LCOV - code coverage report
Current view: top level - include/llvm/IR - Type.h (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 49 50 98.0 %
Date: 2018-05-20 00:06:23 Functions: 3 3 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file contains the declaration of the Type class.  For more "Type"
      11             : // stuff, look in DerivedTypes.h.
      12             : //
      13             : //===----------------------------------------------------------------------===//
      14             : 
      15             : #ifndef LLVM_IR_TYPE_H
      16             : #define LLVM_IR_TYPE_H
      17             : 
      18             : #include "llvm/ADT/APFloat.h"
      19             : #include "llvm/ADT/ArrayRef.h"
      20             : #include "llvm/ADT/SmallPtrSet.h"
      21             : #include "llvm/Support/CBindingWrapping.h"
      22             : #include "llvm/Support/Casting.h"
      23             : #include "llvm/Support/Compiler.h"
      24             : #include "llvm/Support/ErrorHandling.h"
      25             : #include <cassert>
      26             : #include <cstdint>
      27             : #include <iterator>
      28             : 
      29             : namespace llvm {
      30             : 
      31             : template<class GraphType> struct GraphTraits;
      32             : class IntegerType;
      33             : class LLVMContext;
      34             : class PointerType;
      35             : class raw_ostream;
      36             : class StringRef;
      37             : 
      38             : /// The instances of the Type class are immutable: once they are created,
      39             : /// they are never changed.  Also note that only one instance of a particular
      40             : /// type is ever created.  Thus seeing if two types are equal is a matter of
      41             : /// doing a trivial pointer comparison. To enforce that no two equal instances
      42             : /// are created, Type instances can only be created via static factory methods
      43             : /// in class Type and in derived classes.  Once allocated, Types are never
      44             : /// free'd.
      45             : ///
      46             : class Type {
      47             : public:
      48             :   //===--------------------------------------------------------------------===//
      49             :   /// Definitions of all of the base types for the Type system.  Based on this
      50             :   /// value, you can cast to a class defined in DerivedTypes.h.
      51             :   /// Note: If you add an element to this, you need to add an element to the
      52             :   /// Type::getPrimitiveType function, or else things will break!
      53             :   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
      54             :   ///
      55             :   enum TypeID {
      56             :     // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
      57             :     VoidTyID = 0,    ///<  0: type with no size
      58             :     HalfTyID,        ///<  1: 16-bit floating point type
      59             :     FloatTyID,       ///<  2: 32-bit floating point type
      60             :     DoubleTyID,      ///<  3: 64-bit floating point type
      61             :     X86_FP80TyID,    ///<  4: 80-bit floating point type (X87)
      62             :     FP128TyID,       ///<  5: 128-bit floating point type (112-bit mantissa)
      63             :     PPC_FP128TyID,   ///<  6: 128-bit floating point type (two 64-bits, PowerPC)
      64             :     LabelTyID,       ///<  7: Labels
      65             :     MetadataTyID,    ///<  8: Metadata
      66             :     X86_MMXTyID,     ///<  9: MMX vectors (64 bits, X86 specific)
      67             :     TokenTyID,       ///< 10: Tokens
      68             : 
      69             :     // Derived types... see DerivedTypes.h file.
      70             :     // Make sure FirstDerivedTyID stays up to date!
      71             :     IntegerTyID,     ///< 11: Arbitrary bit width integers
      72             :     FunctionTyID,    ///< 12: Functions
      73             :     StructTyID,      ///< 13: Structures
      74             :     ArrayTyID,       ///< 14: Arrays
      75             :     PointerTyID,     ///< 15: Pointers
      76             :     VectorTyID       ///< 16: SIMD 'packed' format, or other vector type
      77             :   };
      78             : 
      79             : private:
      80             :   /// This refers to the LLVMContext in which this type was uniqued.
      81             :   LLVMContext &Context;
      82             : 
      83             :   TypeID   ID : 8;            // The current base type of this type.
      84             :   unsigned SubclassData : 24; // Space for subclasses to store data.
      85             :                               // Note that this should be synchronized with
      86             :                               // MAX_INT_BITS value in IntegerType class.
      87             : 
      88             : protected:
      89             :   friend class LLVMContextImpl;
      90             : 
      91             :   explicit Type(LLVMContext &C, TypeID tid)
      92     1429313 :     : Context(C), ID(tid), SubclassData(0) {}
      93             :   ~Type() = default;
      94             : 
      95   570068028 :   unsigned getSubclassData() const { return SubclassData; }
      96             : 
      97             :   void setSubclassData(unsigned val) {
      98     1353579 :     SubclassData = val;
      99             :     // Ensure we don't have any accidental truncation.
     100             :     assert(getSubclassData() == val && "Subclass data too large for field");
     101             :   }
     102             : 
     103             :   /// Keeps track of how many Type*'s there are in the ContainedTys list.
     104             :   unsigned NumContainedTys = 0;
     105             : 
     106             :   /// A pointer to the array of Types contained by this Type. For example, this
     107             :   /// includes the arguments of a function type, the elements of a structure,
     108             :   /// the pointee of a pointer, the element type of an array, etc. This pointer
     109             :   /// may be 0 for types that don't contain other types (Integer, Double,
     110             :   /// Float).
     111             :   Type * const *ContainedTys = nullptr;
     112             : 
     113             :   static bool isSequentialType(TypeID TyID) {
     114             :     return TyID == ArrayTyID || TyID == VectorTyID;
     115             :   }
     116             : 
     117             : public:
     118             :   /// Print the current type.
     119             :   /// Omit the type details if \p NoDetails == true.
     120             :   /// E.g., let %st = type { i32, i16 }
     121             :   /// When \p NoDetails is true, we only print %st.
     122             :   /// Put differently, \p NoDetails prints the type as if
     123             :   /// inlined with the operands when printing an instruction.
     124             :   void print(raw_ostream &O, bool IsForDebug = false,
     125             :              bool NoDetails = false) const;
     126             : 
     127             :   void dump() const;
     128             : 
     129             :   /// Return the LLVMContext in which this type was uniqued.
     130             :   LLVMContext &getContext() const { return Context; }
     131             : 
     132             :   //===--------------------------------------------------------------------===//
     133             :   // Accessors for working with types.
     134             :   //
     135             : 
     136             :   /// Return the type id for the type. This will return one of the TypeID enum
     137             :   /// elements defined above.
     138  2220879368 :   TypeID getTypeID() const { return ID; }
     139             : 
     140             :   /// Return true if this is 'void'.
     141             :   bool isVoidTy() const { return getTypeID() == VoidTyID; }
     142             : 
     143             :   /// Return true if this is 'half', a 16-bit IEEE fp type.
     144             :   bool isHalfTy() const { return getTypeID() == HalfTyID; }
     145             : 
     146             :   /// Return true if this is 'float', a 32-bit IEEE fp type.
     147          17 :   bool isFloatTy() const { return getTypeID() == FloatTyID; }
     148             : 
     149             :   /// Return true if this is 'double', a 64-bit IEEE fp type.
     150           5 :   bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
     151             : 
     152             :   /// Return true if this is x86 long double.
     153             :   bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
     154             : 
     155             :   /// Return true if this is 'fp128'.
     156             :   bool isFP128Ty() const { return getTypeID() == FP128TyID; }
     157             : 
     158             :   /// Return true if this is powerpc long double.
     159             :   bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
     160             : 
     161             :   /// Return true if this is one of the six floating-point types
     162             :   bool isFloatingPointTy() const {
     163   101072312 :     return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
     164    99150225 :            getTypeID() == DoubleTyID ||
     165   200334893 :            getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
     166             :            getTypeID() == PPC_FP128TyID;
     167             :   }
     168             : 
     169        3263 :   const fltSemantics &getFltSemantics() const {
     170        3263 :     switch (getTypeID()) {
     171          27 :     case HalfTyID: return APFloat::IEEEhalf();
     172        2033 :     case FloatTyID: return APFloat::IEEEsingle();
     173        1158 :     case DoubleTyID: return APFloat::IEEEdouble();
     174          32 :     case X86_FP80TyID: return APFloat::x87DoubleExtended();
     175          11 :     case FP128TyID: return APFloat::IEEEquad();
     176           2 :     case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
     177           0 :     default: llvm_unreachable("Invalid floating type");
     178             :     }
     179             :   }
     180             : 
     181             :   /// Return true if this is X86 MMX.
     182             :   bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
     183             : 
     184             :   /// Return true if this is a FP type or a vector of FP.
     185             :   bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
     186             : 
     187             :   /// Return true if this is 'label'.
     188             :   bool isLabelTy() const { return getTypeID() == LabelTyID; }
     189             : 
     190             :   /// Return true if this is 'metadata'.
     191           4 :   bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
     192             : 
     193             :   /// Return true if this is 'token'.
     194             :   bool isTokenTy() const { return getTypeID() == TokenTyID; }
     195             : 
     196             :   /// True if this is an instance of IntegerType.
     197    23390214 :   bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
     198             : 
     199             :   /// Return true if this is an IntegerType of the given width.
     200             :   bool isIntegerTy(unsigned Bitwidth) const;
     201             : 
     202             :   /// Return true if this is an integer type or a vector of integer types.
     203             :   bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
     204             : 
     205             :   /// Return true if this is an integer type or a vector of integer types of
     206             :   /// the given width.
     207             :   bool isIntOrIntVectorTy(unsigned BitWidth) const {
     208    14092632 :     return getScalarType()->isIntegerTy(BitWidth);
     209             :   }
     210             : 
     211             :   /// True if this is an instance of FunctionType.
     212        2616 :   bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
     213             : 
     214             :   /// True if this is an instance of StructType.
     215           6 :   bool isStructTy() const { return getTypeID() == StructTyID; }
     216             : 
     217             :   /// True if this is an instance of ArrayType.
     218       47846 :   bool isArrayTy() const { return getTypeID() == ArrayTyID; }
     219             : 
     220             :   /// True if this is an instance of PointerType.
     221     4329576 :   bool isPointerTy() const { return getTypeID() == PointerTyID; }
     222             : 
     223             :   /// Return true if this is a pointer type or a vector of pointer types.
     224             :   bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
     225             : 
     226             :   /// True if this is an instance of VectorType.
     227     2693362 :   bool isVectorTy() const { return getTypeID() == VectorTyID; }
     228             : 
     229             :   /// Return true if this type could be converted with a lossless BitCast to
     230             :   /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
     231             :   /// same size only where no re-interpretation of the bits is done.
     232             :   /// Determine if this type could be losslessly bitcast to Ty
     233             :   bool canLosslesslyBitCastTo(Type *Ty) const;
     234             : 
     235             :   /// Return true if this type is empty, that is, it has no elements or all of
     236             :   /// its elements are empty.
     237             :   bool isEmptyTy() const;
     238             : 
     239             :   /// Return true if the type is "first class", meaning it is a valid type for a
     240             :   /// Value.
     241             :   bool isFirstClassType() const {
     242    18212774 :     return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
     243             :   }
     244             : 
     245             :   /// Return true if the type is a valid type for a register in codegen. This
     246             :   /// includes all first-class types except struct and array types.
     247      577960 :   bool isSingleValueType() const {
     248      568027 :     return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
     249       33632 :            isPointerTy() || isVectorTy();
     250             :   }
     251             : 
     252             :   /// Return true if the type is an aggregate type. This means it is valid as
     253             :   /// the first operand of an insertvalue or extractvalue instruction. This
     254             :   /// includes struct and array types, but does not include vector types.
     255             :   bool isAggregateType() const {
     256     8718775 :     return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
     257             :   }
     258             : 
     259             :   /// Return true if it makes sense to take the size of this type. To get the
     260             :   /// actual size for a particular target, it is reasonable to use the
     261             :   /// DataLayout subsystem to do this.
     262   165661704 :   bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
     263             :     // If it's a primitive, it is always sized.
     264    83568566 :     if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
     265   244976241 :         getTypeID() == PointerTyID ||
     266             :         getTypeID() == X86_MMXTyID)
     267             :       return true;
     268             :     // If it is not something that can have a size (e.g. a function or label),
     269             :     // it doesn't have a size.
     270    79309440 :     if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
     271             :         getTypeID() != VectorTyID)
     272             :       return false;
     273             :     // Otherwise we have to try harder to decide.
     274    79259592 :     return isSizedDerivedType(Visited);
     275             :   }
     276             : 
     277             :   /// Return the basic size of this type if it is a primitive type. These are
     278             :   /// fixed by LLVM and are not target-dependent.
     279             :   /// This will return zero if the type does not have a size or is not a
     280             :   /// primitive type.
     281             :   ///
     282             :   /// Note that this may not reflect the size of memory allocated for an
     283             :   /// instance of the type or the number of bytes that are written when an
     284             :   /// instance of the type is stored to memory. The DataLayout class provides
     285             :   /// additional query functions to provide this information.
     286             :   ///
     287             :   unsigned getPrimitiveSizeInBits() const LLVM_READONLY;
     288             : 
     289             :   /// If this is a vector type, return the getPrimitiveSizeInBits value for the
     290             :   /// element type. Otherwise return the getPrimitiveSizeInBits value for this
     291             :   /// type.
     292             :   unsigned getScalarSizeInBits() const LLVM_READONLY;
     293             : 
     294             :   /// Return the width of the mantissa of this type. This is only valid on
     295             :   /// floating-point types. If the FP type does not have a stable mantissa (e.g.
     296             :   /// ppc long double), this method returns -1.
     297             :   int getFPMantissaWidth() const;
     298             : 
     299             :   /// If this is a vector type, return the element type, otherwise return
     300             :   /// 'this'.
     301             :   Type *getScalarType() const {
     302   376411995 :     if (isVectorTy())
     303     8006904 :       return getVectorElementType();
     304             :     return const_cast<Type*>(this);
     305             :   }
     306             : 
     307             :   //===--------------------------------------------------------------------===//
     308             :   // Type Iteration support.
     309             :   //
     310             :   using subtype_iterator = Type * const *;
     311             : 
     312             :   subtype_iterator subtype_begin() const { return ContainedTys; }
     313      558421 :   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
     314             :   ArrayRef<Type*> subtypes() const {
     315       53653 :     return makeArrayRef(subtype_begin(), subtype_end());
     316             :   }
     317             : 
     318             :   using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
     319             : 
     320             :   subtype_reverse_iterator subtype_rbegin() const {
     321      454363 :     return subtype_reverse_iterator(subtype_end());
     322             :   }
     323             :   subtype_reverse_iterator subtype_rend() const {
     324             :     return subtype_reverse_iterator(subtype_begin());
     325             :   }
     326             : 
     327             :   /// This method is used to implement the type iterator (defined at the end of
     328             :   /// the file). For derived types, this returns the types 'contained' in the
     329             :   /// derived type.
     330             :   Type *getContainedType(unsigned i) const {
     331             :     assert(i < NumContainedTys && "Index out of range!");
     332      435659 :     return ContainedTys[i];
     333             :   }
     334             : 
     335             :   /// Return the number of types in the derived type.
     336             :   unsigned getNumContainedTypes() const { return NumContainedTys; }
     337             : 
     338             :   //===--------------------------------------------------------------------===//
     339             :   // Helper methods corresponding to subclass methods.  This forces a cast to
     340             :   // the specified subclass and calls its accessor.  "getVectorNumElements" (for
     341             :   // example) is shorthand for cast<VectorType>(Ty)->getNumElements().  This is
     342             :   // only intended to cover the core methods that are frequently used, helper
     343             :   // methods should not be added here.
     344             : 
     345             :   inline unsigned getIntegerBitWidth() const;
     346             : 
     347             :   inline Type *getFunctionParamType(unsigned i) const;
     348             :   inline unsigned getFunctionNumParams() const;
     349             :   inline bool isFunctionVarArg() const;
     350             : 
     351             :   inline StringRef getStructName() const;
     352             :   inline unsigned getStructNumElements() const;
     353             :   inline Type *getStructElementType(unsigned N) const;
     354             : 
     355             :   inline Type *getSequentialElementType() const {
     356             :     assert(isSequentialType(getTypeID()) && "Not a sequential type!");
     357      280387 :     return ContainedTys[0];
     358             :   }
     359             : 
     360             :   inline uint64_t getArrayNumElements() const;
     361             : 
     362             :   Type *getArrayElementType() const {
     363             :     assert(getTypeID() == ArrayTyID);
     364         817 :     return ContainedTys[0];
     365             :   }
     366             : 
     367             :   inline unsigned getVectorNumElements() const;
     368             :   Type *getVectorElementType() const {
     369             :     assert(getTypeID() == VectorTyID);
     370     8259576 :     return ContainedTys[0];
     371             :   }
     372             : 
     373             :   Type *getPointerElementType() const {
     374             :     assert(getTypeID() == PointerTyID);
     375    11650788 :     return ContainedTys[0];
     376             :   }
     377             : 
     378             :   /// Get the address space of this pointer or pointer vector type.
     379             :   inline unsigned getPointerAddressSpace() const;
     380             : 
     381             :   //===--------------------------------------------------------------------===//
     382             :   // Static members exported by the Type class itself.  Useful for getting
     383             :   // instances of Type.
     384             :   //
     385             : 
     386             :   /// Return a type based on an identifier.
     387             :   static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
     388             : 
     389             :   //===--------------------------------------------------------------------===//
     390             :   // These are the builtin types that are always available.
     391             :   //
     392             :   static Type *getVoidTy(LLVMContext &C);
     393             :   static Type *getLabelTy(LLVMContext &C);
     394             :   static Type *getHalfTy(LLVMContext &C);
     395             :   static Type *getFloatTy(LLVMContext &C);
     396             :   static Type *getDoubleTy(LLVMContext &C);
     397             :   static Type *getMetadataTy(LLVMContext &C);
     398             :   static Type *getX86_FP80Ty(LLVMContext &C);
     399             :   static Type *getFP128Ty(LLVMContext &C);
     400             :   static Type *getPPC_FP128Ty(LLVMContext &C);
     401             :   static Type *getX86_MMXTy(LLVMContext &C);
     402             :   static Type *getTokenTy(LLVMContext &C);
     403             :   static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
     404             :   static IntegerType *getInt1Ty(LLVMContext &C);
     405             :   static IntegerType *getInt8Ty(LLVMContext &C);
     406             :   static IntegerType *getInt16Ty(LLVMContext &C);
     407             :   static IntegerType *getInt32Ty(LLVMContext &C);
     408             :   static IntegerType *getInt64Ty(LLVMContext &C);
     409             :   static IntegerType *getInt128Ty(LLVMContext &C);
     410             :   template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
     411             :     int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
     412             :     if (std::is_integral<ScalarTy>::value) {
     413       88929 :       return (Type*) Type::getIntNTy(C, noOfBits);
     414             :     } else if (std::is_floating_point<ScalarTy>::value) {
     415             :       switch (noOfBits) {
     416             :       case 32:
     417             :         return Type::getFloatTy(C);
     418             :       case 64:
     419             :         return Type::getDoubleTy(C);
     420             :       }
     421             :     }
     422             :     llvm_unreachable("Unsupported type in Type::getScalarTy");
     423             :   }
     424             : 
     425             :   //===--------------------------------------------------------------------===//
     426             :   // Convenience methods for getting pointer types with one of the above builtin
     427             :   // types as pointee.
     428             :   //
     429             :   static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
     430             :   static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
     431             :   static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
     432             :   static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
     433             :   static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
     434             :   static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
     435             :   static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
     436             :   static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
     437             :   static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
     438             :   static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
     439             :   static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
     440             :   static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
     441             :   static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
     442             : 
     443             :   /// Return a pointer to the current type. This is equivalent to
     444             :   /// PointerType::get(Foo, AddrSpace).
     445             :   PointerType *getPointerTo(unsigned AddrSpace = 0) const;
     446             : 
     447             : private:
     448             :   /// Derived types like structures and arrays are sized iff all of the members
     449             :   /// of the type are sized as well. Since asking for their size is relatively
     450             :   /// uncommon, move this operation out-of-line.
     451             :   bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
     452             : };
     453             : 
     454             : // Printing of types.
     455             : inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
     456       18646 :   T.print(OS);
     457             :   return OS;
     458             : }
     459             : 
     460             : // allow isa<PointerType>(x) to work without DerivedTypes.h included.
     461             : template <> struct isa_impl<PointerType, Type> {
     462             :   static inline bool doit(const Type &Ty) {
     463             :     return Ty.getTypeID() == Type::PointerTyID;
     464             :   }
     465             : };
     466             : 
     467             : //===----------------------------------------------------------------------===//
     468             : // Provide specializations of GraphTraits to be able to treat a type as a
     469             : // graph of sub types.
     470             : 
     471             : template <> struct GraphTraits<Type *> {
     472             :   using NodeRef = Type *;
     473             :   using ChildIteratorType = Type::subtype_iterator;
     474             : 
     475             :   static NodeRef getEntryNode(Type *T) { return T; }
     476       27626 :   static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); }
     477       50871 :   static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); }
     478             : };
     479             : 
     480             : template <> struct GraphTraits<const Type*> {
     481             :   using NodeRef = const Type *;
     482             :   using ChildIteratorType = Type::subtype_iterator;
     483             : 
     484             :   static NodeRef getEntryNode(NodeRef T) { return T; }
     485             :   static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); }
     486             :   static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); }
     487             : };
     488             : 
     489             : // Create wrappers for C Binding types (see CBindingWrapping.h).
     490             : DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
     491             : 
     492             : /* Specialized opaque type conversions.
     493             :  */
     494             : inline Type **unwrap(LLVMTypeRef* Tys) {
     495             :   return reinterpret_cast<Type**>(Tys);
     496             : }
     497             : 
     498             : inline LLVMTypeRef *wrap(Type **Tys) {
     499             :   return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
     500             : }
     501             : 
     502             : } // end namespace llvm
     503             : 
     504             : #endif // LLVM_IR_TYPE_H

Generated by: LCOV version 1.13