clang  9.0.0
Driver.cpp
Go to the documentation of this file.
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AVR.h"
13 #include "ToolChains/Ananas.h"
14 #include "ToolChains/BareMetal.h"
15 #include "ToolChains/Clang.h"
16 #include "ToolChains/CloudABI.h"
17 #include "ToolChains/Contiki.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIP.h"
26 #include "ToolChains/Haiku.h"
27 #include "ToolChains/Hexagon.h"
28 #include "ToolChains/Hurd.h"
29 #include "ToolChains/Lanai.h"
30 #include "ToolChains/Linux.h"
31 #include "ToolChains/MSP430.h"
32 #include "ToolChains/MSVC.h"
33 #include "ToolChains/MinGW.h"
34 #include "ToolChains/Minix.h"
35 #include "ToolChains/MipsLinux.h"
36 #include "ToolChains/Myriad.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OpenBSD.h"
40 #include "ToolChains/PS4CPU.h"
41 #include "ToolChains/PPCLinux.h"
43 #include "ToolChains/Solaris.h"
44 #include "ToolChains/TCE.h"
45 #include "ToolChains/WebAssembly.h"
46 #include "ToolChains/XCore.h"
47 #include "clang/Basic/Version.h"
48 #include "clang/Config/config.h"
49 #include "clang/Driver/Action.h"
52 #include "clang/Driver/Job.h"
53 #include "clang/Driver/Options.h"
55 #include "clang/Driver/Tool.h"
56 #include "clang/Driver/ToolChain.h"
57 #include "llvm/ADT/ArrayRef.h"
58 #include "llvm/ADT/STLExtras.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/ADT/StringSet.h"
62 #include "llvm/ADT/StringSwitch.h"
63 #include "llvm/Config/llvm-config.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/OptSpecifier.h"
67 #include "llvm/Option/OptTable.h"
68 #include "llvm/Option/Option.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/Path.h"
74 #include "llvm/Support/PrettyStackTrace.h"
75 #include "llvm/Support/Process.h"
76 #include "llvm/Support/Program.h"
77 #include "llvm/Support/StringSaver.h"
78 #include "llvm/Support/TargetRegistry.h"
79 #include "llvm/Support/VirtualFileSystem.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <map>
82 #include <memory>
83 #include <utility>
84 #if LLVM_ON_UNIX
85 #include <unistd.h> // getpid
86 #include <sysexits.h> // EX_IOERR
87 #endif
88 
89 using namespace clang::driver;
90 using namespace clang;
91 using namespace llvm::opt;
92 
93 // static
94 std::string Driver::GetResourcesPath(StringRef BinaryPath,
95  StringRef CustomResourceDir) {
96  // Since the resource directory is embedded in the module hash, it's important
97  // that all places that need it call this function, so that they get the
98  // exact same string ("a/../b/" and "b/" get different hashes, for example).
99 
100  // Dir is bin/ or lib/, depending on where BinaryPath is.
101  std::string Dir = llvm::sys::path::parent_path(BinaryPath);
102 
103  SmallString<128> P(Dir);
104  if (CustomResourceDir != "") {
105  llvm::sys::path::append(P, CustomResourceDir);
106  } else {
107  // On Windows, libclang.dll is in bin/.
108  // On non-Windows, libclang.so/.dylib is in lib/.
109  // With a static-library build of libclang, LibClangPath will contain the
110  // path of the embedding binary, which for LLVM binaries will be in bin/.
111  // ../lib gets us to lib/ in both cases.
112  P = llvm::sys::path::parent_path(Dir);
113  llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
114  CLANG_VERSION_STRING);
115  }
116 
117  return P.str();
118 }
119 
120 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
121  DiagnosticsEngine &Diags,
123  : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
124  Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
125  LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
126  SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"),
127  CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr),
128  CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false),
129  CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
130  CCGenDiagnostics(false), TargetTriple(TargetTriple),
131  CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
132  GenReproducer(false), SuppressMissingInputWarning(false) {
133 
134  // Provide a sane fallback if no VFS is specified.
135  if (!this->VFS)
136  this->VFS = llvm::vfs::getRealFileSystem();
137 
138  Name = llvm::sys::path::filename(ClangExecutable);
139  Dir = llvm::sys::path::parent_path(ClangExecutable);
140  InstalledDir = Dir; // Provide a sensible default installed dir.
141 
142 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
143  SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
144 #endif
145 #if defined(CLANG_CONFIG_FILE_USER_DIR)
146  UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
147 #endif
148 
149  // Compute the path to the resource directory.
150  ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
151 }
152 
153 void Driver::ParseDriverMode(StringRef ProgramName,
154  ArrayRef<const char *> Args) {
155  if (ClangNameParts.isEmpty())
157  setDriverModeFromOption(ClangNameParts.DriverMode);
158 
159  for (const char *ArgPtr : Args) {
160  // Ignore nullptrs, they are the response file's EOL markers.
161  if (ArgPtr == nullptr)
162  continue;
163  const StringRef Arg = ArgPtr;
164  setDriverModeFromOption(Arg);
165  }
166 }
167 
168 void Driver::setDriverModeFromOption(StringRef Opt) {
169  const std::string OptName =
170  getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
171  if (!Opt.startswith(OptName))
172  return;
173  StringRef Value = Opt.drop_front(OptName.size());
174 
175  if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
176  .Case("gcc", GCCMode)
177  .Case("g++", GXXMode)
178  .Case("cpp", CPPMode)
179  .Case("cl", CLMode)
180  .Default(None))
181  Mode = *M;
182  else
183  Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
184 }
185 
187  bool IsClCompatMode,
188  bool &ContainsError) {
189  llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
190  ContainsError = false;
191 
192  unsigned IncludedFlagsBitmask;
193  unsigned ExcludedFlagsBitmask;
194  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
195  getIncludeExcludeOptionFlagMasks(IsClCompatMode);
196 
197  unsigned MissingArgIndex, MissingArgCount;
198  InputArgList Args =
199  getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
200  IncludedFlagsBitmask, ExcludedFlagsBitmask);
201 
202  // Check for missing argument error.
203  if (MissingArgCount) {
204  Diag(diag::err_drv_missing_argument)
205  << Args.getArgString(MissingArgIndex) << MissingArgCount;
206  ContainsError |=
207  Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
209  }
210 
211  // Check for unsupported options.
212  for (const Arg *A : Args) {
213  if (A->getOption().hasFlag(options::Unsupported)) {
214  unsigned DiagID;
215  auto ArgString = A->getAsString(Args);
216  std::string Nearest;
217  if (getOpts().findNearest(
218  ArgString, Nearest, IncludedFlagsBitmask,
219  ExcludedFlagsBitmask | options::Unsupported) > 1) {
220  DiagID = diag::err_drv_unsupported_opt;
221  Diag(DiagID) << ArgString;
222  } else {
223  DiagID = diag::err_drv_unsupported_opt_with_suggestion;
224  Diag(DiagID) << ArgString << Nearest;
225  }
226  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
228  continue;
229  }
230 
231  // Warn about -mcpu= without an argument.
232  if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
233  Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
234  ContainsError |= Diags.getDiagnosticLevel(
235  diag::warn_drv_empty_joined_argument,
237  }
238  }
239 
240  for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
241  unsigned DiagID;
242  auto ArgString = A->getAsString(Args);
243  std::string Nearest;
244  if (getOpts().findNearest(
245  ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
246  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
247  : diag::err_drv_unknown_argument;
248  Diags.Report(DiagID) << ArgString;
249  } else {
250  DiagID = IsCLMode()
251  ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
252  : diag::err_drv_unknown_argument_with_suggestion;
253  Diags.Report(DiagID) << ArgString << Nearest;
254  }
255  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
257  }
258 
259  return Args;
260 }
261 
262 // Determine which compilation mode we are in. We look for options which
263 // affect the phase, starting with the earliest phases, and record which
264 // option we used to determine the final phase.
265 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
266  Arg **FinalPhaseArg) const {
267  Arg *PhaseArg = nullptr;
268  phases::ID FinalPhase;
269 
270  // -{E,EP,P,M,MM} only run the preprocessor.
271  if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
272  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
273  (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
274  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
275  FinalPhase = phases::Preprocess;
276 
277  // --precompile only runs up to precompilation.
278  } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
279  FinalPhase = phases::Precompile;
280 
281  // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
282  } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
283  (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
284  (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
285  (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
286  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
287  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
288  (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
289  (PhaseArg = DAL.getLastArg(options::OPT_emit_iterface_stubs)) ||
290  (PhaseArg = DAL.getLastArg(options::OPT__analyze,
291  options::OPT__analyze_auto)) ||
292  (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
293  FinalPhase = phases::Compile;
294 
295  // -S only runs up to the backend.
296  } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
297  FinalPhase = phases::Backend;
298 
299  // -c compilation only runs up to the assembler.
300  } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
301  FinalPhase = phases::Assemble;
302 
303  // Otherwise do everything.
304  } else
305  FinalPhase = phases::Link;
306 
307  if (FinalPhaseArg)
308  *FinalPhaseArg = PhaseArg;
309 
310  return FinalPhase;
311 }
312 
313 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts,
314  StringRef Value, bool Claim = true) {
315  Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
316  Args.getBaseArgs().MakeIndex(Value), Value.data());
317  Args.AddSynthesizedArg(A);
318  if (Claim)
319  A->claim();
320  return A;
321 }
322 
323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
324  DerivedArgList *DAL = new DerivedArgList(Args);
325 
326  bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
327  bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
328  bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
329  for (Arg *A : Args) {
330  // Unfortunately, we have to parse some forwarding options (-Xassembler,
331  // -Xlinker, -Xpreprocessor) because we either integrate their functionality
332  // (assembler and preprocessor), or bypass a previous driver ('collect2').
333 
334  // Rewrite linker options, to replace --no-demangle with a custom internal
335  // option.
336  if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
337  A->getOption().matches(options::OPT_Xlinker)) &&
338  A->containsValue("--no-demangle")) {
339  // Add the rewritten no-demangle argument.
340  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
341 
342  // Add the remaining values as Xlinker arguments.
343  for (StringRef Val : A->getValues())
344  if (Val != "--no-demangle")
345  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
346 
347  continue;
348  }
349 
350  // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
351  // some build systems. We don't try to be complete here because we don't
352  // care to encourage this usage model.
353  if (A->getOption().matches(options::OPT_Wp_COMMA) &&
354  (A->getValue(0) == StringRef("-MD") ||
355  A->getValue(0) == StringRef("-MMD"))) {
356  // Rewrite to -MD/-MMD along with -MF.
357  if (A->getValue(0) == StringRef("-MD"))
358  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
359  else
360  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
361  if (A->getNumValues() == 2)
362  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
363  A->getValue(1));
364  continue;
365  }
366 
367  // Rewrite reserved library names.
368  if (A->getOption().matches(options::OPT_l)) {
369  StringRef Value = A->getValue();
370 
371  // Rewrite unless -nostdlib is present.
372  if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
373  Value == "stdc++") {
374  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
375  continue;
376  }
377 
378  // Rewrite unconditionally.
379  if (Value == "cc_kext") {
380  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
381  continue;
382  }
383  }
384 
385  // Pick up inputs via the -- option.
386  if (A->getOption().matches(options::OPT__DASH_DASH)) {
387  A->claim();
388  for (StringRef Val : A->getValues())
389  DAL->append(MakeInputArg(*DAL, *Opts, Val, false));
390  continue;
391  }
392 
393  DAL->append(A);
394  }
395 
396  // Enforce -static if -miamcu is present.
397  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
398  DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
399 
400 // Add a default value of -mlinker-version=, if one was given and the user
401 // didn't specify one.
402 #if defined(HOST_LINK_VERSION)
403  if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
404  strlen(HOST_LINK_VERSION) > 0) {
405  DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
406  HOST_LINK_VERSION);
407  DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
408  }
409 #endif
410 
411  return DAL;
412 }
413 
414 /// Compute target triple from args.
415 ///
416 /// This routine provides the logic to compute a target triple from various
417 /// args passed to the driver and the default triple string.
418 static llvm::Triple computeTargetTriple(const Driver &D,
419  StringRef TargetTriple,
420  const ArgList &Args,
421  StringRef DarwinArchName = "") {
422  // FIXME: Already done in Compilation *Driver::BuildCompilation
423  if (const Arg *A = Args.getLastArg(options::OPT_target))
424  TargetTriple = A->getValue();
425 
426  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
427 
428  // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
429  // -gnu* only, and we can not change this, so we have to detect that case as
430  // being the Hurd OS.
431  if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
432  TargetTriple.find("-pc-gnu") != StringRef::npos)
433  Target.setOSName("hurd");
434 
435  // Handle Apple-specific options available here.
436  if (Target.isOSBinFormatMachO()) {
437  // If an explicit Darwin arch name is given, that trumps all.
438  if (!DarwinArchName.empty()) {
439  tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
440  return Target;
441  }
442 
443  // Handle the Darwin '-arch' flag.
444  if (Arg *A = Args.getLastArg(options::OPT_arch)) {
445  StringRef ArchName = A->getValue();
447  }
448  }
449 
450  // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
451  // '-mbig-endian'/'-EB'.
452  if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
453  options::OPT_mbig_endian)) {
454  if (A->getOption().matches(options::OPT_mlittle_endian)) {
455  llvm::Triple LE = Target.getLittleEndianArchVariant();
456  if (LE.getArch() != llvm::Triple::UnknownArch)
457  Target = std::move(LE);
458  } else {
459  llvm::Triple BE = Target.getBigEndianArchVariant();
460  if (BE.getArch() != llvm::Triple::UnknownArch)
461  Target = std::move(BE);
462  }
463  }
464 
465  // Skip further flag support on OSes which don't support '-m32' or '-m64'.
466  if (Target.getArch() == llvm::Triple::tce ||
467  Target.getOS() == llvm::Triple::Minix)
468  return Target;
469 
470  // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
471  Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
472  options::OPT_m32, options::OPT_m16);
473  if (A) {
474  llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
475 
476  if (A->getOption().matches(options::OPT_m64)) {
477  AT = Target.get64BitArchVariant().getArch();
478  if (Target.getEnvironment() == llvm::Triple::GNUX32)
479  Target.setEnvironment(llvm::Triple::GNU);
480  } else if (A->getOption().matches(options::OPT_mx32) &&
481  Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
482  AT = llvm::Triple::x86_64;
483  Target.setEnvironment(llvm::Triple::GNUX32);
484  } else if (A->getOption().matches(options::OPT_m32)) {
485  AT = Target.get32BitArchVariant().getArch();
486  if (Target.getEnvironment() == llvm::Triple::GNUX32)
487  Target.setEnvironment(llvm::Triple::GNU);
488  } else if (A->getOption().matches(options::OPT_m16) &&
489  Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
490  AT = llvm::Triple::x86;
491  Target.setEnvironment(llvm::Triple::CODE16);
492  }
493 
494  if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
495  Target.setArch(AT);
496  }
497 
498  // Handle -miamcu flag.
499  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
500  if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
501  D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
502  << Target.str();
503 
504  if (A && !A->getOption().matches(options::OPT_m32))
505  D.Diag(diag::err_drv_argument_not_allowed_with)
506  << "-miamcu" << A->getBaseArg().getAsString(Args);
507 
508  Target.setArch(llvm::Triple::x86);
509  Target.setArchName("i586");
510  Target.setEnvironment(llvm::Triple::UnknownEnvironment);
511  Target.setEnvironmentName("");
512  Target.setOS(llvm::Triple::ELFIAMCU);
513  Target.setVendor(llvm::Triple::UnknownVendor);
514  Target.setVendorName("intel");
515  }
516 
517  // If target is MIPS adjust the target triple
518  // accordingly to provided ABI name.
519  A = Args.getLastArg(options::OPT_mabi_EQ);
520  if (A && Target.isMIPS()) {
521  StringRef ABIName = A->getValue();
522  if (ABIName == "32") {
523  Target = Target.get32BitArchVariant();
524  if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
525  Target.getEnvironment() == llvm::Triple::GNUABIN32)
526  Target.setEnvironment(llvm::Triple::GNU);
527  } else if (ABIName == "n32") {
528  Target = Target.get64BitArchVariant();
529  if (Target.getEnvironment() == llvm::Triple::GNU ||
530  Target.getEnvironment() == llvm::Triple::GNUABI64)
531  Target.setEnvironment(llvm::Triple::GNUABIN32);
532  } else if (ABIName == "64") {
533  Target = Target.get64BitArchVariant();
534  if (Target.getEnvironment() == llvm::Triple::GNU ||
535  Target.getEnvironment() == llvm::Triple::GNUABIN32)
536  Target.setEnvironment(llvm::Triple::GNUABI64);
537  }
538  }
539 
540  return Target;
541 }
542 
543 // Parse the LTO options and record the type of LTO compilation
544 // based on which -f(no-)?lto(=.*)? option occurs last.
545 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
546  LTOMode = LTOK_None;
547  if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
548  options::OPT_fno_lto, false))
549  return;
550 
551  StringRef LTOName("full");
552 
553  const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
554  if (A)
555  LTOName = A->getValue();
556 
557  LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
558  .Case("full", LTOK_Full)
559  .Case("thin", LTOK_Thin)
560  .Default(LTOK_Unknown);
561 
562  if (LTOMode == LTOK_Unknown) {
563  assert(A);
564  Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
565  << A->getValue();
566  }
567 }
568 
569 /// Compute the desired OpenMP runtime from the flags provided.
571  StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
572 
573  const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
574  if (A)
575  RuntimeName = A->getValue();
576 
577  auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
578  .Case("libomp", OMPRT_OMP)
579  .Case("libgomp", OMPRT_GOMP)
580  .Case("libiomp5", OMPRT_IOMP5)
581  .Default(OMPRT_Unknown);
582 
583  if (RT == OMPRT_Unknown) {
584  if (A)
585  Diag(diag::err_drv_unsupported_option_argument)
586  << A->getOption().getName() << A->getValue();
587  else
588  // FIXME: We could use a nicer diagnostic here.
589  Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
590  }
591 
592  return RT;
593 }
594 
596  InputList &Inputs) {
597 
598  //
599  // CUDA/HIP
600  //
601  // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
602  // or HIP type. However, mixed CUDA/HIP compilation is not supported.
603  bool IsCuda =
604  llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
605  return types::isCuda(I.first);
606  });
607  bool IsHIP =
608  llvm::any_of(Inputs,
609  [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
610  return types::isHIP(I.first);
611  }) ||
612  C.getInputArgs().hasArg(options::OPT_hip_link);
613  if (IsCuda && IsHIP) {
614  Diag(clang::diag::err_drv_mix_cuda_hip);
615  return;
616  }
617  if (IsCuda) {
619  const llvm::Triple &HostTriple = HostTC->getTriple();
620  StringRef DeviceTripleStr;
621  auto OFK = Action::OFK_Cuda;
622  DeviceTripleStr =
623  HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
624  llvm::Triple CudaTriple(DeviceTripleStr);
625  // Use the CUDA and host triples as the key into the ToolChains map,
626  // because the device toolchain we create depends on both.
627  auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
628  if (!CudaTC) {
629  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
630  *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
631  }
632  C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
633  } else if (IsHIP) {
635  const llvm::Triple &HostTriple = HostTC->getTriple();
636  StringRef DeviceTripleStr;
637  auto OFK = Action::OFK_HIP;
638  DeviceTripleStr = "amdgcn-amd-amdhsa";
639  llvm::Triple HIPTriple(DeviceTripleStr);
640  // Use the HIP and host triples as the key into the ToolChains map,
641  // because the device toolchain we create depends on both.
642  auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
643  if (!HIPTC) {
644  HIPTC = llvm::make_unique<toolchains::HIPToolChain>(
645  *this, HIPTriple, *HostTC, C.getInputArgs());
646  }
647  C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
648  }
649 
650  //
651  // OpenMP
652  //
653  // We need to generate an OpenMP toolchain if the user specified targets with
654  // the -fopenmp-targets option.
655  if (Arg *OpenMPTargets =
656  C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
657  if (OpenMPTargets->getNumValues()) {
658  // We expect that -fopenmp-targets is always used in conjunction with the
659  // option -fopenmp specifying a valid runtime with offloading support,
660  // i.e. libomp or libiomp.
661  bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
662  options::OPT_fopenmp, options::OPT_fopenmp_EQ,
663  options::OPT_fno_openmp, false);
664  if (HasValidOpenMPRuntime) {
666  HasValidOpenMPRuntime =
667  OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
668  }
669 
670  if (HasValidOpenMPRuntime) {
671  llvm::StringMap<const char *> FoundNormalizedTriples;
672  for (const char *Val : OpenMPTargets->getValues()) {
673  llvm::Triple TT(Val);
674  std::string NormalizedName = TT.normalize();
675 
676  // Make sure we don't have a duplicate triple.
677  auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
678  if (Duplicate != FoundNormalizedTriples.end()) {
679  Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
680  << Val << Duplicate->second;
681  continue;
682  }
683 
684  // Store the current triple so that we can check for duplicates in the
685  // following iterations.
686  FoundNormalizedTriples[NormalizedName] = Val;
687 
688  // If the specified target is invalid, emit a diagnostic.
689  if (TT.getArch() == llvm::Triple::UnknownArch)
690  Diag(clang::diag::err_drv_invalid_omp_target) << Val;
691  else {
692  const ToolChain *TC;
693  // CUDA toolchains have to be selected differently. They pair host
694  // and device in their implementation.
695  if (TT.isNVPTX()) {
696  const ToolChain *HostTC =
698  assert(HostTC && "Host toolchain should be always defined.");
699  auto &CudaTC =
700  ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
701  if (!CudaTC)
702  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
703  *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
704  TC = CudaTC.get();
705  } else
706  TC = &getToolChain(C.getInputArgs(), TT);
708  }
709  }
710  } else
711  Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
712  } else
713  Diag(clang::diag::warn_drv_empty_joined_argument)
714  << OpenMPTargets->getAsString(C.getInputArgs());
715  }
716 
717  //
718  // TODO: Add support for other offloading programming models here.
719  //
720 }
721 
722 /// Looks the given directories for the specified file.
723 ///
724 /// \param[out] FilePath File path, if the file was found.
725 /// \param[in] Dirs Directories used for the search.
726 /// \param[in] FileName Name of the file to search for.
727 /// \return True if file was found.
728 ///
729 /// Looks for file specified by FileName sequentially in directories specified
730 /// by Dirs.
731 ///
732 static bool searchForFile(SmallVectorImpl<char> &FilePath,
734  StringRef FileName) {
735  SmallString<128> WPath;
736  for (const StringRef &Dir : Dirs) {
737  if (Dir.empty())
738  continue;
739  WPath.clear();
740  llvm::sys::path::append(WPath, Dir, FileName);
741  llvm::sys::path::native(WPath);
742  if (llvm::sys::fs::is_regular_file(WPath)) {
743  FilePath = std::move(WPath);
744  return true;
745  }
746  }
747  return false;
748 }
749 
750 bool Driver::readConfigFile(StringRef FileName) {
751  // Try reading the given file.
753  if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
754  Diag(diag::err_drv_cannot_read_config_file) << FileName;
755  return true;
756  }
757 
758  // Read options from config file.
759  llvm::SmallString<128> CfgFileName(FileName);
760  llvm::sys::path::native(CfgFileName);
761  ConfigFile = CfgFileName.str();
762  bool ContainErrors;
763  CfgOptions = llvm::make_unique<InputArgList>(
764  ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
765  if (ContainErrors) {
766  CfgOptions.reset();
767  return true;
768  }
769 
770  if (CfgOptions->hasArg(options::OPT_config)) {
771  CfgOptions.reset();
772  Diag(diag::err_drv_nested_config_file);
773  return true;
774  }
775 
776  // Claim all arguments that come from a configuration file so that the driver
777  // does not warn on any that is unused.
778  for (Arg *A : *CfgOptions)
779  A->claim();
780  return false;
781 }
782 
783 bool Driver::loadConfigFile() {
784  std::string CfgFileName;
785  bool FileSpecifiedExplicitly = false;
786 
787  // Process options that change search path for config files.
788  if (CLOptions) {
789  if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
790  SmallString<128> CfgDir;
791  CfgDir.append(
792  CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
793  if (!CfgDir.empty()) {
794  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
795  SystemConfigDir.clear();
796  else
797  SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
798  }
799  }
800  if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
801  SmallString<128> CfgDir;
802  CfgDir.append(
803  CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
804  if (!CfgDir.empty()) {
805  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
806  UserConfigDir.clear();
807  else
808  UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
809  }
810  }
811  }
812 
813  // First try to find config file specified in command line.
814  if (CLOptions) {
815  std::vector<std::string> ConfigFiles =
816  CLOptions->getAllArgValues(options::OPT_config);
817  if (ConfigFiles.size() > 1) {
818  Diag(diag::err_drv_duplicate_config);
819  return true;
820  }
821 
822  if (!ConfigFiles.empty()) {
823  CfgFileName = ConfigFiles.front();
824  assert(!CfgFileName.empty());
825 
826  // If argument contains directory separator, treat it as a path to
827  // configuration file.
828  if (llvm::sys::path::has_parent_path(CfgFileName)) {
829  SmallString<128> CfgFilePath;
830  if (llvm::sys::path::is_relative(CfgFileName))
831  llvm::sys::fs::current_path(CfgFilePath);
832  llvm::sys::path::append(CfgFilePath, CfgFileName);
833  if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
834  Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
835  return true;
836  }
837  return readConfigFile(CfgFilePath);
838  }
839 
840  FileSpecifiedExplicitly = true;
841  }
842  }
843 
844  // If config file is not specified explicitly, try to deduce configuration
845  // from executable name. For instance, an executable 'armv7l-clang' will
846  // search for config file 'armv7l-clang.cfg'.
847  if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
849 
850  if (CfgFileName.empty())
851  return false;
852 
853  // Determine architecture part of the file name, if it is present.
854  StringRef CfgFileArch = CfgFileName;
855  size_t ArchPrefixLen = CfgFileArch.find('-');
856  if (ArchPrefixLen == StringRef::npos)
857  ArchPrefixLen = CfgFileArch.size();
858  llvm::Triple CfgTriple;
859  CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
860  CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
861  if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
862  ArchPrefixLen = 0;
863 
864  if (!StringRef(CfgFileName).endswith(".cfg"))
865  CfgFileName += ".cfg";
866 
867  // If config file starts with architecture name and command line options
868  // redefine architecture (with options like -m32 -LE etc), try finding new
869  // config file with that architecture.
870  SmallString<128> FixedConfigFile;
871  size_t FixedArchPrefixLen = 0;
872  if (ArchPrefixLen) {
873  // Get architecture name from config file name like 'i386.cfg' or
874  // 'armv7l-clang.cfg'.
875  // Check if command line options changes effective triple.
876  llvm::Triple EffectiveTriple = computeTargetTriple(*this,
877  CfgTriple.getTriple(), *CLOptions);
878  if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
879  FixedConfigFile = EffectiveTriple.getArchName();
880  FixedArchPrefixLen = FixedConfigFile.size();
881  // Append the rest of original file name so that file name transforms
882  // like: i386-clang.cfg -> x86_64-clang.cfg.
883  if (ArchPrefixLen < CfgFileName.size())
884  FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
885  }
886  }
887 
888  // Prepare list of directories where config file is searched for.
889  SmallVector<std::string, 3> CfgFileSearchDirs;
890  CfgFileSearchDirs.push_back(UserConfigDir);
891  CfgFileSearchDirs.push_back(SystemConfigDir);
892  CfgFileSearchDirs.push_back(Dir);
893 
894  // Try to find config file. First try file with corrected architecture.
895  llvm::SmallString<128> CfgFilePath;
896  if (!FixedConfigFile.empty()) {
897  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
898  return readConfigFile(CfgFilePath);
899  // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
900  FixedConfigFile.resize(FixedArchPrefixLen);
901  FixedConfigFile.append(".cfg");
902  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
903  return readConfigFile(CfgFilePath);
904  }
905 
906  // Then try original file name.
907  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
908  return readConfigFile(CfgFilePath);
909 
910  // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
911  if (!ClangNameParts.ModeSuffix.empty() &&
912  !ClangNameParts.TargetPrefix.empty()) {
913  CfgFileName.assign(ClangNameParts.TargetPrefix);
914  CfgFileName.append(".cfg");
915  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
916  return readConfigFile(CfgFilePath);
917  }
918 
919  // Report error but only if config file was specified explicitly, by option
920  // --config. If it was deduced from executable name, it is not an error.
921  if (FileSpecifiedExplicitly) {
922  Diag(diag::err_drv_config_file_not_found) << CfgFileName;
923  for (const std::string &SearchDir : CfgFileSearchDirs)
924  if (!SearchDir.empty())
925  Diag(diag::note_drv_config_file_searched_in) << SearchDir;
926  return true;
927  }
928 
929  return false;
930 }
931 
933  llvm::PrettyStackTraceString CrashInfo("Compilation construction");
934 
935  // FIXME: Handle environment options which affect driver behavior, somewhere
936  // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
937 
938  if (Optional<std::string> CompilerPathValue =
939  llvm::sys::Process::GetEnv("COMPILER_PATH")) {
940  StringRef CompilerPath = *CompilerPathValue;
941  while (!CompilerPath.empty()) {
942  std::pair<StringRef, StringRef> Split =
943  CompilerPath.split(llvm::sys::EnvPathSeparator);
944  PrefixDirs.push_back(Split.first);
945  CompilerPath = Split.second;
946  }
947  }
948 
949  // We look for the driver mode option early, because the mode can affect
950  // how other options are parsed.
951  ParseDriverMode(ClangExecutable, ArgList.slice(1));
952 
953  // FIXME: What are we going to do with -V and -b?
954 
955  // Arguments specified in command line.
956  bool ContainsError;
957  CLOptions = llvm::make_unique<InputArgList>(
958  ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
959 
960  // Try parsing configuration file.
961  if (!ContainsError)
962  ContainsError = loadConfigFile();
963  bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
964 
965  // All arguments, from both config file and command line.
966  InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
967  : std::move(*CLOptions));
968 
969  // The args for config files or /clang: flags belong to different InputArgList
970  // objects than Args. This copies an Arg from one of those other InputArgLists
971  // to the ownership of Args.
972  auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
973  unsigned Index = Args.MakeIndex(Opt->getSpelling());
974  Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
975  Index, BaseArg);
976  Copy->getValues() = Opt->getValues();
977  if (Opt->isClaimed())
978  Copy->claim();
979  Args.append(Copy);
980  };
981 
982  if (HasConfigFile)
983  for (auto *Opt : *CLOptions) {
984  if (Opt->getOption().matches(options::OPT_config))
985  continue;
986  const Arg *BaseArg = &Opt->getBaseArg();
987  if (BaseArg == Opt)
988  BaseArg = nullptr;
989  appendOneArg(Opt, BaseArg);
990  }
991 
992  // In CL mode, look for any pass-through arguments
993  if (IsCLMode() && !ContainsError) {
994  SmallVector<const char *, 16> CLModePassThroughArgList;
995  for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
996  A->claim();
997  CLModePassThroughArgList.push_back(A->getValue());
998  }
999 
1000  if (!CLModePassThroughArgList.empty()) {
1001  // Parse any pass through args using default clang processing rather
1002  // than clang-cl processing.
1003  auto CLModePassThroughOptions = llvm::make_unique<InputArgList>(
1004  ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1005 
1006  if (!ContainsError)
1007  for (auto *Opt : *CLModePassThroughOptions) {
1008  appendOneArg(Opt, nullptr);
1009  }
1010  }
1011  }
1012 
1013  // FIXME: This stuff needs to go into the Compilation, not the driver.
1014  bool CCCPrintPhases;
1015 
1016  // Silence driver warnings if requested
1017  Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1018 
1019  // -no-canonical-prefixes is used very early in main.
1020  Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1021 
1022  // Ignore -pipe.
1023  Args.ClaimAllArgs(options::OPT_pipe);
1024 
1025  // Extract -ccc args.
1026  //
1027  // FIXME: We need to figure out where this behavior should live. Most of it
1028  // should be outside in the client; the parts that aren't should have proper
1029  // options, either by introducing new ones or by overloading gcc ones like -V
1030  // or -b.
1031  CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1032  CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1033  if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1034  CCCGenericGCCName = A->getValue();
1035  GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1036  options::OPT_fno_crash_diagnostics,
1037  !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1038  // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1039  // and getToolChain is const.
1040  if (IsCLMode()) {
1041  // clang-cl targets MSVC-style Win32.
1042  llvm::Triple T(TargetTriple);
1043  T.setOS(llvm::Triple::Win32);
1044  T.setVendor(llvm::Triple::PC);
1045  T.setEnvironment(llvm::Triple::MSVC);
1046  T.setObjectFormat(llvm::Triple::COFF);
1047  TargetTriple = T.str();
1048  }
1049  if (const Arg *A = Args.getLastArg(options::OPT_target))
1050  TargetTriple = A->getValue();
1051  if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1052  Dir = InstalledDir = A->getValue();
1053  for (const Arg *A : Args.filtered(options::OPT_B)) {
1054  A->claim();
1055  PrefixDirs.push_back(A->getValue(0));
1056  }
1057  if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1058  SysRoot = A->getValue();
1059  if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1060  DyldPrefix = A->getValue();
1061 
1062  if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1063  ResourceDir = A->getValue();
1064 
1065  if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1066  SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1067  .Case("cwd", SaveTempsCwd)
1068  .Case("obj", SaveTempsObj)
1069  .Default(SaveTempsCwd);
1070  }
1071 
1072  setLTOMode(Args);
1073 
1074  // Process -fembed-bitcode= flags.
1075  if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1076  StringRef Name = A->getValue();
1077  unsigned Model = llvm::StringSwitch<unsigned>(Name)
1078  .Case("off", EmbedNone)
1079  .Case("all", EmbedBitcode)
1080  .Case("bitcode", EmbedBitcode)
1081  .Case("marker", EmbedMarker)
1082  .Default(~0U);
1083  if (Model == ~0U) {
1084  Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1085  << Name;
1086  } else
1087  BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1088  }
1089 
1090  std::unique_ptr<llvm::opt::InputArgList> UArgs =
1091  llvm::make_unique<InputArgList>(std::move(Args));
1092 
1093  // Perform the default argument translations.
1094  DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1095 
1096  // Owned by the host.
1097  const ToolChain &TC = getToolChain(
1098  *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1099 
1100  // The compilation takes ownership of Args.
1101  Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1102  ContainsError);
1103 
1104  if (!HandleImmediateArgs(*C))
1105  return C;
1106 
1107  // Construct the list of inputs.
1108  InputList Inputs;
1109  BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1110 
1111  // Populate the tool chains for the offloading devices, if any.
1113 
1114  // Construct the list of abstract actions to perform for this compilation. On
1115  // MachO targets this uses the driver-driver and universal actions.
1116  if (TC.getTriple().isOSBinFormatMachO())
1117  BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1118  else
1119  BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1120 
1121  if (CCCPrintPhases) {
1122  PrintActions(*C);
1123  return C;
1124  }
1125 
1126  BuildJobs(*C);
1127 
1128  return C;
1129 }
1130 
1131 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1132  llvm::opt::ArgStringList ASL;
1133  for (const auto *A : Args)
1134  A->render(Args, ASL);
1135 
1136  for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1137  if (I != ASL.begin())
1138  OS << ' ';
1139  Command::printArg(OS, *I, true);
1140  }
1141  OS << '\n';
1142 }
1143 
1144 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1145  SmallString<128> &CrashDiagDir) {
1146  using namespace llvm::sys;
1147  assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1148  "Only knows about .crash files on Darwin");
1149 
1150  // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1151  // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1152  // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1153  path::home_directory(CrashDiagDir);
1154  if (CrashDiagDir.startswith("/var/root"))
1155  CrashDiagDir = "/";
1156  path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1157  int PID =
1158 #if LLVM_ON_UNIX
1159  getpid();
1160 #else
1161  0;
1162 #endif
1163  std::error_code EC;
1164  fs::file_status FileStatus;
1165  TimePoint<> LastAccessTime;
1166  SmallString<128> CrashFilePath;
1167  // Lookup the .crash files and get the one generated by a subprocess spawned
1168  // by this driver invocation.
1169  for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1170  File != FileEnd && !EC; File.increment(EC)) {
1171  StringRef FileName = path::filename(File->path());
1172  if (!FileName.startswith(Name))
1173  continue;
1174  if (fs::status(File->path(), FileStatus))
1175  continue;
1176  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1177  llvm::MemoryBuffer::getFile(File->path());
1178  if (!CrashFile)
1179  continue;
1180  // The first line should start with "Process:", otherwise this isn't a real
1181  // .crash file.
1182  StringRef Data = CrashFile.get()->getBuffer();
1183  if (!Data.startswith("Process:"))
1184  continue;
1185  // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1186  size_t ParentProcPos = Data.find("Parent Process:");
1187  if (ParentProcPos == StringRef::npos)
1188  continue;
1189  size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1190  if (LineEnd == StringRef::npos)
1191  continue;
1192  StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1193  int OpenBracket = -1, CloseBracket = -1;
1194  for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1195  if (ParentProcess[i] == '[')
1196  OpenBracket = i;
1197  if (ParentProcess[i] == ']')
1198  CloseBracket = i;
1199  }
1200  // Extract the parent process PID from the .crash file and check whether
1201  // it matches this driver invocation pid.
1202  int CrashPID;
1203  if (OpenBracket < 0 || CloseBracket < 0 ||
1204  ParentProcess.slice(OpenBracket + 1, CloseBracket)
1205  .getAsInteger(10, CrashPID) || CrashPID != PID) {
1206  continue;
1207  }
1208 
1209  // Found a .crash file matching the driver pid. To avoid getting an older
1210  // and misleading crash file, continue looking for the most recent.
1211  // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1212  // multiple crashes poiting to the same parent process. Since the driver
1213  // does not collect pid information for the dispatched invocation there's
1214  // currently no way to distinguish among them.
1215  const auto FileAccessTime = FileStatus.getLastModificationTime();
1216  if (FileAccessTime > LastAccessTime) {
1217  CrashFilePath.assign(File->path());
1218  LastAccessTime = FileAccessTime;
1219  }
1220  }
1221 
1222  // If found, copy it over to the location of other reproducer files.
1223  if (!CrashFilePath.empty()) {
1224  EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1225  if (EC)
1226  return false;
1227  return true;
1228  }
1229 
1230  return false;
1231 }
1232 
1233 // When clang crashes, produce diagnostic information including the fully
1234 // preprocessed source file(s). Request that the developer attach the
1235 // diagnostic information to a bug report.
1237  Compilation &C, const Command &FailingCommand,
1238  StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1239  if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1240  return;
1241 
1242  // Don't try to generate diagnostics for link or dsymutil jobs.
1243  if (FailingCommand.getCreator().isLinkJob() ||
1244  FailingCommand.getCreator().isDsymutilJob())
1245  return;
1246 
1247  // Print the version of the compiler.
1248  PrintVersion(C, llvm::errs());
1249 
1250  Diag(clang::diag::note_drv_command_failed_diag_msg)
1251  << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1252  "crash backtrace, preprocessed source, and associated run script.";
1253 
1254  // Suppress driver output and emit preprocessor output to temp file.
1255  Mode = CPPMode;
1256  CCGenDiagnostics = true;
1257 
1258  // Save the original job command(s).
1259  Command Cmd = FailingCommand;
1260 
1261  // Keep track of whether we produce any errors while trying to produce
1262  // preprocessed sources.
1263  DiagnosticErrorTrap Trap(Diags);
1264 
1265  // Suppress tool output.
1267 
1268  // Construct the list of inputs.
1269  InputList Inputs;
1270  BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1271 
1272  for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1273  bool IgnoreInput = false;
1274 
1275  // Ignore input from stdin or any inputs that cannot be preprocessed.
1276  // Check type first as not all linker inputs have a value.
1277  if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1278  IgnoreInput = true;
1279  } else if (!strcmp(it->second->getValue(), "-")) {
1280  Diag(clang::diag::note_drv_command_failed_diag_msg)
1281  << "Error generating preprocessed source(s) - "
1282  "ignoring input from stdin.";
1283  IgnoreInput = true;
1284  }
1285 
1286  if (IgnoreInput) {
1287  it = Inputs.erase(it);
1288  ie = Inputs.end();
1289  } else {
1290  ++it;
1291  }
1292  }
1293 
1294  if (Inputs.empty()) {
1295  Diag(clang::diag::note_drv_command_failed_diag_msg)
1296  << "Error generating preprocessed source(s) - "
1297  "no preprocessable inputs.";
1298  return;
1299  }
1300 
1301  // Don't attempt to generate preprocessed files if multiple -arch options are
1302  // used, unless they're all duplicates.
1303  llvm::StringSet<> ArchNames;
1304  for (const Arg *A : C.getArgs()) {
1305  if (A->getOption().matches(options::OPT_arch)) {
1306  StringRef ArchName = A->getValue();
1307  ArchNames.insert(ArchName);
1308  }
1309  }
1310  if (ArchNames.size() > 1) {
1311  Diag(clang::diag::note_drv_command_failed_diag_msg)
1312  << "Error generating preprocessed source(s) - cannot generate "
1313  "preprocessed source with multiple -arch options.";
1314  return;
1315  }
1316 
1317  // Construct the list of abstract actions to perform for this compilation. On
1318  // Darwin OSes this uses the driver-driver and builds universal actions.
1319  const ToolChain &TC = C.getDefaultToolChain();
1320  if (TC.getTriple().isOSBinFormatMachO())
1321  BuildUniversalActions(C, TC, Inputs);
1322  else
1323  BuildActions(C, C.getArgs(), Inputs, C.getActions());
1324 
1325  BuildJobs(C);
1326 
1327  // If there were errors building the compilation, quit now.
1328  if (Trap.hasErrorOccurred()) {
1329  Diag(clang::diag::note_drv_command_failed_diag_msg)
1330  << "Error generating preprocessed source(s).";
1331  return;
1332  }
1333 
1334  // Generate preprocessed output.
1335  SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1336  C.ExecuteJobs(C.getJobs(), FailingCommands);
1337 
1338  // If any of the preprocessing commands failed, clean up and exit.
1339  if (!FailingCommands.empty()) {
1340  Diag(clang::diag::note_drv_command_failed_diag_msg)
1341  << "Error generating preprocessed source(s).";
1342  return;
1343  }
1344 
1345  const ArgStringList &TempFiles = C.getTempFiles();
1346  if (TempFiles.empty()) {
1347  Diag(clang::diag::note_drv_command_failed_diag_msg)
1348  << "Error generating preprocessed source(s).";
1349  return;
1350  }
1351 
1352  Diag(clang::diag::note_drv_command_failed_diag_msg)
1353  << "\n********************\n\n"
1354  "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1355  "Preprocessed source(s) and associated run script(s) are located at:";
1356 
1357  SmallString<128> VFS;
1358  SmallString<128> ReproCrashFilename;
1359  for (const char *TempFile : TempFiles) {
1360  Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1361  if (Report)
1362  Report->TemporaryFiles.push_back(TempFile);
1363  if (ReproCrashFilename.empty()) {
1364  ReproCrashFilename = TempFile;
1365  llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1366  }
1367  if (StringRef(TempFile).endswith(".cache")) {
1368  // In some cases (modules) we'll dump extra data to help with reproducing
1369  // the crash into a directory next to the output.
1370  VFS = llvm::sys::path::filename(TempFile);
1371  llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1372  }
1373  }
1374 
1375  // Assume associated files are based off of the first temporary file.
1376  CrashReportInfo CrashInfo(TempFiles[0], VFS);
1377 
1378  llvm::SmallString<128> Script(CrashInfo.Filename);
1379  llvm::sys::path::replace_extension(Script, "sh");
1380  std::error_code EC;
1381  llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1382  if (EC) {
1383  Diag(clang::diag::note_drv_command_failed_diag_msg)
1384  << "Error generating run script: " << Script << " " << EC.message();
1385  } else {
1386  ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1387  << "# Driver args: ";
1388  printArgList(ScriptOS, C.getInputArgs());
1389  ScriptOS << "# Original command: ";
1390  Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1391  Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1392  if (!AdditionalInformation.empty())
1393  ScriptOS << "\n# Additional information: " << AdditionalInformation
1394  << "\n";
1395  if (Report)
1396  Report->TemporaryFiles.push_back(Script.str());
1397  Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1398  }
1399 
1400  // On darwin, provide information about the .crash diagnostic report.
1401  if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1402  SmallString<128> CrashDiagDir;
1403  if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1404  Diag(clang::diag::note_drv_command_failed_diag_msg)
1405  << ReproCrashFilename.str();
1406  } else { // Suggest a directory for the user to look for .crash files.
1407  llvm::sys::path::append(CrashDiagDir, Name);
1408  CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1409  Diag(clang::diag::note_drv_command_failed_diag_msg)
1410  << "Crash backtrace is located in";
1411  Diag(clang::diag::note_drv_command_failed_diag_msg)
1412  << CrashDiagDir.str();
1413  Diag(clang::diag::note_drv_command_failed_diag_msg)
1414  << "(choose the .crash file that corresponds to your crash)";
1415  }
1416  }
1417 
1418  for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1419  options::OPT_frewrite_map_file_EQ))
1420  Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1421 
1422  Diag(clang::diag::note_drv_command_failed_diag_msg)
1423  << "\n\n********************";
1424 }
1425 
1426 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1427  // Since commandLineFitsWithinSystemLimits() may underestimate system's
1428  // capacity if the tool does not support response files, there is a chance/
1429  // that things will just work without a response file, so we silently just
1430  // skip it.
1432  llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1433  Cmd.getArguments()))
1434  return;
1435 
1436  std::string TmpName = GetTemporaryPath("response", "txt");
1437  Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1438 }
1439 
1441  Compilation &C,
1442  SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1443  // Just print if -### was present.
1444  if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1445  C.getJobs().Print(llvm::errs(), "\n", true);
1446  return 0;
1447  }
1448 
1449  // If there were errors building the compilation, quit now.
1450  if (Diags.hasErrorOccurred())
1451  return 1;
1452 
1453  // Set up response file names for each command, if necessary
1454  for (auto &Job : C.getJobs())
1455  setUpResponseFiles(C, Job);
1456 
1457  C.ExecuteJobs(C.getJobs(), FailingCommands);
1458 
1459  // If the command succeeded, we are done.
1460  if (FailingCommands.empty())
1461  return 0;
1462 
1463  // Otherwise, remove result files and print extra information about abnormal
1464  // failures.
1465  int Res = 0;
1466  for (const auto &CmdPair : FailingCommands) {
1467  int CommandRes = CmdPair.first;
1468  const Command *FailingCommand = CmdPair.second;
1469 
1470  // Remove result files if we're not saving temps.
1471  if (!isSaveTempsEnabled()) {
1472  const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1473  C.CleanupFileMap(C.getResultFiles(), JA, true);
1474 
1475  // Failure result files are valid unless we crashed.
1476  if (CommandRes < 0)
1477  C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1478  }
1479 
1480 #if LLVM_ON_UNIX
1481  // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1482  // for SIGPIPE. Do not print diagnostics for this case.
1483  if (CommandRes == EX_IOERR) {
1484  Res = CommandRes;
1485  continue;
1486  }
1487 #endif
1488 
1489  // Print extra information about abnormal failures, if possible.
1490  //
1491  // This is ad-hoc, but we don't want to be excessively noisy. If the result
1492  // status was 1, assume the command failed normally. In particular, if it
1493  // was the compiler then assume it gave a reasonable error code. Failures
1494  // in other tools are less common, and they generally have worse
1495  // diagnostics, so always print the diagnostic there.
1496  const Tool &FailingTool = FailingCommand->getCreator();
1497 
1498  if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1499  // FIXME: See FIXME above regarding result code interpretation.
1500  if (CommandRes < 0)
1501  Diag(clang::diag::err_drv_command_signalled)
1502  << FailingTool.getShortName();
1503  else
1504  Diag(clang::diag::err_drv_command_failed)
1505  << FailingTool.getShortName() << CommandRes;
1506  }
1507  }
1508  return Res;
1509 }
1510 
1511 void Driver::PrintHelp(bool ShowHidden) const {
1512  unsigned IncludedFlagsBitmask;
1513  unsigned ExcludedFlagsBitmask;
1514  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1515  getIncludeExcludeOptionFlagMasks(IsCLMode());
1516 
1517  ExcludedFlagsBitmask |= options::NoDriverOption;
1518  if (!ShowHidden)
1519  ExcludedFlagsBitmask |= HelpHidden;
1520 
1521  std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1522  getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1523  IncludedFlagsBitmask, ExcludedFlagsBitmask,
1524  /*ShowAllAliases=*/false);
1525 }
1526 
1527 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1528  // FIXME: The following handlers should use a callback mechanism, we don't
1529  // know what the client would like to do.
1530  OS << getClangFullVersion() << '\n';
1531  const ToolChain &TC = C.getDefaultToolChain();
1532  OS << "Target: " << TC.getTripleString() << '\n';
1533 
1534  // Print the threading model.
1535  if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1536  // Don't print if the ToolChain would have barfed on it already
1537  if (TC.isThreadModelSupported(A->getValue()))
1538  OS << "Thread model: " << A->getValue();
1539  } else
1540  OS << "Thread model: " << TC.getThreadModel();
1541  OS << '\n';
1542 
1543  // Print out the install directory.
1544  OS << "InstalledDir: " << InstalledDir << '\n';
1545 
1546  // If configuration file was used, print its path.
1547  if (!ConfigFile.empty())
1548  OS << "Configuration file: " << ConfigFile << '\n';
1549 }
1550 
1551 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1552 /// option.
1553 static void PrintDiagnosticCategories(raw_ostream &OS) {
1554  // Skip the empty category.
1555  for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1556  ++i)
1557  OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1558 }
1559 
1560 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1561  if (PassedFlags == "")
1562  return;
1563  // Print out all options that start with a given argument. This is used for
1564  // shell autocompletion.
1565  std::vector<std::string> SuggestedCompletions;
1566  std::vector<std::string> Flags;
1567 
1568  unsigned short DisableFlags =
1570 
1571  // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1572  // because the latter indicates that the user put space before pushing tab
1573  // which should end up in a file completion.
1574  const bool HasSpace = PassedFlags.endswith(",");
1575 
1576  // Parse PassedFlags by "," as all the command-line flags are passed to this
1577  // function separated by ","
1578  StringRef TargetFlags = PassedFlags;
1579  while (TargetFlags != "") {
1580  StringRef CurFlag;
1581  std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1582  Flags.push_back(std::string(CurFlag));
1583  }
1584 
1585  // We want to show cc1-only options only when clang is invoked with -cc1 or
1586  // -Xclang.
1587  if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1588  DisableFlags &= ~options::NoDriverOption;
1589 
1590  StringRef Cur;
1591  Cur = Flags.at(Flags.size() - 1);
1592  StringRef Prev;
1593  if (Flags.size() >= 2) {
1594  Prev = Flags.at(Flags.size() - 2);
1595  SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur);
1596  }
1597 
1598  if (SuggestedCompletions.empty())
1599  SuggestedCompletions = Opts->suggestValueCompletions(Cur, "");
1600 
1601  // If Flags were empty, it means the user typed `clang [tab]` where we should
1602  // list all possible flags. If there was no value completion and the user
1603  // pressed tab after a space, we should fall back to a file completion.
1604  // We're printing a newline to be consistent with what we print at the end of
1605  // this function.
1606  if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1607  llvm::outs() << '\n';
1608  return;
1609  }
1610 
1611  // When flag ends with '=' and there was no value completion, return empty
1612  // string and fall back to the file autocompletion.
1613  if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1614  // If the flag is in the form of "--autocomplete=-foo",
1615  // we were requested to print out all option names that start with "-foo".
1616  // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1617  SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags);
1618 
1619  // We have to query the -W flags manually as they're not in the OptTable.
1620  // TODO: Find a good way to add them to OptTable instead and them remove
1621  // this code.
1622  for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1623  if (S.startswith(Cur))
1624  SuggestedCompletions.push_back(S);
1625  }
1626 
1627  // Sort the autocomplete candidates so that shells print them out in a
1628  // deterministic order. We could sort in any way, but we chose
1629  // case-insensitive sorting for consistency with the -help option
1630  // which prints out options in the case-insensitive alphabetical order.
1631  llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1632  if (int X = A.compare_lower(B))
1633  return X < 0;
1634  return A.compare(B) > 0;
1635  });
1636 
1637  llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1638 }
1639 
1641  // The order these options are handled in gcc is all over the place, but we
1642  // don't expect inconsistencies w.r.t. that to matter in practice.
1643 
1644  if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1645  llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1646  return false;
1647  }
1648 
1649  if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1650  // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1651  // return an answer which matches our definition of __VERSION__.
1652  llvm::outs() << CLANG_VERSION_STRING << "\n";
1653  return false;
1654  }
1655 
1656  if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1657  PrintDiagnosticCategories(llvm::outs());
1658  return false;
1659  }
1660 
1661  if (C.getArgs().hasArg(options::OPT_help) ||
1662  C.getArgs().hasArg(options::OPT__help_hidden)) {
1663  PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1664  return false;
1665  }
1666 
1667  if (C.getArgs().hasArg(options::OPT__version)) {
1668  // Follow gcc behavior and use stdout for --version and stderr for -v.
1669  PrintVersion(C, llvm::outs());
1670  return false;
1671  }
1672 
1673  if (C.getArgs().hasArg(options::OPT_v) ||
1674  C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1675  C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1676  PrintVersion(C, llvm::errs());
1677  SuppressMissingInputWarning = true;
1678  }
1679 
1680  if (C.getArgs().hasArg(options::OPT_v)) {
1681  if (!SystemConfigDir.empty())
1682  llvm::errs() << "System configuration file directory: "
1683  << SystemConfigDir << "\n";
1684  if (!UserConfigDir.empty())
1685  llvm::errs() << "User configuration file directory: "
1686  << UserConfigDir << "\n";
1687  }
1688 
1689  const ToolChain &TC = C.getDefaultToolChain();
1690 
1691  if (C.getArgs().hasArg(options::OPT_v))
1692  TC.printVerboseInfo(llvm::errs());
1693 
1694  if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1695  llvm::outs() << ResourceDir << '\n';
1696  return false;
1697  }
1698 
1699  if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1700  llvm::outs() << "programs: =";
1701  bool separator = false;
1702  for (const std::string &Path : TC.getProgramPaths()) {
1703  if (separator)
1704  llvm::outs() << llvm::sys::EnvPathSeparator;
1705  llvm::outs() << Path;
1706  separator = true;
1707  }
1708  llvm::outs() << "\n";
1709  llvm::outs() << "libraries: =" << ResourceDir;
1710 
1711  StringRef sysroot = C.getSysRoot();
1712 
1713  for (const std::string &Path : TC.getFilePaths()) {
1714  // Always print a separator. ResourceDir was the first item shown.
1715  llvm::outs() << llvm::sys::EnvPathSeparator;
1716  // Interpretation of leading '=' is needed only for NetBSD.
1717  if (Path[0] == '=')
1718  llvm::outs() << sysroot << Path.substr(1);
1719  else
1720  llvm::outs() << Path;
1721  }
1722  llvm::outs() << "\n";
1723  return false;
1724  }
1725 
1726  // FIXME: The following handlers should use a callback mechanism, we don't
1727  // know what the client would like to do.
1728  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1729  llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1730  return false;
1731  }
1732 
1733  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1734  StringRef ProgName = A->getValue();
1735 
1736  // Null program name cannot have a path.
1737  if (! ProgName.empty())
1738  llvm::outs() << GetProgramPath(ProgName, TC);
1739 
1740  llvm::outs() << "\n";
1741  return false;
1742  }
1743 
1744  if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1745  StringRef PassedFlags = A->getValue();
1746  HandleAutocompletions(PassedFlags);
1747  return false;
1748  }
1749 
1750  if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1752  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1753  RegisterEffectiveTriple TripleRAII(TC, Triple);
1754  switch (RLT) {
1756  llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1757  break;
1758  case ToolChain::RLT_Libgcc:
1759  llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1760  break;
1761  }
1762  return false;
1763  }
1764 
1765  if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1766  for (const Multilib &Multilib : TC.getMultilibs())
1767  llvm::outs() << Multilib << "\n";
1768  return false;
1769  }
1770 
1771  if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1772  const Multilib &Multilib = TC.getMultilib();
1773  if (Multilib.gccSuffix().empty())
1774  llvm::outs() << ".\n";
1775  else {
1776  StringRef Suffix(Multilib.gccSuffix());
1777  assert(Suffix.front() == '/');
1778  llvm::outs() << Suffix.substr(1) << "\n";
1779  }
1780  return false;
1781  }
1782 
1783  if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1784  llvm::outs() << TC.getTripleString() << "\n";
1785  return false;
1786  }
1787 
1788  if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1789  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1790  llvm::outs() << Triple.getTriple() << "\n";
1791  return false;
1792  }
1793 
1794  return true;
1795 }
1796 
1797 // Display an action graph human-readably. Action A is the "sink" node
1798 // and latest-occuring action. Traversal is in pre-order, visiting the
1799 // inputs to each action before printing the action itself.
1800 static unsigned PrintActions1(const Compilation &C, Action *A,
1801  std::map<Action *, unsigned> &Ids) {
1802  if (Ids.count(A)) // A was already visited.
1803  return Ids[A];
1804 
1805  std::string str;
1806  llvm::raw_string_ostream os(str);
1807 
1808  os << Action::getClassName(A->getKind()) << ", ";
1809  if (InputAction *IA = dyn_cast<InputAction>(A)) {
1810  os << "\"" << IA->getInputArg().getValue() << "\"";
1811  } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1812  os << '"' << BIA->getArchName() << '"' << ", {"
1813  << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1814  } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1815  bool IsFirst = true;
1816  OA->doOnEachDependence(
1817  [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1818  // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1819  // sm_35 this will generate:
1820  // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1821  // (nvptx64-nvidia-cuda:sm_35) {#ID}
1822  if (!IsFirst)
1823  os << ", ";
1824  os << '"';
1825  if (TC)
1826  os << A->getOffloadingKindPrefix();
1827  else
1828  os << "host";
1829  os << " (";
1830  os << TC->getTriple().normalize();
1831 
1832  if (BoundArch)
1833  os << ":" << BoundArch;
1834  os << ")";
1835  os << '"';
1836  os << " {" << PrintActions1(C, A, Ids) << "}";
1837  IsFirst = false;
1838  });
1839  } else {
1840  const ActionList *AL = &A->getInputs();
1841 
1842  if (AL->size()) {
1843  const char *Prefix = "{";
1844  for (Action *PreRequisite : *AL) {
1845  os << Prefix << PrintActions1(C, PreRequisite, Ids);
1846  Prefix = ", ";
1847  }
1848  os << "}";
1849  } else
1850  os << "{}";
1851  }
1852 
1853  // Append offload info for all options other than the offloading action
1854  // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1855  std::string offload_str;
1856  llvm::raw_string_ostream offload_os(offload_str);
1857  if (!isa<OffloadAction>(A)) {
1858  auto S = A->getOffloadingKindPrefix();
1859  if (!S.empty()) {
1860  offload_os << ", (" << S;
1861  if (A->getOffloadingArch())
1862  offload_os << ", " << A->getOffloadingArch();
1863  offload_os << ")";
1864  }
1865  }
1866 
1867  unsigned Id = Ids.size();
1868  Ids[A] = Id;
1869  llvm::errs() << Id << ": " << os.str() << ", "
1870  << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1871 
1872  return Id;
1873 }
1874 
1875 // Print the action graphs in a compilation C.
1876 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1877 void Driver::PrintActions(const Compilation &C) const {
1878  std::map<Action *, unsigned> Ids;
1879  for (Action *A : C.getActions())
1880  PrintActions1(C, A, Ids);
1881 }
1882 
1883 /// Check whether the given input tree contains any compilation or
1884 /// assembly actions.
1886  if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1887  isa<AssembleJobAction>(A))
1888  return true;
1889 
1890  for (const Action *Input : A->inputs())
1892  return true;
1893 
1894  return false;
1895 }
1896 
1898  const InputList &BAInputs) const {
1899  DerivedArgList &Args = C.getArgs();
1900  ActionList &Actions = C.getActions();
1901  llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1902  // Collect the list of architectures. Duplicates are allowed, but should only
1903  // be handled once (in the order seen).
1904  llvm::StringSet<> ArchNames;
1906  for (Arg *A : Args) {
1907  if (A->getOption().matches(options::OPT_arch)) {
1908  // Validate the option here; we don't save the type here because its
1909  // particular spelling may participate in other driver choices.
1910  llvm::Triple::ArchType Arch =
1912  if (Arch == llvm::Triple::UnknownArch) {
1913  Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1914  continue;
1915  }
1916 
1917  A->claim();
1918  if (ArchNames.insert(A->getValue()).second)
1919  Archs.push_back(A->getValue());
1920  }
1921  }
1922 
1923  // When there is no explicit arch for this platform, make sure we still bind
1924  // the architecture (to the default) so that -Xarch_ is handled correctly.
1925  if (!Archs.size())
1926  Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1927 
1928  ActionList SingleActions;
1929  BuildActions(C, Args, BAInputs, SingleActions);
1930 
1931  // Add in arch bindings for every top level action, as well as lipo and
1932  // dsymutil steps if needed.
1933  for (Action* Act : SingleActions) {
1934  // Make sure we can lipo this kind of output. If not (and it is an actual
1935  // output) then we disallow, since we can't create an output file with the
1936  // right name without overwriting it. We could remove this oddity by just
1937  // changing the output names to include the arch, which would also fix
1938  // -save-temps. Compatibility wins for now.
1939 
1940  if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1941  Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1942  << types::getTypeName(Act->getType());
1943 
1944  ActionList Inputs;
1945  for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1946  Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1947 
1948  // Lipo if necessary, we do it this way because we need to set the arch flag
1949  // so that -Xarch_ gets overwritten.
1950  if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1951  Actions.append(Inputs.begin(), Inputs.end());
1952  else
1953  Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1954 
1955  // Handle debug info queries.
1956  Arg *A = Args.getLastArg(options::OPT_g_Group);
1957  if (A && !A->getOption().matches(options::OPT_g0) &&
1958  !A->getOption().matches(options::OPT_gstabs) &&
1959  ContainsCompileOrAssembleAction(Actions.back())) {
1960 
1961  // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1962  // have a compile input. We need to run 'dsymutil' ourselves in such cases
1963  // because the debug info will refer to a temporary object file which
1964  // will be removed at the end of the compilation process.
1965  if (Act->getType() == types::TY_Image) {
1966  ActionList Inputs;
1967  Inputs.push_back(Actions.back());
1968  Actions.pop_back();
1969  Actions.push_back(
1970  C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1971  }
1972 
1973  // Verify the debug info output.
1974  if (Args.hasArg(options::OPT_verify_debug_info)) {
1975  Action* LastAction = Actions.back();
1976  Actions.pop_back();
1977  Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1978  LastAction, types::TY_Nothing));
1979  }
1980  }
1981  }
1982 }
1983 
1984 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
1985  types::ID Ty, bool TypoCorrect) const {
1986  if (!getCheckInputsExist())
1987  return true;
1988 
1989  // stdin always exists.
1990  if (Value == "-")
1991  return true;
1992 
1993  SmallString<64> Path(Value);
1994  if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
1995  if (!llvm::sys::path::is_absolute(Path)) {
1996  SmallString<64> Directory(WorkDir->getValue());
1997  llvm::sys::path::append(Directory, Value);
1998  Path.assign(Directory);
1999  }
2000  }
2001 
2002  if (getVFS().exists(Path))
2003  return true;
2004 
2005  if (IsCLMode()) {
2006  if (!llvm::sys::path::is_absolute(Twine(Path)) &&
2007  llvm::sys::Process::FindInEnvPath("LIB", Value))
2008  return true;
2009 
2010  if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2011  // Arguments to the /link flag might cause the linker to search for object
2012  // and library files in paths we don't know about. Don't error in such
2013  // cases.
2014  return true;
2015  }
2016  }
2017 
2018  if (TypoCorrect) {
2019  // Check if the filename is a typo for an option flag. OptTable thinks
2020  // that all args that are not known options and that start with / are
2021  // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2022  // the option `/diagnostics:caret` than a reference to a file in the root
2023  // directory.
2024  unsigned IncludedFlagsBitmask;
2025  unsigned ExcludedFlagsBitmask;
2026  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2027  getIncludeExcludeOptionFlagMasks(IsCLMode());
2028  std::string Nearest;
2029  if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2030  ExcludedFlagsBitmask) <= 1) {
2031  Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2032  << Path << Nearest;
2033  return false;
2034  }
2035  }
2036 
2037  Diag(clang::diag::err_drv_no_such_file) << Path;
2038  return false;
2039 }
2040 
2041 // Construct a the list of inputs and their types.
2042 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2043  InputList &Inputs) const {
2044  // Track the current user specified (-x) input. We also explicitly track the
2045  // argument used to set the type; we only want to claim the type when we
2046  // actually use it, so we warn about unused -x arguments.
2047  types::ID InputType = types::TY_Nothing;
2048  Arg *InputTypeArg = nullptr;
2049 
2050  // The last /TC or /TP option sets the input type to C or C++ globally.
2051  if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2052  options::OPT__SLASH_TP)) {
2053  InputTypeArg = TCTP;
2054  InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2055  ? types::TY_C
2056  : types::TY_CXX;
2057 
2058  Arg *Previous = nullptr;
2059  bool ShowNote = false;
2060  for (Arg *A :
2061  Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2062  if (Previous) {
2063  Diag(clang::diag::warn_drv_overriding_flag_option)
2064  << Previous->getSpelling() << A->getSpelling();
2065  ShowNote = true;
2066  }
2067  Previous = A;
2068  }
2069  if (ShowNote)
2070  Diag(clang::diag::note_drv_t_option_is_global);
2071 
2072  // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2073  assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2074  }
2075 
2076  for (Arg *A : Args) {
2077  if (A->getOption().getKind() == Option::InputClass) {
2078  const char *Value = A->getValue();
2080 
2081  // Infer the input type if necessary.
2082  if (InputType == types::TY_Nothing) {
2083  // If there was an explicit arg for this, claim it.
2084  if (InputTypeArg)
2085  InputTypeArg->claim();
2086 
2087  // stdin must be handled specially.
2088  if (memcmp(Value, "-", 2) == 0) {
2089  // If running with -E, treat as a C input (this changes the builtin
2090  // macros, for example). This may be overridden by -ObjC below.
2091  //
2092  // Otherwise emit an error but still use a valid type to avoid
2093  // spurious errors (e.g., no inputs).
2094  if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2095  Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2096  : clang::diag::err_drv_unknown_stdin_type);
2097  Ty = types::TY_C;
2098  } else {
2099  // Otherwise lookup by extension.
2100  // Fallback is C if invoked as C preprocessor, C++ if invoked with
2101  // clang-cl /E, or Object otherwise.
2102  // We use a host hook here because Darwin at least has its own
2103  // idea of what .s is.
2104  if (const char *Ext = strrchr(Value, '.'))
2105  Ty = TC.LookupTypeForExtension(Ext + 1);
2106 
2107  if (Ty == types::TY_INVALID) {
2108  if (CCCIsCPP())
2109  Ty = types::TY_C;
2110  else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2111  Ty = types::TY_CXX;
2112  else
2113  Ty = types::TY_Object;
2114  }
2115 
2116  // If the driver is invoked as C++ compiler (like clang++ or c++) it
2117  // should autodetect some input files as C++ for g++ compatibility.
2118  if (CCCIsCXX()) {
2119  types::ID OldTy = Ty;
2121 
2122  if (Ty != OldTy)
2123  Diag(clang::diag::warn_drv_treating_input_as_cxx)
2124  << getTypeName(OldTy) << getTypeName(Ty);
2125  }
2126 
2127  // If running with -fthinlto-index=, extensions that normally identify
2128  // native object files actually identify LLVM bitcode files.
2129  if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2130  Ty == types::TY_Object)
2131  Ty = types::TY_LLVM_BC;
2132  }
2133 
2134  // -ObjC and -ObjC++ override the default language, but only for "source
2135  // files". We just treat everything that isn't a linker input as a
2136  // source file.
2137  //
2138  // FIXME: Clean this up if we move the phase sequence into the type.
2139  if (Ty != types::TY_Object) {
2140  if (Args.hasArg(options::OPT_ObjC))
2141  Ty = types::TY_ObjC;
2142  else if (Args.hasArg(options::OPT_ObjCXX))
2143  Ty = types::TY_ObjCXX;
2144  }
2145  } else {
2146  assert(InputTypeArg && "InputType set w/o InputTypeArg");
2147  if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2148  // If emulating cl.exe, make sure that /TC and /TP don't affect input
2149  // object files.
2150  const char *Ext = strrchr(Value, '.');
2151  if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2152  Ty = types::TY_Object;
2153  }
2154  if (Ty == types::TY_INVALID) {
2155  Ty = InputType;
2156  InputTypeArg->claim();
2157  }
2158  }
2159 
2160  if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2161  Inputs.push_back(std::make_pair(Ty, A));
2162 
2163  } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2164  StringRef Value = A->getValue();
2165  if (DiagnoseInputExistence(Args, Value, types::TY_C,
2166  /*TypoCorrect=*/false)) {
2167  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2168  Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2169  }
2170  A->claim();
2171  } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2172  StringRef Value = A->getValue();
2173  if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2174  /*TypoCorrect=*/false)) {
2175  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2176  Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2177  }
2178  A->claim();
2179  } else if (A->getOption().hasFlag(options::LinkerInput)) {
2180  // Just treat as object type, we could make a special type for this if
2181  // necessary.
2182  Inputs.push_back(std::make_pair(types::TY_Object, A));
2183 
2184  } else if (A->getOption().matches(options::OPT_x)) {
2185  InputTypeArg = A;
2186  InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2187  A->claim();
2188 
2189  // Follow gcc behavior and treat as linker input for invalid -x
2190  // options. Its not clear why we shouldn't just revert to unknown; but
2191  // this isn't very important, we might as well be bug compatible.
2192  if (!InputType) {
2193  Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2194  InputType = types::TY_Object;
2195  }
2196  } else if (A->getOption().getID() == options::OPT_U) {
2197  assert(A->getNumValues() == 1 && "The /U option has one value.");
2198  StringRef Val = A->getValue(0);
2199  if (Val.find_first_of("/\\") != StringRef::npos) {
2200  // Warn about e.g. "/Users/me/myfile.c".
2201  Diag(diag::warn_slash_u_filename) << Val;
2202  Diag(diag::note_use_dashdash);
2203  }
2204  }
2205  }
2206  if (CCCIsCPP() && Inputs.empty()) {
2207  // If called as standalone preprocessor, stdin is processed
2208  // if no other input is present.
2209  Arg *A = MakeInputArg(Args, *Opts, "-");
2210  Inputs.push_back(std::make_pair(types::TY_C, A));
2211  }
2212 }
2213 
2214 namespace {
2215 /// Provides a convenient interface for different programming models to generate
2216 /// the required device actions.
2217 class OffloadingActionBuilder final {
2218  /// Flag used to trace errors in the builder.
2219  bool IsValid = false;
2220 
2221  /// The compilation that is using this builder.
2222  Compilation &C;
2223 
2224  /// Map between an input argument and the offload kinds used to process it.
2225  std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2226 
2227  /// Builder interface. It doesn't build anything or keep any state.
2228  class DeviceActionBuilder {
2229  public:
2231 
2232  enum ActionBuilderReturnCode {
2233  // The builder acted successfully on the current action.
2234  ABRT_Success,
2235  // The builder didn't have to act on the current action.
2236  ABRT_Inactive,
2237  // The builder was successful and requested the host action to not be
2238  // generated.
2239  ABRT_Ignore_Host,
2240  };
2241 
2242  protected:
2243  /// Compilation associated with this builder.
2244  Compilation &C;
2245 
2246  /// Tool chains associated with this builder. The same programming
2247  /// model may have associated one or more tool chains.
2249 
2250  /// The derived arguments associated with this builder.
2251  DerivedArgList &Args;
2252 
2253  /// The inputs associated with this builder.
2254  const Driver::InputList &Inputs;
2255 
2256  /// The associated offload kind.
2257  Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2258 
2259  public:
2260  DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2261  const Driver::InputList &Inputs,
2262  Action::OffloadKind AssociatedOffloadKind)
2263  : C(C), Args(Args), Inputs(Inputs),
2264  AssociatedOffloadKind(AssociatedOffloadKind) {}
2265  virtual ~DeviceActionBuilder() {}
2266 
2267  /// Fill up the array \a DA with all the device dependences that should be
2268  /// added to the provided host action \a HostAction. By default it is
2269  /// inactive.
2270  virtual ActionBuilderReturnCode
2271  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2272  phases::ID CurPhase, phases::ID FinalPhase,
2273  PhasesTy &Phases) {
2274  return ABRT_Inactive;
2275  }
2276 
2277  /// Update the state to include the provided host action \a HostAction as a
2278  /// dependency of the current device action. By default it is inactive.
2279  virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2280  return ABRT_Inactive;
2281  }
2282 
2283  /// Append top level actions generated by the builder. Return true if errors
2284  /// were found.
2285  virtual void appendTopLevelActions(ActionList &AL) {}
2286 
2287  /// Append linker actions generated by the builder. Return true if errors
2288  /// were found.
2289  virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2290 
2291  /// Initialize the builder. Return true if any initialization errors are
2292  /// found.
2293  virtual bool initialize() { return false; }
2294 
2295  /// Return true if the builder can use bundling/unbundling.
2296  virtual bool canUseBundlerUnbundler() const { return false; }
2297 
2298  /// Return true if this builder is valid. We have a valid builder if we have
2299  /// associated device tool chains.
2300  bool isValid() { return !ToolChains.empty(); }
2301 
2302  /// Return the associated offload kind.
2303  Action::OffloadKind getAssociatedOffloadKind() {
2304  return AssociatedOffloadKind;
2305  }
2306  };
2307 
2308  /// Base class for CUDA/HIP action builder. It injects device code in
2309  /// the host backend action.
2310  class CudaActionBuilderBase : public DeviceActionBuilder {
2311  protected:
2312  /// Flags to signal if the user requested host-only or device-only
2313  /// compilation.
2314  bool CompileHostOnly = false;
2315  bool CompileDeviceOnly = false;
2316 
2317  /// List of GPU architectures to use in this compilation.
2318  SmallVector<CudaArch, 4> GpuArchList;
2319 
2320  /// The CUDA actions for the current input.
2321  ActionList CudaDeviceActions;
2322 
2323  /// The CUDA fat binary if it was generated for the current input.
2324  Action *CudaFatBinary = nullptr;
2325 
2326  /// Flag that is set to true if this builder acted on the current input.
2327  bool IsActive = false;
2328 
2329  /// Flag for -fgpu-rdc.
2330  bool Relocatable = false;
2331  public:
2332  CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2333  const Driver::InputList &Inputs,
2334  Action::OffloadKind OFKind)
2335  : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2336 
2337  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2338  // While generating code for CUDA, we only depend on the host input action
2339  // to trigger the creation of all the CUDA device actions.
2340 
2341  // If we are dealing with an input action, replicate it for each GPU
2342  // architecture. If we are in host-only mode we return 'success' so that
2343  // the host uses the CUDA offload kind.
2344  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2345  assert(!GpuArchList.empty() &&
2346  "We should have at least one GPU architecture.");
2347 
2348  // If the host input is not CUDA or HIP, we don't need to bother about
2349  // this input.
2350  if (IA->getType() != types::TY_CUDA &&
2351  IA->getType() != types::TY_HIP) {
2352  // The builder will ignore this input.
2353  IsActive = false;
2354  return ABRT_Inactive;
2355  }
2356 
2357  // Set the flag to true, so that the builder acts on the current input.
2358  IsActive = true;
2359 
2360  if (CompileHostOnly)
2361  return ABRT_Success;
2362 
2363  // Replicate inputs for each GPU architecture.
2364  auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2365  : types::TY_CUDA_DEVICE;
2366  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2367  CudaDeviceActions.push_back(
2368  C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2369  }
2370 
2371  return ABRT_Success;
2372  }
2373 
2374  // If this is an unbundling action use it as is for each CUDA toolchain.
2375  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2376 
2377  // If -fgpu-rdc is disabled, should not unbundle since there is no
2378  // device code to link.
2379  if (!Relocatable)
2380  return ABRT_Inactive;
2381 
2382  CudaDeviceActions.clear();
2383  auto *IA = cast<InputAction>(UA->getInputs().back());
2384  std::string FileName = IA->getInputArg().getAsString(Args);
2385  // Check if the type of the file is the same as the action. Do not
2386  // unbundle it if it is not. Do not unbundle .so files, for example,
2387  // which are not object files.
2388  if (IA->getType() == types::TY_Object &&
2389  (!llvm::sys::path::has_extension(FileName) ||
2391  llvm::sys::path::extension(FileName).drop_front()) !=
2392  types::TY_Object))
2393  return ABRT_Inactive;
2394 
2395  for (auto Arch : GpuArchList) {
2396  CudaDeviceActions.push_back(UA);
2397  UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2398  AssociatedOffloadKind);
2399  }
2400  return ABRT_Success;
2401  }
2402 
2403  return IsActive ? ABRT_Success : ABRT_Inactive;
2404  }
2405 
2406  void appendTopLevelActions(ActionList &AL) override {
2407  // Utility to append actions to the top level list.
2408  auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2410  Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2411  AssociatedOffloadKind);
2412  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2413  };
2414 
2415  // If we have a fat binary, add it to the list.
2416  if (CudaFatBinary) {
2417  AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2418  CudaDeviceActions.clear();
2419  CudaFatBinary = nullptr;
2420  return;
2421  }
2422 
2423  if (CudaDeviceActions.empty())
2424  return;
2425 
2426  // If we have CUDA actions at this point, that's because we have a have
2427  // partial compilation, so we should have an action for each GPU
2428  // architecture.
2429  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2430  "Expecting one action per GPU architecture.");
2431  assert(ToolChains.size() == 1 &&
2432  "Expecting to have a sing CUDA toolchain.");
2433  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2434  AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2435 
2436  CudaDeviceActions.clear();
2437  }
2438 
2439  bool initialize() override {
2440  assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2441  AssociatedOffloadKind == Action::OFK_HIP);
2442 
2443  // We don't need to support CUDA.
2444  if (AssociatedOffloadKind == Action::OFK_Cuda &&
2446  return false;
2447 
2448  // We don't need to support HIP.
2449  if (AssociatedOffloadKind == Action::OFK_HIP &&
2451  return false;
2452 
2453  Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2454  options::OPT_fno_gpu_rdc, /*Default=*/false);
2455 
2457  assert(HostTC && "No toolchain for host compilation.");
2458  if (HostTC->getTriple().isNVPTX() ||
2459  HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2460  // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2461  // an error and abort pipeline construction early so we don't trip
2462  // asserts that assume device-side compilation.
2463  C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2464  << HostTC->getTriple().getArchName();
2465  return true;
2466  }
2467 
2468  ToolChains.push_back(
2469  AssociatedOffloadKind == Action::OFK_Cuda
2472 
2473  Arg *PartialCompilationArg = Args.getLastArg(
2474  options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2475  options::OPT_cuda_compile_host_device);
2476  CompileHostOnly = PartialCompilationArg &&
2477  PartialCompilationArg->getOption().matches(
2478  options::OPT_cuda_host_only);
2479  CompileDeviceOnly = PartialCompilationArg &&
2480  PartialCompilationArg->getOption().matches(
2481  options::OPT_cuda_device_only);
2482 
2483  // Collect all cuda_gpu_arch parameters, removing duplicates.
2484  std::set<CudaArch> GpuArchs;
2485  bool Error = false;
2486  for (Arg *A : Args) {
2487  if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2488  A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2489  continue;
2490  A->claim();
2491 
2492  const StringRef ArchStr = A->getValue();
2493  if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2494  ArchStr == "all") {
2495  GpuArchs.clear();
2496  continue;
2497  }
2498  CudaArch Arch = StringToCudaArch(ArchStr);
2499  if (Arch == CudaArch::UNKNOWN) {
2500  C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2501  Error = true;
2502  } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2503  GpuArchs.insert(Arch);
2504  else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2505  GpuArchs.erase(Arch);
2506  else
2507  llvm_unreachable("Unexpected option.");
2508  }
2509 
2510  // Collect list of GPUs remaining in the set.
2511  for (CudaArch Arch : GpuArchs)
2512  GpuArchList.push_back(Arch);
2513 
2514  // Default to sm_20 which is the lowest common denominator for
2515  // supported GPUs. sm_20 code should work correctly, if
2516  // suboptimally, on all newer GPUs.
2517  if (GpuArchList.empty())
2518  GpuArchList.push_back(CudaArch::SM_20);
2519 
2520  return Error;
2521  }
2522  };
2523 
2524  /// \brief CUDA action builder. It injects device code in the host backend
2525  /// action.
2526  class CudaActionBuilder final : public CudaActionBuilderBase {
2527  public:
2528  CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2529  const Driver::InputList &Inputs)
2530  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2531 
2532  ActionBuilderReturnCode
2533  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2534  phases::ID CurPhase, phases::ID FinalPhase,
2535  PhasesTy &Phases) override {
2536  if (!IsActive)
2537  return ABRT_Inactive;
2538 
2539  // If we don't have more CUDA actions, we don't have any dependences to
2540  // create for the host.
2541  if (CudaDeviceActions.empty())
2542  return ABRT_Success;
2543 
2544  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2545  "Expecting one action per GPU architecture.");
2546  assert(!CompileHostOnly &&
2547  "Not expecting CUDA actions in host-only compilation.");
2548 
2549  // If we are generating code for the device or we are in a backend phase,
2550  // we attempt to generate the fat binary. We compile each arch to ptx and
2551  // assemble to cubin, then feed the cubin *and* the ptx into a device
2552  // "link" action, which uses fatbinary to combine these cubins into one
2553  // fatbin. The fatbin is then an input to the host action if not in
2554  // device-only mode.
2555  if (CompileDeviceOnly || CurPhase == phases::Backend) {
2556  ActionList DeviceActions;
2557  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2558  // Produce the device action from the current phase up to the assemble
2559  // phase.
2560  for (auto Ph : Phases) {
2561  // Skip the phases that were already dealt with.
2562  if (Ph < CurPhase)
2563  continue;
2564  // We have to be consistent with the host final phase.
2565  if (Ph > FinalPhase)
2566  break;
2567 
2568  CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2569  C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2570 
2571  if (Ph == phases::Assemble)
2572  break;
2573  }
2574 
2575  // If we didn't reach the assemble phase, we can't generate the fat
2576  // binary. We don't need to generate the fat binary if we are not in
2577  // device-only mode.
2578  if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2579  CompileDeviceOnly)
2580  continue;
2581 
2582  Action *AssembleAction = CudaDeviceActions[I];
2583  assert(AssembleAction->getType() == types::TY_Object);
2584  assert(AssembleAction->getInputs().size() == 1);
2585 
2586  Action *BackendAction = AssembleAction->getInputs()[0];
2587  assert(BackendAction->getType() == types::TY_PP_Asm);
2588 
2589  for (auto &A : {AssembleAction, BackendAction}) {
2591  DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2593  DeviceActions.push_back(
2594  C.MakeAction<OffloadAction>(DDep, A->getType()));
2595  }
2596  }
2597 
2598  // We generate the fat binary if we have device input actions.
2599  if (!DeviceActions.empty()) {
2600  CudaFatBinary =
2601  C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2602 
2603  if (!CompileDeviceOnly) {
2604  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2606  // Clear the fat binary, it is already a dependence to an host
2607  // action.
2608  CudaFatBinary = nullptr;
2609  }
2610 
2611  // Remove the CUDA actions as they are already connected to an host
2612  // action or fat binary.
2613  CudaDeviceActions.clear();
2614  }
2615 
2616  // We avoid creating host action in device-only mode.
2617  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2618  } else if (CurPhase > phases::Backend) {
2619  // If we are past the backend phase and still have a device action, we
2620  // don't have to do anything as this action is already a device
2621  // top-level action.
2622  return ABRT_Success;
2623  }
2624 
2625  assert(CurPhase < phases::Backend && "Generating single CUDA "
2626  "instructions should only occur "
2627  "before the backend phase!");
2628 
2629  // By default, we produce an action for each device arch.
2630  for (Action *&A : CudaDeviceActions)
2631  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2632 
2633  return ABRT_Success;
2634  }
2635  };
2636  /// \brief HIP action builder. It injects device code in the host backend
2637  /// action.
2638  class HIPActionBuilder final : public CudaActionBuilderBase {
2639  /// The linker inputs obtained for each device arch.
2640  SmallVector<ActionList, 8> DeviceLinkerInputs;
2641 
2642  public:
2643  HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2644  const Driver::InputList &Inputs)
2645  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {}
2646 
2647  bool canUseBundlerUnbundler() const override { return true; }
2648 
2649  ActionBuilderReturnCode
2650  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2651  phases::ID CurPhase, phases::ID FinalPhase,
2652  PhasesTy &Phases) override {
2653  // amdgcn does not support linking of object files, therefore we skip
2654  // backend and assemble phases to output LLVM IR. Except for generating
2655  // non-relocatable device coee, where we generate fat binary for device
2656  // code and pass to host in Backend phase.
2657  if (CudaDeviceActions.empty() ||
2658  (CurPhase == phases::Backend && Relocatable) ||
2659  CurPhase == phases::Assemble)
2660  return ABRT_Success;
2661 
2662  assert(((CurPhase == phases::Link && Relocatable) ||
2663  CudaDeviceActions.size() == GpuArchList.size()) &&
2664  "Expecting one action per GPU architecture.");
2665  assert(!CompileHostOnly &&
2666  "Not expecting CUDA actions in host-only compilation.");
2667 
2668  if (!Relocatable && CurPhase == phases::Backend) {
2669  // If we are in backend phase, we attempt to generate the fat binary.
2670  // We compile each arch to IR and use a link action to generate code
2671  // object containing ISA. Then we use a special "link" action to create
2672  // a fat binary containing all the code objects for different GPU's.
2673  // The fat binary is then an input to the host action.
2674  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2675  // Create a link action to link device IR with device library
2676  // and generate ISA.
2677  ActionList AL;
2678  AL.push_back(CudaDeviceActions[I]);
2679  CudaDeviceActions[I] =
2680  C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2681 
2682  // OffloadingActionBuilder propagates device arch until an offload
2683  // action. Since the next action for creating fatbin does
2684  // not have device arch, whereas the above link action and its input
2685  // have device arch, an offload action is needed to stop the null
2686  // device arch of the next action being propagated to the above link
2687  // action.
2689  DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2690  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2691  CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2692  DDep, CudaDeviceActions[I]->getType());
2693  }
2694  // Create HIP fat binary with a special "link" action.
2695  CudaFatBinary =
2696  C.MakeAction<LinkJobAction>(CudaDeviceActions,
2697  types::TY_HIP_FATBIN);
2698 
2699  if (!CompileDeviceOnly) {
2700  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2701  AssociatedOffloadKind);
2702  // Clear the fat binary, it is already a dependence to an host
2703  // action.
2704  CudaFatBinary = nullptr;
2705  }
2706 
2707  // Remove the CUDA actions as they are already connected to an host
2708  // action or fat binary.
2709  CudaDeviceActions.clear();
2710 
2711  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2712  } else if (CurPhase == phases::Link) {
2713  // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2714  // This happens to each device action originated from each input file.
2715  // Later on, device actions in DeviceLinkerInputs are used to create
2716  // device link actions in appendLinkDependences and the created device
2717  // link actions are passed to the offload action as device dependence.
2718  DeviceLinkerInputs.resize(CudaDeviceActions.size());
2719  auto LI = DeviceLinkerInputs.begin();
2720  for (auto *A : CudaDeviceActions) {
2721  LI->push_back(A);
2722  ++LI;
2723  }
2724 
2725  // We will pass the device action as a host dependence, so we don't
2726  // need to do anything else with them.
2727  CudaDeviceActions.clear();
2728  return ABRT_Success;
2729  }
2730 
2731  // By default, we produce an action for each device arch.
2732  for (Action *&A : CudaDeviceActions)
2733  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2734  AssociatedOffloadKind);
2735 
2736  return ABRT_Success;
2737  }
2738 
2739  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2740  // Append a new link action for each device.
2741  unsigned I = 0;
2742  for (auto &LI : DeviceLinkerInputs) {
2743  auto *DeviceLinkAction =
2744  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2745  DA.add(*DeviceLinkAction, *ToolChains[0],
2746  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2747  ++I;
2748  }
2749  }
2750  };
2751 
2752  /// OpenMP action builder. The host bitcode is passed to the device frontend
2753  /// and all the device linked images are passed to the host link phase.
2754  class OpenMPActionBuilder final : public DeviceActionBuilder {
2755  /// The OpenMP actions for the current input.
2756  ActionList OpenMPDeviceActions;
2757 
2758  /// The linker inputs obtained for each toolchain.
2759  SmallVector<ActionList, 8> DeviceLinkerInputs;
2760 
2761  public:
2762  OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2763  const Driver::InputList &Inputs)
2764  : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2765 
2766  ActionBuilderReturnCode
2767  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2768  phases::ID CurPhase, phases::ID FinalPhase,
2769  PhasesTy &Phases) override {
2770  if (OpenMPDeviceActions.empty())
2771  return ABRT_Inactive;
2772 
2773  // We should always have an action for each input.
2774  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2775  "Number of OpenMP actions and toolchains do not match.");
2776 
2777  // The host only depends on device action in the linking phase, when all
2778  // the device images have to be embedded in the host image.
2779  if (CurPhase == phases::Link) {
2780  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2781  "Toolchains and linker inputs sizes do not match.");
2782  auto LI = DeviceLinkerInputs.begin();
2783  for (auto *A : OpenMPDeviceActions) {
2784  LI->push_back(A);
2785  ++LI;
2786  }
2787 
2788  // We passed the device action as a host dependence, so we don't need to
2789  // do anything else with them.
2790  OpenMPDeviceActions.clear();
2791  return ABRT_Success;
2792  }
2793 
2794  // By default, we produce an action for each device arch.
2795  for (Action *&A : OpenMPDeviceActions)
2796  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2797 
2798  return ABRT_Success;
2799  }
2800 
2801  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2802 
2803  // If this is an input action replicate it for each OpenMP toolchain.
2804  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2805  OpenMPDeviceActions.clear();
2806  for (unsigned I = 0; I < ToolChains.size(); ++I)
2807  OpenMPDeviceActions.push_back(
2808  C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2809  return ABRT_Success;
2810  }
2811 
2812  // If this is an unbundling action use it as is for each OpenMP toolchain.
2813  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2814  OpenMPDeviceActions.clear();
2815  auto *IA = cast<InputAction>(UA->getInputs().back());
2816  std::string FileName = IA->getInputArg().getAsString(Args);
2817  // Check if the type of the file is the same as the action. Do not
2818  // unbundle it if it is not. Do not unbundle .so files, for example,
2819  // which are not object files.
2820  if (IA->getType() == types::TY_Object &&
2821  (!llvm::sys::path::has_extension(FileName) ||
2823  llvm::sys::path::extension(FileName).drop_front()) !=
2824  types::TY_Object))
2825  return ABRT_Inactive;
2826  for (unsigned I = 0; I < ToolChains.size(); ++I) {
2827  OpenMPDeviceActions.push_back(UA);
2828  UA->registerDependentActionInfo(
2829  ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2830  }
2831  return ABRT_Success;
2832  }
2833 
2834  // When generating code for OpenMP we use the host compile phase result as
2835  // a dependence to the device compile phase so that it can learn what
2836  // declarations should be emitted. However, this is not the only use for
2837  // the host action, so we prevent it from being collapsed.
2838  if (isa<CompileJobAction>(HostAction)) {
2840  assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2841  "Toolchains and device action sizes do not match.");
2843  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2844  /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2845  auto TC = ToolChains.begin();
2846  for (Action *&A : OpenMPDeviceActions) {
2847  assert(isa<CompileJobAction>(A));
2849  DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2850  A = C.MakeAction<OffloadAction>(HDep, DDep);
2851  ++TC;
2852  }
2853  }
2854  return ABRT_Success;
2855  }
2856 
2857  void appendTopLevelActions(ActionList &AL) override {
2858  if (OpenMPDeviceActions.empty())
2859  return;
2860 
2861  // We should always have an action for each input.
2862  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2863  "Number of OpenMP actions and toolchains do not match.");
2864 
2865  // Append all device actions followed by the proper offload action.
2866  auto TI = ToolChains.begin();
2867  for (auto *A : OpenMPDeviceActions) {
2869  Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2870  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2871  ++TI;
2872  }
2873  // We no longer need the action stored in this builder.
2874  OpenMPDeviceActions.clear();
2875  }
2876 
2877  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2878  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2879  "Toolchains and linker inputs sizes do not match.");
2880 
2881  // Append a new link action for each device.
2882  auto TC = ToolChains.begin();
2883  for (auto &LI : DeviceLinkerInputs) {
2884  auto *DeviceLinkAction =
2885  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2886  DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2888  ++TC;
2889  }
2890  }
2891 
2892  bool initialize() override {
2893  // Get the OpenMP toolchains. If we don't get any, the action builder will
2894  // know there is nothing to do related to OpenMP offloading.
2895  auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2896  for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2897  ++TI)
2898  ToolChains.push_back(TI->second);
2899 
2900  DeviceLinkerInputs.resize(ToolChains.size());
2901  return false;
2902  }
2903 
2904  bool canUseBundlerUnbundler() const override {
2905  // OpenMP should use bundled files whenever possible.
2906  return true;
2907  }
2908  };
2909 
2910  ///
2911  /// TODO: Add the implementation for other specialized builders here.
2912  ///
2913 
2914  /// Specialized builders being used by this offloading action builder.
2915  SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2916 
2917  /// Flag set to true if all valid builders allow file bundling/unbundling.
2918  bool CanUseBundler;
2919 
2920 public:
2921  OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2922  const Driver::InputList &Inputs)
2923  : C(C) {
2924  // Create a specialized builder for each device toolchain.
2925 
2926  IsValid = true;
2927 
2928  // Create a specialized builder for CUDA.
2929  SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2930 
2931  // Create a specialized builder for HIP.
2932  SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2933 
2934  // Create a specialized builder for OpenMP.
2935  SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2936 
2937  //
2938  // TODO: Build other specialized builders here.
2939  //
2940 
2941  // Initialize all the builders, keeping track of errors. If all valid
2942  // builders agree that we can use bundling, set the flag to true.
2943  unsigned ValidBuilders = 0u;
2944  unsigned ValidBuildersSupportingBundling = 0u;
2945  for (auto *SB : SpecializedBuilders) {
2946  IsValid = IsValid && !SB->initialize();
2947 
2948  // Update the counters if the builder is valid.
2949  if (SB->isValid()) {
2950  ++ValidBuilders;
2951  if (SB->canUseBundlerUnbundler())
2952  ++ValidBuildersSupportingBundling;
2953  }
2954  }
2955  CanUseBundler =
2956  ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2957  }
2958 
2959  ~OffloadingActionBuilder() {
2960  for (auto *SB : SpecializedBuilders)
2961  delete SB;
2962  }
2963 
2964  /// Generate an action that adds device dependences (if any) to a host action.
2965  /// If no device dependence actions exist, just return the host action \a
2966  /// HostAction. If an error is found or if no builder requires the host action
2967  /// to be generated, return nullptr.
2968  Action *
2969  addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2970  phases::ID CurPhase, phases::ID FinalPhase,
2971  DeviceActionBuilder::PhasesTy &Phases) {
2972  if (!IsValid)
2973  return nullptr;
2974 
2975  if (SpecializedBuilders.empty())
2976  return HostAction;
2977 
2978  assert(HostAction && "Invalid host action!");
2979 
2981  // Check if all the programming models agree we should not emit the host
2982  // action. Also, keep track of the offloading kinds employed.
2983  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2984  unsigned InactiveBuilders = 0u;
2985  unsigned IgnoringBuilders = 0u;
2986  for (auto *SB : SpecializedBuilders) {
2987  if (!SB->isValid()) {
2988  ++InactiveBuilders;
2989  continue;
2990  }
2991 
2992  auto RetCode =
2993  SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2994 
2995  // If the builder explicitly says the host action should be ignored,
2996  // we need to increment the variable that tracks the builders that request
2997  // the host object to be ignored.
2998  if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
2999  ++IgnoringBuilders;
3000 
3001  // Unless the builder was inactive for this action, we have to record the
3002  // offload kind because the host will have to use it.
3003  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3004  OffloadKind |= SB->getAssociatedOffloadKind();
3005  }
3006 
3007  // If all builders agree that the host object should be ignored, just return
3008  // nullptr.
3009  if (IgnoringBuilders &&
3010  SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3011  return nullptr;
3012 
3013  if (DDeps.getActions().empty())
3014  return HostAction;
3015 
3016  // We have dependences we need to bundle together. We use an offload action
3017  // for that.
3019  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3020  /*BoundArch=*/nullptr, DDeps);
3021  return C.MakeAction<OffloadAction>(HDep, DDeps);
3022  }
3023 
3024  /// Generate an action that adds a host dependence to a device action. The
3025  /// results will be kept in this action builder. Return true if an error was
3026  /// found.
3027  bool addHostDependenceToDeviceActions(Action *&HostAction,
3028  const Arg *InputArg) {
3029  if (!IsValid)
3030  return true;
3031 
3032  // If we are supporting bundling/unbundling and the current action is an
3033  // input action of non-source file, we replace the host action by the
3034  // unbundling action. The bundler tool has the logic to detect if an input
3035  // is a bundle or not and if the input is not a bundle it assumes it is a
3036  // host file. Therefore it is safe to create an unbundling action even if
3037  // the input is not a bundle.
3038  if (CanUseBundler && isa<InputAction>(HostAction) &&
3039  InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3040  !types::isSrcFile(HostAction->getType())) {
3041  auto UnbundlingHostAction =
3042  C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3043  UnbundlingHostAction->registerDependentActionInfo(
3045  /*BoundArch=*/StringRef(), Action::OFK_Host);
3046  HostAction = UnbundlingHostAction;
3047  }
3048 
3049  assert(HostAction && "Invalid host action!");
3050 
3051  // Register the offload kinds that are used.
3052  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3053  for (auto *SB : SpecializedBuilders) {
3054  if (!SB->isValid())
3055  continue;
3056 
3057  auto RetCode = SB->addDeviceDepences(HostAction);
3058 
3059  // Host dependences for device actions are not compatible with that same
3060  // action being ignored.
3061  assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3062  "Host dependence not expected to be ignored.!");
3063 
3064  // Unless the builder was inactive for this action, we have to record the
3065  // offload kind because the host will have to use it.
3066  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3067  OffloadKind |= SB->getAssociatedOffloadKind();
3068  }
3069 
3070  // Do not use unbundler if the Host does not depend on device action.
3071  if (OffloadKind == Action::OFK_None && CanUseBundler)
3072  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3073  HostAction = UA->getInputs().back();
3074 
3075  return false;
3076  }
3077 
3078  /// Add the offloading top level actions to the provided action list. This
3079  /// function can replace the host action by a bundling action if the
3080  /// programming models allow it.
3081  bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3082  const Arg *InputArg) {
3083  // Get the device actions to be appended.
3084  ActionList OffloadAL;
3085  for (auto *SB : SpecializedBuilders) {
3086  if (!SB->isValid())
3087  continue;
3088  SB->appendTopLevelActions(OffloadAL);
3089  }
3090 
3091  // If we can use the bundler, replace the host action by the bundling one in
3092  // the resulting list. Otherwise, just append the device actions. For
3093  // device only compilation, HostAction is a null pointer, therefore only do
3094  // this when HostAction is not a null pointer.
3095  if (CanUseBundler && HostAction && !OffloadAL.empty()) {
3096  // Add the host action to the list in order to create the bundling action.
3097  OffloadAL.push_back(HostAction);
3098 
3099  // We expect that the host action was just appended to the action list
3100  // before this method was called.
3101  assert(HostAction == AL.back() && "Host action not in the list??");
3102  HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3103  AL.back() = HostAction;
3104  } else
3105  AL.append(OffloadAL.begin(), OffloadAL.end());
3106 
3107  // Propagate to the current host action (if any) the offload information
3108  // associated with the current input.
3109  if (HostAction)
3110  HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3111  /*BoundArch=*/nullptr);
3112  return false;
3113  }
3114 
3115  /// Processes the host linker action. This currently consists of replacing it
3116  /// with an offload action if there are device link objects and propagate to
3117  /// the host action all the offload kinds used in the current compilation. The
3118  /// resulting action is returned.
3119  Action *processHostLinkAction(Action *HostAction) {
3120  // Add all the dependences from the device linking actions.
3122  for (auto *SB : SpecializedBuilders) {
3123  if (!SB->isValid())
3124  continue;
3125 
3126  SB->appendLinkDependences(DDeps);
3127  }
3128 
3129  // Calculate all the offload kinds used in the current compilation.
3130  unsigned ActiveOffloadKinds = 0u;
3131  for (auto &I : InputArgToOffloadKindMap)
3132  ActiveOffloadKinds |= I.second;
3133 
3134  // If we don't have device dependencies, we don't have to create an offload
3135  // action.
3136  if (DDeps.getActions().empty()) {
3137  // Propagate all the active kinds to host action. Given that it is a link
3138  // action it is assumed to depend on all actions generated so far.
3139  HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3140  /*BoundArch=*/nullptr);
3141  return HostAction;
3142  }
3143 
3144  // Create the offload action with all dependences. When an offload action
3145  // is created the kinds are propagated to the host action, so we don't have
3146  // to do that explicitly here.
3148  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3149  /*BoundArch*/ nullptr, ActiveOffloadKinds);
3150  return C.MakeAction<OffloadAction>(HDep, DDeps);
3151  }
3152 };
3153 } // anonymous namespace.
3154 
3155 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3156  const InputList &Inputs, ActionList &Actions) const {
3157  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3158 
3159  if (!SuppressMissingInputWarning && Inputs.empty()) {
3160  Diag(clang::diag::err_drv_no_input_files);
3161  return;
3162  }
3163 
3164  Arg *FinalPhaseArg;
3165  phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3166 
3167  if (FinalPhase == phases::Link) {
3168  if (Args.hasArg(options::OPT_emit_llvm))
3169  Diag(clang::diag::err_drv_emit_llvm_link);
3170  if (IsCLMode() && LTOMode != LTOK_None &&
3171  !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3172  Diag(clang::diag::err_drv_lto_without_lld);
3173  }
3174 
3175  // Reject -Z* at the top level, these options should never have been exposed
3176  // by gcc.
3177  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3178  Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3179 
3180  // Diagnose misuse of /Fo.
3181  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3182  StringRef V = A->getValue();
3183  if (Inputs.size() > 1 && !V.empty() &&
3184  !llvm::sys::path::is_separator(V.back())) {
3185  // Check whether /Fo tries to name an output file for multiple inputs.
3186  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3187  << A->getSpelling() << V;
3188  Args.eraseArg(options::OPT__SLASH_Fo);
3189  }
3190  }
3191 
3192  // Diagnose misuse of /Fa.
3193  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3194  StringRef V = A->getValue();
3195  if (Inputs.size() > 1 && !V.empty() &&
3196  !llvm::sys::path::is_separator(V.back())) {
3197  // Check whether /Fa tries to name an asm file for multiple inputs.
3198  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3199  << A->getSpelling() << V;
3200  Args.eraseArg(options::OPT__SLASH_Fa);
3201  }
3202  }
3203 
3204  // Diagnose misuse of /o.
3205  if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3206  if (A->getValue()[0] == '\0') {
3207  // It has to have a value.
3208  Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3209  Args.eraseArg(options::OPT__SLASH_o);
3210  }
3211  }
3212 
3213  // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3214  Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3215  Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3216  if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3217  Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3218  Args.eraseArg(options::OPT__SLASH_Yc);
3219  Args.eraseArg(options::OPT__SLASH_Yu);
3220  YcArg = YuArg = nullptr;
3221  }
3222  if (YcArg && Inputs.size() > 1) {
3223  Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3224  Args.eraseArg(options::OPT__SLASH_Yc);
3225  YcArg = nullptr;
3226  }
3227  if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3228  // If only preprocessing or /Y- is used, all pch handling is disabled.
3229  // Rather than check for it everywhere, just remove clang-cl pch-related
3230  // flags here.
3231  Args.eraseArg(options::OPT__SLASH_Fp);
3232  Args.eraseArg(options::OPT__SLASH_Yc);
3233  Args.eraseArg(options::OPT__SLASH_Yu);
3234  YcArg = YuArg = nullptr;
3235  }
3236 
3237  // Builder to be used to build offloading actions.
3238  OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3239 
3240  // Construct the actions to perform.
3241  HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3242  ActionList LinkerInputs;
3243 
3245  for (auto &I : Inputs) {
3246  types::ID InputType = I.first;
3247  const Arg *InputArg = I.second;
3248 
3249  PL.clear();
3250  types::getCompilationPhases(InputType, PL);
3251 
3252  // If the first step comes after the final phase we are doing as part of
3253  // this compilation, warn the user about it.
3254  phases::ID InitialPhase = PL[0];
3255  if (InitialPhase > FinalPhase) {
3256  if (InputArg->isClaimed())
3257  continue;
3258 
3259  // Claim here to avoid the more general unused warning.
3260  InputArg->claim();
3261 
3262  // Suppress all unused style warnings with -Qunused-arguments
3263  if (Args.hasArg(options::OPT_Qunused_arguments))
3264  continue;
3265 
3266  // Special case when final phase determined by binary name, rather than
3267  // by a command-line argument with a corresponding Arg.
3268  if (CCCIsCPP())
3269  Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3270  << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3271  // Special case '-E' warning on a previously preprocessed file to make
3272  // more sense.
3273  else if (InitialPhase == phases::Compile &&
3274  FinalPhase == phases::Preprocess &&
3275  getPreprocessedType(InputType) == types::TY_INVALID)
3276  Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3277  << InputArg->getAsString(Args) << !!FinalPhaseArg
3278  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3279  else
3280  Diag(clang::diag::warn_drv_input_file_unused)
3281  << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3282  << !!FinalPhaseArg
3283  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3284  continue;
3285  }
3286 
3287  if (YcArg) {
3288  // Add a separate precompile phase for the compile phase.
3289  if (FinalPhase >= phases::Compile) {
3290  const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3292  types::getCompilationPhases(HeaderType, PCHPL);
3293  // Build the pipeline for the pch file.
3294  Action *ClangClPch =
3295  C.MakeAction<InputAction>(*InputArg, HeaderType);
3296  for (phases::ID Phase : PCHPL)
3297  ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3298  assert(ClangClPch);
3299  Actions.push_back(ClangClPch);
3300  // The driver currently exits after the first failed command. This
3301  // relies on that behavior, to make sure if the pch generation fails,
3302  // the main compilation won't run.
3303  // FIXME: If the main compilation fails, the PCH generation should
3304  // probably not be considered successful either.
3305  }
3306  }
3307 
3308  // Build the pipeline for this file.
3309  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3310 
3311  // Use the current host action in any of the offloading actions, if
3312  // required.
3313  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3314  break;
3315 
3316  for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
3317  i != e; ++i) {
3318  phases::ID Phase = *i;
3319 
3320  // We are done if this step is past what the user requested.
3321  if (Phase > FinalPhase)
3322  break;
3323 
3324  // Add any offload action the host action depends on.
3325  Current = OffloadBuilder.addDeviceDependencesToHostAction(
3326  Current, InputArg, Phase, FinalPhase, PL);
3327  if (!Current)
3328  break;
3329 
3330  // Queue linker inputs.
3331  if (Phase == phases::Link) {
3332  assert((i + 1) == e && "linking must be final compilation step.");
3333  LinkerInputs.push_back(Current);
3334  Current = nullptr;
3335  break;
3336  }
3337 
3338  // Each precompiled header file after a module file action is a module
3339  // header of that same module file, rather than being compiled to a
3340  // separate PCH.
3341  if (Phase == phases::Precompile && HeaderModuleAction &&
3342  getPrecompiledType(InputType) == types::TY_PCH) {
3343  HeaderModuleAction->addModuleHeaderInput(Current);
3344  Current = nullptr;
3345  break;
3346  }
3347 
3348  // FIXME: Should we include any prior module file outputs as inputs of
3349  // later actions in the same command line?
3350 
3351  // Otherwise construct the appropriate action.
3352  Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3353 
3354  // We didn't create a new action, so we will just move to the next phase.
3355  if (NewCurrent == Current)
3356  continue;
3357 
3358  if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3359  HeaderModuleAction = HMA;
3360 
3361  Current = NewCurrent;
3362 
3363  // Use the current host action in any of the offloading actions, if
3364  // required.
3365  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3366  break;
3367 
3368  if (Current->getType() == types::TY_Nothing)
3369  break;
3370  }
3371 
3372  // If we ended with something, add to the output list.
3373  if (Current)
3374  Actions.push_back(Current);
3375 
3376  // Add any top level actions generated for offloading.
3377  OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3378  }
3379 
3380  // Add a link action if necessary.
3381  if (!LinkerInputs.empty()) {
3382  Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3383  LA = OffloadBuilder.processHostLinkAction(LA);
3384  Actions.push_back(LA);
3385  }
3386 
3387  // If we are linking, claim any options which are obviously only used for
3388  // compilation.
3389  if (FinalPhase == phases::Link && PL.size() == 1) {
3390  Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3391  Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3392  }
3393 
3394  // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3395  // Compile phase that prints out supported cpu models and quits.
3396  if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3397  // Use the -mcpu=? flag as the dummy input to cc1.
3398  Actions.clear();
3399  Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3400  Actions.push_back(
3401  C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3402  for (auto &I : Inputs)
3403  I.second->claim();
3404  }
3405 
3406  // Claim ignored clang-cl options.
3407  Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3408 
3409  // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3410  // to non-CUDA compilations and should not trigger warnings there.
3411  Args.ClaimAllArgs(options::OPT_cuda_host_only);
3412  Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3413 }
3414 
3416  Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3417  Action::OffloadKind TargetDeviceOffloadKind) const {
3418  llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3419 
3420  // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3421  // encode this in the steps because the intermediate type depends on
3422  // arguments. Just special case here.
3423  if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3424  return Input;
3425 
3426  // Build the appropriate action.
3427  switch (Phase) {
3428  case phases::Link:
3429  llvm_unreachable("link action invalid here.");
3430  case phases::Preprocess: {
3431  types::ID OutputTy;
3432  // -{M, MM} alter the output type.
3433  if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
3434  OutputTy = types::TY_Dependencies;
3435  } else {
3436  OutputTy = Input->getType();
3437  if (!Args.hasFlag(options::OPT_frewrite_includes,
3438  options::OPT_fno_rewrite_includes, false) &&
3439  !Args.hasFlag(options::OPT_frewrite_imports,
3440  options::OPT_fno_rewrite_imports, false) &&
3442  OutputTy = types::getPreprocessedType(OutputTy);
3443  assert(OutputTy != types::TY_INVALID &&
3444  "Cannot preprocess this input type!");
3445  }
3446  return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3447  }
3448  case phases::Precompile: {
3449  types::ID OutputTy = getPrecompiledType(Input->getType());
3450  assert(OutputTy != types::TY_INVALID &&
3451  "Cannot precompile this input type!");
3452 
3453  // If we're given a module name, precompile header file inputs as a
3454  // module, not as a precompiled header.
3455  const char *ModName = nullptr;
3456  if (OutputTy == types::TY_PCH) {
3457  if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3458  ModName = A->getValue();
3459  if (ModName)
3460  OutputTy = types::TY_ModuleFile;
3461  }
3462 
3463  if (Args.hasArg(options::OPT_fsyntax_only)) {
3464  // Syntax checks should not emit a PCH file
3465  OutputTy = types::TY_Nothing;
3466  }
3467 
3468  if (ModName)
3469  return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3470  ModName);
3471  return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3472  }
3473  case phases::Compile: {
3474  if (Args.hasArg(options::OPT_fsyntax_only))
3475  return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3476  if (Args.hasArg(options::OPT_rewrite_objc))
3477  return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3478  if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3479  return C.MakeAction<CompileJobAction>(Input,
3480  types::TY_RewrittenLegacyObjC);
3481  if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3482  return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3483  if (Args.hasArg(options::OPT__migrate))
3484  return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3485  if (Args.hasArg(options::OPT_emit_ast))
3486  return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3487  if (Args.hasArg(options::OPT_module_file_info))
3488  return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3489  if (Args.hasArg(options::OPT_verify_pch))
3490  return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3491  if (Args.hasArg(options::OPT_emit_iterface_stubs))
3492  return C.MakeAction<CompileJobAction>(Input, types::TY_IFS);
3493  return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3494  }
3495  case phases::Backend: {
3496  if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3497  types::ID Output =
3498  Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3499  return C.MakeAction<BackendJobAction>(Input, Output);
3500  }
3501  if (Args.hasArg(options::OPT_emit_llvm)) {
3502  types::ID Output =
3503  Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3504  return C.MakeAction<BackendJobAction>(Input, Output);
3505  }
3506  return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3507  }
3508  case phases::Assemble:
3509  return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3510  }
3511 
3512  llvm_unreachable("invalid phase in ConstructPhaseAction");
3513 }
3514 
3516  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3517 
3518  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3519 
3520  // It is an error to provide a -o option if we are making multiple output
3521  // files.
3522  if (FinalOutput) {
3523  unsigned NumOutputs = 0;
3524  for (const Action *A : C.getActions())
3525  if (A->getType() != types::TY_Nothing)
3526  ++NumOutputs;
3527 
3528  if (NumOutputs > 1) {
3529  Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3530  FinalOutput = nullptr;
3531  }
3532  }
3533 
3534  // Collect the list of architectures.
3535  llvm::StringSet<> ArchNames;
3536  if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3537  for (const Arg *A : C.getArgs())
3538  if (A->getOption().matches(options::OPT_arch))
3539  ArchNames.insert(A->getValue());
3540 
3541  // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3542  std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3543  for (Action *A : C.getActions()) {
3544  // If we are linking an image for multiple archs then the linker wants
3545  // -arch_multiple and -final_output <final image name>. Unfortunately, this
3546  // doesn't fit in cleanly because we have to pass this information down.
3547  //
3548  // FIXME: This is a hack; find a cleaner way to integrate this into the
3549  // process.
3550  const char *LinkingOutput = nullptr;
3551  if (isa<LipoJobAction>(A)) {
3552  if (FinalOutput)
3553  LinkingOutput = FinalOutput->getValue();
3554  else
3555  LinkingOutput = getDefaultImageName();
3556  }
3557 
3559  /*BoundArch*/ StringRef(),
3560  /*AtTopLevel*/ true,
3561  /*MultipleArchs*/ ArchNames.size() > 1,
3562  /*LinkingOutput*/ LinkingOutput, CachedResults,
3563  /*TargetDeviceOffloadKind*/ Action::OFK_None);
3564  }
3565 
3566  // If the user passed -Qunused-arguments or there were errors, don't warn
3567  // about any unused arguments.
3568  if (Diags.hasErrorOccurred() ||
3569  C.getArgs().hasArg(options::OPT_Qunused_arguments))
3570  return;
3571 
3572  // Claim -### here.
3573  (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3574 
3575  // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3576  (void)C.getArgs().hasArg(options::OPT_driver_mode);
3577  (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3578 
3579  for (Arg *A : C.getArgs()) {
3580  // FIXME: It would be nice to be able to send the argument to the
3581  // DiagnosticsEngine, so that extra values, position, and so on could be
3582  // printed.
3583  if (!A->isClaimed()) {
3584  if (A->getOption().hasFlag(options::NoArgumentUnused))
3585  continue;
3586 
3587  // Suppress the warning automatically if this is just a flag, and it is an
3588  // instance of an argument we already claimed.
3589  const Option &Opt = A->getOption();
3590  if (Opt.getKind() == Option::FlagClass) {
3591  bool DuplicateClaimed = false;
3592 
3593  for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3594  if (AA->isClaimed()) {
3595  DuplicateClaimed = true;
3596  break;
3597  }
3598  }
3599 
3600  if (DuplicateClaimed)
3601  continue;
3602  }
3603 
3604  // In clang-cl, don't mention unknown arguments here since they have
3605  // already been warned about.
3606  if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3607  Diag(clang::diag::warn_drv_unused_argument)
3608  << A->getAsString(C.getArgs());
3609  }
3610  }
3611 }
3612 
3613 namespace {
3614 /// Utility class to control the collapse of dependent actions and select the
3615 /// tools accordingly.
3616 class ToolSelector final {
3617  /// The tool chain this selector refers to.
3618  const ToolChain &TC;
3619 
3620  /// The compilation this selector refers to.
3621  const Compilation &C;
3622 
3623  /// The base action this selector refers to.
3624  const JobAction *BaseAction;
3625 
3626  /// Set to true if the current toolchain refers to host actions.
3627  bool IsHostSelector;
3628 
3629  /// Set to true if save-temps and embed-bitcode functionalities are active.
3630  bool SaveTemps;
3631  bool EmbedBitcode;
3632 
3633  /// Get previous dependent action or null if that does not exist. If
3634  /// \a CanBeCollapsed is false, that action must be legal to collapse or
3635  /// null will be returned.
3636  const JobAction *getPrevDependentAction(const ActionList &Inputs,
3637  ActionList &SavedOffloadAction,
3638  bool CanBeCollapsed = true) {
3639  // An option can be collapsed only if it has a single input.
3640  if (Inputs.size() != 1)
3641  return nullptr;
3642 
3643  Action *CurAction = *Inputs.begin();
3644  if (CanBeCollapsed &&
3646  return nullptr;
3647 
3648  // If the input action is an offload action. Look through it and save any
3649  // offload action that can be dropped in the event of a collapse.
3650  if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3651  // If the dependent action is a device action, we will attempt to collapse
3652  // only with other device actions. Otherwise, we would do the same but
3653  // with host actions only.
3654  if (!IsHostSelector) {
3655  if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3656  CurAction =
3657  OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3658  if (CanBeCollapsed &&
3660  return nullptr;
3661  SavedOffloadAction.push_back(OA);
3662  return dyn_cast<JobAction>(CurAction);
3663  }
3664  } else if (OA->hasHostDependence()) {
3665  CurAction = OA->getHostDependence();
3666  if (CanBeCollapsed &&
3668  return nullptr;
3669  SavedOffloadAction.push_back(OA);
3670  return dyn_cast<JobAction>(CurAction);
3671  }
3672  return nullptr;
3673  }
3674 
3675  return dyn_cast<JobAction>(CurAction);
3676  }
3677 
3678  /// Return true if an assemble action can be collapsed.
3679  bool canCollapseAssembleAction() const {
3680  return TC.useIntegratedAs() && !SaveTemps &&
3681  !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3682  !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3683  !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3684  }
3685 
3686  /// Return true if a preprocessor action can be collapsed.
3687  bool canCollapsePreprocessorAction() const {
3688  return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3689  !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3690  !C.getArgs().hasArg(options::OPT_rewrite_objc);
3691  }
3692 
3693  /// Struct that relates an action with the offload actions that would be
3694  /// collapsed with it.
3695  struct JobActionInfo final {
3696  /// The action this info refers to.
3697  const JobAction *JA = nullptr;
3698  /// The offload actions we need to take care off if this action is
3699  /// collapsed.
3700  ActionList SavedOffloadAction;
3701  };
3702 
3703  /// Append collapsed offload actions from the give nnumber of elements in the
3704  /// action info array.
3705  static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3706  ArrayRef<JobActionInfo> &ActionInfo,
3707  unsigned ElementNum) {
3708  assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3709  for (unsigned I = 0; I < ElementNum; ++I)
3710  CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3711  ActionInfo[I].SavedOffloadAction.end());
3712  }
3713 
3714  /// Functions that attempt to perform the combining. They detect if that is
3715  /// legal, and if so they update the inputs \a Inputs and the offload action
3716  /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3717  /// the combined action is returned. If the combining is not legal or if the
3718  /// tool does not exist, null is returned.
3719  /// Currently three kinds of collapsing are supported:
3720  /// - Assemble + Backend + Compile;
3721  /// - Assemble + Backend ;
3722  /// - Backend + Compile.
3723  const Tool *
3724  combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3725  ActionList &Inputs,
3726  ActionList &CollapsedOffloadAction) {
3727  if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3728  return nullptr;
3729  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3730  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3731  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3732  if (!AJ || !BJ || !CJ)
3733  return nullptr;
3734 
3735  // Get compiler tool.
3736  const Tool *T = TC.SelectTool(*CJ);
3737  if (!T)
3738  return nullptr;
3739 
3740  // When using -fembed-bitcode, it is required to have the same tool (clang)
3741  // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3742  if (EmbedBitcode) {
3743  const Tool *BT = TC.SelectTool(*BJ);
3744  if (BT == T)
3745  return nullptr;
3746  }
3747 
3748  if (!T->hasIntegratedAssembler())
3749  return nullptr;
3750 
3751  Inputs = CJ->getInputs();
3752  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3753  /*NumElements=*/3);
3754  return T;
3755  }
3756  const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3757  ActionList &Inputs,
3758  ActionList &CollapsedOffloadAction) {
3759  if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3760  return nullptr;
3761  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3762  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3763  if (!AJ || !BJ)
3764  return nullptr;
3765 
3766  // Retrieve the compile job, backend action must always be preceded by one.
3767  ActionList CompileJobOffloadActions;
3768  auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3769  /*CanBeCollapsed=*/false);
3770  if (!AJ || !BJ || !CJ)
3771  return nullptr;
3772 
3773  assert(isa<CompileJobAction>(CJ) &&
3774  "Expecting compile job preceding backend job.");
3775 
3776  // Get compiler tool.
3777  const Tool *T = TC.SelectTool(*CJ);
3778  if (!T)
3779  return nullptr;
3780 
3781  if (!T->hasIntegratedAssembler())
3782  return nullptr;
3783 
3784  Inputs = BJ->getInputs();
3785  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3786  /*NumElements=*/2);
3787  return T;
3788  }
3789  const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3790  ActionList &Inputs,
3791  ActionList &CollapsedOffloadAction) {
3792  if (ActionInfo.size() < 2)
3793  return nullptr;
3794  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3795  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3796  if (!BJ || !CJ)
3797  return nullptr;
3798 
3799  // Check if the initial input (to the compile job or its predessor if one
3800  // exists) is LLVM bitcode. In that case, no preprocessor step is required
3801  // and we can still collapse the compile and backend jobs when we have
3802  // -save-temps. I.e. there is no need for a separate compile job just to
3803  // emit unoptimized bitcode.
3804  bool InputIsBitcode = true;
3805  for (size_t i = 1; i < ActionInfo.size(); i++)
3806  if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3807  ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3808  InputIsBitcode = false;
3809  break;
3810  }
3811  if (!InputIsBitcode && !canCollapsePreprocessorAction())
3812  return nullptr;
3813 
3814  // Get compiler tool.
3815  const Tool *T = TC.SelectTool(*CJ);
3816  if (!T)
3817  return nullptr;
3818 
3819  if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3820  return nullptr;
3821 
3822  Inputs = CJ->getInputs();
3823  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3824  /*NumElements=*/2);
3825  return T;
3826  }
3827 
3828  /// Updates the inputs if the obtained tool supports combining with
3829  /// preprocessor action, and the current input is indeed a preprocessor
3830  /// action. If combining results in the collapse of offloading actions, those
3831  /// are appended to \a CollapsedOffloadAction.
3832  void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
3833  ActionList &CollapsedOffloadAction) {
3834  if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3835  return;
3836 
3837  // Attempt to get a preprocessor action dependence.
3838  ActionList PreprocessJobOffloadActions;
3839  ActionList NewInputs;
3840  for (Action *A : Inputs) {
3841  auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
3842  if (!PJ || !isa<PreprocessJobAction>(PJ)) {
3843  NewInputs.push_back(A);
3844  continue;
3845  }
3846 
3847  // This is legal to combine. Append any offload action we found and add the
3848  // current input to preprocessor inputs.
3849  CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3850  PreprocessJobOffloadActions.end());
3851  NewInputs.append(PJ->input_begin(), PJ->input_end());
3852  }
3853  Inputs = NewInputs;
3854  }
3855 
3856 public:
3857  ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3858  const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3859  : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3860  EmbedBitcode(EmbedBitcode) {
3861  assert(BaseAction && "Invalid base action.");
3862  IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3863  }
3864 
3865  /// Check if a chain of actions can be combined and return the tool that can
3866  /// handle the combination of actions. The pointer to the current inputs \a
3867  /// Inputs and the list of offload actions \a CollapsedOffloadActions
3868  /// connected to collapsed actions are updated accordingly. The latter enables
3869  /// the caller of the selector to process them afterwards instead of just
3870  /// dropping them. If no suitable tool is found, null will be returned.
3871  const Tool *getTool(ActionList &Inputs,
3872  ActionList &CollapsedOffloadAction) {
3873  //
3874  // Get the largest chain of actions that we could combine.
3875  //
3876 
3877  SmallVector<JobActionInfo, 5> ActionChain(1);
3878  ActionChain.back().JA = BaseAction;
3879  while (ActionChain.back().JA) {
3880  const Action *CurAction = ActionChain.back().JA;
3881 
3882  // Grow the chain by one element.
3883  ActionChain.resize(ActionChain.size() + 1);
3884  JobActionInfo &AI = ActionChain.back();
3885 
3886  // Attempt to fill it with the
3887  AI.JA =
3888  getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3889  }
3890 
3891  // Pop the last action info as it could not be filled.
3892  ActionChain.pop_back();
3893 
3894  //
3895  // Attempt to combine actions. If all combining attempts failed, just return
3896  // the tool of the provided action. At the end we attempt to combine the
3897  // action with any preprocessor action it may depend on.
3898  //
3899 
3900  const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3901  CollapsedOffloadAction);
3902  if (!T)
3903  T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3904  if (!T)
3905  T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3906  if (!T) {
3907  Inputs = BaseAction->getInputs();
3908  T = TC.SelectTool(*BaseAction);
3909  }
3910 
3911  combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3912  return T;
3913  }
3914 };
3915 }
3916 
3917 /// Return a string that uniquely identifies the result of a job. The bound arch
3918 /// is not necessarily represented in the toolchain's triple -- for example,
3919 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3920 /// Also, we need to add the offloading device kind, as the same tool chain can
3921 /// be used for host and device for some programming models, e.g. OpenMP.
3922 static std::string GetTriplePlusArchString(const ToolChain *TC,
3923  StringRef BoundArch,
3924  Action::OffloadKind OffloadKind) {
3925  std::string TriplePlusArch = TC->getTriple().normalize();
3926  if (!BoundArch.empty()) {
3927  TriplePlusArch += "-";
3928  TriplePlusArch += BoundArch;
3929  }
3930  TriplePlusArch += "-";
3931  TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3932  return TriplePlusArch;
3933 }
3934 
3936  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3937  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3938  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3939  Action::OffloadKind TargetDeviceOffloadKind) const {
3940  std::pair<const Action *, std::string> ActionTC = {
3941  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3942  auto CachedResult = CachedResults.find(ActionTC);
3943  if (CachedResult != CachedResults.end()) {
3944  return CachedResult->second;
3945  }
3946  InputInfo Result = BuildJobsForActionNoCache(
3947  C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3948  CachedResults, TargetDeviceOffloadKind);
3949  CachedResults[ActionTC] = Result;
3950  return Result;
3951 }
3952 
3953 InputInfo Driver::BuildJobsForActionNoCache(
3954  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3955  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3956  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3957  Action::OffloadKind TargetDeviceOffloadKind) const {
3958  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3959 
3960  InputInfoList OffloadDependencesInputInfo;
3961  bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3962  if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3963  // The 'Darwin' toolchain is initialized only when its arguments are
3964  // computed. Get the default arguments for OFK_None to ensure that
3965  // initialization is performed before processing the offload action.
3966  // FIXME: Remove when darwin's toolchain is initialized during construction.
3967  C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3968 
3969  // The offload action is expected to be used in four different situations.
3970  //
3971  // a) Set a toolchain/architecture/kind for a host action:
3972  // Host Action 1 -> OffloadAction -> Host Action 2
3973  //
3974  // b) Set a toolchain/architecture/kind for a device action;
3975  // Device Action 1 -> OffloadAction -> Device Action 2
3976  //
3977  // c) Specify a device dependence to a host action;
3978  // Device Action 1 _
3979  // \
3980  // Host Action 1 ---> OffloadAction -> Host Action 2
3981  //
3982  // d) Specify a host dependence to a device action.
3983  // Host Action 1 _
3984  // \
3985  // Device Action 1 ---> OffloadAction -> Device Action 2
3986  //
3987  // For a) and b), we just return the job generated for the dependence. For
3988  // c) and d) we override the current action with the host/device dependence
3989  // if the current toolchain is host/device and set the offload dependences
3990  // info with the jobs obtained from the device/host dependence(s).
3991 
3992  // If there is a single device option, just generate the job for it.
3993  if (OA->hasSingleDeviceDependence()) {
3994  InputInfo DevA;
3995  OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
3996  const char *DepBoundArch) {
3997  DevA =
3998  BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
3999  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4000  CachedResults, DepA->getOffloadingDeviceKind());
4001  });
4002  return DevA;
4003  }
4004 
4005  // If 'Action 2' is host, we generate jobs for the device dependences and
4006  // override the current action with the host dependence. Otherwise, we
4007  // generate the host dependences and override the action with the device
4008  // dependence. The dependences can't therefore be a top-level action.
4009  OA->doOnEachDependence(
4010  /*IsHostDependence=*/BuildingForOffloadDevice,
4011  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4012  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4013  C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4014  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4015  DepA->getOffloadingDeviceKind()));
4016  });
4017 
4018  A = BuildingForOffloadDevice
4019  ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4020  : OA->getHostDependence();
4021  }
4022 
4023  if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4024  // FIXME: It would be nice to not claim this here; maybe the old scheme of
4025  // just using Args was better?
4026  const Arg &Input = IA->getInputArg();
4027  Input.claim();
4028  if (Input.getOption().matches(options::OPT_INPUT)) {
4029  const char *Name = Input.getValue();
4030  return InputInfo(A, Name, /* _BaseInput = */ Name);
4031  }
4032  return InputInfo(A, &Input, /* _BaseInput = */ "");
4033  }
4034 
4035  if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4036  const ToolChain *TC;
4037  StringRef ArchName = BAA->getArchName();
4038 
4039  if (!ArchName.empty())
4040  TC = &getToolChain(C.getArgs(),
4041  computeTargetTriple(*this, TargetTriple,
4042  C.getArgs(), ArchName));
4043  else
4044  TC = &C.getDefaultToolChain();
4045 
4046  return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4047  MultipleArchs, LinkingOutput, CachedResults,
4048  TargetDeviceOffloadKind);
4049  }
4050 
4051 
4052  ActionList Inputs = A->getInputs();
4053 
4054  const JobAction *JA = cast<JobAction>(A);
4055  ActionList CollapsedOffloadActions;
4056 
4057  ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4059  const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4060 
4061  if (!T)
4062  return InputInfo();
4063 
4064  // If we've collapsed action list that contained OffloadAction we
4065  // need to build jobs for host/device-side inputs it may have held.
4066  for (const auto *OA : CollapsedOffloadActions)
4067  cast<OffloadAction>(OA)->doOnEachDependence(
4068  /*IsHostDependence=*/BuildingForOffloadDevice,
4069  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4070  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4071  C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4072  /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4073  DepA->getOffloadingDeviceKind()));
4074  });
4075 
4076  // Only use pipes when there is exactly one input.
4077  InputInfoList InputInfos;
4078  for (const Action *Input : Inputs) {
4079  // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4080  // shouldn't get temporary output names.
4081  // FIXME: Clean this up.
4082  bool SubJobAtTopLevel =
4083  AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4084  InputInfos.push_back(BuildJobsForAction(
4085  C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4086  CachedResults, A->getOffloadingDeviceKind()));
4087  }
4088 
4089  // Always use the first input as the base input.
4090  const char *BaseInput = InputInfos[0].getBaseInput();
4091 
4092  // ... except dsymutil actions, which use their actual input as the base
4093  // input.
4094  if (JA->getType() == types::TY_dSYM)
4095  BaseInput = InputInfos[0].getFilename();
4096 
4097  // ... and in header module compilations, which use the module name.
4098  if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4099  BaseInput = ModuleJA->getModuleName();
4100 
4101  // Append outputs of offload device jobs to the input list
4102  if (!OffloadDependencesInputInfo.empty())
4103  InputInfos.append(OffloadDependencesInputInfo.begin(),
4104  OffloadDependencesInputInfo.end());
4105 
4106  // Set the effective triple of the toolchain for the duration of this job.
4107  llvm::Triple EffectiveTriple;
4108  const ToolChain &ToolTC = T->getToolChain();
4109  const ArgList &Args =
4110  C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4111  if (InputInfos.size() != 1) {
4112  EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4113  } else {
4114  // Pass along the input type if it can be unambiguously determined.
4115  EffectiveTriple = llvm::Triple(
4116  ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4117  }
4118  RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4119 
4120  // Determine the place to write output to, if any.
4121  InputInfo Result;
4122  InputInfoList UnbundlingResults;
4123  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4124  // If we have an unbundling job, we need to create results for all the
4125  // outputs. We also update the results cache so that other actions using
4126  // this unbundling action can get the right results.
4127  for (auto &UI : UA->getDependentActionsInfo()) {
4128  assert(UI.DependentOffloadKind != Action::OFK_None &&
4129  "Unbundling with no offloading??");
4130 
4131  // Unbundling actions are never at the top level. When we generate the
4132  // offloading prefix, we also do that for the host file because the
4133  // unbundling action does not change the type of the output which can
4134  // cause a overwrite.
4135  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4136  UI.DependentOffloadKind,
4137  UI.DependentToolChain->getTriple().normalize(),
4138  /*CreatePrefixForHost=*/true);
4139  auto CurI = InputInfo(
4140  UA,
4141  GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4142  /*AtTopLevel=*/false,
4143  MultipleArchs ||
4144  UI.DependentOffloadKind == Action::OFK_HIP,
4145  OffloadingPrefix),
4146  BaseInput);
4147  // Save the unbundling result.
4148  UnbundlingResults.push_back(CurI);
4149 
4150  // Get the unique string identifier for this dependence and cache the
4151  // result.
4152  StringRef Arch;
4153  if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4154  if (UI.DependentOffloadKind == Action::OFK_Host)
4155  Arch = StringRef();
4156  else
4157  Arch = UI.DependentBoundArch;
4158  } else
4159  Arch = BoundArch;
4160 
4161  CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4162  UI.DependentOffloadKind)}] =
4163  CurI;
4164  }
4165 
4166  // Now that we have all the results generated, select the one that should be
4167  // returned for the current depending action.
4168  std::pair<const Action *, std::string> ActionTC = {
4169  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4170  assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4171  "Result does not exist??");
4172  Result = CachedResults[ActionTC];
4173  } else if (JA->getType() == types::TY_Nothing)
4174  Result = InputInfo(A, BaseInput);
4175  else {
4176  // We only have to generate a prefix for the host if this is not a top-level
4177  // action.
4178  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4179  A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4180  /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4181  !AtTopLevel);
4182  Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4183  AtTopLevel, MultipleArchs,
4184  OffloadingPrefix),
4185  BaseInput);
4186  }
4187 
4189  llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4190  << " - \"" << T->getName() << "\", inputs: [";
4191  for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4192  llvm::errs() << InputInfos[i].getAsString();
4193  if (i + 1 != e)
4194  llvm::errs() << ", ";
4195  }
4196  if (UnbundlingResults.empty())
4197  llvm::errs() << "], output: " << Result.getAsString() << "\n";
4198  else {
4199  llvm::errs() << "], outputs: [";
4200  for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4201  llvm::errs() << UnbundlingResults[i].getAsString();
4202  if (i + 1 != e)
4203  llvm::errs() << ", ";
4204  }
4205  llvm::errs() << "] \n";
4206  }
4207  } else {
4208  if (UnbundlingResults.empty())
4209  T->ConstructJob(
4210  C, *JA, Result, InputInfos,
4211  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4212  LinkingOutput);
4213  else
4215  C, *JA, UnbundlingResults, InputInfos,
4216  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4217  LinkingOutput);
4218  }
4219  return Result;
4220 }
4221 
4222 const char *Driver::getDefaultImageName() const {
4223  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4224  return Target.isOSWindows() ? "a.exe" : "a.out";
4225 }
4226 
4227 /// Create output filename based on ArgValue, which could either be a
4228 /// full filename, filename without extension, or a directory. If ArgValue
4229 /// does not provide a filename, then use BaseName, and use the extension
4230 /// suitable for FileType.
4231 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4232  StringRef BaseName,
4233  types::ID FileType) {
4234  SmallString<128> Filename = ArgValue;
4235 
4236  if (ArgValue.empty()) {
4237  // If the argument is empty, output to BaseName in the current dir.
4238  Filename = BaseName;
4239  } else if (llvm::sys::path::is_separator(Filename.back())) {
4240  // If the argument is a directory, output to BaseName in that dir.
4241  llvm::sys::path::append(Filename, BaseName);
4242  }
4243 
4244  if (!llvm::sys::path::has_extension(ArgValue)) {
4245  // If the argument didn't provide an extension, then set it.
4246  const char *Extension = types::getTypeTempSuffix(FileType, true);
4247 
4248  if (FileType == types::TY_Image &&
4249  Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4250  // The output file is a dll.
4251  Extension = "dll";
4252  }
4253 
4254  llvm::sys::path::replace_extension(Filename, Extension);
4255  }
4256 
4257  return Args.MakeArgString(Filename.c_str());
4258 }
4259 
4261  const char *BaseInput,
4262  StringRef BoundArch, bool AtTopLevel,
4263  bool MultipleArchs,
4264  StringRef OffloadingPrefix) const {
4265  llvm::PrettyStackTraceString CrashInfo("Computing output path");
4266  // Output to a user requested destination?
4267  if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4268  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4269  return C.addResultFile(FinalOutput->getValue(), &JA);
4270  }
4271 
4272  // For /P, preprocess to file named after BaseInput.
4273  if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4274  assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4275  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4276  StringRef NameArg;
4277  if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4278  NameArg = A->getValue();
4279  return C.addResultFile(
4280  MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4281  &JA);
4282  }
4283 
4284  // Default to writing to stdout?
4285  if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4286  return "-";
4287 
4288  // Is this the assembly listing for /FA?
4289  if (JA.getType() == types::TY_PP_Asm &&
4290  (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4291  C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4292  // Use /Fa and the input filename to determine the asm file name.
4293  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4294  StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4295  return C.addResultFile(
4296  MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4297  &JA);
4298  }
4299 
4300  // Output to a temporary file?
4301  if ((!AtTopLevel && !isSaveTempsEnabled() &&
4302  !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4303  CCGenDiagnostics) {
4304  StringRef Name = llvm::sys::path::filename(BaseInput);
4305  std::pair<StringRef, StringRef> Split = Name.split('.');
4306  SmallString<128> TmpName;
4307  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4308  Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4309  if (CCGenDiagnostics && A) {
4310  SmallString<128> CrashDirectory(A->getValue());
4311  if (!getVFS().exists(CrashDirectory))
4312  llvm::sys::fs::create_directories(CrashDirectory);
4313  llvm::sys::path::append(CrashDirectory, Split.first);
4314  const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4315  std::error_code EC = llvm::sys::fs::createUniqueFile(
4316  CrashDirectory + Middle + Suffix, TmpName);
4317  if (EC) {
4318  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4319  return "";
4320  }
4321  } else {
4322  TmpName = GetTemporaryPath(Split.first, Suffix);
4323  }
4324  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4325  }
4326 
4327  SmallString<128> BasePath(BaseInput);
4328  StringRef BaseName;
4329 
4330  // Dsymutil actions should use the full path.
4331  if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4332  BaseName = BasePath;
4333  else
4334  BaseName = llvm::sys::path::filename(BasePath);
4335 
4336  // Determine what the derived output name should be.
4337  const char *NamedOutput;
4338 
4339  if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4340  C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4341  // The /Fo or /o flag decides the object filename.
4342  StringRef Val =
4343  C.getArgs()
4344  .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4345  ->getValue();
4346  NamedOutput =
4347  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4348  } else if (JA.getType() == types::TY_Image &&
4349  C.getArgs().hasArg(options::OPT__SLASH_Fe,
4350  options::OPT__SLASH_o)) {
4351  // The /Fe or /o flag names the linked file.
4352  StringRef Val =
4353  C.getArgs()
4354  .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4355  ->getValue();
4356  NamedOutput =
4357  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4358  } else if (JA.getType() == types::TY_Image) {
4359  if (IsCLMode()) {
4360  // clang-cl uses BaseName for the executable name.
4361  NamedOutput =
4362  MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4363  } else {
4365  Output += OffloadingPrefix;
4366  if (MultipleArchs && !BoundArch.empty()) {
4367  Output += "-";
4368  Output.append(BoundArch);
4369  }
4370  NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4371  }
4372  } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4373  NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4374  } else {
4375  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4376  assert(Suffix && "All types used for output should have a suffix.");
4377 
4378  std::string::size_type End = std::string::npos;
4380  End = BaseName.rfind('.');
4381  SmallString<128> Suffixed(BaseName.substr(0, End));
4382  Suffixed += OffloadingPrefix;
4383  if (MultipleArchs && !BoundArch.empty()) {
4384  Suffixed += "-";
4385  Suffixed.append(BoundArch);
4386  }
4387  // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4388  // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4389  // optimized bitcode output.
4390  if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4391  JA.getType() == types::TY_LLVM_BC)
4392  Suffixed += ".tmp";
4393  Suffixed += '.';
4394  Suffixed += Suffix;
4395  NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4396  }
4397 
4398  // Prepend object file path if -save-temps=obj
4399  if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4400  JA.getType() != types::TY_PCH) {
4401  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4402  SmallString<128> TempPath(FinalOutput->getValue());
4403  llvm::sys::path::remove_filename(TempPath);
4404  StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4405  llvm::sys::path::append(TempPath, OutputFileName);
4406  NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4407  }
4408 
4409  // If we're saving temps and the temp file conflicts with the input file,
4410  // then avoid overwriting input file.
4411  if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4412  bool SameFile = false;
4413  SmallString<256> Result;
4414  llvm::sys::fs::current_path(Result);
4415  llvm::sys::path::append(Result, BaseName);
4416  llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4417  // Must share the same path to conflict.
4418  if (SameFile) {
4419  StringRef Name = llvm::sys::path::filename(BaseInput);
4420  std::pair<StringRef, StringRef> Split = Name.split('.');
4421  std::string TmpName = GetTemporaryPath(
4422  Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4423  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4424  }
4425  }
4426 
4427  // As an annoying special case, PCH generation doesn't strip the pathname.
4428  if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4429  llvm::sys::path::remove_filename(BasePath);
4430  if (BasePath.empty())
4431  BasePath = NamedOutput;
4432  else
4433  llvm::sys::path::append(BasePath, NamedOutput);
4434  return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4435  } else {
4436  return C.addResultFile(NamedOutput, &JA);
4437  }
4438 }
4439 
4440 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4441  // Search for Name in a list of paths.
4442  auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4444  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4445  // attempting to use this prefix when looking for file paths.
4446  for (const auto &Dir : P) {
4447  if (Dir.empty())
4448  continue;
4449  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4450  llvm::sys::path::append(P, Name);
4451  if (llvm::sys::fs::exists(Twine(P)))
4452  return P.str().str();
4453  }
4454  return None;
4455  };
4456 
4457  if (auto P = SearchPaths(PrefixDirs))
4458  return *P;
4459 
4461  llvm::sys::path::append(R, Name);
4462  if (llvm::sys::fs::exists(Twine(R)))
4463  return R.str();
4464 
4466  llvm::sys::path::append(P, Name);
4467  if (llvm::sys::fs::exists(Twine(P)))
4468  return P.str();
4469 
4470  SmallString<128> D(Dir);
4471  llvm::sys::path::append(D, "..", Name);
4472  if (llvm::sys::fs::exists(Twine(D)))
4473  return D.str();
4474 
4475  if (auto P = SearchPaths(TC.getLibraryPaths()))
4476  return *P;
4477 
4478  if (auto P = SearchPaths(TC.getFilePaths()))
4479  return *P;
4480 
4481  return Name;
4482 }
4483 
4484 void Driver::generatePrefixedToolNames(
4485  StringRef Tool, const ToolChain &TC,
4486  SmallVectorImpl<std::string> &Names) const {
4487  // FIXME: Needs a better variable than TargetTriple
4488  Names.emplace_back((TargetTriple + "-" + Tool).str());
4489  Names.emplace_back(Tool);
4490 
4491  // Allow the discovery of tools prefixed with LLVM's default target triple.
4492  std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4493  if (DefaultTargetTriple != TargetTriple)
4494  Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4495 }
4496 
4498  ArrayRef<std::string> Names) {
4499  for (const auto &Name : Names) {
4500  llvm::sys::path::append(Dir, Name);
4501  if (llvm::sys::fs::can_execute(Twine(Dir)))
4502  return true;
4503  llvm::sys::path::remove_filename(Dir);
4504  }
4505  return false;
4506 }
4507 
4508 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4509  SmallVector<std::string, 2> TargetSpecificExecutables;
4510  generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4511 
4512  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4513  // attempting to use this prefix when looking for program paths.
4514  for (const auto &PrefixDir : PrefixDirs) {
4515  if (llvm::sys::fs::is_directory(PrefixDir)) {
4516  SmallString<128> P(PrefixDir);
4517  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4518  return P.str();
4519  } else {
4520  SmallString<128> P((PrefixDir + Name).str());
4521  if (llvm::sys::fs::can_execute(Twine(P)))
4522  return P.str();
4523  }
4524  }
4525 
4526  const ToolChain::path_list &List = TC.getProgramPaths();
4527  for (const auto &Path : List) {
4528  SmallString<128> P(Path);
4529  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4530  return P.str();
4531  }
4532 
4533  // If all else failed, search the path.
4534  for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4535  if (llvm::ErrorOr<std::string> P =
4536  llvm::sys::findProgramByName(TargetSpecificExecutable))
4537  return *P;
4538 
4539  return Name;
4540 }
4541 
4542 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4543  SmallString<128> Path;
4544  std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4545  if (EC) {
4546  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4547  return "";
4548  }
4549 
4550  return Path.str();
4551 }
4552 
4553 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4554  SmallString<128> Path;
4555  std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4556  if (EC) {
4557  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4558  return "";
4559  }
4560 
4561  return Path.str();
4562 }
4563 
4564 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4565  SmallString<128> Output;
4566  if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4567  // FIXME: If anybody needs it, implement this obscure rule:
4568  // "If you specify a directory without a file name, the default file name
4569  // is VCx0.pch., where x is the major version of Visual C++ in use."
4570  Output = FpArg->getValue();
4571 
4572  // "If you do not specify an extension as part of the path name, an
4573  // extension of .pch is assumed. "
4574  if (!llvm::sys::path::has_extension(Output))
4575  Output += ".pch";
4576  } else {
4577  if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4578  Output = YcArg->getValue();
4579  if (Output.empty())
4580  Output = BaseName;
4581  llvm::sys::path::replace_extension(Output, ".pch");
4582  }
4583  return Output.str();
4584 }
4585 
4586 const ToolChain &Driver::getToolChain(const ArgList &Args,
4587  const llvm::Triple &Target) const {
4588 
4589  auto &TC = ToolChains[Target.str()];
4590  if (!TC) {
4591  switch (Target.getOS()) {
4592  case llvm::Triple::Haiku:
4593  TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args);
4594  break;
4595  case llvm::Triple::Ananas:
4596  TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args);
4597  break;
4598  case llvm::Triple::CloudABI:
4599  TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args);
4600  break;
4601  case llvm::Triple::Darwin:
4602  case llvm::Triple::MacOSX:
4603  case llvm::Triple::IOS:
4604  case llvm::Triple::TvOS:
4605  case llvm::Triple::WatchOS:
4606  TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4607  break;
4608  case llvm::Triple::DragonFly:
4609  TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args);
4610  break;
4611  case llvm::Triple::OpenBSD:
4612  TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4613  break;
4614  case llvm::Triple::NetBSD:
4615  TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args);
4616  break;
4617  case llvm::Triple::FreeBSD:
4618  TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4619  break;
4620  case llvm::Triple::Minix:
4621  TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args);
4622  break;
4623  case llvm::Triple::Linux:
4624  case llvm::Triple::ELFIAMCU:
4625  if (Target.getArch() == llvm::Triple::hexagon)
4626  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4627  Args);
4628  else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4629  !Target.hasEnvironment())
4630  TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4631  Args);
4632  else if (Target.getArch() == llvm::Triple::ppc ||
4633  Target.getArch() == llvm::Triple::ppc64 ||
4634  Target.getArch() == llvm::Triple::ppc64le)
4635  TC = llvm::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
4636  Args);
4637  else
4638  TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args);
4639  break;
4640  case llvm::Triple::NaCl:
4641  TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4642  break;
4643  case llvm::Triple::Fuchsia:
4644  TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4645  break;
4646  case llvm::Triple::Solaris:
4647  TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args);
4648  break;
4649  case llvm::Triple::AMDHSA:
4650  case llvm::Triple::AMDPAL:
4651  case llvm::Triple::Mesa3D:
4652  TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4653  break;
4654  case llvm::Triple::Win32:
4655  switch (Target.getEnvironment()) {
4656  default:
4657  if (Target.isOSBinFormatELF())
4658  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4659  else if (Target.isOSBinFormatMachO())
4660  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4661  else
4662  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4663  break;
4664  case llvm::Triple::GNU:
4665  TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args);
4666  break;
4667  case llvm::Triple::Itanium:
4668  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4669  Args);
4670  break;
4671  case llvm::Triple::MSVC:
4672  case llvm::Triple::UnknownEnvironment:
4673  if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4674  .startswith_lower("bfd"))
4675  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(
4676  *this, Target, Args);
4677  else
4678  TC =
4679  llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4680  break;
4681  }
4682  break;
4683  case llvm::Triple::PS4:
4684  TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4685  break;
4686  case llvm::Triple::Contiki:
4687  TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args);
4688  break;
4689  case llvm::Triple::Hurd:
4690  TC = llvm::make_unique<toolchains::Hurd>(*this, Target, Args);
4691  break;
4692  default:
4693  // Of these targets, Hexagon is the only one that might have
4694  // an OS of Linux, in which case it got handled above already.
4695  switch (Target.getArch()) {
4696  case llvm::Triple::tce:
4697  TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4698  break;
4699  case llvm::Triple::tcele:
4700  TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4701  break;
4702  case llvm::Triple::hexagon:
4703  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4704  Args);
4705  break;
4706  case llvm::Triple::lanai:
4707  TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4708  break;
4709  case llvm::Triple::xcore:
4710  TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4711  break;
4712  case llvm::Triple::wasm32:
4713  case llvm::Triple::wasm64:
4714  TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4715  break;
4716  case llvm::Triple::avr:
4717  TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4718  break;
4719  case llvm::Triple::msp430:
4720  TC =
4721  llvm::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
4722  break;
4723  case llvm::Triple::riscv32:
4724  case llvm::Triple::riscv64:
4725  TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4726  break;
4727  default:
4728  if (Target.getVendor() == llvm::Triple::Myriad)
4729  TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target,
4730  Args);
4731  else if (toolchains::BareMetal::handlesTarget(Target))
4732  TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args);
4733  else if (Target.isOSBinFormatELF())
4734  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4735  else if (Target.isOSBinFormatMachO())
4736  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4737  else
4738  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4739  }
4740  }
4741  }
4742 
4743  // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
4744  // compiles always need two toolchains, the CUDA toolchain and the host
4745  // toolchain. So the only valid way to create a CUDA toolchain is via
4746  // CreateOffloadingDeviceToolChains.
4747 
4748  return *TC;
4749 }
4750 
4752  // Say "no" if there is not exactly one input of a type clang understands.
4753  if (JA.size() != 1 ||
4754  !types::isAcceptedByClang((*JA.input_begin())->getType()))
4755  return false;
4756 
4757  // And say "no" if this is not a kind of action clang understands.
4758  if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4759  !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4760  return false;
4761 
4762  return true;
4763 }
4764 
4765 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4766 /// grouped values as integers. Numbers which are not provided are set to 0.
4767 ///
4768 /// \return True if the entire string was parsed (9.2), or all groups were
4769 /// parsed (10.3.5extrastuff).
4770 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4771  unsigned &Micro, bool &HadExtra) {
4772  HadExtra = false;
4773 
4774  Major = Minor = Micro = 0;
4775  if (Str.empty())
4776  return false;
4777 
4778  if (Str.consumeInteger(10, Major))
4779  return false;
4780  if (Str.empty())
4781  return true;
4782  if (Str[0] != '.')
4783  return false;
4784 
4785  Str = Str.drop_front(1);
4786 
4787  if (Str.consumeInteger(10, Minor))
4788  return false;
4789  if (Str.empty())
4790  return true;
4791  if (Str[0] != '.')
4792  return false;
4793  Str = Str.drop_front(1);
4794 
4795  if (Str.consumeInteger(10, Micro))
4796  return false;
4797  if (!Str.empty())
4798  HadExtra = true;
4799  return true;
4800 }
4801 
4802 /// Parse digits from a string \p Str and fulfill \p Digits with
4803 /// the parsed numbers. This method assumes that the max number of
4804 /// digits to look for is equal to Digits.size().
4805 ///
4806 /// \return True if the entire string was parsed and there are
4807 /// no extra characters remaining at the end.
4808 bool Driver::GetReleaseVersion(StringRef Str,
4809  MutableArrayRef<unsigned> Digits) {
4810  if (Str.empty())
4811  return false;
4812 
4813  unsigned CurDigit = 0;
4814  while (CurDigit < Digits.size()) {
4815  unsigned Digit;
4816  if (Str.consumeInteger(10, Digit))
4817  return false;
4818  Digits[CurDigit] = Digit;
4819  if (Str.empty())
4820  return true;
4821  if (Str[0] != '.')
4822  return false;
4823  Str = Str.drop_front(1);
4824  CurDigit++;
4825  }
4826 
4827  // More digits than requested, bail out...
4828  return false;
4829 }
4830 
4831 std::pair<unsigned, unsigned>
4832 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
4833  unsigned IncludedFlagsBitmask = 0;
4834  unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4835 
4836  if (IsClCompatMode) {
4837  // Include CL and Core options.
4838  IncludedFlagsBitmask |= options::CLOption;
4839  IncludedFlagsBitmask |= options::CoreOption;
4840  } else {
4841  ExcludedFlagsBitmask |= options::CLOption;
4842  }
4843 
4844  return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4845 }
4846 
4847 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4848  return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4849 }
StringRef getSysRoot() const
Returns the sysroot path.
static bool GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra)
GetReleaseVersion - Parse (([0-9]+)(.
Definition: Driver.cpp:4770
ID
ID - Ordered values for successive stages in the compilation process which interact with user options...
Definition: Phases.h:17
static bool ContainsCompileOrAssembleAction(const Action *A)
Check whether the given input tree contains any compilation or assembly actions.
Definition: Driver.cpp:1885
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
bool isCollapsingWithNextDependentActionLegal() const
Return true if this function can be collapsed with others.
Definition: Action.h:162
const llvm::opt::ArgStringList & getTempFiles() const
Definition: Compilation.h:207
std::string ModeSuffix
Driver mode part of the executable name, as g++.
Definition: ToolChain.h:66
CudaArch
Definition: Cuda.h:35
const char * CudaArchToString(CudaArch A)
Definition: Cuda.cpp:46
OpenMPRuntimeKind getOpenMPRuntime(const llvm::opt::ArgList &Args) const
Compute the desired OpenMP runtime from the flags provided.
Definition: Driver.cpp:570
std::string getClangFullVersion()
Retrieves a string representing the complete clang version, which includes the clang version number...
Definition: Version.cpp:117
prefix_list PrefixDirs
Definition: Driver.h:144
std::string GetTemporaryPath(StringRef Prefix, StringRef Suffix) const
GetTemporaryPath - Return the pathname of a temporary file to use as part of compilation; the file wi...
Definition: Driver.cpp:4542
const MultilibSet & getMultilibs() const
Definition: ToolChain.h:237
StringRef getArchName() const
Definition: ToolChain.h:210
T * MakeAction(Args &&... Arg)
Creates a new Action owned by this Compilation.
Definition: Compilation.h:196
bool canLipoType(ID Id)
canLipoType - Is this type acceptable as the output of a universal build (currently, just the Nothing, Image, and Object types).
Definition: Types.cpp:87
Set a ToolChain&#39;s effective triple.
Definition: ToolChain.h:598
const char * getTypeTempSuffix(ID Id, bool CLMode=false)
getTypeTempSuffix - Return the suffix to use when creating a temp file of this type, or null if unspecified.
Definition: Types.cpp:54
void BuildInputs(const ToolChain &TC, llvm::opt::DerivedArgList &Args, InputList &Inputs) const
BuildInputs - Construct the list of inputs and their types from the given arguments.
Definition: Driver.cpp:2042
StringRef P
void setResponseFile(const char *FileName)
Set to pass arguments via a response file when launching the command.
Definition: Job.cpp:304
bool isUsingLTO() const
Returns true if we are performing any kind of LTO.
Definition: Driver.h:530
virtual std::string getThreadModel() const
getThreadModel() - Which thread model does this target use?
Definition: ToolChain.h:477
virtual void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const =0
ConstructJob - Construct jobs to perform the action JA, writing to Output and with Inputs...
input_range inputs()
Definition: Action.h:149
virtual bool isLinkJob() const
Definition: Tool.h:88
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1297
std::string GetProgramPath(StringRef Name, const ToolChain &TC) const
GetProgramPath - Lookup Name in the list of program search paths.
Definition: Driver.cpp:4508
virtual bool isThreadModelSupported(const StringRef Model) const
isThreadModelSupported() - Does this target support a thread model?
Definition: ToolChain.cpp:558
std::string DyldPrefix
Dynamic loader prefix, if present.
Definition: Driver.h:150
virtual void printVerboseInfo(raw_ostream &OS) const
Dispatch to the specific toolchain for verbose printing.
Definition: ToolChain.h:310
static StringRef getCategoryNameFromID(unsigned CategoryID)
Given a category ID, return the name of the category.
DiagnosticBuilder Diag(unsigned DiagID) const
Definition: Driver.h:108
InputInfo BuildJobsForAction(Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map< std::pair< const Action *, std::string >, InputInfo > &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const
BuildJobsForAction - Construct the jobs to perform for the action A and return an InputInfo for the r...
Definition: Driver.cpp:3935
static ParsedClangName getTargetAndModeFromProgramName(StringRef ProgName)
Return any implicit target and/or mode flag for an invocation of the compiler driver as ProgName...
Definition: ToolChain.cpp:203
ResponseFileSupport getResponseFilesSupport() const
Returns the level of support for response files of this tool, whether it accepts arguments to be pass...
Definition: Tool.h:92
CudaArch StringToCudaArch(llvm::StringRef S)
Definition: Cuda.cpp:126
Type used to communicate device actions.
Definition: Action.h:253
const char * getClassName() const
Definition: Action.h:137
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:1001
virtual void ConstructJobMultipleOutputs(Compilation &C, const JobAction &JA, const InputInfoList &Outputs, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const
Construct jobs to perform the action JA, writing to the Outputs and with Inputs, and add the jobs to ...
Definition: Tool.cpp:25
void registerDependentActionInfo(const ToolChain *TC, StringRef BoundArch, OffloadKind Kind)
Register information about a dependent action.
Definition: Action.h:601
const ArgStringMap & getFailureResultFiles() const
Definition: Compilation.h:211
float __ovld __cnfn normalize(float p)
Returns a vector in the same direction as p but with a length of 1.
long i
Definition: xmmintrin.h:1456
const llvm::opt::DerivedArgList & getArgsForToolChain(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind)
getArgsForToolChain - Return the derived argument list for the tool chain TC (or the default tool cha...
Definition: Compilation.cpp:62
const Multilib & getMultilib() const
Definition: ToolChain.h:239
void addOffloadDeviceToolChain(const ToolChain *DeviceToolChain, Action::OffloadKind OffloadKind)
Definition: Compilation.h:173
Compilation * BuildCompilation(ArrayRef< const char *> Args)
BuildCompilation - Construct a compilation object for a command line argument vector.
Definition: Driver.cpp:932
std::string TargetPrefix
Target part of the executable name, as i686-linux-android.
Definition: ToolChain.h:63
path_list & getProgramPaths()
Definition: ToolChain.h:234
Contains the files in the compilation diagnostic report generated by generateCompilationDiagnostics.
Definition: Driver.h:419
static bool ScanDirForExecutable(SmallString< 128 > &Dir, ArrayRef< std::string > Names)
Definition: Driver.cpp:4497
Definition: Format.h:2274
ActionList & getInputs()
Definition: Action.h:142
std::string Dir
The path the driver executable was in, as invoked from the command line.
Definition: Driver.h:119
ID lookupCXXTypeForCType(ID Id)
lookupCXXTypeForCType - Lookup CXX input type that corresponds to given C type (used for clang++ emul...
Definition: Types.cpp:293
__DEVICE__ int max(int __a, int __b)
const std::string & gccSuffix() const
Get the detected GCC installation path suffix for the multi-arch target variant.
Definition: Multilib.h:45
Type used to communicate host actions.
Definition: Action.h:294
static unsigned getNumberOfCategories()
Return the number of diagnostic categories.
BackendAction
Definition: BackendUtil.h:30
std::string GetClPchPath(Compilation &C, StringRef BaseName) const
Return the pathname of the pch file in clang-cl mode.
Definition: Driver.cpp:4564
Action - Represent an abstract compilation step to perform.
Definition: Action.h:47
std::string getTripleString() const
Definition: ToolChain.h:218
bool HandleImmediateArgs(const Compilation &C)
HandleImmediateArgs - Handle any arguments which should be treated before building actions or binding...
Definition: Driver.cpp:1640
InputInfo - Wrapper for information about an input source.
Definition: InputInfo.h:22
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
types::ID getType() const
Definition: Action.h:140
bool isOptimizationLevelFast(const llvm::opt::ArgList &Args)
path_list & getFilePaths()
Definition: ToolChain.h:231
CompileCommand Cmd
The LLVM OpenMP runtime.
Definition: Driver.h:94
OffloadKind getOffloadingDeviceKind() const
Definition: Action.h:196
std::unique_ptr< llvm::opt::OptTable > createDriverOptTable()
virtual bool isDsymutilJob() const
Definition: Tool.h:89
Driver - Encapsulate logic for constructing compilation processes from a set of gcc-driver-like comma...
Definition: Driver.h:57
An unknown OpenMP runtime.
Definition: Driver.h:90
const llvm::opt::InputArgList & getInputArgs() const
Definition: Compilation.h:184
input_iterator input_begin()
Definition: Action.h:147
llvm::vfs::FileSystem & getVFS() const
Definition: Driver.h:299
bool isHIP(ID Id)
isHIP - Is this a HIP input.
Definition: Types.cpp:178
static Arg * MakeInputArg(DerivedArgList &Args, OptTable &Opts, StringRef Value, bool Claim=true)
Definition: Driver.cpp:313
bool hasOffloadToolChain() const
Return true if an offloading tool chain of a given kind exists.
Definition: Compilation.h:155
ID getPreprocessedType(ID Id)
getPreprocessedType - Get the ID of the type for this input when it has been preprocessed, or INVALID if this input is not preprocessed.
Definition: Types.cpp:42
StringRef Filename
Definition: Format.cpp:1711
void add(Action &A, const ToolChain &TC, const char *BoundArch, OffloadKind OKind)
Add a action along with the associated toolchain, bound arch, and offload kind.
Definition: Action.cpp:287
void PrintActions(const Compilation &C) const
PrintActions - Print the list of actions.
Definition: Driver.cpp:1877
const ToolChain & getDefaultToolChain() const
Definition: Compilation.h:135
const ArgStringMap & getResultFiles() const
Definition: Compilation.h:209
unsigned GenReproducer
Force clang to emit reproducer for driver invocation.
Definition: Driver.h:232
ID lookupHeaderTypeForSourceType(ID Id)
Lookup header file input type that corresponds to given source file type (used for clang-cl emulation...
Definition: Types.cpp:309
const char * getTypeName(ID Id)
getTypeName - Return the name of the type for Id.
Definition: Types.cpp:38
std::string getAsString() const
getAsString - Return a string name for this input, for debugging.
Definition: InputInfo.h:94
ActionClass getKind() const
Definition: Action.h:139
std::string GetTemporaryDirectory(StringRef Prefix) const
GetTemporaryDirectory - Return the pathname of a temporary directory to use as part of compilation; t...
Definition: Driver.cpp:4553
SourceLocation End
const char * getPhaseName(ID Id)
Definition: Phases.cpp:15
int Id
Definition: ASTDiff.cpp:190
const Tool & getCreator() const
getCreator - Return the Tool which caused the creation of this job.
Definition: Job.h:107
StateNode * Previous
bool isSaveTempsObj() const
Definition: Driver.h:328
#define V(N, I)
Definition: ASTContext.h:2907
Defines version macros and version-related utility functions for Clang.
bool IsCLMode() const
Whether the driver should follow cl.exe like behavior.
Definition: Driver.h:181
static std::string GetResourcesPath(StringRef BinaryPath, StringRef CustomResourceDir="")
Takes the path to a binary that&#39;s either in bin/ or lib/ and returns the path to clang&#39;s resource dir...
Definition: Driver.cpp:94
virtual types::ID LookupTypeForExtension(StringRef Ext) const
LookupTypeForExtension - Return the default language type to use for the given extension.
Definition: ToolChain.cpp:524
llvm::opt::InputArgList ParseArgStrings(ArrayRef< const char *> Args, bool IsClCompatMode, bool &ContainsError)
ParseArgStrings - Parse the given list of strings into an ArgList.
Definition: Driver.cpp:186
This corresponds to a single GCC Multilib, or a segment of one controlled by a command line flag...
Definition: Multilib.h:28
static std::string GetTriplePlusArchString(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind OffloadKind)
Return a string that uniquely identifies the result of a job.
Definition: Driver.cpp:3922
void HandleAutocompletions(StringRef PassedFlags) const
HandleAutocompletions - Handle –autocomplete by searching and printing possible flags, descriptions, and its arguments.
Definition: Driver.cpp:1560
void getCompilationPhases(ID Id, llvm::SmallVectorImpl< phases::ID > &Phases)
getCompilationPhases - Get the list of compilation phases (&#39;Phases&#39;) to be done for type &#39;Id&#39;...
Definition: Types.cpp:267
void BuildUniversalActions(Compilation &C, const ToolChain &TC, const InputList &BAInputs) const
BuildUniversalActions - Construct the list of actions to perform for the given arguments, which may require a universal build.
Definition: Driver.cpp:1897
size_type size() const
Definition: Action.h:145
void setCannotBeCollapsedWithNextDependentAction()
Mark this action as not legal to collapse.
Definition: Action.h:157
Action * ConstructPhaseAction(Compilation &C, const llvm::opt::ArgList &Args, phases::ID Phase, Action *Input, Action::OffloadKind TargetDeviceOffloadKind=Action::OFK_None) const
ConstructAction - Construct the appropriate action to do for Phase on the Input, taking in to account...
Definition: Driver.cpp:3415
llvm::Triple::ArchType getArchTypeForMachOArchName(StringRef Str)
Definition: Darwin.cpp:34
const ActionList & getActions() const
Get each of the individual arrays.
Definition: Action.h:284
const_offload_toolchains_range getOffloadToolChains() const
Definition: Compilation.h:150
static void PrintDiagnosticCategories(raw_ostream &OS)
PrintDiagnosticCategories - Implement the –print-diagnostic-categories option.
Definition: Driver.cpp:1553
void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:435
path_list & getLibraryPaths()
Definition: ToolChain.h:228
void PrintHelp(bool ShowHidden) const
PrintHelp - Print the help text.
Definition: Driver.cpp:1511
virtual bool canEmitIR() const
Definition: Tool.h:86
static void printArg(llvm::raw_ostream &OS, StringRef Arg, bool Quote)
Print a command argument, and optionally quote it.
Definition: Job.cpp:101
#define false
Definition: stdbool.h:17
virtual bool hasIntegratedCPP() const =0
void generateCompilationDiagnostics(Compilation &C, const Command &FailingCommand, StringRef AdditionalInformation="", CompilationDiagnosticReport *GeneratedReport=nullptr)
generateCompilationDiagnostics - Generate diagnostics information including preprocessed source file(...
Definition: Driver.cpp:1236
virtual std::string getCompilerRT(const llvm::opt::ArgList &Args, StringRef Component, FileType Type=ToolChain::FT_Static) const
Definition: ToolChain.cpp:364
static unsigned PrintActions1(const Compilation &C, Action *A, std::map< Action *, unsigned > &Ids)
Definition: Driver.cpp:1800
bool embedBitcodeInObject() const
Definition: Driver.h:331
Encodes a location in the source.
const llvm::opt::DerivedArgList & getArgs() const
Definition: Compilation.h:186
bool hasErrorOccurred() const
Determine whether any errors have occurred since this object instance was created.
Definition: Diagnostic.h:1012
Command - An executable path/name and argument vector to execute.
Definition: Job.h:41
bool isCuda(ID Id)
isCuda - Is this a CUDA input.
Definition: Types.cpp:166
bool DiagnoseInputExistence(const llvm::opt::DerivedArgList &Args, StringRef Value, types::ID Ty, bool TypoCorrect) const
Check that the file referenced by Value exists.
Definition: Driver.cpp:1984
The legacy name for the LLVM OpenMP runtime from when it was the Intel OpenMP runtime.
Definition: Driver.h:104
std::string InstalledDir
The path to the installed clang directory, if any.
Definition: Driver.h:128
bool CCCIsCXX() const
Whether the driver should follow g++ like behavior.
Definition: Driver.h:172
const char * addResultFile(const char *Name, const JobAction *JA)
addResultFile - Add a file to remove on failure, and returns its argument.
Definition: Compilation.h:239
bool isSaveTempsEnabled() const
Definition: Driver.h:327
static std::vector< std::string > getDiagnosticFlags()
Get the string of all diagnostic flags.
std::string UserConfigDir
User directory for config files.
Definition: Driver.h:137
bool isAcceptedByClang(ID Id)
isAcceptedByClang - Can clang handle this input type.
Definition: Types.cpp:94
virtual bool hasIntegratedAssembler() const
Definition: Tool.h:85
An offload action combines host or/and device actions according to the programming model implementati...
Definition: Action.h:247
const char * getDefaultImageName() const
Returns the default name for linked images (e.g., "a.out").
Definition: Driver.cpp:4222
virtual RuntimeLibType GetRuntimeLibType(const llvm::opt::ArgList &Args) const
Definition: ToolChain.cpp:717
void ExecuteJobs(const JobList &Jobs, SmallVectorImpl< std::pair< int, const Command *>> &FailingCommands) const
ExecuteJob - Execute a single job.
const char * getShortName() const
Definition: Tool.h:81
void setIgnoreAllWarnings(bool Val)
When set to true, any unmapped warnings are ignored.
Definition: Diagnostic.h:588
static bool searchForFile(SmallVectorImpl< char > &FilePath, ArrayRef< std::string > Dirs, StringRef FileName)
Looks the given directories for the specified file.
Definition: Driver.cpp:732
unsigned getOffloadingHostActiveKinds() const
Definition: Action.h:192
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
const Action & getSource() const
getSource - Return the Action which caused the creation of this job.
Definition: Job.h:104
Dataflow Directional Tag Classes.
Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const
Based on the way the client configured the DiagnosticsEngine object, classify the specified diagnosti...
Definition: Diagnostic.h:836
const char * getExecutable() const
Definition: Job.h:124
unsigned CCCPrintBindings
Only print tool bindings, don&#39;t build any jobs.
Definition: Driver.h:184
static llvm::Triple computeTargetTriple(const Driver &D, StringRef TargetTriple, const ArgList &Args, StringRef DarwinArchName="")
Compute target triple from args.
Definition: Driver.cpp:418
virtual std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType=types::TY_INVALID) const
ComputeEffectiveClangTriple - Return the Clang triple to use for this target, which may take into acc...
Definition: ToolChain.cpp:694
const llvm::opt::ArgStringList & getArguments() const
Definition: Job.h:126
virtual bool hasGoodDiagnostics() const
Does this tool have "good" standardized diagnostics, or should the driver add an additional "command ...
Definition: Tool.h:116
std::string SysRoot
sysroot, if present
Definition: Driver.h:147
Tool - Information on a specific compilation tool.
Definition: Tool.h:33
void setTripleTypeForMachOArchName(llvm::Triple &T, StringRef Str)
Definition: Darwin.cpp:69
std::string Name
The name the driver was invoked as.
Definition: Driver.h:115
static bool handlesTarget(const llvm::Triple &Triple)
Definition: BareMetal.cpp:59
The GNU OpenMP runtime.
Definition: Driver.h:99
llvm::SmallVector< std::string, 4 > TemporaryFiles
Definition: Driver.h:420
int ExecuteCompilation(Compilation &C, SmallVectorImpl< std::pair< int, const Command *> > &FailingCommands)
ExecuteCompilation - Execute the compilation according to the command line arguments and return an ap...
Definition: Driver.cpp:1440
ActionList & getActions()
Definition: Compilation.h:190
ParsedClangName ClangNameParts
Target and driver mode components extracted from clang executable name.
Definition: Driver.h:125
bool getCheckInputsExist() const
Definition: Driver.h:301
std::string ClangExecutable
The original path to the clang executable.
Definition: Driver.h:122
void BuildJobs(Compilation &C) const
BuildJobs - Bind actions to concrete tools and translate arguments to form the list of jobs to run...
Definition: Driver.cpp:3515
ID getPrecompiledType(ID Id)
getPrecompiledType - Get the ID of the type for this input when it has been precompiled, or INVALID if this input is not precompiled.
Definition: Types.cpp:46
bool ShouldUseClangCompiler(const JobAction &JA) const
ShouldUseClangCompiler - Should the clang compiler be used to handle this action. ...
Definition: Driver.cpp:4751
StringRef getDefaultUniversalArchName() const
Provide the default architecture name (as expected by -arch) for this toolchain.
Definition: ToolChain.cpp:225
Compilation - A set of tasks to perform for a single driver invocation.
Definition: Compilation.h:45
void BuildActions(Compilation &C, llvm::opt::DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const
BuildActions - Construct the list of actions to perform for the given arguments, which are only done ...
Definition: Driver.cpp:3155
const Driver & getDriver() const
Definition: Compilation.h:133
const llvm::Triple & getTriple() const
Definition: ToolChain.h:195
static StringRef GetOffloadKindName(OffloadKind Kind)
Return a string containing a offload kind name.
Definition: Action.cpp:143
std::string GetFilePath(StringRef Name, const ToolChain &TC) const
GetFilePath - Lookup Name in the list of file search paths.
Definition: Driver.cpp:4440
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args)
Definition: Driver.cpp:1131
ID lookupTypeForExtension(llvm::StringRef Ext)
lookupTypeForExtension - Lookup the type to use for the file extension Ext.
Definition: Types.cpp:194
const ToolChain & getToolChain() const
Definition: Tool.h:83
bool CleanupFileMap(const ArgStringMap &Files, const JobAction *JA, bool IssueErrors=false) const
CleanupFileMap - Remove the files in the given map.
virtual std::string getCompilerRTPath() const
Definition: ToolChain.cpp:354
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:14445
Driver(StringRef ClangExecutable, StringRef TargetTriple, DiagnosticsEngine &Diags, IntrusiveRefCntPtr< llvm::vfs::FileSystem > VFS=nullptr)
Definition: Driver.cpp:120
void propagateHostOffloadInfo(unsigned OKinds, const char *OArch)
Append the host offload info of this action and propagate it to its dependences.
Definition: Action.cpp:66
static std::string GetOffloadingFileNamePrefix(OffloadKind Kind, StringRef NormalizedTriple, bool CreatePrefixForHost=false)
Return a string that can be used as prefix in order to generate unique files for each offloading kind...
Definition: Action.cpp:127
void ParseDriverMode(StringRef ProgramName, ArrayRef< const char *> Args)
ParseDriverMode - Look for and handle the driver mode option in Args.
Definition: Driver.cpp:153
const char * getName() const
Definition: Tool.h:79
const llvm::opt::OptTable & getOpts() const
Definition: Driver.h:295
virtual Tool * SelectTool(const JobAction &JA) const
Choose a tool to use to handle the action JA.
Definition: ToolChain.cpp:476
const char * addTempFile(const char *Name)
addTempFile - Add a file to remove on exit, and returns its argument.
Definition: Compilation.h:232
std::string getOffloadingKindPrefix() const
Return a string containing the offload kind of the action.
Definition: Action.cpp:88
const ToolChain * getSingleOffloadToolChain() const
Return an offload toolchain of the provided kind.
Definition: Compilation.h:163
std::string DriverTitle
Driver title to use with help.
Definition: Driver.h:153
static const char * MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, StringRef BaseName, types::ID FileType)
Create output filename based on ArgValue, which could either be a full filename, filename without ext...
Definition: Driver.cpp:4231
void initialize(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema)
bool CCCIsCPP() const
Whether the driver is just the preprocessor.
Definition: Driver.h:175
void PrintVersion(const Compilation &C, raw_ostream &OS) const
PrintVersion - Print the driver version.
Definition: Driver.cpp:1527
void CreateOffloadingDeviceToolChains(Compilation &C, InputList &Inputs)
CreateOffloadingDeviceToolChains - create all the toolchains required to support offloading devices g...
Definition: Driver.cpp:595
bool appendSuffixForType(ID Id)
appendSuffixForType - When generating outputs of this type, should the suffix be appended (instead of...
Definition: Types.cpp:83
ID lookupTypeForTypeSpecifier(const char *Name)
lookupTypeForTypSpecifier - Lookup the type to use for a user specified type name.
Definition: Types.cpp:255
const char * GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, StringRef NormalizedTriple) const
GetNamedOutputPath - Return the name to use for the output of the action JA.
Definition: Driver.cpp:4260
#define true
Definition: stdbool.h:16
void initCompilationForDiagnostics()
initCompilationForDiagnostics - Remove stale state and suppress output so compilation can be reexecut...
bool isSrcFile(ID Id)
isSrcFile - Is this a source file, i.e.
Definition: Types.cpp:190
const char * DriverMode
Corresponding driver mode argument, as &#39;–driver-mode=g++&#39;.
Definition: ToolChain.h:69
const char * getOffloadingArch() const
Definition: Action.h:197
virtual void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:214
unsigned CCGenDiagnostics
Whether the driver is generating diagnostics for debugging purposes.
Definition: Driver.h:200
std::string SystemConfigDir
System directory for config files.
Definition: Driver.h:134
ToolChain - Access to tools for a single platform.
Definition: ToolChain.h:88
std::string ResourceDir
The path to the compiler resource directory.
Definition: Driver.h:131