LCOV - code coverage report
Current view: top level - lib/ExecutionEngine/RuntimeDyld - RuntimeDyldELF.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 465 869 53.5 %
Date: 2017-09-14 15:23:50 Functions: 34 50 68.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // Implementation of ELF support for the MC-JIT runtime dynamic linker.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #include "RuntimeDyldELF.h"
      15             : #include "RuntimeDyldCheckerImpl.h"
      16             : #include "Targets/RuntimeDyldELFMips.h"
      17             : #include "llvm/ADT/IntervalMap.h"
      18             : #include "llvm/ADT/STLExtras.h"
      19             : #include "llvm/ADT/StringRef.h"
      20             : #include "llvm/ADT/Triple.h"
      21             : #include "llvm/BinaryFormat/ELF.h"
      22             : #include "llvm/MC/MCStreamer.h"
      23             : #include "llvm/Object/ELFObjectFile.h"
      24             : #include "llvm/Object/ObjectFile.h"
      25             : #include "llvm/Support/Endian.h"
      26             : #include "llvm/Support/MemoryBuffer.h"
      27             : 
      28             : using namespace llvm;
      29             : using namespace llvm::object;
      30             : using namespace llvm::support::endian;
      31             : 
      32             : #define DEBUG_TYPE "dyld"
      33             : 
      34          36 : static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
      35             : 
      36             : static void or32AArch64Imm(void *L, uint64_t Imm) {
      37          18 :   or32le(L, (Imm & 0xFFF) << 10);
      38             : }
      39             : 
      40             : template <class T> static void write(bool isBE, void *P, T V) {
      41           9 :   isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
      42             : }
      43             : 
      44             : static void write32AArch64Addr(void *L, uint64_t Imm) {
      45           4 :   uint32_t ImmLo = (Imm & 0x3) << 29;
      46           4 :   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
      47           4 :   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
      48           8 :   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
      49             : }
      50             : 
      51             : // Return the bits [Start, End] from Val shifted Start bits.
      52             : // For instance, getBits(0xF0, 4, 8) returns 0xF.
      53             : static uint64_t getBits(uint64_t Val, int Start, int End) {
      54           8 :   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
      55           8 :   return (Val >> Start) & Mask;
      56             : }
      57             : 
      58             : namespace {
      59             : 
      60         300 : template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
      61             :   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
      62             : 
      63             :   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
      64             :   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
      65             :   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
      66             :   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
      67             : 
      68             :   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
      69             : 
      70             :   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
      71             : 
      72             : public:
      73             :   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
      74             : 
      75             :   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
      76             : 
      77             :   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
      78             : 
      79             :   // Methods for type inquiry through isa, cast and dyn_cast
      80             :   static bool classof(const Binary *v) {
      81             :     return (isa<ELFObjectFile<ELFT>>(v) &&
      82             :             classof(cast<ELFObjectFile<ELFT>>(v)));
      83             :   }
      84             :   static bool classof(const ELFObjectFile<ELFT> *v) {
      85             :     return v->isDyldType();
      86             :   }
      87             : };
      88             : 
      89             : 
      90             : 
      91             : // The MemoryBuffer passed into this constructor is just a wrapper around the
      92             : // actual memory.  Ultimately, the Binary parent class will take ownership of
      93             : // this MemoryBuffer object but not the underlying memory.
      94             : template <class ELFT>
      95         150 : DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
      96         150 :     : ELFObjectFile<ELFT>(Wrapper, EC) {
      97         150 :   this->isDyldELFObject = true;
      98             : }
      99             : 
     100             : template <class ELFT>
     101             : void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
     102             :                                                uint64_t Addr) {
     103             :   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
     104             :   Elf_Shdr *shdr =
     105             :       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
     106             : 
     107             :   // This assumes the address passed in matches the target address bitness
     108             :   // The template-based type cast handles everything else.
     109             :   shdr->sh_addr = static_cast<addr_type>(Addr);
     110             : }
     111             : 
     112             : template <class ELFT>
     113             : void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
     114             :                                               uint64_t Addr) {
     115             : 
     116             :   Elf_Sym *sym = const_cast<Elf_Sym *>(
     117             :       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
     118             : 
     119             :   // This assumes the address passed in matches the target address bitness
     120             :   // The template-based type cast handles everything else.
     121             :   sym->st_value = static_cast<addr_type>(Addr);
     122             : }
     123             : 
     124         650 : class LoadedELFObjectInfo final
     125             :     : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
     126             :                                     RuntimeDyld::LoadedObjectInfo> {
     127             : public:
     128             :   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
     129         325 :       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
     130             : 
     131             :   OwningBinary<ObjectFile>
     132             :   getObjectForDebug(const ObjectFile &Obj) const override;
     133             : };
     134             : 
     135             : template <typename ELFT>
     136             : std::unique_ptr<DyldELFObject<ELFT>>
     137         150 : createRTDyldELFObject(MemoryBufferRef Buffer,
     138             :                       const ObjectFile &SourceObject,
     139             :                       const LoadedELFObjectInfo &L,
     140             :                       std::error_code &ec) {
     141             :   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
     142             :   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
     143             : 
     144         150 :   std::unique_ptr<DyldELFObject<ELFT>> Obj =
     145             :     llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
     146             : 
     147             :   // Iterate over all sections in the object.
     148         150 :   auto SI = SourceObject.section_begin();
     149        1812 :   for (const auto &Sec : Obj->sections()) {
     150        1212 :     StringRef SectionName;
     151        1212 :     Sec.getName(SectionName);
     152        2274 :     if (SectionName != "") {
     153             :       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
     154        1062 :       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
     155             :           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
     156             : 
     157        1062 :       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
     158             :         // This assumes that the address passed in matches the target address
     159             :         // bitness. The template-based type cast handles everything else.
     160         342 :         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
     161             :       }
     162             :     }
     163        1212 :     ++SI;
     164             :   }
     165             : 
     166         150 :   return Obj;
     167             : }
     168             : 
     169         150 : OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
     170             :                                               const LoadedELFObjectInfo &L) {
     171             :   assert(Obj.isELF() && "Not an ELF object file.");
     172             : 
     173             :   std::unique_ptr<MemoryBuffer> Buffer =
     174         450 :     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
     175             : 
     176         150 :   std::error_code ec;
     177             : 
     178         300 :   std::unique_ptr<ObjectFile> DebugObj;
     179         150 :   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
     180             :     typedef ELFType<support::little, false> ELF32LE;
     181           0 :     DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L,
     182             :                                               ec);
     183         150 :   } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
     184             :     typedef ELFType<support::big, false> ELF32BE;
     185           0 :     DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L,
     186             :                                               ec);
     187         300 :   } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
     188             :     typedef ELFType<support::big, true> ELF64BE;
     189           0 :     DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L,
     190             :                                               ec);
     191         300 :   } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
     192             :     typedef ELFType<support::little, true> ELF64LE;
     193         450 :     DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L,
     194             :                                               ec);
     195             :   } else
     196           0 :     llvm_unreachable("Unexpected ELF format");
     197             : 
     198             :   assert(!ec && "Could not construct copy ELF object file");
     199             : 
     200        1050 :   return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
     201             : }
     202             : 
     203             : OwningBinary<ObjectFile>
     204         150 : LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
     205         150 :   return createELFDebugObject(Obj, *this);
     206             : }
     207             : 
     208             : } // anonymous namespace
     209             : 
     210             : namespace llvm {
     211             : 
     212         277 : RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
     213         277 :                                JITSymbolResolver &Resolver)
     214        1662 :     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
     215        1226 : RuntimeDyldELF::~RuntimeDyldELF() {}
     216             : 
     217         451 : void RuntimeDyldELF::registerEHFrames() {
     218        1134 :   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
     219         464 :     SID EHFrameSID = UnregisteredEHFrameSections[i];
     220         464 :     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
     221         464 :     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
     222         464 :     size_t EHFrameSize = Sections[EHFrameSID].getSize();
     223         232 :     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
     224             :   }
     225         902 :   UnregisteredEHFrameSections.clear();
     226         451 : }
     227             : 
     228             : std::unique_ptr<RuntimeDyldELF>
     229         277 : llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
     230             :                              RuntimeDyld::MemoryManager &MemMgr,
     231             :                              JITSymbolResolver &Resolver) {
     232         277 :   switch (Arch) {
     233         267 :   default:
     234             :     return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
     235          10 :   case Triple::mips:
     236             :   case Triple::mipsel:
     237             :   case Triple::mips64:
     238             :   case Triple::mips64el:
     239          30 :     return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
     240             :   }
     241             : }
     242             : 
     243             : std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
     244         325 : RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
     245         975 :   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
     246         975 :     return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
     247             :   else {
     248           0 :     HasError = true;
     249           0 :     raw_string_ostream ErrStream(ErrorStr);
     250           0 :     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
     251           0 :     return nullptr;
     252             :   }
     253             : }
     254             : 
     255         991 : void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
     256             :                                              uint64_t Offset, uint64_t Value,
     257             :                                              uint32_t Type, int64_t Addend,
     258             :                                              uint64_t SymOffset) {
     259         991 :   switch (Type) {
     260           0 :   default:
     261           0 :     llvm_unreachable("Relocation type not implemented yet!");
     262             :     break;
     263             :   case ELF::R_X86_64_NONE:
     264             :     break;
     265         509 :   case ELF::R_X86_64_64: {
     266        1527 :     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
     267             :         Value + Addend;
     268             :     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
     269             :                  << format("%p\n", Section.getAddressWithOffset(Offset)));
     270         509 :     break;
     271             :   }
     272          73 :   case ELF::R_X86_64_32:
     273             :   case ELF::R_X86_64_32S: {
     274          73 :     Value += Addend;
     275             :     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
     276             :            (Type == ELF::R_X86_64_32S &&
     277             :             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
     278          73 :     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
     279         219 :     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
     280             :         TruncatedAddr;
     281             :     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
     282             :                  << format("%p\n", Section.getAddressWithOffset(Offset)));
     283          73 :     break;
     284             :   }
     285           2 :   case ELF::R_X86_64_PC8: {
     286           4 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     287           2 :     int64_t RealOffset = Value + Addend - FinalAddress;
     288             :     assert(isInt<8>(RealOffset));
     289           2 :     int8_t TruncOffset = (RealOffset & 0xFF);
     290           2 :     Section.getAddress()[Offset] = TruncOffset;
     291           2 :     break;
     292             :   }
     293          83 :   case ELF::R_X86_64_PC32: {
     294         166 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     295          83 :     int64_t RealOffset = Value + Addend - FinalAddress;
     296             :     assert(isInt<32>(RealOffset));
     297          83 :     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
     298         249 :     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
     299             :         TruncOffset;
     300          83 :     break;
     301             :   }
     302         324 :   case ELF::R_X86_64_PC64: {
     303         648 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     304         324 :     int64_t RealOffset = Value + Addend - FinalAddress;
     305         972 :     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
     306             :         RealOffset;
     307         324 :     break;
     308             :   }
     309             :   }
     310         991 : }
     311             : 
     312           0 : void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
     313             :                                           uint64_t Offset, uint32_t Value,
     314             :                                           uint32_t Type, int32_t Addend) {
     315           0 :   switch (Type) {
     316           0 :   case ELF::R_386_32: {
     317           0 :     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
     318             :         Value + Addend;
     319           0 :     break;
     320             :   }
     321           0 :   case ELF::R_386_PC32: {
     322             :     uint32_t FinalAddress =
     323           0 :         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
     324           0 :     uint32_t RealOffset = Value + Addend - FinalAddress;
     325           0 :     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
     326             :         RealOffset;
     327           0 :     break;
     328             :   }
     329           0 :   default:
     330             :     // There are other relocation types, but it appears these are the
     331             :     // only ones currently used by the LLVM ELF object writer
     332           0 :     llvm_unreachable("Relocation type not implemented yet!");
     333             :     break;
     334             :   }
     335           0 : }
     336             : 
     337          31 : void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
     338             :                                               uint64_t Offset, uint64_t Value,
     339             :                                               uint32_t Type, int64_t Addend) {
     340             :   uint32_t *TargetPtr =
     341          62 :       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
     342          62 :   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     343             :   // Data should use target endian. Code should always use little endian.
     344          31 :   bool isBE = Arch == Triple::aarch64_be;
     345             : 
     346             :   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
     347             :                << format("%llx", Section.getAddressWithOffset(Offset))
     348             :                << " FinalAddress: 0x" << format("%llx", FinalAddress)
     349             :                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
     350             :                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
     351             :                << "\n");
     352             : 
     353          31 :   switch (Type) {
     354           0 :   default:
     355           0 :     llvm_unreachable("Relocation type not implemented yet!");
     356             :     break;
     357           5 :   case ELF::R_AARCH64_ABS64:
     358           5 :     write(isBE, TargetPtr, Value + Addend);
     359             :     break;
     360           2 :   case ELF::R_AARCH64_PREL32: {
     361           2 :     uint64_t Result = Value + Addend - FinalAddress;
     362             :     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
     363             :            static_cast<int64_t>(Result) <= UINT32_MAX);
     364           2 :     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
     365             :     break;
     366             :   }
     367           2 :   case ELF::R_AARCH64_PREL64:
     368           2 :     write(isBE, TargetPtr, Value + Addend - FinalAddress);
     369             :     break;
     370           1 :   case ELF::R_AARCH64_CALL26: // fallthrough
     371             :   case ELF::R_AARCH64_JUMP26: {
     372             :     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
     373             :     // calculation.
     374           1 :     uint64_t BranchImm = Value + Addend - FinalAddress;
     375             : 
     376             :     // "Check that -2^27 <= result < 2^27".
     377             :     assert(isInt<28>(BranchImm));
     378           1 :     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
     379             :     break;
     380             :   }
     381           2 :   case ELF::R_AARCH64_MOVW_UABS_G3:
     382           2 :     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
     383             :     break;
     384           2 :   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
     385           2 :     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
     386             :     break;
     387           2 :   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
     388           2 :     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
     389             :     break;
     390           2 :   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
     391           2 :     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
     392             :     break;
     393           4 :   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
     394             :     // Operation: Page(S+A) - Page(P)
     395           4 :     uint64_t Result =
     396           4 :         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
     397             : 
     398             :     // Check that -2^32 <= X < 2^32
     399             :     assert(isInt<33>(Result) && "overflow check failed for relocation");
     400             : 
     401             :     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
     402             :     // from bits 32:12 of X.
     403           4 :     write32AArch64Addr(TargetPtr, Result >> 12);
     404             :     break;
     405             :   }
     406           1 :   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
     407             :     // Operation: S + A
     408             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     409             :     // from bits 11:0 of X
     410           1 :     or32AArch64Imm(TargetPtr, Value + Addend);
     411             :     break;
     412           1 :   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
     413             :     // Operation: S + A
     414             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     415             :     // from bits 11:0 of X
     416           2 :     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
     417             :     break;
     418           1 :   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
     419             :     // Operation: S + A
     420             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     421             :     // from bits 11:1 of X
     422           2 :     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
     423             :     break;
     424           1 :   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
     425             :     // Operation: S + A
     426             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     427             :     // from bits 11:2 of X
     428           2 :     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
     429             :     break;
     430           4 :   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
     431             :     // Operation: S + A
     432             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     433             :     // from bits 11:3 of X
     434           8 :     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
     435             :     break;
     436           1 :   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
     437             :     // Operation: S + A
     438             :     // Immediate goes in bits 21:10 of LD/ST instruction, taken
     439             :     // from bits 11:4 of X
     440           2 :     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
     441             :     break;
     442             :   }
     443          31 : }
     444             : 
     445           2 : void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
     446             :                                           uint64_t Offset, uint32_t Value,
     447             :                                           uint32_t Type, int32_t Addend) {
     448             :   // TODO: Add Thumb relocations.
     449             :   uint32_t *TargetPtr =
     450           4 :       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
     451           4 :   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
     452           2 :   Value += Addend;
     453             : 
     454             :   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
     455             :                << Section.getAddressWithOffset(Offset)
     456             :                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
     457             :                << format("%x", Value) << " Type: " << format("%x", Type)
     458             :                << " Addend: " << format("%x", Addend) << "\n");
     459             : 
     460           2 :   switch (Type) {
     461           0 :   default:
     462           0 :     llvm_unreachable("Not implemented relocation type!");
     463             : 
     464             :   case ELF::R_ARM_NONE:
     465             :     break;
     466             :     // Write a 31bit signed offset
     467           1 :   case ELF::R_ARM_PREL31:
     468           2 :     support::ulittle32_t::ref{TargetPtr} =
     469           2 :         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
     470           1 :         ((Value - FinalAddress) & ~0x80000000);
     471           1 :     break;
     472           0 :   case ELF::R_ARM_TARGET1:
     473             :   case ELF::R_ARM_ABS32:
     474           0 :     support::ulittle32_t::ref{TargetPtr} = Value;
     475           0 :     break;
     476             :     // Write first 16 bit of 32 bit value to the mov instruction.
     477             :     // Last 4 bit should be shifted.
     478           0 :   case ELF::R_ARM_MOVW_ABS_NC:
     479             :   case ELF::R_ARM_MOVT_ABS:
     480           0 :     if (Type == ELF::R_ARM_MOVW_ABS_NC)
     481           0 :       Value = Value & 0xFFFF;
     482           0 :     else if (Type == ELF::R_ARM_MOVT_ABS)
     483           0 :       Value = (Value >> 16) & 0xFFFF;
     484           0 :     support::ulittle32_t::ref{TargetPtr} =
     485           0 :         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
     486           0 :         (((Value >> 12) & 0xF) << 16);
     487           0 :     break;
     488             :     // Write 24 bit relative value to the branch instruction.
     489           0 :   case ELF::R_ARM_PC24: // Fall through.
     490             :   case ELF::R_ARM_CALL: // Fall through.
     491             :   case ELF::R_ARM_JUMP24:
     492           0 :     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
     493           0 :     RelValue = (RelValue & 0x03FFFFFC) >> 2;
     494             :     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
     495           0 :     support::ulittle32_t::ref{TargetPtr} =
     496           0 :         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
     497           0 :     break;
     498             :   }
     499           2 : }
     500             : 
     501         325 : void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
     502         325 :   if (Arch == Triple::UnknownArch ||
     503         650 :       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
     504         305 :     IsMipsO32ABI = false;
     505         305 :     IsMipsN32ABI = false;
     506         305 :     IsMipsN64ABI = false;
     507         305 :     return;
     508             :   }
     509             :   unsigned AbiVariant;
     510          20 :   Obj.getPlatformFlags(AbiVariant);
     511          20 :   IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
     512          20 :   IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
     513          40 :   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
     514             : }
     515             : 
     516             : // Return the .TOC. section and offset.
     517           0 : Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
     518             :                                           ObjSectionToIDMap &LocalSections,
     519             :                                           RelocationValueRef &Rel) {
     520             :   // Set a default SectionID in case we do not find a TOC section below.
     521             :   // This may happen for references to TOC base base (sym@toc, .odp
     522             :   // relocation) without a .toc directive.  In this case just use the
     523             :   // first section (which is usually the .odp) since the code won't
     524             :   // reference the .toc base directly.
     525           0 :   Rel.SymbolName = nullptr;
     526           0 :   Rel.SectionID = 0;
     527             : 
     528             :   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
     529             :   // order. The TOC starts where the first of these sections starts.
     530           0 :   for (auto &Section: Obj.sections()) {
     531           0 :     StringRef SectionName;
     532           0 :     if (auto EC = Section.getName(SectionName))
     533           0 :       return errorCodeToError(EC);
     534             : 
     535           0 :     if (SectionName == ".got"
     536           0 :         || SectionName == ".toc"
     537           0 :         || SectionName == ".tocbss"
     538           0 :         || SectionName == ".plt") {
     539           0 :       if (auto SectionIDOrErr =
     540           0 :             findOrEmitSection(Obj, Section, false, LocalSections))
     541           0 :         Rel.SectionID = *SectionIDOrErr;
     542             :       else
     543           0 :         return SectionIDOrErr.takeError();
     544           0 :       break;
     545             :     }
     546             :   }
     547             : 
     548             :   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
     549             :   // thus permitting a full 64 Kbytes segment.
     550           0 :   Rel.Addend = 0x8000;
     551             : 
     552           0 :   return Error::success();
     553             : }
     554             : 
     555             : // Returns the sections and offset associated with the ODP entry referenced
     556             : // by Symbol.
     557           0 : Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
     558             :                                           ObjSectionToIDMap &LocalSections,
     559             :                                           RelocationValueRef &Rel) {
     560             :   // Get the ELF symbol value (st_value) to compare with Relocation offset in
     561             :   // .opd entries
     562           0 :   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
     563           0 :        si != se; ++si) {
     564           0 :     section_iterator RelSecI = si->getRelocatedSection();
     565           0 :     if (RelSecI == Obj.section_end())
     566           0 :       continue;
     567             : 
     568           0 :     StringRef RelSectionName;
     569           0 :     if (auto EC = RelSecI->getName(RelSectionName))
     570           0 :       return errorCodeToError(EC);
     571             : 
     572           0 :     if (RelSectionName != ".opd")
     573           0 :       continue;
     574             : 
     575           0 :     for (elf_relocation_iterator i = si->relocation_begin(),
     576           0 :                                  e = si->relocation_end();
     577           0 :          i != e;) {
     578             :       // The R_PPC64_ADDR64 relocation indicates the first field
     579             :       // of a .opd entry
     580           0 :       uint64_t TypeFunc = i->getType();
     581           0 :       if (TypeFunc != ELF::R_PPC64_ADDR64) {
     582           0 :         ++i;
     583           0 :         continue;
     584             :       }
     585             : 
     586           0 :       uint64_t TargetSymbolOffset = i->getOffset();
     587           0 :       symbol_iterator TargetSymbol = i->getSymbol();
     588             :       int64_t Addend;
     589           0 :       if (auto AddendOrErr = i->getAddend())
     590           0 :         Addend = *AddendOrErr;
     591             :       else
     592           0 :         return errorCodeToError(AddendOrErr.getError());
     593             : 
     594           0 :       ++i;
     595           0 :       if (i == e)
     596             :         break;
     597             : 
     598             :       // Just check if following relocation is a R_PPC64_TOC
     599           0 :       uint64_t TypeTOC = i->getType();
     600           0 :       if (TypeTOC != ELF::R_PPC64_TOC)
     601           0 :         continue;
     602             : 
     603             :       // Finally compares the Symbol value and the target symbol offset
     604             :       // to check if this .opd entry refers to the symbol the relocation
     605             :       // points to.
     606           0 :       if (Rel.Addend != (int64_t)TargetSymbolOffset)
     607           0 :         continue;
     608             : 
     609           0 :       section_iterator TSI = Obj.section_end();
     610           0 :       if (auto TSIOrErr = TargetSymbol->getSection())
     611           0 :         TSI = *TSIOrErr;
     612             :       else
     613           0 :         return TSIOrErr.takeError();
     614             :       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
     615             : 
     616           0 :       bool IsCode = TSI->isText();
     617           0 :       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
     618           0 :                                                   LocalSections))
     619           0 :         Rel.SectionID = *SectionIDOrErr;
     620             :       else
     621           0 :         return SectionIDOrErr.takeError();
     622           0 :       Rel.Addend = (intptr_t)Addend;
     623           0 :       return Error::success();
     624             :     }
     625             :   }
     626           0 :   llvm_unreachable("Attempting to get address of ODP entry!");
     627             : }
     628             : 
     629             : // Relocation masks following the #lo(value), #hi(value), #ha(value),
     630             : // #higher(value), #highera(value), #highest(value), and #highesta(value)
     631             : // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
     632             : // document.
     633             : 
     634           1 : static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
     635             : 
     636             : static inline uint16_t applyPPChi(uint64_t value) {
     637           0 :   return (value >> 16) & 0xffff;
     638             : }
     639             : 
     640             : static inline uint16_t applyPPCha (uint64_t value) {
     641           1 :   return ((value + 0x8000) >> 16) & 0xffff;
     642             : }
     643             : 
     644             : static inline uint16_t applyPPChigher(uint64_t value) {
     645           0 :   return (value >> 32) & 0xffff;
     646             : }
     647             : 
     648             : static inline uint16_t applyPPChighera (uint64_t value) {
     649           0 :   return ((value + 0x8000) >> 32) & 0xffff;
     650             : }
     651             : 
     652             : static inline uint16_t applyPPChighest(uint64_t value) {
     653           0 :   return (value >> 48) & 0xffff;
     654             : }
     655             : 
     656             : static inline uint16_t applyPPChighesta (uint64_t value) {
     657           0 :   return ((value + 0x8000) >> 48) & 0xffff;
     658             : }
     659             : 
     660           2 : void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
     661             :                                             uint64_t Offset, uint64_t Value,
     662             :                                             uint32_t Type, int64_t Addend) {
     663           4 :   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
     664           2 :   switch (Type) {
     665           0 :   default:
     666           0 :     llvm_unreachable("Relocation type not implemented yet!");
     667             :     break;
     668           1 :   case ELF::R_PPC_ADDR16_LO:
     669           2 :     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
     670             :     break;
     671           0 :   case ELF::R_PPC_ADDR16_HI:
     672           0 :     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
     673             :     break;
     674           1 :   case ELF::R_PPC_ADDR16_HA:
     675           2 :     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
     676             :     break;
     677             :   }
     678           2 : }
     679             : 
     680           0 : void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
     681             :                                             uint64_t Offset, uint64_t Value,
     682             :                                             uint32_t Type, int64_t Addend) {
     683           0 :   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
     684           0 :   switch (Type) {
     685           0 :   default:
     686           0 :     llvm_unreachable("Relocation type not implemented yet!");
     687             :     break;
     688           0 :   case ELF::R_PPC64_ADDR16:
     689           0 :     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
     690             :     break;
     691           0 :   case ELF::R_PPC64_ADDR16_DS:
     692           0 :     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
     693             :     break;
     694           0 :   case ELF::R_PPC64_ADDR16_LO:
     695           0 :     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
     696             :     break;
     697           0 :   case ELF::R_PPC64_ADDR16_LO_DS:
     698           0 :     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
     699             :     break;
     700           0 :   case ELF::R_PPC64_ADDR16_HI:
     701           0 :     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
     702             :     break;
     703           0 :   case ELF::R_PPC64_ADDR16_HA:
     704           0 :     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
     705             :     break;
     706           0 :   case ELF::R_PPC64_ADDR16_HIGHER:
     707           0 :     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
     708             :     break;
     709           0 :   case ELF::R_PPC64_ADDR16_HIGHERA:
     710           0 :     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
     711             :     break;
     712           0 :   case ELF::R_PPC64_ADDR16_HIGHEST:
     713           0 :     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
     714             :     break;
     715           0 :   case ELF::R_PPC64_ADDR16_HIGHESTA:
     716           0 :     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
     717             :     break;
     718           0 :   case ELF::R_PPC64_ADDR14: {
     719             :     assert(((Value + Addend) & 3) == 0);
     720             :     // Preserve the AA/LK bits in the branch instruction
     721           0 :     uint8_t aalk = *(LocalAddress + 3);
     722           0 :     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
     723             :   } break;
     724           0 :   case ELF::R_PPC64_REL16_LO: {
     725           0 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     726           0 :     uint64_t Delta = Value - FinalAddress + Addend;
     727           0 :     writeInt16BE(LocalAddress, applyPPClo(Delta));
     728             :   } break;
     729           0 :   case ELF::R_PPC64_REL16_HI: {
     730           0 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     731           0 :     uint64_t Delta = Value - FinalAddress + Addend;
     732           0 :     writeInt16BE(LocalAddress, applyPPChi(Delta));
     733             :   } break;
     734           0 :   case ELF::R_PPC64_REL16_HA: {
     735           0 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     736           0 :     uint64_t Delta = Value - FinalAddress + Addend;
     737           0 :     writeInt16BE(LocalAddress, applyPPCha(Delta));
     738             :   } break;
     739           0 :   case ELF::R_PPC64_ADDR32: {
     740           0 :     int64_t Result = static_cast<int64_t>(Value + Addend);
     741           0 :     if (SignExtend64<32>(Result) != Result)
     742           0 :       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
     743           0 :     writeInt32BE(LocalAddress, Result);
     744             :   } break;
     745           0 :   case ELF::R_PPC64_REL24: {
     746           0 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     747           0 :     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
     748           0 :     if (SignExtend64<26>(delta) != delta)
     749           0 :       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
     750             :     // Generates a 'bl <address>' instruction
     751           0 :     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
     752             :   } break;
     753           0 :   case ELF::R_PPC64_REL32: {
     754           0 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     755           0 :     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
     756           0 :     if (SignExtend64<32>(delta) != delta)
     757           0 :       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
     758           0 :     writeInt32BE(LocalAddress, delta);
     759             :   } break;
     760           0 :   case ELF::R_PPC64_REL64: {
     761           0 :     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
     762           0 :     uint64_t Delta = Value - FinalAddress + Addend;
     763           0 :     writeInt64BE(LocalAddress, Delta);
     764             :   } break;
     765           0 :   case ELF::R_PPC64_ADDR64:
     766           0 :     writeInt64BE(LocalAddress, Value + Addend);
     767             :     break;
     768             :   }
     769           0 : }
     770             : 
     771           2 : void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
     772             :                                               uint64_t Offset, uint64_t Value,
     773             :                                               uint32_t Type, int64_t Addend) {
     774           4 :   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
     775           2 :   switch (Type) {
     776           0 :   default:
     777           0 :     llvm_unreachable("Relocation type not implemented yet!");
     778             :     break;
     779           0 :   case ELF::R_390_PC16DBL:
     780             :   case ELF::R_390_PLT16DBL: {
     781           0 :     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
     782             :     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
     783           0 :     writeInt16BE(LocalAddress, Delta / 2);
     784             :     break;
     785             :   }
     786           0 :   case ELF::R_390_PC32DBL:
     787             :   case ELF::R_390_PLT32DBL: {
     788           0 :     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
     789             :     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
     790           0 :     writeInt32BE(LocalAddress, Delta / 2);
     791             :     break;
     792             :   }
     793           0 :   case ELF::R_390_PC16: {
     794           0 :     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
     795             :     assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
     796           0 :     writeInt16BE(LocalAddress, Delta);
     797             :     break;
     798             :   }
     799           1 :   case ELF::R_390_PC32: {
     800           2 :     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
     801             :     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
     802           1 :     writeInt32BE(LocalAddress, Delta);
     803             :     break;
     804             :   }
     805           1 :   case ELF::R_390_PC64: {
     806           2 :     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
     807           1 :     writeInt64BE(LocalAddress, Delta);
     808             :     break;
     809             :   }
     810           0 :   case ELF::R_390_8:
     811           0 :     *LocalAddress = (uint8_t)(Value + Addend);
     812           0 :     break;
     813           0 :   case ELF::R_390_16:
     814           0 :     writeInt16BE(LocalAddress, Value + Addend);
     815             :     break;
     816           0 :   case ELF::R_390_32:
     817           0 :     writeInt32BE(LocalAddress, Value + Addend);
     818             :     break;
     819           0 :   case ELF::R_390_64:
     820           0 :     writeInt64BE(LocalAddress, Value + Addend);
     821             :     break;
     822             :   }
     823           2 : }
     824             : 
     825           0 : void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
     826             :                                           uint64_t Offset, uint64_t Value,
     827             :                                           uint32_t Type, int64_t Addend) {
     828           0 :   bool isBE = Arch == Triple::bpfeb;
     829             : 
     830           0 :   switch (Type) {
     831           0 :   default:
     832           0 :     llvm_unreachable("Relocation type not implemented yet!");
     833             :     break;
     834             :   case ELF::R_BPF_NONE:
     835             :     break;
     836           0 :   case ELF::R_BPF_64_64: {
     837           0 :     write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
     838             :     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
     839             :                  << format("%p\n", Section.getAddressWithOffset(Offset)));
     840             :     break;
     841             :   }
     842           0 :   case ELF::R_BPF_64_32: {
     843           0 :     Value += Addend;
     844             :     assert(Value <= UINT32_MAX);
     845           0 :     write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
     846             :     DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
     847             :                  << format("%p\n", Section.getAddressWithOffset(Offset)));
     848             :     break;
     849             :   }
     850             :   }
     851           0 : }
     852             : 
     853             : // The target location for the relocation is described by RE.SectionID and
     854             : // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
     855             : // SectionEntry has three members describing its location.
     856             : // SectionEntry::Address is the address at which the section has been loaded
     857             : // into memory in the current (host) process.  SectionEntry::LoadAddress is the
     858             : // address that the section will have in the target process.
     859             : // SectionEntry::ObjAddress is the address of the bits for this section in the
     860             : // original emitted object image (also in the current address space).
     861             : //
     862             : // Relocations will be applied as if the section were loaded at
     863             : // SectionEntry::LoadAddress, but they will be applied at an address based
     864             : // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
     865             : // Target memory contents if they are required for value calculations.
     866             : //
     867             : // The Value parameter here is the load address of the symbol for the
     868             : // relocation to be applied.  For relocations which refer to symbols in the
     869             : // current object Value will be the LoadAddress of the section in which
     870             : // the symbol resides (RE.Addend provides additional information about the
     871             : // symbol location).  For external symbols, Value will be the address of the
     872             : // symbol in the target address space.
     873        1016 : void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
     874             :                                        uint64_t Value) {
     875        2032 :   const SectionEntry &Section = Sections[RE.SectionID];
     876        1016 :   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
     877        2032 :                            RE.SymOffset, RE.SectionID);
     878             : }
     879             : 
     880        1028 : void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
     881             :                                        uint64_t Offset, uint64_t Value,
     882             :                                        uint32_t Type, int64_t Addend,
     883             :                                        uint64_t SymOffset, SID SectionID) {
     884        1028 :   switch (Arch) {
     885         991 :   case Triple::x86_64:
     886         991 :     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
     887         991 :     break;
     888           0 :   case Triple::x86:
     889           0 :     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
     890             :                          (uint32_t)(Addend & 0xffffffffL));
     891           0 :     break;
     892          31 :   case Triple::aarch64:
     893             :   case Triple::aarch64_be:
     894          31 :     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
     895          31 :     break;
     896           2 :   case Triple::arm: // Fall through.
     897             :   case Triple::armeb:
     898             :   case Triple::thumb:
     899             :   case Triple::thumbeb:
     900           2 :     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
     901             :                          (uint32_t)(Addend & 0xffffffffL));
     902           2 :     break;
     903           2 :   case Triple::ppc:
     904           2 :     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
     905           2 :     break;
     906           0 :   case Triple::ppc64: // Fall through.
     907             :   case Triple::ppc64le:
     908           0 :     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
     909           0 :     break;
     910           2 :   case Triple::systemz:
     911           2 :     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
     912           2 :     break;
     913           0 :   case Triple::bpfel:
     914             :   case Triple::bpfeb:
     915           0 :     resolveBPFRelocation(Section, Offset, Value, Type, Addend);
     916           0 :     break;
     917           0 :   default:
     918           0 :     llvm_unreachable("Unsupported CPU type!");
     919             :   }
     920        1028 : }
     921             : 
     922         394 : void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
     923         788 :   return (void *)(Sections[SectionID].getObjAddress() + Offset);
     924             : }
     925             : 
     926        1145 : void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
     927        2290 :   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
     928        1145 :   if (Value.SymbolName)
     929         388 :     addRelocationForSymbol(RE, Value.SymbolName);
     930             :   else
     931         951 :     addRelocationForSection(RE, Value.SectionID);
     932        1145 : }
     933             : 
     934           6 : uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
     935             :                                                  bool IsLocal) const {
     936           6 :   switch (RelType) {
     937           0 :   case ELF::R_MICROMIPS_GOT16:
     938           0 :     if (IsLocal)
     939             :       return ELF::R_MICROMIPS_LO16;
     940             :     break;
     941             :   case ELF::R_MICROMIPS_HI16:
     942             :     return ELF::R_MICROMIPS_LO16;
     943           0 :   case ELF::R_MIPS_GOT16:
     944           0 :     if (IsLocal)
     945             :       return ELF::R_MIPS_LO16;
     946             :     break;
     947           4 :   case ELF::R_MIPS_HI16:
     948           4 :     return ELF::R_MIPS_LO16;
     949           2 :   case ELF::R_MIPS_PCHI16:
     950           2 :     return ELF::R_MIPS_PCLO16;
     951             :   default:
     952             :     break;
     953             :   }
     954           0 :   return ELF::R_MIPS_NONE;
     955             : }
     956             : 
     957             : // Sometimes we don't need to create thunk for a branch.
     958             : // This typically happens when branch target is located
     959             : // in the same object file. In such case target is either
     960             : // a weak symbol or symbol in a different executable section.
     961             : // This function checks if branch target is located in the
     962             : // same object file and if distance between source and target
     963             : // fits R_AARCH64_CALL26 relocation. If both conditions are
     964             : // met, it emits direct jump to the target and returns true.
     965             : // Otherwise false is returned and thunk is created.
     966           1 : bool RuntimeDyldELF::resolveAArch64ShortBranch(
     967             :     unsigned SectionID, relocation_iterator RelI,
     968             :     const RelocationValueRef &Value) {
     969             :   uint64_t Address;
     970           1 :   if (Value.SymbolName) {
     971           0 :     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
     972             : 
     973             :     // Don't create direct branch for external symbols.
     974           0 :     if (Loc == GlobalSymbolTable.end())
     975             :       return false;
     976             : 
     977           0 :     const auto &SymInfo = Loc->second;
     978           0 :     Address =
     979           0 :         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
     980           0 :             SymInfo.getOffset()));
     981             :   } else {
     982           2 :     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
     983             :   }
     984           2 :   uint64_t Offset = RelI->getOffset();
     985           3 :   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
     986             : 
     987             :   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
     988             :   // If distance between source and target is out of range then we should
     989             :   // create thunk.
     990           2 :   if (!isInt<28>(Address + Value.Addend - SourceAddress))
     991             :     return false;
     992             : 
     993           3 :   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
     994           1 :                     Value.Addend);
     995             : 
     996           1 :   return true;
     997             : }
     998             : 
     999           1 : void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
    1000             :                                           const RelocationValueRef &Value,
    1001             :                                           relocation_iterator RelI,
    1002             :                                           StubMap &Stubs) {
    1003             : 
    1004             :   DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
    1005           2 :   SectionEntry &Section = Sections[SectionID];
    1006             : 
    1007           2 :   uint64_t Offset = RelI->getOffset();
    1008           2 :   unsigned RelType = RelI->getType();
    1009             :   // Look for an existing stub.
    1010           2 :   StubMap::const_iterator i = Stubs.find(Value);
    1011           1 :   if (i != Stubs.end()) {
    1012           0 :     resolveRelocation(Section, Offset,
    1013           0 :                       (uint64_t)Section.getAddressWithOffset(i->second),
    1014             :                       RelType, 0);
    1015             :     DEBUG(dbgs() << " Stub function found\n");
    1016           1 :   } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
    1017             :     // Create a new stub function.
    1018             :     DEBUG(dbgs() << " Create a new stub function\n");
    1019           0 :     Stubs[Value] = Section.getStubOffset();
    1020           0 :     uint8_t *StubTargetAddr = createStubFunction(
    1021           0 :         Section.getAddressWithOffset(Section.getStubOffset()));
    1022             : 
    1023           0 :     RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
    1024           0 :                               ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
    1025             :     RelocationEntry REmovk_g2(SectionID,
    1026           0 :                               StubTargetAddr - Section.getAddress() + 4,
    1027           0 :                               ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
    1028             :     RelocationEntry REmovk_g1(SectionID,
    1029           0 :                               StubTargetAddr - Section.getAddress() + 8,
    1030           0 :                               ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
    1031             :     RelocationEntry REmovk_g0(SectionID,
    1032           0 :                               StubTargetAddr - Section.getAddress() + 12,
    1033           0 :                               ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
    1034             : 
    1035           0 :     if (Value.SymbolName) {
    1036           0 :       addRelocationForSymbol(REmovz_g3, Value.SymbolName);
    1037           0 :       addRelocationForSymbol(REmovk_g2, Value.SymbolName);
    1038           0 :       addRelocationForSymbol(REmovk_g1, Value.SymbolName);
    1039           0 :       addRelocationForSymbol(REmovk_g0, Value.SymbolName);
    1040             :     } else {
    1041           0 :       addRelocationForSection(REmovz_g3, Value.SectionID);
    1042           0 :       addRelocationForSection(REmovk_g2, Value.SectionID);
    1043           0 :       addRelocationForSection(REmovk_g1, Value.SectionID);
    1044           0 :       addRelocationForSection(REmovk_g0, Value.SectionID);
    1045             :     }
    1046           0 :     resolveRelocation(Section, Offset,
    1047           0 :                       reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
    1048             :                           Section.getStubOffset())),
    1049             :                       RelType, 0);
    1050           0 :     Section.advanceStubOffset(getMaxStubSize());
    1051             :   }
    1052           1 : }
    1053             : 
    1054             : Expected<relocation_iterator>
    1055        1276 : RuntimeDyldELF::processRelocationRef(
    1056             :     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
    1057             :     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
    1058        1276 :   const auto &Obj = cast<ELFObjectFileBase>(O);
    1059        2552 :   uint64_t RelType = RelI->getType();
    1060        5104 :   ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
    1061        2512 :   int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
    1062        2552 :   elf_symbol_iterator Symbol = RelI->getSymbol();
    1063             : 
    1064             :   // Obtain the symbol name which is referenced in the relocation
    1065        1276 :   StringRef TargetName;
    1066        2552 :   if (Symbol != Obj.symbol_end()) {
    1067        5104 :     if (auto TargetNameOrErr = Symbol->getName())
    1068        1276 :       TargetName = *TargetNameOrErr;
    1069             :     else
    1070           0 :       return TargetNameOrErr.takeError();
    1071             :   }
    1072             :   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
    1073             :                << " TargetName: " << TargetName << "\n");
    1074        1276 :   RelocationValueRef Value;
    1075             :   // First search for the symbol in the local symbol table
    1076        1276 :   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
    1077             : 
    1078             :   // Search for the symbol in the global symbol table
    1079        3828 :   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
    1080        2552 :   if (Symbol != Obj.symbol_end()) {
    1081        3828 :     gsi = GlobalSymbolTable.find(TargetName.data());
    1082        3828 :     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
    1083        1276 :     if (!SymTypeOrErr) {
    1084           0 :       std::string Buf;
    1085           0 :       raw_string_ostream OS(Buf);
    1086           0 :       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
    1087           0 :       OS.flush();
    1088           0 :       report_fatal_error(Buf);
    1089             :     }
    1090        1276 :     SymType = *SymTypeOrErr;
    1091             :   }
    1092        5104 :   if (gsi != GlobalSymbolTable.end()) {
    1093         269 :     const auto &SymInfo = gsi->second;
    1094         269 :     Value.SectionID = SymInfo.getSectionID();
    1095         269 :     Value.Offset = SymInfo.getOffset();
    1096         269 :     Value.Addend = SymInfo.getOffset() + Addend;
    1097             :   } else {
    1098        1007 :     switch (SymType) {
    1099         757 :     case SymbolRef::ST_Debug: {
    1100             :       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
    1101             :       // and can be changed by another developers. Maybe best way is add
    1102             :       // a new symbol type ST_Section to SymbolRef and use it.
    1103        1514 :       auto SectionOrErr = Symbol->getSection();
    1104         757 :       if (!SectionOrErr) {
    1105           0 :         std::string Buf;
    1106           0 :         raw_string_ostream OS(Buf);
    1107           0 :         logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
    1108           0 :         OS.flush();
    1109           0 :         report_fatal_error(Buf);
    1110             :       }
    1111         757 :       section_iterator si = *SectionOrErr;
    1112        1514 :       if (si == Obj.section_end())
    1113           0 :         llvm_unreachable("Symbol section not found, bad object file format!");
    1114             :       DEBUG(dbgs() << "\t\tThis is section symbol\n");
    1115        1514 :       bool isCode = si->isText();
    1116         757 :       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
    1117        2271 :                                                   ObjSectionToID))
    1118         757 :         Value.SectionID = *SectionIDOrErr;
    1119             :       else
    1120           0 :         return SectionIDOrErr.takeError();
    1121         757 :       Value.Addend = Addend;
    1122         757 :       break;
    1123             :     }
    1124         250 :     case SymbolRef::ST_Data:
    1125             :     case SymbolRef::ST_Function:
    1126             :     case SymbolRef::ST_Unknown: {
    1127         250 :       Value.SymbolName = TargetName.data();
    1128         250 :       Value.Addend = Addend;
    1129             : 
    1130             :       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
    1131             :       // will manifest here as a NULL symbol name.
    1132             :       // We can set this as a valid (but empty) symbol name, and rely
    1133             :       // on addRelocationForSymbol to handle this.
    1134         250 :       if (!Value.SymbolName)
    1135           0 :         Value.SymbolName = "";
    1136             :       break;
    1137             :     }
    1138           0 :     default:
    1139           0 :       llvm_unreachable("Unresolved symbol type!");
    1140             :       break;
    1141             :     }
    1142             :   }
    1143             : 
    1144        2552 :   uint64_t Offset = RelI->getOffset();
    1145             : 
    1146             :   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
    1147             :                << "\n");
    1148        1276 :   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
    1149          28 :     if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
    1150           1 :       resolveAArch64Branch(SectionID, Value, RelI, Stubs);
    1151          27 :     } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
    1152             :       // Craete new GOT entry or find existing one. If GOT entry is
    1153             :       // to be created, then we also emit ABS64 relocation for it.
    1154           3 :       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
    1155           3 :       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
    1156             :                                  ELF::R_AARCH64_ADR_PREL_PG_HI21);
    1157             : 
    1158          24 :     } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
    1159           3 :       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
    1160           3 :       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
    1161             :                                  ELF::R_AARCH64_LDST64_ABS_LO12_NC);
    1162             :     } else {
    1163          21 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1164             :     }
    1165        1248 :   } else if (Arch == Triple::arm) {
    1166           2 :     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
    1167             :       RelType == ELF::R_ARM_JUMP24) {
    1168             :       // This is an ARM branch relocation, need to use a stub function.
    1169             :       DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
    1170           0 :       SectionEntry &Section = Sections[SectionID];
    1171             : 
    1172             :       // Look for an existing stub.
    1173           0 :       StubMap::const_iterator i = Stubs.find(Value);
    1174           0 :       if (i != Stubs.end()) {
    1175           0 :         resolveRelocation(
    1176             :             Section, Offset,
    1177           0 :             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
    1178             :             RelType, 0);
    1179             :         DEBUG(dbgs() << " Stub function found\n");
    1180             :       } else {
    1181             :         // Create a new stub function.
    1182             :         DEBUG(dbgs() << " Create a new stub function\n");
    1183           0 :         Stubs[Value] = Section.getStubOffset();
    1184           0 :         uint8_t *StubTargetAddr = createStubFunction(
    1185           0 :             Section.getAddressWithOffset(Section.getStubOffset()));
    1186           0 :         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
    1187           0 :                            ELF::R_ARM_ABS32, Value.Addend);
    1188           0 :         if (Value.SymbolName)
    1189           0 :           addRelocationForSymbol(RE, Value.SymbolName);
    1190             :         else
    1191           0 :           addRelocationForSection(RE, Value.SectionID);
    1192             : 
    1193           0 :         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
    1194           0 :                                                Section.getAddressWithOffset(
    1195             :                                                    Section.getStubOffset())),
    1196             :                           RelType, 0);
    1197           0 :         Section.advanceStubOffset(getMaxStubSize());
    1198             :       }
    1199             :     } else {
    1200             :       uint32_t *Placeholder =
    1201           2 :         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
    1202           2 :       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
    1203             :           RelType == ELF::R_ARM_ABS32) {
    1204           1 :         Value.Addend += *Placeholder;
    1205           1 :       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
    1206             :         // See ELF for ARM documentation
    1207           0 :         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
    1208             :       }
    1209           2 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1210             :     }
    1211        1246 :   } else if (IsMipsO32ABI) {
    1212             :     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
    1213          38 :         computePlaceholderAddress(SectionID, Offset));
    1214          38 :     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
    1215          38 :     if (RelType == ELF::R_MIPS_26) {
    1216             :       // This is an Mips branch relocation, need to use a stub function.
    1217             :       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
    1218           4 :       SectionEntry &Section = Sections[SectionID];
    1219             : 
    1220             :       // Extract the addend from the instruction.
    1221             :       // We shift up by two since the Value will be down shifted again
    1222             :       // when applying the relocation.
    1223           2 :       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
    1224             : 
    1225           2 :       Value.Addend += Addend;
    1226             : 
    1227             :       //  Look up for existing stub.
    1228           4 :       StubMap::const_iterator i = Stubs.find(Value);
    1229           2 :       if (i != Stubs.end()) {
    1230           0 :         RelocationEntry RE(SectionID, Offset, RelType, i->second);
    1231           0 :         addRelocationForSection(RE, SectionID);
    1232             :         DEBUG(dbgs() << " Stub function found\n");
    1233             :       } else {
    1234             :         // Create a new stub function.
    1235             :         DEBUG(dbgs() << " Create a new stub function\n");
    1236           2 :         Stubs[Value] = Section.getStubOffset();
    1237             : 
    1238             :         unsigned AbiVariant;
    1239           2 :         O.getPlatformFlags(AbiVariant);
    1240             : 
    1241           4 :         uint8_t *StubTargetAddr = createStubFunction(
    1242           2 :             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
    1243             : 
    1244             :         // Creating Hi and Lo relocations for the filled stub instructions.
    1245           2 :         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
    1246           6 :                              ELF::R_MIPS_HI16, Value.Addend);
    1247             :         RelocationEntry RELo(SectionID,
    1248           2 :                              StubTargetAddr - Section.getAddress() + 4,
    1249           4 :                              ELF::R_MIPS_LO16, Value.Addend);
    1250             : 
    1251           2 :         if (Value.SymbolName) {
    1252           4 :           addRelocationForSymbol(REHi, Value.SymbolName);
    1253           4 :           addRelocationForSymbol(RELo, Value.SymbolName);
    1254             :         }
    1255             :         else {
    1256           0 :           addRelocationForSection(REHi, Value.SectionID);
    1257           0 :           addRelocationForSection(RELo, Value.SectionID);
    1258             :         }
    1259             : 
    1260           4 :         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
    1261           2 :         addRelocationForSection(RE, SectionID);
    1262           4 :         Section.advanceStubOffset(getMaxStubSize());
    1263             :       }
    1264          36 :     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
    1265           6 :       int64_t Addend = (Opcode & 0x0000ffff) << 16;
    1266          12 :       RelocationEntry RE(SectionID, Offset, RelType, Addend);
    1267          12 :       PendingRelocs.push_back(std::make_pair(Value, RE));
    1268          30 :     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
    1269          12 :       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
    1270          24 :       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
    1271           6 :         const RelocationValueRef &MatchingValue = I->first;
    1272           6 :         RelocationEntry &Reloc = I->second;
    1273          12 :         if (MatchingValue == Value &&
    1274          12 :             RelType == getMatchingLoRelocation(Reloc.RelType) &&
    1275           6 :             SectionID == Reloc.SectionID) {
    1276           6 :           Reloc.Addend += Addend;
    1277           6 :           if (Value.SymbolName)
    1278           8 :             addRelocationForSymbol(Reloc, Value.SymbolName);
    1279             :           else
    1280           2 :             addRelocationForSection(Reloc, Value.SectionID);
    1281          12 :           I = PendingRelocs.erase(I);
    1282             :         } else
    1283           0 :           ++I;
    1284             :       }
    1285          12 :       RelocationEntry RE(SectionID, Offset, RelType, Addend);
    1286           6 :       if (Value.SymbolName)
    1287           8 :         addRelocationForSymbol(RE, Value.SymbolName);
    1288             :       else
    1289           2 :         addRelocationForSection(RE, Value.SectionID);
    1290             :     } else {
    1291          24 :       if (RelType == ELF::R_MIPS_32)
    1292          12 :         Value.Addend += Opcode;
    1293          12 :       else if (RelType == ELF::R_MIPS_PC16)
    1294           4 :         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
    1295          10 :       else if (RelType == ELF::R_MIPS_PC19_S2)
    1296           4 :         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
    1297           8 :       else if (RelType == ELF::R_MIPS_PC21_S2)
    1298           4 :         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
    1299           6 :       else if (RelType == ELF::R_MIPS_PC26_S2)
    1300           4 :         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
    1301          24 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1302             :     }
    1303        1208 :   } else if (IsMipsN32ABI || IsMipsN64ABI) {
    1304          68 :     uint32_t r_type = RelType & 0xff;
    1305         136 :     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
    1306          68 :     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
    1307          60 :         || r_type == ELF::R_MIPS_GOT_DISP) {
    1308          12 :       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
    1309          36 :       if (i != GOTSymbolOffsets.end())
    1310           0 :         RE.SymOffset = i->second;
    1311             :       else {
    1312          12 :         RE.SymOffset = allocateGOTEntries(1);
    1313          24 :         GOTSymbolOffsets[TargetName] = RE.SymOffset;
    1314             :       }
    1315             :     }
    1316          68 :     if (Value.SymbolName)
    1317          56 :       addRelocationForSymbol(RE, Value.SymbolName);
    1318             :     else
    1319          40 :       addRelocationForSection(RE, Value.SectionID);
    1320        1140 :   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    1321           0 :     if (RelType == ELF::R_PPC64_REL24) {
    1322             :       // Determine ABI variant in use for this object.
    1323             :       unsigned AbiVariant;
    1324           0 :       Obj.getPlatformFlags(AbiVariant);
    1325           0 :       AbiVariant &= ELF::EF_PPC64_ABI;
    1326             :       // A PPC branch relocation will need a stub function if the target is
    1327             :       // an external symbol (either Value.SymbolName is set, or SymType is
    1328             :       // Symbol::ST_Unknown) or if the target address is not within the
    1329             :       // signed 24-bits branch address.
    1330           0 :       SectionEntry &Section = Sections[SectionID];
    1331           0 :       uint8_t *Target = Section.getAddressWithOffset(Offset);
    1332           0 :       bool RangeOverflow = false;
    1333           0 :       if (!Value.SymbolName && SymType != SymbolRef::ST_Unknown) {
    1334           0 :         if (AbiVariant != 2) {
    1335             :           // In the ELFv1 ABI, a function call may point to the .opd entry,
    1336             :           // so the final symbol value is calculated based on the relocation
    1337             :           // values in the .opd section.
    1338           0 :           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
    1339           0 :             return std::move(Err);
    1340             :         } else {
    1341             :           // In the ELFv2 ABI, a function symbol may provide a local entry
    1342             :           // point, which must be used for direct calls.
    1343           0 :           uint8_t SymOther = Symbol->getOther();
    1344           0 :           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
    1345             :         }
    1346             :         uint8_t *RelocTarget =
    1347           0 :             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
    1348           0 :         int64_t delta = static_cast<int64_t>(Target - RelocTarget);
    1349             :         // If it is within 26-bits branch range, just set the branch target
    1350           0 :         if (SignExtend64<26>(delta) == delta) {
    1351           0 :           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
    1352           0 :           addRelocationForSection(RE, Value.SectionID);
    1353             :         } else {
    1354             :           RangeOverflow = true;
    1355             :         }
    1356             :       }
    1357           0 :       if (Value.SymbolName || SymType == SymbolRef::ST_Unknown ||
    1358             :           RangeOverflow) {
    1359             :         // It is an external symbol (either Value.SymbolName is set, or
    1360             :         // SymType is SymbolRef::ST_Unknown) or out of range.
    1361           0 :         StubMap::const_iterator i = Stubs.find(Value);
    1362           0 :         if (i != Stubs.end()) {
    1363             :           // Symbol function stub already created, just relocate to it
    1364           0 :           resolveRelocation(Section, Offset,
    1365             :                             reinterpret_cast<uint64_t>(
    1366           0 :                                 Section.getAddressWithOffset(i->second)),
    1367             :                             RelType, 0);
    1368             :           DEBUG(dbgs() << " Stub function found\n");
    1369             :         } else {
    1370             :           // Create a new stub function.
    1371             :           DEBUG(dbgs() << " Create a new stub function\n");
    1372           0 :           Stubs[Value] = Section.getStubOffset();
    1373           0 :           uint8_t *StubTargetAddr = createStubFunction(
    1374             :               Section.getAddressWithOffset(Section.getStubOffset()),
    1375           0 :               AbiVariant);
    1376           0 :           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
    1377           0 :                              ELF::R_PPC64_ADDR64, Value.Addend);
    1378             : 
    1379             :           // Generates the 64-bits address loads as exemplified in section
    1380             :           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
    1381             :           // apply to the low part of the instructions, so we have to update
    1382             :           // the offset according to the target endianness.
    1383           0 :           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
    1384           0 :           if (!IsTargetLittleEndian)
    1385           0 :             StubRelocOffset += 2;
    1386             : 
    1387             :           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
    1388           0 :                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
    1389             :           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
    1390           0 :                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
    1391             :           RelocationEntry REh(SectionID, StubRelocOffset + 12,
    1392           0 :                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
    1393             :           RelocationEntry REl(SectionID, StubRelocOffset + 16,
    1394           0 :                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
    1395             : 
    1396           0 :           if (Value.SymbolName) {
    1397           0 :             addRelocationForSymbol(REhst, Value.SymbolName);
    1398           0 :             addRelocationForSymbol(REhr, Value.SymbolName);
    1399           0 :             addRelocationForSymbol(REh, Value.SymbolName);
    1400           0 :             addRelocationForSymbol(REl, Value.SymbolName);
    1401             :           } else {
    1402           0 :             addRelocationForSection(REhst, Value.SectionID);
    1403           0 :             addRelocationForSection(REhr, Value.SectionID);
    1404           0 :             addRelocationForSection(REh, Value.SectionID);
    1405           0 :             addRelocationForSection(REl, Value.SectionID);
    1406             :           }
    1407             : 
    1408           0 :           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
    1409           0 :                                                  Section.getAddressWithOffset(
    1410             :                                                      Section.getStubOffset())),
    1411             :                             RelType, 0);
    1412           0 :           Section.advanceStubOffset(getMaxStubSize());
    1413             :         }
    1414           0 :         if (Value.SymbolName || SymType == SymbolRef::ST_Unknown) {
    1415             :           // Restore the TOC for external calls
    1416           0 :           if (AbiVariant == 2)
    1417           0 :             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
    1418             :           else
    1419           0 :             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
    1420             :         }
    1421             :       }
    1422           0 :     } else if (RelType == ELF::R_PPC64_TOC16 ||
    1423           0 :                RelType == ELF::R_PPC64_TOC16_DS ||
    1424           0 :                RelType == ELF::R_PPC64_TOC16_LO ||
    1425           0 :                RelType == ELF::R_PPC64_TOC16_LO_DS ||
    1426           0 :                RelType == ELF::R_PPC64_TOC16_HI ||
    1427             :                RelType == ELF::R_PPC64_TOC16_HA) {
    1428             :       // These relocations are supposed to subtract the TOC address from
    1429             :       // the final value.  This does not fit cleanly into the RuntimeDyld
    1430             :       // scheme, since there may be *two* sections involved in determining
    1431             :       // the relocation value (the section of the symbol referred to by the
    1432             :       // relocation, and the TOC section associated with the current module).
    1433             :       //
    1434             :       // Fortunately, these relocations are currently only ever generated
    1435             :       // referring to symbols that themselves reside in the TOC, which means
    1436             :       // that the two sections are actually the same.  Thus they cancel out
    1437             :       // and we can immediately resolve the relocation right now.
    1438           0 :       switch (RelType) {
    1439             :       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
    1440           0 :       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
    1441           0 :       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
    1442           0 :       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
    1443           0 :       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
    1444           0 :       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
    1445           0 :       default: llvm_unreachable("Wrong relocation type.");
    1446             :       }
    1447             : 
    1448           0 :       RelocationValueRef TOCValue;
    1449           0 :       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
    1450           0 :         return std::move(Err);
    1451           0 :       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
    1452           0 :         llvm_unreachable("Unsupported TOC relocation.");
    1453           0 :       Value.Addend -= TOCValue.Addend;
    1454           0 :       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
    1455             :     } else {
    1456             :       // There are two ways to refer to the TOC address directly: either
    1457             :       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
    1458             :       // ignored), or via any relocation that refers to the magic ".TOC."
    1459             :       // symbols (in which case the addend is respected).
    1460           0 :       if (RelType == ELF::R_PPC64_TOC) {
    1461           0 :         RelType = ELF::R_PPC64_ADDR64;
    1462           0 :         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
    1463           0 :           return std::move(Err);
    1464           0 :       } else if (TargetName == ".TOC.") {
    1465           0 :         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
    1466           0 :           return std::move(Err);
    1467           0 :         Value.Addend += Addend;
    1468             :       }
    1469             : 
    1470           0 :       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
    1471             : 
    1472           0 :       if (Value.SymbolName)
    1473           0 :         addRelocationForSymbol(RE, Value.SymbolName);
    1474             :       else
    1475           0 :         addRelocationForSection(RE, Value.SectionID);
    1476             :     }
    1477        1142 :   } else if (Arch == Triple::systemz &&
    1478           2 :              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
    1479             :     // Create function stubs for both PLT and GOT references, regardless of
    1480             :     // whether the GOT reference is to data or code.  The stub contains the
    1481             :     // full address of the symbol, as needed by GOT references, and the
    1482             :     // executable part only adds an overhead of 8 bytes.
    1483             :     //
    1484             :     // We could try to conserve space by allocating the code and data
    1485             :     // parts of the stub separately.  However, as things stand, we allocate
    1486             :     // a stub for every relocation, so using a GOT in JIT code should be
    1487             :     // no less space efficient than using an explicit constant pool.
    1488             :     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
    1489           0 :     SectionEntry &Section = Sections[SectionID];
    1490             : 
    1491             :     // Look for an existing stub.
    1492           0 :     StubMap::const_iterator i = Stubs.find(Value);
    1493             :     uintptr_t StubAddress;
    1494           0 :     if (i != Stubs.end()) {
    1495           0 :       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
    1496             :       DEBUG(dbgs() << " Stub function found\n");
    1497             :     } else {
    1498             :       // Create a new stub function.
    1499             :       DEBUG(dbgs() << " Create a new stub function\n");
    1500             : 
    1501           0 :       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
    1502           0 :       uintptr_t StubAlignment = getStubAlignment();
    1503           0 :       StubAddress =
    1504           0 :           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
    1505           0 :           -StubAlignment;
    1506           0 :       unsigned StubOffset = StubAddress - BaseAddress;
    1507             : 
    1508           0 :       Stubs[Value] = StubOffset;
    1509           0 :       createStubFunction((uint8_t *)StubAddress);
    1510           0 :       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
    1511           0 :                          Value.Offset);
    1512           0 :       if (Value.SymbolName)
    1513           0 :         addRelocationForSymbol(RE, Value.SymbolName);
    1514             :       else
    1515           0 :         addRelocationForSection(RE, Value.SectionID);
    1516           0 :       Section.advanceStubOffset(getMaxStubSize());
    1517             :     }
    1518             : 
    1519           0 :     if (RelType == ELF::R_390_GOTENT)
    1520           0 :       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
    1521             :                         Addend);
    1522             :     else
    1523           0 :       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
    1524        1140 :   } else if (Arch == Triple::x86_64) {
    1525        1136 :     if (RelType == ELF::R_X86_64_PLT32) {
    1526             :       // The way the PLT relocations normally work is that the linker allocates
    1527             :       // the
    1528             :       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
    1529             :       // entry will then jump to an address provided by the GOT.  On first call,
    1530             :       // the
    1531             :       // GOT address will point back into PLT code that resolves the symbol. After
    1532             :       // the first call, the GOT entry points to the actual function.
    1533             :       //
    1534             :       // For local functions we're ignoring all of that here and just replacing
    1535             :       // the PLT32 relocation type with PC32, which will translate the relocation
    1536             :       // into a PC-relative call directly to the function. For external symbols we
    1537             :       // can't be sure the function will be within 2^32 bytes of the call site, so
    1538             :       // we need to create a stub, which calls into the GOT.  This case is
    1539             :       // equivalent to the usual PLT implementation except that we use the stub
    1540             :       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
    1541             :       // rather than allocating a PLT section.
    1542          16 :       if (Value.SymbolName) {
    1543             :         // This is a call to an external function.
    1544             :         // Look for an existing stub.
    1545          22 :         SectionEntry &Section = Sections[SectionID];
    1546          22 :         StubMap::const_iterator i = Stubs.find(Value);
    1547             :         uintptr_t StubAddress;
    1548          11 :         if (i != Stubs.end()) {
    1549           0 :           StubAddress = uintptr_t(Section.getAddress()) + i->second;
    1550             :           DEBUG(dbgs() << " Stub function found\n");
    1551             :         } else {
    1552             :           // Create a new stub function (equivalent to a PLT entry).
    1553             :           DEBUG(dbgs() << " Create a new stub function\n");
    1554             : 
    1555          11 :           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
    1556          11 :           uintptr_t StubAlignment = getStubAlignment();
    1557          11 :           StubAddress =
    1558          11 :               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
    1559          11 :               -StubAlignment;
    1560          11 :           unsigned StubOffset = StubAddress - BaseAddress;
    1561          11 :           Stubs[Value] = StubOffset;
    1562          11 :           createStubFunction((uint8_t *)StubAddress);
    1563             : 
    1564             :           // Bump our stub offset counter
    1565          22 :           Section.advanceStubOffset(getMaxStubSize());
    1566             : 
    1567             :           // Allocate a GOT Entry
    1568          11 :           uint64_t GOTOffset = allocateGOTEntries(1);
    1569             : 
    1570             :           // The load of the GOT address has an addend of -4
    1571          11 :           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
    1572             :                                      ELF::R_X86_64_PC32);
    1573             : 
    1574             :           // Fill in the value of the symbol we're targeting into the GOT
    1575          44 :           addRelocationForSymbol(
    1576          22 :               computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
    1577             :               Value.SymbolName);
    1578             :         }
    1579             : 
    1580             :         // Make the target call a call into the stub table.
    1581          11 :         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
    1582             :                           Addend);
    1583             :       } else {
    1584             :         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
    1585          10 :                   Value.Offset);
    1586           5 :         addRelocationForSection(RE, Value.SectionID);
    1587             :       }
    1588        2240 :     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
    1589        2220 :                RelType == ELF::R_X86_64_GOTPCRELX ||
    1590             :                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
    1591          26 :       uint64_t GOTOffset = allocateGOTEntries(1);
    1592          26 :       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
    1593             :                                  ELF::R_X86_64_PC32);
    1594             : 
    1595             :       // Fill in the value of the symbol we're targeting into the GOT
    1596             :       RelocationEntry RE =
    1597          26 :           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
    1598          26 :       if (Value.SymbolName)
    1599           6 :         addRelocationForSymbol(RE, Value.SymbolName);
    1600             :       else
    1601          23 :         addRelocationForSection(RE, Value.SectionID);
    1602        1094 :     } else if (RelType == ELF::R_X86_64_PC32) {
    1603          60 :       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
    1604          30 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1605        1064 :     } else if (RelType == ELF::R_X86_64_PC64) {
    1606         648 :       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
    1607         324 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1608             :     } else {
    1609         740 :       processSimpleRelocation(SectionID, Offset, RelType, Value);
    1610             :     }
    1611             :   } else {
    1612           4 :     if (Arch == Triple::x86) {
    1613           0 :       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
    1614             :     }
    1615           4 :     processSimpleRelocation(SectionID, Offset, RelType, Value);
    1616             :   }
    1617        1276 :   return ++RelI;
    1618             : }
    1619             : 
    1620         165 : size_t RuntimeDyldELF::getGOTEntrySize() {
    1621             :   // We don't use the GOT in all of these cases, but it's essentially free
    1622             :   // to put them all here.
    1623         165 :   size_t Result = 0;
    1624         165 :   switch (Arch) {
    1625             :   case Triple::x86_64:
    1626             :   case Triple::aarch64:
    1627             :   case Triple::aarch64_be:
    1628             :   case Triple::ppc64:
    1629             :   case Triple::ppc64le:
    1630             :   case Triple::systemz:
    1631             :     Result = sizeof(uint64_t);
    1632             :     break;
    1633             :   case Triple::x86:
    1634             :   case Triple::arm:
    1635             :   case Triple::thumb:
    1636             :     Result = sizeof(uint32_t);
    1637             :     break;
    1638          44 :   case Triple::mips:
    1639             :   case Triple::mipsel:
    1640             :   case Triple::mips64:
    1641             :   case Triple::mips64el:
    1642          44 :     if (IsMipsO32ABI || IsMipsN32ABI)
    1643             :       Result = sizeof(uint32_t);
    1644          22 :     else if (IsMipsN64ABI)
    1645             :       Result = sizeof(uint64_t);
    1646             :     else
    1647           0 :       llvm_unreachable("Mips ABI not handled");
    1648             :     break;
    1649           0 :   default:
    1650           0 :     llvm_unreachable("Unsupported CPU type!");
    1651             :   }
    1652         165 :   return Result;
    1653             : }
    1654             : 
    1655          52 : uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
    1656          52 :   if (GOTSectionID == 0) {
    1657          54 :     GOTSectionID = Sections.size();
    1658             :     // Reserve a section id. We'll allocate the section later
    1659             :     // once we know the total size
    1660          81 :     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
    1661             :   }
    1662          52 :   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
    1663          52 :   CurrentGOTIndex += no;
    1664          52 :   return StartOffset;
    1665             : }
    1666             : 
    1667           6 : uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
    1668             :                                              unsigned GOTRelType) {
    1669          18 :   auto E = GOTOffsetMap.insert({Value, 0});
    1670           6 :   if (E.second) {
    1671           3 :     uint64_t GOTOffset = allocateGOTEntries(1);
    1672             : 
    1673             :     // Create relocation for newly created GOT entry
    1674             :     RelocationEntry RE =
    1675           3 :         computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
    1676           3 :     if (Value.SymbolName)
    1677           4 :       addRelocationForSymbol(RE, Value.SymbolName);
    1678             :     else
    1679           1 :       addRelocationForSection(RE, Value.SectionID);
    1680             : 
    1681           3 :     E.first->second = GOTOffset;
    1682             :   }
    1683             : 
    1684           6 :   return E.first->second;
    1685             : }
    1686             : 
    1687          43 : void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
    1688             :                                                 uint64_t Offset,
    1689             :                                                 uint64_t GOTOffset,
    1690             :                                                 uint32_t Type) {
    1691             :   // Fill in the relative address of the GOT Entry into the stub
    1692          86 :   RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
    1693          43 :   addRelocationForSection(GOTRE, GOTSectionID);
    1694          43 : }
    1695             : 
    1696          40 : RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
    1697             :                                                    uint64_t SymbolOffset,
    1698             :                                                    uint32_t Type) {
    1699          80 :   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
    1700             : }
    1701             : 
    1702         325 : Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
    1703             :                                   ObjSectionToIDMap &SectionMap) {
    1704         325 :   if (IsMipsO32ABI)
    1705           8 :     if (!PendingRelocs.empty())
    1706             :       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
    1707             : 
    1708             :   // If necessary, allocate the global offset table
    1709         325 :   if (GOTSectionID != 0) {
    1710             :     // Allocate memory for the section
    1711          27 :     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
    1712          81 :     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
    1713          54 :                                                 GOTSectionID, ".got", false);
    1714          27 :     if (!Addr)
    1715             :       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
    1716             : 
    1717          81 :     Sections[GOTSectionID] =
    1718          81 :         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
    1719             : 
    1720          27 :     if (Checker)
    1721          10 :       Checker->registerSection(Obj.getFileName(), GOTSectionID);
    1722             : 
    1723             :     // For now, initialize all GOT entries to zero.  We'll fill them in as
    1724             :     // needed when GOT-based relocations are applied.
    1725          27 :     memset(Addr, 0, TotalSize);
    1726          27 :     if (IsMipsN32ABI || IsMipsN64ABI) {
    1727             :       // To correctly resolve Mips GOT relocations, we need a mapping from
    1728             :       // object's sections to GOTs.
    1729           4 :       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    1730          64 :            SI != SE; ++SI) {
    1731         240 :         if (SI->relocation_begin() != SI->relocation_end()) {
    1732          24 :           section_iterator RelocatedSection = SI->getRelocatedSection();
    1733          24 :           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
    1734             :           assert (i != SectionMap.end());
    1735          24 :           SectionToGOTMap[i->second] = GOTSectionID;
    1736             :         }
    1737             :       }
    1738           4 :       GOTSymbolOffsets.clear();
    1739             :     }
    1740             :   }
    1741             : 
    1742             :   // Look for and record the EH frame section.
    1743         650 :   ObjSectionToIDMap::iterator i, e;
    1744         650 :   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
    1745         639 :     const SectionRef &Section = i->first;
    1746         639 :     StringRef Name;
    1747         639 :     Section.getName(Name);
    1748         875 :     if (Name == ".eh_frame") {
    1749         472 :       UnregisteredEHFrameSections.push_back(i->second);
    1750         236 :       break;
    1751             :     }
    1752             :   }
    1753             : 
    1754         325 :   GOTSectionID = 0;
    1755         325 :   CurrentGOTIndex = 0;
    1756             : 
    1757         975 :   return Error::success();
    1758             : }
    1759             : 
    1760         325 : bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
    1761         650 :   return Obj.isELF();
    1762             : }
    1763             : 
    1764          98 : bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
    1765          98 :   unsigned RelTy = R.getType();
    1766          98 :   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
    1767           0 :     return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
    1768           0 :            RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
    1769             : 
    1770          98 :   if (Arch == Triple::x86_64)
    1771         196 :     return RelTy == ELF::R_X86_64_GOTPCREL ||
    1772         196 :            RelTy == ELF::R_X86_64_GOTPCRELX ||
    1773             :            RelTy == ELF::R_X86_64_REX_GOTPCRELX;
    1774             :   return false;
    1775             : }
    1776             : 
    1777        1304 : bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
    1778        1304 :   if (Arch != Triple::x86_64)
    1779             :     return true;  // Conservative answer
    1780             : 
    1781        1234 :   switch (R.getType()) {
    1782             :   default:
    1783             :     return true;  // Conservative answer
    1784             : 
    1785             : 
    1786        1003 :   case ELF::R_X86_64_GOTPCREL:
    1787             :   case ELF::R_X86_64_GOTPCRELX:
    1788             :   case ELF::R_X86_64_REX_GOTPCRELX:
    1789             :   case ELF::R_X86_64_PC32:
    1790             :   case ELF::R_X86_64_PC64:
    1791             :   case ELF::R_X86_64_64:
    1792             :     // We know that these reloation types won't need a stub function.  This list
    1793             :     // can be extended as needed.
    1794        1003 :     return false;
    1795             :   }
    1796             : }
    1797             : 
    1798             : } // namespace llvm

Generated by: LCOV version 1.13