LCOV - code coverage report
Current view: top level - lib/Analysis/IPA - GlobalsModRef.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 252 292 86.3 %
Date: 2015-08-18 11:13:53 Functions: 20 22 90.9 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This simple pass provides alias and mod/ref information for global values
      11             : // that do not have their address taken, and keeps track of whether functions
      12             : // read or write memory (are "pure").  For this simple (but very common) case,
      13             : // we can provide pretty accurate and useful information.
      14             : //
      15             : //===----------------------------------------------------------------------===//
      16             : 
      17             : #include "llvm/Analysis/GlobalsModRef.h"
      18             : #include "llvm/ADT/SCCIterator.h"
      19             : #include "llvm/ADT/SmallPtrSet.h"
      20             : #include "llvm/ADT/Statistic.h"
      21             : #include "llvm/Analysis/MemoryBuiltins.h"
      22             : #include "llvm/Analysis/ValueTracking.h"
      23             : #include "llvm/IR/DerivedTypes.h"
      24             : #include "llvm/IR/InstIterator.h"
      25             : #include "llvm/IR/Instructions.h"
      26             : #include "llvm/IR/IntrinsicInst.h"
      27             : #include "llvm/IR/Module.h"
      28             : #include "llvm/Pass.h"
      29             : #include "llvm/Support/CommandLine.h"
      30             : using namespace llvm;
      31             : 
      32             : #define DEBUG_TYPE "globalsmodref-aa"
      33             : 
      34             : STATISTIC(NumNonAddrTakenGlobalVars,
      35             :           "Number of global vars without address taken");
      36             : STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
      37             : STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
      38             : STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
      39             : STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
      40             : 
      41             : // An option to enable unsafe alias results from the GlobalsModRef analysis.
      42             : // When enabled, GlobalsModRef will provide no-alias results which in extremely
      43             : // rare cases may not be conservatively correct. In particular, in the face of
      44             : // transforms which cause assymetry between how effective GetUnderlyingObject
      45             : // is for two pointers, it may produce incorrect results.
      46             : //
      47             : // These unsafe results have been returned by GMR for many years without
      48             : // causing significant issues in the wild and so we provide a mechanism to
      49             : // re-enable them for users of LLVM that have a particular performance
      50             : // sensitivity and no known issues. The option also makes it easy to evaluate
      51             : // the performance impact of these results.
      52       77660 : static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
      53       77660 :     "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
      54             : 
      55             : /// The mod/ref information collected for a particular function.
      56             : ///
      57             : /// We collect information about mod/ref behavior of a function here, both in
      58             : /// general and as pertains to specific globals. We only have this detailed
      59             : /// information when we know *something* useful about the behavior. If we
      60             : /// saturate to fully general mod/ref, we remove the info for the function.
      61             : class GlobalsModRef::FunctionInfo {
      62             :   typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
      63             : 
      64             :   /// Build a wrapper struct that has 8-byte alignment. All heap allocations
      65             :   /// should provide this much alignment at least, but this makes it clear we
      66             :   /// specifically rely on this amount of alignment.
      67          24 :   struct LLVM_ALIGNAS(8) AlignedMap {
      68          12 :     AlignedMap() {}
      69           0 :     AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
      70             :     GlobalInfoMapType Map;
      71             :   };
      72             : 
      73             :   /// Pointer traits for our aligned map.
      74             :   struct AlignedMapPointerTraits {
      75             :     static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
      76             :     static inline AlignedMap *getFromVoidPointer(void *P) {
      77             :       return (AlignedMap *)P;
      78             :     }
      79             :     enum { NumLowBitsAvailable = 3 };
      80             :     static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable),
      81             :                   "AlignedMap insufficiently aligned to have enough low bits.");
      82             :   };
      83             : 
      84             :   /// The bit that flags that this function may read any global. This is
      85             :   /// chosen to mix together with ModRefInfo bits.
      86             :   enum { MayReadAnyGlobal = 4 };
      87             : 
      88             :   /// Checks to document the invariants of the bit packing here.
      89             :   static_assert((MayReadAnyGlobal & MRI_ModRef) == 0,
      90             :                 "ModRef and the MayReadAnyGlobal flag bits overlap.");
      91             :   static_assert(((MayReadAnyGlobal | MRI_ModRef) >>
      92             :                  AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
      93             :                 "Insufficient low bits to store our flag and ModRef info.");
      94             : 
      95             : public:
      96          64 :   FunctionInfo() : Info() {}
      97         256 :   ~FunctionInfo() {
      98         268 :     delete Info.getPointer();
      99         128 :   }
     100             :   // Spell out the copy ond move constructors and assignment operators to get
     101             :   // deep copy semantics and correct move semantics in the face of the
     102             :   // pointer-int pair.
     103             :   FunctionInfo(const FunctionInfo &Arg)
     104             :       : Info(nullptr, Arg.Info.getInt()) {
     105             :     if (const auto *ArgPtr = Arg.Info.getPointer())
     106             :       Info.setPointer(new AlignedMap(*ArgPtr));
     107             :   }
     108             :   FunctionInfo(FunctionInfo &&Arg)
     109         192 :       : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
     110          64 :     Arg.Info.setPointerAndInt(nullptr, 0);
     111             :   }
     112           0 :   FunctionInfo &operator=(const FunctionInfo &RHS) {
     113           0 :     delete Info.getPointer();
     114           0 :     Info.setPointerAndInt(nullptr, RHS.Info.getInt());
     115           0 :     if (const auto *RHSPtr = RHS.Info.getPointer())
     116           0 :       Info.setPointer(new AlignedMap(*RHSPtr));
     117           0 :     return *this;
     118             :   }
     119             :   FunctionInfo &operator=(FunctionInfo &&RHS) {
     120             :     delete Info.getPointer();
     121             :     Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
     122             :     RHS.Info.setPointerAndInt(nullptr, 0);
     123             :     return *this;
     124             :   }
     125             : 
     126             :   /// Returns the \c ModRefInfo info for this function.
     127             :   ModRefInfo getModRefInfo() const {
     128         565 :     return ModRefInfo(Info.getInt() & MRI_ModRef);
     129             :   }
     130             : 
     131             :   /// Adds new \c ModRefInfo for this function to its state.
     132             :   void addModRefInfo(ModRefInfo NewMRI) {
     133         130 :     Info.setInt(Info.getInt() | NewMRI);
     134             :   }
     135             : 
     136             :   /// Returns whether this function may read any global variable, and we don't
     137             :   /// know which global.
     138          32 :   bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
     139             : 
     140             :   /// Sets this function as potentially reading from any global.
     141           6 :   void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
     142             : 
     143             :   /// Returns the \c ModRefInfo info for this function w.r.t. a particular
     144             :   /// global, which may be more precise than the general information above.
     145           3 :   ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
     146           3 :     ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef;
     147           6 :     if (AlignedMap *P = Info.getPointer()) {
     148           0 :       auto I = P->Map.find(&GV);
     149           0 :       if (I != P->Map.end())
     150           0 :         GlobalMRI = ModRefInfo(GlobalMRI | I->second);
     151             :     }
     152           3 :     return GlobalMRI;
     153             :   }
     154             : 
     155             :   /// Add mod/ref info from another function into ours, saturating towards
     156             :   /// MRI_ModRef.
     157          13 :   void addFunctionInfo(const FunctionInfo &FI) {
     158          26 :     addModRefInfo(FI.getModRefInfo());
     159             : 
     160          13 :     if (FI.mayReadAnyGlobal())
     161             :       setMayReadAnyGlobal();
     162             : 
     163          26 :     if (AlignedMap *P = FI.Info.getPointer())
     164           0 :       for (const auto &G : P->Map)
     165           0 :         addModRefInfoForGlobal(*G.first, G.second);
     166          13 :   }
     167             : 
     168          20 :   void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
     169          40 :     AlignedMap *P = Info.getPointer();
     170          20 :     if (!P) {
     171          24 :       P = new AlignedMap();
     172          12 :       Info.setPointer(P);
     173             :     }
     174          40 :     auto &GlobalMRI = P->Map[&GV];
     175          20 :     GlobalMRI = ModRefInfo(GlobalMRI | NewMRI);
     176          20 :   }
     177             : 
     178             :   /// Clear a global's ModRef info. Should be used when a global is being
     179             :   /// deleted.
     180             :   void eraseModRefInfoForGlobal(const GlobalValue &GV) {
     181           0 :     if (AlignedMap *P = Info.getPointer())
     182           0 :       P->Map.erase(&GV);
     183             :   }
     184             : 
     185             : private:
     186             :   /// All of the information is encoded into a single pointer, with a three bit
     187             :   /// integer in the low three bits. The high bit provides a flag for when this
     188             :   /// function may read any global. The low two bits are the ModRefInfo. And
     189             :   /// the pointer, when non-null, points to a map from GlobalValue to
     190             :   /// ModRefInfo specific to that GlobalValue.
     191             :   PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
     192             : };
     193             : 
     194           0 : void GlobalsModRef::DeletionCallbackHandle::deleted() {
     195           0 :   Value *V = getValPtr();
     196           0 :   if (auto *F = dyn_cast<Function>(V))
     197           0 :     GMR.FunctionInfos.erase(F);
     198             : 
     199           0 :   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
     200           0 :     if (GMR.NonAddressTakenGlobals.erase(GV)) {
     201             :       // This global might be an indirect global.  If so, remove it and
     202             :       // remove any AllocRelatedValues for it.
     203           0 :       if (GMR.IndirectGlobals.erase(GV)) {
     204             :         // Remove any entries in AllocsForIndirectGlobals for this global.
     205           0 :         for (auto I = GMR.AllocsForIndirectGlobals.begin(),
     206           0 :                   E = GMR.AllocsForIndirectGlobals.end();
     207             :              I != E; ++I)
     208           0 :           if (I->second == GV)
     209           0 :             GMR.AllocsForIndirectGlobals.erase(I);
     210             :       }
     211             : 
     212             :       // Scan the function info we have collected and remove this global
     213             :       // from all of them.
     214           0 :       for (auto &FIPair : GMR.FunctionInfos)
     215           0 :         FIPair.second.eraseModRefInfoForGlobal(*GV);
     216             :     }
     217             :   }
     218             : 
     219             :   // If this is an allocation related to an indirect global, remove it.
     220           0 :   GMR.AllocsForIndirectGlobals.erase(V);
     221             : 
     222             :   // And clear out the handle.
     223           0 :   setValPtr(nullptr);
     224           0 :   GMR.Handles.erase(I);
     225             :   // This object is now destroyed!
     226           0 : }
     227             : 
     228             : char GlobalsModRef::ID = 0;
     229        3924 : INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis, "globalsmodref-aa",
     230             :                          "Simple mod/ref analysis for globals", false, true,
     231             :                          false)
     232        3924 : INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
     233       15730 : INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis, "globalsmodref-aa",
     234             :                        "Simple mod/ref analysis for globals", false, true,
     235             :                        false)
     236             : 
     237          20 : Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
     238             : 
     239         238 : GlobalsModRef::GlobalsModRef() : ModulePass(ID) {
     240          34 :   initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
     241          34 : }
     242             : 
     243          52 : FunctionModRefBehavior GlobalsModRef::getModRefBehavior(const Function *F) {
     244          52 :   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
     245             : 
     246          52 :   if (FunctionInfo *FI = getFunctionInfo(F)) {
     247          23 :     if (FI->getModRefInfo() == MRI_NoModRef)
     248             :       Min = FMRB_DoesNotAccessMemory;
     249          10 :     else if ((FI->getModRefInfo() & MRI_Mod) == 0)
     250           6 :       Min = FMRB_OnlyReadsMemory;
     251             :   }
     252             : 
     253          52 :   return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
     254             : }
     255             : 
     256          52 : FunctionModRefBehavior GlobalsModRef::getModRefBehavior(ImmutableCallSite CS) {
     257          52 :   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
     258             : 
     259          52 :   if (const Function *F = CS.getCalledFunction())
     260          52 :     if (FunctionInfo *FI = getFunctionInfo(F)) {
     261          23 :       if (FI->getModRefInfo() == MRI_NoModRef)
     262             :         Min = FMRB_DoesNotAccessMemory;
     263          10 :       else if ((FI->getModRefInfo() & MRI_Mod) == 0)
     264           6 :         Min = FMRB_OnlyReadsMemory;
     265             :     }
     266             : 
     267          52 :   return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
     268             : }
     269             : 
     270             : /// Returns the function info for the function, or null if we don't have
     271             : /// anything useful to say about it.
     272         130 : GlobalsModRef::FunctionInfo *GlobalsModRef::getFunctionInfo(const Function *F) {
     273         130 :   auto I = FunctionInfos.find(F);
     274         390 :   if (I != FunctionInfos.end())
     275          62 :     return &I->second;
     276             :   return nullptr;
     277             : }
     278             : 
     279             : /// AnalyzeGlobals - Scan through the users of all of the internal
     280             : /// GlobalValue's in the program.  If none of them have their "address taken"
     281             : /// (really, their address passed to something nontrivial), record this fact,
     282             : /// and record the functions that they are used directly in.
     283          34 : void GlobalsModRef::AnalyzeGlobals(Module &M) {
     284             :   SmallPtrSet<Function *, 64> TrackedFunctions;
     285         102 :   for (Function &F : M)
     286         128 :     if (F.hasLocalLinkage())
     287           7 :       if (!AnalyzeUsesOfPointer(&F)) {
     288             :         // Remember that we are tracking this global.
     289           0 :         NonAddressTakenGlobals.insert(&F);
     290           0 :         TrackedFunctions.insert(&F);
     291           0 :         Handles.emplace_front(*this, &F);
     292           0 :         Handles.front().I = Handles.begin();
     293             :         ++NumNonAddrTakenFunctions;
     294             :       }
     295             : 
     296         136 :   SmallPtrSet<Function *, 64> Readers, Writers;
     297          34 :   for (GlobalVariable &GV : M.globals())
     298          44 :     if (GV.hasLocalLinkage()) {
     299          11 :       if (!AnalyzeUsesOfPointer(&GV, &Readers,
     300             :                                 GV.isConstant() ? nullptr : &Writers)) {
     301             :         // Remember that we are tracking this global, and the mod/ref fns
     302           8 :         NonAddressTakenGlobals.insert(&GV);
     303          16 :         Handles.emplace_front(*this, &GV);
     304          24 :         Handles.front().I = Handles.begin();
     305             : 
     306          36 :         for (Function *Reader : Readers) {
     307          10 :           if (TrackedFunctions.insert(Reader).second) {
     308           9 :             Handles.emplace_front(*this, Reader);
     309          27 :             Handles.front().I = Handles.begin();
     310             :           }
     311          20 :           FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref);
     312             :         }
     313             : 
     314           8 :         if (!GV.isConstant()) // No need to keep track of writers to constants
     315          36 :           for (Function *Writer : Writers) {
     316          10 :             if (TrackedFunctions.insert(Writer).second) {
     317           3 :               Handles.emplace_front(*this, Writer);
     318           9 :               Handles.front().I = Handles.begin();
     319             :             }
     320          20 :             FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod);
     321             :           }
     322             :         ++NumNonAddrTakenGlobalVars;
     323             : 
     324             :         // If this global holds a pointer type, see if it is an indirect global.
     325          32 :         if (GV.getType()->getElementType()->isPointerTy() &&
     326           2 :             AnalyzeIndirectGlobalMemory(&GV))
     327             :           ++NumIndirectGlobalVars;
     328             :       }
     329          11 :       Readers.clear();
     330          11 :       Writers.clear();
     331             :     }
     332          34 : }
     333             : 
     334             : /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
     335             : /// If this is used by anything complex (i.e., the address escapes), return
     336             : /// true.  Also, while we are at it, keep track of those functions that read and
     337             : /// write to the value.
     338             : ///
     339             : /// If OkayStoreDest is non-null, stores into this global are allowed.
     340          32 : bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
     341             :                                          SmallPtrSetImpl<Function *> *Readers,
     342             :                                          SmallPtrSetImpl<Function *> *Writers,
     343             :                                          GlobalValue *OkayStoreDest) {
     344          64 :   if (!V->getType()->isPointerTy())
     345             :     return true;
     346             : 
     347          32 :   for (Use &U : V->uses()) {
     348          45 :     User *I = U.getUser();
     349          45 :     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
     350          14 :       if (Readers)
     351          11 :         Readers->insert(LI->getParent()->getParent());
     352          31 :     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
     353          11 :       if (V == SI->getOperand(1)) {
     354          10 :         if (Writers)
     355          10 :           Writers->insert(SI->getParent()->getParent());
     356           1 :       } else if (SI->getOperand(1) != OkayStoreDest) {
     357             :         return true; // Storing the pointer
     358             :       }
     359          20 :     } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
     360           2 :       if (AnalyzeUsesOfPointer(I, Readers, Writers))
     361             :         return true;
     362          18 :     } else if (Operator::getOpcode(I) == Instruction::BitCast) {
     363           8 :       if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
     364             :         return true;
     365          20 :     } else if (auto CS = CallSite(I)) {
     366             :       // Make sure that this is just the function being called, not that it is
     367             :       // passing into the function.
     368           1 :       if (!CS.isCallee(&U)) {
     369             :         // Detect calls to free.
     370           2 :         if (isFreeCall(I, TLI)) {
     371           0 :           if (Writers)
     372           0 :             Writers->insert(CS->getParent()->getParent());
     373             :         } else {
     374             :           return true; // Argument of an unknown call.
     375             :         }
     376             :       }
     377           9 :     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
     378           0 :       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
     379             :         return true; // Allow comparison against null.
     380             :     } else {
     381             :       return true;
     382             :     }
     383             :   }
     384             : 
     385             :   return false;
     386             : }
     387             : 
     388             : /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
     389             : /// which holds a pointer type.  See if the global always points to non-aliased
     390             : /// heap memory: that is, all initializers of the globals are allocations, and
     391             : /// those allocations have no use other than initialization of the global.
     392             : /// Further, all loads out of GV must directly use the memory, not store the
     393             : /// pointer somewhere.  If this is true, we consider the memory pointed to by
     394             : /// GV to be owned by GV and can disambiguate other pointers from it.
     395           2 : bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
     396             :   // Keep track of values related to the allocation of the memory, f.e. the
     397             :   // value produced by the malloc call and any casts.
     398             :   std::vector<Value *> AllocRelatedValues;
     399             : 
     400             :   // Walk the user list of the global.  If we find anything other than a direct
     401             :   // load or store, bail out.
     402          16 :   for (User *U : GV->users()) {
     403           5 :     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
     404             :       // The pointer loaded from the global can only be used in simple ways:
     405             :       // we allow addressing of it and loading storing to it.  We do *not* allow
     406             :       // storing the loaded pointer somewhere else or passing to a function.
     407           3 :       if (AnalyzeUsesOfPointer(LI))
     408             :         return false; // Loaded pointer escapes.
     409             :       // TODO: Could try some IP mod/ref of the loaded pointer.
     410           2 :     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
     411             :       // Storing the global itself.
     412           2 :       if (SI->getOperand(0) == GV)
     413           0 :         return false;
     414             : 
     415             :       // If storing the null pointer, ignore it.
     416           4 :       if (isa<ConstantPointerNull>(SI->getOperand(0)))
     417           1 :         continue;
     418             : 
     419             :       // Check the value being stored.
     420           1 :       Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
     421           2 :                                        GV->getParent()->getDataLayout());
     422             : 
     423           1 :       if (!isAllocLikeFn(Ptr, TLI))
     424             :         return false; // Too hard to analyze.
     425             : 
     426             :       // Analyze all uses of the allocation.  If any of them are used in a
     427             :       // non-simple way (e.g. stored to another global) bail out.
     428           1 :       if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
     429             :                                GV))
     430             :         return false; // Loaded pointer escapes.
     431             : 
     432             :       // Remember that this allocation is related to the indirect global.
     433           1 :       AllocRelatedValues.push_back(Ptr);
     434             :     } else {
     435             :       // Something complex, bail out.
     436             :       return false;
     437             :     }
     438             :   }
     439             : 
     440             :   // Okay, this is an indirect global.  Remember all of the allocations for
     441             :   // this global in AllocsForIndirectGlobals.
     442           3 :   while (!AllocRelatedValues.empty()) {
     443           2 :     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
     444           1 :     Handles.emplace_front(*this, AllocRelatedValues.back());
     445           3 :     Handles.front().I = Handles.begin();
     446           1 :     AllocRelatedValues.pop_back();
     447             :   }
     448           2 :   IndirectGlobals.insert(GV);
     449           2 :   Handles.emplace_front(*this, GV);
     450           6 :   Handles.front().I = Handles.begin();
     451           2 :   return true;
     452             : }
     453             : 
     454             : /// AnalyzeCallGraph - At this point, we know the functions where globals are
     455             : /// immediately stored to and read from.  Propagate this information up the call
     456             : /// graph to all callers and compute the mod/ref info for all memory for each
     457             : /// function.
     458          34 : void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
     459             :   // We do a bottom-up SCC traversal of the call graph.  In other words, we
     460             :   // visit all callees before callers (leaf-first).
     461         207 :   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
     462         105 :     const std::vector<CallGraphNode *> &SCC = *I;
     463             :     assert(!SCC.empty() && "SCC with no functions?");
     464             : 
     465         210 :     if (!SCC[0]->getFunction()) {
     466             :       // Calls externally - can't say anything useful.  Remove any existing
     467             :       // function records (may have been created when scanning globals).
     468          82 :       for (auto *Node : SCC)
     469          41 :         FunctionInfos.erase(Node->getFunction());
     470             :       continue;
     471             :     }
     472             : 
     473         192 :     FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()];
     474          64 :     bool KnowNothing = false;
     475             : 
     476             :     // Collect the mod/ref properties due to called functions.  We only compute
     477             :     // one mod-ref set.
     478         192 :     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
     479         192 :       Function *F = SCC[i]->getFunction();
     480          64 :       if (!F) {
     481             :         KnowNothing = true;
     482             :         break;
     483             :       }
     484             : 
     485          64 :       if (F->isDeclaration()) {
     486             :         // Try to get mod/ref behaviour from function attributes.
     487          11 :         if (F->doesNotAccessMemory()) {
     488             :           // Can't do better than that!
     489           8 :         } else if (F->onlyReadsMemory()) {
     490             :           FI.addModRefInfo(MRI_Ref);
     491           1 :           if (!F->isIntrinsic())
     492             :             // This function might call back into the module and read a global -
     493             :             // consider every global as possibly being read by this function.
     494             :             FI.setMayReadAnyGlobal();
     495             :         } else {
     496             :           FI.addModRefInfo(MRI_ModRef);
     497             :           // Can't say anything useful unless it's an intrinsic - they don't
     498             :           // read or write global variables of the kind considered here.
     499           7 :           KnowNothing = !F->isIntrinsic();
     500             :         }
     501             :         continue;
     502             :       }
     503             : 
     504         287 :       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
     505          75 :            CI != E && !KnowNothing; ++CI)
     506          44 :         if (Function *Callee = CI->second->getFunction()) {
     507          22 :           if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
     508             :             // Propagate function effect up.
     509          13 :             FI.addFunctionInfo(*CalleeFI);
     510             :           } else {
     511             :             // Can't say anything about it.  However, if it is inside our SCC,
     512             :             // then nothing needs to be done.
     513           9 :             CallGraphNode *CalleeNode = CG[Callee];
     514          18 :             if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
     515           9 :               KnowNothing = true;
     516             :           }
     517             :         } else {
     518             :           KnowNothing = true;
     519             :         }
     520             :     }
     521             : 
     522             :     // If we can't say anything useful about this SCC, remove all SCC functions
     523             :     // from the FunctionInfos map.
     524          64 :     if (KnowNothing) {
     525          75 :       for (auto *Node : SCC)
     526          15 :         FunctionInfos.erase(Node->getFunction());
     527             :       continue;
     528             :     }
     529             : 
     530             :     // Scan the function bodies for explicit loads or stores.
     531         241 :     for (auto *Node : SCC) {
     532          49 :       if (FI.getModRefInfo() == MRI_ModRef)
     533             :         break; // The mod/ref lattice saturates here.
     534         441 :       for (Instruction &I : instructions(Node->getFunction())) {
     535         140 :         if (FI.getModRefInfo() == MRI_ModRef)
     536             :           break; // The mod/ref lattice saturates here.
     537             : 
     538             :         // We handle calls specially because the graph-relevant aspects are
     539             :         // handled above.
     540         242 :         if (auto CS = CallSite(&I)) {
     541          24 :           if (isAllocationFn(&I, TLI) || isFreeCall(&I, TLI)) {
     542             :             // FIXME: It is completely unclear why this is necessary and not
     543             :             // handled by the above graph code.
     544             :             FI.addModRefInfo(MRI_ModRef);
     545          12 :           } else if (Function *Callee = CS.getCalledFunction()) {
     546             :             // The callgraph doesn't include intrinsic calls.
     547          12 :             if (Callee->isIntrinsic()) {
     548             :               FunctionModRefBehavior Behaviour =
     549           3 :                   AliasAnalysis::getModRefBehavior(Callee);
     550           3 :               FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef));
     551             :             }
     552             :           }
     553             :           continue;
     554             :         }
     555             : 
     556             :         // All non-call instructions we use the primary predicates for whether
     557             :         // thay read or write memory.
     558         109 :         if (I.mayReadFromMemory())
     559             :           FI.addModRefInfo(MRI_Ref);
     560         109 :         if (I.mayWriteToMemory())
     561             :           FI.addModRefInfo(MRI_Mod);
     562             :       }
     563             :     }
     564             : 
     565             :     if ((FI.getModRefInfo() & MRI_Mod) == 0)
     566             :       ++NumReadMemFunctions;
     567             :     if (FI.getModRefInfo() == MRI_NoModRef)
     568             :       ++NumNoMemFunctions;
     569             : 
     570             :     // Finally, now that we know the full effect on this SCC, clone the
     571             :     // information to each function in the SCC.
     572          98 :     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
     573           0 :       FunctionInfos[SCC[i]->getFunction()] = FI;
     574             :   }
     575          34 : }
     576             : 
     577             : // There are particular cases where we can conclude no-alias between
     578             : // a non-addr-taken global and some other underlying object. Specifically,
     579             : // a non-addr-taken global is known to not be escaped from any function. It is
     580             : // also incorrect for a transformation to introduce an escape of a global in
     581             : // a way that is observable when it was not there previously. One function
     582             : // being transformed to introduce an escape which could possibly be observed
     583             : // (via loading from a global or the return value for example) within another
     584             : // function is never safe. If the observation is made through non-atomic
     585             : // operations on different threads, it is a data-race and UB. If the
     586             : // observation is well defined, by being observed the transformation would have
     587             : // changed program behavior by introducing the observed escape, making it an
     588             : // invalid transform.
     589             : //
     590             : // This property does require that transformations which *temporarily* escape
     591             : // a global that was not previously escaped, prior to restoring it, cannot rely
     592             : // on the results of GMR::alias. This seems a reasonable restriction, although
     593             : // currently there is no way to enforce it. There is also no realistic
     594             : // optimization pass that would make this mistake. The closest example is
     595             : // a transformation pass which does reg2mem of SSA values but stores them into
     596             : // global variables temporarily before restoring the global variable's value.
     597             : // This could be useful to expose "benign" races for example. However, it seems
     598             : // reasonable to require that a pass which introduces escapes of global
     599             : // variables in this way to either not trust AA results while the escape is
     600             : // active, or to be forced to operate as a module pass that cannot co-exist
     601             : // with an alias analysis such as GMR.
     602          14 : bool GlobalsModRef::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
     603             :                                                const Value *V) {
     604             :   // In order to know that the underlying object cannot alias the
     605             :   // non-addr-taken global, we must know that it would have to be an escape.
     606             :   // Thus if the underlying object is a function argument, a load from
     607             :   // a global, or the return of a function, it cannot alias. We can also
     608             :   // recurse through PHI nodes and select nodes provided all of their inputs
     609             :   // resolve to one of these known-escaping roots.
     610          14 :   SmallPtrSet<const Value *, 8> Visited;
     611          14 :   SmallVector<const Value *, 8> Inputs;
     612          14 :   Visited.insert(V);
     613          14 :   Inputs.push_back(V);
     614          14 :   int Depth = 0;
     615          31 :   do {
     616          38 :     const Value *Input = Inputs.pop_back_val();
     617             : 
     618          76 :     if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
     619             :       // If one input is the very global we're querying against, then we can't
     620             :       // conclude no-alias.
     621          10 :       if (InputGV == GV)
     622             :         return false;
     623             : 
     624             :       // Distinct GlobalVariables never alias, unless overriden or zero-sized.
     625             :       // FIXME: The condition can be refined, but be conservative for now.
     626          10 :       auto *GVar = dyn_cast<GlobalVariable>(GV);
     627          10 :       auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
     628          30 :       if (GVar && InputGVar &&
     629          23 :           !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
     630          19 :           !GVar->mayBeOverridden() && !InputGVar->mayBeOverridden()) {
     631           3 :         Type *GVType = GVar->getInitializer()->getType();
     632           3 :         Type *InputGVType = InputGVar->getInitializer()->getType();
     633          12 :         if (GVType->isSized() && InputGVType->isSized() &&
     634           9 :             (DL->getTypeAllocSize(GVType) > 0) &&
     635           3 :             (DL->getTypeAllocSize(InputGVType) > 0))
     636          31 :           continue;
     637             :       }
     638             : 
     639             :       // Conservatively return false, even though we could be smarter
     640             :       // (e.g. look through GlobalAliases).
     641             :       return false;
     642             :     }
     643             : 
     644          72 :     if (isa<Argument>(Input) || isa<CallInst>(Input) ||
     645             :         isa<InvokeInst>(Input)) {
     646             :       // Arguments to functions or returns from functions are inherently
     647             :       // escaping, so we can immediately classify those as not aliasing any
     648             :       // non-addr-taken globals.
     649             :       continue;
     650             :     }
     651          40 :     if (auto *LI = dyn_cast<LoadInst>(Input)) {
     652             :       // A pointer loaded from a global would have been captured, and we know
     653             :       // that the global is non-escaping, so no alias.
     654          32 :       if (isa<GlobalValue>(GetUnderlyingObject(LI->getPointerOperand(), *DL)))
     655             :         continue;
     656             : 
     657             :       // Otherwise, a load could come from anywhere, so bail.
     658             :       return false;
     659             :     }
     660             : 
     661             :     // Recurse through a limited number of selects and PHIs. This is an
     662             :     // arbitrary depth of 4, lower numbers could be used to fix compile time
     663             :     // issues if needed, but this is generally expected to be only be important
     664             :     // for small depths.
     665          12 :     if (++Depth > 4)
     666             :       return false;
     667          24 :     if (auto *SI = dyn_cast<SelectInst>(Input)) {
     668          18 :       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), *DL);
     669          18 :       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), *DL);
     670           9 :       if (Visited.insert(LHS).second)
     671           9 :         Inputs.push_back(LHS);
     672           9 :       if (Visited.insert(RHS).second)
     673           9 :         Inputs.push_back(RHS);
     674             :       continue;
     675             :     }
     676           6 :     if (auto *PN = dyn_cast<PHINode>(Input)) {
     677           9 :       for (const Value *Op : PN->incoming_values()) {
     678          12 :         Op = GetUnderlyingObject(Op, *DL);
     679           6 :         if (Visited.insert(Op).second)
     680           6 :           Inputs.push_back(Op);
     681             :       }
     682           3 :       continue;
     683             :     }
     684             : 
     685             :     // FIXME: It would be good to handle other obvious no-alias cases here, but
     686             :     // it isn't clear how to do so reasonbly without building a small version
     687             :     // of BasicAA into this code. We could recurse into AliasAnalysis::alias
     688             :     // here but that seems likely to go poorly as we're inside the
     689             :     // implementation of such a query. Until then, just conservatievly retun
     690             :     // false.
     691             :     return false;
     692             :   } while (!Inputs.empty());
     693             : 
     694             :   // If all the inputs to V were definitively no-alias, then V is no-alias.
     695             :   return true;
     696             : }
     697             : 
     698             : /// alias - If one of the pointers is to a global that we are tracking, and the
     699             : /// other is some random pointer, we know there cannot be an alias, because the
     700             : /// address of the global isn't taken.
     701          47 : AliasResult GlobalsModRef::alias(const MemoryLocation &LocA,
     702             :                                  const MemoryLocation &LocB) {
     703             :   // Get the base object these pointers point to.
     704          94 :   const Value *UV1 = GetUnderlyingObject(LocA.Ptr, *DL);
     705          94 :   const Value *UV2 = GetUnderlyingObject(LocB.Ptr, *DL);
     706             : 
     707             :   // If either of the underlying values is a global, they may be non-addr-taken
     708             :   // globals, which we can answer queries about.
     709          94 :   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
     710          94 :   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
     711          47 :   if (GV1 || GV2) {
     712             :     // If the global's address is taken, pretend we don't know it's a pointer to
     713             :     // the global.
     714          59 :     if (GV1 && !NonAddressTakenGlobals.count(GV1))
     715           4 :       GV1 = nullptr;
     716          63 :     if (GV2 && !NonAddressTakenGlobals.count(GV2))
     717           6 :       GV2 = nullptr;
     718             : 
     719             :     // If the two pointers are derived from two different non-addr-taken
     720             :     // globals we know these can't alias.
     721          33 :     if (GV1 && GV2 && GV1 != GV2)
     722             :       return NoAlias;
     723             : 
     724             :     // If one is and the other isn't, it isn't strictly safe but we can fake
     725             :     // this result if necessary for performance. This does not appear to be
     726             :     // a common problem in practice.
     727          31 :     if (EnableUnsafeGlobalsModRefAliasResults)
     728           2 :       if ((GV1 || GV2) && GV1 != GV2)
     729             :         return NoAlias;
     730             : 
     731             :     // Check for a special case where a non-escaping global can be used to
     732             :     // conclude no-alias.
     733          29 :     if ((GV1 || GV2) && GV1 != GV2) {
     734          14 :       const GlobalValue *GV = GV1 ? GV1 : GV2;
     735          14 :       const Value *UV = GV1 ? UV2 : UV1;
     736          14 :       if (isNonEscapingGlobalNoAlias(GV, UV))
     737             :         return NoAlias;
     738             :     }
     739             : 
     740             :     // Otherwise if they are both derived from the same addr-taken global, we
     741             :     // can't know the two accesses don't overlap.
     742             :   }
     743             : 
     744             :   // These pointers may be based on the memory owned by an indirect global.  If
     745             :   // so, we may be able to handle this.  First check to see if the base pointer
     746             :   // is a direct load from an indirect global.
     747          36 :   GV1 = GV2 = nullptr;
     748          72 :   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
     749           3 :     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
     750           2 :       if (IndirectGlobals.count(GV))
     751           1 :         GV1 = GV;
     752          72 :   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
     753           6 :     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
     754           4 :       if (IndirectGlobals.count(GV))
     755           2 :         GV2 = GV;
     756             : 
     757             :   // These pointers may also be from an allocation for the indirect global.  If
     758             :   // so, also handle them.
     759          36 :   if (!GV1)
     760          70 :     GV1 = AllocsForIndirectGlobals.lookup(UV1);
     761          36 :   if (!GV2)
     762          68 :     GV2 = AllocsForIndirectGlobals.lookup(UV2);
     763             : 
     764             :   // Now that we know whether the two pointers are related to indirect globals,
     765             :   // use this to disambiguate the pointers. If the pointers are based on
     766             :   // different indirect globals they cannot alias.
     767          36 :   if (GV1 && GV2 && GV1 != GV2)
     768             :     return NoAlias;
     769             : 
     770             :   // If one is based on an indirect global and the other isn't, it isn't
     771             :   // strictly safe but we can fake this result if necessary for performance.
     772             :   // This does not appear to be a common problem in practice.
     773          36 :   if (EnableUnsafeGlobalsModRefAliasResults)
     774           4 :     if ((GV1 || GV2) && GV1 != GV2)
     775             :       return NoAlias;
     776             : 
     777          35 :   return AliasAnalysis::alias(LocA, LocB);
     778             : }
     779             : 
     780           8 : ModRefInfo GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
     781             :                                         const MemoryLocation &Loc) {
     782           8 :   unsigned Known = MRI_ModRef;
     783             : 
     784             :   // If we are asking for mod/ref info of a direct call with a pointer to a
     785             :   // global we are tracking, return information if we have it.
     786           8 :   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
     787           8 :   if (const GlobalValue *GV =
     788          24 :           dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
     789           6 :     if (GV->hasLocalLinkage())
     790           6 :       if (const Function *F = CS.getCalledFunction())
     791          12 :         if (NonAddressTakenGlobals.count(GV))
     792           4 :           if (const FunctionInfo *FI = getFunctionInfo(F))
     793           3 :             Known = FI->getModRefInfoForGlobal(*GV);
     794             : 
     795           8 :   if (Known == MRI_NoModRef)
     796             :     return MRI_NoModRef; // No need to query other mod/ref analyses
     797           6 :   return ModRefInfo(Known & AliasAnalysis::getModRefInfo(CS, Loc));
     798      116490 : }

Generated by: LCOV version 1.11