clang  9.0.0
SemaType.cpp
Go to the documentation of this file.
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements type-related semantic analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/TypeLoc.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Lookup.h"
30 #include "clang/Sema/ScopeInfo.h"
32 #include "clang/Sema/Template.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallString.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/Support/ErrorHandling.h"
38 
39 using namespace clang;
40 
45 };
46 
47 /// isOmittedBlockReturnType - Return true if this declarator is missing a
48 /// return type because this is a omitted return type on a block literal.
49 static bool isOmittedBlockReturnType(const Declarator &D) {
52  return false;
53 
54  if (D.getNumTypeObjects() == 0)
55  return true; // ^{ ... }
56 
57  if (D.getNumTypeObjects() == 1 &&
59  return true; // ^(int X, float Y) { ... }
60 
61  return false;
62 }
63 
64 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
65 /// doesn't apply to the given type.
66 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
67  QualType type) {
68  TypeDiagSelector WhichType;
69  bool useExpansionLoc = true;
70  switch (attr.getKind()) {
71  case ParsedAttr::AT_ObjCGC:
72  WhichType = TDS_Pointer;
73  break;
74  case ParsedAttr::AT_ObjCOwnership:
75  WhichType = TDS_ObjCObjOrBlock;
76  break;
77  default:
78  // Assume everything else was a function attribute.
79  WhichType = TDS_Function;
80  useExpansionLoc = false;
81  break;
82  }
83 
84  SourceLocation loc = attr.getLoc();
85  StringRef name = attr.getName()->getName();
86 
87  // The GC attributes are usually written with macros; special-case them.
88  IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
89  : nullptr;
90  if (useExpansionLoc && loc.isMacroID() && II) {
91  if (II->isStr("strong")) {
92  if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
93  } else if (II->isStr("weak")) {
94  if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
95  }
96  }
97 
98  S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
99  << type;
100 }
101 
102 // objc_gc applies to Objective-C pointers or, otherwise, to the
103 // smallest available pointer type (i.e. 'void*' in 'void**').
104 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
105  case ParsedAttr::AT_ObjCGC: \
106  case ParsedAttr::AT_ObjCOwnership
107 
108 // Calling convention attributes.
109 #define CALLING_CONV_ATTRS_CASELIST \
110  case ParsedAttr::AT_CDecl: \
111  case ParsedAttr::AT_FastCall: \
112  case ParsedAttr::AT_StdCall: \
113  case ParsedAttr::AT_ThisCall: \
114  case ParsedAttr::AT_RegCall: \
115  case ParsedAttr::AT_Pascal: \
116  case ParsedAttr::AT_SwiftCall: \
117  case ParsedAttr::AT_VectorCall: \
118  case ParsedAttr::AT_AArch64VectorPcs: \
119  case ParsedAttr::AT_MSABI: \
120  case ParsedAttr::AT_SysVABI: \
121  case ParsedAttr::AT_Pcs: \
122  case ParsedAttr::AT_IntelOclBicc: \
123  case ParsedAttr::AT_PreserveMost: \
124  case ParsedAttr::AT_PreserveAll
125 
126 // Function type attributes.
127 #define FUNCTION_TYPE_ATTRS_CASELIST \
128  case ParsedAttr::AT_NSReturnsRetained: \
129  case ParsedAttr::AT_NoReturn: \
130  case ParsedAttr::AT_Regparm: \
131  case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
132  case ParsedAttr::AT_AnyX86NoCfCheck: \
133  CALLING_CONV_ATTRS_CASELIST
134 
135 // Microsoft-specific type qualifiers.
136 #define MS_TYPE_ATTRS_CASELIST \
137  case ParsedAttr::AT_Ptr32: \
138  case ParsedAttr::AT_Ptr64: \
139  case ParsedAttr::AT_SPtr: \
140  case ParsedAttr::AT_UPtr
141 
142 // Nullability qualifiers.
143 #define NULLABILITY_TYPE_ATTRS_CASELIST \
144  case ParsedAttr::AT_TypeNonNull: \
145  case ParsedAttr::AT_TypeNullable: \
146  case ParsedAttr::AT_TypeNullUnspecified
147 
148 namespace {
149  /// An object which stores processing state for the entire
150  /// GetTypeForDeclarator process.
151  class TypeProcessingState {
152  Sema &sema;
153 
154  /// The declarator being processed.
155  Declarator &declarator;
156 
157  /// The index of the declarator chunk we're currently processing.
158  /// May be the total number of valid chunks, indicating the
159  /// DeclSpec.
160  unsigned chunkIndex;
161 
162  /// Whether there are non-trivial modifications to the decl spec.
163  bool trivial;
164 
165  /// Whether we saved the attributes in the decl spec.
166  bool hasSavedAttrs;
167 
168  /// The original set of attributes on the DeclSpec.
169  SmallVector<ParsedAttr *, 2> savedAttrs;
170 
171  /// A list of attributes to diagnose the uselessness of when the
172  /// processing is complete.
173  SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
174 
175  /// Attributes corresponding to AttributedTypeLocs that we have not yet
176  /// populated.
177  // FIXME: The two-phase mechanism by which we construct Types and fill
178  // their TypeLocs makes it hard to correctly assign these. We keep the
179  // attributes in creation order as an attempt to make them line up
180  // properly.
181  using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
182  SmallVector<TypeAttrPair, 8> AttrsForTypes;
183  bool AttrsForTypesSorted = true;
184 
185  /// MacroQualifiedTypes mapping to macro expansion locations that will be
186  /// stored in a MacroQualifiedTypeLoc.
187  llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
188 
189  /// Flag to indicate we parsed a noderef attribute. This is used for
190  /// validating that noderef was used on a pointer or array.
191  bool parsedNoDeref;
192 
193  public:
194  TypeProcessingState(Sema &sema, Declarator &declarator)
195  : sema(sema), declarator(declarator),
196  chunkIndex(declarator.getNumTypeObjects()), trivial(true),
197  hasSavedAttrs(false), parsedNoDeref(false) {}
198 
199  Sema &getSema() const {
200  return sema;
201  }
202 
203  Declarator &getDeclarator() const {
204  return declarator;
205  }
206 
207  bool isProcessingDeclSpec() const {
208  return chunkIndex == declarator.getNumTypeObjects();
209  }
210 
211  unsigned getCurrentChunkIndex() const {
212  return chunkIndex;
213  }
214 
215  void setCurrentChunkIndex(unsigned idx) {
216  assert(idx <= declarator.getNumTypeObjects());
217  chunkIndex = idx;
218  }
219 
220  ParsedAttributesView &getCurrentAttributes() const {
221  if (isProcessingDeclSpec())
222  return getMutableDeclSpec().getAttributes();
223  return declarator.getTypeObject(chunkIndex).getAttrs();
224  }
225 
226  /// Save the current set of attributes on the DeclSpec.
227  void saveDeclSpecAttrs() {
228  // Don't try to save them multiple times.
229  if (hasSavedAttrs) return;
230 
231  DeclSpec &spec = getMutableDeclSpec();
232  for (ParsedAttr &AL : spec.getAttributes())
233  savedAttrs.push_back(&AL);
234  trivial &= savedAttrs.empty();
235  hasSavedAttrs = true;
236  }
237 
238  /// Record that we had nowhere to put the given type attribute.
239  /// We will diagnose such attributes later.
240  void addIgnoredTypeAttr(ParsedAttr &attr) {
241  ignoredTypeAttrs.push_back(&attr);
242  }
243 
244  /// Diagnose all the ignored type attributes, given that the
245  /// declarator worked out to the given type.
246  void diagnoseIgnoredTypeAttrs(QualType type) const {
247  for (auto *Attr : ignoredTypeAttrs)
248  diagnoseBadTypeAttribute(getSema(), *Attr, type);
249  }
250 
251  /// Get an attributed type for the given attribute, and remember the Attr
252  /// object so that we can attach it to the AttributedTypeLoc.
253  QualType getAttributedType(Attr *A, QualType ModifiedType,
254  QualType EquivType) {
255  QualType T =
256  sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
257  AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
258  AttrsForTypesSorted = false;
259  return T;
260  }
261 
262  /// Completely replace the \c auto in \p TypeWithAuto by
263  /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
264  /// necessary.
265  QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
266  QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
267  if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
268  // Attributed type still should be an attributed type after replacement.
269  auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
270  for (TypeAttrPair &A : AttrsForTypes) {
271  if (A.first == AttrTy)
272  A.first = NewAttrTy;
273  }
274  AttrsForTypesSorted = false;
275  }
276  return T;
277  }
278 
279  /// Extract and remove the Attr* for a given attributed type.
280  const Attr *takeAttrForAttributedType(const AttributedType *AT) {
281  if (!AttrsForTypesSorted) {
282  llvm::stable_sort(AttrsForTypes, llvm::less_first());
283  AttrsForTypesSorted = true;
284  }
285 
286  // FIXME: This is quadratic if we have lots of reuses of the same
287  // attributed type.
288  for (auto It = std::partition_point(
289  AttrsForTypes.begin(), AttrsForTypes.end(),
290  [=](const TypeAttrPair &A) { return A.first < AT; });
291  It != AttrsForTypes.end() && It->first == AT; ++It) {
292  if (It->second) {
293  const Attr *Result = It->second;
294  It->second = nullptr;
295  return Result;
296  }
297  }
298 
299  llvm_unreachable("no Attr* for AttributedType*");
300  }
301 
303  getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
304  auto FoundLoc = LocsForMacros.find(MQT);
305  assert(FoundLoc != LocsForMacros.end() &&
306  "Unable to find macro expansion location for MacroQualifedType");
307  return FoundLoc->second;
308  }
309 
310  void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
311  SourceLocation Loc) {
312  LocsForMacros[MQT] = Loc;
313  }
314 
315  void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
316 
317  bool didParseNoDeref() const { return parsedNoDeref; }
318 
319  ~TypeProcessingState() {
320  if (trivial) return;
321 
322  restoreDeclSpecAttrs();
323  }
324 
325  private:
326  DeclSpec &getMutableDeclSpec() const {
327  return const_cast<DeclSpec&>(declarator.getDeclSpec());
328  }
329 
330  void restoreDeclSpecAttrs() {
331  assert(hasSavedAttrs);
332 
333  getMutableDeclSpec().getAttributes().clearListOnly();
334  for (ParsedAttr *AL : savedAttrs)
335  getMutableDeclSpec().getAttributes().addAtEnd(AL);
336  }
337  };
338 } // end anonymous namespace
339 
341  ParsedAttributesView &fromList,
342  ParsedAttributesView &toList) {
343  fromList.remove(&attr);
344  toList.addAtEnd(&attr);
345 }
346 
347 /// The location of a type attribute.
349  /// The attribute is in the decl-specifier-seq.
351  /// The attribute is part of a DeclaratorChunk.
353  /// The attribute is immediately after the declaration's name.
355 };
356 
357 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
359 
360 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
361  QualType &type);
362 
363 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
364  ParsedAttr &attr, QualType &type);
365 
366 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
367  QualType &type);
368 
369 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
370  ParsedAttr &attr, QualType &type);
371 
372 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
373  ParsedAttr &attr, QualType &type) {
374  if (attr.getKind() == ParsedAttr::AT_ObjCGC)
375  return handleObjCGCTypeAttr(state, attr, type);
376  assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
377  return handleObjCOwnershipTypeAttr(state, attr, type);
378 }
379 
380 /// Given the index of a declarator chunk, check whether that chunk
381 /// directly specifies the return type of a function and, if so, find
382 /// an appropriate place for it.
383 ///
384 /// \param i - a notional index which the search will start
385 /// immediately inside
386 ///
387 /// \param onlyBlockPointers Whether we should only look into block
388 /// pointer types (vs. all pointer types).
390  unsigned i,
391  bool onlyBlockPointers) {
392  assert(i <= declarator.getNumTypeObjects());
393 
394  DeclaratorChunk *result = nullptr;
395 
396  // First, look inwards past parens for a function declarator.
397  for (; i != 0; --i) {
398  DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
399  switch (fnChunk.Kind) {
401  continue;
402 
403  // If we find anything except a function, bail out.
410  return result;
411 
412  // If we do find a function declarator, scan inwards from that,
413  // looking for a (block-)pointer declarator.
415  for (--i; i != 0; --i) {
416  DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
417  switch (ptrChunk.Kind) {
423  continue;
424 
427  if (onlyBlockPointers)
428  continue;
429 
430  LLVM_FALLTHROUGH;
431 
433  result = &ptrChunk;
434  goto continue_outer;
435  }
436  llvm_unreachable("bad declarator chunk kind");
437  }
438 
439  // If we run out of declarators doing that, we're done.
440  return result;
441  }
442  llvm_unreachable("bad declarator chunk kind");
443 
444  // Okay, reconsider from our new point.
445  continue_outer: ;
446  }
447 
448  // Ran out of chunks, bail out.
449  return result;
450 }
451 
452 /// Given that an objc_gc attribute was written somewhere on a
453 /// declaration *other* than on the declarator itself (for which, use
454 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
455 /// didn't apply in whatever position it was written in, try to move
456 /// it to a more appropriate position.
457 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
458  ParsedAttr &attr, QualType type) {
459  Declarator &declarator = state.getDeclarator();
460 
461  // Move it to the outermost normal or block pointer declarator.
462  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
463  DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
464  switch (chunk.Kind) {
467  // But don't move an ARC ownership attribute to the return type
468  // of a block.
469  DeclaratorChunk *destChunk = nullptr;
470  if (state.isProcessingDeclSpec() &&
471  attr.getKind() == ParsedAttr::AT_ObjCOwnership)
472  destChunk = maybeMovePastReturnType(declarator, i - 1,
473  /*onlyBlockPointers=*/true);
474  if (!destChunk) destChunk = &chunk;
475 
476  moveAttrFromListToList(attr, state.getCurrentAttributes(),
477  destChunk->getAttrs());
478  return;
479  }
480 
483  continue;
484 
485  // We may be starting at the return type of a block.
487  if (state.isProcessingDeclSpec() &&
488  attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
490  declarator, i,
491  /*onlyBlockPointers=*/true)) {
492  moveAttrFromListToList(attr, state.getCurrentAttributes(),
493  dest->getAttrs());
494  return;
495  }
496  }
497  goto error;
498 
499  // Don't walk through these.
503  goto error;
504  }
505  }
506  error:
507 
508  diagnoseBadTypeAttribute(state.getSema(), attr, type);
509 }
510 
511 /// Distribute an objc_gc type attribute that was written on the
512 /// declarator.
514  TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
515  Declarator &declarator = state.getDeclarator();
516 
517  // objc_gc goes on the innermost pointer to something that's not a
518  // pointer.
519  unsigned innermost = -1U;
520  bool considerDeclSpec = true;
521  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
522  DeclaratorChunk &chunk = declarator.getTypeObject(i);
523  switch (chunk.Kind) {
526  innermost = i;
527  continue;
528 
534  continue;
535 
537  considerDeclSpec = false;
538  goto done;
539  }
540  }
541  done:
542 
543  // That might actually be the decl spec if we weren't blocked by
544  // anything in the declarator.
545  if (considerDeclSpec) {
546  if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
547  // Splice the attribute into the decl spec. Prevents the
548  // attribute from being applied multiple times and gives
549  // the source-location-filler something to work with.
550  state.saveDeclSpecAttrs();
552  declarator.getAttributes(), &attr);
553  return;
554  }
555  }
556 
557  // Otherwise, if we found an appropriate chunk, splice the attribute
558  // into it.
559  if (innermost != -1U) {
560  moveAttrFromListToList(attr, declarator.getAttributes(),
561  declarator.getTypeObject(innermost).getAttrs());
562  return;
563  }
564 
565  // Otherwise, diagnose when we're done building the type.
566  declarator.getAttributes().remove(&attr);
567  state.addIgnoredTypeAttr(attr);
568 }
569 
570 /// A function type attribute was written somewhere in a declaration
571 /// *other* than on the declarator itself or in the decl spec. Given
572 /// that it didn't apply in whatever position it was written in, try
573 /// to move it to a more appropriate position.
574 static void distributeFunctionTypeAttr(TypeProcessingState &state,
575  ParsedAttr &attr, QualType type) {
576  Declarator &declarator = state.getDeclarator();
577 
578  // Try to push the attribute from the return type of a function to
579  // the function itself.
580  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
581  DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
582  switch (chunk.Kind) {
584  moveAttrFromListToList(attr, state.getCurrentAttributes(),
585  chunk.getAttrs());
586  return;
587 
595  continue;
596  }
597  }
598 
599  diagnoseBadTypeAttribute(state.getSema(), attr, type);
600 }
601 
602 /// Try to distribute a function type attribute to the innermost
603 /// function chunk or type. Returns true if the attribute was
604 /// distributed, false if no location was found.
606  TypeProcessingState &state, ParsedAttr &attr,
607  ParsedAttributesView &attrList, QualType &declSpecType) {
608  Declarator &declarator = state.getDeclarator();
609 
610  // Put it on the innermost function chunk, if there is one.
611  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
612  DeclaratorChunk &chunk = declarator.getTypeObject(i);
613  if (chunk.Kind != DeclaratorChunk::Function) continue;
614 
615  moveAttrFromListToList(attr, attrList, chunk.getAttrs());
616  return true;
617  }
618 
619  return handleFunctionTypeAttr(state, attr, declSpecType);
620 }
621 
622 /// A function type attribute was written in the decl spec. Try to
623 /// apply it somewhere.
624 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
625  ParsedAttr &attr,
626  QualType &declSpecType) {
627  state.saveDeclSpecAttrs();
628 
629  // C++11 attributes before the decl specifiers actually appertain to
630  // the declarators. Move them straight there. We don't support the
631  // 'put them wherever you like' semantics we allow for GNU attributes.
632  if (attr.isCXX11Attribute()) {
633  moveAttrFromListToList(attr, state.getCurrentAttributes(),
634  state.getDeclarator().getAttributes());
635  return;
636  }
637 
638  // Try to distribute to the innermost.
640  state, attr, state.getCurrentAttributes(), declSpecType))
641  return;
642 
643  // If that failed, diagnose the bad attribute when the declarator is
644  // fully built.
645  state.addIgnoredTypeAttr(attr);
646 }
647 
648 /// A function type attribute was written on the declarator. Try to
649 /// apply it somewhere.
650 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
651  ParsedAttr &attr,
652  QualType &declSpecType) {
653  Declarator &declarator = state.getDeclarator();
654 
655  // Try to distribute to the innermost.
657  state, attr, declarator.getAttributes(), declSpecType))
658  return;
659 
660  // If that failed, diagnose the bad attribute when the declarator is
661  // fully built.
662  declarator.getAttributes().remove(&attr);
663  state.addIgnoredTypeAttr(attr);
664 }
665 
666 /// Given that there are attributes written on the declarator
667 /// itself, try to distribute any type attributes to the appropriate
668 /// declarator chunk.
669 ///
670 /// These are attributes like the following:
671 /// int f ATTR;
672 /// int (f ATTR)();
673 /// but not necessarily this:
674 /// int f() ATTR;
675 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
676  QualType &declSpecType) {
677  // Collect all the type attributes from the declarator itself.
678  assert(!state.getDeclarator().getAttributes().empty() &&
679  "declarator has no attrs!");
680  // The called functions in this loop actually remove things from the current
681  // list, so iterating over the existing list isn't possible. Instead, make a
682  // non-owning copy and iterate over that.
683  ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
684  for (ParsedAttr &attr : AttrsCopy) {
685  // Do not distribute C++11 attributes. They have strict rules for what
686  // they appertain to.
687  if (attr.isCXX11Attribute())
688  continue;
689 
690  switch (attr.getKind()) {
692  distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
693  break;
694 
696  distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
697  break;
698 
700  // Microsoft type attributes cannot go after the declarator-id.
701  continue;
702 
704  // Nullability specifiers cannot go after the declarator-id.
705 
706  // Objective-C __kindof does not get distributed.
707  case ParsedAttr::AT_ObjCKindOf:
708  continue;
709 
710  default:
711  break;
712  }
713  }
714 }
715 
716 /// Add a synthetic '()' to a block-literal declarator if it is
717 /// required, given the return type.
718 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
719  QualType declSpecType) {
720  Declarator &declarator = state.getDeclarator();
721 
722  // First, check whether the declarator would produce a function,
723  // i.e. whether the innermost semantic chunk is a function.
724  if (declarator.isFunctionDeclarator()) {
725  // If so, make that declarator a prototyped declarator.
726  declarator.getFunctionTypeInfo().hasPrototype = true;
727  return;
728  }
729 
730  // If there are any type objects, the type as written won't name a
731  // function, regardless of the decl spec type. This is because a
732  // block signature declarator is always an abstract-declarator, and
733  // abstract-declarators can't just be parentheses chunks. Therefore
734  // we need to build a function chunk unless there are no type
735  // objects and the decl spec type is a function.
736  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
737  return;
738 
739  // Note that there *are* cases with invalid declarators where
740  // declarators consist solely of parentheses. In general, these
741  // occur only in failed efforts to make function declarators, so
742  // faking up the function chunk is still the right thing to do.
743 
744  // Otherwise, we need to fake up a function declarator.
745  SourceLocation loc = declarator.getBeginLoc();
746 
747  // ...and *prepend* it to the declarator.
748  SourceLocation NoLoc;
750  /*HasProto=*/true,
751  /*IsAmbiguous=*/false,
752  /*LParenLoc=*/NoLoc,
753  /*ArgInfo=*/nullptr,
754  /*NumParams=*/0,
755  /*EllipsisLoc=*/NoLoc,
756  /*RParenLoc=*/NoLoc,
757  /*RefQualifierIsLvalueRef=*/true,
758  /*RefQualifierLoc=*/NoLoc,
759  /*MutableLoc=*/NoLoc, EST_None,
760  /*ESpecRange=*/SourceRange(),
761  /*Exceptions=*/nullptr,
762  /*ExceptionRanges=*/nullptr,
763  /*NumExceptions=*/0,
764  /*NoexceptExpr=*/nullptr,
765  /*ExceptionSpecTokens=*/nullptr,
766  /*DeclsInPrototype=*/None, loc, loc, declarator));
767 
768  // For consistency, make sure the state still has us as processing
769  // the decl spec.
770  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
771  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
772 }
773 
775  unsigned &TypeQuals,
776  QualType TypeSoFar,
777  unsigned RemoveTQs,
778  unsigned DiagID) {
779  // If this occurs outside a template instantiation, warn the user about
780  // it; they probably didn't mean to specify a redundant qualifier.
781  typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
782  for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
785  QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
786  if (!(RemoveTQs & Qual.first))
787  continue;
788 
789  if (!S.inTemplateInstantiation()) {
790  if (TypeQuals & Qual.first)
791  S.Diag(Qual.second, DiagID)
792  << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
793  << FixItHint::CreateRemoval(Qual.second);
794  }
795 
796  TypeQuals &= ~Qual.first;
797  }
798 }
799 
800 /// Return true if this is omitted block return type. Also check type
801 /// attributes and type qualifiers when returning true.
802 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
803  QualType Result) {
804  if (!isOmittedBlockReturnType(declarator))
805  return false;
806 
807  // Warn if we see type attributes for omitted return type on a block literal.
808  SmallVector<ParsedAttr *, 2> ToBeRemoved;
809  for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
810  if (AL.isInvalid() || !AL.isTypeAttr())
811  continue;
812  S.Diag(AL.getLoc(),
813  diag::warn_block_literal_attributes_on_omitted_return_type)
814  << AL.getName();
815  ToBeRemoved.push_back(&AL);
816  }
817  // Remove bad attributes from the list.
818  for (ParsedAttr *AL : ToBeRemoved)
819  declarator.getMutableDeclSpec().getAttributes().remove(AL);
820 
821  // Warn if we see type qualifiers for omitted return type on a block literal.
822  const DeclSpec &DS = declarator.getDeclSpec();
823  unsigned TypeQuals = DS.getTypeQualifiers();
824  diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
825  diag::warn_block_literal_qualifiers_on_omitted_return_type);
827 
828  return true;
829 }
830 
831 /// Apply Objective-C type arguments to the given type.
834  SourceRange typeArgsRange,
835  bool failOnError = false) {
836  // We can only apply type arguments to an Objective-C class type.
837  const auto *objcObjectType = type->getAs<ObjCObjectType>();
838  if (!objcObjectType || !objcObjectType->getInterface()) {
839  S.Diag(loc, diag::err_objc_type_args_non_class)
840  << type
841  << typeArgsRange;
842 
843  if (failOnError)
844  return QualType();
845  return type;
846  }
847 
848  // The class type must be parameterized.
849  ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
850  ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
851  if (!typeParams) {
852  S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
853  << objcClass->getDeclName()
854  << FixItHint::CreateRemoval(typeArgsRange);
855 
856  if (failOnError)
857  return QualType();
858 
859  return type;
860  }
861 
862  // The type must not already be specialized.
863  if (objcObjectType->isSpecialized()) {
864  S.Diag(loc, diag::err_objc_type_args_specialized_class)
865  << type
866  << FixItHint::CreateRemoval(typeArgsRange);
867 
868  if (failOnError)
869  return QualType();
870 
871  return type;
872  }
873 
874  // Check the type arguments.
875  SmallVector<QualType, 4> finalTypeArgs;
876  unsigned numTypeParams = typeParams->size();
877  bool anyPackExpansions = false;
878  for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
879  TypeSourceInfo *typeArgInfo = typeArgs[i];
880  QualType typeArg = typeArgInfo->getType();
881 
882  // Type arguments cannot have explicit qualifiers or nullability.
883  // We ignore indirect sources of these, e.g. behind typedefs or
884  // template arguments.
885  if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
886  bool diagnosed = false;
887  SourceRange rangeToRemove;
888  if (auto attr = qual.getAs<AttributedTypeLoc>()) {
889  rangeToRemove = attr.getLocalSourceRange();
890  if (attr.getTypePtr()->getImmediateNullability()) {
891  typeArg = attr.getTypePtr()->getModifiedType();
892  S.Diag(attr.getBeginLoc(),
893  diag::err_objc_type_arg_explicit_nullability)
894  << typeArg << FixItHint::CreateRemoval(rangeToRemove);
895  diagnosed = true;
896  }
897  }
898 
899  if (!diagnosed) {
900  S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
901  << typeArg << typeArg.getQualifiers().getAsString()
902  << FixItHint::CreateRemoval(rangeToRemove);
903  }
904  }
905 
906  // Remove qualifiers even if they're non-local.
907  typeArg = typeArg.getUnqualifiedType();
908 
909  finalTypeArgs.push_back(typeArg);
910 
911  if (typeArg->getAs<PackExpansionType>())
912  anyPackExpansions = true;
913 
914  // Find the corresponding type parameter, if there is one.
915  ObjCTypeParamDecl *typeParam = nullptr;
916  if (!anyPackExpansions) {
917  if (i < numTypeParams) {
918  typeParam = typeParams->begin()[i];
919  } else {
920  // Too many arguments.
921  S.Diag(loc, diag::err_objc_type_args_wrong_arity)
922  << false
923  << objcClass->getDeclName()
924  << (unsigned)typeArgs.size()
925  << numTypeParams;
926  S.Diag(objcClass->getLocation(), diag::note_previous_decl)
927  << objcClass;
928 
929  if (failOnError)
930  return QualType();
931 
932  return type;
933  }
934  }
935 
936  // Objective-C object pointer types must be substitutable for the bounds.
937  if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
938  // If we don't have a type parameter to match against, assume
939  // everything is fine. There was a prior pack expansion that
940  // means we won't be able to match anything.
941  if (!typeParam) {
942  assert(anyPackExpansions && "Too many arguments?");
943  continue;
944  }
945 
946  // Retrieve the bound.
947  QualType bound = typeParam->getUnderlyingType();
948  const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
949 
950  // Determine whether the type argument is substitutable for the bound.
951  if (typeArgObjC->isObjCIdType()) {
952  // When the type argument is 'id', the only acceptable type
953  // parameter bound is 'id'.
954  if (boundObjC->isObjCIdType())
955  continue;
956  } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
957  // Otherwise, we follow the assignability rules.
958  continue;
959  }
960 
961  // Diagnose the mismatch.
962  S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
963  diag::err_objc_type_arg_does_not_match_bound)
964  << typeArg << bound << typeParam->getDeclName();
965  S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
966  << typeParam->getDeclName();
967 
968  if (failOnError)
969  return QualType();
970 
971  return type;
972  }
973 
974  // Block pointer types are permitted for unqualified 'id' bounds.
975  if (typeArg->isBlockPointerType()) {
976  // If we don't have a type parameter to match against, assume
977  // everything is fine. There was a prior pack expansion that
978  // means we won't be able to match anything.
979  if (!typeParam) {
980  assert(anyPackExpansions && "Too many arguments?");
981  continue;
982  }
983 
984  // Retrieve the bound.
985  QualType bound = typeParam->getUnderlyingType();
987  continue;
988 
989  // Diagnose the mismatch.
990  S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
991  diag::err_objc_type_arg_does_not_match_bound)
992  << typeArg << bound << typeParam->getDeclName();
993  S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
994  << typeParam->getDeclName();
995 
996  if (failOnError)
997  return QualType();
998 
999  return type;
1000  }
1001 
1002  // Dependent types will be checked at instantiation time.
1003  if (typeArg->isDependentType()) {
1004  continue;
1005  }
1006 
1007  // Diagnose non-id-compatible type arguments.
1008  S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1009  diag::err_objc_type_arg_not_id_compatible)
1010  << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1011 
1012  if (failOnError)
1013  return QualType();
1014 
1015  return type;
1016  }
1017 
1018  // Make sure we didn't have the wrong number of arguments.
1019  if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1020  S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1021  << (typeArgs.size() < typeParams->size())
1022  << objcClass->getDeclName()
1023  << (unsigned)finalTypeArgs.size()
1024  << (unsigned)numTypeParams;
1025  S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1026  << objcClass;
1027 
1028  if (failOnError)
1029  return QualType();
1030 
1031  return type;
1032  }
1033 
1034  // Success. Form the specialized type.
1035  return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1036 }
1037 
1039  SourceLocation ProtocolLAngleLoc,
1040  ArrayRef<ObjCProtocolDecl *> Protocols,
1041  ArrayRef<SourceLocation> ProtocolLocs,
1042  SourceLocation ProtocolRAngleLoc,
1043  bool FailOnError) {
1044  QualType Result = QualType(Decl->getTypeForDecl(), 0);
1045  if (!Protocols.empty()) {
1046  bool HasError;
1047  Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1048  HasError);
1049  if (HasError) {
1050  Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1051  << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1052  if (FailOnError) Result = QualType();
1053  }
1054  if (FailOnError && Result.isNull())
1055  return QualType();
1056  }
1057 
1058  return Result;
1059 }
1060 
1062  SourceLocation Loc,
1063  SourceLocation TypeArgsLAngleLoc,
1064  ArrayRef<TypeSourceInfo *> TypeArgs,
1065  SourceLocation TypeArgsRAngleLoc,
1066  SourceLocation ProtocolLAngleLoc,
1067  ArrayRef<ObjCProtocolDecl *> Protocols,
1068  ArrayRef<SourceLocation> ProtocolLocs,
1069  SourceLocation ProtocolRAngleLoc,
1070  bool FailOnError) {
1071  QualType Result = BaseType;
1072  if (!TypeArgs.empty()) {
1073  Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1074  SourceRange(TypeArgsLAngleLoc,
1075  TypeArgsRAngleLoc),
1076  FailOnError);
1077  if (FailOnError && Result.isNull())
1078  return QualType();
1079  }
1080 
1081  if (!Protocols.empty()) {
1082  bool HasError;
1083  Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1084  HasError);
1085  if (HasError) {
1086  Diag(Loc, diag::err_invalid_protocol_qualifiers)
1087  << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1088  if (FailOnError) Result = QualType();
1089  }
1090  if (FailOnError && Result.isNull())
1091  return QualType();
1092  }
1093 
1094  return Result;
1095 }
1096 
1098  SourceLocation lAngleLoc,
1099  ArrayRef<Decl *> protocols,
1100  ArrayRef<SourceLocation> protocolLocs,
1101  SourceLocation rAngleLoc) {
1102  // Form id<protocol-list>.
1103  QualType Result = Context.getObjCObjectType(
1104  Context.ObjCBuiltinIdTy, { },
1105  llvm::makeArrayRef(
1106  (ObjCProtocolDecl * const *)protocols.data(),
1107  protocols.size()),
1108  false);
1109  Result = Context.getObjCObjectPointerType(Result);
1110 
1111  TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1112  TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1113 
1114  auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1115  ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1116 
1117  auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1118  .castAs<ObjCObjectTypeLoc>();
1119  ObjCObjectTL.setHasBaseTypeAsWritten(false);
1120  ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1121 
1122  // No type arguments.
1123  ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1124  ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1125 
1126  // Fill in protocol qualifiers.
1127  ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1128  ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1129  for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1130  ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1131 
1132  // We're done. Return the completed type to the parser.
1133  return CreateParsedType(Result, ResultTInfo);
1134 }
1135 
1137  Scope *S,
1138  SourceLocation Loc,
1139  ParsedType BaseType,
1140  SourceLocation TypeArgsLAngleLoc,
1141  ArrayRef<ParsedType> TypeArgs,
1142  SourceLocation TypeArgsRAngleLoc,
1143  SourceLocation ProtocolLAngleLoc,
1144  ArrayRef<Decl *> Protocols,
1145  ArrayRef<SourceLocation> ProtocolLocs,
1146  SourceLocation ProtocolRAngleLoc) {
1147  TypeSourceInfo *BaseTypeInfo = nullptr;
1148  QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1149  if (T.isNull())
1150  return true;
1151 
1152  // Handle missing type-source info.
1153  if (!BaseTypeInfo)
1154  BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1155 
1156  // Extract type arguments.
1157  SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1158  for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1159  TypeSourceInfo *TypeArgInfo = nullptr;
1160  QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1161  if (TypeArg.isNull()) {
1162  ActualTypeArgInfos.clear();
1163  break;
1164  }
1165 
1166  assert(TypeArgInfo && "No type source info?");
1167  ActualTypeArgInfos.push_back(TypeArgInfo);
1168  }
1169 
1170  // Build the object type.
1171  QualType Result = BuildObjCObjectType(
1172  T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1173  TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1174  ProtocolLAngleLoc,
1175  llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1176  Protocols.size()),
1177  ProtocolLocs, ProtocolRAngleLoc,
1178  /*FailOnError=*/false);
1179 
1180  if (Result == T)
1181  return BaseType;
1182 
1183  // Create source information for this type.
1184  TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1185  TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1186 
1187  // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1188  // object pointer type. Fill in source information for it.
1189  if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1190  // The '*' is implicit.
1191  ObjCObjectPointerTL.setStarLoc(SourceLocation());
1192  ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1193  }
1194 
1195  if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1196  // Protocol qualifier information.
1197  if (OTPTL.getNumProtocols() > 0) {
1198  assert(OTPTL.getNumProtocols() == Protocols.size());
1199  OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1200  OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1201  for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1202  OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1203  }
1204 
1205  // We're done. Return the completed type to the parser.
1206  return CreateParsedType(Result, ResultTInfo);
1207  }
1208 
1209  auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1210 
1211  // Type argument information.
1212  if (ObjCObjectTL.getNumTypeArgs() > 0) {
1213  assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
1214  ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1215  ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1216  for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1217  ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1218  } else {
1219  ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1220  ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1221  }
1222 
1223  // Protocol qualifier information.
1224  if (ObjCObjectTL.getNumProtocols() > 0) {
1225  assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
1226  ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1227  ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1228  for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1229  ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1230  } else {
1231  ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1232  ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1233  }
1234 
1235  // Base type.
1236  ObjCObjectTL.setHasBaseTypeAsWritten(true);
1237  if (ObjCObjectTL.getType() == T)
1238  ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1239  else
1240  ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1241 
1242  // We're done. Return the completed type to the parser.
1243  return CreateParsedType(Result, ResultTInfo);
1244 }
1245 
1246 static OpenCLAccessAttr::Spelling
1248  for (const ParsedAttr &AL : Attrs)
1249  if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1250  return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1251  return OpenCLAccessAttr::Keyword_read_only;
1252 }
1253 
1254 /// Convert the specified declspec to the appropriate type
1255 /// object.
1256 /// \param state Specifies the declarator containing the declaration specifier
1257 /// to be converted, along with other associated processing state.
1258 /// \returns The type described by the declaration specifiers. This function
1259 /// never returns null.
1260 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1261  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1262  // checking.
1263 
1264  Sema &S = state.getSema();
1265  Declarator &declarator = state.getDeclarator();
1266  DeclSpec &DS = declarator.getMutableDeclSpec();
1267  SourceLocation DeclLoc = declarator.getIdentifierLoc();
1268  if (DeclLoc.isInvalid())
1269  DeclLoc = DS.getBeginLoc();
1270 
1271  ASTContext &Context = S.Context;
1272 
1273  QualType Result;
1274  switch (DS.getTypeSpecType()) {
1275  case DeclSpec::TST_void:
1276  Result = Context.VoidTy;
1277  break;
1278  case DeclSpec::TST_char:
1280  Result = Context.CharTy;
1281  else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
1282  Result = Context.SignedCharTy;
1283  else {
1284  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1285  "Unknown TSS value");
1286  Result = Context.UnsignedCharTy;
1287  }
1288  break;
1289  case DeclSpec::TST_wchar:
1291  Result = Context.WCharTy;
1292  else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
1293  S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1294  << DS.getSpecifierName(DS.getTypeSpecType(),
1295  Context.getPrintingPolicy());
1296  Result = Context.getSignedWCharType();
1297  } else {
1298  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1299  "Unknown TSS value");
1300  S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1301  << DS.getSpecifierName(DS.getTypeSpecType(),
1302  Context.getPrintingPolicy());
1303  Result = Context.getUnsignedWCharType();
1304  }
1305  break;
1306  case DeclSpec::TST_char8:
1307  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1308  "Unknown TSS value");
1309  Result = Context.Char8Ty;
1310  break;
1311  case DeclSpec::TST_char16:
1312  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1313  "Unknown TSS value");
1314  Result = Context.Char16Ty;
1315  break;
1316  case DeclSpec::TST_char32:
1317  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1318  "Unknown TSS value");
1319  Result = Context.Char32Ty;
1320  break;
1322  // If this is a missing declspec in a block literal return context, then it
1323  // is inferred from the return statements inside the block.
1324  // The declspec is always missing in a lambda expr context; it is either
1325  // specified with a trailing return type or inferred.
1326  if (S.getLangOpts().CPlusPlus14 &&
1328  // In C++1y, a lambda's implicit return type is 'auto'.
1329  Result = Context.getAutoDeductType();
1330  break;
1331  } else if (declarator.getContext() ==
1333  checkOmittedBlockReturnType(S, declarator,
1334  Context.DependentTy)) {
1335  Result = Context.DependentTy;
1336  break;
1337  }
1338 
1339  // Unspecified typespec defaults to int in C90. However, the C90 grammar
1340  // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1341  // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1342  // Note that the one exception to this is function definitions, which are
1343  // allowed to be completely missing a declspec. This is handled in the
1344  // parser already though by it pretending to have seen an 'int' in this
1345  // case.
1346  if (S.getLangOpts().ImplicitInt) {
1347  // In C89 mode, we only warn if there is a completely missing declspec
1348  // when one is not allowed.
1349  if (DS.isEmpty()) {
1350  S.Diag(DeclLoc, diag::ext_missing_declspec)
1351  << DS.getSourceRange()
1352  << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1353  }
1354  } else if (!DS.hasTypeSpecifier()) {
1355  // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1356  // "At least one type specifier shall be given in the declaration
1357  // specifiers in each declaration, and in the specifier-qualifier list in
1358  // each struct declaration and type name."
1359  if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
1360  S.Diag(DeclLoc, diag::err_missing_type_specifier)
1361  << DS.getSourceRange();
1362 
1363  // When this occurs in C++ code, often something is very broken with the
1364  // value being declared, poison it as invalid so we don't get chains of
1365  // errors.
1366  declarator.setInvalidType(true);
1367  } else if ((S.getLangOpts().OpenCLVersion >= 200 ||
1368  S.getLangOpts().OpenCLCPlusPlus) &&
1369  DS.isTypeSpecPipe()) {
1370  S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1371  << DS.getSourceRange();
1372  declarator.setInvalidType(true);
1373  } else {
1374  S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1375  << DS.getSourceRange();
1376  }
1377  }
1378 
1379  LLVM_FALLTHROUGH;
1380  case DeclSpec::TST_int: {
1382  switch (DS.getTypeSpecWidth()) {
1383  case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
1384  case DeclSpec::TSW_short: Result = Context.ShortTy; break;
1385  case DeclSpec::TSW_long: Result = Context.LongTy; break;
1387  Result = Context.LongLongTy;
1388 
1389  // 'long long' is a C99 or C++11 feature.
1390  if (!S.getLangOpts().C99) {
1391  if (S.getLangOpts().CPlusPlus)
1392  S.Diag(DS.getTypeSpecWidthLoc(),
1393  S.getLangOpts().CPlusPlus11 ?
1394  diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1395  else
1396  S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1397  }
1398  break;
1399  }
1400  } else {
1401  switch (DS.getTypeSpecWidth()) {
1402  case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
1403  case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
1404  case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
1406  Result = Context.UnsignedLongLongTy;
1407 
1408  // 'long long' is a C99 or C++11 feature.
1409  if (!S.getLangOpts().C99) {
1410  if (S.getLangOpts().CPlusPlus)
1411  S.Diag(DS.getTypeSpecWidthLoc(),
1412  S.getLangOpts().CPlusPlus11 ?
1413  diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1414  else
1415  S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1416  }
1417  break;
1418  }
1419  }
1420  break;
1421  }
1422  case DeclSpec::TST_accum: {
1423  switch (DS.getTypeSpecWidth()) {
1424  case DeclSpec::TSW_short:
1425  Result = Context.ShortAccumTy;
1426  break;
1428  Result = Context.AccumTy;
1429  break;
1430  case DeclSpec::TSW_long:
1431  Result = Context.LongAccumTy;
1432  break;
1434  llvm_unreachable("Unable to specify long long as _Accum width");
1435  }
1436 
1438  Result = Context.getCorrespondingUnsignedType(Result);
1439 
1440  if (DS.isTypeSpecSat())
1441  Result = Context.getCorrespondingSaturatedType(Result);
1442 
1443  break;
1444  }
1445  case DeclSpec::TST_fract: {
1446  switch (DS.getTypeSpecWidth()) {
1447  case DeclSpec::TSW_short:
1448  Result = Context.ShortFractTy;
1449  break;
1451  Result = Context.FractTy;
1452  break;
1453  case DeclSpec::TSW_long:
1454  Result = Context.LongFractTy;
1455  break;
1457  llvm_unreachable("Unable to specify long long as _Fract width");
1458  }
1459 
1461  Result = Context.getCorrespondingUnsignedType(Result);
1462 
1463  if (DS.isTypeSpecSat())
1464  Result = Context.getCorrespondingSaturatedType(Result);
1465 
1466  break;
1467  }
1468  case DeclSpec::TST_int128:
1469  if (!S.Context.getTargetInfo().hasInt128Type() &&
1470  !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1471  S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1472  << "__int128";
1474  Result = Context.UnsignedInt128Ty;
1475  else
1476  Result = Context.Int128Ty;
1477  break;
1478  case DeclSpec::TST_float16:
1479  // CUDA host and device may have different _Float16 support, therefore
1480  // do not diagnose _Float16 usage to avoid false alarm.
1481  // ToDo: more precise diagnostics for CUDA.
1482  if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1483  !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1484  S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1485  << "_Float16";
1486  Result = Context.Float16Ty;
1487  break;
1488  case DeclSpec::TST_half: Result = Context.HalfTy; break;
1489  case DeclSpec::TST_float: Result = Context.FloatTy; break;
1490  case DeclSpec::TST_double:
1492  Result = Context.LongDoubleTy;
1493  else
1494  Result = Context.DoubleTy;
1495  break;
1498  !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1499  S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1500  << "__float128";
1501  Result = Context.Float128Ty;
1502  break;
1503  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
1504  break;
1505  case DeclSpec::TST_decimal32: // _Decimal32
1506  case DeclSpec::TST_decimal64: // _Decimal64
1507  case DeclSpec::TST_decimal128: // _Decimal128
1508  S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1509  Result = Context.IntTy;
1510  declarator.setInvalidType(true);
1511  break;
1512  case DeclSpec::TST_class:
1513  case DeclSpec::TST_enum:
1514  case DeclSpec::TST_union:
1515  case DeclSpec::TST_struct:
1516  case DeclSpec::TST_interface: {
1517  TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1518  if (!D) {
1519  // This can happen in C++ with ambiguous lookups.
1520  Result = Context.IntTy;
1521  declarator.setInvalidType(true);
1522  break;
1523  }
1524 
1525  // If the type is deprecated or unavailable, diagnose it.
1527 
1528  assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1529  DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
1530 
1531  // TypeQuals handled by caller.
1532  Result = Context.getTypeDeclType(D);
1533 
1534  // In both C and C++, make an ElaboratedType.
1535  ElaboratedTypeKeyword Keyword
1537  Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1538  DS.isTypeSpecOwned() ? D : nullptr);
1539  break;
1540  }
1541  case DeclSpec::TST_typename: {
1542  assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1543  DS.getTypeSpecSign() == 0 &&
1544  "Can't handle qualifiers on typedef names yet!");
1545  Result = S.GetTypeFromParser(DS.getRepAsType());
1546  if (Result.isNull()) {
1547  declarator.setInvalidType(true);
1548  }
1549 
1550  // TypeQuals handled by caller.
1551  break;
1552  }
1554  // FIXME: Preserve type source info.
1555  Result = S.GetTypeFromParser(DS.getRepAsType());
1556  assert(!Result.isNull() && "Didn't get a type for typeof?");
1557  if (!Result->isDependentType())
1558  if (const TagType *TT = Result->getAs<TagType>())
1559  S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1560  // TypeQuals handled by caller.
1561  Result = Context.getTypeOfType(Result);
1562  break;
1563  case DeclSpec::TST_typeofExpr: {
1564  Expr *E = DS.getRepAsExpr();
1565  assert(E && "Didn't get an expression for typeof?");
1566  // TypeQuals handled by caller.
1567  Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1568  if (Result.isNull()) {
1569  Result = Context.IntTy;
1570  declarator.setInvalidType(true);
1571  }
1572  break;
1573  }
1574  case DeclSpec::TST_decltype: {
1575  Expr *E = DS.getRepAsExpr();
1576  assert(E && "Didn't get an expression for decltype?");
1577  // TypeQuals handled by caller.
1578  Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1579  if (Result.isNull()) {
1580  Result = Context.IntTy;
1581  declarator.setInvalidType(true);
1582  }
1583  break;
1584  }
1586  Result = S.GetTypeFromParser(DS.getRepAsType());
1587  assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
1588  Result = S.BuildUnaryTransformType(Result,
1590  DS.getTypeSpecTypeLoc());
1591  if (Result.isNull()) {
1592  Result = Context.IntTy;
1593  declarator.setInvalidType(true);
1594  }
1595  break;
1596 
1597  case DeclSpec::TST_auto:
1598  Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
1599  break;
1600 
1602  Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1603  break;
1604 
1607  /*IsDependent*/ false);
1608  break;
1609 
1611  Result = Context.UnknownAnyTy;
1612  break;
1613 
1614  case DeclSpec::TST_atomic:
1615  Result = S.GetTypeFromParser(DS.getRepAsType());
1616  assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1617  Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1618  if (Result.isNull()) {
1619  Result = Context.IntTy;
1620  declarator.setInvalidType(true);
1621  }
1622  break;
1623 
1624 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
1625  case DeclSpec::TST_##ImgType##_t: \
1626  switch (getImageAccess(DS.getAttributes())) { \
1627  case OpenCLAccessAttr::Keyword_write_only: \
1628  Result = Context.Id##WOTy; \
1629  break; \
1630  case OpenCLAccessAttr::Keyword_read_write: \
1631  Result = Context.Id##RWTy; \
1632  break; \
1633  case OpenCLAccessAttr::Keyword_read_only: \
1634  Result = Context.Id##ROTy; \
1635  break; \
1636  } \
1637  break;
1638 #include "clang/Basic/OpenCLImageTypes.def"
1639 
1640  case DeclSpec::TST_error:
1641  Result = Context.IntTy;
1642  declarator.setInvalidType(true);
1643  break;
1644  }
1645 
1646  if (S.getLangOpts().OpenCL &&
1648  declarator.setInvalidType(true);
1649 
1650  bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1651  DS.getTypeSpecType() == DeclSpec::TST_fract;
1652 
1653  // Only fixed point types can be saturated
1654  if (DS.isTypeSpecSat() && !IsFixedPointType)
1655  S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1656  << DS.getSpecifierName(DS.getTypeSpecType(),
1657  Context.getPrintingPolicy());
1658 
1659  // Handle complex types.
1660  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1661  if (S.getLangOpts().Freestanding)
1662  S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1663  Result = Context.getComplexType(Result);
1664  } else if (DS.isTypeAltiVecVector()) {
1665  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1666  assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1668  if (DS.isTypeAltiVecPixel())
1669  VecKind = VectorType::AltiVecPixel;
1670  else if (DS.isTypeAltiVecBool())
1671  VecKind = VectorType::AltiVecBool;
1672  Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1673  }
1674 
1675  // FIXME: Imaginary.
1676  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1677  S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1678 
1679  // Before we process any type attributes, synthesize a block literal
1680  // function declarator if necessary.
1681  if (declarator.getContext() == DeclaratorContext::BlockLiteralContext)
1683 
1684  // Apply any type attributes from the decl spec. This may cause the
1685  // list of type attributes to be temporarily saved while the type
1686  // attributes are pushed around.
1687  // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1688  if (!DS.isTypeSpecPipe())
1689  processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1690 
1691  // Apply const/volatile/restrict qualifiers to T.
1692  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1693  // Warn about CV qualifiers on function types.
1694  // C99 6.7.3p8:
1695  // If the specification of a function type includes any type qualifiers,
1696  // the behavior is undefined.
1697  // C++11 [dcl.fct]p7:
1698  // The effect of a cv-qualifier-seq in a function declarator is not the
1699  // same as adding cv-qualification on top of the function type. In the
1700  // latter case, the cv-qualifiers are ignored.
1701  if (TypeQuals && Result->isFunctionType()) {
1703  S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1704  S.getLangOpts().CPlusPlus
1705  ? diag::warn_typecheck_function_qualifiers_ignored
1706  : diag::warn_typecheck_function_qualifiers_unspecified);
1707  // No diagnostic for 'restrict' or '_Atomic' applied to a
1708  // function type; we'll diagnose those later, in BuildQualifiedType.
1709  }
1710 
1711  // C++11 [dcl.ref]p1:
1712  // Cv-qualified references are ill-formed except when the
1713  // cv-qualifiers are introduced through the use of a typedef-name
1714  // or decltype-specifier, in which case the cv-qualifiers are ignored.
1715  //
1716  // There don't appear to be any other contexts in which a cv-qualified
1717  // reference type could be formed, so the 'ill-formed' clause here appears
1718  // to never happen.
1719  if (TypeQuals && Result->isReferenceType()) {
1721  S, DS, TypeQuals, Result,
1723  diag::warn_typecheck_reference_qualifiers);
1724  }
1725 
1726  // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1727  // than once in the same specifier-list or qualifier-list, either directly
1728  // or via one or more typedefs."
1729  if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1730  && TypeQuals & Result.getCVRQualifiers()) {
1731  if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1732  S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1733  << "const";
1734  }
1735 
1736  if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1737  S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1738  << "volatile";
1739  }
1740 
1741  // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1742  // produce a warning in this case.
1743  }
1744 
1745  QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1746 
1747  // If adding qualifiers fails, just use the unqualified type.
1748  if (Qualified.isNull())
1749  declarator.setInvalidType(true);
1750  else
1751  Result = Qualified;
1752  }
1753 
1754  assert(!Result.isNull() && "This function should not return a null type");
1755  return Result;
1756 }
1757 
1758 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1759  if (Entity)
1760  return Entity.getAsString();
1761 
1762  return "type name";
1763 }
1764 
1766  Qualifiers Qs, const DeclSpec *DS) {
1767  if (T.isNull())
1768  return QualType();
1769 
1770  // Ignore any attempt to form a cv-qualified reference.
1771  if (T->isReferenceType()) {
1772  Qs.removeConst();
1773  Qs.removeVolatile();
1774  }
1775 
1776  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1777  // object or incomplete types shall not be restrict-qualified."
1778  if (Qs.hasRestrict()) {
1779  unsigned DiagID = 0;
1780  QualType ProblemTy;
1781 
1782  if (T->isAnyPointerType() || T->isReferenceType() ||
1783  T->isMemberPointerType()) {
1784  QualType EltTy;
1785  if (T->isObjCObjectPointerType())
1786  EltTy = T;
1787  else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1788  EltTy = PTy->getPointeeType();
1789  else
1790  EltTy = T->getPointeeType();
1791 
1792  // If we have a pointer or reference, the pointee must have an object
1793  // incomplete type.
1794  if (!EltTy->isIncompleteOrObjectType()) {
1795  DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1796  ProblemTy = EltTy;
1797  }
1798  } else if (!T->isDependentType()) {
1799  DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1800  ProblemTy = T;
1801  }
1802 
1803  if (DiagID) {
1804  Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1805  Qs.removeRestrict();
1806  }
1807  }
1808 
1809  return Context.getQualifiedType(T, Qs);
1810 }
1811 
1813  unsigned CVRAU, const DeclSpec *DS) {
1814  if (T.isNull())
1815  return QualType();
1816 
1817  // Ignore any attempt to form a cv-qualified reference.
1818  if (T->isReferenceType())
1819  CVRAU &=
1821 
1822  // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1823  // TQ_unaligned;
1824  unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1825 
1826  // C11 6.7.3/5:
1827  // If the same qualifier appears more than once in the same
1828  // specifier-qualifier-list, either directly or via one or more typedefs,
1829  // the behavior is the same as if it appeared only once.
1830  //
1831  // It's not specified what happens when the _Atomic qualifier is applied to
1832  // a type specified with the _Atomic specifier, but we assume that this
1833  // should be treated as if the _Atomic qualifier appeared multiple times.
1834  if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1835  // C11 6.7.3/5:
1836  // If other qualifiers appear along with the _Atomic qualifier in a
1837  // specifier-qualifier-list, the resulting type is the so-qualified
1838  // atomic type.
1839  //
1840  // Don't need to worry about array types here, since _Atomic can't be
1841  // applied to such types.
1843  T = BuildAtomicType(QualType(Split.Ty, 0),
1844  DS ? DS->getAtomicSpecLoc() : Loc);
1845  if (T.isNull())
1846  return T;
1847  Split.Quals.addCVRQualifiers(CVR);
1848  return BuildQualifiedType(T, Loc, Split.Quals);
1849  }
1850 
1853  return BuildQualifiedType(T, Loc, Q, DS);
1854 }
1855 
1856 /// Build a paren type including \p T.
1858  return Context.getParenType(T);
1859 }
1860 
1861 /// Given that we're building a pointer or reference to the given
1863  SourceLocation loc,
1864  bool isReference) {
1865  // Bail out if retention is unrequired or already specified.
1866  if (!type->isObjCLifetimeType() ||
1868  return type;
1869 
1871 
1872  // If the object type is const-qualified, we can safely use
1873  // __unsafe_unretained. This is safe (because there are no read
1874  // barriers), and it'll be safe to coerce anything but __weak* to
1875  // the resulting type.
1876  if (type.isConstQualified()) {
1877  implicitLifetime = Qualifiers::OCL_ExplicitNone;
1878 
1879  // Otherwise, check whether the static type does not require
1880  // retaining. This currently only triggers for Class (possibly
1881  // protocol-qualifed, and arrays thereof).
1882  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1883  implicitLifetime = Qualifiers::OCL_ExplicitNone;
1884 
1885  // If we are in an unevaluated context, like sizeof, skip adding a
1886  // qualification.
1887  } else if (S.isUnevaluatedContext()) {
1888  return type;
1889 
1890  // If that failed, give an error and recover using __strong. __strong
1891  // is the option most likely to prevent spurious second-order diagnostics,
1892  // like when binding a reference to a field.
1893  } else {
1894  // These types can show up in private ivars in system headers, so
1895  // we need this to not be an error in those cases. Instead we
1896  // want to delay.
1900  diag::err_arc_indirect_no_ownership, type, isReference));
1901  } else {
1902  S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1903  }
1904  implicitLifetime = Qualifiers::OCL_Strong;
1905  }
1906  assert(implicitLifetime && "didn't infer any lifetime!");
1907 
1908  Qualifiers qs;
1909  qs.addObjCLifetime(implicitLifetime);
1910  return S.Context.getQualifiedType(type, qs);
1911 }
1912 
1913 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1914  std::string Quals = FnTy->getMethodQuals().getAsString();
1915 
1916  switch (FnTy->getRefQualifier()) {
1917  case RQ_None:
1918  break;
1919 
1920  case RQ_LValue:
1921  if (!Quals.empty())
1922  Quals += ' ';
1923  Quals += '&';
1924  break;
1925 
1926  case RQ_RValue:
1927  if (!Quals.empty())
1928  Quals += ' ';
1929  Quals += "&&";
1930  break;
1931  }
1932 
1933  return Quals;
1934 }
1935 
1936 namespace {
1937 /// Kinds of declarator that cannot contain a qualified function type.
1938 ///
1939 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1940 /// a function type with a cv-qualifier or a ref-qualifier can only appear
1941 /// at the topmost level of a type.
1942 ///
1943 /// Parens and member pointers are permitted. We don't diagnose array and
1944 /// function declarators, because they don't allow function types at all.
1945 ///
1946 /// The values of this enum are used in diagnostics.
1947 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1948 } // end anonymous namespace
1949 
1950 /// Check whether the type T is a qualified function type, and if it is,
1951 /// diagnose that it cannot be contained within the given kind of declarator.
1953  QualifiedFunctionKind QFK) {
1954  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1955  const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1956  if (!FPT || (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1957  return false;
1958 
1959  S.Diag(Loc, diag::err_compound_qualified_function_type)
1960  << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1962  return true;
1963 }
1964 
1965 /// Build a pointer type.
1966 ///
1967 /// \param T The type to which we'll be building a pointer.
1968 ///
1969 /// \param Loc The location of the entity whose type involves this
1970 /// pointer type or, if there is no such entity, the location of the
1971 /// type that will have pointer type.
1972 ///
1973 /// \param Entity The name of the entity that involves the pointer
1974 /// type, if known.
1975 ///
1976 /// \returns A suitable pointer type, if there are no
1977 /// errors. Otherwise, returns a NULL type.
1979  SourceLocation Loc, DeclarationName Entity) {
1980  if (T->isReferenceType()) {
1981  // C++ 8.3.2p4: There shall be no ... pointers to references ...
1982  Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1983  << getPrintableNameForEntity(Entity) << T;
1984  return QualType();
1985  }
1986 
1987  if (T->isFunctionType() && getLangOpts().OpenCL) {
1988  Diag(Loc, diag::err_opencl_function_pointer);
1989  return QualType();
1990  }
1991 
1992  if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1993  return QualType();
1994 
1995  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1996 
1997  // In ARC, it is forbidden to build pointers to unqualified pointers.
1998  if (getLangOpts().ObjCAutoRefCount)
1999  T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2000 
2001  // Build the pointer type.
2002  return Context.getPointerType(T);
2003 }
2004 
2005 /// Build a reference type.
2006 ///
2007 /// \param T The type to which we'll be building a reference.
2008 ///
2009 /// \param Loc The location of the entity whose type involves this
2010 /// reference type or, if there is no such entity, the location of the
2011 /// type that will have reference type.
2012 ///
2013 /// \param Entity The name of the entity that involves the reference
2014 /// type, if known.
2015 ///
2016 /// \returns A suitable reference type, if there are no
2017 /// errors. Otherwise, returns a NULL type.
2019  SourceLocation Loc,
2020  DeclarationName Entity) {
2021  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
2022  "Unresolved overloaded function type");
2023 
2024  // C++0x [dcl.ref]p6:
2025  // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2026  // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2027  // type T, an attempt to create the type "lvalue reference to cv TR" creates
2028  // the type "lvalue reference to T", while an attempt to create the type
2029  // "rvalue reference to cv TR" creates the type TR.
2030  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2031 
2032  // C++ [dcl.ref]p4: There shall be no references to references.
2033  //
2034  // According to C++ DR 106, references to references are only
2035  // diagnosed when they are written directly (e.g., "int & &"),
2036  // but not when they happen via a typedef:
2037  //
2038  // typedef int& intref;
2039  // typedef intref& intref2;
2040  //
2041  // Parser::ParseDeclaratorInternal diagnoses the case where
2042  // references are written directly; here, we handle the
2043  // collapsing of references-to-references as described in C++0x.
2044  // DR 106 and 540 introduce reference-collapsing into C++98/03.
2045 
2046  // C++ [dcl.ref]p1:
2047  // A declarator that specifies the type "reference to cv void"
2048  // is ill-formed.
2049  if (T->isVoidType()) {
2050  Diag(Loc, diag::err_reference_to_void);
2051  return QualType();
2052  }
2053 
2054  if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2055  return QualType();
2056 
2057  // In ARC, it is forbidden to build references to unqualified pointers.
2058  if (getLangOpts().ObjCAutoRefCount)
2059  T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2060 
2061  // Handle restrict on references.
2062  if (LValueRef)
2063  return Context.getLValueReferenceType(T, SpelledAsLValue);
2064  return Context.getRValueReferenceType(T);
2065 }
2066 
2067 /// Build a Read-only Pipe type.
2068 ///
2069 /// \param T The type to which we'll be building a Pipe.
2070 ///
2071 /// \param Loc We do not use it for now.
2072 ///
2073 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2074 /// NULL type.
2076  return Context.getReadPipeType(T);
2077 }
2078 
2079 /// Build a Write-only Pipe type.
2080 ///
2081 /// \param T The type to which we'll be building a Pipe.
2082 ///
2083 /// \param Loc We do not use it for now.
2084 ///
2085 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2086 /// NULL type.
2088  return Context.getWritePipeType(T);
2089 }
2090 
2091 /// Check whether the specified array size makes the array type a VLA. If so,
2092 /// return true, if not, return the size of the array in SizeVal.
2093 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
2094  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2095  // (like gnu99, but not c99) accept any evaluatable value as an extension.
2096  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2097  public:
2098  VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
2099 
2100  void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
2101  }
2102 
2103  void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
2104  S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
2105  }
2106  } Diagnoser;
2107 
2108  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
2109  S.LangOpts.GNUMode ||
2110  S.LangOpts.OpenCL).isInvalid();
2111 }
2112 
2113 /// Build an array type.
2114 ///
2115 /// \param T The type of each element in the array.
2116 ///
2117 /// \param ASM C99 array size modifier (e.g., '*', 'static').
2118 ///
2119 /// \param ArraySize Expression describing the size of the array.
2120 ///
2121 /// \param Brackets The range from the opening '[' to the closing ']'.
2122 ///
2123 /// \param Entity The name of the entity that involves the array
2124 /// type, if known.
2125 ///
2126 /// \returns A suitable array type, if there are no errors. Otherwise,
2127 /// returns a NULL type.
2129  Expr *ArraySize, unsigned Quals,
2130  SourceRange Brackets, DeclarationName Entity) {
2131 
2132  SourceLocation Loc = Brackets.getBegin();
2133  if (getLangOpts().CPlusPlus) {
2134  // C++ [dcl.array]p1:
2135  // T is called the array element type; this type shall not be a reference
2136  // type, the (possibly cv-qualified) type void, a function type or an
2137  // abstract class type.
2138  //
2139  // C++ [dcl.array]p3:
2140  // When several "array of" specifications are adjacent, [...] only the
2141  // first of the constant expressions that specify the bounds of the arrays
2142  // may be omitted.
2143  //
2144  // Note: function types are handled in the common path with C.
2145  if (T->isReferenceType()) {
2146  Diag(Loc, diag::err_illegal_decl_array_of_references)
2147  << getPrintableNameForEntity(Entity) << T;
2148  return QualType();
2149  }
2150 
2151  if (T->isVoidType() || T->isIncompleteArrayType()) {
2152  Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
2153  return QualType();
2154  }
2155 
2156  if (RequireNonAbstractType(Brackets.getBegin(), T,
2157  diag::err_array_of_abstract_type))
2158  return QualType();
2159 
2160  // Mentioning a member pointer type for an array type causes us to lock in
2161  // an inheritance model, even if it's inside an unused typedef.
2162  if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2163  if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2164  if (!MPTy->getClass()->isDependentType())
2165  (void)isCompleteType(Loc, T);
2166 
2167  } else {
2168  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2169  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2170  if (RequireCompleteType(Loc, T,
2171  diag::err_illegal_decl_array_incomplete_type))
2172  return QualType();
2173  }
2174 
2175  if (T->isFunctionType()) {
2176  Diag(Loc, diag::err_illegal_decl_array_of_functions)
2177  << getPrintableNameForEntity(Entity) << T;
2178  return QualType();
2179  }
2180 
2181  if (const RecordType *EltTy = T->getAs<RecordType>()) {
2182  // If the element type is a struct or union that contains a variadic
2183  // array, accept it as a GNU extension: C99 6.7.2.1p2.
2184  if (EltTy->getDecl()->hasFlexibleArrayMember())
2185  Diag(Loc, diag::ext_flexible_array_in_array) << T;
2186  } else if (T->isObjCObjectType()) {
2187  Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2188  return QualType();
2189  }
2190 
2191  // Do placeholder conversions on the array size expression.
2192  if (ArraySize && ArraySize->hasPlaceholderType()) {
2193  ExprResult Result = CheckPlaceholderExpr(ArraySize);
2194  if (Result.isInvalid()) return QualType();
2195  ArraySize = Result.get();
2196  }
2197 
2198  // Do lvalue-to-rvalue conversions on the array size expression.
2199  if (ArraySize && !ArraySize->isRValue()) {
2200  ExprResult Result = DefaultLvalueConversion(ArraySize);
2201  if (Result.isInvalid())
2202  return QualType();
2203 
2204  ArraySize = Result.get();
2205  }
2206 
2207  // C99 6.7.5.2p1: The size expression shall have integer type.
2208  // C++11 allows contextual conversions to such types.
2209  if (!getLangOpts().CPlusPlus11 &&
2210  ArraySize && !ArraySize->isTypeDependent() &&
2211  !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2212  Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2213  << ArraySize->getType() << ArraySize->getSourceRange();
2214  return QualType();
2215  }
2216 
2217  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2218  if (!ArraySize) {
2219  if (ASM == ArrayType::Star)
2220  T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2221  else
2222  T = Context.getIncompleteArrayType(T, ASM, Quals);
2223  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2224  T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2225  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
2226  !T->isConstantSizeType()) ||
2227  isArraySizeVLA(*this, ArraySize, ConstVal)) {
2228  // Even in C++11, don't allow contextual conversions in the array bound
2229  // of a VLA.
2230  if (getLangOpts().CPlusPlus11 &&
2231  !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2232  Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2233  << ArraySize->getType() << ArraySize->getSourceRange();
2234  return QualType();
2235  }
2236 
2237  // C99: an array with an element type that has a non-constant-size is a VLA.
2238  // C99: an array with a non-ICE size is a VLA. We accept any expression
2239  // that we can fold to a non-zero positive value as an extension.
2240  T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2241  } else {
2242  // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2243  // have a value greater than zero.
2244  if (ConstVal.isSigned() && ConstVal.isNegative()) {
2245  if (Entity)
2246  Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2247  << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
2248  else
2249  Diag(ArraySize->getBeginLoc(), diag::err_typecheck_negative_array_size)
2250  << ArraySize->getSourceRange();
2251  return QualType();
2252  }
2253  if (ConstVal == 0) {
2254  // GCC accepts zero sized static arrays. We allow them when
2255  // we're not in a SFINAE context.
2256  Diag(ArraySize->getBeginLoc(), isSFINAEContext()
2257  ? diag::err_typecheck_zero_array_size
2258  : diag::ext_typecheck_zero_array_size)
2259  << ArraySize->getSourceRange();
2260 
2261  if (ASM == ArrayType::Static) {
2262  Diag(ArraySize->getBeginLoc(),
2263  diag::warn_typecheck_zero_static_array_size)
2264  << ArraySize->getSourceRange();
2265  ASM = ArrayType::Normal;
2266  }
2267  } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
2268  !T->isIncompleteType() && !T->isUndeducedType()) {
2269  // Is the array too large?
2270  unsigned ActiveSizeBits
2271  = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
2272  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2273  Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2274  << ConstVal.toString(10) << ArraySize->getSourceRange();
2275  return QualType();
2276  }
2277  }
2278 
2279  T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
2280  }
2281 
2282  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2283  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
2284  Diag(Loc, diag::err_opencl_vla);
2285  return QualType();
2286  }
2287 
2288  if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2289  // CUDA device code and some other targets don't support VLAs.
2290  targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2291  ? diag::err_cuda_vla
2292  : diag::err_vla_unsupported)
2293  << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2294  ? CurrentCUDATarget()
2295  : CFT_InvalidTarget);
2296  }
2297 
2298  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
2299  if (!getLangOpts().C99) {
2300  if (T->isVariableArrayType()) {
2301  // Prohibit the use of VLAs during template argument deduction.
2302  if (isSFINAEContext()) {
2303  Diag(Loc, diag::err_vla_in_sfinae);
2304  return QualType();
2305  }
2306  // Just extwarn about VLAs.
2307  else
2308  Diag(Loc, diag::ext_vla);
2309  } else if (ASM != ArrayType::Normal || Quals != 0)
2310  Diag(Loc,
2311  getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
2312  : diag::ext_c99_array_usage) << ASM;
2313  }
2314 
2315  if (T->isVariableArrayType()) {
2316  // Warn about VLAs for -Wvla.
2317  Diag(Loc, diag::warn_vla_used);
2318  }
2319 
2320  // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2321  // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2322  // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2323  if (getLangOpts().OpenCL) {
2324  const QualType ArrType = Context.getBaseElementType(T);
2325  if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2326  ArrType->isSamplerT() || ArrType->isImageType()) {
2327  Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2328  return QualType();
2329  }
2330  }
2331 
2332  return T;
2333 }
2334 
2336  SourceLocation AttrLoc) {
2337  // The base type must be integer (not Boolean or enumeration) or float, and
2338  // can't already be a vector.
2339  if (!CurType->isDependentType() &&
2340  (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2341  (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) {
2342  Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2343  return QualType();
2344  }
2345 
2346  if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2347  return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2349 
2350  llvm::APSInt VecSize(32);
2351  if (!SizeExpr->isIntegerConstantExpr(VecSize, Context)) {
2352  Diag(AttrLoc, diag::err_attribute_argument_type)
2353  << "vector_size" << AANT_ArgumentIntegerConstant
2354  << SizeExpr->getSourceRange();
2355  return QualType();
2356  }
2357 
2358  if (CurType->isDependentType())
2359  return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2361 
2362  unsigned VectorSize = static_cast<unsigned>(VecSize.getZExtValue() * 8);
2363  unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2364 
2365  if (VectorSize == 0) {
2366  Diag(AttrLoc, diag::err_attribute_zero_size) << SizeExpr->getSourceRange();
2367  return QualType();
2368  }
2369 
2370  // vecSize is specified in bytes - convert to bits.
2371  if (VectorSize % TypeSize) {
2372  Diag(AttrLoc, diag::err_attribute_invalid_size)
2373  << SizeExpr->getSourceRange();
2374  return QualType();
2375  }
2376 
2377  if (VectorType::isVectorSizeTooLarge(VectorSize / TypeSize)) {
2378  Diag(AttrLoc, diag::err_attribute_size_too_large)
2379  << SizeExpr->getSourceRange();
2380  return QualType();
2381  }
2382 
2383  return Context.getVectorType(CurType, VectorSize / TypeSize,
2385 }
2386 
2387 /// Build an ext-vector type.
2388 ///
2389 /// Run the required checks for the extended vector type.
2391  SourceLocation AttrLoc) {
2392  // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2393  // in conjunction with complex types (pointers, arrays, functions, etc.).
2394  //
2395  // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2396  // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2397  // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2398  // of bool aren't allowed.
2399  if ((!T->isDependentType() && !T->isIntegerType() &&
2400  !T->isRealFloatingType()) ||
2401  T->isBooleanType()) {
2402  Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2403  return QualType();
2404  }
2405 
2406  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2407  llvm::APSInt vecSize(32);
2408  if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
2409  Diag(AttrLoc, diag::err_attribute_argument_type)
2410  << "ext_vector_type" << AANT_ArgumentIntegerConstant
2411  << ArraySize->getSourceRange();
2412  return QualType();
2413  }
2414 
2415  // Unlike gcc's vector_size attribute, the size is specified as the
2416  // number of elements, not the number of bytes.
2417  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2418 
2419  if (vectorSize == 0) {
2420  Diag(AttrLoc, diag::err_attribute_zero_size)
2421  << ArraySize->getSourceRange();
2422  return QualType();
2423  }
2424 
2425  if (VectorType::isVectorSizeTooLarge(vectorSize)) {
2426  Diag(AttrLoc, diag::err_attribute_size_too_large)
2427  << ArraySize->getSourceRange();
2428  return QualType();
2429  }
2430 
2431  return Context.getExtVectorType(T, vectorSize);
2432  }
2433 
2434  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2435 }
2436 
2438  if (T->isArrayType() || T->isFunctionType()) {
2439  Diag(Loc, diag::err_func_returning_array_function)
2440  << T->isFunctionType() << T;
2441  return true;
2442  }
2443 
2444  // Functions cannot return half FP.
2445  if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2446  Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2447  FixItHint::CreateInsertion(Loc, "*");
2448  return true;
2449  }
2450 
2451  // Methods cannot return interface types. All ObjC objects are
2452  // passed by reference.
2453  if (T->isObjCObjectType()) {
2454  Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2455  << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2456  return true;
2457  }
2458 
2461  checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2462  NTCUK_Destruct|NTCUK_Copy);
2463 
2464  return false;
2465 }
2466 
2467 /// Check the extended parameter information. Most of the necessary
2468 /// checking should occur when applying the parameter attribute; the
2469 /// only other checks required are positional restrictions.
2472  llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2473  assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2474 
2475  bool hasCheckedSwiftCall = false;
2476  auto checkForSwiftCC = [&](unsigned paramIndex) {
2477  // Only do this once.
2478  if (hasCheckedSwiftCall) return;
2479  hasCheckedSwiftCall = true;
2480  if (EPI.ExtInfo.getCC() == CC_Swift) return;
2481  S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2482  << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
2483  };
2484 
2485  for (size_t paramIndex = 0, numParams = paramTypes.size();
2486  paramIndex != numParams; ++paramIndex) {
2487  switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2488  // Nothing interesting to check for orindary-ABI parameters.
2490  continue;
2491 
2492  // swift_indirect_result parameters must be a prefix of the function
2493  // arguments.
2495  checkForSwiftCC(paramIndex);
2496  if (paramIndex != 0 &&
2497  EPI.ExtParameterInfos[paramIndex - 1].getABI()
2499  S.Diag(getParamLoc(paramIndex),
2500  diag::err_swift_indirect_result_not_first);
2501  }
2502  continue;
2503 
2505  checkForSwiftCC(paramIndex);
2506  continue;
2507 
2508  // swift_error parameters must be preceded by a swift_context parameter.
2510  checkForSwiftCC(paramIndex);
2511  if (paramIndex == 0 ||
2512  EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2514  S.Diag(getParamLoc(paramIndex),
2515  diag::err_swift_error_result_not_after_swift_context);
2516  }
2517  continue;
2518  }
2519  llvm_unreachable("bad ABI kind");
2520  }
2521 }
2522 
2524  MutableArrayRef<QualType> ParamTypes,
2525  SourceLocation Loc, DeclarationName Entity,
2526  const FunctionProtoType::ExtProtoInfo &EPI) {
2527  bool Invalid = false;
2528 
2529  Invalid |= CheckFunctionReturnType(T, Loc);
2530 
2531  for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2532  // FIXME: Loc is too inprecise here, should use proper locations for args.
2533  QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2534  if (ParamType->isVoidType()) {
2535  Diag(Loc, diag::err_param_with_void_type);
2536  Invalid = true;
2537  } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2538  // Disallow half FP arguments.
2539  Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2540  FixItHint::CreateInsertion(Loc, "*");
2541  Invalid = true;
2542  }
2543 
2544  ParamTypes[Idx] = ParamType;
2545  }
2546 
2547  if (EPI.ExtParameterInfos) {
2548  checkExtParameterInfos(*this, ParamTypes, EPI,
2549  [=](unsigned i) { return Loc; });
2550  }
2551 
2552  if (EPI.ExtInfo.getProducesResult()) {
2553  // This is just a warning, so we can't fail to build if we see it.
2554  checkNSReturnsRetainedReturnType(Loc, T);
2555  }
2556 
2557  if (Invalid)
2558  return QualType();
2559 
2560  return Context.getFunctionType(T, ParamTypes, EPI);
2561 }
2562 
2563 /// Build a member pointer type \c T Class::*.
2564 ///
2565 /// \param T the type to which the member pointer refers.
2566 /// \param Class the class type into which the member pointer points.
2567 /// \param Loc the location where this type begins
2568 /// \param Entity the name of the entity that will have this member pointer type
2569 ///
2570 /// \returns a member pointer type, if successful, or a NULL type if there was
2571 /// an error.
2573  SourceLocation Loc,
2574  DeclarationName Entity) {
2575  // Verify that we're not building a pointer to pointer to function with
2576  // exception specification.
2577  if (CheckDistantExceptionSpec(T)) {
2578  Diag(Loc, diag::err_distant_exception_spec);
2579  return QualType();
2580  }
2581 
2582  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2583  // with reference type, or "cv void."
2584  if (T->isReferenceType()) {
2585  Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2586  << getPrintableNameForEntity(Entity) << T;
2587  return QualType();
2588  }
2589 
2590  if (T->isVoidType()) {
2591  Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2592  << getPrintableNameForEntity(Entity);
2593  return QualType();
2594  }
2595 
2596  if (!Class->isDependentType() && !Class->isRecordType()) {
2597  Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2598  return QualType();
2599  }
2600 
2601  // Adjust the default free function calling convention to the default method
2602  // calling convention.
2603  bool IsCtorOrDtor =
2606  if (T->isFunctionType())
2607  adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2608 
2609  return Context.getMemberPointerType(T, Class.getTypePtr());
2610 }
2611 
2612 /// Build a block pointer type.
2613 ///
2614 /// \param T The type to which we'll be building a block pointer.
2615 ///
2616 /// \param Loc The source location, used for diagnostics.
2617 ///
2618 /// \param Entity The name of the entity that involves the block pointer
2619 /// type, if known.
2620 ///
2621 /// \returns A suitable block pointer type, if there are no
2622 /// errors. Otherwise, returns a NULL type.
2624  SourceLocation Loc,
2625  DeclarationName Entity) {
2626  if (!T->isFunctionType()) {
2627  Diag(Loc, diag::err_nonfunction_block_type);
2628  return QualType();
2629  }
2630 
2631  if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2632  return QualType();
2633 
2634  return Context.getBlockPointerType(T);
2635 }
2636 
2638  QualType QT = Ty.get();
2639  if (QT.isNull()) {
2640  if (TInfo) *TInfo = nullptr;
2641  return QualType();
2642  }
2643 
2644  TypeSourceInfo *DI = nullptr;
2645  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2646  QT = LIT->getType();
2647  DI = LIT->getTypeSourceInfo();
2648  }
2649 
2650  if (TInfo) *TInfo = DI;
2651  return QT;
2652 }
2653 
2654 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2655  Qualifiers::ObjCLifetime ownership,
2656  unsigned chunkIndex);
2657 
2658 /// Given that this is the declaration of a parameter under ARC,
2659 /// attempt to infer attributes and such for pointer-to-whatever
2660 /// types.
2661 static void inferARCWriteback(TypeProcessingState &state,
2662  QualType &declSpecType) {
2663  Sema &S = state.getSema();
2664  Declarator &declarator = state.getDeclarator();
2665 
2666  // TODO: should we care about decl qualifiers?
2667 
2668  // Check whether the declarator has the expected form. We walk
2669  // from the inside out in order to make the block logic work.
2670  unsigned outermostPointerIndex = 0;
2671  bool isBlockPointer = false;
2672  unsigned numPointers = 0;
2673  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2674  unsigned chunkIndex = i;
2675  DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2676  switch (chunk.Kind) {
2678  // Ignore parens.
2679  break;
2680 
2683  // Count the number of pointers. Treat references
2684  // interchangeably as pointers; if they're mis-ordered, normal
2685  // type building will discover that.
2686  outermostPointerIndex = chunkIndex;
2687  numPointers++;
2688  break;
2689 
2691  // If we have a pointer to block pointer, that's an acceptable
2692  // indirect reference; anything else is not an application of
2693  // the rules.
2694  if (numPointers != 1) return;
2695  numPointers++;
2696  outermostPointerIndex = chunkIndex;
2697  isBlockPointer = true;
2698 
2699  // We don't care about pointer structure in return values here.
2700  goto done;
2701 
2702  case DeclaratorChunk::Array: // suppress if written (id[])?
2705  case DeclaratorChunk::Pipe:
2706  return;
2707  }
2708  }
2709  done:
2710 
2711  // If we have *one* pointer, then we want to throw the qualifier on
2712  // the declaration-specifiers, which means that it needs to be a
2713  // retainable object type.
2714  if (numPointers == 1) {
2715  // If it's not a retainable object type, the rule doesn't apply.
2716  if (!declSpecType->isObjCRetainableType()) return;
2717 
2718  // If it already has lifetime, don't do anything.
2719  if (declSpecType.getObjCLifetime()) return;
2720 
2721  // Otherwise, modify the type in-place.
2722  Qualifiers qs;
2723 
2724  if (declSpecType->isObjCARCImplicitlyUnretainedType())
2726  else
2728  declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2729 
2730  // If we have *two* pointers, then we want to throw the qualifier on
2731  // the outermost pointer.
2732  } else if (numPointers == 2) {
2733  // If we don't have a block pointer, we need to check whether the
2734  // declaration-specifiers gave us something that will turn into a
2735  // retainable object pointer after we slap the first pointer on it.
2736  if (!isBlockPointer && !declSpecType->isObjCObjectType())
2737  return;
2738 
2739  // Look for an explicit lifetime attribute there.
2740  DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2741  if (chunk.Kind != DeclaratorChunk::Pointer &&
2743  return;
2744  for (const ParsedAttr &AL : chunk.getAttrs())
2745  if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2746  return;
2747 
2749  outermostPointerIndex);
2750 
2751  // Any other number of pointers/references does not trigger the rule.
2752  } else return;
2753 
2754  // TODO: mark whether we did this inference?
2755 }
2756 
2757 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2758  SourceLocation FallbackLoc,
2759  SourceLocation ConstQualLoc,
2760  SourceLocation VolatileQualLoc,
2761  SourceLocation RestrictQualLoc,
2762  SourceLocation AtomicQualLoc,
2763  SourceLocation UnalignedQualLoc) {
2764  if (!Quals)
2765  return;
2766 
2767  struct Qual {
2768  const char *Name;
2769  unsigned Mask;
2770  SourceLocation Loc;
2771  } const QualKinds[5] = {
2772  { "const", DeclSpec::TQ_const, ConstQualLoc },
2773  { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2774  { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2775  { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2776  { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2777  };
2778 
2779  SmallString<32> QualStr;
2780  unsigned NumQuals = 0;
2781  SourceLocation Loc;
2782  FixItHint FixIts[5];
2783 
2784  // Build a string naming the redundant qualifiers.
2785  for (auto &E : QualKinds) {
2786  if (Quals & E.Mask) {
2787  if (!QualStr.empty()) QualStr += ' ';
2788  QualStr += E.Name;
2789 
2790  // If we have a location for the qualifier, offer a fixit.
2791  SourceLocation QualLoc = E.Loc;
2792  if (QualLoc.isValid()) {
2793  FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2794  if (Loc.isInvalid() ||
2795  getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2796  Loc = QualLoc;
2797  }
2798 
2799  ++NumQuals;
2800  }
2801  }
2802 
2803  Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2804  << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2805 }
2806 
2807 // Diagnose pointless type qualifiers on the return type of a function.
2809  Declarator &D,
2810  unsigned FunctionChunkIndex) {
2811  if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2812  // FIXME: TypeSourceInfo doesn't preserve location information for
2813  // qualifiers.
2814  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2815  RetTy.getLocalCVRQualifiers(),
2816  D.getIdentifierLoc());
2817  return;
2818  }
2819 
2820  for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2821  End = D.getNumTypeObjects();
2822  OuterChunkIndex != End; ++OuterChunkIndex) {
2823  DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2824  switch (OuterChunk.Kind) {
2826  continue;
2827 
2828  case DeclaratorChunk::Pointer: {
2829  DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2831  diag::warn_qual_return_type,
2832  PTI.TypeQuals,
2833  SourceLocation(),
2839  return;
2840  }
2841 
2847  case DeclaratorChunk::Pipe:
2848  // FIXME: We can't currently provide an accurate source location and a
2849  // fix-it hint for these.
2850  unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2851  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2852  RetTy.getCVRQualifiers() | AtomicQual,
2853  D.getIdentifierLoc());
2854  return;
2855  }
2856 
2857  llvm_unreachable("unknown declarator chunk kind");
2858  }
2859 
2860  // If the qualifiers come from a conversion function type, don't diagnose
2861  // them -- they're not necessarily redundant, since such a conversion
2862  // operator can be explicitly called as "x.operator const int()".
2864  return;
2865 
2866  // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2867  // which are present there.
2868  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2870  D.getIdentifierLoc(),
2876 }
2877 
2878 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2879  TypeSourceInfo *&ReturnTypeInfo) {
2880  Sema &SemaRef = state.getSema();
2881  Declarator &D = state.getDeclarator();
2882  QualType T;
2883  ReturnTypeInfo = nullptr;
2884 
2885  // The TagDecl owned by the DeclSpec.
2886  TagDecl *OwnedTagDecl = nullptr;
2887 
2888  switch (D.getName().getKind()) {
2894  T = ConvertDeclSpecToType(state);
2895 
2896  if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2897  OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2898  // Owned declaration is embedded in declarator.
2899  OwnedTagDecl->setEmbeddedInDeclarator(true);
2900  }
2901  break;
2902 
2906  // Constructors and destructors don't have return types. Use
2907  // "void" instead.
2908  T = SemaRef.Context.VoidTy;
2909  processTypeAttrs(state, T, TAL_DeclSpec,
2911  break;
2912 
2914  // Deduction guides have a trailing return type and no type in their
2915  // decl-specifier sequence. Use a placeholder return type for now.
2916  T = SemaRef.Context.DependentTy;
2917  break;
2918 
2920  // The result type of a conversion function is the type that it
2921  // converts to.
2923  &ReturnTypeInfo);
2924  break;
2925  }
2926 
2927  if (!D.getAttributes().empty())
2929 
2930  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2931  if (DeducedType *Deduced = T->getContainedDeducedType()) {
2932  AutoType *Auto = dyn_cast<AutoType>(Deduced);
2933  int Error = -1;
2934 
2935  // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
2936  // class template argument deduction)?
2937  bool IsCXXAutoType =
2938  (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
2939  bool IsDeducedReturnType = false;
2940 
2941  switch (D.getContext()) {
2943  // Declared return type of a lambda-declarator is implicit and is always
2944  // 'auto'.
2945  break;
2949  Error = 0;
2950  break;
2952  // In C++14, generic lambdas allow 'auto' in their parameters.
2953  if (!SemaRef.getLangOpts().CPlusPlus14 ||
2954  !Auto || Auto->getKeyword() != AutoTypeKeyword::Auto)
2955  Error = 16;
2956  else {
2957  // If auto is mentioned in a lambda parameter context, convert it to a
2958  // template parameter type.
2959  sema::LambdaScopeInfo *LSI = SemaRef.getCurLambda();
2960  assert(LSI && "No LambdaScopeInfo on the stack!");
2961  const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
2962  const unsigned AutoParameterPosition = LSI->TemplateParams.size();
2963  const bool IsParameterPack = D.hasEllipsis();
2964 
2965  // Create the TemplateTypeParmDecl here to retrieve the corresponding
2966  // template parameter type. Template parameters are temporarily added
2967  // to the TU until the associated TemplateDecl is created.
2968  TemplateTypeParmDecl *CorrespondingTemplateParam =
2970  SemaRef.Context, SemaRef.Context.getTranslationUnitDecl(),
2971  /*KeyLoc*/ SourceLocation(), /*NameLoc*/ D.getBeginLoc(),
2972  TemplateParameterDepth, AutoParameterPosition,
2973  /*Identifier*/ nullptr, false, IsParameterPack);
2974  CorrespondingTemplateParam->setImplicit();
2975  LSI->TemplateParams.push_back(CorrespondingTemplateParam);
2976  // Replace the 'auto' in the function parameter with this invented
2977  // template type parameter.
2978  // FIXME: Retain some type sugar to indicate that this was written
2979  // as 'auto'.
2980  T = state.ReplaceAutoType(
2981  T, QualType(CorrespondingTemplateParam->getTypeForDecl(), 0));
2982  }
2983  break;
2987  break;
2988  bool Cxx = SemaRef.getLangOpts().CPlusPlus;
2989  switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2990  case TTK_Enum: llvm_unreachable("unhandled tag kind");
2991  case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
2992  case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
2993  case TTK_Class: Error = 5; /* Class member */ break;
2994  case TTK_Interface: Error = 6; /* Interface member */ break;
2995  }
2996  if (D.getDeclSpec().isFriendSpecified())
2997  Error = 20; // Friend type
2998  break;
2999  }
3002  Error = 7; // Exception declaration
3003  break;
3005  if (isa<DeducedTemplateSpecializationType>(Deduced))
3006  Error = 19; // Template parameter
3007  else if (!SemaRef.getLangOpts().CPlusPlus17)
3008  Error = 8; // Template parameter (until C++17)
3009  break;
3011  Error = 9; // Block literal
3012  break;
3014  // Within a template argument list, a deduced template specialization
3015  // type will be reinterpreted as a template template argument.
3016  if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3017  !D.getNumTypeObjects() &&
3019  break;
3020  LLVM_FALLTHROUGH;
3022  Error = 10; // Template type argument
3023  break;
3026  Error = 12; // Type alias
3027  break;
3030  if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3031  Error = 13; // Function return type
3032  IsDeducedReturnType = true;
3033  break;
3035  if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3036  Error = 14; // conversion-type-id
3037  IsDeducedReturnType = true;
3038  break;
3040  if (isa<DeducedTemplateSpecializationType>(Deduced))
3041  break;
3042  LLVM_FALLTHROUGH;
3044  Error = 15; // Generic
3045  break;
3051  // FIXME: P0091R3 (erroneously) does not permit class template argument
3052  // deduction in conditions, for-init-statements, and other declarations
3053  // that are not simple-declarations.
3054  break;
3056  // FIXME: P0091R3 does not permit class template argument deduction here,
3057  // but we follow GCC and allow it anyway.
3058  if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3059  Error = 17; // 'new' type
3060  break;
3062  Error = 18; // K&R function parameter
3063  break;
3064  }
3065 
3067  Error = 11;
3068 
3069  // In Objective-C it is an error to use 'auto' on a function declarator
3070  // (and everywhere for '__auto_type').
3071  if (D.isFunctionDeclarator() &&
3072  (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3073  Error = 13;
3074 
3075  bool HaveTrailing = false;
3076 
3077  // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
3078  // contains a trailing return type. That is only legal at the outermost
3079  // level. Check all declarator chunks (outermost first) anyway, to give
3080  // better diagnostics.
3081  // We don't support '__auto_type' with trailing return types.
3082  // FIXME: Should we only do this for 'auto' and not 'decltype(auto)'?
3083  if (SemaRef.getLangOpts().CPlusPlus11 && IsCXXAutoType &&
3084  D.hasTrailingReturnType()) {
3085  HaveTrailing = true;
3086  Error = -1;
3087  }
3088 
3089  SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3091  AutoRange = D.getName().getSourceRange();
3092 
3093  if (Error != -1) {
3094  unsigned Kind;
3095  if (Auto) {
3096  switch (Auto->getKeyword()) {
3097  case AutoTypeKeyword::Auto: Kind = 0; break;
3098  case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3099  case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3100  }
3101  } else {
3102  assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3103  "unknown auto type");
3104  Kind = 3;
3105  }
3106 
3107  auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3108  TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3109 
3110  SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3111  << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3112  << QualType(Deduced, 0) << AutoRange;
3113  if (auto *TD = TN.getAsTemplateDecl())
3114  SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3115 
3116  T = SemaRef.Context.IntTy;
3117  D.setInvalidType(true);
3118  } else if (!HaveTrailing &&
3120  // If there was a trailing return type, we already got
3121  // warn_cxx98_compat_trailing_return_type in the parser.
3122  SemaRef.Diag(AutoRange.getBegin(),
3123  D.getContext() ==
3125  ? diag::warn_cxx11_compat_generic_lambda
3126  : IsDeducedReturnType
3127  ? diag::warn_cxx11_compat_deduced_return_type
3128  : diag::warn_cxx98_compat_auto_type_specifier)
3129  << AutoRange;
3130  }
3131  }
3132 
3133  if (SemaRef.getLangOpts().CPlusPlus &&
3134  OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3135  // Check the contexts where C++ forbids the declaration of a new class
3136  // or enumeration in a type-specifier-seq.
3137  unsigned DiagID = 0;
3138  switch (D.getContext()) {
3141  // Class and enumeration definitions are syntactically not allowed in
3142  // trailing return types.
3143  llvm_unreachable("parser should not have allowed this");
3144  break;
3152  // C++11 [dcl.type]p3:
3153  // A type-specifier-seq shall not define a class or enumeration unless
3154  // it appears in the type-id of an alias-declaration (7.1.3) that is not
3155  // the declaration of a template-declaration.
3157  break;
3159  DiagID = diag::err_type_defined_in_alias_template;
3160  break;
3170  DiagID = diag::err_type_defined_in_type_specifier;
3171  break;
3177  // C++ [dcl.fct]p6:
3178  // Types shall not be defined in return or parameter types.
3179  DiagID = diag::err_type_defined_in_param_type;
3180  break;
3182  // C++ 6.4p2:
3183  // The type-specifier-seq shall not contain typedef and shall not declare
3184  // a new class or enumeration.
3185  DiagID = diag::err_type_defined_in_condition;
3186  break;
3187  }
3188 
3189  if (DiagID != 0) {
3190  SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3191  << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3192  D.setInvalidType(true);
3193  }
3194  }
3195 
3196  assert(!T.isNull() && "This function should not return a null type");
3197  return T;
3198 }
3199 
3200 /// Produce an appropriate diagnostic for an ambiguity between a function
3201 /// declarator and a C++ direct-initializer.
3203  DeclaratorChunk &DeclType, QualType RT) {
3204  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3205  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3206 
3207  // If the return type is void there is no ambiguity.
3208  if (RT->isVoidType())
3209  return;
3210 
3211  // An initializer for a non-class type can have at most one argument.
3212  if (!RT->isRecordType() && FTI.NumParams > 1)
3213  return;
3214 
3215  // An initializer for a reference must have exactly one argument.
3216  if (RT->isReferenceType() && FTI.NumParams != 1)
3217  return;
3218 
3219  // Only warn if this declarator is declaring a function at block scope, and
3220  // doesn't have a storage class (such as 'extern') specified.
3221  if (!D.isFunctionDeclarator() ||
3226  return;
3227 
3228  // Inside a condition, a direct initializer is not permitted. We allow one to
3229  // be parsed in order to give better diagnostics in condition parsing.
3231  return;
3232 
3233  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3234 
3235  S.Diag(DeclType.Loc,
3236  FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3237  : diag::warn_empty_parens_are_function_decl)
3238  << ParenRange;
3239 
3240  // If the declaration looks like:
3241  // T var1,
3242  // f();
3243  // and name lookup finds a function named 'f', then the ',' was
3244  // probably intended to be a ';'.
3245  if (!D.isFirstDeclarator() && D.getIdentifier()) {
3248  if (Comma.getFileID() != Name.getFileID() ||
3249  Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3252  if (S.LookupName(Result, S.getCurScope()))
3253  S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3255  << D.getIdentifier();
3256  Result.suppressDiagnostics();
3257  }
3258  }
3259 
3260  if (FTI.NumParams > 0) {
3261  // For a declaration with parameters, eg. "T var(T());", suggest adding
3262  // parens around the first parameter to turn the declaration into a
3263  // variable declaration.
3264  SourceRange Range = FTI.Params[0].Param->getSourceRange();
3265  SourceLocation B = Range.getBegin();
3266  SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3267  // FIXME: Maybe we should suggest adding braces instead of parens
3268  // in C++11 for classes that don't have an initializer_list constructor.
3269  S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3270  << FixItHint::CreateInsertion(B, "(")
3271  << FixItHint::CreateInsertion(E, ")");
3272  } else {
3273  // For a declaration without parameters, eg. "T var();", suggest replacing
3274  // the parens with an initializer to turn the declaration into a variable
3275  // declaration.
3276  const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3277 
3278  // Empty parens mean value-initialization, and no parens mean
3279  // default initialization. These are equivalent if the default
3280  // constructor is user-provided or if zero-initialization is a
3281  // no-op.
3282  if (RD && RD->hasDefinition() &&
3283  (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3284  S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3285  << FixItHint::CreateRemoval(ParenRange);
3286  else {
3287  std::string Init =
3288  S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3289  if (Init.empty() && S.LangOpts.CPlusPlus11)
3290  Init = "{}";
3291  if (!Init.empty())
3292  S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3293  << FixItHint::CreateReplacement(ParenRange, Init);
3294  }
3295  }
3296 }
3297 
3298 /// Produce an appropriate diagnostic for a declarator with top-level
3299 /// parentheses.
3302  assert(Paren.Kind == DeclaratorChunk::Paren &&
3303  "do not have redundant top-level parentheses");
3304 
3305  // This is a syntactic check; we're not interested in cases that arise
3306  // during template instantiation.
3307  if (S.inTemplateInstantiation())
3308  return;
3309 
3310  // Check whether this could be intended to be a construction of a temporary
3311  // object in C++ via a function-style cast.
3312  bool CouldBeTemporaryObject =
3313  S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3314  !D.isInvalidType() && D.getIdentifier() &&
3316  (T->isRecordType() || T->isDependentType()) &&
3318 
3319  bool StartsWithDeclaratorId = true;
3320  for (auto &C : D.type_objects()) {
3321  switch (C.Kind) {
3323  if (&C == &Paren)
3324  continue;
3325  LLVM_FALLTHROUGH;
3327  StartsWithDeclaratorId = false;
3328  continue;
3329 
3331  if (!C.Arr.NumElts)
3332  CouldBeTemporaryObject = false;
3333  continue;
3334 
3336  // FIXME: Suppress the warning here if there is no initializer; we're
3337  // going to give an error anyway.
3338  // We assume that something like 'T (&x) = y;' is highly likely to not
3339  // be intended to be a temporary object.
3340  CouldBeTemporaryObject = false;
3341  StartsWithDeclaratorId = false;
3342  continue;
3343 
3345  // In a new-type-id, function chunks require parentheses.
3347  return;
3348  // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3349  // redundant-parens warning, but we don't know whether the function
3350  // chunk was syntactically valid as an expression here.
3351  CouldBeTemporaryObject = false;
3352  continue;
3353 
3356  case DeclaratorChunk::Pipe:
3357  // These cannot appear in expressions.
3358  CouldBeTemporaryObject = false;
3359  StartsWithDeclaratorId = false;
3360  continue;
3361  }
3362  }
3363 
3364  // FIXME: If there is an initializer, assume that this is not intended to be
3365  // a construction of a temporary object.
3366 
3367  // Check whether the name has already been declared; if not, this is not a
3368  // function-style cast.
3369  if (CouldBeTemporaryObject) {
3372  if (!S.LookupName(Result, S.getCurScope()))
3373  CouldBeTemporaryObject = false;
3374  Result.suppressDiagnostics();
3375  }
3376 
3377  SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3378 
3379  if (!CouldBeTemporaryObject) {
3380  // If we have A (::B), the parentheses affect the meaning of the program.
3381  // Suppress the warning in that case. Don't bother looking at the DeclSpec
3382  // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3383  // formally unambiguous.
3384  if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3385  for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3386  NNS = NNS->getPrefix()) {
3387  if (NNS->getKind() == NestedNameSpecifier::Global)
3388  return;
3389  }
3390  }
3391 
3392  S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3393  << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3394  << FixItHint::CreateRemoval(Paren.EndLoc);
3395  return;
3396  }
3397 
3398  S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3399  << ParenRange << D.getIdentifier();
3400  auto *RD = T->getAsCXXRecordDecl();
3401  if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3402  S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3403  << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3404  << D.getIdentifier();
3405  // FIXME: A cast to void is probably a better suggestion in cases where it's
3406  // valid (when there is no initializer and we're not in a condition).
3407  S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3410  S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3411  << FixItHint::CreateRemoval(Paren.Loc)
3412  << FixItHint::CreateRemoval(Paren.EndLoc);
3413 }
3414 
3415 /// Helper for figuring out the default CC for a function declarator type. If
3416 /// this is the outermost chunk, then we can determine the CC from the
3417 /// declarator context. If not, then this could be either a member function
3418 /// type or normal function type.
3420  Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3421  const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3422  assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3423 
3424  // Check for an explicit CC attribute.
3425  for (const ParsedAttr &AL : AttrList) {
3426  switch (AL.getKind()) {
3428  // Ignore attributes that don't validate or can't apply to the
3429  // function type. We'll diagnose the failure to apply them in
3430  // handleFunctionTypeAttr.
3431  CallingConv CC;
3432  if (!S.CheckCallingConvAttr(AL, CC) &&
3433  (!FTI.isVariadic || supportsVariadicCall(CC))) {
3434  return CC;
3435  }
3436  break;
3437  }
3438 
3439  default:
3440  break;
3441  }
3442  }
3443 
3444  bool IsCXXInstanceMethod = false;
3445 
3446  if (S.getLangOpts().CPlusPlus) {
3447  // Look inwards through parentheses to see if this chunk will form a
3448  // member pointer type or if we're the declarator. Any type attributes
3449  // between here and there will override the CC we choose here.
3450  unsigned I = ChunkIndex;
3451  bool FoundNonParen = false;
3452  while (I && !FoundNonParen) {
3453  --I;
3455  FoundNonParen = true;
3456  }
3457 
3458  if (FoundNonParen) {
3459  // If we're not the declarator, we're a regular function type unless we're
3460  // in a member pointer.
3461  IsCXXInstanceMethod =
3464  // This can only be a call operator for a lambda, which is an instance
3465  // method.
3466  IsCXXInstanceMethod = true;
3467  } else {
3468  // We're the innermost decl chunk, so must be a function declarator.
3469  assert(D.isFunctionDeclarator());
3470 
3471  // If we're inside a record, we're declaring a method, but it could be
3472  // explicitly or implicitly static.
3473  IsCXXInstanceMethod =
3476  !D.isStaticMember();
3477  }
3478  }
3479 
3481  IsCXXInstanceMethod);
3482 
3483  // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3484  // and AMDGPU targets, hence it cannot be treated as a calling
3485  // convention attribute. This is the simplest place to infer
3486  // calling convention for OpenCL kernels.
3487  if (S.getLangOpts().OpenCL) {
3488  for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3489  if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3490  CC = CC_OpenCLKernel;
3491  break;
3492  }
3493  }
3494  }
3495 
3496  return CC;
3497 }
3498 
3499 namespace {
3500  /// A simple notion of pointer kinds, which matches up with the various
3501  /// pointer declarators.
3502  enum class SimplePointerKind {
3503  Pointer,
3504  BlockPointer,
3505  MemberPointer,
3506  Array,
3507  };
3508 } // end anonymous namespace
3509 
3511  switch (nullability) {
3513  if (!Ident__Nonnull)
3514  Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3515  return Ident__Nonnull;
3516 
3518  if (!Ident__Nullable)
3519  Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3520  return Ident__Nullable;
3521 
3523  if (!Ident__Null_unspecified)
3524  Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3525  return Ident__Null_unspecified;
3526  }
3527  llvm_unreachable("Unknown nullability kind.");
3528 }
3529 
3530 /// Retrieve the identifier "NSError".
3532  if (!Ident_NSError)
3533  Ident_NSError = PP.getIdentifierInfo("NSError");
3534 
3535  return Ident_NSError;
3536 }
3537 
3538 /// Check whether there is a nullability attribute of any kind in the given
3539 /// attribute list.
3540 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3541  for (const ParsedAttr &AL : attrs) {
3542  if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3543  AL.getKind() == ParsedAttr::AT_TypeNullable ||
3544  AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3545  return true;
3546  }
3547 
3548  return false;
3549 }
3550 
3551 namespace {
3552  /// Describes the kind of a pointer a declarator describes.
3554  // Not a pointer.
3555  NonPointer,
3556  // Single-level pointer.
3557  SingleLevelPointer,
3558  // Multi-level pointer (of any pointer kind).
3559  MultiLevelPointer,
3560  // CFFooRef*
3561  MaybePointerToCFRef,
3562  // CFErrorRef*
3563  CFErrorRefPointer,
3564  // NSError**
3565  NSErrorPointerPointer,
3566  };
3567 
3568  /// Describes a declarator chunk wrapping a pointer that marks inference as
3569  /// unexpected.
3570  // These values must be kept in sync with diagnostics.
3572  /// Pointer is top-level.
3573  None = -1,
3574  /// Pointer is an array element.
3575  Array = 0,
3576  /// Pointer is the referent type of a C++ reference.
3577  Reference = 1
3578  };
3579 } // end anonymous namespace
3580 
3581 /// Classify the given declarator, whose type-specified is \c type, based on
3582 /// what kind of pointer it refers to.
3583 ///
3584 /// This is used to determine the default nullability.
3585 static PointerDeclaratorKind
3587  PointerWrappingDeclaratorKind &wrappingKind) {
3588  unsigned numNormalPointers = 0;
3589 
3590  // For any dependent type, we consider it a non-pointer.
3591  if (type->isDependentType())
3592  return PointerDeclaratorKind::NonPointer;
3593 
3594  // Look through the declarator chunks to identify pointers.
3595  for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3596  DeclaratorChunk &chunk = declarator.getTypeObject(i);
3597  switch (chunk.Kind) {
3599  if (numNormalPointers == 0)
3600  wrappingKind = PointerWrappingDeclaratorKind::Array;
3601  break;
3602 
3604  case DeclaratorChunk::Pipe:
3605  break;
3606 
3609  return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3610  : PointerDeclaratorKind::SingleLevelPointer;
3611 
3613  break;
3614 
3616  if (numNormalPointers == 0)
3617  wrappingKind = PointerWrappingDeclaratorKind::Reference;
3618  break;
3619 
3621  ++numNormalPointers;
3622  if (numNormalPointers > 2)
3623  return PointerDeclaratorKind::MultiLevelPointer;
3624  break;
3625  }
3626  }
3627 
3628  // Then, dig into the type specifier itself.
3629  unsigned numTypeSpecifierPointers = 0;
3630  do {
3631  // Decompose normal pointers.
3632  if (auto ptrType = type->getAs<PointerType>()) {
3633  ++numNormalPointers;
3634 
3635  if (numNormalPointers > 2)
3636  return PointerDeclaratorKind::MultiLevelPointer;
3637 
3638  type = ptrType->getPointeeType();
3639  ++numTypeSpecifierPointers;
3640  continue;
3641  }
3642 
3643  // Decompose block pointers.
3644  if (type->getAs<BlockPointerType>()) {
3645  return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3646  : PointerDeclaratorKind::SingleLevelPointer;
3647  }
3648 
3649  // Decompose member pointers.
3650  if (type->getAs<MemberPointerType>()) {
3651  return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3652  : PointerDeclaratorKind::SingleLevelPointer;
3653  }
3654 
3655  // Look at Objective-C object pointers.
3656  if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3657  ++numNormalPointers;
3658  ++numTypeSpecifierPointers;
3659 
3660  // If this is NSError**, report that.
3661  if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3662  if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
3663  numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3664  return PointerDeclaratorKind::NSErrorPointerPointer;
3665  }
3666  }
3667 
3668  break;
3669  }
3670 
3671  // Look at Objective-C class types.
3672  if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3673  if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
3674  if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3675  return PointerDeclaratorKind::NSErrorPointerPointer;
3676  }
3677 
3678  break;
3679  }
3680 
3681  // If at this point we haven't seen a pointer, we won't see one.
3682  if (numNormalPointers == 0)
3683  return PointerDeclaratorKind::NonPointer;
3684 
3685  if (auto recordType = type->getAs<RecordType>()) {
3686  RecordDecl *recordDecl = recordType->getDecl();
3687 
3688  bool isCFError = false;
3689  if (S.CFError) {
3690  // If we already know about CFError, test it directly.
3691  isCFError = (S.CFError == recordDecl);
3692  } else {
3693  // Check whether this is CFError, which we identify based on its bridge
3694  // to NSError. CFErrorRef used to be declared with "objc_bridge" but is
3695  // now declared with "objc_bridge_mutable", so look for either one of
3696  // the two attributes.
3697  if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
3698  IdentifierInfo *bridgedType = nullptr;
3699  if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>())
3700  bridgedType = bridgeAttr->getBridgedType();
3701  else if (auto bridgeAttr =
3702  recordDecl->getAttr<ObjCBridgeMutableAttr>())
3703  bridgedType = bridgeAttr->getBridgedType();
3704 
3705  if (bridgedType == S.getNSErrorIdent()) {
3706  S.CFError = recordDecl;
3707  isCFError = true;
3708  }
3709  }
3710  }
3711 
3712  // If this is CFErrorRef*, report it as such.
3713  if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3714  return PointerDeclaratorKind::CFErrorRefPointer;
3715  }
3716  break;
3717  }
3718 
3719  break;
3720  } while (true);
3721 
3722  switch (numNormalPointers) {
3723  case 0:
3724  return PointerDeclaratorKind::NonPointer;
3725 
3726  case 1:
3727  return PointerDeclaratorKind::SingleLevelPointer;
3728 
3729  case 2:
3730  return PointerDeclaratorKind::MaybePointerToCFRef;
3731 
3732  default:
3733  return PointerDeclaratorKind::MultiLevelPointer;
3734  }
3735 }
3736 
3738  SourceLocation loc) {
3739  // If we're anywhere in a function, method, or closure context, don't perform
3740  // completeness checks.
3741  for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3742  if (ctx->isFunctionOrMethod())
3743  return FileID();
3744 
3745  if (ctx->isFileContext())
3746  break;
3747  }
3748 
3749  // We only care about the expansion location.
3750  loc = S.SourceMgr.getExpansionLoc(loc);
3751  FileID file = S.SourceMgr.getFileID(loc);
3752  if (file.isInvalid())
3753  return FileID();
3754 
3755  // Retrieve file information.
3756  bool invalid = false;
3757  const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3758  if (invalid || !sloc.isFile())
3759  return FileID();
3760 
3761  // We don't want to perform completeness checks on the main file or in
3762  // system headers.
3763  const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3764  if (fileInfo.getIncludeLoc().isInvalid())
3765  return FileID();
3766  if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3768  return FileID();
3769  }
3770 
3771  return file;
3772 }
3773 
3774 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
3775 /// taking into account whitespace before and after.
3777  SourceLocation PointerLoc,
3779  assert(PointerLoc.isValid());
3780  if (PointerLoc.isMacroID())
3781  return;
3782 
3783  SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
3784  if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
3785  return;
3786 
3787  const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
3788  if (!NextChar)
3789  return;
3790 
3791  SmallString<32> InsertionTextBuf{" "};
3792  InsertionTextBuf += getNullabilitySpelling(Nullability);
3793  InsertionTextBuf += " ";
3794  StringRef InsertionText = InsertionTextBuf.str();
3795 
3796  if (isWhitespace(*NextChar)) {
3797  InsertionText = InsertionText.drop_back();
3798  } else if (NextChar[-1] == '[') {
3799  if (NextChar[0] == ']')
3800  InsertionText = InsertionText.drop_back().drop_front();
3801  else
3802  InsertionText = InsertionText.drop_front();
3803  } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
3804  !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
3805  InsertionText = InsertionText.drop_back().drop_front();
3806  }
3807 
3808  Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
3809 }
3810 
3812  SimplePointerKind PointerKind,
3813  SourceLocation PointerLoc,
3814  SourceLocation PointerEndLoc) {
3815  assert(PointerLoc.isValid());
3816 
3817  if (PointerKind == SimplePointerKind::Array) {
3818  S.Diag(PointerLoc, diag::warn_nullability_missing_array);
3819  } else {
3820  S.Diag(PointerLoc, diag::warn_nullability_missing)
3821  << static_cast<unsigned>(PointerKind);
3822  }
3823 
3824  auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
3825  if (FixItLoc.isMacroID())
3826  return;
3827 
3828  auto addFixIt = [&](NullabilityKind Nullability) {
3829  auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
3830  Diag << static_cast<unsigned>(Nullability);
3831  Diag << static_cast<unsigned>(PointerKind);
3832  fixItNullability(S, Diag, FixItLoc, Nullability);
3833  };
3834  addFixIt(NullabilityKind::Nullable);
3835  addFixIt(NullabilityKind::NonNull);
3836 }
3837 
3838 /// Complains about missing nullability if the file containing \p pointerLoc
3839 /// has other uses of nullability (either the keywords or the \c assume_nonnull
3840 /// pragma).
3841 ///
3842 /// If the file has \e not seen other uses of nullability, this particular
3843 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
3844 static void
3846  SourceLocation pointerLoc,
3847  SourceLocation pointerEndLoc = SourceLocation()) {
3848  // Determine which file we're performing consistency checking for.
3849  FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
3850  if (file.isInvalid())
3851  return;
3852 
3853  // If we haven't seen any type nullability in this file, we won't warn now
3854  // about anything.
3855  FileNullability &fileNullability = S.NullabilityMap[file];
3856  if (!fileNullability.SawTypeNullability) {
3857  // If this is the first pointer declarator in the file, and the appropriate
3858  // warning is on, record it in case we need to diagnose it retroactively.
3859  diag::kind diagKind;
3860  if (pointerKind == SimplePointerKind::Array)
3861  diagKind = diag::warn_nullability_missing_array;
3862  else
3863  diagKind = diag::warn_nullability_missing;
3864 
3865  if (fileNullability.PointerLoc.isInvalid() &&
3866  !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
3867  fileNullability.PointerLoc = pointerLoc;
3868  fileNullability.PointerEndLoc = pointerEndLoc;
3869  fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
3870  }
3871 
3872  return;
3873  }
3874 
3875  // Complain about missing nullability.
3876  emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
3877 }
3878 
3879 /// Marks that a nullability feature has been used in the file containing
3880 /// \p loc.
3881 ///
3882 /// If this file already had pointer types in it that were missing nullability,
3883 /// the first such instance is retroactively diagnosed.
3884 ///
3885 /// \sa checkNullabilityConsistency
3888  if (file.isInvalid())
3889  return;
3890 
3891  FileNullability &fileNullability = S.NullabilityMap[file];
3892  if (fileNullability.SawTypeNullability)
3893  return;
3894  fileNullability.SawTypeNullability = true;
3895 
3896  // If we haven't seen any type nullability before, now we have. Retroactively
3897  // diagnose the first unannotated pointer, if there was one.
3898  if (fileNullability.PointerLoc.isInvalid())
3899  return;
3900 
3901  auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
3903  fileNullability.PointerEndLoc);
3904 }
3905 
3906 /// Returns true if any of the declarator chunks before \p endIndex include a
3907 /// level of indirection: array, pointer, reference, or pointer-to-member.
3908 ///
3909 /// Because declarator chunks are stored in outer-to-inner order, testing
3910 /// every chunk before \p endIndex is testing all chunks that embed the current
3911 /// chunk as part of their type.
3912 ///
3913 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
3914 /// end index, in which case all chunks are tested.
3915 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
3916  unsigned i = endIndex;
3917  while (i != 0) {
3918  // Walk outwards along the declarator chunks.
3919  --i;
3920  const DeclaratorChunk &DC = D.getTypeObject(i);
3921  switch (DC.Kind) {
3923  break;
3928  return true;
3931  case DeclaratorChunk::Pipe:
3932  // These are invalid anyway, so just ignore.
3933  break;
3934  }
3935  }
3936  return false;
3937 }
3938 
3940  return (Chunk.Kind == DeclaratorChunk::Pointer ||
3941  Chunk.Kind == DeclaratorChunk::Array);
3942 }
3943 
3944 template<typename AttrT>
3946  Attr.setUsedAsTypeAttr();
3947  return ::new (Ctx)
3948  AttrT(Attr.getRange(), Ctx, Attr.getAttributeSpellingListIndex());
3949 }
3950 
3952  NullabilityKind NK) {
3953  switch (NK) {
3955  return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
3956 
3958  return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
3959 
3961  return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
3962  }
3963  llvm_unreachable("unknown NullabilityKind");
3964 }
3965 
3966 // Diagnose whether this is a case with the multiple addr spaces.
3967 // Returns true if this is an invalid case.
3968 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
3969 // by qualifiers for two or more different address spaces."
3971  LangAS ASNew,
3972  SourceLocation AttrLoc) {
3973  if (ASOld != LangAS::Default) {
3974  if (ASOld != ASNew) {
3975  S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
3976  return true;
3977  }
3978  // Emit a warning if they are identical; it's likely unintended.
3979  S.Diag(AttrLoc,
3980  diag::warn_attribute_address_multiple_identical_qualifiers);
3981  }
3982  return false;
3983 }
3984 
3985 static TypeSourceInfo *
3986 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3987  QualType T, TypeSourceInfo *ReturnTypeInfo);
3988 
3989 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
3990  QualType declSpecType,
3991  TypeSourceInfo *TInfo) {
3992  // The TypeSourceInfo that this function returns will not be a null type.
3993  // If there is an error, this function will fill in a dummy type as fallback.
3994  QualType T = declSpecType;
3995  Declarator &D = state.getDeclarator();
3996  Sema &S = state.getSema();
3997  ASTContext &Context = S.Context;
3998  const LangOptions &LangOpts = S.getLangOpts();
3999 
4000  // The name we're declaring, if any.
4001  DeclarationName Name;
4002  if (D.getIdentifier())
4003  Name = D.getIdentifier();
4004 
4005  // Does this declaration declare a typedef-name?
4006  bool IsTypedefName =
4010 
4011  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4012  bool IsQualifiedFunction = T->isFunctionProtoType() &&
4013  (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4014  T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4015 
4016  // If T is 'decltype(auto)', the only declarators we can have are parens
4017  // and at most one function declarator if this is a function declaration.
4018  // If T is a deduced class template specialization type, we can have no
4019  // declarator chunks at all.
4020  if (auto *DT = T->getAs<DeducedType>()) {
4021  const AutoType *AT = T->getAs<AutoType>();
4022  bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4023  if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4024  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4025  unsigned Index = E - I - 1;
4026  DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4027  unsigned DiagId = IsClassTemplateDeduction
4028  ? diag::err_deduced_class_template_compound_type
4029  : diag::err_decltype_auto_compound_type;
4030  unsigned DiagKind = 0;
4031  switch (DeclChunk.Kind) {
4033  // FIXME: Rejecting this is a little silly.
4034  if (IsClassTemplateDeduction) {
4035  DiagKind = 4;
4036  break;
4037  }
4038  continue;
4040  if (IsClassTemplateDeduction) {
4041  DiagKind = 3;
4042  break;
4043  }
4044  unsigned FnIndex;
4045  if (D.isFunctionDeclarationContext() &&
4046  D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4047  continue;
4048  DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4049  break;
4050  }
4054  DiagKind = 0;
4055  break;
4057  DiagKind = 1;
4058  break;
4060  DiagKind = 2;
4061  break;
4062  case DeclaratorChunk::Pipe:
4063  break;
4064  }
4065 
4066  S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4067  D.setInvalidType(true);
4068  break;
4069  }
4070  }
4071  }
4072 
4073  // Determine whether we should infer _Nonnull on pointer types.
4074  Optional<NullabilityKind> inferNullability;
4075  bool inferNullabilityCS = false;
4076  bool inferNullabilityInnerOnly = false;
4077  bool inferNullabilityInnerOnlyComplete = false;
4078 
4079  // Are we in an assume-nonnull region?
4080  bool inAssumeNonNullRegion = false;
4081  SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4082  if (assumeNonNullLoc.isValid()) {
4083  inAssumeNonNullRegion = true;
4084  recordNullabilitySeen(S, assumeNonNullLoc);
4085  }
4086 
4087  // Whether to complain about missing nullability specifiers or not.
4088  enum {
4089  /// Never complain.
4090  CAMN_No,
4091  /// Complain on the inner pointers (but not the outermost
4092  /// pointer).
4093  CAMN_InnerPointers,
4094  /// Complain about any pointers that don't have nullability
4095  /// specified or inferred.
4096  CAMN_Yes
4097  } complainAboutMissingNullability = CAMN_No;
4098  unsigned NumPointersRemaining = 0;
4099  auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4100 
4101  if (IsTypedefName) {
4102  // For typedefs, we do not infer any nullability (the default),
4103  // and we only complain about missing nullability specifiers on
4104  // inner pointers.
4105  complainAboutMissingNullability = CAMN_InnerPointers;
4106 
4107  if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4108  !T->getNullability(S.Context)) {
4109  // Note that we allow but don't require nullability on dependent types.
4110  ++NumPointersRemaining;
4111  }
4112 
4113  for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4114  DeclaratorChunk &chunk = D.getTypeObject(i);
4115  switch (chunk.Kind) {
4118  case DeclaratorChunk::Pipe:
4119  break;
4120 
4123  ++NumPointersRemaining;
4124  break;
4125 
4128  continue;
4129 
4131  ++NumPointersRemaining;
4132  continue;
4133  }
4134  }
4135  } else {
4136  bool isFunctionOrMethod = false;
4137  switch (auto context = state.getDeclarator().getContext()) {
4143  isFunctionOrMethod = true;
4144  LLVM_FALLTHROUGH;
4145 
4147  if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4148  complainAboutMissingNullability = CAMN_No;
4149  break;
4150  }
4151 
4152  // Weak properties are inferred to be nullable.
4153  if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4154  inferNullability = NullabilityKind::Nullable;
4155  break;
4156  }
4157 
4158  LLVM_FALLTHROUGH;
4159 
4162  complainAboutMissingNullability = CAMN_Yes;
4163 
4164  // Nullability inference depends on the type and declarator.
4165  auto wrappingKind = PointerWrappingDeclaratorKind::None;
4166  switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4167  case PointerDeclaratorKind::NonPointer:
4168  case PointerDeclaratorKind::MultiLevelPointer:
4169  // Cannot infer nullability.
4170  break;
4171 
4172  case PointerDeclaratorKind::SingleLevelPointer:
4173  // Infer _Nonnull if we are in an assumes-nonnull region.
4174  if (inAssumeNonNullRegion) {
4175  complainAboutInferringWithinChunk = wrappingKind;
4176  inferNullability = NullabilityKind::NonNull;
4177  inferNullabilityCS =
4180  }
4181  break;
4182 
4183  case PointerDeclaratorKind::CFErrorRefPointer:
4184  case PointerDeclaratorKind::NSErrorPointerPointer:
4185  // Within a function or method signature, infer _Nullable at both
4186  // levels.
4187  if (isFunctionOrMethod && inAssumeNonNullRegion)
4188  inferNullability = NullabilityKind::Nullable;
4189  break;
4190 
4191  case PointerDeclaratorKind::MaybePointerToCFRef:
4192  if (isFunctionOrMethod) {
4193  // On pointer-to-pointer parameters marked cf_returns_retained or
4194  // cf_returns_not_retained, if the outer pointer is explicit then
4195  // infer the inner pointer as _Nullable.
4196  auto hasCFReturnsAttr =
4197  [](const ParsedAttributesView &AttrList) -> bool {
4198  return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4199  AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4200  };
4201  if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4202  if (hasCFReturnsAttr(D.getAttributes()) ||
4203  hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4204  hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4205  inferNullability = NullabilityKind::Nullable;
4206  inferNullabilityInnerOnly = true;
4207  }
4208  }
4209  }
4210  break;
4211  }
4212  break;
4213  }
4214 
4216  complainAboutMissingNullability = CAMN_Yes;
4217  break;
4218 
4236  // Don't infer in these contexts.
4237  break;
4238  }
4239  }
4240 
4241  // Local function that returns true if its argument looks like a va_list.
4242  auto isVaList = [&S](QualType T) -> bool {
4243  auto *typedefTy = T->getAs<TypedefType>();
4244  if (!typedefTy)
4245  return false;
4246  TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4247  do {
4248  if (typedefTy->getDecl() == vaListTypedef)
4249  return true;
4250  if (auto *name = typedefTy->getDecl()->getIdentifier())
4251  if (name->isStr("va_list"))
4252  return true;
4253  typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4254  } while (typedefTy);
4255  return false;
4256  };
4257 
4258  // Local function that checks the nullability for a given pointer declarator.
4259  // Returns true if _Nonnull was inferred.
4260  auto inferPointerNullability =
4261  [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4262  SourceLocation pointerEndLoc,
4263  ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4264  // We've seen a pointer.
4265  if (NumPointersRemaining > 0)
4266  --NumPointersRemaining;
4267 
4268  // If a nullability attribute is present, there's nothing to do.
4269  if (hasNullabilityAttr(attrs))
4270  return nullptr;
4271 
4272  // If we're supposed to infer nullability, do so now.
4273  if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4274  ParsedAttr::Syntax syntax = inferNullabilityCS
4277  ParsedAttr *nullabilityAttr = Pool.create(
4278  S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4279  nullptr, SourceLocation(), nullptr, 0, syntax);
4280 
4281  attrs.addAtEnd(nullabilityAttr);
4282 
4283  if (inferNullabilityCS) {
4284  state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4285  ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4286  }
4287 
4288  if (pointerLoc.isValid() &&
4289  complainAboutInferringWithinChunk !=
4291  auto Diag =
4292  S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4293  Diag << static_cast<int>(complainAboutInferringWithinChunk);
4295  }
4296 
4297  if (inferNullabilityInnerOnly)
4298  inferNullabilityInnerOnlyComplete = true;
4299  return nullabilityAttr;
4300  }
4301 
4302  // If we're supposed to complain about missing nullability, do so
4303  // now if it's truly missing.
4304  switch (complainAboutMissingNullability) {
4305  case CAMN_No:
4306  break;
4307 
4308  case CAMN_InnerPointers:
4309  if (NumPointersRemaining == 0)
4310  break;
4311  LLVM_FALLTHROUGH;
4312 
4313  case CAMN_Yes:
4314  checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4315  }
4316  return nullptr;
4317  };
4318 
4319  // If the type itself could have nullability but does not, infer pointer
4320  // nullability and perform consistency checking.
4321  if (S.CodeSynthesisContexts.empty()) {
4322  if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4323  !T->getNullability(S.Context)) {
4324  if (isVaList(T)) {
4325  // Record that we've seen a pointer, but do nothing else.
4326  if (NumPointersRemaining > 0)
4327  --NumPointersRemaining;
4328  } else {
4329  SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4330  if (T->isBlockPointerType())
4331  pointerKind = SimplePointerKind::BlockPointer;
4332  else if (T->isMemberPointerType())
4333  pointerKind = SimplePointerKind::MemberPointer;
4334 
4335  if (auto *attr = inferPointerNullability(
4336  pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4337  D.getDeclSpec().getEndLoc(),
4340  T = state.getAttributedType(
4341  createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4342  }
4343  }
4344  }
4345 
4346  if (complainAboutMissingNullability == CAMN_Yes &&
4347  T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4348  D.isPrototypeContext() &&
4350  checkNullabilityConsistency(S, SimplePointerKind::Array,
4352  }
4353  }
4354 
4355  bool ExpectNoDerefChunk =
4356  state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4357 
4358  // Walk the DeclTypeInfo, building the recursive type as we go.
4359  // DeclTypeInfos are ordered from the identifier out, which is
4360  // opposite of what we want :).
4361  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4362  unsigned chunkIndex = e - i - 1;
4363  state.setCurrentChunkIndex(chunkIndex);
4364  DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4365  IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4366  switch (DeclType.Kind) {
4368  if (i == 0)
4369  warnAboutRedundantParens(S, D, T);
4370  T = S.BuildParenType(T);
4371  break;
4373  // If blocks are disabled, emit an error.
4374  if (!LangOpts.Blocks)
4375  S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4376 
4377  // Handle pointer nullability.
4378  inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4379  DeclType.EndLoc, DeclType.getAttrs(),
4380  state.getDeclarator().getAttributePool());
4381 
4382  T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4383  if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4384  // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4385  // qualified with const.
4386  if (LangOpts.OpenCL)
4387  DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4388  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4389  }
4390  break;
4392  // Verify that we're not building a pointer to pointer to function with
4393  // exception specification.
4394  if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4395  S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4396  D.setInvalidType(true);
4397  // Build the type anyway.
4398  }
4399 
4400  // Handle pointer nullability
4401  inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4402  DeclType.EndLoc, DeclType.getAttrs(),
4403  state.getDeclarator().getAttributePool());
4404 
4405  if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4406  T = Context.getObjCObjectPointerType(T);
4407  if (DeclType.Ptr.TypeQuals)
4408  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4409  break;
4410  }
4411 
4412  // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4413  // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4414  // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4415  if (LangOpts.OpenCL) {
4416  if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4417  T->isBlockPointerType()) {
4418  S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4419  D.setInvalidType(true);
4420  }
4421  }
4422 
4423  T = S.BuildPointerType(T, DeclType.Loc, Name);
4424  if (DeclType.Ptr.TypeQuals)
4425  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4426  break;
4428  // Verify that we're not building a reference to pointer to function with
4429  // exception specification.
4430  if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4431  S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4432  D.setInvalidType(true);
4433  // Build the type anyway.
4434  }
4435  T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4436 
4437  if (DeclType.Ref.HasRestrict)
4438  T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4439  break;
4440  }
4441  case DeclaratorChunk::Array: {
4442  // Verify that we're not building an array of pointers to function with
4443  // exception specification.
4444  if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4445  S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4446  D.setInvalidType(true);
4447  // Build the type anyway.
4448  }
4449  DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4450  Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4452  if (ATI.isStar)
4453  ASM = ArrayType::Star;
4454  else if (ATI.hasStatic)
4455  ASM = ArrayType::Static;
4456  else
4457  ASM = ArrayType::Normal;
4458  if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4459  // FIXME: This check isn't quite right: it allows star in prototypes
4460  // for function definitions, and disallows some edge cases detailed
4461  // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4462  S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4463  ASM = ArrayType::Normal;
4464  D.setInvalidType(true);
4465  }
4466 
4467  // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4468  // shall appear only in a declaration of a function parameter with an
4469  // array type, ...
4470  if (ASM == ArrayType::Static || ATI.TypeQuals) {
4471  if (!(D.isPrototypeContext() ||
4473  S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4474  (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4475  // Remove the 'static' and the type qualifiers.
4476  if (ASM == ArrayType::Static)
4477  ASM = ArrayType::Normal;
4478  ATI.TypeQuals = 0;
4479  D.setInvalidType(true);
4480  }
4481 
4482  // C99 6.7.5.2p1: ... and then only in the outermost array type
4483  // derivation.
4484  if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4485  S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4486  (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4487  if (ASM == ArrayType::Static)
4488  ASM = ArrayType::Normal;
4489  ATI.TypeQuals = 0;
4490  D.setInvalidType(true);
4491  }
4492  }
4493  const AutoType *AT = T->getContainedAutoType();
4494  // Allow arrays of auto if we are a generic lambda parameter.
4495  // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4496  if (AT &&
4498  // We've already diagnosed this for decltype(auto).
4499  if (!AT->isDecltypeAuto())
4500  S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4501  << getPrintableNameForEntity(Name) << T;
4502  T = QualType();
4503  break;
4504  }
4505 
4506  // Array parameters can be marked nullable as well, although it's not
4507  // necessary if they're marked 'static'.
4508  if (complainAboutMissingNullability == CAMN_Yes &&
4509  !hasNullabilityAttr(DeclType.getAttrs()) &&
4510  ASM != ArrayType::Static &&
4511  D.isPrototypeContext() &&
4512  !hasOuterPointerLikeChunk(D, chunkIndex)) {
4513  checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4514  }
4515 
4516  T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4517  SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4518  break;
4519  }
4521  // If the function declarator has a prototype (i.e. it is not () and
4522  // does not have a K&R-style identifier list), then the arguments are part
4523  // of the type, otherwise the argument list is ().
4524  DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4525  IsQualifiedFunction =
4527 
4528  // Check for auto functions and trailing return type and adjust the
4529  // return type accordingly.
4530  if (!D.isInvalidType()) {
4531  // trailing-return-type is only required if we're declaring a function,
4532  // and not, for instance, a pointer to a function.
4533  if (D.getDeclSpec().hasAutoTypeSpec() &&
4534  !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4535  if (!S.getLangOpts().CPlusPlus14) {
4538  ? diag::err_auto_missing_trailing_return
4539  : diag::err_deduced_return_type);
4540  T = Context.IntTy;
4541  D.setInvalidType(true);
4542  } else {
4544  diag::warn_cxx11_compat_deduced_return_type);
4545  }
4546  } else if (FTI.hasTrailingReturnType()) {
4547  // T must be exactly 'auto' at this point. See CWG issue 681.
4548  if (isa<ParenType>(T)) {
4549  S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4550  << T << D.getSourceRange();
4551  D.setInvalidType(true);
4552  } else if (D.getName().getKind() ==
4554  if (T != Context.DependentTy) {
4555  S.Diag(D.getDeclSpec().getBeginLoc(),
4556  diag::err_deduction_guide_with_complex_decl)
4557  << D.getSourceRange();
4558  D.setInvalidType(true);
4559  }
4561  (T.hasQualifiers() || !isa<AutoType>(T) ||
4562  cast<AutoType>(T)->getKeyword() !=
4565  diag::err_trailing_return_without_auto)
4566  << T << D.getDeclSpec().getSourceRange();
4567  D.setInvalidType(true);
4568  }
4569  T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4570  if (T.isNull()) {
4571  // An error occurred parsing the trailing return type.
4572  T = Context.IntTy;
4573  D.setInvalidType(true);
4574  }
4575  } else {
4576  // This function type is not the type of the entity being declared,
4577  // so checking the 'auto' is not the responsibility of this chunk.
4578  }
4579  }
4580 
4581  // C99 6.7.5.3p1: The return type may not be a function or array type.
4582  // For conversion functions, we'll diagnose this particular error later.
4583  if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4584  (D.getName().getKind() !=
4586  unsigned diagID = diag::err_func_returning_array_function;
4587  // Last processing chunk in block context means this function chunk
4588  // represents the block.
4589  if (chunkIndex == 0 &&
4591  diagID = diag::err_block_returning_array_function;
4592  S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4593  T = Context.IntTy;
4594  D.setInvalidType(true);
4595  }
4596 
4597  // Do not allow returning half FP value.
4598  // FIXME: This really should be in BuildFunctionType.
4599  if (T->isHalfType()) {
4600  if (S.getLangOpts().OpenCL) {
4601  if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4602  S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4603  << T << 0 /*pointer hint*/;
4604  D.setInvalidType(true);
4605  }
4606  } else if (!S.getLangOpts().HalfArgsAndReturns) {
4607  S.Diag(D.getIdentifierLoc(),
4608  diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4609  D.setInvalidType(true);
4610  }
4611  }
4612 
4613  if (LangOpts.OpenCL) {
4614  // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4615  // function.
4616  if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4617  T->isPipeType()) {
4618  S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4619  << T << 1 /*hint off*/;
4620  D.setInvalidType(true);
4621  }
4622  // OpenCL doesn't support variadic functions and blocks
4623  // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4624  // We also allow here any toolchain reserved identifiers.
4625  if (FTI.isVariadic &&
4626  !(D.getIdentifier() &&
4627  ((D.getIdentifier()->getName() == "printf" &&
4628  (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
4629  D.getIdentifier()->getName().startswith("__")))) {
4630  S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4631  D.setInvalidType(true);
4632  }
4633  }
4634 
4635  // Methods cannot return interface types. All ObjC objects are
4636  // passed by reference.
4637  if (T->isObjCObjectType()) {
4638  SourceLocation DiagLoc, FixitLoc;
4639  if (TInfo) {
4640  DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4641  FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4642  } else {
4643  DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4644  FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4645  }
4646  S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4647  << 0 << T
4648  << FixItHint::CreateInsertion(FixitLoc, "*");
4649 
4650  T = Context.getObjCObjectPointerType(T);
4651  if (TInfo) {
4652  TypeLocBuilder TLB;
4653  TLB.pushFullCopy(TInfo->getTypeLoc());
4655  TLoc.setStarLoc(FixitLoc);
4656  TInfo = TLB.getTypeSourceInfo(Context, T);
4657  }
4658 
4659  D.setInvalidType(true);
4660  }
4661 
4662  // cv-qualifiers on return types are pointless except when the type is a
4663  // class type in C++.
4664  if ((T.getCVRQualifiers() || T->isAtomicType()) &&
4665  !(S.getLangOpts().CPlusPlus &&
4666  (T->isDependentType() || T->isRecordType()))) {
4667  if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
4669  // [6.9.1/3] qualified void return is invalid on a C
4670  // function definition. Apparently ok on declarations and
4671  // in C++ though (!)
4672  S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
4673  } else
4674  diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
4675  }
4676 
4677  // Objective-C ARC ownership qualifiers are ignored on the function
4678  // return type (by type canonicalization). Complain if this attribute
4679  // was written here.
4680  if (T.getQualifiers().hasObjCLifetime()) {
4681  SourceLocation AttrLoc;
4682  if (chunkIndex + 1 < D.getNumTypeObjects()) {
4683  DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
4684  for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
4685  if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4686  AttrLoc = AL.getLoc();
4687  break;
4688  }
4689  }
4690  }
4691  if (AttrLoc.isInvalid()) {
4692  for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4693  if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4694  AttrLoc = AL.getLoc();
4695  break;
4696  }
4697  }
4698  }
4699 
4700  if (AttrLoc.isValid()) {
4701  // The ownership attributes are almost always written via
4702  // the predefined
4703  // __strong/__weak/__autoreleasing/__unsafe_unretained.
4704  if (AttrLoc.isMacroID())
4705  AttrLoc =
4707 
4708  S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
4709  << T.getQualifiers().getObjCLifetime();
4710  }
4711  }
4712 
4713  if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
4714  // C++ [dcl.fct]p6:
4715  // Types shall not be defined in return or parameter types.
4716  TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
4717  S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
4718  << Context.getTypeDeclType(Tag);
4719  }
4720 
4721  // Exception specs are not allowed in typedefs. Complain, but add it
4722  // anyway.
4723  if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
4724  S.Diag(FTI.getExceptionSpecLocBeg(),
4725  diag::err_exception_spec_in_typedef)
4728 
4729  // If we see "T var();" or "T var(T());" at block scope, it is probably
4730  // an attempt to initialize a variable, not a function declaration.
4731  if (FTI.isAmbiguous)
4732  warnAboutAmbiguousFunction(S, D, DeclType, T);
4733 
4735  getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
4736 
4737  if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
4738  && !LangOpts.OpenCL) {
4739  // Simple void foo(), where the incoming T is the result type.
4740  T = Context.getFunctionNoProtoType(T, EI);
4741  } else {
4742  // We allow a zero-parameter variadic function in C if the
4743  // function is marked with the "overloadable" attribute. Scan
4744  // for this attribute now.
4745  if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
4746  if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
4747  S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
4748 
4749  if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
4750  // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
4751  // definition.
4752  S.Diag(FTI.Params[0].IdentLoc,
4753  diag::err_ident_list_in_fn_declaration);
4754  D.setInvalidType(true);
4755  // Recover by creating a K&R-style function type.
4756  T = Context.getFunctionNoProtoType(T, EI);
4757  break;
4758  }
4759 
4761  EPI.ExtInfo = EI;
4762  EPI.Variadic = FTI.isVariadic;
4766  : 0);
4767  EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
4769  : RQ_RValue;
4770 
4771  // Otherwise, we have a function with a parameter list that is
4772  // potentially variadic.
4773  SmallVector<QualType, 16> ParamTys;
4774  ParamTys.reserve(FTI.NumParams);
4775 
4777  ExtParameterInfos(FTI.NumParams);
4778  bool HasAnyInterestingExtParameterInfos = false;
4779 
4780  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
4781  ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
4782  QualType ParamTy = Param->getType();
4783  assert(!ParamTy.isNull() && "Couldn't parse type?");
4784 
4785  // Look for 'void'. void is allowed only as a single parameter to a
4786  // function with no other parameters (C99 6.7.5.3p10). We record
4787  // int(void) as a FunctionProtoType with an empty parameter list.
4788  if (ParamTy->isVoidType()) {
4789  // If this is something like 'float(int, void)', reject it. 'void'
4790  // is an incomplete type (C99 6.2.5p19) and function decls cannot
4791  // have parameters of incomplete type.
4792  if (FTI.NumParams != 1 || FTI.isVariadic) {
4793  S.Diag(DeclType.Loc, diag::err_void_only_param);
4794  ParamTy = Context.IntTy;
4795  Param->setType(ParamTy);
4796  } else if (FTI.Params[i].Ident) {
4797  // Reject, but continue to parse 'int(void abc)'.
4798  S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
4799  ParamTy = Context.IntTy;
4800  Param->setType(ParamTy);
4801  } else {
4802  // Reject, but continue to parse 'float(const void)'.
4803  if (ParamTy.hasQualifiers())
4804  S.Diag(DeclType.Loc, diag::err_void_param_qualified);
4805 
4806  // Do not add 'void' to the list.
4807  break;
4808  }
4809  } else if (ParamTy->isHalfType()) {
4810  // Disallow half FP parameters.
4811  // FIXME: This really should be in BuildFunctionType.
4812  if (S.getLangOpts().OpenCL) {
4813  if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4814  S.Diag(Param->getLocation(),
4815  diag::err_opencl_half_param) << ParamTy;
4816  D.setInvalidType();
4817  Param->setInvalidDecl();
4818  }
4819  } else if (!S.getLangOpts().HalfArgsAndReturns) {
4820  S.Diag(Param->getLocation(),
4821  diag::err_parameters_retval_cannot_have_fp16_type) << 0;
4822  D.setInvalidType();
4823  }
4824  } else if (!FTI.hasPrototype) {
4825  if (ParamTy->isPromotableIntegerType()) {
4826  ParamTy = Context.getPromotedIntegerType(ParamTy);
4827  Param->setKNRPromoted(true);
4828  } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
4829  if (BTy->getKind() == BuiltinType::Float) {
4830  ParamTy = Context.DoubleTy;
4831  Param->setKNRPromoted(true);
4832  }
4833  }
4834  }
4835 
4836  if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
4837  ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
4838  HasAnyInterestingExtParameterInfos = true;
4839  }
4840 
4841  if (auto attr = Param->getAttr<ParameterABIAttr>()) {
4842  ExtParameterInfos[i] =
4843  ExtParameterInfos[i].withABI(attr->getABI());
4844  HasAnyInterestingExtParameterInfos = true;
4845  }
4846 
4847  if (Param->hasAttr<PassObjectSizeAttr>()) {
4848  ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
4849  HasAnyInterestingExtParameterInfos = true;
4850  }
4851 
4852  if (Param->hasAttr<NoEscapeAttr>()) {
4853  ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
4854  HasAnyInterestingExtParameterInfos = true;
4855  }
4856 
4857  ParamTys.push_back(ParamTy);
4858  }
4859 
4860  if (HasAnyInterestingExtParameterInfos) {
4861  EPI.ExtParameterInfos = ExtParameterInfos.data();
4862  checkExtParameterInfos(S, ParamTys, EPI,
4863  [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
4864  }
4865 
4866  SmallVector<QualType, 4> Exceptions;
4867  SmallVector<ParsedType, 2> DynamicExceptions;
4868  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4869  Expr *NoexceptExpr = nullptr;
4870 
4871  if (FTI.getExceptionSpecType() == EST_Dynamic) {
4872  // FIXME: It's rather inefficient to have to split into two vectors
4873  // here.
4874  unsigned N = FTI.getNumExceptions();
4875  DynamicExceptions.reserve(N);
4876  DynamicExceptionRanges.reserve(N);
4877  for (unsigned I = 0; I != N; ++I) {
4878  DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
4879  DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
4880  }
4881  } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
4882  NoexceptExpr = FTI.NoexceptExpr;
4883  }
4884 
4886  FTI.getExceptionSpecType(),
4887  DynamicExceptions,
4888  DynamicExceptionRanges,
4889  NoexceptExpr,
4890  Exceptions,
4891  EPI.ExceptionSpec);
4892 
4893  // FIXME: Set address space from attrs for C++ mode here.
4894  // OpenCLCPlusPlus: A class member function has an address space.
4895  auto IsClassMember = [&]() {
4896  return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
4897  state.getDeclarator()
4898  .getCXXScopeSpec()
4899  .getScopeRep()
4900  ->getKind() == NestedNameSpecifier::TypeSpec) ||
4901  state.getDeclarator().getContext() ==
4903  };
4904 
4905  if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
4906  LangAS ASIdx = LangAS::Default;
4907  // Take address space attr if any and mark as invalid to avoid adding
4908  // them later while creating QualType.
4909  if (FTI.MethodQualifiers)
4910  for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
4911  LangAS ASIdxNew = attr.asOpenCLLangAS();
4912  if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
4913  attr.getLoc()))
4914  D.setInvalidType(true);
4915  else
4916  ASIdx = ASIdxNew;
4917  }
4918  // If a class member function's address space is not set, set it to
4919  // __generic.
4920  LangAS AS =
4921  (ASIdx == LangAS::Default ? LangAS::opencl_generic : ASIdx);
4922  EPI.TypeQuals.addAddressSpace(AS);
4923  }
4924  T = Context.getFunctionType(T, ParamTys, EPI);
4925  }
4926  break;
4927  }
4929  // The scope spec must refer to a class, or be dependent.
4930  CXXScopeSpec &SS = DeclType.Mem.Scope();
4931  QualType ClsType;
4932 
4933  // Handle pointer nullability.
4934  inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
4935  DeclType.EndLoc, DeclType.getAttrs(),
4936  state.getDeclarator().getAttributePool());
4937 
4938  if (SS.isInvalid()) {
4939  // Avoid emitting extra errors if we already errored on the scope.
4940  D.setInvalidType(true);
4941  } else if (S.isDependentScopeSpecifier(SS) ||
4942  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
4943  NestedNameSpecifier *NNS = SS.getScopeRep();
4944  NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
4945  switch (NNS->getKind()) {
4947  ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
4948  NNS->getAsIdentifier());
4949  break;
4950 
4955  llvm_unreachable("Nested-name-specifier must name a type");
4956 
4959  ClsType = QualType(NNS->getAsType(), 0);
4960  // Note: if the NNS has a prefix and ClsType is a nondependent
4961  // TemplateSpecializationType, then the NNS prefix is NOT included
4962  // in ClsType; hence we wrap ClsType into an ElaboratedType.
4963  // NOTE: in particular, no wrap occurs if ClsType already is an
4964  // Elaborated, DependentName, or DependentTemplateSpecialization.
4965  if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
4966  ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
4967  break;
4968  }
4969  } else {
4970  S.Diag(DeclType.Mem.Scope().getBeginLoc(),
4971  diag::err_illegal_decl_mempointer_in_nonclass)
4972  << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
4973  << DeclType.Mem.Scope().getRange();
4974  D.setInvalidType(true);
4975  }
4976 
4977  if (!ClsType.isNull())
4978  T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
4979  D.getIdentifier());
4980  if (T.isNull()) {
4981  T = Context.IntTy;
4982  D.setInvalidType(true);
4983  } else if (DeclType.Mem.TypeQuals) {
4984  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
4985  }
4986  break;
4987  }
4988 
4989  case DeclaratorChunk::Pipe: {
4990  T = S.BuildReadPipeType(T, DeclType.Loc);
4991  processTypeAttrs(state, T, TAL_DeclSpec,
4993  break;
4994  }
4995  }
4996 
4997  if (T.isNull()) {
4998  D.setInvalidType(true);
4999  T = Context.IntTy;
5000  }
5001 
5002  // See if there are any attributes on this declarator chunk.
5003  processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5004 
5005  if (DeclType.Kind != DeclaratorChunk::Paren) {
5006  if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5007  S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5008 
5009  ExpectNoDerefChunk = state.didParseNoDeref();
5010  }
5011  }
5012 
5013  if (ExpectNoDerefChunk)
5014  S.Diag(state.getDeclarator().getBeginLoc(),
5015  diag::warn_noderef_on_non_pointer_or_array);
5016 
5017  // GNU warning -Wstrict-prototypes
5018  // Warn if a function declaration is without a prototype.
5019  // This warning is issued for all kinds of unprototyped function
5020  // declarations (i.e. function type typedef, function pointer etc.)
5021  // C99 6.7.5.3p14:
5022  // The empty list in a function declarator that is not part of a definition
5023  // of that function specifies that no information about the number or types
5024  // of the parameters is supplied.
5025  if (!LangOpts.CPlusPlus && D.getFunctionDefinitionKind() == FDK_Declaration) {
5026  bool IsBlock = false;
5027  for (const DeclaratorChunk &DeclType : D.type_objects()) {
5028  switch (DeclType.Kind) {
5030  IsBlock = true;
5031  break;
5033  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5034  // We supress the warning when there's no LParen location, as this
5035  // indicates the declaration was an implicit declaration, which gets
5036  // warned about separately via -Wimplicit-function-declaration.
5037  if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
5038  S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5039  << IsBlock
5040  << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5041  IsBlock = false;
5042  break;
5043  }
5044  default:
5045  break;
5046  }
5047  }
5048  }
5049 
5050  assert(!T.isNull() && "T must not be null after this point");
5051 
5052  if (LangOpts.CPlusPlus && T->isFunctionType()) {
5053  const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5054  assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5055 
5056  // C++ 8.3.5p4:
5057  // A cv-qualifier-seq shall only be part of the function type
5058  // for a nonstatic member function, the function type to which a pointer
5059  // to member refers, or the top-level function type of a function typedef
5060  // declaration.
5061  //
5062  // Core issue 547 also allows cv-qualifiers on function types that are
5063  // top-level template type arguments.
5064  enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5066  Kind = DeductionGuide;
5067  else if (!D.getCXXScopeSpec().isSet()) {
5071  Kind = Member;
5072  } else {
5074  if (!DC || DC->isRecord())
5075  Kind = Member;
5076  }
5077 
5078  // C++11 [dcl.fct]p6 (w/DR1417):
5079  // An attempt to specify a function type with a cv-qualifier-seq or a
5080  // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5081  // - the function type for a non-static member function,
5082  // - the function type to which a pointer to member refers,
5083  // - the top-level function type of a function typedef declaration or
5084  // alias-declaration,
5085  // - the type-id in the default argument of a type-parameter, or
5086  // - the type-id of a template-argument for a type-parameter
5087  //
5088  // FIXME: Checking this here is insufficient. We accept-invalid on:
5089  //
5090  // template<typename T> struct S { void f(T); };
5091  // S<int() const> s;
5092  //
5093  // ... for instance.
5094  if (IsQualifiedFunction &&
5095  !(Kind == Member &&
5097  !IsTypedefName &&
5100  SourceLocation Loc = D.getBeginLoc();
5101  SourceRange RemovalRange;
5102  unsigned I;
5103  if (D.isFunctionDeclarator(I)) {
5104  SmallVector<SourceLocation, 4> RemovalLocs;
5105  const DeclaratorChunk &Chunk = D.getTypeObject(I);
5106  assert(Chunk.Kind == DeclaratorChunk::Function);
5107 
5108  if (Chunk.Fun.hasRefQualifier())
5109  RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5110 
5111  if (Chunk.Fun.hasMethodTypeQualifiers())
5113  [&](DeclSpec::TQ TypeQual, StringRef QualName,
5114  SourceLocation SL) { RemovalLocs.push_back(SL); });
5115 
5116  if (!RemovalLocs.empty()) {
5117  llvm::sort(RemovalLocs,
5119  RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5120  Loc = RemovalLocs.front();
5121  }
5122  }
5123 
5124  S.Diag(Loc, diag::err_invalid_qualified_function_type)
5125  << Kind << D.isFunctionDeclarator() << T
5127  << FixItHint::CreateRemoval(RemovalRange);
5128 
5129  // Strip the cv-qualifiers and ref-qualifiers from the type.
5132  EPI.RefQualifier = RQ_None;
5133 
5134  T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5135  EPI);
5136  // Rebuild any parens around the identifier in the function type.
5137  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5139  break;
5140  T = S.BuildParenType(T);
5141  }
5142  }
5143  }
5144 
5145  // Apply any undistributed attributes from the declarator.
5147 
5148  // Diagnose any ignored type attributes.
5149  state.diagnoseIgnoredTypeAttrs(T);
5150 
5151  // C++0x [dcl.constexpr]p9:
5152  // A constexpr specifier used in an object declaration declares the object
5153  // as const.
5154  if (D.getDeclSpec().hasConstexprSpecifier() && T->isObjectType()) {
5155  T.addConst();
5156  }
5157 
5158  // If there was an ellipsis in the declarator, the declaration declares a
5159  // parameter pack whose type may be a pack expansion type.
5160  if (D.hasEllipsis()) {
5161  // C++0x [dcl.fct]p13:
5162  // A declarator-id or abstract-declarator containing an ellipsis shall
5163  // only be used in a parameter-declaration. Such a parameter-declaration
5164  // is a parameter pack (14.5.3). [...]
5165  switch (D.getContext()) {
5168  // C++0x [dcl.fct]p13:
5169  // [...] When it is part of a parameter-declaration-clause, the
5170  // parameter pack is a function parameter pack (14.5.3). The type T
5171  // of the declarator-id of the function parameter pack shall contain
5172  // a template parameter pack; each template parameter pack in T is
5173  // expanded by the function parameter pack.
5174  //
5175  // We represent function parameter packs as function parameters whose
5176  // type is a pack expansion.
5177  if (!T->containsUnexpandedParameterPack()) {
5178  S.Diag(D.getEllipsisLoc(),
5179  diag::err_function_parameter_pack_without_parameter_packs)
5180  << T << D.getSourceRange();
5182  } else {
5183  T = Context.getPackExpansionType(T, None);
5184  }
5185  break;
5187  // C++0x [temp.param]p15:
5188  // If a template-parameter is a [...] is a parameter-declaration that
5189  // declares a parameter pack (8.3.5), then the template-parameter is a
5190  // template parameter pack (14.5.3).
5191  //
5192  // Note: core issue 778 clarifies that, if there are any unexpanded
5193  // parameter packs in the type of the non-type template parameter, then
5194  // it expands those parameter packs.
5196  T = Context.getPackExpansionType(T, None);
5197  else
5198  S.Diag(D.getEllipsisLoc(),
5199  LangOpts.CPlusPlus11
5200  ? diag::warn_cxx98_compat_variadic_templates
5201  : diag::ext_variadic_templates);
5202  break;
5203 
5206  case DeclaratorContext::ObjCParameterContext: // FIXME: special diagnostic
5207  // here?
5208  case DeclaratorContext::ObjCResultContext: // FIXME: special diagnostic
5209  // here?
5229  // FIXME: We may want to allow parameter packs in block-literal contexts
5230  // in the future.
5231  S.Diag(D.getEllipsisLoc(),
5232  diag::err_ellipsis_in_declarator_not_parameter);
5234  break;
5235  }
5236  }
5237 
5238  assert(!T.isNull() && "T must not be null at the end of this function");
5239  if (D.isInvalidType())
5240  return Context.getTrivialTypeSourceInfo(T);
5241 
5242  return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5243 }
5244 
5245 /// GetTypeForDeclarator - Convert the type for the specified
5246 /// declarator to Type instances.
5247 ///
5248 /// The result of this call will never be null, but the associated
5249 /// type may be a null type if there's an unrecoverable error.
5251  // Determine the type of the declarator. Not all forms of declarator
5252  // have a type.
5253 
5254  TypeProcessingState state(*this, D);
5255 
5256  TypeSourceInfo *ReturnTypeInfo = nullptr;
5257  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5258  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5259  inferARCWriteback(state, T);
5260 
5261  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5262 }
5263 
5265  QualType &declSpecTy,
5266  Qualifiers::ObjCLifetime ownership) {
5267  if (declSpecTy->isObjCRetainableType() &&
5268  declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5269  Qualifiers qs;
5270  qs.addObjCLifetime(ownership);
5271  declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5272  }
5273 }
5274 
5275 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5276  Qualifiers::ObjCLifetime ownership,
5277  unsigned chunkIndex) {
5278  Sema &S = state.getSema();
5279  Declarator &D = state.getDeclarator();
5280 
5281  // Look for an explicit lifetime attribute.
5282  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5283  if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5284  return;
5285 
5286  const char *attrStr = nullptr;
5287  switch (ownership) {
5288  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5289  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5290  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5291  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5292  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5293  }
5294 
5295  IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5296  Arg->Ident = &S.Context.Idents.get(attrStr);
5297  Arg->Loc = SourceLocation();
5298 
5299  ArgsUnion Args(Arg);
5300 
5301  // If there wasn't one, add one (with an invalid source location
5302  // so that we don't make an AttributedType for it).
5303  ParsedAttr *attr = D.getAttributePool().create(
5304  &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5305  /*scope*/ nullptr, SourceLocation(),
5306  /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5307  chunk.getAttrs().addAtEnd(attr);
5308  // TODO: mark whether we did this inference?
5309 }
5310 
5311 /// Used for transferring ownership in casts resulting in l-values.
5312 static void transferARCOwnership(TypeProcessingState &state,
5313  QualType &declSpecTy,
5314  Qualifiers::ObjCLifetime ownership) {
5315  Sema &S = state.getSema();
5316  Declarator &D = state.getDeclarator();
5317 
5318  int inner = -1;
5319  bool hasIndirection = false;
5320  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5321  DeclaratorChunk &chunk = D.getTypeObject(i);
5322  switch (chunk.Kind) {
5324  // Ignore parens.
5325  break;
5326 
5330  if (inner != -1)
5331  hasIndirection = true;
5332  inner = i;
5333  break;
5334 
5336  if (inner != -1)
5337  transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5338  return;
5339 
5342  case DeclaratorChunk::Pipe:
5343  return;
5344  }
5345  }
5346 
5347  if (inner == -1)
5348  return;
5349 
5350  DeclaratorChunk &chunk = D.getTypeObject(inner);
5351  if (chunk.Kind == DeclaratorChunk::Pointer) {
5352  if (declSpecTy->isObjCRetainableType())
5353  return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5354  if (declSpecTy->isObjCObjectType() && hasIndirection)
5355  return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5356  } else {
5357  assert(chunk.Kind == DeclaratorChunk::Array ||
5358  chunk.Kind == DeclaratorChunk::Reference);
5359  return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5360  }
5361 }
5362 
5364  TypeProcessingState state(*this, D);
5365 
5366  TypeSourceInfo *ReturnTypeInfo = nullptr;
5367  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5368 
5369  if (getLangOpts().ObjC) {
5370  Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5371  if (ownership != Qualifiers::OCL_None)
5372  transferARCOwnership(state, declSpecTy, ownership);
5373  }
5374 
5375  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5376 }
5377 
5379  TypeProcessingState &State) {
5380  TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5381 }
5382 
5383 namespace {
5384  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5385  ASTContext &Context;
5386  TypeProcessingState &State;
5387  const DeclSpec &DS;
5388 
5389  public:
5390  TypeSpecLocFiller(ASTContext &Context, TypeProcessingState &State,
5391  const DeclSpec &DS)
5392  : Context(Context), State(State), DS(DS) {}
5393 
5394  void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5395  Visit(TL.getModifiedLoc());
5396  fillAttributedTypeLoc(TL, State);
5397  }
5398  void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5399  Visit(TL.getInnerLoc());
5400  TL.setExpansionLoc(
5401  State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5402  }
5403  void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5404  Visit(TL.getUnqualifiedLoc());
5405  }
5406  void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5407  TL.setNameLoc(DS.getTypeSpecTypeLoc());
5408  }
5409  void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5410  TL.setNameLoc(DS.getTypeSpecTypeLoc());
5411  // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5412  // addition field. What we have is good enough for dispay of location
5413  // of 'fixit' on interface name.
5414  TL.setNameEndLoc(DS.getEndLoc());
5415  }
5416  void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5417  TypeSourceInfo *RepTInfo = nullptr;
5418  Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5419  TL.copy(RepTInfo->getTypeLoc());
5420  }
5421  void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5422  TypeSourceInfo *RepTInfo = nullptr;
5423  Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5424  TL.copy(RepTInfo->getTypeLoc());
5425  }
5426  void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5427  TypeSourceInfo *TInfo = nullptr;
5428  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5429 
5430  // If we got no declarator info from previous Sema routines,
5431  // just fill with the typespec loc.
5432  if (!TInfo) {
5433  TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5434  return;
5435  }
5436 
5437  TypeLoc OldTL = TInfo->getTypeLoc();
5438  if (TInfo->getType()->getAs<ElaboratedType>()) {
5439  ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5442  TL.copy(NamedTL);
5443  } else {
5445  assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5446  }
5447 
5448  }
5449  void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5450  assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
5453  }
5454  void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5455  assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
5458  assert(DS.getRepAsType());
5459  TypeSourceInfo *TInfo = nullptr;
5460  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5461  TL.setUnderlyingTInfo(TInfo);
5462  }
5463  void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5464  // FIXME: This holds only because we only have one unary transform.
5466  TL.setKWLoc(DS.getTypeSpecTypeLoc());
5468  assert(DS.getRepAsType());
5469  TypeSourceInfo *TInfo = nullptr;
5470  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5471  TL.setUnderlyingTInfo(TInfo);
5472  }
5473  void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5474  // By default, use the source location of the type specifier.
5476  if (TL.needsExtraLocalData()) {
5477  // Set info for the written builtin specifiers.
5479  // Try to have a meaningful source location.
5480  if (TL.getWrittenSignSpec() != TSS_unspecified)
5484  }
5485  }
5486  void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5487  ElaboratedTypeKeyword Keyword
5489  if (DS.getTypeSpecType() == TST_typename) {
5490  TypeSourceInfo *TInfo = nullptr;
5491  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5492  if (TInfo) {
5493  TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5494  return;
5495  }
5496  }
5497  TL.setElaboratedKeywordLoc(Keyword != ETK_None
5498  ? DS.getTypeSpecTypeLoc()
5499  : SourceLocation());
5500  const CXXScopeSpec& SS = DS.getTypeSpecScope();
5501  TL.setQualifierLoc(SS.getWithLocInContext(Context));
5502  Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5503  }
5504  void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5505  assert(DS.getTypeSpecType() == TST_typename);
5506  TypeSourceInfo *TInfo = nullptr;
5507  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5508  assert(TInfo);
5509  TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5510  }
5511  void VisitDependentTemplateSpecializationTypeLoc(
5513  assert(DS.getTypeSpecType() == TST_typename);
5514  TypeSourceInfo *TInfo = nullptr;
5515  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5516  assert(TInfo);
5517  TL.copy(
5518  TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5519  }
5520  void VisitTagTypeLoc(TagTypeLoc TL) {
5522  }
5523  void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
5524  // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
5525  // or an _Atomic qualifier.
5526  if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
5527  TL.setKWLoc(DS.getTypeSpecTypeLoc());
5529 
5530  TypeSourceInfo *TInfo = nullptr;
5531  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5532  assert(TInfo);
5533  TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5534  } else {
5535  TL.setKWLoc(DS.getAtomicSpecLoc());
5536  // No parens, to indicate this was spelled as an _Atomic qualifier.
5538  Visit(TL.getValueLoc());
5539  }
5540  }
5541 
5542  void VisitPipeTypeLoc(PipeTypeLoc TL) {
5543  TL.setKWLoc(DS.getTypeSpecTypeLoc());
5544 
5545  TypeSourceInfo *TInfo = nullptr;
5546  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5547  TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5548  }
5549 
5550  void VisitTypeLoc(TypeLoc TL) {
5551  // FIXME: add other typespec types and change this to an assert.
5552  TL.initialize(Context, DS.getTypeSpecTypeLoc());
5553  }
5554  };
5555 
5556  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
5557  ASTContext &Context;
5558  TypeProcessingState &State;
5559  const DeclaratorChunk &Chunk;
5560 
5561  public:
5562  DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
5563  const DeclaratorChunk &Chunk)
5564  : Context(Context), State(State), Chunk(Chunk) {}
5565 
5566  void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5567  llvm_unreachable("qualified type locs not expected here!");
5568  }
5569  void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
5570  llvm_unreachable("decayed type locs not expected here!");
5571  }
5572 
5573  void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5574  fillAttributedTypeLoc(TL, State);
5575  }
5576  void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
5577  // nothing
5578  }
5579  void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
5580  assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
5581  TL.setCaretLoc(Chunk.Loc);
5582  }
5583  void VisitPointerTypeLoc(PointerTypeLoc TL) {
5584  assert(Chunk.Kind == DeclaratorChunk::Pointer);
5585  TL.setStarLoc(Chunk.Loc);
5586  }
5587  void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5588  assert(Chunk.Kind == DeclaratorChunk::Pointer);
5589  TL.setStarLoc(Chunk.Loc);
5590  }
5591  void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
5592  assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
5593  const CXXScopeSpec& SS = Chunk.Mem.Scope();
5594  NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
5595 
5596  const Type* ClsTy = TL.getClass();
5597  QualType ClsQT = QualType(ClsTy, 0);
5598  TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
5599  // Now copy source location info into the type loc component.
5600  TypeLoc ClsTL = ClsTInfo->getTypeLoc();
5601  switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
5603  assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
5604  {
5607  DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
5608  DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
5609  }
5610  break;
5611 
5614  if (isa<ElaboratedType>(ClsTy)) {
5615  ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
5617  ETLoc.setQualifierLoc(NNSLoc.getPrefix());
5618  TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
5619  NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
5620  } else {
5621  ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
5622  }
5623  break;
5624 
5629  llvm_unreachable("Nested-name-specifier must name a type");
5630  }
5631 
5632  // Finally fill in MemberPointerLocInfo fields.
5633  TL.setStarLoc(Chunk.Loc);
5634  TL.setClassTInfo(ClsTInfo);
5635  }
5636  void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
5637  assert(Chunk.Kind == DeclaratorChunk::Reference);
5638  // 'Amp' is misleading: this might have been originally
5639  /// spelled with AmpAmp.
5640  TL.setAmpLoc(Chunk.Loc);
5641  }
5642  void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
5643  assert(Chunk.Kind == DeclaratorChunk::Reference);
5644  assert(!Chunk.Ref.LValueRef);
5645  TL.setAmpAmpLoc(Chunk.Loc);
5646  }
5647  void VisitArrayTypeLoc(ArrayTypeLoc TL) {
5648  assert(Chunk.Kind == DeclaratorChunk::Array);
5649  TL.setLBracketLoc(Chunk.Loc);
5650  TL.setRBracketLoc(Chunk.EndLoc);
5651  TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
5652  }
5653  void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
5654  assert(Chunk.Kind == DeclaratorChunk::Function);
5655  TL.setLocalRangeBegin(Chunk.Loc);
5656  TL.setLocalRangeEnd(Chunk.EndLoc);
5657 
5658  const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
5659  TL.setLParenLoc(FTI.getLParenLoc());
5660  TL.setRParenLoc(FTI.getRParenLoc());
5661  for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
5662  ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5663  TL.setParam(tpi++, Param);
5664  }
5666  }
5667  void VisitParenTypeLoc(ParenTypeLoc TL) {
5668  assert(Chunk.Kind == DeclaratorChunk::Paren);
5669  TL.setLParenLoc(Chunk.Loc);
5670  TL.setRParenLoc(Chunk.EndLoc);
5671  }
5672  void VisitPipeTypeLoc(PipeTypeLoc TL) {
5673  assert(Chunk.Kind == DeclaratorChunk::Pipe);
5674  TL.setKWLoc(Chunk.Loc);
5675  }
5676  void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5677  TL.setExpansionLoc(Chunk.Loc);
5678  }
5679 
5680  void VisitTypeLoc(TypeLoc TL) {
5681  llvm_unreachable("unsupported TypeLoc kind in declarator!");
5682  }
5683  };
5684 } // end anonymous namespace
5685 
5686 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
5687  SourceLocation Loc;
5688  switch (Chunk.Kind) {
5692  case DeclaratorChunk::Pipe:
5693  llvm_unreachable("cannot be _Atomic qualified");
5694 
5697  break;
5698 
5702  // FIXME: Provide a source location for the _Atomic keyword.
5703  break;
5704  }
5705 
5706  ATL.setKWLoc(Loc);
5707  ATL.setParensRange(SourceRange());
5708 }
5709 
5710 static void
5712  const ParsedAttributesView &Attrs) {
5713  for (const ParsedAttr &AL : Attrs) {
5714  if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
5715  DASTL.setAttrNameLoc(AL.getLoc());
5716  DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
5718  return;
5719  }
5720  }
5721 
5722  llvm_unreachable(
5723  "no address_space attribute found at the expected location!");
5724 }
5725 
5726 /// Create and instantiate a TypeSourceInfo with type source information.
5727 ///
5728 /// \param T QualType referring to the type as written in source code.
5729 ///
5730 /// \param ReturnTypeInfo For declarators whose return type does not show
5731 /// up in the normal place in the declaration specifiers (such as a C++
5732 /// conversion function), this pointer will refer to a type source information
5733 /// for that return type.
5734 static TypeSourceInfo *
5735 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
5736  QualType T, TypeSourceInfo *ReturnTypeInfo) {
5737  Sema &S = State.getSema();
5738  Declarator &D = State.getDeclarator();
5739 
5741  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
5742 
5743  // Handle parameter packs whose type is a pack expansion.
5744  if (isa<PackExpansionType>(T)) {
5745  CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
5746  CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5747  }
5748 
5749  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5750  // An AtomicTypeLoc might be produced by an atomic qualifier in this
5751  // declarator chunk.
5752  if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
5754  CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
5755  }
5756 
5757  while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
5758  TL.setExpansionLoc(
5759  State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5760  CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5761  }
5762 
5763  while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
5764  fillAttributedTypeLoc(TL, State);
5765  CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5766  }
5767 
5768  while (DependentAddressSpaceTypeLoc TL =
5769  CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
5771  CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
5772  }
5773 
5774  // FIXME: Ordering here?
5775  while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
5776  CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5777 
5778  DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
5779  CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5780  }
5781 
5782  // If we have different source information for the return type, use
5783  // that. This really only applies to C++ conversion functions.
5784  if (ReturnTypeInfo) {
5785  TypeLoc TL = ReturnTypeInfo->getTypeLoc();
5786  assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
5787  memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
5788  } else {
5789  TypeSpecLocFiller(S.Context, State, D.getDeclSpec()).Visit(CurrTL);
5790  }
5791 
5792  return TInfo;
5793 }
5794 
5795 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
5797  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
5798  // and Sema during declaration parsing. Try deallocating/caching them when
5799  // it's appropriate, instead of allocating them and keeping them around.
5800  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
5801  TypeAlignment);
5802  new (LocT) LocInfoType(T, TInfo);
5803  assert(LocT->getTypeClass() != T->getTypeClass() &&
5804  "LocInfoType's TypeClass conflicts with an existing Type class");
5805  return ParsedType::make(QualType(LocT, 0));
5806 }
5807 
5808 void LocInfoType::getAsStringInternal(std::string &Str,
5809  const PrintingPolicy &Policy) const {
5810  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
5811  " was used directly instead of getting the QualType through"
5812  " GetTypeFromParser");
5813 }
5814 
5816  // C99 6.7.6: Type names have no identifier. This is already validated by
5817  // the parser.
5818  assert(D.getIdentifier() == nullptr &&
5819  "Type name should have no identifier!");
5820 
5821  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5822  QualType T = TInfo->getType();
5823  if (D.isInvalidType())
5824  return true;
5825 
5826  // Make sure there are no unused decl attributes on the declarator.
5827  // We don't want to do this for ObjC parameters because we're going
5828  // to apply them to the actual parameter declaration.
5829  // Likewise, we don't want to do this for alias declarations, because
5830  // we are actually going to build a declaration from this eventually.
5834  checkUnusedDeclAttributes(D);
5835 
5836  if (getLangOpts().CPlusPlus) {
5837  // Check that there are no default arguments (C++ only).
5838  CheckExtraCXXDefaultArguments(D);
5839  }
5840 
5841  return CreateParsedType(T, TInfo);
5842 }
5843 
5845  QualType T = Context.getObjCInstanceType();
5846  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
5847  return CreateParsedType(T, TInfo);
5848 }
5849 
5850 //===----------------------------------------------------------------------===//
5851 // Type Attribute Processing
5852 //===----------------------------------------------------------------------===//
5853 
5854 /// Build an AddressSpace index from a constant expression and diagnose any
5855 /// errors related to invalid address_spaces. Returns true on successfully
5856 /// building an AddressSpace index.
5857 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
5858  const Expr *AddrSpace,
5859  SourceLocation AttrLoc) {
5860  if (!AddrSpace->isValueDependent()) {
5861  llvm::APSInt addrSpace(32);
5862  if (!AddrSpace->isIntegerConstantExpr(addrSpace, S.Context)) {
5863  S.Diag(AttrLoc, diag::err_attribute_argument_type)
5864  << "'address_space'" << AANT_ArgumentIntegerConstant
5865  << AddrSpace->getSourceRange();
5866  return false;
5867  }
5868 
5869  // Bounds checking.
5870  if (addrSpace.isSigned()) {
5871  if (addrSpace.isNegative()) {
5872  S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
5873  << AddrSpace->getSourceRange();
5874  return false;
5875  }
5876  addrSpace.setIsSigned(false);
5877  }
5878 
5879  llvm::APSInt max(addrSpace.getBitWidth());
5880  max =
5882  if (addrSpace > max) {
5883  S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
5884  << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
5885  return false;
5886  }
5887 
5888  ASIdx =
5889  getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
5890  return true;
5891  }
5892 
5893  // Default value for DependentAddressSpaceTypes
5894  ASIdx = LangAS::Default;
5895  return true;
5896 }
5897 
5898 /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
5899 /// is uninstantiated. If instantiated it will apply the appropriate address
5900 /// space to the type. This function allows dependent template variables to be
5901 /// used in conjunction with the address_space attribute
5903  SourceLocation AttrLoc) {
5904  if (!AddrSpace->isValueDependent()) {
5906  AttrLoc))
5907  return QualType();
5908 
5909  return Context.getAddrSpaceQualType(T, ASIdx);
5910  }
5911 
5912  // A check with similar intentions as checking if a type already has an
5913  // address space except for on a dependent types, basically if the
5914  // current type is already a DependentAddressSpaceType then its already
5915  // lined up to have another address space on it and we can't have
5916  // multiple address spaces on the one pointer indirection
5917  if (T->getAs<DependentAddressSpaceType>()) {
5918  Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
5919  return QualType();
5920  }
5921 
5922  return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
5923 }
5924 
5926  SourceLocation AttrLoc) {
5927  LangAS ASIdx;
5928  if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
5929  return QualType();
5930  return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
5931 }
5932 
5933 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
5934 /// specified type. The attribute contains 1 argument, the id of the address
5935 /// space for the type.
5937  const ParsedAttr &Attr,
5938  TypeProcessingState &State) {
5939  Sema &S = State.getSema();
5940 
5941  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
5942  // qualified by an address-space qualifier."
5943  if (Type->isFunctionType()) {
5944  S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
5945  Attr.setInvalid();
5946  return;
5947  }
5948 
5949  LangAS ASIdx;
5950  if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
5951 
5952  // Check the attribute arguments.
5953  if (Attr.getNumArgs() != 1) {
5954  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
5955  << 1;
5956  Attr.setInvalid();
5957  return;
5958  }
5959 
5960  Expr *ASArgExpr;
5961  if (Attr.isArgIdent(0)) {
5962  // Special case where the argument is a template id.
5963  CXXScopeSpec SS;
5964  SourceLocation TemplateKWLoc;
5965  UnqualifiedId id;
5966  id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
5967 
5968  ExprResult AddrSpace = S.ActOnIdExpression(
5969  S.getCurScope(), SS, TemplateKWLoc, id, /*HasTrailingLParen=*/false,
5970  /*IsAddressOfOperand=*/false);
5971  if (AddrSpace.isInvalid())
5972  return;
5973 
5974  ASArgExpr = static_cast<Expr *>(AddrSpace.get());
5975  } else {
5976  ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
5977  }
5978 
5979  LangAS ASIdx;
5980  if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
5981  Attr.setInvalid();
5982  return;
5983  }
5984 
5985  ASTContext &Ctx = S.Context;
5986  auto *ASAttr = ::new (Ctx) AddressSpaceAttr(
5987  Attr.getRange(), Ctx, Attr.getAttributeSpellingListIndex(),
5988  static_cast<unsigned>(ASIdx));
5989 
5990  // If the expression is not value dependent (not templated), then we can
5991  // apply the address space qualifiers just to the equivalent type.
5992  // Otherwise, we make an AttributedType with the modified and equivalent
5993  // type the same, and wrap it in a DependentAddressSpaceType. When this
5994  // dependent type is resolved, the qualifier is added to the equivalent type
5995  // later.
5996  QualType T;
5997  if (!ASArgExpr->isValueDependent()) {
5998  QualType EquivType =
5999  S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6000  if (EquivType.isNull()) {
6001  Attr.setInvalid();
6002  return;
6003  }
6004  T = State.getAttributedType(ASAttr, Type, EquivType);
6005  } else {
6006  T = State.getAttributedType(ASAttr, Type, Type);
6007  T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6008  }
6009 
6010  if (!T.isNull())
6011  Type = T;
6012  else
6013  Attr.setInvalid();
6014  } else {
6015  // The keyword-based type attributes imply which address space to use.
6016  ASIdx = Attr.asOpenCLLangAS();
6017  if (ASIdx == LangAS::Default)
6018  llvm_unreachable("Invalid address space");
6019 
6021  Attr.getLoc())) {
6022  Attr.setInvalid();
6023  return;
6024  }
6025 
6026  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6027  }
6028 }
6029 
6030 /// Does this type have a "direct" ownership qualifier? That is,
6031 /// is it written like "__strong id", as opposed to something like
6032 /// "typeof(foo)", where that happens to be strong?
6034  // Fast path: no qualifier at all.
6035  assert(type.getQualifiers().hasObjCLifetime());
6036 
6037  while (true) {
6038  // __strong id
6039  if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
6040  if (attr->getAttrKind() == attr::ObjCOwnership)
6041  return true;
6042 
6043  type = attr->getModifiedType();
6044 
6045  // X *__strong (...)
6046  } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
6047  type = paren->getInnerType();
6048 
6049  // That's it for things we want to complain about. In particular,
6050  // we do not want to look through typedefs, typeof(expr),
6051  // typeof(type), or any other way that the type is somehow
6052  // abstracted.
6053  } else {
6054 
6055  return false;
6056  }
6057  }
6058 }
6059 
6060 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6061 /// attribute on the specified type.
6062 ///
6063 /// Returns 'true' if the attribute was handled.
6064 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6065  ParsedAttr &attr, QualType &type) {
6066  bool NonObjCPointer = false;
6067 
6068  if (!type->isDependentType() && !type->isUndeducedType()) {
6069  if (const PointerType *ptr = type->getAs<PointerType>()) {
6070  QualType pointee = ptr->getPointeeType();
6071  if (pointee->isObjCRetainableType() || pointee->isPointerType())
6072  return false;
6073  // It is important not to lose the source info that there was an attribute
6074  // applied to non-objc pointer. We will create an attributed type but
6075  // its type will be the same as the original type.
6076  NonObjCPointer = true;
6077  } else if (!type->isObjCRetainableType()) {
6078  return false;
6079  }
6080 
6081  // Don't accept an ownership attribute in the declspec if it would
6082  // just be the return type of a block pointer.
6083  if (state.isProcessingDeclSpec()) {
6084  Declarator &D = state.getDeclarator();
6086  /*onlyBlockPointers=*/true))
6087  return false;
6088  }
6089  }
6090 
6091  Sema &S = state.getSema();
6092  SourceLocation AttrLoc = attr.getLoc();
6093  if (AttrLoc.isMacroID())
6094  AttrLoc =
6096 
6097  if (!attr.isArgIdent(0)) {
6098  S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6100  attr.setInvalid();
6101  return true;
6102  }
6103 
6104  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6105  Qualifiers::ObjCLifetime lifetime;
6106  if (II->isStr("none"))
6107  lifetime = Qualifiers::OCL_ExplicitNone;
6108  else if (II->isStr("strong"))
6109  lifetime = Qualifiers::OCL_Strong;
6110  else if (II->isStr("weak"))
6111  lifetime = Qualifiers::OCL_Weak;
6112  else if (II->isStr("autoreleasing"))
6113  lifetime = Qualifiers::OCL_Autoreleasing;
6114  else {
6115  S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
6116  << attr.getName() << II;
6117  attr.setInvalid();
6118  return true;
6119  }
6120 
6121  // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6122  // outside of ARC mode.
6123  if (!S.getLangOpts().ObjCAutoRefCount &&
6124  lifetime != Qualifiers::OCL_Weak &&
6125  lifetime != Qualifiers::OCL_ExplicitNone) {
6126  return true;
6127  }
6128 
6129  SplitQualType underlyingType = type.split();
6130 
6131  // Check for redundant/conflicting ownership qualifiers.
6132  if (Qualifiers::ObjCLifetime previousLifetime
6133  = type.getQualifiers().getObjCLifetime()) {
6134  // If it's written directly, that's an error.
6135  if (hasDirectOwnershipQualifier(type)) {
6136  S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6137  << type;
6138  return true;
6139  }
6140 
6141  // Otherwise, if the qualifiers actually conflict, pull sugar off
6142  // and remove the ObjCLifetime qualifiers.
6143  if (previousLifetime != lifetime) {
6144  // It's possible to have multiple local ObjCLifetime qualifiers. We
6145  // can't stop after we reach a type that is directly qualified.
6146  const Type *prevTy = nullptr;
6147  while (!prevTy || prevTy != underlyingType.Ty) {
6148  prevTy = underlyingType.Ty;
6149  underlyingType = underlyingType.getSingleStepDesugaredType();
6150  }
6151  underlyingType.Quals.removeObjCLifetime();
6152  }
6153  }
6154 
6155  underlyingType.Quals.addObjCLifetime(lifetime);
6156 
6157  if (NonObjCPointer) {
6158  StringRef name = attr.getName()->getName();
6159  switch (lifetime) {
6160  case Qualifiers::OCL_None:
6162  break;
6163  case Qualifiers::OCL_Strong: name = "__strong"; break;
6164  case Qualifiers::OCL_Weak: name = "__weak"; break;
6165  case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6166  }
6167  S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6168  << TDS_ObjCObjOrBlock << type;
6169  }
6170 
6171  // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6172  // because having both 'T' and '__unsafe_unretained T' exist in the type
6173  // system causes unfortunate widespread consistency problems. (For example,
6174  // they're not considered compatible types, and we mangle them identicially
6175  // as template arguments.) These problems are all individually fixable,
6176  // but it's easier to just not add the qualifier and instead sniff it out
6177  // in specific places using isObjCInertUnsafeUnretainedType().
6178  //
6179  // Doing this does means we miss some trivial consistency checks that
6180  // would've triggered in ARC, but that's better than trying to solve all
6181  // the coexistence problems with __unsafe_unretained.
6182  if (!S.getLangOpts().ObjCAutoRefCount &&
6183  lifetime == Qualifiers::OCL_ExplicitNone) {
6184  type = state.getAttributedType(
6185  createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6186  type, type);
6187  return true;
6188  }
6189 
6190  QualType origType = type;
6191  if (!NonObjCPointer)
6192  type = S.Context.getQualifiedType(underlyingType);
6193 
6194  // If we have a valid source location for the attribute, use an
6195  // AttributedType instead.
6196  if (AttrLoc.isValid()) {
6197  type = state.getAttributedType(::new (S.Context) ObjCOwnershipAttr(
6198  attr.getRange(), S.Context, II,
6200  origType, type);
6201  }
6202 
6203  auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6204  unsigned diagnostic, QualType type) {
6209  diagnostic, type, /*ignored*/ 0));
6210  } else {
6211  S.Diag(loc, diagnostic);
6212  }
6213  };
6214 
6215  // Sometimes, __weak isn't allowed.
6216  if (lifetime == Qualifiers::OCL_Weak &&
6217  !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6218 
6219  // Use a specialized diagnostic if the runtime just doesn't support them.
6220  unsigned diagnostic =
6221  (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6222  : diag::err_arc_weak_no_runtime);
6223 
6224  // In any case, delay the diagnostic until we know what we're parsing.
6225  diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6226 
6227  attr.setInvalid();
6228  return true;
6229  }
6230 
6231  // Forbid __weak for class objects marked as
6232  // objc_arc_weak_reference_unavailable
6233  if (lifetime == Qualifiers::OCL_Weak) {
6234  if (const ObjCObjectPointerType *ObjT =
6235  type->getAs<ObjCObjectPointerType>()) {
6236  if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6237  if (Class->isArcWeakrefUnavailable()) {
6238  S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6239  S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6240  diag::note_class_declared);
6241  }
6242  }
6243  }
6244  }
6245 
6246  return true;
6247 }
6248 
6249 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6250 /// attribute on the specified type. Returns true to indicate that
6251 /// the attribute was handled, false to indicate that the type does
6252 /// not permit the attribute.
6253 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6254  QualType &type) {
6255  Sema &S = state.getSema();
6256 
6257  // Delay if this isn't some kind of pointer.
6258  if (!type->isPointerType() &&
6259  !type->isObjCObjectPointerType() &&
6260  !type->isBlockPointerType())
6261  return false;
6262 
6263  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6264  S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6265  attr.setInvalid();
6266  return true;
6267  }
6268 
6269  // Check the attribute arguments.
6270  if (!attr.isArgIdent(0)) {
6271  S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6272  << attr << AANT_ArgumentString;
6273  attr.setInvalid();
6274  return true;
6275  }
6276  Qualifiers::GC GCAttr;
6277  if (attr.getNumArgs() > 1) {
6278  S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6279  << 1;
6280  attr.setInvalid();
6281  return true;
6282  }
6283 
6284  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6285  if (II->isStr("weak"))
6286  GCAttr = Qualifiers::Weak;
6287  else if (II->isStr("strong"))
6288  GCAttr = Qualifiers::Strong;
6289  else {
6290  S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6291  << attr.getName() << II;
6292  attr.setInvalid();
6293  return true;
6294  }
6295 
6296  QualType origType = type;
6297  type = S.Context.getObjCGCQualType(origType, GCAttr);
6298 
6299  // Make an attributed type to preserve the source information.
6300  if (attr.getLoc().isValid())
6301  type = state.getAttributedType(
6302  ::new (S.Context) ObjCGCAttr(attr.getRange(), S.Context, II,
6304  origType, type);
6305 
6306  return true;
6307 }
6308 
6309 namespace {
6310  /// A helper class to unwrap a type down to a function for the
6311  /// purposes of applying attributes there.
6312  ///
6313  /// Use:
6314  /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
6315  /// if (unwrapped.isFunctionType()) {
6316  /// const FunctionType *fn = unwrapped.get();
6317  /// // change fn somehow
6318  /// T = unwrapped.wrap(fn);
6319  /// }
6320  struct FunctionTypeUnwrapper {
6321  enum WrapKind {
6322  Desugar,
6323  Attributed,
6324  Parens,
6325  Pointer,
6326  BlockPointer,
6327  Reference,
6328  MemberPointer
6329  };
6330 
6331  QualType Original;
6332  const FunctionType *Fn;
6333  SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6334 
6335  FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6336  while (true) {
6337  const Type *Ty = T.getTypePtr();
6338  if (isa<FunctionType>(Ty)) {
6339  Fn = cast<FunctionType>(Ty);
6340  return;
6341  } else if (isa<ParenType>(Ty)) {
6342  T = cast<ParenType>(Ty)->getInnerType();
6343  Stack.push_back(Parens);
6344  } else if (isa<PointerType>(Ty)) {
6345  T = cast<PointerType>(Ty)->getPointeeType();
6346  Stack.push_back(Pointer);
6347  } else if (isa<BlockPointerType>(Ty)) {
6348  T = cast<BlockPointerType>(Ty)->getPointeeType();
6349  Stack.push_back(BlockPointer);
6350  } else if (isa<MemberPointerType>(Ty)) {
6351  T = cast<MemberPointerType>(Ty)->getPointeeType();
6352  Stack.push_back(MemberPointer);
6353  } else if (isa<ReferenceType>(Ty)) {
6354  T = cast<ReferenceType>(Ty)->getPointeeType();
6355  Stack.push_back(Reference);
6356  } else if (isa<AttributedType>(Ty)) {
6357  T = cast<AttributedType>(Ty)->getEquivalentType();
6358  Stack.push_back(Attributed);
6359  } else {
6360  const Type *DTy = Ty->getUnqualifiedDesugaredType();
6361  if (Ty == DTy) {
6362  Fn = nullptr;
6363  return;
6364  }
6365 
6366  T = QualType(DTy, 0);
6367  Stack.push_back(Desugar);
6368  }
6369  }
6370  }
6371 
6372  bool isFunctionType() const { return (Fn != nullptr); }
6373  const FunctionType *get() const { return Fn; }
6374 
6375  QualType wrap(Sema &S, const FunctionType *New) {
6376  // If T wasn't modified from the unwrapped type, do nothing.
6377  if (New == get()) return Original;
6378 
6379  Fn = New;
6380  return wrap(S.Context, Original, 0);
6381  }
6382 
6383  private:
6384  QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6385  if (I == Stack.size())
6386  return C.getQualifiedType(Fn, Old.getQualifiers());
6387 
6388  // Build up the inner type, applying the qualifiers from the old
6389  // type to the new type.
6390  SplitQualType SplitOld = Old.split();
6391 
6392  // As a special case, tail-recurse if there are no qualifiers.
6393  if (SplitOld.Quals.empty())
6394  return wrap(C, SplitOld.Ty, I);
6395  return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6396  }
6397 
6398  QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6399  if (I == Stack.size()) return QualType(Fn, 0);
6400 
6401  switch (static_cast<WrapKind>(Stack[I++])) {
6402  case Desugar:
6403  // This is the point at which we potentially lose source
6404  // information.
6405  return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6406 
6407  case Attributed:
6408  return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6409 
6410  case Parens: {
6411  QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6412  return C.getParenType(New);
6413  }
6414 
6415  case Pointer: {
6416  QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6417  return C.getPointerType(New);
6418  }
6419 
6420  case BlockPointer: {
6421  QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6422  return C.getBlockPointerType(New);
6423  }
6424 
6425  case MemberPointer: {
6426  const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6427  QualType New = wrap(C, OldMPT->getPointeeType(), I);
6428  return C.getMemberPointerType(New, OldMPT->getClass());
6429  }
6430 
6431  case Reference: {
6432  const ReferenceType *OldRef = cast<ReferenceType>(Old);
6433  QualType New = wrap(C, OldRef->getPointeeType(), I);
6434  if (isa<LValueReferenceType>(OldRef))
6435  return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6436  else
6437  return C.getRValueReferenceType(New);
6438  }
6439  }
6440 
6441  llvm_unreachable("unknown wrapping kind");
6442  }
6443  };
6444 } // end anonymous namespace
6445 
6446 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6447  ParsedAttr &PAttr, QualType &Type) {
6448  Sema &S = State.getSema();
6449 
6450  Attr *A;
6451  switch (PAttr.getKind()) {
6452  default: llvm_unreachable("Unknown attribute kind");
6453  case ParsedAttr::AT_Ptr32:
6454  A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
6455  break;
6456  case ParsedAttr::AT_Ptr64:
6457  A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
6458  break;
6459  case ParsedAttr::AT_SPtr:
6460  A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
6461  break;
6462  case ParsedAttr::AT_UPtr:
6463  A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
6464  break;
6465  }
6466 
6467  attr::Kind NewAttrKind = A->getKind();
6468  QualType Desugared = Type;
6469  const AttributedType *AT = dyn_cast<AttributedType>(Type);
6470  while (AT) {
6471  attr::Kind CurAttrKind = AT->getAttrKind();
6472 
6473  // You cannot specify duplicate type attributes, so if the attribute has
6474  // already been applied, flag it.
6475  if (NewAttrKind == CurAttrKind) {
6476  S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact)
6477  << PAttr.getName();
6478  return true;
6479  }
6480 
6481  // You cannot have both __sptr and __uptr on the same type, nor can you
6482  // have __ptr32 and __ptr64.
6483  if ((CurAttrKind == attr::Ptr32 && NewAttrKind == attr::Ptr64) ||
6484  (CurAttrKind == attr::Ptr64 && NewAttrKind == attr::Ptr32)) {
6485  S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6486  << "'__ptr32'" << "'__ptr64'";
6487  return true;
6488  } else if ((CurAttrKind == attr::SPtr && NewAttrKind == attr::UPtr) ||
6489  (CurAttrKind == attr::UPtr && NewAttrKind == attr::SPtr)) {
6490  S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6491  << "'__sptr'" << "'__uptr'";
6492  return true;
6493  }
6494 
6495  Desugared = AT->getEquivalentType();
6496  AT = dyn_cast<AttributedType>(Desugared);
6497  }
6498 
6499  // Pointer type qualifiers can only operate on pointer types, but not
6500  // pointer-to-member types.
6501  //
6502  // FIXME: Should we really be disallowing this attribute if there is any
6503  // type sugar between it and the pointer (other than attributes)? Eg, this
6504  // disallows the attribute on a parenthesized pointer.
6505  // And if so, should we really allow *any* type attribute?
6506  if (!isa<PointerType>(Desugared)) {
6507  if (Type->isMemberPointerType())
6508  S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
6509  else
6510  S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
6511  return true;
6512  }
6513 
6514  Type = State.getAttributedType(A, Type, Type);
6515  return false;
6516 }
6517 
6518 /// Map a nullability attribute kind to a nullability kind.
6520  switch (kind) {
6521  case ParsedAttr::AT_TypeNonNull:
6522  return NullabilityKind::NonNull;
6523 
6524  case ParsedAttr::AT_TypeNullable:
6526 
6527  case ParsedAttr::AT_TypeNullUnspecified:
6529 
6530  default:
6531  llvm_unreachable("not a nullability attribute kind");
6532  }
6533 }
6534 
6535 /// Applies a nullability type specifier to the given type, if possible.
6536 ///
6537 /// \param state The type processing state.
6538 ///
6539 /// \param type The type to which the nullability specifier will be
6540 /// added. On success, this type will be updated appropriately.
6541 ///
6542 /// \param attr The attribute as written on the type.
6543 ///
6544 /// \param allowOnArrayType Whether to accept nullability specifiers on an
6545 /// array type (e.g., because it will decay to a pointer).
6546 ///
6547 /// \returns true if a problem has been diagnosed, false on success.
6548 static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
6549  QualType &type,
6550  ParsedAttr &attr,
6551  bool allowOnArrayType) {
6552  Sema &S = state.getSema();
6553 
6554  NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
6555  SourceLocation nullabilityLoc = attr.getLoc();
6556  bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
6557 
6558  recordNullabilitySeen(S, nullabilityLoc);
6559 
6560  // Check for existing nullability attributes on the type.
6561  QualType desugared = type;
6562  while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
6563  // Check whether there is already a null
6564  if (auto existingNullability = attributed->getImmediateNullability()) {
6565  // Duplicated nullability.
6566  if (nullability == *existingNullability) {
6567  S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
6568  << DiagNullabilityKind(nullability, isContextSensitive)
6569  << FixItHint::CreateRemoval(nullabilityLoc);
6570 
6571  break;
6572  }
6573 
6574  // Conflicting nullability.
6575  S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
6576  << DiagNullabilityKind(nullability, isContextSensitive)
6577  << DiagNullabilityKind(*existingNullability, false);
6578  return true;
6579  }
6580 
6581  desugared = attributed->getModifiedType();
6582  }
6583 
6584  // If there is already a different nullability specifier, complain.
6585  // This (unlike the code above) looks through typedefs that might
6586  // have nullability specifiers on them, which means we cannot
6587  // provide a useful Fix-It.
6588  if (auto existingNullability = desugared->getNullability(S.Context)) {
6589  if (nullability != *existingNullability) {
6590  S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
6591  << DiagNullabilityKind(nullability, isContextSensitive)
6592  << DiagNullabilityKind(*existingNullability, false);
6593 
6594  // Try to find the typedef with the existing nullability specifier.
6595  if (auto typedefType = desugared->getAs<TypedefType>()) {
6596  TypedefNameDecl *typedefDecl = typedefType->getDecl();
6597  QualType underlyingType = typedefDecl->getUnderlyingType();
6598  if (auto typedefNullability
6599  = AttributedType::stripOuterNullability(underlyingType)) {
6600  if (*typedefNullability == *existingNullability) {
6601  S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
6602  << DiagNullabilityKind(*existingNullability, false);
6603  }
6604  }
6605  }
6606 
6607  return true;
6608  }
6609  }
6610 
6611  // If this definitely isn't a pointer type, reject the specifier.
6612  if (!desugared->canHaveNullability() &&
6613  !(allowOnArrayType && desugared->isArrayType())) {
6614  S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
6615  << DiagNullabilityKind(nullability, isContextSensitive) << type;
6616  return true;
6617  }
6618 
6619  // For the context-sensitive keywords/Objective-C property
6620  // attributes, require that the type be a single-level pointer.
6621  if (isContextSensitive) {
6622  // Make sure that the pointee isn't itself a pointer type.
6623  const Type *pointeeType;
6624  if (desugared->isArrayType())
6625  pointeeType = desugared->getArrayElementTypeNoTypeQual();
6626  else
6627  pointeeType = desugared->getPointeeType().getTypePtr();
6628 
6629  if (pointeeType->isAnyPointerType() ||
6630  pointeeType->isObjCObjectPointerType() ||
6631  pointeeType->isMemberPointerType()) {
6632  S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
6633  << DiagNullabilityKind(nullability, true)
6634  << type;
6635  S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
6636  << DiagNullabilityKind(nullability, false)
6637  << type
6638  << FixItHint::CreateReplacement(nullabilityLoc,
6639  getNullabilitySpelling(nullability));
6640  return true;
6641  }
6642  }
6643 
6644  // Form the attributed type.
6645  type = state.getAttributedType(
6646  createNullabilityAttr(S.Context, attr, nullability), type, type);
6647  return false;
6648 }
6649 
6650 /// Check the application of the Objective-C '__kindof' qualifier to
6651 /// the given type.
6652 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
6653  ParsedAttr &attr) {
6654  Sema &S = state.getSema();
6655 
6656  if (isa<ObjCTypeParamType>(type)) {
6657  // Build the attributed type to record where __kindof occurred.
6658  type = state.getAttributedType(
6659  createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
6660  return false;
6661  }
6662 
6663  // Find out if it's an Objective-C object or object pointer type;
6664  const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
6665  const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
6666  : type->getAs<ObjCObjectType>();
6667 
6668  // If not, we can't apply __kindof.
6669  if (!objType) {
6670  // FIXME: Handle dependent types that aren't yet object types.
6671  S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
6672  << type;
6673  return true;
6674  }
6675 
6676  // Rebuild the "equivalent" type, which pushes __kindof down into
6677  // the object type.
6678  // There is no need to apply kindof on an unqualified id type.
6679  QualType equivType = S.Context.getObjCObjectType(
6680  objType->getBaseType(), objType->getTypeArgsAsWritten(),
6681  objType->getProtocols(),
6682  /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
6683 
6684  // If we started with an object pointer type, rebuild it.
6685  if (ptrType) {
6686  equivType = S.Context.getObjCObjectPointerType(equivType);
6687  if (auto nullability = type->getNullability(S.Context)) {
6688  // We create a nullability attribute from the __kindof attribute.
6689  // Make sure that will make sense.
6690  assert(attr.getAttributeSpellingListIndex() == 0 &&
6691  "multiple spellings for __kindof?");
6692  Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
6693  A->setImplicit(true);
6694  equivType = state.getAttributedType(A, equivType, equivType);
6695  }
6696  }
6697 
6698  // Build the attributed type to record where __kindof occurred.
6699  type = state.getAttributedType(
6700  createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
6701  return false;
6702 }
6703 
6704 /// Distribute a nullability type attribute that cannot be applied to
6705 /// the type specifier to a pointer, block pointer, or member pointer
6706 /// declarator, complaining if necessary.
6707 ///
6708 /// \returns true if the nullability annotation was distributed, false
6709 /// otherwise.
6710 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
6711  QualType type, ParsedAttr &attr) {
6712  Declarator &declarator = state.getDeclarator();
6713 
6714  /// Attempt to move the attribute to the specified chunk.
6715  auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
6716  // If there is already a nullability attribute there, don't add
6717  // one.
6718  if (hasNullabilityAttr(chunk.getAttrs()))
6719  return false;
6720 
6721  // Complain about the nullability qualifier being in the wrong
6722  // place.
6723  enum {
6724  PK_Pointer,
6725  PK_BlockPointer,
6726  PK_MemberPointer,
6727  PK_FunctionPointer,
6728  PK_MemberFunctionPointer,
6729  } pointerKind
6730  = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
6731  : PK_Pointer)
6732  : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
6733  : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
6734 
6735  auto diag = state.getSema().Diag(attr.getLoc(),
6736  diag::warn_nullability_declspec)
6739  << type
6740  << static_cast<unsigned>(pointerKind);
6741 
6742  // FIXME: MemberPointer chunks don't carry the location of the *.
6743  if (chunk.Kind != DeclaratorChunk::MemberPointer) {
6744  diag << FixItHint::CreateRemoval(attr.getLoc())
6746  state.getSema().getPreprocessor()
6747  .getLocForEndOfToken(chunk.Loc),
6748  " " + attr.getName()->getName().str() + " ");
6749  }
6750 
6751  moveAttrFromListToList(attr, state.getCurrentAttributes(),
6752  chunk.getAttrs());
6753  return true;
6754  };
6755 
6756  // Move it to the outermost pointer, member pointer, or block
6757  // pointer declarator.
6758  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
6759  DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
6760  switch (chunk.Kind) {
6764  return moveToChunk(chunk, false);
6765 
6768  continue;
6769 
6771  // Try to move past the return type to a function/block/member
6772  // function pointer.
6774  declarator, i,
6775  /*onlyBlockPointers=*/false)) {
6776  return moveToChunk(*dest, true);
6777  }
6778 
6779  return false;
6780 
6781  // Don't walk through these.
6783  case DeclaratorChunk::Pipe:
6784  return false;
6785  }
6786  }
6787 
6788  return false;
6789 }
6790 
6792  assert(!Attr.isInvalid());
6793  switch (Attr.getKind()) {
6794  default:
6795  llvm_unreachable("not a calling convention attribute");
6796  case ParsedAttr::AT_CDecl:
6797  return createSimpleAttr<CDeclAttr>(Ctx, Attr);
6798  case ParsedAttr::AT_FastCall:
6799  return createSimpleAttr<FastCallAttr>(Ctx, Attr);
6800  case ParsedAttr::AT_StdCall:
6801  return createSimpleAttr<StdCallAttr>(Ctx, Attr);
6802  case ParsedAttr::AT_ThisCall:
6803  return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
6804  case ParsedAttr::AT_RegCall:
6805  return createSimpleAttr<RegCallAttr>(Ctx, Attr);
6806  case ParsedAttr::AT_Pascal:
6807  return createSimpleAttr<PascalAttr>(Ctx, Attr);
6808  case ParsedAttr::AT_SwiftCall:
6809  return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
6810  case ParsedAttr::AT_VectorCall:
6811  return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
6812  case ParsedAttr::AT_AArch64VectorPcs:
6813  return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
6814  case ParsedAttr::AT_Pcs: {
6815  // The attribute may have had a fixit applied where we treated an
6816  // identifier as a string literal. The contents of the string are valid,
6817  // but the form may not be.
6818  StringRef Str;
6819  if (Attr.isArgExpr(0))
6820  Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
6821  else
6822  Str = Attr.getArgAsIdent(0)->Ident->getName();
6823  PcsAttr::PCSType Type;
6824  if (!PcsAttr::ConvertStrToPCSType(Str, Type))
6825  llvm_unreachable("already validated the attribute");
6826  return ::new (Ctx) PcsAttr(Attr.getRange(), Ctx, Type,
6828  }
6829  case ParsedAttr::AT_IntelOclBicc:
6830  return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
6831  case ParsedAttr::AT_MSABI:
6832  return createSimpleAttr<MSABIAttr>(Ctx, Attr);
6833  case ParsedAttr::AT_SysVABI:
6834  return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
6835  case ParsedAttr::AT_PreserveMost:
6836  return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
6837  case ParsedAttr::AT_PreserveAll:
6838  return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
6839  }
6840  llvm_unreachable("unexpected attribute kind!");
6841 }
6842 
6843 /// Process an individual function attribute. Returns true to
6844 /// indicate that the attribute was handled, false if it wasn't.
6845 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6846  QualType &type) {
6847  Sema &S = state.getSema();
6848 
6849  FunctionTypeUnwrapper unwrapped(S, type);
6850 
6851  if (attr.getKind() == ParsedAttr::AT_NoReturn) {
6852  if (S.CheckAttrNoArgs(attr))
6853  return true;
6854 
6855  // Delay if this is not a function type.
6856  if (!unwrapped.isFunctionType())
6857  return false;
6858 
6859  // Otherwise we can process right away.
6860  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
6861  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6862  return true;
6863  }
6864 
6865  // ns_returns_retained is not always a type attribute, but if we got
6866  // here, we're treating it as one right now.
6867  if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
6868  if (attr.getNumArgs()) return true;
6869 
6870  // Delay if this is not a function type.
6871  if (!unwrapped.isFunctionType())
6872  return false;
6873 
6874  // Check whether the return type is reasonable.
6876  unwrapped.get()->getReturnType()))
6877  return true;
6878 
6879  // Only actually change the underlying type in ARC builds.
6880  QualType origType = type;
6881  if (state.getSema().getLangOpts().ObjCAutoRefCount) {
6883  = unwrapped.get()->getExtInfo().withProducesResult(true);
6884  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6885  }
6886  type = state.getAttributedType(
6887  createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
6888  origType, type);
6889  return true;
6890  }
6891 
6892  if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
6893  if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
6894  return true;
6895 
6896  // Delay if this is not a function type.
6897  if (!unwrapped.isFunctionType())
6898  return false;
6899 
6901  unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
6902  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6903  return true;
6904  }
6905 
6906  if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
6907  if (!S.getLangOpts().CFProtectionBranch) {
6908  S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
6909  attr.setInvalid();
6910  return true;
6911  }
6912 
6913  if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
6914  return true;
6915 
6916  // If this is not a function type, warning will be asserted by subject
6917  // check.
6918  if (!unwrapped.isFunctionType())
6919  return true;
6920 
6922  unwrapped.get()->getExtInfo().withNoCfCheck(true);
6923  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6924  return true;
6925  }
6926 
6927  if (attr.getKind() == ParsedAttr::AT_Regparm) {
6928  unsigned value;
6929  if (S.CheckRegparmAttr(attr, value))
6930  return true;
6931 
6932  // Delay if this is not a function type.
6933  if (!unwrapped.isFunctionType())
6934  return false;
6935 
6936  // Diagnose regparm with fastcall.
6937  const FunctionType *fn = unwrapped.get();
6938  CallingConv CC = fn->getCallConv();
6939  if (CC == CC_X86FastCall) {
6940  S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6942  << "regparm";
6943  attr.setInvalid();
6944  return true;
6945  }
6946 
6948  unwrapped.get()->getExtInfo().withRegParm(value);
6949  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6950  return true;
6951  }
6952 
6953  if (attr.getKind() == ParsedAttr::AT_NoThrow) {
6954  // Delay if this is not a function type.
6955  if (!unwrapped.isFunctionType())
6956  return false;
6957 
6958  if (S.CheckAttrNoArgs(attr)) {
6959  attr.setInvalid();
6960  return true;
6961  }
6962 
6963  // Otherwise we can process right away.
6964  auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
6965 
6966  // MSVC ignores nothrow if it is in conflict with an explicit exception
6967  // specification.
6968  if (Proto->hasExceptionSpec()) {
6969  switch (Proto->getExceptionSpecType()) {
6970  case EST_None:
6971  llvm_unreachable("This doesn't have an exception spec!");
6972 
6973  case EST_DynamicNone:
6974  case EST_BasicNoexcept:
6975  case EST_NoexceptTrue:
6976  case EST_NoThrow:
6977  // Exception spec doesn't conflict with nothrow, so don't warn.
6978  LLVM_FALLTHROUGH;
6979  case EST_Unparsed:
6980  case EST_Uninstantiated:
6981  case EST_DependentNoexcept:
6982  case EST_Unevaluated:
6983  // We don't have enough information to properly determine if there is a
6984  // conflict, so suppress the warning.
6985  break;
6986  case EST_Dynamic:
6987  case EST_MSAny:
6988  case EST_NoexceptFalse:
6989  S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
6990  break;
6991  }
6992  return true;
6993  }
6994 
6995  type = unwrapped.wrap(
6996  S, S.Context
6998  QualType{Proto, 0},
7000  ->getAs<FunctionType>());
7001  return true;
7002  }
7003 
7004  // Delay if the type didn't work out to a function.
7005  if (!unwrapped.isFunctionType()) return false;
7006 
7007  // Otherwise, a calling convention.
7008  CallingConv CC;
7009  if (S.CheckCallingConvAttr(attr, CC))
7010  return true;
7011 
7012  const FunctionType *fn = unwrapped.get();
7013  CallingConv CCOld = fn->getCallConv();
7014  Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7015 
7016  if (CCOld != CC) {
7017  // Error out on when there's already an attribute on the type
7018  // and the CCs don't match.
7019  if (S.getCallingConvAttributedType(type)) {
7020  S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7023  attr.setInvalid();
7024  return true;
7025  }
7026  }
7027 
7028  // Diagnose use of variadic functions with calling conventions that
7029  // don't support them (e.g. because they're callee-cleanup).
7030  // We delay warning about this on unprototyped function declarations
7031  // until after redeclaration checking, just in case we pick up a
7032  // prototype that way. And apparently we also "delay" warning about
7033  // unprototyped function types in general, despite not necessarily having
7034  // much ability to diagnose it later.
7035  if (!supportsVariadicCall(CC)) {
7036  const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7037  if (FnP && FnP->isVariadic()) {
7038  // stdcall and fastcall are ignored with a warning for GCC and MS
7039  // compatibility.
7040  if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7041  return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7044 
7045  attr.setInvalid();
7046  return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
7048  }
7049  }
7050 
7051  // Also diagnose fastcall with regparm.
7052  if (CC == CC_X86FastCall && fn->getHasRegParm()) {
7053  S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7055  attr.setInvalid();
7056  return true;
7057  }
7058 
7059  // Modify the CC from the wrapped function type, wrap it all back, and then
7060  // wrap the whole thing in an AttributedType as written. The modified type
7061  // might have a different CC if we ignored the attribute.
7063  if (CCOld == CC) {
7064  Equivalent = type;
7065  } else {
7066  auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7067  Equivalent =
7068  unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7069  }
7070  type = state.getAttributedType(CCAttr, type, Equivalent);
7071  return true;
7072 }
7073 
7075  const AttributedType *AT;
7076 
7077  // Stop if we'd be stripping off a typedef sugar node to reach the
7078  // AttributedType.
7079  while ((AT = T->getAs<AttributedType>()) &&
7080  AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7081  if (AT->isCallingConv())
7082  return true;
7083  T = AT->getModifiedType();
7084  }
7085  return false;
7086 }
7087 
7088 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
7089  SourceLocation Loc) {
7090  FunctionTypeUnwrapper Unwrapped(*this, T);
7091  const FunctionType *FT = Unwrapped.get();
7092  bool IsVariadic = (isa<FunctionProtoType>(FT) &&
7093  cast<FunctionProtoType>(FT)->isVariadic());
7094  CallingConv CurCC = FT->getCallConv();
7095  CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
7096 
7097  if (CurCC == ToCC)
7098  return;
7099 
7100  // MS compiler ignores explicit calling convention attributes on structors. We
7101  // should do the same.
7102  if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
7103  // Issue a warning on ignored calling convention -- except of __stdcall.
7104  // Again, this is what MS compiler does.
7105  if (CurCC != CC_X86StdCall)
7106  Diag(Loc, diag::warn_cconv_unsupported)
7109  // Default adjustment.
7110  } else {
7111  // Only adjust types with the default convention. For example, on Windows
7112  // we should adjust a __cdecl type to __thiscall for instance methods, and a
7113  // __thiscall type to __cdecl for static methods.
7114  CallingConv DefaultCC =
7115  Context.getDefaultCallingConvention(IsVariadic, IsStatic);
7116 
7117  if (CurCC != DefaultCC || DefaultCC == ToCC)
7118  return;
7119 
7120  if (hasExplicitCallingConv(T))
7121  return;
7122  }
7123 
7124  FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
7125  QualType Wrapped = Unwrapped.wrap(*this, FT);
7126  T = Context.getAdjustedType(T, Wrapped);
7127 }
7128 
7129 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
7130 /// and float scalars, although arrays, pointers, and function return values are
7131 /// allowed in conjunction with this construct. Aggregates with this attribute
7132 /// are invalid, even if they are of the same size as a corresponding scalar.
7133 /// The raw attribute should contain precisely 1 argument, the vector size for
7134 /// the variable, measured in bytes. If curType and rawAttr are well formed,
7135 /// this routine will return a new vector type.
7136 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
7137  Sema &S) {
7138  // Check the attribute arguments.
7139  if (Attr.getNumArgs() != 1) {
7140  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7141  << 1;
7142  Attr.setInvalid();
7143  return;
7144  }
7145 
7146  Expr *SizeExpr;
7147  // Special case where the argument is a template id.
7148  if (Attr.isArgIdent(0)) {
7149  CXXScopeSpec SS;
7150  SourceLocation TemplateKWLoc;
7151  UnqualifiedId Id;
7152  Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7153 
7154  ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
7155  Id, /*HasTrailingLParen=*/false,
7156  /*IsAddressOfOperand=*/false);
7157 
7158  if (Size.isInvalid())
7159  return;
7160  SizeExpr = Size.get();
7161  } else {
7162  SizeExpr = Attr.getArgAsExpr(0);
7163  }
7164 
7165  QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7166  if (!T.isNull())
7167  CurType = T;
7168  else
7169  Attr.setInvalid();
7170 }
7171 
7172 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
7173 /// a type.
7174 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7175  Sema &S) {
7176  // check the attribute arguments.
7177  if (Attr.getNumArgs() != 1) {
7178  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7179  << 1;
7180  return;
7181  }
7182 
7183  Expr *sizeExpr;
7184 
7185  // Special case where the argument is a template id.
7186  if (Attr.isArgIdent(0)) {
7187  CXXScopeSpec SS;
7188  SourceLocation TemplateKWLoc;
7189  UnqualifiedId id;
7190  id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7191 
7192  ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
7193  id, /*HasTrailingLParen=*/false,
7194  /*IsAddressOfOperand=*/false);
7195  if (Size.isInvalid())
7196  return;
7197 
7198  sizeExpr = Size.get();
7199  } else {
7200  sizeExpr = Attr.getArgAsExpr(0);
7201  }
7202 
7203  // Create the vector type.
7204  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
7205  if (!T.isNull())
7206  CurType = T;
7207 }
7208 
7210  VectorType::VectorKind VecKind, Sema &S) {
7211  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7212  if (!BTy)
7213  return false;
7214 
7215  llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7216 
7217  // Signed poly is mathematically wrong, but has been baked into some ABIs by
7218  // now.
7219  bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7220  Triple.getArch() == llvm::Triple::aarch64_be;
7221  if (VecKind == VectorType::NeonPolyVector) {
7222  if (IsPolyUnsigned) {
7223  // AArch64 polynomial vectors are unsigned and support poly64.
7224  return BTy->getKind() == BuiltinType::UChar ||
7225  BTy->getKind() == BuiltinType::UShort ||
7226  BTy->getKind() == BuiltinType::ULong ||
7227  BTy->getKind() == BuiltinType::ULongLong;
7228  } else {
7229  // AArch32 polynomial vector are signed.
7230  return BTy->getKind() == BuiltinType::SChar ||
7231  BTy->getKind() == BuiltinType::Short;
7232  }
7233  }
7234 
7235  // Non-polynomial vector types: the usual suspects are allowed, as well as
7236  // float64_t on AArch64.
7237  bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
7238  Triple.getArch() == llvm::Triple::aarch64_be;
7239 
7240  if (Is64Bit && BTy->getKind() == BuiltinType::Double)
7241  return true;
7242 
7243  return BTy->getKind() == BuiltinType::SChar ||
7244  BTy->getKind() == BuiltinType::UChar ||
7245  BTy->getKind() == BuiltinType::Short ||
7246  BTy->getKind() == BuiltinType::UShort ||
7247  BTy->getKind() == BuiltinType::Int ||
7248  BTy->getKind() == BuiltinType::UInt ||
7249  BTy->getKind() == BuiltinType::Long ||
7250  BTy->getKind() == BuiltinType::ULong ||
7251  BTy->getKind() == BuiltinType::LongLong ||
7252  BTy->getKind() == BuiltinType::ULongLong ||
7253  BTy->getKind() == BuiltinType::Float ||
7254  BTy->getKind() == BuiltinType::Half;
7255 }
7256 
7257 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7258 /// "neon_polyvector_type" attributes are used to create vector types that
7259 /// are mangled according to ARM's ABI. Otherwise, these types are identical
7260 /// to those created with the "vector_size" attribute. Unlike "vector_size"
7261 /// the argument to these Neon attributes is the number of vector elements,
7262 /// not the vector size in bytes. The vector width and element type must
7263 /// match one of the standard Neon vector types.
7264 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7265  Sema &S, VectorType::VectorKind VecKind) {
7266  // Target must have NEON
7267  if (!S.Context.getTargetInfo().hasFeature("neon")) {
7268  S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr;
7269  Attr.setInvalid();
7270  return;
7271  }
7272  // Check the attribute arguments.
7273  if (Attr.getNumArgs() != 1) {
7274  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7275  << 1;
7276  Attr.setInvalid();
7277  return;
7278  }
7279  // The number of elements must be an ICE.
7280  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
7281  llvm::APSInt numEltsInt(32);
7282  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
7283  !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
7284  S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7285  << Attr << AANT_ArgumentIntegerConstant
7286  << numEltsExpr->getSourceRange();
7287  Attr.setInvalid();
7288  return;
7289  }
7290  // Only certain element types are supported for Neon vectors.
7291  if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7292  S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7293  Attr.setInvalid();
7294  return;
7295  }
7296 
7297  // The total size of the vector must be 64 or 128 bits.
7298  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7299  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7300  unsigned vecSize = typeSize * numElts;
7301  if (vecSize != 64 && vecSize != 128) {
7302  S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7303  Attr.setInvalid();
7304  return;
7305  }
7306 
7307  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7308 }
7309 
7310 /// Handle OpenCL Access Qualifier Attribute.
7311 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
7312  Sema &S) {
7313  // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7314  if (!(CurType->isImageType() || CurType->isPipeType())) {
7315  S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7316  Attr.setInvalid();
7317  return;
7318  }
7319 
7320  if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7321  QualType BaseTy = TypedefTy->desugar();
7322 
7323  std::string PrevAccessQual;
7324  if (BaseTy->isPipeType()) {
7325  if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
7326  OpenCLAccessAttr *Attr =
7327  TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
7328  PrevAccessQual = Attr->getSpelling();
7329  } else {
7330  PrevAccessQual = "read_only";
7331  }
7332  } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
7333 
7334  switch (ImgType->getKind()) {
7335  #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7336  case BuiltinType::Id: \
7337  PrevAccessQual = #Access; \
7338  break;
7339  #include "clang/Basic/OpenCLImageTypes.def"
7340  default:
7341  llvm_unreachable("Unable to find corresponding image type.");
7342  }
7343  } else {
7344  llvm_unreachable("unexpected type");
7345  }
7346  StringRef AttrName = Attr.getName()->getName();
7347  if (PrevAccessQual == AttrName.ltrim("_")) {
7348  // Duplicated qualifiers
7349  S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
7350  << AttrName << Attr.getRange();
7351  } else {
7352  // Contradicting qualifiers
7353  S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
7354  }
7355 
7356  S.Diag(TypedefTy->getDecl()->getBeginLoc(),
7357  diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
7358  } else if (CurType->isPipeType()) {
7359  if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
7360  QualType ElemType = CurType->getAs<PipeType>()->getElementType();
7361  CurType = S.Context.getWritePipeType(ElemType);
7362  }
7363  }
7364 }
7365 
7366 static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State,
7367  QualType &T, TypeAttrLocation TAL) {
7368  Declarator &D = State.getDeclarator();
7369 
7370  // Handle the cases where address space should not be deduced.
7371  //
7372  // The pointee type of a pointer type is always deduced since a pointer always
7373  // points to some memory location which should has an address space.
7374  //
7375  // There are situations that at the point of certain declarations, the address
7376  // space may be unknown and better to be left as default. For example, when
7377  // defining a typedef or struct type, they are not associated with any
7378  // specific address space. Later on, they may be used with any address space
7379  // to declare a variable.
7380  //
7381  // The return value of a function is r-value, therefore should not have
7382  // address space.
7383  //
7384  // The void type does not occupy memory, therefore should not have address
7385  // space, except when it is used as a pointee type.
7386  //
7387  // Since LLVM assumes function type is in default address space, it should not
7388  // have address space.
7389  auto ChunkIndex = State.getCurrentChunkIndex();
7390  bool IsPointee =
7391  ChunkIndex > 0 &&
7392  (D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Pointer ||
7393  D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Reference ||
7394  D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::BlockPointer);
7395  // For pointers/references to arrays the next chunk is always an array
7396  // followed by any number of parentheses.
7397  if (!IsPointee && ChunkIndex > 1) {
7398  auto AdjustedCI = ChunkIndex - 1;
7399  if (D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Array)
7400  AdjustedCI--;
7401  // Skip over all parentheses.
7402  while (AdjustedCI > 0 &&
7403  D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Paren)
7404  AdjustedCI--;
7405  if (D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Pointer ||
7407  IsPointee = true;
7408  }
7409  bool IsFuncReturnType =
7410  ChunkIndex > 0 &&
7411  D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Function;
7412  bool IsFuncType =
7413  ChunkIndex < D.getNumTypeObjects() &&
7414  D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function;
7415  if ( // Do not deduce addr space for function return type and function type,
7416  // otherwise it will fail some sema check.
7417  IsFuncReturnType || IsFuncType ||
7418  // Do not deduce addr space for member types of struct, except the pointee
7419  // type of a pointer member type or static data members.
7421  (!IsPointee &&
7423  // Do not deduce addr space of non-pointee in type alias because it
7424  // doesn't define any object.
7425  (D.getContext() == DeclaratorContext::AliasDeclContext && !IsPointee) ||
7426  // Do not deduce addr space for types used to define a typedef and the
7427  // typedef itself, except the pointee type of a pointer type which is used
7428  // to define the typedef.
7430  !IsPointee) ||
7431  // Do not deduce addr space of the void type, e.g. in f(void), otherwise
7432  // it will fail some sema check.
7433  (T->isVoidType() && !IsPointee) ||
7434  // Do not deduce addr spaces for dependent types because they might end
7435  // up instantiating to a type with an explicit address space qualifier.
7436  // Except for pointer or reference types because the addr space in
7437  // template argument can only belong to a pointee.
7438  (T->isDependentType() && !T->isPointerType() && !T->isReferenceType()) ||
7439  // Do not deduce addr space of decltype because it will be taken from
7440  // its argument.
7441  T->isDecltypeType() ||
7442  // OpenCL spec v2.0 s6.9.b:
7443  // The sampler type cannot be used with the __local and __global address
7444  // space qualifiers.
7445  // OpenCL spec v2.0 s6.13.14:
7446  // Samplers can also be declared as global constants in the program
7447  // source using the following syntax.
7448  // const sampler_t <sampler name> = <value>
7449  // In codegen, file-scope sampler type variable has special handing and
7450  // does not rely on address space qualifier. On the other hand, deducing
7451  // address space of const sampler file-scope variable as global address
7452  // space causes spurious diagnostic about __global address space
7453  // qualifier, therefore do not deduce address space of file-scope sampler
7454  // type variable.
7456  return;
7457 
7458  LangAS ImpAddr = LangAS::Default;
7459  // Put OpenCL automatic variable in private address space.
7460  // OpenCL v1.2 s6.5:
7461  // The default address space name for arguments to a function in a
7462  // program, or local variables of a function is __private. All function
7463  // arguments shall be in the __private address space.
7464  if (State.getSema().getLangOpts().OpenCLVersion <= 120 &&
7465  !State.getSema().getLangOpts().OpenCLCPlusPlus) {
7466  ImpAddr = LangAS::opencl_private;
7467  } else {
7468  // If address space is not set, OpenCL 2.0 defines non private default
7469  // address spaces for some cases:
7470  // OpenCL 2.0, section 6.5:
7471  // The address space for a variable at program scope or a static variable
7472  // inside a function can either be __global or __constant, but defaults to
7473  // __global if not specified.
7474  // (...)
7475  // Pointers that are declared without pointing to a named address space
7476  // point to the generic address space.
7477  if (IsPointee) {
7478  ImpAddr = LangAS::opencl_generic;
7479  } else {
7481  // Do not deduce address space for non-pointee type in template arg.
7482  } else if (D.getContext() == DeclaratorContext::FileContext) {
7483  ImpAddr = LangAS::opencl_global;
7484  } else {
7487  ImpAddr = LangAS::opencl_global;
7488  } else {
7489  ImpAddr = LangAS::opencl_private;
7490  }
7491  }
7492  }
7493  }
7494  T = State.getSema().Context.getAddrSpaceQualType(T, ImpAddr);
7495 }
7496 
7497 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
7498  QualType &CurType,
7499  ParsedAttr &Attr) {
7500  if (State.getDeclarator().isDeclarationOfFunction()) {
7501  CurType = State.getAttributedType(
7502  createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
7503  CurType, CurType);
7504  } else {
7505  Attr.diagnoseAppertainsTo(State.getSema(), nullptr);
7506  }
7507 }
7508 
7509 
7510 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
7511  TypeAttrLocation TAL,
7512  ParsedAttributesView &attrs) {
7513  // Scan through and apply attributes to this type where it makes sense. Some
7514  // attributes (such as __address_space__, __vector_size__, etc) apply to the
7515  // type, but others can be present in the type specifiers even though they
7516  // apply to the decl. Here we apply type attributes and ignore the rest.
7517 
7518  // This loop modifies the list pretty frequently, but we still need to make
7519  // sure we visit every element once. Copy the attributes list, and iterate
7520  // over that.
7521  ParsedAttributesView AttrsCopy{attrs};
7522 
7523  state.setParsedNoDeref(false);
7524 
7525  for (ParsedAttr &attr : AttrsCopy) {
7526 
7527  // Skip attributes that were marked to be invalid.
7528  if (attr.isInvalid())
7529  continue;
7530 
7531  if (attr.isCXX11Attribute()) {
7532  // [[gnu::...]] attributes are treated as declaration attributes, so may
7533  // not appertain to a DeclaratorChunk. If we handle them as type
7534  // attributes, accept them in that position and diagnose the GCC
7535  // incompatibility.
7536  if (attr.isGNUScope()) {
7537  bool IsTypeAttr = attr.isTypeAttr();
7538  if (TAL == TAL_DeclChunk) {
7539  state.getSema().Diag(attr.getLoc(),
7540  IsTypeAttr
7541  ? diag::warn_gcc_ignores_type_attr
7542  : diag::warn_cxx11_gnu_attribute_on_type)
7543  << attr.getName();
7544  if (!IsTypeAttr)
7545  continue;
7546  }
7547  } else if (TAL != TAL_DeclChunk &&
7548  attr.getKind() != ParsedAttr::AT_AddressSpace) {
7549  // Otherwise, only consider type processing for a C++11 attribute if
7550  // it's actually been applied to a type.
7551  // We also allow C++11 address_space attributes to pass through.
7552  continue;
7553  }
7554  }
7555 
7556  // If this is an attribute we can handle, do so now,
7557  // otherwise, add it to the FnAttrs list for rechaining.
7558  switch (attr.getKind()) {
7559  default:
7560  // A C++11 attribute on a declarator chunk must appertain to a type.
7561  if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
7562  state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
7563  << attr;
7564  attr.setUsedAsTypeAttr();
7565  }
7566  break;
7567 
7569  if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
7570  state.getSema().Diag(attr.getLoc(),
7571  diag::warn_unknown_attribute_ignored)
7572  << attr.getName();
7573  break;
7574 
7576  break;
7577 
7578  case ParsedAttr::AT_MayAlias:
7579  // FIXME: This attribute needs to actually be handled, but if we ignore
7580  // it it breaks large amounts of Linux software.
7581  attr.setUsedAsTypeAttr();
7582  break;
7583  case ParsedAttr::AT_OpenCLPrivateAddressSpace:
7584  case ParsedAttr::AT_OpenCLGlobalAddressSpace:
7585  case ParsedAttr::AT_OpenCLLocalAddressSpace:
7586  case ParsedAttr::AT_OpenCLConstantAddressSpace:
7587  case ParsedAttr::AT_OpenCLGenericAddressSpace:
7588  case ParsedAttr::AT_AddressSpace:
7589  HandleAddressSpaceTypeAttribute(type, attr, state);
7590  attr.setUsedAsTypeAttr();
7591  break;
7593  if (!handleObjCPointerTypeAttr(state, attr, type))
7594  distributeObjCPointerTypeAttr(state, attr, type);
7595  attr.setUsedAsTypeAttr();
7596  break;
7597  case ParsedAttr::AT_VectorSize:
7598  HandleVectorSizeAttr(type, attr, state.getSema());
7599  attr.setUsedAsTypeAttr();
7600  break;
7601  case ParsedAttr::AT_ExtVectorType:
7602  HandleExtVectorTypeAttr(type, attr, state.getSema());
7603  attr.setUsedAsTypeAttr();
7604  break;
7605  case ParsedAttr::AT_NeonVectorType:
7606  HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7608  attr.setUsedAsTypeAttr();
7609  break;
7610  case ParsedAttr::AT_NeonPolyVectorType:
7611  HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7613  attr.setUsedAsTypeAttr();
7614  break;
7615  case ParsedAttr::AT_OpenCLAccess:
7616  HandleOpenCLAccessAttr(type, attr, state.getSema());
7617  attr.setUsedAsTypeAttr();
7618  break;
7619  case ParsedAttr::AT_LifetimeBound:
7620  if (TAL == TAL_DeclChunk)
7621  HandleLifetimeBoundAttr(state, type, attr);
7622  break;
7623 
7624  case ParsedAttr::AT_NoDeref: {
7625  ASTContext &Ctx = state.getSema().Context;
7626  type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
7627  type, type);
7628  attr.setUsedAsTypeAttr();
7629  state.setParsedNoDeref(true);
7630  break;
7631  }
7632 
7634  if (!handleMSPointerTypeQualifierAttr(state, attr, type))
7635  attr.setUsedAsTypeAttr();
7636  break;
7637 
7638 
7640  // Either add nullability here or try to distribute it. We
7641  // don't want to distribute the nullability specifier past any
7642  // dependent type, because that complicates the user model.
7643  if (type->canHaveNullability() || type->isDependentType() ||
7644  type->isArrayType() ||
7645  !distributeNullabilityTypeAttr(state, type, attr)) {
7646  unsigned endIndex;
7647  if (TAL == TAL_DeclChunk)
7648  endIndex = state.getCurrentChunkIndex();
7649  else
7650  endIndex = state.getDeclarator().getNumTypeObjects();
7651  bool allowOnArrayType =
7652  state.getDeclarator().isPrototypeContext() &&
7653  !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
7655  state,
7656  type,
7657  attr,
7658  allowOnArrayType)) {
7659  attr.setInvalid();
7660  }
7661 
7662  attr.setUsedAsTypeAttr();
7663  }
7664  break;
7665 
7666  case ParsedAttr::AT_ObjCKindOf:
7667  // '__kindof' must be part of the decl-specifiers.
7668  switch (TAL) {
7669  case TAL_DeclSpec:
7670  break;
7671 
7672  case TAL_DeclChunk:
7673  case TAL_DeclName:
7674  state.getSema().Diag(attr.getLoc(),
7675  diag::err_objc_kindof_wrong_position)
7676  << FixItHint::CreateRemoval(attr.getLoc())
7678  state.getDeclarator().getDeclSpec().getBeginLoc(),
7679  "__kindof ");
7680  break;
7681  }
7682 
7683  // Apply it regardless.
7684  if (checkObjCKindOfType(state, type, attr))
7685  attr.setInvalid();
7686  break;
7687 
7688  case ParsedAttr::AT_NoThrow:
7689  // Exception Specifications aren't generally supported in C mode throughout
7690  // clang, so revert to attribute-based handling for C.
7691  if (!state.getSema().getLangOpts().CPlusPlus)
7692  break;
7693  LLVM_FALLTHROUGH;
7695  attr.setUsedAsTypeAttr();
7696 
7697  // Never process function type attributes as part of the
7698  // declaration-specifiers.
7699  if (TAL == TAL_DeclSpec)
7700  distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
7701 
7702  // Otherwise, handle the possible delays.
7703  else if (!handleFunctionTypeAttr(state, attr, type))
7704  distributeFunctionTypeAttr(state, attr, type);
7705  break;
7706  }
7707 
7708  // Handle attributes that are defined in a macro. We do not want this to be
7709  // applied to ObjC builtin attributes.
7710  if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
7711  !type.getQualifiers().hasObjCLifetime() &&
7712  !type.getQualifiers().hasObjCGCAttr() &&
7713  attr.getKind() != ParsedAttr::AT_ObjCGC &&
7714  attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
7715  const IdentifierInfo *MacroII = attr.getMacroIdentifier();
7716  type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
7717  state.setExpansionLocForMacroQualifiedType(
7718  cast<MacroQualifiedType>(type.getTypePtr()),
7719  attr.getMacroExpansionLoc());
7720  }
7721  }
7722 
7723  if (!state.getSema().getLangOpts().OpenCL ||
7724  type.getAddressSpace() != LangAS::Default)
7725  return;
7726 
7727  deduceOpenCLImplicitAddrSpace(state, type, TAL);
7728 }
7729 
7731  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
7732  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
7733  if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
7734  auto *Def = Var->getDefinition();
7735  if (!Def) {
7736  SourceLocation PointOfInstantiation = E->getExprLoc();
7737  InstantiateVariableDefinition(PointOfInstantiation, Var);
7738  Def = Var->getDefinition();
7739 
7740  // If we don't already have a point of instantiation, and we managed
7741  // to instantiate a definition, this is the point of instantiation.
7742  // Otherwise, we don't request an end-of-TU instantiation, so this is
7743  // not a point of instantiation.
7744  // FIXME: Is this really the right behavior?
7745  if (Var->getPointOfInstantiation().isInvalid() && Def) {
7746  assert(Var->getTemplateSpecializationKind() ==
7748  "explicit instantiation with no point of instantiation");
7749  Var->setTemplateSpecializationKind(
7750  Var->getTemplateSpecializationKind(), PointOfInstantiation);
7751  }
7752  }
7753 
7754  // Update the type to the definition's type both here and within the
7755  // expression.
7756  if (Def) {
7757  DRE->setDecl(Def);
7758  QualType T = Def->getType();
7759  DRE->setType(T);
7760  // FIXME: Update the type on all intervening expressions.
7761  E->setType(T);
7762  }
7763 
7764  // We still go on to try to complete the type independently, as it
7765  // may also require instantiations or diagnostics if it remains
7766  // incomplete.
7767  }
7768  }
7769  }
7770 }
7771 
7772 /// Ensure that the type of the given expression is complete.
7773 ///
7774 /// This routine checks whether the expression \p E has a complete type. If the
7775 /// expression refers to an instantiable construct, that instantiation is
7776 /// performed as needed to complete its type. Furthermore
7777 /// Sema::RequireCompleteType is called for the expression's type (or in the
7778 /// case of a reference type, the referred-to type).
7779 ///
7780 /// \param E The expression whose type is required to be complete.
7781 /// \param Diagnoser The object that will emit a diagnostic if the type is
7782 /// incomplete.
7783 ///
7784 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
7785 /// otherwise.
7787  QualType T = E->getType();
7788 
7789  // Incomplete array types may be completed by the initializer attached to
7790  // their definitions. For static data members of class templates and for
7791  // variable templates, we need to instantiate the definition to get this
7792  // initializer and complete the type.
7793  if (T->isIncompleteArrayType()) {
7794  completeExprArrayBound(E);
7795  T = E->getType();
7796  }
7797 
7798  // FIXME: Are there other cases which require instantiating something other
7799  // than the type to complete the type of an expression?
7800 
7801  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
7802 }
7803 
7804 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
7805  BoundTypeDiagnoser<> Diagnoser(DiagID);
7806  return RequireCompleteExprType(E, Diagnoser);
7807 }
7808 
7809 /// Ensure that the type T is a complete type.
7810 ///
7811 /// This routine checks whether the type @p T is complete in any
7812 /// context where a complete type is required. If @p T is a complete
7813 /// type, returns false. If @p T is a class template specialization,
7814 /// this routine then attempts to perform class template
7815 /// instantiation. If instantiation fails, or if @p T is incomplete
7816 /// and cannot be completed, issues the diagnostic @p diag (giving it
7817 /// the type @p T) and returns true.
7818 ///
7819 /// @param Loc The location in the source that the incomplete type
7820 /// diagnostic should refer to.
7821 ///
7822 /// @param T The type that this routine is examining for completeness.
7823 ///
7824 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
7825 /// @c false otherwise.
7827  TypeDiagnoser &Diagnoser) {
7828  if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
7829  return true;
7830  if (const TagType *Tag = T->getAs<TagType>()) {
7831  if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
7832  Tag->getDecl()->setCompleteDefinitionRequired();
7833  Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
7834  }
7835  }
7836  return false;
7837 }
7838 
7840  llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
7841  if (!Suggested)
7842  return false;
7843 
7844  // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
7845  // and isolate from other C++ specific checks.
7847  D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
7849  false /*StrictTypeSpelling*/, true /*Complain*/,
7850  true /*ErrorOnTagTypeMismatch*/);
7851  return Ctx.IsEquivalent(D, Suggested);
7852 }
7853 
7854 /// Determine whether there is any declaration of \p D that was ever a
7855 /// definition (perhaps before module merging) and is currently visible.
7856 /// \param D The definition of the entity.
7857 /// \param Suggested Filled in with the declaration that should be made visible
7858 /// in order to provide a definition of this entity.
7859 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
7860 /// not defined. This only matters for enums with a fixed underlying
7861 /// type, since in all other cases, a type is complete if and only if it
7862 /// is defined.
7864  bool OnlyNeedComplete) {
7865  // Easy case: if we don't have modules, all declarations are visible.
7866  if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
7867  return true;
7868 
7869  // If this definition was instantiated from a template, map back to the
7870  // pattern from which it was instantiated.
7871  if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
7872  // We're in the middle of defining it; this definition should be treated
7873  // as visible.
7874  return true;
7875  } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
7876  if (auto *Pattern = RD->getTemplateInstantiationPattern())
7877  RD = Pattern;
7878  D = RD->getDefinition();
7879  } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
7880  if (auto *Pattern = ED->getTemplateInstantiationPattern())
7881  ED = Pattern;
7882  if (OnlyNeedComplete && ED->isFixed()) {
7883  // If the enum has a fixed underlying type, and we're only looking for a
7884  // complete type (not a definition), any visible declaration of it will
7885  // do.
7886  *Suggested = nullptr;
7887  for (auto *Redecl : ED->redecls()) {
7888  if (isVisible(Redecl))
7889  return true;
7890  if (Redecl->isThisDeclarationADefinition() ||
7891  (Redecl->isCanonicalDecl() && !*Suggested))
7892  *Suggested = Redecl;
7893  }
7894  return false;
7895  }
7896  D = ED->getDefinition();
7897  } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7898  if (auto *Pattern = FD->getTemplateInstantiationPattern())
7899  FD = Pattern;
7900  D = FD->getDefinition();
7901  } else if (auto *VD = dyn_cast<VarDecl>(D)) {
7902  if (auto *Pattern = VD->getTemplateInstantiationPattern())
7903  VD = Pattern;
7904  D = VD->getDefinition();
7905  }
7906  assert(D && "missing definition for pattern of instantiated definition");
7907 
7908  *Suggested = D;
7909 
7910  auto DefinitionIsVisible = [&] {
7911  // The (primary) definition might be in a visible module.
7912  if (isVisible(D))
7913  return true;
7914 
7915  // A visible module might have a merged definition instead.
7916  if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
7917  : hasVisibleMergedDefinition(D)) {
7918  if (CodeSynthesisContexts.empty() &&
7919  !getLangOpts().ModulesLocalVisibility) {
7920  // Cache the fact that this definition is implicitly visible because
7921  // there is a visible merged definition.
7923  }
7924  return true;
7925  }
7926 
7927  return false;
7928  };
7929 
7930  if (DefinitionIsVisible())
7931  return true;
7932 
7933  // The external source may have additional definitions of this entity that are
7934  // visible, so complete the redeclaration chain now and ask again.
7935  if (auto *Source = Context.getExternalSource()) {
7936  Source->CompleteRedeclChain(D);
7937  return DefinitionIsVisible();
7938  }
7939 
7940  return false;
7941 }
7942 
7943 /// Locks in the inheritance model for the given class and all of its bases.
7945  RD = RD->getMostRecentNonInjectedDecl();
7946  if (!RD->hasAttr<MSInheritanceAttr>()) {
7947  MSInheritanceAttr::Spelling IM;
7948 
7951  IM = RD->calculateInheritanceModel();
7952  break;
7954  IM = MSInheritanceAttr::Keyword_single_inheritance;
7955  break;
7957  IM = MSInheritanceAttr::Keyword_multiple_inheritance;
7958  break;
7960  IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
7961  break;
7962  }
7963 
7964  RD->addAttr(MSInheritanceAttr::CreateImplicit(
7965  S.getASTContext(), IM,
7966  /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
7970  : RD->getSourceRange()));
7972  }
7973 }
7974 
7975 /// The implementation of RequireCompleteType
7976 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
7977  TypeDiagnoser *Diagnoser) {
7978  // FIXME: Add this assertion to make sure we always get instantiation points.
7979  // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
7980  // FIXME: Add this assertion to help us flush out problems with
7981  // checking for dependent types and type-dependent expressions.
7982  //
7983  // assert(!T->isDependentType() &&
7984  // "Can't ask whether a dependent type is complete");
7985 
7986  if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
7987  if (!MPTy->getClass()->isDependentType()) {
7988  if (getLangOpts().CompleteMemberPointers &&
7989  !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
7990  RequireCompleteType(Loc, QualType(MPTy->getClass(), 0),
7991  diag::err_memptr_incomplete))
7992  return true;
7993 
7994  // We lock in the inheritance model once somebody has asked us to ensure
7995  // that a pointer-to-member type is complete.
7996  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7997  (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
7998  assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
7999  }
8000  }
8001  }
8002 
8003  NamedDecl *Def = nullptr;
8004  bool Incomplete = T->isIncompleteType(&Def);
8005 
8006  // Check that any necessary explicit specializations are visible. For an
8007  // enum, we just need the declaration, so don't check this.
8008  if (Def && !isa<EnumDecl>(Def))
8009  checkSpecializationVisibility(Loc, Def);
8010 
8011  // If we have a complete type, we're done.
8012  if (!Incomplete) {
8013  // If we know about the definition but it is not visible, complain.
8014  NamedDecl *SuggestedDef = nullptr;
8015  if (Def &&
8016  !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
8017  // If the user is going to see an error here, recover by making the
8018  // definition visible.
8019  bool TreatAsComplete = Diagnoser && !isSFINAEContext();
8020  if (Diagnoser && SuggestedDef)
8021  diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
8022  /*Recover*/TreatAsComplete);
8023  return !TreatAsComplete;
8024  } else if (Def && !TemplateInstCallbacks.empty()) {
8025  CodeSynthesisContext TempInst;
8026  TempInst.Kind = CodeSynthesisContext::Memoization;
8027  TempInst.Template = Def;
8028  TempInst.Entity = Def;
8029  TempInst.PointOfInstantiation = Loc;
8030  atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
8031  atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
8032  }
8033 
8034  return false;
8035  }
8036 
8037  TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
8038  ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
8039 
8040  // Give the external source a chance to provide a definition of the type.
8041  // This is kept separate from completing the redeclaration chain so that
8042  // external sources such as LLDB can avoid synthesizing a type definition
8043  // unless it's actually needed.
8044  if (Tag || IFace) {
8045  // Avoid diagnosing invalid decls as incomplete.
8046  if (Def->isInvalidDecl())
8047  return true;
8048 
8049  // Give the external AST source a chance to complete the type.
8050  if (auto *Source = Context.getExternalSource()) {
8051  if (Tag && Tag->hasExternalLexicalStorage())
8052  Source->CompleteType(Tag);
8053  if (IFace && IFace->hasExternalLexicalStorage())
8054  Source->CompleteType(IFace);
8055  // If the external source completed the type, go through the motions
8056  // again to ensure we're allowed to use the completed type.
8057  if (!T->isIncompleteType())
8058  return RequireCompleteTypeImpl(Loc, T, Diagnoser);
8059  }
8060  }
8061 
8062  // If we have a class template specialization or a class member of a
8063  // class template specialization, or an array with known size of such,
8064  // try to instantiate it.
8065  if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
8066  bool Instantiated = false;
8067  bool Diagnosed = false;
8068  if (RD->isDependentContext()) {
8069  // Don't try to instantiate a dependent class (eg, a member template of
8070  // an instantiated class template specialization).
8071  // FIXME: Can this ever happen?
8072  } else if (auto *ClassTemplateSpec =
8073  dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
8074  if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
8075  Diagnosed = InstantiateClassTemplateSpecialization(
8076  Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
8077  /*Complain=*/Diagnoser);
8078  Instantiated = true;
8079  }
8080  } else {
8082  if (!RD->isBeingDefined() && Pattern) {
8083  MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
8084  assert(MSI && "Missing member specialization information?");
8085  // This record was instantiated from a class within a template.
8086  if (MSI->getTemplateSpecializationKind() !=
8088  Diagnosed = InstantiateClass(Loc, RD, Pattern,
8089  getTemplateInstantiationArgs(RD),
8091  /*Complain=*/Diagnoser);
8092  Instantiated = true;
8093  }
8094  }
8095  }
8096 
8097  if (Instantiated) {
8098  // Instantiate* might have already complained that the template is not
8099  // defined, if we asked it to.
8100  if (Diagnoser && Diagnosed)
8101  return true;
8102  // If we instantiated a definition, check that it's usable, even if
8103  // instantiation produced an error, so that repeated calls to this
8104  // function give consistent answers.
8105  if (!T->isIncompleteType())
8106  return RequireCompleteTypeImpl(Loc, T, Diagnoser);
8107  }
8108  }
8109 
8110  // FIXME: If we didn't instantiate a definition because of an explicit
8111  // specialization declaration, check that it's visible.
8112 
8113  if (!Diagnoser)
8114  return true;
8115 
8116  Diagnoser->diagnose(*this, Loc, T);
8117 
8118  // If the type was a forward declaration of a class/struct/union
8119  // type, produce a note.
8120  if (Tag && !Tag->isInvalidDecl())
8121  Diag(Tag->getLocation(),
8122  Tag->isBeingDefined() ? diag::note_type_being_defined
8123  : diag::note_forward_declaration)
8124  << Context.getTagDeclType(Tag);
8125 
8126  // If the Objective-C class was a forward declaration, produce a note.
8127  if (IFace && !IFace->isInvalidDecl())
8128  Diag(IFace->getLocation(), diag::note_forward_class);
8129 
8130  // If we have external information that we can use to suggest a fix,
8131  // produce a note.
8132  if (ExternalSource)
8133  ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
8134 
8135  return true;
8136 }
8137 
8139  unsigned DiagID) {
8140  BoundTypeDiagnoser<> Diagnoser(DiagID);
8141  return RequireCompleteType(Loc, T, Diagnoser);
8142 }
8143 
8144 /// Get diagnostic %select index for tag kind for
8145 /// literal type diagnostic message.
8146 /// WARNING: Indexes apply to particular diagnostics only!
8147 ///
8148 /// \returns diagnostic %select index.
8150  switch (Tag) {
8151  case TTK_Struct: return 0;
8152  case TTK_Interface: return 1;
8153  case TTK_Class: return 2;
8154  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
8155  }
8156 }
8157 
8158 /// Ensure that the type T is a literal type.
8159 ///
8160 /// This routine checks whether the type @p T is a literal type. If @p T is an
8161 /// incomplete type, an attempt is made to complete it. If @p T is a literal
8162 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
8163 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
8164 /// it the type @p T), along with notes explaining why the type is not a
8165 /// literal type, and returns true.
8166 ///
8167 /// @param Loc The location in the source that the non-literal type
8168 /// diagnostic should refer to.
8169 ///
8170 /// @param T The type that this routine is examining for literalness.
8171 ///
8172 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
8173 ///
8174 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
8175 /// @c false otherwise.
8177  TypeDiagnoser &Diagnoser) {
8178  assert(!T->isDependentType() && "type should not be dependent");
8179 
8180  QualType ElemType = Context.getBaseElementType(T);
8181  if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
8182  T->isLiteralType(Context))
8183  return false;
8184 
8185  Diagnoser.diagnose(*this, Loc, T);
8186 
8187  if (T->isVariableArrayType())
8188  return true;
8189 
8190  const RecordType *RT = ElemType->getAs<RecordType>();
8191  if (!RT)
8192  return true;
8193 
8194  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
8195 
8196  // A partially-defined class type can't be a literal type, because a literal
8197  // class type must have a trivial destructor (which can't be checked until
8198  // the class definition is complete).
8199  if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
8200  return true;
8201 
8202  // [expr.prim.lambda]p3:
8203  // This class type is [not] a literal type.
8204  if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
8205  Diag(RD->getLocation(), diag::note_non_literal_lambda);
8206  return true;
8207  }
8208 
8209  // If the class has virtual base classes, then it's not an aggregate, and
8210  // cannot have any constexpr constructors or a trivial default constructor,
8211  // so is non-literal. This is better to diagnose than the resulting absence
8212  // of constexpr constructors.
8213  if (RD->getNumVBases()) {
8214  Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
8216  for (const auto &I : RD->vbases())
8217  Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
8218  << I.getSourceRange();
8219  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
8221  Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
8222  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
8223  for (const auto &I : RD->bases()) {
8224  if (!I.getType()->isLiteralType(Context)) {
8225  Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
8226  << RD << I.getType() << I.getSourceRange();
8227  return true;
8228  }
8229  }
8230  for (const auto *I : RD->fields()) {
8231  if (!I->getType()->isLiteralType(Context) ||
8232  I->getType().isVolatileQualified()) {
8233  Diag(I->getLocation(), diag::note_non_literal_field)
8234  << RD << I << I->getType()
8235  << I->getType().isVolatileQualified();
8236  return true;
8237  }
8238  }
8239  } else if (!RD->hasTrivialDestructor()) {
8240  // All fields and bases are of literal types, so have trivial destructors.
8241  // If this class's destructor is non-trivial it must be user-declared.
8242  CXXDestructorDecl *Dtor = RD->getDestructor();
8243  assert(Dtor && "class has literal fields and bases but no dtor?");
8244  if (!Dtor)
8245  return true;
8246 
8247  Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
8248  diag::note_non_literal_user_provided_dtor :
8249  diag::note_non_literal_nontrivial_dtor) << RD;
8250  if (!Dtor->isUserProvided())
8251  SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
8252  /*Diagnose*/true);
8253  }
8254 
8255  return true;
8256 }
8257 
8258 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
8259  BoundTypeDiagnoser<> Diagnoser(DiagID);
8260  return RequireLiteralType(Loc, T, Diagnoser);
8261 }
8262 
8263 /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
8264 /// by the nested-name-specifier contained in SS, and that is (re)declared by
8265 /// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
8267  const CXXScopeSpec &SS, QualType T,
8268  TagDecl *OwnedTagDecl) {
8269  if (T.isNull())
8270  return T;
8271  NestedNameSpecifier *NNS;
8272  if (SS.isValid())
8273  NNS = SS.getScopeRep();
8274  else {
8275  if (Keyword == ETK_None)
8276  return T;
8277  NNS = nullptr;
8278  }
8279  return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
8280 }
8281 
8283  assert(!E->hasPlaceholderType() && "unexpected placeholder");
8284 
8285  if (!getLangOpts().CPlusPlus && E->refersToBitField())
8286  Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
8287 
8288  if (!E->isTypeDependent()) {
8289  QualType T = E->getType();
8290  if (const TagType *TT = T->getAs<TagType>())
8291  DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
8292  }
8293  return Context.getTypeOfExprType(E);
8294 }
8295 
8296 /// getDecltypeForExpr - Given an expr, will return the decltype for
8297 /// that expression, according to the rules in C++11
8298 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
8300  if (E->isTypeDependent())
8301  return S.Context.DependentTy;
8302 
8303  // C++11 [dcl.type.simple]p4:
8304  // The type denoted by decltype(e) is defined as follows:
8305  //
8306  // - if e is an unparenthesized id-expression or an unparenthesized class
8307  // member access (5.2.5), decltype(e) is the type of the entity named
8308  // by e. If there is no such entity, or if e names a set of overloaded
8309  // functions, the program is ill-formed;
8310  //
8311  // We apply the same rules for Objective-C ivar and property references.
8312  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8313  const ValueDecl *VD = DRE->getDecl();
8314  return VD->getType();
8315  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
8316  if (const ValueDecl *VD = ME->getMemberDecl())
8317  if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
8318  return VD->getType();
8319  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
8320  return IR->getDecl()->getType();
8321  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
8322  if (PR->isExplicitProperty())
8323  return PR->getExplicitProperty()->getType();
8324  } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
8325  return PE->getType();
8326  }
8327 
8328  // C++11 [expr.lambda.prim]p18:
8329  // Every occurrence of decltype((x)) where x is a possibly
8330  // parenthesized id-expression that names an entity of automatic
8331  // storage duration is treated as if x were transformed into an
8332  // access to a corresponding data member of the closure type that
8333  // would have been declared if x were an odr-use of the denoted
8334  // entity.
8335  using namespace sema;
8336  if (S.getCurLambda()) {
8337  if (isa<ParenExpr>(E)) {
8338  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8339  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8340  QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
8341  if (!T.isNull())
8342  return S.Context.getLValueReferenceType(T);
8343  }
8344  }
8345  }
8346  }
8347 
8348 
8349  // C++11 [dcl.type.simple]p4:
8350  // [...]
8351  QualType T = E->getType();
8352  switch (E->getValueKind()) {
8353  // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
8354  // type of e;
8355  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
8356  // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
8357  // type of e;
8358  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
8359  // - otherwise, decltype(e) is the type of e.
8360  case VK_RValue: break;
8361  }
8362 
8363  return T;
8364 }
8365 
8367  bool AsUnevaluated) {
8368  assert(!E->hasPlaceholderType() && "unexpected placeholder");
8369 
8370  if (AsUnevaluated && CodeSynthesisContexts.empty() &&
8371  E->HasSideEffects(Context, false)) {
8372  // The expression operand for decltype is in an unevaluated expression
8373  // context, so side effects could result in unintended consequences.
8374  Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8375  }
8376 
8377  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
8378 }
8379 
8382  SourceLocation Loc) {
8383  switch (UKind) {
8385  if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
8386  Diag(Loc, diag::err_only_enums_have_underlying_types);
8387  return QualType();
8388  } else {
8389  QualType Underlying = BaseType;
8390  if (!BaseType->isDependentType()) {
8391  // The enum could be incomplete if we're parsing its definition or
8392  // recovering from an error.
8393  NamedDecl *FwdDecl = nullptr;
8394  if (BaseType->isIncompleteType(&FwdDecl)) {
8395  Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
8396  Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
8397  return QualType();
8398  }
8399 
8400  EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
8401  assert(ED && "EnumType has no EnumDecl");
8402 
8403  DiagnoseUseOfDecl(ED, Loc);
8404 
8405  Underlying = ED->getIntegerType();
8406  assert(!Underlying.isNull());
8407  }
8408  return Context.getUnaryTransformType(BaseType, Underlying,
8410  }
8411  }
8412  llvm_unreachable("unknown unary transform type");
8413 }
8414 
8416  if (!T->isDependentType()) {
8417  // FIXME: It isn't entirely clear whether incomplete atomic types
8418  // are allowed or not; for simplicity, ban them for the moment.
8419  if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
8420  return QualType();
8421 
8422  int DisallowedKind = -1;
8423  if (T->isArrayType())
8424  DisallowedKind = 1;
8425  else if (T->isFunctionType())
8426  DisallowedKind = 2;
8427  else if (T->isReferenceType())
8428  DisallowedKind = 3;
8429  else if (T->isAtomicType())
8430  DisallowedKind = 4;
8431  else if (T.hasQualifiers())
8432  DisallowedKind = 5;
8433  else if (!T.isTriviallyCopyableType(Context))
8434  // Some other non-trivially-copyable type (probably a C++ class)
8435  DisallowedKind = 6;
8436 
8437  if (DisallowedKind != -1) {
8438  Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
8439  return QualType();
8440  }
8441 
8442  // FIXME: Do we need any handling for ARC here?
8443  }
8444 
8445  // Build the pointer type.
8446  return Context.getAtomicType(T);
8447 }
FileNullabilityMap NullabilityMap
A mapping that describes the nullability we&#39;ve seen in each header file.
Definition: Sema.h:539
Abstract class used to diagnose incomplete types.
Definition: Sema.h:1595
ParsedType getTrailingReturnType() const
Get the trailing-return-type for this function declarator.
Definition: DeclSpec.h:1490
ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC property.
Definition: ExprObjC.h:614
static void checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind, SourceLocation pointerLoc, SourceLocation pointerEndLoc=SourceLocation())
Complains about missing nullability if the file containing pointerLoc has other uses of nullability (...
Definition: SemaType.cpp:3845
QualType getDecltypeType(Expr *e, QualType UnderlyingType) const
C++11 decltype.
AttributePool & getAttributePool() const
Definition: DeclSpec.h:1873
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const
Return the uniqued reference to the type for an address space qualified type with the specified type ...
bool IsStatic
Definition: Format.cpp:1722
Represents a type that was referred to using an elaborated type keyword, e.g., struct S...
Definition: Type.h:5199
TypeLoc getValueLoc() const
Definition: TypeLoc.h:2243
unsigned UnalignedQualLoc
The location of the __unaligned-qualifier, if any.
Definition: DeclSpec.h:1193
const Type * Ty
The locally-unqualified type.
Definition: Type.h:584
bool diagnoseAppertainsTo(class Sema &S, const Decl *D) const
Definition: ParsedAttr.cpp:207
QualType getObjCObjectType(QualType Base, ObjCProtocolDecl *const *Protocols, unsigned NumProtocols) const
Legacy interface: cannot provide type arguments or __kindof.
CanQualType LongLongTy
Definition: ASTContext.h:1023
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag)
Get diagnostic select index for tag kind for literal type diagnostic message.
Definition: SemaType.cpp:8149
void setImplicit(bool I=true)
Definition: DeclBase.h:559
const internal::VariadicDynCastAllOfMatcher< Decl, TypedefDecl > typedefDecl
Matches typedef declarations.
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo)
Package the given type and TSI into a ParsedType.
Definition: SemaType.cpp:5796
QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, SourceLocation ProtocolLAngleLoc, ArrayRef< ObjCProtocolDecl *> Protocols, ArrayRef< SourceLocation > ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError=false)
Build an Objective-C type parameter type.
Definition: SemaType.cpp:1038
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
getFunctionTypeInfo - Retrieves the function type info object (looking through parentheses).
Definition: DeclSpec.h:2278
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
unsigned RefQualifierIsLValueRef
Whether the ref-qualifier (if any) is an lvalue reference.
Definition: DeclSpec.h:1275
static bool isOmittedBlockReturnType(const Declarator &D)
isOmittedBlockReturnType - Return true if this declarator is missing a return type because this is a ...
Definition: SemaType.cpp:49
CanQualType AccumTy
Definition: ASTContext.h:1027
no exception specification
QualType BuildFunctionType(QualType T, MutableArrayRef< QualType > ParamTypes, SourceLocation Loc, DeclarationName Entity, const FunctionProtoType::ExtProtoInfo &EPI)
Build a function type.
Definition: SemaType.cpp:2523
This is a discriminated union of FileInfo and ExpansionInfo.
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
PtrTy get() const
Definition: Ownership.h:80
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2569
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:4056
QualType BuildWritePipeType(QualType T, SourceLocation Loc)
Build a Write-only Pipe type.
Definition: SemaType.cpp:2087
A (possibly-)qualified type.
Definition: Type.h:643
ASTConsumer & Consumer
Definition: Sema.h:375
bool isBlockPointerType() const
Definition: Type.h:6392
bool hasNonTrivialToPrimitiveCopyCUnion() const
Check if this is or contains a C union that is non-trivial to copy, which is a union that has a membe...
Definition: Type.h:6279
base_class_range bases()
Definition: DeclCXX.h:825
bool isArrayType() const
Definition: Type.h:6440
bool isMemberPointerType() const
Definition: Type.h:6422
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1313
Wrapper for source info for tag types.
Definition: TypeLoc.h:703
SourceRange getSourceRange() const LLVM_READONLY
Return the source range that covers this unqualified-id.
Definition: DeclSpec.h:1144
static const TSS TSS_unsigned
Definition: DeclSpec.h:268
static bool hasNullabilityAttr(const ParsedAttributesView &attrs)
Check whether there is a nullability attribute of any kind in the given attribute list...
Definition: SemaType.cpp:3540
const TypeClass * getTypePtr() const
Definition: TypeLoc.h:405
QualType BuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc)
Definition: SemaType.cpp:8380
static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld, LangAS ASNew, SourceLocation AttrLoc)
Definition: SemaType.cpp:3970
__auto_type (GNU extension)
const DeclaratorChunk & getTypeObject(unsigned i) const
Return the specified TypeInfo from this declarator.
Definition: DeclSpec.h:2189
CanQualType FractTy
Definition: ASTContext.h:1030
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:3224
void setNameEndLoc(SourceLocation Loc)
Definition: TypeLoc.h:1076
static const TST TST_wchar
Definition: DeclSpec.h:275
void takeOneFrom(ParsedAttributes &Attrs, ParsedAttr *PA)
Definition: ParsedAttr.h:919
llvm::PointerUnion< Expr *, IdentifierLoc * > ArgsUnion
A union of the various pointer types that can be passed to an ParsedAttr as an argument.
Definition: ParsedAttr.h:104
CanQualType Char32Ty
Definition: ASTContext.h:1022
#define CALLING_CONV_ATTRS_CASELIST
Definition: SemaType.cpp:109
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
void setKWLoc(SourceLocation Loc)
Definition: TypeLoc.h:2307
The attribute is immediately after the declaration&#39;s name.
Definition: SemaType.cpp:354
void setRParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1409
TypeLoc getNextTypeLoc() const
Get the next TypeLoc pointed by this TypeLoc, e.g for "int*" the TypeLoc is a PointerLoc and next Typ...
Definition: TypeLoc.h:167
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1244
const internal::VariadicDynCastAllOfMatcher< Decl, RecordDecl > recordDecl
Matches class, struct, and union declarations.
NullabilityKind
Describes the nullability of a particular type.
Definition: Specifiers.h:314
void setExceptionSpecRange(SourceRange R)
Definition: TypeLoc.h:1423
Kind getKind() const
Definition: Type.h:2450
QualType BuildObjCObjectType(QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc, ArrayRef< TypeSourceInfo *> TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef< ObjCProtocolDecl *> Protocols, ArrayRef< SourceLocation > ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError=false)
Build an Objective-C object pointer type.
Definition: SemaType.cpp:1061
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3387
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:985
TypeLoc getValueLoc() const
Definition: TypeLoc.h:2302
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1968
void setEmbeddedInDeclarator(bool isInDeclarator)
True if this tag declaration is "embedded" (i.e., defined or declared for the very first time) in the...
Definition: Decl.h:3232
unsigned getNumVBases() const
Retrieves the number of virtual base classes of this class.
Definition: DeclCXX.h:840
bool hasPlaceholderType() const
Returns whether this expression has a placeholder type.
Definition: Expr.h:481
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:3051
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:812
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
bool isRecordType() const
Definition: Type.h:6464
bool isDecltypeAuto() const
Definition: Type.h:4828
static const TST TST_typeofExpr
Definition: DeclSpec.h:299
QualType getQualifiedType(SplitQualType split) const
Un-split a SplitQualType.
Definition: ASTContext.h:1938
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type...
QualType getElaboratedType(ElaboratedTypeKeyword Keyword, const CXXScopeSpec &SS, QualType T, TagDecl *OwnedTagDecl=nullptr)
Retrieve a version of the type &#39;T&#39; that is elaborated by Keyword, qualified by the nested-name-specif...
Definition: SemaType.cpp:8266
const Type * getTypeForDecl() const
Definition: Decl.h:2931
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1362
static const TST TST_char16
Definition: DeclSpec.h:277
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr, QualType type)
diagnoseBadTypeAttribute - Diagnoses a type attribute which doesn&#39;t apply to the given type...
Definition: SemaType.cpp:66
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4035
WrittenBuiltinSpecs & getWrittenBuiltinSpecs()
Definition: TypeLoc.h:571
void setType(QualType t)
Definition: Expr.h:138
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
Defines the C++ template declaration subclasses.
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4817
IdentifierInfo * Ident
Definition: ParsedAttr.h:96
SmallVector< CodeSynthesisContext, 16 > CodeSynthesisContexts
List of active code synthesis contexts.
Definition: Sema.h:7584
QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, Expr *ArraySize, unsigned Quals, SourceRange Brackets, DeclarationName Entity)
Build an array type.
Definition: SemaType.cpp:2128
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:307
const char * getCharacterData(SourceLocation SL, bool *Invalid=nullptr) const
Return a pointer to the start of the specified location in the appropriate spelling MemoryBuffer...
A constructor named via a template-id.
Expr * getArgAsExpr(unsigned Arg) const
Definition: ParsedAttr.h:470
QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr, SourceLocation AttrLoc, VectorType::VectorKind VecKind) const
Return the unique reference to the type for a dependently sized vector of the specified element type...
QualType getBlockPointerType(QualType T) const
Return the uniqued reference to the type for a block of the specified type.
SourceLocation getLParenLoc() const
Definition: DeclSpec.h:1401
The base class of the type hierarchy.
Definition: Type.h:1433
bool hasTrailingReturnType() const
Determine whether a trailing return type was written (at any level) within this declarator.
Definition: DeclSpec.h:2395
CanQualType LongTy
Definition: ASTContext.h:1023
DiagnosticsEngine & getDiagnostics() const
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclSpec.h:1900
One instance of this struct is used for each type in a declarator that is parsed. ...
Definition: DeclSpec.h:1158
QualType getCorrespondingUnsignedType(QualType T) const
SourceLocation EndLoc
EndLoc - If valid, the place where this chunck ends.
Definition: DeclSpec.h:1166
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition: Sema.cpp:47
bool isFunctionDeclarator(unsigned &idx) const
isFunctionDeclarator - This method returns true if the declarator is a function declarator (looking t...
Definition: DeclSpec.h:2247
Wrapper for source info for typedefs.
Definition: TypeLoc.h:666
static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk)
Definition: SemaType.cpp:5686
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:520
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclSpec.h:1901
bool isTypeSpecSat() const
Definition: DeclSpec.h:480
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:693
The attribute is part of a DeclaratorChunk.
Definition: SemaType.cpp:352
A container of type source information.
Definition: Decl.h:86
bool getHasRegParm() const
Definition: Type.h:3647
bool hasConstexprNonCopyMoveConstructor() const
Determine whether this class has at least one constexpr constructor other than the copy or move const...
Definition: DeclCXX.h:1391
static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS, unsigned &TypeQuals, QualType TypeSoFar, unsigned RemoveTQs, unsigned DiagID)
Definition: SemaType.cpp:774
static void fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL, const ParsedAttributesView &Attrs)
Definition: SemaType.cpp:5711
static void transferARCOwnership(TypeProcessingState &state, QualType &declSpecTy, Qualifiers::ObjCLifetime ownership)
Used for transferring ownership in casts resulting in l-values.
Definition: SemaType.cpp:5312
RangeSelector name(std::string ID)
Given a node with a "name", (like NamedDecl, DeclRefExpr or CxxCtorInitializer) selects the name&#39;s to...
An overloaded operator name, e.g., operator+.
bool getSuppressSystemWarnings() const
Definition: Diagnostic.h:628
Wrapper for source info for pointers decayed from arrays and functions.
Definition: TypeLoc.h:1198
Abstract base class used for diagnosing integer constant expression violations.
Definition: Sema.h:10341
QualType getAtomicType(QualType T) const
Return the uniqued reference to the atomic type for the specified type.
SourceLocation getEllipsisLoc() const
Definition: DeclSpec.h:1405
SourceLocation getLocalBeginLoc() const
Retrieve the location of the beginning of this component of the nested-name-specifier.
SourceLocation getEndLoc() const
Get the end source location.
Definition: TypeLoc.cpp:226
#define NULLABILITY_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:143
CanQualType HalfTy
Definition: ASTContext.h:1038
const ParsedAttributes & getAttributes() const
Definition: DeclSpec.h:2419
unsigned RestrictQualLoc
The location of the restrict-qualifier, if any.
Definition: DeclSpec.h:1187
bool hasAttribute(ParsedAttr::Kind K) const
Definition: ParsedAttr.h:891
const AttributedType * getCallingConvAttributedType(QualType T) const
Get the outermost AttributedType node that sets a calling convention.
Definition: SemaDecl.cpp:2908
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3202
void setParensRange(SourceRange range)
Definition: TypeLoc.h:1839
An identifier, stored as an IdentifierInfo*.
bool isFunctionDeclarationContext() const
Return true if this declaration appears in a context where a function declarator would be a function ...
Definition: DeclSpec.h:2301
Represents a variable declaration or definition.
Definition: Decl.h:812
static bool handleObjCPointerTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType &type)
Definition: SemaType.cpp:372
static OpenCLAccessAttr::Spelling getImageAccess(const ParsedAttributesView &Attrs)
Definition: SemaType.cpp:1247
unsigned isStar
True if this dimension was [*]. In this case, NumElts is null.
Definition: DeclSpec.h:1217
static DeclaratorChunk * maybeMovePastReturnType(Declarator &declarator, unsigned i, bool onlyBlockPointers)
Given the index of a declarator chunk, check whether that chunk directly specifies the return type of...
Definition: SemaType.cpp:389
static const TST TST_underlyingType
Definition: DeclSpec.h:302
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1775
void removeObjCLifetime()
Definition: Type.h:333
LangAS getLangASFromTargetAS(unsigned TargetAS)
Definition: AddressSpaces.h:66
void initialize(ASTContext &Context, SourceLocation Loc) const
Initializes this to state that every location in this type is the given location. ...
Definition: TypeLoc.h:192
DiagnosticsEngine & Diags
Definition: Sema.h:376
Wrapper for source info for member pointers.
Definition: TypeLoc.h:1267
bool isEnumeralType() const
Definition: Type.h:6468
Wrapper of type source information for a type with non-trivial direct qualifiers. ...
Definition: TypeLoc.h:273
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6851
CanQualType Float128Ty
Definition: ASTContext.h:1026
DeclContext * computeDeclContext(QualType T)
Compute the DeclContext that is associated with the given type.
The "union" keyword.
Definition: Type.h:5109
unsigned getParsedSpecifiers() const
Return a bitmask of which flavors of specifiers this DeclSpec includes.
Definition: DeclSpec.cpp:436
Extra information about a function prototype.
Definition: Type.h:3799
CanQualType ShortAccumTy
Definition: ASTContext.h:1027
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:25
Represents a C++17 deduced template specialization type.
Definition: Type.h:4855
The "__interface" keyword.
Definition: Type.h:5106
attribute((...))
Definition: ParsedAttr.h:141
bool isCXX11Attribute() const
Definition: ParsedAttr.h:411
static const TST TST_interface
Definition: DeclSpec.h:295
static const TST TST_char
Definition: DeclSpec.h:274
A namespace, stored as a NamespaceDecl*.
QualType getMemberPointerType(QualType T, const Type *Cls) const
Return the uniqued reference to the type for a member pointer to the specified type in the specified ...
bool hasTrivialDefaultConstructor() const
Determine whether this class has a trivial default constructor (C++11 [class.ctor]p5).
Definition: DeclCXX.h:1376
TypeLoc getNamedTypeLoc() const
Definition: TypeLoc.h:2007
bool isInvalidDecl() const
Definition: DeclBase.h:553
void setAttrOperandParensRange(SourceRange range)
Definition: TypeLoc.h:1725
bool hasTypeSpecifier() const
Return true if any type-specifier has been found.
Definition: DeclSpec.h:612
bool isCallingConv() const
Definition: Type.cpp:3290
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
CanQualType ShortFractTy
Definition: ASTContext.h:1030
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
bool hasMethodTypeQualifiers() const
Determine whether this method has qualifiers.
Definition: DeclSpec.h:1462
bool hasDefinition() const
Definition: DeclCXX.h:778
unsigned getNumExceptions() const
Get the number of dynamic exception specifications.
Definition: DeclSpec.h:1473
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:686
Represents a parameter to a function.
Definition: Decl.h:1564
OpenCLOptions & getOpenCLOptions()
Definition: Sema.h:1286
long i
Definition: xmmintrin.h:1456
noexcept(expression), value-dependent
enum clang::DeclaratorChunk::@217 Kind
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc)
Definition: TypeLoc.h:1987
SourceLocation Loc
Definition: ParsedAttr.h:95
The collection of all-type qualifiers we support.
Definition: Type.h:137
bool isVariableArrayType() const
Definition: Type.h:6452
PipeType - OpenCL20.
Definition: Type.h:6072
bool needsExtraLocalData() const
Definition: TypeLoc.h:578
SourceRange getTypeSpecWidthRange() const
Definition: DeclSpec.h:502
void setParensRange(SourceRange Range)
Definition: TypeLoc.h:2279
static const TST TST_unknown_anytype
Definition: DeclSpec.h:305
bool canHaveNullability(bool ResultIfUnknown=true) const
Determine whether the given type can have a nullability specifier applied to it, i.e., if it is any kind of pointer type.
Definition: Type.cpp:3768
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
MSInheritanceAttr::Spelling calculateInheritanceModel() const
Calculate what the inheritance model would be for this class.
QualType BuildMemberPointerType(QualType T, QualType Class, SourceLocation Loc, DeclarationName Entity)
Build a member pointer type T Class::*.
Definition: SemaType.cpp:2572
const AstTypeMatcher< RecordType > recordType
Matches record types (e.g.
Represents a struct/union/class.
Definition: Decl.h:3626
static AttrT * createSimpleAttr(ASTContext &Ctx, ParsedAttr &Attr)
Definition: SemaType.cpp:3945
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1332
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
bool isDependentScopeSpecifier(const CXXScopeSpec &SS)
Expr * NoexceptExpr
Pointer to the expression in the noexcept-specifier of this function, if it has one.
Definition: DeclSpec.h:1339
TypeSpecifierSign getWrittenSignSpec() const
Definition: TypeLoc.h:598
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3800
One of these records is kept for each identifier that is lexed.
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1054
void setLocalRangeEnd(SourceLocation L)
Definition: TypeLoc.h:1393
static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc, QualifiedFunctionKind QFK)
Check whether the type T is a qualified function type, and if it is, diagnose that it cannot be conta...
Definition: SemaType.cpp:1952
static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex)
Returns true if any of the declarator chunks before endIndex include a level of indirection: array...
Definition: SemaType.cpp:3915
unsigned getAttributeSpellingListIndex() const
Get an index into the attribute spelling list defined in Attr.td.
Definition: ParsedAttr.cpp:156
SourceLocation getExceptionSpecLocBeg() const
Definition: DeclSpec.h:1413
const WrittenBuiltinSpecs & getWrittenBuiltinSpecs() const
Definition: DeclSpec.h:784
SourceLocation getBegin() const
static const TST TST_decimal32
Definition: DeclSpec.h:289
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
QualType IgnoreParens() const
Returns the specified type after dropping any outer-level parentheses.
Definition: Type.h:962
UnionParsedType ConversionFunctionId
When Kind == IK_ConversionFunctionId, the type that the conversion function names.
Definition: DeclSpec.h:980
void removeRestrict()
Definition: Type.h:266
Represents a class type in Objective C.
Definition: Type.h:5608
static const TST TST_char8
Definition: DeclSpec.h:276
QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace, SourceLocation AttrLoc)
BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression is uninstantiated.
Definition: SemaType.cpp:5902
static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State, QualType &T, TypeAttrLocation TAL)
Definition: SemaType.cpp:7366
bool hasExplicitCallingConv(QualType T)
Definition: SemaType.cpp:7074
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
A C++ nested-name-specifier augmented with source location information.
is ARM Neon vector
Definition: Type.h:3216
bool inTemplateInstantiation() const
Determine whether we are currently performing template instantiation.
Definition: Sema.h:7818
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3928
LineState State
SourceLocation getTypeSpecTypeLoc() const
Definition: DeclSpec.h:505
bool CheckAttrTarget(const ParsedAttr &CurrAttr)
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:4004
QualType BuildParenType(QualType T)
Build a paren type including T.
Definition: SemaType.cpp:1857
void setBuiltinLoc(SourceLocation Loc)
Definition: TypeLoc.h:555
QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc)
Definition: SemaType.cpp:2335
bool isSpelledAsLValue() const
Definition: Type.h:2721
field_range fields() const
Definition: Decl.h:3841
void setRBracketLoc(SourceLocation Loc)
Definition: TypeLoc.h:1512
static SourceLocation getFromRawEncoding(unsigned Encoding)
Turn a raw encoding of a SourceLocation object into a real SourceLocation.
static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr, Sema &S)
HandleVectorSizeAttribute - this attribute is only applicable to integral and float scalars...
Definition: SemaType.cpp:7136
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
QualType getDependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, const IdentifierInfo *Name, QualType Canon=QualType()) const
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:263
static const TST TST_class
Definition: DeclSpec.h:296
NameKind getNameKind() const
Determine what kind of name this is.
static void fillAttributedTypeLoc(AttributedTypeLoc TL, TypeProcessingState &State)
Definition: SemaType.cpp:5378
void checkExceptionSpecification(bool IsTopLevel, ExceptionSpecificationType EST, ArrayRef< ParsedType > DynamicExceptions, ArrayRef< SourceRange > DynamicExceptionRanges, Expr *NoexceptExpr, SmallVectorImpl< QualType > &Exceptions, FunctionProtoType::ExceptionSpecInfo &ESI)
Check the given exception-specification and update the exception specification information with the r...
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
void removeConst()
Definition: Type.h:256
void setVisibleDespiteOwningModule()
Set that this declaration is globally visible, even if it came from a module that is not visible...
Definition: DeclBase.h:780
static const TST TST_double
Definition: DeclSpec.h:283
bool hasAutoTypeSpec() const
Definition: DeclSpec.h:517
CanQualType LongAccumTy
Definition: ASTContext.h:1027
bool isReferenceType() const
Definition: Type.h:6396
void setElaboratedKeywordLoc(SourceLocation Loc)
Definition: TypeLoc.h:2037
static bool IsNoDerefableChunk(DeclaratorChunk Chunk)
Definition: SemaType.cpp:3939
static std::string getPrintableNameForEntity(DeclarationName Entity)
Definition: SemaType.cpp:1758
virtual SourceRange getSourceRange() const LLVM_READONLY
Source range that this declaration covers.
Definition: DeclBase.h:417
ParsedType ActOnObjCInstanceType(SourceLocation Loc)
The parser has parsed the context-sensitive type &#39;instancetype&#39; in an Objective-C message declaration...
Definition: SemaType.cpp:5844
static const TST TST_error
Definition: DeclSpec.h:310
bool hasStructuralCompatLayout(Decl *D, Decl *Suggested)
Determine if D and Suggested have a structurally compatible layout as described in C11 6...
Definition: SemaType.cpp:7839
static const TST TST_enum
Definition: DeclSpec.h:292
static void maybeSynthesizeBlockSignature(TypeProcessingState &state, QualType declSpecType)
Add a synthetic &#39;()&#39; to a block-literal declarator if it is required, given the return type...
Definition: SemaType.cpp:718
TypeLoc getNextTypeLoc() const
Definition: TypeLoc.h:401
static const TSW TSW_unspecified
Definition: DeclSpec.h:253
void copy(DependentTemplateSpecializationTypeLoc Loc)
Definition: TypeLoc.h:2181
__DEVICE__ int max(int __a, int __b)
bool hasTagDefinition() const
Definition: DeclSpec.cpp:427
void setUnderlyingTInfo(TypeSourceInfo *TInfo)
Definition: TypeLoc.h:1920
TSC getTypeSpecComplex() const
Definition: DeclSpec.h:471
Wrapper of type source information for a type with no direct qualifiers.
Definition: TypeLoc.h:247
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
const AstTypeMatcher< TypedefType > typedefType
Matches typedef types.
i32 captured_struct **param SharedsTy A type which contains references the shared variables *param Shareds Context with the list of shared variables from the p *TaskFunction *param Data Additional data for task generation like final * state
static const TST TST_accum
Definition: DeclSpec.h:285
A user-defined literal name, e.g., operator "" _i.
IdentifierTable & Idents
Definition: ASTContext.h:569
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this attribute.
Definition: ParsedAttr.h:458
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:124
bool isInvalidType() const
Definition: DeclSpec.h:2453
Values of this type can be null.
static void inferARCWriteback(TypeProcessingState &state, QualType &declSpecType)
Given that this is the declaration of a parameter under ARC, attempt to infer attributes and such for...
Definition: SemaType.cpp:2661
CanQualType LongFractTy
Definition: ASTContext.h:1030
bool getProducesResult() const
Definition: Type.h:3545
static void HandleLifetimeBoundAttr(TypeProcessingState &State, QualType &CurType, ParsedAttr &Attr)
Definition: SemaType.cpp:7497
PointerTypeInfo Ptr
Definition: DeclSpec.h:1527
bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value)
void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor, SourceLocation Loc)
Adjust the calling convention of a method to be the ABI default if it wasn&#39;t specified explicitly...
Definition: SemaType.cpp:7088
bool isInvalid() const
TypeSpecifierWidth getWrittenWidthSpec() const
Definition: TypeLoc.h:614
This parameter (which must have pointer type) uses the special Swift context-pointer ABI treatment...
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:944
bool findMacroSpelling(SourceLocation &loc, StringRef name)
Looks through the macro-expansion chain for the given location, looking for a macro expansion with th...
Definition: Sema.cpp:1552
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
bool hasNonLiteralTypeFieldsOrBases() const
Determine whether this class has a non-literal or/ volatile type non-static data member or base class...
Definition: DeclCXX.h:1533
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:523
void setAttr(const Attr *A)
Definition: TypeLoc.h:876
static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state, TypeSourceInfo *&ReturnTypeInfo)
Definition: SemaType.cpp:2878
Represents the results of name lookup.
Definition: Lookup.h:46
PtrTy get() const
Definition: Ownership.h:170
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1389
unsigned ConstQualLoc
The location of the const-qualifier, if any.
Definition: DeclSpec.h:1181
bool refersToBitField() const
Returns true if this expression is a gl-value that potentially refers to a bit-field.
Definition: Expr.h:446
void setExpansionLoc(SourceLocation Loc)
Definition: TypeLoc.h:1108
static void fixItNullability(Sema &S, DiagnosticBuilder &Diag, SourceLocation PointerLoc, NullabilityKind Nullability)
Creates a fix-it to insert a C-style nullability keyword at pointerLoc, taking into account whitespac...
Definition: SemaType.cpp:3776
LLVM_READONLY bool isWhitespace(unsigned char c)
Return true if this character is horizontal or vertical ASCII whitespace: &#39; &#39;, &#39;\t&#39;, &#39;\f&#39;, &#39;\v&#39;, &#39;\n&#39;, &#39;\r&#39;.
Definition: CharInfo.h:87
void setCaretLoc(SourceLocation Loc)
Definition: TypeLoc.h:1257
TagKind getTagKind() const
Definition: Decl.h:3276
static PointerDeclaratorKind classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator, PointerWrappingDeclaratorKind &wrappingKind)
Classify the given declarator, whose type-specified is type, based on what kind of pointer it refers ...
Definition: SemaType.cpp:3586
Microsoft throw(...) extension.
const FileInfo & getFile() const
bool checkOpenCLDisabledTypeDeclSpec(const DeclSpec &DS, QualType T)
Check if type T corresponding to declaration specifier DS is disabled due to required OpenCL extensio...
Definition: Sema.cpp:2225
bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC, const FunctionDecl *FD=nullptr)
bool isTriviallyCopyableType(const ASTContext &Context) const
Return true if this is a trivially copyable type (C++0x [basic.types]p9)
Definition: Type.cpp:2236
bool isTypeSpecPipe() const
Definition: DeclSpec.h:479
const Type * getClass() const
Definition: TypeLoc.h:1279
Wrapper for source info for functions.
Definition: TypeLoc.h:1362
static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec)
Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
Definition: Type.cpp:2557
ArrayTypeInfo Arr
Definition: DeclSpec.h:1529
static bool hasDirectOwnershipQualifier(QualType type)
Does this type have a "direct" ownership qualifier? That is, is it written like "__strong id"...
Definition: SemaType.cpp:6033
Whether values of this type can be null is (explicitly) unspecified.
An x-value expression is a reference to an object with independent storage but which can be "moved"...
Definition: Specifiers.h:133
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:414
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state, QualType &declSpecType)
Given that there are attributes written on the declarator itself, try to distribute any type attribut...
Definition: SemaType.cpp:675
SourceLocation getExpansionLoc(SourceLocation Loc) const
Given a SourceLocation object Loc, return the expansion location referenced by the ID...
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:2185
Sugar type that represents a type that was qualified by a qualifier written as a macro invocation...
Definition: Type.h:4210
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:657
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1859
void addCVRQualifiers(unsigned mask)
Definition: Type.h:284
static TemplateTypeParmDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation KeyLoc, SourceLocation NameLoc, unsigned D, unsigned P, IdentifierInfo *Id, bool Typename, bool ParameterPack)
bool hasNonTrivialToPrimitiveDestructCUnion() const
Check if this is or contains a C union that is non-trivial to destruct, which is a union that has a m...
Definition: Type.h:6273
void AddInnermostTypeInfo(const DeclaratorChunk &TI)
Add a new innermost chunk to this declarator.
Definition: DeclSpec.h:2180
const Type * getClass() const
Definition: Type.h:2822
void expandBuiltinRange(SourceRange Range)
Definition: TypeLoc.h:559
TSS getTypeSpecSign() const
Definition: DeclSpec.h:472
void setUsedAsTypeAttr(bool Used=true)
Definition: ParsedAttr.h:443
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1198
CanQualType LongDoubleTy
Definition: ASTContext.h:1026
Values of this type can never be null.
QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc)
Given a variable, determine the type that a reference to that variable will have in the given scope...
Definition: SemaExpr.cpp:15858
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
Wrapper for source info for ObjC interfaces.
Definition: TypeLoc.h:1051
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6142
QualType BuildExtVectorType(QualType T, Expr *ArraySize, SourceLocation AttrLoc)
Build an ext-vector type.
Definition: SemaType.cpp:2390
ExprResult ActOnIdExpression(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand, CorrectionCandidateCallback *CCC=nullptr, bool IsInlineAsmIdentifier=false, Token *KeywordReplacement=nullptr)
Definition: SemaExpr.cpp:2169
static unsigned getNumAddressingBits(const ASTContext &Context, QualType ElementType, const llvm::APInt &NumElements)
Determine the number of bits required to address a member of.
Definition: Type.cpp:111
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2063
#define MS_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:136
void setUnaligned(bool flag)
Definition: Type.h:294
static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType)
A function type attribute was written on the declarator.
Definition: SemaType.cpp:650
bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const
Definition: Type.cpp:3907
static FileID getNullabilityCompletenessCheckFileID(Sema &S, SourceLocation loc)
Definition: SemaType.cpp:3737
Preprocessor & PP
Definition: Sema.h:373
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1491
const LangOptions & getLangOpts() const
Definition: Sema.h:1285
SourceLocation getConstSpecLoc() const
Definition: DeclSpec.h:539
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:176
const CXXScopeSpec & getCXXScopeSpec() const
getCXXScopeSpec - Return the C++ scope specifier (global scope or nested-name-specifier) that is part...
Definition: DeclSpec.h:1879
void addCVRUQualifiers(unsigned mask)
Definition: Type.h:288
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1735
void setLocalRangeBegin(SourceLocation L)
Definition: TypeLoc.h:1385
void addAtEnd(ParsedAttr *newAttr)
Definition: ParsedAttr.h:821
static void transferARCOwnershipToDeclSpec(Sema &S, QualType &declSpecTy, Qualifiers::ObjCLifetime ownership)
Definition: SemaType.cpp:5264
bool isUnevaluatedContext() const
Determines whether we are currently in a context that is not evaluated as per C++ [expr] p5...
Definition: Sema.h:7847
Represents an ObjC class declaration.
Definition: DeclObjC.h:1171
const Type * getUnqualifiedDesugaredType() const
Return the specified type with any "sugar" removed from the type, removing any typedefs, typeofs, etc., as well as any qualifiers.
Definition: Type.cpp:419
void copy(ElaboratedTypeLoc Loc)
Definition: TypeLoc.h:2015
SourceLocation getIncludeLoc() const
SourceRange getSourceRange() const LLVM_READONLY
Definition: DeclSpec.h:497
static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType &type)
handleObjCGCTypeAttr - Process the attribute((objc_gc)) type attribute on the specified type...
Definition: SemaType.cpp:6253
is ARM Neon polynomial vector
Definition: Type.h:3219
static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind)
Map a nullability attribute kind to a nullability kind.
Definition: SemaType.cpp:6519
static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx, const Expr *AddrSpace, SourceLocation AttrLoc)
Build an AddressSpace index from a constant expression and diagnose any errors related to invalid add...
Definition: SemaType.cpp:5857
void removeVolatile()
Definition: Type.h:261
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const
Retrieve a nested-name-specifier with location information, copied into the given AST context...
Definition: DeclSpec.cpp:142
IdentifierInfo * getIdentifier() const
Definition: DeclSpec.h:2137
CanQualType UnsignedCharTy
Definition: ASTContext.h:1024
void setAttrNameLoc(SourceLocation loc)
Definition: TypeLoc.h:1704
const LangOptions & LangOpts
Definition: Sema.h:372
static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy)
Definition: SemaType.cpp:1913
void setKWLoc(SourceLocation Loc)
Definition: TypeLoc.h:1908
This parameter (which must have pointer-to-pointer type) uses the special Swift error-result ABI trea...
CallingConv getDefaultCallingConvention(bool IsVariadic, bool IsCXXMethod, bool IsBuiltin=false) const
Retrieves the default calling convention for the current target.
uint8_t PointerKind
Which kind of pointer declarator we saw.
Definition: Sema.h:241
This object can be modified without requiring retains or releases.
Definition: Type.h:158
static const TST TST_float
Definition: DeclSpec.h:282
CXXRecordDecl * getMostRecentNonInjectedDecl()
Definition: DeclCXX.h:756
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
void setInvalid(bool b=true) const
Definition: ParsedAttr.h:428
void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const
Definition: SemaType.cpp:5808
bool isExpressionContext() const
Determine whether this declaration appears in a context where an expression could appear...
Definition: DeclSpec.h:2341
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3603
void * getOpaqueData() const
Get the pointer where source information is stored.
Definition: TypeLoc.h:139
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1803
bool isHalfType() const
Definition: Type.h:6649
QualType BuildBlockPointerType(QualType T, SourceLocation Loc, DeclarationName Entity)
Build a block pointer type.
Definition: SemaType.cpp:2623
TypeResult actOnObjCTypeArgsAndProtocolQualifiers(Scope *S, SourceLocation Loc, ParsedType BaseType, SourceLocation TypeArgsLAngleLoc, ArrayRef< ParsedType > TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef< Decl *> Protocols, ArrayRef< SourceLocation > ProtocolLocs, SourceLocation ProtocolRAngleLoc)
Build a specialized and/or protocol-qualified Objective-C type.
Definition: SemaType.cpp:1136
llvm::StringRef getParameterABISpelling(ParameterABI kind)
bool hasAttr() const
Definition: DeclBase.h:542
bool hasUserProvidedDefaultConstructor() const
Whether this class has a user-provided default constructor per C++11.
Definition: DeclCXX.h:991
DeclSpec & getMutableDeclSpec()
getMutableDeclSpec - Return a non-const version of the DeclSpec.
Definition: DeclSpec.h:1871
QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType, UnaryTransformType::UTTKind UKind) const
Unary type transforms.
QualType getCorrespondingSaturatedType(QualType Ty) const
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:328
static const TSW TSW_long
Definition: DeclSpec.h:255
static DeclaratorChunk getFunction(bool HasProto, bool IsAmbiguous, SourceLocation LParenLoc, ParamInfo *Params, unsigned NumParams, SourceLocation EllipsisLoc, SourceLocation RParenLoc, bool RefQualifierIsLvalueRef, SourceLocation RefQualifierLoc, SourceLocation MutableLoc, ExceptionSpecificationType ESpecType, SourceRange ESpecRange, ParsedType *Exceptions, SourceRange *ExceptionRanges, unsigned NumExceptions, Expr *NoexceptExpr, CachedTokens *ExceptionSpecTokens, ArrayRef< NamedDecl *> DeclsInPrototype, SourceLocation LocalRangeBegin, SourceLocation LocalRangeEnd, Declarator &TheDeclarator, TypeResult TrailingReturnType=TypeResult(), DeclSpec *MethodQualifiers=nullptr)
DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
Definition: DeclSpec.cpp:151
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:1045
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1636
SourceLocation getUnalignedSpecLoc() const
Definition: DeclSpec.h:543
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3719
bool hasConstexprSpecifier() const
Definition: DeclSpec.h:736
void setParensRange(SourceRange Range)
Definition: TypeLoc.h:1932
Holds a QualType and a TypeSourceInfo* that came out of a declarator parsing.
Definition: LocInfoType.h:28
QualType getDependentAddressSpaceType(QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttrLoc) const
QualType applyObjCProtocolQualifiers(QualType type, ArrayRef< ObjCProtocolDecl *> protocols, bool &hasError, bool allowOnPointerType=false) const
Apply Objective-C protocol qualifiers to the given type.
static void checkExtParameterInfos(Sema &S, ArrayRef< QualType > paramTypes, const FunctionProtoType::ExtProtoInfo &EPI, llvm::function_ref< SourceLocation(unsigned)> getParamLoc)
Check the extended parameter information.
Definition: SemaType.cpp:2470
DeclSpec * MethodQualifiers
DeclSpec for the function with the qualifier related info.
Definition: DeclSpec.h:1326
unsigned NumParams
NumParams - This is the number of formal parameters specified by the declarator.
Definition: DeclSpec.h:1298
ArraySizeModifier
Capture whether this is a normal array (e.g.
Definition: Type.h:2850
const ParsedAttributesView & getAttrs() const
If there are attributes applied to this declaratorchunk, return them.
Definition: DeclSpec.h:1551
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition: Type.h:6217
unsigned TypeQuals
The type qualifiers: const/volatile/restrict/unaligned/atomic.
Definition: DeclSpec.h:1178
void addObjCLifetime(ObjCLifetime type)
Definition: Type.h:334
static QualType ConvertDeclSpecToType(TypeProcessingState &state)
Convert the specified declspec to the appropriate type object.
Definition: SemaType.cpp:1260
bool isEnabled(llvm::StringRef Ext) const
Definition: OpenCLOptions.h:39
void setSizeExpr(Expr *Size)
Definition: TypeLoc.h:1524
A conversion function name, e.g., operator int.
SourceRange getRange() const
Definition: DeclSpec.h:68
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
TST getTypeSpecType() const
Definition: DeclSpec.h:473
QualType getPromotedIntegerType(QualType PromotableType) const
Return the type that PromotableType will promote to: C99 6.3.1.1p2, assuming that PromotableType is a...
Scope * getCurScope() const
Retrieve the parser&#39;s current scope.
Definition: Sema.h:11132
CharacteristicKind getFileCharacteristic() const
Return whether this is a system header or not.
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:3319
unsigned hasStatic
True if this dimension included the &#39;static&#39; keyword.
Definition: DeclSpec.h:1214
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:189
Type source information for an attributed type.
Definition: TypeLoc.h:851
QualType getVectorType(QualType VectorType, unsigned NumElts, VectorType::VectorKind VecKind) const
Return the unique reference to a vector type of the specified element type and size.
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
This represents one expression.
Definition: Expr.h:108
QualType getPointeeType() const
Definition: Type.h:2726
SourceLocation End
int Id
Definition: ASTDiff.cpp:190
Kind getKind() const
Definition: ParsedAttr.h:453
Declaration of a template type parameter.
bool isObjCARCImplicitlyUnretainedType() const
Determines if this type, which must satisfy isObjCLifetimeType(), is implicitly __unsafe_unretained r...
Definition: Type.cpp:3946
unsigned VolatileQualLoc
The location of the volatile-qualifier, if any.
Definition: DeclSpec.h:1184
UnqualTypeLoc getUnqualifiedLoc() const
Skips past any qualifiers, if this is qualified.
Definition: TypeLoc.h:322
This file defines the classes used to store parsed information about declaration-specifiers and decla...
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6916
ElaboratedTypeKeyword
The elaboration keyword that precedes a qualified type name or introduces an elaborated-type-specifie...
Definition: Type.h:5120
TypeResult ActOnTypeName(Scope *S, Declarator &D)
Definition: SemaType.cpp:5815
bool isObjCRetainableType() const
Definition: Type.cpp:3984
QualType getTypeOfExprType(Expr *e) const
GCC extension.
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:86
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2838
Qualifiers::GC getObjCGCAttr() const
Returns gc attribute of this type.
Definition: Type.h:6263
QualType getParenType(QualType NamedType) const
static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, Sema &S)
Process the OpenCL-like ext_vector_type attribute when it occurs on a type.
Definition: SemaType.cpp:7174
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:131
std::string getAsString() const
Retrieve the human-readable string for this name.
TypeResult actOnObjCProtocolQualifierType(SourceLocation lAngleLoc, ArrayRef< Decl *> protocols, ArrayRef< SourceLocation > protocolLocs, SourceLocation rAngleLoc)
Build a an Objective-C protocol-qualified &#39;id&#39; type where no base type was specified.
Definition: SemaType.cpp:1097
SourceLocation getVolatileSpecLoc() const
Definition: DeclSpec.h:541
QualType BuildAtomicType(QualType T, SourceLocation Loc)
Definition: SemaType.cpp:8415
void ClearTypeQualifiers()
Clear out all of the type qualifiers.
Definition: DeclSpec.h:547
QualType getTagDeclType(const TagDecl *Decl) const
Return the unique reference to the type for the specified TagDecl (struct/union/class/enum) decl...
Defines the clang::Preprocessor interface.
static DelayedDiagnostic makeForbiddenType(SourceLocation loc, unsigned diagnostic, QualType type, unsigned argument)
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, VerifyICEDiagnoser &Diagnoser, bool AllowFold=true)
VerifyIntegerConstantExpression - Verifies that an expression is an ICE, and reports the appropriate ...
Definition: SemaExpr.cpp:14526
Defines the classes clang::DelayedDiagnostic and clang::AccessedEntity.
void completeExprArrayBound(Expr *E)
Definition: SemaType.cpp:7730
ObjCLifetime getObjCLifetime() const
Definition: Type.h:327
bool supportsVariadicCall(CallingConv CC)
Checks whether the given calling convention supports variadic calls.
Definition: Specifiers.h:287
SourceLocation getBeginLoc() const
Definition: DeclSpec.h:72
bool hasEllipsis() const
Definition: DeclSpec.h:2464
CanQualType ShortTy
Definition: ASTContext.h:1023
NestedNameSpecifierLoc getPrefix() const
Return the prefix of this nested-name-specifier.
internal::Matcher< T > id(StringRef ID, const internal::BindableMatcher< T > &InnerMatcher)
If the provided matcher matches a node, binds the node to ID.
Definition: ASTMatchers.h:138
virtual void AssignInheritanceModel(CXXRecordDecl *RD)
Callback invoked when an MSInheritanceAttr has been attached to a CXXRecordDecl.
Definition: ASTConsumer.h:107
Represents a C++ template name within the type system.
Definition: TemplateName.h:187
static const TST TST_decimal64
Definition: DeclSpec.h:290
bool RequireCompleteType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser)
Ensure that the type T is a complete type.
Definition: SemaType.cpp:7826
Defines the clang::TypeLoc interface and its subclasses.
static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T)
Produce an appropriate diagnostic for a declarator with top-level parentheses.
Definition: SemaType.cpp:3300
A namespace alias, stored as a NamespaceAliasDecl*.
UnqualifiedIdKind getKind() const
Determine what kind of name we have.
Definition: DeclSpec.h:1026
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.h:2209
static QualType getDecltypeForExpr(Sema &S, Expr *E)
getDecltypeForExpr - Given an expr, will return the decltype for that expression, according to the ru...
Definition: SemaType.cpp:8299
CanQualType UnsignedInt128Ty
Definition: ASTContext.h:1025
A std::pair-like structure for storing a qualified type split into its local qualifiers and its local...
Definition: Type.h:582
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:1064
TypeDiagSelector
Definition: SemaType.cpp:41
QualType getType() const
Definition: Expr.h:137
bool isFunctionOrMethod() const
Definition: DeclBase.h:1831
static Optional< NullabilityKind > stripOuterNullability(QualType &T)
Strip off the top-level nullability annotation on the given type, if it&#39;s there.
Definition: Type.cpp:3892
CharSourceRange getImmediateExpansionRange(SourceLocation Loc) const
Return the start/end of the expansion information for an expansion location.
bool LValueRef
True if this is an lvalue reference, false if it&#39;s an rvalue reference.
Definition: DeclSpec.h:1203
SourceLocation Loc
Loc - The place where this type was defined.
Definition: DeclSpec.h:1164
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return the unique reference to the type for a constant array of the specified element type...
Qualifiers Quals
The local qualifiers.
Definition: Type.h:587
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1779
ProtocolLAngleLoc, ProtocolRAngleLoc, and the source locations for protocol qualifiers are stored aft...
Definition: TypeLoc.h:748
static const TST TST_int
Definition: DeclSpec.h:279
void setHasBaseTypeAsWritten(bool HasBaseType)
Definition: TypeLoc.h:1009
void setEllipsisLoc(SourceLocation EL)
Definition: DeclSpec.h:2466
static QualType inferARCLifetimeForPointee(Sema &S, QualType type, SourceLocation loc, bool isReference)
Given that we&#39;re building a pointer or reference to the given.
Definition: SemaType.cpp:1862
bool isInvalid() const
Definition: Ownership.h:166
QualType getFunctionTypeWithExceptionSpec(QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI)
Get a function type and produce the equivalent function type with the specified exception specificati...
SourceLocation getEnd() const
Compare two source locations.
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1382
bool RequireLiteralType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser)
Ensure that the type T is a literal type.
Definition: SemaType.cpp:8176
static const TST TST_half
Definition: DeclSpec.h:281
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2752
TypedefDecl * getBuiltinVaListDecl() const
Retrieve the C type declaration corresponding to the predefined __builtin_va_list type...
bool isFriendSpecified() const
Definition: DeclSpec.h:725
Common base class for placeholders for types that get replaced by placeholder type deduction: C++11 a...
Definition: Type.h:4777
TypeLoc getInnerLoc() const
Definition: TypeLoc.h:1098
Wraps an identifier and optional source location for the identifier.
Definition: ParsedAttr.h:94
static void moveAttrFromListToList(ParsedAttr &attr, ParsedAttributesView &fromList, ParsedAttributesView &toList)
Definition: SemaType.cpp:340
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1398
static QualType Desugar(ASTContext &Context, QualType QT, bool &ShouldAKA)
The result type of a method or function.
This template specialization was implicitly instantiated from a template.
Definition: Specifiers.h:180
SourceLocation getCommaLoc() const
Definition: DeclSpec.h:2461
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc)
Definition: TypeLoc.h:2046
bool RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser)
Ensure that the type of the given expression is complete.
Definition: SemaType.cpp:7786
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:708
QualType getDependentSizedExtVectorType(QualType VectorType, Expr *SizeExpr, SourceLocation AttrLoc) const
static const TSW TSW_short
Definition: DeclSpec.h:254
void removeCVRQualifiers(unsigned mask)
Definition: Type.h:277
bool isTemplateInstantiation(TemplateSpecializationKind Kind)
Determine whether this template specialization kind refers to an instantiation of an entity (as oppos...
Definition: Specifiers.h:198
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:264
SourceLocation PointerLoc
The first pointer declarator (of any pointer kind) in the file that does not have a corresponding nul...
Definition: Sema.h:234
CanQualType SignedCharTy
Definition: ASTContext.h:1023
bool isFirstDeclarator() const
Definition: DeclSpec.h:2460
TypeSourceInfo * GetTypeForDeclaratorCast(Declarator &D, QualType FromTy)
Definition: SemaType.cpp:5363
unsigned getCVRQualifiers() const
Retrieve the set of CVR (const-volatile-restrict) qualifiers applied to this type.
Definition: Type.h:6175
QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const
Return the uniqued reference to the type for an Objective-C gc-qualified type.
QualType getAttributedType(attr::Kind attrKind, QualType modifiedType, QualType equivalentType)
TypeAndRange * Exceptions
Pointer to a new[]&#39;d array of TypeAndRange objects that contain the types in the function&#39;s dynamic e...
Definition: DeclSpec.h:1335
SourceLocation getRefQualifierLoc() const
Retrieve the location of the ref-qualifier, if any.
Definition: DeclSpec.h:1426
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:6201
SplitQualType split() const
Divides a QualType into its unqualified type and a set of local qualifiers.
Definition: Type.h:6150
unsigned getSemanticSpelling() const
If the parsed attribute has a semantic equivalent, and it would have a semantic Spelling enumeration ...
Definition: ParsedAttr.cpp:245
RecordDecl * getDecl() const
Definition: Type.h:4448
static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator, QualType Result)
Return true if this is omitted block return type.
Definition: SemaType.cpp:802
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1275
static const TST TST_char32
Definition: DeclSpec.h:278
noexcept(expression), evals to &#39;false&#39;
NestedNameSpecifier * getScopeRep() const
Retrieve the representation of the nested-name-specifier.
Definition: DeclSpec.h:76
QualType getPackExpansionType(QualType Pattern, Optional< unsigned > NumExpansions)
static const TST TST_fract
Definition: DeclSpec.h:286
SmallVector< NamedDecl *, 4 > TemplateParams
Store the list of the template parameters for a generic lambda.
Definition: ScopeInfo.h:837
void setTypeofLoc(SourceLocation Loc)
Definition: TypeLoc.h:1815
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType &type)
handleObjCOwnershipTypeAttr - Process an objc_ownership attribute on the specified type...
Definition: SemaType.cpp:6064
bool SawTypeNullability
Whether we saw any type nullability annotations in the given file.
Definition: Sema.h:244
static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy, Declarator &D, unsigned FunctionChunkIndex)
Definition: SemaType.cpp:2808
A parameter attribute which changes the argument-passing ABI rule for the parameter.
Definition: Attr.h:183
Wrapper for source info for arrays.
Definition: TypeLoc.h:1495
bool isComputedNoexcept(ExceptionSpecificationType ESpecType)
CanQualType OverloadTy
Definition: ASTContext.h:1043
There is no lifetime qualification on this type.
Definition: Type.h:154
Information about a FileID, basically just the logical file that it represents and include stack info...
is AltiVec &#39;vector Pixel&#39;
Definition: Type.h:3210
#define false
Definition: stdbool.h:17
static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type, ArrayRef< TypeSourceInfo *> typeArgs, SourceRange typeArgsRange, bool failOnError=false)
Apply Objective-C type arguments to the given type.
Definition: SemaType.cpp:832
The "struct" keyword.
Definition: Type.h:5103
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
Kind
bool isBuiltinType() const
Helper methods to distinguish type categories.
Definition: Type.h:6460
not a target-specific vector type
Definition: Type.h:3204
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:153
QualType getElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, QualType NamedType, TagDecl *OwnedTagDecl=nullptr) const
The attribute is in the decl-specifier-seq.
Definition: SemaType.cpp:350
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3932
SCS getStorageClassSpec() const
Definition: DeclSpec.h:441
void setKNRPromoted(bool promoted)
Definition: Decl.h:1641
ASTContext & getASTContext() const
Definition: Sema.h:1292
SourceLocation getRParenLoc() const
Definition: DeclSpec.h:1409
static bool isPermittedNeonBaseType(QualType &Ty, VectorType::VectorKind VecKind, Sema &S)
Definition: SemaType.cpp:7209
static const TST TST_float16
Definition: DeclSpec.h:284
static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType &type)
Process an individual function attribute.
Definition: SemaType.cpp:6845
const ExtParameterInfo * ExtParameterInfos
Definition: Type.h:3806
static void distributeObjCPointerTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType type)
Given that an objc_gc attribute was written somewhere on a declaration other than on the declarator i...
Definition: SemaType.cpp:457
Encodes a location in the source.
bool isTypeSpecOwned() const
Definition: DeclSpec.h:477
Sugar for parentheses used when specifying types.
Definition: Type.h:2539
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
QualType getReturnType() const
Definition: Type.h:3645
static const TST TST_auto_type
Definition: DeclSpec.h:304
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4464
void atTemplateBegin(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema, const Sema::CodeSynthesisContext &Inst)
bool CheckDistantExceptionSpec(QualType T)
CheckDistantExceptionSpec - Check if the given type is a pointer or pointer to member to a function w...
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6258
ReferenceTypeInfo Ref
Definition: DeclSpec.h:1528
static void distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType)
Distribute an objc_gc type attribute that was written on the declarator.
Definition: SemaType.cpp:513
PointerDeclaratorKind
Describes the kind of a pointer a declarator describes.
Definition: SemaType.cpp:3553
CanQualType Int128Ty
Definition: ASTContext.h:1023
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5808
FunctionDefinitionKind getFunctionDefinitionKind() const
Definition: DeclSpec.h:2476
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:2124
std::pair< NullabilityKind, bool > DiagNullabilityKind
A nullability kind paired with a bit indicating whether it used a context-sensitive keyword...
Definition: Diagnostic.h:1292
UnqualifiedId & getName()
Retrieve the name specified by this declarator.
Definition: DeclSpec.h:1883
bool isLiteralType(const ASTContext &Ctx) const
Return true if this is a literal type (C++11 [basic.types]p10)
Definition: Type.cpp:2330
Syntax
The style used to specify an attribute.
Definition: ParsedAttr.h:139
ParameterABI getABI() const
Return the ABI treatment of this parameter.
Definition: Type.h:3426
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3097
TypeSourceInfo * CreateTypeSourceInfo(QualType T, unsigned Size=0) const
Allocate an uninitialized TypeSourceInfo.
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, Qualifiers::ObjCLifetime ownership, unsigned chunkIndex)
Definition: SemaType.cpp:5275
static void distributeFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, QualType type)
A function type attribute was written somewhere in a declaration other than on the declarator itself ...
Definition: SemaType.cpp:574
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:376
FunctionTypeInfo Fun
Definition: DeclSpec.h:1530
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclSpec.h:499
The maximum supported address space number.
Definition: Type.h:177
static const TST TST_union
Definition: DeclSpec.h:293
CallingConv getCC() const
Definition: Type.h:3557
ParsedAttr - Represents a syntactic attribute.
Definition: ParsedAttr.h:116
QualType getWritePipeType(QualType T) const
Return a write_only pipe type for the specified type.
unsigned getLocalCVRQualifiers() const
Retrieve the set of CVR (const-volatile-restrict) qualifiers local to this particular QualType instan...
Definition: Type.h:770
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
static const TSS TSS_signed
Definition: DeclSpec.h:267
bool shouldDelayDiagnostics()
Determines whether diagnostics should be delayed.
Definition: Sema.h:728
QualType getExtVectorType(QualType VectorType, unsigned NumElts) const
Return the unique reference to an extended vector type of the specified element type and size...
RecordDecl * CFError
The struct behind the CFErrorRef pointer.
Definition: Sema.h:11119
bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, bool OnlyNeedComplete=false)
Determine if D has a visible definition.
Definition: SemaType.cpp:7863
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
No ref-qualifier was provided.
Definition: Type.h:1386
CanQualType FloatTy
Definition: ASTContext.h:1026
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4013
MemberPointerTypeInfo Mem
Definition: DeclSpec.h:1532
Qualifiers getMethodQuals() const
Definition: Type.h:4048
SimplePointerKind
A simple notion of pointer kinds, which matches up with the various pointer declarators.
Definition: SemaType.cpp:3502
QualType getEquivalentType() const
Definition: Type.h:4519
static CallingConv getCCForDeclaratorChunk(Sema &S, Declarator &D, const ParsedAttributesView &AttrList, const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex)
Helper for figuring out the default CC for a function declarator type.
Definition: SemaType.cpp:3419
bool hasExternalLexicalStorage() const
Whether this DeclContext has external storage containing additional declarations that are lexically i...
Definition: DeclBase.h:2343
CanQualType VoidTy
Definition: ASTContext.h:1014
void remove(ParsedAttr *ToBeRemoved)
Definition: ParsedAttr.h:826
bool hasRestrict() const
Definition: Type.h:264
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:158
bool isContextSensitiveKeywordAttribute() const
Definition: ParsedAttr.h:423
bool hasTrailingReturnType() const
Determine whether this function declarator had a trailing-return-type.
Definition: DeclSpec.h:1487
CanQualType Float16Ty
Definition: ASTContext.h:1039
QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs, const DeclSpec *DS=nullptr)
Definition: SemaType.cpp:1765
bool isObjCObjectPointerType() const
Definition: Type.h:6488
bool isAnyPointerType() const
Definition: Type.h:6388
static bool distributeFunctionTypeAttrToInnermost(TypeProcessingState &state, ParsedAttr &attr, ParsedAttributesView &attrList, QualType &declSpecType)
Try to distribute a function type attribute to the innermost function chunk or type.
Definition: SemaType.cpp:605
bool isArgExpr(unsigned Arg) const
Definition: ParsedAttr.h:466
Decl * getRepAsDecl() const
Definition: DeclSpec.h:486
bool isDecltypeType() const
Definition: Type.h:6539
static bool isBlockPointer(Expr *Arg)
is AltiVec &#39;vector bool ...&#39;
Definition: Type.h:3213
SplitQualType getSplitUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:6229
bool isFunctionProtoType() const
Definition: Type.h:1975
static const TST TST_typeofType
Definition: DeclSpec.h:298
is AltiVec vector
Definition: Type.h:3207
void setAmpLoc(SourceLocation Loc)
Definition: TypeLoc.h:1335
bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef< SourceLocation > Locs, const ObjCInterfaceDecl *UnknownObjCClass=nullptr, bool ObjCPropertyAccess=false, bool AvoidPartialAvailabilityChecks=false, ObjCInterfaceDecl *ClassReciever=nullptr)
Determine whether the use of this declaration is valid, and emit any corresponding diagnostics...
Definition: SemaExpr.cpp:211
void setLBracketLoc(SourceLocation Loc)
Definition: TypeLoc.h:1504
AutoTypeKeyword getKeyword() const
Definition: Type.h:4832
TypeClass getTypeClass() const
Definition: Type.h:1839
This template specialization was formed from a template-id but has not yet been declared, defined, or instantiated.
Definition: Specifiers.h:177
QualType BuildReferenceType(QualType T, bool LValueRef, SourceLocation Loc, DeclarationName Entity)
Build a reference type.
Definition: SemaType.cpp:2018
bool HasRestrict
The type qualifier: restrict. [GNU] C++ extension.
Definition: DeclSpec.h:1201
SourceLocation getRAngleLoc() const
Definition: TypeLoc.h:1607
TypeLoc findExplicitQualifierLoc() const
Find a type with the location of an explicit type qualifier.
Definition: TypeLoc.cpp:419
unsigned TypeQuals
The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
Definition: DeclSpec.h:1504
static bool isVectorSizeTooLarge(unsigned NumElements)
Definition: Type.h:3238
static Attr * createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr, NullabilityKind NK)
Definition: SemaType.cpp:3951
SourceLocation getPragmaAssumeNonNullLoc() const
The location of the currently-active #pragma clang assume_nonnull begin.
bool isStaticMember()
Returns true if this declares a static member.
Definition: DeclSpec.cpp:396
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1392
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
unsigned getFullDataSize() const
Returns the size of the type source info data block.
Definition: TypeLoc.h:161
bool isInvalid() const
An error occurred during parsing of the scope specifier.
Definition: DeclSpec.h:194
bool isVLASupported() const
Whether target supports variable-length arrays.
Definition: TargetInfo.h:1186
std::string getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const
Get a string to suggest for zero-initialization of a type.
static void recordNullabilitySeen(Sema &S, SourceLocation loc)
Marks that a nullability feature has been used in the file containing loc.
Definition: SemaType.cpp:3886
SourceRange getRange() const
Definition: ParsedAttr.h:385
std::string getAsString() const
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:215
QualType getObjCInstanceType()
Retrieve the Objective-C "instancetype" type, if already known; otherwise, returns a NULL type;...
Definition: ASTContext.h:1735
Represents a pack expansion of types.
Definition: Type.h:5425
static bool checkNullabilityTypeSpecifier(TypeProcessingState &state, QualType &type, ParsedAttr &attr, bool allowOnArrayType)
Applies a nullability type specifier to the given type, if possible.
Definition: SemaType.cpp:6548
void setLParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1401
StringRef getName() const
Return the actual identifier string.
static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type, ParsedAttr &attr)
Check the application of the Objective-C &#39;__kindof&#39; qualifier to the given type.
Definition: SemaType.cpp:6652
void setTypeArgsLAngleLoc(SourceLocation Loc)
Definition: TypeLoc.h:939
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1899
CanQualType UnsignedShortTy
Definition: ASTContext.h:1024
static unsigned getMaxSizeBits(const ASTContext &Context)
Determine the maximum number of active bits that an array&#39;s size can require, which limits the maximu...
Definition: Type.cpp:146
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:2949
An opaque identifier used by SourceManager which refers to a source file (MemoryBuffer) along with it...
CanQualType CharTy
Definition: ASTContext.h:1016
TSW getTypeSpecWidth() const
Definition: DeclSpec.h:470
bool isPipeType() const
Definition: Type.h:6576
static const TST TST_decltype_auto
Definition: DeclSpec.h:301
void setClassTInfo(TypeSourceInfo *TI)
Definition: TypeLoc.h:1287
TagTypeKind
The kind of a tag type.
Definition: Type.h:5101
QualType getTypeOfType(QualType t) const
getTypeOfType - Unlike many "get<Type>" functions, we don&#39;t unique TypeOfType nodes.
CanQualType ObjCBuiltinIdTy
Definition: ASTContext.h:1046
Dataflow Directional Tag Classes.
unsigned TypeQuals
The type qualifiers for the array: const/volatile/restrict/__unaligned/_Atomic.
Definition: DeclSpec.h:1211
NestedNameSpecifier * getNestedNameSpecifier() const
Retrieve the nested-name-specifier to which this instance refers.
bool isValid() const
Return true if this is a valid SourceLocation object.
SourceLocation ImplicitMSInheritanceAttrLoc
Source location for newly created implicit MSInheritanceAttrs.
Definition: Sema.h:406
DeducedType * getContainedDeducedType() const
Get the DeducedType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.cpp:1754
static const TSS TSS_unspecified
Definition: DeclSpec.h:266
SourceLocation getTypeSpecWidthLoc() const
Definition: DeclSpec.h:501
ExtInfo getExtInfo() const
Definition: Type.h:3656
not evaluated yet, for special member function
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1271
void setAmpAmpLoc(SourceLocation Loc)
Definition: TypeLoc.h:1349
bool CheckFunctionReturnType(QualType T, SourceLocation Loc)
Definition: SemaType.cpp:2437
void diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, SourceLocation FallbackLoc, SourceLocation ConstQualLoc=SourceLocation(), SourceLocation VolatileQualLoc=SourceLocation(), SourceLocation RestrictQualLoc=SourceLocation(), SourceLocation AtomicQualLoc=SourceLocation(), SourceLocation UnalignedQualLoc=SourceLocation())
Definition: SemaType.cpp:2757
static const TST TST_decltype
Definition: DeclSpec.h:300
static const TST TST_auto
Definition: DeclSpec.h:303
static const TST TST_void
Definition: DeclSpec.h:273
static TypeSourceInfo * GetTypeSourceInfoForDeclarator(TypeProcessingState &State, QualType T, TypeSourceInfo *ReturnTypeInfo)
Create and instantiate a TypeSourceInfo with type source information.
Definition: SemaType.cpp:5735
unsigned isVariadic
isVariadic - If this function has a prototype, and if that proto ends with &#39;,...)&#39;, this is true.
Definition: DeclSpec.h:1268
const DeclaratorChunk * getInnermostNonParenChunk() const
Return the innermost (closest to the declarator) chunk of this declarator that is not a parens chunk...
Definition: DeclSpec.h:2215
bool isRecord() const
Definition: DeclBase.h:1858
static bool distributeNullabilityTypeAttr(TypeProcessingState &state, QualType type, ParsedAttr &attr)
Distribute a nullability type attribute that cannot be applied to the type specifier to a pointer...
Definition: SemaType.cpp:6710
static const TST TST_int128
Definition: DeclSpec.h:280
SourceLocation PointerEndLoc
The end location for the first pointer declarator in the file.
Definition: Sema.h:238
QualType getUnderlyingType() const
Definition: Decl.h:3004
CanQualType UnsignedLongLongTy
Definition: ASTContext.h:1025
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:118
QualType BuildPointerType(QualType T, SourceLocation Loc, DeclarationName Entity)
Build a pointer type.
Definition: SemaType.cpp:1978
static Attr * getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr)
Definition: SemaType.cpp:6791
const Type * getArrayElementTypeNoTypeQual() const
If this is an array type, return the element type of the array, potentially with type qualifiers miss...
Definition: Type.cpp:261
The name of a declaration.
Represents the declaration of an Objective-C type parameter.
Definition: DeclObjC.h:558
SourceLocation getLoc() const
Definition: ParsedAttr.h:384
bool isBooleanType() const
Definition: Type.h:6760
QualType getFunctionNoProtoType(QualType ResultTy, const FunctionType::ExtInfo &Info) const
Return a K&R style C function type like &#39;int()&#39;.
CXXRecordDecl * getInstantiatedFromMemberClass() const
If this record is an instantiation of a member class, retrieves the member class from which it was in...
Definition: DeclCXX.cpp:1636
LLVM_READONLY bool isIdentifierBody(unsigned char c, bool AllowDollar=false)
Returns true if this is a body character of a C identifier, which is [a-zA-Z0-9_].
Definition: CharInfo.h:58
SourceLocation getTypeSpecSignLoc() const
Definition: DeclSpec.h:504
ParsedAttr * create(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ArgsUnion *args, unsigned numArgs, ParsedAttr::Syntax syntax, SourceLocation ellipsisLoc=SourceLocation())
Definition: ParsedAttr.h:730
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5905
QualType BuildReadPipeType(QualType T, SourceLocation Loc)
Build a Read-only Pipe type.
Definition: SemaType.cpp:2075
Represents an enum.
Definition: Decl.h:3359
#define FUNCTION_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:127
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal)
Check whether the specified array size makes the array type a VLA.
Definition: SemaType.cpp:2093
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2788
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
const FunctionType * adjustFunctionType(const FunctionType *Fn, FunctionType::ExtInfo EInfo)
Change the ExtInfo on a function type.
bool hasObjCLifetime() const
Definition: Type.h:326
static void processTypeAttrs(TypeProcessingState &state, QualType &type, TypeAttrLocation TAL, ParsedAttributesView &attrs)
Definition: SemaType.cpp:7510
SplitQualType getSingleStepDesugaredType() const
Definition: Type.h:6135
TypeLoc getModifiedLoc() const
The modified type, which is generally canonically different from the attribute type.
Definition: TypeLoc.h:868
virtual bool hasFloat16Type() const
Determine whether the _Float16 type is supported on this target.
Definition: TargetInfo.h:531
IdentifierInfo * getName() const
Definition: ParsedAttr.h:383
bool isUserProvided() const
True if this method is user-declared and was not deleted or defaulted on its first declaration...
Definition: DeclCXX.h:2215
static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr, Sema &S)
Handle OpenCL Access Qualifier Attribute.
Definition: SemaType.cpp:7311
ExternalASTSource * getExternalSource() const
Retrieve a pointer to the external AST source associated with this AST context, if any...
Definition: ASTContext.h:1081
A type that was preceded by the &#39;template&#39; keyword, stored as a Type*.
static const TST TST_unspecified
Definition: DeclSpec.h:272
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclSpec.h:498
virtual bool hasFeature(StringRef Feature) const
Determine whether the given target has the given feature.
Definition: TargetInfo.h:1117
QualType getUnsignedWCharType() const
Return the type of "unsigned wchar_t".
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 &#39;auto&#39; typ...
Definition: Type.h:6766
bool isValid() const
A scope specifier is present, and it refers to a real scope.
Definition: DeclSpec.h:196
TemplateNameKindForDiagnostics getTemplateNameKindForDiagnostics(TemplateName Name)
Definition: SemaDecl.cpp:1179
bool isMacroID() const
void forEachQualifier(llvm::function_ref< void(TQ, StringRef, SourceLocation)> Handle)
This method calls the passed in handler on each qual being set.
Definition: DeclSpec.cpp:421
QualType getModifiedType() const
Definition: Type.h:4518
unsigned getNumParams() const
Definition: TypeLoc.h:1437
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:2057
bool CheckAttrNoArgs(const ParsedAttr &CurrAttr)
Represents a pointer to an Objective C object.
Definition: Type.h:5864
SourceRange getSourceRange() const LLVM_READONLY
Get the full source range.
Definition: TypeLoc.h:150
Pointer to a block type.
Definition: Type.h:2671
IdentifierInfo * getNSErrorIdent()
Retrieve the identifier "NSError".
Definition: SemaType.cpp:3531
bool IsEquivalent(Decl *D1, Decl *D2)
Determine whether the two declarations are structurally equivalent.
FileID getFileID(SourceLocation SpellingLoc) const
Return the FileID for a SourceLocation.
QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals, SourceRange Brackets) const
Return a non-unique reference to the type for a dependently-sized array of the specified element type...
static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, Sema &S, VectorType::VectorKind VecKind)
HandleNeonVectorTypeAttr - The "neon_vector_type" and "neon_polyvector_type" attributes are used to c...
Definition: SemaType.cpp:7264
bool isIncompleteArrayType() const
Definition: Type.h:6448
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4438
static const TST TST_decimal128
Definition: DeclSpec.h:291
static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType)
A function type attribute was written in the decl spec.
Definition: SemaType.cpp:624
CanQualType UnknownAnyTy
Definition: ASTContext.h:1043
bool empty() const
Definition: Type.h:415
bool isConstantSizeType() const
Return true if this is not a variable sized type, according to the rules of C99 6.7.5p3.
Definition: Type.cpp:2052
unsigned getTypeQualifiers() const
getTypeQualifiers - Return a set of TQs.
Definition: DeclSpec.h:538
void add(const sema::DelayedDiagnostic &diag)
Adds a delayed diagnostic.
unsigned hasPrototype
hasPrototype - This is true if the function had at least one typed parameter.
Definition: DeclSpec.h:1263
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6677
This template specialization was declared or defined by an explicit specialization (C++ [temp...
Definition: Specifiers.h:184
#define OBJC_POINTER_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:104
CanQualType UnsignedLongTy
Definition: ASTContext.h:1024
static bool isFunctionOrMethod(const Decl *D)
isFunctionOrMethod - Return true if the given decl has function type (function or function-typed vari...
T * getAttr() const
Definition: DeclBase.h:538
type_object_range type_objects() const
Returns the range of type objects, from the identifier outwards.
Definition: DeclSpec.h:2202
CanQualType DependentTy
Definition: ASTContext.h:1043
bool isImageType() const
Definition: Type.h:6569
Kind getAttrKind() const
Definition: Type.h:4514
bool isAtomicType() const
Definition: Type.h:6501
CanQualType WCharTy
Definition: ASTContext.h:1017
bool isFunctionType() const
Definition: Type.h:6380
static const TST TST_typename
Definition: DeclSpec.h:297
QualType BuildDecltypeType(Expr *E, SourceLocation Loc, bool AsUnevaluated=true)
If AsUnevaluated is false, E is treated as though it were an evaluated context, such as when building...
Definition: SemaType.cpp:8366
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2705
QualType getAutoDeductType() const
C++11 deduction pattern for &#39;auto&#39; type.
void copy(TemplateSpecializationTypeLoc Loc)
Definition: TypeLoc.h:1640
Wraps an ObjCPointerType with source location information.
Definition: TypeLoc.h:1305
Holds information about the various types of exception specification.
Definition: Type.h:3773
unsigned AtomicQualLoc
The location of the _Atomic-qualifier, if any.
Definition: DeclSpec.h:1190
virtual bool hasFloat128Type() const
Determine whether the __float128 type is supported on this target.
Definition: TargetInfo.h:528
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:92
bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, const ObjCObjectPointerType *RHSOPT)
canAssignObjCInterfaces - Return true if the two interface types are compatible for assignment from R...
Implements a partial diagnostic that can be emitted anwyhere in a DiagnosticBuilder stream...
ExceptionSpecificationType getExceptionSpecType() const
Get the type of exception specification this function has.
Definition: DeclSpec.h:1468
Optional< NullabilityKind > getNullability(const ASTContext &context) const
Determine the nullability of the given type.
Definition: Type.cpp:3755
The "class" keyword.
Definition: Type.h:5112
SourceLocation getTypeSpecTypeNameLoc() const
Definition: DeclSpec.h:509
virtual bool hasInt128Type() const
Determine whether the __int128 type is supported on this target.
Definition: TargetInfo.h:520
CXXScopeSpec & getTypeSpecScope()
Definition: DeclSpec.h:494
BlockPointerTypeInfo Cls
Definition: DeclSpec.h:1531
static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo=nullptr)
Definition: SemaType.cpp:2637
SourceRange getExceptionSpecRange() const
Definition: DeclSpec.h:1421
bool isObjectType() const
Determine whether this type is an object type.
Definition: Type.h:1894
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2079
const SrcMgr::SLocEntry & getSLocEntry(FileID FID, bool *Invalid=nullptr) const
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:546
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D, DeclaratorChunk &DeclType, QualType RT)
Produce an appropriate diagnostic for an ambiguity between a function declarator and a C++ direct-ini...
Definition: SemaType.cpp:3202
bool isObjCObjectType() const
Definition: Type.h:6492
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2062
bool hasObjCGCAttr() const
Definition: Type.h:300
Describes whether we&#39;ve seen any nullability information for the given file.
Definition: Sema.h:231
CanQualType Char8Ty
Definition: ASTContext.h:1020
UnqualTypeLoc getUnqualifiedLoc() const
Definition: TypeLoc.h:277
SourceLocation getIdentifierLoc() const
Definition: DeclSpec.h:2143
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2280
bool isSet() const
Deprecated.
Definition: DeclSpec.h:209
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:240
PointerWrappingDeclaratorKind
Describes a declarator chunk wrapping a pointer that marks inference as unexpected.
Definition: SemaType.cpp:3571
void setInvalidType(bool Val=true)
Definition: DeclSpec.h:2452
Reading or writing from this object requires a barrier call.
Definition: Type.h:168
bool isInvalid() const
Definition: ParsedAttr.h:427
Context-sensitive version of a keyword attribute.
Definition: ParsedAttr.h:164
unsigned AutoTemplateParameterDepth
If this is a generic lambda, use this as the depth of each &#39;auto&#39; parameter, during initial AST const...
Definition: ScopeInfo.h:822
An attributed type is a type to which a type attribute has been applied.
Definition: Type.h:4493
LangAS asOpenCLLangAS() const
If this is an OpenCL addr space attribute returns its representation in LangAS, otherwise returns def...
Definition: ParsedAttr.h:605
void setKWLoc(SourceLocation Loc)
Definition: TypeLoc.h:2255
unsigned TypeQuals
For now, sema will catch these as invalid.
Definition: DeclSpec.h:1496
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1007
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2807
CallingConv getCallConv() const
Definition: Type.h:3655
Captures information about "declaration specifiers".
Definition: DeclSpec.h:228
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:6222
SourceLocation getRestrictSpecLoc() const
Definition: DeclSpec.h:540
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
SourceLocation getEllipsisLoc() const
Definition: DeclSpec.h:2465
QualType getRValueReferenceType(QualType T) const
Return the uniqued reference to the type for an rvalue reference to the specified type...
bool isVoidType() const
Definition: Type.h:6643
Expr * NumElts
This is the size of the array, or null if [] or [*] was specified.
Definition: DeclSpec.h:1222
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6169
void setParam(unsigned i, ParmVarDecl *VD)
Definition: TypeLoc.h:1444
Provides information a specialization of a member of a class template, which may be a member function...
Definition: DeclTemplate.h:664
CanQualType Char16Ty
Definition: ASTContext.h:1021
LangOptions::PragmaMSPointersToMembersKind MSPointerToMemberRepresentationMethod
Controls member pointer representation format under the MS ABI.
Definition: Sema.h:400
static const TST TST_float128
Definition: DeclSpec.h:287
void atTemplateEnd(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema, const Sema::CodeSynthesisContext &Inst)
void setLParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1136
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition: DeclSpec.h:1864
static const TST TST_bool
Definition: DeclSpec.h:288
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:386
bool isSamplerT() const
Definition: Type.h:6549
The "enum" keyword.
Definition: Type.h:5115
bool isRValue() const
Definition: Expr.h:259
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
Stores a list of Objective-C type parameters for a parameterized class or a category/extension thereo...
Definition: DeclObjC.h:636
static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD)
Locks in the inheritance model for the given class and all of its bases.
Definition: SemaType.cpp:7944
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:60
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:129
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2423
void addAttr(Attr *A)
Definition: DeclBase.cpp:829
IdentifierInfo * getNullabilityKeyword(NullabilityKind nullability)
Retrieve the keyword associated.
Definition: SemaType.cpp:3510
TypeLoc getTypeLoc() const
For a nested-name-specifier that refers to a type, retrieve the type with source-location information...
SourceManager & getSourceManager() const
Definition: Sema.h:1290
A template-id, e.g., f<int>.
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:251
ParsedType getRepAsType() const
Definition: DeclSpec.h:482
Defines the clang::TargetInfo interface.
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:153
A SourceLocation and its associated SourceManager.
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition: Decl.h:3513
SourceLocation getAtomicSpecLoc() const
Definition: DeclSpec.h:542
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement)
Completely replace the auto in TypeWithAuto by Replacement.
static Qualifiers fromCVRMask(unsigned CVR)
Definition: Type.h:230
Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const
Recurses in pointer/array types until it finds an Objective-C retainable type and returns its ownersh...
static const TSW TSW_longlong
Definition: DeclSpec.h:256
CanQualType IntTy
Definition: ASTContext.h:1023
QualType getSignedWCharType() const
Return the type of "signed wchar_t".
static OpaquePtr make(QualType P)
Definition: Ownership.h:60
Microsoft __declspec(nothrow) extension.
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2108
static void emitNullabilityConsistencyWarning(Sema &S, SimplePointerKind PointerKind, SourceLocation PointerLoc, SourceLocation PointerEndLoc)
Definition: SemaType.cpp:3811
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1141
bool hasRefQualifier() const
Determine whether this function declaration contains a ref-qualifier.
Definition: DeclSpec.h:1455
Represents an extended address space qualifier where the input address space value is dependent...
Definition: Type.h:3118
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:821
result[0]
Definition: emmintrin.h:120
void copy(TypeLoc other)
Copies the other type loc into this one.
Definition: TypeLoc.cpp:165
static const TST TST_atomic
Definition: DeclSpec.h:306
bool isPointerType() const
Definition: Type.h:6384
QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent, bool IsPack=false) const
C++11 deduced auto type.
SourceManager & SourceMgr
Definition: Sema.h:377
bool isEmpty() const
isEmpty - Return true if this declaration specifier is completely empty: no tokens were parsed in the...
Definition: DeclSpec.h:625
void addAddressSpace(LangAS space)
Definition: Type.h:379
static const TST TST_struct
Definition: DeclSpec.h:294
Annotates a diagnostic with some code that should be inserted, removed, or replaced to fix the proble...
Definition: Diagnostic.h:66
class clang::Sema::DelayedDiagnostics DelayedDiagnostics
void initializeFullCopy(TypeLoc Other)
Initializes this by copying its information from another TypeLoc of the same type.
Definition: TypeLoc.h:198
DeclaratorContext getContext() const
Definition: DeclSpec.h:1889
static StringRef getNameForCallConv(CallingConv CC)
Definition: Type.cpp:2865
QualType getType() const
Definition: Decl.h:647
Wrapper for source info for builtin types.
Definition: TypeLoc.h:546
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:128
void setRParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1140
bool isArgIdent(unsigned Arg) const
Definition: ParsedAttr.h:474
A trivial tuple used to represent a source range.
bool isModulePrivate() const
Whether this declaration was marked as being private to the module in which it was defined...
Definition: DeclBase.h:607
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state, ParsedAttr &attr, QualType &type)
Definition: SemaType.cpp:6446
ASTContext & Context
Definition: Sema.h:374
This represents a decl that may have a name.
Definition: Decl.h:248
void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc)
Specify that this unqualified-id was parsed as an identifier.
Definition: DeclSpec.h:1033
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T)=0
void copy(DependentNameTypeLoc Loc)
Definition: TypeLoc.h:2068
Expr * getRepAsExpr() const
Definition: DeclSpec.h:490
QualifiedFunctionKind
Kinds of declarator that cannot contain a qualified function type.
Definition: SemaType.cpp:1947
T castAs() const
Convert to the specified TypeLoc type, asserting that this TypeLoc is of the desired type...
Definition: TypeLoc.h:75
CanQualType BoolTy
Definition: ASTContext.h:1015
__ptr16, alignas(...), etc.
Definition: ParsedAttr.h:156
No keyword precedes the qualified type name.
Definition: Type.h:5141
QualType getVariableArrayType(QualType EltTy, Expr *NumElts, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals, SourceRange Brackets) const
Return a non-unique reference to the type for a variable array of the specified element type...
sema::LambdaScopeInfo * getCurLambda(bool IgnoreNonLambdaCapturingScope=false)
Retrieve the current lambda scope info, if any.
Definition: Sema.cpp:1794
static void HandleAddressSpaceTypeAttribute(QualType &Type, const ParsedAttr &Attr, TypeProcessingState &State)
HandleAddressSpaceTypeAttribute - Process an address_space attribute on the specified type...
Definition: SemaType.cpp:5936
TypeAttrLocation
The location of a type attribute.
Definition: SemaType.cpp:348
CanQualType DoubleTy
Definition: ASTContext.h:1026
static TypeSourceInfo * GetFullTypeForDeclarator(TypeProcessingState &state, QualType declSpecType, TypeSourceInfo *TInfo)
Definition: SemaType.cpp:3989
bool isAggregate() const
Determine whether this class is an aggregate (C++ [dcl.init.aggr]), which is a class with no user-dec...
Definition: DeclCXX.h:1289
attr::Kind getKind() const
Definition: Attr.h:86
bool isFirstDeclarationOfMember()
Returns true if this declares a real member and not a friend.
Definition: DeclSpec.h:2481
llvm::StringRef getNullabilitySpelling(NullabilityKind kind, bool isContextSensitive=false)
Retrieve the spelling of the given nullability kind.
The global specifier &#39;::&#39;. There is no stored value.
bool isPrototypeContext() const
Definition: DeclSpec.h:1891
void pushFullCopy(TypeLoc L)
Pushes a copy of the given TypeLoc onto this builder.
void setType(QualType newType)
Definition: Decl.h:648
AttributePool & getAttributePool() const
Definition: DeclSpec.h:745
Wrapper for source info for pointers.
Definition: TypeLoc.h:1237
SourceLocation getBegin() const
QualType getReadPipeType(QualType T) const
Return a read_only pipe type for the specified type.
bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type)
Wrapper for source info for block pointers.
Definition: TypeLoc.h:1250
unsigned size() const
Determine the number of type parameters in this list.
Definition: DeclObjC.h:676
An implicit &#39;self&#39; parameter.
base_class_range vbases()
Definition: DeclCXX.h:842
ExceptionSpecInfo ExceptionSpec
Definition: Type.h:3805
A deduction-guide name (a template-name)
QualType getAdjustedType(QualType Orig, QualType New) const
Return the uniqued reference to a type adjusted from the original type to a new type.
IdentifierLoc * getArgAsIdent(unsigned Arg) const
Definition: ParsedAttr.h:478
A class which abstracts out some details necessary for making a call.
Definition: Type.h:3498
ParamInfo * Params
Params - This is a pointer to a new[]&#39;d array of ParamInfo objects that describe the parameters speci...
Definition: DeclSpec.h:1323
void setElaboratedKeywordLoc(SourceLocation Loc)
Definition: TypeLoc.h:1978
Attr - This represents one attribute.
Definition: Attr.h:43
ParsedAttributes & getAttributes()
Definition: DeclSpec.h:772
SourceLocation getLocation() const
Definition: DeclBase.h:429
bool isIncompleteOrObjectType() const
Return true if this is an incomplete or object type, in other words, not a function type...
Definition: Type.h:1889
SourceRange getTypeofParensRange() const
Definition: DeclSpec.h:514
QualType getPointeeType() const
Definition: Type.h:2808
TypeSourceInfo * GetTypeForDeclarator(Declarator &D, Scope *S)
GetTypeForDeclarator - Convert the type for the specified declarator to Type instances.
Definition: SemaType.cpp:5250
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:97
bool isBeingDefined() const
Return true if this decl is currently being defined.
Definition: Decl.h:3222
This parameter (which must have pointer type) is a Swift indirect result parameter.
QualType BuildTypeofExprType(Expr *E, SourceLocation Loc)
Definition: SemaType.cpp:8282
void setUnderlyingTInfo(TypeSourceInfo *TI) const
Definition: TypeLoc.h:1880
noexcept(expression), evals to &#39;true&#39;
QualType getComplexType(QualType T) const
Return the uniqued reference to the type for a complex number with the specified element type...
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2938
CanQualType UnsignedIntTy
Definition: ASTContext.h:1024
QualType getIncompleteArrayType(QualType EltTy, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return a unique reference to the type for an incomplete array of the specified element type...
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1063
unsigned isAmbiguous
Can this declaration be a constructor-style initializer?
Definition: DeclSpec.h:1271