LCOV - code coverage report
Current view: top level - lib/ExecutionEngine/RuntimeDyld - RuntimeDyldELF.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 576 845 68.2 %
Date: 2018-06-17 00:07:59 Functions: 37 54 68.5 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // Implementation of ELF support for the MC-JIT runtime dynamic linker.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #include "RuntimeDyldELF.h"
      15             : #include "RuntimeDyldCheckerImpl.h"
      16             : #include "Targets/RuntimeDyldELFMips.h"
      17             : #include "llvm/ADT/STLExtras.h"
      18             : #include "llvm/ADT/StringRef.h"
      19             : #include "llvm/ADT/Triple.h"
      20             : #include "llvm/BinaryFormat/ELF.h"
      21             : #include "llvm/Object/ELFObjectFile.h"
      22             : #include "llvm/Object/ObjectFile.h"
      23             : #include "llvm/Support/Endian.h"
      24             : #include "llvm/Support/MemoryBuffer.h"
      25             : 
      26             : using namespace llvm;
      27             : using namespace llvm::object;
      28             : using namespace llvm::support::endian;
      29             : 
      30             : #define DEBUG_TYPE "dyld"
      31             : 
      32          18 : static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
      33             : 
      34             : static void or32AArch64Imm(void *L, uint64_t Imm) {
      35           9 :   or32le(L, (Imm & 0xFFF) << 10);
      36             : }
      37             : 
      38             : template <class T> static void write(bool isBE, void *P, T V) {
      39          12 :   isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
      40             : }
      41             : 
      42             : static void write32AArch64Addr(void *L, uint64_t Imm) {
      43           4 :   uint32_t ImmLo = (Imm & 0x3) << 29;
      44           4 :   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
      45             :   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
      46           4 :   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
      47             : }
      48             : 
      49             : // Return the bits [Start, End] from Val shifted Start bits.
      50             : // For instance, getBits(0xF0, 4, 8) returns 0xF.
      51             : static uint64_t getBits(uint64_t Val, int Start, int End) {
      52             :   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
      53           8 :   return (Val >> Start) & Mask;
      54             : }
      55             : 
      56             : namespace {
      57             : 
      58         130 : template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
      59             :   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
      60             : 
      61             :   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
      62             :   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
      63             :   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
      64             :   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
      65             : 
      66             :   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
      67             : 
      68             :   typedef typename ELFT::uint addr_type;
      69             : 
      70             :   DyldELFObject(ELFObjectFile<ELFT> &&Obj);
      71             : 
      72             : public:
      73             :   static Expected<std::unique_ptr<DyldELFObject>>
      74             :   create(MemoryBufferRef Wrapper);
      75             : 
      76             :   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
      77             : 
      78             :   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
      79             : 
      80             :   // Methods for type inquiry through isa, cast and dyn_cast
      81             :   static bool classof(const Binary *v) {
      82             :     return (isa<ELFObjectFile<ELFT>>(v) &&
      83             :             classof(cast<ELFObjectFile<ELFT>>(v)));
      84             :   }
      85             :   static bool classof(const ELFObjectFile<ELFT> *v) {
      86             :     return v->isDyldType();
      87             :   }
      88             : };
      89             : 
      90             : 
      91             : 
      92             : // The MemoryBuffer passed into this constructor is just a wrapper around the
      93             : // actual memory.  Ultimately, the Binary parent class will take ownership of
      94             : // this MemoryBuffer object but not the underlying memory.
      95             : template <class ELFT>
      96         150 : DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
      97         150 :     : ELFObjectFile<ELFT>(std::move(Obj)) {
      98         150 :   this->isDyldELFObject = true;
      99             : }
     100             : 
     101             : template <class ELFT>
     102             : Expected<std::unique_ptr<DyldELFObject<ELFT>>>
     103         150 : DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
     104         300 :   auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
     105         150 :   if (auto E = Obj.takeError())
     106             :     return std::move(E);
     107             :   std::unique_ptr<DyldELFObject<ELFT>> Ret(
     108         150 :       new DyldELFObject<ELFT>(std::move(*Obj)));
     109             :   return std::move(Ret);
     110             : }
     111             : 
     112             : template <class ELFT>
     113             : void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
     114             :                                                uint64_t Addr) {
     115             :   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
     116             :   Elf_Shdr *shdr =
     117             :       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
     118             : 
     119             :   // This assumes the address passed in matches the target address bitness
     120             :   // The template-based type cast handles everything else.
     121             :   shdr->sh_addr = static_cast<addr_type>(Addr);
     122             : }
     123             : 
     124             : template <class ELFT>
     125             : void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
     126             :                                               uint64_t Addr) {
     127             : 
     128             :   Elf_Sym *sym = const_cast<Elf_Sym *>(
     129             :       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
     130             : 
     131             :   // This assumes the address passed in matches the target address bitness
     132             :   // The template-based type cast handles everything else.
     133             :   sym->st_value = static_cast<addr_type>(Addr);
     134             : }
     135             : 
     136         640 : class LoadedELFObjectInfo final
     137             :     : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
     138             :                                     RuntimeDyld::LoadedObjectInfo> {
     139             : public:
     140             :   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
     141         320 :       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
     142             : 
     143             :   OwningBinary<ObjectFile>
     144             :   getObjectForDebug(const ObjectFile &Obj) const override;
     145             : };
     146             : 
     147             : template <typename ELFT>
     148             : static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
     149         150 : createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
     150             :                       const LoadedELFObjectInfo &L) {
     151             :   typedef typename ELFT::Shdr Elf_Shdr;
     152             :   typedef typename ELFT::uint addr_type;
     153             : 
     154         300 :   Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
     155             :       DyldELFObject<ELFT>::create(Buffer);
     156         150 :   if (Error E = ObjOrErr.takeError())
     157             :     return std::move(E);
     158             : 
     159             :   std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
     160             : 
     161             :   // Iterate over all sections in the object.
     162         150 :   auto SI = SourceObject.section_begin();
     163        1812 :   for (const auto &Sec : Obj->sections()) {
     164        1212 :     StringRef SectionName;
     165             :     Sec.getName(SectionName);
     166             :     if (SectionName != "") {
     167             :       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
     168        1062 :       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
     169             :           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
     170             : 
     171        1062 :       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
     172             :         // This assumes that the address passed in matches the target address
     173             :         // bitness. The template-based type cast handles everything else.
     174           0 :         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
     175             :       }
     176             :     }
     177             :     ++SI;
     178             :   }
     179             : 
     180             :   return std::move(Obj);
     181             : }
     182             : 
     183             : static OwningBinary<ObjectFile>
     184         150 : createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
     185             :   assert(Obj.isELF() && "Not an ELF object file.");
     186             : 
     187             :   std::unique_ptr<MemoryBuffer> Buffer =
     188         300 :     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
     189             : 
     190         150 :   Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
     191             :   handleAllErrors(DebugObj.takeError());
     192         150 :   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
     193             :     DebugObj =
     194           0 :         createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
     195         150 :   else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
     196             :     DebugObj =
     197           0 :         createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
     198         300 :   else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
     199             :     DebugObj =
     200           0 :         createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
     201         300 :   else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
     202             :     DebugObj =
     203         300 :         createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
     204             :   else
     205           0 :     llvm_unreachable("Unexpected ELF format");
     206             : 
     207             :   handleAllErrors(DebugObj.takeError());
     208         150 :   return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
     209             : }
     210             : 
     211             : OwningBinary<ObjectFile>
     212         150 : LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
     213         150 :   return createELFDebugObject(Obj, *this);
     214             : }
     215             : 
     216             : } // anonymous namespace
     217             : 
     218             : namespace llvm {
     219             : 
     220         269 : RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
     221         269 :                                JITSymbolResolver &Resolver)
     222         538 :     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
     223         782 : RuntimeDyldELF::~RuntimeDyldELF() {}
     224             : 
     225         443 : void RuntimeDyldELF::registerEHFrames() {
     226         680 :   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
     227         474 :     SID EHFrameSID = UnregisteredEHFrameSections[i];
     228         474 :     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
     229         237 :     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
     230         237 :     size_t EHFrameSize = Sections[EHFrameSID].getSize();
     231         237 :     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
     232             :   }
     233             :   UnregisteredEHFrameSections.clear();
     234         443 : }
     235             : 
     236             : std::unique_ptr<RuntimeDyldELF>
     237         269 : llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
     238             :                              RuntimeDyld::MemoryManager &MemMgr,
     239             :                              JITSymbolResolver &Resolver) {
     240         269 :   switch (Arch) {
     241             :   default:
     242             :     return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
     243          10 :   case Triple::mips:
     244             :   case Triple::mipsel:
     245             :   case Triple::mips64:
     246             :   case Triple::mips64el:
     247          20 :     return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
     248             :   }
     249             : }
     250             : 
     251             : std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
     252         320 : RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
     253         960 :   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
     254         640 :     return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
     255             :   else {
     256           0 :     HasError = true;
     257           0 :     raw_string_ostream ErrStream(ErrorStr);
     258           0 :     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
     259             :     return nullptr;
     260             :   }
     261             : }
     262             : 
     263         891 : void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
     264             :                                              uint64_t Offset, uint64_t Value,
     265             :                                              uint32_t Type, int64_t Addend,
     266             :                                              uint64_t SymOffset) {
     267         891 :   switch (Type) {
     268           0 :   default:
     269           0 :     llvm_unreachable("Relocation type not implemented yet!");
     270             :     break;
     271             :   case ELF::R_X86_64_NONE:
     272             :     break;
     273         480 :   case ELF::R_X86_64_64: {
     274         480 :     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
     275             :         Value + Addend;
     276             :     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
     277             :                       << format("%p\n", Section.getAddressWithOffset(Offset)));
     278         480 :     break;
     279             :   }
     280           1 :   case ELF::R_X86_64_32:
     281             :   case ELF::R_X86_64_32S: {
     282           1 :     Value += Addend;
     283             :     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
     284             :            (Type == ELF::R_X86_64_32S &&
     285             :             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
     286           1 :     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
     287           1 :     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
     288             :         TruncatedAddr;
     289             :     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
     290             :                       << format("%p\n", Section.getAddressWithOffset(Offset)));
     291           1 :     break;
     292             :   }
     293           2 :   case ELF::R_X86_64_PC8: {
     294           2 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     295           2 :     int64_t RealOffset = Value + Addend - FinalAddress;
     296             :     assert(isInt<8>(RealOffset));
     297             :     int8_t TruncOffset = (RealOffset & 0xFF);
     298           2 :     Section.getAddress()[Offset] = TruncOffset;
     299           2 :     break;
     300             :   }
     301          83 :   case ELF::R_X86_64_PC32: {
     302          83 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     303          83 :     int64_t RealOffset = Value + Addend - FinalAddress;
     304             :     assert(isInt<32>(RealOffset));
     305             :     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
     306          83 :     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
     307             :         TruncOffset;
     308          83 :     break;
     309             :   }
     310         325 :   case ELF::R_X86_64_PC64: {
     311         325 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     312         325 :     int64_t RealOffset = Value + Addend - FinalAddress;
     313         325 :     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
     314             :         RealOffset;
     315         325 :     break;
     316             :   }
     317             :   }
     318         891 : }
     319             : 
     320           0 : void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
     321             :                                           uint64_t Offset, uint32_t Value,
     322             :                                           uint32_t Type, int32_t Addend) {
     323           0 :   switch (Type) {
     324           0 :   case ELF::R_386_32: {
     325           0 :     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
     326             :         Value + Addend;
     327           0 :     break;
     328             :   }
     329             :   // Handle R_386_PLT32 like R_386_PC32 since it should be able to
     330             :   // reach any 32 bit address.
     331           0 :   case ELF::R_386_PLT32:
     332             :   case ELF::R_386_PC32: {
     333             :     uint32_t FinalAddress =
     334           0 :         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
     335           0 :     uint32_t RealOffset = Value + Addend - FinalAddress;
     336           0 :     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
     337             :         RealOffset;
     338           0 :     break;
     339             :   }
     340           0 :   default:
     341             :     // There are other relocation types, but it appears these are the
     342             :     // only ones currently used by the LLVM ELF object writer
     343           0 :     llvm_unreachable("Relocation type not implemented yet!");
     344             :     break;
     345             :   }
     346           0 : }
     347             : 
     348          34 : void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
     349             :                                               uint64_t Offset, uint64_t Value,
     350             :                                               uint32_t Type, int64_t Addend) {
     351             :   uint32_t *TargetPtr =
     352          34 :       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
     353          34 :   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     354             :   // Data should use target endian. Code should always use little endian.
     355          34 :   bool isBE = Arch == Triple::aarch64_be;
     356             : 
     357             :   LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
     358             :                     << format("%llx", Section.getAddressWithOffset(Offset))
     359             :                     << " FinalAddress: 0x" << format("%llx", FinalAddress)
     360             :                     << " Value: 0x" << format("%llx", Value) << " Type: 0x"
     361             :                     << format("%x", Type) << " Addend: 0x"
     362             :                     << format("%llx", Addend) << "\n");
     363             : 
     364          34 :   switch (Type) {
     365           0 :   default:
     366           0 :     llvm_unreachable("Relocation type not implemented yet!");
     367             :     break;
     368           1 :   case ELF::R_AARCH64_ABS16: {
     369           1 :     uint64_t Result = Value + Addend;
     370             :     assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
     371           1 :     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
     372             :     break;
     373             :   }
     374           1 :   case ELF::R_AARCH64_ABS32: {
     375           1 :     uint64_t Result = Value + Addend;
     376             :     assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
     377           1 :     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
     378             :     break;
     379             :   }
     380           6 :   case ELF::R_AARCH64_ABS64:
     381           6 :     write(isBE, TargetPtr, Value + Addend);
     382             :     break;
     383           2 :   case ELF::R_AARCH64_PREL32: {
     384           2 :     uint64_t Result = Value + Addend - FinalAddress;
     385             :     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
     386             :            static_cast<int64_t>(Result) <= UINT32_MAX);
     387           2 :     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
     388             :     break;
     389             :   }
     390           2 :   case ELF::R_AARCH64_PREL64:
     391           2 :     write(isBE, TargetPtr, Value + Addend - FinalAddress);
     392             :     break;
     393           1 :   case ELF::R_AARCH64_CALL26: // fallthrough
     394             :   case ELF::R_AARCH64_JUMP26: {
     395             :     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
     396             :     // calculation.
     397           1 :     uint64_t BranchImm = Value + Addend - FinalAddress;
     398             : 
     399             :     // "Check that -2^27 <= result < 2^27".
     400             :     assert(isInt<28>(BranchImm));
     401           1 :     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
     402             :     break;
     403             :   }
     404           2 :   case ELF::R_AARCH64_MOVW_UABS_G3:
     405           2 :     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
     406             :     break;
     407           2 :   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
     408           2 :     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
     409             :     break;
     410           2 :   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
     411           2 :     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
     412             :     break;
     413           2 :   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
     414           2 :     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
     415             :     break;
     416           4 :   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
     417             :     // Operation: Page(S+A) - Page(P)
     418           4 :     uint64_t Result =
     419           4 :         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
     420             : 
     421             :     // Check that -2^32 <= X < 2^32
     422             :     assert(isInt<33>(Result) && "overflow check failed for relocation");
     423             : 
     424             :     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
     425             :     // from bits 32:12 of X.
     426           4 :     write32AArch64Addr(TargetPtr, Result >> 12);
     427             :     break;
     428             :   }
     429           1 :   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
     430             :     // Operation: S + A
     431             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     432             :     // from bits 11:0 of X
     433           1 :     or32AArch64Imm(TargetPtr, Value + Addend);
     434             :     break;
     435           1 :   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
     436             :     // Operation: S + A
     437             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     438             :     // from bits 11:0 of X
     439           1 :     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
     440             :     break;
     441           1 :   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
     442             :     // Operation: S + A
     443             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     444             :     // from bits 11:1 of X
     445           1 :     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
     446             :     break;
     447           1 :   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
     448             :     // Operation: S + A
     449             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     450             :     // from bits 11:2 of X
     451           1 :     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
     452             :     break;
     453           4 :   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
     454             :     // Operation: S + A
     455             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     456             :     // from bits 11:3 of X
     457           4 :     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
     458             :     break;
     459           1 :   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
     460             :     // Operation: S + A
     461             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     462             :     // from bits 11:4 of X
     463           1 :     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
     464             :     break;
     465             :   }
     466          34 : }
     467             : 
     468           2 : void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
     469             :                                           uint64_t Offset, uint32_t Value,
     470             :                                           uint32_t Type, int32_t Addend) {
     471             :   // TODO: Add Thumb relocations.
     472             :   uint32_t *TargetPtr =
     473           2 :       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
     474           4 :   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
     475           2 :   Value += Addend;
     476             : 
     477             :   LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
     478             :                     << Section.getAddressWithOffset(Offset)
     479             :                     << " FinalAddress: " << format("%p", FinalAddress)
     480             :                     << " Value: " << format("%x", Value)
     481             :                     << " Type: " << format("%x", Type)
     482             :                     << " Addend: " << format("%x", Addend) << "\n");
     483             : 
     484           2 :   switch (Type) {
     485           0 :   default:
     486           0 :     llvm_unreachable("Not implemented relocation type!");
     487             : 
     488             :   case ELF::R_ARM_NONE:
     489             :     break;
     490             :     // Write a 31bit signed offset
     491             :   case ELF::R_ARM_PREL31:
     492           1 :     support::ulittle32_t::ref{TargetPtr} =
     493           1 :         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
     494           1 :         ((Value - FinalAddress) & ~0x80000000);
     495           1 :     break;
     496             :   case ELF::R_ARM_TARGET1:
     497             :   case ELF::R_ARM_ABS32:
     498             :     support::ulittle32_t::ref{TargetPtr} = Value;
     499           0 :     break;
     500             :     // Write first 16 bit of 32 bit value to the mov instruction.
     501             :     // Last 4 bit should be shifted.
     502           0 :   case ELF::R_ARM_MOVW_ABS_NC:
     503             :   case ELF::R_ARM_MOVT_ABS:
     504           0 :     if (Type == ELF::R_ARM_MOVW_ABS_NC)
     505           0 :       Value = Value & 0xFFFF;
     506           0 :     else if (Type == ELF::R_ARM_MOVT_ABS)
     507           0 :       Value = (Value >> 16) & 0xFFFF;
     508           0 :     support::ulittle32_t::ref{TargetPtr} =
     509           0 :         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
     510           0 :         (((Value >> 12) & 0xF) << 16);
     511           0 :     break;
     512             :     // Write 24 bit relative value to the branch instruction.
     513           0 :   case ELF::R_ARM_PC24: // Fall through.
     514             :   case ELF::R_ARM_CALL: // Fall through.
     515             :   case ELF::R_ARM_JUMP24:
     516           0 :     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
     517           0 :     RelValue = (RelValue & 0x03FFFFFC) >> 2;
     518             :     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
     519           0 :     support::ulittle32_t::ref{TargetPtr} =
     520           0 :         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
     521           0 :     break;
     522             :   }
     523           2 : }
     524             : 
     525         320 : void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
     526         320 :   if (Arch == Triple::UnknownArch ||
     527         640 :       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
     528         300 :     IsMipsO32ABI = false;
     529         300 :     IsMipsN32ABI = false;
     530         300 :     IsMipsN64ABI = false;
     531         300 :     return;
     532             :   }
     533             :   if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
     534          20 :     unsigned AbiVariant = E->getPlatformFlags();
     535          20 :     IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
     536          20 :     IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
     537             :   }
     538          40 :   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
     539             : }
     540             : 
     541             : // Return the .TOC. section and offset.
     542          14 : Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
     543             :                                           ObjSectionToIDMap &LocalSections,
     544             :                                           RelocationValueRef &Rel) {
     545             :   // Set a default SectionID in case we do not find a TOC section below.
     546             :   // This may happen for references to TOC base base (sym@toc, .odp
     547             :   // relocation) without a .toc directive.  In this case just use the
     548             :   // first section (which is usually the .odp) since the code won't
     549             :   // reference the .toc base directly.
     550          14 :   Rel.SymbolName = nullptr;
     551          14 :   Rel.SectionID = 0;
     552             : 
     553             :   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
     554             :   // order. The TOC starts where the first of these sections starts.
     555         129 :   for (auto &Section: Obj.sections()) {
     556          82 :     StringRef SectionName;
     557          82 :     if (auto EC = Section.getName(SectionName))
     558           0 :       return errorCodeToError(EC);
     559             : 
     560             :     if (SectionName == ".got"
     561             :         || SectionName == ".toc"
     562             :         || SectionName == ".tocbss"
     563             :         || SectionName == ".plt") {
     564           9 :       if (auto SectionIDOrErr =
     565           9 :             findOrEmitSection(Obj, Section, false, LocalSections))
     566           9 :         Rel.SectionID = *SectionIDOrErr;
     567             :       else
     568             :         return SectionIDOrErr.takeError();
     569           9 :       break;
     570             :     }
     571             :   }
     572             : 
     573             :   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
     574             :   // thus permitting a full 64 Kbytes segment.
     575          14 :   Rel.Addend = 0x8000;
     576             : 
     577             :   return Error::success();
     578             : }
     579             : 
     580             : // Returns the sections and offset associated with the ODP entry referenced
     581             : // by Symbol.
     582           0 : Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
     583             :                                           ObjSectionToIDMap &LocalSections,
     584             :                                           RelocationValueRef &Rel) {
     585             :   // Get the ELF symbol value (st_value) to compare with Relocation offset in
     586             :   // .opd entries
     587           0 :   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
     588           0 :        si != se; ++si) {
     589           0 :     section_iterator RelSecI = si->getRelocatedSection();
     590           0 :     if (RelSecI == Obj.section_end())
     591           0 :       continue;
     592             : 
     593           0 :     StringRef RelSectionName;
     594           0 :     if (auto EC = RelSecI->getName(RelSectionName))
     595           0 :       return errorCodeToError(EC);
     596             : 
     597           0 :     if (RelSectionName != ".opd")
     598           0 :       continue;
     599             : 
     600           0 :     for (elf_relocation_iterator i = si->relocation_begin(),
     601           0 :                                  e = si->relocation_end();
     602           0 :          i != e;) {
     603             :       // The R_PPC64_ADDR64 relocation indicates the first field
     604             :       // of a .opd entry
     605             :       uint64_t TypeFunc = i->getType();
     606           0 :       if (TypeFunc != ELF::R_PPC64_ADDR64) {
     607             :         ++i;
     608           0 :         continue;
     609             :       }
     610             : 
     611             :       uint64_t TargetSymbolOffset = i->getOffset();
     612           0 :       symbol_iterator TargetSymbol = i->getSymbol();
     613             :       int64_t Addend;
     614           0 :       if (auto AddendOrErr = i->getAddend())
     615           0 :         Addend = *AddendOrErr;
     616             :       else
     617             :         return AddendOrErr.takeError();
     618             : 
     619             :       ++i;
     620           0 :       if (i == e)
     621             :         break;
     622             : 
     623             :       // Just check if following relocation is a R_PPC64_TOC
     624             :       uint64_t TypeTOC = i->getType();
     625           0 :       if (TypeTOC != ELF::R_PPC64_TOC)
     626           0 :         continue;
     627             : 
     628             :       // Finally compares the Symbol value and the target symbol offset
     629             :       // to check if this .opd entry refers to the symbol the relocation
     630             :       // points to.
     631           0 :       if (Rel.Addend != (int64_t)TargetSymbolOffset)
     632           0 :         continue;
     633             : 
     634           0 :       section_iterator TSI = Obj.section_end();
     635           0 :       if (auto TSIOrErr = TargetSymbol->getSection())
     636           0 :         TSI = *TSIOrErr;
     637             :       else
     638             :         return TSIOrErr.takeError();
     639             :       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
     640             : 
     641             :       bool IsCode = TSI->isText();
     642           0 :       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
     643           0 :                                                   LocalSections))
     644           0 :         Rel.SectionID = *SectionIDOrErr;
     645             :       else
     646             :         return SectionIDOrErr.takeError();
     647           0 :       Rel.Addend = (intptr_t)Addend;
     648             :       return Error::success();
     649             :     }
     650             :   }
     651           0 :   llvm_unreachable("Attempting to get address of ODP entry!");
     652             : }
     653             : 
     654             : // Relocation masks following the #lo(value), #hi(value), #ha(value),
     655             : // #higher(value), #highera(value), #highest(value), and #highesta(value)
     656             : // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
     657             : // document.
     658             : 
     659           9 : static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
     660             : 
     661             : static inline uint16_t applyPPChi(uint64_t value) {
     662           3 :   return (value >> 16) & 0xffff;
     663             : }
     664             : 
     665             : static inline uint16_t applyPPCha (uint64_t value) {
     666           6 :   return ((value + 0x8000) >> 16) & 0xffff;
     667             : }
     668             : 
     669             : static inline uint16_t applyPPChigher(uint64_t value) {
     670           3 :   return (value >> 32) & 0xffff;
     671             : }
     672             : 
     673             : static inline uint16_t applyPPChighera (uint64_t value) {
     674           0 :   return ((value + 0x8000) >> 32) & 0xffff;
     675             : }
     676             : 
     677             : static inline uint16_t applyPPChighest(uint64_t value) {
     678           3 :   return (value >> 48) & 0xffff;
     679             : }
     680             : 
     681             : static inline uint16_t applyPPChighesta (uint64_t value) {
     682           0 :   return ((value + 0x8000) >> 48) & 0xffff;
     683             : }
     684             : 
     685           2 : void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
     686             :                                             uint64_t Offset, uint64_t Value,
     687             :                                             uint32_t Type, int64_t Addend) {
     688           2 :   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
     689           2 :   switch (Type) {
     690           0 :   default:
     691           0 :     llvm_unreachable("Relocation type not implemented yet!");
     692             :     break;
     693           1 :   case ELF::R_PPC_ADDR16_LO:
     694           2 :     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
     695             :     break;
     696           0 :   case ELF::R_PPC_ADDR16_HI:
     697           0 :     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
     698             :     break;
     699           1 :   case ELF::R_PPC_ADDR16_HA:
     700           2 :     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
     701             :     break;
     702             :   }
     703           2 : }
     704             : 
     705          38 : void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
     706             :                                             uint64_t Offset, uint64_t Value,
     707             :                                             uint32_t Type, int64_t Addend) {
     708          38 :   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
     709          38 :   switch (Type) {
     710           0 :   default:
     711           0 :     llvm_unreachable("Relocation type not implemented yet!");
     712             :     break;
     713           0 :   case ELF::R_PPC64_ADDR16:
     714           0 :     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
     715             :     break;
     716           0 :   case ELF::R_PPC64_ADDR16_DS:
     717           0 :     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
     718             :     break;
     719           3 :   case ELF::R_PPC64_ADDR16_LO:
     720           6 :     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
     721             :     break;
     722           3 :   case ELF::R_PPC64_ADDR16_LO_DS:
     723           6 :     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
     724             :     break;
     725           3 :   case ELF::R_PPC64_ADDR16_HI:
     726             :   case ELF::R_PPC64_ADDR16_HIGH:
     727           6 :     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
     728             :     break;
     729           3 :   case ELF::R_PPC64_ADDR16_HA:
     730             :   case ELF::R_PPC64_ADDR16_HIGHA:
     731           6 :     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
     732             :     break;
     733           3 :   case ELF::R_PPC64_ADDR16_HIGHER:
     734           6 :     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
     735             :     break;
     736           0 :   case ELF::R_PPC64_ADDR16_HIGHERA:
     737           0 :     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
     738             :     break;
     739           3 :   case ELF::R_PPC64_ADDR16_HIGHEST:
     740           6 :     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
     741             :     break;
     742           0 :   case ELF::R_PPC64_ADDR16_HIGHESTA:
     743           0 :     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
     744             :     break;
     745           0 :   case ELF::R_PPC64_ADDR14: {
     746             :     assert(((Value + Addend) & 3) == 0);
     747             :     // Preserve the AA/LK bits in the branch instruction
     748           0 :     uint8_t aalk = *(LocalAddress + 3);
     749           0 :     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
     750             :   } break;
     751           2 :   case ELF::R_PPC64_REL16_LO: {
     752           2 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     753           2 :     uint64_t Delta = Value - FinalAddress + Addend;
     754           2 :     writeInt16BE(LocalAddress, applyPPClo(Delta));
     755             :   } break;
     756           0 :   case ELF::R_PPC64_REL16_HI: {
     757           0 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     758           0 :     uint64_t Delta = Value - FinalAddress + Addend;
     759           0 :     writeInt16BE(LocalAddress, applyPPChi(Delta));
     760             :   } break;
     761           2 :   case ELF::R_PPC64_REL16_HA: {
     762           2 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     763           2 :     uint64_t Delta = Value - FinalAddress + Addend;
     764           2 :     writeInt16BE(LocalAddress, applyPPCha(Delta));
     765             :   } break;
     766           0 :   case ELF::R_PPC64_ADDR32: {
     767           0 :     int64_t Result = static_cast<int64_t>(Value + Addend);
     768           0 :     if (SignExtend64<32>(Result) != Result)
     769           0 :       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
     770           0 :     writeInt32BE(LocalAddress, Result);
     771             :   } break;
     772           5 :   case ELF::R_PPC64_REL24: {
     773           5 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     774           5 :     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
     775           5 :     if (SignExtend64<26>(delta) != delta)
     776           0 :       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
     777             :     // We preserve bits other than LI field, i.e. PO and AA/LK fields.
     778           5 :     uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
     779           5 :     writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
     780             :   } break;
     781           4 :   case ELF::R_PPC64_REL32: {
     782           4 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     783           4 :     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
     784           4 :     if (SignExtend64<32>(delta) != delta)
     785           0 :       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
     786           4 :     writeInt32BE(LocalAddress, delta);
     787             :   } break;
     788           4 :   case ELF::R_PPC64_REL64: {
     789           4 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     790           4 :     uint64_t Delta = Value - FinalAddress + Addend;
     791           4 :     writeInt64BE(LocalAddress, Delta);
     792             :   } break;
     793           3 :   case ELF::R_PPC64_ADDR64:
     794           3 :     writeInt64BE(LocalAddress, Value + Addend);
     795             :     break;
     796             :   }
     797          38 : }
     798             : 
     799           2 : void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
     800             :                                               uint64_t Offset, uint64_t Value,
     801             :                                               uint32_t Type, int64_t Addend) {
     802           2 :   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
     803           2 :   switch (Type) {
     804           0 :   default:
     805           0 :     llvm_unreachable("Relocation type not implemented yet!");
     806             :     break;
     807           0 :   case ELF::R_390_PC16DBL:
     808             :   case ELF::R_390_PLT16DBL: {
     809           0 :     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
     810             :     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
     811           0 :     writeInt16BE(LocalAddress, Delta / 2);
     812             :     break;
     813             :   }
     814           0 :   case ELF::R_390_PC32DBL:
     815             :   case ELF::R_390_PLT32DBL: {
     816           0 :     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
     817             :     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
     818           0 :     writeInt32BE(LocalAddress, Delta / 2);
     819             :     break;
     820             :   }
     821           0 :   case ELF::R_390_PC16: {
     822           0 :     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
     823             :     assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
     824           0 :     writeInt16BE(LocalAddress, Delta);
     825             :     break;
     826             :   }
     827           1 :   case ELF::R_390_PC32: {
     828           2 :     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
     829             :     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
     830           1 :     writeInt32BE(LocalAddress, Delta);
     831             :     break;
     832             :   }
     833           1 :   case ELF::R_390_PC64: {
     834           2 :     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
     835           1 :     writeInt64BE(LocalAddress, Delta);
     836             :     break;
     837             :   }
     838           0 :   case ELF::R_390_8:
     839           0 :     *LocalAddress = (uint8_t)(Value + Addend);
     840           0 :     break;
     841           0 :   case ELF::R_390_16:
     842           0 :     writeInt16BE(LocalAddress, Value + Addend);
     843             :     break;
     844           0 :   case ELF::R_390_32:
     845           0 :     writeInt32BE(LocalAddress, Value + Addend);
     846             :     break;
     847           0 :   case ELF::R_390_64:
     848           0 :     writeInt64BE(LocalAddress, Value + Addend);
     849             :     break;
     850             :   }
     851           2 : }
     852             : 
     853           0 : void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
     854             :                                           uint64_t Offset, uint64_t Value,
     855             :                                           uint32_t Type, int64_t Addend) {
     856           0 :   bool isBE = Arch == Triple::bpfeb;
     857             : 
     858           0 :   switch (Type) {
     859           0 :   default:
     860           0 :     llvm_unreachable("Relocation type not implemented yet!");
     861             :     break;
     862             :   case ELF::R_BPF_NONE:
     863             :     break;
     864           0 :   case ELF::R_BPF_64_64: {
     865           0 :     write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
     866             :     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
     867             :                       << format("%p\n", Section.getAddressWithOffset(Offset)));
     868             :     break;
     869             :   }
     870           0 :   case ELF::R_BPF_64_32: {
     871           0 :     Value += Addend;
     872             :     assert(Value <= UINT32_MAX);
     873           0 :     write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
     874             :     LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
     875             :                       << format("%p\n", Section.getAddressWithOffset(Offset)));
     876             :     break;
     877             :   }
     878             :   }
     879           0 : }
     880             : 
     881             : // The target location for the relocation is described by RE.SectionID and
     882             : // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
     883             : // SectionEntry has three members describing its location.
     884             : // SectionEntry::Address is the address at which the section has been loaded
     885             : // into memory in the current (host) process.  SectionEntry::LoadAddress is the
     886             : // address that the section will have in the target process.
     887             : // SectionEntry::ObjAddress is the address of the bits for this section in the
     888             : // original emitted object image (also in the current address space).
     889             : //
     890             : // Relocations will be applied as if the section were loaded at
     891             : // SectionEntry::LoadAddress, but they will be applied at an address based
     892             : // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
     893             : // Target memory contents if they are required for value calculations.
     894             : //
     895             : // The Value parameter here is the load address of the symbol for the
     896             : // relocation to be applied.  For relocations which refer to symbols in the
     897             : // current object Value will be the LoadAddress of the section in which
     898             : // the symbol resides (RE.Addend provides additional information about the
     899             : // symbol location).  For external symbols, Value will be the address of the
     900             : // symbol in the target address space.
     901         946 : void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
     902             :                                        uint64_t Value) {
     903         946 :   const SectionEntry &Section = Sections[RE.SectionID];
     904         946 :   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
     905        1892 :                            RE.SymOffset, RE.SectionID);
     906             : }
     907             : 
     908         969 : void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
     909             :                                        uint64_t Offset, uint64_t Value,
     910             :                                        uint32_t Type, int64_t Addend,
     911             :                                        uint64_t SymOffset, SID SectionID) {
     912         969 :   switch (Arch) {
     913         891 :   case Triple::x86_64:
     914         891 :     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
     915         891 :     break;
     916           0 :   case Triple::x86:
     917           0 :     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
     918             :                          (uint32_t)(Addend & 0xffffffffL));
     919           0 :     break;
     920          34 :   case Triple::aarch64:
     921             :   case Triple::aarch64_be:
     922          34 :     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
     923          34 :     break;
     924           2 :   case Triple::arm: // Fall through.
     925             :   case Triple::armeb:
     926             :   case Triple::thumb:
     927             :   case Triple::thumbeb:
     928           2 :     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
     929             :                          (uint32_t)(Addend & 0xffffffffL));
     930           2 :     break;
     931           2 :   case Triple::ppc:
     932           2 :     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
     933           2 :     break;
     934          38 :   case Triple::ppc64: // Fall through.
     935             :   case Triple::ppc64le:
     936          38 :     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
     937          38 :     break;
     938           2 :   case Triple::systemz:
     939           2 :     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
     940           2 :     break;
     941           0 :   case Triple::bpfel:
     942             :   case Triple::bpfeb:
     943           0 :     resolveBPFRelocation(Section, Offset, Value, Type, Addend);
     944           0 :     break;
     945           0 :   default:
     946           0 :     llvm_unreachable("Unsupported CPU type!");
     947             :   }
     948         969 : }
     949             : 
     950         395 : void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
     951         790 :   return (void *)(Sections[SectionID].getObjAddress() + Offset);
     952             : }
     953             : 
     954        1100 : void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
     955        1100 :   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
     956        1100 :   if (Value.SymbolName)
     957         444 :     addRelocationForSymbol(RE, Value.SymbolName);
     958             :   else
     959         878 :     addRelocationForSection(RE, Value.SectionID);
     960        1100 : }
     961             : 
     962           6 : uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
     963             :                                                  bool IsLocal) const {
     964           6 :   switch (RelType) {
     965           0 :   case ELF::R_MICROMIPS_GOT16:
     966           0 :     if (IsLocal)
     967             :       return ELF::R_MICROMIPS_LO16;
     968             :     break;
     969             :   case ELF::R_MICROMIPS_HI16:
     970             :     return ELF::R_MICROMIPS_LO16;
     971           0 :   case ELF::R_MIPS_GOT16:
     972           0 :     if (IsLocal)
     973             :       return ELF::R_MIPS_LO16;
     974             :     break;
     975           4 :   case ELF::R_MIPS_HI16:
     976           4 :     return ELF::R_MIPS_LO16;
     977           2 :   case ELF::R_MIPS_PCHI16:
     978           2 :     return ELF::R_MIPS_PCLO16;
     979             :   default:
     980             :     break;
     981             :   }
     982           0 :   return ELF::R_MIPS_NONE;
     983             : }
     984             : 
     985             : // Sometimes we don't need to create thunk for a branch.
     986             : // This typically happens when branch target is located
     987             : // in the same object file. In such case target is either
     988             : // a weak symbol or symbol in a different executable section.
     989             : // This function checks if branch target is located in the
     990             : // same object file and if distance between source and target
     991             : // fits R_AARCH64_CALL26 relocation. If both conditions are
     992             : // met, it emits direct jump to the target and returns true.
     993             : // Otherwise false is returned and thunk is created.
     994           1 : bool RuntimeDyldELF::resolveAArch64ShortBranch(
     995             :     unsigned SectionID, relocation_iterator RelI,
     996             :     const RelocationValueRef &Value) {
     997             :   uint64_t Address;
     998           1 :   if (Value.SymbolName) {
     999           0 :     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
    1000             : 
    1001             :     // Don't create direct branch for external symbols.
    1002           0 :     if (Loc == GlobalSymbolTable.end())
    1003             :       return false;
    1004             : 
    1005             :     const auto &SymInfo = Loc->second;
    1006           0 :     Address =
    1007           0 :         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
    1008           0 :             SymInfo.getOffset()));
    1009             :   } else {
    1010           2 :     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
    1011             :   }
    1012             :   uint64_t Offset = RelI->getOffset();
    1013           2 :   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
    1014             : 
    1015             :   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
    1016             :   // If distance between source and target is out of range then we should
    1017             :   // create thunk.
    1018           2 :   if (!isInt<28>(Address + Value.Addend - SourceAddress))
    1019             :     return false;
    1020             : 
    1021           2 :   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
    1022             :                     Value.Addend);
    1023             : 
    1024           1 :   return true;
    1025             : }
    1026             : 
    1027           1 : void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
    1028             :                                           const RelocationValueRef &Value,
    1029             :                                           relocation_iterator RelI,
    1030             :                                           StubMap &Stubs) {
    1031             : 
    1032             :   LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
    1033           1 :   SectionEntry &Section = Sections[SectionID];
    1034             : 
    1035             :   uint64_t Offset = RelI->getOffset();
    1036           1 :   unsigned RelType = RelI->getType();
    1037             :   // Look for an existing stub.
    1038             :   StubMap::const_iterator i = Stubs.find(Value);
    1039           1 :   if (i != Stubs.end()) {
    1040           0 :     resolveRelocation(Section, Offset,
    1041           0 :                       (uint64_t)Section.getAddressWithOffset(i->second),
    1042             :                       RelType, 0);
    1043             :     LLVM_DEBUG(dbgs() << " Stub function found\n");
    1044           1 :   } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
    1045             :     // Create a new stub function.
    1046             :     LLVM_DEBUG(dbgs() << " Create a new stub function\n");
    1047           0 :     Stubs[Value] = Section.getStubOffset();
    1048           0 :     uint8_t *StubTargetAddr = createStubFunction(
    1049           0 :         Section.getAddressWithOffset(Section.getStubOffset()));
    1050             : 
    1051           0 :     RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
    1052           0 :                               ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
    1053             :     RelocationEntry REmovk_g2(SectionID,
    1054           0 :                               StubTargetAddr - Section.getAddress() + 4,
    1055           0 :                               ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
    1056             :     RelocationEntry REmovk_g1(SectionID,
    1057           0 :                               StubTargetAddr - Section.getAddress() + 8,
    1058           0 :                               ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
    1059             :     RelocationEntry REmovk_g0(SectionID,
    1060           0 :                               StubTargetAddr - Section.getAddress() + 12,
    1061           0 :                               ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
    1062             : 
    1063           0 :     if (Value.SymbolName) {
    1064           0 :       addRelocationForSymbol(REmovz_g3, Value.SymbolName);
    1065           0 :       addRelocationForSymbol(REmovk_g2, Value.SymbolName);
    1066           0 :       addRelocationForSymbol(REmovk_g1, Value.SymbolName);
    1067           0 :       addRelocationForSymbol(REmovk_g0, Value.SymbolName);
    1068             :     } else {
    1069           0 :       addRelocationForSection(REmovz_g3, Value.SectionID);
    1070           0 :       addRelocationForSection(REmovk_g2, Value.SectionID);
    1071           0 :       addRelocationForSection(REmovk_g1, Value.SectionID);
    1072           0 :       addRelocationForSection(REmovk_g0, Value.SectionID);
    1073             :     }
    1074           0 :     resolveRelocation(Section, Offset,
    1075           0 :                       reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
    1076           0 :                           Section.getStubOffset())),
    1077             :                       RelType, 0);
    1078           0 :     Section.advanceStubOffset(getMaxStubSize());
    1079             :   }
    1080           1 : }
    1081             : 
    1082             : Expected<relocation_iterator>
    1083        1205 : RuntimeDyldELF::processRelocationRef(
    1084             :     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
    1085             :     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
    1086             :   const auto &Obj = cast<ELFObjectFileBase>(O);
    1087             :   uint64_t RelType = RelI->getType();
    1088             :   int64_t Addend = 0;
    1089        2410 :   if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
    1090        1165 :     Addend = *AddendOrErr;
    1091             :   else
    1092          80 :     consumeError(AddendOrErr.takeError());
    1093        1205 :   elf_symbol_iterator Symbol = RelI->getSymbol();
    1094             : 
    1095             :   // Obtain the symbol name which is referenced in the relocation
    1096             :   StringRef TargetName;
    1097        2410 :   if (Symbol != Obj.symbol_end()) {
    1098        1205 :     if (auto TargetNameOrErr = Symbol->getName())
    1099        1205 :       TargetName = *TargetNameOrErr;
    1100             :     else
    1101             :       return TargetNameOrErr.takeError();
    1102             :   }
    1103             :   LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
    1104             :                     << " TargetName: " << TargetName << "\n");
    1105             :   RelocationValueRef Value;
    1106             :   // First search for the symbol in the local symbol table
    1107             :   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
    1108             : 
    1109             :   // Search for the symbol in the global symbol table
    1110        1205 :   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
    1111        2410 :   if (Symbol != Obj.symbol_end()) {
    1112        3615 :     gsi = GlobalSymbolTable.find(TargetName.data());
    1113             :     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
    1114        1205 :     if (!SymTypeOrErr) {
    1115             :       std::string Buf;
    1116             :       raw_string_ostream OS(Buf);
    1117           0 :       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
    1118             :       OS.flush();
    1119           0 :       report_fatal_error(Buf);
    1120             :     }
    1121        1205 :     SymType = *SymTypeOrErr;
    1122             :   }
    1123        2410 :   if (gsi != GlobalSymbolTable.end()) {
    1124             :     const auto &SymInfo = gsi->second;
    1125         271 :     Value.SectionID = SymInfo.getSectionID();
    1126         271 :     Value.Offset = SymInfo.getOffset();
    1127         271 :     Value.Addend = SymInfo.getOffset() + Addend;
    1128             :   } else {
    1129         934 :     switch (SymType) {
    1130             :     case SymbolRef::ST_Debug: {
    1131             :       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
    1132             :       // and can be changed by another developers. Maybe best way is add
    1133             :       // a new symbol type ST_Section to SymbolRef and use it.
    1134             :       auto SectionOrErr = Symbol->getSection();
    1135         667 :       if (!SectionOrErr) {
    1136             :         std::string Buf;
    1137             :         raw_string_ostream OS(Buf);
    1138           0 :         logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
    1139             :         OS.flush();
    1140           0 :         report_fatal_error(Buf);
    1141             :       }
    1142         667 :       section_iterator si = *SectionOrErr;
    1143        1334 :       if (si == Obj.section_end())
    1144           0 :         llvm_unreachable("Symbol section not found, bad object file format!");
    1145             :       LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
    1146             :       bool isCode = si->isText();
    1147         667 :       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
    1148         667 :                                                   ObjSectionToID))
    1149         667 :         Value.SectionID = *SectionIDOrErr;
    1150             :       else
    1151             :         return SectionIDOrErr.takeError();
    1152         667 :       Value.Addend = Addend;
    1153             :       break;
    1154             :     }
    1155             :     case SymbolRef::ST_Data:
    1156             :     case SymbolRef::ST_Function:
    1157             :     case SymbolRef::ST_Unknown: {
    1158         267 :       Value.SymbolName = TargetName.data();
    1159         267 :       Value.Addend = Addend;
    1160             : 
    1161             :       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
    1162             :       // will manifest here as a NULL symbol name.
    1163             :       // We can set this as a valid (but empty) symbol name, and rely
    1164             :       // on addRelocationForSymbol to handle this.
    1165         267 :       if (!Value.SymbolName)
    1166           0 :         Value.SymbolName = "";
    1167             :       break;
    1168             :     }
    1169           0 :     default:
    1170           0 :       llvm_unreachable("Unresolved symbol type!");
    1171             :       break;
    1172             :     }
    1173             :   }
    1174             : 
    1175             :   uint64_t Offset = RelI->getOffset();
    1176             : 
    1177             :   LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
    1178             :                     << "\n");
    1179        1205 :   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
    1180          31 :     if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
    1181           1 :       resolveAArch64Branch(SectionID, Value, RelI, Stubs);
    1182          30 :     } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
    1183             :       // Craete new GOT entry or find existing one. If GOT entry is
    1184             :       // to be created, then we also emit ABS64 relocation for it.
    1185           3 :       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
    1186           3 :       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
    1187             :                                  ELF::R_AARCH64_ADR_PREL_PG_HI21);
    1188             : 
    1189          27 :     } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
    1190           3 :       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
    1191           3 :       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
    1192             :                                  ELF::R_AARCH64_LDST64_ABS_LO12_NC);
    1193             :     } else {
    1194          24 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1195             :     }
    1196        1174 :   } else if (Arch == Triple::arm) {
    1197           2 :     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
    1198             :       RelType == ELF::R_ARM_JUMP24) {
    1199             :       // This is an ARM branch relocation, need to use a stub function.
    1200             :       LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
    1201           0 :       SectionEntry &Section = Sections[SectionID];
    1202             : 
    1203             :       // Look for an existing stub.
    1204             :       StubMap::const_iterator i = Stubs.find(Value);
    1205           0 :       if (i != Stubs.end()) {
    1206           0 :         resolveRelocation(
    1207             :             Section, Offset,
    1208           0 :             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
    1209             :             RelType, 0);
    1210             :         LLVM_DEBUG(dbgs() << " Stub function found\n");
    1211             :       } else {
    1212             :         // Create a new stub function.
    1213             :         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
    1214           0 :         Stubs[Value] = Section.getStubOffset();
    1215           0 :         uint8_t *StubTargetAddr = createStubFunction(
    1216           0 :             Section.getAddressWithOffset(Section.getStubOffset()));
    1217           0 :         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
    1218           0 :                            ELF::R_ARM_ABS32, Value.Addend);
    1219           0 :         if (Value.SymbolName)
    1220           0 :           addRelocationForSymbol(RE, Value.SymbolName);
    1221             :         else
    1222           0 :           addRelocationForSection(RE, Value.SectionID);
    1223             : 
    1224           0 :         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
    1225           0 :                                                Section.getAddressWithOffset(
    1226           0 :                                                    Section.getStubOffset())),
    1227             :                           RelType, 0);
    1228           0 :         Section.advanceStubOffset(getMaxStubSize());
    1229             :       }
    1230             :     } else {
    1231             :       uint32_t *Placeholder =
    1232           2 :         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
    1233           2 :       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
    1234             :           RelType == ELF::R_ARM_ABS32) {
    1235           1 :         Value.Addend += *Placeholder;
    1236           1 :       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
    1237             :         // See ELF for ARM documentation
    1238           0 :         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
    1239             :       }
    1240           2 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1241             :     }
    1242        1172 :   } else if (IsMipsO32ABI) {
    1243             :     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
    1244          38 :         computePlaceholderAddress(SectionID, Offset));
    1245          38 :     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
    1246          38 :     if (RelType == ELF::R_MIPS_26) {
    1247             :       // This is an Mips branch relocation, need to use a stub function.
    1248             :       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
    1249           2 :       SectionEntry &Section = Sections[SectionID];
    1250             : 
    1251             :       // Extract the addend from the instruction.
    1252             :       // We shift up by two since the Value will be down shifted again
    1253             :       // when applying the relocation.
    1254           2 :       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
    1255             : 
    1256           2 :       Value.Addend += Addend;
    1257             : 
    1258             :       //  Look up for existing stub.
    1259             :       StubMap::const_iterator i = Stubs.find(Value);
    1260           2 :       if (i != Stubs.end()) {
    1261           0 :         RelocationEntry RE(SectionID, Offset, RelType, i->second);
    1262           0 :         addRelocationForSection(RE, SectionID);
    1263             :         LLVM_DEBUG(dbgs() << " Stub function found\n");
    1264             :       } else {
    1265             :         // Create a new stub function.
    1266             :         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
    1267           2 :         Stubs[Value] = Section.getStubOffset();
    1268             : 
    1269           2 :         unsigned AbiVariant = Obj.getPlatformFlags();
    1270             : 
    1271           2 :         uint8_t *StubTargetAddr = createStubFunction(
    1272           4 :             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
    1273             : 
    1274             :         // Creating Hi and Lo relocations for the filled stub instructions.
    1275           2 :         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
    1276           4 :                              ELF::R_MIPS_HI16, Value.Addend);
    1277             :         RelocationEntry RELo(SectionID,
    1278           2 :                              StubTargetAddr - Section.getAddress() + 4,
    1279           2 :                              ELF::R_MIPS_LO16, Value.Addend);
    1280             : 
    1281           2 :         if (Value.SymbolName) {
    1282           2 :           addRelocationForSymbol(REHi, Value.SymbolName);
    1283           4 :           addRelocationForSymbol(RELo, Value.SymbolName);
    1284             :         } else {
    1285           0 :           addRelocationForSection(REHi, Value.SectionID);
    1286           0 :           addRelocationForSection(RELo, Value.SectionID);
    1287             :         }
    1288             : 
    1289           2 :         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
    1290           2 :         addRelocationForSection(RE, SectionID);
    1291           2 :         Section.advanceStubOffset(getMaxStubSize());
    1292             :       }
    1293          36 :     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
    1294           6 :       int64_t Addend = (Opcode & 0x0000ffff) << 16;
    1295           6 :       RelocationEntry RE(SectionID, Offset, RelType, Addend);
    1296          12 :       PendingRelocs.push_back(std::make_pair(Value, RE));
    1297          30 :     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
    1298          12 :       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
    1299          12 :       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
    1300             :         const RelocationValueRef &MatchingValue = I->first;
    1301           6 :         RelocationEntry &Reloc = I->second;
    1302           6 :         if (MatchingValue == Value &&
    1303          12 :             RelType == getMatchingLoRelocation(Reloc.RelType) &&
    1304           6 :             SectionID == Reloc.SectionID) {
    1305           6 :           Reloc.Addend += Addend;
    1306           6 :           if (Value.SymbolName)
    1307           4 :             addRelocationForSymbol(Reloc, Value.SymbolName);
    1308             :           else
    1309           2 :             addRelocationForSection(Reloc, Value.SectionID);
    1310             :           I = PendingRelocs.erase(I);
    1311             :         } else
    1312           0 :           ++I;
    1313             :       }
    1314           6 :       RelocationEntry RE(SectionID, Offset, RelType, Addend);
    1315           6 :       if (Value.SymbolName)
    1316           4 :         addRelocationForSymbol(RE, Value.SymbolName);
    1317             :       else
    1318           2 :         addRelocationForSection(RE, Value.SectionID);
    1319             :     } else {
    1320          24 :       if (RelType == ELF::R_MIPS_32)
    1321          12 :         Value.Addend += Opcode;
    1322          12 :       else if (RelType == ELF::R_MIPS_PC16)
    1323           2 :         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
    1324          10 :       else if (RelType == ELF::R_MIPS_PC19_S2)
    1325           2 :         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
    1326           8 :       else if (RelType == ELF::R_MIPS_PC21_S2)
    1327           2 :         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
    1328           6 :       else if (RelType == ELF::R_MIPS_PC26_S2)
    1329           2 :         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
    1330          24 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1331             :     }
    1332        1134 :   } else if (IsMipsN32ABI || IsMipsN64ABI) {
    1333          68 :     uint32_t r_type = RelType & 0xff;
    1334          68 :     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
    1335          68 :     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
    1336          60 :         || r_type == ELF::R_MIPS_GOT_DISP) {
    1337          12 :       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
    1338          24 :       if (i != GOTSymbolOffsets.end())
    1339           0 :         RE.SymOffset = i->second;
    1340             :       else {
    1341          12 :         RE.SymOffset = allocateGOTEntries(1);
    1342          12 :         GOTSymbolOffsets[TargetName] = RE.SymOffset;
    1343             :       }
    1344          12 :       if (Value.SymbolName)
    1345           0 :         addRelocationForSymbol(RE, Value.SymbolName);
    1346             :       else
    1347          12 :         addRelocationForSection(RE, Value.SectionID);
    1348          56 :     } else if (RelType == ELF::R_MIPS_26) {
    1349             :       // This is an Mips branch relocation, need to use a stub function.
    1350             :       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
    1351           4 :       SectionEntry &Section = Sections[SectionID];
    1352             : 
    1353             :       //  Look up for existing stub.
    1354             :       StubMap::const_iterator i = Stubs.find(Value);
    1355           4 :       if (i != Stubs.end()) {
    1356           0 :         RelocationEntry RE(SectionID, Offset, RelType, i->second);
    1357           0 :         addRelocationForSection(RE, SectionID);
    1358             :         LLVM_DEBUG(dbgs() << " Stub function found\n");
    1359             :       } else {
    1360             :         // Create a new stub function.
    1361             :         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
    1362           4 :         Stubs[Value] = Section.getStubOffset();
    1363             : 
    1364           4 :         unsigned AbiVariant = Obj.getPlatformFlags();
    1365             : 
    1366           8 :         uint8_t *StubTargetAddr = createStubFunction(
    1367           8 :             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
    1368             : 
    1369           4 :         if (IsMipsN32ABI) {
    1370             :           // Creating Hi and Lo relocations for the filled stub instructions.
    1371           2 :           RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
    1372           4 :                                ELF::R_MIPS_HI16, Value.Addend);
    1373             :           RelocationEntry RELo(SectionID,
    1374           2 :                                StubTargetAddr - Section.getAddress() + 4,
    1375           2 :                                ELF::R_MIPS_LO16, Value.Addend);
    1376           2 :           if (Value.SymbolName) {
    1377           2 :             addRelocationForSymbol(REHi, Value.SymbolName);
    1378           4 :             addRelocationForSymbol(RELo, Value.SymbolName);
    1379             :           } else {
    1380           0 :             addRelocationForSection(REHi, Value.SectionID);
    1381           0 :             addRelocationForSection(RELo, Value.SectionID);
    1382             :           }
    1383             :         } else {
    1384             :           // Creating Highest, Higher, Hi and Lo relocations for the filled stub
    1385             :           // instructions.
    1386             :           RelocationEntry REHighest(SectionID,
    1387           2 :                                     StubTargetAddr - Section.getAddress(),
    1388           4 :                                     ELF::R_MIPS_HIGHEST, Value.Addend);
    1389             :           RelocationEntry REHigher(SectionID,
    1390           2 :                                    StubTargetAddr - Section.getAddress() + 4,
    1391           2 :                                    ELF::R_MIPS_HIGHER, Value.Addend);
    1392             :           RelocationEntry REHi(SectionID,
    1393           2 :                                StubTargetAddr - Section.getAddress() + 12,
    1394           2 :                                ELF::R_MIPS_HI16, Value.Addend);
    1395             :           RelocationEntry RELo(SectionID,
    1396           2 :                                StubTargetAddr - Section.getAddress() + 20,
    1397           2 :                                ELF::R_MIPS_LO16, Value.Addend);
    1398           2 :           if (Value.SymbolName) {
    1399           2 :             addRelocationForSymbol(REHighest, Value.SymbolName);
    1400           4 :             addRelocationForSymbol(REHigher, Value.SymbolName);
    1401           4 :             addRelocationForSymbol(REHi, Value.SymbolName);
    1402           4 :             addRelocationForSymbol(RELo, Value.SymbolName);
    1403             :           } else {
    1404           0 :             addRelocationForSection(REHighest, Value.SectionID);
    1405           0 :             addRelocationForSection(REHigher, Value.SectionID);
    1406           0 :             addRelocationForSection(REHi, Value.SectionID);
    1407           0 :             addRelocationForSection(RELo, Value.SectionID);
    1408             :           }
    1409             :         }
    1410           4 :         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
    1411           4 :         addRelocationForSection(RE, SectionID);
    1412           4 :         Section.advanceStubOffset(getMaxStubSize());
    1413             :       }
    1414             :     } else {
    1415          52 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1416          68 :     }
    1417             :   
    1418        1066 :   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    1419          26 :     if (RelType == ELF::R_PPC64_REL24) {
    1420             :       // Determine ABI variant in use for this object.
    1421           5 :       unsigned AbiVariant = Obj.getPlatformFlags();
    1422           5 :       AbiVariant &= ELF::EF_PPC64_ABI;
    1423             :       // A PPC branch relocation will need a stub function if the target is
    1424             :       // an external symbol (either Value.SymbolName is set, or SymType is
    1425             :       // Symbol::ST_Unknown) or if the target address is not within the
    1426             :       // signed 24-bits branch address.
    1427           5 :       SectionEntry &Section = Sections[SectionID];
    1428           5 :       uint8_t *Target = Section.getAddressWithOffset(Offset);
    1429             :       bool RangeOverflow = false;
    1430           5 :       bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
    1431             :       if (!IsExtern) {
    1432           0 :         if (AbiVariant != 2) {
    1433             :           // In the ELFv1 ABI, a function call may point to the .opd entry,
    1434             :           // so the final symbol value is calculated based on the relocation
    1435             :           // values in the .opd section.
    1436           0 :           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
    1437             :             return std::move(Err);
    1438             :         } else {
    1439             :           // In the ELFv2 ABI, a function symbol may provide a local entry
    1440             :           // point, which must be used for direct calls.
    1441           0 :           if (Value.SectionID == SectionID){
    1442             :             uint8_t SymOther = Symbol->getOther();
    1443           0 :             Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
    1444             :           }
    1445             :         }
    1446             :         uint8_t *RelocTarget =
    1447           0 :             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
    1448           0 :         int64_t delta = static_cast<int64_t>(Target - RelocTarget);
    1449             :         // If it is within 26-bits branch range, just set the branch target
    1450           0 :         if (SignExtend64<26>(delta) != delta) {
    1451             :           RangeOverflow = true;
    1452           0 :         } else if ((AbiVariant != 2) ||
    1453             :                    (AbiVariant == 2  && Value.SectionID == SectionID)) {
    1454             :           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
    1455           0 :           addRelocationForSection(RE, Value.SectionID);
    1456             :         }
    1457             :       }
    1458           5 :       if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
    1459             :           RangeOverflow) {
    1460             :         // It is an external symbol (either Value.SymbolName is set, or
    1461             :         // SymType is SymbolRef::ST_Unknown) or out of range.
    1462             :         StubMap::const_iterator i = Stubs.find(Value);
    1463           5 :         if (i != Stubs.end()) {
    1464             :           // Symbol function stub already created, just relocate to it
    1465           2 :           resolveRelocation(Section, Offset,
    1466             :                             reinterpret_cast<uint64_t>(
    1467           2 :                                 Section.getAddressWithOffset(i->second)),
    1468             :                             RelType, 0);
    1469             :           LLVM_DEBUG(dbgs() << " Stub function found\n");
    1470             :         } else {
    1471             :           // Create a new stub function.
    1472             :           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
    1473           3 :           Stubs[Value] = Section.getStubOffset();
    1474           6 :           uint8_t *StubTargetAddr = createStubFunction(
    1475           3 :               Section.getAddressWithOffset(Section.getStubOffset()),
    1476           3 :               AbiVariant);
    1477           3 :           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
    1478           6 :                              ELF::R_PPC64_ADDR64, Value.Addend);
    1479             : 
    1480             :           // Generates the 64-bits address loads as exemplified in section
    1481             :           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
    1482             :           // apply to the low part of the instructions, so we have to update
    1483             :           // the offset according to the target endianness.
    1484             :           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
    1485           3 :           if (!IsTargetLittleEndian)
    1486           1 :             StubRelocOffset += 2;
    1487             : 
    1488             :           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
    1489             :                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
    1490             :           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
    1491           3 :                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
    1492             :           RelocationEntry REh(SectionID, StubRelocOffset + 12,
    1493           3 :                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
    1494             :           RelocationEntry REl(SectionID, StubRelocOffset + 16,
    1495           3 :                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
    1496             : 
    1497           3 :           if (Value.SymbolName) {
    1498           3 :             addRelocationForSymbol(REhst, Value.SymbolName);
    1499           6 :             addRelocationForSymbol(REhr, Value.SymbolName);
    1500           6 :             addRelocationForSymbol(REh, Value.SymbolName);
    1501           6 :             addRelocationForSymbol(REl, Value.SymbolName);
    1502             :           } else {
    1503           0 :             addRelocationForSection(REhst, Value.SectionID);
    1504           0 :             addRelocationForSection(REhr, Value.SectionID);
    1505           0 :             addRelocationForSection(REh, Value.SectionID);
    1506           0 :             addRelocationForSection(REl, Value.SectionID);
    1507             :           }
    1508             : 
    1509           3 :           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
    1510           3 :                                                  Section.getAddressWithOffset(
    1511           3 :                                                      Section.getStubOffset())),
    1512             :                             RelType, 0);
    1513           3 :           Section.advanceStubOffset(getMaxStubSize());
    1514             :         }
    1515           5 :         if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
    1516             :           // Restore the TOC for external calls
    1517           5 :           if (AbiVariant == 2)
    1518           5 :             writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
    1519             :           else
    1520           0 :             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
    1521             :         }
    1522             :       }
    1523          42 :     } else if (RelType == ELF::R_PPC64_TOC16 ||
    1524          21 :                RelType == ELF::R_PPC64_TOC16_DS ||
    1525          42 :                RelType == ELF::R_PPC64_TOC16_LO ||
    1526          21 :                RelType == ELF::R_PPC64_TOC16_LO_DS ||
    1527          18 :                RelType == ELF::R_PPC64_TOC16_HI ||
    1528             :                RelType == ELF::R_PPC64_TOC16_HA) {
    1529             :       // These relocations are supposed to subtract the TOC address from
    1530             :       // the final value.  This does not fit cleanly into the RuntimeDyld
    1531             :       // scheme, since there may be *two* sections involved in determining
    1532             :       // the relocation value (the section of the symbol referred to by the
    1533             :       // relocation, and the TOC section associated with the current module).
    1534             :       //
    1535             :       // Fortunately, these relocations are currently only ever generated
    1536             :       // referring to symbols that themselves reside in the TOC, which means
    1537             :       // that the two sections are actually the same.  Thus they cancel out
    1538             :       // and we can immediately resolve the relocation right now.
    1539           6 :       switch (RelType) {
    1540             :       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
    1541           0 :       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
    1542           0 :       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
    1543           3 :       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
    1544           0 :       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
    1545           3 :       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
    1546           0 :       default: llvm_unreachable("Wrong relocation type.");
    1547             :       }
    1548             : 
    1549             :       RelocationValueRef TOCValue;
    1550          12 :       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
    1551             :         return std::move(Err);
    1552           6 :       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
    1553           0 :         llvm_unreachable("Unsupported TOC relocation.");
    1554           6 :       Value.Addend -= TOCValue.Addend;
    1555          12 :       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
    1556             :     } else {
    1557             :       // There are two ways to refer to the TOC address directly: either
    1558             :       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
    1559             :       // ignored), or via any relocation that refers to the magic ".TOC."
    1560             :       // symbols (in which case the addend is respected).
    1561          15 :       if (RelType == ELF::R_PPC64_TOC) {
    1562             :         RelType = ELF::R_PPC64_ADDR64;
    1563           0 :         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
    1564             :           return std::move(Err);
    1565             :       } else if (TargetName == ".TOC.") {
    1566          16 :         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
    1567             :           return std::move(Err);
    1568           8 :         Value.Addend += Addend;
    1569             :       }
    1570             : 
    1571          15 :       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
    1572             : 
    1573          15 :       if (Value.SymbolName)
    1574           0 :         addRelocationForSymbol(RE, Value.SymbolName);
    1575             :       else
    1576          15 :         addRelocationForSection(RE, Value.SectionID);
    1577             :     }
    1578        1042 :   } else if (Arch == Triple::systemz &&
    1579           2 :              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
    1580             :     // Create function stubs for both PLT and GOT references, regardless of
    1581             :     // whether the GOT reference is to data or code.  The stub contains the
    1582             :     // full address of the symbol, as needed by GOT references, and the
    1583             :     // executable part only adds an overhead of 8 bytes.
    1584             :     //
    1585             :     // We could try to conserve space by allocating the code and data
    1586             :     // parts of the stub separately.  However, as things stand, we allocate
    1587             :     // a stub for every relocation, so using a GOT in JIT code should be
    1588             :     // no less space efficient than using an explicit constant pool.
    1589             :     LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
    1590           0 :     SectionEntry &Section = Sections[SectionID];
    1591             : 
    1592             :     // Look for an existing stub.
    1593             :     StubMap::const_iterator i = Stubs.find(Value);
    1594             :     uintptr_t StubAddress;
    1595           0 :     if (i != Stubs.end()) {
    1596           0 :       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
    1597             :       LLVM_DEBUG(dbgs() << " Stub function found\n");
    1598             :     } else {
    1599             :       // Create a new stub function.
    1600             :       LLVM_DEBUG(dbgs() << " Create a new stub function\n");
    1601             : 
    1602           0 :       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
    1603           0 :       uintptr_t StubAlignment = getStubAlignment();
    1604           0 :       StubAddress =
    1605           0 :           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
    1606           0 :           -StubAlignment;
    1607           0 :       unsigned StubOffset = StubAddress - BaseAddress;
    1608             : 
    1609           0 :       Stubs[Value] = StubOffset;
    1610           0 :       createStubFunction((uint8_t *)StubAddress);
    1611           0 :       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
    1612           0 :                          Value.Offset);
    1613           0 :       if (Value.SymbolName)
    1614           0 :         addRelocationForSymbol(RE, Value.SymbolName);
    1615             :       else
    1616           0 :         addRelocationForSection(RE, Value.SectionID);
    1617           0 :       Section.advanceStubOffset(getMaxStubSize());
    1618             :     }
    1619             : 
    1620           0 :     if (RelType == ELF::R_390_GOTENT)
    1621           0 :       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
    1622             :                         Addend);
    1623             :     else
    1624           0 :       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
    1625        1040 :   } else if (Arch == Triple::x86_64) {
    1626        1036 :     if (RelType == ELF::R_X86_64_PLT32) {
    1627             :       // The way the PLT relocations normally work is that the linker allocates
    1628             :       // the
    1629             :       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
    1630             :       // entry will then jump to an address provided by the GOT.  On first call,
    1631             :       // the
    1632             :       // GOT address will point back into PLT code that resolves the symbol. After
    1633             :       // the first call, the GOT entry points to the actual function.
    1634             :       //
    1635             :       // For local functions we're ignoring all of that here and just replacing
    1636             :       // the PLT32 relocation type with PC32, which will translate the relocation
    1637             :       // into a PC-relative call directly to the function. For external symbols we
    1638             :       // can't be sure the function will be within 2^32 bytes of the call site, so
    1639             :       // we need to create a stub, which calls into the GOT.  This case is
    1640             :       // equivalent to the usual PLT implementation except that we use the stub
    1641             :       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
    1642             :       // rather than allocating a PLT section.
    1643          16 :       if (Value.SymbolName) {
    1644             :         // This is a call to an external function.
    1645             :         // Look for an existing stub.
    1646          11 :         SectionEntry &Section = Sections[SectionID];
    1647             :         StubMap::const_iterator i = Stubs.find(Value);
    1648             :         uintptr_t StubAddress;
    1649          11 :         if (i != Stubs.end()) {
    1650           0 :           StubAddress = uintptr_t(Section.getAddress()) + i->second;
    1651             :           LLVM_DEBUG(dbgs() << " Stub function found\n");
    1652             :         } else {
    1653             :           // Create a new stub function (equivalent to a PLT entry).
    1654             :           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
    1655             : 
    1656          11 :           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
    1657          11 :           uintptr_t StubAlignment = getStubAlignment();
    1658          11 :           StubAddress =
    1659          11 :               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
    1660          11 :               -StubAlignment;
    1661          11 :           unsigned StubOffset = StubAddress - BaseAddress;
    1662          11 :           Stubs[Value] = StubOffset;
    1663          11 :           createStubFunction((uint8_t *)StubAddress);
    1664             : 
    1665             :           // Bump our stub offset counter
    1666          11 :           Section.advanceStubOffset(getMaxStubSize());
    1667             : 
    1668             :           // Allocate a GOT Entry
    1669          11 :           uint64_t GOTOffset = allocateGOTEntries(1);
    1670             : 
    1671             :           // The load of the GOT address has an addend of -4
    1672          11 :           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
    1673             :                                      ELF::R_X86_64_PC32);
    1674             : 
    1675             :           // Fill in the value of the symbol we're targeting into the GOT
    1676          33 :           addRelocationForSymbol(
    1677          22 :               computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
    1678             :               Value.SymbolName);
    1679             :         }
    1680             : 
    1681             :         // Make the target call a call into the stub table.
    1682          11 :         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
    1683             :                           Addend);
    1684             :       } else {
    1685             :         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
    1686           5 :                   Value.Offset);
    1687           5 :         addRelocationForSection(RE, Value.SectionID);
    1688             :       }
    1689        2040 :     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
    1690        2020 :                RelType == ELF::R_X86_64_GOTPCRELX ||
    1691             :                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
    1692          26 :       uint64_t GOTOffset = allocateGOTEntries(1);
    1693          26 :       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
    1694             :                                  ELF::R_X86_64_PC32);
    1695             : 
    1696             :       // Fill in the value of the symbol we're targeting into the GOT
    1697             :       RelocationEntry RE =
    1698          26 :           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
    1699          26 :       if (Value.SymbolName)
    1700           6 :         addRelocationForSymbol(RE, Value.SymbolName);
    1701             :       else
    1702          23 :         addRelocationForSection(RE, Value.SectionID);
    1703         994 :     } else if (RelType == ELF::R_X86_64_PC32) {
    1704          60 :       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
    1705          30 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1706         964 :     } else if (RelType == ELF::R_X86_64_PC64) {
    1707         650 :       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
    1708         325 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1709             :     } else {
    1710         639 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1711             :     }
    1712             :   } else {
    1713           4 :     if (Arch == Triple::x86) {
    1714           0 :       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
    1715             :     }
    1716           4 :     processSimpleRelocation(SectionID, Offset, RelType, Value);
    1717             :   }
    1718             :   return ++RelI;
    1719             : }
    1720             : 
    1721         165 : size_t RuntimeDyldELF::getGOTEntrySize() {
    1722             :   // We don't use the GOT in all of these cases, but it's essentially free
    1723             :   // to put them all here.
    1724             :   size_t Result = 0;
    1725         165 :   switch (Arch) {
    1726             :   case Triple::x86_64:
    1727             :   case Triple::aarch64:
    1728             :   case Triple::aarch64_be:
    1729             :   case Triple::ppc64:
    1730             :   case Triple::ppc64le:
    1731             :   case Triple::systemz:
    1732             :     Result = sizeof(uint64_t);
    1733             :     break;
    1734             :   case Triple::x86:
    1735             :   case Triple::arm:
    1736             :   case Triple::thumb:
    1737             :     Result = sizeof(uint32_t);
    1738             :     break;
    1739          44 :   case Triple::mips:
    1740             :   case Triple::mipsel:
    1741             :   case Triple::mips64:
    1742             :   case Triple::mips64el:
    1743          44 :     if (IsMipsO32ABI || IsMipsN32ABI)
    1744             :       Result = sizeof(uint32_t);
    1745          22 :     else if (IsMipsN64ABI)
    1746             :       Result = sizeof(uint64_t);
    1747             :     else
    1748           0 :       llvm_unreachable("Mips ABI not handled");
    1749             :     break;
    1750           0 :   default:
    1751           0 :     llvm_unreachable("Unsupported CPU type!");
    1752             :   }
    1753         165 :   return Result;
    1754             : }
    1755             : 
    1756          52 : uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
    1757          52 :   if (GOTSectionID == 0) {
    1758          27 :     GOTSectionID = Sections.size();
    1759             :     // Reserve a section id. We'll allocate the section later
    1760             :     // once we know the total size
    1761          81 :     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
    1762             :   }
    1763          52 :   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
    1764          52 :   CurrentGOTIndex += no;
    1765          52 :   return StartOffset;
    1766             : }
    1767             : 
    1768           6 : uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
    1769             :                                              unsigned GOTRelType) {
    1770           6 :   auto E = GOTOffsetMap.insert({Value, 0});
    1771           6 :   if (E.second) {
    1772           3 :     uint64_t GOTOffset = allocateGOTEntries(1);
    1773             : 
    1774             :     // Create relocation for newly created GOT entry
    1775             :     RelocationEntry RE =
    1776           3 :         computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
    1777           3 :     if (Value.SymbolName)
    1778           4 :       addRelocationForSymbol(RE, Value.SymbolName);
    1779             :     else
    1780           1 :       addRelocationForSection(RE, Value.SectionID);
    1781             : 
    1782           3 :     E.first->second = GOTOffset;
    1783             :   }
    1784             : 
    1785           6 :   return E.first->second;
    1786             : }
    1787             : 
    1788          43 : void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
    1789             :                                                 uint64_t Offset,
    1790             :                                                 uint64_t GOTOffset,
    1791             :                                                 uint32_t Type) {
    1792             :   // Fill in the relative address of the GOT Entry into the stub
    1793          43 :   RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
    1794          43 :   addRelocationForSection(GOTRE, GOTSectionID);
    1795          43 : }
    1796             : 
    1797          40 : RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
    1798             :                                                    uint64_t SymbolOffset,
    1799             :                                                    uint32_t Type) {
    1800          80 :   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
    1801             : }
    1802             : 
    1803         320 : Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
    1804             :                                   ObjSectionToIDMap &SectionMap) {
    1805         320 :   if (IsMipsO32ABI)
    1806           8 :     if (!PendingRelocs.empty())
    1807             :       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
    1808             : 
    1809             :   // If necessary, allocate the global offset table
    1810         320 :   if (GOTSectionID != 0) {
    1811             :     // Allocate memory for the section
    1812          27 :     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
    1813          81 :     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
    1814          54 :                                                 GOTSectionID, ".got", false);
    1815          27 :     if (!Addr)
    1816             :       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
    1817             : 
    1818          27 :     Sections[GOTSectionID] =
    1819          27 :         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
    1820             : 
    1821          27 :     if (Checker)
    1822          10 :       Checker->registerSection(Obj.getFileName(), GOTSectionID);
    1823             : 
    1824             :     // For now, initialize all GOT entries to zero.  We'll fill them in as
    1825             :     // needed when GOT-based relocations are applied.
    1826          27 :     memset(Addr, 0, TotalSize);
    1827          27 :     if (IsMipsN32ABI || IsMipsN64ABI) {
    1828             :       // To correctly resolve Mips GOT relocations, we need a mapping from
    1829             :       // object's sections to GOTs.
    1830           4 :       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    1831          64 :            SI != SE; ++SI) {
    1832         180 :         if (SI->relocation_begin() != SI->relocation_end()) {
    1833          12 :           section_iterator RelocatedSection = SI->getRelocatedSection();
    1834             :           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
    1835             :           assert (i != SectionMap.end());
    1836          24 :           SectionToGOTMap[i->second] = GOTSectionID;
    1837             :         }
    1838             :       }
    1839           4 :       GOTSymbolOffsets.clear();
    1840             :     }
    1841             :   }
    1842             : 
    1843             :   // Look for and record the EH frame section.
    1844             :   ObjSectionToIDMap::iterator i, e;
    1845         633 :   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
    1846         554 :     const SectionRef &Section = i->first;
    1847         554 :     StringRef Name;
    1848             :     Section.getName(Name);
    1849             :     if (Name == ".eh_frame") {
    1850         241 :       UnregisteredEHFrameSections.push_back(i->second);
    1851         241 :       break;
    1852             :     }
    1853             :   }
    1854             : 
    1855         320 :   GOTSectionID = 0;
    1856         320 :   CurrentGOTIndex = 0;
    1857             : 
    1858             :   return Error::success();
    1859             : }
    1860             : 
    1861         320 : bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
    1862         640 :   return Obj.isELF();
    1863             : }
    1864             : 
    1865          98 : bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
    1866          98 :   unsigned RelTy = R.getType();
    1867          98 :   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
    1868           0 :     return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
    1869           0 :            RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
    1870             : 
    1871          98 :   if (Arch == Triple::x86_64)
    1872         196 :     return RelTy == ELF::R_X86_64_GOTPCREL ||
    1873         196 :            RelTy == ELF::R_X86_64_GOTPCRELX ||
    1874             :            RelTy == ELF::R_X86_64_REX_GOTPCRELX;
    1875             :   return false;
    1876             : }
    1877             : 
    1878        1301 : bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
    1879        1301 :   if (Arch != Triple::x86_64)
    1880             :     return true;  // Conservative answer
    1881             : 
    1882             :   switch (R.getType()) {
    1883             :   default:
    1884             :     return true;  // Conservative answer
    1885             : 
    1886             : 
    1887         975 :   case ELF::R_X86_64_GOTPCREL:
    1888             :   case ELF::R_X86_64_GOTPCRELX:
    1889             :   case ELF::R_X86_64_REX_GOTPCRELX:
    1890             :   case ELF::R_X86_64_PC32:
    1891             :   case ELF::R_X86_64_PC64:
    1892             :   case ELF::R_X86_64_64:
    1893             :     // We know that these reloation types won't need a stub function.  This list
    1894             :     // can be extended as needed.
    1895         975 :     return false;
    1896             :   }
    1897             : }
    1898             : 
    1899             : } // namespace llvm

Generated by: LCOV version 1.13