Bug Summary

File:lib/Support/APInt.cpp
Warning:line 1546, column 12
Use of memory after it is freed

Annotated Source Code

/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp

1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/FoldingSet.h"
18#include "llvm/ADT/Hashing.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Support/raw_ostream.h"
25#include <climits>
26#include <cmath>
27#include <cstdlib>
28#include <cstring>
29using namespace llvm;
30
31#define DEBUG_TYPE"apint" "apint"
32
33/// A utility function for allocating memory, checking for allocation failures,
34/// and ensuring the contents are zeroed.
35inline static uint64_t* getClearedMemory(unsigned numWords) {
36 uint64_t * result = new uint64_t[numWords];
37 assert(result && "APInt memory allocation fails!")((result && "APInt memory allocation fails!") ? static_cast
<void> (0) : __assert_fail ("result && \"APInt memory allocation fails!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 37, __PRETTY_FUNCTION__))
;
38 memset(result, 0, numWords * sizeof(uint64_t));
39 return result;
40}
41
42/// A utility function for allocating memory and checking for allocation
43/// failure. The content is not zeroed.
44inline static uint64_t* getMemory(unsigned numWords) {
45 uint64_t * result = new uint64_t[numWords];
6
Memory is allocated
46 assert(result && "APInt memory allocation fails!")((result && "APInt memory allocation fails!") ? static_cast
<void> (0) : __assert_fail ("result && \"APInt memory allocation fails!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 46, __PRETTY_FUNCTION__))
;
47 return result;
48}
49
50/// A utility function that converts a character to a digit.
51inline static unsigned getDigit(char cdigit, uint8_t radix) {
52 unsigned r;
53
54 if (radix == 16 || radix == 36) {
55 r = cdigit - '0';
56 if (r <= 9)
57 return r;
58
59 r = cdigit - 'A';
60 if (r <= radix - 11U)
61 return r + 10;
62
63 r = cdigit - 'a';
64 if (r <= radix - 11U)
65 return r + 10;
66
67 radix = 10;
68 }
69
70 r = cdigit - '0';
71 if (r < radix)
72 return r;
73
74 return -1U;
75}
76
77
78void APInt::initSlowCase(uint64_t val, bool isSigned) {
79 U.pVal = getClearedMemory(getNumWords());
80 U.pVal[0] = val;
81 if (isSigned && int64_t(val) < 0)
82 for (unsigned i = 1; i < getNumWords(); ++i)
83 U.pVal[i] = WORD_MAX;
84 clearUnusedBits();
85}
86
87void APInt::initSlowCase(const APInt& that) {
88 U.pVal = getMemory(getNumWords());
5
Calling 'getMemory'
7
Returned allocated memory
89 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
90}
91
92void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
93 assert(BitWidth && "Bitwidth too small")((BitWidth && "Bitwidth too small") ? static_cast<
void> (0) : __assert_fail ("BitWidth && \"Bitwidth too small\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 93, __PRETTY_FUNCTION__))
;
94 assert(bigVal.data() && "Null pointer detected!")((bigVal.data() && "Null pointer detected!") ? static_cast
<void> (0) : __assert_fail ("bigVal.data() && \"Null pointer detected!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 94, __PRETTY_FUNCTION__))
;
95 if (isSingleWord())
96 U.VAL = bigVal[0];
97 else {
98 // Get memory, cleared to 0
99 U.pVal = getClearedMemory(getNumWords());
100 // Calculate the number of words to copy
101 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
102 // Copy the words from bigVal to pVal
103 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
104 }
105 // Make sure unused high bits are cleared
106 clearUnusedBits();
107}
108
109APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
110 : BitWidth(numBits) {
111 initFromArray(bigVal);
112}
113
114APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
115 : BitWidth(numBits) {
116 initFromArray(makeArrayRef(bigVal, numWords));
117}
118
119APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
120 : BitWidth(numbits) {
121 assert(BitWidth && "Bitwidth too small")((BitWidth && "Bitwidth too small") ? static_cast<
void> (0) : __assert_fail ("BitWidth && \"Bitwidth too small\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 121, __PRETTY_FUNCTION__))
;
122 fromString(numbits, Str, radix);
123}
124
125void APInt::reallocate(unsigned NewBitWidth) {
126 // If the number of words is the same we can just change the width and stop.
127 if (getNumWords() == getNumWords(NewBitWidth)) {
128 BitWidth = NewBitWidth;
129 return;
130 }
131
132 // If we have an allocation, delete it.
133 if (!isSingleWord())
134 delete [] U.pVal;
135
136 // Update BitWidth.
137 BitWidth = NewBitWidth;
138
139 // If we are supposed to have an allocation, create it.
140 if (!isSingleWord())
141 U.pVal = getMemory(getNumWords());
142}
143
144void APInt::AssignSlowCase(const APInt& RHS) {
145 // Don't do anything for X = X
146 if (this == &RHS)
147 return;
148
149 // Adjust the bit width and handle allocations as necessary.
150 reallocate(RHS.getBitWidth());
151
152 // Copy the data.
153 if (isSingleWord())
154 U.VAL = RHS.U.VAL;
155 else
156 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
157}
158
159/// This method 'profiles' an APInt for use with FoldingSet.
160void APInt::Profile(FoldingSetNodeID& ID) const {
161 ID.AddInteger(BitWidth);
162
163 if (isSingleWord()) {
164 ID.AddInteger(U.VAL);
165 return;
166 }
167
168 unsigned NumWords = getNumWords();
169 for (unsigned i = 0; i < NumWords; ++i)
170 ID.AddInteger(U.pVal[i]);
171}
172
173/// @brief Prefix increment operator. Increments the APInt by one.
174APInt& APInt::operator++() {
175 if (isSingleWord())
176 ++U.VAL;
177 else
178 tcIncrement(U.pVal, getNumWords());
179 return clearUnusedBits();
180}
181
182/// @brief Prefix decrement operator. Decrements the APInt by one.
183APInt& APInt::operator--() {
184 if (isSingleWord())
185 --U.VAL;
186 else
187 tcDecrement(U.pVal, getNumWords());
188 return clearUnusedBits();
189}
190
191/// Adds the RHS APint to this APInt.
192/// @returns this, after addition of RHS.
193/// @brief Addition assignment operator.
194APInt& APInt::operator+=(const APInt& RHS) {
195 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 195, __PRETTY_FUNCTION__))
;
196 if (isSingleWord())
197 U.VAL += RHS.U.VAL;
198 else
199 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
200 return clearUnusedBits();
201}
202
203APInt& APInt::operator+=(uint64_t RHS) {
204 if (isSingleWord())
205 U.VAL += RHS;
206 else
207 tcAddPart(U.pVal, RHS, getNumWords());
208 return clearUnusedBits();
209}
210
211/// Subtracts the RHS APInt from this APInt
212/// @returns this, after subtraction
213/// @brief Subtraction assignment operator.
214APInt& APInt::operator-=(const APInt& RHS) {
215 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 215, __PRETTY_FUNCTION__))
;
216 if (isSingleWord())
217 U.VAL -= RHS.U.VAL;
218 else
219 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
220 return clearUnusedBits();
221}
222
223APInt& APInt::operator-=(uint64_t RHS) {
224 if (isSingleWord())
225 U.VAL -= RHS;
226 else
227 tcSubtractPart(U.pVal, RHS, getNumWords());
228 return clearUnusedBits();
229}
230
231APInt APInt::operator*(const APInt& RHS) const {
232 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 232, __PRETTY_FUNCTION__))
;
233 if (isSingleWord())
234 return APInt(BitWidth, U.VAL * RHS.U.VAL);
235
236 APInt Result(getMemory(getNumWords()), getBitWidth());
237
238 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
239
240 Result.clearUnusedBits();
241 return Result;
242}
243
244void APInt::AndAssignSlowCase(const APInt& RHS) {
245 tcAnd(U.pVal, RHS.U.pVal, getNumWords());
246}
247
248void APInt::OrAssignSlowCase(const APInt& RHS) {
249 tcOr(U.pVal, RHS.U.pVal, getNumWords());
250}
251
252void APInt::XorAssignSlowCase(const APInt& RHS) {
253 tcXor(U.pVal, RHS.U.pVal, getNumWords());
254}
255
256APInt& APInt::operator*=(const APInt& RHS) {
257 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 257, __PRETTY_FUNCTION__))
;
258 *this = *this * RHS;
259 return *this;
260}
261
262APInt& APInt::operator*=(uint64_t RHS) {
263 if (isSingleWord()) {
264 U.VAL *= RHS;
265 } else {
266 unsigned NumWords = getNumWords();
267 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
268 }
269 return clearUnusedBits();
270}
271
272bool APInt::EqualSlowCase(const APInt& RHS) const {
273 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
274}
275
276int APInt::compare(const APInt& RHS) const {
277 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison")((BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be same for comparison\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 277, __PRETTY_FUNCTION__))
;
278 if (isSingleWord())
279 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
280
281 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
282}
283
284int APInt::compareSigned(const APInt& RHS) const {
285 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison")((BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be same for comparison\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 285, __PRETTY_FUNCTION__))
;
286 if (isSingleWord()) {
287 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
288 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
289 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
290 }
291
292 bool lhsNeg = isNegative();
293 bool rhsNeg = RHS.isNegative();
294
295 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
296 if (lhsNeg != rhsNeg)
297 return lhsNeg ? -1 : 1;
298
299 // Otherwise we can just use an unsigned comparison, because even negative
300 // numbers compare correctly this way if both have the same signed-ness.
301 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
302}
303
304void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
305 unsigned loWord = whichWord(loBit);
306 unsigned hiWord = whichWord(hiBit);
307
308 // Create an initial mask for the low word with zeros below loBit.
309 uint64_t loMask = WORD_MAX << whichBit(loBit);
310
311 // If hiBit is not aligned, we need a high mask.
312 unsigned hiShiftAmt = whichBit(hiBit);
313 if (hiShiftAmt != 0) {
314 // Create a high mask with zeros above hiBit.
315 uint64_t hiMask = WORD_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
316 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
317 // set the bits in hiWord.
318 if (hiWord == loWord)
319 loMask &= hiMask;
320 else
321 U.pVal[hiWord] |= hiMask;
322 }
323 // Apply the mask to the low word.
324 U.pVal[loWord] |= loMask;
325
326 // Fill any words between loWord and hiWord with all ones.
327 for (unsigned word = loWord + 1; word < hiWord; ++word)
328 U.pVal[word] = WORD_MAX;
329}
330
331/// @brief Toggle every bit to its opposite value.
332void APInt::flipAllBitsSlowCase() {
333 tcComplement(U.pVal, getNumWords());
334 clearUnusedBits();
335}
336
337/// Toggle a given bit to its opposite value whose position is given
338/// as "bitPosition".
339/// @brief Toggles a given bit to its opposite value.
340void APInt::flipBit(unsigned bitPosition) {
341 assert(bitPosition < BitWidth && "Out of the bit-width range!")((bitPosition < BitWidth && "Out of the bit-width range!"
) ? static_cast<void> (0) : __assert_fail ("bitPosition < BitWidth && \"Out of the bit-width range!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 341, __PRETTY_FUNCTION__))
;
342 if ((*this)[bitPosition]) clearBit(bitPosition);
343 else setBit(bitPosition);
344}
345
346void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
347 unsigned subBitWidth = subBits.getBitWidth();
348 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&((0 < subBitWidth && (subBitWidth + bitPosition) <=
BitWidth && "Illegal bit insertion") ? static_cast<
void> (0) : __assert_fail ("0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && \"Illegal bit insertion\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 349, __PRETTY_FUNCTION__))
349 "Illegal bit insertion")((0 < subBitWidth && (subBitWidth + bitPosition) <=
BitWidth && "Illegal bit insertion") ? static_cast<
void> (0) : __assert_fail ("0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && \"Illegal bit insertion\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 349, __PRETTY_FUNCTION__))
;
350
351 // Insertion is a direct copy.
352 if (subBitWidth == BitWidth) {
353 *this = subBits;
354 return;
355 }
356
357 // Single word result can be done as a direct bitmask.
358 if (isSingleWord()) {
359 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
360 U.VAL &= ~(mask << bitPosition);
361 U.VAL |= (subBits.U.VAL << bitPosition);
362 return;
363 }
364
365 unsigned loBit = whichBit(bitPosition);
366 unsigned loWord = whichWord(bitPosition);
367 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
368
369 // Insertion within a single word can be done as a direct bitmask.
370 if (loWord == hi1Word) {
371 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
372 U.pVal[loWord] &= ~(mask << loBit);
373 U.pVal[loWord] |= (subBits.U.VAL << loBit);
374 return;
375 }
376
377 // Insert on word boundaries.
378 if (loBit == 0) {
379 // Direct copy whole words.
380 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
381 memcpy(U.pVal + loWord, subBits.getRawData(),
382 numWholeSubWords * APINT_WORD_SIZE);
383
384 // Mask+insert remaining bits.
385 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
386 if (remainingBits != 0) {
387 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - remainingBits);
388 U.pVal[hi1Word] &= ~mask;
389 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
390 }
391 return;
392 }
393
394 // General case - set/clear individual bits in dst based on src.
395 // TODO - there is scope for optimization here, but at the moment this code
396 // path is barely used so prefer readability over performance.
397 for (unsigned i = 0; i != subBitWidth; ++i) {
398 if (subBits[i])
399 setBit(bitPosition + i);
400 else
401 clearBit(bitPosition + i);
402 }
403}
404
405APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
406 assert(numBits > 0 && "Can't extract zero bits")((numBits > 0 && "Can't extract zero bits") ? static_cast
<void> (0) : __assert_fail ("numBits > 0 && \"Can't extract zero bits\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 406, __PRETTY_FUNCTION__))
;
407 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&((bitPosition < BitWidth && (numBits + bitPosition
) <= BitWidth && "Illegal bit extraction") ? static_cast
<void> (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 408, __PRETTY_FUNCTION__))
408 "Illegal bit extraction")((bitPosition < BitWidth && (numBits + bitPosition
) <= BitWidth && "Illegal bit extraction") ? static_cast
<void> (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 408, __PRETTY_FUNCTION__))
;
409
410 if (isSingleWord())
411 return APInt(numBits, U.VAL >> bitPosition);
412
413 unsigned loBit = whichBit(bitPosition);
414 unsigned loWord = whichWord(bitPosition);
415 unsigned hiWord = whichWord(bitPosition + numBits - 1);
416
417 // Single word result extracting bits from a single word source.
418 if (loWord == hiWord)
419 return APInt(numBits, U.pVal[loWord] >> loBit);
420
421 // Extracting bits that start on a source word boundary can be done
422 // as a fast memory copy.
423 if (loBit == 0)
424 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
425
426 // General case - shift + copy source words directly into place.
427 APInt Result(numBits, 0);
428 unsigned NumSrcWords = getNumWords();
429 unsigned NumDstWords = Result.getNumWords();
430
431 for (unsigned word = 0; word < NumDstWords; ++word) {
432 uint64_t w0 = U.pVal[loWord + word];
433 uint64_t w1 =
434 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
435 Result.U.pVal[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
436 }
437
438 return Result.clearUnusedBits();
439}
440
441unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
442 assert(!str.empty() && "Invalid string length")((!str.empty() && "Invalid string length") ? static_cast
<void> (0) : __assert_fail ("!str.empty() && \"Invalid string length\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 442, __PRETTY_FUNCTION__))
;
443 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||(((radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix
== 36) && "Radix should be 2, 8, 10, 16, or 36!") ? static_cast
<void> (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 445, __PRETTY_FUNCTION__))
444 radix == 36) &&(((radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix
== 36) && "Radix should be 2, 8, 10, 16, or 36!") ? static_cast
<void> (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 445, __PRETTY_FUNCTION__))
445 "Radix should be 2, 8, 10, 16, or 36!")(((radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix
== 36) && "Radix should be 2, 8, 10, 16, or 36!") ? static_cast
<void> (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 445, __PRETTY_FUNCTION__))
;
446
447 size_t slen = str.size();
448
449 // Each computation below needs to know if it's negative.
450 StringRef::iterator p = str.begin();
451 unsigned isNegative = *p == '-';
452 if (*p == '-' || *p == '+') {
453 p++;
454 slen--;
455 assert(slen && "String is only a sign, needs a value.")((slen && "String is only a sign, needs a value.") ? static_cast
<void> (0) : __assert_fail ("slen && \"String is only a sign, needs a value.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 455, __PRETTY_FUNCTION__))
;
456 }
457
458 // For radixes of power-of-two values, the bits required is accurately and
459 // easily computed
460 if (radix == 2)
461 return slen + isNegative;
462 if (radix == 8)
463 return slen * 3 + isNegative;
464 if (radix == 16)
465 return slen * 4 + isNegative;
466
467 // FIXME: base 36
468
469 // This is grossly inefficient but accurate. We could probably do something
470 // with a computation of roughly slen*64/20 and then adjust by the value of
471 // the first few digits. But, I'm not sure how accurate that could be.
472
473 // Compute a sufficient number of bits that is always large enough but might
474 // be too large. This avoids the assertion in the constructor. This
475 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
476 // bits in that case.
477 unsigned sufficient
478 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
479 : (slen == 1 ? 7 : slen * 16/3);
480
481 // Convert to the actual binary value.
482 APInt tmp(sufficient, StringRef(p, slen), radix);
483
484 // Compute how many bits are required. If the log is infinite, assume we need
485 // just bit.
486 unsigned log = tmp.logBase2();
487 if (log == (unsigned)-1) {
488 return isNegative + 1;
489 } else {
490 return isNegative + log + 1;
491 }
492}
493
494hash_code llvm::hash_value(const APInt &Arg) {
495 if (Arg.isSingleWord())
496 return hash_combine(Arg.U.VAL);
497
498 return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords());
499}
500
501bool APInt::isSplat(unsigned SplatSizeInBits) const {
502 assert(getBitWidth() % SplatSizeInBits == 0 &&((getBitWidth() % SplatSizeInBits == 0 && "SplatSizeInBits must divide width!"
) ? static_cast<void> (0) : __assert_fail ("getBitWidth() % SplatSizeInBits == 0 && \"SplatSizeInBits must divide width!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 503, __PRETTY_FUNCTION__))
503 "SplatSizeInBits must divide width!")((getBitWidth() % SplatSizeInBits == 0 && "SplatSizeInBits must divide width!"
) ? static_cast<void> (0) : __assert_fail ("getBitWidth() % SplatSizeInBits == 0 && \"SplatSizeInBits must divide width!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 503, __PRETTY_FUNCTION__))
;
504 // We can check that all parts of an integer are equal by making use of a
505 // little trick: rotate and check if it's still the same value.
506 return *this == rotl(SplatSizeInBits);
507}
508
509/// This function returns the high "numBits" bits of this APInt.
510APInt APInt::getHiBits(unsigned numBits) const {
511 return this->lshr(BitWidth - numBits);
512}
513
514/// This function returns the low "numBits" bits of this APInt.
515APInt APInt::getLoBits(unsigned numBits) const {
516 APInt Result(getLowBitsSet(BitWidth, numBits));
517 Result &= *this;
518 return Result;
519}
520
521/// Return a value containing V broadcasted over NewLen bits.
522APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
523 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!")((NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"
) ? static_cast<void> (0) : __assert_fail ("NewLen >= V.getBitWidth() && \"Can't splat to smaller bit width!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 523, __PRETTY_FUNCTION__))
;
524
525 APInt Val = V.zextOrSelf(NewLen);
526 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
527 Val |= Val << I;
528
529 return Val;
530}
531
532unsigned APInt::countLeadingZerosSlowCase() const {
533 unsigned Count = 0;
534 for (int i = getNumWords()-1; i >= 0; --i) {
535 uint64_t V = U.pVal[i];
536 if (V == 0)
537 Count += APINT_BITS_PER_WORD;
538 else {
539 Count += llvm::countLeadingZeros(V);
540 break;
541 }
542 }
543 // Adjust for unused bits in the most significant word (they are zero).
544 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
545 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
546 return Count;
547}
548
549unsigned APInt::countLeadingOnesSlowCase() const {
550 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
551 unsigned shift;
552 if (!highWordBits) {
553 highWordBits = APINT_BITS_PER_WORD;
554 shift = 0;
555 } else {
556 shift = APINT_BITS_PER_WORD - highWordBits;
557 }
558 int i = getNumWords() - 1;
559 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
560 if (Count == highWordBits) {
561 for (i--; i >= 0; --i) {
562 if (U.pVal[i] == WORD_MAX)
563 Count += APINT_BITS_PER_WORD;
564 else {
565 Count += llvm::countLeadingOnes(U.pVal[i]);
566 break;
567 }
568 }
569 }
570 return Count;
571}
572
573unsigned APInt::countTrailingZerosSlowCase() const {
574 unsigned Count = 0;
575 unsigned i = 0;
576 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
577 Count += APINT_BITS_PER_WORD;
578 if (i < getNumWords())
579 Count += llvm::countTrailingZeros(U.pVal[i]);
580 return std::min(Count, BitWidth);
581}
582
583unsigned APInt::countTrailingOnesSlowCase() const {
584 unsigned Count = 0;
585 unsigned i = 0;
586 for (; i < getNumWords() && U.pVal[i] == WORD_MAX; ++i)
587 Count += APINT_BITS_PER_WORD;
588 if (i < getNumWords())
589 Count += llvm::countTrailingOnes(U.pVal[i]);
590 assert(Count <= BitWidth)((Count <= BitWidth) ? static_cast<void> (0) : __assert_fail
("Count <= BitWidth", "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 590, __PRETTY_FUNCTION__))
;
591 return Count;
592}
593
594unsigned APInt::countPopulationSlowCase() const {
595 unsigned Count = 0;
596 for (unsigned i = 0; i < getNumWords(); ++i)
597 Count += llvm::countPopulation(U.pVal[i]);
598 return Count;
599}
600
601bool APInt::intersectsSlowCase(const APInt &RHS) const {
602 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
603 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
604 return true;
605
606 return false;
607}
608
609bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
610 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
611 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
612 return false;
613
614 return true;
615}
616
617APInt APInt::byteSwap() const {
618 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!")((BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"
) ? static_cast<void> (0) : __assert_fail ("BitWidth >= 16 && BitWidth % 16 == 0 && \"Cannot byteswap!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 618, __PRETTY_FUNCTION__))
;
619 if (BitWidth == 16)
620 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
621 if (BitWidth == 32)
622 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
623 if (BitWidth == 48) {
624 unsigned Tmp1 = unsigned(U.VAL >> 16);
625 Tmp1 = ByteSwap_32(Tmp1);
626 uint16_t Tmp2 = uint16_t(U.VAL);
627 Tmp2 = ByteSwap_16(Tmp2);
628 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
629 }
630 if (BitWidth == 64)
631 return APInt(BitWidth, ByteSwap_64(U.VAL));
632
633 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
634 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
635 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
636 if (Result.BitWidth != BitWidth) {
637 Result.lshrInPlace(Result.BitWidth - BitWidth);
638 Result.BitWidth = BitWidth;
639 }
640 return Result;
641}
642
643APInt APInt::reverseBits() const {
644 switch (BitWidth) {
645 case 64:
646 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
647 case 32:
648 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
649 case 16:
650 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
651 case 8:
652 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
653 default:
654 break;
655 }
656
657 APInt Val(*this);
658 APInt Reversed(BitWidth, 0);
659 unsigned S = BitWidth;
660
661 for (; Val != 0; Val.lshrInPlace(1)) {
662 Reversed <<= 1;
663 Reversed |= Val[0];
664 --S;
665 }
666
667 Reversed <<= S;
668 return Reversed;
669}
670
671APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
672 // Fast-path a common case.
673 if (A == B) return A;
674
675 // Corner cases: if either operand is zero, the other is the gcd.
676 if (!A) return B;
677 if (!B) return A;
678
679 // Count common powers of 2 and remove all other powers of 2.
680 unsigned Pow2;
681 {
682 unsigned Pow2_A = A.countTrailingZeros();
683 unsigned Pow2_B = B.countTrailingZeros();
684 if (Pow2_A > Pow2_B) {
685 A.lshrInPlace(Pow2_A - Pow2_B);
686 Pow2 = Pow2_B;
687 } else if (Pow2_B > Pow2_A) {
688 B.lshrInPlace(Pow2_B - Pow2_A);
689 Pow2 = Pow2_A;
690 } else {
691 Pow2 = Pow2_A;
692 }
693 }
694
695 // Both operands are odd multiples of 2^Pow_2:
696 //
697 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
698 //
699 // This is a modified version of Stein's algorithm, taking advantage of
700 // efficient countTrailingZeros().
701 while (A != B) {
702 if (A.ugt(B)) {
703 A -= B;
704 A.lshrInPlace(A.countTrailingZeros() - Pow2);
705 } else {
706 B -= A;
707 B.lshrInPlace(B.countTrailingZeros() - Pow2);
708 }
709 }
710
711 return A;
712}
713
714APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
715 union {
716 double D;
717 uint64_t I;
718 } T;
719 T.D = Double;
720
721 // Get the sign bit from the highest order bit
722 bool isNeg = T.I >> 63;
723
724 // Get the 11-bit exponent and adjust for the 1023 bit bias
725 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
726
727 // If the exponent is negative, the value is < 0 so just return 0.
728 if (exp < 0)
729 return APInt(width, 0u);
730
731 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
732 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
733
734 // If the exponent doesn't shift all bits out of the mantissa
735 if (exp < 52)
736 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
737 APInt(width, mantissa >> (52 - exp));
738
739 // If the client didn't provide enough bits for us to shift the mantissa into
740 // then the result is undefined, just return 0
741 if (width <= exp - 52)
742 return APInt(width, 0);
743
744 // Otherwise, we have to shift the mantissa bits up to the right location
745 APInt Tmp(width, mantissa);
746 Tmp <<= (unsigned)exp - 52;
747 return isNeg ? -Tmp : Tmp;
748}
749
750/// This function converts this APInt to a double.
751/// The layout for double is as following (IEEE Standard 754):
752/// --------------------------------------
753/// | Sign Exponent Fraction Bias |
754/// |-------------------------------------- |
755/// | 1[63] 11[62-52] 52[51-00] 1023 |
756/// --------------------------------------
757double APInt::roundToDouble(bool isSigned) const {
758
759 // Handle the simple case where the value is contained in one uint64_t.
760 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
761 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
762 if (isSigned) {
763 int64_t sext = SignExtend64(getWord(0), BitWidth);
764 return double(sext);
765 } else
766 return double(getWord(0));
767 }
768
769 // Determine if the value is negative.
770 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
771
772 // Construct the absolute value if we're negative.
773 APInt Tmp(isNeg ? -(*this) : (*this));
774
775 // Figure out how many bits we're using.
776 unsigned n = Tmp.getActiveBits();
777
778 // The exponent (without bias normalization) is just the number of bits
779 // we are using. Note that the sign bit is gone since we constructed the
780 // absolute value.
781 uint64_t exp = n;
782
783 // Return infinity for exponent overflow
784 if (exp > 1023) {
785 if (!isSigned || !isNeg)
786 return std::numeric_limits<double>::infinity();
787 else
788 return -std::numeric_limits<double>::infinity();
789 }
790 exp += 1023; // Increment for 1023 bias
791
792 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
793 // extract the high 52 bits from the correct words in pVal.
794 uint64_t mantissa;
795 unsigned hiWord = whichWord(n-1);
796 if (hiWord == 0) {
797 mantissa = Tmp.U.pVal[0];
798 if (n > 52)
799 mantissa >>= n - 52; // shift down, we want the top 52 bits.
800 } else {
801 assert(hiWord > 0 && "huh?")((hiWord > 0 && "huh?") ? static_cast<void> (
0) : __assert_fail ("hiWord > 0 && \"huh?\"", "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 801, __PRETTY_FUNCTION__))
;
802 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
803 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
804 mantissa = hibits | lobits;
805 }
806
807 // The leading bit of mantissa is implicit, so get rid of it.
808 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
809 union {
810 double D;
811 uint64_t I;
812 } T;
813 T.I = sign | (exp << 52) | mantissa;
814 return T.D;
815}
816
817// Truncate to new width.
818APInt APInt::trunc(unsigned width) const {
819 assert(width < BitWidth && "Invalid APInt Truncate request")((width < BitWidth && "Invalid APInt Truncate request"
) ? static_cast<void> (0) : __assert_fail ("width < BitWidth && \"Invalid APInt Truncate request\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 819, __PRETTY_FUNCTION__))
;
820 assert(width && "Can't truncate to 0 bits")((width && "Can't truncate to 0 bits") ? static_cast<
void> (0) : __assert_fail ("width && \"Can't truncate to 0 bits\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 820, __PRETTY_FUNCTION__))
;
821
822 if (width <= APINT_BITS_PER_WORD)
823 return APInt(width, getRawData()[0]);
824
825 APInt Result(getMemory(getNumWords(width)), width);
826
827 // Copy full words.
828 unsigned i;
829 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
830 Result.U.pVal[i] = U.pVal[i];
831
832 // Truncate and copy any partial word.
833 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
834 if (bits != 0)
835 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
836
837 return Result;
838}
839
840// Sign extend to a new width.
841APInt APInt::sext(unsigned Width) const {
842 assert(Width > BitWidth && "Invalid APInt SignExtend request")((Width > BitWidth && "Invalid APInt SignExtend request"
) ? static_cast<void> (0) : __assert_fail ("Width > BitWidth && \"Invalid APInt SignExtend request\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 842, __PRETTY_FUNCTION__))
;
843
844 if (Width <= APINT_BITS_PER_WORD)
845 return APInt(Width, SignExtend64(U.VAL, BitWidth));
846
847 APInt Result(getMemory(getNumWords(Width)), Width);
848
849 // Copy words.
850 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
851
852 // Sign extend the last word since there may be unused bits in the input.
853 Result.U.pVal[getNumWords() - 1] =
854 SignExtend64(Result.U.pVal[getNumWords() - 1],
855 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
856
857 // Fill with sign bits.
858 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
859 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
860 Result.clearUnusedBits();
861 return Result;
862}
863
864// Zero extend to a new width.
865APInt APInt::zext(unsigned width) const {
866 assert(width > BitWidth && "Invalid APInt ZeroExtend request")((width > BitWidth && "Invalid APInt ZeroExtend request"
) ? static_cast<void> (0) : __assert_fail ("width > BitWidth && \"Invalid APInt ZeroExtend request\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 866, __PRETTY_FUNCTION__))
;
867
868 if (width <= APINT_BITS_PER_WORD)
869 return APInt(width, U.VAL);
870
871 APInt Result(getMemory(getNumWords(width)), width);
872
873 // Copy words.
874 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
875
876 // Zero remaining words.
877 std::memset(Result.U.pVal + getNumWords(), 0,
878 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
879
880 return Result;
881}
882
883APInt APInt::zextOrTrunc(unsigned width) const {
884 if (BitWidth < width)
885 return zext(width);
886 if (BitWidth > width)
887 return trunc(width);
888 return *this;
889}
890
891APInt APInt::sextOrTrunc(unsigned width) const {
892 if (BitWidth < width)
893 return sext(width);
894 if (BitWidth > width)
895 return trunc(width);
896 return *this;
897}
898
899APInt APInt::zextOrSelf(unsigned width) const {
900 if (BitWidth < width)
901 return zext(width);
902 return *this;
903}
904
905APInt APInt::sextOrSelf(unsigned width) const {
906 if (BitWidth < width)
907 return sext(width);
908 return *this;
909}
910
911/// Arithmetic right-shift this APInt by shiftAmt.
912/// @brief Arithmetic right-shift function.
913void APInt::ashrInPlace(const APInt &shiftAmt) {
914 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
915}
916
917/// Arithmetic right-shift this APInt by shiftAmt.
918/// @brief Arithmetic right-shift function.
919void APInt::ashrSlowCase(unsigned ShiftAmt) {
920 // Don't bother performing a no-op shift.
921 if (!ShiftAmt)
922 return;
923
924 // Save the original sign bit for later.
925 bool Negative = isNegative();
926
927 // WordShift is the inter-part shift; BitShift is is intra-part shift.
928 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
929 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
930
931 unsigned WordsToMove = getNumWords() - WordShift;
932 if (WordsToMove != 0) {
933 // Sign extend the last word to fill in the unused bits.
934 U.pVal[getNumWords() - 1] = SignExtend64(
935 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
936
937 // Fastpath for moving by whole words.
938 if (BitShift == 0) {
939 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
940 } else {
941 // Move the words containing significant bits.
942 for (unsigned i = 0; i != WordsToMove - 1; ++i)
943 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
944 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
945
946 // Handle the last word which has no high bits to copy.
947 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
948 // Sign extend one more time.
949 U.pVal[WordsToMove - 1] =
950 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
951 }
952 }
953
954 // Fill in the remainder based on the original sign.
955 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
956 WordShift * APINT_WORD_SIZE);
957 clearUnusedBits();
958}
959
960/// Logical right-shift this APInt by shiftAmt.
961/// @brief Logical right-shift function.
962void APInt::lshrInPlace(const APInt &shiftAmt) {
963 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
964}
965
966/// Logical right-shift this APInt by shiftAmt.
967/// @brief Logical right-shift function.
968void APInt::lshrSlowCase(unsigned ShiftAmt) {
969 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
970}
971
972/// Left-shift this APInt by shiftAmt.
973/// @brief Left-shift function.
974APInt &APInt::operator<<=(const APInt &shiftAmt) {
975 // It's undefined behavior in C to shift by BitWidth or greater.
976 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
977 return *this;
978}
979
980void APInt::shlSlowCase(unsigned ShiftAmt) {
981 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
982 clearUnusedBits();
983}
984
985// Calculate the rotate amount modulo the bit width.
986static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
987 unsigned rotBitWidth = rotateAmt.getBitWidth();
988 APInt rot = rotateAmt;
2
Calling copy constructor for 'APInt'
9
Returning from copy constructor for 'APInt'
989 if (rotBitWidth < BitWidth) {
10
Taking true branch
990 // Extend the rotate APInt, so that the urem doesn't divide by 0.
991 // e.g. APInt(1, 32) would give APInt(1, 0).
992 rot = rotateAmt.zext(BitWidth);
11
Calling move assignment operator for 'APInt'
14
Returning; memory was released
993 }
994 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
995 return rot.getLimitedValue(BitWidth);
15
Calling 'APInt::getLimitedValue'
996}
997
998APInt APInt::rotl(const APInt &rotateAmt) const {
999 return rotl(rotateModulo(BitWidth, rotateAmt));
1000}
1001
1002APInt APInt::rotl(unsigned rotateAmt) const {
1003 rotateAmt %= BitWidth;
1004 if (rotateAmt == 0)
1005 return *this;
1006 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1007}
1008
1009APInt APInt::rotr(const APInt &rotateAmt) const {
1010 return rotr(rotateModulo(BitWidth, rotateAmt));
1
Calling 'rotateModulo'
1011}
1012
1013APInt APInt::rotr(unsigned rotateAmt) const {
1014 rotateAmt %= BitWidth;
1015 if (rotateAmt == 0)
1016 return *this;
1017 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1018}
1019
1020// Square Root - this method computes and returns the square root of "this".
1021// Three mechanisms are used for computation. For small values (<= 5 bits),
1022// a table lookup is done. This gets some performance for common cases. For
1023// values using less than 52 bits, the value is converted to double and then
1024// the libc sqrt function is called. The result is rounded and then converted
1025// back to a uint64_t which is then used to construct the result. Finally,
1026// the Babylonian method for computing square roots is used.
1027APInt APInt::sqrt() const {
1028
1029 // Determine the magnitude of the value.
1030 unsigned magnitude = getActiveBits();
1031
1032 // Use a fast table for some small values. This also gets rid of some
1033 // rounding errors in libc sqrt for small values.
1034 if (magnitude <= 5) {
1035 static const uint8_t results[32] = {
1036 /* 0 */ 0,
1037 /* 1- 2 */ 1, 1,
1038 /* 3- 6 */ 2, 2, 2, 2,
1039 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1040 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1041 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1042 /* 31 */ 6
1043 };
1044 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1045 }
1046
1047 // If the magnitude of the value fits in less than 52 bits (the precision of
1048 // an IEEE double precision floating point value), then we can use the
1049 // libc sqrt function which will probably use a hardware sqrt computation.
1050 // This should be faster than the algorithm below.
1051 if (magnitude < 52) {
1052 return APInt(BitWidth,
1053 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1054 : U.pVal[0])))));
1055 }
1056
1057 // Okay, all the short cuts are exhausted. We must compute it. The following
1058 // is a classical Babylonian method for computing the square root. This code
1059 // was adapted to APInt from a wikipedia article on such computations.
1060 // See http://www.wikipedia.org/ and go to the page named
1061 // Calculate_an_integer_square_root.
1062 unsigned nbits = BitWidth, i = 4;
1063 APInt testy(BitWidth, 16);
1064 APInt x_old(BitWidth, 1);
1065 APInt x_new(BitWidth, 0);
1066 APInt two(BitWidth, 2);
1067
1068 // Select a good starting value using binary logarithms.
1069 for (;; i += 2, testy = testy.shl(2))
1070 if (i >= nbits || this->ule(testy)) {
1071 x_old = x_old.shl(i / 2);
1072 break;
1073 }
1074
1075 // Use the Babylonian method to arrive at the integer square root:
1076 for (;;) {
1077 x_new = (this->udiv(x_old) + x_old).udiv(two);
1078 if (x_old.ule(x_new))
1079 break;
1080 x_old = x_new;
1081 }
1082
1083 // Make sure we return the closest approximation
1084 // NOTE: The rounding calculation below is correct. It will produce an
1085 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1086 // determined to be a rounding issue with pari/gp as it begins to use a
1087 // floating point representation after 192 bits. There are no discrepancies
1088 // between this algorithm and pari/gp for bit widths < 192 bits.
1089 APInt square(x_old * x_old);
1090 APInt nextSquare((x_old + 1) * (x_old +1));
1091 if (this->ult(square))
1092 return x_old;
1093 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation")((this->ule(nextSquare) && "Error in APInt::sqrt computation"
) ? static_cast<void> (0) : __assert_fail ("this->ule(nextSquare) && \"Error in APInt::sqrt computation\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1093, __PRETTY_FUNCTION__))
;
1094 APInt midpoint((nextSquare - square).udiv(two));
1095 APInt offset(*this - square);
1096 if (offset.ult(midpoint))
1097 return x_old;
1098 return x_old + 1;
1099}
1100
1101/// Computes the multiplicative inverse of this APInt for a given modulo. The
1102/// iterative extended Euclidean algorithm is used to solve for this value,
1103/// however we simplify it to speed up calculating only the inverse, and take
1104/// advantage of div+rem calculations. We also use some tricks to avoid copying
1105/// (potentially large) APInts around.
1106APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1107 assert(ult(modulo) && "This APInt must be smaller than the modulo")((ult(modulo) && "This APInt must be smaller than the modulo"
) ? static_cast<void> (0) : __assert_fail ("ult(modulo) && \"This APInt must be smaller than the modulo\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1107, __PRETTY_FUNCTION__))
;
1108
1109 // Using the properties listed at the following web page (accessed 06/21/08):
1110 // http://www.numbertheory.org/php/euclid.html
1111 // (especially the properties numbered 3, 4 and 9) it can be proved that
1112 // BitWidth bits suffice for all the computations in the algorithm implemented
1113 // below. More precisely, this number of bits suffice if the multiplicative
1114 // inverse exists, but may not suffice for the general extended Euclidean
1115 // algorithm.
1116
1117 APInt r[2] = { modulo, *this };
1118 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1119 APInt q(BitWidth, 0);
1120
1121 unsigned i;
1122 for (i = 0; r[i^1] != 0; i ^= 1) {
1123 // An overview of the math without the confusing bit-flipping:
1124 // q = r[i-2] / r[i-1]
1125 // r[i] = r[i-2] % r[i-1]
1126 // t[i] = t[i-2] - t[i-1] * q
1127 udivrem(r[i], r[i^1], q, r[i]);
1128 t[i] -= t[i^1] * q;
1129 }
1130
1131 // If this APInt and the modulo are not coprime, there is no multiplicative
1132 // inverse, so return 0. We check this by looking at the next-to-last
1133 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1134 // algorithm.
1135 if (r[i] != 1)
1136 return APInt(BitWidth, 0);
1137
1138 // The next-to-last t is the multiplicative inverse. However, we are
1139 // interested in a positive inverse. Calculate a positive one from a negative
1140 // one if necessary. A simple addition of the modulo suffices because
1141 // abs(t[i]) is known to be less than *this/2 (see the link above).
1142 if (t[i].isNegative())
1143 t[i] += modulo;
1144
1145 return std::move(t[i]);
1146}
1147
1148/// Calculate the magic numbers required to implement a signed integer division
1149/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1150/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1151/// Warren, Jr., chapter 10.
1152APInt::ms APInt::magic() const {
1153 const APInt& d = *this;
1154 unsigned p;
1155 APInt ad, anc, delta, q1, r1, q2, r2, t;
1156 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1157 struct ms mag;
1158
1159 ad = d.abs();
1160 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1161 anc = t - 1 - t.urem(ad); // absolute value of nc
1162 p = d.getBitWidth() - 1; // initialize p
1163 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1164 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1165 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1166 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1167 do {
1168 p = p + 1;
1169 q1 = q1<<1; // update q1 = 2p/abs(nc)
1170 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1171 if (r1.uge(anc)) { // must be unsigned comparison
1172 q1 = q1 + 1;
1173 r1 = r1 - anc;
1174 }
1175 q2 = q2<<1; // update q2 = 2p/abs(d)
1176 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1177 if (r2.uge(ad)) { // must be unsigned comparison
1178 q2 = q2 + 1;
1179 r2 = r2 - ad;
1180 }
1181 delta = ad - r2;
1182 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1183
1184 mag.m = q2 + 1;
1185 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1186 mag.s = p - d.getBitWidth(); // resulting shift
1187 return mag;
1188}
1189
1190/// Calculate the magic numbers required to implement an unsigned integer
1191/// division by a constant as a sequence of multiplies, adds and shifts.
1192/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1193/// S. Warren, Jr., chapter 10.
1194/// LeadingZeros can be used to simplify the calculation if the upper bits
1195/// of the divided value are known zero.
1196APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1197 const APInt& d = *this;
1198 unsigned p;
1199 APInt nc, delta, q1, r1, q2, r2;
1200 struct mu magu;
1201 magu.a = 0; // initialize "add" indicator
1202 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1203 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1204 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1205
1206 nc = allOnes - (allOnes - d).urem(d);
1207 p = d.getBitWidth() - 1; // initialize p
1208 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1209 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1210 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1211 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1212 do {
1213 p = p + 1;
1214 if (r1.uge(nc - r1)) {
1215 q1 = q1 + q1 + 1; // update q1
1216 r1 = r1 + r1 - nc; // update r1
1217 }
1218 else {
1219 q1 = q1+q1; // update q1
1220 r1 = r1+r1; // update r1
1221 }
1222 if ((r2 + 1).uge(d - r2)) {
1223 if (q2.uge(signedMax)) magu.a = 1;
1224 q2 = q2+q2 + 1; // update q2
1225 r2 = r2+r2 + 1 - d; // update r2
1226 }
1227 else {
1228 if (q2.uge(signedMin)) magu.a = 1;
1229 q2 = q2+q2; // update q2
1230 r2 = r2+r2 + 1; // update r2
1231 }
1232 delta = d - 1 - r2;
1233 } while (p < d.getBitWidth()*2 &&
1234 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1235 magu.m = q2 + 1; // resulting magic number
1236 magu.s = p - d.getBitWidth(); // resulting shift
1237 return magu;
1238}
1239
1240/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1241/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1242/// variables here have the same names as in the algorithm. Comments explain
1243/// the algorithm and any deviation from it.
1244static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1245 unsigned m, unsigned n) {
1246 assert(u && "Must provide dividend")((u && "Must provide dividend") ? static_cast<void
> (0) : __assert_fail ("u && \"Must provide dividend\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1246, __PRETTY_FUNCTION__))
;
1247 assert(v && "Must provide divisor")((v && "Must provide divisor") ? static_cast<void>
(0) : __assert_fail ("v && \"Must provide divisor\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1247, __PRETTY_FUNCTION__))
;
1248 assert(q && "Must provide quotient")((q && "Must provide quotient") ? static_cast<void
> (0) : __assert_fail ("q && \"Must provide quotient\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1248, __PRETTY_FUNCTION__))
;
1249 assert(u != v && u != q && v != q && "Must use different memory")((u != v && u != q && v != q && "Must use different memory"
) ? static_cast<void> (0) : __assert_fail ("u != v && u != q && v != q && \"Must use different memory\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1249, __PRETTY_FUNCTION__))
;
1250 assert(n>1 && "n must be > 1")((n>1 && "n must be > 1") ? static_cast<void
> (0) : __assert_fail ("n>1 && \"n must be > 1\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1250, __PRETTY_FUNCTION__))
;
1251
1252 // b denotes the base of the number system. In our case b is 2^32.
1253 const uint64_t b = uint64_t(1) << 32;
1254
1255 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: m=" << m <<
" n=" << n << '\n'; } } while (false)
;
1256 DEBUG(dbgs() << "KnuthDiv: original:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: original:"; } } while
(false)
;
1257 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = m+n; i >=0; i--) dbgs() <<
" " << u[i]; } } while (false)
;
1258 DEBUG(dbgs() << " by")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << " by"; } } while (false)
;
1259 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = n; i >0; i--) dbgs() << " "
<< v[i-1]; } } while (false)
;
1260 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1261 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1262 // u and v by d. Note that we have taken Knuth's advice here to use a power
1263 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1264 // 2 allows us to shift instead of multiply and it is easy to determine the
1265 // shift amount from the leading zeros. We are basically normalizing the u
1266 // and v so that its high bits are shifted to the top of v's range without
1267 // overflow. Note that this can require an extra word in u so that u must
1268 // be of length m+n+1.
1269 unsigned shift = countLeadingZeros(v[n-1]);
1270 uint32_t v_carry = 0;
1271 uint32_t u_carry = 0;
1272 if (shift) {
1273 for (unsigned i = 0; i < m+n; ++i) {
1274 uint32_t u_tmp = u[i] >> (32 - shift);
1275 u[i] = (u[i] << shift) | u_carry;
1276 u_carry = u_tmp;
1277 }
1278 for (unsigned i = 0; i < n; ++i) {
1279 uint32_t v_tmp = v[i] >> (32 - shift);
1280 v[i] = (v[i] << shift) | v_carry;
1281 v_carry = v_tmp;
1282 }
1283 }
1284 u[m+n] = u_carry;
1285
1286 DEBUG(dbgs() << "KnuthDiv: normal:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: normal:"; } } while
(false)
;
1287 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = m+n; i >=0; i--) dbgs() <<
" " << u[i]; } } while (false)
;
1288 DEBUG(dbgs() << " by")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << " by"; } } while (false)
;
1289 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = n; i >0; i--) dbgs() << " "
<< v[i-1]; } } while (false)
;
1290 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1291
1292 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1293 int j = m;
1294 do {
1295 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: quotient digit #" <<
j << '\n'; } } while (false)
;
1296 // D3. [Calculate q'.].
1297 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1298 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1299 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1300 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1301 // on v[n-2] determines at high speed most of the cases in which the trial
1302 // value qp is one too large, and it eliminates all cases where qp is two
1303 // too large.
1304 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1305 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: dividend == " <<
dividend << '\n'; } } while (false)
;
1306 uint64_t qp = dividend / v[n-1];
1307 uint64_t rp = dividend % v[n-1];
1308 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1309 qp--;
1310 rp += v[n-1];
1311 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1312 qp--;
1313 }
1314 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: qp == " << qp <<
", rp == " << rp << '\n'; } } while (false)
;
1315
1316 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1317 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1318 // consists of a simple multiplication by a one-place number, combined with
1319 // a subtraction.
1320 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1321 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1322 // true value plus b**(n+1), namely as the b's complement of
1323 // the true value, and a "borrow" to the left should be remembered.
1324 int64_t borrow = 0;
1325 for (unsigned i = 0; i < n; ++i) {
1326 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1327 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1328 u[j+i] = Lo_32(subres);
1329 borrow = Hi_32(p) - Hi_32(subres);
1330 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: u[j+i] = " << u
[j+i] << ", borrow = " << borrow << '\n'; }
} while (false)
1331 << ", borrow = " << borrow << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: u[j+i] = " << u
[j+i] << ", borrow = " << borrow << '\n'; }
} while (false)
;
1332 }
1333 bool isNeg = u[j+n] < borrow;
1334 u[j+n] -= Lo_32(borrow);
1335
1336 DEBUG(dbgs() << "KnuthDiv: after subtraction:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: after subtraction:"; }
} while (false)
;
1337 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = m+n; i >=0; i--) dbgs() <<
" " << u[i]; } } while (false)
;
1338 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1339
1340 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1341 // negative, go to step D6; otherwise go on to step D7.
1342 q[j] = Lo_32(qp);
1343 if (isNeg) {
1344 // D6. [Add back]. The probability that this step is necessary is very
1345 // small, on the order of only 2/b. Make sure that test data accounts for
1346 // this possibility. Decrease q[j] by 1
1347 q[j]--;
1348 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1349 // A carry will occur to the left of u[j+n], and it should be ignored
1350 // since it cancels with the borrow that occurred in D4.
1351 bool carry = false;
1352 for (unsigned i = 0; i < n; i++) {
1353 uint32_t limit = std::min(u[j+i],v[i]);
1354 u[j+i] += v[i] + carry;
1355 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1356 }
1357 u[j+n] += carry;
1358 }
1359 DEBUG(dbgs() << "KnuthDiv: after correction:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: after correction:"; }
} while (false)
;
1360 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = m+n; i >=0; i--) dbgs() <<
" " << u[i]; } } while (false)
;
1361 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "\nKnuthDiv: digit result = " <<
q[j] << '\n'; } } while (false)
;
1362
1363 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1364 } while (--j >= 0);
1365
1366 DEBUG(dbgs() << "KnuthDiv: quotient:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: quotient:"; } } while
(false)
;
1367 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = m; i >=0; i--) dbgs() <<" "
<< q[i]; } } while (false)
;
1368 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1369
1370 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1371 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1372 // compute the remainder (urem uses this).
1373 if (r) {
1374 // The value d is expressed by the "shift" value above since we avoided
1375 // multiplication by d by using a shift left. So, all we have to do is
1376 // shift right here.
1377 if (shift) {
1378 uint32_t carry = 0;
1379 DEBUG(dbgs() << "KnuthDiv: remainder:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: remainder:"; } } while
(false)
;
1380 for (int i = n-1; i >= 0; i--) {
1381 r[i] = (u[i] >> shift) | carry;
1382 carry = u[i] << (32 - shift);
1383 DEBUG(dbgs() << " " << r[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << " " << r[i]; } } while (false
)
;
1384 }
1385 } else {
1386 for (int i = n-1; i >= 0; i--) {
1387 r[i] = u[i];
1388 DEBUG(dbgs() << " " << r[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << " " << r[i]; } } while (false
)
;
1389 }
1390 }
1391 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1392 }
1393 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1394}
1395
1396void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1397 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1398 assert(lhsWords >= rhsWords && "Fractional result")((lhsWords >= rhsWords && "Fractional result") ? static_cast
<void> (0) : __assert_fail ("lhsWords >= rhsWords && \"Fractional result\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1398, __PRETTY_FUNCTION__))
;
1399
1400 // First, compose the values into an array of 32-bit words instead of
1401 // 64-bit words. This is a necessity of both the "short division" algorithm
1402 // and the Knuth "classical algorithm" which requires there to be native
1403 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1404 // can't use 64-bit operands here because we don't have native results of
1405 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1406 // work on large-endian machines.
1407 unsigned n = rhsWords * 2;
1408 unsigned m = (lhsWords * 2) - n;
1409
1410 // Allocate space for the temporary values we need either on the stack, if
1411 // it will fit, or on the heap if it won't.
1412 uint32_t SPACE[128];
1413 uint32_t *U = nullptr;
1414 uint32_t *V = nullptr;
1415 uint32_t *Q = nullptr;
1416 uint32_t *R = nullptr;
1417 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1418 U = &SPACE[0];
1419 V = &SPACE[m+n+1];
1420 Q = &SPACE[(m+n+1) + n];
1421 if (Remainder)
1422 R = &SPACE[(m+n+1) + n + (m+n)];
1423 } else {
1424 U = new uint32_t[m + n + 1];
1425 V = new uint32_t[n];
1426 Q = new uint32_t[m+n];
1427 if (Remainder)
1428 R = new uint32_t[n];
1429 }
1430
1431 // Initialize the dividend
1432 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1433 for (unsigned i = 0; i < lhsWords; ++i) {
1434 uint64_t tmp = LHS[i];
1435 U[i * 2] = Lo_32(tmp);
1436 U[i * 2 + 1] = Hi_32(tmp);
1437 }
1438 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1439
1440 // Initialize the divisor
1441 memset(V, 0, (n)*sizeof(uint32_t));
1442 for (unsigned i = 0; i < rhsWords; ++i) {
1443 uint64_t tmp = RHS[i];
1444 V[i * 2] = Lo_32(tmp);
1445 V[i * 2 + 1] = Hi_32(tmp);
1446 }
1447
1448 // initialize the quotient and remainder
1449 memset(Q, 0, (m+n) * sizeof(uint32_t));
1450 if (Remainder)
1451 memset(R, 0, n * sizeof(uint32_t));
1452
1453 // Now, adjust m and n for the Knuth division. n is the number of words in
1454 // the divisor. m is the number of words by which the dividend exceeds the
1455 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1456 // contain any zero words or the Knuth algorithm fails.
1457 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1458 n--;
1459 m++;
1460 }
1461 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1462 m--;
1463
1464 // If we're left with only a single word for the divisor, Knuth doesn't work
1465 // so we implement the short division algorithm here. This is much simpler
1466 // and faster because we are certain that we can divide a 64-bit quantity
1467 // by a 32-bit quantity at hardware speed and short division is simply a
1468 // series of such operations. This is just like doing short division but we
1469 // are using base 2^32 instead of base 10.
1470 assert(n != 0 && "Divide by zero?")((n != 0 && "Divide by zero?") ? static_cast<void>
(0) : __assert_fail ("n != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1470, __PRETTY_FUNCTION__))
;
1471 if (n == 1) {
1472 uint32_t divisor = V[0];
1473 uint32_t remainder = 0;
1474 for (int i = m; i >= 0; i--) {
1475 uint64_t partial_dividend = Make_64(remainder, U[i]);
1476 if (partial_dividend == 0) {
1477 Q[i] = 0;
1478 remainder = 0;
1479 } else if (partial_dividend < divisor) {
1480 Q[i] = 0;
1481 remainder = Lo_32(partial_dividend);
1482 } else if (partial_dividend == divisor) {
1483 Q[i] = 1;
1484 remainder = 0;
1485 } else {
1486 Q[i] = Lo_32(partial_dividend / divisor);
1487 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1488 }
1489 }
1490 if (R)
1491 R[0] = remainder;
1492 } else {
1493 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1494 // case n > 1.
1495 KnuthDiv(U, V, Q, R, m, n);
1496 }
1497
1498 // If the caller wants the quotient
1499 if (Quotient) {
1500 for (unsigned i = 0; i < lhsWords; ++i)
1501 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1502 }
1503
1504 // If the caller wants the remainder
1505 if (Remainder) {
1506 for (unsigned i = 0; i < rhsWords; ++i)
1507 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1508 }
1509
1510 // Clean up the memory we allocated.
1511 if (U != &SPACE[0]) {
1512 delete [] U;
1513 delete [] V;
1514 delete [] Q;
1515 delete [] R;
1516 }
1517}
1518
1519APInt APInt::udiv(const APInt &RHS) const {
1520 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1520, __PRETTY_FUNCTION__))
;
1521
1522 // First, deal with the easy case
1523 if (isSingleWord()) {
1524 assert(RHS.U.VAL != 0 && "Divide by zero?")((RHS.U.VAL != 0 && "Divide by zero?") ? static_cast<
void> (0) : __assert_fail ("RHS.U.VAL != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1524, __PRETTY_FUNCTION__))
;
1525 return APInt(BitWidth, U.VAL / RHS.U.VAL);
1526 }
1527
1528 // Get some facts about the LHS and RHS number of bits and words
1529 unsigned lhsWords = getNumWords(getActiveBits());
1530 unsigned rhsBits = RHS.getActiveBits();
1531 unsigned rhsWords = getNumWords(rhsBits);
1532 assert(rhsWords && "Divided by zero???")((rhsWords && "Divided by zero???") ? static_cast<
void> (0) : __assert_fail ("rhsWords && \"Divided by zero???\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1532, __PRETTY_FUNCTION__))
;
1533
1534 // Deal with some degenerate cases
1535 if (!lhsWords)
1536 // 0 / X ===> 0
1537 return APInt(BitWidth, 0);
1538 if (rhsBits == 1)
1539 // X / 1 ===> X
1540 return *this;
1541 if (lhsWords < rhsWords || this->ult(RHS))
1542 // X / Y ===> 0, iff X < Y
1543 return APInt(BitWidth, 0);
1544 if (*this == RHS)
1545 // X / X ===> 1
1546 return APInt(BitWidth, 1);
1547 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1548 // All high words are zero, just use native divide
1549 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1550
1551 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1552 APInt Quotient(BitWidth, 0); // to hold result.
1553 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1554 return Quotient;
1555}
1556
1557APInt APInt::udiv(uint64_t RHS) const {
1558 assert(RHS != 0 && "Divide by zero?")((RHS != 0 && "Divide by zero?") ? static_cast<void
> (0) : __assert_fail ("RHS != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1558, __PRETTY_FUNCTION__))
;
1559
1560 // First, deal with the easy case
1561 if (isSingleWord())
1562 return APInt(BitWidth, U.VAL / RHS);
1563
1564 // Get some facts about the LHS words.
1565 unsigned lhsWords = getNumWords(getActiveBits());
1566
1567 // Deal with some degenerate cases
1568 if (!lhsWords)
1569 // 0 / X ===> 0
1570 return APInt(BitWidth, 0);
1571 if (RHS == 1)
1572 // X / 1 ===> X
1573 return *this;
1574 if (this->ult(RHS))
1575 // X / Y ===> 0, iff X < Y
1576 return APInt(BitWidth, 0);
1577 if (*this == RHS)
1578 // X / X ===> 1
1579 return APInt(BitWidth, 1);
1580 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1581 // All high words are zero, just use native divide
1582 return APInt(BitWidth, this->U.pVal[0] / RHS);
1583
1584 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1585 APInt Quotient(BitWidth, 0); // to hold result.
1586 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1587 return Quotient;
1588}
1589
1590APInt APInt::sdiv(const APInt &RHS) const {
1591 if (isNegative()) {
1592 if (RHS.isNegative())
1593 return (-(*this)).udiv(-RHS);
1594 return -((-(*this)).udiv(RHS));
1595 }
1596 if (RHS.isNegative())
1597 return -(this->udiv(-RHS));
1598 return this->udiv(RHS);
1599}
1600
1601APInt APInt::sdiv(int64_t RHS) const {
1602 if (isNegative()) {
1603 if (RHS < 0)
1604 return (-(*this)).udiv(-RHS);
1605 return -((-(*this)).udiv(RHS));
1606 }
1607 if (RHS < 0)
1608 return -(this->udiv(-RHS));
1609 return this->udiv(RHS);
1610}
1611
1612APInt APInt::urem(const APInt &RHS) const {
1613 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1613, __PRETTY_FUNCTION__))
;
1614 if (isSingleWord()) {
1615 assert(RHS.U.VAL != 0 && "Remainder by zero?")((RHS.U.VAL != 0 && "Remainder by zero?") ? static_cast
<void> (0) : __assert_fail ("RHS.U.VAL != 0 && \"Remainder by zero?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1615, __PRETTY_FUNCTION__))
;
1616 return APInt(BitWidth, U.VAL % RHS.U.VAL);
1617 }
1618
1619 // Get some facts about the LHS
1620 unsigned lhsWords = getNumWords(getActiveBits());
1621
1622 // Get some facts about the RHS
1623 unsigned rhsBits = RHS.getActiveBits();
1624 unsigned rhsWords = getNumWords(rhsBits);
1625 assert(rhsWords && "Performing remainder operation by zero ???")((rhsWords && "Performing remainder operation by zero ???"
) ? static_cast<void> (0) : __assert_fail ("rhsWords && \"Performing remainder operation by zero ???\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1625, __PRETTY_FUNCTION__))
;
1626
1627 // Check the degenerate cases
1628 if (lhsWords == 0)
1629 // 0 % Y ===> 0
1630 return APInt(BitWidth, 0);
1631 if (rhsBits == 1)
1632 // X % 1 ===> 0
1633 return APInt(BitWidth, 0);
1634 if (lhsWords < rhsWords || this->ult(RHS))
1635 // X % Y ===> X, iff X < Y
1636 return *this;
1637 if (*this == RHS)
1638 // X % X == 0;
1639 return APInt(BitWidth, 0);
1640 if (lhsWords == 1)
1641 // All high words are zero, just use native remainder
1642 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1643
1644 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1645 APInt Remainder(BitWidth, 0);
1646 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1647 return Remainder;
1648}
1649
1650uint64_t APInt::urem(uint64_t RHS) const {
1651 assert(RHS != 0 && "Remainder by zero?")((RHS != 0 && "Remainder by zero?") ? static_cast<
void> (0) : __assert_fail ("RHS != 0 && \"Remainder by zero?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1651, __PRETTY_FUNCTION__))
;
1652
1653 if (isSingleWord())
1654 return U.VAL % RHS;
1655
1656 // Get some facts about the LHS
1657 unsigned lhsWords = getNumWords(getActiveBits());
1658
1659 // Check the degenerate cases
1660 if (lhsWords == 0)
1661 // 0 % Y ===> 0
1662 return 0;
1663 if (RHS == 1)
1664 // X % 1 ===> 0
1665 return 0;
1666 if (this->ult(RHS))
1667 // X % Y ===> X, iff X < Y
1668 return getZExtValue();
1669 if (*this == RHS)
1670 // X % X == 0;
1671 return 0;
1672 if (lhsWords == 1)
1673 // All high words are zero, just use native remainder
1674 return U.pVal[0] % RHS;
1675
1676 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1677 uint64_t Remainder;
1678 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1679 return Remainder;
1680}
1681
1682APInt APInt::srem(const APInt &RHS) const {
1683 if (isNegative()) {
1684 if (RHS.isNegative())
1685 return -((-(*this)).urem(-RHS));
1686 return -((-(*this)).urem(RHS));
1687 }
1688 if (RHS.isNegative())
1689 return this->urem(-RHS);
1690 return this->urem(RHS);
1691}
1692
1693int64_t APInt::srem(int64_t RHS) const {
1694 if (isNegative()) {
1695 if (RHS < 0)
1696 return -((-(*this)).urem(-RHS));
1697 return -((-(*this)).urem(RHS));
1698 }
1699 if (RHS < 0)
1700 return this->urem(-RHS);
1701 return this->urem(RHS);
1702}
1703
1704void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1705 APInt &Quotient, APInt &Remainder) {
1706 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same")((LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("LHS.BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1706, __PRETTY_FUNCTION__))
;
1707 unsigned BitWidth = LHS.BitWidth;
1708
1709 // First, deal with the easy case
1710 if (LHS.isSingleWord()) {
1711 assert(RHS.U.VAL != 0 && "Divide by zero?")((RHS.U.VAL != 0 && "Divide by zero?") ? static_cast<
void> (0) : __assert_fail ("RHS.U.VAL != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1711, __PRETTY_FUNCTION__))
;
1712 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1713 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1714 Quotient = APInt(BitWidth, QuotVal);
1715 Remainder = APInt(BitWidth, RemVal);
1716 return;
1717 }
1718
1719 // Get some size facts about the dividend and divisor
1720 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1721 unsigned rhsBits = RHS.getActiveBits();
1722 unsigned rhsWords = getNumWords(rhsBits);
1723 assert(rhsWords && "Performing divrem operation by zero ???")((rhsWords && "Performing divrem operation by zero ???"
) ? static_cast<void> (0) : __assert_fail ("rhsWords && \"Performing divrem operation by zero ???\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1723, __PRETTY_FUNCTION__))
;
1724
1725 // Check the degenerate cases
1726 if (lhsWords == 0) {
1727 Quotient = 0; // 0 / Y ===> 0
1728 Remainder = 0; // 0 % Y ===> 0
1729 return;
1730 }
1731
1732 if (rhsBits == 1) {
1733 Quotient = LHS; // X / 1 ===> X
1734 Remainder = 0; // X % 1 ===> 0
1735 }
1736
1737 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1738 Remainder = LHS; // X % Y ===> X, iff X < Y
1739 Quotient = 0; // X / Y ===> 0, iff X < Y
1740 return;
1741 }
1742
1743 if (LHS == RHS) {
1744 Quotient = 1; // X / X ===> 1
1745 Remainder = 0; // X % X ===> 0;
1746 return;
1747 }
1748
1749 // Make sure there is enough space to hold the results.
1750 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1751 // change the size. This is necessary if Quotient or Remainder is aliased
1752 // with LHS or RHS.
1753 Quotient.reallocate(BitWidth);
1754 Remainder.reallocate(BitWidth);
1755
1756 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1757 // There is only one word to consider so use the native versions.
1758 uint64_t lhsValue = LHS.U.pVal[0];
1759 uint64_t rhsValue = RHS.U.pVal[0];
1760 Quotient = lhsValue / rhsValue;
1761 Remainder = lhsValue % rhsValue;
1762 return;
1763 }
1764
1765 // Okay, lets do it the long way
1766 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1767 Remainder.U.pVal);
1768 // Clear the rest of the Quotient and Remainder.
1769 std::memset(Quotient.U.pVal + lhsWords, 0,
1770 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1771 std::memset(Remainder.U.pVal + rhsWords, 0,
1772 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1773}
1774
1775void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1776 uint64_t &Remainder) {
1777 assert(RHS != 0 && "Divide by zero?")((RHS != 0 && "Divide by zero?") ? static_cast<void
> (0) : __assert_fail ("RHS != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1777, __PRETTY_FUNCTION__))
;
1778 unsigned BitWidth = LHS.BitWidth;
1779
1780 // First, deal with the easy case
1781 if (LHS.isSingleWord()) {
1782 uint64_t QuotVal = LHS.U.VAL / RHS;
1783 Remainder = LHS.U.VAL % RHS;
1784 Quotient = APInt(BitWidth, QuotVal);
1785 return;
1786 }
1787
1788 // Get some size facts about the dividend and divisor
1789 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1790
1791 // Check the degenerate cases
1792 if (lhsWords == 0) {
1793 Quotient = 0; // 0 / Y ===> 0
1794 Remainder = 0; // 0 % Y ===> 0
1795 return;
1796 }
1797
1798 if (RHS == 1) {
1799 Quotient = LHS; // X / 1 ===> X
1800 Remainder = 0; // X % 1 ===> 0
1801 }
1802
1803 if (LHS.ult(RHS)) {
1804 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1805 Quotient = 0; // X / Y ===> 0, iff X < Y
1806 return;
1807 }
1808
1809 if (LHS == RHS) {
1810 Quotient = 1; // X / X ===> 1
1811 Remainder = 0; // X % X ===> 0;
1812 return;
1813 }
1814
1815 // Make sure there is enough space to hold the results.
1816 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1817 // change the size. This is necessary if Quotient is aliased with LHS.
1818 Quotient.reallocate(BitWidth);
1819
1820 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1821 // There is only one word to consider so use the native versions.
1822 uint64_t lhsValue = LHS.U.pVal[0];
1823 Quotient = lhsValue / RHS;
1824 Remainder = lhsValue % RHS;
1825 return;
1826 }
1827
1828 // Okay, lets do it the long way
1829 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1830 // Clear the rest of the Quotient.
1831 std::memset(Quotient.U.pVal + lhsWords, 0,
1832 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1833}
1834
1835void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1836 APInt &Quotient, APInt &Remainder) {
1837 if (LHS.isNegative()) {
1838 if (RHS.isNegative())
1839 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1840 else {
1841 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1842 Quotient.negate();
1843 }
1844 Remainder.negate();
1845 } else if (RHS.isNegative()) {
1846 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1847 Quotient.negate();
1848 } else {
1849 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1850 }
1851}
1852
1853void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1854 APInt &Quotient, int64_t &Remainder) {
1855 uint64_t R = Remainder;
1856 if (LHS.isNegative()) {
1857 if (RHS < 0)
1858 APInt::udivrem(-LHS, -RHS, Quotient, R);
1859 else {
1860 APInt::udivrem(-LHS, RHS, Quotient, R);
1861 Quotient.negate();
1862 }
1863 R = -R;
1864 } else if (RHS < 0) {
1865 APInt::udivrem(LHS, -RHS, Quotient, R);
1866 Quotient.negate();
1867 } else {
1868 APInt::udivrem(LHS, RHS, Quotient, R);
1869 }
1870 Remainder = R;
1871}
1872
1873APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1874 APInt Res = *this+RHS;
1875 Overflow = isNonNegative() == RHS.isNonNegative() &&
1876 Res.isNonNegative() != isNonNegative();
1877 return Res;
1878}
1879
1880APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1881 APInt Res = *this+RHS;
1882 Overflow = Res.ult(RHS);
1883 return Res;
1884}
1885
1886APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1887 APInt Res = *this - RHS;
1888 Overflow = isNonNegative() != RHS.isNonNegative() &&
1889 Res.isNonNegative() != isNonNegative();
1890 return Res;
1891}
1892
1893APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1894 APInt Res = *this-RHS;
1895 Overflow = Res.ugt(*this);
1896 return Res;
1897}
1898
1899APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1900 // MININT/-1 --> overflow.
1901 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1902 return sdiv(RHS);
1903}
1904
1905APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1906 APInt Res = *this * RHS;
1907
1908 if (*this != 0 && RHS != 0)
1909 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1910 else
1911 Overflow = false;
1912 return Res;
1913}
1914
1915APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1916 APInt Res = *this * RHS;
1917
1918 if (*this != 0 && RHS != 0)
1919 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
1920 else
1921 Overflow = false;
1922 return Res;
1923}
1924
1925APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1926 Overflow = ShAmt.uge(getBitWidth());
1927 if (Overflow)
1928 return APInt(BitWidth, 0);
1929
1930 if (isNonNegative()) // Don't allow sign change.
1931 Overflow = ShAmt.uge(countLeadingZeros());
1932 else
1933 Overflow = ShAmt.uge(countLeadingOnes());
1934
1935 return *this << ShAmt;
1936}
1937
1938APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1939 Overflow = ShAmt.uge(getBitWidth());
1940 if (Overflow)
1941 return APInt(BitWidth, 0);
1942
1943 Overflow = ShAmt.ugt(countLeadingZeros());
1944
1945 return *this << ShAmt;
1946}
1947
1948
1949
1950
1951void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
1952 // Check our assumptions here
1953 assert(!str.empty() && "Invalid string length")((!str.empty() && "Invalid string length") ? static_cast
<void> (0) : __assert_fail ("!str.empty() && \"Invalid string length\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1953, __PRETTY_FUNCTION__))
;
1954 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||(((radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix
== 36) && "Radix should be 2, 8, 10, 16, or 36!") ? static_cast
<void> (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1956, __PRETTY_FUNCTION__))
1955 radix == 36) &&(((radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix
== 36) && "Radix should be 2, 8, 10, 16, or 36!") ? static_cast
<void> (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1956, __PRETTY_FUNCTION__))
1956 "Radix should be 2, 8, 10, 16, or 36!")(((radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix
== 36) && "Radix should be 2, 8, 10, 16, or 36!") ? static_cast
<void> (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1956, __PRETTY_FUNCTION__))
;
1957
1958 StringRef::iterator p = str.begin();
1959 size_t slen = str.size();
1960 bool isNeg = *p == '-';
1961 if (*p == '-' || *p == '+') {
1962 p++;
1963 slen--;
1964 assert(slen && "String is only a sign, needs a value.")((slen && "String is only a sign, needs a value.") ? static_cast
<void> (0) : __assert_fail ("slen && \"String is only a sign, needs a value.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1964, __PRETTY_FUNCTION__))
;
1965 }
1966 assert((slen <= numbits || radix != 2) && "Insufficient bit width")(((slen <= numbits || radix != 2) && "Insufficient bit width"
) ? static_cast<void> (0) : __assert_fail ("(slen <= numbits || radix != 2) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1966, __PRETTY_FUNCTION__))
;
1967 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width")((((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"
) ? static_cast<void> (0) : __assert_fail ("((slen-1)*3 <= numbits || radix != 8) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1967, __PRETTY_FUNCTION__))
;
1968 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width")((((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"
) ? static_cast<void> (0) : __assert_fail ("((slen-1)*4 <= numbits || radix != 16) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1968, __PRETTY_FUNCTION__))
;
1969 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&(((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width"
) ? static_cast<void> (0) : __assert_fail ("(((slen-1)*64)/22 <= numbits || radix != 10) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1970, __PRETTY_FUNCTION__))
1970 "Insufficient bit width")(((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width"
) ? static_cast<void> (0) : __assert_fail ("(((slen-1)*64)/22 <= numbits || radix != 10) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1970, __PRETTY_FUNCTION__))
;
1971
1972 // Allocate memory if needed
1973 if (isSingleWord())
1974 U.VAL = 0;
1975 else
1976 U.pVal = getClearedMemory(getNumWords());
1977
1978 // Figure out if we can shift instead of multiply
1979 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1980
1981 // Enter digit traversal loop
1982 for (StringRef::iterator e = str.end(); p != e; ++p) {
1983 unsigned digit = getDigit(*p, radix);
1984 assert(digit < radix && "Invalid character in digit string")((digit < radix && "Invalid character in digit string"
) ? static_cast<void> (0) : __assert_fail ("digit < radix && \"Invalid character in digit string\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 1984, __PRETTY_FUNCTION__))
;
1985
1986 // Shift or multiply the value by the radix
1987 if (slen > 1) {
1988 if (shift)
1989 *this <<= shift;
1990 else
1991 *this *= radix;
1992 }
1993
1994 // Add in the digit we just interpreted
1995 *this += digit;
1996 }
1997 // If its negative, put it in two's complement form
1998 if (isNeg)
1999 this->negate();
2000}
2001
2002void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2003 bool Signed, bool formatAsCLiteral) const {
2004 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||(((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix
== 36) && "Radix should be 2, 8, 10, 16, or 36!") ? static_cast
<void> (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2006, __PRETTY_FUNCTION__))
2005 Radix == 36) &&(((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix
== 36) && "Radix should be 2, 8, 10, 16, or 36!") ? static_cast
<void> (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2006, __PRETTY_FUNCTION__))
2006 "Radix should be 2, 8, 10, 16, or 36!")(((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix
== 36) && "Radix should be 2, 8, 10, 16, or 36!") ? static_cast
<void> (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2006, __PRETTY_FUNCTION__))
;
2007
2008 const char *Prefix = "";
2009 if (formatAsCLiteral) {
2010 switch (Radix) {
2011 case 2:
2012 // Binary literals are a non-standard extension added in gcc 4.3:
2013 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2014 Prefix = "0b";
2015 break;
2016 case 8:
2017 Prefix = "0";
2018 break;
2019 case 10:
2020 break; // No prefix
2021 case 16:
2022 Prefix = "0x";
2023 break;
2024 default:
2025 llvm_unreachable("Invalid radix!")::llvm::llvm_unreachable_internal("Invalid radix!", "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2025)
;
2026 }
2027 }
2028
2029 // First, check for a zero value and just short circuit the logic below.
2030 if (*this == 0) {
2031 while (*Prefix) {
2032 Str.push_back(*Prefix);
2033 ++Prefix;
2034 };
2035 Str.push_back('0');
2036 return;
2037 }
2038
2039 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2040
2041 if (isSingleWord()) {
2042 char Buffer[65];
2043 char *BufPtr = std::end(Buffer);
2044
2045 uint64_t N;
2046 if (!Signed) {
2047 N = getZExtValue();
2048 } else {
2049 int64_t I = getSExtValue();
2050 if (I >= 0) {
2051 N = I;
2052 } else {
2053 Str.push_back('-');
2054 N = -(uint64_t)I;
2055 }
2056 }
2057
2058 while (*Prefix) {
2059 Str.push_back(*Prefix);
2060 ++Prefix;
2061 };
2062
2063 while (N) {
2064 *--BufPtr = Digits[N % Radix];
2065 N /= Radix;
2066 }
2067 Str.append(BufPtr, std::end(Buffer));
2068 return;
2069 }
2070
2071 APInt Tmp(*this);
2072
2073 if (Signed && isNegative()) {
2074 // They want to print the signed version and it is a negative value
2075 // Flip the bits and add one to turn it into the equivalent positive
2076 // value and put a '-' in the result.
2077 Tmp.negate();
2078 Str.push_back('-');
2079 }
2080
2081 while (*Prefix) {
2082 Str.push_back(*Prefix);
2083 ++Prefix;
2084 };
2085
2086 // We insert the digits backward, then reverse them to get the right order.
2087 unsigned StartDig = Str.size();
2088
2089 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2090 // because the number of bits per digit (1, 3 and 4 respectively) divides
2091 // equally. We just shift until the value is zero.
2092 if (Radix == 2 || Radix == 8 || Radix == 16) {
2093 // Just shift tmp right for each digit width until it becomes zero
2094 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2095 unsigned MaskAmt = Radix - 1;
2096
2097 while (Tmp.getBoolValue()) {
2098 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2099 Str.push_back(Digits[Digit]);
2100 Tmp.lshrInPlace(ShiftAmt);
2101 }
2102 } else {
2103 while (Tmp.getBoolValue()) {
2104 uint64_t Digit;
2105 udivrem(Tmp, Radix, Tmp, Digit);
2106 assert(Digit < Radix && "divide failed")((Digit < Radix && "divide failed") ? static_cast<
void> (0) : __assert_fail ("Digit < Radix && \"divide failed\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2106, __PRETTY_FUNCTION__))
;
2107 Str.push_back(Digits[Digit]);
2108 }
2109 }
2110
2111 // Reverse the digits before returning.
2112 std::reverse(Str.begin()+StartDig, Str.end());
2113}
2114
2115/// Returns the APInt as a std::string. Note that this is an inefficient method.
2116/// It is better to pass in a SmallVector/SmallString to the methods above.
2117std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2118 SmallString<40> S;
2119 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
2120 return S.str();
2121}
2122
2123#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2124LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void APInt::dump() const {
2125 SmallString<40> S, U;
2126 this->toStringUnsigned(U);
2127 this->toStringSigned(S);
2128 dbgs() << "APInt(" << BitWidth << "b, "
2129 << U << "u " << S << "s)\n";
2130}
2131#endif
2132
2133void APInt::print(raw_ostream &OS, bool isSigned) const {
2134 SmallString<40> S;
2135 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2136 OS << S;
2137}
2138
2139// This implements a variety of operations on a representation of
2140// arbitrary precision, two's-complement, bignum integer values.
2141
2142// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2143// and unrestricting assumption.
2144static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2145 "Part width must be divisible by 2!");
2146
2147/* Some handy functions local to this file. */
2148
2149/* Returns the integer part with the least significant BITS set.
2150 BITS cannot be zero. */
2151static inline APInt::WordType lowBitMask(unsigned bits) {
2152 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD)((bits != 0 && bits <= APInt::APINT_BITS_PER_WORD)
? static_cast<void> (0) : __assert_fail ("bits != 0 && bits <= APInt::APINT_BITS_PER_WORD"
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2152, __PRETTY_FUNCTION__))
;
2153
2154 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2155}
2156
2157/* Returns the value of the lower half of PART. */
2158static inline APInt::WordType lowHalf(APInt::WordType part) {
2159 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2160}
2161
2162/* Returns the value of the upper half of PART. */
2163static inline APInt::WordType highHalf(APInt::WordType part) {
2164 return part >> (APInt::APINT_BITS_PER_WORD / 2);
2165}
2166
2167/* Returns the bit number of the most significant set bit of a part.
2168 If the input number has no bits set -1U is returned. */
2169static unsigned partMSB(APInt::WordType value) {
2170 return findLastSet(value, ZB_Max);
2171}
2172
2173/* Returns the bit number of the least significant set bit of a
2174 part. If the input number has no bits set -1U is returned. */
2175static unsigned partLSB(APInt::WordType value) {
2176 return findFirstSet(value, ZB_Max);
2177}
2178
2179/* Sets the least significant part of a bignum to the input value, and
2180 zeroes out higher parts. */
2181void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2182 assert(parts > 0)((parts > 0) ? static_cast<void> (0) : __assert_fail
("parts > 0", "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2182, __PRETTY_FUNCTION__))
;
2183
2184 dst[0] = part;
2185 for (unsigned i = 1; i < parts; i++)
2186 dst[i] = 0;
2187}
2188
2189/* Assign one bignum to another. */
2190void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2191 for (unsigned i = 0; i < parts; i++)
2192 dst[i] = src[i];
2193}
2194
2195/* Returns true if a bignum is zero, false otherwise. */
2196bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2197 for (unsigned i = 0; i < parts; i++)
2198 if (src[i])
2199 return false;
2200
2201 return true;
2202}
2203
2204/* Extract the given bit of a bignum; returns 0 or 1. */
2205int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2206 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2207}
2208
2209/* Set the given bit of a bignum. */
2210void APInt::tcSetBit(WordType *parts, unsigned bit) {
2211 parts[whichWord(bit)] |= maskBit(bit);
2212}
2213
2214/* Clears the given bit of a bignum. */
2215void APInt::tcClearBit(WordType *parts, unsigned bit) {
2216 parts[whichWord(bit)] &= ~maskBit(bit);
2217}
2218
2219/* Returns the bit number of the least significant set bit of a
2220 number. If the input number has no bits set -1U is returned. */
2221unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2222 for (unsigned i = 0; i < n; i++) {
2223 if (parts[i] != 0) {
2224 unsigned lsb = partLSB(parts[i]);
2225
2226 return lsb + i * APINT_BITS_PER_WORD;
2227 }
2228 }
2229
2230 return -1U;
2231}
2232
2233/* Returns the bit number of the most significant set bit of a number.
2234 If the input number has no bits set -1U is returned. */
2235unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2236 do {
2237 --n;
2238
2239 if (parts[n] != 0) {
2240 unsigned msb = partMSB(parts[n]);
2241
2242 return msb + n * APINT_BITS_PER_WORD;
2243 }
2244 } while (n);
2245
2246 return -1U;
2247}
2248
2249/* Copy the bit vector of width srcBITS from SRC, starting at bit
2250 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2251 the least significant bit of DST. All high bits above srcBITS in
2252 DST are zero-filled. */
2253void
2254APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2255 unsigned srcBits, unsigned srcLSB) {
2256 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2257 assert(dstParts <= dstCount)((dstParts <= dstCount) ? static_cast<void> (0) : __assert_fail
("dstParts <= dstCount", "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2257, __PRETTY_FUNCTION__))
;
2258
2259 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2260 tcAssign (dst, src + firstSrcPart, dstParts);
2261
2262 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2263 tcShiftRight (dst, dstParts, shift);
2264
2265 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2266 in DST. If this is less that srcBits, append the rest, else
2267 clear the high bits. */
2268 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2269 if (n < srcBits) {
2270 WordType mask = lowBitMask (srcBits - n);
2271 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2272 << n % APINT_BITS_PER_WORD);
2273 } else if (n > srcBits) {
2274 if (srcBits % APINT_BITS_PER_WORD)
2275 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2276 }
2277
2278 /* Clear high parts. */
2279 while (dstParts < dstCount)
2280 dst[dstParts++] = 0;
2281}
2282
2283/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2284APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2285 WordType c, unsigned parts) {
2286 assert(c <= 1)((c <= 1) ? static_cast<void> (0) : __assert_fail ("c <= 1"
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2286, __PRETTY_FUNCTION__))
;
2287
2288 for (unsigned i = 0; i < parts; i++) {
2289 WordType l = dst[i];
2290 if (c) {
2291 dst[i] += rhs[i] + 1;
2292 c = (dst[i] <= l);
2293 } else {
2294 dst[i] += rhs[i];
2295 c = (dst[i] < l);
2296 }
2297 }
2298
2299 return c;
2300}
2301
2302/// This function adds a single "word" integer, src, to the multiple
2303/// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2304/// 1 is returned if there is a carry out, otherwise 0 is returned.
2305/// @returns the carry of the addition.
2306APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2307 unsigned parts) {
2308 for (unsigned i = 0; i < parts; ++i) {
2309 dst[i] += src;
2310 if (dst[i] >= src)
2311 return 0; // No need to carry so exit early.
2312 src = 1; // Carry one to next digit.
2313 }
2314
2315 return 1;
2316}
2317
2318/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2319APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2320 WordType c, unsigned parts) {
2321 assert(c <= 1)((c <= 1) ? static_cast<void> (0) : __assert_fail ("c <= 1"
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2321, __PRETTY_FUNCTION__))
;
2322
2323 for (unsigned i = 0; i < parts; i++) {
2324 WordType l = dst[i];
2325 if (c) {
2326 dst[i] -= rhs[i] + 1;
2327 c = (dst[i] >= l);
2328 } else {
2329 dst[i] -= rhs[i];
2330 c = (dst[i] > l);
2331 }
2332 }
2333
2334 return c;
2335}
2336
2337/// This function subtracts a single "word" (64-bit word), src, from
2338/// the multi-word integer array, dst[], propagating the borrowed 1 value until
2339/// no further borrowing is needed or it runs out of "words" in dst. The result
2340/// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2341/// exhausted. In other words, if src > dst then this function returns 1,
2342/// otherwise 0.
2343/// @returns the borrow out of the subtraction
2344APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2345 unsigned parts) {
2346 for (unsigned i = 0; i < parts; ++i) {
2347 WordType Dst = dst[i];
2348 dst[i] -= src;
2349 if (src <= Dst)
2350 return 0; // No need to borrow so exit early.
2351 src = 1; // We have to "borrow 1" from next "word"
2352 }
2353
2354 return 1;
2355}
2356
2357/* Negate a bignum in-place. */
2358void APInt::tcNegate(WordType *dst, unsigned parts) {
2359 tcComplement(dst, parts);
2360 tcIncrement(dst, parts);
2361}
2362
2363/* DST += SRC * MULTIPLIER + CARRY if add is true
2364 DST = SRC * MULTIPLIER + CARRY if add is false
2365
2366 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2367 they must start at the same point, i.e. DST == SRC.
2368
2369 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2370 returned. Otherwise DST is filled with the least significant
2371 DSTPARTS parts of the result, and if all of the omitted higher
2372 parts were zero return zero, otherwise overflow occurred and
2373 return one. */
2374int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2375 WordType multiplier, WordType carry,
2376 unsigned srcParts, unsigned dstParts,
2377 bool add) {
2378 /* Otherwise our writes of DST kill our later reads of SRC. */
2379 assert(dst <= src || dst >= src + srcParts)((dst <= src || dst >= src + srcParts) ? static_cast<
void> (0) : __assert_fail ("dst <= src || dst >= src + srcParts"
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2379, __PRETTY_FUNCTION__))
;
2380 assert(dstParts <= srcParts + 1)((dstParts <= srcParts + 1) ? static_cast<void> (0) :
__assert_fail ("dstParts <= srcParts + 1", "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2380, __PRETTY_FUNCTION__))
;
2381
2382 /* N loops; minimum of dstParts and srcParts. */
2383 unsigned n = std::min(dstParts, srcParts);
2384
2385 for (unsigned i = 0; i < n; i++) {
2386 WordType low, mid, high, srcPart;
2387
2388 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2389
2390 This cannot overflow, because
2391
2392 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2393
2394 which is less than n^2. */
2395
2396 srcPart = src[i];
2397
2398 if (multiplier == 0 || srcPart == 0) {
2399 low = carry;
2400 high = 0;
2401 } else {
2402 low = lowHalf(srcPart) * lowHalf(multiplier);
2403 high = highHalf(srcPart) * highHalf(multiplier);
2404
2405 mid = lowHalf(srcPart) * highHalf(multiplier);
2406 high += highHalf(mid);
2407 mid <<= APINT_BITS_PER_WORD / 2;
2408 if (low + mid < low)
2409 high++;
2410 low += mid;
2411
2412 mid = highHalf(srcPart) * lowHalf(multiplier);
2413 high += highHalf(mid);
2414 mid <<= APINT_BITS_PER_WORD / 2;
2415 if (low + mid < low)
2416 high++;
2417 low += mid;
2418
2419 /* Now add carry. */
2420 if (low + carry < low)
2421 high++;
2422 low += carry;
2423 }
2424
2425 if (add) {
2426 /* And now DST[i], and store the new low part there. */
2427 if (low + dst[i] < low)
2428 high++;
2429 dst[i] += low;
2430 } else
2431 dst[i] = low;
2432
2433 carry = high;
2434 }
2435
2436 if (srcParts < dstParts) {
2437 /* Full multiplication, there is no overflow. */
2438 assert(srcParts + 1 == dstParts)((srcParts + 1 == dstParts) ? static_cast<void> (0) : __assert_fail
("srcParts + 1 == dstParts", "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2438, __PRETTY_FUNCTION__))
;
2439 dst[srcParts] = carry;
2440 return 0;
2441 }
2442
2443 /* We overflowed if there is carry. */
2444 if (carry)
2445 return 1;
2446
2447 /* We would overflow if any significant unwritten parts would be
2448 non-zero. This is true if any remaining src parts are non-zero
2449 and the multiplier is non-zero. */
2450 if (multiplier)
2451 for (unsigned i = dstParts; i < srcParts; i++)
2452 if (src[i])
2453 return 1;
2454
2455 /* We fitted in the narrow destination. */
2456 return 0;
2457}
2458
2459/* DST = LHS * RHS, where DST has the same width as the operands and
2460 is filled with the least significant parts of the result. Returns
2461 one if overflow occurred, otherwise zero. DST must be disjoint
2462 from both operands. */
2463int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2464 const WordType *rhs, unsigned parts) {
2465 assert(dst != lhs && dst != rhs)((dst != lhs && dst != rhs) ? static_cast<void>
(0) : __assert_fail ("dst != lhs && dst != rhs", "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2465, __PRETTY_FUNCTION__))
;
2466
2467 int overflow = 0;
2468 tcSet(dst, 0, parts);
2469
2470 for (unsigned i = 0; i < parts; i++)
2471 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2472 parts - i, true);
2473
2474 return overflow;
2475}
2476
2477/// DST = LHS * RHS, where DST has width the sum of the widths of the
2478/// operands. No overflow occurs. DST must be disjoint from both operands.
2479void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2480 const WordType *rhs, unsigned lhsParts,
2481 unsigned rhsParts) {
2482 /* Put the narrower number on the LHS for less loops below. */
2483 if (lhsParts > rhsParts)
2484 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2485
2486 assert(dst != lhs && dst != rhs)((dst != lhs && dst != rhs) ? static_cast<void>
(0) : __assert_fail ("dst != lhs && dst != rhs", "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2486, __PRETTY_FUNCTION__))
;
2487
2488 tcSet(dst, 0, rhsParts);
2489
2490 for (unsigned i = 0; i < lhsParts; i++)
2491 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2492}
2493
2494/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2495 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2496 set REMAINDER to the remainder, return zero. i.e.
2497
2498 OLD_LHS = RHS * LHS + REMAINDER
2499
2500 SCRATCH is a bignum of the same size as the operands and result for
2501 use by the routine; its contents need not be initialized and are
2502 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2503*/
2504int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2505 WordType *remainder, WordType *srhs,
2506 unsigned parts) {
2507 assert(lhs != remainder && lhs != srhs && remainder != srhs)((lhs != remainder && lhs != srhs && remainder
!= srhs) ? static_cast<void> (0) : __assert_fail ("lhs != remainder && lhs != srhs && remainder != srhs"
, "/build/llvm-toolchain-snapshot-6.0~svn318211/lib/Support/APInt.cpp"
, 2507, __PRETTY_FUNCTION__))
;
2508
2509 unsigned shiftCount = tcMSB(rhs, parts) + 1;
2510 if (shiftCount == 0)
2511 return true;
2512
2513 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2514 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2515 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2516
2517 tcAssign(srhs, rhs, parts);
2518 tcShiftLeft(srhs, parts, shiftCount);
2519 tcAssign(remainder, lhs, parts);
2520 tcSet(lhs, 0, parts);
2521
2522 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2523 the total. */
2524 for (;;) {
2525 int compare = tcCompare(remainder, srhs, parts);
2526 if (compare >= 0) {
2527 tcSubtract(remainder, srhs, 0, parts);
2528 lhs[n] |= mask;
2529 }
2530
2531 if (shiftCount == 0)
2532 break;
2533 shiftCount--;
2534 tcShiftRight(srhs, parts, 1);
2535 if ((mask >>= 1) == 0) {
2536 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2537 n--;
2538 }
2539 }
2540
2541 return false;
2542}
2543
2544/// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2545/// no restrictions on Count.
2546void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2547 // Don't bother performing a no-op shift.
2548 if (!Count)
2549 return;
2550
2551 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2552 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2553 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2554
2555 // Fastpath for moving by whole words.
2556 if (BitShift == 0) {
2557 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2558 } else {
2559 while (Words-- > WordShift) {
2560 Dst[Words] = Dst[Words - WordShift] << BitShift;
2561 if (Words > WordShift)
2562 Dst[Words] |=
2563 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2564 }
2565 }
2566
2567 // Fill in the remainder with 0s.
2568 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2569}
2570
2571/// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2572/// are no restrictions on Count.
2573void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2574 // Don't bother performing a no-op shift.
2575 if (!Count)
2576 return;
2577
2578 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2579 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2580 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2581
2582 unsigned WordsToMove = Words - WordShift;
2583 // Fastpath for moving by whole words.
2584 if (BitShift == 0) {
2585 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2586 } else {
2587 for (unsigned i = 0; i != WordsToMove; ++i) {
2588 Dst[i] = Dst[i + WordShift] >> BitShift;
2589 if (i + 1 != WordsToMove)
2590 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2591 }
2592 }
2593
2594 // Fill in the remainder with 0s.
2595 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2596}
2597
2598/* Bitwise and of two bignums. */
2599void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
2600 for (unsigned i = 0; i < parts; i++)
2601 dst[i] &= rhs[i];
2602}
2603
2604/* Bitwise inclusive or of two bignums. */
2605void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
2606 for (unsigned i = 0; i < parts; i++)
2607 dst[i] |= rhs[i];
2608}
2609
2610/* Bitwise exclusive or of two bignums. */
2611void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
2612 for (unsigned i = 0; i < parts; i++)
2613 dst[i] ^= rhs[i];
2614}
2615
2616/* Complement a bignum in-place. */
2617void APInt::tcComplement(WordType *dst, unsigned parts) {
2618 for (unsigned i = 0; i < parts; i++)
2619 dst[i] = ~dst[i];
2620}
2621
2622/* Comparison (unsigned) of two bignums. */
2623int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2624 unsigned parts) {
2625 while (parts) {
2626 parts--;
2627 if (lhs[parts] != rhs[parts])
2628 return (lhs[parts] > rhs[parts]) ? 1 : -1;
2629 }
2630
2631 return 0;
2632}
2633
2634/* Set the least significant BITS bits of a bignum, clear the
2635 rest. */
2636void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
2637 unsigned bits) {
2638 unsigned i = 0;
2639 while (bits > APINT_BITS_PER_WORD) {
2640 dst[i++] = ~(WordType) 0;
2641 bits -= APINT_BITS_PER_WORD;
2642 }
2643
2644 if (bits)
2645 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
2646
2647 while (i < parts)
2648 dst[i++] = 0;
2649}

/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <string>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31
32template <typename T> class SmallVectorImpl;
33template <typename T> class ArrayRef;
34
35class APInt;
36
37inline APInt operator-(APInt);
38
39//===----------------------------------------------------------------------===//
40// APInt Class
41//===----------------------------------------------------------------------===//
42
43/// \brief Class for arbitrary precision integers.
44///
45/// APInt is a functional replacement for common case unsigned integer type like
46/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49/// and methods to manipulate integer values of any bit-width. It supports both
50/// the typical integer arithmetic and comparison operations as well as bitwise
51/// manipulation.
52///
53/// The class has several invariants worth noting:
54/// * All bit, byte, and word positions are zero-based.
55/// * Once the bit width is set, it doesn't change except by the Truncate,
56/// SignExtend, or ZeroExtend operations.
57/// * All binary operators must be on APInt instances of the same bit width.
58/// Attempting to use these operators on instances with different bit
59/// widths will yield an assertion.
60/// * The value is stored canonically as an unsigned value. For operations
61/// where it makes a difference, there are both signed and unsigned variants
62/// of the operation. For example, sdiv and udiv. However, because the bit
63/// widths must be the same, operations such as Mul and Add produce the same
64/// results regardless of whether the values are interpreted as signed or
65/// not.
66/// * In general, the class tries to follow the style of computation that LLVM
67/// uses in its IR. This simplifies its use for LLVM.
68///
69class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
70public:
71 typedef uint64_t WordType;
72
73 /// This enum is used to hold the constants we needed for APInt.
74 enum : unsigned {
75 /// Byte size of a word.
76 APINT_WORD_SIZE = sizeof(WordType),
77 /// Bits in a word.
78 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
79 };
80
81 static const WordType WORD_MAX = ~WordType(0);
82
83private:
84 /// This union is used to store the integer value. When the
85 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
86 union {
87 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
88 uint64_t *pVal; ///< Used to store the >64 bits integer value.
89 } U;
90
91 unsigned BitWidth; ///< The number of bits in this APInt.
92
93 friend struct DenseMapAPIntKeyInfo;
94
95 friend class APSInt;
96
97 /// \brief Fast internal constructor
98 ///
99 /// This constructor is used only internally for speed of construction of
100 /// temporaries. It is unsafe for general use so it is not public.
101 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
102 U.pVal = val;
103 }
104
105 /// \brief Determine if this APInt just has one word to store value.
106 ///
107 /// \returns true if the number of bits <= 64, false otherwise.
108 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
109
110 /// \brief Determine which word a bit is in.
111 ///
112 /// \returns the word position for the specified bit position.
113 static unsigned whichWord(unsigned bitPosition) {
114 return bitPosition / APINT_BITS_PER_WORD;
115 }
116
117 /// \brief Determine which bit in a word a bit is in.
118 ///
119 /// \returns the bit position in a word for the specified bit position
120 /// in the APInt.
121 static unsigned whichBit(unsigned bitPosition) {
122 return bitPosition % APINT_BITS_PER_WORD;
123 }
124
125 /// \brief Get a single bit mask.
126 ///
127 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
128 /// This method generates and returns a uint64_t (word) mask for a single
129 /// bit at a specific bit position. This is used to mask the bit in the
130 /// corresponding word.
131 static uint64_t maskBit(unsigned bitPosition) {
132 return 1ULL << whichBit(bitPosition);
133 }
134
135 /// \brief Clear unused high order bits
136 ///
137 /// This method is used internally to clear the top "N" bits in the high order
138 /// word that are not used by the APInt. This is needed after the most
139 /// significant word is assigned a value to ensure that those bits are
140 /// zero'd out.
141 APInt &clearUnusedBits() {
142 // Compute how many bits are used in the final word
143 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
144
145 // Mask out the high bits.
146 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
147 if (isSingleWord())
148 U.VAL &= mask;
149 else
150 U.pVal[getNumWords() - 1] &= mask;
151 return *this;
152 }
153
154 /// \brief Get the word corresponding to a bit position
155 /// \returns the corresponding word for the specified bit position.
156 uint64_t getWord(unsigned bitPosition) const {
157 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
158 }
159
160 /// Utility method to change the bit width of this APInt to new bit width,
161 /// allocating and/or deallocating as necessary. There is no guarantee on the
162 /// value of any bits upon return. Caller should populate the bits after.
163 void reallocate(unsigned NewBitWidth);
164
165 /// \brief Convert a char array into an APInt
166 ///
167 /// \param radix 2, 8, 10, 16, or 36
168 /// Converts a string into a number. The string must be non-empty
169 /// and well-formed as a number of the given base. The bit-width
170 /// must be sufficient to hold the result.
171 ///
172 /// This is used by the constructors that take string arguments.
173 ///
174 /// StringRef::getAsInteger is superficially similar but (1) does
175 /// not assume that the string is well-formed and (2) grows the
176 /// result to hold the input.
177 void fromString(unsigned numBits, StringRef str, uint8_t radix);
178
179 /// \brief An internal division function for dividing APInts.
180 ///
181 /// This is used by the toString method to divide by the radix. It simply
182 /// provides a more convenient form of divide for internal use since KnuthDiv
183 /// has specific constraints on its inputs. If those constraints are not met
184 /// then it provides a simpler form of divide.
185 static void divide(const WordType *LHS, unsigned lhsWords,
186 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
187 WordType *Remainder);
188
189 /// out-of-line slow case for inline constructor
190 void initSlowCase(uint64_t val, bool isSigned);
191
192 /// shared code between two array constructors
193 void initFromArray(ArrayRef<uint64_t> array);
194
195 /// out-of-line slow case for inline copy constructor
196 void initSlowCase(const APInt &that);
197
198 /// out-of-line slow case for shl
199 void shlSlowCase(unsigned ShiftAmt);
200
201 /// out-of-line slow case for lshr.
202 void lshrSlowCase(unsigned ShiftAmt);
203
204 /// out-of-line slow case for ashr.
205 void ashrSlowCase(unsigned ShiftAmt);
206
207 /// out-of-line slow case for operator=
208 void AssignSlowCase(const APInt &RHS);
209
210 /// out-of-line slow case for operator==
211 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
212
213 /// out-of-line slow case for countLeadingZeros
214 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
215
216 /// out-of-line slow case for countLeadingOnes.
217 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
218
219 /// out-of-line slow case for countTrailingZeros.
220 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
221
222 /// out-of-line slow case for countTrailingOnes
223 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
224
225 /// out-of-line slow case for countPopulation
226 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
227
228 /// out-of-line slow case for intersects.
229 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
230
231 /// out-of-line slow case for isSubsetOf.
232 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
233
234 /// out-of-line slow case for setBits.
235 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
236
237 /// out-of-line slow case for flipAllBits.
238 void flipAllBitsSlowCase();
239
240 /// out-of-line slow case for operator&=.
241 void AndAssignSlowCase(const APInt& RHS);
242
243 /// out-of-line slow case for operator|=.
244 void OrAssignSlowCase(const APInt& RHS);
245
246 /// out-of-line slow case for operator^=.
247 void XorAssignSlowCase(const APInt& RHS);
248
249 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
250 /// to, or greater than RHS.
251 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
252
253 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
254 /// to, or greater than RHS.
255 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
256
257public:
258 /// \name Constructors
259 /// @{
260
261 /// \brief Create a new APInt of numBits width, initialized as val.
262 ///
263 /// If isSigned is true then val is treated as if it were a signed value
264 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
265 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
266 /// the range of val are zero filled).
267 ///
268 /// \param numBits the bit width of the constructed APInt
269 /// \param val the initial value of the APInt
270 /// \param isSigned how to treat signedness of val
271 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
272 : BitWidth(numBits) {
273 assert(BitWidth && "bitwidth too small")((BitWidth && "bitwidth too small") ? static_cast<
void> (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 273, __PRETTY_FUNCTION__))
;
274 if (isSingleWord()) {
275 U.VAL = val;
276 clearUnusedBits();
277 } else {
278 initSlowCase(val, isSigned);
279 }
280 }
281
282 /// \brief Construct an APInt of numBits width, initialized as bigVal[].
283 ///
284 /// Note that bigVal.size() can be smaller or larger than the corresponding
285 /// bit width but any extraneous bits will be dropped.
286 ///
287 /// \param numBits the bit width of the constructed APInt
288 /// \param bigVal a sequence of words to form the initial value of the APInt
289 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
290
291 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
292 /// deprecated because this constructor is prone to ambiguity with the
293 /// APInt(unsigned, uint64_t, bool) constructor.
294 ///
295 /// If this overload is ever deleted, care should be taken to prevent calls
296 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
297 /// constructor.
298 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
299
300 /// \brief Construct an APInt from a string representation.
301 ///
302 /// This constructor interprets the string \p str in the given radix. The
303 /// interpretation stops when the first character that is not suitable for the
304 /// radix is encountered, or the end of the string. Acceptable radix values
305 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
306 /// string to require more bits than numBits.
307 ///
308 /// \param numBits the bit width of the constructed APInt
309 /// \param str the string to be interpreted
310 /// \param radix the radix to use for the conversion
311 APInt(unsigned numBits, StringRef str, uint8_t radix);
312
313 /// Simply makes *this a copy of that.
314 /// @brief Copy Constructor.
315 APInt(const APInt &that) : BitWidth(that.BitWidth) {
316 if (isSingleWord())
3
Taking false branch
317 U.VAL = that.U.VAL;
318 else
319 initSlowCase(that);
4
Calling 'APInt::initSlowCase'
8
Returned allocated memory
320 }
321
322 /// \brief Move Constructor.
323 APInt(APInt &&that) : BitWidth(that.BitWidth) {
324 memcpy(&U, &that.U, sizeof(U));
325 that.BitWidth = 0;
326 }
327
328 /// \brief Destructor.
329 ~APInt() {
330 if (needsCleanup())
331 delete[] U.pVal;
332 }
333
334 /// \brief Default constructor that creates an uninteresting APInt
335 /// representing a 1-bit zero value.
336 ///
337 /// This is useful for object deserialization (pair this with the static
338 /// method Read).
339 explicit APInt() : BitWidth(1) { U.VAL = 0; }
340
341 /// \brief Returns whether this instance allocated memory.
342 bool needsCleanup() const { return !isSingleWord(); }
343
344 /// Used to insert APInt objects, or objects that contain APInt objects, into
345 /// FoldingSets.
346 void Profile(FoldingSetNodeID &id) const;
347
348 /// @}
349 /// \name Value Tests
350 /// @{
351
352 /// \brief Determine sign of this APInt.
353 ///
354 /// This tests the high bit of this APInt to determine if it is set.
355 ///
356 /// \returns true if this APInt is negative, false otherwise
357 bool isNegative() const { return (*this)[BitWidth - 1]; }
358
359 /// \brief Determine if this APInt Value is non-negative (>= 0)
360 ///
361 /// This tests the high bit of the APInt to determine if it is unset.
362 bool isNonNegative() const { return !isNegative(); }
363
364 /// \brief Determine if sign bit of this APInt is set.
365 ///
366 /// This tests the high bit of this APInt to determine if it is set.
367 ///
368 /// \returns true if this APInt has its sign bit set, false otherwise.
369 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
370
371 /// \brief Determine if sign bit of this APInt is clear.
372 ///
373 /// This tests the high bit of this APInt to determine if it is clear.
374 ///
375 /// \returns true if this APInt has its sign bit clear, false otherwise.
376 bool isSignBitClear() const { return !isSignBitSet(); }
377
378 /// \brief Determine if this APInt Value is positive.
379 ///
380 /// This tests if the value of this APInt is positive (> 0). Note
381 /// that 0 is not a positive value.
382 ///
383 /// \returns true if this APInt is positive.
384 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
385
386 /// \brief Determine if all bits are set
387 ///
388 /// This checks to see if the value has all bits of the APInt are set or not.
389 bool isAllOnesValue() const {
390 if (isSingleWord())
391 return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
392 return countTrailingOnesSlowCase() == BitWidth;
393 }
394
395 /// \brief Determine if all bits are clear
396 ///
397 /// This checks to see if the value has all bits of the APInt are clear or
398 /// not.
399 bool isNullValue() const { return !*this; }
400
401 /// \brief Determine if this is a value of 1.
402 ///
403 /// This checks to see if the value of this APInt is one.
404 bool isOneValue() const {
405 if (isSingleWord())
406 return U.VAL == 1;
407 return countLeadingZerosSlowCase() == BitWidth - 1;
408 }
409
410 /// \brief Determine if this is the largest unsigned value.
411 ///
412 /// This checks to see if the value of this APInt is the maximum unsigned
413 /// value for the APInt's bit width.
414 bool isMaxValue() const { return isAllOnesValue(); }
415
416 /// \brief Determine if this is the largest signed value.
417 ///
418 /// This checks to see if the value of this APInt is the maximum signed
419 /// value for the APInt's bit width.
420 bool isMaxSignedValue() const {
421 if (isSingleWord())
422 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
423 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
424 }
425
426 /// \brief Determine if this is the smallest unsigned value.
427 ///
428 /// This checks to see if the value of this APInt is the minimum unsigned
429 /// value for the APInt's bit width.
430 bool isMinValue() const { return isNullValue(); }
431
432 /// \brief Determine if this is the smallest signed value.
433 ///
434 /// This checks to see if the value of this APInt is the minimum signed
435 /// value for the APInt's bit width.
436 bool isMinSignedValue() const {
437 if (isSingleWord())
438 return U.VAL == (WordType(1) << (BitWidth - 1));
439 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
440 }
441
442 /// \brief Check if this APInt has an N-bits unsigned integer value.
443 bool isIntN(unsigned N) const {
444 assert(N && "N == 0 ???")((N && "N == 0 ???") ? static_cast<void> (0) : __assert_fail
("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 444, __PRETTY_FUNCTION__))
;
445 return getActiveBits() <= N;
446 }
447
448 /// \brief Check if this APInt has an N-bits signed integer value.
449 bool isSignedIntN(unsigned N) const {
450 assert(N && "N == 0 ???")((N && "N == 0 ???") ? static_cast<void> (0) : __assert_fail
("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 450, __PRETTY_FUNCTION__))
;
451 return getMinSignedBits() <= N;
452 }
453
454 /// \brief Check if this APInt's value is a power of two greater than zero.
455 ///
456 /// \returns true if the argument APInt value is a power of two > 0.
457 bool isPowerOf2() const {
458 if (isSingleWord())
459 return isPowerOf2_64(U.VAL);
460 return countPopulationSlowCase() == 1;
461 }
462
463 /// \brief Check if the APInt's value is returned by getSignMask.
464 ///
465 /// \returns true if this is the value returned by getSignMask.
466 bool isSignMask() const { return isMinSignedValue(); }
467
468 /// \brief Convert APInt to a boolean value.
469 ///
470 /// This converts the APInt to a boolean value as a test against zero.
471 bool getBoolValue() const { return !!*this; }
472
473 /// If this value is smaller than the specified limit, return it, otherwise
474 /// return the limit value. This causes the value to saturate to the limit.
475 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
476 return ugt(Limit) ? Limit : getZExtValue();
16
Calling 'APInt::ugt'
477 }
478
479 /// \brief Check if the APInt consists of a repeated bit pattern.
480 ///
481 /// e.g. 0x01010101 satisfies isSplat(8).
482 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
483 /// width without remainder.
484 bool isSplat(unsigned SplatSizeInBits) const;
485
486 /// \returns true if this APInt value is a sequence of \param numBits ones
487 /// starting at the least significant bit with the remainder zero.
488 bool isMask(unsigned numBits) const {
489 assert(numBits != 0 && "numBits must be non-zero")((numBits != 0 && "numBits must be non-zero") ? static_cast
<void> (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 489, __PRETTY_FUNCTION__))
;
490 assert(numBits <= BitWidth && "numBits out of range")((numBits <= BitWidth && "numBits out of range") ?
static_cast<void> (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 490, __PRETTY_FUNCTION__))
;
491 if (isSingleWord())
492 return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
493 unsigned Ones = countTrailingOnesSlowCase();
494 return (numBits == Ones) &&
495 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
496 }
497
498 /// \returns true if this APInt is a non-empty sequence of ones starting at
499 /// the least significant bit with the remainder zero.
500 /// Ex. isMask(0x0000FFFFU) == true.
501 bool isMask() const {
502 if (isSingleWord())
503 return isMask_64(U.VAL);
504 unsigned Ones = countTrailingOnesSlowCase();
505 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
506 }
507
508 /// \brief Return true if this APInt value contains a sequence of ones with
509 /// the remainder zero.
510 bool isShiftedMask() const {
511 if (isSingleWord())
512 return isShiftedMask_64(U.VAL);
513 unsigned Ones = countPopulationSlowCase();
514 unsigned LeadZ = countLeadingZerosSlowCase();
515 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
516 }
517
518 /// @}
519 /// \name Value Generators
520 /// @{
521
522 /// \brief Gets maximum unsigned value of APInt for specific bit width.
523 static APInt getMaxValue(unsigned numBits) {
524 return getAllOnesValue(numBits);
525 }
526
527 /// \brief Gets maximum signed value of APInt for a specific bit width.
528 static APInt getSignedMaxValue(unsigned numBits) {
529 APInt API = getAllOnesValue(numBits);
530 API.clearBit(numBits - 1);
531 return API;
532 }
533
534 /// \brief Gets minimum unsigned value of APInt for a specific bit width.
535 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
536
537 /// \brief Gets minimum signed value of APInt for a specific bit width.
538 static APInt getSignedMinValue(unsigned numBits) {
539 APInt API(numBits, 0);
540 API.setBit(numBits - 1);
541 return API;
542 }
543
544 /// \brief Get the SignMask for a specific bit width.
545 ///
546 /// This is just a wrapper function of getSignedMinValue(), and it helps code
547 /// readability when we want to get a SignMask.
548 static APInt getSignMask(unsigned BitWidth) {
549 return getSignedMinValue(BitWidth);
550 }
551
552 /// \brief Get the all-ones value.
553 ///
554 /// \returns the all-ones value for an APInt of the specified bit-width.
555 static APInt getAllOnesValue(unsigned numBits) {
556 return APInt(numBits, WORD_MAX, true);
557 }
558
559 /// \brief Get the '0' value.
560 ///
561 /// \returns the '0' value for an APInt of the specified bit-width.
562 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
563
564 /// \brief Compute an APInt containing numBits highbits from this APInt.
565 ///
566 /// Get an APInt with the same BitWidth as this APInt, just zero mask
567 /// the low bits and right shift to the least significant bit.
568 ///
569 /// \returns the high "numBits" bits of this APInt.
570 APInt getHiBits(unsigned numBits) const;
571
572 /// \brief Compute an APInt containing numBits lowbits from this APInt.
573 ///
574 /// Get an APInt with the same BitWidth as this APInt, just zero mask
575 /// the high bits.
576 ///
577 /// \returns the low "numBits" bits of this APInt.
578 APInt getLoBits(unsigned numBits) const;
579
580 /// \brief Return an APInt with exactly one bit set in the result.
581 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
582 APInt Res(numBits, 0);
583 Res.setBit(BitNo);
584 return Res;
585 }
586
587 /// \brief Get a value with a block of bits set.
588 ///
589 /// Constructs an APInt value that has a contiguous range of bits set. The
590 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
591 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
592 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
593 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
594 ///
595 /// \param numBits the intended bit width of the result
596 /// \param loBit the index of the lowest bit set.
597 /// \param hiBit the index of the highest bit set.
598 ///
599 /// \returns An APInt value with the requested bits set.
600 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
601 APInt Res(numBits, 0);
602 Res.setBits(loBit, hiBit);
603 return Res;
604 }
605
606 /// \brief Get a value with upper bits starting at loBit set.
607 ///
608 /// Constructs an APInt value that has a contiguous range of bits set. The
609 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
610 /// bits will be zero. For example, with parameters(32, 12) you would get
611 /// 0xFFFFF000.
612 ///
613 /// \param numBits the intended bit width of the result
614 /// \param loBit the index of the lowest bit to set.
615 ///
616 /// \returns An APInt value with the requested bits set.
617 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
618 APInt Res(numBits, 0);
619 Res.setBitsFrom(loBit);
620 return Res;
621 }
622
623 /// \brief Get a value with high bits set
624 ///
625 /// Constructs an APInt value that has the top hiBitsSet bits set.
626 ///
627 /// \param numBits the bitwidth of the result
628 /// \param hiBitsSet the number of high-order bits set in the result.
629 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
630 APInt Res(numBits, 0);
631 Res.setHighBits(hiBitsSet);
632 return Res;
633 }
634
635 /// \brief Get a value with low bits set
636 ///
637 /// Constructs an APInt value that has the bottom loBitsSet bits set.
638 ///
639 /// \param numBits the bitwidth of the result
640 /// \param loBitsSet the number of low-order bits set in the result.
641 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
642 APInt Res(numBits, 0);
643 Res.setLowBits(loBitsSet);
644 return Res;
645 }
646
647 /// \brief Return a value containing V broadcasted over NewLen bits.
648 static APInt getSplat(unsigned NewLen, const APInt &V);
649
650 /// \brief Determine if two APInts have the same value, after zero-extending
651 /// one of them (if needed!) to ensure that the bit-widths match.
652 static bool isSameValue(const APInt &I1, const APInt &I2) {
653 if (I1.getBitWidth() == I2.getBitWidth())
654 return I1 == I2;
655
656 if (I1.getBitWidth() > I2.getBitWidth())
657 return I1 == I2.zext(I1.getBitWidth());
658
659 return I1.zext(I2.getBitWidth()) == I2;
660 }
661
662 /// \brief Overload to compute a hash_code for an APInt value.
663 friend hash_code hash_value(const APInt &Arg);
664
665 /// This function returns a pointer to the internal storage of the APInt.
666 /// This is useful for writing out the APInt in binary form without any
667 /// conversions.
668 const uint64_t *getRawData() const {
669 if (isSingleWord())
670 return &U.VAL;
671 return &U.pVal[0];
672 }
673
674 /// @}
675 /// \name Unary Operators
676 /// @{
677
678 /// \brief Postfix increment operator.
679 ///
680 /// Increments *this by 1.
681 ///
682 /// \returns a new APInt value representing the original value of *this.
683 const APInt operator++(int) {
684 APInt API(*this);
685 ++(*this);
686 return API;
687 }
688
689 /// \brief Prefix increment operator.
690 ///
691 /// \returns *this incremented by one
692 APInt &operator++();
693
694 /// \brief Postfix decrement operator.
695 ///
696 /// Decrements *this by 1.
697 ///
698 /// \returns a new APInt value representing the original value of *this.
699 const APInt operator--(int) {
700 APInt API(*this);
701 --(*this);
702 return API;
703 }
704
705 /// \brief Prefix decrement operator.
706 ///
707 /// \returns *this decremented by one.
708 APInt &operator--();
709
710 /// \brief Logical negation operator.
711 ///
712 /// Performs logical negation operation on this APInt.
713 ///
714 /// \returns true if *this is zero, false otherwise.
715 bool operator!() const {
716 if (isSingleWord())
717 return U.VAL == 0;
718 return countLeadingZerosSlowCase() == BitWidth;
719 }
720
721 /// @}
722 /// \name Assignment Operators
723 /// @{
724
725 /// \brief Copy assignment operator.
726 ///
727 /// \returns *this after assignment of RHS.
728 APInt &operator=(const APInt &RHS) {
729 // If the bitwidths are the same, we can avoid mucking with memory
730 if (isSingleWord() && RHS.isSingleWord()) {
731 U.VAL = RHS.U.VAL;
732 BitWidth = RHS.BitWidth;
733 return clearUnusedBits();
734 }
735
736 AssignSlowCase(RHS);
737 return *this;
738 }
739
740 /// @brief Move assignment operator.
741 APInt &operator=(APInt &&that) {
742 assert(this != &that && "Self-move not supported")((this != &that && "Self-move not supported") ? static_cast
<void> (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 742, __PRETTY_FUNCTION__))
;
743 if (!isSingleWord())
12
Taking true branch
744 delete[] U.pVal;
13
Memory is released
745
746 // Use memcpy so that type based alias analysis sees both VAL and pVal
747 // as modified.
748 memcpy(&U, &that.U, sizeof(U));
749
750 BitWidth = that.BitWidth;
751 that.BitWidth = 0;
752
753 return *this;
754 }
755
756 /// \brief Assignment operator.
757 ///
758 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
759 /// the bit width, the excess bits are truncated. If the bit width is larger
760 /// than 64, the value is zero filled in the unspecified high order bits.
761 ///
762 /// \returns *this after assignment of RHS value.
763 APInt &operator=(uint64_t RHS) {
764 if (isSingleWord()) {
765 U.VAL = RHS;
766 clearUnusedBits();
767 } else {
768 U.pVal[0] = RHS;
769 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
770 }
771 return *this;
772 }
773
774 /// \brief Bitwise AND assignment operator.
775 ///
776 /// Performs a bitwise AND operation on this APInt and RHS. The result is
777 /// assigned to *this.
778 ///
779 /// \returns *this after ANDing with RHS.
780 APInt &operator&=(const APInt &RHS) {
781 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 781, __PRETTY_FUNCTION__))
;
782 if (isSingleWord())
783 U.VAL &= RHS.U.VAL;
784 else
785 AndAssignSlowCase(RHS);
786 return *this;
787 }
788
789 /// \brief Bitwise AND assignment operator.
790 ///
791 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
792 /// logically zero-extended or truncated to match the bit-width of
793 /// the LHS.
794 APInt &operator&=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL &= RHS;
797 return *this;
798 }
799 U.pVal[0] &= RHS;
800 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// \brief Bitwise OR assignment operator.
805 ///
806 /// Performs a bitwise OR operation on this APInt and RHS. The result is
807 /// assigned *this;
808 ///
809 /// \returns *this after ORing with RHS.
810 APInt &operator|=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 811, __PRETTY_FUNCTION__))
;
812 if (isSingleWord())
813 U.VAL |= RHS.U.VAL;
814 else
815 OrAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// \brief Bitwise OR assignment operator.
820 ///
821 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator|=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL |= RHS;
827 clearUnusedBits();
828 } else {
829 U.pVal[0] |= RHS;
830 }
831 return *this;
832 }
833
834 /// \brief Bitwise XOR assignment operator.
835 ///
836 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
837 /// assigned to *this.
838 ///
839 /// \returns *this after XORing with RHS.
840 APInt &operator^=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 841, __PRETTY_FUNCTION__))
;
842 if (isSingleWord())
843 U.VAL ^= RHS.U.VAL;
844 else
845 XorAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// \brief Bitwise XOR assignment operator.
850 ///
851 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator^=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL ^= RHS;
857 clearUnusedBits();
858 } else {
859 U.pVal[0] ^= RHS;
860 }
861 return *this;
862 }
863
864 /// \brief Multiplication assignment operator.
865 ///
866 /// Multiplies this APInt by RHS and assigns the result to *this.
867 ///
868 /// \returns *this
869 APInt &operator*=(const APInt &RHS);
870 APInt &operator*=(uint64_t RHS);
871
872 /// \brief Addition assignment operator.
873 ///
874 /// Adds RHS to *this and assigns the result to *this.
875 ///
876 /// \returns *this
877 APInt &operator+=(const APInt &RHS);
878 APInt &operator+=(uint64_t RHS);
879
880 /// \brief Subtraction assignment operator.
881 ///
882 /// Subtracts RHS from *this and assigns the result to *this.
883 ///
884 /// \returns *this
885 APInt &operator-=(const APInt &RHS);
886 APInt &operator-=(uint64_t RHS);
887
888 /// \brief Left-shift assignment function.
889 ///
890 /// Shifts *this left by shiftAmt and assigns the result to *this.
891 ///
892 /// \returns *this after shifting left by ShiftAmt
893 APInt &operator<<=(unsigned ShiftAmt) {
894 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 894, __PRETTY_FUNCTION__))
;
895 if (isSingleWord()) {
896 if (ShiftAmt == BitWidth)
897 U.VAL = 0;
898 else
899 U.VAL <<= ShiftAmt;
900 return clearUnusedBits();
901 }
902 shlSlowCase(ShiftAmt);
903 return *this;
904 }
905
906 /// \brief Left-shift assignment function.
907 ///
908 /// Shifts *this left by shiftAmt and assigns the result to *this.
909 ///
910 /// \returns *this after shifting left by ShiftAmt
911 APInt &operator<<=(const APInt &ShiftAmt);
912
913 /// @}
914 /// \name Binary Operators
915 /// @{
916
917 /// \brief Multiplication operator.
918 ///
919 /// Multiplies this APInt by RHS and returns the result.
920 APInt operator*(const APInt &RHS) const;
921
922 /// \brief Left logical shift operator.
923 ///
924 /// Shifts this APInt left by \p Bits and returns the result.
925 APInt operator<<(unsigned Bits) const { return shl(Bits); }
926
927 /// \brief Left logical shift operator.
928 ///
929 /// Shifts this APInt left by \p Bits and returns the result.
930 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
931
932 /// \brief Arithmetic right-shift function.
933 ///
934 /// Arithmetic right-shift this APInt by shiftAmt.
935 APInt ashr(unsigned ShiftAmt) const {
936 APInt R(*this);
937 R.ashrInPlace(ShiftAmt);
938 return R;
939 }
940
941 /// Arithmetic right-shift this APInt by ShiftAmt in place.
942 void ashrInPlace(unsigned ShiftAmt) {
943 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 943, __PRETTY_FUNCTION__))
;
944 if (isSingleWord()) {
945 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
946 if (ShiftAmt == BitWidth)
947 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
948 else
949 U.VAL = SExtVAL >> ShiftAmt;
950 clearUnusedBits();
951 return;
952 }
953 ashrSlowCase(ShiftAmt);
954 }
955
956 /// \brief Logical right-shift function.
957 ///
958 /// Logical right-shift this APInt by shiftAmt.
959 APInt lshr(unsigned shiftAmt) const {
960 APInt R(*this);
961 R.lshrInPlace(shiftAmt);
962 return R;
963 }
964
965 /// Logical right-shift this APInt by ShiftAmt in place.
966 void lshrInPlace(unsigned ShiftAmt) {
967 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 967, __PRETTY_FUNCTION__))
;
968 if (isSingleWord()) {
969 if (ShiftAmt == BitWidth)
970 U.VAL = 0;
971 else
972 U.VAL >>= ShiftAmt;
973 return;
974 }
975 lshrSlowCase(ShiftAmt);
976 }
977
978 /// \brief Left-shift function.
979 ///
980 /// Left-shift this APInt by shiftAmt.
981 APInt shl(unsigned shiftAmt) const {
982 APInt R(*this);
983 R <<= shiftAmt;
984 return R;
985 }
986
987 /// \brief Rotate left by rotateAmt.
988 APInt rotl(unsigned rotateAmt) const;
989
990 /// \brief Rotate right by rotateAmt.
991 APInt rotr(unsigned rotateAmt) const;
992
993 /// \brief Arithmetic right-shift function.
994 ///
995 /// Arithmetic right-shift this APInt by shiftAmt.
996 APInt ashr(const APInt &ShiftAmt) const {
997 APInt R(*this);
998 R.ashrInPlace(ShiftAmt);
999 return R;
1000 }
1001
1002 /// Arithmetic right-shift this APInt by shiftAmt in place.
1003 void ashrInPlace(const APInt &shiftAmt);
1004
1005 /// \brief Logical right-shift function.
1006 ///
1007 /// Logical right-shift this APInt by shiftAmt.
1008 APInt lshr(const APInt &ShiftAmt) const {
1009 APInt R(*this);
1010 R.lshrInPlace(ShiftAmt);
1011 return R;
1012 }
1013
1014 /// Logical right-shift this APInt by ShiftAmt in place.
1015 void lshrInPlace(const APInt &ShiftAmt);
1016
1017 /// \brief Left-shift function.
1018 ///
1019 /// Left-shift this APInt by shiftAmt.
1020 APInt shl(const APInt &ShiftAmt) const {
1021 APInt R(*this);
1022 R <<= ShiftAmt;
1023 return R;
1024 }
1025
1026 /// \brief Rotate left by rotateAmt.
1027 APInt rotl(const APInt &rotateAmt) const;
1028
1029 /// \brief Rotate right by rotateAmt.
1030 APInt rotr(const APInt &rotateAmt) const;
1031
1032 /// \brief Unsigned division operation.
1033 ///
1034 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1035 /// RHS are treated as unsigned quantities for purposes of this division.
1036 ///
1037 /// \returns a new APInt value containing the division result
1038 APInt udiv(const APInt &RHS) const;
1039 APInt udiv(uint64_t RHS) const;
1040
1041 /// \brief Signed division function for APInt.
1042 ///
1043 /// Signed divide this APInt by APInt RHS.
1044 APInt sdiv(const APInt &RHS) const;
1045 APInt sdiv(int64_t RHS) const;
1046
1047 /// \brief Unsigned remainder operation.
1048 ///
1049 /// Perform an unsigned remainder operation on this APInt with RHS being the
1050 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1051 /// of this operation. Note that this is a true remainder operation and not a
1052 /// modulo operation because the sign follows the sign of the dividend which
1053 /// is *this.
1054 ///
1055 /// \returns a new APInt value containing the remainder result
1056 APInt urem(const APInt &RHS) const;
1057 uint64_t urem(uint64_t RHS) const;
1058
1059 /// \brief Function for signed remainder operation.
1060 ///
1061 /// Signed remainder operation on APInt.
1062 APInt srem(const APInt &RHS) const;
1063 int64_t srem(int64_t RHS) const;
1064
1065 /// \brief Dual division/remainder interface.
1066 ///
1067 /// Sometimes it is convenient to divide two APInt values and obtain both the
1068 /// quotient and remainder. This function does both operations in the same
1069 /// computation making it a little more efficient. The pair of input arguments
1070 /// may overlap with the pair of output arguments. It is safe to call
1071 /// udivrem(X, Y, X, Y), for example.
1072 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1073 APInt &Remainder);
1074 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1075 uint64_t &Remainder);
1076
1077 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1078 APInt &Remainder);
1079 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1080 int64_t &Remainder);
1081
1082 // Operations that return overflow indicators.
1083 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1084 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1085 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1086 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1087 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1088 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1089 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1090 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1091 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1092
1093 /// \brief Array-indexing support.
1094 ///
1095 /// \returns the bit value at bitPosition
1096 bool operator[](unsigned bitPosition) const {
1097 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")((bitPosition < getBitWidth() && "Bit position out of bounds!"
) ? static_cast<void> (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1097, __PRETTY_FUNCTION__))
;
1098 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1099 }
1100
1101 /// @}
1102 /// \name Comparison Operators
1103 /// @{
1104
1105 /// \brief Equality operator.
1106 ///
1107 /// Compares this APInt with RHS for the validity of the equality
1108 /// relationship.
1109 bool operator==(const APInt &RHS) const {
1110 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")((BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1110, __PRETTY_FUNCTION__))
;
1111 if (isSingleWord())
1112 return U.VAL == RHS.U.VAL;
1113 return EqualSlowCase(RHS);
1114 }
1115
1116 /// \brief Equality operator.
1117 ///
1118 /// Compares this APInt with a uint64_t for the validity of the equality
1119 /// relationship.
1120 ///
1121 /// \returns true if *this == Val
1122 bool operator==(uint64_t Val) const {
1123 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1124 }
1125
1126 /// \brief Equality comparison.
1127 ///
1128 /// Compares this APInt with RHS for the validity of the equality
1129 /// relationship.
1130 ///
1131 /// \returns true if *this == Val
1132 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1133
1134 /// \brief Inequality operator.
1135 ///
1136 /// Compares this APInt with RHS for the validity of the inequality
1137 /// relationship.
1138 ///
1139 /// \returns true if *this != Val
1140 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1141
1142 /// \brief Inequality operator.
1143 ///
1144 /// Compares this APInt with a uint64_t for the validity of the inequality
1145 /// relationship.
1146 ///
1147 /// \returns true if *this != Val
1148 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1149
1150 /// \brief Inequality comparison
1151 ///
1152 /// Compares this APInt with RHS for the validity of the inequality
1153 /// relationship.
1154 ///
1155 /// \returns true if *this != Val
1156 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1157
1158 /// \brief Unsigned less than comparison
1159 ///
1160 /// Regards both *this and RHS as unsigned quantities and compares them for
1161 /// the validity of the less-than relationship.
1162 ///
1163 /// \returns true if *this < RHS when both are considered unsigned.
1164 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1165
1166 /// \brief Unsigned less than comparison
1167 ///
1168 /// Regards both *this as an unsigned quantity and compares it with RHS for
1169 /// the validity of the less-than relationship.
1170 ///
1171 /// \returns true if *this < RHS when considered unsigned.
1172 bool ult(uint64_t RHS) const {
1173 // Only need to check active bits if not a single word.
1174 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1175 }
1176
1177 /// \brief Signed less than comparison
1178 ///
1179 /// Regards both *this and RHS as signed quantities and compares them for
1180 /// validity of the less-than relationship.
1181 ///
1182 /// \returns true if *this < RHS when both are considered signed.
1183 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1184
1185 /// \brief Signed less than comparison
1186 ///
1187 /// Regards both *this as a signed quantity and compares it with RHS for
1188 /// the validity of the less-than relationship.
1189 ///
1190 /// \returns true if *this < RHS when considered signed.
1191 bool slt(int64_t RHS) const {
1192 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1193 : getSExtValue() < RHS;
1194 }
1195
1196 /// \brief Unsigned less or equal comparison
1197 ///
1198 /// Regards both *this and RHS as unsigned quantities and compares them for
1199 /// validity of the less-or-equal relationship.
1200 ///
1201 /// \returns true if *this <= RHS when both are considered unsigned.
1202 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1203
1204 /// \brief Unsigned less or equal comparison
1205 ///
1206 /// Regards both *this as an unsigned quantity and compares it with RHS for
1207 /// the validity of the less-or-equal relationship.
1208 ///
1209 /// \returns true if *this <= RHS when considered unsigned.
1210 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1211
1212 /// \brief Signed less or equal comparison
1213 ///
1214 /// Regards both *this and RHS as signed quantities and compares them for
1215 /// validity of the less-or-equal relationship.
1216 ///
1217 /// \returns true if *this <= RHS when both are considered signed.
1218 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1219
1220 /// \brief Signed less or equal comparison
1221 ///
1222 /// Regards both *this as a signed quantity and compares it with RHS for the
1223 /// validity of the less-or-equal relationship.
1224 ///
1225 /// \returns true if *this <= RHS when considered signed.
1226 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1227
1228 /// \brief Unsigned greather than comparison
1229 ///
1230 /// Regards both *this and RHS as unsigned quantities and compares them for
1231 /// the validity of the greater-than relationship.
1232 ///
1233 /// \returns true if *this > RHS when both are considered unsigned.
1234 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1235
1236 /// \brief Unsigned greater than comparison
1237 ///
1238 /// Regards both *this as an unsigned quantity and compares it with RHS for
1239 /// the validity of the greater-than relationship.
1240 ///
1241 /// \returns true if *this > RHS when considered unsigned.
1242 bool ugt(uint64_t RHS) const {
1243 // Only need to check active bits if not a single word.
1244 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
17
Calling 'APInt::getZExtValue'
1245 }
1246
1247 /// \brief Signed greather than comparison
1248 ///
1249 /// Regards both *this and RHS as signed quantities and compares them for the
1250 /// validity of the greater-than relationship.
1251 ///
1252 /// \returns true if *this > RHS when both are considered signed.
1253 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1254
1255 /// \brief Signed greater than comparison
1256 ///
1257 /// Regards both *this as a signed quantity and compares it with RHS for
1258 /// the validity of the greater-than relationship.
1259 ///
1260 /// \returns true if *this > RHS when considered signed.
1261 bool sgt(int64_t RHS) const {
1262 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1263 : getSExtValue() > RHS;
1264 }
1265
1266 /// \brief Unsigned greater or equal comparison
1267 ///
1268 /// Regards both *this and RHS as unsigned quantities and compares them for
1269 /// validity of the greater-or-equal relationship.
1270 ///
1271 /// \returns true if *this >= RHS when both are considered unsigned.
1272 bool uge(const APInt &RHS) const { return !ult(RHS); }
1273
1274 /// \brief Unsigned greater or equal comparison
1275 ///
1276 /// Regards both *this as an unsigned quantity and compares it with RHS for
1277 /// the validity of the greater-or-equal relationship.
1278 ///
1279 /// \returns true if *this >= RHS when considered unsigned.
1280 bool uge(uint64_t RHS) const { return !ult(RHS); }
1281
1282 /// \brief Signed greather or equal comparison
1283 ///
1284 /// Regards both *this and RHS as signed quantities and compares them for
1285 /// validity of the greater-or-equal relationship.
1286 ///
1287 /// \returns true if *this >= RHS when both are considered signed.
1288 bool sge(const APInt &RHS) const { return !slt(RHS); }
1289
1290 /// \brief Signed greater or equal comparison
1291 ///
1292 /// Regards both *this as a signed quantity and compares it with RHS for
1293 /// the validity of the greater-or-equal relationship.
1294 ///
1295 /// \returns true if *this >= RHS when considered signed.
1296 bool sge(int64_t RHS) const { return !slt(RHS); }
1297
1298 /// This operation tests if there are any pairs of corresponding bits
1299 /// between this APInt and RHS that are both set.
1300 bool intersects(const APInt &RHS) const {
1301 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1301, __PRETTY_FUNCTION__))
;
1302 if (isSingleWord())
1303 return (U.VAL & RHS.U.VAL) != 0;
1304 return intersectsSlowCase(RHS);
1305 }
1306
1307 /// This operation checks that all bits set in this APInt are also set in RHS.
1308 bool isSubsetOf(const APInt &RHS) const {
1309 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1309, __PRETTY_FUNCTION__))
;
1310 if (isSingleWord())
1311 return (U.VAL & ~RHS.U.VAL) == 0;
1312 return isSubsetOfSlowCase(RHS);
1313 }
1314
1315 /// @}
1316 /// \name Resizing Operators
1317 /// @{
1318
1319 /// \brief Truncate to new width.
1320 ///
1321 /// Truncate the APInt to a specified width. It is an error to specify a width
1322 /// that is greater than or equal to the current width.
1323 APInt trunc(unsigned width) const;
1324
1325 /// \brief Sign extend to a new width.
1326 ///
1327 /// This operation sign extends the APInt to a new width. If the high order
1328 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1329 /// It is an error to specify a width that is less than or equal to the
1330 /// current width.
1331 APInt sext(unsigned width) const;
1332
1333 /// \brief Zero extend to a new width.
1334 ///
1335 /// This operation zero extends the APInt to a new width. The high order bits
1336 /// are filled with 0 bits. It is an error to specify a width that is less
1337 /// than or equal to the current width.
1338 APInt zext(unsigned width) const;
1339
1340 /// \brief Sign extend or truncate to width
1341 ///
1342 /// Make this APInt have the bit width given by \p width. The value is sign
1343 /// extended, truncated, or left alone to make it that width.
1344 APInt sextOrTrunc(unsigned width) const;
1345
1346 /// \brief Zero extend or truncate to width
1347 ///
1348 /// Make this APInt have the bit width given by \p width. The value is zero
1349 /// extended, truncated, or left alone to make it that width.
1350 APInt zextOrTrunc(unsigned width) const;
1351
1352 /// \brief Sign extend or truncate to width
1353 ///
1354 /// Make this APInt have the bit width given by \p width. The value is sign
1355 /// extended, or left alone to make it that width.
1356 APInt sextOrSelf(unsigned width) const;
1357
1358 /// \brief Zero extend or truncate to width
1359 ///
1360 /// Make this APInt have the bit width given by \p width. The value is zero
1361 /// extended, or left alone to make it that width.
1362 APInt zextOrSelf(unsigned width) const;
1363
1364 /// @}
1365 /// \name Bit Manipulation Operators
1366 /// @{
1367
1368 /// \brief Set every bit to 1.
1369 void setAllBits() {
1370 if (isSingleWord())
1371 U.VAL = WORD_MAX;
1372 else
1373 // Set all the bits in all the words.
1374 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1375 // Clear the unused ones
1376 clearUnusedBits();
1377 }
1378
1379 /// \brief Set a given bit to 1.
1380 ///
1381 /// Set the given bit to 1 whose position is given as "bitPosition".
1382 void setBit(unsigned BitPosition) {
1383 assert(BitPosition <= BitWidth && "BitPosition out of range")((BitPosition <= BitWidth && "BitPosition out of range"
) ? static_cast<void> (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1383, __PRETTY_FUNCTION__))
;
1384 WordType Mask = maskBit(BitPosition);
1385 if (isSingleWord())
1386 U.VAL |= Mask;
1387 else
1388 U.pVal[whichWord(BitPosition)] |= Mask;
1389 }
1390
1391 /// Set the sign bit to 1.
1392 void setSignBit() {
1393 setBit(BitWidth - 1);
1394 }
1395
1396 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1397 void setBits(unsigned loBit, unsigned hiBit) {
1398 assert(hiBit <= BitWidth && "hiBit out of range")((hiBit <= BitWidth && "hiBit out of range") ? static_cast
<void> (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1398, __PRETTY_FUNCTION__))
;
1399 assert(loBit <= BitWidth && "loBit out of range")((loBit <= BitWidth && "loBit out of range") ? static_cast
<void> (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1399, __PRETTY_FUNCTION__))
;
1400 assert(loBit <= hiBit && "loBit greater than hiBit")((loBit <= hiBit && "loBit greater than hiBit") ? static_cast
<void> (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1400, __PRETTY_FUNCTION__))
;
1401 if (loBit == hiBit)
1402 return;
1403 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1404 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1405 mask <<= loBit;
1406 if (isSingleWord())
1407 U.VAL |= mask;
1408 else
1409 U.pVal[0] |= mask;
1410 } else {
1411 setBitsSlowCase(loBit, hiBit);
1412 }
1413 }
1414
1415 /// Set the top bits starting from loBit.
1416 void setBitsFrom(unsigned loBit) {
1417 return setBits(loBit, BitWidth);
1418 }
1419
1420 /// Set the bottom loBits bits.
1421 void setLowBits(unsigned loBits) {
1422 return setBits(0, loBits);
1423 }
1424
1425 /// Set the top hiBits bits.
1426 void setHighBits(unsigned hiBits) {
1427 return setBits(BitWidth - hiBits, BitWidth);
1428 }
1429
1430 /// \brief Set every bit to 0.
1431 void clearAllBits() {
1432 if (isSingleWord())
1433 U.VAL = 0;
1434 else
1435 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1436 }
1437
1438 /// \brief Set a given bit to 0.
1439 ///
1440 /// Set the given bit to 0 whose position is given as "bitPosition".
1441 void clearBit(unsigned BitPosition) {
1442 assert(BitPosition <= BitWidth && "BitPosition out of range")((BitPosition <= BitWidth && "BitPosition out of range"
) ? static_cast<void> (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1442, __PRETTY_FUNCTION__))
;
1443 WordType Mask = ~maskBit(BitPosition);
1444 if (isSingleWord())
1445 U.VAL &= Mask;
1446 else
1447 U.pVal[whichWord(BitPosition)] &= Mask;
1448 }
1449
1450 /// Set the sign bit to 0.
1451 void clearSignBit() {
1452 clearBit(BitWidth - 1);
1453 }
1454
1455 /// \brief Toggle every bit to its opposite value.
1456 void flipAllBits() {
1457 if (isSingleWord()) {
1458 U.VAL ^= WORD_MAX;
1459 clearUnusedBits();
1460 } else {
1461 flipAllBitsSlowCase();
1462 }
1463 }
1464
1465 /// \brief Toggles a given bit to its opposite value.
1466 ///
1467 /// Toggle a given bit to its opposite value whose position is given
1468 /// as "bitPosition".
1469 void flipBit(unsigned bitPosition);
1470
1471 /// Negate this APInt in place.
1472 void negate() {
1473 flipAllBits();
1474 ++(*this);
1475 }
1476
1477 /// Insert the bits from a smaller APInt starting at bitPosition.
1478 void insertBits(const APInt &SubBits, unsigned bitPosition);
1479
1480 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1481 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1482
1483 /// @}
1484 /// \name Value Characterization Functions
1485 /// @{
1486
1487 /// \brief Return the number of bits in the APInt.
1488 unsigned getBitWidth() const { return BitWidth; }
1489
1490 /// \brief Get the number of words.
1491 ///
1492 /// Here one word's bitwidth equals to that of uint64_t.
1493 ///
1494 /// \returns the number of words to hold the integer value of this APInt.
1495 unsigned getNumWords() const { return getNumWords(BitWidth); }
1496
1497 /// \brief Get the number of words.
1498 ///
1499 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1500 ///
1501 /// \returns the number of words to hold the integer value with a given bit
1502 /// width.
1503 static unsigned getNumWords(unsigned BitWidth) {
1504 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1505 }
1506
1507 /// \brief Compute the number of active bits in the value
1508 ///
1509 /// This function returns the number of active bits which is defined as the
1510 /// bit width minus the number of leading zeros. This is used in several
1511 /// computations to see how "wide" the value is.
1512 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1513
1514 /// \brief Compute the number of active words in the value of this APInt.
1515 ///
1516 /// This is used in conjunction with getActiveData to extract the raw value of
1517 /// the APInt.
1518 unsigned getActiveWords() const {
1519 unsigned numActiveBits = getActiveBits();
1520 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1521 }
1522
1523 /// \brief Get the minimum bit size for this signed APInt
1524 ///
1525 /// Computes the minimum bit width for this APInt while considering it to be a
1526 /// signed (and probably negative) value. If the value is not negative, this
1527 /// function returns the same value as getActiveBits()+1. Otherwise, it
1528 /// returns the smallest bit width that will retain the negative value. For
1529 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1530 /// for -1, this function will always return 1.
1531 unsigned getMinSignedBits() const {
1532 if (isNegative())
1533 return BitWidth - countLeadingOnes() + 1;
1534 return getActiveBits() + 1;
1535 }
1536
1537 /// \brief Get zero extended value
1538 ///
1539 /// This method attempts to return the value of this APInt as a zero extended
1540 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1541 /// uint64_t. Otherwise an assertion will result.
1542 uint64_t getZExtValue() const {
1543 if (isSingleWord())
18
Taking false branch
1544 return U.VAL;
1545 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")((getActiveBits() <= 64 && "Too many bits for uint64_t"
) ? static_cast<void> (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1545, __PRETTY_FUNCTION__))
;
1546 return U.pVal[0];
19
Use of memory after it is freed
1547 }
1548
1549 /// \brief Get sign extended value
1550 ///
1551 /// This method attempts to return the value of this APInt as a sign extended
1552 /// int64_t. The bit width must be <= 64 or the value must fit within an
1553 /// int64_t. Otherwise an assertion will result.
1554 int64_t getSExtValue() const {
1555 if (isSingleWord())
1556 return SignExtend64(U.VAL, BitWidth);
1557 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")((getMinSignedBits() <= 64 && "Too many bits for int64_t"
) ? static_cast<void> (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-6.0~svn318211/include/llvm/ADT/APInt.h"
, 1557, __PRETTY_FUNCTION__))
;
1558 return int64_t(U.pVal[0]);
1559 }
1560
1561 /// \brief Get bits required for string value.
1562 ///
1563 /// This method determines how many bits are required to hold the APInt
1564 /// equivalent of the string given by \p str.
1565 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1566
1567 /// \brief The APInt version of the countLeadingZeros functions in
1568 /// MathExtras.h.
1569 ///
1570 /// It counts the number of zeros from the most significant bit to the first
1571 /// one bit.
1572 ///
1573 /// \returns BitWidth if the value is zero, otherwise returns the number of
1574 /// zeros from the most significant bit to the first one bits.
1575 unsigned countLeadingZeros() const {
1576 if (isSingleWord()) {
1577 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1578 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1579 }
1580 return countLeadingZerosSlowCase();
1581 }
1582
1583 /// \brief Count the number of leading one bits.
1584 ///
1585 /// This function is an APInt version of the countLeadingOnes
1586 /// functions in MathExtras.h. It counts the number of ones from the most
1587 /// significant bit to the first zero bit.
1588 ///
1589 /// \returns 0 if the high order bit is not set, otherwise returns the number
1590 /// of 1 bits from the most significant to the least
1591 unsigned countLeadingOnes() const {
1592 if (isSingleWord())
1593 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1594 return countLeadingOnesSlowCase();
1595 }
1596
1597 /// Computes the number of leading bits of this APInt that are equal to its
1598 /// sign bit.
1599 unsigned getNumSignBits() const {
1600 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1601 }
1602
1603 /// \brief Count the number of trailing zero bits.
1604 ///
1605 /// This function is an APInt version of the countTrailingZeros
1606 /// functions in MathExtras.h. It counts the number of zeros from the least
1607 /// significant bit to the first set bit.
1608 ///
1609 /// \returns BitWidth if the value is zero, otherwise returns the number of
1610 /// zeros from the least significant bit to the first one bit.
1611 unsigned countTrailingZeros() const {
1612 if (isSingleWord())
1613 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1614 return countTrailingZerosSlowCase();
1615 }
1616
1617 /// \brief Count the number of trailing one bits.
1618 ///
1619 /// This function is an APInt version of the countTrailingOnes
1620 /// functions in MathExtras.h. It counts the number of ones from the least
1621 /// significant bit to the first zero bit.
1622 ///
1623 /// \returns BitWidth if the value is all ones, otherwise returns the number
1624 /// of ones from the least significant bit to the first zero bit.
1625 unsigned countTrailingOnes() const {
1626 if (isSingleWord())
1627 return llvm::countTrailingOnes(U.VAL);
1628 return countTrailingOnesSlowCase();
1629 }
1630
1631 /// \brief Count the number of bits set.
1632 ///
1633 /// This function is an APInt version of the countPopulation functions
1634 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1635 ///
1636 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1637 unsigned countPopulation() const {
1638 if (isSingleWord())
1639 return llvm::countPopulation(U.VAL);
1640 return countPopulationSlowCase();
1641 }
1642
1643 /// @}
1644 /// \name Conversion Functions
1645 /// @{
1646 void print(raw_ostream &OS, bool isSigned) const;
1647
1648 /// Converts an APInt to a string and append it to Str. Str is commonly a
1649 /// SmallString.
1650 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1651 bool formatAsCLiteral = false) const;
1652
1653 /// Considers the APInt to be unsigned and converts it into a string in the
1654 /// radix given. The radix can be 2, 8, 10 16, or 36.
1655 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1656 toString(Str, Radix, false, false);
1657 }
1658
1659 /// Considers the APInt to be signed and converts it into a string in the
1660 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1661 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1662 toString(Str, Radix, true, false);
1663 }
1664
1665 /// \brief Return the APInt as a std::string.
1666 ///
1667 /// Note that this is an inefficient method. It is better to pass in a
1668 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1669 /// for the string.
1670 std::string toString(unsigned Radix, bool Signed) const;
1671
1672 /// \returns a byte-swapped representation of this APInt Value.
1673 APInt byteSwap() const;
1674
1675 /// \returns the value with the bit representation reversed of this APInt
1676 /// Value.
1677 APInt reverseBits() const;
1678
1679 /// \brief Converts this APInt to a double value.
1680 double roundToDouble(bool isSigned) const;
1681
1682 /// \brief Converts this unsigned APInt to a double value.
1683 double roundToDouble() const { return roundToDouble(false); }
1684
1685 /// \brief Converts this signed APInt to a double value.
1686 double signedRoundToDouble() const { return roundToDouble(true); }
1687
1688 /// \brief Converts APInt bits to a double
1689 ///
1690 /// The conversion does not do a translation from integer to double, it just
1691 /// re-interprets the bits as a double. Note that it is valid to do this on
1692 /// any bit width. Exactly 64 bits will be translated.
1693 double bitsToDouble() const {
1694 return BitsToDouble(getWord(0));
1695 }
1696
1697 /// \brief Converts APInt bits to a double
1698 ///
1699 /// The conversion does not do a translation from integer to float, it just
1700 /// re-interprets the bits as a float. Note that it is valid to do this on
1701 /// any bit width. Exactly 32 bits will be translated.
1702 float bitsToFloat() const {
1703 return BitsToFloat(getWord(0));
1704 }
1705
1706 /// \brief Converts a double to APInt bits.
1707 ///
1708 /// The conversion does not do a translation from double to integer, it just
1709 /// re-interprets the bits of the double.
1710 static APInt doubleToBits(double V) {
1711 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1712 }
1713
1714 /// \brief Converts a float to APInt bits.
1715 ///
1716 /// The conversion does not do a translation from float to integer, it just
1717 /// re-interprets the bits of the float.
1718 static APInt floatToBits(float V) {
1719 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1720 }
1721
1722 /// @}
1723 /// \name Mathematics Operations
1724 /// @{
1725
1726 /// \returns the floor log base 2 of this APInt.
1727 unsigned logBase2() const { return getActiveBits() - 1; }
1728
1729 /// \returns the ceil log base 2 of this APInt.
1730 unsigned ceilLogBase2() const {
1731 APInt temp(*this);
1732 --temp;
1733 return temp.getActiveBits();
1734 }
1735
1736 /// \returns the nearest log base 2 of this APInt. Ties round up.
1737 ///
1738 /// NOTE: When we have a BitWidth of 1, we define:
1739 ///
1740 /// log2(0) = UINT32_MAX
1741 /// log2(1) = 0
1742 ///
1743 /// to get around any mathematical concerns resulting from
1744 /// referencing 2 in a space where 2 does no exist.
1745 unsigned nearestLogBase2() const {
1746 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1747 // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
1748 // UINT32_MAX.
1749 if (BitWidth == 1)
1750 return U.VAL - 1;
1751
1752 // Handle the zero case.
1753 if (isNullValue())
1754 return UINT32_MAX(4294967295U);
1755
1756 // The non-zero case is handled by computing:
1757 //
1758 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1759 //
1760 // where x[i] is referring to the value of the ith bit of x.
1761 unsigned lg = logBase2();
1762 return lg + unsigned((*this)[lg - 1]);
1763 }
1764
1765 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1766 /// otherwise
1767 int32_t exactLogBase2() const {
1768 if (!isPowerOf2())
1769 return -1;
1770 return logBase2();
1771 }
1772
1773 /// \brief Compute the square root
1774 APInt sqrt() const;
1775
1776 /// \brief Get the absolute value;
1777 ///
1778 /// If *this is < 0 then return -(*this), otherwise *this;
1779 APInt abs() const {
1780 if (isNegative())
1781 return -(*this);
1782 return *this;
1783 }
1784
1785 /// \returns the multiplicative inverse for a given modulo.
1786 APInt multiplicativeInverse(const APInt &modulo) const;
1787
1788 /// @}
1789 /// \name Support for division by constant
1790 /// @{
1791
1792 /// Calculate the magic number for signed division by a constant.
1793 struct ms;
1794 ms magic() const;
1795
1796 /// Calculate the magic number for unsigned division by a constant.
1797 struct mu;
1798 mu magicu(unsigned LeadingZeros = 0) const;
1799
1800 /// @}
1801 /// \name Building-block Operations for APInt and APFloat
1802 /// @{
1803
1804 // These building block operations operate on a representation of arbitrary
1805 // precision, two's-complement, bignum integer values. They should be
1806 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1807 // generally a pointer to the base of an array of integer parts, representing
1808 // an unsigned bignum, and a count of how many parts there are.
1809
1810 /// Sets the least significant part of a bignum to the input value, and zeroes
1811 /// out higher parts.
1812 static void tcSet(WordType *, WordType, unsigned);
1813
1814 /// Assign one bignum to another.
1815 static void tcAssign(WordType *, const WordType *, unsigned);
1816
1817 /// Returns true if a bignum is zero, false otherwise.
1818 static bool tcIsZero(const WordType *, unsigned);
1819
1820 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1821 static int tcExtractBit(const WordType *, unsigned bit);
1822
1823 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1824 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1825 /// significant bit of DST. All high bits above srcBITS in DST are
1826 /// zero-filled.
1827 static void tcExtract(WordType *, unsigned dstCount,
1828 const WordType *, unsigned srcBits,
1829 unsigned srcLSB);
1830
1831 /// Set the given bit of a bignum. Zero-based.
1832 static void tcSetBit(WordType *, unsigned bit);
1833
1834 /// Clear the given bit of a bignum. Zero-based.
1835 static void tcClearBit(WordType *, unsigned bit);
1836
1837 /// Returns the bit number of the least or most significant set bit of a
1838 /// number. If the input number has no bits set -1U is returned.
1839 static unsigned tcLSB(const WordType *, unsigned n);
1840 static unsigned tcMSB(const WordType *parts, unsigned n);
1841
1842 /// Negate a bignum in-place.
1843 static void tcNegate(WordType *, unsigned);
1844
1845 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1846 static WordType tcAdd(WordType *, const WordType *,
1847 WordType carry, unsigned);
1848 /// DST += RHS. Returns the carry flag.
1849 static WordType tcAddPart(WordType *, WordType, unsigned);
1850
1851 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1852 static WordType tcSubtract(WordType *, const WordType *,
1853 WordType carry, unsigned);
1854 /// DST -= RHS. Returns the carry flag.
1855 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1856
1857 /// DST += SRC * MULTIPLIER + PART if add is true
1858 /// DST = SRC * MULTIPLIER + PART if add is false
1859 ///
1860 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1861 /// start at the same point, i.e. DST == SRC.
1862 ///
1863 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1864 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1865 /// result, and if all of the omitted higher parts were zero return zero,
1866 /// otherwise overflow occurred and return one.
1867 static int tcMultiplyPart(WordType *dst, const WordType *src,
1868 WordType multiplier, WordType carry,
1869 unsigned srcParts, unsigned dstParts,
1870 bool add);
1871
1872 /// DST = LHS * RHS, where DST has the same width as the operands and is
1873 /// filled with the least significant parts of the result. Returns one if
1874 /// overflow occurred, otherwise zero. DST must be disjoint from both
1875 /// operands.
1876 static int tcMultiply(WordType *, const WordType *, const WordType *,
1877 unsigned);
1878
1879 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1880 /// operands. No overflow occurs. DST must be disjoint from both operands.
1881 static void tcFullMultiply(WordType *, const WordType *,
1882 const WordType *, unsigned, unsigned);
1883
1884 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1885 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1886 /// REMAINDER to the remainder, return zero. i.e.
1887 ///
1888 /// OLD_LHS = RHS * LHS + REMAINDER
1889 ///
1890 /// SCRATCH is a bignum of the same size as the operands and result for use by
1891 /// the routine; its contents need not be initialized and are destroyed. LHS,
1892 /// REMAINDER and SCRATCH must be distinct.
1893 static int tcDivide(WordType *lhs, const WordType *rhs,
1894 WordType *remainder, WordType *scratch,
1895 unsigned parts);
1896
1897 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1898 /// restrictions on Count.
1899 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1900
1901 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1902 /// restrictions on Count.
1903 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1904
1905 /// The obvious AND, OR and XOR and complement operations.
1906 static void tcAnd(WordType *, const WordType *, unsigned);
1907 static void tcOr(WordType *, const WordType *, unsigned);
1908 static void tcXor(WordType *, const WordType *, unsigned);
1909 static void tcComplement(WordType *, unsigned);
1910
1911 /// Comparison (unsigned) of two bignums.
1912 static int tcCompare(const WordType *, const WordType *, unsigned);
1913
1914 /// Increment a bignum in-place. Return the carry flag.
1915 static WordType tcIncrement(WordType *dst, unsigned parts) {
1916 return tcAddPart(dst, 1, parts);
1917 }
1918
1919 /// Decrement a bignum in-place. Return the borrow flag.
1920 static WordType tcDecrement(WordType *dst, unsigned parts) {
1921 return tcSubtractPart(dst, 1, parts);
1922 }
1923
1924 /// Set the least significant BITS and clear the rest.
1925 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1926
1927 /// \brief debug method
1928 void dump() const;
1929
1930 /// @}
1931};
1932
1933/// Magic data for optimising signed division by a constant.
1934struct APInt::ms {
1935 APInt m; ///< magic number
1936 unsigned s; ///< shift amount
1937};
1938
1939/// Magic data for optimising unsigned division by a constant.
1940struct APInt::mu {
1941 APInt m; ///< magic number
1942 bool a; ///< add indicator
1943 unsigned s; ///< shift amount
1944};
1945
1946inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1947
1948inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1949
1950/// \brief Unary bitwise complement operator.
1951///
1952/// \returns an APInt that is the bitwise complement of \p v.
1953inline APInt operator~(APInt v) {
1954 v.flipAllBits();
1955 return v;
1956}
1957
1958inline APInt operator&(APInt a, const APInt &b) {
1959 a &= b;
1960 return a;
1961}
1962
1963inline APInt operator&(const APInt &a, APInt &&b) {
1964 b &= a;
1965 return std::move(b);
1966}
1967
1968inline APInt operator&(APInt a, uint64_t RHS) {
1969 a &= RHS;
1970 return a;
1971}
1972
1973inline APInt operator&(uint64_t LHS, APInt b) {
1974 b &= LHS;
1975 return b;
1976}
1977
1978inline APInt operator|(APInt a, const APInt &b) {
1979 a |= b;
1980 return a;
1981}
1982
1983inline APInt operator|(const APInt &a, APInt &&b) {
1984 b |= a;
1985 return std::move(b);
1986}
1987
1988inline APInt operator|(APInt a, uint64_t RHS) {
1989 a |= RHS;
1990 return a;
1991}
1992
1993inline APInt operator|(uint64_t LHS, APInt b) {
1994 b |= LHS;
1995 return b;
1996}
1997
1998inline APInt operator^(APInt a, const APInt &b) {
1999 a ^= b;
2000 return a;
2001}
2002
2003inline APInt operator^(const APInt &a, APInt &&b) {
2004 b ^= a;
2005 return std::move(b);
2006}
2007
2008inline APInt operator^(APInt a, uint64_t RHS) {
2009 a ^= RHS;
2010 return a;
2011}
2012
2013inline APInt operator^(uint64_t LHS, APInt b) {
2014 b ^= LHS;
2015 return b;
2016}
2017
2018inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2019 I.print(OS, true);
2020 return OS;
2021}
2022
2023inline APInt operator-(APInt v) {
2024 v.negate();
2025 return v;
2026}
2027
2028inline APInt operator+(APInt a, const APInt &b) {
2029 a += b;
2030 return a;
2031}
2032
2033inline APInt operator+(const APInt &a, APInt &&b) {
2034 b += a;
2035 return std::move(b);
2036}
2037
2038inline APInt operator+(APInt a, uint64_t RHS) {
2039 a += RHS;
2040 return a;
2041}
2042
2043inline APInt operator+(uint64_t LHS, APInt b) {
2044 b += LHS;
2045 return b;
2046}
2047
2048inline APInt operator-(APInt a, const APInt &b) {
2049 a -= b;
2050 return a;
2051}
2052
2053inline APInt operator-(const APInt &a, APInt &&b) {
2054 b.negate();
2055 b += a;
2056 return std::move(b);
2057}
2058
2059inline APInt operator-(APInt a, uint64_t RHS) {
2060 a -= RHS;
2061 return a;
2062}
2063
2064inline APInt operator-(uint64_t LHS, APInt b) {
2065 b.negate();
2066 b += LHS;
2067 return b;
2068}
2069
2070inline APInt operator*(APInt a, uint64_t RHS) {
2071 a *= RHS;
2072 return a;
2073}
2074
2075inline APInt operator*(uint64_t LHS, APInt b) {
2076 b *= LHS;
2077 return b;
2078}
2079
2080
2081namespace APIntOps {
2082
2083/// \brief Determine the smaller of two APInts considered to be signed.
2084inline const APInt &smin(const APInt &A, const APInt &B) {
2085 return A.slt(B) ? A : B;
2086}
2087
2088/// \brief Determine the larger of two APInts considered to be signed.
2089inline const APInt &smax(const APInt &A, const APInt &B) {
2090 return A.sgt(B) ? A : B;
2091}
2092
2093/// \brief Determine the smaller of two APInts considered to be signed.
2094inline const APInt &umin(const APInt &A, const APInt &B) {
2095 return A.ult(B) ? A : B;
2096}
2097
2098/// \brief Determine the larger of two APInts considered to be unsigned.
2099inline const APInt &umax(const APInt &A, const APInt &B) {
2100 return A.ugt(B) ? A : B;
2101}
2102
2103/// \brief Compute GCD of two unsigned APInt values.
2104///
2105/// This function returns the greatest common divisor of the two APInt values
2106/// using Stein's algorithm.
2107///
2108/// \returns the greatest common divisor of A and B.
2109APInt GreatestCommonDivisor(APInt A, APInt B);
2110
2111/// \brief Converts the given APInt to a double value.
2112///
2113/// Treats the APInt as an unsigned value for conversion purposes.
2114inline double RoundAPIntToDouble(const APInt &APIVal) {
2115 return APIVal.roundToDouble();
2116}
2117
2118/// \brief Converts the given APInt to a double value.
2119///
2120/// Treats the APInt as a signed value for conversion purposes.
2121inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2122 return APIVal.signedRoundToDouble();
2123}
2124
2125/// \brief Converts the given APInt to a float vlalue.
2126inline float RoundAPIntToFloat(const APInt &APIVal) {
2127 return float(RoundAPIntToDouble(APIVal));
2128}
2129
2130/// \brief Converts the given APInt to a float value.
2131///
2132/// Treast the APInt as a signed value for conversion purposes.
2133inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2134 return float(APIVal.signedRoundToDouble());
2135}
2136
2137/// \brief Converts the given double value into a APInt.
2138///
2139/// This function convert a double value to an APInt value.
2140APInt RoundDoubleToAPInt(double Double, unsigned width);
2141
2142/// \brief Converts a float value into a APInt.
2143///
2144/// Converts a float value into an APInt value.
2145inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2146 return RoundDoubleToAPInt(double(Float), width);
2147}
2148
2149} // End of APIntOps namespace
2150
2151// See friend declaration above. This additional declaration is required in
2152// order to compile LLVM with IBM xlC compiler.
2153hash_code hash_value(const APInt &Arg);
2154} // End of llvm namespace
2155
2156#endif