LCOV - code coverage report
Current view: top level - lib/Analysis - MemorySSAUpdater.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 133 145 91.7 %
Date: 2018-02-20 03:34:22 Functions: 20 21 95.2 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------===//
       9             : //
      10             : // This file implements the MemorySSAUpdater class.
      11             : //
      12             : //===----------------------------------------------------------------===//
      13             : #include "llvm/Analysis/MemorySSAUpdater.h"
      14             : #include "llvm/ADT/STLExtras.h"
      15             : #include "llvm/ADT/SmallPtrSet.h"
      16             : #include "llvm/Analysis/MemorySSA.h"
      17             : #include "llvm/IR/DataLayout.h"
      18             : #include "llvm/IR/Dominators.h"
      19             : #include "llvm/IR/GlobalVariable.h"
      20             : #include "llvm/IR/IRBuilder.h"
      21             : #include "llvm/IR/LLVMContext.h"
      22             : #include "llvm/IR/Metadata.h"
      23             : #include "llvm/IR/Module.h"
      24             : #include "llvm/Support/Debug.h"
      25             : #include "llvm/Support/FormattedStream.h"
      26             : #include <algorithm>
      27             : 
      28             : #define DEBUG_TYPE "memoryssa"
      29             : using namespace llvm;
      30             : 
      31             : // This is the marker algorithm from "Simple and Efficient Construction of
      32             : // Static Single Assignment Form"
      33             : // The simple, non-marker algorithm places phi nodes at any join
      34             : // Here, we place markers, and only place phi nodes if they end up necessary.
      35             : // They are only necessary if they break a cycle (IE we recursively visit
      36             : // ourselves again), or we discover, while getting the value of the operands,
      37             : // that there are two or more definitions needing to be merged.
      38             : // This still will leave non-minimal form in the case of irreducible control
      39             : // flow, where phi nodes may be in cycles with themselves, but unnecessary.
      40          79 : MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) {
      41             :   // Single predecessor case, just recurse, we can only have one definition.
      42          79 :   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
      43          34 :     return getPreviousDefFromEnd(Pred);
      44          45 :   } else if (VisitedBlocks.count(BB)) {
      45             :     // We hit our node again, meaning we had a cycle, we must insert a phi
      46             :     // node to break it so we have an operand. The only case this will
      47             :     // insert useless phis is if we have irreducible control flow.
      48           1 :     return MSSA->createMemoryPhi(BB);
      49          44 :   } else if (VisitedBlocks.insert(BB).second) {
      50             :     // Mark us visited so we can detect a cycle
      51             :     SmallVector<MemoryAccess *, 8> PhiOps;
      52             : 
      53             :     // Recurse to get the values in our predecessors for placement of a
      54             :     // potential phi node. This will insert phi nodes if we cycle in order to
      55             :     // break the cycle and have an operand.
      56         102 :     for (auto *Pred : predecessors(BB))
      57          14 :       PhiOps.push_back(getPreviousDefFromEnd(Pred));
      58             : 
      59             :     // Now try to simplify the ops to avoid placing a phi.
      60             :     // This may return null if we never created a phi yet, that's okay
      61          88 :     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
      62             :     bool PHIExistsButNeedsUpdate = false;
      63             :     // See if the existing phi operands match what we need.
      64             :     // Unlike normal SSA, we only allow one phi node per block, so we can't just
      65             :     // create a new one.
      66          45 :     if (Phi && Phi->getNumOperands() != 0)
      67           0 :       if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
      68             :         PHIExistsButNeedsUpdate = true;
      69             :       }
      70             : 
      71             :     // See if we can avoid the phi by simplifying it.
      72          44 :     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
      73             :     // If we couldn't simplify, we may have to create a phi
      74          44 :     if (Result == Phi) {
      75           4 :       if (!Phi)
      76           3 :         Phi = MSSA->createMemoryPhi(BB);
      77             : 
      78             :       // These will have been filled in by the recursive read we did above.
      79           4 :       if (PHIExistsButNeedsUpdate) {
      80           0 :         std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
      81           0 :         std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
      82             :       } else {
      83             :         unsigned i = 0;
      84          16 :         for (auto *Pred : predecessors(BB))
      85          16 :           Phi->addIncoming(PhiOps[i++], Pred);
      86           4 :         InsertedPHIs.push_back(Phi);
      87             :       }
      88           4 :       Result = Phi;
      89             :     }
      90             : 
      91             :     // Set ourselves up for the next variable by resetting visited state.
      92             :     VisitedBlocks.erase(BB);
      93             :     return Result;
      94             :   }
      95           0 :   llvm_unreachable("Should have hit one of the three cases above");
      96             : }
      97             : 
      98             : // This starts at the memory access, and goes backwards in the block to find the
      99             : // previous definition. If a definition is not found the block of the access,
     100             : // it continues globally, creating phi nodes to ensure we have a single
     101             : // definition.
     102          54 : MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
     103          54 :   auto *LocalResult = getPreviousDefInBlock(MA);
     104             : 
     105          54 :   return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock());
     106             : }
     107             : 
     108             : // This starts at the memory access, and goes backwards in the block to the find
     109             : // the previous definition. If the definition is not found in the block of the
     110             : // access, it returns nullptr.
     111          76 : MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
     112          76 :   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
     113             : 
     114             :   // It's possible there are no defs, or we got handed the first def to start.
     115          50 :   if (Defs) {
     116             :     // If this is a def, we can just use the def iterators.
     117          50 :     if (!isa<MemoryUse>(MA)) {
     118             :       auto Iter = MA->getReverseDefsIterator();
     119             :       ++Iter;
     120          31 :       if (Iter != Defs->rend())
     121             :         return &*Iter;
     122             :     } else {
     123             :       // Otherwise, have to walk the all access iterator.
     124          19 :       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
     125          58 :       for (auto &U : make_range(++MA->getReverseIterator(), End))
     126          57 :         if (!isa<MemoryUse>(U))
     127             :           return cast<MemoryAccess>(&U);
     128             :       // Note that if MA comes before Defs->begin(), we won't hit a def.
     129             :       return nullptr;
     130             :     }
     131             :   }
     132             :   return nullptr;
     133             : }
     134             : 
     135             : // This starts at the end of block
     136          48 : MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) {
     137          48 :   auto *Defs = MSSA->getWritableBlockDefs(BB);
     138             : 
     139          19 :   if (Defs)
     140             :     return &*Defs->rbegin();
     141             : 
     142          29 :   return getPreviousDefRecursive(BB);
     143             : }
     144             : // Recurse over a set of phi uses to eliminate the trivial ones
     145           3 : MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
     146           3 :   if (!Phi)
     147             :     return nullptr;
     148             :   TrackingVH<MemoryAccess> Res(Phi);
     149           3 :   SmallVector<TrackingVH<Value>, 8> Uses;
     150             :   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
     151          15 :   for (auto &U : Uses) {
     152             :     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
     153           2 :       auto OperRange = UsePhi->operands();
     154           1 :       tryRemoveTrivialPhi(UsePhi, OperRange);
     155             :     }
     156             :   }
     157             :   return Res;
     158             : }
     159             : 
     160             : // Eliminate trivial phis
     161             : // Phis are trivial if they are defined either by themselves, or all the same
     162             : // argument.
     163             : // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
     164             : // We recursively try to remove them.
     165             : template <class RangeType>
     166          45 : MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
     167             :                                                     RangeType &Operands) {
     168             :   // Detect equal or self arguments
     169             :   MemoryAccess *Same = nullptr;
     170          66 :   for (auto &Op : Operands) {
     171             :     // If the same or self, good so far
     172          16 :     if (Op == Phi || Op == Same)
     173           3 :       continue;
     174             :     // not the same, return the phi since it's not eliminatable by us
     175          13 :     if (Same)
     176             :       return Phi;
     177             :     Same = cast<MemoryAccess>(Op);
     178             :   }
     179             :   // Never found a non-self reference, the phi is undef
     180          40 :   if (Same == nullptr)
     181          74 :     return MSSA->getLiveOnEntryDef();
     182           3 :   if (Phi) {
     183           0 :     Phi->replaceAllUsesWith(Same);
     184           0 :     removeMemoryAccess(Phi);
     185             :   }
     186             : 
     187             :   // We should only end up recursing in case we replaced something, in which
     188             :   // case, we may have made other Phis trivial.
     189           3 :   return recursePhi(Same);
     190             : }
     191             : 
     192          45 : void MemorySSAUpdater::insertUse(MemoryUse *MU) {
     193             :   InsertedPHIs.clear();
     194          45 :   MU->setDefiningAccess(getPreviousDef(MU));
     195             :   // Unlike for defs, there is no extra work to do.  Because uses do not create
     196             :   // new may-defs, there are only two cases:
     197             :   //
     198             :   // 1. There was a def already below us, and therefore, we should not have
     199             :   // created a phi node because it was already needed for the def.
     200             :   //
     201             :   // 2. There is no def below us, and therefore, there is no extra renaming work
     202             :   // to do.
     203          45 : }
     204             : 
     205             : // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
     206           2 : static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
     207             :                                       MemoryAccess *NewDef) {
     208             :   // Replace any operand with us an incoming block with the new defining
     209             :   // access.
     210           2 :   int i = MP->getBasicBlockIndex(BB);
     211             :   assert(i != -1 && "Should have found the basic block in the phi");
     212             :   // We can't just compare i against getNumOperands since one is signed and the
     213             :   // other not. So use it to index into the block iterator.
     214           8 :   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
     215             :        ++BBIter) {
     216           3 :     if (*BBIter != BB)
     217             :       break;
     218           2 :     MP->setIncomingValue(i, NewDef);
     219           2 :     ++i;
     220             :   }
     221           2 : }
     222             : 
     223             : // A brief description of the algorithm:
     224             : // First, we compute what should define the new def, using the SSA
     225             : // construction algorithm.
     226             : // Then, we update the defs below us (and any new phi nodes) in the graph to
     227             : // point to the correct new defs, to ensure we only have one variable, and no
     228             : // disconnected stores.
     229          22 : void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
     230             :   InsertedPHIs.clear();
     231             : 
     232             :   // See if we had a local def, and if not, go hunting.
     233          22 :   MemoryAccess *DefBefore = getPreviousDefInBlock(MD);
     234             :   bool DefBeforeSameBlock = DefBefore != nullptr;
     235          22 :   if (!DefBefore)
     236          14 :     DefBefore = getPreviousDefRecursive(MD->getBlock());
     237             : 
     238             :   // There is a def before us, which means we can replace any store/phi uses
     239             :   // of that thing with us, since we are in the way of whatever was there
     240             :   // before.
     241             :   // We now define that def's memorydefs and memoryphis
     242          22 :   if (DefBeforeSameBlock) {
     243             :     for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
     244          27 :          UI != UE;) {
     245             :       Use &U = *UI++;
     246             :       // Leave the uses alone
     247          38 :       if (isa<MemoryUse>(U.getUser()))
     248           5 :         continue;
     249          14 :       U.set(MD);
     250             :     }
     251             :   }
     252             : 
     253             :   // and that def is now our defining access.
     254             :   // We change them in this order otherwise we will appear in the use list
     255             :   // above and reset ourselves.
     256             :   MD->setDefiningAccess(DefBefore);
     257             : 
     258             :   SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
     259             :                                            InsertedPHIs.end());
     260          22 :   if (!DefBeforeSameBlock) {
     261             :     // If there was a local def before us, we must have the same effect it
     262             :     // did. Because every may-def is the same, any phis/etc we would create, it
     263             :     // would also have created.  If there was no local def before us, we
     264             :     // performed a global update, and have to search all successors and make
     265             :     // sure we update the first def in each of them (following all paths until
     266             :     // we hit the first def along each path). This may also insert phi nodes.
     267             :     // TODO: There are other cases we can skip this work, such as when we have a
     268             :     // single successor, and only used a straight line of single pred blocks
     269             :     // backwards to find the def.  To make that work, we'd have to track whether
     270             :     // getDefRecursive only ever used the single predecessor case.  These types
     271             :     // of paths also only exist in between CFG simplifications.
     272          14 :     FixupList.push_back(MD);
     273             :   }
     274             : 
     275          50 :   while (!FixupList.empty()) {
     276             :     unsigned StartingPHISize = InsertedPHIs.size();
     277          14 :     fixupDefs(FixupList);
     278             :     FixupList.clear();
     279             :     // Put any new phis on the fixup list, and process them
     280          14 :     FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
     281             :   }
     282             :   // Now that all fixups are done, rename all uses if we are asked.
     283          22 :   if (RenameUses) {
     284             :     SmallPtrSet<BasicBlock *, 16> Visited;
     285           1 :     BasicBlock *StartBlock = MD->getBlock();
     286             :     // We are guaranteed there is a def in the block, because we just got it
     287             :     // handed to us in this function.
     288           1 :     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
     289             :     // Convert to incoming value if it's a memorydef. A phi *is* already an
     290             :     // incoming value.
     291             :     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
     292             :       FirstDef = MD->getDefiningAccess();
     293             : 
     294           1 :     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
     295             :     // We just inserted a phi into this block, so the incoming value will become
     296             :     // the phi anyway, so it does not matter what we pass.
     297           1 :     for (auto *MP : InsertedPHIs)
     298           0 :       MSSA->renamePass(MP->getBlock(), nullptr, Visited);
     299             :   }
     300          22 : }
     301             : 
     302          14 : void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
     303             :   SmallPtrSet<const BasicBlock *, 8> Seen;
     304             :   SmallVector<const BasicBlock *, 16> Worklist;
     305          24 :   for (auto *NewDef : Vars) {
     306             :     // First, see if there is a local def after the operand.
     307          14 :     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
     308             :     auto DefIter = NewDef->getDefsIterator();
     309             : 
     310             :     // If there is a local def after us, we only have to rename that.
     311          15 :     if (++DefIter != Defs->end()) {
     312             :       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
     313             :       continue;
     314             :     }
     315             : 
     316             :     // Otherwise, we need to search down through the CFG.
     317             :     // For each of our successors, handle it directly if their is a phi, or
     318             :     // place on the fixup worklist.
     319          37 :     for (const auto *S : successors(NewDef->getBlock())) {
     320          24 :       if (auto *MP = MSSA->getMemoryAccess(S))
     321           1 :         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
     322             :       else
     323          23 :         Worklist.push_back(S);
     324             :     }
     325             : 
     326          25 :     while (!Worklist.empty()) {
     327          15 :       const BasicBlock *FixupBlock = Worklist.back();
     328             :       Worklist.pop_back();
     329             : 
     330             :       // Get the first def in the block that isn't a phi node.
     331          24 :       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
     332             :         auto *FirstDef = &*Defs->begin();
     333             :         // The loop above and below should have taken care of phi nodes
     334             :         assert(!isa<MemoryPhi>(FirstDef) &&
     335             :                "Should have already handled phi nodes!");
     336             :         // We are now this def's defining access, make sure we actually dominate
     337             :         // it
     338             :         assert(MSSA->dominates(NewDef, FirstDef) &&
     339             :                "Should have dominated the new access");
     340             : 
     341             :         // This may insert new phi nodes, because we are not guaranteed the
     342             :         // block we are processing has a single pred, and depending where the
     343             :         // store was inserted, it may require phi nodes below it.
     344           9 :         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
     345             :         return;
     346             :       }
     347             :       // We didn't find a def, so we must continue.
     348           9 :       for (const auto *S : successors(FixupBlock)) {
     349             :         // If there is a phi node, handle it.
     350             :         // Otherwise, put the block on the worklist
     351           3 :         if (auto *MP = MSSA->getMemoryAccess(S))
     352           1 :           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
     353             :         else {
     354             :           // If we cycle, we should have ended up at a phi node that we already
     355             :           // processed.  FIXME: Double check this
     356           2 :           if (!Seen.insert(S).second)
     357           1 :             continue;
     358           1 :           Worklist.push_back(S);
     359             :         }
     360             :       }
     361             :     }
     362             :   }
     363             : }
     364             : 
     365             : // Move What before Where in the MemorySSA IR.
     366             : template <class WhereType>
     367          56 : void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
     368             :                               WhereType Where) {
     369             :   // Replace all our users with our defining access.
     370         112 :   What->replaceAllUsesWith(What->getDefiningAccess());
     371             : 
     372             :   // Let MemorySSA take care of moving it around in the lists.
     373          56 :   MSSA->moveTo(What, BB, Where);
     374             : 
     375             :   // Now reinsert it into the IR and do whatever fixups needed.
     376             :   if (auto *MD = dyn_cast<MemoryDef>(What))
     377          16 :     insertDef(MD);
     378             :   else
     379          40 :     insertUse(cast<MemoryUse>(What));
     380          56 : }
     381             : 
     382             : // Move What before Where in the MemorySSA IR.
     383           3 : void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
     384           3 :   moveTo(What, Where->getBlock(), Where->getIterator());
     385           3 : }
     386             : 
     387             : // Move What after Where in the MemorySSA IR.
     388           1 : void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
     389           1 :   moveTo(What, Where->getBlock(), ++Where->getIterator());
     390           1 : }
     391             : 
     392          52 : void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
     393             :                                    MemorySSA::InsertionPlace Where) {
     394          52 :   return moveTo(What, BB, Where);
     395             : }
     396             : 
     397             : /// \brief If all arguments of a MemoryPHI are defined by the same incoming
     398             : /// argument, return that argument.
     399          14 : static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
     400             :   MemoryAccess *MA = nullptr;
     401             : 
     402          86 :   for (auto &Arg : MP->operands()) {
     403          29 :     if (!MA)
     404             :       MA = cast<MemoryAccess>(Arg);
     405          15 :     else if (MA != Arg)
     406             :       return nullptr;
     407             :   }
     408             :   return MA;
     409             : }
     410             : 
     411       19549 : void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
     412             :   assert(!MSSA->isLiveOnEntryDef(MA) &&
     413             :          "Trying to remove the live on entry def");
     414             :   // We can only delete phi nodes if they have no uses, or we can replace all
     415             :   // uses with a single definition.
     416             :   MemoryAccess *NewDefTarget = nullptr;
     417             :   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
     418             :     // Note that it is sufficient to know that all edges of the phi node have
     419             :     // the same argument.  If they do, by the definition of dominance frontiers
     420             :     // (which we used to place this phi), that argument must dominate this phi,
     421             :     // and thus, must dominate the phi's uses, and so we will not hit the assert
     422             :     // below.
     423          14 :     NewDefTarget = onlySingleValue(MP);
     424             :     assert((NewDefTarget || MP->use_empty()) &&
     425             :            "We can't delete this memory phi");
     426             :   } else {
     427             :     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
     428             :   }
     429             : 
     430             :   // Re-point the uses at our defining access
     431       19549 :   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
     432             :     // Reset optimized on users of this store, and reset the uses.
     433             :     // A few notes:
     434             :     // 1. This is a slightly modified version of RAUW to avoid walking the
     435             :     // uses twice here.
     436             :     // 2. If we wanted to be complete, we would have to reset the optimized
     437             :     // flags on users of phi nodes if doing the below makes a phi node have all
     438             :     // the same arguments. Instead, we prefer users to removeMemoryAccess those
     439             :     // phi nodes, because doing it here would be N^3.
     440         328 :     if (MA->hasValueHandle())
     441           0 :       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
     442             :     // Note: We assume MemorySSA is not used in metadata since it's not really
     443             :     // part of the IR.
     444             : 
     445         996 :     while (!MA->use_empty()) {
     446             :       Use &U = *MA->use_begin();
     447         334 :       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
     448             :         MUD->resetOptimized();
     449         334 :       U.set(NewDefTarget);
     450             :     }
     451             :   }
     452             : 
     453             :   // The call below to erase will destroy MA, so we can't change the order we
     454             :   // are doing things here
     455       19549 :   MSSA->removeFromLookups(MA);
     456       19549 :   MSSA->removeFromLists(MA);
     457       19549 : }
     458             : 
     459          11 : MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
     460             :     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
     461             :     MemorySSA::InsertionPlace Point) {
     462          11 :   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
     463          11 :   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
     464          11 :   return NewAccess;
     465             : }
     466             : 
     467           0 : MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
     468             :     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
     469             :   assert(I->getParent() == InsertPt->getBlock() &&
     470             :          "New and old access must be in the same block");
     471           0 :   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
     472           0 :   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
     473             :                               InsertPt->getIterator());
     474           0 :   return NewAccess;
     475             : }
     476             : 
     477           2 : MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
     478             :     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
     479             :   assert(I->getParent() == InsertPt->getBlock() &&
     480             :          "New and old access must be in the same block");
     481           2 :   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
     482           4 :   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
     483             :                               ++InsertPt->getIterator());
     484           2 :   return NewAccess;
     485             : }

Generated by: LCOV version 1.13