LCOV - code coverage report
Current view: top level - lib/Target/AArch64 - AArch64TargetTransformInfo.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 277 297 93.3 %
Date: 2017-09-14 15:23:50 Functions: 29 30 96.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : 
      10             : #include "AArch64TargetTransformInfo.h"
      11             : #include "MCTargetDesc/AArch64AddressingModes.h"
      12             : #include "llvm/Analysis/LoopInfo.h"
      13             : #include "llvm/Analysis/TargetTransformInfo.h"
      14             : #include "llvm/CodeGen/BasicTTIImpl.h"
      15             : #include "llvm/IR/IntrinsicInst.h"
      16             : #include "llvm/Support/Debug.h"
      17             : #include "llvm/Target/CostTable.h"
      18             : #include "llvm/Target/TargetLowering.h"
      19             : #include <algorithm>
      20             : using namespace llvm;
      21             : 
      22             : #define DEBUG_TYPE "aarch64tti"
      23             : 
      24       72306 : static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
      25      144612 :                                                cl::init(true), cl::Hidden);
      26             : 
      27          16 : bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
      28             :                                          const Function *Callee) const {
      29          16 :   const TargetMachine &TM = getTLI()->getTargetMachine();
      30             : 
      31             :   const FeatureBitset &CallerBits =
      32          16 :       TM.getSubtargetImpl(*Caller)->getFeatureBits();
      33             :   const FeatureBitset &CalleeBits =
      34          16 :       TM.getSubtargetImpl(*Callee)->getFeatureBits();
      35             : 
      36             :   // Inline a callee if its target-features are a subset of the callers
      37             :   // target-features.
      38          32 :   return (CallerBits & CalleeBits) == CalleeBits;
      39             : }
      40             : 
      41             : /// \brief Calculate the cost of materializing a 64-bit value. This helper
      42             : /// method might only calculate a fraction of a larger immediate. Therefore it
      43             : /// is valid to return a cost of ZERO.
      44        3517 : int AArch64TTIImpl::getIntImmCost(int64_t Val) {
      45             :   // Check if the immediate can be encoded within an instruction.
      46        5765 :   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
      47             :     return 0;
      48             : 
      49         740 :   if (Val < 0)
      50         292 :     Val = ~Val;
      51             : 
      52             :   // Calculate how many moves we will need to materialize this constant.
      53        1480 :   unsigned LZ = countLeadingZeros((uint64_t)Val);
      54         740 :   return (64 - LZ + 15) / 16;
      55             : }
      56             : 
      57             : /// \brief Calculate the cost of materializing the given constant.
      58        3437 : int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
      59             :   assert(Ty->isIntegerTy());
      60             : 
      61        3437 :   unsigned BitSize = Ty->getPrimitiveSizeInBits();
      62        3437 :   if (BitSize == 0)
      63             :     return ~0U;
      64             : 
      65             :   // Sign-extend all constants to a multiple of 64-bit.
      66        3437 :   APInt ImmVal = Imm;
      67        3437 :   if (BitSize & 0x3f)
      68        7158 :     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
      69             : 
      70             :   // Split the constant into 64-bit chunks and calculate the cost for each
      71             :   // chunk.
      72        3437 :   int Cost = 0;
      73        6954 :   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
      74       10551 :     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
      75        3517 :     int64_t Val = Tmp.getSExtValue();
      76        3517 :     Cost += getIntImmCost(Val);
      77             :   }
      78             :   // We need at least one instruction to materialze the constant.
      79        6874 :   return std::max(1, Cost);
      80             : }
      81             : 
      82        7769 : int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
      83             :                                   const APInt &Imm, Type *Ty) {
      84             :   assert(Ty->isIntegerTy());
      85             : 
      86        7769 :   unsigned BitSize = Ty->getPrimitiveSizeInBits();
      87             :   // There is no cost model for constants with a bit size of 0. Return TCC_Free
      88             :   // here, so that constant hoisting will ignore this constant.
      89        7769 :   if (BitSize == 0)
      90             :     return TTI::TCC_Free;
      91             : 
      92        7769 :   unsigned ImmIdx = ~0U;
      93        7769 :   switch (Opcode) {
      94             :   default:
      95             :     return TTI::TCC_Free;
      96        2125 :   case Instruction::GetElementPtr:
      97             :     // Always hoist the base address of a GetElementPtr.
      98        2125 :     if (Idx == 0)
      99             :       return 2 * TTI::TCC_Basic;
     100        2119 :     return TTI::TCC_Free;
     101         307 :   case Instruction::Store:
     102         307 :     ImmIdx = 0;
     103         307 :     break;
     104        1883 :   case Instruction::Add:
     105             :   case Instruction::Sub:
     106             :   case Instruction::Mul:
     107             :   case Instruction::UDiv:
     108             :   case Instruction::SDiv:
     109             :   case Instruction::URem:
     110             :   case Instruction::SRem:
     111             :   case Instruction::And:
     112             :   case Instruction::Or:
     113             :   case Instruction::Xor:
     114             :   case Instruction::ICmp:
     115        1883 :     ImmIdx = 1;
     116        1883 :     break;
     117             :   // Always return TCC_Free for the shift value of a shift instruction.
     118         682 :   case Instruction::Shl:
     119             :   case Instruction::LShr:
     120             :   case Instruction::AShr:
     121         682 :     if (Idx == 1)
     122             :       return TTI::TCC_Free;
     123             :     break;
     124             :   case Instruction::Trunc:
     125             :   case Instruction::ZExt:
     126             :   case Instruction::SExt:
     127             :   case Instruction::IntToPtr:
     128             :   case Instruction::PtrToInt:
     129             :   case Instruction::BitCast:
     130             :   case Instruction::PHI:
     131             :   case Instruction::Call:
     132             :   case Instruction::Select:
     133             :   case Instruction::Ret:
     134             :   case Instruction::Load:
     135             :     break;
     136             :   }
     137             : 
     138        3417 :   if (Idx == ImmIdx) {
     139        2080 :     int NumConstants = (BitSize + 63) / 64;
     140        2080 :     int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
     141             :     return (Cost <= NumConstants * TTI::TCC_Basic)
     142        2080 :                ? static_cast<int>(TTI::TCC_Free)
     143             :                : Cost;
     144             :   }
     145        1337 :   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
     146             : }
     147             : 
     148         909 : int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
     149             :                                   const APInt &Imm, Type *Ty) {
     150             :   assert(Ty->isIntegerTy());
     151             : 
     152         909 :   unsigned BitSize = Ty->getPrimitiveSizeInBits();
     153             :   // There is no cost model for constants with a bit size of 0. Return TCC_Free
     154             :   // here, so that constant hoisting will ignore this constant.
     155         909 :   if (BitSize == 0)
     156             :     return TTI::TCC_Free;
     157             : 
     158         909 :   switch (IID) {
     159             :   default:
     160             :     return TTI::TCC_Free;
     161          20 :   case Intrinsic::sadd_with_overflow:
     162             :   case Intrinsic::uadd_with_overflow:
     163             :   case Intrinsic::ssub_with_overflow:
     164             :   case Intrinsic::usub_with_overflow:
     165             :   case Intrinsic::smul_with_overflow:
     166             :   case Intrinsic::umul_with_overflow:
     167          20 :     if (Idx == 1) {
     168          20 :       int NumConstants = (BitSize + 63) / 64;
     169          20 :       int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
     170             :       return (Cost <= NumConstants * TTI::TCC_Basic)
     171          20 :                  ? static_cast<int>(TTI::TCC_Free)
     172             :                  : Cost;
     173           0 :     }
     174             :     break;
     175          36 :   case Intrinsic::experimental_stackmap:
     176          36 :     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
     177             :       return TTI::TCC_Free;
     178             :     break;
     179         209 :   case Intrinsic::experimental_patchpoint_void:
     180             :   case Intrinsic::experimental_patchpoint_i64:
     181         209 :     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
     182             :       return TTI::TCC_Free;
     183             :     break;
     184             :   }
     185           0 :   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
     186             : }
     187             : 
     188             : TargetTransformInfo::PopcntSupportKind
     189           3 : AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
     190             :   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
     191           3 :   if (TyWidth == 32 || TyWidth == 64)
     192             :     return TTI::PSK_FastHardware;
     193             :   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
     194           0 :   return TTI::PSK_Software;
     195             : }
     196             : 
     197         833 : bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
     198             :                                            ArrayRef<const Value *> Args) {
     199             : 
     200             :   // A helper that returns a vector type from the given type. The number of
     201             :   // elements in type Ty determine the vector width.
     202             :   auto toVectorTy = [&](Type *ArgTy) {
     203         504 :     return VectorType::get(ArgTy->getScalarType(),
     204             :                            DstTy->getVectorNumElements());
     205        1001 :   };
     206             : 
     207             :   // Exit early if DstTy is not a vector type whose elements are at least
     208             :   // 16-bits wide.
     209        1666 :   if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
     210             :     return false;
     211             : 
     212             :   // Determine if the operation has a widening variant. We consider both the
     213             :   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
     214             :   // instructions.
     215             :   //
     216             :   // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
     217             :   //       verify that their extending operands are eliminated during code
     218             :   //       generation.
     219         413 :   switch (Opcode) {
     220             :   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
     221             :   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
     222             :     break;
     223             :   default:
     224             :     return false;
     225             :   }
     226             : 
     227             :   // To be a widening instruction (either the "wide" or "long" versions), the
     228             :   // second operand must be a sign- or zero extend having a single user. We
     229             :   // only consider extends having a single user because they may otherwise not
     230             :   // be eliminated.
     231         300 :   if (Args.size() != 2 ||
     232         670 :       (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
     233         340 :       !Args[1]->hasOneUse())
     234             :     return false;
     235         340 :   auto *Extend = cast<CastInst>(Args[1]);
     236             : 
     237             :   // Legalize the destination type and ensure it can be used in a widening
     238             :   // operation.
     239         170 :   auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
     240         170 :   unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
     241         170 :   if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
     242             :     return false;
     243             : 
     244             :   // Legalize the source type and ensure it can be used in a widening
     245             :   // operation.
     246         336 :   Type *SrcTy = toVectorTy(Extend->getSrcTy());
     247         168 :   auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
     248         168 :   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
     249         168 :   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
     250             :     return false;
     251             : 
     252             :   // Get the total number of vector elements in the legalized types.
     253         158 :   unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
     254         158 :   unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();
     255             : 
     256             :   // Return true if the legalized types have the same number of vector elements
     257             :   // and the destination element type size is twice that of the source type.
     258         158 :   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
     259             : }
     260             : 
     261         298 : int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
     262             :                                      const Instruction *I) {
     263         298 :   int ISD = TLI->InstructionOpcodeToISD(Opcode);
     264             :   assert(ISD && "Invalid opcode");
     265             : 
     266             :   // If the cast is observable, and it is used by a widening instruction (e.g.,
     267             :   // uaddl, saddw, etc.), it may be free.
     268         594 :   if (I && I->hasOneUse()) {
     269        1072 :     auto *SingleUser = cast<Instruction>(*I->user_begin());
     270         988 :     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
     271         536 :     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
     272             :       // If the cast is the second operand, it is free. We will generate either
     273             :       // a "wide" or "long" version of the widening instruction.
     274         172 :       if (I == SingleUser->getOperand(1))
     275          84 :         return 0;
     276             :       // If the cast is not the second operand, it will be free if it looks the
     277             :       // same as the second operand. In this case, we will generate a "long"
     278             :       // version of the widening instruction.
     279          90 :       if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
     280          89 :         if (I->getOpcode() == Cast->getOpcode() &&
     281          87 :             cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
     282             :           return 0;
     283             :     }
     284             :   }
     285             : 
     286         214 :   EVT SrcTy = TLI->getValueType(DL, Src);
     287         214 :   EVT DstTy = TLI->getValueType(DL, Dst);
     288             : 
     289         214 :   if (!SrcTy.isSimple() || !DstTy.isSimple())
     290           3 :     return BaseT::getCastInstrCost(Opcode, Dst, Src);
     291             : 
     292             :   static const TypeConversionCostTblEntry
     293             :   ConversionTbl[] = {
     294             :     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
     295             :     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
     296             :     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
     297             :     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
     298             : 
     299             :     // The number of shll instructions for the extension.
     300             :     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
     301             :     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
     302             :     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
     303             :     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
     304             :     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
     305             :     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
     306             :     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
     307             :     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
     308             :     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
     309             :     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
     310             :     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
     311             :     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
     312             :     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
     313             :     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
     314             :     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
     315             :     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
     316             : 
     317             :     // LowerVectorINT_TO_FP:
     318             :     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
     319             :     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
     320             :     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
     321             :     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
     322             :     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
     323             :     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
     324             : 
     325             :     // Complex: to v2f32
     326             :     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
     327             :     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
     328             :     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
     329             :     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
     330             :     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
     331             :     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
     332             : 
     333             :     // Complex: to v4f32
     334             :     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
     335             :     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
     336             :     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
     337             :     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
     338             : 
     339             :     // Complex: to v8f32
     340             :     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
     341             :     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
     342             :     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
     343             :     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
     344             : 
     345             :     // Complex: to v16f32
     346             :     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
     347             :     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
     348             : 
     349             :     // Complex: to v2f64
     350             :     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
     351             :     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
     352             :     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
     353             :     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
     354             :     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
     355             :     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
     356             : 
     357             : 
     358             :     // LowerVectorFP_TO_INT
     359             :     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
     360             :     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
     361             :     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
     362             :     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
     363             :     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
     364             :     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
     365             : 
     366             :     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
     367             :     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
     368             :     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
     369             :     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
     370             :     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
     371             :     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
     372             :     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
     373             : 
     374             :     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
     375             :     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
     376             :     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
     377             :     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
     378             :     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
     379             : 
     380             :     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
     381             :     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
     382             :     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
     383             :     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
     384             :     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
     385             :     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
     386             :     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
     387             :   };
     388             : 
     389         233 :   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
     390             :                                                  DstTy.getSimpleVT(),
     391         233 :                                                  SrcTy.getSimpleVT()))
     392          22 :     return Entry->Cost;
     393             : 
     394         189 :   return BaseT::getCastInstrCost(Opcode, Dst, Src);
     395             : }
     396             : 
     397          16 : int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
     398             :                                              VectorType *VecTy,
     399             :                                              unsigned Index) {
     400             : 
     401             :   // Make sure we were given a valid extend opcode.
     402             :   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
     403             :          "Invalid opcode");
     404             : 
     405             :   // We are extending an element we extract from a vector, so the source type
     406             :   // of the extend is the element type of the vector.
     407          16 :   auto *Src = VecTy->getElementType();
     408             : 
     409             :   // Sign- and zero-extends are for integer types only.
     410             :   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
     411             : 
     412             :   // Get the cost for the extract. We compute the cost (if any) for the extend
     413             :   // below.
     414          16 :   auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
     415             : 
     416             :   // Legalize the types.
     417          16 :   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
     418          16 :   auto DstVT = TLI->getValueType(DL, Dst);
     419          16 :   auto SrcVT = TLI->getValueType(DL, Src);
     420             : 
     421             :   // If the resulting type is still a vector and the destination type is legal,
     422             :   // we may get the extension for free. If not, get the default cost for the
     423             :   // extend.
     424          32 :   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
     425           0 :     return Cost + getCastInstrCost(Opcode, Dst, Src);
     426             : 
     427             :   // The destination type should be larger than the element type. If not, get
     428             :   // the default cost for the extend.
     429          16 :   if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
     430           0 :     return Cost + getCastInstrCost(Opcode, Dst, Src);
     431             : 
     432          16 :   switch (Opcode) {
     433           0 :   default:
     434           0 :     llvm_unreachable("Opcode should be either SExt or ZExt");
     435             : 
     436             :   // For sign-extends, we only need a smov, which performs the extension
     437             :   // automatically.
     438             :   case Instruction::SExt:
     439             :     return Cost;
     440             : 
     441             :   // For zero-extends, the extend is performed automatically by a umov unless
     442             :   // the destination type is i64 and the element type is i8 or i16.
     443           0 :   case Instruction::ZExt:
     444           0 :     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
     445             :       return Cost;
     446             :   }
     447             : 
     448             :   // If we are unable to perform the extend for free, get the default cost.
     449           0 :   return Cost + getCastInstrCost(Opcode, Dst, Src);
     450             : }
     451             : 
     452         554 : int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
     453             :                                        unsigned Index) {
     454             :   assert(Val->isVectorTy() && "This must be a vector type");
     455             : 
     456         554 :   if (Index != -1U) {
     457             :     // Legalize the type.
     458         554 :     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
     459             : 
     460             :     // This type is legalized to a scalar type.
     461         554 :     if (!LT.second.isVector())
     462         200 :       return 0;
     463             : 
     464             :     // The type may be split. Normalize the index to the new type.
     465         542 :     unsigned Width = LT.second.getVectorNumElements();
     466         542 :     Index = Index % Width;
     467             : 
     468             :     // The element at index zero is already inside the vector.
     469         542 :     if (Index == 0)
     470             :       return 0;
     471             :   }
     472             : 
     473             :   // All other insert/extracts cost this much.
     474         354 :   return ST->getVectorInsertExtractBaseCost();
     475             : }
     476             : 
     477         565 : int AArch64TTIImpl::getArithmeticInstrCost(
     478             :     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
     479             :     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
     480             :     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
     481             :   // Legalize the type.
     482         565 :   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
     483             : 
     484             :   // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
     485             :   // add in the widening overhead specified by the sub-target. Since the
     486             :   // extends feeding widening instructions are performed automatically, they
     487             :   // aren't present in the generated code and have a zero cost. By adding a
     488             :   // widening overhead here, we attach the total cost of the combined operation
     489             :   // to the widening instruction.
     490         565 :   int Cost = 0;
     491         565 :   if (isWideningInstruction(Ty, Opcode, Args))
     492          56 :     Cost += ST->getWideningBaseCost();
     493             : 
     494         565 :   int ISD = TLI->InstructionOpcodeToISD(Opcode);
     495             : 
     496        1130 :   if (ISD == ISD::SDIV &&
     497         570 :       Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
     498             :       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
     499             :     // On AArch64, scalar signed division by constants power-of-two are
     500             :     // normally expanded to the sequence ADD + CMP + SELECT + SRA.
     501             :     // The OperandValue properties many not be same as that of previous
     502             :     // operation; conservatively assume OP_None.
     503           5 :     Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
     504             :                                    TargetTransformInfo::OP_None,
     505           5 :                                    TargetTransformInfo::OP_None);
     506           5 :     Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
     507             :                                    TargetTransformInfo::OP_None,
     508           5 :                                    TargetTransformInfo::OP_None);
     509           5 :     Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
     510             :                                    TargetTransformInfo::OP_None,
     511           5 :                                    TargetTransformInfo::OP_None);
     512           5 :     Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
     513             :                                    TargetTransformInfo::OP_None,
     514           5 :                                    TargetTransformInfo::OP_None);
     515           5 :     return Cost;
     516             :   }
     517             : 
     518         560 :   switch (ISD) {
     519         152 :   default:
     520         456 :     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
     521         304 :                                                 Opd1PropInfo, Opd2PropInfo);
     522         408 :   case ISD::ADD:
     523             :   case ISD::MUL:
     524             :   case ISD::XOR:
     525             :   case ISD::OR:
     526             :   case ISD::AND:
     527             :     // These nodes are marked as 'custom' for combining purposes only.
     528             :     // We know that they are legal. See LowerAdd in ISelLowering.
     529         408 :     return (Cost + 1) * LT.first;
     530             :   }
     531             : }
     532             : 
     533          69 : int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
     534             :                                               const SCEV *Ptr) {
     535             :   // Address computations in vectorized code with non-consecutive addresses will
     536             :   // likely result in more instructions compared to scalar code where the
     537             :   // computation can more often be merged into the index mode. The resulting
     538             :   // extra micro-ops can significantly decrease throughput.
     539          69 :   unsigned NumVectorInstToHideOverhead = 10;
     540          69 :   int MaxMergeDistance = 64;
     541             : 
     542          85 :   if (Ty->isVectorTy() && SE && 
     543          16 :       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
     544             :     return NumVectorInstToHideOverhead;
     545             : 
     546             :   // In many cases the address computation is not merged into the instruction
     547             :   // addressing mode.
     548             :   return 1;
     549             : }
     550             : 
     551         164 : int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
     552             :                                        Type *CondTy, const Instruction *I) {
     553             : 
     554         164 :   int ISD = TLI->InstructionOpcodeToISD(Opcode);
     555             :   // We don't lower some vector selects well that are wider than the register
     556             :   // width.
     557         164 :   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
     558             :     // We would need this many instructions to hide the scalarization happening.
     559          21 :     const int AmortizationCost = 20;
     560             :     static const TypeConversionCostTblEntry
     561             :     VectorSelectTbl[] = {
     562             :       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
     563             :       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
     564             :       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
     565             :       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
     566             :       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
     567             :       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
     568             :     };
     569             : 
     570          21 :     EVT SelCondTy = TLI->getValueType(DL, CondTy);
     571          21 :     EVT SelValTy = TLI->getValueType(DL, ValTy);
     572          21 :     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
     573          33 :       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
     574             :                                                      SelCondTy.getSimpleVT(),
     575          33 :                                                      SelValTy.getSimpleVT()))
     576          12 :         return Entry->Cost;
     577             :     }
     578             :   }
     579         152 :   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
     580             : }
     581             : 
     582         382 : int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
     583             :                                     unsigned Alignment, unsigned AddressSpace,
     584             :                                     const Instruction *I) {
     585         382 :   auto LT = TLI->getTypeLegalizationCost(DL, Ty);
     586             : 
     587         443 :   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
     588         414 :       LT.second.is128BitVector() && Alignment < 16) {
     589             :     // Unaligned stores are extremely inefficient. We don't split all
     590             :     // unaligned 128-bit stores because the negative impact that has shown in
     591             :     // practice on inlined block copy code.
     592             :     // We make such stores expensive so that we will only vectorize if there
     593             :     // are 6 other instructions getting vectorized.
     594          14 :     const int AmortizationCost = 6;
     595             : 
     596          14 :     return LT.first * 2 * AmortizationCost;
     597             :   }
     598             : 
     599         685 :   if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8) &&
     600         102 :       Ty->getVectorNumElements() < 8) {
     601             :     // We scalarize the loads/stores because there is not v.4b register and we
     602             :     // have to promote the elements to v.4h.
     603          56 :     unsigned NumVecElts = Ty->getVectorNumElements();
     604          56 :     unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
     605             :     // We generate 2 instructions per vector element.
     606          56 :     return NumVectorizableInstsToAmortize * NumVecElts * 2;
     607             :   }
     608             : 
     609         312 :   return LT.first;
     610             : }
     611             : 
     612           6 : int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
     613             :                                                unsigned Factor,
     614             :                                                ArrayRef<unsigned> Indices,
     615             :                                                unsigned Alignment,
     616             :                                                unsigned AddressSpace) {
     617             :   assert(Factor >= 2 && "Invalid interleave factor");
     618             :   assert(isa<VectorType>(VecTy) && "Expect a vector type");
     619             : 
     620           6 :   if (Factor <= TLI->getMaxSupportedInterleaveFactor()) {
     621           6 :     unsigned NumElts = VecTy->getVectorNumElements();
     622          12 :     auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
     623             : 
     624             :     // ldN/stN only support legal vector types of size 64 or 128 in bits.
     625             :     // Accesses having vector types that are a multiple of 128 bits can be
     626             :     // matched to more than one ldN/stN instruction.
     627          12 :     if (NumElts % Factor == 0 &&
     628           6 :         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
     629           6 :       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
     630             :   }
     631             : 
     632           0 :   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
     633           0 :                                            Alignment, AddressSpace);
     634             : }
     635             : 
     636           1 : int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
     637           1 :   int Cost = 0;
     638           3 :   for (auto *I : Tys) {
     639           1 :     if (!I->isVectorTy())
     640           0 :       continue;
     641           2 :     if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
     642           2 :       Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
     643           1 :         getMemoryOpCost(Instruction::Load, I, 128, 0);
     644             :   }
     645           1 :   return Cost;
     646             : }
     647             : 
     648          31 : unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
     649          62 :   return ST->getMaxInterleaveFactor();
     650             : }
     651             : 
     652             : // For Falkor, we want to avoid having too many strided loads in a loop since
     653             : // that can exhaust the HW prefetcher resources.  We adjust the unroller
     654             : // MaxCount preference below to attempt to ensure unrolling doesn't create too
     655             : // many strided loads.
     656             : static void
     657           3 : getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
     658             :                               TargetTransformInfo::UnrollingPreferences &UP) {
     659             :   enum { MaxStridedLoads = 7 };
     660           3 :   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
     661           3 :     int StridedLoads = 0;
     662             :     // FIXME? We could make this more precise by looking at the CFG and
     663             :     // e.g. not counting loads in each side of an if-then-else diamond.
     664          13 :     for (const auto BB : L->blocks()) {
     665          51 :       for (auto &I : *BB) {
     666           7 :         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
     667          29 :         if (!LMemI)
     668             :           continue;
     669             : 
     670           7 :         Value *PtrValue = LMemI->getPointerOperand();
     671           7 :         if (L->isLoopInvariant(PtrValue))
     672             :           continue;
     673             : 
     674           7 :         const SCEV *LSCEV = SE.getSCEV(PtrValue);
     675           7 :         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
     676           7 :         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
     677             :           continue;
     678             : 
     679             :         // FIXME? We could take pairing of unrolled load copies into account
     680             :         // by looking at the AddRec, but we would probably have to limit this
     681             :         // to loops with no stores or other memory optimization barriers.
     682           7 :         ++StridedLoads;
     683             :         // We've seen enough strided loads that seeing more won't make a
     684             :         // difference.
     685           7 :         if (StridedLoads > MaxStridedLoads / 2)
     686             :           return StridedLoads;
     687             :       }
     688             :     }
     689             :     return StridedLoads;
     690             :   };
     691             : 
     692           3 :   int StridedLoads = countStridedLoads(L, SE);
     693             :   DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
     694             :                << " strided loads\n");
     695             :   // Pick the largest power of 2 unroll count that won't result in too many
     696             :   // strided loads.
     697           3 :   if (StridedLoads) {
     698           6 :     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
     699             :     DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " << UP.MaxCount
     700             :                  << '\n');
     701             :   }
     702           3 : }
     703             : 
     704          22 : void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
     705             :                                              TTI::UnrollingPreferences &UP) {
     706             :   // Enable partial unrolling and runtime unrolling.
     707          22 :   BaseT::getUnrollingPreferences(L, SE, UP);
     708             : 
     709             :   // For inner loop, it is more likely to be a hot one, and the runtime check
     710             :   // can be promoted out from LICM pass, so the overhead is less, let's try
     711             :   // a larger threshold to unroll more loops.
     712          44 :   if (L->getLoopDepth() > 1)
     713           3 :     UP.PartialThreshold *= 2;
     714             : 
     715             :   // Disable partial & runtime unrolling on -Os.
     716          22 :   UP.PartialOptSizeThreshold = 0;
     717             : 
     718          28 :   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
     719           6 :       EnableFalkorHWPFUnrollFix)
     720           3 :     getFalkorUnrollingPreferences(L, SE, UP);
     721          22 : }
     722             : 
     723          20 : Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
     724             :                                                          Type *ExpectedType) {
     725          20 :   switch (Inst->getIntrinsicID()) {
     726             :   default:
     727             :     return nullptr;
     728          16 :   case Intrinsic::aarch64_neon_st2:
     729             :   case Intrinsic::aarch64_neon_st3:
     730             :   case Intrinsic::aarch64_neon_st4: {
     731             :     // Create a struct type
     732           8 :     StructType *ST = dyn_cast<StructType>(ExpectedType);
     733             :     if (!ST)
     734             :       return nullptr;
     735          16 :     unsigned NumElts = Inst->getNumArgOperands() - 1;
     736           8 :     if (ST->getNumElements() != NumElts)
     737             :       return nullptr;
     738          40 :     for (unsigned i = 0, e = NumElts; i != e; ++i) {
     739          48 :       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
     740             :         return nullptr;
     741             :     }
     742           8 :     Value *Res = UndefValue::get(ExpectedType);
     743           8 :     IRBuilder<> Builder(Inst);
     744          24 :     for (unsigned i = 0, e = NumElts; i != e; ++i) {
     745          32 :       Value *L = Inst->getArgOperand(i);
     746          32 :       Res = Builder.CreateInsertValue(Res, L, i);
     747             :     }
     748           8 :     return Res;
     749             :   }
     750           4 :   case Intrinsic::aarch64_neon_ld2:
     751             :   case Intrinsic::aarch64_neon_ld3:
     752             :   case Intrinsic::aarch64_neon_ld4:
     753           4 :     if (Inst->getType() == ExpectedType)
     754             :       return Inst;
     755           0 :     return nullptr;
     756             :   }
     757             : }
     758             : 
     759         120 : bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
     760             :                                         MemIntrinsicInfo &Info) {
     761         120 :   switch (Inst->getIntrinsicID()) {
     762             :   default:
     763             :     break;
     764          30 :   case Intrinsic::aarch64_neon_ld2:
     765             :   case Intrinsic::aarch64_neon_ld3:
     766             :   case Intrinsic::aarch64_neon_ld4:
     767          30 :     Info.ReadMem = true;
     768          30 :     Info.WriteMem = false;
     769          60 :     Info.PtrVal = Inst->getArgOperand(0);
     770          30 :     break;
     771          40 :   case Intrinsic::aarch64_neon_st2:
     772             :   case Intrinsic::aarch64_neon_st3:
     773             :   case Intrinsic::aarch64_neon_st4:
     774          40 :     Info.ReadMem = false;
     775          40 :     Info.WriteMem = true;
     776         120 :     Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
     777          40 :     break;
     778             :   }
     779             : 
     780         120 :   switch (Inst->getIntrinsicID()) {
     781             :   default:
     782             :     return false;
     783          52 :   case Intrinsic::aarch64_neon_ld2:
     784             :   case Intrinsic::aarch64_neon_st2:
     785          52 :     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
     786          52 :     break;
     787          16 :   case Intrinsic::aarch64_neon_ld3:
     788             :   case Intrinsic::aarch64_neon_st3:
     789          16 :     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
     790          16 :     break;
     791           2 :   case Intrinsic::aarch64_neon_ld4:
     792             :   case Intrinsic::aarch64_neon_st4:
     793           2 :     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
     794           2 :     break;
     795             :   }
     796             :   return true;
     797             : }
     798             : 
     799             : /// See if \p I should be considered for address type promotion. We check if \p
     800             : /// I is a sext with right type and used in memory accesses. If it used in a
     801             : /// "complex" getelementptr, we allow it to be promoted without finding other
     802             : /// sext instructions that sign extended the same initial value. A getelementptr
     803             : /// is considered as "complex" if it has more than 2 operands.
     804        2146 : bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
     805             :     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
     806        2146 :   bool Considerable = false;
     807        2146 :   AllowPromotionWithoutCommonHeader = false;
     808        4292 :   if (!isa<SExtInst>(&I))
     809             :     return false;
     810             :   Type *ConsideredSExtType =
     811        1144 :       Type::getInt64Ty(I.getParent()->getParent()->getContext());
     812        1144 :   if (I.getType() != ConsideredSExtType)
     813             :     return false;
     814             :   // See if the sext is the one with the right type and used in at least one
     815             :   // GetElementPtrInst.
     816        2410 :   for (const User *U : I.users()) {
     817         157 :     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
     818         157 :       Considerable = true;
     819             :       // A getelementptr is considered as "complex" if it has more than 2
     820             :       // operands. We will promote a SExt used in such complex GEP as we
     821             :       // expect some computation to be merged if they are done on 64 bits.
     822         157 :       if (GEPInst->getNumOperands() > 2) {
     823          17 :         AllowPromotionWithoutCommonHeader = true;
     824          17 :         break;
     825             :       }
     826             :     }
     827             :   }
     828             :   return Considerable;
     829             : }
     830             : 
     831           0 : unsigned AArch64TTIImpl::getCacheLineSize() {
     832           0 :   return ST->getCacheLineSize();
     833             : }
     834             : 
     835       11102 : unsigned AArch64TTIImpl::getPrefetchDistance() {
     836       22204 :   return ST->getPrefetchDistance();
     837             : }
     838             : 
     839          12 : unsigned AArch64TTIImpl::getMinPrefetchStride() {
     840          24 :   return ST->getMinPrefetchStride();
     841             : }
     842             : 
     843          50 : unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
     844          50 :   return ST->getMaxPrefetchIterationsAhead();
     845             : }
     846             : 
     847          22 : bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
     848             :                                            TTI::ReductionFlags Flags) const {
     849             :   assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
     850          22 :   unsigned ScalarBits = Ty->getScalarSizeInBits();
     851          22 :   switch (Opcode) {
     852             :   case Instruction::FAdd:
     853             :   case Instruction::FMul:
     854             :   case Instruction::And:
     855             :   case Instruction::Or:
     856             :   case Instruction::Xor:
     857             :   case Instruction::Mul:
     858             :     return false;
     859          20 :   case Instruction::Add:
     860          20 :     return ScalarBits * Ty->getVectorNumElements() >= 128;
     861           2 :   case Instruction::ICmp:
     862           4 :     return (ScalarBits < 64) &&
     863           2 :            (ScalarBits * Ty->getVectorNumElements() >= 128);
     864           0 :   case Instruction::FCmp:
     865           0 :     return Flags.NoNaN;
     866           0 :   default:
     867           0 :     llvm_unreachable("Unhandled reduction opcode");
     868             :   }
     869             :   return false;
     870      216918 : }

Generated by: LCOV version 1.13