently discards qualifiers from the outermost type...
Definition: Type.h:6925
TypeSpecifierType
Specifies the kind of type.
Definition: Specifiers.h:59
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:25
The "__interface" keyword.
Definition: Type.h:5106
bool isExternCContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1133
void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context)
Definition: SemaDecl.cpp:1265
ExtInfo withProducesResult(bool producesResult) const
Definition: Type.h:3576
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:431
void ActOnObjCTemporaryExitContainerContext(DeclContext *DC)
Invoked when we must temporarily exit the objective-c container scope for parsing/looking-up C constr...
Definition: SemaDecl.cpp:15549
static const TST TST_interface
Definition: DeclSpec.h:295
bool isZeroLengthBitField(const ASTContext &Ctx) const
Is this a zero-length bit-field? Such bit-fields aren&#39;t really bit-fields at all and instead act as a...
Definition: Decl.cpp:3912
bool field_empty() const
Definition: Decl.h:3849
bool isAmbiguous() const
Definition: Lookup.h:301
NestedNameSpecifier * getCorrectionSpecifier() const
Gets the NestedNameSpecifier needed to use the typo correction.
reference front() const
Definition: DeclBase.h:1242
bool hasTrivialDefaultConstructor() const
Determine whether this class has a trivial default constructor (C++11 [class.ctor]p5).
Definition: DeclCXX.h:1376
bool isInvalidDecl() const
Definition: DeclBase.h:553
bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD)
AddOverriddenMethods - See if a method overrides any in the base classes, and if so, check that it&#39;s a valid override and remember it.
Definition: SemaDecl.cpp:7709
QualType getObjCClassType() const
Represents the Objective-C Class type.
Definition: ASTContext.h:1876
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:67
static StringRef getTagTypeKindName(TagTypeKind Kind)
Definition: Type.h:5183
bool isCallingConv() const
Definition: Type.cpp:3290
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
NamedDecl * ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool &AddToScope)
Definition: SemaDecl.cpp:8404
Decl * ActOnParamDeclarator(Scope *S, Declarator &D)
ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() to introduce parameters into fun...
Definition: SemaDecl.cpp:12806
llvm::SmallVector< ShadowedOuterDecl, 4 > ShadowingDecls
Definition: ScopeInfo.h:875
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec *SS=nullptr, bool isClassName=false, bool HasTrailingDot=false, ParsedType ObjectType=nullptr, bool IsCtorOrDtorName=false, bool WantNontrivialTypeSourceInfo=false, bool IsClassTemplateDeductionContext=true, IdentifierInfo **CorrectedII=nullptr)
If the identifier refers to a type name within this scope, return the declaration of that type...
Definition: SemaDecl.cpp:281
bool canSkipFunctionBody(Decl *D)
Determine whether we can skip parsing the body of a function definition, assuming we don&#39;t care about...
Definition: SemaDecl.cpp:13495
bool isStatic() const
Definition: DeclCXX.cpp:1938
bool hasDefinition() const
Definition: DeclCXX.h:778
static QualType getCoreType(QualType Ty)
Definition: SemaDecl.cpp:5131
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3212
static const NamedDecl * getDefinition(const Decl *D)
Definition: SemaDecl.cpp:2557
Represents a parameter to a function.
Definition: Decl.h:1564
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
OpenCLOptions & getOpenCLOptions()
Definition: Sema.h:1286
Defines the clang::Expr interface and subclasses for C++ expressions.
bool isUnset() const
Definition: Ownership.h:168
long i
Definition: xmmintrin.h:1456
void removeDecl(Decl *D)
Removes a declaration from this context.
Definition: DeclBase.cpp:1434
enum clang::DeclaratorChunk::@217 Kind
void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType, QualType CaptureType)
Definition: ScopeInfo.h:668
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc)
Definition: TypeLoc.h:1987
void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, TypedefNameDecl *NewTD)
Definition: SemaDecl.cpp:4204
static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs)
static TypeSourceInfo * TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, ASTContext &Context, bool &SizeIsNegative, llvm::APSInt &Oversized)
Helper method to turn variable array types into constant array types in certain situations which woul...
Definition: SemaDecl.cpp:5706
bool isVariableArrayType() const
Definition: Type.h:6452
Information about a template-id annotation token.
static CXXMethodDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation)
Definition: DeclCXX.cpp:2009
bool isAnonymousStructOrUnion() const
Determines whether this field is a representative for an anonymous struct or union.
Definition: Decl.cpp:3897
PipeType - OpenCL20.
Definition: Type.h:6072
ModuleKind Kind
The kind of this module.
Definition: Module.h:88
FieldDecl * HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, InClassInitStyle InitStyle, AccessSpecifier AS)
HandleField - Analyze a field of a C struct or a C++ data member.
Definition: SemaDecl.cpp:15682
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type. ...
Definition: Decl.cpp:3285
bool FTIHasNonVoidParameters(const DeclaratorChunk::FunctionTypeInfo &FTI)
Definition: SemaInternal.h:36
QualType CheckConstructorDeclarator(Declarator &D, QualType R, StorageClass &SC)
CheckConstructorDeclarator - Called by ActOnDeclarator to check the well-formedness of the constructo...
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
void setCorrectionDecl(NamedDecl *CDecl)
Clears the list of NamedDecls before adding the new one.
void ActOnUninitializedDecl(Decl *dcl)
Definition: SemaDecl.cpp:11846
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
Decl * ActOnStartOfFunctionDef(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists, SkipBodyInfo *SkipBody=nullptr)
Definition: SemaDecl.cpp:13078
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition: DeclCXX.cpp:2204
const AstTypeMatcher< RecordType > recordType
Matches record types (e.g.
bool isRedeclaration() const
Definition: DeclSpec.h:2495
Represents a struct/union/class.
Definition: Decl.h:3626
void DiagnoseSizeOfParametersAndReturnValue(ArrayRef< ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D)
Diagnose whether the size of parameters or return value of a function or obj-c method definition is p...
Definition: SemaDecl.cpp:12938
This is the private module fragment within some C++ module.
Definition: Module.h:84
TemplateIdAnnotation * TemplateId
When Kind == IK_TemplateId or IK_ConstructorTemplateId, the template-id annotation that contains the ...
Definition: DeclSpec.h:996
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
static bool CheckTargetCausesMultiVersioning(Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA, bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, LookupResult &Previous)
Definition: SemaDecl.cpp:9743
bool Encloses(const DeclContext *DC) const
Determine whether this declaration context encloses the declaration context DC.
Definition: DeclBase.cpp:1152
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.h:370
bool isComplete() const
Returns true if this can be considered a complete type.
Definition: Decl.h:3567
One of these records is kept for each identifier that is lexed.
void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D)
Common checks for a parameter-declaration that should apply to both function parameters and non-type ...
Definition: SemaDecl.cpp:12767
void setIntegerType(QualType T)
Set the underlying integer type.
Definition: Decl.h:3522
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1054
LocalInstantiationScope * CurrentInstantiationScope
The current instantiation scope used to store local variables.
Definition: Sema.h:7914
Name lookup results in an ambiguity; use getAmbiguityKind to figure out what kind of ambiguity we hav...
Definition: Lookup.h:73
SourceLocation getOuterLocStart() const
Return start of source range taking into account any outer template declarations. ...
Definition: Decl.cpp:1851
void MarkUnusedFileScopedDecl(const DeclaratorDecl *D)
If it&#39;s a file scoped decl that must warn if not used, keep track of it.
Definition: SemaDecl.cpp:1646
static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD)
Given that we are within the definition of the given function, will that definition behave like C99&#39;s...
Definition: SemaDecl.cpp:6233
bool doesNotEscape() const
Definition: Decl.h:4066
DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name)
Retrieves the declaration name from a parsed unqualified-id.
Definition: SemaDecl.cpp:5012
void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S)
Register the given locally-scoped extern "C" declaration so that it can be found later for redeclarat...
Definition: SemaDecl.cpp:5726
static bool isDeclExternC(const Decl *D)
Returns true if given declaration has external C language linkage.
Definition: SemaDecl.cpp:6342
void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld)
MergeVarDeclTypes - We parsed a variable &#39;New&#39; which has the same name and scope as a previous declar...
Definition: SemaDecl.cpp:3717
static bool hasDeducedAuto(DeclaratorDecl *DD)
Definition: SemaDecl.cpp:12606
bool isConst() const
Definition: DeclCXX.h:2154
unsigned getRegParm() const
Definition: Type.h:3550
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
ExprResult RebuildExprInCurrentInstantiation(Expr *E)
UnionParsedType ConversionFunctionId
When Kind == IK_ConversionFunctionId, the type that the conversion function names.
Definition: DeclSpec.h:980
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4263
void setManglingNumber(const NamedDecl *ND, unsigned Number)
static void mergeParamDeclTypes(ParmVarDecl *NewParam, const ParmVarDecl *OldParam, Sema &S)
Definition: SemaDecl.cpp:2818
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
A C++ nested-name-specifier augmented with source location information.
DeclarationName getCorrection() const
Gets the DeclarationName of the typo correction.
static InitializationKind CreateForInit(SourceLocation Loc, bool DirectInit, Expr *Init)
Create an initialization from an initializer (which, for direct initialization from a parenthesized l...
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3928
The results of name lookup within a DeclContext.
Definition: DeclBase.h:1195
SourceLocation getTypeSpecTypeLoc() const
Definition: DeclSpec.h:505
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:342
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:4004
TypeLoc getInnerLoc() const
Definition: TypeLoc.h:1153
ConstexprSpecKind getConstexprKind() const
Definition: Decl.h:2114
void ActOnTagStartDefinition(Scope *S, Decl *TagDecl)
ActOnTagStartDefinition - Invoked when we have entered the scope of a tag&#39;s definition (e...
Definition: SemaDecl.cpp:15445
Missing a type from <ucontext.h>
Definition: ASTContext.h:2022
bool CheckEnumUnderlyingType(TypeSourceInfo *TI)
Check that this is a valid underlying type for an enum declaration.
Definition: SemaDecl.cpp:14218
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
unsigned getFunctionPrototypeDepth() const
Returns the number of function prototype scopes in this scope chain.
Definition: Scope.h:270
RecordDecl * getDefinition() const
Returns the RecordDecl that actually defines this struct/union/class.
Definition: Decl.h:3831
static bool anyDependentTemplateArguments(ArrayRef< TemplateArgumentLoc > Args, bool &InstantiationDependent)
Determine whether any of the given template arguments are dependent.
Definition: Type.cpp:3356
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
field_range fields() const
Definition: Decl.h:3841
QualType getLifetimeQualifiedType(QualType type, Qualifiers::ObjCLifetime lifetime)
Return a type with the given lifetime qualifier.
Definition: ASTContext.h:1961
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
QualType getDependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, const IdentifierInfo *Name, QualType Canon=QualType()) const
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:263
static const TST TST_class
Definition: DeclSpec.h:296
NameKind getNameKind() const
Determine what kind of name this is.
bool isObjCIdType() const
Definition: Type.h:6517
bool isAcceptableTagRedeclaration(const TagDecl *Previous, TagTypeKind NewTag, bool isDefinition, SourceLocation NewTagLoc, const IdentifierInfo *Name)
Determine whether a tag with a given kind is acceptable as a redeclaration of the given tag declarati...
Definition: SemaDecl.cpp:14319
static DecompositionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation LSquareLoc, QualType T, TypeSourceInfo *TInfo, StorageClass S, ArrayRef< BindingDecl *> Bindings)
Definition: DeclCXX.cpp:2985
bool hasSkippedBody() const
True if the function was a definition but its body was skipped.
Definition: Decl.h:2242
UnionParsedTemplateTy TemplateName
When Kind == IK_DeductionGuideName, the parsed template-name.
Definition: DeclSpec.h:991
Represents a member of a struct/union/class.
Definition: Decl.h:2607
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
const llvm::APSInt & getInitVal() const
Definition: Decl.h:2840
bool supportsMultiVersioning() const
Identify whether this target supports multiversioning of functions, which requires support for cpu_su...
Definition: TargetInfo.h:1123
DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType=nullptr)
Definition: SemaDecl.cpp:54
OverloadedOperatorKind Operator
The kind of overloaded operator.
Definition: DeclSpec.h:955
void removeConst()
Definition: Type.h:256
bool isNamespace() const
Definition: DeclBase.h:1863
unsigned getFunctionScopeIndex() const
Returns the index of this parameter in its prototype or method scope.
Definition: Decl.h:1617
static bool isIncrementDecrementOp(Opcode Op)
Definition: Expr.h:2089
const DeclarationNameInfo & getLookupNameInfo() const
Gets the name info to look up.
Definition: Lookup.h:233
bool isFunctionDefinition() const
Definition: DeclSpec.h:2472
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:4030
Attr * getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, bool IsDefinition)
Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a containing class...
Definition: SemaDecl.cpp:9419
struct OFI OperatorFunctionId
When Kind == IK_OperatorFunctionId, the overloaded operator that we parsed.
Definition: DeclSpec.h:976
bool hasAutoTypeSpec() const
Definition: DeclSpec.h:517
CXXMethodDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:2198
void setName(DeclarationName N)
setName - Sets the embedded declaration name.
bool isReferenceType() const
Definition: Type.h:6396
void setElaboratedKeywordLoc(SourceLocation Loc)
Definition: TypeLoc.h:2037
The iterator over UnresolvedSets.
Definition: UnresolvedSet.h:31
static const TST TST_error
Definition: DeclSpec.h:310
Token - This structure provides full information about a lexed token.
Definition: Token.h:34
void setStaticLocalNumber(const VarDecl *VD, unsigned Number)
bool isInIdentifierNamespace(unsigned NS) const
Definition: DeclBase.h:803
DeclarationName getCXXDestructorName(CanQualType Ty)
Returns the name of a C++ destructor for the given Type.
SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, SourceLocation IILoc)
Determine whether the body of an anonymous enumeration should be skipped.
Definition: SemaDecl.cpp:16862
static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT)
Definition: SemaDecl.cpp:8164
TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin, UnresolvedSetIterator End) const
Retrieve the template name that corresponds to a non-empty lookup.
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Decl.cpp:1062
This declaration is definitely a definition.
Definition: Decl.h:1152
static const TST TST_enum
Definition: DeclSpec.h:292
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC...
Definition: DeclBase.h:1903
void CheckMain(FunctionDecl *FD, const DeclSpec &D)
Definition: SemaDecl.cpp:10405
ExplicitSpecifier getExplicitSpecifier() const
Definition: DeclSpec.h:565
TypedefDecl * ParseTypedefDecl(Scope *S, Declarator &D, QualType T, TypeSourceInfo *TInfo)
Subroutines of ActOnDeclarator().
Definition: SemaDecl.cpp:14162
OpaquePtr< QualType > ParsedType
An opaque type for threading parsed type information through the parser.
Definition: Ownership.h:244
LookupResultKind getResultKind() const
Definition: Lookup.h:321
bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S)
isMicrosoftMissingTypename - In Microsoft mode, within class scope, if a CXXScopeSpec&#39;s type is equal...
Definition: SemaDecl.cpp:641
void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs)
ActOnFinishDelayedAttribute - Invoked when we have finished parsing an attribute for which parsing is...
Definition: SemaDecl.cpp:13894
__DEVICE__ int max(int __a, int __b)
Expr * getSubExpr()
Definition: Expr.h:3173
void ClearStorageClassSpecs()
Definition: DeclSpec.h:455
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:738
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
Declaration of a function specialization at template class scope.
void CheckDeductionGuideDeclarator(Declarator &D, QualType &R, StorageClass &SC)
Check the validity of a declarator that we parsed for a deduction-guide.
SourceLocation getTemplateLoc() const
Definition: DeclTemplate.h:171
TypeVisibilityAttr * mergeTypeVisibilityAttr(Decl *D, SourceRange Range, TypeVisibilityAttr::VisibilityType Vis, unsigned AttrSpellingListIndex)
bool isPreviousDeclInSameBlockScope() const
Whether this local extern variable declaration&#39;s previous declaration was declared in the same block ...
Definition: Decl.h:1409
void PopExpressionEvaluationContext()
Definition: SemaExpr.cpp:14778
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:6747
No entity found met the criteria within the current instantiation,, but there were dependent base cla...
Definition: Lookup.h:55
A user-defined literal name, e.g., operator "" _i.
static bool adjustContextForLocalExternDecl(DeclContext *&DC)
Adjust the DeclContext for a function or variable that might be a function-local external declaration...
Definition: SemaDecl.cpp:6319
Describes a module or submodule.
Definition: Module.h:64
IdentifierTable & Idents
Definition: ASTContext.h:569
RawCommentList & getRawCommentList()
Definition: ASTContext.h:802
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:124
bool isInvalidType() const
Definition: DeclSpec.h:2453
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2289
bool canKeyFunctionBeInline() const
Can an out-of-line inline function serve as a key function?
Definition: TargetCXXABI.h:258
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:512
bool getProducesResult() const
Definition: Type.h:3545
DeclClass * getAsSingle() const
Definition: Lookup.h:507
static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, RecordDecl *AnonRecord, AccessSpecifier AS, SmallVectorImpl< NamedDecl *> &Chaining)
InjectAnonymousStructOrUnionMembers - Inject the members of the anonymous struct or union AnonRecord ...
Definition: SemaDecl.cpp:4569
QualType mergeObjCGCQualifiers(QualType, QualType)
mergeObjCGCQualifiers - This routine merges ObjC&#39;s GC attribute of &#39;LHS&#39; and &#39;RHS&#39; attributes and ret...
VarDecl * getActingDefinition()
Get the tentative definition that acts as the real definition in a TU.
Definition: Decl.cpp:2149
UnionParsedType DestructorName
When Kind == IK_DestructorName, the type referred to by the class-name.
Definition: DeclSpec.h:988
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2895
Describes an C or C++ initializer list.
Definition: Expr.h:4371
bool isFunctionPrototypeScope() const
isFunctionPrototypeScope - Return true if this scope is a function prototype scope.
Definition: Scope.h:384
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:944
static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, QualType T, APValue &Value, Sema::CCEKind CCE, bool RequireInt)
CheckConvertedConstantExpression - Check that the expression From is a converted constant expression ...
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2685
static ClassScopeFunctionSpecializationDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation Loc, CXXMethodDecl *FD, bool HasExplicitTemplateArgs, const TemplateArgumentListInfo &TemplateArgs)
DeclContext * getEnclosingNamespaceContext()
Retrieve the nearest enclosing namespace context.
Definition: DeclBase.cpp:1755
void resolveKind()
Resolves the result kind of the lookup, possibly hiding decls.
Definition: SemaLookup.cpp:475
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:523
static CXXDeductionGuideDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, SourceLocation EndLocation)
Definition: DeclCXX.cpp:1921
Represents the results of name lookup.
Definition: Lookup.h:46
PtrTy get() const
Definition: Ownership.h:170
void mergeDeclAttributes(NamedDecl *New, Decl *Old, AvailabilityMergeKind AMK=AMK_Redeclaration)
mergeDeclAttributes - Copy attributes from the Old decl to the New one.
Definition: SemaDecl.cpp:2666
bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn)
We&#39;ve just determined that Old and New both appear to be definitions of the same variable.
Definition: SemaDecl.cpp:4132
std::string getFullModuleName(bool AllowStringLiterals=false) const
Retrieve the full name of this module, including the path from its top-level module.
Definition: Module.cpp:213
NamedDecl * ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool &AddToScope, ArrayRef< BindingDecl *> Bindings=None)
Definition: SemaDecl.cpp:6351
bool isElidable() const
Whether this construction is elidable.
Definition: ExprCXX.h:1409
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:968
static void filterNonConflictingPreviousTypedefDecls(Sema &S, TypedefNameDecl *Decl, LookupResult &Previous)
Typedef declarations don&#39;t have linkage, but they still denote the same entity if their types are the...
Definition: SemaDecl.cpp:2077
TagKind getTagKind() const
Definition: Decl.h:3276
bool isReferenced() const
Whether any declaration of this entity was referenced.
Definition: DeclBase.cpp:422
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:37
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:582
A convenient class for passing around template argument information.
Definition: TemplateBase.h:554
void setcudaConfigureCallDecl(FunctionDecl *FD)
Definition: ASTContext.h:1273
void setParamDestroyedInCallee(bool V)
Definition: Decl.h:3792
Scope * getNonFieldDeclScope(Scope *S)
getNonFieldDeclScope - Retrieves the innermost scope, starting from S, where a non-field would be dec...
Definition: SemaDecl.cpp:1932
bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, SkipBodyInfo &SkipBody)
Perform ODR-like check for C/ObjC when merging tag types from modules.
Definition: SemaDecl.cpp:15459
static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old)
Merge alignment attributes from Old to New, taking into account the special semantics of C11&#39;s _Align...
Definition: SemaDecl.cpp:2359
bool hasAddressSpace() const
Definition: Type.h:352
TagDecl * getAnonDeclWithTypedefName(bool AnyRedecl=false) const
Retrieves the tag declaration for which this is the typedef name for linkage purposes, if any.
Definition: Decl.cpp:4685
Keeps track of the mangled names of lambda expressions and block literals within a particular context...
Wrapper for source info for functions.
Definition: TypeLoc.h:1362
static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, Sema &S)
Definition: SemaDecl.cpp:13249
void ActOnInitializerError(Decl *Dcl)
ActOnInitializerError - Given that there was an error parsing an initializer for the given declaratio...
Definition: SemaDecl.cpp:11804
SCS
storage-class-specifier
Definition: DeclSpec.h:232
static EnumConstantDecl * Create(ASTContext &C, EnumDecl *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V)
Definition: Decl.cpp:4628
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3444
bool hasPrototype() const
Whether this function has a prototype, either because one was explicitly written or because it was "i...
Definition: Decl.h:2081
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef< Decl *> Group)
BuildDeclaratorGroup - convert a list of declarations into a declaration group, performing any necess...
Definition: SemaDecl.cpp:12682
Decl * getObjCDeclContext() const
Definition: SemaDecl.cpp:17445
Visibility
Describes the different kinds of visibility that a declaration may have.
Definition: Visibility.h:33
Decl * ActOnObjCContainerStartDefinition(Decl *IDecl)
Definition: SemaDecl.cpp:15469
static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, const IdentifierInfo &II, SourceLocation NameLoc)
Definition: SemaDecl.cpp:233
A friend of a previously-undeclared entity.
Definition: DeclBase.h:1104
child_range children()
Definition: Stmt.cpp:212
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:2185
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:2934
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
TemplateDecl * getAsTypeTemplateDecl(Decl *D)
bool isConstWithoutErrno(unsigned ID) const
Return true if this function has no side effects and doesn&#39;t read memory, except for possibly errno...
Definition: Builtins.h:206
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:657
static bool isRecordType(QualType T)
TemplateSpecializationKind getTemplateSpecializationKind() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2505
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1891
Represents a declaration of a type.
Definition: Decl.h:2907
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3405
void setRedeclaration(bool Val)
Definition: DeclSpec.h:2494
void setHasObjectMember(bool val)
Definition: Decl.h:3708
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6212
bool isShadowed() const
Determine whether the lookup result was shadowed by some other declaration that lookup ignored...
Definition: Lookup.h:459
unsigned getNumPositiveBits() const
Returns the width in bits required to store all the non-negative enumerators of this enum...
Definition: Decl.h:3539
static void checkIsValidOpenCLKernelParameter(Sema &S, Declarator &D, ParmVarDecl *Param, llvm::SmallPtrSetImpl< const Type *> &ValidTypes)
Definition: SemaDecl.cpp:8211
bool hasNonTrivialToPrimitiveDestructCUnion() const
Check if this is or contains a C union that is non-trivial to destruct, which is a union that has a m...
Definition: Type.h:6273
static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, NamedDecl *NewDecl, bool IsSpecialization, bool IsDefinition)
Definition: SemaDecl.cpp:6094
SourceLocation getLParenLoc() const
Definition: TypeLoc.h:1397
static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, const VarDecl *VD)
Return the location of the capture if the given lambda captures the given variable VD...
Definition: SemaDecl.cpp:7051
QualType CheckDestructorDeclarator(Declarator &D, QualType R, StorageClass &SC)
CheckDestructorDeclarator - Called by ActOnDeclarator to check the well-formednes of the destructor d...
GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const
void setHasImplicitReturnZero(bool IRZ)
State that falling off this function implicitly returns null/zero.
Definition: Decl.h:2073
ParsedTemplateArgument * getTemplateArgs()
Retrieves a pointer to the template arguments.
MutableArrayRef< TemplateParameterList * > MultiTemplateParamsArg
Definition: Ownership.h:277
FormatAttr * mergeFormatAttr(Decl *D, SourceRange Range, IdentifierInfo *Format, int FormatIdx, int FirstArg, unsigned AttrSpellingListIndex)
Module * Parent
The parent of this module.
Definition: Module.h:92
static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, DeclContext *NewDC)
Determine whether a tag originally declared in context OldDC can be redeclared with an unqualified na...
Definition: SemaDecl.cpp:14485
unsigned getShortWidth() const
Return the size of &#39;signed short&#39; and &#39;unsigned short&#39; for this target, in bits.
Definition: TargetInfo.h:385
child_range children()
Definition: Expr.h:4554
unsigned getMSLastManglingNumber() const
Definition: Scope.h:311
The argument of this type cannot be passed directly in registers.
Definition: Decl.h:3651
bool isConstexpr() const
Whether this variable is (C++11) constexpr.
Definition: Decl.h:1386
FunctionTemplateSpecializationInfo * getTemplateSpecializationInfo() const
If this function is actually a function template specialization, retrieve information about this func...
Definition: Decl.cpp:3546
CharUnits getDeclAlign(const Decl *D, bool ForAlignof=false) const
Return a conservative estimate of the alignment of the specified decl D.
DeclContextLookupResult slice(size_t N) const
Definition: DeclBase.h:1247
DeclContext * getLambdaAwareParentOfDeclContext(DeclContext *DC)
Definition: ASTLambda.h:70
Expr * getSizeExpr() const
Definition: Type.h:3023
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
ExprResult Perform(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, QualType *ResultType=nullptr)
Perform the actual initialization of the given entity based on the computed initialization sequence...
Definition: SemaInit.cpp:7379
Decl * ActOnFileScopeAsmDecl(Expr *expr, SourceLocation AsmLoc, SourceLocation RParenLoc)
Definition: SemaDecl.cpp:17375
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6142
CXXRecordDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:730
field_iterator field_begin() const
Definition: Decl.cpp:4301
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition: DeclBase.h:1166
NonTagKind
Common ways to introduce type names without a tag for use in diagnostics.
Definition: Sema.h:2367
void setTrivial(bool IT)
Definition: Decl.h:2041
void ActOnLastBitfield(SourceLocation DeclStart, SmallVectorImpl< Decl *> &AllIvarDecls)
ActOnLastBitfield - This routine handles synthesized bitfields rules for class and class extensions...
Definition: SemaDecl.cpp:16177
bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, Expr *Init)
Definition: SemaDecl.cpp:11074
static unsigned getNumAddressingBits(const ASTContext &Context, QualType ElementType, const llvm::APInt &NumElements)
Determine the number of bits required to address a member of.
Definition: Type.cpp:111
void DiagnoseUnusedDecl(const NamedDecl *ND)
DiagnoseUnusedDecl - Emit warnings about declarations that are not used unless they are marked attr(u...
Definition: SemaDecl.cpp:1790
const Expr * getInitExpr() const
Definition: Decl.h:2838
bool hasNameForLinkage() const
Is this tag type named, either directly or via being defined in a typedef of this type...
Definition: Decl.h:3303
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
const T * getAsAdjusted() const
Member-template getAsAdjusted<specific type>.
Definition: Type.h:6868
int hasAttribute(AttrSyntax Syntax, const IdentifierInfo *Scope, const IdentifierInfo *Attr, const TargetInfo &Target, const LangOptions &LangOpts)
Return the version number associated with the attribute if we recognize and implement the attribute s...
Definition: Attributes.cpp:7
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, bool AllowMask) const
IsValueInFlagEnum - Determine if a value is allowed as part of a flag enum.
Definition: SemaDecl.cpp:17110
bool isNoreturnSpecified() const
Definition: DeclSpec.h:582
void setRedeclarationKind(Sema::RedeclarationKind RK)
Change this lookup&#39;s redeclaration kind.
Definition: Lookup.h:572
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC)...
Definition: DeclBase.h:828
static bool mergeDeclAttribute(Sema &S, NamedDecl *D, const InheritableAttr *Attr, Sema::AvailabilityMergeKind AMK)
Definition: SemaDecl.cpp:2466
static Scope * getTagInjectionScope(Scope *S, const LangOptions &LangOpts)
Find the Scope in which a tag is implicitly declared if we see an elaborated type specifier in the sp...
Definition: SemaDecl.cpp:8393
SourceLocation getSpellingLoc(SourceLocation Loc) const
Given a SourceLocation object, return the spelling location referenced by the ID. ...
bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New)
Definition: SemaDecl.cpp:2116
void UpdateExprRep(Expr *Rep)
Definition: DeclSpec.h:696
void CheckVariableDeclarationType(VarDecl *NewVD)
Definition: SemaDecl.cpp:7386
bool performsCallback(unsigned ID, llvm::SmallVectorImpl< int > &Encoding) const
Determine whether this builtin has callback behavior (see llvm::AbstractCallSites for details)...
Definition: Builtins.cpp:162
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1491
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1952
const LangOptions & getLangOpts() const
Definition: Sema.h:1285
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value &#39;V&#39; and type &#39;type&#39;.
Definition: Expr.cpp:919
void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor)
Build an exception spec for destructors that don&#39;t have one.
SourceLocation getConstSpecLoc() const
Definition: DeclSpec.h:539
void setLocalOwningModule(Module *M)
Definition: DeclBase.h:746
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:176
const CXXScopeSpec & getCXXScopeSpec() const
getCXXScopeSpec - Return the C++ scope specifier (global scope or nested-name-specifier) that is part...
Definition: DeclSpec.h:1879
bool isScalarType() const
Definition: Type.h:6732
SourceLocation getLSquareLoc() const
Definition: DeclSpec.h:1717
FunctionDecl * getInstantiatedFromMemberFunction() const
If this function is an instantiation of a member function of a class template specialization, retrieves the function from which it was instantiated.
Definition: Decl.cpp:3416
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:27
static CXXConstructorDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited=InheritedConstructor())
Definition: DeclCXX.cpp:2434
void CheckMSVCRTEntryPoint(FunctionDecl *FD)
Definition: SemaDecl.cpp:10560
Decl * ActOnFinishFunctionBody(Decl *Decl, Stmt *Body)
Definition: SemaDecl.cpp:13523
Represents an ObjC class declaration.
Definition: DeclObjC.h:1171
void DiagnoseUnknownTypeName(IdentifierInfo *&II, SourceLocation IILoc, Scope *S, CXXScopeSpec *SS, ParsedType &SuggestedType, bool IsTemplateName=false)
Definition: SemaDecl.cpp:657
void revertBuiltin()
Revert the identifier to a non-builtin identifier.
Represents a linkage specification.
Definition: DeclCXX.h:2962
static FunctionTemplateDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName Name, TemplateParameterList *Params, NamedDecl *Decl)
Create a function template node.
void addDecl(NamedDecl *D)
Add a declaration to these results with its natural access.
Definition: Lookup.h:426
unsigned getBuiltinID(bool ConsiderWrapperFunctions=false) const
Returns a value indicating whether this function corresponds to a builtin function.
Definition: Decl.cpp:3077
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:3232
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1799
SourceRange getSourceRange() const LLVM_READONLY
Definition: DeclSpec.h:497
bool getNoReturn() const
Definition: Type.h:3544
PrimitiveDefaultInitializeKind
Definition: Type.h:1078
void CheckStaticLocalForDllExport(VarDecl *VD)
Check if VD needs to be dllexport/dllimport due to being in a dllexport/import function.
Definition: SemaDecl.cpp:12388
const T * getTypePtr() const
Retrieve the underlying type pointer, which refers to a canonical type.
Definition: CanonicalType.h:83
MinSizeAttr * mergeMinSizeAttr(Decl *D, SourceRange Range, unsigned AttrSpellingListIndex)
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const
Retrieve a nested-name-specifier with location information, copied into the given AST context...
Definition: DeclSpec.cpp:142
bool hasConst() const
Definition: Type.h:254
virtual bool isValidGCCRegisterName(StringRef Name) const
Returns whether the passed in string is a valid register name according to GCC.
Definition: TargetInfo.cpp:451
The type does not fall into any of the following categories.
Definition: Type.h:1108
IdentifierInfo * getIdentifier() const
Definition: DeclSpec.h:2137
static bool isUsingDecl(NamedDecl *D)
Definition: SemaDecl.cpp:1516
Ordinary names.
Definition: DeclBase.h:146
CanQualType UnsignedCharTy
Definition: ASTContext.h:1024
unsigned getLength() const
Efficiently return the length of this identifier info.
bool getNoCallerSavedRegs() const
Definition: Type.h:3546
UnionParsedType ConstructorName
When Kind == IK_ConstructorName, the class-name of the type whose constructor is being referenced...
Definition: DeclSpec.h:984
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:877
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2926
CallingConv getDefaultCallingConvention(bool IsVariadic, bool IsCXXMethod, bool IsBuiltin=false) const
Retrieves the default calling convention for the current target.
TypeSpecTypeLoc pushTypeSpec(QualType T)
Pushes space for a typespec TypeLoc.
bool isAnonymousStructOrUnion() const
Whether this is an anonymous struct or union.
Definition: Decl.h:3699
This object can be modified without requiring retains or releases.
Definition: Type.h:158
TemplateNameKindForDiagnostics
Describes the detailed kind of a template name. Used in diagnostics.
Definition: Sema.h:1970
param_iterator param_begin()
Definition: Decl.h:2301
void setHasInheritedPrototype(bool P=true)
State that this function inherited its prototype from a previous declaration.
Definition: Decl.h:2103
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1602
Class that aids in the construction of nested-name-specifiers along with source-location information ...
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3603
ImplicitCaptureStyle ImpCaptureStyle
Definition: ScopeInfo.h:637
SourceLocation LAngleLoc
The location of the &#39;<&#39; before the template argument list.
bool isExternInLinkageSpec() const
Definition: DeclSpec.h:445
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3536
#define NULL
RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...
Definition: Sema.h:7856
CXXSpecialMember
Kinds of C++ special members.
Definition: Sema.h:1221
bool isHalfType() const
Definition: Type.h:6649
NodeId Parent
Definition: ASTDiff.cpp:191
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:220
bool isExternC() const
Determines whether this variable is a variable with external, C linkage.
Definition: Decl.cpp:2048
QualType getDeclaredReturnType() const
Get the declared return type, which may differ from the actual return type if the return type is dedu...
Definition: Decl.h:2340
void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType)
Change the result type of a function type once it is deduced.
void completeDefinition(QualType NewType, QualType PromotionType, unsigned NumPositiveBits, unsigned NumNegativeBits)
When created, the EnumDecl corresponds to a forward-declared enum.
Definition: Decl.cpp:4154
bool decl_empty() const
Definition: Scope.h:287
bool hasAttr() const
Definition: DeclBase.h:542
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3703
DeclSpec & getMutableDeclSpec()
getMutableDeclSpec - Return a non-const version of the DeclSpec.
Definition: DeclSpec.h:1871
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition: Type.cpp:1640
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:328
StringRef getString() const
Definition: Expr.h:1764
Merge availability attributes for an implementation of a protocol requirement.
Definition: Sema.h:2608
bool isPromotableIntegerType() const
More type predicates useful for type checking/promotion.
Definition: Type.cpp:2498
static DeclaratorChunk getFunction(bool HasProto, bool IsAmbiguous, SourceLocation LParenLoc, ParamInfo *Params, unsigned NumParams, SourceLocation EllipsisLoc, SourceLocation RParenLoc, bool RefQualifierIsLvalueRef, SourceLocation RefQualifierLoc, SourceLocation MutableLoc, ExceptionSpecificationType ESpecType, SourceRange ESpecRange, ParsedType *Exceptions, SourceRange *ExceptionRanges, unsigned NumExceptions, Expr *NoexceptExpr, CachedTokens *ExceptionSpecTokens, ArrayRef< NamedDecl *> DeclsInPrototype, SourceLocation LocalRangeBegin, SourceLocation LocalRangeEnd, Declarator &TheDeclarator, TypeResult TrailingReturnType=TypeResult(), DeclSpec *MethodQualifiers=nullptr)
DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
Definition: DeclSpec.cpp:151
bool Mutable
Whether this is a mutable lambda.
Definition: ScopeInfo.h:809
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1636
SmallVector< ReturnStmt *, 4 > Returns
The list of return statements that occur within the function or block, if there is any chance of appl...
Definition: ScopeInfo.h:190
SourceLocation getUnalignedSpecLoc() const
Definition: DeclSpec.h:543
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3719
bool isFileVarDecl() const
Returns true for file scoped variable declaration.
Definition: Decl.h:1193
void MakeTrivial(ASTContext &Context, NestedNameSpecifier *Qualifier, SourceRange R)
Make a new nested-name-specifier from incomplete source-location information.
Definition: DeclSpec.cpp:118
bool hasConstexprSpecifier() const
Definition: DeclSpec.h:736
void setImplicitlyInline(bool I=true)
Flag that this function is implicitly inline.
Definition: Decl.h:2386
void CheckShadowingDeclModification(Expr *E, SourceLocation Loc)
Warn if &#39;E&#39;, which is an expression that is about to be modified, refers to a shadowing declaration...
Definition: SemaDecl.cpp:7247
static void mergeParamDeclAttributes(ParmVarDecl *newDecl, const ParmVarDecl *oldDecl, Sema &S)
mergeParamDeclAttributes - Copy attributes from the old parameter to the new one. ...
Definition: SemaDecl.cpp:2775
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1403
TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S)
isTagName() - This method is called for error recovery purposes only to determine if the specified na...
Definition: SemaDecl.cpp:608
bool inferObjCARCLifetime(ValueDecl *decl)
Definition: SemaDecl.cpp:5948
Represents a ValueDecl that came out of a declarator.
Definition: Decl.h:688
MSInheritanceAttr * mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase, unsigned AttrSpellingListIndex, MSInheritanceAttr::Spelling SemanticSpelling)
void SetRangeStart(SourceLocation Loc)
Definition: DeclSpec.h:629
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1975
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:572
unsigned NumParams
NumParams - This is the number of formal parameters specified by the declarator.
Definition: DeclSpec.h:1298
bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S, bool MergeTypeWithOld)
MergeFunctionDecl - We just parsed a function &#39;New&#39; from declarator D which has the same name and sco...
Definition: SemaDecl.cpp:3040
const char * getName(unsigned ID) const
Return the identifier name for the specified builtin, e.g.
Definition: Builtins.h:85
const Type * getPointeeOrArrayElementType() const
If this is a pointer type, return the pointee type.
Definition: Type.h:6798
const ParsedAttributesView & getAttrs() const
If there are attributes applied to this declaratorchunk, return them.
Definition: DeclSpec.h:1551
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition: Type.h:6217
bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl)
Checks if the new declaration declared in dependent context must be put in the same redeclaration cha...
Definition: SemaDecl.cpp:9474
bool isEnabled(llvm::StringRef Ext) const
Definition: OpenCLOptions.h:39
void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl, ArrayRef< Decl *> Fields, SourceLocation LBrac, SourceLocation RBrac, const ParsedAttributesView &AttrList)
Definition: SemaDecl.cpp:16211
A conversion function name, e.g., operator int.
SourceRange getRange() const
Definition: DeclSpec.h:68
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:178
Captures information about a #pragma weak directive.
Definition: Weak.h:24
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:2999
unsigned getEditDistance(bool Normalized=true) const
Gets the "edit distance" of the typo correction from the typo.
TST getTypeSpecType() const
Definition: DeclSpec.h:473
QualType getPromotedIntegerType(QualType PromotableType) const
Return the type that PromotableType will promote to: C99 6.3.1.1p2, assuming that PromotableType is a...
static NamedDecl * DiagnoseInvalidRedeclaration(Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S)
Generate diagnostics for an invalid function redeclaration.
Definition: SemaDecl.cpp:7816
static bool isDeclRep(TST T)
Definition: DeclSpec.h:420
bool isVariableCapture() const
Definition: ScopeInfo.h:579
Exposes information about the current target.
Definition: TargetInfo.h:161
static CXXDestructorDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isImplicitlyDeclared)
Definition: DeclCXX.cpp:2572
bool isCLike() const
True if this class is C-like, without C++-specific features, e.g.
Definition: DeclCXX.cpp:1361
bool isConsteval() const
Definition: Decl.h:2120
bool isMsStruct(const ASTContext &C) const
Get whether or not this is an ms_struct which can be turned on with an attribute, pragma...
Definition: Decl.cpp:4318
bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, QualType NewT, QualType OldT)
Determines if we can perform a correct type check for D as a redeclaration of PrevDecl.
Definition: SemaDecl.cpp:9441
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:189
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:436
static CXXConversionDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation)
Definition: DeclCXX.cpp:2603
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1795
CXXMethodDecl * CallOperator
The lambda&#39;s compiler-generated operator().
Definition: ScopeInfo.h:795
const char * getTypeName(ID Id)
getTypeName - Return the name of the type for Id.
Definition: Types.cpp:38
A single parameter index whose accessors require each use to make explicit the parameter index encodi...
Definition: Attr.h:213
bool isEventT() const
Definition: Type.h:6553
bool isInlineSpecified() const
Determine whether the "inline" keyword was specified for this function.
Definition: Decl.h:2377
Type source information for an attributed type.
Definition: TypeLoc.h:851
QualType getCXXNameType() const
If this name is one of the C++ names (of a constructor, destructor, or conversion function)...
bool isObjCGCStrong() const
true when Type is objc&#39;s strong.
Definition: Type.h:1058
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:3915
bool isMultiVersion() const
True if this function is considered a multiversioned function.
Definition: Decl.h:2252
bool isDependentType() const
Whether this declaration declares a type that is dependent, i.e., a type that somehow depends on temp...
Definition: Decl.h:3253
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
This represents one expression.
Definition: Expr.h:108
LookupNameKind
Describes the kind of name lookup to perform.
Definition: Sema.h:3220
Decl * ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, RecordDecl *&AnonRecord)
ParsedFreeStandingDeclSpec - This method is invoked when a declspec with no declarator (e...
Definition: SemaDecl.cpp:4159
SourceLocation End
static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken)
Determine whether the given result set contains either a type name or.
Definition: SemaDecl.cpp:769
known_extensions_range known_extensions() const
Definition: DeclObjC.h:1760
The "typename" keyword precedes the qualified type name, e.g., typename T::type.
Definition: Type.h:5138
bool isFunctionNoProtoType() const
Definition: Type.h:1974
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2766
bool isDefaulted() const
Whether this function is defaulted per C++0x.
Definition: Decl.h:2048
void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND)
std::string Label
void ResetObjCLayout(const ObjCContainerDecl *CD)
bool isDeclScope(Decl *D)
isDeclScope - Return true if this is the scope that the specified decl is declared in...
Definition: Scope.h:323
int Id
Definition: ASTDiff.cpp:190
bool isInSystemHeader(SourceLocation Loc) const
Returns if a SourceLocation is in a system header.
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1035
llvm::SmallPtrSet< const Decl *, 4 > ParsingInitForAutoVars
ParsingInitForAutoVars - a set of declarations with auto types for which we are currently parsing the...
Definition: Sema.h:643
static Kind getNullabilityAttrKind(NullabilityKind kind)
Retrieve the attribute kind corresponding to the given nullability kind.
Definition: Type.h:4549
bool isDecompositionDeclarator() const
Return whether this declarator is a decomposition declarator.
Definition: DeclSpec.h:2133
const FileEntry * getFileEntryForID(FileID FID) const
Returns the FileEntry record for the provided FileID.
unsigned getIntWidth() const
getIntWidth/Align - Return the size of &#39;signed int&#39; and &#39;unsigned int&#39; for this target, in bits.
Definition: TargetInfo.h:393
StateNode * Previous
bool containsDecl(Decl *D) const
Checks whether a declaration is in this context.
Definition: DeclBase.cpp:1391
static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, LookupResult &Previous)
Apply special rules for handling extern "C" declarations.
Definition: SemaDecl.cpp:7355
DeclContext * getEntity() const
Definition: Scope.h:327
static SourceLocation findLocationAfterToken(SourceLocation loc, tok::TokenKind TKind, const SourceManager &SM, const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine)
Checks that the given token is the first token that occurs after the given location (this excludes co...
Definition: Lexer.cpp:1261
UnqualTypeLoc getUnqualifiedLoc() const
Skips past any qualifiers, if this is qualified.
Definition: TypeLoc.h:322
unsigned SymbolLocations[3]
The source locations of the individual tokens that name the operator, e.g., the "new", "[", and "]" tokens in operator new [].
Definition: DeclSpec.h:964
const IdentifierInfo * getBaseTypeIdentifier() const
Retrieves a pointer to the name of the base type.
Definition: Type.cpp:71
bool getHasRegParm() const
Definition: Type.h:3548
This file defines the classes used to store parsed information about declaration-specifiers and decla...
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6916
static InitializedEntity InitializeVariable(VarDecl *Var)
Create the initialization entity for a variable.
void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI)
Diagnose shadowing for variables shadowed in the lambda record LambdaRD when these variables are capt...
Definition: SemaDecl.cpp:7215
static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum)
Definition: SemaDecl.cpp:16966
OpaquePtr< T > get() const
Definition: Ownership.h:104
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:86
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2838
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
QualType getParenType(QualType NamedType) const
void setInit(Expr *I)
Definition: Decl.cpp:2239
Expr * getCallee()
Definition: Expr.h:2634
bool isThisDeclarationADefinition() const
Returns whether this specific declaration of the function is also a definition that does not contain ...
Definition: Decl.h:1997
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:131
SourceLocation getVolatileSpecLoc() const
Definition: DeclSpec.h:541
bool isAnonymousNamespace() const
Returns true if this is an anonymous namespace declaration.
Definition: Decl.h:570
SourceLocation getThreadStorageClassSpecLoc() const
Definition: DeclSpec.h:451
bool isImplicit() const
isImplicit - Indicates whether the declaration was implicitly generated by the implementation.
Definition: DeclBase.h:558
void ClearTypeQualifiers()
Clear out all of the type qualifiers.
Definition: DeclSpec.h:547
QualType getTagDeclType(const TagDecl *Decl) const
Return the unique reference to the type for the specified TagDecl (struct/union/class/enum) decl...
Decl * BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, RecordDecl *Record)
BuildMicrosoftCAnonymousStruct - Handle the declaration of an Microsoft C anonymous structure...
Definition: SemaDecl.cpp:4963
SourceLocation getLocation() const
Return a source location identifier for the specified offset in the current file. ...
Definition: Token.h:126
Defines the clang::Preprocessor interface.
static DelayedDiagnostic makeForbiddenType(SourceLocation loc, unsigned diagnostic, QualType type, unsigned argument)
Decl * getMostRecentDecl()
Retrieve the most recent declaration that declares the same entity as this declaration (which may be ...
Definition: DeclBase.h:975
bool isPredefinedRuntimeFunction(unsigned ID) const
Determines whether this builtin is a predefined compiler-rt/libgcc function, such as "__clear_cache"...
Definition: Builtins.h:154
NestedNameSpecifier * getQualifier() const
Retrieve the nested-name-specifier that qualifies the name of this declaration, if it was present in ...
Definition: Decl.h:744
static void CheckPoppedLabel(LabelDecl *L, Sema &S)
Definition: SemaDecl.cpp:1815
Defines the classes clang::DelayedDiagnostic and clang::AccessedEntity.
field_iterator field_end() const
Definition: Decl.h:3844
overridden_method_range overridden_methods() const
Definition: DeclCXX.cpp:2250
ObjCLifetime getObjCLifetime() const
Definition: Type.h:327
bool isLocalExternDecl()
Determine whether this is a block-scope declaration with linkage.
Definition: DeclBase.h:1060
Name lookup results in an ambiguity because an entity with a tag name was hidden by an entity with an...
Definition: Lookup.h:135
bool isFileContext() const
Definition: DeclBase.h:1849
bool supportsVariadicCall(CallingConv CC)
Checks whether the given calling convention supports variadic calls.
Definition: Specifiers.h:287
bool canDecayToPointerType() const
Determines whether this type can decay to a pointer type.
Definition: Type.h:6778
SourceLocation getBeginLoc() const
Definition: DeclSpec.h:72
DeclContext * getDeclContext()
Definition: DeclBase.h:438
CXXRecordDecl * getDefinition() const
Definition: DeclCXX.h:771
A parsed C++17 decomposition declarator of the form &#39;[&#39; identifier-list &#39;]&#39;.
Definition: DeclSpec.h:1674
This declaration is a tentative definition.
Definition: Decl.h:1149
static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD)
Definition: SemaDecl.cpp:9734
void setObjCIdRedefinitionType(QualType RedefType)
Set the user-written type that redefines id.
Definition: ASTContext.h:1648
TLSKind getTLSKind() const
Definition: Decl.cpp:1970
AttributeFactory & getFactory() const
Definition: ParsedAttr.h:717
static QualType getNextLargerIntegralType(ASTContext &Context, QualType T)
Definition: SemaDecl.cpp:16665
static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec)
Converts a type specifier (DeclSpec::TST) into a tag type kind.
Definition: Type.cpp:2570
CanQualType ShortTy
Definition: ASTContext.h:1023
NestedNameSpecifierLoc getPrefix() const
Return the prefix of this nested-name-specifier.
void setMemberSpecialization()
Note that this member template is a specialization.
Definition: DeclTemplate.h:941
bool wasNotFoundInCurrentInstantiation() const
Determine whether no result was found because we could not search into dependent base classes of the ...
Definition: Lookup.h:446
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:2366
virtual void AssignInheritanceModel(CXXRecordDecl *RD)
Callback invoked when an MSInheritanceAttr has been attached to a CXXRecordDecl.
Definition: ASTConsumer.h:107
bool isTemplateParameter() const
isTemplateParameter - Determines whether this declaration is a template parameter.
Definition: DeclBase.h:2453
Represents a C++ template name within the type system.
Definition: TemplateName.h:187
NamedDecl * ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *D, LookupResult &Previous, bool &Redeclaration)
ActOnTypedefNameDecl - Perform semantic checking for a declaration which declares a typedef-name...
Definition: SemaDecl.cpp:5848
SourceLocation getStorageClassSpecLoc() const
Definition: DeclSpec.h:450
ParmVarDecl *const * param_iterator
Definition: DeclObjC.h:343
Decl * ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth)
ActOnField - Each field of a C struct/union is passed into this in order to create a FieldDecl object...
Definition: SemaDecl.cpp:15672
UnqualifiedIdKind getKind() const
Determine what kind of name we have.
Definition: DeclSpec.h:1026
bool isVisible(const NamedDecl *D)
Determine whether a declaration is visible to name lookup.
Definition: Sema.h:1689
unsigned short getMaxTLSAlign() const
Return the maximum alignment (in bits) of a TLS variable.
Definition: TargetInfo.h:1181
bool isFunctionTemplateSpecialization() const
Determine whether this function is a function template specialization.
Definition: Decl.h:2467
void UpdateTypeRep(ParsedType Rep)
Definition: DeclSpec.h:692
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.h:2209
IdentifierInfo * getAsIdentifierInfo() const
Retrieve the IdentifierInfo * stored in this declaration name, or null if this declaration name isn&#39;t...
bool shouldInheritEvenIfAlreadyPresent() const
Should this attribute be inherited from a prior declaration even if it&#39;s explicitly provided in the c...
Definition: Attr.h:155
void setModulePrivate()
Specify that this declaration was marked as being private to the module in which it was defined...
Definition: DeclBase.h:621
void setConstexpr(bool IC)
Definition: Decl.h:1389
FieldDecl * CheckFieldDecl(DeclarationName Name, QualType T, TypeSourceInfo *TInfo, RecordDecl *Record, SourceLocation Loc, bool Mutable, Expr *BitfieldWidth, InClassInitStyle InitStyle, SourceLocation TSSL, AccessSpecifier AS, NamedDecl *PrevDecl, Declarator *D=nullptr)
Build a new FieldDecl and check its well-formedness.
Definition: SemaDecl.cpp:15787
bool isClassScope() const
isClassScope - Return true if this scope is a class/struct/union scope.
Definition: Scope.h:340
bool hasBody(const FunctionDecl *&Definition) const
Returns true if the function has a body.
Definition: Decl.cpp:2772
QualType getType() const
Definition: Expr.h:137
static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old)
checkNewAttributesAfterDef - If we already have a definition, check that there are no new attributes ...
Definition: SemaDecl.cpp:2580
bool isFunctionOrMethod() const
Definition: DeclBase.h:1831
static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D)
Definition: SemaDecl.cpp:7960
bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, QualType EnumUnderlyingTy, bool IsFixed, const EnumDecl *Prev)
Check whether this is a valid redeclaration of a previous enumeration.
Definition: SemaDecl.cpp:14235
static bool hasSimilarParameters(ASTContext &Context, FunctionDecl *Declaration, FunctionDecl *Definition, SmallVectorImpl< unsigned > &Params)
hasSimilarParameters - Determine whether the C++ functions Declaration and Definition have "nearly" m...
Definition: SemaDecl.cpp:5149
StorageClass
Storage classes.
Definition: Specifiers.h:234
TagDecl * getAsTagDecl() const
Retrieves the TagDecl that this type refers to, either because the type is a TagType or because it is...
Definition: Type.cpp:1644
bool hasNonTrivialDestructor() const
Determine whether this class has a non-trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1501
decl_range decls() const
Definition: Scope.h:283
virtual bool validateCpuSupports(StringRef Name) const
Definition: TargetInfo.h:1133
static bool HasNonMultiVersionAttributes(const FunctionDecl *FD, MultiVersionKind MVType)
Definition: SemaDecl.cpp:9537
Direct list-initialization (C++11)
Definition: Decl.h:823
bool isSingleResult() const
Determines if this names a single result which is not an unresolved value using decl.
Definition: Lookup.h:308
static bool hasParsedAttr(Scope *S, const Declarator &PD, ParsedAttr::Kind Kind)
Definition: SemaDecl.cpp:6300
InClassInitStyle
In-class initialization styles for non-static data members.
Definition: Specifiers.h:257
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return the unique reference to the type for a constant array of the specified element type...
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
Get the name of the overloadable C++ operator corresponding to Op.
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1779
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:2610
static const TST TST_int
Definition: DeclSpec.h:279
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:950
QualType getRecordType(const RecordDecl *Decl) const
void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F)
Definition: SemaDecl.cpp:7803
bool isInvalid() const
Definition: Ownership.h:166
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl, ObjCInterfaceDecl *PrevDecl=nullptr) const
getObjCInterfaceType - Return the unique reference to the type for the specified ObjC interface decl...
void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy)
Definition: Decl.h:3015
SourceLocation getEnd() const
static bool hasDefinition(const ObjCObjectPointerType *ObjPtr)
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:2016
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1382
struct CXXOpName CXXOperatorName
void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD)
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1082
DeclContext * getContainingDC(DeclContext *DC)
Definition: SemaDecl.cpp:1201
bool isFriendSpecified() const
Definition: DeclSpec.h:725
Common base class for placeholders for types that get replaced by placeholder type deduction: C++11 a...
Definition: Type.h:4777
const Type * getBaseElementTypeUnsafe() const
Get the base element type of this type, potentially discarding type qualifiers.
Definition: Type.h:6791
APValue * evaluateValue() const
Attempt to evaluate the value of the initializer attached to this declaration, and produce notes expl...
Definition: Decl.cpp:2312
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext=true)
Add this decl to the scope shadowed decl chains.
Definition: SemaDecl.cpp:1370
ValueDecl * getDecl()
Definition: Expr.h:1217
bool isCompoundStmtScope() const
Determine whether this scope is a compound statement scope.
Definition: Scope.h:446
void setDescribedClassTemplate(ClassTemplateDecl *Template)
Definition: DeclCXX.cpp:1661
bool isUsable() const
Definition: Ownership.h:167
void setStorageClass(StorageClass SC)
Definition: Decl.cpp:1965
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2899
sema::LambdaScopeInfo * PushLambdaScope()
Definition: Sema.cpp:1616
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1398
This template specialization was implicitly instantiated from a template.
Definition: Specifiers.h:180
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2040
bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const
Check if this is or contains a C union that is non-trivial to default-initialize, which is a union th...
Definition: Type.h:6267
NamedDecl * LookupSingleName(Scope *S, DeclarationName Name, SourceLocation Loc, LookupNameKind NameKind, RedeclarationKind Redecl=NotForRedeclaration)
Look up a name, looking for a single declaration.
bool isUnionType() const
Definition: Type.cpp:475
VisibilityAttr * mergeVisibilityAttr(Decl *D, SourceRange Range, VisibilityAttr::VisibilityType Vis, unsigned AttrSpellingListIndex)
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc)
Definition: TypeLoc.h:2046
SourceLocation getLocation() const
Retrieve the location at which this variable was captured.
Definition: ScopeInfo.h:615
QualType withoutLocalFastQualifiers() const
Definition: Type.h:871
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:708
static bool shouldConsiderLinkage(const VarDecl *VD)
Definition: SemaDecl.cpp:6278
bool hasAutoForTrailingReturnType() const
Determine whether this type was written with a leading &#39;auto&#39; corresponding to a trailing return type...
Definition: Type.cpp:1759
bool isTemplateInstantiation(TemplateSpecializationKind Kind)
Determine whether this template specialization kind refers to an instantiation of an entity (as oppos...
Definition: Specifiers.h:198
static StringRef getIdentifier(const Token &Tok)
static void ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, OverrideErrorKind OEK=OEK_All)
Report an error regarding overriding, along with any relevant overridden methods. ...
Definition: SemaDecl.cpp:7693
ObjCKeywordKind
Provides a namespace for Objective-C keywords which start with an &#39;@&#39;.
Definition: TokenKinds.h:40
decl_range found_decls()
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList *> TPLists)
Definition: Decl.cpp:4096
void setDeclContext(DeclContext *DC)
setDeclContext - Set both the semantic and lexical DeclContext to DC.
Definition: DeclBase.cpp:294
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:264
T getAsAdjusted() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:2317
VarDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:2060
SmallVector< Attr *, 4 > AttrVec
AttrVec - A vector of Attr, which is how they are stored on the AST.
Definition: AttrIterator.h:29
CanQualType SignedCharTy
Definition: ASTContext.h:1023
FriendObjectKind getFriendObjectKind() const
Determines whether this declaration is the object of a friend declaration and, if so...
Definition: DeclBase.h:1111
decl_type * getFirstDecl()
Return the first declaration of this declaration or itself if this is the only declaration.
Definition: Redeclarable.h:215
static CXXRecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl=nullptr, bool DelayTypeCreation=false)
Definition: DeclCXX.cpp:123
AttrVec & getAttrs()
Definition: DeclBase.h:490
bool hasAttrs() const
Definition: DeclBase.h:484
static CharSourceRange getCharRange(SourceRange R)
QualType getAttributedType(attr::Kind attrKind, QualType modifiedType, QualType equivalentType)
ExtInfo withNoReturn(bool noReturn) const
Definition: Type.h:3569
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:6201
bool isVoidPointerType() const
Definition: Type.cpp:469
static bool checkGlobalOrExternCConflict(Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous)
Check for conflict between this global or extern "C" declaration and previous global or extern "C" de...
Definition: SemaDecl.cpp:7272
bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old)
We&#39;ve determined that New is a redeclaration of Old.
Definition: SemaDecl.cpp:1473
static UnqualifiedTypeNameLookupResult lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, SourceLocation NameLoc, const CXXRecordDecl *RD)
Tries to perform unqualified lookup of the type decls in bases for dependent class.
Definition: SemaDecl.cpp:178
RecordDecl * getDecl() const
Definition: Type.h:4448
ConstexprSpecKind getConstexprSpecifier() const
Definition: DeclSpec.h:731
static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD)
Check the target attribute of the function for MultiVersion validity.
Definition: SemaDecl.cpp:9505
SourceLocation getNoreturnSpecLoc() const
Definition: DeclSpec.h:583
void CheckForFunctionRedefinition(FunctionDecl *FD, const FunctionDecl *EffectiveDefinition=nullptr, SkipBodyInfo *SkipBody=nullptr)
Definition: SemaDecl.cpp:13148
NestedNameSpecifier * getScopeRep() const
Retrieve the representation of the nested-name-specifier.
Definition: DeclSpec.h:76
Decl * ActOnSkippedFunctionBody(Decl *Decl)
Definition: SemaDecl.cpp:13513
InternalLinkageAttr * mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL)
UnqualifiedTypeNameLookupResult
Definition: SemaDecl.cpp:166
NamedDecl * ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, Scope *S)
ImplicitlyDefineFunction - An undeclared identifier was used in a function call, forming a call to an...
Definition: SemaDecl.cpp:13908
static bool isIncompleteDeclExternC(Sema &S, const T *D)
Determine whether a variable is extern "C" prior to attaching an initializer.
Definition: SemaDecl.cpp:6264
bool isInjectedClassName() const
Determines whether this declaration represents the injected class name.
Definition: Decl.cpp:4282
bool isCtorOrDtor()
Returns true if this declares a constructor or a destructor.
Definition: DeclSpec.cpp:404
void setTypeForDecl(const Type *TD)
Definition: Decl.h:2932
char * location_data() const
Retrieve the data associated with the source-location information.
Definition: DeclSpec.h:217
StringRef getFilename(SourceLocation SpellingLoc) const
Return the filename of the file containing a SourceLocation.
bool isAuxBuiltinID(unsigned ID) const
Return true if builtin ID belongs to AuxTarget.
Definition: Builtins.h:217
Wrapper for source info for arrays.
Definition: TypeLoc.h:1495
void setImplicit(bool I)
Definition: Attr.h:102
static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S)
Definition: SemaDecl.cpp:4171
There is no lifetime qualification on this type.
Definition: Type.h:154
Decl::Kind getDeclKind() const
Definition: DeclBase.h:1772
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:1045
UnqualifiedIdKind Kind
Describes the kind of unqualified-id parsed.
Definition: DeclSpec.h:951
void makeDeclVisibleInContext(NamedDecl *D)
Makes a declaration visible within this context.
Definition: DeclBase.cpp:1792
llvm::cl::opt< std::string > Filter
void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, SourceLocation LocAfterDecls)
Definition: SemaDecl.cpp:13041
The "struct" keyword.
Definition: Type.h:5103
Tag name lookup, which finds the names of enums, classes, structs, and unions.
Definition: Sema.h:3227
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
Kind
QualType getCanonicalType() const
Definition: Type.h:6181
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:153
TypeLoc IgnoreParens() const
Definition: TypeLoc.h:1162
decl_type * getPreviousDecl()
Return the previous declaration of this declaration or NULL if this is the first declaration.
Definition: Redeclarable.h:203
VarDecl * getVariable() const
Definition: ScopeInfo.h:604
static DeclaratorChunk getReference(unsigned TypeQuals, SourceLocation Loc, bool lvalue)
Return a DeclaratorChunk for a reference.
Definition: DeclSpec.h:1574
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3932
FunctionDecl * getAsFunction() LLVM_READONLY
Returns the function itself, or the templated function if this is a function template.
Definition: DeclBase.cpp:217
SCS getStorageClassSpec() const
Definition: DeclSpec.h:441
ASTContext & getASTContext() const
Definition: Sema.h:1292
Expr * getAsmLabel() const
Definition: DeclSpec.h:2441
redecl_range redecls() const
Returns an iterator range for all the redeclarations of the same decl.
Definition: Redeclarable.h:294
unsigned getMSCurManglingNumber() const
Definition: Scope.h:317
unsigned getNumExprs() const
Return the number of expressions in this paren list.
Definition: Expr.h:5131
static bool AllowOverloadingOfFunction(LookupResult &Previous, ASTContext &Context, const FunctionDecl *New)
Determine whether we allow overloading of the function PrevDecl with another declaration.
Definition: SemaDecl.cpp:1355
OverrideErrorKind
Definition: SemaDecl.cpp:7684
FunctionDecl * getTemplatedDecl() const
Get the underlying function declaration of the template.
Encodes a location in the source.
bool isTypeSpecOwned() const
Definition: DeclSpec.h:477
Sugar for parentheses used when specifying types.
Definition: Type.h:2539
void setTopLevelDeclInObjCContainer(bool V=true)
Definition: DeclBase.h:597
QualType getReturnType() const
Definition: Type.h:3645
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
bool isPure() const
Whether this virtual function is pure, i.e.
Definition: Decl.h:2023
bool CheckForConstantInitializer(Expr *e, QualType t)
type checking declaration initializers (C99 6.7.8)
Definition: SemaDecl.cpp:10580
void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl, SourceRange BraceRange)
ActOnTagFinishDefinition - Invoked once we have finished parsing the definition of a tag (enumeration...
Definition: SemaDecl.cpp:15515
void ActOnDocumentableDecls(ArrayRef< Decl *> Group)
Definition: SemaDecl.cpp:12724
SourceLocation CurrentPragmaLocation
Definition: Sema.h:494
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4464
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6258
QualType getSingleStepDesugaredType(const ASTContext &Context) const
Return the specified type with one level of "sugar" removed from the type.
Definition: Type.h:956
Expr * getSubExpr() const
Definition: Expr.h:2046
FunctionDefinitionKind getFunctionDefinitionKind() const
Definition: DeclSpec.h:2476
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:2124
CXXRecordDecl * Lambda
The class that describes the lambda.
Definition: ScopeInfo.h:792
void setBraceRange(SourceRange R)
Definition: Decl.h:3179
std::pair< NullabilityKind, bool > DiagNullabilityKind
A nullability kind paired with a bit indicating whether it used a context-sensitive keyword...
Definition: Diagnostic.h:1292
Attr * clone(ASTContext &C) const
UnqualifiedId & getName()
Retrieve the name specified by this declarator.
Definition: DeclSpec.h:1883
CastKind getCastKind() const
Definition: Expr.h:3167
void FinalizeDeclaration(Decl *D)
FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform any semantic actions neces...
Definition: SemaDecl.cpp:12431
bool isLiteralType(const ASTContext &Ctx) const
Return true if this is a literal type (C++11 [basic.types]p10)
Definition: Type.cpp:2330
void AddKnownFunctionAttributes(FunctionDecl *FD)
Adds any function attributes that we know a priori based on the declaration of this function...
Definition: SemaDecl.cpp:14029
void ActOnPragmaWeakID(IdentifierInfo *WeakName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc)
ActOnPragmaWeakID - Called on well formed #pragma weak ident.
Definition: SemaDecl.cpp:17412
void setFreeStanding(bool isFreeStanding=true)
True if this tag is free standing, e.g. "struct foo;".
Definition: Decl.h:3240
DeclarationName getName() const
getName - Returns the embedded declaration name.
void ExitDeclaratorContext(Scope *S)
Definition: SemaDecl.cpp:1301
The nullability qualifier is set when the nullability of the result or parameter was expressed via a ...
Definition: DeclBase.h:212
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3097
LanguageLinkage
Describes the different kinds of language linkage (C++ [dcl.link]) that an entity may have...
Definition: Linkage.h:64
MutableArrayRef< Expr * > MultiExprArg
Definition: Ownership.h:273
unsigned getLongLongWidth() const
getLongLongWidth/Align - Return the size of &#39;signed long long&#39; and &#39;unsigned long long&#39; for this targ...
Definition: TargetInfo.h:403
FunctionTypeInfo Fun
Definition: DeclSpec.h:1530
bool isModulePrivateSpecified() const
Definition: DeclSpec.h:728
static const TST TST_union
Definition: DeclSpec.h:293
CallingConv getCC() const
Definition: Type.h:3557
bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer=true) const
Determine whether this declaration, if known to be well-formed within its context, will replace the declaration OldD if introduced into scope.
Definition: Decl.cpp:1678
InheritableAttr * getDLLAttr(Decl *D)
Return a DLL attribute from the declaration.
Definition: SemaInternal.h:54
unsigned getSpellingListIndex() const
Definition: Attr.h:90
ExitFunctionBodyRAII(Sema &S, bool IsLambda)
Definition: SemaDecl.cpp:13531
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList *> TPLists)
Definition: Decl.cpp:1835
QualType getObjCSelType() const
Retrieve the type that corresponds to the predefined Objective-C &#39;SEL&#39; type.
Definition: ASTContext.h:1864
Represents the declaration of a label.
Definition: Decl.h:468
ParsedAttr - Represents a syntactic attribute.
Definition: ParsedAttr.h:116
bool SetStorageClassSpec(Sema &S, SCS SC, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
These methods set the specified attribute of the DeclSpec and return false if there was no error...
Definition: DeclSpec.cpp:588
MultiVersionKind
Definition: Decl.h:1731
const DecompositionDeclarator & getDecompositionDeclarator() const
Definition: DeclSpec.h:1885
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition: Type.cpp:1790
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2114
void setDefaulted(bool D=true)
Definition: Decl.h:2049
void setHasFlexibleArrayMember(bool V)
Definition: Decl.h:3684
SourceLocation getStrTokenLoc(unsigned TokNum) const
Get one of the string literal token.
Definition: Expr.h:1828
bool shouldDelayDiagnostics()
Determines whether diagnostics should be delayed.
Definition: Sema.h:728
const T * getAttrAs()
Definition: TypeLoc.h:880
DeclarationNameInfo getNameForTemplate(TemplateName Name, SourceLocation NameLoc) const
bool canDelayFunctionBody(const Declarator &D)
Determine whether we can delay parsing the body of a function or function template until it is used...
Definition: SemaDecl.cpp:13471
void notePreviousDefinition(const NamedDecl *Old, SourceLocation New)
Definition: SemaDecl.cpp:4075
bool isConst(unsigned ID) const
Return true if this function has no side effects and doesn&#39;t read memory.
Definition: Builtins.h:106
bool hasGlobalStorage() const
Returns true for all variables that do not have local storage.
Definition: Decl.h:1077
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
void addOverriddenMethod(const CXXMethodDecl *MD)
Definition: DeclCXX.cpp:2225
static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, QualType T, SourceLocation NameLoc)
Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
Definition: SemaDecl.cpp:834
void setEntity(DeclContext *E)
Definition: Scope.h:328
SectionAttr * mergeSectionAttr(Decl *D, SourceRange Range, StringRef Name, unsigned AttrSpellingListIndex)
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2312
NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, SourceLocation NameLoc, const Token &NextToken, bool IsAddressOfOperand, CorrectionCandidateCallback *CCC=nullptr)
Perform name lookup on the given name, classifying it based on the results of name lookup and the fol...
Definition: SemaDecl.cpp:849
void demoteThisDefinitionToDeclaration()
This is a definition which should be demoted to a declaration.
Definition: Decl.h:1303
bool isFirstDecl() const
True if this is the first declaration in its redeclaration chain.
Definition: Redeclarable.h:222
SourceLocation getLocation() const
Definition: Attr.h:93
A friend of a previously-declared entity.
Definition: DeclBase.h:1103
Name lookup found an unresolvable value declaration and cannot yet complete.
Definition: Lookup.h:68
MemberPointerTypeInfo Mem
Definition: DeclSpec.h:1532
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, const FunctionDecl *NewFD, bool CausesMV, MultiVersionKind MVType)
Definition: SemaDecl.cpp:9558
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2279
bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, Scope *S, bool MergeTypeWithOld)
Completes the merge of two function declarations that are known to be compatible. ...
Definition: SemaDecl.cpp:3636
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1891
CanQualType VoidTy
Definition: ASTContext.h:1014
bool isScoped() const
Returns true if this is a C++11 scoped enumeration.
Definition: Decl.h:3553
TokenKind
Provides a simple uniform namespace for tokens from all C languages.
Definition: TokenKinds.h:24
bool isInMainFile(SourceLocation Loc) const
Returns whether the PresumedLoc for a given SourceLocation is in the main file.
Describes the kind of initialization being performed, along with location information for tokens rela...
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:158
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, CorrectTypoKind Mode, DeclContext *MemberContext=nullptr, bool EnteringContext=false, const ObjCObjectPointerType *OPT=nullptr, bool RecordFailure=true)
Try to "correct" a typo in the source code by finding visible declarations whose names are similar to...
arg_range arguments()
Definition: Expr.h:2710
bool isObjCObjectPointerType() const
Definition: Type.h:6488
Decl * getRepAsDecl() const
Definition: DeclSpec.h:486
FunctionTemplateDecl * getPreviousDecl()
Retrieve the previous declaration of this function template, or nullptr if no such declaration exists...
A class for iterating through a result set and possibly filtering out results.
Definition: Lookup.h:617
This declaration is only a declaration.
Definition: Decl.h:1146
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:650
bool isMSAsmLabel() const
Definition: Decl.h:502
bool isSimpleTypeSpecifier(tok::TokenKind Kind) const
Determine whether the token kind starts a simple-type-specifier.
Definition: SemaDecl.cpp:123
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3245
uint32_t TypeID
An ID number that refers to a type in an AST file.
Definition: ASTBitCodes.h:85
bool isFunctionProtoType() const
Definition: Type.h:1975
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1157
static const TST TST_typeofType
Definition: DeclSpec.h:298
bool hasLinkageBeenComputed() const
True if something has required us to compute the linkage of this declaration.
Definition: Decl.h:425
No entity found met the criteria.
Definition: Lookup.h:50
bool isHeaderDependentFunction(unsigned ID) const
Returns true if this builtin requires appropriate header in other compilers.
Definition: Builtins.h:147
bool isUsed(bool CheckUsedAttr=true) const
Whether any (re-)declaration of the entity was used, meaning that a definition is required...
Definition: DeclBase.cpp:397
FunctionTemplateDecl * getInstantiatedFromMemberTemplate() const
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1992
PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const
Check if this is a non-trivial type that would cause a C struct transitively containing this type to ...
Definition: Type.cpp:2308
SourceLocation getRAngleLoc() const
Definition: DeclTemplate.h:173
Expr ** getExprs()
Definition: Expr.h:5142
bool isExplicitlyDefaulted() const
Whether this function is explicitly defaulted per C++0x.
Definition: Decl.h:2053
AlwaysInlineAttr * mergeAlwaysInlineAttr(Decl *D, SourceRange Range, IdentifierInfo *Ident, unsigned AttrSpellingListIndex)
DeclarationNameInfo getNameInfo() const
Definition: Decl.h:1915
bool isStaticMember()
Returns true if this declares a static member.
Definition: DeclSpec.cpp:396
virtual bool validateCpuIs(StringRef Name) const
Definition: TargetInfo.h:1143
SourceLocation getInlineSpecLoc() const
Definition: DeclSpec.h:561
static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl *Old)
Definition: SemaDecl.cpp:3694
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc)
Emit diagnostics if the initializer or any of its explicit or implicitly-generated subexpressions req...
Definition: SemaDecl.cpp:11104
static bool isExternC(T *D)
Definition: SemaDecl.cpp:2929
void ActOnFinishInlineFunctionDef(FunctionDecl *D)
Definition: SemaDecl.cpp:13090
void dropAttrs()
Definition: DeclBase.cpp:822
NamedDecl * next()
Definition: Lookup.h:643
bool isScanfLike(unsigned ID, unsigned &FormatIdx, bool &HasVAListArg)
Determine whether this builtin is like scanf in its formatting rules and, if so, set the index to the...
Definition: Builtins.cpp:157
bool hasImplicitReturnZero() const
Whether falling off this function implicitly returns null/zero.
Definition: Decl.h:2066
void setObjCSuperType(QualType ST)
Definition: ASTContext.h:1612
comments::FullComment * getCommentForDecl(const Decl *D, const Preprocessor *PP) const
Return parsed documentation comment attached to a given declaration.
Definition: ASTContext.cpp:481
bool hasFlexibleArrayMember() const
Definition: Decl.h:3680
void setLAngleLoc(SourceLocation Loc)
Definition: TemplateBase.h:573
bool isInvalid() const
An error occurred during parsing of the scope specifier.
Definition: DeclSpec.h:194
static bool isRepresentableIntegerValue(ASTContext &Context, llvm::APSInt &Value, QualType T)
Determine whether the given integral value is representable within the given type T...
Definition: SemaDecl.cpp:16648
void setFunctionDefinitionKind(FunctionDefinitionKind Val)
Definition: DeclSpec.h:2468
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2320
virtual bool isOutOfLine() const
Determine whether this declaration is declared out of line (outside its semantic context).
Definition: Decl.cpp:98
UuidAttr * mergeUuidAttr(Decl *D, SourceRange Range, unsigned AttrSpellingListIndex, StringRef Uuid)
static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag)
static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S, IdentifierInfo *II)
Looks up the declaration of "struct objc_super" and saves it for later use in building builtin declar...
Definition: SemaDecl.cpp:1944
static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag)
Get diagnostic select index for tag kind for redeclaration diagnostic message.
Definition: SemaDecl.cpp:14272
bool isDesignatedInitializerForTheInterface(const ObjCMethodDecl **InitMethod=nullptr) const
Returns true if the method selector resolves to a designated initializer in the class&#39;s interface...
Definition: DeclObjC.cpp:839
DLLImportAttr * mergeDLLImportAttr(Decl *D, SourceRange Range, unsigned AttrSpellingListIndex)
Sema & getSema() const
Get the Sema object that this lookup result is searching with.
Definition: Lookup.h:612
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:215
MultiVersionKind getMultiVersionKind() const
Gets the kind of multiversioning attribute this declaration has.
Definition: Decl.cpp:3025
void setVirtualAsWritten(bool V)
State that this function is marked as virtual explicitly.
Definition: Decl.h:2019
TypeLoc getElementLoc() const
Definition: TypeLoc.h:1528
bool hasInClassInitializer() const
Whether this class has any in-class initializers for non-static data members (including those in anon...
Definition: DeclCXX.h:1294
CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD)
getSpecialMember - get the special member enum for a method.
Definition: SemaDecl.cpp:2858
Expr * getLHS() const
Definition: Expr.h:3445
SourceLocation getModulePrivateSpecLoc() const
Definition: DeclSpec.h:729
ObjCDeclQualifier getObjCDeclQualifier() const
Definition: Decl.h:1621
StringRef getName() const
Return the actual identifier string.
static bool isOutOfScopePreviousDeclaration(NamedDecl *, DeclContext *, ASTContext &)
Determines whether the given declaration is an out-of-scope previous declaration. ...
Definition: SemaDecl.cpp:5903
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1899
void takeAttributes(ParsedAttributes &attrs, SourceLocation lastLoc)
takeAttributes - Takes attributes from the given parsed-attributes set and add them to this declarato...
Definition: DeclSpec.h:2412
NamedDecl * getShadowedDeclaration(const TypedefNameDecl *D, const LookupResult &R)
Return the declaration shadowed by the given typedef D, or null if it doesn&#39;t shadow any declaration ...
Definition: SemaDecl.cpp:7089
CanQualType UnsignedShortTy
Definition: ASTContext.h:1024
static unsigned getMaxSizeBits(const ASTContext &Context)
Determine the maximum number of active bits that an array&#39;s size can require, which limits the maximu...
Definition: Type.cpp:146
bool isObjCGCWeak() const
true when Type is objc&#39;s weak.
Definition: Type.h:1053
void diagnoseTypo(const TypoCorrection &Correction, const PartialDiagnostic &TypoDiag, bool ErrorRecovery=true)
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:2949
CanQualType CharTy
Definition: ASTContext.h:1016
TLS with a dynamic initializer.
Definition: Decl.h:835
void ActOnReenterFunctionContext(Scope *S, Decl *D)
Push the parameters of D, which must be a function, into scope.
Definition: SemaDecl.cpp:1314
LabelStmt * getStmt() const
Definition: Decl.h:492
bool isDeduced() const
Definition: Type.h:4806
bool isScopedEnumeralType() const
Determine whether this type is a scoped enumeration type.
Definition: Type.cpp:492
void setBody(Stmt *B)
Definition: Decl.cpp:2818
Represents a type which was implicitly adjusted by the semantic engine for arbitrary reasons...
Definition: Type.h:2617
bool isPipeType() const
Definition: Type.h:6576
NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK)
Given a non-tag type declaration, returns an enum useful for indicating what kind of non-tag type thi...
Definition: SemaDecl.cpp:14290
static DeclGroupRef Create(ASTContext &C, Decl **Decls, unsigned NumDecls)
Definition: DeclGroup.h:68
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression which will be evaluated if the condnition evaluates to false;...
Definition: Expr.h:3835
TagTypeKind
The kind of a tag type.
Definition: Type.h:5101
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2616
static LinkageSpecDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation ExternLoc, SourceLocation LangLoc, LanguageIDs Lang, bool HasBraces)
Definition: DeclCXX.cpp:2632
Dataflow Directional Tag Classes.
ConstexprSpecKind
Define the kind of constexpr specifier.
Definition: Specifiers.h:32
static void FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL)
Definition: SemaDecl.cpp:5674
bool isValid() const
Return true if this is a valid SourceLocation object.
DeducedType * getContainedDeducedType() const
Get the DeducedType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.cpp:1754
ExtInfo getExtInfo() const
Definition: Type.h:3656
void setHasVolatileMember(bool val)
Definition: Decl.h:3712
ParmVarDecl * BuildParmVarDeclForTypedef(DeclContext *DC, SourceLocation Loc, QualType T)
Synthesizes a variable for a parameter arising from a typedef.
Definition: SemaDecl.cpp:12910
A qualifier set is used to build a set of qualifiers.
Definition: Type.h:6109
QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false, bool Unqualified=false, bool BlockReturnType=false)
bool isLateTemplateParsed() const
Whether this templated function will be late parsed.
Definition: Decl.h:2027
static const CXXRecordDecl * findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC)
Find the parent class with dependent bases of the innermost enclosing method context.
Definition: SemaDecl.cpp:545
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1271
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:580
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:403
void EnterDeclaratorContext(Scope *S, DeclContext *DC)
EnterDeclaratorContext - Used when we must lookup names in the context of a declarator&#39;s nested name ...
Definition: SemaDecl.cpp:1272
static const TST TST_decltype
Definition: DeclSpec.h:300
llvm::SmallVector< std::pair< SourceLocation, const BlockDecl * >, 1 > ImplicitlyRetainedSelfLocs
List of SourceLocations where &#39;self&#39; is implicitly retained inside a block.
Definition: Sema.h:1218
static const TST TST_auto
Definition: DeclSpec.h:303
const Scope * getParent() const
getParent - Return the scope that this is nested in.
Definition: Scope.h:228
static bool CheckAnonMemberRedeclaration(Sema &SemaRef, Scope *S, DeclContext *Owner, DeclarationName Name, SourceLocation NameLoc, bool IsUnion)
We are trying to inject an anonymous member into the given scope; check if there&#39;s an existing declar...
Definition: SemaDecl.cpp:4528
QualType getType() const
Get the type for which this source info wrapper provides information.
Definition: TypeLoc.h:130
bool isFunctionOrFunctionTemplate() const
Whether this declaration is a function or function template.
Definition: DeclBase.h:1018
bool isRecord() const
Definition: DeclBase.h:1858
attr_range attrs() const
Definition: DeclBase.h:501
SourceLocation RAngleLoc
The location of the &#39;>&#39; after the template argument list.
OpenCLParamType
Definition: SemaDecl.cpp:8133
Qualifiers getMethodQualifiers() const
Definition: DeclCXX.h:2267
Represents a field injected from an anonymous union/struct into the parent scope. ...
Definition: Decl.h:2858
bool isCopyConstructor(unsigned &TypeQuals) const
Whether this constructor is a copy constructor (C++ [class.copy]p2, which can be used to copy the cla...
Definition: DeclCXX.cpp:2472
bool isDependentAddressSpaceType() const
Definition: Type.h:6484
bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const
Definition: SemaDecl.cpp:1583
QualType getUnderlyingType() const
Definition: Decl.h:3004
bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, const PartialDiagnostic &PD)
Conditionally issue a diagnostic based on the current evaluation context.
Definition: SemaExpr.cpp:16728
unsigned getNextFunctionPrototypeIndex()
Return the number of parameters declared in this function prototype, increasing it by one for the nex...
Definition: Scope.h:276
CanQualType UnsignedLongLongTy
Definition: ASTContext.h:1025
bool isDependent() const
Whether this nested name specifier refers to a dependent type or not.
bool isMissingDeclaratorOk()
Checks if this DeclSpec can stand alone, without a Declarator.
Definition: DeclSpec.cpp:1363
SourceLocation getIncludeLoc(FileID FID) const
Returns the include location if FID is a #include&#39;d file otherwise it returns an invalid location...
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:118
const Expr * getInit() const
Definition: Decl.h:1219
AccessSpecifier getAccess() const
Definition: DeclBase.h:473
ObjCInterfaceDecl * getDefinition()
Retrieve the definition of this class, or NULL if this class has been forward-declared (with @class) ...
Definition: DeclObjC.h:1548
A decomposition declaration.
Definition: DeclCXX.h:3988
MapType::iterator iterator
This is a scope that corresponds to the template parameters of a C++ template.
Definition: Scope.h:77
void setShadowed()
Note that we found and ignored a declaration while performing lookup.
Definition: Lookup.h:463
void setWillHaveBody(bool V=true)
Definition: Decl.h:2249
NamedDecl * getCorrectionDecl() const
Gets the pointer to the declaration of the typo correction.
The name of a declaration.
NamedDecl * getFoundDecl() const
Fetch the unique decl found by this lookup.
Definition: Lookup.h:517
static ObjCIvarDecl::AccessControl TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)
TranslateIvarVisibility - Translate visibility from a token ID to an AST enum value.
Definition: SemaDecl.cpp:16051
static std::string getAsString(SplitQualType split, const PrintingPolicy &Policy)
Definition: Type.h:976
bool isCXXClassMember() const
Determine whether this declaration is a C++ class member.
Definition: Decl.h:345
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2237
Kind getKind() const
Definition: DeclBase.h:432
bool isBooleanType() const
Definition: Type.h:6760
const Type * strip(QualType type)
Collect any qualifiers on the given type and return an unqualified type.
Definition: Type.h:6116
void handleTagNumbering(const TagDecl *Tag, Scope *TagScope)
Definition: SemaDecl.cpp:4177
QualType getFunctionNoProtoType(QualType ResultTy, const FunctionType::ExtInfo &Info) const
Return a K&R style C function type like &#39;int()&#39;.
bool isOneOf(tok::TokenKind K1, tok::TokenKind K2) const
Definition: Token.h:99
void PushDeclContext(Scope *S, DeclContext *DC)
Set the current declaration context until it gets popped.
Definition: SemaDecl.cpp:1237
static FunctionDecl * CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, DeclContext *DC, QualType &R, TypeSourceInfo *TInfo, StorageClass SC, bool &IsVirtualOkay)
Definition: SemaDecl.cpp:7996
MangleNumberingContext & getManglingNumberContext(const DeclContext *DC)
Retrieve the context for computing mangling numbers in the given DeclContext.
bool isMSVCRTEntryPoint() const
Determines whether this function is a MSVCRT user defined entry point.
Definition: Decl.cpp:2845
A mapping from each virtual member function to its set of final overriders.
unsigned getNumTemplateParameterLists() const
Definition: Decl.h:759
Represents an enum.
Definition: Decl.h:3359
redecl_iterator redecls_end() const
Definition: Redeclarable.h:301
void setInlineSpecified()
Definition: Decl.h:1375
void mergeNRVOIntoParent()
Definition: Scope.cpp:121
ObjCIvarDecl * getIvarDecl(IdentifierInfo *Id) const
getIvarDecl - This method looks up an ivar in this ContextDecl.
Definition: DeclObjC.cpp:79
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2788
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition: DeclCXX.cpp:2183
static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, SourceLocation NameLoc)
Definition: SemaDecl.cpp:784
const FunctionType * adjustFunctionType(const FunctionType *Fn, FunctionType::ExtInfo EInfo)
Change the ExtInfo on a function type.
static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D)
Definition: SemaDecl.cpp:1666
bool isAggregateType() const
Determines whether the type is a C++ aggregate type or C aggregate or union type. ...
Definition: Type.cpp:2038
void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl, SourceLocation FinalLoc, bool IsFinalSpelledSealed, SourceLocation LBraceLoc)
ActOnStartCXXMemberDeclarations - Invoked when we have parsed a C++ record definition&#39;s base-specifie...
Definition: SemaDecl.cpp:15479
bool isInitCapture() const
Whether this variable is the implicit variable for a lambda init-capture.
Definition: Decl.h:1395
TypeLoc getModifiedLoc() const
The modified type, which is generally canonically different from the attribute type.
Definition: TypeLoc.h:868
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
QualType apply(const ASTContext &Context, QualType QT) const
Apply the collected qualifiers to the given type.
Definition: Type.cpp:3428
void setPreviousDeclInSameBlockScope(bool Same)
Definition: Decl.h:1414
bool isTemplateInstantiation() const
Determines if the given function was instantiated from a function template.
Definition: Decl.cpp:3489
static EnumDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, bool IsScoped, bool IsScopedUsingClassTag, bool IsFixed)
Definition: Decl.cpp:4128
ParmVarDecl * CheckParameter(DeclContext *DC, SourceLocation StartLoc, SourceLocation NameLoc, IdentifierInfo *Name, QualType T, TypeSourceInfo *TSInfo, StorageClass SC)
Definition: SemaDecl.cpp:12965
The name refers to a template whose specialization produces a type.
Definition: TemplateKinds.h:30
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclSpec.h:498
static const TST TST_unspecified
Definition: DeclSpec.h:272
static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, const FunctionDecl *&PossiblePrototype)
Definition: SemaDecl.cpp:13095
static FileScopeAsmDecl * Create(ASTContext &C, DeclContext *DC, StringLiteral *Str, SourceLocation AsmLoc, SourceLocation RParenLoc)
Definition: Decl.cpp:4757
IdentifierInfo * getCorrectionAsIdentifierInfo() const
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:2048
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit)
AddInitializerToDecl - Adds the initializer Init to the declaration dcl.
Definition: SemaDecl.cpp:11365
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 &#39;auto&#39; typ...
Definition: Type.h:6766
bool DeclAttrsMatchCUDAMode(const LangOptions &LangOpts, Decl *D)
Definition: SemaInternal.h:44
bool hasNonTrivialCopyAssignment() const
Determine whether this class has a non-trivial copy assignment operator (C++ [class.copy]p11, C++11 [class.copy]p25)
Definition: DeclCXX.h:1469
static std::pair< diag::kind, SourceLocation > getNoteDiagForInvalidRedeclaration(const T *Old, const T *New)
Definition: SemaDecl.cpp:2883
void setObjectOfFriendDecl(bool PerformFriendInjection=false)
Changes the namespace of this declaration to reflect that it&#39;s the object of a friend declaration...
Definition: DeclBase.h:1071
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition: Expr.cpp:2942
TemplateNameKindForDiagnostics getTemplateNameKindForDiagnostics(TemplateName Name)
Definition: SemaDecl.cpp:1179
void addConst()
Definition: Type.h:257
llvm::APInt getValue() const
Definition: Expr.h:1400
QualType getModifiedType() const
Definition: Type.h:4518
void setLocalExternDecl()
Changes the namespace of this declaration to reflect that it&#39;s a function-local extern declaration...
Definition: DeclBase.h:1042
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:2057
SourceLocation getRBracketLoc() const
Definition: TypeLoc.h:1508
AvailabilityMergeKind
Describes the kind of merge to perform for availability attributes (including "deprecated", "unavailable", and "availability").
Definition: Sema.h:2597
NamedDecl * ActOnTypedefDeclarator(Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, LookupResult &Previous)
Definition: SemaDecl.cpp:5761
SourceRange getSourceRange() const LLVM_READONLY
Get the full source range.
Definition: TypeLoc.h:150
SourceLocation DefinitionLoc
The location of the module definition.
Definition: Module.h:70
UsingDecl * getUsingDecl() const
Gets the using declaration to which this declaration is tied.
Definition: DeclCXX.cpp:2786
void RemoveDecl(Decl *D)
Definition: Scope.h:293
Name lookup found a single declaration that met the criteria.
Definition: Lookup.h:59
void setImplicitlyInline()
Definition: Decl.h:1380
static ObjCIvarDecl * Create(ASTContext &C, ObjCContainerDecl *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, AccessControl ac, Expr *BW=nullptr, bool synthesized=false)
Definition: DeclObjC.cpp:1747
TypeLoc getPointeeLoc() const
Definition: TypeLoc.h:1219
unsigned getIntWidth(QualType T) const
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2551
bool isIncompleteArrayType() const
Definition: Type.h:6448
bool isClosedFlag() const
Returns true if this enum is annotated with flag_enum and isn&#39;t annotated with enum_extensibility(ope...
Definition: Decl.cpp:4173
bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths, bool LookupInDependent=false) const
Look for entities within the base classes of this C++ class, transitively searching all base class su...
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4438
bool isModulePurview() const
Does this Module scope describe part of the purview of a named C++ module?
Definition: Module.h:117
void setIsUsed()
Set whether the declaration is used, in the sense of odr-use.
Definition: DeclBase.h:573
void DiagnoseUnusedParameters(ArrayRef< ParmVarDecl *> Parameters)
Diagnose any unused parameters in the given sequence of ParmVarDecl pointers.
Definition: SemaDecl.cpp:12923
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)
Definition: Decl.cpp:4076
void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType, bool ByCopy)
Definition: ScopeInfo.h:1021
CanQualType UnknownAnyTy
Definition: ASTContext.h:1043
void ActOnTagDefinitionError(Scope *S, Decl *TagDecl)
ActOnTagDefinitionError - Invoked when there was an unrecoverable error parsing the definition of a t...
Definition: SemaDecl.cpp:15560
bool empty() const
Definition: Type.h:415
bool checkInitIsICE() const
Determine whether the value of the initializer attached to this declaration is an integral constant e...
Definition: Decl.cpp:2384
unsigned getTypeQualifiers() const
getTypeQualifiers - Return a set of TQs.
Definition: DeclSpec.h:538
TemplateName getAssumedTemplateName(DeclarationName Name) const
Retrieve a template name representing an unqualified-id that has been assumed to name a template for ...
static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, FixItHint &Hint)
Definition: SemaDecl.cpp:1763
void add(const sema::DelayedDiagnostic &diag)
Adds a delayed diagnostic.
ValueType CurrentValue
Definition: Sema.h:493
SourceLocation getVirtualSpecLoc() const
Definition: DeclSpec.h:570
bool isReserveIDT() const
Definition: Type.h:6565
unsigned hasPrototype
hasPrototype - This is true if the function had at least one typed parameter.
Definition: DeclSpec.h:1263
This template specialization was declared or defined by an explicit specialization (C++ [temp...
Definition: Specifiers.h:184
bool isConstantInitializer(ASTContext &Ctx, bool ForRef, const Expr **Culprit=nullptr) const
isConstantInitializer - Returns true if this expression can be emitted to IR as a constant...
Definition: Expr.cpp:3108
CanQualType UnsignedLongTy
Definition: ASTContext.h:1024
void setConstexprKind(ConstexprSpecKind CSK)
Definition: Decl.h:2111
void setNonMemberOperator()
Specifies that this declaration is a C++ overloaded non-member.
Definition: DeclBase.h:1120
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)
Definition: Decl.cpp:1805
T * getAttr() const
Definition: DeclBase.h:538
void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, Decl *EnumDecl, ArrayRef< Decl *> Elements, Scope *S, const ParsedAttributesView &Attr)
Definition: SemaDecl.cpp:17139
CanQualType DependentTy
Definition: ASTContext.h:1043
bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S=nullptr, bool AllowInlineNamespace=false)
isDeclInScope - If &#39;Ctx&#39; is a function/method, isDeclInScope returns true if &#39;D&#39; is in Scope &#39;S&#39;...
Definition: SemaDecl.cpp:1430
bool isImageType() const
Definition: Type.h:6569
EnumConstantDecl * CheckEnumConstant(EnumDecl *Enum, EnumConstantDecl *LastEnumConst, SourceLocation IdLoc, IdentifierInfo *Id, Expr *val)
Definition: SemaDecl.cpp:16689
Expr * getCond() const
getCond - Return the condition expression; this is defined in terms of the opaque value...
Definition: Expr.h:3823
static Scope * getScopeForDeclContext(Scope *S, DeclContext *DC)
Finds the scope corresponding to the given decl context, if it happens to be an enclosing scope...
Definition: SemaDecl.cpp:1435
bool isFunctionType() const
Definition: Type.h:6380
void setTypeSourceInfo(TypeSourceInfo *TI)
Definition: Decl.h:721
bool isStaticLocal() const
Returns true if a variable with function scope is a static local variable.
Definition: Decl.h:1059
void setNonKeyFunction(const CXXMethodDecl *method)
Observe that the given method cannot be a key function.
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:715
static const TST TST_typename
Definition: DeclSpec.h:297
Expr * getSizeExpr() const
Definition: TypeLoc.h:1520
Opcode getOpcode() const
Definition: Expr.h:2041
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1482
param_const_iterator param_begin() const
Definition: DeclObjC.h:347
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2705
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
Definition: DeclBase.cpp:1737
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2296
Simple template class for restricting typo correction candidates to ones having a single Decl* of the...
QualType getAutoDeductType() const
C++11 deduction pattern for &#39;auto&#39; type.
TypeSourceInfo * RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, SourceLocation Loc, DeclarationName Name)
Rebuilds a type within the context of the current instantiation.
SourceLocation getLBracketLoc() const
Definition: TypeLoc.h:1500
void ActOnPragmaRedefineExtname(IdentifierInfo *WeakName, IdentifierInfo *AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc)
ActOnPragmaRedefineExtname - Called on well formed #pragma redefine_extname oldname newname...
Definition: SemaDecl.cpp:17387
void setHasNonTrivialToPrimitiveDestructCUnion(bool V)
Definition: Decl.h:3761
void setCXXForRangeDecl(bool FRD)
Definition: Decl.h:1342
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:31
void ActOnCXXForRangeDecl(Decl *D)
Definition: SemaDecl.cpp:12083
static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty)
Definition: SemaDecl.cpp:8142
Decl * BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, AccessSpecifier AS, RecordDecl *Record, const PrintingPolicy &Policy)
BuildAnonymousStructOrUnion - Handle the declaration of an anonymous structure or union...
Definition: SemaDecl.cpp:4687
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:92
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1514
static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record)
Definition: SemaDecl.cpp:4652
Implements a partial diagnostic that can be emitted anwyhere in a DiagnosticBuilder stream...
void setInherited(bool I)
Definition: Attr.h:151
Sema::LookupNameKind getLookupKind() const
Gets the kind of lookup to perform.
Definition: Lookup.h:253
StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, IdentifierInfo *Ident, ParsedAttributes &Attrs, SourceLocation AttrEnd)
Definition: SemaDecl.cpp:12126
Optional< NullabilityKind > getNullability(const ASTContext &context) const
Determine the nullability of the given type.
Definition: Type.cpp:3755
The "class" keyword.
Definition: Type.h:5112
void AddTypeInfo(const DeclaratorChunk &TI, ParsedAttributes &&attrs, SourceLocation EndLoc)
AddTypeInfo - Add a chunk to this declarator.
Definition: DeclSpec.h:2160
bool isConstantArrayType() const
Definition: Type.h:6444
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat]...
Definition: APValue.h:76
Represents a base class of a C++ class.
Definition: DeclCXX.h:192
CXXScopeSpec & getTypeSpecScope()
Definition: DeclSpec.h:494
static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo=nullptr)
Definition: SemaType.cpp:2637
void setNamedTypeInfo(TypeSourceInfo *TInfo)
setNamedTypeInfo - Sets the source type info associated to the name.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2079
This is a scope that can contain a declaration.
Definition: Scope.h:59
SourceManager & getSourceManager()
Definition: ASTContext.h:665
void * SkippedDefinitionContext
Definition: Sema.h:2483
const IdentifierInfo * getLiteralIdentifier() const
getLiteralIdentifier - The literal suffix identifier this function represents, if any...
Definition: Decl.cpp:3393
bool isObjCObjectType() const
Definition: Type.h:6492
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2062
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:786
NamedDecl * HandleDeclarator(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists)
Definition: SemaDecl.cpp:5388
bool isInlined() const
Determine whether this function should be inlined, because it is either marked "inline" or "constexpr...
Definition: Decl.h:2391
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup=false)
Perform qualified name lookup into a given context.
SourceLocation getIdentifierLoc() const
Definition: DeclSpec.h:2143
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2280
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition: DeclBase.h:524
void setPromotionType(QualType T)
Set the promotion type.
Definition: Decl.h:3508
ObjCInterfaceDecl * getObjCInterfaceDecl(IdentifierInfo *&Id, SourceLocation IdLoc, bool TypoCorrection=false)
Look for an Objective-C class in the translation unit.
Definition: SemaDecl.cpp:1883
bool isSet() const
Deprecated.
Definition: DeclSpec.h:209
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:240
SourceRange getSourceRange() const
Definition: DeclSpec.h:1719
bool isNoThrow(unsigned ID) const
Return true if we know this builtin never throws an exception.
Definition: Builtins.h:111
ClassTemplateDecl * getDescribedClassTemplate() const
Retrieves the class template that is described by this class declaration.
Definition: DeclCXX.cpp:1657
TypedefNameDecl * getDecl() const
Definition: Type.h:4200
void setLoc(SourceLocation L)
setLoc - Sets the main location of the declaration name.
void setInvalidType(bool Val=true)
Definition: DeclSpec.h:2452
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
Reading or writing from this object requires a barrier call.
Definition: Type.h:168
ExternCContextDecl * getExternCContextDecl() const
QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name, QualType Type, TypeSourceInfo *TSI, SourceRange Range, bool DirectInit, Expr *Init)
Definition: SemaDecl.cpp:10938
static bool isClassCompatTagKind(TagTypeKind Tag)
Determine if tag kind is a class-key compatible with class for redeclaration (class, struct, or __interface).
Definition: SemaDecl.cpp:14285
static bool isMainFileLoc(const Sema &S, SourceLocation Loc)
Definition: SemaDecl.cpp:1577
bool isResolvedMSAsmLabel() const
Definition: Decl.h:503
DeclarationName getCXXLiteralOperatorName(IdentifierInfo *II)
Get the name of the literal operator function with II as the identifier.
An attributed type is a type to which a type attribute has been applied.
Definition: Type.h:4493
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
QualType getParamType(unsigned i) const
Definition: Type.h:3923
Call-style initialization (C++98)
Definition: Decl.h:820
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects, bool InConstantContext=false) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
bool typesAreCompatible(QualType T1, QualType T2, bool CompareUnqualified=false)
Compatibility predicates used to check assignment expressions.
bool Failed() const
Determine whether the initialization sequence is invalid.
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1007
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2807
ThreadStorageClassSpecifier
Thread storage-class-specifier.
Definition: Specifiers.h:221
void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, bool Invalid)
Definition: ScopeInfo.h:660
Describes the sequence of initializations required to initialize a given object or reference with a s...
static QualType TryToFixInvalidVariablyModifiedType(QualType T, ASTContext &Context, bool &SizeIsNegative, llvm::APSInt &Oversized)
Helper method to turn variable array types into constant array types in certain situations which woul...
Definition: SemaDecl.cpp:5604
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const
Retrieve a nested-name-specifier with location information, copied into the given AST context...
static DeclContext * getTagInjectionContext(DeclContext *DC)
Find the DeclContext in which a tag is implicitly declared if we see an elaborated type specifier in ...
Definition: SemaDecl.cpp:8384
Captures information about "declaration specifiers".
Definition: DeclSpec.h:228
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:6222
SourceLocation getRestrictSpecLoc() const
Definition: DeclSpec.h:540
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3307
bool CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, LookupResult &Previous, bool IsMemberSpecialization)
Perform semantic checking of a new function declaration.
Definition: SemaDecl.cpp:10064
DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, ArrayRef< Decl *> Group)
Definition: SemaDecl.cpp:12611
bool isThisDeclarationADefinition() const
Return true if this declaration is a completion definition of the type.
Definition: Decl.h:3197
void addModuleInitializer(Module *M, Decl *Init)
Add a declaration to the list of declarations that are initialized for a module.
const CXXMethodDecl * getCurrentKeyFunction(const CXXRecordDecl *RD)
Get our current best idea for the key function of the given record decl, or nullptr if there isn&#39;t on...
ShadowedDeclKind
Enum describing the select options in diag::warn_decl_shadow.
Definition: SemaDecl.cpp:7027
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
A factory, from which one makes pools, from which one creates individual attributes which are dealloc...
Definition: ParsedAttr.h:629
static bool isCompoundAssignmentOp(Opcode Opc)
Definition: Expr.h:3536
static const TSCS TSCS_thread_local
Definition: DeclSpec.h:248
void setTSCSpec(ThreadStorageClassSpecifier TSC)
Definition: Decl.h:1024
bool isValid() const
static void RemoveUsingDecls(LookupResult &R)
Removes using shadow declarations from the lookup results.
Definition: SemaDecl.cpp:1523
bool isVoidType() const
Definition: Type.h:6643
void MergeVarDecl(VarDecl *New, LookupResult &Previous)
MergeVarDecl - We just parsed a variable &#39;New&#39; which has the same name and scope as a previous declar...
Definition: SemaDecl.cpp:3841
SmallVectorImpl< UniqueVirtualMethod >::iterator overriding_iterator
Represents a C array with an unspecified size.
Definition: Type.h:2958
static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, DeclarationName Name)
NeedsRebuildingInCurrentInstantiation - Checks whether the given declarator needs to be rebuilt in th...
Definition: SemaDecl.cpp:5184
ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, QualType FieldTy, bool IsMsStruct, Expr *BitWidth, bool *ZeroWidth=nullptr)
VerifyBitField - verifies that a bit field expression is an ICE and has the correct width...
Definition: SemaDecl.cpp:15579
Missing a type from <stdio.h>
Definition: ASTContext.h:2016
Look up a friend of a local class.
Definition: Sema.h:3256
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a static data member...
Definition: Decl.cpp:2223
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:3776
static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, const FunctionDecl *B)
Definition: SemaDecl.cpp:2971
bool isTLSSupported() const
Whether the target supports thread-local storage.
Definition: TargetInfo.h:1173
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6169
unsigned getNumNegativeBits() const
Returns the width in bits required to store all the negative enumerators of this enum.
Definition: Decl.h:3550
The parameter type of a method or function.
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1944
static TypedefDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
Definition: Decl.cpp:4677
bool isNotEmpty() const
A scope specifier is present, but may be valid or invalid.
Definition: DeclSpec.h:191
LambdaCaptureDefault getLambdaCaptureDefault() const
Definition: DeclCXX.h:1230
Capturing by reference.
Definition: Lambda.h:37
bool isInherited() const
Definition: Attr.h:97
void setLParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1136
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition: DeclSpec.h:1864
void setHasNonTrivialToPrimitiveCopyCUnion(bool V)
Definition: Decl.h:3769
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:571
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:386
bool isSamplerT() const
Definition: Type.h:6549
The "enum" keyword.
Definition: Type.h:5115
void ActOnPopScope(SourceLocation Loc, Scope *S)
Scope actions.
Definition: SemaDecl.cpp:1829
static VarTemplateDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName Name, TemplateParameterList *Params, VarDecl *Decl)
Create a variable template node.
Declaration of a class template.
Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const
Return the implicit lifetime for this type, which must not be dependent.
Definition: Type.cpp:3940
DeclContext * getLookupParent()
Find the parent context of this context that will be used for unqualified name lookup.
Definition: DeclBase.cpp:1039
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
bool isVirtualSpecified() const
Definition: DeclSpec.h:569
static StorageClass StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS)
StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to a VarDecl::StorageClass.
Definition: SemaDecl.cpp:4631
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:60
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:129
bool hasExternalStorage() const
Returns true if a variable has extern or private_extern storage.
Definition: Decl.h:1068
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2423
void addAttr(Attr *A)
Definition: DeclBase.cpp:829
unsigned getRegParmType() const
Definition: Type.h:3648
iterator end() const
Definition: Lookup.h:336
A template-id, e.g., f<int>.
AttributePool & getPool() const
Definition: ParsedAttr.h:911
QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error, unsigned *IntegerConstantArgs=nullptr) const
Return the type for the specified builtin.
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:251
ParsedType getRepAsType() const
Definition: DeclSpec.h:482
decl_iterator end()
TranslationUnitKind TUKind
The kind of translation unit we are processing.
Definition: Sema.h:1159
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1681
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2516
bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U)
Determine whether two function types are the same, ignoring exception specifications in cases where t...
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:153
VarTemplateDecl * getInstantiatedFromMemberTemplate() const
bool isInlineSpecified() const
Definition: DeclSpec.h:558
TLS with a known-constant initializer.
Definition: Decl.h:832
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:3751
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition: Decl.h:3513
bool doesThisDeclarationHaveABody() const
Returns whether this specific declaration of the function has a body.
Definition: Decl.h:2003
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:275
SourceLocation getAtomicSpecLoc() const
Definition: DeclSpec.h:542
ExprResult ExprError()
Definition: Ownership.h:279
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template)
Definition: Decl.cpp:3448
The translation unit is a complete translation unit.
Definition: LangOptions.h:364
static bool CheckMultiVersionAdditionalDecl(Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, MultiVersionKind NewMVType, const TargetAttr *NewTA, const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec, bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, LookupResult &Previous)
Check the validity of a new function declaration being added to an existing multiversioned declaratio...
Definition: SemaDecl.cpp:9827
static TagDecl * castFromDeclContext(const DeclContext *DC)
Definition: Decl.h:3351
void setObjCSelRedefinitionType(QualType RedefType)
Set the user-written type that redefines &#39;SEL&#39;.
Definition: ASTContext.h:1674
const VariableArrayType * getAsVariableArrayType(QualType T) const
Definition: ASTContext.h:2444
static bool DeclHasAttr(const Decl *D, const Attr *A)
DeclhasAttr - returns true if decl Declaration already has the target attribute.
Definition: SemaDecl.cpp:2328
CanQualType IntTy
Definition: ASTContext.h:1023
static OpaquePtr make(QualType P)
Definition: Ownership.h:60
static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, ExpectedDecl *New)
Check whether a redeclaration of an entity introduced by a using-declaration is valid, given that we know it&#39;s not an overload (nor a hidden tag declaration).
Definition: SemaDecl.cpp:2936
decl_type * getMostRecentDecl()
Returns the most recent (re)declaration of this declaration.
Definition: Redeclarable.h:225
SourceLocation getExplicitSpecLoc() const
Definition: DeclSpec.h:575
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2108
SourceLocation getConstexprSpecLoc() const
Definition: DeclSpec.h:735
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1141
void CheckConversionDeclarator(Declarator &D, QualType &R, StorageClass &SC)
CheckConversionDeclarator - Called by ActOnDeclarator to check the well-formednes of the conversion f...
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:232
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:821
bool isUnion() const
Definition: Decl.h:3285
Represents a type template specialization; the template must be a class template, a type alias templa...
Definition: Type.h:4911
Expr * getRHS() const
Definition: Expr.h:3447
Visibility getVisibility() const
Determines the visibility of this entity.
Definition: Decl.h:390
static const TST TST_atomic
Definition: DeclSpec.h:306
bool isDeleted() const
Whether this function has been deleted.
Definition: Decl.h:2163
OptimizeNoneAttr * mergeOptimizeNoneAttr(Decl *D, SourceRange Range, unsigned AttrSpellingListIndex)
bool isPointerType() const
Definition: Type.h:6384
bool hasObjectMember() const
Definition: Decl.h:3707
NamedDecl * findLocallyScopedExternCDecl(DeclarationName Name)
Look for a locally scoped extern "C" declaration by the given name.
Definition: SemaDecl.cpp:5736
DLLExportAttr * mergeDLLExportAttr(Decl *D, SourceRange Range, unsigned AttrSpellingListIndex)
TemplatedKind getTemplatedKind() const
What kind of templated function this is.
Definition: Decl.cpp:3400
DeclContext * getPrimaryContext()
getPrimaryContext - There may be many different declarations of the same entity (including forward de...
Definition: DeclBase.cpp:1162
ArrayRef< NamedDecl * > getDeclsInPrototype() const
Get the non-parameter decls defined within this function prototype.
Definition: DeclSpec.h:1480
void ActOnObjCContainerFinishDefinition()
Definition: SemaDecl.cpp:15544
bool isTSBuiltin(unsigned ID) const
Return true if this function is a target-specific builtin.
Definition: Builtins.h:95
SourceManager & SourceMgr
Definition: Sema.h:377
BasePaths - Represents the set of paths from a derived class to one of its (direct or indirect) bases...
static const TST TST_struct
Definition: DeclSpec.h:294
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
Annotates a diagnostic with some code that should be inserted, removed, or replaced to fix the proble...
Definition: Diagnostic.h:66
DefinitionKind isThisDeclarationADefinition(ASTContext &) const
Check whether this declaration is a definition.
Definition: Decl.cpp:2063
SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD)
Invoked when we enter a tag definition that we&#39;re skipping.
Definition: SemaDecl.cpp:1251
void initializeFullCopy(TypeLoc Other)
Initializes this by copying its information from another TypeLoc of the same type.
Definition: TypeLoc.h:198
bool isStaticDataMember() const
Determines whether this is a static data member.
Definition: Decl.h:1134
SourceLocation getInnerLocStart() const
Return SourceLocation representing start of source range ignoring outer template declarations.
Definition: Decl.h:3183
static bool hasDependentAlignment(VarDecl *VD)
Determines if a variable&#39;s alignment is dependent.
Definition: SemaDecl.cpp:12377
void suppressDiagnostics()
Suppress the diagnostics that would normally fire because of this lookup.
Definition: Lookup.h:583
void setIsMultiVersion(bool V=true)
Sets the multiversion state for this declaration and all of its redeclarations.
Definition: Decl.h:2258
static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD, MultiVersionKind MVType, const TargetAttr *TA)
Check the validity of a multiversion function declaration that is the first of its kind...
Definition: SemaDecl.cpp:9709
bool isLocalVarDecl() const
Returns true for local variable declarations other than parameters.
Definition: Decl.h:1104
static StringRef getNameForCallConv(CallingConv CC)
Definition: Type.cpp:2865
QualType getType() const
Definition: Decl.h:647
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:339
void setRParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1140
bool isFloatingType() const
Definition: Type.cpp:1952
A trivial tuple used to represent a source range.
bool hasUnrecoverableErrorOccurred() const
Definition: Scope.h:332
void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo)
Set the underlying integer type source info.
Definition: Decl.h:3525
void setLexicalDeclContext(DeclContext *DC)
Definition: DeclBase.cpp:298
ASTContext & Context
Definition: Sema.h:374
FunctionDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:3062
void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V)
Definition: Decl.h:3753
This represents a decl that may have a name.
Definition: Decl.h:248
void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc)
Specify that this unqualified-id was parsed as an identifier.
Definition: DeclSpec.h:1033
void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl)
Set the type for the C sigjmp_buf type.
Definition: ASTContext.h:1766
void setFILEDecl(TypeDecl *FILEDecl)
Set the type for the C FILE type.
Definition: ASTContext.h:1744
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
void dropAttr()
Definition: DeclBase.h:513
bool isTranslationUnit() const
Definition: DeclBase.h:1854
Expr * getRepAsExpr() const
Definition: DeclSpec.h:490
void setTypeSourceInfo(TypeSourceInfo *newType)
Definition: Decl.h:3011
T castAs() const
Convert to the specified TypeLoc type, asserting that this TypeLoc is of the desired type...
Definition: TypeLoc.h:75
void setAccess(AccessSpecifier AS)
Definition: DeclBase.h:468
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:3003
bool DeclMustBeEmitted(const Decl *D)
Determines if the decl can be CodeGen&#39;ed or deserialized from PCH lazily, only when used; this is onl...
static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, const LookupResult &R)
Definition: SemaDecl.cpp:7060
No keyword precedes the qualified type name.
Definition: Type.h:5141
bool isInline() const
Whether this variable is (C++1z) inline.
Definition: Decl.h:1368
APSInt & getInt()
Definition: APValue.h:336
static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D)
Check for this common pattern:
Definition: SemaDecl.cpp:1539
static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND)
Definition: SemaDecl.cpp:5992
SourceLocation EndLocation
The location of the last token that describes this unqualified-id.
Definition: DeclSpec.h:1005
iterator begin() const
Definition: Lookup.h:335
ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II, SourceLocation NameLoc, bool IsTemplateTypeArg)
Attempt to behave like MSVC in situations where lookup of an unqualified type name has failed in a de...
Definition: SemaDecl.cpp:555
static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, LookupResult &Previous)
Definition: SemaDecl.cpp:3804
SourceLocation getNameLoc() const
Gets the location of the identifier.
Definition: Lookup.h:606
Describes an entity that is being initialized.
bool isFunctionPointerType() const
Definition: Type.h:6408
static FieldDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle)
Definition: Decl.cpp:3882
attr::Kind getKind() const
Definition: Attr.h:86
unsigned NumArgs
NumArgs - The number of template arguments.
NamedDecl * getRepresentativeDecl() const
Fetches a representative decl. Useful for lazy diagnostics.
Definition: Lookup.h:524
bool isReturnsTwice(unsigned ID) const
Return true if we know this builtin can return twice.
Definition: Builtins.h:121
bool isFirstDeclarationOfMember()
Returns true if this declares a real member and not a friend.
Definition: DeclSpec.h:2481
QualType desugar() const
Definition: Type.cpp:3125
NamedDecl * Previous
Definition: Sema.h:1804
void SetRangeEnd(SourceLocation Loc)
Definition: DeclSpec.h:630
void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old)
Definition: SemaDecl.cpp:3672
bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New)
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3138
Missing a type from <setjmp.h>
Definition: ASTContext.h:2019
void setType(QualType newType)
Definition: Decl.h:648
bool hasInit() const
Definition: Decl.cpp:2198
Wrapper for source info for pointers.
Definition: TypeLoc.h:1237
SourceLocation getBegin() const
ParsedAttributes - A collection of parsed attributes.
Definition: ParsedAttr.h:906
const LangOptions & getLangOpts() const
Definition: ASTContext.h:710
const BlockDecl * getInnermostBlockDecl() const
Return this DeclContext if it is a BlockDecl.
Definition: DeclBase.cpp:1049
void setNonTrivialToPrimitiveCopy(bool V)
Definition: Decl.h:3737
void setDeletedAsWritten(bool D=true)
Definition: Decl.h:2171
static bool isAttributeTargetADefinition(Decl *D)
Definition: SemaDecl.cpp:2347
An implicit &#39;self&#39; parameter.
No in-class initializer.
Definition: Specifiers.h:258
SourceRange getExplicitSpecRange() const
Definition: DeclSpec.h:576
DeclarationNameInfo GetNameForDeclarator(Declarator &D)
GetNameForDeclarator - Determine the full declaration name for the given Declarator.
Definition: SemaDecl.cpp:5006
This class handles loading and caching of source files into memory.
bool isGlobal() const
Determines whether this is a global function.
Definition: Decl.cpp:2993
Defines enum values for all the target-independent builtin functions.
A deduction-guide name (a template-name)
Declaration of a template function.
iterator - Iterate over the decls of a specified declaration name.
ExtInfo withRegParm(unsigned RegParm) const
Definition: Type.h:3597
CodeSegAttr * mergeCodeSegAttr(Decl *D, SourceRange Range, StringRef Name, unsigned AttrSpellingListIndex)
A class which abstracts out some details necessary for making a call.
Definition: Type.h:3498
ParamInfo * Params
Params - This is a pointer to a new[]&#39;d array of ParamInfo objects that describe the parameters speci...
Definition: DeclSpec.h:1323
bool hasLinkage() const
Determine whether this declaration has linkage.
Definition: Decl.cpp:1754
void setElaboratedKeywordLoc(SourceLocation Loc)
Definition: TypeLoc.h:1978
bool isLocalVarDeclOrParm() const
Similar to isLocalVarDecl but also includes parameters.
Definition: Decl.h:1113
TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS, bool TemplateKeyword, TemplateDecl *Template) const
Retrieve the template name that represents a qualified template name such as std::vector.
Attr - This represents one attribute.
Definition: Attr.h:43
ParsedAttributes & getAttributes()
Definition: DeclSpec.h:772
SourceLocation getLocation() const
Definition: DeclBase.h:429
bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result=nullptr, SourceLocation *Loc=nullptr) const
isCXX11ConstantExpr - Return true if this expression is a constant expression in C++11.
Represents a shadow declaration introduced into a scope by a (resolved) using declaration.
Definition: DeclCXX.h:3275
bool isExternallyVisible() const
Definition: Decl.h:379
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:97
bool isEditorPlaceholder() const
Return true if this identifier is an editor placeholder.
bool isBeingDefined() const
Return true if this decl is currently being defined.
Definition: Decl.h:3222
ParsedTemplateTy Template
The declaration of the template corresponding to the template-name.
std::pair< FileID, unsigned > getDecomposedLoc(SourceLocation Loc) const
Decompose the specified location into a raw FileID + Offset pair.
ObjCCompatibleAliasDecl - Represents alias of a class.
Definition: DeclObjC.h:2728
Helper class that creates diagnostics with optional template instantiation stacks.
Definition: Sema.h:1315
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2938
Decl * ActOnDeclarator(Scope *S, Declarator &D)
Definition: SemaDecl.cpp:5253
CanQualType UnsignedIntTy
Definition: ASTContext.h:1024
bool hasExternalFormalLinkage() const
True if this decl has external linkage.
Definition: Decl.h:375
bool hasErrorOccurred() const
Determine whether any SFINAE errors have been trapped.
Definition: Sema.h:7887
Decl * ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant, SourceLocation IdLoc, IdentifierInfo *Id, const ParsedAttributesView &Attrs, SourceLocation EqualLoc, Expr *Val)
Definition: SemaDecl.cpp:16888
void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, bool ConsiderLinkage, bool AllowInlineNamespace)
Filters out lookup results that don&#39;t fall within the given scope as determined by isDeclInScope...
Definition: SemaDecl.cpp:1452
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1063
bool isTransparentContext() const
isTransparentContext - Determines whether this context is a "transparent" context, meaning that the members declared in this context are semantically declared in the nearest enclosing non-transparent (opaque) context but are lexically declared in this context.
Definition: DeclBase.cpp:1114
A RAII object to temporarily push a declaration context.
Definition: Sema.h:768
void DiagnoseUnusedNestedTypedefs(const RecordDecl *D)
Definition: SemaDecl.cpp:1776
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:291
static NestedNameSpecifier * GlobalSpecifier(const ASTContext &Context)
Returns the nested name specifier representing the global scope.