Bug Summary

File:llvm/lib/Support/APInt.cpp
Warning:line 1911, column 3
Use of memory after it is freed

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name APInt.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/build-llvm/lib/Support -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/build-llvm/lib/Support -I /build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support -I /build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/build-llvm/lib/Support -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-05-25-184031-10426-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp

/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp

1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a class to represent arbitrary precision integer
10// constant values and provide a variety of arithmetic operations on them.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/FoldingSet.h"
17#include "llvm/ADT/Hashing.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/bit.h"
22#include "llvm/Config/llvm-config.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/raw_ostream.h"
27#include <climits>
28#include <cmath>
29#include <cstdlib>
30#include <cstring>
31using namespace llvm;
32
33#define DEBUG_TYPE"apint" "apint"
34
35/// A utility function for allocating memory, checking for allocation failures,
36/// and ensuring the contents are zeroed.
37inline static uint64_t* getClearedMemory(unsigned numWords) {
38 uint64_t *result = new uint64_t[numWords];
39 memset(result, 0, numWords * sizeof(uint64_t));
40 return result;
41}
42
43/// A utility function for allocating memory and checking for allocation
44/// failure. The content is not zeroed.
45inline static uint64_t* getMemory(unsigned numWords) {
46 return new uint64_t[numWords];
22
Memory is allocated
47}
48
49/// A utility function that converts a character to a digit.
50inline static unsigned getDigit(char cdigit, uint8_t radix) {
51 unsigned r;
52
53 if (radix == 16 || radix == 36) {
54 r = cdigit - '0';
55 if (r <= 9)
56 return r;
57
58 r = cdigit - 'A';
59 if (r <= radix - 11U)
60 return r + 10;
61
62 r = cdigit - 'a';
63 if (r <= radix - 11U)
64 return r + 10;
65
66 radix = 10;
67 }
68
69 r = cdigit - '0';
70 if (r < radix)
71 return r;
72
73 return -1U;
74}
75
76
77void APInt::initSlowCase(uint64_t val, bool isSigned) {
78 U.pVal = getClearedMemory(getNumWords());
79 U.pVal[0] = val;
80 if (isSigned && int64_t(val) < 0)
81 for (unsigned i = 1; i < getNumWords(); ++i)
82 U.pVal[i] = WORDTYPE_MAX;
83 clearUnusedBits();
84}
85
86void APInt::initSlowCase(const APInt& that) {
87 U.pVal = getMemory(getNumWords());
21
Calling 'getMemory'
23
Returned allocated memory
88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
89}
90
91void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
92 assert(BitWidth && "Bitwidth too small")(static_cast <bool> (BitWidth && "Bitwidth too small"
) ? void (0) : __assert_fail ("BitWidth && \"Bitwidth too small\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 92, __extension__ __PRETTY_FUNCTION__))
;
93 assert(bigVal.data() && "Null pointer detected!")(static_cast <bool> (bigVal.data() && "Null pointer detected!"
) ? void (0) : __assert_fail ("bigVal.data() && \"Null pointer detected!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 93, __extension__ __PRETTY_FUNCTION__))
;
94 if (isSingleWord())
95 U.VAL = bigVal[0];
96 else {
97 // Get memory, cleared to 0
98 U.pVal = getClearedMemory(getNumWords());
99 // Calculate the number of words to copy
100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
101 // Copy the words from bigVal to pVal
102 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
103 }
104 // Make sure unused high bits are cleared
105 clearUnusedBits();
106}
107
108APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
109 : BitWidth(numBits) {
110 initFromArray(bigVal);
111}
112
113APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
114 : BitWidth(numBits) {
115 initFromArray(makeArrayRef(bigVal, numWords));
116}
117
118APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
119 : BitWidth(numbits) {
120 assert(BitWidth && "Bitwidth too small")(static_cast <bool> (BitWidth && "Bitwidth too small"
) ? void (0) : __assert_fail ("BitWidth && \"Bitwidth too small\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 120, __extension__ __PRETTY_FUNCTION__))
;
121 fromString(numbits, Str, radix);
122}
123
124void APInt::reallocate(unsigned NewBitWidth) {
125 // If the number of words is the same we can just change the width and stop.
126 if (getNumWords() == getNumWords(NewBitWidth)) {
127 BitWidth = NewBitWidth;
128 return;
129 }
130
131 // If we have an allocation, delete it.
132 if (!isSingleWord())
133 delete [] U.pVal;
134
135 // Update BitWidth.
136 BitWidth = NewBitWidth;
137
138 // If we are supposed to have an allocation, create it.
139 if (!isSingleWord())
140 U.pVal = getMemory(getNumWords());
141}
142
143void APInt::AssignSlowCase(const APInt& RHS) {
144 // Don't do anything for X = X
145 if (this == &RHS)
146 return;
147
148 // Adjust the bit width and handle allocations as necessary.
149 reallocate(RHS.getBitWidth());
150
151 // Copy the data.
152 if (isSingleWord())
153 U.VAL = RHS.U.VAL;
154 else
155 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
156}
157
158/// This method 'profiles' an APInt for use with FoldingSet.
159void APInt::Profile(FoldingSetNodeID& ID) const {
160 ID.AddInteger(BitWidth);
161
162 if (isSingleWord()) {
163 ID.AddInteger(U.VAL);
164 return;
165 }
166
167 unsigned NumWords = getNumWords();
168 for (unsigned i = 0; i < NumWords; ++i)
169 ID.AddInteger(U.pVal[i]);
170}
171
172/// Prefix increment operator. Increments the APInt by one.
173APInt& APInt::operator++() {
174 if (isSingleWord())
175 ++U.VAL;
176 else
177 tcIncrement(U.pVal, getNumWords());
178 return clearUnusedBits();
179}
180
181/// Prefix decrement operator. Decrements the APInt by one.
182APInt& APInt::operator--() {
183 if (isSingleWord())
184 --U.VAL;
185 else
186 tcDecrement(U.pVal, getNumWords());
187 return clearUnusedBits();
188}
189
190/// Adds the RHS APInt to this APInt.
191/// @returns this, after addition of RHS.
192/// Addition assignment operator.
193APInt& APInt::operator+=(const APInt& RHS) {
194 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 194, __extension__ __PRETTY_FUNCTION__))
;
195 if (isSingleWord())
196 U.VAL += RHS.U.VAL;
197 else
198 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
199 return clearUnusedBits();
200}
201
202APInt& APInt::operator+=(uint64_t RHS) {
203 if (isSingleWord())
204 U.VAL += RHS;
205 else
206 tcAddPart(U.pVal, RHS, getNumWords());
207 return clearUnusedBits();
208}
209
210/// Subtracts the RHS APInt from this APInt
211/// @returns this, after subtraction
212/// Subtraction assignment operator.
213APInt& APInt::operator-=(const APInt& RHS) {
214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 214, __extension__ __PRETTY_FUNCTION__))
;
215 if (isSingleWord())
216 U.VAL -= RHS.U.VAL;
217 else
218 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
219 return clearUnusedBits();
220}
221
222APInt& APInt::operator-=(uint64_t RHS) {
223 if (isSingleWord())
224 U.VAL -= RHS;
225 else
226 tcSubtractPart(U.pVal, RHS, getNumWords());
227 return clearUnusedBits();
228}
229
230APInt APInt::operator*(const APInt& RHS) const {
231 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 231, __extension__ __PRETTY_FUNCTION__))
;
232 if (isSingleWord())
233 return APInt(BitWidth, U.VAL * RHS.U.VAL);
234
235 APInt Result(getMemory(getNumWords()), getBitWidth());
236
237 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
238
239 Result.clearUnusedBits();
240 return Result;
241}
242
243void APInt::AndAssignSlowCase(const APInt& RHS) {
244 tcAnd(U.pVal, RHS.U.pVal, getNumWords());
245}
246
247void APInt::OrAssignSlowCase(const APInt& RHS) {
248 tcOr(U.pVal, RHS.U.pVal, getNumWords());
249}
250
251void APInt::XorAssignSlowCase(const APInt& RHS) {
252 tcXor(U.pVal, RHS.U.pVal, getNumWords());
253}
254
255APInt& APInt::operator*=(const APInt& RHS) {
256 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 256, __extension__ __PRETTY_FUNCTION__))
;
257 *this = *this * RHS;
258 return *this;
259}
260
261APInt& APInt::operator*=(uint64_t RHS) {
262 if (isSingleWord()) {
263 U.VAL *= RHS;
264 } else {
265 unsigned NumWords = getNumWords();
266 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
267 }
268 return clearUnusedBits();
269}
270
271bool APInt::EqualSlowCase(const APInt& RHS) const {
272 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
273}
274
275int APInt::compare(const APInt& RHS) const {
276 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be same for comparison") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Bit widths must be same for comparison\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 276, __extension__ __PRETTY_FUNCTION__))
;
277 if (isSingleWord())
278 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
279
280 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
281}
282
283int APInt::compareSigned(const APInt& RHS) const {
284 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be same for comparison") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Bit widths must be same for comparison\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 284, __extension__ __PRETTY_FUNCTION__))
;
285 if (isSingleWord()) {
286 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
287 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
288 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
289 }
290
291 bool lhsNeg = isNegative();
292 bool rhsNeg = RHS.isNegative();
293
294 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
295 if (lhsNeg != rhsNeg)
296 return lhsNeg ? -1 : 1;
297
298 // Otherwise we can just use an unsigned comparison, because even negative
299 // numbers compare correctly this way if both have the same signed-ness.
300 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
301}
302
303void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
304 unsigned loWord = whichWord(loBit);
305 unsigned hiWord = whichWord(hiBit);
306
307 // Create an initial mask for the low word with zeros below loBit.
308 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
309
310 // If hiBit is not aligned, we need a high mask.
311 unsigned hiShiftAmt = whichBit(hiBit);
312 if (hiShiftAmt != 0) {
313 // Create a high mask with zeros above hiBit.
314 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
315 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
316 // set the bits in hiWord.
317 if (hiWord == loWord)
318 loMask &= hiMask;
319 else
320 U.pVal[hiWord] |= hiMask;
321 }
322 // Apply the mask to the low word.
323 U.pVal[loWord] |= loMask;
324
325 // Fill any words between loWord and hiWord with all ones.
326 for (unsigned word = loWord + 1; word < hiWord; ++word)
327 U.pVal[word] = WORDTYPE_MAX;
328}
329
330/// Toggle every bit to its opposite value.
331void APInt::flipAllBitsSlowCase() {
332 tcComplement(U.pVal, getNumWords());
333 clearUnusedBits();
334}
335
336/// Toggle a given bit to its opposite value whose position is given
337/// as "bitPosition".
338/// Toggles a given bit to its opposite value.
339void APInt::flipBit(unsigned bitPosition) {
340 assert(bitPosition < BitWidth && "Out of the bit-width range!")(static_cast <bool> (bitPosition < BitWidth &&
"Out of the bit-width range!") ? void (0) : __assert_fail ("bitPosition < BitWidth && \"Out of the bit-width range!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 340, __extension__ __PRETTY_FUNCTION__))
;
341 setBitVal(bitPosition, !(*this)[bitPosition]);
342}
343
344void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
345 unsigned subBitWidth = subBits.getBitWidth();
346 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&(static_cast <bool> (0 < subBitWidth && (subBitWidth
+ bitPosition) <= BitWidth && "Illegal bit insertion"
) ? void (0) : __assert_fail ("0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && \"Illegal bit insertion\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 347, __extension__ __PRETTY_FUNCTION__))
347 "Illegal bit insertion")(static_cast <bool> (0 < subBitWidth && (subBitWidth
+ bitPosition) <= BitWidth && "Illegal bit insertion"
) ? void (0) : __assert_fail ("0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && \"Illegal bit insertion\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 347, __extension__ __PRETTY_FUNCTION__))
;
348
349 // Insertion is a direct copy.
350 if (subBitWidth == BitWidth) {
351 *this = subBits;
352 return;
353 }
354
355 // Single word result can be done as a direct bitmask.
356 if (isSingleWord()) {
357 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
358 U.VAL &= ~(mask << bitPosition);
359 U.VAL |= (subBits.U.VAL << bitPosition);
360 return;
361 }
362
363 unsigned loBit = whichBit(bitPosition);
364 unsigned loWord = whichWord(bitPosition);
365 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
366
367 // Insertion within a single word can be done as a direct bitmask.
368 if (loWord == hi1Word) {
369 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
370 U.pVal[loWord] &= ~(mask << loBit);
371 U.pVal[loWord] |= (subBits.U.VAL << loBit);
372 return;
373 }
374
375 // Insert on word boundaries.
376 if (loBit == 0) {
377 // Direct copy whole words.
378 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
379 memcpy(U.pVal + loWord, subBits.getRawData(),
380 numWholeSubWords * APINT_WORD_SIZE);
381
382 // Mask+insert remaining bits.
383 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
384 if (remainingBits != 0) {
385 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
386 U.pVal[hi1Word] &= ~mask;
387 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
388 }
389 return;
390 }
391
392 // General case - set/clear individual bits in dst based on src.
393 // TODO - there is scope for optimization here, but at the moment this code
394 // path is barely used so prefer readability over performance.
395 for (unsigned i = 0; i != subBitWidth; ++i)
396 setBitVal(bitPosition + i, subBits[i]);
397}
398
399void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
400 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
401 subBits &= maskBits;
402 if (isSingleWord()) {
403 U.VAL &= ~(maskBits << bitPosition);
404 U.VAL |= subBits << bitPosition;
405 return;
406 }
407
408 unsigned loBit = whichBit(bitPosition);
409 unsigned loWord = whichWord(bitPosition);
410 unsigned hiWord = whichWord(bitPosition + numBits - 1);
411 if (loWord == hiWord) {
412 U.pVal[loWord] &= ~(maskBits << loBit);
413 U.pVal[loWord] |= subBits << loBit;
414 return;
415 }
416
417 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
418 unsigned wordBits = 8 * sizeof(WordType);
419 U.pVal[loWord] &= ~(maskBits << loBit);
420 U.pVal[loWord] |= subBits << loBit;
421
422 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
423 U.pVal[hiWord] |= subBits >> (wordBits - loBit);
424}
425
426APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
427 assert(numBits > 0 && "Can't extract zero bits")(static_cast <bool> (numBits > 0 && "Can't extract zero bits"
) ? void (0) : __assert_fail ("numBits > 0 && \"Can't extract zero bits\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 427, __extension__ __PRETTY_FUNCTION__))
;
428 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&(static_cast <bool> (bitPosition < BitWidth &&
(numBits + bitPosition) <= BitWidth && "Illegal bit extraction"
) ? void (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 429, __extension__ __PRETTY_FUNCTION__))
429 "Illegal bit extraction")(static_cast <bool> (bitPosition < BitWidth &&
(numBits + bitPosition) <= BitWidth && "Illegal bit extraction"
) ? void (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 429, __extension__ __PRETTY_FUNCTION__))
;
430
431 if (isSingleWord())
432 return APInt(numBits, U.VAL >> bitPosition);
433
434 unsigned loBit = whichBit(bitPosition);
435 unsigned loWord = whichWord(bitPosition);
436 unsigned hiWord = whichWord(bitPosition + numBits - 1);
437
438 // Single word result extracting bits from a single word source.
439 if (loWord == hiWord)
440 return APInt(numBits, U.pVal[loWord] >> loBit);
441
442 // Extracting bits that start on a source word boundary can be done
443 // as a fast memory copy.
444 if (loBit == 0)
445 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
446
447 // General case - shift + copy source words directly into place.
448 APInt Result(numBits, 0);
449 unsigned NumSrcWords = getNumWords();
450 unsigned NumDstWords = Result.getNumWords();
451
452 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
453 for (unsigned word = 0; word < NumDstWords; ++word) {
454 uint64_t w0 = U.pVal[loWord + word];
455 uint64_t w1 =
456 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
457 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
458 }
459
460 return Result.clearUnusedBits();
461}
462
463uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
464 unsigned bitPosition) const {
465 assert(numBits > 0 && "Can't extract zero bits")(static_cast <bool> (numBits > 0 && "Can't extract zero bits"
) ? void (0) : __assert_fail ("numBits > 0 && \"Can't extract zero bits\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 465, __extension__ __PRETTY_FUNCTION__))
;
466 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&(static_cast <bool> (bitPosition < BitWidth &&
(numBits + bitPosition) <= BitWidth && "Illegal bit extraction"
) ? void (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 467, __extension__ __PRETTY_FUNCTION__))
467 "Illegal bit extraction")(static_cast <bool> (bitPosition < BitWidth &&
(numBits + bitPosition) <= BitWidth && "Illegal bit extraction"
) ? void (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 467, __extension__ __PRETTY_FUNCTION__))
;
468 assert(numBits <= 64 && "Illegal bit extraction")(static_cast <bool> (numBits <= 64 && "Illegal bit extraction"
) ? void (0) : __assert_fail ("numBits <= 64 && \"Illegal bit extraction\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 468, __extension__ __PRETTY_FUNCTION__))
;
469
470 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
471 if (isSingleWord())
472 return (U.VAL >> bitPosition) & maskBits;
473
474 unsigned loBit = whichBit(bitPosition);
475 unsigned loWord = whichWord(bitPosition);
476 unsigned hiWord = whichWord(bitPosition + numBits - 1);
477 if (loWord == hiWord)
478 return (U.pVal[loWord] >> loBit) & maskBits;
479
480 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
481 unsigned wordBits = 8 * sizeof(WordType);
482 uint64_t retBits = U.pVal[loWord] >> loBit;
483 retBits |= U.pVal[hiWord] << (wordBits - loBit);
484 retBits &= maskBits;
485 return retBits;
486}
487
488unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
489 assert(!str.empty() && "Invalid string length")(static_cast <bool> (!str.empty() && "Invalid string length"
) ? void (0) : __assert_fail ("!str.empty() && \"Invalid string length\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 489, __extension__ __PRETTY_FUNCTION__))
;
490 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 492, __extension__ __PRETTY_FUNCTION__))
491 radix == 36) &&(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 492, __extension__ __PRETTY_FUNCTION__))
492 "Radix should be 2, 8, 10, 16, or 36!")(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 492, __extension__ __PRETTY_FUNCTION__))
;
493
494 size_t slen = str.size();
495
496 // Each computation below needs to know if it's negative.
497 StringRef::iterator p = str.begin();
498 unsigned isNegative = *p == '-';
499 if (*p == '-' || *p == '+') {
500 p++;
501 slen--;
502 assert(slen && "String is only a sign, needs a value.")(static_cast <bool> (slen && "String is only a sign, needs a value."
) ? void (0) : __assert_fail ("slen && \"String is only a sign, needs a value.\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 502, __extension__ __PRETTY_FUNCTION__))
;
503 }
504
505 // For radixes of power-of-two values, the bits required is accurately and
506 // easily computed
507 if (radix == 2)
508 return slen + isNegative;
509 if (radix == 8)
510 return slen * 3 + isNegative;
511 if (radix == 16)
512 return slen * 4 + isNegative;
513
514 // FIXME: base 36
515
516 // This is grossly inefficient but accurate. We could probably do something
517 // with a computation of roughly slen*64/20 and then adjust by the value of
518 // the first few digits. But, I'm not sure how accurate that could be.
519
520 // Compute a sufficient number of bits that is always large enough but might
521 // be too large. This avoids the assertion in the constructor. This
522 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
523 // bits in that case.
524 unsigned sufficient
525 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
526 : (slen == 1 ? 7 : slen * 16/3);
527
528 // Convert to the actual binary value.
529 APInt tmp(sufficient, StringRef(p, slen), radix);
530
531 // Compute how many bits are required. If the log is infinite, assume we need
532 // just bit. If the log is exact and value is negative, then the value is
533 // MinSignedValue with (log + 1) bits.
534 unsigned log = tmp.logBase2();
535 if (log == (unsigned)-1) {
536 return isNegative + 1;
537 } else if (isNegative && tmp.isPowerOf2()) {
538 return isNegative + log;
539 } else {
540 return isNegative + log + 1;
541 }
542}
543
544hash_code llvm::hash_value(const APInt &Arg) {
545 if (Arg.isSingleWord())
546 return hash_combine(Arg.BitWidth, Arg.U.VAL);
547
548 return hash_combine(
549 Arg.BitWidth,
550 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
551}
552
553bool APInt::isSplat(unsigned SplatSizeInBits) const {
554 assert(getBitWidth() % SplatSizeInBits == 0 &&(static_cast <bool> (getBitWidth() % SplatSizeInBits ==
0 && "SplatSizeInBits must divide width!") ? void (0
) : __assert_fail ("getBitWidth() % SplatSizeInBits == 0 && \"SplatSizeInBits must divide width!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 555, __extension__ __PRETTY_FUNCTION__))
555 "SplatSizeInBits must divide width!")(static_cast <bool> (getBitWidth() % SplatSizeInBits ==
0 && "SplatSizeInBits must divide width!") ? void (0
) : __assert_fail ("getBitWidth() % SplatSizeInBits == 0 && \"SplatSizeInBits must divide width!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 555, __extension__ __PRETTY_FUNCTION__))
;
556 // We can check that all parts of an integer are equal by making use of a
557 // little trick: rotate and check if it's still the same value.
558 return *this == rotl(SplatSizeInBits);
559}
560
561/// This function returns the high "numBits" bits of this APInt.
562APInt APInt::getHiBits(unsigned numBits) const {
563 return this->lshr(BitWidth - numBits);
564}
565
566/// This function returns the low "numBits" bits of this APInt.
567APInt APInt::getLoBits(unsigned numBits) const {
568 APInt Result(getLowBitsSet(BitWidth, numBits));
569 Result &= *this;
570 return Result;
571}
572
573/// Return a value containing V broadcasted over NewLen bits.
574APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
575 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!")(static_cast <bool> (NewLen >= V.getBitWidth() &&
"Can't splat to smaller bit width!") ? void (0) : __assert_fail
("NewLen >= V.getBitWidth() && \"Can't splat to smaller bit width!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 575, __extension__ __PRETTY_FUNCTION__))
;
576
577 APInt Val = V.zextOrSelf(NewLen);
578 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
579 Val |= Val << I;
580
581 return Val;
582}
583
584unsigned APInt::countLeadingZerosSlowCase() const {
585 unsigned Count = 0;
586 for (int i = getNumWords()-1; i >= 0; --i) {
587 uint64_t V = U.pVal[i];
588 if (V == 0)
589 Count += APINT_BITS_PER_WORD;
590 else {
591 Count += llvm::countLeadingZeros(V);
592 break;
593 }
594 }
595 // Adjust for unused bits in the most significant word (they are zero).
596 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
597 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
598 return Count;
599}
600
601unsigned APInt::countLeadingOnesSlowCase() const {
602 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
603 unsigned shift;
604 if (!highWordBits) {
605 highWordBits = APINT_BITS_PER_WORD;
606 shift = 0;
607 } else {
608 shift = APINT_BITS_PER_WORD - highWordBits;
609 }
610 int i = getNumWords() - 1;
611 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
612 if (Count == highWordBits) {
613 for (i--; i >= 0; --i) {
614 if (U.pVal[i] == WORDTYPE_MAX)
615 Count += APINT_BITS_PER_WORD;
616 else {
617 Count += llvm::countLeadingOnes(U.pVal[i]);
618 break;
619 }
620 }
621 }
622 return Count;
623}
624
625unsigned APInt::countTrailingZerosSlowCase() const {
626 unsigned Count = 0;
627 unsigned i = 0;
628 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
629 Count += APINT_BITS_PER_WORD;
630 if (i < getNumWords())
631 Count += llvm::countTrailingZeros(U.pVal[i]);
632 return std::min(Count, BitWidth);
633}
634
635unsigned APInt::countTrailingOnesSlowCase() const {
636 unsigned Count = 0;
637 unsigned i = 0;
638 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
639 Count += APINT_BITS_PER_WORD;
640 if (i < getNumWords())
641 Count += llvm::countTrailingOnes(U.pVal[i]);
642 assert(Count <= BitWidth)(static_cast <bool> (Count <= BitWidth) ? void (0) :
__assert_fail ("Count <= BitWidth", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 642, __extension__ __PRETTY_FUNCTION__))
;
643 return Count;
644}
645
646unsigned APInt::countPopulationSlowCase() const {
647 unsigned Count = 0;
648 for (unsigned i = 0; i < getNumWords(); ++i)
649 Count += llvm::countPopulation(U.pVal[i]);
650 return Count;
651}
652
653bool APInt::intersectsSlowCase(const APInt &RHS) const {
654 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
655 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
656 return true;
657
658 return false;
659}
660
661bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
662 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
663 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
664 return false;
665
666 return true;
667}
668
669APInt APInt::byteSwap() const {
670 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!")(static_cast <bool> (BitWidth >= 16 && BitWidth
% 8 == 0 && "Cannot byteswap!") ? void (0) : __assert_fail
("BitWidth >= 16 && BitWidth % 8 == 0 && \"Cannot byteswap!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 670, __extension__ __PRETTY_FUNCTION__))
;
671 if (BitWidth == 16)
672 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
673 if (BitWidth == 32)
674 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
675 if (BitWidth <= 64) {
676 uint64_t Tmp1 = ByteSwap_64(U.VAL);
677 Tmp1 >>= (64 - BitWidth);
678 return APInt(BitWidth, Tmp1);
679 }
680
681 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
682 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
683 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
684 if (Result.BitWidth != BitWidth) {
685 Result.lshrInPlace(Result.BitWidth - BitWidth);
686 Result.BitWidth = BitWidth;
687 }
688 return Result;
689}
690
691APInt APInt::reverseBits() const {
692 switch (BitWidth) {
693 case 64:
694 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
695 case 32:
696 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
697 case 16:
698 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
699 case 8:
700 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
701 default:
702 break;
703 }
704
705 APInt Val(*this);
706 APInt Reversed(BitWidth, 0);
707 unsigned S = BitWidth;
708
709 for (; Val != 0; Val.lshrInPlace(1)) {
710 Reversed <<= 1;
711 Reversed |= Val[0];
712 --S;
713 }
714
715 Reversed <<= S;
716 return Reversed;
717}
718
719APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
720 // Fast-path a common case.
721 if (A == B) return A;
722
723 // Corner cases: if either operand is zero, the other is the gcd.
724 if (!A) return B;
725 if (!B) return A;
726
727 // Count common powers of 2 and remove all other powers of 2.
728 unsigned Pow2;
729 {
730 unsigned Pow2_A = A.countTrailingZeros();
731 unsigned Pow2_B = B.countTrailingZeros();
732 if (Pow2_A > Pow2_B) {
733 A.lshrInPlace(Pow2_A - Pow2_B);
734 Pow2 = Pow2_B;
735 } else if (Pow2_B > Pow2_A) {
736 B.lshrInPlace(Pow2_B - Pow2_A);
737 Pow2 = Pow2_A;
738 } else {
739 Pow2 = Pow2_A;
740 }
741 }
742
743 // Both operands are odd multiples of 2^Pow_2:
744 //
745 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
746 //
747 // This is a modified version of Stein's algorithm, taking advantage of
748 // efficient countTrailingZeros().
749 while (A != B) {
750 if (A.ugt(B)) {
751 A -= B;
752 A.lshrInPlace(A.countTrailingZeros() - Pow2);
753 } else {
754 B -= A;
755 B.lshrInPlace(B.countTrailingZeros() - Pow2);
756 }
757 }
758
759 return A;
760}
761
762APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
763 uint64_t I = bit_cast<uint64_t>(Double);
764
765 // Get the sign bit from the highest order bit
766 bool isNeg = I >> 63;
767
768 // Get the 11-bit exponent and adjust for the 1023 bit bias
769 int64_t exp = ((I >> 52) & 0x7ff) - 1023;
770
771 // If the exponent is negative, the value is < 0 so just return 0.
772 if (exp < 0)
773 return APInt(width, 0u);
774
775 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
776 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
777
778 // If the exponent doesn't shift all bits out of the mantissa
779 if (exp < 52)
780 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
781 APInt(width, mantissa >> (52 - exp));
782
783 // If the client didn't provide enough bits for us to shift the mantissa into
784 // then the result is undefined, just return 0
785 if (width <= exp - 52)
786 return APInt(width, 0);
787
788 // Otherwise, we have to shift the mantissa bits up to the right location
789 APInt Tmp(width, mantissa);
790 Tmp <<= (unsigned)exp - 52;
791 return isNeg ? -Tmp : Tmp;
792}
793
794/// This function converts this APInt to a double.
795/// The layout for double is as following (IEEE Standard 754):
796/// --------------------------------------
797/// | Sign Exponent Fraction Bias |
798/// |-------------------------------------- |
799/// | 1[63] 11[62-52] 52[51-00] 1023 |
800/// --------------------------------------
801double APInt::roundToDouble(bool isSigned) const {
802
803 // Handle the simple case where the value is contained in one uint64_t.
804 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
805 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
806 if (isSigned) {
807 int64_t sext = SignExtend64(getWord(0), BitWidth);
808 return double(sext);
809 } else
810 return double(getWord(0));
811 }
812
813 // Determine if the value is negative.
814 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
815
816 // Construct the absolute value if we're negative.
817 APInt Tmp(isNeg ? -(*this) : (*this));
818
819 // Figure out how many bits we're using.
820 unsigned n = Tmp.getActiveBits();
821
822 // The exponent (without bias normalization) is just the number of bits
823 // we are using. Note that the sign bit is gone since we constructed the
824 // absolute value.
825 uint64_t exp = n;
826
827 // Return infinity for exponent overflow
828 if (exp > 1023) {
829 if (!isSigned || !isNeg)
830 return std::numeric_limits<double>::infinity();
831 else
832 return -std::numeric_limits<double>::infinity();
833 }
834 exp += 1023; // Increment for 1023 bias
835
836 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
837 // extract the high 52 bits from the correct words in pVal.
838 uint64_t mantissa;
839 unsigned hiWord = whichWord(n-1);
840 if (hiWord == 0) {
841 mantissa = Tmp.U.pVal[0];
842 if (n > 52)
843 mantissa >>= n - 52; // shift down, we want the top 52 bits.
844 } else {
845 assert(hiWord > 0 && "huh?")(static_cast <bool> (hiWord > 0 && "huh?") ?
void (0) : __assert_fail ("hiWord > 0 && \"huh?\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 845, __extension__ __PRETTY_FUNCTION__))
;
846 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
847 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
848 mantissa = hibits | lobits;
849 }
850
851 // The leading bit of mantissa is implicit, so get rid of it.
852 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
853 uint64_t I = sign | (exp << 52) | mantissa;
854 return bit_cast<double>(I);
855}
856
857// Truncate to new width.
858APInt APInt::trunc(unsigned width) const {
859 assert(width < BitWidth && "Invalid APInt Truncate request")(static_cast <bool> (width < BitWidth && "Invalid APInt Truncate request"
) ? void (0) : __assert_fail ("width < BitWidth && \"Invalid APInt Truncate request\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 859, __extension__ __PRETTY_FUNCTION__))
;
860 assert(width && "Can't truncate to 0 bits")(static_cast <bool> (width && "Can't truncate to 0 bits"
) ? void (0) : __assert_fail ("width && \"Can't truncate to 0 bits\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 860, __extension__ __PRETTY_FUNCTION__))
;
861
862 if (width <= APINT_BITS_PER_WORD)
863 return APInt(width, getRawData()[0]);
864
865 APInt Result(getMemory(getNumWords(width)), width);
866
867 // Copy full words.
868 unsigned i;
869 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
870 Result.U.pVal[i] = U.pVal[i];
871
872 // Truncate and copy any partial word.
873 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
874 if (bits != 0)
875 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
876
877 return Result;
878}
879
880// Truncate to new width with unsigned saturation.
881APInt APInt::truncUSat(unsigned width) const {
882 assert(width < BitWidth && "Invalid APInt Truncate request")(static_cast <bool> (width < BitWidth && "Invalid APInt Truncate request"
) ? void (0) : __assert_fail ("width < BitWidth && \"Invalid APInt Truncate request\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 882, __extension__ __PRETTY_FUNCTION__))
;
883 assert(width && "Can't truncate to 0 bits")(static_cast <bool> (width && "Can't truncate to 0 bits"
) ? void (0) : __assert_fail ("width && \"Can't truncate to 0 bits\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 883, __extension__ __PRETTY_FUNCTION__))
;
884
885 // Can we just losslessly truncate it?
886 if (isIntN(width))
887 return trunc(width);
888 // If not, then just return the new limit.
889 return APInt::getMaxValue(width);
890}
891
892// Truncate to new width with signed saturation.
893APInt APInt::truncSSat(unsigned width) const {
894 assert(width < BitWidth && "Invalid APInt Truncate request")(static_cast <bool> (width < BitWidth && "Invalid APInt Truncate request"
) ? void (0) : __assert_fail ("width < BitWidth && \"Invalid APInt Truncate request\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 894, __extension__ __PRETTY_FUNCTION__))
;
895 assert(width && "Can't truncate to 0 bits")(static_cast <bool> (width && "Can't truncate to 0 bits"
) ? void (0) : __assert_fail ("width && \"Can't truncate to 0 bits\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 895, __extension__ __PRETTY_FUNCTION__))
;
896
897 // Can we just losslessly truncate it?
898 if (isSignedIntN(width))
899 return trunc(width);
900 // If not, then just return the new limits.
901 return isNegative() ? APInt::getSignedMinValue(width)
902 : APInt::getSignedMaxValue(width);
903}
904
905// Sign extend to a new width.
906APInt APInt::sext(unsigned Width) const {
907 assert(Width > BitWidth && "Invalid APInt SignExtend request")(static_cast <bool> (Width > BitWidth && "Invalid APInt SignExtend request"
) ? void (0) : __assert_fail ("Width > BitWidth && \"Invalid APInt SignExtend request\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 907, __extension__ __PRETTY_FUNCTION__))
;
908
909 if (Width <= APINT_BITS_PER_WORD)
910 return APInt(Width, SignExtend64(U.VAL, BitWidth));
911
912 APInt Result(getMemory(getNumWords(Width)), Width);
913
914 // Copy words.
915 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
916
917 // Sign extend the last word since there may be unused bits in the input.
918 Result.U.pVal[getNumWords() - 1] =
919 SignExtend64(Result.U.pVal[getNumWords() - 1],
920 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
921
922 // Fill with sign bits.
923 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
924 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
925 Result.clearUnusedBits();
926 return Result;
927}
928
929// Zero extend to a new width.
930APInt APInt::zext(unsigned width) const {
931 assert(width > BitWidth && "Invalid APInt ZeroExtend request")(static_cast <bool> (width > BitWidth && "Invalid APInt ZeroExtend request"
) ? void (0) : __assert_fail ("width > BitWidth && \"Invalid APInt ZeroExtend request\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 931, __extension__ __PRETTY_FUNCTION__))
;
932
933 if (width <= APINT_BITS_PER_WORD)
934 return APInt(width, U.VAL);
935
936 APInt Result(getMemory(getNumWords(width)), width);
937
938 // Copy words.
939 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
940
941 // Zero remaining words.
942 std::memset(Result.U.pVal + getNumWords(), 0,
943 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
944
945 return Result;
946}
947
948APInt APInt::zextOrTrunc(unsigned width) const {
949 if (BitWidth < width)
950 return zext(width);
951 if (BitWidth > width)
952 return trunc(width);
953 return *this;
954}
955
956APInt APInt::sextOrTrunc(unsigned width) const {
957 if (BitWidth < width)
958 return sext(width);
959 if (BitWidth > width)
960 return trunc(width);
961 return *this;
962}
963
964APInt APInt::truncOrSelf(unsigned width) const {
965 if (BitWidth > width)
966 return trunc(width);
967 return *this;
968}
969
970APInt APInt::zextOrSelf(unsigned width) const {
971 if (BitWidth < width)
972 return zext(width);
973 return *this;
974}
975
976APInt APInt::sextOrSelf(unsigned width) const {
977 if (BitWidth < width)
978 return sext(width);
979 return *this;
980}
981
982/// Arithmetic right-shift this APInt by shiftAmt.
983/// Arithmetic right-shift function.
984void APInt::ashrInPlace(const APInt &shiftAmt) {
985 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
986}
987
988/// Arithmetic right-shift this APInt by shiftAmt.
989/// Arithmetic right-shift function.
990void APInt::ashrSlowCase(unsigned ShiftAmt) {
991 // Don't bother performing a no-op shift.
992 if (!ShiftAmt)
993 return;
994
995 // Save the original sign bit for later.
996 bool Negative = isNegative();
997
998 // WordShift is the inter-part shift; BitShift is intra-part shift.
999 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1000 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1001
1002 unsigned WordsToMove = getNumWords() - WordShift;
1003 if (WordsToMove != 0) {
1004 // Sign extend the last word to fill in the unused bits.
1005 U.pVal[getNumWords() - 1] = SignExtend64(
1006 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1007
1008 // Fastpath for moving by whole words.
1009 if (BitShift == 0) {
1010 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1011 } else {
1012 // Move the words containing significant bits.
1013 for (unsigned i = 0; i != WordsToMove - 1; ++i)
1014 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1015 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1016
1017 // Handle the last word which has no high bits to copy.
1018 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1019 // Sign extend one more time.
1020 U.pVal[WordsToMove - 1] =
1021 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1022 }
1023 }
1024
1025 // Fill in the remainder based on the original sign.
1026 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1027 WordShift * APINT_WORD_SIZE);
1028 clearUnusedBits();
1029}
1030
1031/// Logical right-shift this APInt by shiftAmt.
1032/// Logical right-shift function.
1033void APInt::lshrInPlace(const APInt &shiftAmt) {
1034 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1035}
1036
1037/// Logical right-shift this APInt by shiftAmt.
1038/// Logical right-shift function.
1039void APInt::lshrSlowCase(unsigned ShiftAmt) {
1040 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1041}
1042
1043/// Left-shift this APInt by shiftAmt.
1044/// Left-shift function.
1045APInt &APInt::operator<<=(const APInt &shiftAmt) {
1046 // It's undefined behavior in C to shift by BitWidth or greater.
1047 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1048 return *this;
1049}
1050
1051void APInt::shlSlowCase(unsigned ShiftAmt) {
1052 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1053 clearUnusedBits();
1054}
1055
1056// Calculate the rotate amount modulo the bit width.
1057static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1058 unsigned rotBitWidth = rotateAmt.getBitWidth();
1059 APInt rot = rotateAmt;
1060 if (rotBitWidth < BitWidth) {
1061 // Extend the rotate APInt, so that the urem doesn't divide by 0.
1062 // e.g. APInt(1, 32) would give APInt(1, 0).
1063 rot = rotateAmt.zext(BitWidth);
1064 }
1065 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1066 return rot.getLimitedValue(BitWidth);
1067}
1068
1069APInt APInt::rotl(const APInt &rotateAmt) const {
1070 return rotl(rotateModulo(BitWidth, rotateAmt));
1071}
1072
1073APInt APInt::rotl(unsigned rotateAmt) const {
1074 rotateAmt %= BitWidth;
1075 if (rotateAmt == 0)
1076 return *this;
1077 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1078}
1079
1080APInt APInt::rotr(const APInt &rotateAmt) const {
1081 return rotr(rotateModulo(BitWidth, rotateAmt));
1082}
1083
1084APInt APInt::rotr(unsigned rotateAmt) const {
1085 rotateAmt %= BitWidth;
1086 if (rotateAmt == 0)
1087 return *this;
1088 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1089}
1090
1091// Square Root - this method computes and returns the square root of "this".
1092// Three mechanisms are used for computation. For small values (<= 5 bits),
1093// a table lookup is done. This gets some performance for common cases. For
1094// values using less than 52 bits, the value is converted to double and then
1095// the libc sqrt function is called. The result is rounded and then converted
1096// back to a uint64_t which is then used to construct the result. Finally,
1097// the Babylonian method for computing square roots is used.
1098APInt APInt::sqrt() const {
1099
1100 // Determine the magnitude of the value.
1101 unsigned magnitude = getActiveBits();
1102
1103 // Use a fast table for some small values. This also gets rid of some
1104 // rounding errors in libc sqrt for small values.
1105 if (magnitude <= 5) {
1106 static const uint8_t results[32] = {
1107 /* 0 */ 0,
1108 /* 1- 2 */ 1, 1,
1109 /* 3- 6 */ 2, 2, 2, 2,
1110 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1111 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1112 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1113 /* 31 */ 6
1114 };
1115 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1116 }
1117
1118 // If the magnitude of the value fits in less than 52 bits (the precision of
1119 // an IEEE double precision floating point value), then we can use the
1120 // libc sqrt function which will probably use a hardware sqrt computation.
1121 // This should be faster than the algorithm below.
1122 if (magnitude < 52) {
1123 return APInt(BitWidth,
1124 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1125 : U.pVal[0])))));
1126 }
1127
1128 // Okay, all the short cuts are exhausted. We must compute it. The following
1129 // is a classical Babylonian method for computing the square root. This code
1130 // was adapted to APInt from a wikipedia article on such computations.
1131 // See http://www.wikipedia.org/ and go to the page named
1132 // Calculate_an_integer_square_root.
1133 unsigned nbits = BitWidth, i = 4;
1134 APInt testy(BitWidth, 16);
1135 APInt x_old(BitWidth, 1);
1136 APInt x_new(BitWidth, 0);
1137 APInt two(BitWidth, 2);
1138
1139 // Select a good starting value using binary logarithms.
1140 for (;; i += 2, testy = testy.shl(2))
1141 if (i >= nbits || this->ule(testy)) {
1142 x_old = x_old.shl(i / 2);
1143 break;
1144 }
1145
1146 // Use the Babylonian method to arrive at the integer square root:
1147 for (;;) {
1148 x_new = (this->udiv(x_old) + x_old).udiv(two);
1149 if (x_old.ule(x_new))
1150 break;
1151 x_old = x_new;
1152 }
1153
1154 // Make sure we return the closest approximation
1155 // NOTE: The rounding calculation below is correct. It will produce an
1156 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1157 // determined to be a rounding issue with pari/gp as it begins to use a
1158 // floating point representation after 192 bits. There are no discrepancies
1159 // between this algorithm and pari/gp for bit widths < 192 bits.
1160 APInt square(x_old * x_old);
1161 APInt nextSquare((x_old + 1) * (x_old +1));
1162 if (this->ult(square))
1163 return x_old;
1164 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation")(static_cast <bool> (this->ule(nextSquare) &&
"Error in APInt::sqrt computation") ? void (0) : __assert_fail
("this->ule(nextSquare) && \"Error in APInt::sqrt computation\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1164, __extension__ __PRETTY_FUNCTION__))
;
1165 APInt midpoint((nextSquare - square).udiv(two));
1166 APInt offset(*this - square);
1167 if (offset.ult(midpoint))
1168 return x_old;
1169 return x_old + 1;
1170}
1171
1172/// Computes the multiplicative inverse of this APInt for a given modulo. The
1173/// iterative extended Euclidean algorithm is used to solve for this value,
1174/// however we simplify it to speed up calculating only the inverse, and take
1175/// advantage of div+rem calculations. We also use some tricks to avoid copying
1176/// (potentially large) APInts around.
1177/// WARNING: a value of '0' may be returned,
1178/// signifying that no multiplicative inverse exists!
1179APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1180 assert(ult(modulo) && "This APInt must be smaller than the modulo")(static_cast <bool> (ult(modulo) && "This APInt must be smaller than the modulo"
) ? void (0) : __assert_fail ("ult(modulo) && \"This APInt must be smaller than the modulo\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1180, __extension__ __PRETTY_FUNCTION__))
;
1181
1182 // Using the properties listed at the following web page (accessed 06/21/08):
1183 // http://www.numbertheory.org/php/euclid.html
1184 // (especially the properties numbered 3, 4 and 9) it can be proved that
1185 // BitWidth bits suffice for all the computations in the algorithm implemented
1186 // below. More precisely, this number of bits suffice if the multiplicative
1187 // inverse exists, but may not suffice for the general extended Euclidean
1188 // algorithm.
1189
1190 APInt r[2] = { modulo, *this };
1191 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1192 APInt q(BitWidth, 0);
1193
1194 unsigned i;
1195 for (i = 0; r[i^1] != 0; i ^= 1) {
1196 // An overview of the math without the confusing bit-flipping:
1197 // q = r[i-2] / r[i-1]
1198 // r[i] = r[i-2] % r[i-1]
1199 // t[i] = t[i-2] - t[i-1] * q
1200 udivrem(r[i], r[i^1], q, r[i]);
1201 t[i] -= t[i^1] * q;
1202 }
1203
1204 // If this APInt and the modulo are not coprime, there is no multiplicative
1205 // inverse, so return 0. We check this by looking at the next-to-last
1206 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1207 // algorithm.
1208 if (r[i] != 1)
1209 return APInt(BitWidth, 0);
1210
1211 // The next-to-last t is the multiplicative inverse. However, we are
1212 // interested in a positive inverse. Calculate a positive one from a negative
1213 // one if necessary. A simple addition of the modulo suffices because
1214 // abs(t[i]) is known to be less than *this/2 (see the link above).
1215 if (t[i].isNegative())
1216 t[i] += modulo;
1217
1218 return std::move(t[i]);
1219}
1220
1221/// Calculate the magic numbers required to implement a signed integer division
1222/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1223/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1224/// Warren, Jr., chapter 10.
1225APInt::ms APInt::magic() const {
1226 const APInt& d = *this;
1227 unsigned p;
1228 APInt ad, anc, delta, q1, r1, q2, r2, t;
1229 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1230 struct ms mag;
1231
1232 ad = d.abs();
1233 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1234 anc = t - 1 - t.urem(ad); // absolute value of nc
1235 p = d.getBitWidth() - 1; // initialize p
1236 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1237 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1238 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1239 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1240 do {
1241 p = p + 1;
1242 q1 = q1<<1; // update q1 = 2p/abs(nc)
1243 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1244 if (r1.uge(anc)) { // must be unsigned comparison
1245 q1 = q1 + 1;
1246 r1 = r1 - anc;
1247 }
1248 q2 = q2<<1; // update q2 = 2p/abs(d)
1249 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1250 if (r2.uge(ad)) { // must be unsigned comparison
1251 q2 = q2 + 1;
1252 r2 = r2 - ad;
1253 }
1254 delta = ad - r2;
1255 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1256
1257 mag.m = q2 + 1;
1258 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1259 mag.s = p - d.getBitWidth(); // resulting shift
1260 return mag;
1261}
1262
1263/// Calculate the magic numbers required to implement an unsigned integer
1264/// division by a constant as a sequence of multiplies, adds and shifts.
1265/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1266/// S. Warren, Jr., chapter 10.
1267/// LeadingZeros can be used to simplify the calculation if the upper bits
1268/// of the divided value are known zero.
1269APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1270 const APInt& d = *this;
1271 unsigned p;
1272 APInt nc, delta, q1, r1, q2, r2;
1273 struct mu magu;
1274 magu.a = 0; // initialize "add" indicator
1275 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1276 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1277 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1278
1279 nc = allOnes - (allOnes - d).urem(d);
1280 p = d.getBitWidth() - 1; // initialize p
1281 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1282 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1283 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1284 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1285 do {
1286 p = p + 1;
1287 if (r1.uge(nc - r1)) {
1288 q1 = q1 + q1 + 1; // update q1
1289 r1 = r1 + r1 - nc; // update r1
1290 }
1291 else {
1292 q1 = q1+q1; // update q1
1293 r1 = r1+r1; // update r1
1294 }
1295 if ((r2 + 1).uge(d - r2)) {
1296 if (q2.uge(signedMax)) magu.a = 1;
1297 q2 = q2+q2 + 1; // update q2
1298 r2 = r2+r2 + 1 - d; // update r2
1299 }
1300 else {
1301 if (q2.uge(signedMin)) magu.a = 1;
1302 q2 = q2+q2; // update q2
1303 r2 = r2+r2 + 1; // update r2
1304 }
1305 delta = d - 1 - r2;
1306 } while (p < d.getBitWidth()*2 &&
1307 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1308 magu.m = q2 + 1; // resulting magic number
1309 magu.s = p - d.getBitWidth(); // resulting shift
1310 return magu;
1311}
1312
1313/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1314/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1315/// variables here have the same names as in the algorithm. Comments explain
1316/// the algorithm and any deviation from it.
1317static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1318 unsigned m, unsigned n) {
1319 assert(u && "Must provide dividend")(static_cast <bool> (u && "Must provide dividend"
) ? void (0) : __assert_fail ("u && \"Must provide dividend\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1319, __extension__ __PRETTY_FUNCTION__))
;
1320 assert(v && "Must provide divisor")(static_cast <bool> (v && "Must provide divisor"
) ? void (0) : __assert_fail ("v && \"Must provide divisor\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1320, __extension__ __PRETTY_FUNCTION__))
;
1321 assert(q && "Must provide quotient")(static_cast <bool> (q && "Must provide quotient"
) ? void (0) : __assert_fail ("q && \"Must provide quotient\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1321, __extension__ __PRETTY_FUNCTION__))
;
1322 assert(u != v && u != q && v != q && "Must use different memory")(static_cast <bool> (u != v && u != q &&
v != q && "Must use different memory") ? void (0) : __assert_fail
("u != v && u != q && v != q && \"Must use different memory\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1322, __extension__ __PRETTY_FUNCTION__))
;
1323 assert(n>1 && "n must be > 1")(static_cast <bool> (n>1 && "n must be > 1"
) ? void (0) : __assert_fail ("n>1 && \"n must be > 1\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1323, __extension__ __PRETTY_FUNCTION__))
;
1324
1325 // b denotes the base of the number system. In our case b is 2^32.
1326 const uint64_t b = uint64_t(1) << 32;
1327
1328// The DEBUG macros here tend to be spam in the debug output if you're not
1329// debugging this code. Disable them unless KNUTH_DEBUG is defined.
1330#ifdef KNUTH_DEBUG
1331#define DEBUG_KNUTH(X)do {} while(false) LLVM_DEBUG(X)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { X; } } while (false)
1332#else
1333#define DEBUG_KNUTH(X)do {} while(false) do {} while(false)
1334#endif
1335
1336 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n')do {} while(false);
1337 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:")do {} while(false);
1338 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false);
1339 DEBUG_KNUTH(dbgs() << " by")do {} while(false);
1340 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1])do {} while(false);
1341 DEBUG_KNUTH(dbgs() << '\n')do {} while(false);
1342 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1343 // u and v by d. Note that we have taken Knuth's advice here to use a power
1344 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1345 // 2 allows us to shift instead of multiply and it is easy to determine the
1346 // shift amount from the leading zeros. We are basically normalizing the u
1347 // and v so that its high bits are shifted to the top of v's range without
1348 // overflow. Note that this can require an extra word in u so that u must
1349 // be of length m+n+1.
1350 unsigned shift = countLeadingZeros(v[n-1]);
1351 uint32_t v_carry = 0;
1352 uint32_t u_carry = 0;
1353 if (shift) {
1354 for (unsigned i = 0; i < m+n; ++i) {
1355 uint32_t u_tmp = u[i] >> (32 - shift);
1356 u[i] = (u[i] << shift) | u_carry;
1357 u_carry = u_tmp;
1358 }
1359 for (unsigned i = 0; i < n; ++i) {
1360 uint32_t v_tmp = v[i] >> (32 - shift);
1361 v[i] = (v[i] << shift) | v_carry;
1362 v_carry = v_tmp;
1363 }
1364 }
1365 u[m+n] = u_carry;
1366
1367 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:")do {} while(false);
1368 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false);
1369 DEBUG_KNUTH(dbgs() << " by")do {} while(false);
1370 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1])do {} while(false);
1371 DEBUG_KNUTH(dbgs() << '\n')do {} while(false);
1372
1373 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1374 int j = m;
1375 do {
1376 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n')do {} while(false);
1377 // D3. [Calculate q'.].
1378 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1379 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1380 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1381 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1382 // on v[n-2] determines at high speed most of the cases in which the trial
1383 // value qp is one too large, and it eliminates all cases where qp is two
1384 // too large.
1385 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1386 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n')do {} while(false);
1387 uint64_t qp = dividend / v[n-1];
1388 uint64_t rp = dividend % v[n-1];
1389 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1390 qp--;
1391 rp += v[n-1];
1392 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1393 qp--;
1394 }
1395 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n')do {} while(false);
1396
1397 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1398 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1399 // consists of a simple multiplication by a one-place number, combined with
1400 // a subtraction.
1401 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1402 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1403 // true value plus b**(n+1), namely as the b's complement of
1404 // the true value, and a "borrow" to the left should be remembered.
1405 int64_t borrow = 0;
1406 for (unsigned i = 0; i < n; ++i) {
1407 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1408 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1409 u[j+i] = Lo_32(subres);
1410 borrow = Hi_32(p) - Hi_32(subres);
1411 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]do {} while(false)
1412 << ", borrow = " << borrow << '\n')do {} while(false);
1413 }
1414 bool isNeg = u[j+n] < borrow;
1415 u[j+n] -= Lo_32(borrow);
1416
1417 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:")do {} while(false);
1418 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false);
1419 DEBUG_KNUTH(dbgs() << '\n')do {} while(false);
1420
1421 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1422 // negative, go to step D6; otherwise go on to step D7.
1423 q[j] = Lo_32(qp);
1424 if (isNeg) {
1425 // D6. [Add back]. The probability that this step is necessary is very
1426 // small, on the order of only 2/b. Make sure that test data accounts for
1427 // this possibility. Decrease q[j] by 1
1428 q[j]--;
1429 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1430 // A carry will occur to the left of u[j+n], and it should be ignored
1431 // since it cancels with the borrow that occurred in D4.
1432 bool carry = false;
1433 for (unsigned i = 0; i < n; i++) {
1434 uint32_t limit = std::min(u[j+i],v[i]);
1435 u[j+i] += v[i] + carry;
1436 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1437 }
1438 u[j+n] += carry;
1439 }
1440 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:")do {} while(false);
1441 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false);
1442 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n')do {} while(false);
1443
1444 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1445 } while (--j >= 0);
1446
1447 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:")do {} while(false);
1448 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i])do {} while(false);
1449 DEBUG_KNUTH(dbgs() << '\n')do {} while(false);
1450
1451 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1452 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1453 // compute the remainder (urem uses this).
1454 if (r) {
1455 // The value d is expressed by the "shift" value above since we avoided
1456 // multiplication by d by using a shift left. So, all we have to do is
1457 // shift right here.
1458 if (shift) {
1459 uint32_t carry = 0;
1460 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:")do {} while(false);
1461 for (int i = n-1; i >= 0; i--) {
1462 r[i] = (u[i] >> shift) | carry;
1463 carry = u[i] << (32 - shift);
1464 DEBUG_KNUTH(dbgs() << " " << r[i])do {} while(false);
1465 }
1466 } else {
1467 for (int i = n-1; i >= 0; i--) {
1468 r[i] = u[i];
1469 DEBUG_KNUTH(dbgs() << " " << r[i])do {} while(false);
1470 }
1471 }
1472 DEBUG_KNUTH(dbgs() << '\n')do {} while(false);
1473 }
1474 DEBUG_KNUTH(dbgs() << '\n')do {} while(false);
1475}
1476
1477void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1478 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1479 assert(lhsWords >= rhsWords && "Fractional result")(static_cast <bool> (lhsWords >= rhsWords &&
"Fractional result") ? void (0) : __assert_fail ("lhsWords >= rhsWords && \"Fractional result\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1479, __extension__ __PRETTY_FUNCTION__))
;
1480
1481 // First, compose the values into an array of 32-bit words instead of
1482 // 64-bit words. This is a necessity of both the "short division" algorithm
1483 // and the Knuth "classical algorithm" which requires there to be native
1484 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1485 // can't use 64-bit operands here because we don't have native results of
1486 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1487 // work on large-endian machines.
1488 unsigned n = rhsWords * 2;
1489 unsigned m = (lhsWords * 2) - n;
1490
1491 // Allocate space for the temporary values we need either on the stack, if
1492 // it will fit, or on the heap if it won't.
1493 uint32_t SPACE[128];
1494 uint32_t *U = nullptr;
1495 uint32_t *V = nullptr;
1496 uint32_t *Q = nullptr;
1497 uint32_t *R = nullptr;
1498 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1499 U = &SPACE[0];
1500 V = &SPACE[m+n+1];
1501 Q = &SPACE[(m+n+1) + n];
1502 if (Remainder)
1503 R = &SPACE[(m+n+1) + n + (m+n)];
1504 } else {
1505 U = new uint32_t[m + n + 1];
1506 V = new uint32_t[n];
1507 Q = new uint32_t[m+n];
1508 if (Remainder)
1509 R = new uint32_t[n];
1510 }
1511
1512 // Initialize the dividend
1513 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1514 for (unsigned i = 0; i < lhsWords; ++i) {
1515 uint64_t tmp = LHS[i];
1516 U[i * 2] = Lo_32(tmp);
1517 U[i * 2 + 1] = Hi_32(tmp);
1518 }
1519 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1520
1521 // Initialize the divisor
1522 memset(V, 0, (n)*sizeof(uint32_t));
1523 for (unsigned i = 0; i < rhsWords; ++i) {
1524 uint64_t tmp = RHS[i];
1525 V[i * 2] = Lo_32(tmp);
1526 V[i * 2 + 1] = Hi_32(tmp);
1527 }
1528
1529 // initialize the quotient and remainder
1530 memset(Q, 0, (m+n) * sizeof(uint32_t));
1531 if (Remainder)
1532 memset(R, 0, n * sizeof(uint32_t));
1533
1534 // Now, adjust m and n for the Knuth division. n is the number of words in
1535 // the divisor. m is the number of words by which the dividend exceeds the
1536 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1537 // contain any zero words or the Knuth algorithm fails.
1538 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1539 n--;
1540 m++;
1541 }
1542 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1543 m--;
1544
1545 // If we're left with only a single word for the divisor, Knuth doesn't work
1546 // so we implement the short division algorithm here. This is much simpler
1547 // and faster because we are certain that we can divide a 64-bit quantity
1548 // by a 32-bit quantity at hardware speed and short division is simply a
1549 // series of such operations. This is just like doing short division but we
1550 // are using base 2^32 instead of base 10.
1551 assert(n != 0 && "Divide by zero?")(static_cast <bool> (n != 0 && "Divide by zero?"
) ? void (0) : __assert_fail ("n != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1551, __extension__ __PRETTY_FUNCTION__))
;
1552 if (n == 1) {
1553 uint32_t divisor = V[0];
1554 uint32_t remainder = 0;
1555 for (int i = m; i >= 0; i--) {
1556 uint64_t partial_dividend = Make_64(remainder, U[i]);
1557 if (partial_dividend == 0) {
1558 Q[i] = 0;
1559 remainder = 0;
1560 } else if (partial_dividend < divisor) {
1561 Q[i] = 0;
1562 remainder = Lo_32(partial_dividend);
1563 } else if (partial_dividend == divisor) {
1564 Q[i] = 1;
1565 remainder = 0;
1566 } else {
1567 Q[i] = Lo_32(partial_dividend / divisor);
1568 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1569 }
1570 }
1571 if (R)
1572 R[0] = remainder;
1573 } else {
1574 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1575 // case n > 1.
1576 KnuthDiv(U, V, Q, R, m, n);
1577 }
1578
1579 // If the caller wants the quotient
1580 if (Quotient) {
1581 for (unsigned i = 0; i < lhsWords; ++i)
1582 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1583 }
1584
1585 // If the caller wants the remainder
1586 if (Remainder) {
1587 for (unsigned i = 0; i < rhsWords; ++i)
1588 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1589 }
1590
1591 // Clean up the memory we allocated.
1592 if (U != &SPACE[0]) {
1593 delete [] U;
1594 delete [] V;
1595 delete [] Q;
1596 delete [] R;
1597 }
1598}
1599
1600APInt APInt::udiv(const APInt &RHS) const {
1601 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1601, __extension__ __PRETTY_FUNCTION__))
;
1602
1603 // First, deal with the easy case
1604 if (isSingleWord()) {
1605 assert(RHS.U.VAL != 0 && "Divide by zero?")(static_cast <bool> (RHS.U.VAL != 0 && "Divide by zero?"
) ? void (0) : __assert_fail ("RHS.U.VAL != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1605, __extension__ __PRETTY_FUNCTION__))
;
1606 return APInt(BitWidth, U.VAL / RHS.U.VAL);
1607 }
1608
1609 // Get some facts about the LHS and RHS number of bits and words
1610 unsigned lhsWords = getNumWords(getActiveBits());
1611 unsigned rhsBits = RHS.getActiveBits();
1612 unsigned rhsWords = getNumWords(rhsBits);
1613 assert(rhsWords && "Divided by zero???")(static_cast <bool> (rhsWords && "Divided by zero???"
) ? void (0) : __assert_fail ("rhsWords && \"Divided by zero???\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1613, __extension__ __PRETTY_FUNCTION__))
;
1614
1615 // Deal with some degenerate cases
1616 if (!lhsWords)
1617 // 0 / X ===> 0
1618 return APInt(BitWidth, 0);
1619 if (rhsBits == 1)
1620 // X / 1 ===> X
1621 return *this;
1622 if (lhsWords < rhsWords || this->ult(RHS))
1623 // X / Y ===> 0, iff X < Y
1624 return APInt(BitWidth, 0);
1625 if (*this == RHS)
1626 // X / X ===> 1
1627 return APInt(BitWidth, 1);
1628 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1629 // All high words are zero, just use native divide
1630 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1631
1632 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1633 APInt Quotient(BitWidth, 0); // to hold result.
1634 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1635 return Quotient;
1636}
1637
1638APInt APInt::udiv(uint64_t RHS) const {
1639 assert(RHS != 0 && "Divide by zero?")(static_cast <bool> (RHS != 0 && "Divide by zero?"
) ? void (0) : __assert_fail ("RHS != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1639, __extension__ __PRETTY_FUNCTION__))
;
1640
1641 // First, deal with the easy case
1642 if (isSingleWord())
1643 return APInt(BitWidth, U.VAL / RHS);
1644
1645 // Get some facts about the LHS words.
1646 unsigned lhsWords = getNumWords(getActiveBits());
1647
1648 // Deal with some degenerate cases
1649 if (!lhsWords)
1650 // 0 / X ===> 0
1651 return APInt(BitWidth, 0);
1652 if (RHS == 1)
1653 // X / 1 ===> X
1654 return *this;
1655 if (this->ult(RHS))
1656 // X / Y ===> 0, iff X < Y
1657 return APInt(BitWidth, 0);
1658 if (*this == RHS)
1659 // X / X ===> 1
1660 return APInt(BitWidth, 1);
1661 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1662 // All high words are zero, just use native divide
1663 return APInt(BitWidth, this->U.pVal[0] / RHS);
1664
1665 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1666 APInt Quotient(BitWidth, 0); // to hold result.
1667 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1668 return Quotient;
1669}
1670
1671APInt APInt::sdiv(const APInt &RHS) const {
1672 if (isNegative()) {
1673 if (RHS.isNegative())
1674 return (-(*this)).udiv(-RHS);
1675 return -((-(*this)).udiv(RHS));
1676 }
1677 if (RHS.isNegative())
1678 return -(this->udiv(-RHS));
1679 return this->udiv(RHS);
1680}
1681
1682APInt APInt::sdiv(int64_t RHS) const {
1683 if (isNegative()) {
1684 if (RHS < 0)
1685 return (-(*this)).udiv(-RHS);
1686 return -((-(*this)).udiv(RHS));
1687 }
1688 if (RHS < 0)
1689 return -(this->udiv(-RHS));
1690 return this->udiv(RHS);
1691}
1692
1693APInt APInt::urem(const APInt &RHS) const {
1694 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1694, __extension__ __PRETTY_FUNCTION__))
;
1695 if (isSingleWord()) {
1696 assert(RHS.U.VAL != 0 && "Remainder by zero?")(static_cast <bool> (RHS.U.VAL != 0 && "Remainder by zero?"
) ? void (0) : __assert_fail ("RHS.U.VAL != 0 && \"Remainder by zero?\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1696, __extension__ __PRETTY_FUNCTION__))
;
1697 return APInt(BitWidth, U.VAL % RHS.U.VAL);
1698 }
1699
1700 // Get some facts about the LHS
1701 unsigned lhsWords = getNumWords(getActiveBits());
1702
1703 // Get some facts about the RHS
1704 unsigned rhsBits = RHS.getActiveBits();
1705 unsigned rhsWords = getNumWords(rhsBits);
1706 assert(rhsWords && "Performing remainder operation by zero ???")(static_cast <bool> (rhsWords && "Performing remainder operation by zero ???"
) ? void (0) : __assert_fail ("rhsWords && \"Performing remainder operation by zero ???\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1706, __extension__ __PRETTY_FUNCTION__))
;
1707
1708 // Check the degenerate cases
1709 if (lhsWords == 0)
1710 // 0 % Y ===> 0
1711 return APInt(BitWidth, 0);
1712 if (rhsBits == 1)
1713 // X % 1 ===> 0
1714 return APInt(BitWidth, 0);
1715 if (lhsWords < rhsWords || this->ult(RHS))
1716 // X % Y ===> X, iff X < Y
1717 return *this;
1718 if (*this == RHS)
1719 // X % X == 0;
1720 return APInt(BitWidth, 0);
1721 if (lhsWords == 1)
1722 // All high words are zero, just use native remainder
1723 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1724
1725 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1726 APInt Remainder(BitWidth, 0);
1727 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1728 return Remainder;
1729}
1730
1731uint64_t APInt::urem(uint64_t RHS) const {
1732 assert(RHS != 0 && "Remainder by zero?")(static_cast <bool> (RHS != 0 && "Remainder by zero?"
) ? void (0) : __assert_fail ("RHS != 0 && \"Remainder by zero?\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1732, __extension__ __PRETTY_FUNCTION__))
;
1733
1734 if (isSingleWord())
1735 return U.VAL % RHS;
1736
1737 // Get some facts about the LHS
1738 unsigned lhsWords = getNumWords(getActiveBits());
1739
1740 // Check the degenerate cases
1741 if (lhsWords == 0)
1742 // 0 % Y ===> 0
1743 return 0;
1744 if (RHS == 1)
1745 // X % 1 ===> 0
1746 return 0;
1747 if (this->ult(RHS))
1748 // X % Y ===> X, iff X < Y
1749 return getZExtValue();
1750 if (*this == RHS)
1751 // X % X == 0;
1752 return 0;
1753 if (lhsWords == 1)
1754 // All high words are zero, just use native remainder
1755 return U.pVal[0] % RHS;
1756
1757 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1758 uint64_t Remainder;
1759 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1760 return Remainder;
1761}
1762
1763APInt APInt::srem(const APInt &RHS) const {
1764 if (isNegative()) {
1765 if (RHS.isNegative())
1766 return -((-(*this)).urem(-RHS));
1767 return -((-(*this)).urem(RHS));
1768 }
1769 if (RHS.isNegative())
1770 return this->urem(-RHS);
1771 return this->urem(RHS);
1772}
1773
1774int64_t APInt::srem(int64_t RHS) const {
1775 if (isNegative()) {
1776 if (RHS < 0)
1777 return -((-(*this)).urem(-RHS));
1778 return -((-(*this)).urem(RHS));
1779 }
1780 if (RHS < 0)
1781 return this->urem(-RHS);
1782 return this->urem(RHS);
1783}
1784
1785void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1786 APInt &Quotient, APInt &Remainder) {
1787 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (LHS.BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("LHS.BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1787, __extension__ __PRETTY_FUNCTION__))
;
1788 unsigned BitWidth = LHS.BitWidth;
1789
1790 // First, deal with the easy case
1791 if (LHS.isSingleWord()) {
1792 assert(RHS.U.VAL != 0 && "Divide by zero?")(static_cast <bool> (RHS.U.VAL != 0 && "Divide by zero?"
) ? void (0) : __assert_fail ("RHS.U.VAL != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1792, __extension__ __PRETTY_FUNCTION__))
;
1793 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1794 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1795 Quotient = APInt(BitWidth, QuotVal);
1796 Remainder = APInt(BitWidth, RemVal);
1797 return;
1798 }
1799
1800 // Get some size facts about the dividend and divisor
1801 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1802 unsigned rhsBits = RHS.getActiveBits();
1803 unsigned rhsWords = getNumWords(rhsBits);
1804 assert(rhsWords && "Performing divrem operation by zero ???")(static_cast <bool> (rhsWords && "Performing divrem operation by zero ???"
) ? void (0) : __assert_fail ("rhsWords && \"Performing divrem operation by zero ???\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1804, __extension__ __PRETTY_FUNCTION__))
;
1805
1806 // Check the degenerate cases
1807 if (lhsWords == 0) {
1808 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1809 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0
1810 return;
1811 }
1812
1813 if (rhsBits == 1) {
1814 Quotient = LHS; // X / 1 ===> X
1815 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0
1816 }
1817
1818 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1819 Remainder = LHS; // X % Y ===> X, iff X < Y
1820 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1821 return;
1822 }
1823
1824 if (LHS == RHS) {
1825 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1826 Remainder = APInt(BitWidth, 0); // X % X ===> 0;
1827 return;
1828 }
1829
1830 // Make sure there is enough space to hold the results.
1831 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1832 // change the size. This is necessary if Quotient or Remainder is aliased
1833 // with LHS or RHS.
1834 Quotient.reallocate(BitWidth);
1835 Remainder.reallocate(BitWidth);
1836
1837 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1838 // There is only one word to consider so use the native versions.
1839 uint64_t lhsValue = LHS.U.pVal[0];
1840 uint64_t rhsValue = RHS.U.pVal[0];
1841 Quotient = lhsValue / rhsValue;
1842 Remainder = lhsValue % rhsValue;
1843 return;
1844 }
1845
1846 // Okay, lets do it the long way
1847 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1848 Remainder.U.pVal);
1849 // Clear the rest of the Quotient and Remainder.
1850 std::memset(Quotient.U.pVal + lhsWords, 0,
1851 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1852 std::memset(Remainder.U.pVal + rhsWords, 0,
1853 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1854}
1855
1856void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1857 uint64_t &Remainder) {
1858 assert(RHS != 0 && "Divide by zero?")(static_cast <bool> (RHS != 0 && "Divide by zero?"
) ? void (0) : __assert_fail ("RHS != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 1858, __extension__ __PRETTY_FUNCTION__))
;
32
'?' condition is true
45
'?' condition is true
1859 unsigned BitWidth = LHS.BitWidth;
1860
1861 // First, deal with the easy case
1862 if (LHS.isSingleWord()) {
33
Taking false branch
46
Taking false branch
1863 uint64_t QuotVal = LHS.U.VAL / RHS;
1864 Remainder = LHS.U.VAL % RHS;
1865 Quotient = APInt(BitWidth, QuotVal);
1866 return;
1867 }
1868
1869 // Get some size facts about the dividend and divisor
1870 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1871
1872 // Check the degenerate cases
1873 if (lhsWords == 0) {
34
Assuming 'lhsWords' is equal to 0
35
Taking true branch
47
Assuming 'lhsWords' is not equal to 0
48
Taking false branch
1874 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
36
Calling move assignment operator for 'APInt'
40
Returning; memory was released
1875 Remainder = 0; // 0 % Y ===> 0
1876 return;
1877 }
1878
1879 if (RHS
48.1
'RHS' is not equal to 1
48.1
'RHS' is not equal to 1
== 1) {
49
Taking false branch
1880 Quotient = LHS; // X / 1 ===> X
1881 Remainder = 0; // X % 1 ===> 0
1882 return;
1883 }
1884
1885 if (LHS.ult(RHS)) {
50
Taking false branch
1886 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1887 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1888 return;
1889 }
1890
1891 if (LHS == RHS) {
51
Taking false branch
1892 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1893 Remainder = 0; // X % X ===> 0;
1894 return;
1895 }
1896
1897 // Make sure there is enough space to hold the results.
1898 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1899 // change the size. This is necessary if Quotient is aliased with LHS.
1900 Quotient.reallocate(BitWidth);
1901
1902 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
52
Assuming 'lhsWords' is not equal to 1
53
Taking false branch
1903 // There is only one word to consider so use the native versions.
1904 uint64_t lhsValue = LHS.U.pVal[0];
1905 Quotient = lhsValue / RHS;
1906 Remainder = lhsValue % RHS;
1907 return;
1908 }
1909
1910 // Okay, lets do it the long way
1911 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
54
Use of memory after it is freed
1912 // Clear the rest of the Quotient.
1913 std::memset(Quotient.U.pVal + lhsWords, 0,
1914 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1915}
1916
1917void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1918 APInt &Quotient, APInt &Remainder) {
1919 if (LHS.isNegative()) {
1920 if (RHS.isNegative())
1921 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1922 else {
1923 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1924 Quotient.negate();
1925 }
1926 Remainder.negate();
1927 } else if (RHS.isNegative()) {
1928 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1929 Quotient.negate();
1930 } else {
1931 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1932 }
1933}
1934
1935void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1936 APInt &Quotient, int64_t &Remainder) {
1937 uint64_t R = Remainder;
1938 if (LHS.isNegative()) {
1939 if (RHS < 0)
1940 APInt::udivrem(-LHS, -RHS, Quotient, R);
1941 else {
1942 APInt::udivrem(-LHS, RHS, Quotient, R);
1943 Quotient.negate();
1944 }
1945 R = -R;
1946 } else if (RHS < 0) {
1947 APInt::udivrem(LHS, -RHS, Quotient, R);
1948 Quotient.negate();
1949 } else {
1950 APInt::udivrem(LHS, RHS, Quotient, R);
1951 }
1952 Remainder = R;
1953}
1954
1955APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1956 APInt Res = *this+RHS;
1957 Overflow = isNonNegative() == RHS.isNonNegative() &&
1958 Res.isNonNegative() != isNonNegative();
1959 return Res;
1960}
1961
1962APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1963 APInt Res = *this+RHS;
1964 Overflow = Res.ult(RHS);
1965 return Res;
1966}
1967
1968APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1969 APInt Res = *this - RHS;
1970 Overflow = isNonNegative() != RHS.isNonNegative() &&
1971 Res.isNonNegative() != isNonNegative();
1972 return Res;
1973}
1974
1975APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1976 APInt Res = *this-RHS;
1977 Overflow = Res.ugt(*this);
1978 return Res;
1979}
1980
1981APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1982 // MININT/-1 --> overflow.
1983 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1984 return sdiv(RHS);
1985}
1986
1987APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1988 APInt Res = *this * RHS;
1989
1990 if (*this != 0 && RHS != 0)
1991 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1992 else
1993 Overflow = false;
1994 return Res;
1995}
1996
1997APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1998 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1999 Overflow = true;
2000 return *this * RHS;
2001 }
2002
2003 APInt Res = lshr(1) * RHS;
2004 Overflow = Res.isNegative();
2005 Res <<= 1;
2006 if ((*this)[0]) {
2007 Res += RHS;
2008 if (Res.ult(RHS))
2009 Overflow = true;
2010 }
2011 return Res;
2012}
2013
2014APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2015 Overflow = ShAmt.uge(getBitWidth());
2016 if (Overflow)
2017 return APInt(BitWidth, 0);
2018
2019 if (isNonNegative()) // Don't allow sign change.
2020 Overflow = ShAmt.uge(countLeadingZeros());
2021 else
2022 Overflow = ShAmt.uge(countLeadingOnes());
2023
2024 return *this << ShAmt;
2025}
2026
2027APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2028 Overflow = ShAmt.uge(getBitWidth());
2029 if (Overflow)
2030 return APInt(BitWidth, 0);
2031
2032 Overflow = ShAmt.ugt(countLeadingZeros());
2033
2034 return *this << ShAmt;
2035}
2036
2037APInt APInt::sadd_sat(const APInt &RHS) const {
2038 bool Overflow;
2039 APInt Res = sadd_ov(RHS, Overflow);
2040 if (!Overflow)
2041 return Res;
2042
2043 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2044 : APInt::getSignedMaxValue(BitWidth);
2045}
2046
2047APInt APInt::uadd_sat(const APInt &RHS) const {
2048 bool Overflow;
2049 APInt Res = uadd_ov(RHS, Overflow);
2050 if (!Overflow)
2051 return Res;
2052
2053 return APInt::getMaxValue(BitWidth);
2054}
2055
2056APInt APInt::ssub_sat(const APInt &RHS) const {
2057 bool Overflow;
2058 APInt Res = ssub_ov(RHS, Overflow);
2059 if (!Overflow)
2060 return Res;
2061
2062 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2063 : APInt::getSignedMaxValue(BitWidth);
2064}
2065
2066APInt APInt::usub_sat(const APInt &RHS) const {
2067 bool Overflow;
2068 APInt Res = usub_ov(RHS, Overflow);
2069 if (!Overflow)
2070 return Res;
2071
2072 return APInt(BitWidth, 0);
2073}
2074
2075APInt APInt::smul_sat(const APInt &RHS) const {
2076 bool Overflow;
2077 APInt Res = smul_ov(RHS, Overflow);
2078 if (!Overflow)
2079 return Res;
2080
2081 // The result is negative if one and only one of inputs is negative.
2082 bool ResIsNegative = isNegative() ^ RHS.isNegative();
2083
2084 return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2085 : APInt::getSignedMaxValue(BitWidth);
2086}
2087
2088APInt APInt::umul_sat(const APInt &RHS) const {
2089 bool Overflow;
2090 APInt Res = umul_ov(RHS, Overflow);
2091 if (!Overflow)
2092 return Res;
2093
2094 return APInt::getMaxValue(BitWidth);
2095}
2096
2097APInt APInt::sshl_sat(const APInt &RHS) const {
2098 bool Overflow;
2099 APInt Res = sshl_ov(RHS, Overflow);
2100 if (!Overflow)
2101 return Res;
2102
2103 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2104 : APInt::getSignedMaxValue(BitWidth);
2105}
2106
2107APInt APInt::ushl_sat(const APInt &RHS) const {
2108 bool Overflow;
2109 APInt Res = ushl_ov(RHS, Overflow);
2110 if (!Overflow)
2111 return Res;
2112
2113 return APInt::getMaxValue(BitWidth);
2114}
2115
2116void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2117 // Check our assumptions here
2118 assert(!str.empty() && "Invalid string length")(static_cast <bool> (!str.empty() && "Invalid string length"
) ? void (0) : __assert_fail ("!str.empty() && \"Invalid string length\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2118, __extension__ __PRETTY_FUNCTION__))
;
2119 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2121, __extension__ __PRETTY_FUNCTION__))
2120 radix == 36) &&(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2121, __extension__ __PRETTY_FUNCTION__))
2121 "Radix should be 2, 8, 10, 16, or 36!")(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2121, __extension__ __PRETTY_FUNCTION__))
;
2122
2123 StringRef::iterator p = str.begin();
2124 size_t slen = str.size();
2125 bool isNeg = *p == '-';
2126 if (*p == '-' || *p == '+') {
2127 p++;
2128 slen--;
2129 assert(slen && "String is only a sign, needs a value.")(static_cast <bool> (slen && "String is only a sign, needs a value."
) ? void (0) : __assert_fail ("slen && \"String is only a sign, needs a value.\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2129, __extension__ __PRETTY_FUNCTION__))
;
2130 }
2131 assert((slen <= numbits || radix != 2) && "Insufficient bit width")(static_cast <bool> ((slen <= numbits || radix != 2)
&& "Insufficient bit width") ? void (0) : __assert_fail
("(slen <= numbits || radix != 2) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2131, __extension__ __PRETTY_FUNCTION__))
;
2132 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width")(static_cast <bool> (((slen-1)*3 <= numbits || radix
!= 8) && "Insufficient bit width") ? void (0) : __assert_fail
("((slen-1)*3 <= numbits || radix != 8) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2132, __extension__ __PRETTY_FUNCTION__))
;
2133 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width")(static_cast <bool> (((slen-1)*4 <= numbits || radix
!= 16) && "Insufficient bit width") ? void (0) : __assert_fail
("((slen-1)*4 <= numbits || radix != 16) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2133, __extension__ __PRETTY_FUNCTION__))
;
2134 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&(static_cast <bool> ((((slen-1)*64)/22 <= numbits ||
radix != 10) && "Insufficient bit width") ? void (0)
: __assert_fail ("(((slen-1)*64)/22 <= numbits || radix != 10) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2135, __extension__ __PRETTY_FUNCTION__))
2135 "Insufficient bit width")(static_cast <bool> ((((slen-1)*64)/22 <= numbits ||
radix != 10) && "Insufficient bit width") ? void (0)
: __assert_fail ("(((slen-1)*64)/22 <= numbits || radix != 10) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2135, __extension__ __PRETTY_FUNCTION__))
;
2136
2137 // Allocate memory if needed
2138 if (isSingleWord())
2139 U.VAL = 0;
2140 else
2141 U.pVal = getClearedMemory(getNumWords());
2142
2143 // Figure out if we can shift instead of multiply
2144 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2145
2146 // Enter digit traversal loop
2147 for (StringRef::iterator e = str.end(); p != e; ++p) {
2148 unsigned digit = getDigit(*p, radix);
2149 assert(digit < radix && "Invalid character in digit string")(static_cast <bool> (digit < radix && "Invalid character in digit string"
) ? void (0) : __assert_fail ("digit < radix && \"Invalid character in digit string\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2149, __extension__ __PRETTY_FUNCTION__))
;
2150
2151 // Shift or multiply the value by the radix
2152 if (slen > 1) {
2153 if (shift)
2154 *this <<= shift;
2155 else
2156 *this *= radix;
2157 }
2158
2159 // Add in the digit we just interpreted
2160 *this += digit;
2161 }
2162 // If its negative, put it in two's complement form
2163 if (isNeg)
2164 this->negate();
2165}
2166
2167void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2168 bool Signed, bool formatAsCLiteral) const {
2169 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||(static_cast <bool> ((Radix == 10 || Radix == 8 || Radix
== 16 || Radix == 2 || Radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2171, __extension__ __PRETTY_FUNCTION__))
14
'?' condition is true
2170 Radix == 36) &&(static_cast <bool> ((Radix == 10 || Radix == 8 || Radix
== 16 || Radix == 2 || Radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2171, __extension__ __PRETTY_FUNCTION__))
2171 "Radix should be 2, 8, 10, 16, or 36!")(static_cast <bool> ((Radix == 10 || Radix == 8 || Radix
== 16 || Radix == 2 || Radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2171, __extension__ __PRETTY_FUNCTION__))
;
2172
2173 const char *Prefix = "";
2174 if (formatAsCLiteral
14.1
'formatAsCLiteral' is false
14.1
'formatAsCLiteral' is false
) {
15
Taking false branch
2175 switch (Radix) {
2176 case 2:
2177 // Binary literals are a non-standard extension added in gcc 4.3:
2178 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2179 Prefix = "0b";
2180 break;
2181 case 8:
2182 Prefix = "0";
2183 break;
2184 case 10:
2185 break; // No prefix
2186 case 16:
2187 Prefix = "0x";
2188 break;
2189 default:
2190 llvm_unreachable("Invalid radix!")::llvm::llvm_unreachable_internal("Invalid radix!", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2190)
;
2191 }
2192 }
2193
2194 // First, check for a zero value and just short circuit the logic below.
2195 if (*this == 0) {
16
Taking false branch
2196 while (*Prefix) {
2197 Str.push_back(*Prefix);
2198 ++Prefix;
2199 };
2200 Str.push_back('0');
2201 return;
2202 }
2203
2204 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2205
2206 if (isSingleWord()) {
17
Taking false branch
2207 char Buffer[65];
2208 char *BufPtr = std::end(Buffer);
2209
2210 uint64_t N;
2211 if (!Signed) {
2212 N = getZExtValue();
2213 } else {
2214 int64_t I = getSExtValue();
2215 if (I >= 0) {
2216 N = I;
2217 } else {
2218 Str.push_back('-');
2219 N = -(uint64_t)I;
2220 }
2221 }
2222
2223 while (*Prefix) {
2224 Str.push_back(*Prefix);
2225 ++Prefix;
2226 };
2227
2228 while (N) {
2229 *--BufPtr = Digits[N % Radix];
2230 N /= Radix;
2231 }
2232 Str.append(BufPtr, std::end(Buffer));
2233 return;
2234 }
2235
2236 APInt Tmp(*this);
18
Calling copy constructor for 'APInt'
25
Returning from copy constructor for 'APInt'
2237
2238 if (Signed
25.1
'Signed' is true
25.1
'Signed' is true
&& isNegative()) {
26
Assuming the condition is false
27
Taking false branch
2239 // They want to print the signed version and it is a negative value
2240 // Flip the bits and add one to turn it into the equivalent positive
2241 // value and put a '-' in the result.
2242 Tmp.negate();
2243 Str.push_back('-');
2244 }
2245
2246 while (*Prefix) {
28
Loop condition is false. Execution continues on line 2252
2247 Str.push_back(*Prefix);
2248 ++Prefix;
2249 };
2250
2251 // We insert the digits backward, then reverse them to get the right order.
2252 unsigned StartDig = Str.size();
2253
2254 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2255 // because the number of bits per digit (1, 3 and 4 respectively) divides
2256 // equally. We just shift until the value is zero.
2257 if (Radix
28.1
'Radix' is not equal to 2
28.1
'Radix' is not equal to 2
== 2 || Radix
28.2
'Radix' is not equal to 8
28.2
'Radix' is not equal to 8
== 8 || Radix
28.3
'Radix' is not equal to 16
28.3
'Radix' is not equal to 16
== 16) {
29
Taking false branch
2258 // Just shift tmp right for each digit width until it becomes zero
2259 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2260 unsigned MaskAmt = Radix - 1;
2261
2262 while (Tmp.getBoolValue()) {
2263 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2264 Str.push_back(Digits[Digit]);
2265 Tmp.lshrInPlace(ShiftAmt);
2266 }
2267 } else {
2268 while (Tmp.getBoolValue()) {
30
Loop condition is true. Entering loop body
43
Loop condition is true. Entering loop body
2269 uint64_t Digit;
2270 udivrem(Tmp, Radix, Tmp, Digit);
31
Calling 'APInt::udivrem'
41
Returning; memory was released
44
Calling 'APInt::udivrem'
2271 assert(Digit < Radix && "divide failed")(static_cast <bool> (Digit < Radix && "divide failed"
) ? void (0) : __assert_fail ("Digit < Radix && \"divide failed\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2271, __extension__ __PRETTY_FUNCTION__))
;
42
'?' condition is true
2272 Str.push_back(Digits[Digit]);
2273 }
2274 }
2275
2276 // Reverse the digits before returning.
2277 std::reverse(Str.begin()+StartDig, Str.end());
2278}
2279
2280/// Returns the APInt as a std::string. Note that this is an inefficient method.
2281/// It is better to pass in a SmallVector/SmallString to the methods above.
2282std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2283 SmallString<40> S;
2284 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
2285 return std::string(S.str());
2286}
2287
2288#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2289LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void APInt::dump() const {
2290 SmallString<40> S, U;
2291 this->toStringUnsigned(U);
2292 this->toStringSigned(S);
2293 dbgs() << "APInt(" << BitWidth << "b, "
2294 << U << "u " << S << "s)\n";
2295}
2296#endif
2297
2298void APInt::print(raw_ostream &OS, bool isSigned) const {
2299 SmallString<40> S;
2300 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
13
Calling 'APInt::toString'
2301 OS << S;
2302}
2303
2304// This implements a variety of operations on a representation of
2305// arbitrary precision, two's-complement, bignum integer values.
2306
2307// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2308// and unrestricting assumption.
2309static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2310 "Part width must be divisible by 2!");
2311
2312/* Some handy functions local to this file. */
2313
2314/* Returns the integer part with the least significant BITS set.
2315 BITS cannot be zero. */
2316static inline APInt::WordType lowBitMask(unsigned bits) {
2317 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD)(static_cast <bool> (bits != 0 && bits <= APInt
::APINT_BITS_PER_WORD) ? void (0) : __assert_fail ("bits != 0 && bits <= APInt::APINT_BITS_PER_WORD"
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2317, __extension__ __PRETTY_FUNCTION__))
;
2318
2319 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2320}
2321
2322/* Returns the value of the lower half of PART. */
2323static inline APInt::WordType lowHalf(APInt::WordType part) {
2324 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2325}
2326
2327/* Returns the value of the upper half of PART. */
2328static inline APInt::WordType highHalf(APInt::WordType part) {
2329 return part >> (APInt::APINT_BITS_PER_WORD / 2);
2330}
2331
2332/* Returns the bit number of the most significant set bit of a part.
2333 If the input number has no bits set -1U is returned. */
2334static unsigned partMSB(APInt::WordType value) {
2335 return findLastSet(value, ZB_Max);
2336}
2337
2338/* Returns the bit number of the least significant set bit of a
2339 part. If the input number has no bits set -1U is returned. */
2340static unsigned partLSB(APInt::WordType value) {
2341 return findFirstSet(value, ZB_Max);
2342}
2343
2344/* Sets the least significant part of a bignum to the input value, and
2345 zeroes out higher parts. */
2346void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2347 assert(parts > 0)(static_cast <bool> (parts > 0) ? void (0) : __assert_fail
("parts > 0", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2347, __extension__ __PRETTY_FUNCTION__))
;
2348
2349 dst[0] = part;
2350 for (unsigned i = 1; i < parts; i++)
2351 dst[i] = 0;
2352}
2353
2354/* Assign one bignum to another. */
2355void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2356 for (unsigned i = 0; i < parts; i++)
2357 dst[i] = src[i];
2358}
2359
2360/* Returns true if a bignum is zero, false otherwise. */
2361bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2362 for (unsigned i = 0; i < parts; i++)
2363 if (src[i])
2364 return false;
2365
2366 return true;
2367}
2368
2369/* Extract the given bit of a bignum; returns 0 or 1. */
2370int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2371 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2372}
2373
2374/* Set the given bit of a bignum. */
2375void APInt::tcSetBit(WordType *parts, unsigned bit) {
2376 parts[whichWord(bit)] |= maskBit(bit);
2377}
2378
2379/* Clears the given bit of a bignum. */
2380void APInt::tcClearBit(WordType *parts, unsigned bit) {
2381 parts[whichWord(bit)] &= ~maskBit(bit);
2382}
2383
2384/* Returns the bit number of the least significant set bit of a
2385 number. If the input number has no bits set -1U is returned. */
2386unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2387 for (unsigned i = 0; i < n; i++) {
2388 if (parts[i] != 0) {
2389 unsigned lsb = partLSB(parts[i]);
2390
2391 return lsb + i * APINT_BITS_PER_WORD;
2392 }
2393 }
2394
2395 return -1U;
2396}
2397
2398/* Returns the bit number of the most significant set bit of a number.
2399 If the input number has no bits set -1U is returned. */
2400unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2401 do {
2402 --n;
2403
2404 if (parts[n] != 0) {
2405 unsigned msb = partMSB(parts[n]);
2406
2407 return msb + n * APINT_BITS_PER_WORD;
2408 }
2409 } while (n);
2410
2411 return -1U;
2412}
2413
2414/* Copy the bit vector of width srcBITS from SRC, starting at bit
2415 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2416 the least significant bit of DST. All high bits above srcBITS in
2417 DST are zero-filled. */
2418void
2419APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2420 unsigned srcBits, unsigned srcLSB) {
2421 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2422 assert(dstParts <= dstCount)(static_cast <bool> (dstParts <= dstCount) ? void (0
) : __assert_fail ("dstParts <= dstCount", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2422, __extension__ __PRETTY_FUNCTION__))
;
2423
2424 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2425 tcAssign (dst, src + firstSrcPart, dstParts);
2426
2427 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2428 tcShiftRight (dst, dstParts, shift);
2429
2430 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2431 in DST. If this is less that srcBits, append the rest, else
2432 clear the high bits. */
2433 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2434 if (n < srcBits) {
2435 WordType mask = lowBitMask (srcBits - n);
2436 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2437 << n % APINT_BITS_PER_WORD);
2438 } else if (n > srcBits) {
2439 if (srcBits % APINT_BITS_PER_WORD)
2440 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2441 }
2442
2443 /* Clear high parts. */
2444 while (dstParts < dstCount)
2445 dst[dstParts++] = 0;
2446}
2447
2448/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2449APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2450 WordType c, unsigned parts) {
2451 assert(c <= 1)(static_cast <bool> (c <= 1) ? void (0) : __assert_fail
("c <= 1", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2451, __extension__ __PRETTY_FUNCTION__))
;
2452
2453 for (unsigned i = 0; i < parts; i++) {
2454 WordType l = dst[i];
2455 if (c) {
2456 dst[i] += rhs[i] + 1;
2457 c = (dst[i] <= l);
2458 } else {
2459 dst[i] += rhs[i];
2460 c = (dst[i] < l);
2461 }
2462 }
2463
2464 return c;
2465}
2466
2467/// This function adds a single "word" integer, src, to the multiple
2468/// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2469/// 1 is returned if there is a carry out, otherwise 0 is returned.
2470/// @returns the carry of the addition.
2471APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2472 unsigned parts) {
2473 for (unsigned i = 0; i < parts; ++i) {
2474 dst[i] += src;
2475 if (dst[i] >= src)
2476 return 0; // No need to carry so exit early.
2477 src = 1; // Carry one to next digit.
2478 }
2479
2480 return 1;
2481}
2482
2483/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2484APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2485 WordType c, unsigned parts) {
2486 assert(c <= 1)(static_cast <bool> (c <= 1) ? void (0) : __assert_fail
("c <= 1", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2486, __extension__ __PRETTY_FUNCTION__))
;
2487
2488 for (unsigned i = 0; i < parts; i++) {
2489 WordType l = dst[i];
2490 if (c) {
2491 dst[i] -= rhs[i] + 1;
2492 c = (dst[i] >= l);
2493 } else {
2494 dst[i] -= rhs[i];
2495 c = (dst[i] > l);
2496 }
2497 }
2498
2499 return c;
2500}
2501
2502/// This function subtracts a single "word" (64-bit word), src, from
2503/// the multi-word integer array, dst[], propagating the borrowed 1 value until
2504/// no further borrowing is needed or it runs out of "words" in dst. The result
2505/// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2506/// exhausted. In other words, if src > dst then this function returns 1,
2507/// otherwise 0.
2508/// @returns the borrow out of the subtraction
2509APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2510 unsigned parts) {
2511 for (unsigned i = 0; i < parts; ++i) {
2512 WordType Dst = dst[i];
2513 dst[i] -= src;
2514 if (src <= Dst)
2515 return 0; // No need to borrow so exit early.
2516 src = 1; // We have to "borrow 1" from next "word"
2517 }
2518
2519 return 1;
2520}
2521
2522/* Negate a bignum in-place. */
2523void APInt::tcNegate(WordType *dst, unsigned parts) {
2524 tcComplement(dst, parts);
2525 tcIncrement(dst, parts);
2526}
2527
2528/* DST += SRC * MULTIPLIER + CARRY if add is true
2529 DST = SRC * MULTIPLIER + CARRY if add is false
2530
2531 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2532 they must start at the same point, i.e. DST == SRC.
2533
2534 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2535 returned. Otherwise DST is filled with the least significant
2536 DSTPARTS parts of the result, and if all of the omitted higher
2537 parts were zero return zero, otherwise overflow occurred and
2538 return one. */
2539int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2540 WordType multiplier, WordType carry,
2541 unsigned srcParts, unsigned dstParts,
2542 bool add) {
2543 /* Otherwise our writes of DST kill our later reads of SRC. */
2544 assert(dst <= src || dst >= src + srcParts)(static_cast <bool> (dst <= src || dst >= src + srcParts
) ? void (0) : __assert_fail ("dst <= src || dst >= src + srcParts"
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2544, __extension__ __PRETTY_FUNCTION__))
;
2545 assert(dstParts <= srcParts + 1)(static_cast <bool> (dstParts <= srcParts + 1) ? void
(0) : __assert_fail ("dstParts <= srcParts + 1", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2545, __extension__ __PRETTY_FUNCTION__))
;
2546
2547 /* N loops; minimum of dstParts and srcParts. */
2548 unsigned n = std::min(dstParts, srcParts);
2549
2550 for (unsigned i = 0; i < n; i++) {
2551 WordType low, mid, high, srcPart;
2552
2553 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2554
2555 This cannot overflow, because
2556
2557 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2558
2559 which is less than n^2. */
2560
2561 srcPart = src[i];
2562
2563 if (multiplier == 0 || srcPart == 0) {
2564 low = carry;
2565 high = 0;
2566 } else {
2567 low = lowHalf(srcPart) * lowHalf(multiplier);
2568 high = highHalf(srcPart) * highHalf(multiplier);
2569
2570 mid = lowHalf(srcPart) * highHalf(multiplier);
2571 high += highHalf(mid);
2572 mid <<= APINT_BITS_PER_WORD / 2;
2573 if (low + mid < low)
2574 high++;
2575 low += mid;
2576
2577 mid = highHalf(srcPart) * lowHalf(multiplier);
2578 high += highHalf(mid);
2579 mid <<= APINT_BITS_PER_WORD / 2;
2580 if (low + mid < low)
2581 high++;
2582 low += mid;
2583
2584 /* Now add carry. */
2585 if (low + carry < low)
2586 high++;
2587 low += carry;
2588 }
2589
2590 if (add) {
2591 /* And now DST[i], and store the new low part there. */
2592 if (low + dst[i] < low)
2593 high++;
2594 dst[i] += low;
2595 } else
2596 dst[i] = low;
2597
2598 carry = high;
2599 }
2600
2601 if (srcParts < dstParts) {
2602 /* Full multiplication, there is no overflow. */
2603 assert(srcParts + 1 == dstParts)(static_cast <bool> (srcParts + 1 == dstParts) ? void (
0) : __assert_fail ("srcParts + 1 == dstParts", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2603, __extension__ __PRETTY_FUNCTION__))
;
2604 dst[srcParts] = carry;
2605 return 0;
2606 }
2607
2608 /* We overflowed if there is carry. */
2609 if (carry)
2610 return 1;
2611
2612 /* We would overflow if any significant unwritten parts would be
2613 non-zero. This is true if any remaining src parts are non-zero
2614 and the multiplier is non-zero. */
2615 if (multiplier)
2616 for (unsigned i = dstParts; i < srcParts; i++)
2617 if (src[i])
2618 return 1;
2619
2620 /* We fitted in the narrow destination. */
2621 return 0;
2622}
2623
2624/* DST = LHS * RHS, where DST has the same width as the operands and
2625 is filled with the least significant parts of the result. Returns
2626 one if overflow occurred, otherwise zero. DST must be disjoint
2627 from both operands. */
2628int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2629 const WordType *rhs, unsigned parts) {
2630 assert(dst != lhs && dst != rhs)(static_cast <bool> (dst != lhs && dst != rhs) ?
void (0) : __assert_fail ("dst != lhs && dst != rhs"
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2630, __extension__ __PRETTY_FUNCTION__))
;
2631
2632 int overflow = 0;
2633 tcSet(dst, 0, parts);
2634
2635 for (unsigned i = 0; i < parts; i++)
2636 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2637 parts - i, true);
2638
2639 return overflow;
2640}
2641
2642/// DST = LHS * RHS, where DST has width the sum of the widths of the
2643/// operands. No overflow occurs. DST must be disjoint from both operands.
2644void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2645 const WordType *rhs, unsigned lhsParts,
2646 unsigned rhsParts) {
2647 /* Put the narrower number on the LHS for less loops below. */
2648 if (lhsParts > rhsParts)
2649 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2650
2651 assert(dst != lhs && dst != rhs)(static_cast <bool> (dst != lhs && dst != rhs) ?
void (0) : __assert_fail ("dst != lhs && dst != rhs"
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2651, __extension__ __PRETTY_FUNCTION__))
;
2652
2653 tcSet(dst, 0, rhsParts);
2654
2655 for (unsigned i = 0; i < lhsParts; i++)
2656 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2657}
2658
2659/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2660 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2661 set REMAINDER to the remainder, return zero. i.e.
2662
2663 OLD_LHS = RHS * LHS + REMAINDER
2664
2665 SCRATCH is a bignum of the same size as the operands and result for
2666 use by the routine; its contents need not be initialized and are
2667 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2668*/
2669int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2670 WordType *remainder, WordType *srhs,
2671 unsigned parts) {
2672 assert(lhs != remainder && lhs != srhs && remainder != srhs)(static_cast <bool> (lhs != remainder && lhs !=
srhs && remainder != srhs) ? void (0) : __assert_fail
("lhs != remainder && lhs != srhs && remainder != srhs"
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2672, __extension__ __PRETTY_FUNCTION__))
;
2673
2674 unsigned shiftCount = tcMSB(rhs, parts) + 1;
2675 if (shiftCount == 0)
2676 return true;
2677
2678 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2679 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2680 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2681
2682 tcAssign(srhs, rhs, parts);
2683 tcShiftLeft(srhs, parts, shiftCount);
2684 tcAssign(remainder, lhs, parts);
2685 tcSet(lhs, 0, parts);
2686
2687 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2688 the total. */
2689 for (;;) {
2690 int compare = tcCompare(remainder, srhs, parts);
2691 if (compare >= 0) {
2692 tcSubtract(remainder, srhs, 0, parts);
2693 lhs[n] |= mask;
2694 }
2695
2696 if (shiftCount == 0)
2697 break;
2698 shiftCount--;
2699 tcShiftRight(srhs, parts, 1);
2700 if ((mask >>= 1) == 0) {
2701 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2702 n--;
2703 }
2704 }
2705
2706 return false;
2707}
2708
2709/// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2710/// no restrictions on Count.
2711void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2712 // Don't bother performing a no-op shift.
2713 if (!Count)
2714 return;
2715
2716 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2717 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2718 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2719
2720 // Fastpath for moving by whole words.
2721 if (BitShift == 0) {
2722 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2723 } else {
2724 while (Words-- > WordShift) {
2725 Dst[Words] = Dst[Words - WordShift] << BitShift;
2726 if (Words > WordShift)
2727 Dst[Words] |=
2728 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2729 }
2730 }
2731
2732 // Fill in the remainder with 0s.
2733 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2734}
2735
2736/// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2737/// are no restrictions on Count.
2738void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2739 // Don't bother performing a no-op shift.
2740 if (!Count)
2741 return;
2742
2743 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2744 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2745 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2746
2747 unsigned WordsToMove = Words - WordShift;
2748 // Fastpath for moving by whole words.
2749 if (BitShift == 0) {
2750 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2751 } else {
2752 for (unsigned i = 0; i != WordsToMove; ++i) {
2753 Dst[i] = Dst[i + WordShift] >> BitShift;
2754 if (i + 1 != WordsToMove)
2755 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2756 }
2757 }
2758
2759 // Fill in the remainder with 0s.
2760 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2761}
2762
2763/* Bitwise and of two bignums. */
2764void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
2765 for (unsigned i = 0; i < parts; i++)
2766 dst[i] &= rhs[i];
2767}
2768
2769/* Bitwise inclusive or of two bignums. */
2770void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
2771 for (unsigned i = 0; i < parts; i++)
2772 dst[i] |= rhs[i];
2773}
2774
2775/* Bitwise exclusive or of two bignums. */
2776void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
2777 for (unsigned i = 0; i < parts; i++)
2778 dst[i] ^= rhs[i];
2779}
2780
2781/* Complement a bignum in-place. */
2782void APInt::tcComplement(WordType *dst, unsigned parts) {
2783 for (unsigned i = 0; i < parts; i++)
2784 dst[i] = ~dst[i];
2785}
2786
2787/* Comparison (unsigned) of two bignums. */
2788int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2789 unsigned parts) {
2790 while (parts) {
2791 parts--;
2792 if (lhs[parts] != rhs[parts])
2793 return (lhs[parts] > rhs[parts]) ? 1 : -1;
2794 }
2795
2796 return 0;
2797}
2798
2799/* Set the least significant BITS bits of a bignum, clear the
2800 rest. */
2801void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
2802 unsigned bits) {
2803 unsigned i = 0;
2804 while (bits > APINT_BITS_PER_WORD) {
2805 dst[i++] = ~(WordType) 0;
2806 bits -= APINT_BITS_PER_WORD;
2807 }
2808
2809 if (bits)
2810 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
2811
2812 while (i < parts)
2813 dst[i++] = 0;
2814}
2815
2816APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2817 APInt::Rounding RM) {
2818 // Currently udivrem always rounds down.
2819 switch (RM) {
2820 case APInt::Rounding::DOWN:
2821 case APInt::Rounding::TOWARD_ZERO:
2822 return A.udiv(B);
2823 case APInt::Rounding::UP: {
2824 APInt Quo, Rem;
2825 APInt::udivrem(A, B, Quo, Rem);
2826 if (Rem == 0)
2827 return Quo;
2828 return Quo + 1;
2829 }
2830 }
2831 llvm_unreachable("Unknown APInt::Rounding enum")::llvm::llvm_unreachable_internal("Unknown APInt::Rounding enum"
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2831)
;
2832}
2833
2834APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2835 APInt::Rounding RM) {
2836 switch (RM) {
2837 case APInt::Rounding::DOWN:
2838 case APInt::Rounding::UP: {
2839 APInt Quo, Rem;
2840 APInt::sdivrem(A, B, Quo, Rem);
2841 if (Rem == 0)
2842 return Quo;
2843 // This algorithm deals with arbitrary rounding mode used by sdivrem.
2844 // We want to check whether the non-integer part of the mathematical value
2845 // is negative or not. If the non-integer part is negative, we need to round
2846 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2847 // already rounded down.
2848 if (RM == APInt::Rounding::DOWN) {
2849 if (Rem.isNegative() != B.isNegative())
2850 return Quo - 1;
2851 return Quo;
2852 }
2853 if (Rem.isNegative() != B.isNegative())
2854 return Quo;
2855 return Quo + 1;
2856 }
2857 // Currently sdiv rounds towards zero.
2858 case APInt::Rounding::TOWARD_ZERO:
2859 return A.sdiv(B);
2860 }
2861 llvm_unreachable("Unknown APInt::Rounding enum")::llvm::llvm_unreachable_internal("Unknown APInt::Rounding enum"
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2861)
;
2862}
2863
2864Optional<APInt>
2865llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2866 unsigned RangeWidth) {
2867 unsigned CoeffWidth = A.getBitWidth();
2868 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth())(static_cast <bool> (CoeffWidth == B.getBitWidth() &&
CoeffWidth == C.getBitWidth()) ? void (0) : __assert_fail ("CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()"
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2868, __extension__ __PRETTY_FUNCTION__))
;
1
Assuming the condition is true
2
Assuming the condition is true
3
'?' condition is true
2869 assert(RangeWidth <= CoeffWidth &&(static_cast <bool> (RangeWidth <= CoeffWidth &&
"Value range width should be less than coefficient width") ?
void (0) : __assert_fail ("RangeWidth <= CoeffWidth && \"Value range width should be less than coefficient width\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2870, __extension__ __PRETTY_FUNCTION__))
4
Assuming 'RangeWidth' is <= 'CoeffWidth'
5
'?' condition is true
2870 "Value range width should be less than coefficient width")(static_cast <bool> (RangeWidth <= CoeffWidth &&
"Value range width should be less than coefficient width") ?
void (0) : __assert_fail ("RangeWidth <= CoeffWidth && \"Value range width should be less than coefficient width\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2870, __extension__ __PRETTY_FUNCTION__))
;
2871 assert(RangeWidth > 1 && "Value range bit width should be > 1")(static_cast <bool> (RangeWidth > 1 && "Value range bit width should be > 1"
) ? void (0) : __assert_fail ("RangeWidth > 1 && \"Value range bit width should be > 1\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2871, __extension__ __PRETTY_FUNCTION__))
;
6
Assuming 'RangeWidth' is > 1
7
'?' condition is true
2872
2873 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << Bdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << __func__ << ": solving " <<
A << "x^2 + " << B << "x + " << C <<
", rw:" << RangeWidth << '\n'; } } while (false)
8
Assuming 'DebugFlag' is true
9
Assuming the condition is true
10
Taking true branch
11
Calling 'operator<<'
2874 << "x + " << C << ", rw:" << RangeWidth << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << __func__ << ": solving " <<
A << "x^2 + " << B << "x + " << C <<
", rw:" << RangeWidth << '\n'; } } while (false)
;
2875
2876 // Identify 0 as a (non)solution immediately.
2877 if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
2878 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << __func__ << ": zero solution\n"
; } } while (false)
;
2879 return APInt(CoeffWidth, 0);
2880 }
2881
2882 // The result of APInt arithmetic has the same bit width as the operands,
2883 // so it can actually lose high bits. A product of two n-bit integers needs
2884 // 2n-1 bits to represent the full value.
2885 // The operation done below (on quadratic coefficients) that can produce
2886 // the largest value is the evaluation of the equation during bisection,
2887 // which needs 3 times the bitwidth of the coefficient, so the total number
2888 // of required bits is 3n.
2889 //
2890 // The purpose of this extension is to simulate the set Z of all integers,
2891 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2892 // and negative numbers (not so much in a modulo arithmetic). The method
2893 // used to solve the equation is based on the standard formula for real
2894 // numbers, and uses the concepts of "positive" and "negative" with their
2895 // usual meanings.
2896 CoeffWidth *= 3;
2897 A = A.sext(CoeffWidth);
2898 B = B.sext(CoeffWidth);
2899 C = C.sext(CoeffWidth);
2900
2901 // Make A > 0 for simplicity. Negate cannot overflow at this point because
2902 // the bit width has increased.
2903 if (A.isNegative()) {
2904 A.negate();
2905 B.negate();
2906 C.negate();
2907 }
2908
2909 // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2910 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2911 // and R = 2^BitWidth.
2912 // Since we're trying not only to find exact solutions, but also values
2913 // that "wrap around", such a set will always have a solution, i.e. an x
2914 // that satisfies at least one of the equations, or such that |q(x)|
2915 // exceeds kR, while |q(x-1)| for the same k does not.
2916 //
2917 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2918 // positive solution n (in the above sense), and also such that the n
2919 // will be the least among all solutions corresponding to k = 0, 1, ...
2920 // (more precisely, the least element in the set
2921 // { n(k) | k is such that a solution n(k) exists }).
2922 //
2923 // Consider the parabola (over real numbers) that corresponds to the
2924 // quadratic equation. Since A > 0, the arms of the parabola will point
2925 // up. Picking different values of k will shift it up and down by R.
2926 //
2927 // We want to shift the parabola in such a way as to reduce the problem
2928 // of solving q(x) = kR to solving shifted_q(x) = 0.
2929 // (The interesting solutions are the ceilings of the real number
2930 // solutions.)
2931 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2932 APInt TwoA = 2 * A;
2933 APInt SqrB = B * B;
2934 bool PickLow;
2935
2936 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2937 assert(A.isStrictlyPositive())(static_cast <bool> (A.isStrictlyPositive()) ? void (0)
: __assert_fail ("A.isStrictlyPositive()", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2937, __extension__ __PRETTY_FUNCTION__))
;
2938 APInt T = V.abs().urem(A);
2939 if (T.isNullValue())
2940 return V;
2941 return V.isNegative() ? V+T : V+(A-T);
2942 };
2943
2944 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2945 // iff B is positive.
2946 if (B.isNonNegative()) {
2947 // If B >= 0, the vertex it at a negative location (or at 0), so in
2948 // order to have a non-negative solution we need to pick k that makes
2949 // C-kR negative. To satisfy all the requirements for the solution
2950 // that we are looking for, it needs to be closest to 0 of all k.
2951 C = C.srem(R);
2952 if (C.isStrictlyPositive())
2953 C -= R;
2954 // Pick the greater solution.
2955 PickLow = false;
2956 } else {
2957 // If B < 0, the vertex is at a positive location. For any solution
2958 // to exist, the discriminant must be non-negative. This means that
2959 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2960 // lower bound on values of k: kR >= C - B^2/4A.
2961 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2962 // Round LowkR up (towards +inf) to the nearest kR.
2963 LowkR = RoundUp(LowkR, R);
2964
2965 // If there exists k meeting the condition above, and such that
2966 // C-kR > 0, there will be two positive real number solutions of
2967 // q(x) = kR. Out of all such values of k, pick the one that makes
2968 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2969 // In other words, find maximum k such that LowkR <= kR < C.
2970 if (C.sgt(LowkR)) {
2971 // If LowkR < C, then such a k is guaranteed to exist because
2972 // LowkR itself is a multiple of R.
2973 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R)
2974 // Pick the smaller solution.
2975 PickLow = true;
2976 } else {
2977 // If C-kR < 0 for all potential k's, it means that one solution
2978 // will be negative, while the other will be positive. The positive
2979 // solution will shift towards 0 if the parabola is moved up.
2980 // Pick the kR closest to the lower bound (i.e. make C-kR closest
2981 // to 0, or in other words, out of all parabolas that have solutions,
2982 // pick the one that is the farthest "up").
2983 // Since LowkR is itself a multiple of R, simply take C-LowkR.
2984 C -= LowkR;
2985 // Pick the greater solution.
2986 PickLow = false;
2987 }
2988 }
2989
2990 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << __func__ << ": updated coefficients "
<< A << "x^2 + " << B << "x + " <<
C << ", rw:" << RangeWidth << '\n'; } } while
(false)
2991 << B << "x + " << C << ", rw:" << RangeWidth << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << __func__ << ": updated coefficients "
<< A << "x^2 + " << B << "x + " <<
C << ", rw:" << RangeWidth << '\n'; } } while
(false)
;
2992
2993 APInt D = SqrB - 4*A*C;
2994 assert(D.isNonNegative() && "Negative discriminant")(static_cast <bool> (D.isNonNegative() && "Negative discriminant"
) ? void (0) : __assert_fail ("D.isNonNegative() && \"Negative discriminant\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 2994, __extension__ __PRETTY_FUNCTION__))
;
2995 APInt SQ = D.sqrt();
2996
2997 APInt Q = SQ * SQ;
2998 bool InexactSQ = Q != D;
2999 // The calculated SQ may actually be greater than the exact (non-integer)
3000 // value. If that's the case, decrement SQ to get a value that is lower.
3001 if (Q.sgt(D))
3002 SQ -= 1;
3003
3004 APInt X;
3005 APInt Rem;
3006
3007 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
3008 // When using the quadratic formula directly, the calculated low root
3009 // may be greater than the exact one, since we would be subtracting SQ.
3010 // To make sure that the calculated root is not greater than the exact
3011 // one, subtract SQ+1 when calculating the low root (for inexact value
3012 // of SQ).
3013 if (PickLow)
3014 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
3015 else
3016 APInt::sdivrem(-B + SQ, TwoA, X, Rem);
3017
3018 // The updated coefficients should be such that the (exact) solution is
3019 // positive. Since APInt division rounds towards 0, the calculated one
3020 // can be 0, but cannot be negative.
3021 assert(X.isNonNegative() && "Solution should be non-negative")(static_cast <bool> (X.isNonNegative() && "Solution should be non-negative"
) ? void (0) : __assert_fail ("X.isNonNegative() && \"Solution should be non-negative\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 3021, __extension__ __PRETTY_FUNCTION__))
;
3022
3023 if (!InexactSQ && Rem.isNullValue()) {
3024 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << __func__ << ": solution (root): "
<< X << '\n'; } } while (false)
;
3025 return X;
3026 }
3027
3028 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D")(static_cast <bool> ((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"
) ? void (0) : __assert_fail ("(SQ*SQ).sle(D) && \"SQ = |_sqrt(D)_|, so SQ*SQ <= D\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 3028, __extension__ __PRETTY_FUNCTION__))
;
3029 // The exact value of the square root of D should be between SQ and SQ+1.
3030 // This implies that the solution should be between that corresponding to
3031 // SQ (i.e. X) and that corresponding to SQ+1.
3032 //
3033 // The calculated X cannot be greater than the exact (real) solution.
3034 // Actually it must be strictly less than the exact solution, while
3035 // X+1 will be greater than or equal to it.
3036
3037 APInt VX = (A*X + B)*X + C;
3038 APInt VY = VX + TwoA*X + A + B;
3039 bool SignChange = VX.isNegative() != VY.isNegative() ||
3040 VX.isNullValue() != VY.isNullValue();
3041 // If the sign did not change between X and X+1, X is not a valid solution.
3042 // This could happen when the actual (exact) roots don't have an integer
3043 // between them, so they would both be contained between X and X+1.
3044 if (!SignChange) {
3045 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << __func__ << ": no valid solution\n"
; } } while (false)
;
3046 return None;
3047 }
3048
3049 X += 1;
3050 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << __func__ << ": solution (wrap): "
<< X << '\n'; } } while (false)
;
3051 return X;
3052}
3053
3054Optional<unsigned>
3055llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
3056 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth")(static_cast <bool> (A.getBitWidth() == B.getBitWidth()
&& "Must have the same bitwidth") ? void (0) : __assert_fail
("A.getBitWidth() == B.getBitWidth() && \"Must have the same bitwidth\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 3056, __extension__ __PRETTY_FUNCTION__))
;
3057 if (A == B)
3058 return llvm::None;
3059 return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
3060}
3061
3062/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3063/// with the integer held in IntVal.
3064void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3065 unsigned StoreBytes) {
3066 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!")(static_cast <bool> ((IntVal.getBitWidth()+7)/8 >= StoreBytes
&& "Integer too small!") ? void (0) : __assert_fail (
"(IntVal.getBitWidth()+7)/8 >= StoreBytes && \"Integer too small!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 3066, __extension__ __PRETTY_FUNCTION__))
;
3067 const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3068
3069 if (sys::IsLittleEndianHost) {
3070 // Little-endian host - the source is ordered from LSB to MSB. Order the
3071 // destination from LSB to MSB: Do a straight copy.
3072 memcpy(Dst, Src, StoreBytes);
3073 } else {
3074 // Big-endian host - the source is an array of 64 bit words ordered from
3075 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
3076 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3077 while (StoreBytes > sizeof(uint64_t)) {
3078 StoreBytes -= sizeof(uint64_t);
3079 // May not be aligned so use memcpy.
3080 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3081 Src += sizeof(uint64_t);
3082 }
3083
3084 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3085 }
3086}
3087
3088/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3089/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3090void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3091 unsigned LoadBytes) {
3092 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!")(static_cast <bool> ((IntVal.getBitWidth()+7)/8 >= LoadBytes
&& "Integer too small!") ? void (0) : __assert_fail (
"(IntVal.getBitWidth()+7)/8 >= LoadBytes && \"Integer too small!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/lib/Support/APInt.cpp"
, 3092, __extension__ __PRETTY_FUNCTION__))
;
3093 uint8_t *Dst = reinterpret_cast<uint8_t *>(
3094 const_cast<uint64_t *>(IntVal.getRawData()));
3095
3096 if (sys::IsLittleEndianHost)
3097 // Little-endian host - the destination must be ordered from LSB to MSB.
3098 // The source is ordered from LSB to MSB: Do a straight copy.
3099 memcpy(Dst, Src, LoadBytes);
3100 else {
3101 // Big-endian - the destination is an array of 64 bit words ordered from
3102 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
3103 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3104 // a word.
3105 while (LoadBytes > sizeof(uint64_t)) {
3106 LoadBytes -= sizeof(uint64_t);
3107 // May not be aligned so use memcpy.
3108 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3109 Dst += sizeof(uint64_t);
3110 }
3111
3112 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3113 }
3114}

/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <string>
24
25namespace llvm {
26class FoldingSetNodeID;
27class StringRef;
28class hash_code;
29class raw_ostream;
30
31template <typename T> class SmallVectorImpl;
32template <typename T> class ArrayRef;
33template <typename T> class Optional;
34template <typename T> struct DenseMapInfo;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69///
70class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
71public:
72 typedef uint64_t WordType;
73
74 /// This enum is used to hold the constants we needed for APInt.
75 enum : unsigned {
76 /// Byte size of a word.
77 APINT_WORD_SIZE = sizeof(WordType),
78 /// Bits in a word.
79 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
80 };
81
82 enum class Rounding {
83 DOWN,
84 TOWARD_ZERO,
85 UP,
86 };
87
88 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
89
90private:
91 /// This union is used to store the integer value. When the
92 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93 union {
94 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
95 uint64_t *pVal; ///< Used to store the >64 bits integer value.
96 } U;
97
98 unsigned BitWidth; ///< The number of bits in this APInt.
99
100 friend struct DenseMapInfo<APInt>;
101
102 friend class APSInt;
103
104 /// Fast internal constructor
105 ///
106 /// This constructor is used only internally for speed of construction of
107 /// temporaries. It is unsafe for general use so it is not public.
108 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
109 U.pVal = val;
110 }
111
112 /// Determine if this APInt just has one word to store value.
113 ///
114 /// \returns true if the number of bits <= 64, false otherwise.
115 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
116
117 /// Determine which word a bit is in.
118 ///
119 /// \returns the word position for the specified bit position.
120 static unsigned whichWord(unsigned bitPosition) {
121 return bitPosition / APINT_BITS_PER_WORD;
122 }
123
124 /// Determine which bit in a word a bit is in.
125 ///
126 /// \returns the bit position in a word for the specified bit position
127 /// in the APInt.
128 static unsigned whichBit(unsigned bitPosition) {
129 return bitPosition % APINT_BITS_PER_WORD;
130 }
131
132 /// Get a single bit mask.
133 ///
134 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
135 /// This method generates and returns a uint64_t (word) mask for a single
136 /// bit at a specific bit position. This is used to mask the bit in the
137 /// corresponding word.
138 static uint64_t maskBit(unsigned bitPosition) {
139 return 1ULL << whichBit(bitPosition);
140 }
141
142 /// Clear unused high order bits
143 ///
144 /// This method is used internally to clear the top "N" bits in the high order
145 /// word that are not used by the APInt. This is needed after the most
146 /// significant word is assigned a value to ensure that those bits are
147 /// zero'd out.
148 APInt &clearUnusedBits() {
149 // Compute how many bits are used in the final word
150 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
151
152 // Mask out the high bits.
153 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
154 if (isSingleWord())
155 U.VAL &= mask;
156 else
157 U.pVal[getNumWords() - 1] &= mask;
158 return *this;
159 }
160
161 /// Get the word corresponding to a bit position
162 /// \returns the corresponding word for the specified bit position.
163 uint64_t getWord(unsigned bitPosition) const {
164 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
165 }
166
167 /// Utility method to change the bit width of this APInt to new bit width,
168 /// allocating and/or deallocating as necessary. There is no guarantee on the
169 /// value of any bits upon return. Caller should populate the bits after.
170 void reallocate(unsigned NewBitWidth);
171
172 /// Convert a char array into an APInt
173 ///
174 /// \param radix 2, 8, 10, 16, or 36
175 /// Converts a string into a number. The string must be non-empty
176 /// and well-formed as a number of the given base. The bit-width
177 /// must be sufficient to hold the result.
178 ///
179 /// This is used by the constructors that take string arguments.
180 ///
181 /// StringRef::getAsInteger is superficially similar but (1) does
182 /// not assume that the string is well-formed and (2) grows the
183 /// result to hold the input.
184 void fromString(unsigned numBits, StringRef str, uint8_t radix);
185
186 /// An internal division function for dividing APInts.
187 ///
188 /// This is used by the toString method to divide by the radix. It simply
189 /// provides a more convenient form of divide for internal use since KnuthDiv
190 /// has specific constraints on its inputs. If those constraints are not met
191 /// then it provides a simpler form of divide.
192 static void divide(const WordType *LHS, unsigned lhsWords,
193 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
194 WordType *Remainder);
195
196 /// out-of-line slow case for inline constructor
197 void initSlowCase(uint64_t val, bool isSigned);
198
199 /// shared code between two array constructors
200 void initFromArray(ArrayRef<uint64_t> array);
201
202 /// out-of-line slow case for inline copy constructor
203 void initSlowCase(const APInt &that);
204
205 /// out-of-line slow case for shl
206 void shlSlowCase(unsigned ShiftAmt);
207
208 /// out-of-line slow case for lshr.
209 void lshrSlowCase(unsigned ShiftAmt);
210
211 /// out-of-line slow case for ashr.
212 void ashrSlowCase(unsigned ShiftAmt);
213
214 /// out-of-line slow case for operator=
215 void AssignSlowCase(const APInt &RHS);
216
217 /// out-of-line slow case for operator==
218 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
219
220 /// out-of-line slow case for countLeadingZeros
221 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
222
223 /// out-of-line slow case for countLeadingOnes.
224 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
225
226 /// out-of-line slow case for countTrailingZeros.
227 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
228
229 /// out-of-line slow case for countTrailingOnes
230 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
231
232 /// out-of-line slow case for countPopulation
233 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
234
235 /// out-of-line slow case for intersects.
236 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
237
238 /// out-of-line slow case for isSubsetOf.
239 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
240
241 /// out-of-line slow case for setBits.
242 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
243
244 /// out-of-line slow case for flipAllBits.
245 void flipAllBitsSlowCase();
246
247 /// out-of-line slow case for operator&=.
248 void AndAssignSlowCase(const APInt& RHS);
249
250 /// out-of-line slow case for operator|=.
251 void OrAssignSlowCase(const APInt& RHS);
252
253 /// out-of-line slow case for operator^=.
254 void XorAssignSlowCase(const APInt& RHS);
255
256 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
257 /// to, or greater than RHS.
258 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
259
260 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
261 /// to, or greater than RHS.
262 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
263
264public:
265 /// \name Constructors
266 /// @{
267
268 /// Create a new APInt of numBits width, initialized as val.
269 ///
270 /// If isSigned is true then val is treated as if it were a signed value
271 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
272 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
273 /// the range of val are zero filled).
274 ///
275 /// \param numBits the bit width of the constructed APInt
276 /// \param val the initial value of the APInt
277 /// \param isSigned how to treat signedness of val
278 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
279 : BitWidth(numBits) {
280 assert(BitWidth && "bitwidth too small")(static_cast <bool> (BitWidth && "bitwidth too small"
) ? void (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 280, __extension__ __PRETTY_FUNCTION__))
;
281 if (isSingleWord()) {
282 U.VAL = val;
283 clearUnusedBits();
284 } else {
285 initSlowCase(val, isSigned);
286 }
287 }
288
289 /// Construct an APInt of numBits width, initialized as bigVal[].
290 ///
291 /// Note that bigVal.size() can be smaller or larger than the corresponding
292 /// bit width but any extraneous bits will be dropped.
293 ///
294 /// \param numBits the bit width of the constructed APInt
295 /// \param bigVal a sequence of words to form the initial value of the APInt
296 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
297
298 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
299 /// deprecated because this constructor is prone to ambiguity with the
300 /// APInt(unsigned, uint64_t, bool) constructor.
301 ///
302 /// If this overload is ever deleted, care should be taken to prevent calls
303 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
304 /// constructor.
305 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
306
307 /// Construct an APInt from a string representation.
308 ///
309 /// This constructor interprets the string \p str in the given radix. The
310 /// interpretation stops when the first character that is not suitable for the
311 /// radix is encountered, or the end of the string. Acceptable radix values
312 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
313 /// string to require more bits than numBits.
314 ///
315 /// \param numBits the bit width of the constructed APInt
316 /// \param str the string to be interpreted
317 /// \param radix the radix to use for the conversion
318 APInt(unsigned numBits, StringRef str, uint8_t radix);
319
320 /// Simply makes *this a copy of that.
321 /// Copy Constructor.
322 APInt(const APInt &that) : BitWidth(that.BitWidth) {
323 if (isSingleWord())
19
Taking false branch
324 U.VAL = that.U.VAL;
325 else
326 initSlowCase(that);
20
Calling 'APInt::initSlowCase'
24
Returned allocated memory
327 }
328
329 /// Move Constructor.
330 APInt(APInt &&that) : BitWidth(that.BitWidth) {
331 memcpy(&U, &that.U, sizeof(U));
332 that.BitWidth = 0;
333 }
334
335 /// Destructor.
336 ~APInt() {
337 if (needsCleanup())
338 delete[] U.pVal;
339 }
340
341 /// Default constructor that creates an uninteresting APInt
342 /// representing a 1-bit zero value.
343 ///
344 /// This is useful for object deserialization (pair this with the static
345 /// method Read).
346 explicit APInt() : BitWidth(1) { U.VAL = 0; }
347
348 /// Returns whether this instance allocated memory.
349 bool needsCleanup() const { return !isSingleWord(); }
350
351 /// Used to insert APInt objects, or objects that contain APInt objects, into
352 /// FoldingSets.
353 void Profile(FoldingSetNodeID &id) const;
354
355 /// @}
356 /// \name Value Tests
357 /// @{
358
359 /// Determine sign of this APInt.
360 ///
361 /// This tests the high bit of this APInt to determine if it is set.
362 ///
363 /// \returns true if this APInt is negative, false otherwise
364 bool isNegative() const { return (*this)[BitWidth - 1]; }
365
366 /// Determine if this APInt Value is non-negative (>= 0)
367 ///
368 /// This tests the high bit of the APInt to determine if it is unset.
369 bool isNonNegative() const { return !isNegative(); }
370
371 /// Determine if sign bit of this APInt is set.
372 ///
373 /// This tests the high bit of this APInt to determine if it is set.
374 ///
375 /// \returns true if this APInt has its sign bit set, false otherwise.
376 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
377
378 /// Determine if sign bit of this APInt is clear.
379 ///
380 /// This tests the high bit of this APInt to determine if it is clear.
381 ///
382 /// \returns true if this APInt has its sign bit clear, false otherwise.
383 bool isSignBitClear() const { return !isSignBitSet(); }
384
385 /// Determine if this APInt Value is positive.
386 ///
387 /// This tests if the value of this APInt is positive (> 0). Note
388 /// that 0 is not a positive value.
389 ///
390 /// \returns true if this APInt is positive.
391 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392
393 /// Determine if this APInt Value is non-positive (<= 0).
394 ///
395 /// \returns true if this APInt is non-positive.
396 bool isNonPositive() const { return !isStrictlyPositive(); }
397
398 /// Determine if all bits are set
399 ///
400 /// This checks to see if the value has all bits of the APInt are set or not.
401 bool isAllOnesValue() const {
402 if (isSingleWord())
403 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
404 return countTrailingOnesSlowCase() == BitWidth;
405 }
406
407 /// Determine if all bits are clear
408 ///
409 /// This checks to see if the value has all bits of the APInt are clear or
410 /// not.
411 bool isNullValue() const { return !*this; }
412
413 /// Determine if this is a value of 1.
414 ///
415 /// This checks to see if the value of this APInt is one.
416 bool isOneValue() const {
417 if (isSingleWord())
418 return U.VAL == 1;
419 return countLeadingZerosSlowCase() == BitWidth - 1;
420 }
421
422 /// Determine if this is the largest unsigned value.
423 ///
424 /// This checks to see if the value of this APInt is the maximum unsigned
425 /// value for the APInt's bit width.
426 bool isMaxValue() const { return isAllOnesValue(); }
427
428 /// Determine if this is the largest signed value.
429 ///
430 /// This checks to see if the value of this APInt is the maximum signed
431 /// value for the APInt's bit width.
432 bool isMaxSignedValue() const {
433 if (isSingleWord())
434 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
435 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
436 }
437
438 /// Determine if this is the smallest unsigned value.
439 ///
440 /// This checks to see if the value of this APInt is the minimum unsigned
441 /// value for the APInt's bit width.
442 bool isMinValue() const { return isNullValue(); }
443
444 /// Determine if this is the smallest signed value.
445 ///
446 /// This checks to see if the value of this APInt is the minimum signed
447 /// value for the APInt's bit width.
448 bool isMinSignedValue() const {
449 if (isSingleWord())
450 return U.VAL == (WordType(1) << (BitWidth - 1));
451 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
452 }
453
454 /// Check if this APInt has an N-bits unsigned integer value.
455 bool isIntN(unsigned N) const {
456 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 456, __extension__ __PRETTY_FUNCTION__))
;
457 return getActiveBits() <= N;
458 }
459
460 /// Check if this APInt has an N-bits signed integer value.
461 bool isSignedIntN(unsigned N) const {
462 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 462, __extension__ __PRETTY_FUNCTION__))
;
463 return getMinSignedBits() <= N;
464 }
465
466 /// Check if this APInt's value is a power of two greater than zero.
467 ///
468 /// \returns true if the argument APInt value is a power of two > 0.
469 bool isPowerOf2() const {
470 if (isSingleWord())
471 return isPowerOf2_64(U.VAL);
472 return countPopulationSlowCase() == 1;
473 }
474
475 /// Check if the APInt's value is returned by getSignMask.
476 ///
477 /// \returns true if this is the value returned by getSignMask.
478 bool isSignMask() const { return isMinSignedValue(); }
479
480 /// Convert APInt to a boolean value.
481 ///
482 /// This converts the APInt to a boolean value as a test against zero.
483 bool getBoolValue() const { return !!*this; }
484
485 /// If this value is smaller than the specified limit, return it, otherwise
486 /// return the limit value. This causes the value to saturate to the limit.
487 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
488 return ugt(Limit) ? Limit : getZExtValue();
489 }
490
491 /// Check if the APInt consists of a repeated bit pattern.
492 ///
493 /// e.g. 0x01010101 satisfies isSplat(8).
494 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
495 /// width without remainder.
496 bool isSplat(unsigned SplatSizeInBits) const;
497
498 /// \returns true if this APInt value is a sequence of \param numBits ones
499 /// starting at the least significant bit with the remainder zero.
500 bool isMask(unsigned numBits) const {
501 assert(numBits != 0 && "numBits must be non-zero")(static_cast <bool> (numBits != 0 && "numBits must be non-zero"
) ? void (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 501, __extension__ __PRETTY_FUNCTION__))
;
502 assert(numBits <= BitWidth && "numBits out of range")(static_cast <bool> (numBits <= BitWidth && "numBits out of range"
) ? void (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 502, __extension__ __PRETTY_FUNCTION__))
;
503 if (isSingleWord())
504 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
505 unsigned Ones = countTrailingOnesSlowCase();
506 return (numBits == Ones) &&
507 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
508 }
509
510 /// \returns true if this APInt is a non-empty sequence of ones starting at
511 /// the least significant bit with the remainder zero.
512 /// Ex. isMask(0x0000FFFFU) == true.
513 bool isMask() const {
514 if (isSingleWord())
515 return isMask_64(U.VAL);
516 unsigned Ones = countTrailingOnesSlowCase();
517 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
518 }
519
520 /// Return true if this APInt value contains a sequence of ones with
521 /// the remainder zero.
522 bool isShiftedMask() const {
523 if (isSingleWord())
524 return isShiftedMask_64(U.VAL);
525 unsigned Ones = countPopulationSlowCase();
526 unsigned LeadZ = countLeadingZerosSlowCase();
527 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
528 }
529
530 /// @}
531 /// \name Value Generators
532 /// @{
533
534 /// Gets maximum unsigned value of APInt for specific bit width.
535 static APInt getMaxValue(unsigned numBits) {
536 return getAllOnesValue(numBits);
537 }
538
539 /// Gets maximum signed value of APInt for a specific bit width.
540 static APInt getSignedMaxValue(unsigned numBits) {
541 APInt API = getAllOnesValue(numBits);
542 API.clearBit(numBits - 1);
543 return API;
544 }
545
546 /// Gets minimum unsigned value of APInt for a specific bit width.
547 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
548
549 /// Gets minimum signed value of APInt for a specific bit width.
550 static APInt getSignedMinValue(unsigned numBits) {
551 APInt API(numBits, 0);
552 API.setBit(numBits - 1);
553 return API;
554 }
555
556 /// Get the SignMask for a specific bit width.
557 ///
558 /// This is just a wrapper function of getSignedMinValue(), and it helps code
559 /// readability when we want to get a SignMask.
560 static APInt getSignMask(unsigned BitWidth) {
561 return getSignedMinValue(BitWidth);
562 }
563
564 /// Get the all-ones value.
565 ///
566 /// \returns the all-ones value for an APInt of the specified bit-width.
567 static APInt getAllOnesValue(unsigned numBits) {
568 return APInt(numBits, WORDTYPE_MAX, true);
569 }
570
571 /// Get the '0' value.
572 ///
573 /// \returns the '0' value for an APInt of the specified bit-width.
574 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
575
576 /// Compute an APInt containing numBits highbits from this APInt.
577 ///
578 /// Get an APInt with the same BitWidth as this APInt, just zero mask
579 /// the low bits and right shift to the least significant bit.
580 ///
581 /// \returns the high "numBits" bits of this APInt.
582 APInt getHiBits(unsigned numBits) const;
583
584 /// Compute an APInt containing numBits lowbits from this APInt.
585 ///
586 /// Get an APInt with the same BitWidth as this APInt, just zero mask
587 /// the high bits.
588 ///
589 /// \returns the low "numBits" bits of this APInt.
590 APInt getLoBits(unsigned numBits) const;
591
592 /// Return an APInt with exactly one bit set in the result.
593 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
594 APInt Res(numBits, 0);
595 Res.setBit(BitNo);
596 return Res;
597 }
598
599 /// Get a value with a block of bits set.
600 ///
601 /// Constructs an APInt value that has a contiguous range of bits set. The
602 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
603 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
604 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
605 /// \p hiBit.
606 ///
607 /// \param numBits the intended bit width of the result
608 /// \param loBit the index of the lowest bit set.
609 /// \param hiBit the index of the highest bit set.
610 ///
611 /// \returns An APInt value with the requested bits set.
612 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
613 assert(loBit <= hiBit && "loBit greater than hiBit")(static_cast <bool> (loBit <= hiBit && "loBit greater than hiBit"
) ? void (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 613, __extension__ __PRETTY_FUNCTION__))
;
614 APInt Res(numBits, 0);
615 Res.setBits(loBit, hiBit);
616 return Res;
617 }
618
619 /// Wrap version of getBitsSet.
620 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
621 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
622 /// with parameters (32, 28, 4), you would get 0xF000000F.
623 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
624 /// set.
625 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
626 unsigned hiBit) {
627 APInt Res(numBits, 0);
628 Res.setBitsWithWrap(loBit, hiBit);
629 return Res;
630 }
631
632 /// Get a value with upper bits starting at loBit set.
633 ///
634 /// Constructs an APInt value that has a contiguous range of bits set. The
635 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
636 /// bits will be zero. For example, with parameters(32, 12) you would get
637 /// 0xFFFFF000.
638 ///
639 /// \param numBits the intended bit width of the result
640 /// \param loBit the index of the lowest bit to set.
641 ///
642 /// \returns An APInt value with the requested bits set.
643 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
644 APInt Res(numBits, 0);
645 Res.setBitsFrom(loBit);
646 return Res;
647 }
648
649 /// Get a value with high bits set
650 ///
651 /// Constructs an APInt value that has the top hiBitsSet bits set.
652 ///
653 /// \param numBits the bitwidth of the result
654 /// \param hiBitsSet the number of high-order bits set in the result.
655 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
656 APInt Res(numBits, 0);
657 Res.setHighBits(hiBitsSet);
658 return Res;
659 }
660
661 /// Get a value with low bits set
662 ///
663 /// Constructs an APInt value that has the bottom loBitsSet bits set.
664 ///
665 /// \param numBits the bitwidth of the result
666 /// \param loBitsSet the number of low-order bits set in the result.
667 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
668 APInt Res(numBits, 0);
669 Res.setLowBits(loBitsSet);
670 return Res;
671 }
672
673 /// Return a value containing V broadcasted over NewLen bits.
674 static APInt getSplat(unsigned NewLen, const APInt &V);
675
676 /// Determine if two APInts have the same value, after zero-extending
677 /// one of them (if needed!) to ensure that the bit-widths match.
678 static bool isSameValue(const APInt &I1, const APInt &I2) {
679 if (I1.getBitWidth() == I2.getBitWidth())
680 return I1 == I2;
681
682 if (I1.getBitWidth() > I2.getBitWidth())
683 return I1 == I2.zext(I1.getBitWidth());
684
685 return I1.zext(I2.getBitWidth()) == I2;
686 }
687
688 /// Overload to compute a hash_code for an APInt value.
689 friend hash_code hash_value(const APInt &Arg);
690
691 /// This function returns a pointer to the internal storage of the APInt.
692 /// This is useful for writing out the APInt in binary form without any
693 /// conversions.
694 const uint64_t *getRawData() const {
695 if (isSingleWord())
696 return &U.VAL;
697 return &U.pVal[0];
698 }
699
700 /// @}
701 /// \name Unary Operators
702 /// @{
703
704 /// Postfix increment operator.
705 ///
706 /// Increments *this by 1.
707 ///
708 /// \returns a new APInt value representing the original value of *this.
709 const APInt operator++(int) {
710 APInt API(*this);
711 ++(*this);
712 return API;
713 }
714
715 /// Prefix increment operator.
716 ///
717 /// \returns *this incremented by one
718 APInt &operator++();
719
720 /// Postfix decrement operator.
721 ///
722 /// Decrements *this by 1.
723 ///
724 /// \returns a new APInt value representing the original value of *this.
725 const APInt operator--(int) {
726 APInt API(*this);
727 --(*this);
728 return API;
729 }
730
731 /// Prefix decrement operator.
732 ///
733 /// \returns *this decremented by one.
734 APInt &operator--();
735
736 /// Logical negation operator.
737 ///
738 /// Performs logical negation operation on this APInt.
739 ///
740 /// \returns true if *this is zero, false otherwise.
741 bool operator!() const {
742 if (isSingleWord())
743 return U.VAL == 0;
744 return countLeadingZerosSlowCase() == BitWidth;
745 }
746
747 /// @}
748 /// \name Assignment Operators
749 /// @{
750
751 /// Copy assignment operator.
752 ///
753 /// \returns *this after assignment of RHS.
754 APInt &operator=(const APInt &RHS) {
755 // If the bitwidths are the same, we can avoid mucking with memory
756 if (isSingleWord() && RHS.isSingleWord()) {
757 U.VAL = RHS.U.VAL;
758 BitWidth = RHS.BitWidth;
759 return clearUnusedBits();
760 }
761
762 AssignSlowCase(RHS);
763 return *this;
764 }
765
766 /// Move assignment operator.
767 APInt &operator=(APInt &&that) {
768#ifdef EXPENSIVE_CHECKS
769 // Some std::shuffle implementations still do self-assignment.
770 if (this == &that)
771 return *this;
772#endif
773 assert(this != &that && "Self-move not supported")(static_cast <bool> (this != &that && "Self-move not supported"
) ? void (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 773, __extension__ __PRETTY_FUNCTION__))
;
37
'?' condition is true
774 if (!isSingleWord())
38
Taking true branch
775 delete[] U.pVal;
39
Memory is released
776
777 // Use memcpy so that type based alias analysis sees both VAL and pVal
778 // as modified.
779 memcpy(&U, &that.U, sizeof(U));
780
781 BitWidth = that.BitWidth;
782 that.BitWidth = 0;
783
784 return *this;
785 }
786
787 /// Assignment operator.
788 ///
789 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
790 /// the bit width, the excess bits are truncated. If the bit width is larger
791 /// than 64, the value is zero filled in the unspecified high order bits.
792 ///
793 /// \returns *this after assignment of RHS value.
794 APInt &operator=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL = RHS;
797 return clearUnusedBits();
798 }
799 U.pVal[0] = RHS;
800 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// Bitwise AND assignment operator.
805 ///
806 /// Performs a bitwise AND operation on this APInt and RHS. The result is
807 /// assigned to *this.
808 ///
809 /// \returns *this after ANDing with RHS.
810 APInt &operator&=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 811, __extension__ __PRETTY_FUNCTION__))
;
812 if (isSingleWord())
813 U.VAL &= RHS.U.VAL;
814 else
815 AndAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// Bitwise AND assignment operator.
820 ///
821 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator&=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL &= RHS;
827 return *this;
828 }
829 U.pVal[0] &= RHS;
830 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
831 return *this;
832 }
833
834 /// Bitwise OR assignment operator.
835 ///
836 /// Performs a bitwise OR operation on this APInt and RHS. The result is
837 /// assigned *this;
838 ///
839 /// \returns *this after ORing with RHS.
840 APInt &operator|=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 841, __extension__ __PRETTY_FUNCTION__))
;
842 if (isSingleWord())
843 U.VAL |= RHS.U.VAL;
844 else
845 OrAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// Bitwise OR assignment operator.
850 ///
851 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator|=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL |= RHS;
857 return clearUnusedBits();
858 }
859 U.pVal[0] |= RHS;
860 return *this;
861 }
862
863 /// Bitwise XOR assignment operator.
864 ///
865 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
866 /// assigned to *this.
867 ///
868 /// \returns *this after XORing with RHS.
869 APInt &operator^=(const APInt &RHS) {
870 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 870, __extension__ __PRETTY_FUNCTION__))
;
871 if (isSingleWord())
872 U.VAL ^= RHS.U.VAL;
873 else
874 XorAssignSlowCase(RHS);
875 return *this;
876 }
877
878 /// Bitwise XOR assignment operator.
879 ///
880 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
881 /// logically zero-extended or truncated to match the bit-width of
882 /// the LHS.
883 APInt &operator^=(uint64_t RHS) {
884 if (isSingleWord()) {
885 U.VAL ^= RHS;
886 return clearUnusedBits();
887 }
888 U.pVal[0] ^= RHS;
889 return *this;
890 }
891
892 /// Multiplication assignment operator.
893 ///
894 /// Multiplies this APInt by RHS and assigns the result to *this.
895 ///
896 /// \returns *this
897 APInt &operator*=(const APInt &RHS);
898 APInt &operator*=(uint64_t RHS);
899
900 /// Addition assignment operator.
901 ///
902 /// Adds RHS to *this and assigns the result to *this.
903 ///
904 /// \returns *this
905 APInt &operator+=(const APInt &RHS);
906 APInt &operator+=(uint64_t RHS);
907
908 /// Subtraction assignment operator.
909 ///
910 /// Subtracts RHS from *this and assigns the result to *this.
911 ///
912 /// \returns *this
913 APInt &operator-=(const APInt &RHS);
914 APInt &operator-=(uint64_t RHS);
915
916 /// Left-shift assignment function.
917 ///
918 /// Shifts *this left by shiftAmt and assigns the result to *this.
919 ///
920 /// \returns *this after shifting left by ShiftAmt
921 APInt &operator<<=(unsigned ShiftAmt) {
922 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 922, __extension__ __PRETTY_FUNCTION__))
;
923 if (isSingleWord()) {
924 if (ShiftAmt == BitWidth)
925 U.VAL = 0;
926 else
927 U.VAL <<= ShiftAmt;
928 return clearUnusedBits();
929 }
930 shlSlowCase(ShiftAmt);
931 return *this;
932 }
933
934 /// Left-shift assignment function.
935 ///
936 /// Shifts *this left by shiftAmt and assigns the result to *this.
937 ///
938 /// \returns *this after shifting left by ShiftAmt
939 APInt &operator<<=(const APInt &ShiftAmt);
940
941 /// @}
942 /// \name Binary Operators
943 /// @{
944
945 /// Multiplication operator.
946 ///
947 /// Multiplies this APInt by RHS and returns the result.
948 APInt operator*(const APInt &RHS) const;
949
950 /// Left logical shift operator.
951 ///
952 /// Shifts this APInt left by \p Bits and returns the result.
953 APInt operator<<(unsigned Bits) const { return shl(Bits); }
954
955 /// Left logical shift operator.
956 ///
957 /// Shifts this APInt left by \p Bits and returns the result.
958 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
959
960 /// Arithmetic right-shift function.
961 ///
962 /// Arithmetic right-shift this APInt by shiftAmt.
963 APInt ashr(unsigned ShiftAmt) const {
964 APInt R(*this);
965 R.ashrInPlace(ShiftAmt);
966 return R;
967 }
968
969 /// Arithmetic right-shift this APInt by ShiftAmt in place.
970 void ashrInPlace(unsigned ShiftAmt) {
971 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 971, __extension__ __PRETTY_FUNCTION__))
;
972 if (isSingleWord()) {
973 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
974 if (ShiftAmt == BitWidth)
975 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
976 else
977 U.VAL = SExtVAL >> ShiftAmt;
978 clearUnusedBits();
979 return;
980 }
981 ashrSlowCase(ShiftAmt);
982 }
983
984 /// Logical right-shift function.
985 ///
986 /// Logical right-shift this APInt by shiftAmt.
987 APInt lshr(unsigned shiftAmt) const {
988 APInt R(*this);
989 R.lshrInPlace(shiftAmt);
990 return R;
991 }
992
993 /// Logical right-shift this APInt by ShiftAmt in place.
994 void lshrInPlace(unsigned ShiftAmt) {
995 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 995, __extension__ __PRETTY_FUNCTION__))
;
996 if (isSingleWord()) {
997 if (ShiftAmt == BitWidth)
998 U.VAL = 0;
999 else
1000 U.VAL >>= ShiftAmt;
1001 return;
1002 }
1003 lshrSlowCase(ShiftAmt);
1004 }
1005
1006 /// Left-shift function.
1007 ///
1008 /// Left-shift this APInt by shiftAmt.
1009 APInt shl(unsigned shiftAmt) const {
1010 APInt R(*this);
1011 R <<= shiftAmt;
1012 return R;
1013 }
1014
1015 /// Rotate left by rotateAmt.
1016 APInt rotl(unsigned rotateAmt) const;
1017
1018 /// Rotate right by rotateAmt.
1019 APInt rotr(unsigned rotateAmt) const;
1020
1021 /// Arithmetic right-shift function.
1022 ///
1023 /// Arithmetic right-shift this APInt by shiftAmt.
1024 APInt ashr(const APInt &ShiftAmt) const {
1025 APInt R(*this);
1026 R.ashrInPlace(ShiftAmt);
1027 return R;
1028 }
1029
1030 /// Arithmetic right-shift this APInt by shiftAmt in place.
1031 void ashrInPlace(const APInt &shiftAmt);
1032
1033 /// Logical right-shift function.
1034 ///
1035 /// Logical right-shift this APInt by shiftAmt.
1036 APInt lshr(const APInt &ShiftAmt) const {
1037 APInt R(*this);
1038 R.lshrInPlace(ShiftAmt);
1039 return R;
1040 }
1041
1042 /// Logical right-shift this APInt by ShiftAmt in place.
1043 void lshrInPlace(const APInt &ShiftAmt);
1044
1045 /// Left-shift function.
1046 ///
1047 /// Left-shift this APInt by shiftAmt.
1048 APInt shl(const APInt &ShiftAmt) const {
1049 APInt R(*this);
1050 R <<= ShiftAmt;
1051 return R;
1052 }
1053
1054 /// Rotate left by rotateAmt.
1055 APInt rotl(const APInt &rotateAmt) const;
1056
1057 /// Rotate right by rotateAmt.
1058 APInt rotr(const APInt &rotateAmt) const;
1059
1060 /// Unsigned division operation.
1061 ///
1062 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1063 /// RHS are treated as unsigned quantities for purposes of this division.
1064 ///
1065 /// \returns a new APInt value containing the division result, rounded towards
1066 /// zero.
1067 APInt udiv(const APInt &RHS) const;
1068 APInt udiv(uint64_t RHS) const;
1069
1070 /// Signed division function for APInt.
1071 ///
1072 /// Signed divide this APInt by APInt RHS.
1073 ///
1074 /// The result is rounded towards zero.
1075 APInt sdiv(const APInt &RHS) const;
1076 APInt sdiv(int64_t RHS) const;
1077
1078 /// Unsigned remainder operation.
1079 ///
1080 /// Perform an unsigned remainder operation on this APInt with RHS being the
1081 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1082 /// of this operation. Note that this is a true remainder operation and not a
1083 /// modulo operation because the sign follows the sign of the dividend which
1084 /// is *this.
1085 ///
1086 /// \returns a new APInt value containing the remainder result
1087 APInt urem(const APInt &RHS) const;
1088 uint64_t urem(uint64_t RHS) const;
1089
1090 /// Function for signed remainder operation.
1091 ///
1092 /// Signed remainder operation on APInt.
1093 APInt srem(const APInt &RHS) const;
1094 int64_t srem(int64_t RHS) const;
1095
1096 /// Dual division/remainder interface.
1097 ///
1098 /// Sometimes it is convenient to divide two APInt values and obtain both the
1099 /// quotient and remainder. This function does both operations in the same
1100 /// computation making it a little more efficient. The pair of input arguments
1101 /// may overlap with the pair of output arguments. It is safe to call
1102 /// udivrem(X, Y, X, Y), for example.
1103 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1104 APInt &Remainder);
1105 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1106 uint64_t &Remainder);
1107
1108 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1109 APInt &Remainder);
1110 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1111 int64_t &Remainder);
1112
1113 // Operations that return overflow indicators.
1114 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1115 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1116 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1117 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1118 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1119 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1120 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1121 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1122 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1123
1124 // Operations that saturate
1125 APInt sadd_sat(const APInt &RHS) const;
1126 APInt uadd_sat(const APInt &RHS) const;
1127 APInt ssub_sat(const APInt &RHS) const;
1128 APInt usub_sat(const APInt &RHS) const;
1129 APInt smul_sat(const APInt &RHS) const;
1130 APInt umul_sat(const APInt &RHS) const;
1131 APInt sshl_sat(const APInt &RHS) const;
1132 APInt ushl_sat(const APInt &RHS) const;
1133
1134 /// Array-indexing support.
1135 ///
1136 /// \returns the bit value at bitPosition
1137 bool operator[](unsigned bitPosition) const {
1138 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")(static_cast <bool> (bitPosition < getBitWidth() &&
"Bit position out of bounds!") ? void (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1138, __extension__ __PRETTY_FUNCTION__))
;
1139 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1140 }
1141
1142 /// @}
1143 /// \name Comparison Operators
1144 /// @{
1145
1146 /// Equality operator.
1147 ///
1148 /// Compares this APInt with RHS for the validity of the equality
1149 /// relationship.
1150 bool operator==(const APInt &RHS) const {
1151 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Comparison requires equal bit widths") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1151, __extension__ __PRETTY_FUNCTION__))
;
1152 if (isSingleWord())
1153 return U.VAL == RHS.U.VAL;
1154 return EqualSlowCase(RHS);
1155 }
1156
1157 /// Equality operator.
1158 ///
1159 /// Compares this APInt with a uint64_t for the validity of the equality
1160 /// relationship.
1161 ///
1162 /// \returns true if *this == Val
1163 bool operator==(uint64_t Val) const {
1164 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1165 }
1166
1167 /// Equality comparison.
1168 ///
1169 /// Compares this APInt with RHS for the validity of the equality
1170 /// relationship.
1171 ///
1172 /// \returns true if *this == Val
1173 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1174
1175 /// Inequality operator.
1176 ///
1177 /// Compares this APInt with RHS for the validity of the inequality
1178 /// relationship.
1179 ///
1180 /// \returns true if *this != Val
1181 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1182
1183 /// Inequality operator.
1184 ///
1185 /// Compares this APInt with a uint64_t for the validity of the inequality
1186 /// relationship.
1187 ///
1188 /// \returns true if *this != Val
1189 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1190
1191 /// Inequality comparison
1192 ///
1193 /// Compares this APInt with RHS for the validity of the inequality
1194 /// relationship.
1195 ///
1196 /// \returns true if *this != Val
1197 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1198
1199 /// Unsigned less than comparison
1200 ///
1201 /// Regards both *this and RHS as unsigned quantities and compares them for
1202 /// the validity of the less-than relationship.
1203 ///
1204 /// \returns true if *this < RHS when both are considered unsigned.
1205 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1206
1207 /// Unsigned less than comparison
1208 ///
1209 /// Regards both *this as an unsigned quantity and compares it with RHS for
1210 /// the validity of the less-than relationship.
1211 ///
1212 /// \returns true if *this < RHS when considered unsigned.
1213 bool ult(uint64_t RHS) const {
1214 // Only need to check active bits if not a single word.
1215 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1216 }
1217
1218 /// Signed less than comparison
1219 ///
1220 /// Regards both *this and RHS as signed quantities and compares them for
1221 /// validity of the less-than relationship.
1222 ///
1223 /// \returns true if *this < RHS when both are considered signed.
1224 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1225
1226 /// Signed less than comparison
1227 ///
1228 /// Regards both *this as a signed quantity and compares it with RHS for
1229 /// the validity of the less-than relationship.
1230 ///
1231 /// \returns true if *this < RHS when considered signed.
1232 bool slt(int64_t RHS) const {
1233 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1234 : getSExtValue() < RHS;
1235 }
1236
1237 /// Unsigned less or equal comparison
1238 ///
1239 /// Regards both *this and RHS as unsigned quantities and compares them for
1240 /// validity of the less-or-equal relationship.
1241 ///
1242 /// \returns true if *this <= RHS when both are considered unsigned.
1243 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1244
1245 /// Unsigned less or equal comparison
1246 ///
1247 /// Regards both *this as an unsigned quantity and compares it with RHS for
1248 /// the validity of the less-or-equal relationship.
1249 ///
1250 /// \returns true if *this <= RHS when considered unsigned.
1251 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1252
1253 /// Signed less or equal comparison
1254 ///
1255 /// Regards both *this and RHS as signed quantities and compares them for
1256 /// validity of the less-or-equal relationship.
1257 ///
1258 /// \returns true if *this <= RHS when both are considered signed.
1259 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1260
1261 /// Signed less or equal comparison
1262 ///
1263 /// Regards both *this as a signed quantity and compares it with RHS for the
1264 /// validity of the less-or-equal relationship.
1265 ///
1266 /// \returns true if *this <= RHS when considered signed.
1267 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1268
1269 /// Unsigned greater than comparison
1270 ///
1271 /// Regards both *this and RHS as unsigned quantities and compares them for
1272 /// the validity of the greater-than relationship.
1273 ///
1274 /// \returns true if *this > RHS when both are considered unsigned.
1275 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1276
1277 /// Unsigned greater than comparison
1278 ///
1279 /// Regards both *this as an unsigned quantity and compares it with RHS for
1280 /// the validity of the greater-than relationship.
1281 ///
1282 /// \returns true if *this > RHS when considered unsigned.
1283 bool ugt(uint64_t RHS) const {
1284 // Only need to check active bits if not a single word.
1285 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1286 }
1287
1288 /// Signed greater than comparison
1289 ///
1290 /// Regards both *this and RHS as signed quantities and compares them for the
1291 /// validity of the greater-than relationship.
1292 ///
1293 /// \returns true if *this > RHS when both are considered signed.
1294 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1295
1296 /// Signed greater than comparison
1297 ///
1298 /// Regards both *this as a signed quantity and compares it with RHS for
1299 /// the validity of the greater-than relationship.
1300 ///
1301 /// \returns true if *this > RHS when considered signed.
1302 bool sgt(int64_t RHS) const {
1303 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1304 : getSExtValue() > RHS;
1305 }
1306
1307 /// Unsigned greater or equal comparison
1308 ///
1309 /// Regards both *this and RHS as unsigned quantities and compares them for
1310 /// validity of the greater-or-equal relationship.
1311 ///
1312 /// \returns true if *this >= RHS when both are considered unsigned.
1313 bool uge(const APInt &RHS) const { return !ult(RHS); }
1314
1315 /// Unsigned greater or equal comparison
1316 ///
1317 /// Regards both *this as an unsigned quantity and compares it with RHS for
1318 /// the validity of the greater-or-equal relationship.
1319 ///
1320 /// \returns true if *this >= RHS when considered unsigned.
1321 bool uge(uint64_t RHS) const { return !ult(RHS); }
1322
1323 /// Signed greater or equal comparison
1324 ///
1325 /// Regards both *this and RHS as signed quantities and compares them for
1326 /// validity of the greater-or-equal relationship.
1327 ///
1328 /// \returns true if *this >= RHS when both are considered signed.
1329 bool sge(const APInt &RHS) const { return !slt(RHS); }
1330
1331 /// Signed greater or equal comparison
1332 ///
1333 /// Regards both *this as a signed quantity and compares it with RHS for
1334 /// the validity of the greater-or-equal relationship.
1335 ///
1336 /// \returns true if *this >= RHS when considered signed.
1337 bool sge(int64_t RHS) const { return !slt(RHS); }
1338
1339 /// This operation tests if there are any pairs of corresponding bits
1340 /// between this APInt and RHS that are both set.
1341 bool intersects(const APInt &RHS) const {
1342 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1342, __extension__ __PRETTY_FUNCTION__))
;
1343 if (isSingleWord())
1344 return (U.VAL & RHS.U.VAL) != 0;
1345 return intersectsSlowCase(RHS);
1346 }
1347
1348 /// This operation checks that all bits set in this APInt are also set in RHS.
1349 bool isSubsetOf(const APInt &RHS) const {
1350 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1350, __extension__ __PRETTY_FUNCTION__))
;
1351 if (isSingleWord())
1352 return (U.VAL & ~RHS.U.VAL) == 0;
1353 return isSubsetOfSlowCase(RHS);
1354 }
1355
1356 /// @}
1357 /// \name Resizing Operators
1358 /// @{
1359
1360 /// Truncate to new width.
1361 ///
1362 /// Truncate the APInt to a specified width. It is an error to specify a width
1363 /// that is greater than or equal to the current width.
1364 APInt trunc(unsigned width) const;
1365
1366 /// Truncate to new width with unsigned saturation.
1367 ///
1368 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1369 /// the new bitwidth, then return truncated APInt. Else, return max value.
1370 APInt truncUSat(unsigned width) const;
1371
1372 /// Truncate to new width with signed saturation.
1373 ///
1374 /// If this APInt, treated as signed integer, can be losslessly truncated to
1375 /// the new bitwidth, then return truncated APInt. Else, return either
1376 /// signed min value if the APInt was negative, or signed max value.
1377 APInt truncSSat(unsigned width) const;
1378
1379 /// Sign extend to a new width.
1380 ///
1381 /// This operation sign extends the APInt to a new width. If the high order
1382 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1383 /// It is an error to specify a width that is less than or equal to the
1384 /// current width.
1385 APInt sext(unsigned width) const;
1386
1387 /// Zero extend to a new width.
1388 ///
1389 /// This operation zero extends the APInt to a new width. The high order bits
1390 /// are filled with 0 bits. It is an error to specify a width that is less
1391 /// than or equal to the current width.
1392 APInt zext(unsigned width) const;
1393
1394 /// Sign extend or truncate to width
1395 ///
1396 /// Make this APInt have the bit width given by \p width. The value is sign
1397 /// extended, truncated, or left alone to make it that width.
1398 APInt sextOrTrunc(unsigned width) const;
1399
1400 /// Zero extend or truncate to width
1401 ///
1402 /// Make this APInt have the bit width given by \p width. The value is zero
1403 /// extended, truncated, or left alone to make it that width.
1404 APInt zextOrTrunc(unsigned width) const;
1405
1406 /// Truncate to width
1407 ///
1408 /// Make this APInt have the bit width given by \p width. The value is
1409 /// truncated or left alone to make it that width.
1410 APInt truncOrSelf(unsigned width) const;
1411
1412 /// Sign extend or truncate to width
1413 ///
1414 /// Make this APInt have the bit width given by \p width. The value is sign
1415 /// extended, or left alone to make it that width.
1416 APInt sextOrSelf(unsigned width) const;
1417
1418 /// Zero extend or truncate to width
1419 ///
1420 /// Make this APInt have the bit width given by \p width. The value is zero
1421 /// extended, or left alone to make it that width.
1422 APInt zextOrSelf(unsigned width) const;
1423
1424 /// @}
1425 /// \name Bit Manipulation Operators
1426 /// @{
1427
1428 /// Set every bit to 1.
1429 void setAllBits() {
1430 if (isSingleWord())
1431 U.VAL = WORDTYPE_MAX;
1432 else
1433 // Set all the bits in all the words.
1434 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1435 // Clear the unused ones
1436 clearUnusedBits();
1437 }
1438
1439 /// Set a given bit to 1.
1440 ///
1441 /// Set the given bit to 1 whose position is given as "bitPosition".
1442 void setBit(unsigned BitPosition) {
1443 assert(BitPosition < BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition < BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1443, __extension__ __PRETTY_FUNCTION__))
;
1444 WordType Mask = maskBit(BitPosition);
1445 if (isSingleWord())
1446 U.VAL |= Mask;
1447 else
1448 U.pVal[whichWord(BitPosition)] |= Mask;
1449 }
1450
1451 /// Set the sign bit to 1.
1452 void setSignBit() {
1453 setBit(BitWidth - 1);
1454 }
1455
1456 /// Set a given bit to a given value.
1457 void setBitVal(unsigned BitPosition, bool BitValue) {
1458 if (BitValue)
1459 setBit(BitPosition);
1460 else
1461 clearBit(BitPosition);
1462 }
1463
1464 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1465 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1466 /// setBits when \p loBit < \p hiBit.
1467 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1468 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1469 assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range"
) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1469, __extension__ __PRETTY_FUNCTION__))
;
1470 assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range"
) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1470, __extension__ __PRETTY_FUNCTION__))
;
1471 if (loBit < hiBit) {
1472 setBits(loBit, hiBit);
1473 return;
1474 }
1475 setLowBits(hiBit);
1476 setHighBits(BitWidth - loBit);
1477 }
1478
1479 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1480 /// This function handles case when \p loBit <= \p hiBit.
1481 void setBits(unsigned loBit, unsigned hiBit) {
1482 assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range"
) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1482, __extension__ __PRETTY_FUNCTION__))
;
1483 assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range"
) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1483, __extension__ __PRETTY_FUNCTION__))
;
1484 assert(loBit <= hiBit && "loBit greater than hiBit")(static_cast <bool> (loBit <= hiBit && "loBit greater than hiBit"
) ? void (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1484, __extension__ __PRETTY_FUNCTION__))
;
1485 if (loBit == hiBit)
1486 return;
1487 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1488 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1489 mask <<= loBit;
1490 if (isSingleWord())
1491 U.VAL |= mask;
1492 else
1493 U.pVal[0] |= mask;
1494 } else {
1495 setBitsSlowCase(loBit, hiBit);
1496 }
1497 }
1498
1499 /// Set the top bits starting from loBit.
1500 void setBitsFrom(unsigned loBit) {
1501 return setBits(loBit, BitWidth);
1502 }
1503
1504 /// Set the bottom loBits bits.
1505 void setLowBits(unsigned loBits) {
1506 return setBits(0, loBits);
1507 }
1508
1509 /// Set the top hiBits bits.
1510 void setHighBits(unsigned hiBits) {
1511 return setBits(BitWidth - hiBits, BitWidth);
1512 }
1513
1514 /// Set every bit to 0.
1515 void clearAllBits() {
1516 if (isSingleWord())
1517 U.VAL = 0;
1518 else
1519 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1520 }
1521
1522 /// Set a given bit to 0.
1523 ///
1524 /// Set the given bit to 0 whose position is given as "bitPosition".
1525 void clearBit(unsigned BitPosition) {
1526 assert(BitPosition < BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition < BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1526, __extension__ __PRETTY_FUNCTION__))
;
1527 WordType Mask = ~maskBit(BitPosition);
1528 if (isSingleWord())
1529 U.VAL &= Mask;
1530 else
1531 U.pVal[whichWord(BitPosition)] &= Mask;
1532 }
1533
1534 /// Set bottom loBits bits to 0.
1535 void clearLowBits(unsigned loBits) {
1536 assert(loBits <= BitWidth && "More bits than bitwidth")(static_cast <bool> (loBits <= BitWidth && "More bits than bitwidth"
) ? void (0) : __assert_fail ("loBits <= BitWidth && \"More bits than bitwidth\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1536, __extension__ __PRETTY_FUNCTION__))
;
1537 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1538 *this &= Keep;
1539 }
1540
1541 /// Set the sign bit to 0.
1542 void clearSignBit() {
1543 clearBit(BitWidth - 1);
1544 }
1545
1546 /// Toggle every bit to its opposite value.
1547 void flipAllBits() {
1548 if (isSingleWord()) {
1549 U.VAL ^= WORDTYPE_MAX;
1550 clearUnusedBits();
1551 } else {
1552 flipAllBitsSlowCase();
1553 }
1554 }
1555
1556 /// Toggles a given bit to its opposite value.
1557 ///
1558 /// Toggle a given bit to its opposite value whose position is given
1559 /// as "bitPosition".
1560 void flipBit(unsigned bitPosition);
1561
1562 /// Negate this APInt in place.
1563 void negate() {
1564 flipAllBits();
1565 ++(*this);
1566 }
1567
1568 /// Insert the bits from a smaller APInt starting at bitPosition.
1569 void insertBits(const APInt &SubBits, unsigned bitPosition);
1570 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1571
1572 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1573 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1574 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1575
1576 /// @}
1577 /// \name Value Characterization Functions
1578 /// @{
1579
1580 /// Return the number of bits in the APInt.
1581 unsigned getBitWidth() const { return BitWidth; }
1582
1583 /// Get the number of words.
1584 ///
1585 /// Here one word's bitwidth equals to that of uint64_t.
1586 ///
1587 /// \returns the number of words to hold the integer value of this APInt.
1588 unsigned getNumWords() const { return getNumWords(BitWidth); }
1589
1590 /// Get the number of words.
1591 ///
1592 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1593 ///
1594 /// \returns the number of words to hold the integer value with a given bit
1595 /// width.
1596 static unsigned getNumWords(unsigned BitWidth) {
1597 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1598 }
1599
1600 /// Compute the number of active bits in the value
1601 ///
1602 /// This function returns the number of active bits which is defined as the
1603 /// bit width minus the number of leading zeros. This is used in several
1604 /// computations to see how "wide" the value is.
1605 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1606
1607 /// Compute the number of active words in the value of this APInt.
1608 ///
1609 /// This is used in conjunction with getActiveData to extract the raw value of
1610 /// the APInt.
1611 unsigned getActiveWords() const {
1612 unsigned numActiveBits = getActiveBits();
1613 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1614 }
1615
1616 /// Get the minimum bit size for this signed APInt
1617 ///
1618 /// Computes the minimum bit width for this APInt while considering it to be a
1619 /// signed (and probably negative) value. If the value is not negative, this
1620 /// function returns the same value as getActiveBits()+1. Otherwise, it
1621 /// returns the smallest bit width that will retain the negative value. For
1622 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1623 /// for -1, this function will always return 1.
1624 unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; }
1625
1626 /// Get zero extended value
1627 ///
1628 /// This method attempts to return the value of this APInt as a zero extended
1629 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1630 /// uint64_t. Otherwise an assertion will result.
1631 uint64_t getZExtValue() const {
1632 if (isSingleWord())
1633 return U.VAL;
1634 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")(static_cast <bool> (getActiveBits() <= 64 &&
"Too many bits for uint64_t") ? void (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1634, __extension__ __PRETTY_FUNCTION__))
;
1635 return U.pVal[0];
1636 }
1637
1638 /// Get sign extended value
1639 ///
1640 /// This method attempts to return the value of this APInt as a sign extended
1641 /// int64_t. The bit width must be <= 64 or the value must fit within an
1642 /// int64_t. Otherwise an assertion will result.
1643 int64_t getSExtValue() const {
1644 if (isSingleWord())
1645 return SignExtend64(U.VAL, BitWidth);
1646 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")(static_cast <bool> (getMinSignedBits() <= 64 &&
"Too many bits for int64_t") ? void (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-13~++20210525111110+78eaff2ef8a9/llvm/include/llvm/ADT/APInt.h"
, 1646, __extension__ __PRETTY_FUNCTION__))
;
1647 return int64_t(U.pVal[0]);
1648 }
1649
1650 /// Get bits required for string value.
1651 ///
1652 /// This method determines how many bits are required to hold the APInt
1653 /// equivalent of the string given by \p str.
1654 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1655
1656 /// The APInt version of the countLeadingZeros functions in
1657 /// MathExtras.h.
1658 ///
1659 /// It counts the number of zeros from the most significant bit to the first
1660 /// one bit.
1661 ///
1662 /// \returns BitWidth if the value is zero, otherwise returns the number of
1663 /// zeros from the most significant bit to the first one bits.
1664 unsigned countLeadingZeros() const {
1665 if (isSingleWord()) {
1666 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1667 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1668 }
1669 return countLeadingZerosSlowCase();
1670 }
1671
1672 /// Count the number of leading one bits.
1673 ///
1674 /// This function is an APInt version of the countLeadingOnes
1675 /// functions in MathExtras.h. It counts the number of ones from the most
1676 /// significant bit to the first zero bit.
1677 ///
1678 /// \returns 0 if the high order bit is not set, otherwise returns the number
1679 /// of 1 bits from the most significant to the least
1680 unsigned countLeadingOnes() const {
1681 if (isSingleWord())
1682 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1683 return countLeadingOnesSlowCase();
1684 }
1685
1686 /// Computes the number of leading bits of this APInt that are equal to its
1687 /// sign bit.
1688 unsigned getNumSignBits() const {
1689 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1690 }
1691
1692 /// Count the number of trailing zero bits.
1693 ///
1694 /// This function is an APInt version of the countTrailingZeros
1695 /// functions in MathExtras.h. It counts the number of zeros from the least
1696 /// significant bit to the first set bit.
1697 ///
1698 /// \returns BitWidth if the value is zero, otherwise returns the number of
1699 /// zeros from the least significant bit to the first one bit.
1700 unsigned countTrailingZeros() const {
1701 if (isSingleWord()) {
1702 unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL);
1703 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1704 }
1705 return countTrailingZerosSlowCase();
1706 }
1707
1708 /// Count the number of trailing one bits.
1709 ///
1710 /// This function is an APInt version of the countTrailingOnes
1711 /// functions in MathExtras.h. It counts the number of ones from the least
1712 /// significant bit to the first zero bit.
1713 ///
1714 /// \returns BitWidth if the value is all ones, otherwise returns the number
1715 /// of ones from the least significant bit to the first zero bit.
1716 unsigned countTrailingOnes() const {
1717 if (isSingleWord())
1718 return llvm::countTrailingOnes(U.VAL);
1719 return countTrailingOnesSlowCase();
1720 }
1721
1722 /// Count the number of bits set.
1723 ///
1724 /// This function is an APInt version of the countPopulation functions
1725 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1726 ///
1727 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1728 unsigned countPopulation() const {
1729 if (isSingleWord())
1730 return llvm::countPopulation(U.VAL);
1731 return countPopulationSlowCase();
1732 }
1733
1734 /// @}
1735 /// \name Conversion Functions
1736 /// @{
1737 void print(raw_ostream &OS, bool isSigned) const;
1738
1739 /// Converts an APInt to a string and append it to Str. Str is commonly a
1740 /// SmallString.
1741 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1742 bool formatAsCLiteral = false) const;
1743
1744 /// Considers the APInt to be unsigned and converts it into a string in the
1745 /// radix given. The radix can be 2, 8, 10 16, or 36.
1746 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1747 toString(Str, Radix, false, false);
1748 }
1749
1750 /// Considers the APInt to be signed and converts it into a string in the
1751 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1752 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1753 toString(Str, Radix, true, false);
1754 }
1755
1756 /// Return the APInt as a std::string.
1757 ///
1758 /// Note that this is an inefficient method. It is better to pass in a
1759 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1760 /// for the string.
1761 std::string toString(unsigned Radix, bool Signed) const;
1762
1763 /// \returns a byte-swapped representation of this APInt Value.
1764 APInt byteSwap() const;
1765
1766 /// \returns the value with the bit representation reversed of this APInt
1767 /// Value.
1768 APInt reverseBits() const;
1769
1770 /// Converts this APInt to a double value.
1771 double roundToDouble(bool isSigned) const;
1772
1773 /// Converts this unsigned APInt to a double value.
1774 double roundToDouble() const { return roundToDouble(false); }
1775
1776 /// Converts this signed APInt to a double value.
1777 double signedRoundToDouble() const { return roundToDouble(true); }
1778
1779 /// Converts APInt bits to a double
1780 ///
1781 /// The conversion does not do a translation from integer to double, it just
1782 /// re-interprets the bits as a double. Note that it is valid to do this on
1783 /// any bit width. Exactly 64 bits will be translated.
1784 double bitsToDouble() const {
1785 return BitsToDouble(getWord(0));
1786 }
1787
1788 /// Converts APInt bits to a float
1789 ///
1790 /// The conversion does not do a translation from integer to float, it just
1791 /// re-interprets the bits as a float. Note that it is valid to do this on
1792 /// any bit width. Exactly 32 bits will be translated.
1793 float bitsToFloat() const {
1794 return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1795 }
1796
1797 /// Converts a double to APInt bits.
1798 ///
1799 /// The conversion does not do a translation from double to integer, it just
1800 /// re-interprets the bits of the double.
1801 static APInt doubleToBits(double V) {
1802 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1803 }
1804
1805 /// Converts a float to APInt bits.
1806 ///
1807 /// The conversion does not do a translation from float to integer, it just
1808 /// re-interprets the bits of the float.
1809 static APInt floatToBits(float V) {
1810 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1811 }
1812
1813 /// @}
1814 /// \name Mathematics Operations
1815 /// @{
1816
1817 /// \returns the floor log base 2 of this APInt.
1818 unsigned logBase2() const { return getActiveBits() - 1; }
1819
1820 /// \returns the ceil log base 2 of this APInt.
1821 unsigned ceilLogBase2() const {
1822 APInt temp(*this);
1823 --temp;
1824 return temp.getActiveBits();
1825 }
1826
1827 /// \returns the nearest log base 2 of this APInt. Ties round up.
1828 ///
1829 /// NOTE: When we have a BitWidth of 1, we define:
1830 ///
1831 /// log2(0) = UINT32_MAX
1832 /// log2(1) = 0
1833 ///
1834 /// to get around any mathematical concerns resulting from
1835 /// referencing 2 in a space where 2 does no exist.
1836 unsigned nearestLogBase2() const {
1837 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1838 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1839 // UINT32_MAX.
1840 if (BitWidth == 1)
1841 return U.VAL - 1;
1842
1843 // Handle the zero case.
1844 if (isNullValue())
1845 return UINT32_MAX(4294967295U);
1846
1847 // The non-zero case is handled by computing:
1848 //
1849 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1850 //
1851 // where x[i] is referring to the value of the ith bit of x.
1852 unsigned lg = logBase2();
1853 return lg + unsigned((*this)[lg - 1]);
1854 }
1855
1856 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1857 /// otherwise
1858 int32_t exactLogBase2() const {
1859 if (!isPowerOf2())
1860 return -1;
1861 return logBase2();
1862 }
1863
1864 /// Compute the square root
1865 APInt sqrt() const;
1866
1867 /// Get the absolute value;
1868 ///
1869 /// If *this is < 0 then return -(*this), otherwise *this;
1870 APInt abs() const {
1871 if (isNegative())
1872 return -(*this);
1873 return *this;
1874 }
1875
1876 /// \returns the multiplicative inverse for a given modulo.
1877 APInt multiplicativeInverse(const APInt &modulo) const;
1878
1879 /// @}
1880 /// \name Support for division by constant
1881 /// @{
1882
1883 /// Calculate the magic number for signed division by a constant.
1884 struct ms;
1885 ms magic() const;
1886
1887 /// Calculate the magic number for unsigned division by a constant.
1888 struct mu;
1889 mu magicu(unsigned LeadingZeros = 0) const;
1890
1891 /// @}
1892 /// \name Building-block Operations for APInt and APFloat
1893 /// @{
1894
1895 // These building block operations operate on a representation of arbitrary
1896 // precision, two's-complement, bignum integer values. They should be
1897 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1898 // generally a pointer to the base of an array of integer parts, representing
1899 // an unsigned bignum, and a count of how many parts there are.
1900
1901 /// Sets the least significant part of a bignum to the input value, and zeroes
1902 /// out higher parts.
1903 static void tcSet(WordType *, WordType, unsigned);
1904
1905 /// Assign one bignum to another.
1906 static void tcAssign(WordType *, const WordType *, unsigned);
1907
1908 /// Returns true if a bignum is zero, false otherwise.
1909 static bool tcIsZero(const WordType *, unsigned);
1910
1911 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1912 static int tcExtractBit(const WordType *, unsigned bit);
1913
1914 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1915 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1916 /// significant bit of DST. All high bits above srcBITS in DST are
1917 /// zero-filled.
1918 static void tcExtract(WordType *, unsigned dstCount,
1919 const WordType *, unsigned srcBits,
1920 unsigned srcLSB);
1921
1922 /// Set the given bit of a bignum. Zero-based.
1923 static void tcSetBit(WordType *, unsigned bit);
1924
1925 /// Clear the given bit of a bignum. Zero-based.
1926 static void tcClearBit(WordType *, unsigned bit);
1927
1928 /// Returns the bit number of the least or most significant set bit of a
1929 /// number. If the input number has no bits set -1U is returned.
1930 static unsigned tcLSB(const WordType *, unsigned n);
1931 static unsigned tcMSB(const WordType *parts, unsigned n);
1932
1933 /// Negate a bignum in-place.
1934 static void tcNegate(WordType *, unsigned);
1935
1936 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1937 static WordType tcAdd(WordType *, const WordType *,
1938 WordType carry, unsigned);
1939 /// DST += RHS. Returns the carry flag.
1940 static WordType tcAddPart(WordType *, WordType, unsigned);
1941
1942 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1943 static WordType tcSubtract(WordType *, const WordType *,
1944 WordType carry, unsigned);
1945 /// DST -= RHS. Returns the carry flag.
1946 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1947
1948 /// DST += SRC * MULTIPLIER + PART if add is true
1949 /// DST = SRC * MULTIPLIER + PART if add is false
1950 ///
1951 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1952 /// start at the same point, i.e. DST == SRC.
1953 ///
1954 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1955 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1956 /// result, and if all of the omitted higher parts were zero return zero,
1957 /// otherwise overflow occurred and return one.
1958 static int tcMultiplyPart(WordType *dst, const WordType *src,
1959 WordType multiplier, WordType carry,
1960 unsigned srcParts, unsigned dstParts,
1961 bool add);
1962
1963 /// DST = LHS * RHS, where DST has the same width as the operands and is
1964 /// filled with the least significant parts of the result. Returns one if
1965 /// overflow occurred, otherwise zero. DST must be disjoint from both
1966 /// operands.
1967 static int tcMultiply(WordType *, const WordType *, const WordType *,
1968 unsigned);
1969
1970 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1971 /// operands. No overflow occurs. DST must be disjoint from both operands.
1972 static void tcFullMultiply(WordType *, const WordType *,
1973 const WordType *, unsigned, unsigned);
1974
1975 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1976 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1977 /// REMAINDER to the remainder, return zero. i.e.
1978 ///
1979 /// OLD_LHS = RHS * LHS + REMAINDER
1980 ///
1981 /// SCRATCH is a bignum of the same size as the operands and result for use by
1982 /// the routine; its contents need not be initialized and are destroyed. LHS,
1983 /// REMAINDER and SCRATCH must be distinct.
1984 static int tcDivide(WordType *lhs, const WordType *rhs,
1985 WordType *remainder, WordType *scratch,
1986 unsigned parts);
1987
1988 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1989 /// restrictions on Count.
1990 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1991
1992 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1993 /// restrictions on Count.
1994 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1995
1996 /// The obvious AND, OR and XOR and complement operations.
1997 static void tcAnd(WordType *, const WordType *, unsigned);
1998 static void tcOr(WordType *, const WordType *, unsigned);
1999 static void tcXor(WordType *, const WordType *, unsigned);
2000 static void tcComplement(WordType *, unsigned);
2001
2002 /// Comparison (unsigned) of two bignums.
2003 static int tcCompare(const WordType *, const WordType *, unsigned);
2004
2005 /// Increment a bignum in-place. Return the carry flag.
2006 static WordType tcIncrement(WordType *dst, unsigned parts) {
2007 return tcAddPart(dst, 1, parts);
2008 }
2009
2010 /// Decrement a bignum in-place. Return the borrow flag.
2011 static WordType tcDecrement(WordType *dst, unsigned parts) {
2012 return tcSubtractPart(dst, 1, parts);
2013 }
2014
2015 /// Set the least significant BITS and clear the rest.
2016 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
2017
2018 /// debug method
2019 void dump() const;
2020
2021 /// @}
2022};
2023
2024/// Magic data for optimising signed division by a constant.
2025struct APInt::ms {
2026 APInt m; ///< magic number
2027 unsigned s; ///< shift amount
2028};
2029
2030/// Magic data for optimising unsigned division by a constant.
2031struct APInt::mu {
2032 APInt m; ///< magic number
2033 bool a; ///< add indicator
2034 unsigned s; ///< shift amount
2035};
2036
2037inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2038
2039inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2040
2041/// Unary bitwise complement operator.
2042///
2043/// \returns an APInt that is the bitwise complement of \p v.
2044inline APInt operator~(APInt v) {
2045 v.flipAllBits();
2046 return v;
2047}
2048
2049inline APInt operator&(APInt a, const APInt &b) {
2050 a &= b;
2051 return a;
2052}
2053
2054inline APInt operator&(const APInt &a, APInt &&b) {
2055 b &= a;
2056 return std::move(b);
2057}
2058
2059inline APInt operator&(APInt a, uint64_t RHS) {
2060 a &= RHS;
2061 return a;
2062}
2063
2064inline APInt operator&(uint64_t LHS, APInt b) {
2065 b &= LHS;
2066 return b;
2067}
2068
2069inline APInt operator|(APInt a, const APInt &b) {
2070 a |= b;
2071 return a;
2072}
2073
2074inline APInt operator|(const APInt &a, APInt &&b) {
2075 b |= a;
2076 return std::move(b);
2077}
2078
2079inline APInt operator|(APInt a, uint64_t RHS) {
2080 a |= RHS;
2081 return a;
2082}
2083
2084inline APInt operator|(uint64_t LHS, APInt b) {
2085 b |= LHS;
2086 return b;
2087}
2088
2089inline APInt operator^(APInt a, const APInt &b) {
2090 a ^= b;
2091 return a;
2092}
2093
2094inline APInt operator^(const APInt &a, APInt &&b) {
2095 b ^= a;
2096 return std::move(b);
2097}
2098
2099inline APInt operator^(APInt a, uint64_t RHS) {
2100 a ^= RHS;
2101 return a;
2102}
2103
2104inline APInt operator^(uint64_t LHS, APInt b) {
2105 b ^= LHS;
2106 return b;
2107}
2108
2109inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2110 I.print(OS, true);
12
Calling 'APInt::print'
2111 return OS;
2112}
2113
2114inline APInt operator-(APInt v) {
2115 v.negate();
2116 return v;
2117}
2118
2119inline APInt operator+(APInt a, const APInt &b) {
2120 a += b;
2121 return a;
2122}
2123
2124inline APInt operator+(const APInt &a, APInt &&b) {
2125 b += a;
2126 return std::move(b);
2127}
2128
2129inline APInt operator+(APInt a, uint64_t RHS) {
2130 a += RHS;
2131 return a;
2132}
2133
2134inline APInt operator+(uint64_t LHS, APInt b) {
2135 b += LHS;
2136 return b;
2137}
2138
2139inline APInt operator-(APInt a, const APInt &b) {
2140 a -= b;
2141 return a;
2142}
2143
2144inline APInt operator-(const APInt &a, APInt &&b) {
2145 b.negate();
2146 b += a;
2147 return std::move(b);
2148}
2149
2150inline APInt operator-(APInt a, uint64_t RHS) {
2151 a -= RHS;
2152 return a;
2153}
2154
2155inline APInt operator-(uint64_t LHS, APInt b) {
2156 b.negate();
2157 b += LHS;
2158 return b;
2159}
2160
2161inline APInt operator*(APInt a, uint64_t RHS) {
2162 a *= RHS;
2163 return a;
2164}
2165
2166inline APInt operator*(uint64_t LHS, APInt b) {
2167 b *= LHS;
2168 return b;
2169}
2170
2171
2172namespace APIntOps {
2173
2174/// Determine the smaller of two APInts considered to be signed.
2175inline const APInt &smin(const APInt &A, const APInt &B) {
2176 return A.slt(B) ? A : B;
2177}
2178
2179/// Determine the larger of two APInts considered to be signed.
2180inline const APInt &smax(const APInt &A, const APInt &B) {
2181 return A.sgt(B) ? A : B;
2182}
2183
2184/// Determine the smaller of two APInts considered to be unsigned.
2185inline const APInt &umin(const APInt &A, const APInt &B) {
2186 return A.ult(B) ? A : B;
2187}
2188
2189/// Determine the larger of two APInts considered to be unsigned.
2190inline const APInt &umax(const APInt &A, const APInt &B) {
2191 return A.ugt(B) ? A : B;
2192}
2193
2194/// Compute GCD of two unsigned APInt values.
2195///
2196/// This function returns the greatest common divisor of the two APInt values
2197/// using Stein's algorithm.
2198///
2199/// \returns the greatest common divisor of A and B.
2200APInt GreatestCommonDivisor(APInt A, APInt B);
2201
2202/// Converts the given APInt to a double value.
2203///
2204/// Treats the APInt as an unsigned value for conversion purposes.
2205inline double RoundAPIntToDouble(const APInt &APIVal) {
2206 return APIVal.roundToDouble();
2207}
2208
2209/// Converts the given APInt to a double value.
2210///
2211/// Treats the APInt as a signed value for conversion purposes.
2212inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2213 return APIVal.signedRoundToDouble();
2214}
2215
2216/// Converts the given APInt to a float value.
2217inline float RoundAPIntToFloat(const APInt &APIVal) {
2218 return float(RoundAPIntToDouble(APIVal));
2219}
2220
2221/// Converts the given APInt to a float value.
2222///
2223/// Treats the APInt as a signed value for conversion purposes.
2224inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2225 return float(APIVal.signedRoundToDouble());
2226}
2227
2228/// Converts the given double value into a APInt.
2229///
2230/// This function convert a double value to an APInt value.
2231APInt RoundDoubleToAPInt(double Double, unsigned width);
2232
2233/// Converts a float value into a APInt.
2234///
2235/// Converts a float value into an APInt value.
2236inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2237 return RoundDoubleToAPInt(double(Float), width);
2238}
2239
2240/// Return A unsign-divided by B, rounded by the given rounding mode.
2241APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2242
2243/// Return A sign-divided by B, rounded by the given rounding mode.
2244APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2245
2246/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2247/// (e.g. 32 for i32).
2248/// This function finds the smallest number n, such that
2249/// (a) n >= 0 and q(n) = 0, or
2250/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2251/// integers, belong to two different intervals [Rk, Rk+R),
2252/// where R = 2^BW, and k is an integer.
2253/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2254/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2255/// subtraction (treated as addition of negated numbers) would always
2256/// count as an overflow, but here we want to allow values to decrease
2257/// and increase as long as they are within the same interval.
2258/// Specifically, adding of two negative numbers should not cause an
2259/// overflow (as long as the magnitude does not exceed the bit width).
2260/// On the other hand, given a positive number, adding a negative
2261/// number to it can give a negative result, which would cause the
2262/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2263/// treated as a special case of an overflow.
2264///
2265/// This function returns None if after finding k that minimizes the
2266/// positive solution to q(n) = kR, both solutions are contained between
2267/// two consecutive integers.
2268///
2269/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2270/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2271/// virtue of *signed* overflow. This function will *not* find such an n,
2272/// however it may find a value of n satisfying the inequalities due to
2273/// an *unsigned* overflow (if the values are treated as unsigned).
2274/// To find a solution for a signed overflow, treat it as a problem of
2275/// finding an unsigned overflow with a range with of BW-1.
2276///
2277/// The returned value may have a different bit width from the input
2278/// coefficients.
2279Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2280 unsigned RangeWidth);
2281
2282/// Compare two values, and if they are different, return the position of the
2283/// most significant bit that is different in the values.
2284Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2285 const APInt &B);
2286
2287} // End of APIntOps namespace
2288
2289// See friend declaration above. This additional declaration is required in
2290// order to compile LLVM with IBM xlC compiler.
2291hash_code hash_value(const APInt &Arg);
2292
2293/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2294/// with the integer held in IntVal.
2295void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2296
2297/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2298/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2299void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2300
2301} // namespace llvm
2302
2303#endif