Bug Summary

File:lib/Target/ARM/ARMISelLowering.cpp
Location:line 8580, column 24
Description:The result of the '<<' expression is undefined

Annotated Source Code

1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARMISelLowering.h"
16#include "ARMCallingConv.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMPerfectShuffle.h"
20#include "ARMSubtarget.h"
21#include "ARMTargetMachine.h"
22#include "ARMTargetObjectFile.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/CodeGen/CallingConvLower.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineBasicBlock.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/GlobalValue.h"
40#include "llvm/IR/IRBuilder.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/Type.h"
45#include "llvm/MC/MCSectionMachO.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <utility>
52using namespace llvm;
53
54#define DEBUG_TYPE"arm-isel" "arm-isel"
55
56STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = { "arm-isel", "Number of tail calls"
, 0, 0 }
;
57STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt")static llvm::Statistic NumMovwMovt = { "arm-isel", "Number of GAs materialized with movw + movt"
, 0, 0 }
;
58STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments")static llvm::Statistic NumLoopByVals = { "arm-isel", "Number of loops generated for byval arguments"
, 0, 0 }
;
59
60cl::opt<bool>
61EnableARMLongCalls("arm-long-calls", cl::Hidden,
62 cl::desc("Generate calls via indirect call instructions"),
63 cl::init(false));
64
65static cl::opt<bool>
66ARMInterworking("arm-interworking", cl::Hidden,
67 cl::desc("Enable / disable ARM interworking (for debugging only)"),
68 cl::init(true));
69
70namespace {
71 class ARMCCState : public CCState {
72 public:
73 ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
74 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
75 ParmContext PC)
76 : CCState(CC, isVarArg, MF, locs, C) {
77 assert(((PC == Call) || (PC == Prologue)) &&((((PC == Call) || (PC == Prologue)) && "ARMCCState users must specify whether their context is call"
"or prologue generation.") ? static_cast<void> (0) : __assert_fail
("((PC == Call) || (PC == Prologue)) && \"ARMCCState users must specify whether their context is call\" \"or prologue generation.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 79, __PRETTY_FUNCTION__))
78 "ARMCCState users must specify whether their context is call"((((PC == Call) || (PC == Prologue)) && "ARMCCState users must specify whether their context is call"
"or prologue generation.") ? static_cast<void> (0) : __assert_fail
("((PC == Call) || (PC == Prologue)) && \"ARMCCState users must specify whether their context is call\" \"or prologue generation.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 79, __PRETTY_FUNCTION__))
79 "or prologue generation.")((((PC == Call) || (PC == Prologue)) && "ARMCCState users must specify whether their context is call"
"or prologue generation.") ? static_cast<void> (0) : __assert_fail
("((PC == Call) || (PC == Prologue)) && \"ARMCCState users must specify whether their context is call\" \"or prologue generation.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 79, __PRETTY_FUNCTION__))
;
80 CallOrPrologue = PC;
81 }
82 };
83}
84
85// The APCS parameter registers.
86static const MCPhysReg GPRArgRegs[] = {
87 ARM::R0, ARM::R1, ARM::R2, ARM::R3
88};
89
90void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
91 MVT PromotedBitwiseVT) {
92 if (VT != PromotedLdStVT) {
93 setOperationAction(ISD::LOAD, VT, Promote);
94 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
95
96 setOperationAction(ISD::STORE, VT, Promote);
97 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
98 }
99
100 MVT ElemTy = VT.getVectorElementType();
101 if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
102 setOperationAction(ISD::SETCC, VT, Custom);
103 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
104 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
105 if (ElemTy == MVT::i32) {
106 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
107 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
108 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
109 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
110 } else {
111 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
112 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
113 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
114 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
115 }
116 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
117 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
118 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
119 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
120 setOperationAction(ISD::SELECT, VT, Expand);
121 setOperationAction(ISD::SELECT_CC, VT, Expand);
122 setOperationAction(ISD::VSELECT, VT, Expand);
123 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
124 if (VT.isInteger()) {
125 setOperationAction(ISD::SHL, VT, Custom);
126 setOperationAction(ISD::SRA, VT, Custom);
127 setOperationAction(ISD::SRL, VT, Custom);
128 }
129
130 // Promote all bit-wise operations.
131 if (VT.isInteger() && VT != PromotedBitwiseVT) {
132 setOperationAction(ISD::AND, VT, Promote);
133 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
134 setOperationAction(ISD::OR, VT, Promote);
135 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
136 setOperationAction(ISD::XOR, VT, Promote);
137 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
138 }
139
140 // Neon does not support vector divide/remainder operations.
141 setOperationAction(ISD::SDIV, VT, Expand);
142 setOperationAction(ISD::UDIV, VT, Expand);
143 setOperationAction(ISD::FDIV, VT, Expand);
144 setOperationAction(ISD::SREM, VT, Expand);
145 setOperationAction(ISD::UREM, VT, Expand);
146 setOperationAction(ISD::FREM, VT, Expand);
147}
148
149void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
150 addRegisterClass(VT, &ARM::DPRRegClass);
151 addTypeForNEON(VT, MVT::f64, MVT::v2i32);
152}
153
154void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
155 addRegisterClass(VT, &ARM::DPairRegClass);
156 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
157}
158
159ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM)
160 : TargetLowering(TM) {
161 Subtarget = &TM.getSubtarget<ARMSubtarget>();
162 RegInfo = TM.getSubtargetImpl()->getRegisterInfo();
163 Itins = TM.getSubtargetImpl()->getInstrItineraryData();
164
165 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
166
167 if (Subtarget->isTargetMachO()) {
168 // Uses VFP for Thumb libfuncs if available.
169 if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
170 Subtarget->hasARMOps() && !TM.Options.UseSoftFloat) {
171 // Single-precision floating-point arithmetic.
172 setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
173 setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
174 setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
175 setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
176
177 // Double-precision floating-point arithmetic.
178 setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
179 setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
180 setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
181 setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
182
183 // Single-precision comparisons.
184 setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
185 setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
186 setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
187 setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
188 setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
189 setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
190 setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
191 setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
192
193 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
194 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
195 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
196 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
197 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
198 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
199 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
200 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
201
202 // Double-precision comparisons.
203 setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
204 setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
205 setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
206 setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
207 setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
208 setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
209 setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
210 setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
211
212 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
213 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
214 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
215 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
216 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
217 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
218 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
219 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
220
221 // Floating-point to integer conversions.
222 // i64 conversions are done via library routines even when generating VFP
223 // instructions, so use the same ones.
224 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
225 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
226 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
227 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
228
229 // Conversions between floating types.
230 setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
231 setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
232
233 // Integer to floating-point conversions.
234 // i64 conversions are done via library routines even when generating VFP
235 // instructions, so use the same ones.
236 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
237 // e.g., __floatunsidf vs. __floatunssidfvfp.
238 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
239 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
240 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
241 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
242 }
243 }
244
245 // These libcalls are not available in 32-bit.
246 setLibcallName(RTLIB::SHL_I128, nullptr);
247 setLibcallName(RTLIB::SRL_I128, nullptr);
248 setLibcallName(RTLIB::SRA_I128, nullptr);
249
250 if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetMachO() &&
251 !Subtarget->isTargetWindows()) {
252 static const struct {
253 const RTLIB::Libcall Op;
254 const char * const Name;
255 const CallingConv::ID CC;
256 const ISD::CondCode Cond;
257 } LibraryCalls[] = {
258 // Double-precision floating-point arithmetic helper functions
259 // RTABI chapter 4.1.2, Table 2
260 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
261 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
262 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
263 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
264
265 // Double-precision floating-point comparison helper functions
266 // RTABI chapter 4.1.2, Table 3
267 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
268 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
269 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
270 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
271 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
272 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
273 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
274 { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
275
276 // Single-precision floating-point arithmetic helper functions
277 // RTABI chapter 4.1.2, Table 4
278 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
279 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
280 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
281 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
282
283 // Single-precision floating-point comparison helper functions
284 // RTABI chapter 4.1.2, Table 5
285 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
286 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
287 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
288 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
289 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
290 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
291 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
292 { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
293
294 // Floating-point to integer conversions.
295 // RTABI chapter 4.1.2, Table 6
296 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
297 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
298 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
299 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
300 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
301 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
302 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
303 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
304
305 // Conversions between floating types.
306 // RTABI chapter 4.1.2, Table 7
307 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
308 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
309 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
310
311 // Integer to floating-point conversions.
312 // RTABI chapter 4.1.2, Table 8
313 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
314 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
315 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
316 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
317 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
318 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
319 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
320 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
321
322 // Long long helper functions
323 // RTABI chapter 4.2, Table 9
324 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
325 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
326 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
327 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
328
329 // Integer division functions
330 // RTABI chapter 4.3.1
331 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
332 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
333 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
334 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
335 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
336 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
337 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
338 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
339
340 // Memory operations
341 // RTABI chapter 4.3.4
342 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
343 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
344 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
345 };
346
347 for (const auto &LC : LibraryCalls) {
348 setLibcallName(LC.Op, LC.Name);
349 setLibcallCallingConv(LC.Op, LC.CC);
350 if (LC.Cond != ISD::SETCC_INVALID)
351 setCmpLibcallCC(LC.Op, LC.Cond);
352 }
353 }
354
355 if (Subtarget->isTargetWindows()) {
356 static const struct {
357 const RTLIB::Libcall Op;
358 const char * const Name;
359 const CallingConv::ID CC;
360 } LibraryCalls[] = {
361 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
362 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
363 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
364 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
365 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
366 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
367 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
368 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
369 };
370
371 for (const auto &LC : LibraryCalls) {
372 setLibcallName(LC.Op, LC.Name);
373 setLibcallCallingConv(LC.Op, LC.CC);
374 }
375 }
376
377 // Use divmod compiler-rt calls for iOS 5.0 and later.
378 if (Subtarget->getTargetTriple().isiOS() &&
379 !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
380 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
381 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
382 }
383
384 // The half <-> float conversion functions are always soft-float, but are
385 // needed for some targets which use a hard-float calling convention by
386 // default.
387 if (Subtarget->isAAPCS_ABI()) {
388 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
389 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
390 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
391 } else {
392 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
393 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
394 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
395 }
396
397 if (Subtarget->isThumb1Only())
398 addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
399 else
400 addRegisterClass(MVT::i32, &ARM::GPRRegClass);
401 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
402 !Subtarget->isThumb1Only()) {
403 addRegisterClass(MVT::f32, &ARM::SPRRegClass);
404 addRegisterClass(MVT::f64, &ARM::DPRRegClass);
405 }
406
407 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
408 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
409 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
410 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
411 setTruncStoreAction((MVT::SimpleValueType)VT,
412 (MVT::SimpleValueType)InnerVT, Expand);
413 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
414 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
415 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
416
417 setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
418 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
419 setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
420 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
421
422 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
423 }
424
425 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
426 setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
427
428 if (Subtarget->hasNEON()) {
429 addDRTypeForNEON(MVT::v2f32);
430 addDRTypeForNEON(MVT::v8i8);
431 addDRTypeForNEON(MVT::v4i16);
432 addDRTypeForNEON(MVT::v2i32);
433 addDRTypeForNEON(MVT::v1i64);
434
435 addQRTypeForNEON(MVT::v4f32);
436 addQRTypeForNEON(MVT::v2f64);
437 addQRTypeForNEON(MVT::v16i8);
438 addQRTypeForNEON(MVT::v8i16);
439 addQRTypeForNEON(MVT::v4i32);
440 addQRTypeForNEON(MVT::v2i64);
441
442 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
443 // neither Neon nor VFP support any arithmetic operations on it.
444 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
445 // supported for v4f32.
446 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
447 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
448 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
449 // FIXME: Code duplication: FDIV and FREM are expanded always, see
450 // ARMTargetLowering::addTypeForNEON method for details.
451 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
452 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
453 // FIXME: Create unittest.
454 // In another words, find a way when "copysign" appears in DAG with vector
455 // operands.
456 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
457 // FIXME: Code duplication: SETCC has custom operation action, see
458 // ARMTargetLowering::addTypeForNEON method for details.
459 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
460 // FIXME: Create unittest for FNEG and for FABS.
461 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
462 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
463 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
464 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
465 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
466 setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
467 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
468 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
469 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
470 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
471 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
472 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
473 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
474 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
475 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
476 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
477 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
478 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
479 setOperationAction(ISD::FMA, MVT::v2f64, Expand);
480
481 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
482 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
483 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
484 setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
485 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
486 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
487 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
488 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
489 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
490 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
491 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
492 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
493 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
494 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
495 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
496
497 // Mark v2f32 intrinsics.
498 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
499 setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
500 setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
501 setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
502 setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
503 setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
504 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
505 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
506 setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
507 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
508 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
509 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
510 setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
511 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
512 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
513
514 // Neon does not support some operations on v1i64 and v2i64 types.
515 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
516 // Custom handling for some quad-vector types to detect VMULL.
517 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
518 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
519 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
520 // Custom handling for some vector types to avoid expensive expansions
521 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
522 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
523 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
524 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
525 setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
526 setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
527 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
528 // a destination type that is wider than the source, and nor does
529 // it have a FP_TO_[SU]INT instruction with a narrower destination than
530 // source.
531 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
532 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
533 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
534 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
535
536 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
537 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
538
539 // NEON does not have single instruction CTPOP for vectors with element
540 // types wider than 8-bits. However, custom lowering can leverage the
541 // v8i8/v16i8 vcnt instruction.
542 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
543 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
544 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
545 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
546
547 // NEON only has FMA instructions as of VFP4.
548 if (!Subtarget->hasVFP4()) {
549 setOperationAction(ISD::FMA, MVT::v2f32, Expand);
550 setOperationAction(ISD::FMA, MVT::v4f32, Expand);
551 }
552
553 setTargetDAGCombine(ISD::INTRINSIC_VOID);
554 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
555 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
556 setTargetDAGCombine(ISD::SHL);
557 setTargetDAGCombine(ISD::SRL);
558 setTargetDAGCombine(ISD::SRA);
559 setTargetDAGCombine(ISD::SIGN_EXTEND);
560 setTargetDAGCombine(ISD::ZERO_EXTEND);
561 setTargetDAGCombine(ISD::ANY_EXTEND);
562 setTargetDAGCombine(ISD::SELECT_CC);
563 setTargetDAGCombine(ISD::BUILD_VECTOR);
564 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
565 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
566 setTargetDAGCombine(ISD::STORE);
567 setTargetDAGCombine(ISD::FP_TO_SINT);
568 setTargetDAGCombine(ISD::FP_TO_UINT);
569 setTargetDAGCombine(ISD::FDIV);
570 setTargetDAGCombine(ISD::LOAD);
571
572 // It is legal to extload from v4i8 to v4i16 or v4i32.
573 MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
574 MVT::v4i16, MVT::v2i16,
575 MVT::v2i32};
576 for (unsigned i = 0; i < 6; ++i) {
577 setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
578 setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
579 setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
580 }
581 }
582
583 // ARM and Thumb2 support UMLAL/SMLAL.
584 if (!Subtarget->isThumb1Only())
585 setTargetDAGCombine(ISD::ADDC);
586
587 if (Subtarget->isFPOnlySP()) {
588 // When targetting a floating-point unit with only single-precision
589 // operations, f64 is legal for the few double-precision instructions which
590 // are present However, no double-precision operations other than moves,
591 // loads and stores are provided by the hardware.
592 setOperationAction(ISD::FADD, MVT::f64, Expand);
593 setOperationAction(ISD::FSUB, MVT::f64, Expand);
594 setOperationAction(ISD::FMUL, MVT::f64, Expand);
595 setOperationAction(ISD::FMA, MVT::f64, Expand);
596 setOperationAction(ISD::FDIV, MVT::f64, Expand);
597 setOperationAction(ISD::FREM, MVT::f64, Expand);
598 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
599 setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
600 setOperationAction(ISD::FNEG, MVT::f64, Expand);
601 setOperationAction(ISD::FABS, MVT::f64, Expand);
602 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
603 setOperationAction(ISD::FSIN, MVT::f64, Expand);
604 setOperationAction(ISD::FCOS, MVT::f64, Expand);
605 setOperationAction(ISD::FPOWI, MVT::f64, Expand);
606 setOperationAction(ISD::FPOW, MVT::f64, Expand);
607 setOperationAction(ISD::FLOG, MVT::f64, Expand);
608 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
609 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
610 setOperationAction(ISD::FEXP, MVT::f64, Expand);
611 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
612 setOperationAction(ISD::FCEIL, MVT::f64, Expand);
613 setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
614 setOperationAction(ISD::FRINT, MVT::f64, Expand);
615 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
616 setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
617 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
618 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
619 }
620
621 computeRegisterProperties();
622
623 // ARM does not have floating-point extending loads.
624 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
625 setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
626
627 // ... or truncating stores
628 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
629 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
630 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
631
632 // ARM does not have i1 sign extending load.
633 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
634
635 // ARM supports all 4 flavors of integer indexed load / store.
636 if (!Subtarget->isThumb1Only()) {
637 for (unsigned im = (unsigned)ISD::PRE_INC;
638 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
639 setIndexedLoadAction(im, MVT::i1, Legal);
640 setIndexedLoadAction(im, MVT::i8, Legal);
641 setIndexedLoadAction(im, MVT::i16, Legal);
642 setIndexedLoadAction(im, MVT::i32, Legal);
643 setIndexedStoreAction(im, MVT::i1, Legal);
644 setIndexedStoreAction(im, MVT::i8, Legal);
645 setIndexedStoreAction(im, MVT::i16, Legal);
646 setIndexedStoreAction(im, MVT::i32, Legal);
647 }
648 }
649
650 setOperationAction(ISD::SADDO, MVT::i32, Custom);
651 setOperationAction(ISD::UADDO, MVT::i32, Custom);
652 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
653 setOperationAction(ISD::USUBO, MVT::i32, Custom);
654
655 // i64 operation support.
656 setOperationAction(ISD::MUL, MVT::i64, Expand);
657 setOperationAction(ISD::MULHU, MVT::i32, Expand);
658 if (Subtarget->isThumb1Only()) {
659 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
660 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
661 }
662 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
663 || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
664 setOperationAction(ISD::MULHS, MVT::i32, Expand);
665
666 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
667 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
668 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
669 setOperationAction(ISD::SRL, MVT::i64, Custom);
670 setOperationAction(ISD::SRA, MVT::i64, Custom);
671
672 if (!Subtarget->isThumb1Only()) {
673 // FIXME: We should do this for Thumb1 as well.
674 setOperationAction(ISD::ADDC, MVT::i32, Custom);
675 setOperationAction(ISD::ADDE, MVT::i32, Custom);
676 setOperationAction(ISD::SUBC, MVT::i32, Custom);
677 setOperationAction(ISD::SUBE, MVT::i32, Custom);
678 }
679
680 // ARM does not have ROTL.
681 setOperationAction(ISD::ROTL, MVT::i32, Expand);
682 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
683 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
684 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
685 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
686
687 // These just redirect to CTTZ and CTLZ on ARM.
688 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand);
689 setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand);
690
691 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
692
693 // Only ARMv6 has BSWAP.
694 if (!Subtarget->hasV6Ops())
695 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
696
697 if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
698 !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
699 // These are expanded into libcalls if the cpu doesn't have HW divider.
700 setOperationAction(ISD::SDIV, MVT::i32, Expand);
701 setOperationAction(ISD::UDIV, MVT::i32, Expand);
702 }
703
704 // FIXME: Also set divmod for SREM on EABI
705 setOperationAction(ISD::SREM, MVT::i32, Expand);
706 setOperationAction(ISD::UREM, MVT::i32, Expand);
707 // Register based DivRem for AEABI (RTABI 4.2)
708 if (Subtarget->isTargetAEABI()) {
709 setLibcallName(RTLIB::SDIVREM_I8, "__aeabi_idivmod");
710 setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
711 setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
712 setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
713 setLibcallName(RTLIB::UDIVREM_I8, "__aeabi_uidivmod");
714 setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
715 setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
716 setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
717
718 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
719 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
720 setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
721 setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
722 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
723 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
724 setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
725 setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
726
727 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
728 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
729 } else {
730 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
731 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
732 }
733
734 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
735 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
736 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
737 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
738 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
739
740 setOperationAction(ISD::TRAP, MVT::Other, Legal);
741
742 // Use the default implementation.
743 setOperationAction(ISD::VASTART, MVT::Other, Custom);
744 setOperationAction(ISD::VAARG, MVT::Other, Expand);
745 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
746 setOperationAction(ISD::VAEND, MVT::Other, Expand);
747 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
748 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
749
750 if (!Subtarget->isTargetMachO()) {
751 // Non-MachO platforms may return values in these registers via the
752 // personality function.
753 setExceptionPointerRegister(ARM::R0);
754 setExceptionSelectorRegister(ARM::R1);
755 }
756
757 if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
758 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
759 else
760 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
761
762 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
763 // the default expansion. If we are targeting a single threaded system,
764 // then set them all for expand so we can lower them later into their
765 // non-atomic form.
766 if (TM.Options.ThreadModel == ThreadModel::Single)
767 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
768 else if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
769 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
770 // to ldrex/strex loops already.
771 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
772
773 // On v8, we have particularly efficient implementations of atomic fences
774 // if they can be combined with nearby atomic loads and stores.
775 if (!Subtarget->hasV8Ops()) {
776 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
777 setInsertFencesForAtomic(true);
778 }
779 } else {
780 // If there's anything we can use as a barrier, go through custom lowering
781 // for ATOMIC_FENCE.
782 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
783 Subtarget->hasAnyDataBarrier() ? Custom : Expand);
784
785 // Set them all for expansion, which will force libcalls.
786 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
787 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
788 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
789 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
790 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
791 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
792 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
793 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
794 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
795 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
796 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
797 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
798 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
799 // Unordered/Monotonic case.
800 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
801 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
802 }
803
804 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
805
806 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
807 if (!Subtarget->hasV6Ops()) {
808 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
809 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
810 }
811 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
812
813 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
814 !Subtarget->isThumb1Only()) {
815 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
816 // iff target supports vfp2.
817 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
818 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
819 }
820
821 // We want to custom lower some of our intrinsics.
822 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
823 if (Subtarget->isTargetDarwin()) {
824 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
825 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
826 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
827 }
828
829 setOperationAction(ISD::SETCC, MVT::i32, Expand);
830 setOperationAction(ISD::SETCC, MVT::f32, Expand);
831 setOperationAction(ISD::SETCC, MVT::f64, Expand);
832 setOperationAction(ISD::SELECT, MVT::i32, Custom);
833 setOperationAction(ISD::SELECT, MVT::f32, Custom);
834 setOperationAction(ISD::SELECT, MVT::f64, Custom);
835 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
836 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
837 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
838
839 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
840 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
841 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
842 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
843 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
844
845 // We don't support sin/cos/fmod/copysign/pow
846 setOperationAction(ISD::FSIN, MVT::f64, Expand);
847 setOperationAction(ISD::FSIN, MVT::f32, Expand);
848 setOperationAction(ISD::FCOS, MVT::f32, Expand);
849 setOperationAction(ISD::FCOS, MVT::f64, Expand);
850 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
851 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
852 setOperationAction(ISD::FREM, MVT::f64, Expand);
853 setOperationAction(ISD::FREM, MVT::f32, Expand);
854 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
855 !Subtarget->isThumb1Only()) {
856 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
857 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
858 }
859 setOperationAction(ISD::FPOW, MVT::f64, Expand);
860 setOperationAction(ISD::FPOW, MVT::f32, Expand);
861
862 if (!Subtarget->hasVFP4()) {
863 setOperationAction(ISD::FMA, MVT::f64, Expand);
864 setOperationAction(ISD::FMA, MVT::f32, Expand);
865 }
866
867 // Various VFP goodness
868 if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
869 // int <-> fp are custom expanded into bit_convert + ARMISD ops.
870 if (Subtarget->hasVFP2()) {
871 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
872 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
873 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
874 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
875 }
876
877 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
878 if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
879 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
880 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
881 }
882
883 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
884 if (!Subtarget->hasFP16()) {
885 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
886 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
887 }
888 }
889
890 // Combine sin / cos into one node or libcall if possible.
891 if (Subtarget->hasSinCos()) {
892 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
893 setLibcallName(RTLIB::SINCOS_F64, "sincos");
894 if (Subtarget->getTargetTriple().isiOS()) {
895 // For iOS, we don't want to the normal expansion of a libcall to
896 // sincos. We want to issue a libcall to __sincos_stret.
897 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
898 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
899 }
900 }
901
902 // FP-ARMv8 implements a lot of rounding-like FP operations.
903 if (Subtarget->hasFPARMv8()) {
904 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
905 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
906 setOperationAction(ISD::FROUND, MVT::f32, Legal);
907 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
908 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
909 setOperationAction(ISD::FRINT, MVT::f32, Legal);
910 if (!Subtarget->isFPOnlySP()) {
911 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
912 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
913 setOperationAction(ISD::FROUND, MVT::f64, Legal);
914 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
915 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
916 setOperationAction(ISD::FRINT, MVT::f64, Legal);
917 }
918 }
919 // We have target-specific dag combine patterns for the following nodes:
920 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
921 setTargetDAGCombine(ISD::ADD);
922 setTargetDAGCombine(ISD::SUB);
923 setTargetDAGCombine(ISD::MUL);
924 setTargetDAGCombine(ISD::AND);
925 setTargetDAGCombine(ISD::OR);
926 setTargetDAGCombine(ISD::XOR);
927
928 if (Subtarget->hasV6Ops())
929 setTargetDAGCombine(ISD::SRL);
930
931 setStackPointerRegisterToSaveRestore(ARM::SP);
932
933 if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
934 !Subtarget->hasVFP2())
935 setSchedulingPreference(Sched::RegPressure);
936 else
937 setSchedulingPreference(Sched::Hybrid);
938
939 //// temporary - rewrite interface to use type
940 MaxStoresPerMemset = 8;
941 MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
942 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
943 MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
944 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
945 MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
946
947 // On ARM arguments smaller than 4 bytes are extended, so all arguments
948 // are at least 4 bytes aligned.
949 setMinStackArgumentAlignment(4);
950
951 // Prefer likely predicted branches to selects on out-of-order cores.
952 PredictableSelectIsExpensive = Subtarget->isLikeA9();
953
954 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
955}
956
957// FIXME: It might make sense to define the representative register class as the
958// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
959// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
960// SPR's representative would be DPR_VFP2. This should work well if register
961// pressure tracking were modified such that a register use would increment the
962// pressure of the register class's representative and all of it's super
963// classes' representatives transitively. We have not implemented this because
964// of the difficulty prior to coalescing of modeling operand register classes
965// due to the common occurrence of cross class copies and subregister insertions
966// and extractions.
967std::pair<const TargetRegisterClass*, uint8_t>
968ARMTargetLowering::findRepresentativeClass(MVT VT) const{
969 const TargetRegisterClass *RRC = nullptr;
970 uint8_t Cost = 1;
971 switch (VT.SimpleTy) {
972 default:
973 return TargetLowering::findRepresentativeClass(VT);
974 // Use DPR as representative register class for all floating point
975 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
976 // the cost is 1 for both f32 and f64.
977 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
978 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
979 RRC = &ARM::DPRRegClass;
980 // When NEON is used for SP, only half of the register file is available
981 // because operations that define both SP and DP results will be constrained
982 // to the VFP2 class (D0-D15). We currently model this constraint prior to
983 // coalescing by double-counting the SP regs. See the FIXME above.
984 if (Subtarget->useNEONForSinglePrecisionFP())
985 Cost = 2;
986 break;
987 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
988 case MVT::v4f32: case MVT::v2f64:
989 RRC = &ARM::DPRRegClass;
990 Cost = 2;
991 break;
992 case MVT::v4i64:
993 RRC = &ARM::DPRRegClass;
994 Cost = 4;
995 break;
996 case MVT::v8i64:
997 RRC = &ARM::DPRRegClass;
998 Cost = 8;
999 break;
1000 }
1001 return std::make_pair(RRC, Cost);
1002}
1003
1004const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1005 switch (Opcode) {
1006 default: return nullptr;
1007 case ARMISD::Wrapper: return "ARMISD::Wrapper";
1008 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
1009 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
1010 case ARMISD::CALL: return "ARMISD::CALL";
1011 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
1012 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
1013 case ARMISD::tCALL: return "ARMISD::tCALL";
1014 case ARMISD::BRCOND: return "ARMISD::BRCOND";
1015 case ARMISD::BR_JT: return "ARMISD::BR_JT";
1016 case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
1017 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
1018 case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
1019 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
1020 case ARMISD::CMP: return "ARMISD::CMP";
1021 case ARMISD::CMN: return "ARMISD::CMN";
1022 case ARMISD::CMPZ: return "ARMISD::CMPZ";
1023 case ARMISD::CMPFP: return "ARMISD::CMPFP";
1024 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
1025 case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
1026 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
1027
1028 case ARMISD::CMOV: return "ARMISD::CMOV";
1029
1030 case ARMISD::RBIT: return "ARMISD::RBIT";
1031
1032 case ARMISD::FTOSI: return "ARMISD::FTOSI";
1033 case ARMISD::FTOUI: return "ARMISD::FTOUI";
1034 case ARMISD::SITOF: return "ARMISD::SITOF";
1035 case ARMISD::UITOF: return "ARMISD::UITOF";
1036
1037 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
1038 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
1039 case ARMISD::RRX: return "ARMISD::RRX";
1040
1041 case ARMISD::ADDC: return "ARMISD::ADDC";
1042 case ARMISD::ADDE: return "ARMISD::ADDE";
1043 case ARMISD::SUBC: return "ARMISD::SUBC";
1044 case ARMISD::SUBE: return "ARMISD::SUBE";
1045
1046 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
1047 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
1048
1049 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1050 case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
1051
1052 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
1053
1054 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1055
1056 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
1057
1058 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1059
1060 case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
1061
1062 case ARMISD::WIN__CHKSTK: return "ARMISD:::WIN__CHKSTK";
1063
1064 case ARMISD::VCEQ: return "ARMISD::VCEQ";
1065 case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
1066 case ARMISD::VCGE: return "ARMISD::VCGE";
1067 case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
1068 case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
1069 case ARMISD::VCGEU: return "ARMISD::VCGEU";
1070 case ARMISD::VCGT: return "ARMISD::VCGT";
1071 case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
1072 case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
1073 case ARMISD::VCGTU: return "ARMISD::VCGTU";
1074 case ARMISD::VTST: return "ARMISD::VTST";
1075
1076 case ARMISD::VSHL: return "ARMISD::VSHL";
1077 case ARMISD::VSHRs: return "ARMISD::VSHRs";
1078 case ARMISD::VSHRu: return "ARMISD::VSHRu";
1079 case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
1080 case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
1081 case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
1082 case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
1083 case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
1084 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
1085 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
1086 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
1087 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
1088 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
1089 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
1090 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
1091 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
1092 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
1093 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
1094 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
1095 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
1096 case ARMISD::VDUP: return "ARMISD::VDUP";
1097 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
1098 case ARMISD::VEXT: return "ARMISD::VEXT";
1099 case ARMISD::VREV64: return "ARMISD::VREV64";
1100 case ARMISD::VREV32: return "ARMISD::VREV32";
1101 case ARMISD::VREV16: return "ARMISD::VREV16";
1102 case ARMISD::VZIP: return "ARMISD::VZIP";
1103 case ARMISD::VUZP: return "ARMISD::VUZP";
1104 case ARMISD::VTRN: return "ARMISD::VTRN";
1105 case ARMISD::VTBL1: return "ARMISD::VTBL1";
1106 case ARMISD::VTBL2: return "ARMISD::VTBL2";
1107 case ARMISD::VMULLs: return "ARMISD::VMULLs";
1108 case ARMISD::VMULLu: return "ARMISD::VMULLu";
1109 case ARMISD::UMLAL: return "ARMISD::UMLAL";
1110 case ARMISD::SMLAL: return "ARMISD::SMLAL";
1111 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
1112 case ARMISD::FMAX: return "ARMISD::FMAX";
1113 case ARMISD::FMIN: return "ARMISD::FMIN";
1114 case ARMISD::VMAXNM: return "ARMISD::VMAX";
1115 case ARMISD::VMINNM: return "ARMISD::VMIN";
1116 case ARMISD::BFI: return "ARMISD::BFI";
1117 case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
1118 case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
1119 case ARMISD::VBSL: return "ARMISD::VBSL";
1120 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
1121 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
1122 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
1123 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
1124 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
1125 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
1126 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
1127 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
1128 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
1129 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
1130 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
1131 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
1132 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
1133 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
1134 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
1135 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
1136 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
1137 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
1138 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
1139 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
1140 }
1141}
1142
1143EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1144 if (!VT.isVector()) return getPointerTy();
1145 return VT.changeVectorElementTypeToInteger();
1146}
1147
1148/// getRegClassFor - Return the register class that should be used for the
1149/// specified value type.
1150const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1151 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1152 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1153 // load / store 4 to 8 consecutive D registers.
1154 if (Subtarget->hasNEON()) {
1155 if (VT == MVT::v4i64)
1156 return &ARM::QQPRRegClass;
1157 if (VT == MVT::v8i64)
1158 return &ARM::QQQQPRRegClass;
1159 }
1160 return TargetLowering::getRegClassFor(VT);
1161}
1162
1163// Create a fast isel object.
1164FastISel *
1165ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1166 const TargetLibraryInfo *libInfo) const {
1167 return ARM::createFastISel(funcInfo, libInfo);
1168}
1169
1170/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1171/// be used for loads / stores from the global.
1172unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1173 return (Subtarget->isThumb1Only() ? 127 : 4095);
1174}
1175
1176Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1177 unsigned NumVals = N->getNumValues();
1178 if (!NumVals)
1179 return Sched::RegPressure;
1180
1181 for (unsigned i = 0; i != NumVals; ++i) {
1182 EVT VT = N->getValueType(i);
1183 if (VT == MVT::Glue || VT == MVT::Other)
1184 continue;
1185 if (VT.isFloatingPoint() || VT.isVector())
1186 return Sched::ILP;
1187 }
1188
1189 if (!N->isMachineOpcode())
1190 return Sched::RegPressure;
1191
1192 // Load are scheduled for latency even if there instruction itinerary
1193 // is not available.
1194 const TargetInstrInfo *TII =
1195 getTargetMachine().getSubtargetImpl()->getInstrInfo();
1196 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1197
1198 if (MCID.getNumDefs() == 0)
1199 return Sched::RegPressure;
1200 if (!Itins->isEmpty() &&
1201 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1202 return Sched::ILP;
1203
1204 return Sched::RegPressure;
1205}
1206
1207//===----------------------------------------------------------------------===//
1208// Lowering Code
1209//===----------------------------------------------------------------------===//
1210
1211/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1212static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1213 switch (CC) {
1214 default: llvm_unreachable("Unknown condition code!")::llvm::llvm_unreachable_internal("Unknown condition code!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1214)
;
1215 case ISD::SETNE: return ARMCC::NE;
1216 case ISD::SETEQ: return ARMCC::EQ;
1217 case ISD::SETGT: return ARMCC::GT;
1218 case ISD::SETGE: return ARMCC::GE;
1219 case ISD::SETLT: return ARMCC::LT;
1220 case ISD::SETLE: return ARMCC::LE;
1221 case ISD::SETUGT: return ARMCC::HI;
1222 case ISD::SETUGE: return ARMCC::HS;
1223 case ISD::SETULT: return ARMCC::LO;
1224 case ISD::SETULE: return ARMCC::LS;
1225 }
1226}
1227
1228/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1229static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1230 ARMCC::CondCodes &CondCode2) {
1231 CondCode2 = ARMCC::AL;
1232 switch (CC) {
1233 default: llvm_unreachable("Unknown FP condition!")::llvm::llvm_unreachable_internal("Unknown FP condition!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1233)
;
1234 case ISD::SETEQ:
1235 case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1236 case ISD::SETGT:
1237 case ISD::SETOGT: CondCode = ARMCC::GT; break;
1238 case ISD::SETGE:
1239 case ISD::SETOGE: CondCode = ARMCC::GE; break;
1240 case ISD::SETOLT: CondCode = ARMCC::MI; break;
1241 case ISD::SETOLE: CondCode = ARMCC::LS; break;
1242 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1243 case ISD::SETO: CondCode = ARMCC::VC; break;
1244 case ISD::SETUO: CondCode = ARMCC::VS; break;
1245 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1246 case ISD::SETUGT: CondCode = ARMCC::HI; break;
1247 case ISD::SETUGE: CondCode = ARMCC::PL; break;
1248 case ISD::SETLT:
1249 case ISD::SETULT: CondCode = ARMCC::LT; break;
1250 case ISD::SETLE:
1251 case ISD::SETULE: CondCode = ARMCC::LE; break;
1252 case ISD::SETNE:
1253 case ISD::SETUNE: CondCode = ARMCC::NE; break;
1254 }
1255}
1256
1257//===----------------------------------------------------------------------===//
1258// Calling Convention Implementation
1259//===----------------------------------------------------------------------===//
1260
1261#include "ARMGenCallingConv.inc"
1262
1263/// getEffectiveCallingConv - Get the effective calling convention, taking into
1264/// account presence of floating point hardware and calling convention
1265/// limitations, such as support for variadic functions.
1266CallingConv::ID
1267ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1268 bool isVarArg) const {
1269 switch (CC) {
1270 default:
1271 llvm_unreachable("Unsupported calling convention")::llvm::llvm_unreachable_internal("Unsupported calling convention"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1271)
;
1272 case CallingConv::ARM_AAPCS:
1273 case CallingConv::ARM_APCS:
1274 case CallingConv::GHC:
1275 return CC;
1276 case CallingConv::ARM_AAPCS_VFP:
1277 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1278 case CallingConv::C:
1279 if (!Subtarget->isAAPCS_ABI())
1280 return CallingConv::ARM_APCS;
1281 else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1282 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1283 !isVarArg)
1284 return CallingConv::ARM_AAPCS_VFP;
1285 else
1286 return CallingConv::ARM_AAPCS;
1287 case CallingConv::Fast:
1288 if (!Subtarget->isAAPCS_ABI()) {
1289 if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1290 return CallingConv::Fast;
1291 return CallingConv::ARM_APCS;
1292 } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1293 return CallingConv::ARM_AAPCS_VFP;
1294 else
1295 return CallingConv::ARM_AAPCS;
1296 }
1297}
1298
1299/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1300/// CallingConvention.
1301CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1302 bool Return,
1303 bool isVarArg) const {
1304 switch (getEffectiveCallingConv(CC, isVarArg)) {
1305 default:
1306 llvm_unreachable("Unsupported calling convention")::llvm::llvm_unreachable_internal("Unsupported calling convention"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1306)
;
1307 case CallingConv::ARM_APCS:
1308 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1309 case CallingConv::ARM_AAPCS:
1310 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1311 case CallingConv::ARM_AAPCS_VFP:
1312 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1313 case CallingConv::Fast:
1314 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1315 case CallingConv::GHC:
1316 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1317 }
1318}
1319
1320/// LowerCallResult - Lower the result values of a call into the
1321/// appropriate copies out of appropriate physical registers.
1322SDValue
1323ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1324 CallingConv::ID CallConv, bool isVarArg,
1325 const SmallVectorImpl<ISD::InputArg> &Ins,
1326 SDLoc dl, SelectionDAG &DAG,
1327 SmallVectorImpl<SDValue> &InVals,
1328 bool isThisReturn, SDValue ThisVal) const {
1329
1330 // Assign locations to each value returned by this call.
1331 SmallVector<CCValAssign, 16> RVLocs;
1332 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1333 *DAG.getContext(), Call);
1334 CCInfo.AnalyzeCallResult(Ins,
1335 CCAssignFnForNode(CallConv, /* Return*/ true,
1336 isVarArg));
1337
1338 // Copy all of the result registers out of their specified physreg.
1339 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1340 CCValAssign VA = RVLocs[i];
1341
1342 // Pass 'this' value directly from the argument to return value, to avoid
1343 // reg unit interference
1344 if (i == 0 && isThisReturn) {
1345 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&((!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
"unexpected return calling convention register assignment") ?
static_cast<void> (0) : __assert_fail ("!VA.needsCustom() && VA.getLocVT() == MVT::i32 && \"unexpected return calling convention register assignment\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1346, __PRETTY_FUNCTION__))
1346 "unexpected return calling convention register assignment")((!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
"unexpected return calling convention register assignment") ?
static_cast<void> (0) : __assert_fail ("!VA.needsCustom() && VA.getLocVT() == MVT::i32 && \"unexpected return calling convention register assignment\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1346, __PRETTY_FUNCTION__))
;
1347 InVals.push_back(ThisVal);
1348 continue;
1349 }
1350
1351 SDValue Val;
1352 if (VA.needsCustom()) {
1353 // Handle f64 or half of a v2f64.
1354 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1355 InFlag);
1356 Chain = Lo.getValue(1);
1357 InFlag = Lo.getValue(2);
1358 VA = RVLocs[++i]; // skip ahead to next loc
1359 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1360 InFlag);
1361 Chain = Hi.getValue(1);
1362 InFlag = Hi.getValue(2);
1363 if (!Subtarget->isLittle())
1364 std::swap (Lo, Hi);
1365 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1366
1367 if (VA.getLocVT() == MVT::v2f64) {
1368 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1369 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1370 DAG.getConstant(0, MVT::i32));
1371
1372 VA = RVLocs[++i]; // skip ahead to next loc
1373 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1374 Chain = Lo.getValue(1);
1375 InFlag = Lo.getValue(2);
1376 VA = RVLocs[++i]; // skip ahead to next loc
1377 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1378 Chain = Hi.getValue(1);
1379 InFlag = Hi.getValue(2);
1380 if (!Subtarget->isLittle())
1381 std::swap (Lo, Hi);
1382 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1383 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1384 DAG.getConstant(1, MVT::i32));
1385 }
1386 } else {
1387 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1388 InFlag);
1389 Chain = Val.getValue(1);
1390 InFlag = Val.getValue(2);
1391 }
1392
1393 switch (VA.getLocInfo()) {
1394 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1394)
;
1395 case CCValAssign::Full: break;
1396 case CCValAssign::BCvt:
1397 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1398 break;
1399 }
1400
1401 InVals.push_back(Val);
1402 }
1403
1404 return Chain;
1405}
1406
1407/// LowerMemOpCallTo - Store the argument to the stack.
1408SDValue
1409ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1410 SDValue StackPtr, SDValue Arg,
1411 SDLoc dl, SelectionDAG &DAG,
1412 const CCValAssign &VA,
1413 ISD::ArgFlagsTy Flags) const {
1414 unsigned LocMemOffset = VA.getLocMemOffset();
1415 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1416 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1417 return DAG.getStore(Chain, dl, Arg, PtrOff,
1418 MachinePointerInfo::getStack(LocMemOffset),
1419 false, false, 0);
1420}
1421
1422void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
1423 SDValue Chain, SDValue &Arg,
1424 RegsToPassVector &RegsToPass,
1425 CCValAssign &VA, CCValAssign &NextVA,
1426 SDValue &StackPtr,
1427 SmallVectorImpl<SDValue> &MemOpChains,
1428 ISD::ArgFlagsTy Flags) const {
1429
1430 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1431 DAG.getVTList(MVT::i32, MVT::i32), Arg);
1432 unsigned id = Subtarget->isLittle() ? 0 : 1;
1433 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1434
1435 if (NextVA.isRegLoc())
1436 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1437 else {
1438 assert(NextVA.isMemLoc())((NextVA.isMemLoc()) ? static_cast<void> (0) : __assert_fail
("NextVA.isMemLoc()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1438, __PRETTY_FUNCTION__))
;
1439 if (!StackPtr.getNode())
1440 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1441
1442 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1443 dl, DAG, NextVA,
1444 Flags));
1445 }
1446}
1447
1448/// LowerCall - Lowering a call into a callseq_start <-
1449/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1450/// nodes.
1451SDValue
1452ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1453 SmallVectorImpl<SDValue> &InVals) const {
1454 SelectionDAG &DAG = CLI.DAG;
1455 SDLoc &dl = CLI.DL;
1456 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1457 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1458 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1459 SDValue Chain = CLI.Chain;
1460 SDValue Callee = CLI.Callee;
1461 bool &isTailCall = CLI.IsTailCall;
1462 CallingConv::ID CallConv = CLI.CallConv;
1463 bool doesNotRet = CLI.DoesNotReturn;
1464 bool isVarArg = CLI.IsVarArg;
1465
1466 MachineFunction &MF = DAG.getMachineFunction();
1467 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1468 bool isThisReturn = false;
1469 bool isSibCall = false;
1470
1471 // Disable tail calls if they're not supported.
1472 if (!Subtarget->supportsTailCall() || MF.getTarget().Options.DisableTailCalls)
1473 isTailCall = false;
1474
1475 if (isTailCall) {
1476 // Check if it's really possible to do a tail call.
1477 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1478 isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1479 Outs, OutVals, Ins, DAG);
1480 if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
1481 report_fatal_error("failed to perform tail call elimination on a call "
1482 "site marked musttail");
1483 // We don't support GuaranteedTailCallOpt for ARM, only automatically
1484 // detected sibcalls.
1485 if (isTailCall) {
1486 ++NumTailCalls;
1487 isSibCall = true;
1488 }
1489 }
1490
1491 // Analyze operands of the call, assigning locations to each operand.
1492 SmallVector<CCValAssign, 16> ArgLocs;
1493 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1494 *DAG.getContext(), Call);
1495 CCInfo.AnalyzeCallOperands(Outs,
1496 CCAssignFnForNode(CallConv, /* Return*/ false,
1497 isVarArg));
1498
1499 // Get a count of how many bytes are to be pushed on the stack.
1500 unsigned NumBytes = CCInfo.getNextStackOffset();
1501
1502 // For tail calls, memory operands are available in our caller's stack.
1503 if (isSibCall)
1504 NumBytes = 0;
1505
1506 // Adjust the stack pointer for the new arguments...
1507 // These operations are automatically eliminated by the prolog/epilog pass
1508 if (!isSibCall)
1509 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1510 dl);
1511
1512 SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1513
1514 RegsToPassVector RegsToPass;
1515 SmallVector<SDValue, 8> MemOpChains;
1516
1517 // Walk the register/memloc assignments, inserting copies/loads. In the case
1518 // of tail call optimization, arguments are handled later.
1519 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1520 i != e;
1521 ++i, ++realArgIdx) {
1522 CCValAssign &VA = ArgLocs[i];
1523 SDValue Arg = OutVals[realArgIdx];
1524 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1525 bool isByVal = Flags.isByVal();
1526
1527 // Promote the value if needed.
1528 switch (VA.getLocInfo()) {
1529 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1529)
;
1530 case CCValAssign::Full: break;
1531 case CCValAssign::SExt:
1532 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1533 break;
1534 case CCValAssign::ZExt:
1535 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1536 break;
1537 case CCValAssign::AExt:
1538 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1539 break;
1540 case CCValAssign::BCvt:
1541 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1542 break;
1543 }
1544
1545 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1546 if (VA.needsCustom()) {
1547 if (VA.getLocVT() == MVT::v2f64) {
1548 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1549 DAG.getConstant(0, MVT::i32));
1550 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1551 DAG.getConstant(1, MVT::i32));
1552
1553 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1554 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1555
1556 VA = ArgLocs[++i]; // skip ahead to next loc
1557 if (VA.isRegLoc()) {
1558 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1559 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1560 } else {
1561 assert(VA.isMemLoc())((VA.isMemLoc()) ? static_cast<void> (0) : __assert_fail
("VA.isMemLoc()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1561, __PRETTY_FUNCTION__))
;
1562
1563 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1564 dl, DAG, VA, Flags));
1565 }
1566 } else {
1567 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1568 StackPtr, MemOpChains, Flags);
1569 }
1570 } else if (VA.isRegLoc()) {
1571 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1572 assert(VA.getLocVT() == MVT::i32 &&((VA.getLocVT() == MVT::i32 && "unexpected calling convention register assignment"
) ? static_cast<void> (0) : __assert_fail ("VA.getLocVT() == MVT::i32 && \"unexpected calling convention register assignment\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1573, __PRETTY_FUNCTION__))
1573 "unexpected calling convention register assignment")((VA.getLocVT() == MVT::i32 && "unexpected calling convention register assignment"
) ? static_cast<void> (0) : __assert_fail ("VA.getLocVT() == MVT::i32 && \"unexpected calling convention register assignment\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1573, __PRETTY_FUNCTION__))
;
1574 assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&((!Ins.empty() && Ins[0].VT == MVT::i32 && "unexpected use of 'returned'"
) ? static_cast<void> (0) : __assert_fail ("!Ins.empty() && Ins[0].VT == MVT::i32 && \"unexpected use of 'returned'\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1575, __PRETTY_FUNCTION__))
1575 "unexpected use of 'returned'")((!Ins.empty() && Ins[0].VT == MVT::i32 && "unexpected use of 'returned'"
) ? static_cast<void> (0) : __assert_fail ("!Ins.empty() && Ins[0].VT == MVT::i32 && \"unexpected use of 'returned'\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1575, __PRETTY_FUNCTION__))
;
1576 isThisReturn = true;
1577 }
1578 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1579 } else if (isByVal) {
1580 assert(VA.isMemLoc())((VA.isMemLoc()) ? static_cast<void> (0) : __assert_fail
("VA.isMemLoc()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1580, __PRETTY_FUNCTION__))
;
1581 unsigned offset = 0;
1582
1583 // True if this byval aggregate will be split between registers
1584 // and memory.
1585 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1586 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1587
1588 if (CurByValIdx < ByValArgsCount) {
1589
1590 unsigned RegBegin, RegEnd;
1591 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1592
1593 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1594 unsigned int i, j;
1595 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1596 SDValue Const = DAG.getConstant(4*i, MVT::i32);
1597 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1598 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1599 MachinePointerInfo(),
1600 false, false, false,
1601 DAG.InferPtrAlignment(AddArg));
1602 MemOpChains.push_back(Load.getValue(1));
1603 RegsToPass.push_back(std::make_pair(j, Load));
1604 }
1605
1606 // If parameter size outsides register area, "offset" value
1607 // helps us to calculate stack slot for remained part properly.
1608 offset = RegEnd - RegBegin;
1609
1610 CCInfo.nextInRegsParam();
1611 }
1612
1613 if (Flags.getByValSize() > 4*offset) {
1614 unsigned LocMemOffset = VA.getLocMemOffset();
1615 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1616 SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1617 StkPtrOff);
1618 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1619 SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1620 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1621 MVT::i32);
1622 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1623
1624 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1625 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1626 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1627 Ops));
1628 }
1629 } else if (!isSibCall) {
1630 assert(VA.isMemLoc())((VA.isMemLoc()) ? static_cast<void> (0) : __assert_fail
("VA.isMemLoc()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1630, __PRETTY_FUNCTION__))
;
1631
1632 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1633 dl, DAG, VA, Flags));
1634 }
1635 }
1636
1637 if (!MemOpChains.empty())
1638 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1639
1640 // Build a sequence of copy-to-reg nodes chained together with token chain
1641 // and flag operands which copy the outgoing args into the appropriate regs.
1642 SDValue InFlag;
1643 // Tail call byval lowering might overwrite argument registers so in case of
1644 // tail call optimization the copies to registers are lowered later.
1645 if (!isTailCall)
1646 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1647 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1648 RegsToPass[i].second, InFlag);
1649 InFlag = Chain.getValue(1);
1650 }
1651
1652 // For tail calls lower the arguments to the 'real' stack slot.
1653 if (isTailCall) {
1654 // Force all the incoming stack arguments to be loaded from the stack
1655 // before any new outgoing arguments are stored to the stack, because the
1656 // outgoing stack slots may alias the incoming argument stack slots, and
1657 // the alias isn't otherwise explicit. This is slightly more conservative
1658 // than necessary, because it means that each store effectively depends
1659 // on every argument instead of just those arguments it would clobber.
1660
1661 // Do not flag preceding copytoreg stuff together with the following stuff.
1662 InFlag = SDValue();
1663 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1664 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1665 RegsToPass[i].second, InFlag);
1666 InFlag = Chain.getValue(1);
1667 }
1668 InFlag = SDValue();
1669 }
1670
1671 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1672 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1673 // node so that legalize doesn't hack it.
1674 bool isDirect = false;
1675 bool isARMFunc = false;
1676 bool isLocalARMFunc = false;
1677 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1678
1679 if (EnableARMLongCalls) {
1680 assert((Subtarget->isTargetWindows() ||(((Subtarget->isTargetWindows() || getTargetMachine().getRelocationModel
() == Reloc::Static) && "long-calls with non-static relocation model!"
) ? static_cast<void> (0) : __assert_fail ("(Subtarget->isTargetWindows() || getTargetMachine().getRelocationModel() == Reloc::Static) && \"long-calls with non-static relocation model!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1682, __PRETTY_FUNCTION__))
1681 getTargetMachine().getRelocationModel() == Reloc::Static) &&(((Subtarget->isTargetWindows() || getTargetMachine().getRelocationModel
() == Reloc::Static) && "long-calls with non-static relocation model!"
) ? static_cast<void> (0) : __assert_fail ("(Subtarget->isTargetWindows() || getTargetMachine().getRelocationModel() == Reloc::Static) && \"long-calls with non-static relocation model!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1682, __PRETTY_FUNCTION__))
1682 "long-calls with non-static relocation model!")(((Subtarget->isTargetWindows() || getTargetMachine().getRelocationModel
() == Reloc::Static) && "long-calls with non-static relocation model!"
) ? static_cast<void> (0) : __assert_fail ("(Subtarget->isTargetWindows() || getTargetMachine().getRelocationModel() == Reloc::Static) && \"long-calls with non-static relocation model!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1682, __PRETTY_FUNCTION__))
;
1683 // Handle a global address or an external symbol. If it's not one of
1684 // those, the target's already in a register, so we don't need to do
1685 // anything extra.
1686 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1687 const GlobalValue *GV = G->getGlobal();
1688 // Create a constant pool entry for the callee address
1689 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1690 ARMConstantPoolValue *CPV =
1691 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1692
1693 // Get the address of the callee into a register
1694 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1695 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1696 Callee = DAG.getLoad(getPointerTy(), dl,
1697 DAG.getEntryNode(), CPAddr,
1698 MachinePointerInfo::getConstantPool(),
1699 false, false, false, 0);
1700 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1701 const char *Sym = S->getSymbol();
1702
1703 // Create a constant pool entry for the callee address
1704 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1705 ARMConstantPoolValue *CPV =
1706 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1707 ARMPCLabelIndex, 0);
1708 // Get the address of the callee into a register
1709 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1710 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1711 Callee = DAG.getLoad(getPointerTy(), dl,
1712 DAG.getEntryNode(), CPAddr,
1713 MachinePointerInfo::getConstantPool(),
1714 false, false, false, 0);
1715 }
1716 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1717 const GlobalValue *GV = G->getGlobal();
1718 isDirect = true;
1719 bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1720 bool isStub = (isExt && Subtarget->isTargetMachO()) &&
1721 getTargetMachine().getRelocationModel() != Reloc::Static;
1722 isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1723 // ARM call to a local ARM function is predicable.
1724 isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1725 // tBX takes a register source operand.
1726 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1727 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?")((Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetMachO() && \"WrapperPIC use on non-MachO?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1727, __PRETTY_FUNCTION__))
;
1728 Callee = DAG.getNode(ARMISD::WrapperPIC, dl, getPointerTy(),
1729 DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
1730 0, ARMII::MO_NONLAZY));
1731 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
1732 MachinePointerInfo::getGOT(), false, false, true, 0);
1733 } else if (Subtarget->isTargetCOFF()) {
1734 assert(Subtarget->isTargetWindows() &&((Subtarget->isTargetWindows() && "Windows is the only supported COFF target"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetWindows() && \"Windows is the only supported COFF target\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1735, __PRETTY_FUNCTION__))
1735 "Windows is the only supported COFF target")((Subtarget->isTargetWindows() && "Windows is the only supported COFF target"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetWindows() && \"Windows is the only supported COFF target\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1735, __PRETTY_FUNCTION__))
;
1736 unsigned TargetFlags = GV->hasDLLImportStorageClass()
1737 ? ARMII::MO_DLLIMPORT
1738 : ARMII::MO_NO_FLAG;
1739 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), /*Offset=*/0,
1740 TargetFlags);
1741 if (GV->hasDLLImportStorageClass())
1742 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
1743 DAG.getNode(ARMISD::Wrapper, dl, getPointerTy(),
1744 Callee), MachinePointerInfo::getGOT(),
1745 false, false, false, 0);
1746 } else {
1747 // On ELF targets for PIC code, direct calls should go through the PLT
1748 unsigned OpFlags = 0;
1749 if (Subtarget->isTargetELF() &&
1750 getTargetMachine().getRelocationModel() == Reloc::PIC_)
1751 OpFlags = ARMII::MO_PLT;
1752 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1753 }
1754 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1755 isDirect = true;
1756 bool isStub = Subtarget->isTargetMachO() &&
1757 getTargetMachine().getRelocationModel() != Reloc::Static;
1758 isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1759 // tBX takes a register source operand.
1760 const char *Sym = S->getSymbol();
1761 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1762 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1763 ARMConstantPoolValue *CPV =
1764 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1765 ARMPCLabelIndex, 4);
1766 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1767 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1768 Callee = DAG.getLoad(getPointerTy(), dl,
1769 DAG.getEntryNode(), CPAddr,
1770 MachinePointerInfo::getConstantPool(),
1771 false, false, false, 0);
1772 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1773 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1774 getPointerTy(), Callee, PICLabel);
1775 } else {
1776 unsigned OpFlags = 0;
1777 // On ELF targets for PIC code, direct calls should go through the PLT
1778 if (Subtarget->isTargetELF() &&
1779 getTargetMachine().getRelocationModel() == Reloc::PIC_)
1780 OpFlags = ARMII::MO_PLT;
1781 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1782 }
1783 }
1784
1785 // FIXME: handle tail calls differently.
1786 unsigned CallOpc;
1787 bool HasMinSizeAttr = MF.getFunction()->getAttributes().hasAttribute(
1788 AttributeSet::FunctionIndex, Attribute::MinSize);
1789 if (Subtarget->isThumb()) {
1790 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1791 CallOpc = ARMISD::CALL_NOLINK;
1792 else
1793 CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1794 } else {
1795 if (!isDirect && !Subtarget->hasV5TOps())
1796 CallOpc = ARMISD::CALL_NOLINK;
1797 else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1798 // Emit regular call when code size is the priority
1799 !HasMinSizeAttr)
1800 // "mov lr, pc; b _foo" to avoid confusing the RSP
1801 CallOpc = ARMISD::CALL_NOLINK;
1802 else
1803 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1804 }
1805
1806 std::vector<SDValue> Ops;
1807 Ops.push_back(Chain);
1808 Ops.push_back(Callee);
1809
1810 // Add argument registers to the end of the list so that they are known live
1811 // into the call.
1812 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1813 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1814 RegsToPass[i].second.getValueType()));
1815
1816 // Add a register mask operand representing the call-preserved registers.
1817 if (!isTailCall) {
1818 const uint32_t *Mask;
1819 const TargetRegisterInfo *TRI =
1820 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
1821 const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI);
1822 if (isThisReturn) {
1823 // For 'this' returns, use the R0-preserving mask if applicable
1824 Mask = ARI->getThisReturnPreservedMask(CallConv);
1825 if (!Mask) {
1826 // Set isThisReturn to false if the calling convention is not one that
1827 // allows 'returned' to be modeled in this way, so LowerCallResult does
1828 // not try to pass 'this' straight through
1829 isThisReturn = false;
1830 Mask = ARI->getCallPreservedMask(CallConv);
1831 }
1832 } else
1833 Mask = ARI->getCallPreservedMask(CallConv);
1834
1835 assert(Mask && "Missing call preserved mask for calling convention")((Mask && "Missing call preserved mask for calling convention"
) ? static_cast<void> (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1835, __PRETTY_FUNCTION__))
;
1836 Ops.push_back(DAG.getRegisterMask(Mask));
1837 }
1838
1839 if (InFlag.getNode())
1840 Ops.push_back(InFlag);
1841
1842 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1843 if (isTailCall)
1844 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
1845
1846 // Returns a chain and a flag for retval copy to use.
1847 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
1848 InFlag = Chain.getValue(1);
1849
1850 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1851 DAG.getIntPtrConstant(0, true), InFlag, dl);
1852 if (!Ins.empty())
1853 InFlag = Chain.getValue(1);
1854
1855 // Handle result values, copying them out of physregs into vregs that we
1856 // return.
1857 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
1858 InVals, isThisReturn,
1859 isThisReturn ? OutVals[0] : SDValue());
1860}
1861
1862/// HandleByVal - Every parameter *after* a byval parameter is passed
1863/// on the stack. Remember the next parameter register to allocate,
1864/// and then confiscate the rest of the parameter registers to insure
1865/// this.
1866void
1867ARMTargetLowering::HandleByVal(
1868 CCState *State, unsigned &size, unsigned Align) const {
1869 unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1870 assert((State->getCallOrPrologue() == Prologue ||(((State->getCallOrPrologue() == Prologue || State->getCallOrPrologue
() == Call) && "unhandled ParmContext") ? static_cast
<void> (0) : __assert_fail ("(State->getCallOrPrologue() == Prologue || State->getCallOrPrologue() == Call) && \"unhandled ParmContext\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1872, __PRETTY_FUNCTION__))
1871 State->getCallOrPrologue() == Call) &&(((State->getCallOrPrologue() == Prologue || State->getCallOrPrologue
() == Call) && "unhandled ParmContext") ? static_cast
<void> (0) : __assert_fail ("(State->getCallOrPrologue() == Prologue || State->getCallOrPrologue() == Call) && \"unhandled ParmContext\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1872, __PRETTY_FUNCTION__))
1872 "unhandled ParmContext")(((State->getCallOrPrologue() == Prologue || State->getCallOrPrologue
() == Call) && "unhandled ParmContext") ? static_cast
<void> (0) : __assert_fail ("(State->getCallOrPrologue() == Prologue || State->getCallOrPrologue() == Call) && \"unhandled ParmContext\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1872, __PRETTY_FUNCTION__))
;
1873
1874 if ((ARM::R0 <= reg) && (reg <= ARM::R3)) {
1875 if (Subtarget->isAAPCS_ABI() && Align > 4) {
1876 unsigned AlignInRegs = Align / 4;
1877 unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
1878 for (unsigned i = 0; i < Waste; ++i)
1879 reg = State->AllocateReg(GPRArgRegs, 4);
1880 }
1881 if (reg != 0) {
1882 unsigned excess = 4 * (ARM::R4 - reg);
1883
1884 // Special case when NSAA != SP and parameter size greater than size of
1885 // all remained GPR regs. In that case we can't split parameter, we must
1886 // send it to stack. We also must set NCRN to R4, so waste all
1887 // remained registers.
1888 const unsigned NSAAOffset = State->getNextStackOffset();
1889 if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) {
1890 while (State->AllocateReg(GPRArgRegs, 4))
1891 ;
1892 return;
1893 }
1894
1895 // First register for byval parameter is the first register that wasn't
1896 // allocated before this method call, so it would be "reg".
1897 // If parameter is small enough to be saved in range [reg, r4), then
1898 // the end (first after last) register would be reg + param-size-in-regs,
1899 // else parameter would be splitted between registers and stack,
1900 // end register would be r4 in this case.
1901 unsigned ByValRegBegin = reg;
1902 unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4;
1903 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
1904 // Note, first register is allocated in the beginning of function already,
1905 // allocate remained amount of registers we need.
1906 for (unsigned i = reg+1; i != ByValRegEnd; ++i)
1907 State->AllocateReg(GPRArgRegs, 4);
1908 // A byval parameter that is split between registers and memory needs its
1909 // size truncated here.
1910 // In the case where the entire structure fits in registers, we set the
1911 // size in memory to zero.
1912 if (size < excess)
1913 size = 0;
1914 else
1915 size -= excess;
1916 }
1917 }
1918}
1919
1920/// MatchingStackOffset - Return true if the given stack call argument is
1921/// already available in the same position (relatively) of the caller's
1922/// incoming argument stack.
1923static
1924bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1925 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1926 const TargetInstrInfo *TII) {
1927 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1928 int FI = INT_MAX2147483647;
1929 if (Arg.getOpcode() == ISD::CopyFromReg) {
1930 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1931 if (!TargetRegisterInfo::isVirtualRegister(VR))
1932 return false;
1933 MachineInstr *Def = MRI->getVRegDef(VR);
1934 if (!Def)
1935 return false;
1936 if (!Flags.isByVal()) {
1937 if (!TII->isLoadFromStackSlot(Def, FI))
1938 return false;
1939 } else {
1940 return false;
1941 }
1942 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1943 if (Flags.isByVal())
1944 // ByVal argument is passed in as a pointer but it's now being
1945 // dereferenced. e.g.
1946 // define @foo(%struct.X* %A) {
1947 // tail call @bar(%struct.X* byval %A)
1948 // }
1949 return false;
1950 SDValue Ptr = Ld->getBasePtr();
1951 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1952 if (!FINode)
1953 return false;
1954 FI = FINode->getIndex();
1955 } else
1956 return false;
1957
1958 assert(FI != INT_MAX)((FI != 2147483647) ? static_cast<void> (0) : __assert_fail
("FI != 2147483647", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 1958, __PRETTY_FUNCTION__))
;
1959 if (!MFI->isFixedObjectIndex(FI))
1960 return false;
1961 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1962}
1963
1964/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1965/// for tail call optimization. Targets which want to do tail call
1966/// optimization should implement this function.
1967bool
1968ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1969 CallingConv::ID CalleeCC,
1970 bool isVarArg,
1971 bool isCalleeStructRet,
1972 bool isCallerStructRet,
1973 const SmallVectorImpl<ISD::OutputArg> &Outs,
1974 const SmallVectorImpl<SDValue> &OutVals,
1975 const SmallVectorImpl<ISD::InputArg> &Ins,
1976 SelectionDAG& DAG) const {
1977 const Function *CallerF = DAG.getMachineFunction().getFunction();
1978 CallingConv::ID CallerCC = CallerF->getCallingConv();
1979 bool CCMatch = CallerCC == CalleeCC;
1980
1981 // Look for obvious safe cases to perform tail call optimization that do not
1982 // require ABI changes. This is what gcc calls sibcall.
1983
1984 // Do not sibcall optimize vararg calls unless the call site is not passing
1985 // any arguments.
1986 if (isVarArg && !Outs.empty())
1987 return false;
1988
1989 // Exception-handling functions need a special set of instructions to indicate
1990 // a return to the hardware. Tail-calling another function would probably
1991 // break this.
1992 if (CallerF->hasFnAttribute("interrupt"))
1993 return false;
1994
1995 // Also avoid sibcall optimization if either caller or callee uses struct
1996 // return semantics.
1997 if (isCalleeStructRet || isCallerStructRet)
1998 return false;
1999
2000 // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
2001 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
2002 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
2003 // support in the assembler and linker to be used. This would need to be
2004 // fixed to fully support tail calls in Thumb1.
2005 //
2006 // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
2007 // LR. This means if we need to reload LR, it takes an extra instructions,
2008 // which outweighs the value of the tail call; but here we don't know yet
2009 // whether LR is going to be used. Probably the right approach is to
2010 // generate the tail call here and turn it back into CALL/RET in
2011 // emitEpilogue if LR is used.
2012
2013 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
2014 // but we need to make sure there are enough registers; the only valid
2015 // registers are the 4 used for parameters. We don't currently do this
2016 // case.
2017 if (Subtarget->isThumb1Only())
2018 return false;
2019
2020 // Externally-defined functions with weak linkage should not be
2021 // tail-called on ARM when the OS does not support dynamic
2022 // pre-emption of symbols, as the AAELF spec requires normal calls
2023 // to undefined weak functions to be replaced with a NOP or jump to the
2024 // next instruction. The behaviour of branch instructions in this
2025 // situation (as used for tail calls) is implementation-defined, so we
2026 // cannot rely on the linker replacing the tail call with a return.
2027 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2028 const GlobalValue *GV = G->getGlobal();
2029 if (GV->hasExternalWeakLinkage())
2030 return false;
2031 }
2032
2033 // If the calling conventions do not match, then we'd better make sure the
2034 // results are returned in the same way as what the caller expects.
2035 if (!CCMatch) {
2036 SmallVector<CCValAssign, 16> RVLocs1;
2037 ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2038 *DAG.getContext(), Call);
2039 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
2040
2041 SmallVector<CCValAssign, 16> RVLocs2;
2042 ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2043 *DAG.getContext(), Call);
2044 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
2045
2046 if (RVLocs1.size() != RVLocs2.size())
2047 return false;
2048 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2049 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2050 return false;
2051 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2052 return false;
2053 if (RVLocs1[i].isRegLoc()) {
2054 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2055 return false;
2056 } else {
2057 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2058 return false;
2059 }
2060 }
2061 }
2062
2063 // If Caller's vararg or byval argument has been split between registers and
2064 // stack, do not perform tail call, since part of the argument is in caller's
2065 // local frame.
2066 const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
2067 getInfo<ARMFunctionInfo>();
2068 if (AFI_Caller->getArgRegsSaveSize())
2069 return false;
2070
2071 // If the callee takes no arguments then go on to check the results of the
2072 // call.
2073 if (!Outs.empty()) {
2074 // Check if stack adjustment is needed. For now, do not do this if any
2075 // argument is passed on the stack.
2076 SmallVector<CCValAssign, 16> ArgLocs;
2077 ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2078 *DAG.getContext(), Call);
2079 CCInfo.AnalyzeCallOperands(Outs,
2080 CCAssignFnForNode(CalleeCC, false, isVarArg));
2081 if (CCInfo.getNextStackOffset()) {
2082 MachineFunction &MF = DAG.getMachineFunction();
2083
2084 // Check if the arguments are already laid out in the right way as
2085 // the caller's fixed stack objects.
2086 MachineFrameInfo *MFI = MF.getFrameInfo();
2087 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2088 const TargetInstrInfo *TII =
2089 getTargetMachine().getSubtargetImpl()->getInstrInfo();
2090 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2091 i != e;
2092 ++i, ++realArgIdx) {
2093 CCValAssign &VA = ArgLocs[i];
2094 EVT RegVT = VA.getLocVT();
2095 SDValue Arg = OutVals[realArgIdx];
2096 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2097 if (VA.getLocInfo() == CCValAssign::Indirect)
2098 return false;
2099 if (VA.needsCustom()) {
2100 // f64 and vector types are split into multiple registers or
2101 // register/stack-slot combinations. The types will not match
2102 // the registers; give up on memory f64 refs until we figure
2103 // out what to do about this.
2104 if (!VA.isRegLoc())
2105 return false;
2106 if (!ArgLocs[++i].isRegLoc())
2107 return false;
2108 if (RegVT == MVT::v2f64) {
2109 if (!ArgLocs[++i].isRegLoc())
2110 return false;
2111 if (!ArgLocs[++i].isRegLoc())
2112 return false;
2113 }
2114 } else if (!VA.isRegLoc()) {
2115 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2116 MFI, MRI, TII))
2117 return false;
2118 }
2119 }
2120 }
2121 }
2122
2123 return true;
2124}
2125
2126bool
2127ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2128 MachineFunction &MF, bool isVarArg,
2129 const SmallVectorImpl<ISD::OutputArg> &Outs,
2130 LLVMContext &Context) const {
2131 SmallVector<CCValAssign, 16> RVLocs;
2132 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2133 return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
2134 isVarArg));
2135}
2136
2137static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2138 SDLoc DL, SelectionDAG &DAG) {
2139 const MachineFunction &MF = DAG.getMachineFunction();
2140 const Function *F = MF.getFunction();
2141
2142 StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
2143
2144 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2145 // version of the "preferred return address". These offsets affect the return
2146 // instruction if this is a return from PL1 without hypervisor extensions.
2147 // IRQ/FIQ: +4 "subs pc, lr, #4"
2148 // SWI: 0 "subs pc, lr, #0"
2149 // ABORT: +4 "subs pc, lr, #4"
2150 // UNDEF: +4/+2 "subs pc, lr, #0"
2151 // UNDEF varies depending on where the exception came from ARM or Thumb
2152 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2153
2154 int64_t LROffset;
2155 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2156 IntKind == "ABORT")
2157 LROffset = 4;
2158 else if (IntKind == "SWI" || IntKind == "UNDEF")
2159 LROffset = 0;
2160 else
2161 report_fatal_error("Unsupported interrupt attribute. If present, value "
2162 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2163
2164 RetOps.insert(RetOps.begin() + 1, DAG.getConstant(LROffset, MVT::i32, false));
2165
2166 return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2167}
2168
2169SDValue
2170ARMTargetLowering::LowerReturn(SDValue Chain,
2171 CallingConv::ID CallConv, bool isVarArg,
2172 const SmallVectorImpl<ISD::OutputArg> &Outs,
2173 const SmallVectorImpl<SDValue> &OutVals,
2174 SDLoc dl, SelectionDAG &DAG) const {
2175
2176 // CCValAssign - represent the assignment of the return value to a location.
2177 SmallVector<CCValAssign, 16> RVLocs;
2178
2179 // CCState - Info about the registers and stack slots.
2180 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2181 *DAG.getContext(), Call);
2182
2183 // Analyze outgoing return values.
2184 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
2185 isVarArg));
2186
2187 SDValue Flag;
2188 SmallVector<SDValue, 4> RetOps;
2189 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2190 bool isLittleEndian = Subtarget->isLittle();
2191
2192 MachineFunction &MF = DAG.getMachineFunction();
2193 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2194 AFI->setReturnRegsCount(RVLocs.size());
2195
2196 // Copy the result values into the output registers.
2197 for (unsigned i = 0, realRVLocIdx = 0;
2198 i != RVLocs.size();
2199 ++i, ++realRVLocIdx) {
2200 CCValAssign &VA = RVLocs[i];
2201 assert(VA.isRegLoc() && "Can only return in registers!")((VA.isRegLoc() && "Can only return in registers!") ?
static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2201, __PRETTY_FUNCTION__))
;
2202
2203 SDValue Arg = OutVals[realRVLocIdx];
2204
2205 switch (VA.getLocInfo()) {
2206 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2206)
;
2207 case CCValAssign::Full: break;
2208 case CCValAssign::BCvt:
2209 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2210 break;
2211 }
2212
2213 if (VA.needsCustom()) {
2214 if (VA.getLocVT() == MVT::v2f64) {
2215 // Extract the first half and return it in two registers.
2216 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2217 DAG.getConstant(0, MVT::i32));
2218 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2219 DAG.getVTList(MVT::i32, MVT::i32), Half);
2220
2221 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2222 HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2223 Flag);
2224 Flag = Chain.getValue(1);
2225 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2226 VA = RVLocs[++i]; // skip ahead to next loc
2227 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2228 HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2229 Flag);
2230 Flag = Chain.getValue(1);
2231 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2232 VA = RVLocs[++i]; // skip ahead to next loc
2233
2234 // Extract the 2nd half and fall through to handle it as an f64 value.
2235 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2236 DAG.getConstant(1, MVT::i32));
2237 }
2238 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2239 // available.
2240 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2241 DAG.getVTList(MVT::i32, MVT::i32), Arg);
2242 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2243 fmrrd.getValue(isLittleEndian ? 0 : 1),
2244 Flag);
2245 Flag = Chain.getValue(1);
2246 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2247 VA = RVLocs[++i]; // skip ahead to next loc
2248 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2249 fmrrd.getValue(isLittleEndian ? 1 : 0),
2250 Flag);
2251 } else
2252 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2253
2254 // Guarantee that all emitted copies are
2255 // stuck together, avoiding something bad.
2256 Flag = Chain.getValue(1);
2257 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2258 }
2259
2260 // Update chain and glue.
2261 RetOps[0] = Chain;
2262 if (Flag.getNode())
2263 RetOps.push_back(Flag);
2264
2265 // CPUs which aren't M-class use a special sequence to return from
2266 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2267 // though we use "subs pc, lr, #N").
2268 //
2269 // M-class CPUs actually use a normal return sequence with a special
2270 // (hardware-provided) value in LR, so the normal code path works.
2271 if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
2272 !Subtarget->isMClass()) {
2273 if (Subtarget->isThumb1Only())
2274 report_fatal_error("interrupt attribute is not supported in Thumb1");
2275 return LowerInterruptReturn(RetOps, dl, DAG);
2276 }
2277
2278 return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2279}
2280
2281bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2282 if (N->getNumValues() != 1)
2283 return false;
2284 if (!N->hasNUsesOfValue(1, 0))
2285 return false;
2286
2287 SDValue TCChain = Chain;
2288 SDNode *Copy = *N->use_begin();
2289 if (Copy->getOpcode() == ISD::CopyToReg) {
2290 // If the copy has a glue operand, we conservatively assume it isn't safe to
2291 // perform a tail call.
2292 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2293 return false;
2294 TCChain = Copy->getOperand(0);
2295 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2296 SDNode *VMov = Copy;
2297 // f64 returned in a pair of GPRs.
2298 SmallPtrSet<SDNode*, 2> Copies;
2299 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2300 UI != UE; ++UI) {
2301 if (UI->getOpcode() != ISD::CopyToReg)
2302 return false;
2303 Copies.insert(*UI);
2304 }
2305 if (Copies.size() > 2)
2306 return false;
2307
2308 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2309 UI != UE; ++UI) {
2310 SDValue UseChain = UI->getOperand(0);
2311 if (Copies.count(UseChain.getNode()))
2312 // Second CopyToReg
2313 Copy = *UI;
2314 else {
2315 // We are at the top of this chain.
2316 // If the copy has a glue operand, we conservatively assume it
2317 // isn't safe to perform a tail call.
2318 if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2319 return false;
2320 // First CopyToReg
2321 TCChain = UseChain;
2322 }
2323 }
2324 } else if (Copy->getOpcode() == ISD::BITCAST) {
2325 // f32 returned in a single GPR.
2326 if (!Copy->hasOneUse())
2327 return false;
2328 Copy = *Copy->use_begin();
2329 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2330 return false;
2331 // If the copy has a glue operand, we conservatively assume it isn't safe to
2332 // perform a tail call.
2333 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2334 return false;
2335 TCChain = Copy->getOperand(0);
2336 } else {
2337 return false;
2338 }
2339
2340 bool HasRet = false;
2341 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2342 UI != UE; ++UI) {
2343 if (UI->getOpcode() != ARMISD::RET_FLAG &&
2344 UI->getOpcode() != ARMISD::INTRET_FLAG)
2345 return false;
2346 HasRet = true;
2347 }
2348
2349 if (!HasRet)
2350 return false;
2351
2352 Chain = TCChain;
2353 return true;
2354}
2355
2356bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2357 if (!Subtarget->supportsTailCall())
2358 return false;
2359
2360 if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2361 return false;
2362
2363 return !Subtarget->isThumb1Only();
2364}
2365
2366// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2367// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2368// one of the above mentioned nodes. It has to be wrapped because otherwise
2369// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2370// be used to form addressing mode. These wrapped nodes will be selected
2371// into MOVi.
2372static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2373 EVT PtrVT = Op.getValueType();
2374 // FIXME there is no actual debug info here
2375 SDLoc dl(Op);
2376 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2377 SDValue Res;
2378 if (CP->isMachineConstantPoolEntry())
2379 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2380 CP->getAlignment());
2381 else
2382 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2383 CP->getAlignment());
2384 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2385}
2386
2387unsigned ARMTargetLowering::getJumpTableEncoding() const {
2388 return MachineJumpTableInfo::EK_Inline;
2389}
2390
2391SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2392 SelectionDAG &DAG) const {
2393 MachineFunction &MF = DAG.getMachineFunction();
2394 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2395 unsigned ARMPCLabelIndex = 0;
2396 SDLoc DL(Op);
2397 EVT PtrVT = getPointerTy();
2398 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2399 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2400 SDValue CPAddr;
2401 if (RelocM == Reloc::Static) {
2402 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2403 } else {
2404 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2405 ARMPCLabelIndex = AFI->createPICLabelUId();
2406 ARMConstantPoolValue *CPV =
2407 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2408 ARMCP::CPBlockAddress, PCAdj);
2409 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2410 }
2411 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2412 SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2413 MachinePointerInfo::getConstantPool(),
2414 false, false, false, 0);
2415 if (RelocM == Reloc::Static)
2416 return Result;
2417 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2418 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2419}
2420
2421// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2422SDValue
2423ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2424 SelectionDAG &DAG) const {
2425 SDLoc dl(GA);
2426 EVT PtrVT = getPointerTy();
2427 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2428 MachineFunction &MF = DAG.getMachineFunction();
2429 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2430 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2431 ARMConstantPoolValue *CPV =
2432 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2433 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2434 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2435 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2436 Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2437 MachinePointerInfo::getConstantPool(),
2438 false, false, false, 0);
2439 SDValue Chain = Argument.getValue(1);
2440
2441 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2442 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2443
2444 // call __tls_get_addr.
2445 ArgListTy Args;
2446 ArgListEntry Entry;
2447 Entry.Node = Argument;
2448 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2449 Args.push_back(Entry);
2450
2451 // FIXME: is there useful debug info available here?
2452 TargetLowering::CallLoweringInfo CLI(DAG);
2453 CLI.setDebugLoc(dl).setChain(Chain)
2454 .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2455 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args),
2456 0);
2457
2458 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2459 return CallResult.first;
2460}
2461
2462// Lower ISD::GlobalTLSAddress using the "initial exec" or
2463// "local exec" model.
2464SDValue
2465ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2466 SelectionDAG &DAG,
2467 TLSModel::Model model) const {
2468 const GlobalValue *GV = GA->getGlobal();
2469 SDLoc dl(GA);
2470 SDValue Offset;
2471 SDValue Chain = DAG.getEntryNode();
2472 EVT PtrVT = getPointerTy();
2473 // Get the Thread Pointer
2474 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2475
2476 if (model == TLSModel::InitialExec) {
2477 MachineFunction &MF = DAG.getMachineFunction();
2478 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2479 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2480 // Initial exec model.
2481 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2482 ARMConstantPoolValue *CPV =
2483 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2484 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2485 true);
2486 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2487 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2488 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2489 MachinePointerInfo::getConstantPool(),
2490 false, false, false, 0);
2491 Chain = Offset.getValue(1);
2492
2493 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2494 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2495
2496 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2497 MachinePointerInfo::getConstantPool(),
2498 false, false, false, 0);
2499 } else {
2500 // local exec model
2501 assert(model == TLSModel::LocalExec)((model == TLSModel::LocalExec) ? static_cast<void> (0)
: __assert_fail ("model == TLSModel::LocalExec", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2501, __PRETTY_FUNCTION__))
;
2502 ARMConstantPoolValue *CPV =
2503 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2504 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2505 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2506 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2507 MachinePointerInfo::getConstantPool(),
2508 false, false, false, 0);
2509 }
2510
2511 // The address of the thread local variable is the add of the thread
2512 // pointer with the offset of the variable.
2513 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2514}
2515
2516SDValue
2517ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2518 // TODO: implement the "local dynamic" model
2519 assert(Subtarget->isTargetELF() &&((Subtarget->isTargetELF() && "TLS not implemented for non-ELF targets"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetELF() && \"TLS not implemented for non-ELF targets\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2520, __PRETTY_FUNCTION__))
2520 "TLS not implemented for non-ELF targets")((Subtarget->isTargetELF() && "TLS not implemented for non-ELF targets"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetELF() && \"TLS not implemented for non-ELF targets\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2520, __PRETTY_FUNCTION__))
;
2521 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2522
2523 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2524
2525 switch (model) {
2526 case TLSModel::GeneralDynamic:
2527 case TLSModel::LocalDynamic:
2528 return LowerToTLSGeneralDynamicModel(GA, DAG);
2529 case TLSModel::InitialExec:
2530 case TLSModel::LocalExec:
2531 return LowerToTLSExecModels(GA, DAG, model);
2532 }
2533 llvm_unreachable("bogus TLS model")::llvm::llvm_unreachable_internal("bogus TLS model", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2533)
;
2534}
2535
2536SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2537 SelectionDAG &DAG) const {
2538 EVT PtrVT = getPointerTy();
2539 SDLoc dl(Op);
2540 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2541 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2542 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2543 ARMConstantPoolValue *CPV =
2544 ARMConstantPoolConstant::Create(GV,
2545 UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2546 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2547 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2548 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2549 CPAddr,
2550 MachinePointerInfo::getConstantPool(),
2551 false, false, false, 0);
2552 SDValue Chain = Result.getValue(1);
2553 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2554 Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2555 if (!UseGOTOFF)
2556 Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2557 MachinePointerInfo::getGOT(),
2558 false, false, false, 0);
2559 return Result;
2560 }
2561
2562 // If we have T2 ops, we can materialize the address directly via movt/movw
2563 // pair. This is always cheaper.
2564 if (Subtarget->useMovt(DAG.getMachineFunction())) {
2565 ++NumMovwMovt;
2566 // FIXME: Once remat is capable of dealing with instructions with register
2567 // operands, expand this into two nodes.
2568 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2569 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2570 } else {
2571 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2572 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2573 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2574 MachinePointerInfo::getConstantPool(),
2575 false, false, false, 0);
2576 }
2577}
2578
2579SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2580 SelectionDAG &DAG) const {
2581 EVT PtrVT = getPointerTy();
2582 SDLoc dl(Op);
2583 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2584 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2585
2586 if (Subtarget->useMovt(DAG.getMachineFunction()))
2587 ++NumMovwMovt;
2588
2589 // FIXME: Once remat is capable of dealing with instructions with register
2590 // operands, expand this into multiple nodes
2591 unsigned Wrapper =
2592 RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper;
2593
2594 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
2595 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
2596
2597 if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2598 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2599 MachinePointerInfo::getGOT(), false, false, false, 0);
2600 return Result;
2601}
2602
2603SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
2604 SelectionDAG &DAG) const {
2605 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported")((Subtarget->isTargetWindows() && "non-Windows COFF is not supported"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetWindows() && \"non-Windows COFF is not supported\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2605, __PRETTY_FUNCTION__))
;
2606 assert(Subtarget->useMovt(DAG.getMachineFunction()) &&((Subtarget->useMovt(DAG.getMachineFunction()) && "Windows on ARM expects to use movw/movt"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->useMovt(DAG.getMachineFunction()) && \"Windows on ARM expects to use movw/movt\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2607, __PRETTY_FUNCTION__))
2607 "Windows on ARM expects to use movw/movt")((Subtarget->useMovt(DAG.getMachineFunction()) && "Windows on ARM expects to use movw/movt"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->useMovt(DAG.getMachineFunction()) && \"Windows on ARM expects to use movw/movt\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2607, __PRETTY_FUNCTION__))
;
2608
2609 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2610 const ARMII::TOF TargetFlags =
2611 (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
2612 EVT PtrVT = getPointerTy();
2613 SDValue Result;
2614 SDLoc DL(Op);
2615
2616 ++NumMovwMovt;
2617
2618 // FIXME: Once remat is capable of dealing with instructions with register
2619 // operands, expand this into two nodes.
2620 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
2621 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
2622 TargetFlags));
2623 if (GV->hasDLLImportStorageClass())
2624 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2625 MachinePointerInfo::getGOT(), false, false, false, 0);
2626 return Result;
2627}
2628
2629SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2630 SelectionDAG &DAG) const {
2631 assert(Subtarget->isTargetELF() &&((Subtarget->isTargetELF() && "GLOBAL OFFSET TABLE not implemented for non-ELF targets"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetELF() && \"GLOBAL OFFSET TABLE not implemented for non-ELF targets\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2632, __PRETTY_FUNCTION__))
2632 "GLOBAL OFFSET TABLE not implemented for non-ELF targets")((Subtarget->isTargetELF() && "GLOBAL OFFSET TABLE not implemented for non-ELF targets"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetELF() && \"GLOBAL OFFSET TABLE not implemented for non-ELF targets\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2632, __PRETTY_FUNCTION__))
;
2633 MachineFunction &MF = DAG.getMachineFunction();
2634 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2635 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2636 EVT PtrVT = getPointerTy();
2637 SDLoc dl(Op);
2638 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2639 ARMConstantPoolValue *CPV =
2640 ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2641 ARMPCLabelIndex, PCAdj);
2642 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2643 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2644 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2645 MachinePointerInfo::getConstantPool(),
2646 false, false, false, 0);
2647 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2648 return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2649}
2650
2651SDValue
2652ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2653 SDLoc dl(Op);
2654 SDValue Val = DAG.getConstant(0, MVT::i32);
2655 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2656 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2657 Op.getOperand(1), Val);
2658}
2659
2660SDValue
2661ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2662 SDLoc dl(Op);
2663 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2664 Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2665}
2666
2667SDValue
2668ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2669 const ARMSubtarget *Subtarget) const {
2670 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2671 SDLoc dl(Op);
2672 switch (IntNo) {
2673 default: return SDValue(); // Don't custom lower most intrinsics.
2674 case Intrinsic::arm_rbit: {
2675 assert(Op.getOperand(1).getValueType() == MVT::i32 &&((Op.getOperand(1).getValueType() == MVT::i32 && "RBIT intrinsic must have i32 type!"
) ? static_cast<void> (0) : __assert_fail ("Op.getOperand(1).getValueType() == MVT::i32 && \"RBIT intrinsic must have i32 type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2676, __PRETTY_FUNCTION__))
2676 "RBIT intrinsic must have i32 type!")((Op.getOperand(1).getValueType() == MVT::i32 && "RBIT intrinsic must have i32 type!"
) ? static_cast<void> (0) : __assert_fail ("Op.getOperand(1).getValueType() == MVT::i32 && \"RBIT intrinsic must have i32 type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2676, __PRETTY_FUNCTION__))
;
2677 return DAG.getNode(ARMISD::RBIT, dl, MVT::i32, Op.getOperand(1));
2678 }
2679 case Intrinsic::arm_thread_pointer: {
2680 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2681 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2682 }
2683 case Intrinsic::eh_sjlj_lsda: {
2684 MachineFunction &MF = DAG.getMachineFunction();
2685 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2686 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2687 EVT PtrVT = getPointerTy();
2688 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2689 SDValue CPAddr;
2690 unsigned PCAdj = (RelocM != Reloc::PIC_)
2691 ? 0 : (Subtarget->isThumb() ? 4 : 8);
2692 ARMConstantPoolValue *CPV =
2693 ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2694 ARMCP::CPLSDA, PCAdj);
2695 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2696 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2697 SDValue Result =
2698 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2699 MachinePointerInfo::getConstantPool(),
2700 false, false, false, 0);
2701
2702 if (RelocM == Reloc::PIC_) {
2703 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2704 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2705 }
2706 return Result;
2707 }
2708 case Intrinsic::arm_neon_vmulls:
2709 case Intrinsic::arm_neon_vmullu: {
2710 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2711 ? ARMISD::VMULLs : ARMISD::VMULLu;
2712 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2713 Op.getOperand(1), Op.getOperand(2));
2714 }
2715 }
2716}
2717
2718static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2719 const ARMSubtarget *Subtarget) {
2720 // FIXME: handle "fence singlethread" more efficiently.
2721 SDLoc dl(Op);
2722 if (!Subtarget->hasDataBarrier()) {
2723 // Some ARMv6 cpus can support data barriers with an mcr instruction.
2724 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2725 // here.
2726 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&((Subtarget->hasV6Ops() && !Subtarget->isThumb(
) && "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->hasV6Ops() && !Subtarget->isThumb() && \"Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2727, __PRETTY_FUNCTION__))
2727 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!")((Subtarget->hasV6Ops() && !Subtarget->isThumb(
) && "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->hasV6Ops() && !Subtarget->isThumb() && \"Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2727, __PRETTY_FUNCTION__))
;
2728 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2729 DAG.getConstant(0, MVT::i32));
2730 }
2731
2732 ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
2733 AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
2734 ARM_MB::MemBOpt Domain = ARM_MB::ISH;
2735 if (Subtarget->isMClass()) {
2736 // Only a full system barrier exists in the M-class architectures.
2737 Domain = ARM_MB::SY;
2738 } else if (Subtarget->isSwift() && Ord == Release) {
2739 // Swift happens to implement ISHST barriers in a way that's compatible with
2740 // Release semantics but weaker than ISH so we'd be fools not to use
2741 // it. Beware: other processors probably don't!
2742 Domain = ARM_MB::ISHST;
2743 }
2744
2745 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
2746 DAG.getConstant(Intrinsic::arm_dmb, MVT::i32),
2747 DAG.getConstant(Domain, MVT::i32));
2748}
2749
2750static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2751 const ARMSubtarget *Subtarget) {
2752 // ARM pre v5TE and Thumb1 does not have preload instructions.
2753 if (!(Subtarget->isThumb2() ||
2754 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2755 // Just preserve the chain.
2756 return Op.getOperand(0);
2757
2758 SDLoc dl(Op);
2759 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2760 if (!isRead &&
2761 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2762 // ARMv7 with MP extension has PLDW.
2763 return Op.getOperand(0);
2764
2765 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2766 if (Subtarget->isThumb()) {
2767 // Invert the bits.
2768 isRead = ~isRead & 1;
2769 isData = ~isData & 1;
2770 }
2771
2772 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2773 Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2774 DAG.getConstant(isData, MVT::i32));
2775}
2776
2777static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2778 MachineFunction &MF = DAG.getMachineFunction();
2779 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2780
2781 // vastart just stores the address of the VarArgsFrameIndex slot into the
2782 // memory location argument.
2783 SDLoc dl(Op);
2784 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2785 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2786 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2787 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2788 MachinePointerInfo(SV), false, false, 0);
2789}
2790
2791SDValue
2792ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2793 SDValue &Root, SelectionDAG &DAG,
2794 SDLoc dl) const {
2795 MachineFunction &MF = DAG.getMachineFunction();
2796 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2797
2798 const TargetRegisterClass *RC;
2799 if (AFI->isThumb1OnlyFunction())
2800 RC = &ARM::tGPRRegClass;
2801 else
2802 RC = &ARM::GPRRegClass;
2803
2804 // Transform the arguments stored in physical registers into virtual ones.
2805 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2806 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2807
2808 SDValue ArgValue2;
2809 if (NextVA.isMemLoc()) {
2810 MachineFrameInfo *MFI = MF.getFrameInfo();
2811 int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2812
2813 // Create load node to retrieve arguments from the stack.
2814 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2815 ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2816 MachinePointerInfo::getFixedStack(FI),
2817 false, false, false, 0);
2818 } else {
2819 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2820 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2821 }
2822 if (!Subtarget->isLittle())
2823 std::swap (ArgValue, ArgValue2);
2824 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2825}
2826
2827void
2828ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2829 unsigned InRegsParamRecordIdx,
2830 unsigned ArgSize,
2831 unsigned &ArgRegsSize,
2832 unsigned &ArgRegsSaveSize)
2833 const {
2834 unsigned NumGPRs;
2835 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2836 unsigned RBegin, REnd;
2837 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2838 NumGPRs = REnd - RBegin;
2839 } else {
2840 unsigned int firstUnalloced;
2841 firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2842 sizeof(GPRArgRegs) /
2843 sizeof(GPRArgRegs[0]));
2844 NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2845 }
2846
2847 unsigned Align = MF.getTarget()
2848 .getSubtargetImpl()
2849 ->getFrameLowering()
2850 ->getStackAlignment();
2851 ArgRegsSize = NumGPRs * 4;
2852
2853 // If parameter is split between stack and GPRs...
2854 if (NumGPRs && Align > 4 &&
2855 (ArgRegsSize < ArgSize ||
2856 InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) {
2857 // Add padding for part of param recovered from GPRs. For example,
2858 // if Align == 8, its last byte must be at address K*8 - 1.
2859 // We need to do it, since remained (stack) part of parameter has
2860 // stack alignment, and we need to "attach" "GPRs head" without gaps
2861 // to it:
2862 // Stack:
2863 // |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
2864 // [ [padding] [GPRs head] ] [ Tail passed via stack ....
2865 //
2866 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2867 unsigned Padding =
2868 OffsetToAlignment(ArgRegsSize + AFI->getArgRegsSaveSize(), Align);
2869 ArgRegsSaveSize = ArgRegsSize + Padding;
2870 } else
2871 // We don't need to extend regs save size for byval parameters if they
2872 // are passed via GPRs only.
2873 ArgRegsSaveSize = ArgRegsSize;
2874}
2875
2876// The remaining GPRs hold either the beginning of variable-argument
2877// data, or the beginning of an aggregate passed by value (usually
2878// byval). Either way, we allocate stack slots adjacent to the data
2879// provided by our caller, and store the unallocated registers there.
2880// If this is a variadic function, the va_list pointer will begin with
2881// these values; otherwise, this reassembles a (byval) structure that
2882// was split between registers and memory.
2883// Return: The frame index registers were stored into.
2884int
2885ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
2886 SDLoc dl, SDValue &Chain,
2887 const Value *OrigArg,
2888 unsigned InRegsParamRecordIdx,
2889 unsigned OffsetFromOrigArg,
2890 unsigned ArgOffset,
2891 unsigned ArgSize,
2892 bool ForceMutable,
2893 unsigned ByValStoreOffset,
2894 unsigned TotalArgRegsSaveSize) const {
2895
2896 // Currently, two use-cases possible:
2897 // Case #1. Non-var-args function, and we meet first byval parameter.
2898 // Setup first unallocated register as first byval register;
2899 // eat all remained registers
2900 // (these two actions are performed by HandleByVal method).
2901 // Then, here, we initialize stack frame with
2902 // "store-reg" instructions.
2903 // Case #2. Var-args function, that doesn't contain byval parameters.
2904 // The same: eat all remained unallocated registers,
2905 // initialize stack frame.
2906
2907 MachineFunction &MF = DAG.getMachineFunction();
2908 MachineFrameInfo *MFI = MF.getFrameInfo();
2909 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2910 unsigned firstRegToSaveIndex, lastRegToSaveIndex;
2911 unsigned RBegin, REnd;
2912 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2913 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2914 firstRegToSaveIndex = RBegin - ARM::R0;
2915 lastRegToSaveIndex = REnd - ARM::R0;
2916 } else {
2917 firstRegToSaveIndex = CCInfo.getFirstUnallocated
2918 (GPRArgRegs, array_lengthof(GPRArgRegs));
2919 lastRegToSaveIndex = 4;
2920 }
2921
2922 unsigned ArgRegsSize, ArgRegsSaveSize;
2923 computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize,
2924 ArgRegsSize, ArgRegsSaveSize);
2925
2926 // Store any by-val regs to their spots on the stack so that they may be
2927 // loaded by deferencing the result of formal parameter pointer or va_next.
2928 // Note: once stack area for byval/varargs registers
2929 // was initialized, it can't be initialized again.
2930 if (ArgRegsSaveSize) {
2931 unsigned Padding = ArgRegsSaveSize - ArgRegsSize;
2932
2933 if (Padding) {
2934 assert(AFI->getStoredByValParamsPadding() == 0 &&((AFI->getStoredByValParamsPadding() == 0 && "The only parameter may be padded."
) ? static_cast<void> (0) : __assert_fail ("AFI->getStoredByValParamsPadding() == 0 && \"The only parameter may be padded.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2935, __PRETTY_FUNCTION__))
2935 "The only parameter may be padded.")((AFI->getStoredByValParamsPadding() == 0 && "The only parameter may be padded."
) ? static_cast<void> (0) : __assert_fail ("AFI->getStoredByValParamsPadding() == 0 && \"The only parameter may be padded.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 2935, __PRETTY_FUNCTION__))
;
2936 AFI->setStoredByValParamsPadding(Padding);
2937 }
2938
2939 int FrameIndex = MFI->CreateFixedObject(ArgRegsSaveSize,
2940 Padding +
2941 ByValStoreOffset -
2942 (int64_t)TotalArgRegsSaveSize,
2943 false);
2944 SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy());
2945 if (Padding) {
2946 MFI->CreateFixedObject(Padding,
2947 ArgOffset + ByValStoreOffset -
2948 (int64_t)ArgRegsSaveSize,
2949 false);
2950 }
2951
2952 SmallVector<SDValue, 4> MemOps;
2953 for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex;
2954 ++firstRegToSaveIndex, ++i) {
2955 const TargetRegisterClass *RC;
2956 if (AFI->isThumb1OnlyFunction())
2957 RC = &ARM::tGPRRegClass;
2958 else
2959 RC = &ARM::GPRRegClass;
2960
2961 unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2962 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2963 SDValue Store =
2964 DAG.getStore(Val.getValue(1), dl, Val, FIN,
2965 MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
2966 false, false, 0);
2967 MemOps.push_back(Store);
2968 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2969 DAG.getConstant(4, getPointerTy()));
2970 }
2971
2972 AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize());
2973
2974 if (!MemOps.empty())
2975 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2976 return FrameIndex;
2977 } else {
2978 if (ArgSize == 0) {
2979 // We cannot allocate a zero-byte object for the first variadic argument,
2980 // so just make up a size.
2981 ArgSize = 4;
2982 }
2983 // This will point to the next argument passed via stack.
2984 return MFI->CreateFixedObject(
2985 ArgSize, ArgOffset, !ForceMutable);
2986 }
2987}
2988
2989// Setup stack frame, the va_list pointer will start from.
2990void
2991ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2992 SDLoc dl, SDValue &Chain,
2993 unsigned ArgOffset,
2994 unsigned TotalArgRegsSaveSize,
2995 bool ForceMutable) const {
2996 MachineFunction &MF = DAG.getMachineFunction();
2997 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2998
2999 // Try to store any remaining integer argument regs
3000 // to their spots on the stack so that they may be loaded by deferencing
3001 // the result of va_next.
3002 // If there is no regs to be stored, just point address after last
3003 // argument passed via stack.
3004 int FrameIndex =
3005 StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3006 CCInfo.getInRegsParamsCount(), 0, ArgOffset, 0, ForceMutable,
3007 0, TotalArgRegsSaveSize);
3008
3009 AFI->setVarArgsFrameIndex(FrameIndex);
3010}
3011
3012SDValue
3013ARMTargetLowering::LowerFormalArguments(SDValue Chain,
3014 CallingConv::ID CallConv, bool isVarArg,
3015 const SmallVectorImpl<ISD::InputArg>
3016 &Ins,
3017 SDLoc dl, SelectionDAG &DAG,
3018 SmallVectorImpl<SDValue> &InVals)
3019 const {
3020 MachineFunction &MF = DAG.getMachineFunction();
3021 MachineFrameInfo *MFI = MF.getFrameInfo();
3022
3023 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3024
3025 // Assign locations to all of the incoming arguments.
3026 SmallVector<CCValAssign, 16> ArgLocs;
3027 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3028 *DAG.getContext(), Prologue);
3029 CCInfo.AnalyzeFormalArguments(Ins,
3030 CCAssignFnForNode(CallConv, /* Return*/ false,
3031 isVarArg));
3032
3033 SmallVector<SDValue, 16> ArgValues;
3034 int lastInsIndex = -1;
3035 SDValue ArgValue;
3036 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
3037 unsigned CurArgIdx = 0;
3038
3039 // Initially ArgRegsSaveSize is zero.
3040 // Then we increase this value each time we meet byval parameter.
3041 // We also increase this value in case of varargs function.
3042 AFI->setArgRegsSaveSize(0);
3043
3044 unsigned ByValStoreOffset = 0;
3045 unsigned TotalArgRegsSaveSize = 0;
3046 unsigned ArgRegsSaveSizeMaxAlign = 4;
3047
3048 // Calculate the amount of stack space that we need to allocate to store
3049 // byval and variadic arguments that are passed in registers.
3050 // We need to know this before we allocate the first byval or variadic
3051 // argument, as they will be allocated a stack slot below the CFA (Canonical
3052 // Frame Address, the stack pointer at entry to the function).
3053 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3054 CCValAssign &VA = ArgLocs[i];
3055 if (VA.isMemLoc()) {
3056 int index = VA.getValNo();
3057 if (index != lastInsIndex) {
3058 ISD::ArgFlagsTy Flags = Ins[index].Flags;
3059 if (Flags.isByVal()) {
3060 unsigned ExtraArgRegsSize;
3061 unsigned ExtraArgRegsSaveSize;
3062 computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsProcessed(),
3063 Flags.getByValSize(),
3064 ExtraArgRegsSize, ExtraArgRegsSaveSize);
3065
3066 TotalArgRegsSaveSize += ExtraArgRegsSaveSize;
3067 if (Flags.getByValAlign() > ArgRegsSaveSizeMaxAlign)
3068 ArgRegsSaveSizeMaxAlign = Flags.getByValAlign();
3069 CCInfo.nextInRegsParam();
3070 }
3071 lastInsIndex = index;
3072 }
3073 }
3074 }
3075 CCInfo.rewindByValRegsInfo();
3076 lastInsIndex = -1;
3077 if (isVarArg && MFI->hasVAStart()) {
3078 unsigned ExtraArgRegsSize;
3079 unsigned ExtraArgRegsSaveSize;
3080 computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsCount(), 0,
3081 ExtraArgRegsSize, ExtraArgRegsSaveSize);
3082 TotalArgRegsSaveSize += ExtraArgRegsSaveSize;
3083 }
3084 // If the arg regs save area contains N-byte aligned values, the
3085 // bottom of it must be at least N-byte aligned.
3086 TotalArgRegsSaveSize = RoundUpToAlignment(TotalArgRegsSaveSize, ArgRegsSaveSizeMaxAlign);
3087 TotalArgRegsSaveSize = std::min(TotalArgRegsSaveSize, 16U);
3088
3089 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3090 CCValAssign &VA = ArgLocs[i];
3091 std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
3092 CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
3093 // Arguments stored in registers.
3094 if (VA.isRegLoc()) {
3095 EVT RegVT = VA.getLocVT();
3096
3097 if (VA.needsCustom()) {
3098 // f64 and vector types are split up into multiple registers or
3099 // combinations of registers and stack slots.
3100 if (VA.getLocVT() == MVT::v2f64) {
3101 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3102 Chain, DAG, dl);
3103 VA = ArgLocs[++i]; // skip ahead to next loc
3104 SDValue ArgValue2;
3105 if (VA.isMemLoc()) {
3106 int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
3107 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3108 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3109 MachinePointerInfo::getFixedStack(FI),
3110 false, false, false, 0);
3111 } else {
3112 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3113 Chain, DAG, dl);
3114 }
3115 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3116 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3117 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
3118 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3119 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
3120 } else
3121 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3122
3123 } else {
3124 const TargetRegisterClass *RC;
3125
3126 if (RegVT == MVT::f32)
3127 RC = &ARM::SPRRegClass;
3128 else if (RegVT == MVT::f64)
3129 RC = &ARM::DPRRegClass;
3130 else if (RegVT == MVT::v2f64)
3131 RC = &ARM::QPRRegClass;
3132 else if (RegVT == MVT::i32)
3133 RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3134 : &ARM::GPRRegClass;
3135 else
3136 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering")::llvm::llvm_unreachable_internal("RegVT not supported by FORMAL_ARGUMENTS Lowering"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3136)
;
3137
3138 // Transform the arguments in physical registers into virtual ones.
3139 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3140 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3141 }
3142
3143 // If this is an 8 or 16-bit value, it is really passed promoted
3144 // to 32 bits. Insert an assert[sz]ext to capture this, then
3145 // truncate to the right size.
3146 switch (VA.getLocInfo()) {
3147 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3147)
;
3148 case CCValAssign::Full: break;
3149 case CCValAssign::BCvt:
3150 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3151 break;
3152 case CCValAssign::SExt:
3153 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3154 DAG.getValueType(VA.getValVT()));
3155 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3156 break;
3157 case CCValAssign::ZExt:
3158 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3159 DAG.getValueType(VA.getValVT()));
3160 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3161 break;
3162 }
3163
3164 InVals.push_back(ArgValue);
3165
3166 } else { // VA.isRegLoc()
3167
3168 // sanity check
3169 assert(VA.isMemLoc())((VA.isMemLoc()) ? static_cast<void> (0) : __assert_fail
("VA.isMemLoc()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3169, __PRETTY_FUNCTION__))
;
3170 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered")((VA.getValVT() != MVT::i64 && "i64 should already be lowered"
) ? static_cast<void> (0) : __assert_fail ("VA.getValVT() != MVT::i64 && \"i64 should already be lowered\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3170, __PRETTY_FUNCTION__))
;
3171
3172 int index = ArgLocs[i].getValNo();
3173
3174 // Some Ins[] entries become multiple ArgLoc[] entries.
3175 // Process them only once.
3176 if (index != lastInsIndex)
3177 {
3178 ISD::ArgFlagsTy Flags = Ins[index].Flags;
3179 // FIXME: For now, all byval parameter objects are marked mutable.
3180 // This can be changed with more analysis.
3181 // In case of tail call optimization mark all arguments mutable.
3182 // Since they could be overwritten by lowering of arguments in case of
3183 // a tail call.
3184 if (Flags.isByVal()) {
3185 unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3186
3187 ByValStoreOffset = RoundUpToAlignment(ByValStoreOffset, Flags.getByValAlign());
3188 int FrameIndex = StoreByValRegs(
3189 CCInfo, DAG, dl, Chain, CurOrigArg,
3190 CurByValIndex,
3191 Ins[VA.getValNo()].PartOffset,
3192 VA.getLocMemOffset(),
3193 Flags.getByValSize(),
3194 true /*force mutable frames*/,
3195 ByValStoreOffset,
3196 TotalArgRegsSaveSize);
3197 ByValStoreOffset += Flags.getByValSize();
3198 ByValStoreOffset = std::min(ByValStoreOffset, 16U);
3199 InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy()));
3200 CCInfo.nextInRegsParam();
3201 } else {
3202 unsigned FIOffset = VA.getLocMemOffset();
3203 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3204 FIOffset, true);
3205
3206 // Create load nodes to retrieve arguments from the stack.
3207 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3208 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3209 MachinePointerInfo::getFixedStack(FI),
3210 false, false, false, 0));
3211 }
3212 lastInsIndex = index;
3213 }
3214 }
3215 }
3216
3217 // varargs
3218 if (isVarArg && MFI->hasVAStart())
3219 VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3220 CCInfo.getNextStackOffset(),
3221 TotalArgRegsSaveSize);
3222
3223 AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3224
3225 return Chain;
3226}
3227
3228/// isFloatingPointZero - Return true if this is +0.0.
3229static bool isFloatingPointZero(SDValue Op) {
3230 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3231 return CFP->getValueAPF().isPosZero();
3232 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3233 // Maybe this has already been legalized into the constant pool?
3234 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3235 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3236 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3237 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3238 return CFP->getValueAPF().isPosZero();
3239 }
3240 } else if (Op->getOpcode() == ISD::BITCAST &&
3241 Op->getValueType(0) == MVT::f64) {
3242 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3243 // created by LowerConstantFP().
3244 SDValue BitcastOp = Op->getOperand(0);
3245 if (BitcastOp->getOpcode() == ARMISD::VMOVIMM) {
3246 SDValue MoveOp = BitcastOp->getOperand(0);
3247 if (MoveOp->getOpcode() == ISD::TargetConstant &&
3248 cast<ConstantSDNode>(MoveOp)->getZExtValue() == 0) {
3249 return true;
3250 }
3251 }
3252 }
3253 return false;
3254}
3255
3256/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3257/// the given operands.
3258SDValue
3259ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3260 SDValue &ARMcc, SelectionDAG &DAG,
3261 SDLoc dl) const {
3262 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3263 unsigned C = RHSC->getZExtValue();
3264 if (!isLegalICmpImmediate(C)) {
3265 // Constant does not fit, try adjusting it by one?
3266 switch (CC) {
3267 default: break;
3268 case ISD::SETLT:
3269 case ISD::SETGE:
3270 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3271 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3272 RHS = DAG.getConstant(C-1, MVT::i32);
3273 }
3274 break;
3275 case ISD::SETULT:
3276 case ISD::SETUGE:
3277 if (C != 0 && isLegalICmpImmediate(C-1)) {
3278 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3279 RHS = DAG.getConstant(C-1, MVT::i32);
3280 }
3281 break;
3282 case ISD::SETLE:
3283 case ISD::SETGT:
3284 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3285 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3286 RHS = DAG.getConstant(C+1, MVT::i32);
3287 }
3288 break;
3289 case ISD::SETULE:
3290 case ISD::SETUGT:
3291 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3292 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3293 RHS = DAG.getConstant(C+1, MVT::i32);
3294 }
3295 break;
3296 }
3297 }
3298 }
3299
3300 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3301 ARMISD::NodeType CompareType;
3302 switch (CondCode) {
3303 default:
3304 CompareType = ARMISD::CMP;
3305 break;
3306 case ARMCC::EQ:
3307 case ARMCC::NE:
3308 // Uses only Z Flag
3309 CompareType = ARMISD::CMPZ;
3310 break;
3311 }
3312 ARMcc = DAG.getConstant(CondCode, MVT::i32);
3313 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3314}
3315
3316/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3317SDValue
3318ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
3319 SDLoc dl) const {
3320 assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64)((!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64
) ? static_cast<void> (0) : __assert_fail ("!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3320, __PRETTY_FUNCTION__))
;
3321 SDValue Cmp;
3322 if (!isFloatingPointZero(RHS))
3323 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3324 else
3325 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3326 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3327}
3328
3329/// duplicateCmp - Glue values can have only one use, so this function
3330/// duplicates a comparison node.
3331SDValue
3332ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3333 unsigned Opc = Cmp.getOpcode();
3334 SDLoc DL(Cmp);
3335 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3336 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3337
3338 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation")((Opc == ARMISD::FMSTAT && "unexpected comparison operation"
) ? static_cast<void> (0) : __assert_fail ("Opc == ARMISD::FMSTAT && \"unexpected comparison operation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3338, __PRETTY_FUNCTION__))
;
3339 Cmp = Cmp.getOperand(0);
3340 Opc = Cmp.getOpcode();
3341 if (Opc == ARMISD::CMPFP)
3342 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3343 else {
3344 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT")((Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"
) ? static_cast<void> (0) : __assert_fail ("Opc == ARMISD::CMPFPw0 && \"unexpected operand of FMSTAT\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3344, __PRETTY_FUNCTION__))
;
3345 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3346 }
3347 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3348}
3349
3350std::pair<SDValue, SDValue>
3351ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3352 SDValue &ARMcc) const {
3353 assert(Op.getValueType() == MVT::i32 && "Unsupported value type")((Op.getValueType() == MVT::i32 && "Unsupported value type"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::i32 && \"Unsupported value type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3353, __PRETTY_FUNCTION__))
;
3354
3355 SDValue Value, OverflowCmp;
3356 SDValue LHS = Op.getOperand(0);
3357 SDValue RHS = Op.getOperand(1);
3358
3359
3360 // FIXME: We are currently always generating CMPs because we don't support
3361 // generating CMN through the backend. This is not as good as the natural
3362 // CMP case because it causes a register dependency and cannot be folded
3363 // later.
3364
3365 switch (Op.getOpcode()) {
3366 default:
3367 llvm_unreachable("Unknown overflow instruction!")::llvm::llvm_unreachable_internal("Unknown overflow instruction!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3367)
;
3368 case ISD::SADDO:
3369 ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
3370 Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
3371 OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
3372 break;
3373 case ISD::UADDO:
3374 ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
3375 Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
3376 OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
3377 break;
3378 case ISD::SSUBO:
3379 ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
3380 Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
3381 OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
3382 break;
3383 case ISD::USUBO:
3384 ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
3385 Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
3386 OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
3387 break;
3388 } // switch (...)
3389
3390 return std::make_pair(Value, OverflowCmp);
3391}
3392
3393
3394SDValue
3395ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
3396 // Let legalize expand this if it isn't a legal type yet.
3397 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
3398 return SDValue();
3399
3400 SDValue Value, OverflowCmp;
3401 SDValue ARMcc;
3402 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
3403 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3404 // We use 0 and 1 as false and true values.
3405 SDValue TVal = DAG.getConstant(1, MVT::i32);
3406 SDValue FVal = DAG.getConstant(0, MVT::i32);
3407 EVT VT = Op.getValueType();
3408
3409 SDValue Overflow = DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, TVal, FVal,
3410 ARMcc, CCR, OverflowCmp);
3411
3412 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
3413 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
3414}
3415
3416
3417SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3418 SDValue Cond = Op.getOperand(0);
3419 SDValue SelectTrue = Op.getOperand(1);
3420 SDValue SelectFalse = Op.getOperand(2);
3421 SDLoc dl(Op);
3422 unsigned Opc = Cond.getOpcode();
3423
3424 if (Cond.getResNo() == 1 &&
3425 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3426 Opc == ISD::USUBO)) {
3427 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
3428 return SDValue();
3429
3430 SDValue Value, OverflowCmp;
3431 SDValue ARMcc;
3432 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
3433 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3434 EVT VT = Op.getValueType();
3435
3436 return getCMOV(SDLoc(Op), VT, SelectTrue, SelectFalse, ARMcc, CCR,
3437 OverflowCmp, DAG);
3438 }
3439
3440 // Convert:
3441 //
3442 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3443 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3444 //
3445 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3446 const ConstantSDNode *CMOVTrue =
3447 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
3448 const ConstantSDNode *CMOVFalse =
3449 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3450
3451 if (CMOVTrue && CMOVFalse) {
3452 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3453 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3454
3455 SDValue True;
3456 SDValue False;
3457 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3458 True = SelectTrue;
3459 False = SelectFalse;
3460 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3461 True = SelectFalse;
3462 False = SelectTrue;
3463 }
3464
3465 if (True.getNode() && False.getNode()) {
3466 EVT VT = Op.getValueType();
3467 SDValue ARMcc = Cond.getOperand(2);
3468 SDValue CCR = Cond.getOperand(3);
3469 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3470 assert(True.getValueType() == VT)((True.getValueType() == VT) ? static_cast<void> (0) : __assert_fail
("True.getValueType() == VT", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3470, __PRETTY_FUNCTION__))
;
3471 return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
3472 }
3473 }
3474 }
3475
3476 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3477 // undefined bits before doing a full-word comparison with zero.
3478 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3479 DAG.getConstant(1, Cond.getValueType()));
3480
3481 return DAG.getSelectCC(dl, Cond,
3482 DAG.getConstant(0, Cond.getValueType()),
3483 SelectTrue, SelectFalse, ISD::SETNE);
3484}
3485
3486static ISD::CondCode getInverseCCForVSEL(ISD::CondCode CC) {
3487 if (CC == ISD::SETNE)
3488 return ISD::SETEQ;
3489 return ISD::getSetCCInverse(CC, true);
3490}
3491
3492static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
3493 bool &swpCmpOps, bool &swpVselOps) {
3494 // Start by selecting the GE condition code for opcodes that return true for
3495 // 'equality'
3496 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
3497 CC == ISD::SETULE)
3498 CondCode = ARMCC::GE;
3499
3500 // and GT for opcodes that return false for 'equality'.
3501 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
3502 CC == ISD::SETULT)
3503 CondCode = ARMCC::GT;
3504
3505 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
3506 // to swap the compare operands.
3507 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
3508 CC == ISD::SETULT)
3509 swpCmpOps = true;
3510
3511 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
3512 // If we have an unordered opcode, we need to swap the operands to the VSEL
3513 // instruction (effectively negating the condition).
3514 //
3515 // This also has the effect of swapping which one of 'less' or 'greater'
3516 // returns true, so we also swap the compare operands. It also switches
3517 // whether we return true for 'equality', so we compensate by picking the
3518 // opposite condition code to our original choice.
3519 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
3520 CC == ISD::SETUGT) {
3521 swpCmpOps = !swpCmpOps;
3522 swpVselOps = !swpVselOps;
3523 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
3524 }
3525
3526 // 'ordered' is 'anything but unordered', so use the VS condition code and
3527 // swap the VSEL operands.
3528 if (CC == ISD::SETO) {
3529 CondCode = ARMCC::VS;
3530 swpVselOps = true;
3531 }
3532
3533 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
3534 // code and swap the VSEL operands.
3535 if (CC == ISD::SETUNE) {
3536 CondCode = ARMCC::EQ;
3537 swpVselOps = true;
3538 }
3539}
3540
3541SDValue ARMTargetLowering::getCMOV(SDLoc dl, EVT VT, SDValue FalseVal,
3542 SDValue TrueVal, SDValue ARMcc, SDValue CCR,
3543 SDValue Cmp, SelectionDAG &DAG) const {
3544 if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
3545 FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3546 DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
3547 TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3548 DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
3549
3550 SDValue TrueLow = TrueVal.getValue(0);
3551 SDValue TrueHigh = TrueVal.getValue(1);
3552 SDValue FalseLow = FalseVal.getValue(0);
3553 SDValue FalseHigh = FalseVal.getValue(1);
3554
3555 SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
3556 ARMcc, CCR, Cmp);
3557 SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
3558 ARMcc, CCR, duplicateCmp(Cmp, DAG));
3559
3560 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
3561 } else {
3562 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
3563 Cmp);
3564 }
3565}
3566
3567SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3568 EVT VT = Op.getValueType();
3569 SDValue LHS = Op.getOperand(0);
3570 SDValue RHS = Op.getOperand(1);
3571 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3572 SDValue TrueVal = Op.getOperand(2);
3573 SDValue FalseVal = Op.getOperand(3);
3574 SDLoc dl(Op);
3575
3576 if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
3577 DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
3578 dl);
3579
3580 // If softenSetCCOperands only returned one value, we should compare it to
3581 // zero.
3582 if (!RHS.getNode()) {
3583 RHS = DAG.getConstant(0, LHS.getValueType());
3584 CC = ISD::SETNE;
3585 }
3586 }
3587
3588 if (LHS.getValueType() == MVT::i32) {
3589 // Try to generate VSEL on ARMv8.
3590 // The VSEL instruction can't use all the usual ARM condition
3591 // codes: it only has two bits to select the condition code, so it's
3592 // constrained to use only GE, GT, VS and EQ.
3593 //
3594 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
3595 // swap the operands of the previous compare instruction (effectively
3596 // inverting the compare condition, swapping 'less' and 'greater') and
3597 // sometimes need to swap the operands to the VSEL (which inverts the
3598 // condition in the sense of firing whenever the previous condition didn't)
3599 if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3600 TrueVal.getValueType() == MVT::f64)) {
3601 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3602 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
3603 CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
3604 CC = getInverseCCForVSEL(CC);
3605 std::swap(TrueVal, FalseVal);
3606 }
3607 }
3608
3609 SDValue ARMcc;
3610 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3611 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3612 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
3613 }
3614
3615 ARMCC::CondCodes CondCode, CondCode2;
3616 FPCCToARMCC(CC, CondCode, CondCode2);
3617
3618 // Try to generate VSEL on ARMv8.
3619 if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3620 TrueVal.getValueType() == MVT::f64)) {
3621 // We can select VMAXNM/VMINNM from a compare followed by a select with the
3622 // same operands, as follows:
3623 // c = fcmp [ogt, olt, ugt, ult] a, b
3624 // select c, a, b
3625 // We only do this in unsafe-fp-math, because signed zeros and NaNs are
3626 // handled differently than the original code sequence.
3627 if (getTargetMachine().Options.UnsafeFPMath) {
3628 if (LHS == TrueVal && RHS == FalseVal) {
3629 if (CC == ISD::SETOGT || CC == ISD::SETUGT)
3630 return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
3631 if (CC == ISD::SETOLT || CC == ISD::SETULT)
3632 return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
3633 } else if (LHS == FalseVal && RHS == TrueVal) {
3634 if (CC == ISD::SETOLT || CC == ISD::SETULT)
3635 return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
3636 if (CC == ISD::SETOGT || CC == ISD::SETUGT)
3637 return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
3638 }
3639 }
3640
3641 bool swpCmpOps = false;
3642 bool swpVselOps = false;
3643 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
3644
3645 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
3646 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
3647 if (swpCmpOps)
3648 std::swap(LHS, RHS);
3649 if (swpVselOps)
3650 std::swap(TrueVal, FalseVal);
3651 }
3652 }
3653
3654 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3655 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3656 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3657 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
3658 if (CondCode2 != ARMCC::AL) {
3659 SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
3660 // FIXME: Needs another CMP because flag can have but one use.
3661 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
3662 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
3663 }
3664 return Result;
3665}
3666
3667/// canChangeToInt - Given the fp compare operand, return true if it is suitable
3668/// to morph to an integer compare sequence.
3669static bool canChangeToInt(SDValue Op, bool &SeenZero,
3670 const ARMSubtarget *Subtarget) {
3671 SDNode *N = Op.getNode();
3672 if (!N->hasOneUse())
3673 // Otherwise it requires moving the value from fp to integer registers.
3674 return false;
3675 if (!N->getNumValues())
3676 return false;
3677 EVT VT = Op.getValueType();
3678 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3679 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3680 // vmrs are very slow, e.g. cortex-a8.
3681 return false;
3682
3683 if (isFloatingPointZero(Op)) {
3684 SeenZero = true;
3685 return true;
3686 }
3687 return ISD::isNormalLoad(N);
3688}
3689
3690static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3691 if (isFloatingPointZero(Op))
3692 return DAG.getConstant(0, MVT::i32);
3693
3694 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3695 return DAG.getLoad(MVT::i32, SDLoc(Op),
3696 Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3697 Ld->isVolatile(), Ld->isNonTemporal(),
3698 Ld->isInvariant(), Ld->getAlignment());
3699
3700 llvm_unreachable("Unknown VFP cmp argument!")::llvm::llvm_unreachable_internal("Unknown VFP cmp argument!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3700)
;
3701}
3702
3703static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3704 SDValue &RetVal1, SDValue &RetVal2) {
3705 if (isFloatingPointZero(Op)) {
3706 RetVal1 = DAG.getConstant(0, MVT::i32);
3707 RetVal2 = DAG.getConstant(0, MVT::i32);
3708 return;
3709 }
3710
3711 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3712 SDValue Ptr = Ld->getBasePtr();
3713 RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op),
3714 Ld->getChain(), Ptr,
3715 Ld->getPointerInfo(),
3716 Ld->isVolatile(), Ld->isNonTemporal(),
3717 Ld->isInvariant(), Ld->getAlignment());
3718
3719 EVT PtrType = Ptr.getValueType();
3720 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3721 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op),
3722 PtrType, Ptr, DAG.getConstant(4, PtrType));
3723 RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op),
3724 Ld->getChain(), NewPtr,
3725 Ld->getPointerInfo().getWithOffset(4),
3726 Ld->isVolatile(), Ld->isNonTemporal(),
3727 Ld->isInvariant(), NewAlign);
3728 return;
3729 }
3730
3731 llvm_unreachable("Unknown VFP cmp argument!")::llvm::llvm_unreachable_internal("Unknown VFP cmp argument!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3731)
;
3732}
3733
3734/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3735/// f32 and even f64 comparisons to integer ones.
3736SDValue
3737ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3738 SDValue Chain = Op.getOperand(0);
3739 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3740 SDValue LHS = Op.getOperand(2);
3741 SDValue RHS = Op.getOperand(3);
3742 SDValue Dest = Op.getOperand(4);
3743 SDLoc dl(Op);
3744
3745 bool LHSSeenZero = false;
3746 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3747 bool RHSSeenZero = false;
3748 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3749 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3750 // If unsafe fp math optimization is enabled and there are no other uses of
3751 // the CMP operands, and the condition code is EQ or NE, we can optimize it
3752 // to an integer comparison.
3753 if (CC == ISD::SETOEQ)
3754 CC = ISD::SETEQ;
3755 else if (CC == ISD::SETUNE)
3756 CC = ISD::SETNE;
3757
3758 SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3759 SDValue ARMcc;
3760 if (LHS.getValueType() == MVT::f32) {
3761 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3762 bitcastf32Toi32(LHS, DAG), Mask);
3763 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3764 bitcastf32Toi32(RHS, DAG), Mask);
3765 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3766 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3767 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3768 Chain, Dest, ARMcc, CCR, Cmp);
3769 }
3770
3771 SDValue LHS1, LHS2;
3772 SDValue RHS1, RHS2;
3773 expandf64Toi32(LHS, DAG, LHS1, LHS2);
3774 expandf64Toi32(RHS, DAG, RHS1, RHS2);
3775 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3776 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3777 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3778 ARMcc = DAG.getConstant(CondCode, MVT::i32);
3779 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3780 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3781 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
3782 }
3783
3784 return SDValue();
3785}
3786
3787SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3788 SDValue Chain = Op.getOperand(0);
3789 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3790 SDValue LHS = Op.getOperand(2);
3791 SDValue RHS = Op.getOperand(3);
3792 SDValue Dest = Op.getOperand(4);
3793 SDLoc dl(Op);
3794
3795 if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
3796 DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
3797 dl);
3798
3799 // If softenSetCCOperands only returned one value, we should compare it to
3800 // zero.
3801 if (!RHS.getNode()) {
3802 RHS = DAG.getConstant(0, LHS.getValueType());
3803 CC = ISD::SETNE;
3804 }
3805 }
3806
3807 if (LHS.getValueType() == MVT::i32) {
3808 SDValue ARMcc;
3809 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3810 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3811 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3812 Chain, Dest, ARMcc, CCR, Cmp);
3813 }
3814
3815 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64)((LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT
::f64) ? static_cast<void> (0) : __assert_fail ("LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3815, __PRETTY_FUNCTION__))
;
3816
3817 if (getTargetMachine().Options.UnsafeFPMath &&
3818 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3819 CC == ISD::SETNE || CC == ISD::SETUNE)) {
3820 SDValue Result = OptimizeVFPBrcond(Op, DAG);
3821 if (Result.getNode())
3822 return Result;
3823 }
3824
3825 ARMCC::CondCodes CondCode, CondCode2;
3826 FPCCToARMCC(CC, CondCode, CondCode2);
3827
3828 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3829 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3830 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3831 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3832 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3833 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
3834 if (CondCode2 != ARMCC::AL) {
3835 ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3836 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3837 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
3838 }
3839 return Res;
3840}
3841
3842SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3843 SDValue Chain = Op.getOperand(0);
3844 SDValue Table = Op.getOperand(1);
3845 SDValue Index = Op.getOperand(2);
3846 SDLoc dl(Op);
3847
3848 EVT PTy = getPointerTy();
3849 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3850 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3851 SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3852 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3853 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3854 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3855 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3856 if (Subtarget->isThumb2()) {
3857 // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3858 // which does another jump to the destination. This also makes it easier
3859 // to translate it to TBB / TBH later.
3860 // FIXME: This might not work if the function is extremely large.
3861 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3862 Addr, Op.getOperand(2), JTI, UId);
3863 }
3864 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3865 Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3866 MachinePointerInfo::getJumpTable(),
3867 false, false, false, 0);
3868 Chain = Addr.getValue(1);
3869 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3870 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3871 } else {
3872 Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3873 MachinePointerInfo::getJumpTable(),
3874 false, false, false, 0);
3875 Chain = Addr.getValue(1);
3876 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3877 }
3878}
3879
3880static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3881 EVT VT = Op.getValueType();
3882 SDLoc dl(Op);
3883
3884 if (Op.getValueType().getVectorElementType() == MVT::i32) {
3885 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3886 return Op;
3887 return DAG.UnrollVectorOp(Op.getNode());
3888 }
3889
3890 assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&((Op.getOperand(0).getValueType() == MVT::v4f32 && "Invalid type for custom lowering!"
) ? static_cast<void> (0) : __assert_fail ("Op.getOperand(0).getValueType() == MVT::v4f32 && \"Invalid type for custom lowering!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3891, __PRETTY_FUNCTION__))
3891 "Invalid type for custom lowering!")((Op.getOperand(0).getValueType() == MVT::v4f32 && "Invalid type for custom lowering!"
) ? static_cast<void> (0) : __assert_fail ("Op.getOperand(0).getValueType() == MVT::v4f32 && \"Invalid type for custom lowering!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3891, __PRETTY_FUNCTION__))
;
3892 if (VT != MVT::v4i16)
3893 return DAG.UnrollVectorOp(Op.getNode());
3894
3895 Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3896 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3897}
3898
3899SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
3900 EVT VT = Op.getValueType();
3901 if (VT.isVector())
3902 return LowerVectorFP_TO_INT(Op, DAG);
3903
3904 if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
3905 RTLIB::Libcall LC;
3906 if (Op.getOpcode() == ISD::FP_TO_SINT)
3907 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
3908 Op.getValueType());
3909 else
3910 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
3911 Op.getValueType());
3912 return makeLibCall(DAG, LC, Op.getValueType(), &Op.getOperand(0), 1,
3913 /*isSigned*/ false, SDLoc(Op)).first;
3914 }
3915
3916 SDLoc dl(Op);
3917 unsigned Opc;
3918
3919 switch (Op.getOpcode()) {
3920 default: llvm_unreachable("Invalid opcode!")::llvm::llvm_unreachable_internal("Invalid opcode!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3920)
;
3921 case ISD::FP_TO_SINT:
3922 Opc = ARMISD::FTOSI;
3923 break;
3924 case ISD::FP_TO_UINT:
3925 Opc = ARMISD::FTOUI;
3926 break;
3927 }
3928 Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3929 return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3930}
3931
3932static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3933 EVT VT = Op.getValueType();
3934 SDLoc dl(Op);
3935
3936 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3937 if (VT.getVectorElementType() == MVT::f32)
3938 return Op;
3939 return DAG.UnrollVectorOp(Op.getNode());
3940 }
3941
3942 assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&((Op.getOperand(0).getValueType() == MVT::v4i16 && "Invalid type for custom lowering!"
) ? static_cast<void> (0) : __assert_fail ("Op.getOperand(0).getValueType() == MVT::v4i16 && \"Invalid type for custom lowering!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3943, __PRETTY_FUNCTION__))
3943 "Invalid type for custom lowering!")((Op.getOperand(0).getValueType() == MVT::v4i16 && "Invalid type for custom lowering!"
) ? static_cast<void> (0) : __assert_fail ("Op.getOperand(0).getValueType() == MVT::v4i16 && \"Invalid type for custom lowering!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3943, __PRETTY_FUNCTION__))
;
3944 if (VT != MVT::v4f32)
3945 return DAG.UnrollVectorOp(Op.getNode());
3946
3947 unsigned CastOpc;
3948 unsigned Opc;
3949 switch (Op.getOpcode()) {
3950 default: llvm_unreachable("Invalid opcode!")::llvm::llvm_unreachable_internal("Invalid opcode!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3950)
;
3951 case ISD::SINT_TO_FP:
3952 CastOpc = ISD::SIGN_EXTEND;
3953 Opc = ISD::SINT_TO_FP;
3954 break;
3955 case ISD::UINT_TO_FP:
3956 CastOpc = ISD::ZERO_EXTEND;
3957 Opc = ISD::UINT_TO_FP;
3958 break;
3959 }
3960
3961 Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3962 return DAG.getNode(Opc, dl, VT, Op);
3963}
3964
3965SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
3966 EVT VT = Op.getValueType();
3967 if (VT.isVector())
3968 return LowerVectorINT_TO_FP(Op, DAG);
3969
3970 if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
3971 RTLIB::Libcall LC;
3972 if (Op.getOpcode() == ISD::SINT_TO_FP)
3973 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
3974 Op.getValueType());
3975 else
3976 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
3977 Op.getValueType());
3978 return makeLibCall(DAG, LC, Op.getValueType(), &Op.getOperand(0), 1,
3979 /*isSigned*/ false, SDLoc(Op)).first;
3980 }
3981
3982 SDLoc dl(Op);
3983 unsigned Opc;
3984
3985 switch (Op.getOpcode()) {
3986 default: llvm_unreachable("Invalid opcode!")::llvm::llvm_unreachable_internal("Invalid opcode!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 3986)
;
3987 case ISD::SINT_TO_FP:
3988 Opc = ARMISD::SITOF;
3989 break;
3990 case ISD::UINT_TO_FP:
3991 Opc = ARMISD::UITOF;
3992 break;
3993 }
3994
3995 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3996 return DAG.getNode(Opc, dl, VT, Op);
3997}
3998
3999SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4000 // Implement fcopysign with a fabs and a conditional fneg.
4001 SDValue Tmp0 = Op.getOperand(0);
4002 SDValue Tmp1 = Op.getOperand(1);
4003 SDLoc dl(Op);
4004 EVT VT = Op.getValueType();
4005 EVT SrcVT = Tmp1.getValueType();
4006 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4007 Tmp0.getOpcode() == ARMISD::VMOVDRR;
4008 bool UseNEON = !InGPR && Subtarget->hasNEON();
4009
4010 if (UseNEON) {
4011 // Use VBSL to copy the sign bit.
4012 unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4013 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4014 DAG.getTargetConstant(EncodedVal, MVT::i32));
4015 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4016 if (VT == MVT::f64)
4017 Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4018 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4019 DAG.getConstant(32, MVT::i32));
4020 else /*if (VT == MVT::f32)*/
4021 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4022 if (SrcVT == MVT::f32) {
4023 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4024 if (VT == MVT::f64)
4025 Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4026 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4027 DAG.getConstant(32, MVT::i32));
4028 } else if (VT == MVT::f32)
4029 Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4030 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4031 DAG.getConstant(32, MVT::i32));
4032 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4033 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4034
4035 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4036 MVT::i32);
4037 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4038 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4039 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4040
4041 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4042 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4043 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4044 if (VT == MVT::f32) {
4045 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4046 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4047 DAG.getConstant(0, MVT::i32));
4048 } else {
4049 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4050 }
4051
4052 return Res;
4053 }
4054
4055 // Bitcast operand 1 to i32.
4056 if (SrcVT == MVT::f64)
4057 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4058 Tmp1).getValue(1);
4059 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4060
4061 // Or in the signbit with integer operations.
4062 SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
4063 SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
4064 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4065 if (VT == MVT::f32) {
4066 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4067 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4068 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4069 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4070 }
4071
4072 // f64: Or the high part with signbit and then combine two parts.
4073 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4074 Tmp0);
4075 SDValue Lo = Tmp0.getValue(0);
4076 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
4077 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
4078 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
4079}
4080
4081SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
4082 MachineFunction &MF = DAG.getMachineFunction();
4083 MachineFrameInfo *MFI = MF.getFrameInfo();
4084 MFI->setReturnAddressIsTaken(true);
4085
4086 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4087 return SDValue();
4088
4089 EVT VT = Op.getValueType();
4090 SDLoc dl(Op);
4091 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4092 if (Depth) {
4093 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4094 SDValue Offset = DAG.getConstant(4, MVT::i32);
4095 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
4096 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
4097 MachinePointerInfo(), false, false, false, 0);
4098 }
4099
4100 // Return LR, which contains the return address. Mark it an implicit live-in.
4101 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4102 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
4103}
4104
4105SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
4106 const ARMBaseRegisterInfo &ARI =
4107 *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
4108 MachineFunction &MF = DAG.getMachineFunction();
4109 MachineFrameInfo *MFI = MF.getFrameInfo();
4110 MFI->setFrameAddressIsTaken(true);
4111
4112 EVT VT = Op.getValueType();
4113 SDLoc dl(Op); // FIXME probably not meaningful
4114 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4115 unsigned FrameReg = ARI.getFrameRegister(MF);
4116 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
4117 while (Depth--)
4118 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
4119 MachinePointerInfo(),
4120 false, false, false, 0);
4121 return FrameAddr;
4122}
4123
4124// FIXME? Maybe this could be a TableGen attribute on some registers and
4125// this table could be generated automatically from RegInfo.
4126unsigned ARMTargetLowering::getRegisterByName(const char* RegName,
4127 EVT VT) const {
4128 unsigned Reg = StringSwitch<unsigned>(RegName)
4129 .Case("sp", ARM::SP)
4130 .Default(0);
4131 if (Reg)
4132 return Reg;
4133 report_fatal_error("Invalid register name global variable");
4134}
4135
4136/// ExpandBITCAST - If the target supports VFP, this function is called to
4137/// expand a bit convert where either the source or destination type is i64 to
4138/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
4139/// operand type is illegal (e.g., v2f32 for a target that doesn't support
4140/// vectors), since the legalizer won't know what to do with that.
4141static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
4142 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4143 SDLoc dl(N);
4144 SDValue Op = N->getOperand(0);
4145
4146 // This function is only supposed to be called for i64 types, either as the
4147 // source or destination of the bit convert.
4148 EVT SrcVT = Op.getValueType();
4149 EVT DstVT = N->getValueType(0);
4150 assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&(((SrcVT == MVT::i64 || DstVT == MVT::i64) && "ExpandBITCAST called for non-i64 type"
) ? static_cast<void> (0) : __assert_fail ("(SrcVT == MVT::i64 || DstVT == MVT::i64) && \"ExpandBITCAST called for non-i64 type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4151, __PRETTY_FUNCTION__))
4151 "ExpandBITCAST called for non-i64 type")(((SrcVT == MVT::i64 || DstVT == MVT::i64) && "ExpandBITCAST called for non-i64 type"
) ? static_cast<void> (0) : __assert_fail ("(SrcVT == MVT::i64 || DstVT == MVT::i64) && \"ExpandBITCAST called for non-i64 type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4151, __PRETTY_FUNCTION__))
;
4152
4153 // Turn i64->f64 into VMOVDRR.
4154 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
4155 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4156 DAG.getConstant(0, MVT::i32));
4157 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4158 DAG.getConstant(1, MVT::i32));
4159 return DAG.getNode(ISD::BITCAST, dl, DstVT,
4160 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
4161 }
4162
4163 // Turn f64->i64 into VMOVRRD.
4164 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
4165 SDValue Cvt;
4166 if (TLI.isBigEndian() && SrcVT.isVector() &&
4167 SrcVT.getVectorNumElements() > 1)
4168 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4169 DAG.getVTList(MVT::i32, MVT::i32),
4170 DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
4171 else
4172 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4173 DAG.getVTList(MVT::i32, MVT::i32), Op);
4174 // Merge the pieces into a single i64 value.
4175 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
4176 }
4177
4178 return SDValue();
4179}
4180
4181/// getZeroVector - Returns a vector of specified type with all zero elements.
4182/// Zero vectors are used to represent vector negation and in those cases
4183/// will be implemented with the NEON VNEG instruction. However, VNEG does
4184/// not support i64 elements, so sometimes the zero vectors will need to be
4185/// explicitly constructed. Regardless, use a canonical VMOV to create the
4186/// zero vector.
4187static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
4188 assert(VT.isVector() && "Expected a vector type")((VT.isVector() && "Expected a vector type") ? static_cast
<void> (0) : __assert_fail ("VT.isVector() && \"Expected a vector type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4188, __PRETTY_FUNCTION__))
;
4189 // The canonical modified immediate encoding of a zero vector is....0!
4190 SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
4191 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
4192 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
4193 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4194}
4195
4196/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4197/// i32 values and take a 2 x i32 value to shift plus a shift amount.
4198SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
4199 SelectionDAG &DAG) const {
4200 assert(Op.getNumOperands() == 3 && "Not a double-shift!")((Op.getNumOperands() == 3 && "Not a double-shift!") ?
static_cast<void> (0) : __assert_fail ("Op.getNumOperands() == 3 && \"Not a double-shift!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4200, __PRETTY_FUNCTION__))
;
4201 EVT VT = Op.getValueType();
4202 unsigned VTBits = VT.getSizeInBits();
4203 SDLoc dl(Op);
4204 SDValue ShOpLo = Op.getOperand(0);
4205 SDValue ShOpHi = Op.getOperand(1);
4206 SDValue ShAmt = Op.getOperand(2);
4207 SDValue ARMcc;
4208 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4209
4210 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS)((Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::
SRL_PARTS) ? static_cast<void> (0) : __assert_fail ("Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4210, __PRETTY_FUNCTION__))
;
4211
4212 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4213 DAG.getConstant(VTBits, MVT::i32), ShAmt);
4214 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4215 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4216 DAG.getConstant(VTBits, MVT::i32));
4217 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4218 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4219 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4220
4221 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4222 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
4223 ARMcc, DAG, dl);
4224 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4225 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
4226 CCR, Cmp);
4227
4228 SDValue Ops[2] = { Lo, Hi };
4229 return DAG.getMergeValues(Ops, dl);
4230}
4231
4232/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4233/// i32 values and take a 2 x i32 value to shift plus a shift amount.
4234SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
4235 SelectionDAG &DAG) const {
4236 assert(Op.getNumOperands() == 3 && "Not a double-shift!")((Op.getNumOperands() == 3 && "Not a double-shift!") ?
static_cast<void> (0) : __assert_fail ("Op.getNumOperands() == 3 && \"Not a double-shift!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4236, __PRETTY_FUNCTION__))
;
4237 EVT VT = Op.getValueType();
4238 unsigned VTBits = VT.getSizeInBits();
4239 SDLoc dl(Op);
4240 SDValue ShOpLo = Op.getOperand(0);
4241 SDValue ShOpHi = Op.getOperand(1);
4242 SDValue ShAmt = Op.getOperand(2);
4243 SDValue ARMcc;
4244
4245 assert(Op.getOpcode() == ISD::SHL_PARTS)((Op.getOpcode() == ISD::SHL_PARTS) ? static_cast<void>
(0) : __assert_fail ("Op.getOpcode() == ISD::SHL_PARTS", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4245, __PRETTY_FUNCTION__))
;
4246 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4247 DAG.getConstant(VTBits, MVT::i32), ShAmt);
4248 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4249 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4250 DAG.getConstant(VTBits, MVT::i32));
4251 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4252 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4253
4254 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4255 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4256 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
4257 ARMcc, DAG, dl);
4258 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4259 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
4260 CCR, Cmp);
4261
4262 SDValue Ops[2] = { Lo, Hi };
4263 return DAG.getMergeValues(Ops, dl);
4264}
4265
4266SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4267 SelectionDAG &DAG) const {
4268 // The rounding mode is in bits 23:22 of the FPSCR.
4269 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
4270 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
4271 // so that the shift + and get folded into a bitfield extract.
4272 SDLoc dl(Op);
4273 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
4274 DAG.getConstant(Intrinsic::arm_get_fpscr,
4275 MVT::i32));
4276 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
4277 DAG.getConstant(1U << 22, MVT::i32));
4278 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
4279 DAG.getConstant(22, MVT::i32));
4280 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
4281 DAG.getConstant(3, MVT::i32));
4282}
4283
4284static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
4285 const ARMSubtarget *ST) {
4286 EVT VT = N->getValueType(0);
4287 SDLoc dl(N);
4288
4289 if (!ST->hasV6T2Ops())
4290 return SDValue();
4291
4292 SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
4293 return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
4294}
4295
4296/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
4297/// for each 16-bit element from operand, repeated. The basic idea is to
4298/// leverage vcnt to get the 8-bit counts, gather and add the results.
4299///
4300/// Trace for v4i16:
4301/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
4302/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
4303/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
4304/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
4305/// [b0 b1 b2 b3 b4 b5 b6 b7]
4306/// +[b1 b0 b3 b2 b5 b4 b7 b6]
4307/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
4308/// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits)
4309static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
4310 EVT VT = N->getValueType(0);
4311 SDLoc DL(N);
4312
4313 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4314 SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
4315 SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
4316 SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
4317 SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
4318 return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
4319}
4320
4321/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
4322/// bit-count for each 16-bit element from the operand. We need slightly
4323/// different sequencing for v4i16 and v8i16 to stay within NEON's available
4324/// 64/128-bit registers.
4325///
4326/// Trace for v4i16:
4327/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
4328/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
4329/// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ]
4330/// v4i16:Extracted = [k0 k1 k2 k3 ]
4331static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
4332 EVT VT = N->getValueType(0);
4333 SDLoc DL(N);
4334
4335 SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
4336 if (VT.is64BitVector()) {
4337 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
4338 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
4339 DAG.getIntPtrConstant(0));
4340 } else {
4341 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
4342 BitCounts, DAG.getIntPtrConstant(0));
4343 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
4344 }
4345}
4346
4347/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
4348/// bit-count for each 32-bit element from the operand. The idea here is
4349/// to split the vector into 16-bit elements, leverage the 16-bit count
4350/// routine, and then combine the results.
4351///
4352/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
4353/// input = [v0 v1 ] (vi: 32-bit elements)
4354/// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
4355/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
4356/// vrev: N0 = [k1 k0 k3 k2 ]
4357/// [k0 k1 k2 k3 ]
4358/// N1 =+[k1 k0 k3 k2 ]
4359/// [k0 k2 k1 k3 ]
4360/// N2 =+[k1 k3 k0 k2 ]
4361/// [k0 k2 k1 k3 ]
4362/// Extended =+[k1 k3 k0 k2 ]
4363/// [k0 k2 ]
4364/// Extracted=+[k1 k3 ]
4365///
4366static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
4367 EVT VT = N->getValueType(0);
4368 SDLoc DL(N);
4369
4370 EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4371
4372 SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
4373 SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
4374 SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
4375 SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
4376 SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
4377
4378 if (VT.is64BitVector()) {
4379 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
4380 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
4381 DAG.getIntPtrConstant(0));
4382 } else {
4383 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
4384 DAG.getIntPtrConstant(0));
4385 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
4386 }
4387}
4388
4389static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
4390 const ARMSubtarget *ST) {
4391 EVT VT = N->getValueType(0);
4392
4393 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.")((ST->hasNEON() && "Custom ctpop lowering requires NEON."
) ? static_cast<void> (0) : __assert_fail ("ST->hasNEON() && \"Custom ctpop lowering requires NEON.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4393, __PRETTY_FUNCTION__))
;
4394 assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||(((VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 ||
VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering"
) ? static_cast<void> (0) : __assert_fail ("(VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && \"Unexpected type for custom ctpop lowering\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4396, __PRETTY_FUNCTION__))
4395 VT == MVT::v4i16 || VT == MVT::v8i16) &&(((VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 ||
VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering"
) ? static_cast<void> (0) : __assert_fail ("(VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && \"Unexpected type for custom ctpop lowering\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4396, __PRETTY_FUNCTION__))
4396 "Unexpected type for custom ctpop lowering")(((VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 ||
VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering"
) ? static_cast<void> (0) : __assert_fail ("(VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && \"Unexpected type for custom ctpop lowering\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4396, __PRETTY_FUNCTION__))
;
4397
4398 if (VT.getVectorElementType() == MVT::i32)
4399 return lowerCTPOP32BitElements(N, DAG);
4400 else
4401 return lowerCTPOP16BitElements(N, DAG);
4402}
4403
4404static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
4405 const ARMSubtarget *ST) {
4406 EVT VT = N->getValueType(0);
4407 SDLoc dl(N);
4408
4409 if (!VT.isVector())
4410 return SDValue();
4411
4412 // Lower vector shifts on NEON to use VSHL.
4413 assert(ST->hasNEON() && "unexpected vector shift")((ST->hasNEON() && "unexpected vector shift") ? static_cast
<void> (0) : __assert_fail ("ST->hasNEON() && \"unexpected vector shift\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4413, __PRETTY_FUNCTION__))
;
4414
4415 // Left shifts translate directly to the vshiftu intrinsic.
4416 if (N->getOpcode() == ISD::SHL)
4417 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4418 DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
4419 N->getOperand(0), N->getOperand(1));
4420
4421 assert((N->getOpcode() == ISD::SRA ||(((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::
SRL) && "unexpected vector shift opcode") ? static_cast
<void> (0) : __assert_fail ("(N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && \"unexpected vector shift opcode\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4422, __PRETTY_FUNCTION__))
4422 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode")(((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::
SRL) && "unexpected vector shift opcode") ? static_cast
<void> (0) : __assert_fail ("(N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && \"unexpected vector shift opcode\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4422, __PRETTY_FUNCTION__))
;
4423
4424 // NEON uses the same intrinsics for both left and right shifts. For
4425 // right shifts, the shift amounts are negative, so negate the vector of
4426 // shift amounts.
4427 EVT ShiftVT = N->getOperand(1).getValueType();
4428 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
4429 getZeroVector(ShiftVT, DAG, dl),
4430 N->getOperand(1));
4431 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
4432 Intrinsic::arm_neon_vshifts :
4433 Intrinsic::arm_neon_vshiftu);
4434 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4435 DAG.getConstant(vshiftInt, MVT::i32),
4436 N->getOperand(0), NegatedCount);
4437}
4438
4439static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
4440 const ARMSubtarget *ST) {
4441 EVT VT = N->getValueType(0);
4442 SDLoc dl(N);
4443
4444 // We can get here for a node like i32 = ISD::SHL i32, i64
4445 if (VT != MVT::i64)
4446 return SDValue();
4447
4448 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&(((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::
SRA) && "Unknown shift to lower!") ? static_cast<void
> (0) : __assert_fail ("(N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && \"Unknown shift to lower!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4449, __PRETTY_FUNCTION__))
4449 "Unknown shift to lower!")(((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::
SRA) && "Unknown shift to lower!") ? static_cast<void
> (0) : __assert_fail ("(N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && \"Unknown shift to lower!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4449, __PRETTY_FUNCTION__))
;
4450
4451 // We only lower SRA, SRL of 1 here, all others use generic lowering.
4452 if (!isa<ConstantSDNode>(N->getOperand(1)) ||
4453 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
4454 return SDValue();
4455
4456 // If we are in thumb mode, we don't have RRX.
4457 if (ST->isThumb1Only()) return SDValue();
4458
4459 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
4460 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4461 DAG.getConstant(0, MVT::i32));
4462 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4463 DAG.getConstant(1, MVT::i32));
4464
4465 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
4466 // captures the result into a carry flag.
4467 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
4468 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
4469
4470 // The low part is an ARMISD::RRX operand, which shifts the carry in.
4471 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
4472
4473 // Merge the pieces into a single i64 value.
4474 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
4475}
4476
4477static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
4478 SDValue TmpOp0, TmpOp1;
4479 bool Invert = false;
4480 bool Swap = false;
4481 unsigned Opc = 0;
4482
4483 SDValue Op0 = Op.getOperand(0);
4484 SDValue Op1 = Op.getOperand(1);
4485 SDValue CC = Op.getOperand(2);
4486 EVT VT = Op.getValueType();
4487 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4488 SDLoc dl(Op);
4489
4490 if (Op1.getValueType().isFloatingPoint()) {
4491 switch (SetCCOpcode) {
4492 default: llvm_unreachable("Illegal FP comparison")::llvm::llvm_unreachable_internal("Illegal FP comparison", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4492)
;
4493 case ISD::SETUNE:
4494 case ISD::SETNE: Invert = true; // Fallthrough
4495 case ISD::SETOEQ:
4496 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
4497 case ISD::SETOLT:
4498 case ISD::SETLT: Swap = true; // Fallthrough
4499 case ISD::SETOGT:
4500 case ISD::SETGT: Opc = ARMISD::VCGT; break;
4501 case ISD::SETOLE:
4502 case ISD::SETLE: Swap = true; // Fallthrough
4503 case ISD::SETOGE:
4504 case ISD::SETGE: Opc = ARMISD::VCGE; break;
4505 case ISD::SETUGE: Swap = true; // Fallthrough
4506 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
4507 case ISD::SETUGT: Swap = true; // Fallthrough
4508 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
4509 case ISD::SETUEQ: Invert = true; // Fallthrough
4510 case ISD::SETONE:
4511 // Expand this to (OLT | OGT).
4512 TmpOp0 = Op0;
4513 TmpOp1 = Op1;
4514 Opc = ISD::OR;
4515 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
4516 Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
4517 break;
4518 case ISD::SETUO: Invert = true; // Fallthrough
4519 case ISD::SETO:
4520 // Expand this to (OLT | OGE).
4521 TmpOp0 = Op0;
4522 TmpOp1 = Op1;
4523 Opc = ISD::OR;
4524 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
4525 Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
4526 break;
4527 }
4528 } else {
4529 // Integer comparisons.
4530 switch (SetCCOpcode) {
4531 default: llvm_unreachable("Illegal integer comparison")::llvm::llvm_unreachable_internal("Illegal integer comparison"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4531)
;
4532 case ISD::SETNE: Invert = true;
4533 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
4534 case ISD::SETLT: Swap = true;
4535 case ISD::SETGT: Opc = ARMISD::VCGT; break;
4536 case ISD::SETLE: Swap = true;
4537 case ISD::SETGE: Opc = ARMISD::VCGE; break;
4538 case ISD::SETULT: Swap = true;
4539 case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
4540 case ISD::SETULE: Swap = true;
4541 case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
4542 }
4543
4544 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
4545 if (Opc == ARMISD::VCEQ) {
4546
4547 SDValue AndOp;
4548 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4549 AndOp = Op0;
4550 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
4551 AndOp = Op1;
4552
4553 // Ignore bitconvert.
4554 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
4555 AndOp = AndOp.getOperand(0);
4556
4557 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
4558 Opc = ARMISD::VTST;
4559 Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
4560 Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
4561 Invert = !Invert;
4562 }
4563 }
4564 }
4565
4566 if (Swap)
4567 std::swap(Op0, Op1);
4568
4569 // If one of the operands is a constant vector zero, attempt to fold the
4570 // comparison to a specialized compare-against-zero form.
4571 SDValue SingleOp;
4572 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4573 SingleOp = Op0;
4574 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
4575 if (Opc == ARMISD::VCGE)
4576 Opc = ARMISD::VCLEZ;
4577 else if (Opc == ARMISD::VCGT)
4578 Opc = ARMISD::VCLTZ;
4579 SingleOp = Op1;
4580 }
4581
4582 SDValue Result;
4583 if (SingleOp.getNode()) {
4584 switch (Opc) {
4585 case ARMISD::VCEQ:
4586 Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
4587 case ARMISD::VCGE:
4588 Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
4589 case ARMISD::VCLEZ:
4590 Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
4591 case ARMISD::VCGT:
4592 Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
4593 case ARMISD::VCLTZ:
4594 Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
4595 default:
4596 Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
4597 }
4598 } else {
4599 Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
4600 }
4601
4602 if (Invert)
4603 Result = DAG.getNOT(dl, Result, VT);
4604
4605 return Result;
4606}
4607
4608/// isNEONModifiedImm - Check if the specified splat value corresponds to a
4609/// valid vector constant for a NEON instruction with a "modified immediate"
4610/// operand (e.g., VMOV). If so, return the encoded value.
4611static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
4612 unsigned SplatBitSize, SelectionDAG &DAG,
4613 EVT &VT, bool is128Bits, NEONModImmType type) {
4614 unsigned OpCmode, Imm;
4615
4616 // SplatBitSize is set to the smallest size that splats the vector, so a
4617 // zero vector will always have SplatBitSize == 8. However, NEON modified
4618 // immediate instructions others than VMOV do not support the 8-bit encoding
4619 // of a zero vector, and the default encoding of zero is supposed to be the
4620 // 32-bit version.
4621 if (SplatBits == 0)
4622 SplatBitSize = 32;
4623
4624 switch (SplatBitSize) {
4625 case 8:
4626 if (type != VMOVModImm)
4627 return SDValue();
4628 // Any 1-byte value is OK. Op=0, Cmode=1110.
4629 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big")(((SplatBits & ~0xff) == 0 && "one byte splat value is too big"
) ? static_cast<void> (0) : __assert_fail ("(SplatBits & ~0xff) == 0 && \"one byte splat value is too big\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4629, __PRETTY_FUNCTION__))
;
4630 OpCmode = 0xe;
4631 Imm = SplatBits;
4632 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
4633 break;
4634
4635 case 16:
4636 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
4637 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
4638 if ((SplatBits & ~0xff) == 0) {
4639 // Value = 0x00nn: Op=x, Cmode=100x.
4640 OpCmode = 0x8;
4641 Imm = SplatBits;
4642 break;
4643 }
4644 if ((SplatBits & ~0xff00) == 0) {
4645 // Value = 0xnn00: Op=x, Cmode=101x.
4646 OpCmode = 0xa;
4647 Imm = SplatBits >> 8;
4648 break;
4649 }
4650 return SDValue();
4651
4652 case 32:
4653 // NEON's 32-bit VMOV supports splat values where:
4654 // * only one byte is nonzero, or
4655 // * the least significant byte is 0xff and the second byte is nonzero, or
4656 // * the least significant 2 bytes are 0xff and the third is nonzero.
4657 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
4658 if ((SplatBits & ~0xff) == 0) {
4659 // Value = 0x000000nn: Op=x, Cmode=000x.
4660 OpCmode = 0;
4661 Imm = SplatBits;
4662 break;
4663 }
4664 if ((SplatBits & ~0xff00) == 0) {
4665 // Value = 0x0000nn00: Op=x, Cmode=001x.
4666 OpCmode = 0x2;
4667 Imm = SplatBits >> 8;
4668 break;
4669 }
4670 if ((SplatBits & ~0xff0000) == 0) {
4671 // Value = 0x00nn0000: Op=x, Cmode=010x.
4672 OpCmode = 0x4;
4673 Imm = SplatBits >> 16;
4674 break;
4675 }
4676 if ((SplatBits & ~0xff000000) == 0) {
4677 // Value = 0xnn000000: Op=x, Cmode=011x.
4678 OpCmode = 0x6;
4679 Imm = SplatBits >> 24;
4680 break;
4681 }
4682
4683 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
4684 if (type == OtherModImm) return SDValue();
4685
4686 if ((SplatBits & ~0xffff) == 0 &&
4687 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
4688 // Value = 0x0000nnff: Op=x, Cmode=1100.
4689 OpCmode = 0xc;
4690 Imm = SplatBits >> 8;
4691 break;
4692 }
4693
4694 if ((SplatBits & ~0xffffff) == 0 &&
4695 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
4696 // Value = 0x00nnffff: Op=x, Cmode=1101.
4697 OpCmode = 0xd;
4698 Imm = SplatBits >> 16;
4699 break;
4700 }
4701
4702 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
4703 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
4704 // VMOV.I32. A (very) minor optimization would be to replicate the value
4705 // and fall through here to test for a valid 64-bit splat. But, then the
4706 // caller would also need to check and handle the change in size.
4707 return SDValue();
4708
4709 case 64: {
4710 if (type != VMOVModImm)
4711 return SDValue();
4712 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
4713 uint64_t BitMask = 0xff;
4714 uint64_t Val = 0;
4715 unsigned ImmMask = 1;
4716 Imm = 0;
4717 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
4718 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
4719 Val |= BitMask;
4720 Imm |= ImmMask;
4721 } else if ((SplatBits & BitMask) != 0) {
4722 return SDValue();
4723 }
4724 BitMask <<= 8;
4725 ImmMask <<= 1;
4726 }
4727
4728 if (DAG.getTargetLoweringInfo().isBigEndian())
4729 // swap higher and lower 32 bit word
4730 Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
4731
4732 // Op=1, Cmode=1110.
4733 OpCmode = 0x1e;
4734 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
4735 break;
4736 }
4737
4738 default:
4739 llvm_unreachable("unexpected size for isNEONModifiedImm")::llvm::llvm_unreachable_internal("unexpected size for isNEONModifiedImm"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4739)
;
4740 }
4741
4742 unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
4743 return DAG.getTargetConstant(EncodedVal, MVT::i32);
4744}
4745
4746SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
4747 const ARMSubtarget *ST) const {
4748 if (!ST->hasVFP3())
4749 return SDValue();
4750
4751 bool IsDouble = Op.getValueType() == MVT::f64;
4752 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
4753
4754 // Use the default (constant pool) lowering for double constants when we have
4755 // an SP-only FPU
4756 if (IsDouble && Subtarget->isFPOnlySP())
4757 return SDValue();
4758
4759 // Try splatting with a VMOV.f32...
4760 APFloat FPVal = CFP->getValueAPF();
4761 int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
4762
4763 if (ImmVal != -1) {
4764 if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
4765 // We have code in place to select a valid ConstantFP already, no need to
4766 // do any mangling.
4767 return Op;
4768 }
4769
4770 // It's a float and we are trying to use NEON operations where
4771 // possible. Lower it to a splat followed by an extract.
4772 SDLoc DL(Op);
4773 SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
4774 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
4775 NewVal);
4776 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
4777 DAG.getConstant(0, MVT::i32));
4778 }
4779
4780 // The rest of our options are NEON only, make sure that's allowed before
4781 // proceeding..
4782 if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
4783 return SDValue();
4784
4785 EVT VMovVT;
4786 uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
4787
4788 // It wouldn't really be worth bothering for doubles except for one very
4789 // important value, which does happen to match: 0.0. So make sure we don't do
4790 // anything stupid.
4791 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
4792 return SDValue();
4793
4794 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
4795 SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
4796 false, VMOVModImm);
4797 if (NewVal != SDValue()) {
4798 SDLoc DL(Op);
4799 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
4800 NewVal);
4801 if (IsDouble)
4802 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
4803
4804 // It's a float: cast and extract a vector element.
4805 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4806 VecConstant);
4807 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4808 DAG.getConstant(0, MVT::i32));
4809 }
4810
4811 // Finally, try a VMVN.i32
4812 NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
4813 false, VMVNModImm);
4814 if (NewVal != SDValue()) {
4815 SDLoc DL(Op);
4816 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
4817
4818 if (IsDouble)
4819 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
4820
4821 // It's a float: cast and extract a vector element.
4822 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4823 VecConstant);
4824 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4825 DAG.getConstant(0, MVT::i32));
4826 }
4827
4828 return SDValue();
4829}
4830
4831// check if an VEXT instruction can handle the shuffle mask when the
4832// vector sources of the shuffle are the same.
4833static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4834 unsigned NumElts = VT.getVectorNumElements();
4835
4836 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4837 if (M[0] < 0)
4838 return false;
4839
4840 Imm = M[0];
4841
4842 // If this is a VEXT shuffle, the immediate value is the index of the first
4843 // element. The other shuffle indices must be the successive elements after
4844 // the first one.
4845 unsigned ExpectedElt = Imm;
4846 for (unsigned i = 1; i < NumElts; ++i) {
4847 // Increment the expected index. If it wraps around, just follow it
4848 // back to index zero and keep going.
4849 ++ExpectedElt;
4850 if (ExpectedElt == NumElts)
4851 ExpectedElt = 0;
4852
4853 if (M[i] < 0) continue; // ignore UNDEF indices
4854 if (ExpectedElt != static_cast<unsigned>(M[i]))
4855 return false;
4856 }
4857
4858 return true;
4859}
4860
4861
4862static bool isVEXTMask(ArrayRef<int> M, EVT VT,
4863 bool &ReverseVEXT, unsigned &Imm) {
4864 unsigned NumElts = VT.getVectorNumElements();
4865 ReverseVEXT = false;
4866
4867 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4868 if (M[0] < 0)
4869 return false;
4870
4871 Imm = M[0];
4872
4873 // If this is a VEXT shuffle, the immediate value is the index of the first
4874 // element. The other shuffle indices must be the successive elements after
4875 // the first one.
4876 unsigned ExpectedElt = Imm;
4877 for (unsigned i = 1; i < NumElts; ++i) {
4878 // Increment the expected index. If it wraps around, it may still be
4879 // a VEXT but the source vectors must be swapped.
4880 ExpectedElt += 1;
4881 if (ExpectedElt == NumElts * 2) {
4882 ExpectedElt = 0;
4883 ReverseVEXT = true;
4884 }
4885
4886 if (M[i] < 0) continue; // ignore UNDEF indices
4887 if (ExpectedElt != static_cast<unsigned>(M[i]))
4888 return false;
4889 }
4890
4891 // Adjust the index value if the source operands will be swapped.
4892 if (ReverseVEXT)
4893 Imm -= NumElts;
4894
4895 return true;
4896}
4897
4898/// isVREVMask - Check if a vector shuffle corresponds to a VREV
4899/// instruction with the specified blocksize. (The order of the elements
4900/// within each block of the vector is reversed.)
4901static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4902 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&(((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
"Only possible block sizes for VREV are: 16, 32, 64") ? static_cast
<void> (0) : __assert_fail ("(BlockSize==16 || BlockSize==32 || BlockSize==64) && \"Only possible block sizes for VREV are: 16, 32, 64\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4903, __PRETTY_FUNCTION__))
4903 "Only possible block sizes for VREV are: 16, 32, 64")(((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
"Only possible block sizes for VREV are: 16, 32, 64") ? static_cast
<void> (0) : __assert_fail ("(BlockSize==16 || BlockSize==32 || BlockSize==64) && \"Only possible block sizes for VREV are: 16, 32, 64\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 4903, __PRETTY_FUNCTION__))
;
4904
4905 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4906 if (EltSz == 64)
4907 return false;
4908
4909 unsigned NumElts = VT.getVectorNumElements();
4910 unsigned BlockElts = M[0] + 1;
4911 // If the first shuffle index is UNDEF, be optimistic.
4912 if (M[0] < 0)
4913 BlockElts = BlockSize / EltSz;
4914
4915 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4916 return false;
4917
4918 for (unsigned i = 0; i < NumElts; ++i) {
4919 if (M[i] < 0) continue; // ignore UNDEF indices
4920 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
4921 return false;
4922 }
4923
4924 return true;
4925}
4926
4927static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
4928 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
4929 // range, then 0 is placed into the resulting vector. So pretty much any mask
4930 // of 8 elements can work here.
4931 return VT == MVT::v8i8 && M.size() == 8;
4932}
4933
4934static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4935 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4936 if (EltSz == 64)
4937 return false;
4938
4939 unsigned NumElts = VT.getVectorNumElements();
4940 WhichResult = (M[0] == 0 ? 0 : 1);
4941 for (unsigned i = 0; i < NumElts; i += 2) {
4942 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4943 (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
4944 return false;
4945 }
4946 return true;
4947}
4948
4949/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4950/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4951/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4952static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4953 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4954 if (EltSz == 64)
4955 return false;
4956
4957 unsigned NumElts = VT.getVectorNumElements();
4958 WhichResult = (M[0] == 0 ? 0 : 1);
4959 for (unsigned i = 0; i < NumElts; i += 2) {
4960 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4961 (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4962 return false;
4963 }
4964 return true;
4965}
4966
4967static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4968 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4969 if (EltSz == 64)
4970 return false;
4971
4972 unsigned NumElts = VT.getVectorNumElements();
4973 WhichResult = (M[0] == 0 ? 0 : 1);
4974 for (unsigned i = 0; i != NumElts; ++i) {
4975 if (M[i] < 0) continue; // ignore UNDEF indices
4976 if ((unsigned) M[i] != 2 * i + WhichResult)
4977 return false;
4978 }
4979
4980 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4981 if (VT.is64BitVector() && EltSz == 32)
4982 return false;
4983
4984 return true;
4985}
4986
4987/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4988/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4989/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4990static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4991 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4992 if (EltSz == 64)
4993 return false;
4994
4995 unsigned Half = VT.getVectorNumElements() / 2;
4996 WhichResult = (M[0] == 0 ? 0 : 1);
4997 for (unsigned j = 0; j != 2; ++j) {
4998 unsigned Idx = WhichResult;
4999 for (unsigned i = 0; i != Half; ++i) {
5000 int MIdx = M[i + j * Half];
5001 if (MIdx >= 0 && (unsigned) MIdx != Idx)
5002 return false;
5003 Idx += 2;
5004 }
5005 }
5006
5007 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5008 if (VT.is64BitVector() && EltSz == 32)
5009 return false;
5010
5011 return true;
5012}
5013
5014static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5015 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5016 if (EltSz == 64)
5017 return false;
5018
5019 unsigned NumElts = VT.getVectorNumElements();
5020 WhichResult = (M[0] == 0 ? 0 : 1);
5021 unsigned Idx = WhichResult * NumElts / 2;
5022 for (unsigned i = 0; i != NumElts; i += 2) {
5023 if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
5024 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
5025 return false;
5026 Idx += 1;
5027 }
5028
5029 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5030 if (VT.is64BitVector() && EltSz == 32)
5031 return false;
5032
5033 return true;
5034}
5035
5036/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
5037/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5038/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5039static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5040 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5041 if (EltSz == 64)
5042 return false;
5043
5044 unsigned NumElts = VT.getVectorNumElements();
5045 WhichResult = (M[0] == 0 ? 0 : 1);
5046 unsigned Idx = WhichResult * NumElts / 2;
5047 for (unsigned i = 0; i != NumElts; i += 2) {
5048 if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
5049 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
5050 return false;
5051 Idx += 1;
5052 }
5053
5054 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5055 if (VT.is64BitVector() && EltSz == 32)
5056 return false;
5057
5058 return true;
5059}
5060
5061/// \return true if this is a reverse operation on an vector.
5062static bool isReverseMask(ArrayRef<int> M, EVT VT) {
5063 unsigned NumElts = VT.getVectorNumElements();
5064 // Make sure the mask has the right size.
5065 if (NumElts != M.size())
5066 return false;
5067
5068 // Look for <15, ..., 3, -1, 1, 0>.
5069 for (unsigned i = 0; i != NumElts; ++i)
5070 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
5071 return false;
5072
5073 return true;
5074}
5075
5076// If N is an integer constant that can be moved into a register in one
5077// instruction, return an SDValue of such a constant (will become a MOV
5078// instruction). Otherwise return null.
5079static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
5080 const ARMSubtarget *ST, SDLoc dl) {
5081 uint64_t Val;
5082 if (!isa<ConstantSDNode>(N))
5083 return SDValue();
5084 Val = cast<ConstantSDNode>(N)->getZExtValue();
5085
5086 if (ST->isThumb1Only()) {
5087 if (Val <= 255 || ~Val <= 255)
5088 return DAG.getConstant(Val, MVT::i32);
5089 } else {
5090 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
5091 return DAG.getConstant(Val, MVT::i32);
5092 }
5093 return SDValue();
5094}
5095
5096// If this is a case we can't handle, return null and let the default
5097// expansion code take care of it.
5098SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
5099 const ARMSubtarget *ST) const {
5100 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5101 SDLoc dl(Op);
5102 EVT VT = Op.getValueType();
5103
5104 APInt SplatBits, SplatUndef;
5105 unsigned SplatBitSize;
5106 bool HasAnyUndefs;
5107 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5108 if (SplatBitSize <= 64) {
5109 // Check if an immediate VMOV works.
5110 EVT VmovVT;
5111 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5112 SplatUndef.getZExtValue(), SplatBitSize,
5113 DAG, VmovVT, VT.is128BitVector(),
5114 VMOVModImm);
5115 if (Val.getNode()) {
5116 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
5117 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5118 }
5119
5120 // Try an immediate VMVN.
5121 uint64_t NegatedImm = (~SplatBits).getZExtValue();
5122 Val = isNEONModifiedImm(NegatedImm,
5123 SplatUndef.getZExtValue(), SplatBitSize,
5124 DAG, VmovVT, VT.is128BitVector(),
5125 VMVNModImm);
5126 if (Val.getNode()) {
5127 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
5128 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5129 }
5130
5131 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
5132 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
5133 int ImmVal = ARM_AM::getFP32Imm(SplatBits);
5134 if (ImmVal != -1) {
5135 SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
5136 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
5137 }
5138 }
5139 }
5140 }
5141
5142 // Scan through the operands to see if only one value is used.
5143 //
5144 // As an optimisation, even if more than one value is used it may be more
5145 // profitable to splat with one value then change some lanes.
5146 //
5147 // Heuristically we decide to do this if the vector has a "dominant" value,
5148 // defined as splatted to more than half of the lanes.
5149 unsigned NumElts = VT.getVectorNumElements();
5150 bool isOnlyLowElement = true;
5151 bool usesOnlyOneValue = true;
5152 bool hasDominantValue = false;
5153 bool isConstant = true;
5154
5155 // Map of the number of times a particular SDValue appears in the
5156 // element list.
5157 DenseMap<SDValue, unsigned> ValueCounts;
5158 SDValue Value;
5159 for (unsigned i = 0; i < NumElts; ++i) {
5160 SDValue V = Op.getOperand(i);
5161 if (V.getOpcode() == ISD::UNDEF)
5162 continue;
5163 if (i > 0)
5164 isOnlyLowElement = false;
5165 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5166 isConstant = false;
5167
5168 ValueCounts.insert(std::make_pair(V, 0));
5169 unsigned &Count = ValueCounts[V];
5170
5171 // Is this value dominant? (takes up more than half of the lanes)
5172 if (++Count > (NumElts / 2)) {
5173 hasDominantValue = true;
5174 Value = V;
5175 }
5176 }
5177 if (ValueCounts.size() != 1)
5178 usesOnlyOneValue = false;
5179 if (!Value.getNode() && ValueCounts.size() > 0)
5180 Value = ValueCounts.begin()->first;
5181
5182 if (ValueCounts.size() == 0)
5183 return DAG.getUNDEF(VT);
5184
5185 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
5186 // Keep going if we are hitting this case.
5187 if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
5188 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5189
5190 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5191
5192 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
5193 // i32 and try again.
5194 if (hasDominantValue && EltSize <= 32) {
5195 if (!isConstant) {
5196 SDValue N;
5197
5198 // If we are VDUPing a value that comes directly from a vector, that will
5199 // cause an unnecessary move to and from a GPR, where instead we could
5200 // just use VDUPLANE. We can only do this if the lane being extracted
5201 // is at a constant index, as the VDUP from lane instructions only have
5202 // constant-index forms.
5203 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5204 isa<ConstantSDNode>(Value->getOperand(1))) {
5205 // We need to create a new undef vector to use for the VDUPLANE if the
5206 // size of the vector from which we get the value is different than the
5207 // size of the vector that we need to create. We will insert the element
5208 // such that the register coalescer will remove unnecessary copies.
5209 if (VT != Value->getOperand(0).getValueType()) {
5210 ConstantSDNode *constIndex;
5211 constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
5212 assert(constIndex && "The index is not a constant!")((constIndex && "The index is not a constant!") ? static_cast
<void> (0) : __assert_fail ("constIndex && \"The index is not a constant!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5212, __PRETTY_FUNCTION__))
;
5213 unsigned index = constIndex->getAPIntValue().getLimitedValue() %
5214 VT.getVectorNumElements();
5215 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5216 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
5217 Value, DAG.getConstant(index, MVT::i32)),
5218 DAG.getConstant(index, MVT::i32));
5219 } else
5220 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5221 Value->getOperand(0), Value->getOperand(1));
5222 } else
5223 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
5224
5225 if (!usesOnlyOneValue) {
5226 // The dominant value was splatted as 'N', but we now have to insert
5227 // all differing elements.
5228 for (unsigned I = 0; I < NumElts; ++I) {
5229 if (Op.getOperand(I) == Value)
5230 continue;
5231 SmallVector<SDValue, 3> Ops;
5232 Ops.push_back(N);
5233 Ops.push_back(Op.getOperand(I));
5234 Ops.push_back(DAG.getConstant(I, MVT::i32));
5235 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
5236 }
5237 }
5238 return N;
5239 }
5240 if (VT.getVectorElementType().isFloatingPoint()) {
5241 SmallVector<SDValue, 8> Ops;
5242 for (unsigned i = 0; i < NumElts; ++i)
5243 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
5244 Op.getOperand(i)));
5245 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
5246 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5247 Val = LowerBUILD_VECTOR(Val, DAG, ST);
5248 if (Val.getNode())
5249 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5250 }
5251 if (usesOnlyOneValue) {
5252 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
5253 if (isConstant && Val.getNode())
5254 return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
5255 }
5256 }
5257
5258 // If all elements are constants and the case above didn't get hit, fall back
5259 // to the default expansion, which will generate a load from the constant
5260 // pool.
5261 if (isConstant)
5262 return SDValue();
5263
5264 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5265 if (NumElts >= 4) {
5266 SDValue shuffle = ReconstructShuffle(Op, DAG);
5267 if (shuffle != SDValue())
5268 return shuffle;
5269 }
5270
5271 // Vectors with 32- or 64-bit elements can be built by directly assigning
5272 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
5273 // will be legalized.
5274 if (EltSize >= 32) {
5275 // Do the expansion with floating-point types, since that is what the VFP
5276 // registers are defined to use, and since i64 is not legal.
5277 EVT EltVT = EVT::getFloatingPointVT(EltSize);
5278 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5279 SmallVector<SDValue, 8> Ops;
5280 for (unsigned i = 0; i < NumElts; ++i)
5281 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
5282 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
5283 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5284 }
5285
5286 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5287 // know the default expansion would otherwise fall back on something even
5288 // worse. For a vector with one or two non-undef values, that's
5289 // scalar_to_vector for the elements followed by a shuffle (provided the
5290 // shuffle is valid for the target) and materialization element by element
5291 // on the stack followed by a load for everything else.
5292 if (!isConstant && !usesOnlyOneValue) {
5293 SDValue Vec = DAG.getUNDEF(VT);
5294 for (unsigned i = 0 ; i < NumElts; ++i) {
5295 SDValue V = Op.getOperand(i);
5296 if (V.getOpcode() == ISD::UNDEF)
5297 continue;
5298 SDValue LaneIdx = DAG.getConstant(i, MVT::i32);
5299 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5300 }
5301 return Vec;
5302 }
5303
5304 return SDValue();
5305}
5306
5307// Gather data to see if the operation can be modelled as a
5308// shuffle in combination with VEXTs.
5309SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
5310 SelectionDAG &DAG) const {
5311 SDLoc dl(Op);
5312 EVT VT = Op.getValueType();
5313 unsigned NumElts = VT.getVectorNumElements();
5314
5315 SmallVector<SDValue, 2> SourceVecs;
5316 SmallVector<unsigned, 2> MinElts;
5317 SmallVector<unsigned, 2> MaxElts;
5318
5319 for (unsigned i = 0; i < NumElts; ++i) {
5320 SDValue V = Op.getOperand(i);
5321 if (V.getOpcode() == ISD::UNDEF)
5322 continue;
5323 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
5324 // A shuffle can only come from building a vector from various
5325 // elements of other vectors.
5326 return SDValue();
5327 } else if (V.getOperand(0).getValueType().getVectorElementType() !=
5328 VT.getVectorElementType()) {
5329 // This code doesn't know how to handle shuffles where the vector
5330 // element types do not match (this happens because type legalization
5331 // promotes the return type of EXTRACT_VECTOR_ELT).
5332 // FIXME: It might be appropriate to extend this code to handle
5333 // mismatched types.
5334 return SDValue();
5335 }
5336
5337 // Record this extraction against the appropriate vector if possible...
5338 SDValue SourceVec = V.getOperand(0);
5339 // If the element number isn't a constant, we can't effectively
5340 // analyze what's going on.
5341 if (!isa<ConstantSDNode>(V.getOperand(1)))
5342 return SDValue();
5343 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5344 bool FoundSource = false;
5345 for (unsigned j = 0; j < SourceVecs.size(); ++j) {
5346 if (SourceVecs[j] == SourceVec) {
5347 if (MinElts[j] > EltNo)
5348 MinElts[j] = EltNo;
5349 if (MaxElts[j] < EltNo)
5350 MaxElts[j] = EltNo;
5351 FoundSource = true;
5352 break;
5353 }
5354 }
5355
5356 // Or record a new source if not...
5357 if (!FoundSource) {
5358 SourceVecs.push_back(SourceVec);
5359 MinElts.push_back(EltNo);
5360 MaxElts.push_back(EltNo);
5361 }
5362 }
5363
5364 // Currently only do something sane when at most two source vectors
5365 // involved.
5366 if (SourceVecs.size() > 2)
5367 return SDValue();
5368
5369 SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
5370 int VEXTOffsets[2] = {0, 0};
5371
5372 // This loop extracts the usage patterns of the source vectors
5373 // and prepares appropriate SDValues for a shuffle if possible.
5374 for (unsigned i = 0; i < SourceVecs.size(); ++i) {
5375 if (SourceVecs[i].getValueType() == VT) {
5376 // No VEXT necessary
5377 ShuffleSrcs[i] = SourceVecs[i];
5378 VEXTOffsets[i] = 0;
5379 continue;
5380 } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
5381 // It probably isn't worth padding out a smaller vector just to
5382 // break it down again in a shuffle.
5383 return SDValue();
5384 }
5385
5386 // Since only 64-bit and 128-bit vectors are legal on ARM and
5387 // we've eliminated the other cases...
5388 assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&((SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts
&& "unexpected vector sizes in ReconstructShuffle") ?
static_cast<void> (0) : __assert_fail ("SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts && \"unexpected vector sizes in ReconstructShuffle\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5389, __PRETTY_FUNCTION__))
5389 "unexpected vector sizes in ReconstructShuffle")((SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts
&& "unexpected vector sizes in ReconstructShuffle") ?
static_cast<void> (0) : __assert_fail ("SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts && \"unexpected vector sizes in ReconstructShuffle\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5389, __PRETTY_FUNCTION__))
;
5390
5391 if (MaxElts[i] - MinElts[i] >= NumElts) {
5392 // Span too large for a VEXT to cope
5393 return SDValue();
5394 }
5395
5396 if (MinElts[i] >= NumElts) {
5397 // The extraction can just take the second half
5398 VEXTOffsets[i] = NumElts;
5399 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5400 SourceVecs[i],
5401 DAG.getIntPtrConstant(NumElts));
5402 } else if (MaxElts[i] < NumElts) {
5403 // The extraction can just take the first half
5404 VEXTOffsets[i] = 0;
5405 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5406 SourceVecs[i],
5407 DAG.getIntPtrConstant(0));
5408 } else {
5409 // An actual VEXT is needed
5410 VEXTOffsets[i] = MinElts[i];
5411 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5412 SourceVecs[i],
5413 DAG.getIntPtrConstant(0));
5414 SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5415 SourceVecs[i],
5416 DAG.getIntPtrConstant(NumElts));
5417 ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
5418 DAG.getConstant(VEXTOffsets[i], MVT::i32));
5419 }
5420 }
5421
5422 SmallVector<int, 8> Mask;
5423
5424 for (unsigned i = 0; i < NumElts; ++i) {
5425 SDValue Entry = Op.getOperand(i);
5426 if (Entry.getOpcode() == ISD::UNDEF) {
5427 Mask.push_back(-1);
5428 continue;
5429 }
5430
5431 SDValue ExtractVec = Entry.getOperand(0);
5432 int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
5433 .getOperand(1))->getSExtValue();
5434 if (ExtractVec == SourceVecs[0]) {
5435 Mask.push_back(ExtractElt - VEXTOffsets[0]);
5436 } else {
5437 Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
5438 }
5439 }
5440
5441 // Final check before we try to produce nonsense...
5442 if (isShuffleMaskLegal(Mask, VT))
5443 return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
5444 &Mask[0]);
5445
5446 return SDValue();
5447}
5448
5449/// isShuffleMaskLegal - Targets can use this to indicate that they only
5450/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5451/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5452/// are assumed to be legal.
5453bool
5454ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
5455 EVT VT) const {
5456 if (VT.getVectorNumElements() == 4 &&
5457 (VT.is128BitVector() || VT.is64BitVector())) {
5458 unsigned PFIndexes[4];
5459 for (unsigned i = 0; i != 4; ++i) {
5460 if (M[i] < 0)
5461 PFIndexes[i] = 8;
5462 else
5463 PFIndexes[i] = M[i];
5464 }
5465
5466 // Compute the index in the perfect shuffle table.
5467 unsigned PFTableIndex =
5468 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5469 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5470 unsigned Cost = (PFEntry >> 30);
5471
5472 if (Cost <= 4)
5473 return true;
5474 }
5475
5476 bool ReverseVEXT;
5477 unsigned Imm, WhichResult;
5478
5479 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5480 return (EltSize >= 32 ||
5481 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
5482 isVREVMask(M, VT, 64) ||
5483 isVREVMask(M, VT, 32) ||
5484 isVREVMask(M, VT, 16) ||
5485 isVEXTMask(M, VT, ReverseVEXT, Imm) ||
5486 isVTBLMask(M, VT) ||
5487 isVTRNMask(M, VT, WhichResult) ||
5488 isVUZPMask(M, VT, WhichResult) ||
5489 isVZIPMask(M, VT, WhichResult) ||
5490 isVTRN_v_undef_Mask(M, VT, WhichResult) ||
5491 isVUZP_v_undef_Mask(M, VT, WhichResult) ||
5492 isVZIP_v_undef_Mask(M, VT, WhichResult) ||
5493 ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
5494}
5495
5496/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5497/// the specified operations to build the shuffle.
5498static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5499 SDValue RHS, SelectionDAG &DAG,
5500 SDLoc dl) {
5501 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5502 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5503 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
5504
5505 enum {
5506 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5507 OP_VREV,
5508 OP_VDUP0,
5509 OP_VDUP1,
5510 OP_VDUP2,
5511 OP_VDUP3,
5512 OP_VEXT1,
5513 OP_VEXT2,
5514 OP_VEXT3,
5515 OP_VUZPL, // VUZP, left result
5516 OP_VUZPR, // VUZP, right result
5517 OP_VZIPL, // VZIP, left result
5518 OP_VZIPR, // VZIP, right result
5519 OP_VTRNL, // VTRN, left result
5520 OP_VTRNR // VTRN, right result
5521 };
5522
5523 if (OpNum == OP_COPY) {
5524 if (LHSID == (1*9+2)*9+3) return LHS;
5525 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!")((LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!") ?
static_cast<void> (0) : __assert_fail ("LHSID == ((4*9+5)*9+6)*9+7 && \"Illegal OP_COPY!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5525, __PRETTY_FUNCTION__))
;
5526 return RHS;
5527 }
5528
5529 SDValue OpLHS, OpRHS;
5530 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5531 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5532 EVT VT = OpLHS.getValueType();
5533
5534 switch (OpNum) {
5535 default: llvm_unreachable("Unknown shuffle opcode!")::llvm::llvm_unreachable_internal("Unknown shuffle opcode!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5535)
;
5536 case OP_VREV:
5537 // VREV divides the vector in half and swaps within the half.
5538 if (VT.getVectorElementType() == MVT::i32 ||
5539 VT.getVectorElementType() == MVT::f32)
5540 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
5541 // vrev <4 x i16> -> VREV32
5542 if (VT.getVectorElementType() == MVT::i16)
5543 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
5544 // vrev <4 x i8> -> VREV16
5545 assert(VT.getVectorElementType() == MVT::i8)((VT.getVectorElementType() == MVT::i8) ? static_cast<void
> (0) : __assert_fail ("VT.getVectorElementType() == MVT::i8"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5545, __PRETTY_FUNCTION__))
;
5546 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
5547 case OP_VDUP0:
5548 case OP_VDUP1:
5549 case OP_VDUP2:
5550 case OP_VDUP3:
5551 return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5552 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
5553 case OP_VEXT1:
5554 case OP_VEXT2:
5555 case OP_VEXT3:
5556 return DAG.getNode(ARMISD::VEXT, dl, VT,
5557 OpLHS, OpRHS,
5558 DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
5559 case OP_VUZPL:
5560 case OP_VUZPR:
5561 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5562 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
5563 case OP_VZIPL:
5564 case OP_VZIPR:
5565 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5566 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
5567 case OP_VTRNL:
5568 case OP_VTRNR:
5569 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5570 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
5571 }
5572}
5573
5574static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
5575 ArrayRef<int> ShuffleMask,
5576 SelectionDAG &DAG) {
5577 // Check to see if we can use the VTBL instruction.
5578 SDValue V1 = Op.getOperand(0);
5579 SDValue V2 = Op.getOperand(1);
5580 SDLoc DL(Op);
5581
5582 SmallVector<SDValue, 8> VTBLMask;
5583 for (ArrayRef<int>::iterator
5584 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
5585 VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
5586
5587 if (V2.getNode()->getOpcode() == ISD::UNDEF)
5588 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
5589 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
5590
5591 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
5592 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
5593}
5594
5595static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
5596 SelectionDAG &DAG) {
5597 SDLoc DL(Op);
5598 SDValue OpLHS = Op.getOperand(0);
5599 EVT VT = OpLHS.getValueType();
5600
5601 assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&(((VT == MVT::v8i16 || VT == MVT::v16i8) && "Expect an v8i16/v16i8 type"
) ? static_cast<void> (0) : __assert_fail ("(VT == MVT::v8i16 || VT == MVT::v16i8) && \"Expect an v8i16/v16i8 type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5602, __PRETTY_FUNCTION__))
5602 "Expect an v8i16/v16i8 type")(((VT == MVT::v8i16 || VT == MVT::v16i8) && "Expect an v8i16/v16i8 type"
) ? static_cast<void> (0) : __assert_fail ("(VT == MVT::v8i16 || VT == MVT::v16i8) && \"Expect an v8i16/v16i8 type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5602, __PRETTY_FUNCTION__))
;
5603 OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
5604 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
5605 // extract the first 8 bytes into the top double word and the last 8 bytes
5606 // into the bottom double word. The v8i16 case is similar.
5607 unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
5608 return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
5609 DAG.getConstant(ExtractNum, MVT::i32));
5610}
5611
5612static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
5613 SDValue V1 = Op.getOperand(0);
5614 SDValue V2 = Op.getOperand(1);
5615 SDLoc dl(Op);
5616 EVT VT = Op.getValueType();
5617 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5618
5619 // Convert shuffles that are directly supported on NEON to target-specific
5620 // DAG nodes, instead of keeping them as shuffles and matching them again
5621 // during code selection. This is more efficient and avoids the possibility
5622 // of inconsistencies between legalization and selection.
5623 // FIXME: floating-point vectors should be canonicalized to integer vectors
5624 // of the same time so that they get CSEd properly.
5625 ArrayRef<int> ShuffleMask = SVN->getMask();
5626
5627 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5628 if (EltSize <= 32) {
5629 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
5630 int Lane = SVN->getSplatIndex();
5631 // If this is undef splat, generate it via "just" vdup, if possible.
5632 if (Lane == -1) Lane = 0;
5633
5634 // Test if V1 is a SCALAR_TO_VECTOR.
5635 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5636 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5637 }
5638 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
5639 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
5640 // reaches it).
5641 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
5642 !isa<ConstantSDNode>(V1.getOperand(0))) {
5643 bool IsScalarToVector = true;
5644 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
5645 if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
5646 IsScalarToVector = false;
5647 break;
5648 }
5649 if (IsScalarToVector)
5650 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5651 }
5652 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
5653 DAG.getConstant(Lane, MVT::i32));
5654 }
5655
5656 bool ReverseVEXT;
5657 unsigned Imm;
5658 if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
5659 if (ReverseVEXT)
5660 std::swap(V1, V2);
5661 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
5662 DAG.getConstant(Imm, MVT::i32));
5663 }
5664
5665 if (isVREVMask(ShuffleMask, VT, 64))
5666 return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
5667 if (isVREVMask(ShuffleMask, VT, 32))
5668 return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
5669 if (isVREVMask(ShuffleMask, VT, 16))
5670 return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
5671
5672 if (V2->getOpcode() == ISD::UNDEF &&
5673 isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
5674 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
5675 DAG.getConstant(Imm, MVT::i32));
5676 }
5677
5678 // Check for Neon shuffles that modify both input vectors in place.
5679 // If both results are used, i.e., if there are two shuffles with the same
5680 // source operands and with masks corresponding to both results of one of
5681 // these operations, DAG memoization will ensure that a single node is
5682 // used for both shuffles.
5683 unsigned WhichResult;
5684 if (isVTRNMask(ShuffleMask, VT, WhichResult))
5685 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5686 V1, V2).getValue(WhichResult);
5687 if (isVUZPMask(ShuffleMask, VT, WhichResult))
5688 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5689 V1, V2).getValue(WhichResult);
5690 if (isVZIPMask(ShuffleMask, VT, WhichResult))
5691 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5692 V1, V2).getValue(WhichResult);
5693
5694 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5695 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5696 V1, V1).getValue(WhichResult);
5697 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5698 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5699 V1, V1).getValue(WhichResult);
5700 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5701 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5702 V1, V1).getValue(WhichResult);
5703 }
5704
5705 // If the shuffle is not directly supported and it has 4 elements, use
5706 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5707 unsigned NumElts = VT.getVectorNumElements();
5708 if (NumElts == 4) {
5709 unsigned PFIndexes[4];
5710 for (unsigned i = 0; i != 4; ++i) {
5711 if (ShuffleMask[i] < 0)
5712 PFIndexes[i] = 8;
5713 else
5714 PFIndexes[i] = ShuffleMask[i];
5715 }
5716
5717 // Compute the index in the perfect shuffle table.
5718 unsigned PFTableIndex =
5719 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5720 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5721 unsigned Cost = (PFEntry >> 30);
5722
5723 if (Cost <= 4)
5724 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5725 }
5726
5727 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
5728 if (EltSize >= 32) {
5729 // Do the expansion with floating-point types, since that is what the VFP
5730 // registers are defined to use, and since i64 is not legal.
5731 EVT EltVT = EVT::getFloatingPointVT(EltSize);
5732 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5733 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
5734 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
5735 SmallVector<SDValue, 8> Ops;
5736 for (unsigned i = 0; i < NumElts; ++i) {
5737 if (ShuffleMask[i] < 0)
5738 Ops.push_back(DAG.getUNDEF(EltVT));
5739 else
5740 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
5741 ShuffleMask[i] < (int)NumElts ? V1 : V2,
5742 DAG.getConstant(ShuffleMask[i] & (NumElts-1),
5743 MVT::i32)));
5744 }
5745 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
5746 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5747 }
5748
5749 if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
5750 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
5751
5752 if (VT == MVT::v8i8) {
5753 SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
5754 if (NewOp.getNode())
5755 return NewOp;
5756 }
5757
5758 return SDValue();
5759}
5760
5761static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5762 // INSERT_VECTOR_ELT is legal only for immediate indexes.
5763 SDValue Lane = Op.getOperand(2);
5764 if (!isa<ConstantSDNode>(Lane))
5765 return SDValue();
5766
5767 return Op;
5768}
5769
5770static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5771 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
5772 SDValue Lane = Op.getOperand(1);
5773 if (!isa<ConstantSDNode>(Lane))
5774 return SDValue();
5775
5776 SDValue Vec = Op.getOperand(0);
5777 if (Op.getValueType() == MVT::i32 &&
5778 Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
5779 SDLoc dl(Op);
5780 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
5781 }
5782
5783 return Op;
5784}
5785
5786static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5787 // The only time a CONCAT_VECTORS operation can have legal types is when
5788 // two 64-bit vectors are concatenated to a 128-bit vector.
5789 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&((Op.getValueType().is128BitVector() && Op.getNumOperands
() == 2 && "unexpected CONCAT_VECTORS") ? static_cast
<void> (0) : __assert_fail ("Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && \"unexpected CONCAT_VECTORS\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5790, __PRETTY_FUNCTION__))
5790 "unexpected CONCAT_VECTORS")((Op.getValueType().is128BitVector() && Op.getNumOperands
() == 2 && "unexpected CONCAT_VECTORS") ? static_cast
<void> (0) : __assert_fail ("Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && \"unexpected CONCAT_VECTORS\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5790, __PRETTY_FUNCTION__))
;
5791 SDLoc dl(Op);
5792 SDValue Val = DAG.getUNDEF(MVT::v2f64);
5793 SDValue Op0 = Op.getOperand(0);
5794 SDValue Op1 = Op.getOperand(1);
5795 if (Op0.getOpcode() != ISD::UNDEF)
5796 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5797 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
5798 DAG.getIntPtrConstant(0));
5799 if (Op1.getOpcode() != ISD::UNDEF)
5800 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5801 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
5802 DAG.getIntPtrConstant(1));
5803 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
5804}
5805
5806/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
5807/// element has been zero/sign-extended, depending on the isSigned parameter,
5808/// from an integer type half its size.
5809static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
5810 bool isSigned) {
5811 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
5812 EVT VT = N->getValueType(0);
5813 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
5814 SDNode *BVN = N->getOperand(0).getNode();
5815 if (BVN->getValueType(0) != MVT::v4i32 ||
5816 BVN->getOpcode() != ISD::BUILD_VECTOR)
5817 return false;
5818 unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5819 unsigned HiElt = 1 - LoElt;
5820 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
5821 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
5822 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
5823 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
5824 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
5825 return false;
5826 if (isSigned) {
5827 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
5828 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
5829 return true;
5830 } else {
5831 if (Hi0->isNullValue() && Hi1->isNullValue())
5832 return true;
5833 }
5834 return false;
5835 }
5836
5837 if (N->getOpcode() != ISD::BUILD_VECTOR)
5838 return false;
5839
5840 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5841 SDNode *Elt = N->getOperand(i).getNode();
5842 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
5843 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5844 unsigned HalfSize = EltSize / 2;
5845 if (isSigned) {
5846 if (!isIntN(HalfSize, C->getSExtValue()))
5847 return false;
5848 } else {
5849 if (!isUIntN(HalfSize, C->getZExtValue()))
5850 return false;
5851 }
5852 continue;
5853 }
5854 return false;
5855 }
5856
5857 return true;
5858}
5859
5860/// isSignExtended - Check if a node is a vector value that is sign-extended
5861/// or a constant BUILD_VECTOR with sign-extended elements.
5862static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
5863 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
5864 return true;
5865 if (isExtendedBUILD_VECTOR(N, DAG, true))
5866 return true;
5867 return false;
5868}
5869
5870/// isZeroExtended - Check if a node is a vector value that is zero-extended
5871/// or a constant BUILD_VECTOR with zero-extended elements.
5872static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
5873 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
5874 return true;
5875 if (isExtendedBUILD_VECTOR(N, DAG, false))
5876 return true;
5877 return false;
5878}
5879
5880static EVT getExtensionTo64Bits(const EVT &OrigVT) {
5881 if (OrigVT.getSizeInBits() >= 64)
5882 return OrigVT;
5883
5884 assert(OrigVT.isSimple() && "Expecting a simple value type")((OrigVT.isSimple() && "Expecting a simple value type"
) ? static_cast<void> (0) : __assert_fail ("OrigVT.isSimple() && \"Expecting a simple value type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5884, __PRETTY_FUNCTION__))
;
5885
5886 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
5887 switch (OrigSimpleTy) {
5888 default: llvm_unreachable("Unexpected Vector Type")::llvm::llvm_unreachable_internal("Unexpected Vector Type", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5888)
;
5889 case MVT::v2i8:
5890 case MVT::v2i16:
5891 return MVT::v2i32;
5892 case MVT::v4i8:
5893 return MVT::v4i16;
5894 }
5895}
5896
5897/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
5898/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
5899/// We insert the required extension here to get the vector to fill a D register.
5900static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
5901 const EVT &OrigTy,
5902 const EVT &ExtTy,
5903 unsigned ExtOpcode) {
5904 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
5905 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
5906 // 64-bits we need to insert a new extension so that it will be 64-bits.
5907 assert(ExtTy.is128BitVector() && "Unexpected extension size")((ExtTy.is128BitVector() && "Unexpected extension size"
) ? static_cast<void> (0) : __assert_fail ("ExtTy.is128BitVector() && \"Unexpected extension size\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5907, __PRETTY_FUNCTION__))
;
5908 if (OrigTy.getSizeInBits() >= 64)
5909 return N;
5910
5911 // Must extend size to at least 64 bits to be used as an operand for VMULL.
5912 EVT NewVT = getExtensionTo64Bits(OrigTy);
5913
5914 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
5915}
5916
5917/// SkipLoadExtensionForVMULL - return a load of the original vector size that
5918/// does not do any sign/zero extension. If the original vector is less
5919/// than 64 bits, an appropriate extension will be added after the load to
5920/// reach a total size of 64 bits. We have to add the extension separately
5921/// because ARM does not have a sign/zero extending load for vectors.
5922static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
5923 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
5924
5925 // The load already has the right type.
5926 if (ExtendedTy == LD->getMemoryVT())
5927 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
5928 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
5929 LD->isNonTemporal(), LD->isInvariant(),
5930 LD->getAlignment());
5931
5932 // We need to create a zextload/sextload. We cannot just create a load
5933 // followed by a zext/zext node because LowerMUL is also run during normal
5934 // operation legalization where we can't create illegal types.
5935 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
5936 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
5937 LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(),
5938 LD->isNonTemporal(), LD->getAlignment());
5939}
5940
5941/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
5942/// extending load, or BUILD_VECTOR with extended elements, return the
5943/// unextended value. The unextended vector should be 64 bits so that it can
5944/// be used as an operand to a VMULL instruction. If the original vector size
5945/// before extension is less than 64 bits we add a an extension to resize
5946/// the vector to 64 bits.
5947static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
5948 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
5949 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
5950 N->getOperand(0)->getValueType(0),
5951 N->getValueType(0),
5952 N->getOpcode());
5953
5954 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
5955 return SkipLoadExtensionForVMULL(LD, DAG);
5956
5957 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
5958 // have been legalized as a BITCAST from v4i32.
5959 if (N->getOpcode() == ISD::BITCAST) {
5960 SDNode *BVN = N->getOperand(0).getNode();
5961 assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&((BVN->getOpcode() == ISD::BUILD_VECTOR && BVN->
getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"
) ? static_cast<void> (0) : __assert_fail ("BVN->getOpcode() == ISD::BUILD_VECTOR && BVN->getValueType(0) == MVT::v4i32 && \"expected v4i32 BUILD_VECTOR\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5962, __PRETTY_FUNCTION__))
5962 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR")((BVN->getOpcode() == ISD::BUILD_VECTOR && BVN->
getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"
) ? static_cast<void> (0) : __assert_fail ("BVN->getOpcode() == ISD::BUILD_VECTOR && BVN->getValueType(0) == MVT::v4i32 && \"expected v4i32 BUILD_VECTOR\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5962, __PRETTY_FUNCTION__))
;
5963 unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5964 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
5965 BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
5966 }
5967 // Construct a new BUILD_VECTOR with elements truncated to half the size.
5968 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR")((N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() == ISD::BUILD_VECTOR && \"expected BUILD_VECTOR\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 5968, __PRETTY_FUNCTION__))
;
5969 EVT VT = N->getValueType(0);
5970 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
5971 unsigned NumElts = VT.getVectorNumElements();
5972 MVT TruncVT = MVT::getIntegerVT(EltSize);
5973 SmallVector<SDValue, 8> Ops;
5974 for (unsigned i = 0; i != NumElts; ++i) {
5975 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
5976 const APInt &CInt = C->getAPIntValue();
5977 // Element types smaller than 32 bits are not legal, so use i32 elements.
5978 // The values are implicitly truncated so sext vs. zext doesn't matter.
5979 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
5980 }
5981 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
5982 MVT::getVectorVT(TruncVT, NumElts), Ops);
5983}
5984
5985static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
5986 unsigned Opcode = N->getOpcode();
5987 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5988 SDNode *N0 = N->getOperand(0).getNode();
5989 SDNode *N1 = N->getOperand(1).getNode();
5990 return N0->hasOneUse() && N1->hasOneUse() &&
5991 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
5992 }
5993 return false;
5994}
5995
5996static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
5997 unsigned Opcode = N->getOpcode();
5998 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5999 SDNode *N0 = N->getOperand(0).getNode();
6000 SDNode *N1 = N->getOperand(1).getNode();
6001 return N0->hasOneUse() && N1->hasOneUse() &&
6002 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
6003 }
6004 return false;
6005}
6006
6007static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
6008 // Multiplications are only custom-lowered for 128-bit vectors so that
6009 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
6010 EVT VT = Op.getValueType();
6011 assert(VT.is128BitVector() && VT.isInteger() &&((VT.is128BitVector() && VT.isInteger() && "unexpected type for custom-lowering ISD::MUL"
) ? static_cast<void> (0) : __assert_fail ("VT.is128BitVector() && VT.isInteger() && \"unexpected type for custom-lowering ISD::MUL\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6012, __PRETTY_FUNCTION__))
6012 "unexpected type for custom-lowering ISD::MUL")((VT.is128BitVector() && VT.isInteger() && "unexpected type for custom-lowering ISD::MUL"
) ? static_cast<void> (0) : __assert_fail ("VT.is128BitVector() && VT.isInteger() && \"unexpected type for custom-lowering ISD::MUL\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6012, __PRETTY_FUNCTION__))
;
6013 SDNode *N0 = Op.getOperand(0).getNode();
6014 SDNode *N1 = Op.getOperand(1).getNode();
6015 unsigned NewOpc = 0;
6016 bool isMLA = false;
6017 bool isN0SExt = isSignExtended(N0, DAG);
6018 bool isN1SExt = isSignExtended(N1, DAG);
6019 if (isN0SExt && isN1SExt)
6020 NewOpc = ARMISD::VMULLs;
6021 else {
6022 bool isN0ZExt = isZeroExtended(N0, DAG);
6023 bool isN1ZExt = isZeroExtended(N1, DAG);
6024 if (isN0ZExt && isN1ZExt)
6025 NewOpc = ARMISD::VMULLu;
6026 else if (isN1SExt || isN1ZExt) {
6027 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
6028 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
6029 if (isN1SExt && isAddSubSExt(N0, DAG)) {
6030 NewOpc = ARMISD::VMULLs;
6031 isMLA = true;
6032 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
6033 NewOpc = ARMISD::VMULLu;
6034 isMLA = true;
6035 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
6036 std::swap(N0, N1);
6037 NewOpc = ARMISD::VMULLu;
6038 isMLA = true;
6039 }
6040 }
6041
6042 if (!NewOpc) {
6043 if (VT == MVT::v2i64)
6044 // Fall through to expand this. It is not legal.
6045 return SDValue();
6046 else
6047 // Other vector multiplications are legal.
6048 return Op;
6049 }
6050 }
6051
6052 // Legalize to a VMULL instruction.
6053 SDLoc DL(Op);
6054 SDValue Op0;
6055 SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
6056 if (!isMLA) {
6057 Op0 = SkipExtensionForVMULL(N0, DAG);
6058 assert(Op0.getValueType().is64BitVector() &&((Op0.getValueType().is64BitVector() && Op1.getValueType
().is64BitVector() && "unexpected types for extended operands to VMULL"
) ? static_cast<void> (0) : __assert_fail ("Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && \"unexpected types for extended operands to VMULL\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6060, __PRETTY_FUNCTION__))
6059 Op1.getValueType().is64BitVector() &&((Op0.getValueType().is64BitVector() && Op1.getValueType
().is64BitVector() && "unexpected types for extended operands to VMULL"
) ? static_cast<void> (0) : __assert_fail ("Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && \"unexpected types for extended operands to VMULL\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6060, __PRETTY_FUNCTION__))
6060 "unexpected types for extended operands to VMULL")((Op0.getValueType().is64BitVector() && Op1.getValueType
().is64BitVector() && "unexpected types for extended operands to VMULL"
) ? static_cast<void> (0) : __assert_fail ("Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && \"unexpected types for extended operands to VMULL\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6060, __PRETTY_FUNCTION__))
;
6061 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
6062 }
6063
6064 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
6065 // isel lowering to take advantage of no-stall back to back vmul + vmla.
6066 // vmull q0, d4, d6
6067 // vmlal q0, d5, d6
6068 // is faster than
6069 // vaddl q0, d4, d5
6070 // vmovl q1, d6
6071 // vmul q0, q0, q1
6072 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
6073 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
6074 EVT Op1VT = Op1.getValueType();
6075 return DAG.getNode(N0->getOpcode(), DL, VT,
6076 DAG.getNode(NewOpc, DL, VT,
6077 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
6078 DAG.getNode(NewOpc, DL, VT,
6079 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
6080}
6081
6082static SDValue
6083LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
6084 // Convert to float
6085 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
6086 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
6087 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
6088 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
6089 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
6090 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
6091 // Get reciprocal estimate.
6092 // float4 recip = vrecpeq_f32(yf);
6093 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6094 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
6095 // Because char has a smaller range than uchar, we can actually get away
6096 // without any newton steps. This requires that we use a weird bias
6097 // of 0xb000, however (again, this has been exhaustively tested).
6098 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
6099 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
6100 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
6101 Y = DAG.getConstant(0xb000, MVT::i32);
6102 Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
6103 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
6104 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
6105 // Convert back to short.
6106 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
6107 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
6108 return X;
6109}
6110
6111static SDValue
6112LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
6113 SDValue N2;
6114 // Convert to float.
6115 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
6116 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
6117 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
6118 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
6119 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
6120 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
6121
6122 // Use reciprocal estimate and one refinement step.
6123 // float4 recip = vrecpeq_f32(yf);
6124 // recip *= vrecpsq_f32(yf, recip);
6125 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6126 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
6127 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6128 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
6129 N1, N2);
6130 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6131 // Because short has a smaller range than ushort, we can actually get away
6132 // with only a single newton step. This requires that we use a weird bias
6133 // of 89, however (again, this has been exhaustively tested).
6134 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
6135 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6136 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6137 N1 = DAG.getConstant(0x89, MVT::i32);
6138 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
6139 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6140 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6141 // Convert back to integer and return.
6142 // return vmovn_s32(vcvt_s32_f32(result));
6143 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6144 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6145 return N0;
6146}
6147
6148static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
6149 EVT VT = Op.getValueType();
6150 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&(((VT == MVT::v4i16 || VT == MVT::v8i8) && "unexpected type for custom-lowering ISD::SDIV"
) ? static_cast<void> (0) : __assert_fail ("(VT == MVT::v4i16 || VT == MVT::v8i8) && \"unexpected type for custom-lowering ISD::SDIV\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6151, __PRETTY_FUNCTION__))
6151 "unexpected type for custom-lowering ISD::SDIV")(((VT == MVT::v4i16 || VT == MVT::v8i8) && "unexpected type for custom-lowering ISD::SDIV"
) ? static_cast<void> (0) : __assert_fail ("(VT == MVT::v4i16 || VT == MVT::v8i8) && \"unexpected type for custom-lowering ISD::SDIV\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6151, __PRETTY_FUNCTION__))
;
6152
6153 SDLoc dl(Op);
6154 SDValue N0 = Op.getOperand(0);
6155 SDValue N1 = Op.getOperand(1);
6156 SDValue N2, N3;
6157
6158 if (VT == MVT::v8i8) {
6159 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
6160 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
6161
6162 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6163 DAG.getIntPtrConstant(4));
6164 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6165 DAG.getIntPtrConstant(4));
6166 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6167 DAG.getIntPtrConstant(0));
6168 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6169 DAG.getIntPtrConstant(0));
6170
6171 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
6172 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
6173
6174 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6175 N0 = LowerCONCAT_VECTORS(N0, DAG);
6176
6177 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
6178 return N0;
6179 }
6180 return LowerSDIV_v4i16(N0, N1, dl, DAG);
6181}
6182
6183static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
6184 EVT VT = Op.getValueType();
6185 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&(((VT == MVT::v4i16 || VT == MVT::v8i8) && "unexpected type for custom-lowering ISD::UDIV"
) ? static_cast<void> (0) : __assert_fail ("(VT == MVT::v4i16 || VT == MVT::v8i8) && \"unexpected type for custom-lowering ISD::UDIV\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6186, __PRETTY_FUNCTION__))
6186 "unexpected type for custom-lowering ISD::UDIV")(((VT == MVT::v4i16 || VT == MVT::v8i8) && "unexpected type for custom-lowering ISD::UDIV"
) ? static_cast<void> (0) : __assert_fail ("(VT == MVT::v4i16 || VT == MVT::v8i8) && \"unexpected type for custom-lowering ISD::UDIV\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6186, __PRETTY_FUNCTION__))
;
6187
6188 SDLoc dl(Op);
6189 SDValue N0 = Op.getOperand(0);
6190 SDValue N1 = Op.getOperand(1);
6191 SDValue N2, N3;
6192
6193 if (VT == MVT::v8i8) {
6194 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
6195 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
6196
6197 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6198 DAG.getIntPtrConstant(4));
6199 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6200 DAG.getIntPtrConstant(4));
6201 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6202 DAG.getIntPtrConstant(0));
6203 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6204 DAG.getIntPtrConstant(0));
6205
6206 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
6207 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
6208
6209 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6210 N0 = LowerCONCAT_VECTORS(N0, DAG);
6211
6212 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
6213 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
6214 N0);
6215 return N0;
6216 }
6217
6218 // v4i16 sdiv ... Convert to float.
6219 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
6220 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
6221 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
6222 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
6223 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
6224 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
6225
6226 // Use reciprocal estimate and two refinement steps.
6227 // float4 recip = vrecpeq_f32(yf);
6228 // recip *= vrecpsq_f32(yf, recip);
6229 // recip *= vrecpsq_f32(yf, recip);
6230 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6231 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
6232 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6233 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
6234 BN1, N2);
6235 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6236 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6237 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
6238 BN1, N2);
6239 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6240 // Simply multiplying by the reciprocal estimate can leave us a few ulps
6241 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
6242 // and that it will never cause us to return an answer too large).
6243 // float4 result = as_float4(as_int4(xf*recip) + 2);
6244 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6245 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6246 N1 = DAG.getConstant(2, MVT::i32);
6247 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
6248 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6249 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6250 // Convert back to integer and return.
6251 // return vmovn_u32(vcvt_s32_f32(result));
6252 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6253 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6254 return N0;
6255}
6256
6257static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
6258 EVT VT = Op.getNode()->getValueType(0);
6259 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
6260
6261 unsigned Opc;
6262 bool ExtraOp = false;
6263 switch (Op.getOpcode()) {
6264 default: llvm_unreachable("Invalid code")::llvm::llvm_unreachable_internal("Invalid code", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6264)
;
6265 case ISD::ADDC: Opc = ARMISD::ADDC; break;
6266 case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
6267 case ISD::SUBC: Opc = ARMISD::SUBC; break;
6268 case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
6269 }
6270
6271 if (!ExtraOp)
6272 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6273 Op.getOperand(1));
6274 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6275 Op.getOperand(1), Op.getOperand(2));
6276}
6277
6278SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
6279 assert(Subtarget->isTargetDarwin())((Subtarget->isTargetDarwin()) ? static_cast<void> (
0) : __assert_fail ("Subtarget->isTargetDarwin()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6279, __PRETTY_FUNCTION__))
;
6280
6281 // For iOS, we want to call an alternative entry point: __sincos_stret,
6282 // return values are passed via sret.
6283 SDLoc dl(Op);
6284 SDValue Arg = Op.getOperand(0);
6285 EVT ArgVT = Arg.getValueType();
6286 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
6287
6288 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6289 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6290
6291 // Pair of floats / doubles used to pass the result.
6292 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
6293
6294 // Create stack object for sret.
6295 const uint64_t ByteSize = TLI.getDataLayout()->getTypeAllocSize(RetTy);
6296 const unsigned StackAlign = TLI.getDataLayout()->getPrefTypeAlignment(RetTy);
6297 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
6298 SDValue SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy());
6299
6300 ArgListTy Args;
6301 ArgListEntry Entry;
6302
6303 Entry.Node = SRet;
6304 Entry.Ty = RetTy->getPointerTo();
6305 Entry.isSExt = false;
6306 Entry.isZExt = false;
6307 Entry.isSRet = true;
6308 Args.push_back(Entry);
6309
6310 Entry.Node = Arg;
6311 Entry.Ty = ArgTy;
6312 Entry.isSExt = false;
6313 Entry.isZExt = false;
6314 Args.push_back(Entry);
6315
6316 const char *LibcallName = (ArgVT == MVT::f64)
6317 ? "__sincos_stret" : "__sincosf_stret";
6318 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
6319
6320 TargetLowering::CallLoweringInfo CLI(DAG);
6321 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
6322 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), Callee,
6323 std::move(Args), 0)
6324 .setDiscardResult();
6325
6326 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6327
6328 SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
6329 MachinePointerInfo(), false, false, false, 0);
6330
6331 // Address of cos field.
6332 SDValue Add = DAG.getNode(ISD::ADD, dl, getPointerTy(), SRet,
6333 DAG.getIntPtrConstant(ArgVT.getStoreSize()));
6334 SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
6335 MachinePointerInfo(), false, false, false, 0);
6336
6337 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
6338 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
6339 LoadSin.getValue(0), LoadCos.getValue(0));
6340}
6341
6342static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
6343 // Monotonic load/store is legal for all targets
6344 if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
6345 return Op;
6346
6347 // Acquire/Release load/store is not legal for targets without a
6348 // dmb or equivalent available.
6349 return SDValue();
6350}
6351
6352static void ReplaceREADCYCLECOUNTER(SDNode *N,
6353 SmallVectorImpl<SDValue> &Results,
6354 SelectionDAG &DAG,
6355 const ARMSubtarget *Subtarget) {
6356 SDLoc DL(N);
6357 SDValue Cycles32, OutChain;
6358
6359 if (Subtarget->hasPerfMon()) {
6360 // Under Power Management extensions, the cycle-count is:
6361 // mrc p15, #0, <Rt>, c9, c13, #0
6362 SDValue Ops[] = { N->getOperand(0), // Chain
6363 DAG.getConstant(Intrinsic::arm_mrc, MVT::i32),
6364 DAG.getConstant(15, MVT::i32),
6365 DAG.getConstant(0, MVT::i32),
6366 DAG.getConstant(9, MVT::i32),
6367 DAG.getConstant(13, MVT::i32),
6368 DAG.getConstant(0, MVT::i32)
6369 };
6370
6371 Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
6372 DAG.getVTList(MVT::i32, MVT::Other), Ops);
6373 OutChain = Cycles32.getValue(1);
6374 } else {
6375 // Intrinsic is defined to return 0 on unsupported platforms. Technically
6376 // there are older ARM CPUs that have implementation-specific ways of
6377 // obtaining this information (FIXME!).
6378 Cycles32 = DAG.getConstant(0, MVT::i32);
6379 OutChain = DAG.getEntryNode();
6380 }
6381
6382
6383 SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
6384 Cycles32, DAG.getConstant(0, MVT::i32));
6385 Results.push_back(Cycles64);
6386 Results.push_back(OutChain);
6387}
6388
6389SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6390 switch (Op.getOpcode()) {
6391 default: llvm_unreachable("Don't know how to custom lower this!")::llvm::llvm_unreachable_internal("Don't know how to custom lower this!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6391)
;
6392 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
6393 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
6394 case ISD::GlobalAddress:
6395 switch (Subtarget->getTargetTriple().getObjectFormat()) {
6396 default: llvm_unreachable("unknown object format")::llvm::llvm_unreachable_internal("unknown object format", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6396)
;
6397 case Triple::COFF:
6398 return LowerGlobalAddressWindows(Op, DAG);
6399 case Triple::ELF:
6400 return LowerGlobalAddressELF(Op, DAG);
6401 case Triple::MachO:
6402 return LowerGlobalAddressDarwin(Op, DAG);
6403 }
6404 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
6405 case ISD::SELECT: return LowerSELECT(Op, DAG);
6406 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
6407 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
6408 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
6409 case ISD::VASTART: return LowerVASTART(Op, DAG);
6410 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
6411 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
6412 case ISD::SINT_TO_FP:
6413 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
6414 case ISD::FP_TO_SINT:
6415 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
6416 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
6417 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
6418 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
6419 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
6420 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
6421 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
6422 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
6423 Subtarget);
6424 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
6425 case ISD::SHL:
6426 case ISD::SRL:
6427 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
6428 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
6429 case ISD::SRL_PARTS:
6430 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
6431 case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
6432 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
6433 case ISD::SETCC: return LowerVSETCC(Op, DAG);
6434 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
6435 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
6436 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
6437 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
6438 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6439 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
6440 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
6441 case ISD::MUL: return LowerMUL(Op, DAG);
6442 case ISD::SDIV: return LowerSDIV(Op, DAG);
6443 case ISD::UDIV: return LowerUDIV(Op, DAG);
6444 case ISD::ADDC:
6445 case ISD::ADDE:
6446 case ISD::SUBC:
6447 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
6448 case ISD::SADDO:
6449 case ISD::UADDO:
6450 case ISD::SSUBO:
6451 case ISD::USUBO:
6452 return LowerXALUO(Op, DAG);
6453 case ISD::ATOMIC_LOAD:
6454 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
6455 case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
6456 case ISD::SDIVREM:
6457 case ISD::UDIVREM: return LowerDivRem(Op, DAG);
6458 case ISD::DYNAMIC_STACKALLOC:
6459 if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
6460 return LowerDYNAMIC_STACKALLOC(Op, DAG);
6461 llvm_unreachable("Don't know how to custom lower this!")::llvm::llvm_unreachable_internal("Don't know how to custom lower this!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6461)
;
6462 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
6463 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
6464 }
6465}
6466
6467/// ReplaceNodeResults - Replace the results of node with an illegal result
6468/// type with new values built out of custom code.
6469void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
6470 SmallVectorImpl<SDValue>&Results,
6471 SelectionDAG &DAG) const {
6472 SDValue Res;
6473 switch (N->getOpcode()) {
6474 default:
6475 llvm_unreachable("Don't know how to custom expand this!")::llvm::llvm_unreachable_internal("Don't know how to custom expand this!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6475)
;
6476 case ISD::BITCAST:
6477 Res = ExpandBITCAST(N, DAG);
6478 break;
6479 case ISD::SRL:
6480 case ISD::SRA:
6481 Res = Expand64BitShift(N, DAG, Subtarget);
6482 break;
6483 case ISD::READCYCLECOUNTER:
6484 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
6485 return;
6486 }
6487 if (Res.getNode())
6488 Results.push_back(Res);
6489}
6490
6491//===----------------------------------------------------------------------===//
6492// ARM Scheduler Hooks
6493//===----------------------------------------------------------------------===//
6494
6495/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
6496/// registers the function context.
6497void ARMTargetLowering::
6498SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
6499 MachineBasicBlock *DispatchBB, int FI) const {
6500 const TargetInstrInfo *TII =
6501 getTargetMachine().getSubtargetImpl()->getInstrInfo();
6502 DebugLoc dl = MI->getDebugLoc();
6503 MachineFunction *MF = MBB->getParent();
6504 MachineRegisterInfo *MRI = &MF->getRegInfo();
6505 MachineConstantPool *MCP = MF->getConstantPool();
6506 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6507 const Function *F = MF->getFunction();
6508
6509 bool isThumb = Subtarget->isThumb();
6510 bool isThumb2 = Subtarget->isThumb2();
6511
6512 unsigned PCLabelId = AFI->createPICLabelUId();
6513 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
6514 ARMConstantPoolValue *CPV =
6515 ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
6516 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
6517
6518 const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
6519 : &ARM::GPRRegClass;
6520
6521 // Grab constant pool and fixed stack memory operands.
6522 MachineMemOperand *CPMMO =
6523 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
6524 MachineMemOperand::MOLoad, 4, 4);
6525
6526 MachineMemOperand *FIMMOSt =
6527 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6528 MachineMemOperand::MOStore, 4, 4);
6529
6530 // Load the address of the dispatch MBB into the jump buffer.
6531 if (isThumb2) {
6532 // Incoming value: jbuf
6533 // ldr.n r5, LCPI1_1
6534 // orr r5, r5, #1
6535 // add r5, pc
6536 // str r5, [$jbuf, #+4] ; &jbuf[1]
6537 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6538 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
6539 .addConstantPoolIndex(CPI)
6540 .addMemOperand(CPMMO));
6541 // Set the low bit because of thumb mode.
6542 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6543 AddDefaultCC(
6544 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
6545 .addReg(NewVReg1, RegState::Kill)
6546 .addImm(0x01)));
6547 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6548 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
6549 .addReg(NewVReg2, RegState::Kill)
6550 .addImm(PCLabelId);
6551 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
6552 .addReg(NewVReg3, RegState::Kill)
6553 .addFrameIndex(FI)
6554 .addImm(36) // &jbuf[1] :: pc
6555 .addMemOperand(FIMMOSt));
6556 } else if (isThumb) {
6557 // Incoming value: jbuf
6558 // ldr.n r1, LCPI1_4
6559 // add r1, pc
6560 // mov r2, #1
6561 // orrs r1, r2
6562 // add r2, $jbuf, #+4 ; &jbuf[1]
6563 // str r1, [r2]
6564 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6565 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
6566 .addConstantPoolIndex(CPI)
6567 .addMemOperand(CPMMO));
6568 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6569 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
6570 .addReg(NewVReg1, RegState::Kill)
6571 .addImm(PCLabelId);
6572 // Set the low bit because of thumb mode.
6573 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6574 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
6575 .addReg(ARM::CPSR, RegState::Define)
6576 .addImm(1));
6577 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6578 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
6579 .addReg(ARM::CPSR, RegState::Define)
6580 .addReg(NewVReg2, RegState::Kill)
6581 .addReg(NewVReg3, RegState::Kill));
6582 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6583 BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
6584 .addFrameIndex(FI)
6585 .addImm(36); // &jbuf[1] :: pc
6586 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
6587 .addReg(NewVReg4, RegState::Kill)
6588 .addReg(NewVReg5, RegState::Kill)
6589 .addImm(0)
6590 .addMemOperand(FIMMOSt));
6591 } else {
6592 // Incoming value: jbuf
6593 // ldr r1, LCPI1_1
6594 // add r1, pc, r1
6595 // str r1, [$jbuf, #+4] ; &jbuf[1]
6596 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6597 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
6598 .addConstantPoolIndex(CPI)
6599 .addImm(0)
6600 .addMemOperand(CPMMO));
6601 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6602 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
6603 .addReg(NewVReg1, RegState::Kill)
6604 .addImm(PCLabelId));
6605 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
6606 .addReg(NewVReg2, RegState::Kill)
6607 .addFrameIndex(FI)
6608 .addImm(36) // &jbuf[1] :: pc
6609 .addMemOperand(FIMMOSt));
6610 }
6611}
6612
6613MachineBasicBlock *ARMTargetLowering::
6614EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
6615 const TargetInstrInfo *TII =
6616 getTargetMachine().getSubtargetImpl()->getInstrInfo();
6617 DebugLoc dl = MI->getDebugLoc();
6618 MachineFunction *MF = MBB->getParent();
6619 MachineRegisterInfo *MRI = &MF->getRegInfo();
6620 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6621 MachineFrameInfo *MFI = MF->getFrameInfo();
6622 int FI = MFI->getFunctionContextIndex();
6623
6624 const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
6625 : &ARM::GPRnopcRegClass;
6626
6627 // Get a mapping of the call site numbers to all of the landing pads they're
6628 // associated with.
6629 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
6630 unsigned MaxCSNum = 0;
6631 MachineModuleInfo &MMI = MF->getMMI();
6632 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
6633 ++BB) {
6634 if (!BB->isLandingPad()) continue;
6635
6636 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
6637 // pad.
6638 for (MachineBasicBlock::iterator
6639 II = BB->begin(), IE = BB->end(); II != IE; ++II) {
6640 if (!II->isEHLabel()) continue;
6641
6642 MCSymbol *Sym = II->getOperand(0).getMCSymbol();
6643 if (!MMI.hasCallSiteLandingPad(Sym)) continue;
6644
6645 SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
6646 for (SmallVectorImpl<unsigned>::iterator
6647 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
6648 CSI != CSE; ++CSI) {
6649 CallSiteNumToLPad[*CSI].push_back(BB);
6650 MaxCSNum = std::max(MaxCSNum, *CSI);
6651 }
6652 break;
6653 }
6654 }
6655
6656 // Get an ordered list of the machine basic blocks for the jump table.
6657 std::vector<MachineBasicBlock*> LPadList;
6658 SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
6659 LPadList.reserve(CallSiteNumToLPad.size());
6660 for (unsigned I = 1; I <= MaxCSNum; ++I) {
6661 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
6662 for (SmallVectorImpl<MachineBasicBlock*>::iterator
6663 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
6664 LPadList.push_back(*II);
6665 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
6666 }
6667 }
6668
6669 assert(!LPadList.empty() &&((!LPadList.empty() && "No landing pad destinations for the dispatch jump table!"
) ? static_cast<void> (0) : __assert_fail ("!LPadList.empty() && \"No landing pad destinations for the dispatch jump table!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6670, __PRETTY_FUNCTION__))
6670 "No landing pad destinations for the dispatch jump table!")((!LPadList.empty() && "No landing pad destinations for the dispatch jump table!"
) ? static_cast<void> (0) : __assert_fail ("!LPadList.empty() && \"No landing pad destinations for the dispatch jump table!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 6670, __PRETTY_FUNCTION__))
;
6671
6672 // Create the jump table and associated information.
6673 MachineJumpTableInfo *JTI =
6674 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
6675 unsigned MJTI = JTI->createJumpTableIndex(LPadList);
6676 unsigned UId = AFI->createJumpTableUId();
6677 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
6678
6679 // Create the MBBs for the dispatch code.
6680
6681 // Shove the dispatch's address into the return slot in the function context.
6682 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6683 DispatchBB->setIsLandingPad();
6684
6685 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
6686 unsigned trap_opcode;
6687 if (Subtarget->isThumb())
6688 trap_opcode = ARM::tTRAP;
6689 else
6690 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
6691
6692 BuildMI(TrapBB, dl, TII->get(trap_opcode));
6693 DispatchBB->addSuccessor(TrapBB);
6694
6695 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6696 DispatchBB->addSuccessor(DispContBB);
6697
6698 // Insert and MBBs.
6699 MF->insert(MF->end(), DispatchBB);
6700 MF->insert(MF->end(), DispContBB);
6701 MF->insert(MF->end(), TrapBB);
6702
6703 // Insert code into the entry block that creates and registers the function
6704 // context.
6705 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6706
6707 MachineMemOperand *FIMMOLd =
6708 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6709 MachineMemOperand::MOLoad |
6710 MachineMemOperand::MOVolatile, 4, 4);
6711
6712 MachineInstrBuilder MIB;
6713 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6714
6715 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6716 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6717
6718 // Add a register mask with no preserved registers. This results in all
6719 // registers being marked as clobbered.
6720 MIB.addRegMask(RI.getNoPreservedMask());
6721
6722 unsigned NumLPads = LPadList.size();
6723 if (Subtarget->isThumb2()) {
6724 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6725 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6726 .addFrameIndex(FI)
6727 .addImm(4)
6728 .addMemOperand(FIMMOLd));
6729
6730 if (NumLPads < 256) {
6731 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6732 .addReg(NewVReg1)
6733 .addImm(LPadList.size()));
6734 } else {
6735 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6736 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6737 .addImm(NumLPads & 0xFFFF));
6738
6739 unsigned VReg2 = VReg1;
6740 if ((NumLPads & 0xFFFF0000) != 0) {
6741 VReg2 = MRI->createVirtualRegister(TRC);
6742 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6743 .addReg(VReg1)
6744 .addImm(NumLPads >> 16));
6745 }
6746
6747 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6748 .addReg(NewVReg1)
6749 .addReg(VReg2));
6750 }
6751
6752 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6753 .addMBB(TrapBB)
6754 .addImm(ARMCC::HI)
6755 .addReg(ARM::CPSR);
6756
6757 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6758 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6759 .addJumpTableIndex(MJTI)
6760 .addImm(UId));
6761
6762 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6763 AddDefaultCC(
6764 AddDefaultPred(
6765 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6766 .addReg(NewVReg3, RegState::Kill)
6767 .addReg(NewVReg1)
6768 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6769
6770 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6771 .addReg(NewVReg4, RegState::Kill)
6772 .addReg(NewVReg1)
6773 .addJumpTableIndex(MJTI)
6774 .addImm(UId);
6775 } else if (Subtarget->isThumb()) {
6776 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6777 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6778 .addFrameIndex(FI)
6779 .addImm(1)
6780 .addMemOperand(FIMMOLd));
6781
6782 if (NumLPads < 256) {
6783 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6784 .addReg(NewVReg1)
6785 .addImm(NumLPads));
6786 } else {
6787 MachineConstantPool *ConstantPool = MF->getConstantPool();
6788 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6789 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6790
6791 // MachineConstantPool wants an explicit alignment.
6792 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6793 if (Align == 0)
6794 Align = getDataLayout()->getTypeAllocSize(C->getType());
6795 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6796
6797 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6798 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6799 .addReg(VReg1, RegState::Define)
6800 .addConstantPoolIndex(Idx));
6801 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6802 .addReg(NewVReg1)
6803 .addReg(VReg1));
6804 }
6805
6806 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6807 .addMBB(TrapBB)
6808 .addImm(ARMCC::HI)
6809 .addReg(ARM::CPSR);
6810
6811 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6812 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6813 .addReg(ARM::CPSR, RegState::Define)
6814 .addReg(NewVReg1)
6815 .addImm(2));
6816
6817 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6818 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6819 .addJumpTableIndex(MJTI)
6820 .addImm(UId));
6821
6822 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6823 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6824 .addReg(ARM::CPSR, RegState::Define)
6825 .addReg(NewVReg2, RegState::Kill)
6826 .addReg(NewVReg3));
6827
6828 MachineMemOperand *JTMMOLd =
6829 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6830 MachineMemOperand::MOLoad, 4, 4);
6831
6832 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6833 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6834 .addReg(NewVReg4, RegState::Kill)
6835 .addImm(0)
6836 .addMemOperand(JTMMOLd));
6837
6838 unsigned NewVReg6 = NewVReg5;
6839 if (RelocM == Reloc::PIC_) {
6840 NewVReg6 = MRI->createVirtualRegister(TRC);
6841 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6842 .addReg(ARM::CPSR, RegState::Define)
6843 .addReg(NewVReg5, RegState::Kill)
6844 .addReg(NewVReg3));
6845 }
6846
6847 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6848 .addReg(NewVReg6, RegState::Kill)
6849 .addJumpTableIndex(MJTI)
6850 .addImm(UId);
6851 } else {
6852 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6853 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6854 .addFrameIndex(FI)
6855 .addImm(4)
6856 .addMemOperand(FIMMOLd));
6857
6858 if (NumLPads < 256) {
6859 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6860 .addReg(NewVReg1)
6861 .addImm(NumLPads));
6862 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6863 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6864 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6865 .addImm(NumLPads & 0xFFFF));
6866
6867 unsigned VReg2 = VReg1;
6868 if ((NumLPads & 0xFFFF0000) != 0) {
6869 VReg2 = MRI->createVirtualRegister(TRC);
6870 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6871 .addReg(VReg1)
6872 .addImm(NumLPads >> 16));
6873 }
6874
6875 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6876 .addReg(NewVReg1)
6877 .addReg(VReg2));
6878 } else {
6879 MachineConstantPool *ConstantPool = MF->getConstantPool();
6880 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6881 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6882
6883 // MachineConstantPool wants an explicit alignment.
6884 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6885 if (Align == 0)
6886 Align = getDataLayout()->getTypeAllocSize(C->getType());
6887 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6888
6889 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6890 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6891 .addReg(VReg1, RegState::Define)
6892 .addConstantPoolIndex(Idx)
6893 .addImm(0));
6894 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6895 .addReg(NewVReg1)
6896 .addReg(VReg1, RegState::Kill));
6897 }
6898
6899 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6900 .addMBB(TrapBB)
6901 .addImm(ARMCC::HI)
6902 .addReg(ARM::CPSR);
6903
6904 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6905 AddDefaultCC(
6906 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6907 .addReg(NewVReg1)
6908 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6909 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6910 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6911 .addJumpTableIndex(MJTI)
6912 .addImm(UId));
6913
6914 MachineMemOperand *JTMMOLd =
6915 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6916 MachineMemOperand::MOLoad, 4, 4);
6917 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6918 AddDefaultPred(
6919 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6920 .addReg(NewVReg3, RegState::Kill)
6921 .addReg(NewVReg4)
6922 .addImm(0)
6923 .addMemOperand(JTMMOLd));
6924
6925 if (RelocM == Reloc::PIC_) {
6926 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6927 .addReg(NewVReg5, RegState::Kill)
6928 .addReg(NewVReg4)
6929 .addJumpTableIndex(MJTI)
6930 .addImm(UId);
6931 } else {
6932 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
6933 .addReg(NewVReg5, RegState::Kill)
6934 .addJumpTableIndex(MJTI)
6935 .addImm(UId);
6936 }
6937 }
6938
6939 // Add the jump table entries as successors to the MBB.
6940 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6941 for (std::vector<MachineBasicBlock*>::iterator
6942 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6943 MachineBasicBlock *CurMBB = *I;
6944 if (SeenMBBs.insert(CurMBB).second)
6945 DispContBB->addSuccessor(CurMBB);
6946 }
6947
6948 // N.B. the order the invoke BBs are processed in doesn't matter here.
6949 const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
6950 SmallVector<MachineBasicBlock*, 64> MBBLPads;
6951 for (MachineBasicBlock *BB : InvokeBBs) {
6952
6953 // Remove the landing pad successor from the invoke block and replace it
6954 // with the new dispatch block.
6955 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6956 BB->succ_end());
6957 while (!Successors.empty()) {
6958 MachineBasicBlock *SMBB = Successors.pop_back_val();
6959 if (SMBB->isLandingPad()) {
6960 BB->removeSuccessor(SMBB);
6961 MBBLPads.push_back(SMBB);
6962 }
6963 }
6964
6965 BB->addSuccessor(DispatchBB);
6966
6967 // Find the invoke call and mark all of the callee-saved registers as
6968 // 'implicit defined' so that they're spilled. This prevents code from
6969 // moving instructions to before the EH block, where they will never be
6970 // executed.
6971 for (MachineBasicBlock::reverse_iterator
6972 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6973 if (!II->isCall()) continue;
6974
6975 DenseMap<unsigned, bool> DefRegs;
6976 for (MachineInstr::mop_iterator
6977 OI = II->operands_begin(), OE = II->operands_end();
6978 OI != OE; ++OI) {
6979 if (!OI->isReg()) continue;
6980 DefRegs[OI->getReg()] = true;
6981 }
6982
6983 MachineInstrBuilder MIB(*MF, &*II);
6984
6985 for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6986 unsigned Reg = SavedRegs[i];
6987 if (Subtarget->isThumb2() &&
6988 !ARM::tGPRRegClass.contains(Reg) &&
6989 !ARM::hGPRRegClass.contains(Reg))
6990 continue;
6991 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6992 continue;
6993 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6994 continue;
6995 if (!DefRegs[Reg])
6996 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6997 }
6998
6999 break;
7000 }
7001 }
7002
7003 // Mark all former landing pads as non-landing pads. The dispatch is the only
7004 // landing pad now.
7005 for (SmallVectorImpl<MachineBasicBlock*>::iterator
7006 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
7007 (*I)->setIsLandingPad(false);
7008
7009 // The instruction is gone now.
7010 MI->eraseFromParent();
7011
7012 return MBB;
7013}
7014
7015static
7016MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
7017 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
7018 E = MBB->succ_end(); I != E; ++I)
7019 if (*I != Succ)
7020 return *I;
7021 llvm_unreachable("Expecting a BB with two successors!")::llvm::llvm_unreachable_internal("Expecting a BB with two successors!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7021)
;
7022}
7023
7024/// Return the load opcode for a given load size. If load size >= 8,
7025/// neon opcode will be returned.
7026static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
7027 if (LdSize >= 8)
7028 return LdSize == 16 ? ARM::VLD1q32wb_fixed
7029 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
7030 if (IsThumb1)
7031 return LdSize == 4 ? ARM::tLDRi
7032 : LdSize == 2 ? ARM::tLDRHi
7033 : LdSize == 1 ? ARM::tLDRBi : 0;
7034 if (IsThumb2)
7035 return LdSize == 4 ? ARM::t2LDR_POST
7036 : LdSize == 2 ? ARM::t2LDRH_POST
7037 : LdSize == 1 ? ARM::t2LDRB_POST : 0;
7038 return LdSize == 4 ? ARM::LDR_POST_IMM
7039 : LdSize == 2 ? ARM::LDRH_POST
7040 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
7041}
7042
7043/// Return the store opcode for a given store size. If store size >= 8,
7044/// neon opcode will be returned.
7045static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
7046 if (StSize >= 8)
7047 return StSize == 16 ? ARM::VST1q32wb_fixed
7048 : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
7049 if (IsThumb1)
7050 return StSize == 4 ? ARM::tSTRi
7051 : StSize == 2 ? ARM::tSTRHi
7052 : StSize == 1 ? ARM::tSTRBi : 0;
7053 if (IsThumb2)
7054 return StSize == 4 ? ARM::t2STR_POST
7055 : StSize == 2 ? ARM::t2STRH_POST
7056 : StSize == 1 ? ARM::t2STRB_POST : 0;
7057 return StSize == 4 ? ARM::STR_POST_IMM
7058 : StSize == 2 ? ARM::STRH_POST
7059 : StSize == 1 ? ARM::STRB_POST_IMM : 0;
7060}
7061
7062/// Emit a post-increment load operation with given size. The instructions
7063/// will be added to BB at Pos.
7064static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos,
7065 const TargetInstrInfo *TII, DebugLoc dl,
7066 unsigned LdSize, unsigned Data, unsigned AddrIn,
7067 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
7068 unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
7069 assert(LdOpc != 0 && "Should have a load opcode")((LdOpc != 0 && "Should have a load opcode") ? static_cast
<void> (0) : __assert_fail ("LdOpc != 0 && \"Should have a load opcode\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7069, __PRETTY_FUNCTION__))
;
7070 if (LdSize >= 8) {
7071 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7072 .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7073 .addImm(0));
7074 } else if (IsThumb1) {
7075 // load + update AddrIn
7076 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7077 .addReg(AddrIn).addImm(0));
7078 MachineInstrBuilder MIB =
7079 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
7080 MIB = AddDefaultT1CC(MIB);
7081 MIB.addReg(AddrIn).addImm(LdSize);
7082 AddDefaultPred(MIB);
7083 } else if (IsThumb2) {
7084 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7085 .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7086 .addImm(LdSize));
7087 } else { // arm
7088 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7089 .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7090 .addReg(0).addImm(LdSize));
7091 }
7092}
7093
7094/// Emit a post-increment store operation with given size. The instructions
7095/// will be added to BB at Pos.
7096static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos,
7097 const TargetInstrInfo *TII, DebugLoc dl,
7098 unsigned StSize, unsigned Data, unsigned AddrIn,
7099 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
7100 unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
7101 assert(StOpc != 0 && "Should have a store opcode")((StOpc != 0 && "Should have a store opcode") ? static_cast
<void> (0) : __assert_fail ("StOpc != 0 && \"Should have a store opcode\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7101, __PRETTY_FUNCTION__))
;
7102 if (StSize >= 8) {
7103 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7104 .addReg(AddrIn).addImm(0).addReg(Data));
7105 } else if (IsThumb1) {
7106 // store + update AddrIn
7107 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
7108 .addReg(AddrIn).addImm(0));
7109 MachineInstrBuilder MIB =
7110 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
7111 MIB = AddDefaultT1CC(MIB);
7112 MIB.addReg(AddrIn).addImm(StSize);
7113 AddDefaultPred(MIB);
7114 } else if (IsThumb2) {
7115 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7116 .addReg(Data).addReg(AddrIn).addImm(StSize));
7117 } else { // arm
7118 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7119 .addReg(Data).addReg(AddrIn).addReg(0)
7120 .addImm(StSize));
7121 }
7122}
7123
7124MachineBasicBlock *
7125ARMTargetLowering::EmitStructByval(MachineInstr *MI,
7126 MachineBasicBlock *BB) const {
7127 // This pseudo instruction has 3 operands: dst, src, size
7128 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
7129 // Otherwise, we will generate unrolled scalar copies.
7130 const TargetInstrInfo *TII =
7131 getTargetMachine().getSubtargetImpl()->getInstrInfo();
7132 const BasicBlock *LLVM_BB = BB->getBasicBlock();
7133 MachineFunction::iterator It = BB;
7134 ++It;
7135
7136 unsigned dest = MI->getOperand(0).getReg();
7137 unsigned src = MI->getOperand(1).getReg();
7138 unsigned SizeVal = MI->getOperand(2).getImm();
7139 unsigned Align = MI->getOperand(3).getImm();
7140 DebugLoc dl = MI->getDebugLoc();
7141
7142 MachineFunction *MF = BB->getParent();
7143 MachineRegisterInfo &MRI = MF->getRegInfo();
7144 unsigned UnitSize = 0;
7145 const TargetRegisterClass *TRC = nullptr;
7146 const TargetRegisterClass *VecTRC = nullptr;
7147
7148 bool IsThumb1 = Subtarget->isThumb1Only();
7149 bool IsThumb2 = Subtarget->isThumb2();
7150
7151 if (Align & 1) {
7152 UnitSize = 1;
7153 } else if (Align & 2) {
7154 UnitSize = 2;
7155 } else {
7156 // Check whether we can use NEON instructions.
7157 if (!MF->getFunction()->getAttributes().
7158 hasAttribute(AttributeSet::FunctionIndex,
7159 Attribute::NoImplicitFloat) &&
7160 Subtarget->hasNEON()) {
7161 if ((Align % 16 == 0) && SizeVal >= 16)
7162 UnitSize = 16;
7163 else if ((Align % 8 == 0) && SizeVal >= 8)
7164 UnitSize = 8;
7165 }
7166 // Can't use NEON instructions.
7167 if (UnitSize == 0)
7168 UnitSize = 4;
7169 }
7170
7171 // Select the correct opcode and register class for unit size load/store
7172 bool IsNeon = UnitSize >= 8;
7173 TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
7174 if (IsNeon)
7175 VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
7176 : UnitSize == 8 ? &ARM::DPRRegClass
7177 : nullptr;
7178
7179 unsigned BytesLeft = SizeVal % UnitSize;
7180 unsigned LoopSize = SizeVal - BytesLeft;
7181
7182 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
7183 // Use LDR and STR to copy.
7184 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
7185 // [destOut] = STR_POST(scratch, destIn, UnitSize)
7186 unsigned srcIn = src;
7187 unsigned destIn = dest;
7188 for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
7189 unsigned srcOut = MRI.createVirtualRegister(TRC);
7190 unsigned destOut = MRI.createVirtualRegister(TRC);
7191 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7192 emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
7193 IsThumb1, IsThumb2);
7194 emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
7195 IsThumb1, IsThumb2);
7196 srcIn = srcOut;
7197 destIn = destOut;
7198 }
7199
7200 // Handle the leftover bytes with LDRB and STRB.
7201 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
7202 // [destOut] = STRB_POST(scratch, destIn, 1)
7203 for (unsigned i = 0; i < BytesLeft; i++) {
7204 unsigned srcOut = MRI.createVirtualRegister(TRC);
7205 unsigned destOut = MRI.createVirtualRegister(TRC);
7206 unsigned scratch = MRI.createVirtualRegister(TRC);
7207 emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
7208 IsThumb1, IsThumb2);
7209 emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
7210 IsThumb1, IsThumb2);
7211 srcIn = srcOut;
7212 destIn = destOut;
7213 }
7214 MI->eraseFromParent(); // The instruction is gone now.
7215 return BB;
7216 }
7217
7218 // Expand the pseudo op to a loop.
7219 // thisMBB:
7220 // ...
7221 // movw varEnd, # --> with thumb2
7222 // movt varEnd, #
7223 // ldrcp varEnd, idx --> without thumb2
7224 // fallthrough --> loopMBB
7225 // loopMBB:
7226 // PHI varPhi, varEnd, varLoop
7227 // PHI srcPhi, src, srcLoop
7228 // PHI destPhi, dst, destLoop
7229 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7230 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
7231 // subs varLoop, varPhi, #UnitSize
7232 // bne loopMBB
7233 // fallthrough --> exitMBB
7234 // exitMBB:
7235 // epilogue to handle left-over bytes
7236 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7237 // [destOut] = STRB_POST(scratch, destLoop, 1)
7238 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7239 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7240 MF->insert(It, loopMBB);
7241 MF->insert(It, exitMBB);
7242
7243 // Transfer the remainder of BB and its successor edges to exitMBB.
7244 exitMBB->splice(exitMBB->begin(), BB,
7245 std::next(MachineBasicBlock::iterator(MI)), BB->end());
7246 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
7247
7248 // Load an immediate to varEnd.
7249 unsigned varEnd = MRI.createVirtualRegister(TRC);
7250 if (IsThumb2) {
7251 unsigned Vtmp = varEnd;
7252 if ((LoopSize & 0xFFFF0000) != 0)
7253 Vtmp = MRI.createVirtualRegister(TRC);
7254 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), Vtmp)
7255 .addImm(LoopSize & 0xFFFF));
7256
7257 if ((LoopSize & 0xFFFF0000) != 0)
7258 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
7259 .addReg(Vtmp).addImm(LoopSize >> 16));
7260 } else {
7261 MachineConstantPool *ConstantPool = MF->getConstantPool();
7262 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7263 const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
7264
7265 // MachineConstantPool wants an explicit alignment.
7266 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
7267 if (Align == 0)
7268 Align = getDataLayout()->getTypeAllocSize(C->getType());
7269 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7270
7271 if (IsThumb1)
7272 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
7273 varEnd, RegState::Define).addConstantPoolIndex(Idx));
7274 else
7275 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
7276 varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
7277 }
7278 BB->addSuccessor(loopMBB);
7279
7280 // Generate the loop body:
7281 // varPhi = PHI(varLoop, varEnd)
7282 // srcPhi = PHI(srcLoop, src)
7283 // destPhi = PHI(destLoop, dst)
7284 MachineBasicBlock *entryBB = BB;
7285 BB = loopMBB;
7286 unsigned varLoop = MRI.createVirtualRegister(TRC);
7287 unsigned varPhi = MRI.createVirtualRegister(TRC);
7288 unsigned srcLoop = MRI.createVirtualRegister(TRC);
7289 unsigned srcPhi = MRI.createVirtualRegister(TRC);
7290 unsigned destLoop = MRI.createVirtualRegister(TRC);
7291 unsigned destPhi = MRI.createVirtualRegister(TRC);
7292
7293 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
7294 .addReg(varLoop).addMBB(loopMBB)
7295 .addReg(varEnd).addMBB(entryBB);
7296 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
7297 .addReg(srcLoop).addMBB(loopMBB)
7298 .addReg(src).addMBB(entryBB);
7299 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
7300 .addReg(destLoop).addMBB(loopMBB)
7301 .addReg(dest).addMBB(entryBB);
7302
7303 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7304 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
7305 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7306 emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
7307 IsThumb1, IsThumb2);
7308 emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
7309 IsThumb1, IsThumb2);
7310
7311 // Decrement loop variable by UnitSize.
7312 if (IsThumb1) {
7313 MachineInstrBuilder MIB =
7314 BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
7315 MIB = AddDefaultT1CC(MIB);
7316 MIB.addReg(varPhi).addImm(UnitSize);
7317 AddDefaultPred(MIB);
7318 } else {
7319 MachineInstrBuilder MIB =
7320 BuildMI(*BB, BB->end(), dl,
7321 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
7322 AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
7323 MIB->getOperand(5).setReg(ARM::CPSR);
7324 MIB->getOperand(5).setIsDef(true);
7325 }
7326 BuildMI(*BB, BB->end(), dl,
7327 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
7328 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
7329
7330 // loopMBB can loop back to loopMBB or fall through to exitMBB.
7331 BB->addSuccessor(loopMBB);
7332 BB->addSuccessor(exitMBB);
7333
7334 // Add epilogue to handle BytesLeft.
7335 BB = exitMBB;
7336 MachineInstr *StartOfExit = exitMBB->begin();
7337
7338 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7339 // [destOut] = STRB_POST(scratch, destLoop, 1)
7340 unsigned srcIn = srcLoop;
7341 unsigned destIn = destLoop;
7342 for (unsigned i = 0; i < BytesLeft; i++) {
7343 unsigned srcOut = MRI.createVirtualRegister(TRC);
7344 unsigned destOut = MRI.createVirtualRegister(TRC);
7345 unsigned scratch = MRI.createVirtualRegister(TRC);
7346 emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
7347 IsThumb1, IsThumb2);
7348 emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
7349 IsThumb1, IsThumb2);
7350 srcIn = srcOut;
7351 destIn = destOut;
7352 }
7353
7354 MI->eraseFromParent(); // The instruction is gone now.
7355 return BB;
7356}
7357
7358MachineBasicBlock *
7359ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
7360 MachineBasicBlock *MBB) const {
7361 const TargetMachine &TM = getTargetMachine();
7362 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
7363 DebugLoc DL = MI->getDebugLoc();
7364
7365 assert(Subtarget->isTargetWindows() &&((Subtarget->isTargetWindows() && "__chkstk is only supported on Windows"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetWindows() && \"__chkstk is only supported on Windows\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7366, __PRETTY_FUNCTION__))
7366 "__chkstk is only supported on Windows")((Subtarget->isTargetWindows() && "__chkstk is only supported on Windows"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetWindows() && \"__chkstk is only supported on Windows\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7366, __PRETTY_FUNCTION__))
;
7367 assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode")((Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isThumb2() && \"Windows on ARM requires Thumb-2 mode\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7367, __PRETTY_FUNCTION__))
;
7368
7369 // __chkstk takes the number of words to allocate on the stack in R4, and
7370 // returns the stack adjustment in number of bytes in R4. This will not
7371 // clober any other registers (other than the obvious lr).
7372 //
7373 // Although, technically, IP should be considered a register which may be
7374 // clobbered, the call itself will not touch it. Windows on ARM is a pure
7375 // thumb-2 environment, so there is no interworking required. As a result, we
7376 // do not expect a veneer to be emitted by the linker, clobbering IP.
7377 //
7378 // Each module receives its own copy of __chkstk, so no import thunk is
7379 // required, again, ensuring that IP is not clobbered.
7380 //
7381 // Finally, although some linkers may theoretically provide a trampoline for
7382 // out of range calls (which is quite common due to a 32M range limitation of
7383 // branches for Thumb), we can generate the long-call version via
7384 // -mcmodel=large, alleviating the need for the trampoline which may clobber
7385 // IP.
7386
7387 switch (TM.getCodeModel()) {
7388 case CodeModel::Small:
7389 case CodeModel::Medium:
7390 case CodeModel::Default:
7391 case CodeModel::Kernel:
7392 BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
7393 .addImm((unsigned)ARMCC::AL).addReg(0)
7394 .addExternalSymbol("__chkstk")
7395 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
7396 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
7397 .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
7398 break;
7399 case CodeModel::Large:
7400 case CodeModel::JITDefault: {
7401 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
7402 unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
7403
7404 BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
7405 .addExternalSymbol("__chkstk");
7406 BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
7407 .addImm((unsigned)ARMCC::AL).addReg(0)
7408 .addReg(Reg, RegState::Kill)
7409 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
7410 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
7411 .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
7412 break;
7413 }
7414 }
7415
7416 AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
7417 ARM::SP)
7418 .addReg(ARM::SP).addReg(ARM::R4)));
7419
7420 MI->eraseFromParent();
7421 return MBB;
7422}
7423
7424MachineBasicBlock *
7425ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7426 MachineBasicBlock *BB) const {
7427 const TargetInstrInfo *TII =
7428 getTargetMachine().getSubtargetImpl()->getInstrInfo();
7429 DebugLoc dl = MI->getDebugLoc();
7430 bool isThumb2 = Subtarget->isThumb2();
7431 switch (MI->getOpcode()) {
7432 default: {
7433 MI->dump();
7434 llvm_unreachable("Unexpected instr type to insert")::llvm::llvm_unreachable_internal("Unexpected instr type to insert"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7434)
;
7435 }
7436 // The Thumb2 pre-indexed stores have the same MI operands, they just
7437 // define them differently in the .td files from the isel patterns, so
7438 // they need pseudos.
7439 case ARM::t2STR_preidx:
7440 MI->setDesc(TII->get(ARM::t2STR_PRE));
7441 return BB;
7442 case ARM::t2STRB_preidx:
7443 MI->setDesc(TII->get(ARM::t2STRB_PRE));
7444 return BB;
7445 case ARM::t2STRH_preidx:
7446 MI->setDesc(TII->get(ARM::t2STRH_PRE));
7447 return BB;
7448
7449 case ARM::STRi_preidx:
7450 case ARM::STRBi_preidx: {
7451 unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
7452 ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
7453 // Decode the offset.
7454 unsigned Offset = MI->getOperand(4).getImm();
7455 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
7456 Offset = ARM_AM::getAM2Offset(Offset);
7457 if (isSub)
7458 Offset = -Offset;
7459
7460 MachineMemOperand *MMO = *MI->memoperands_begin();
7461 BuildMI(*BB, MI, dl, TII->get(NewOpc))
7462 .addOperand(MI->getOperand(0)) // Rn_wb
7463 .addOperand(MI->getOperand(1)) // Rt
7464 .addOperand(MI->getOperand(2)) // Rn
7465 .addImm(Offset) // offset (skip GPR==zero_reg)
7466 .addOperand(MI->getOperand(5)) // pred
7467 .addOperand(MI->getOperand(6))
7468 .addMemOperand(MMO);
7469 MI->eraseFromParent();
7470 return BB;
7471 }
7472 case ARM::STRr_preidx:
7473 case ARM::STRBr_preidx:
7474 case ARM::STRH_preidx: {
7475 unsigned NewOpc;
7476 switch (MI->getOpcode()) {
7477 default: llvm_unreachable("unexpected opcode!")::llvm::llvm_unreachable_internal("unexpected opcode!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7477)
;
7478 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
7479 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
7480 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
7481 }
7482 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
7483 for (unsigned i = 0; i < MI->getNumOperands(); ++i)
7484 MIB.addOperand(MI->getOperand(i));
7485 MI->eraseFromParent();
7486 return BB;
7487 }
7488
7489 case ARM::tMOVCCr_pseudo: {
7490 // To "insert" a SELECT_CC instruction, we actually have to insert the
7491 // diamond control-flow pattern. The incoming instruction knows the
7492 // destination vreg to set, the condition code register to branch on, the
7493 // true/false values to select between, and a branch opcode to use.
7494 const BasicBlock *LLVM_BB = BB->getBasicBlock();
7495 MachineFunction::iterator It = BB;
7496 ++It;
7497
7498 // thisMBB:
7499 // ...
7500 // TrueVal = ...
7501 // cmpTY ccX, r1, r2
7502 // bCC copy1MBB
7503 // fallthrough --> copy0MBB
7504 MachineBasicBlock *thisMBB = BB;
7505 MachineFunction *F = BB->getParent();
7506 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7507 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7508 F->insert(It, copy0MBB);
7509 F->insert(It, sinkMBB);
7510
7511 // Transfer the remainder of BB and its successor edges to sinkMBB.
7512 sinkMBB->splice(sinkMBB->begin(), BB,
7513 std::next(MachineBasicBlock::iterator(MI)), BB->end());
7514 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
7515
7516 BB->addSuccessor(copy0MBB);
7517 BB->addSuccessor(sinkMBB);
7518
7519 BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
7520 .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
7521
7522 // copy0MBB:
7523 // %FalseValue = ...
7524 // # fallthrough to sinkMBB
7525 BB = copy0MBB;
7526
7527 // Update machine-CFG edges
7528 BB->addSuccessor(sinkMBB);
7529
7530 // sinkMBB:
7531 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7532 // ...
7533 BB = sinkMBB;
7534 BuildMI(*BB, BB->begin(), dl,
7535 TII->get(ARM::PHI), MI->getOperand(0).getReg())
7536 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7537 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7538
7539 MI->eraseFromParent(); // The pseudo instruction is gone now.
7540 return BB;
7541 }
7542
7543 case ARM::BCCi64:
7544 case ARM::BCCZi64: {
7545 // If there is an unconditional branch to the other successor, remove it.
7546 BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
7547
7548 // Compare both parts that make up the double comparison separately for
7549 // equality.
7550 bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
7551
7552 unsigned LHS1 = MI->getOperand(1).getReg();
7553 unsigned LHS2 = MI->getOperand(2).getReg();
7554 if (RHSisZero) {
7555 AddDefaultPred(BuildMI(BB, dl,
7556 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7557 .addReg(LHS1).addImm(0));
7558 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7559 .addReg(LHS2).addImm(0)
7560 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7561 } else {
7562 unsigned RHS1 = MI->getOperand(3).getReg();
7563 unsigned RHS2 = MI->getOperand(4).getReg();
7564 AddDefaultPred(BuildMI(BB, dl,
7565 TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7566 .addReg(LHS1).addReg(RHS1));
7567 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7568 .addReg(LHS2).addReg(RHS2)
7569 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7570 }
7571
7572 MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
7573 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
7574 if (MI->getOperand(0).getImm() == ARMCC::NE)
7575 std::swap(destMBB, exitMBB);
7576
7577 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7578 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
7579 if (isThumb2)
7580 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
7581 else
7582 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
7583
7584 MI->eraseFromParent(); // The pseudo instruction is gone now.
7585 return BB;
7586 }
7587
7588 case ARM::Int_eh_sjlj_setjmp:
7589 case ARM::Int_eh_sjlj_setjmp_nofp:
7590 case ARM::tInt_eh_sjlj_setjmp:
7591 case ARM::t2Int_eh_sjlj_setjmp:
7592 case ARM::t2Int_eh_sjlj_setjmp_nofp:
7593 EmitSjLjDispatchBlock(MI, BB);
7594 return BB;
7595
7596 case ARM::ABS:
7597 case ARM::t2ABS: {
7598 // To insert an ABS instruction, we have to insert the
7599 // diamond control-flow pattern. The incoming instruction knows the
7600 // source vreg to test against 0, the destination vreg to set,
7601 // the condition code register to branch on, the
7602 // true/false values to select between, and a branch opcode to use.
7603 // It transforms
7604 // V1 = ABS V0
7605 // into
7606 // V2 = MOVS V0
7607 // BCC (branch to SinkBB if V0 >= 0)
7608 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
7609 // SinkBB: V1 = PHI(V2, V3)
7610 const BasicBlock *LLVM_BB = BB->getBasicBlock();
7611 MachineFunction::iterator BBI = BB;
7612 ++BBI;
7613 MachineFunction *Fn = BB->getParent();
7614 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7615 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7616 Fn->insert(BBI, RSBBB);
7617 Fn->insert(BBI, SinkBB);
7618
7619 unsigned int ABSSrcReg = MI->getOperand(1).getReg();
7620 unsigned int ABSDstReg = MI->getOperand(0).getReg();
7621 bool isThumb2 = Subtarget->isThumb2();
7622 MachineRegisterInfo &MRI = Fn->getRegInfo();
7623 // In Thumb mode S must not be specified if source register is the SP or
7624 // PC and if destination register is the SP, so restrict register class
7625 unsigned NewRsbDstReg =
7626 MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
7627
7628 // Transfer the remainder of BB and its successor edges to sinkMBB.
7629 SinkBB->splice(SinkBB->begin(), BB,
7630 std::next(MachineBasicBlock::iterator(MI)), BB->end());
7631 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
7632
7633 BB->addSuccessor(RSBBB);
7634 BB->addSuccessor(SinkBB);
7635
7636 // fall through to SinkMBB
7637 RSBBB->addSuccessor(SinkBB);
7638
7639 // insert a cmp at the end of BB
7640 AddDefaultPred(BuildMI(BB, dl,
7641 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7642 .addReg(ABSSrcReg).addImm(0));
7643
7644 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
7645 BuildMI(BB, dl,
7646 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
7647 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
7648
7649 // insert rsbri in RSBBB
7650 // Note: BCC and rsbri will be converted into predicated rsbmi
7651 // by if-conversion pass
7652 BuildMI(*RSBBB, RSBBB->begin(), dl,
7653 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
7654 .addReg(ABSSrcReg, RegState::Kill)
7655 .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
7656
7657 // insert PHI in SinkBB,
7658 // reuse ABSDstReg to not change uses of ABS instruction
7659 BuildMI(*SinkBB, SinkBB->begin(), dl,
7660 TII->get(ARM::PHI), ABSDstReg)
7661 .addReg(NewRsbDstReg).addMBB(RSBBB)
7662 .addReg(ABSSrcReg).addMBB(BB);
7663
7664 // remove ABS instruction
7665 MI->eraseFromParent();
7666
7667 // return last added BB
7668 return SinkBB;
7669 }
7670 case ARM::COPY_STRUCT_BYVAL_I32:
7671 ++NumLoopByVals;
7672 return EmitStructByval(MI, BB);
7673 case ARM::WIN__CHKSTK:
7674 return EmitLowered__chkstk(MI, BB);
7675 }
7676}
7677
7678void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
7679 SDNode *Node) const {
7680 const MCInstrDesc *MCID = &MI->getDesc();
7681 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
7682 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
7683 // operand is still set to noreg. If needed, set the optional operand's
7684 // register to CPSR, and remove the redundant implicit def.
7685 //
7686 // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
7687
7688 // Rename pseudo opcodes.
7689 unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
7690 if (NewOpc) {
7691 const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
7692 getTargetMachine().getSubtargetImpl()->getInstrInfo());
7693 MCID = &TII->get(NewOpc);
7694
7695 assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&((MCID->getNumOperands() == MI->getDesc().getNumOperands
() + 1 && "converted opcode should be the same except for cc_out"
) ? static_cast<void> (0) : __assert_fail ("MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 && \"converted opcode should be the same except for cc_out\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7696, __PRETTY_FUNCTION__))
7696 "converted opcode should be the same except for cc_out")((MCID->getNumOperands() == MI->getDesc().getNumOperands
() + 1 && "converted opcode should be the same except for cc_out"
) ? static_cast<void> (0) : __assert_fail ("MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 && \"converted opcode should be the same except for cc_out\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7696, __PRETTY_FUNCTION__))
;
7697
7698 MI->setDesc(*MCID);
7699
7700 // Add the optional cc_out operand
7701 MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
7702 }
7703 unsigned ccOutIdx = MCID->getNumOperands() - 1;
7704
7705 // Any ARM instruction that sets the 's' bit should specify an optional
7706 // "cc_out" operand in the last operand position.
7707 if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
7708 assert(!NewOpc && "Optional cc_out operand required")((!NewOpc && "Optional cc_out operand required") ? static_cast
<void> (0) : __assert_fail ("!NewOpc && \"Optional cc_out operand required\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7708, __PRETTY_FUNCTION__))
;
7709 return;
7710 }
7711 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
7712 // since we already have an optional CPSR def.
7713 bool definesCPSR = false;
7714 bool deadCPSR = false;
7715 for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
7716 i != e; ++i) {
7717 const MachineOperand &MO = MI->getOperand(i);
7718 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
7719 definesCPSR = true;
7720 if (MO.isDead())
7721 deadCPSR = true;
7722 MI->RemoveOperand(i);
7723 break;
7724 }
7725 }
7726 if (!definesCPSR) {
7727 assert(!NewOpc && "Optional cc_out operand required")((!NewOpc && "Optional cc_out operand required") ? static_cast
<void> (0) : __assert_fail ("!NewOpc && \"Optional cc_out operand required\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7727, __PRETTY_FUNCTION__))
;
7728 return;
7729 }
7730 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag")((deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag"
) ? static_cast<void> (0) : __assert_fail ("deadCPSR == !Node->hasAnyUseOfValue(1) && \"inconsistent dead flag\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7730, __PRETTY_FUNCTION__))
;
7731 if (deadCPSR) {
7732 assert(!MI->getOperand(ccOutIdx).getReg() &&((!MI->getOperand(ccOutIdx).getReg() && "expect uninitialized optional cc_out operand"
) ? static_cast<void> (0) : __assert_fail ("!MI->getOperand(ccOutIdx).getReg() && \"expect uninitialized optional cc_out operand\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7733, __PRETTY_FUNCTION__))
7733 "expect uninitialized optional cc_out operand")((!MI->getOperand(ccOutIdx).getReg() && "expect uninitialized optional cc_out operand"
) ? static_cast<void> (0) : __assert_fail ("!MI->getOperand(ccOutIdx).getReg() && \"expect uninitialized optional cc_out operand\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7733, __PRETTY_FUNCTION__))
;
7734 return;
7735 }
7736
7737 // If this instruction was defined with an optional CPSR def and its dag node
7738 // had a live implicit CPSR def, then activate the optional CPSR def.
7739 MachineOperand &MO = MI->getOperand(ccOutIdx);
7740 MO.setReg(ARM::CPSR);
7741 MO.setIsDef(true);
7742}
7743
7744//===----------------------------------------------------------------------===//
7745// ARM Optimization Hooks
7746//===----------------------------------------------------------------------===//
7747
7748// Helper function that checks if N is a null or all ones constant.
7749static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7750 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7751 if (!C)
7752 return false;
7753 return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7754}
7755
7756// Return true if N is conditionally 0 or all ones.
7757// Detects these expressions where cc is an i1 value:
7758//
7759// (select cc 0, y) [AllOnes=0]
7760// (select cc y, 0) [AllOnes=0]
7761// (zext cc) [AllOnes=0]
7762// (sext cc) [AllOnes=0/1]
7763// (select cc -1, y) [AllOnes=1]
7764// (select cc y, -1) [AllOnes=1]
7765//
7766// Invert is set when N is the null/all ones constant when CC is false.
7767// OtherOp is set to the alternative value of N.
7768static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7769 SDValue &CC, bool &Invert,
7770 SDValue &OtherOp,
7771 SelectionDAG &DAG) {
7772 switch (N->getOpcode()) {
7773 default: return false;
7774 case ISD::SELECT: {
7775 CC = N->getOperand(0);
7776 SDValue N1 = N->getOperand(1);
7777 SDValue N2 = N->getOperand(2);
7778 if (isZeroOrAllOnes(N1, AllOnes)) {
7779 Invert = false;
7780 OtherOp = N2;
7781 return true;
7782 }
7783 if (isZeroOrAllOnes(N2, AllOnes)) {
7784 Invert = true;
7785 OtherOp = N1;
7786 return true;
7787 }
7788 return false;
7789 }
7790 case ISD::ZERO_EXTEND:
7791 // (zext cc) can never be the all ones value.
7792 if (AllOnes)
7793 return false;
7794 // Fall through.
7795 case ISD::SIGN_EXTEND: {
7796 EVT VT = N->getValueType(0);
7797 CC = N->getOperand(0);
7798 if (CC.getValueType() != MVT::i1)
7799 return false;
7800 Invert = !AllOnes;
7801 if (AllOnes)
7802 // When looking for an AllOnes constant, N is an sext, and the 'other'
7803 // value is 0.
7804 OtherOp = DAG.getConstant(0, VT);
7805 else if (N->getOpcode() == ISD::ZERO_EXTEND)
7806 // When looking for a 0 constant, N can be zext or sext.
7807 OtherOp = DAG.getConstant(1, VT);
7808 else
7809 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7810 return true;
7811 }
7812 }
7813}
7814
7815// Combine a constant select operand into its use:
7816//
7817// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
7818// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
7819// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
7820// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
7821// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
7822//
7823// The transform is rejected if the select doesn't have a constant operand that
7824// is null, or all ones when AllOnes is set.
7825//
7826// Also recognize sext/zext from i1:
7827//
7828// (add (zext cc), x) -> (select cc (add x, 1), x)
7829// (add (sext cc), x) -> (select cc (add x, -1), x)
7830//
7831// These transformations eventually create predicated instructions.
7832//
7833// @param N The node to transform.
7834// @param Slct The N operand that is a select.
7835// @param OtherOp The other N operand (x above).
7836// @param DCI Context.
7837// @param AllOnes Require the select constant to be all ones instead of null.
7838// @returns The new node, or SDValue() on failure.
7839static
7840SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7841 TargetLowering::DAGCombinerInfo &DCI,
7842 bool AllOnes = false) {
7843 SelectionDAG &DAG = DCI.DAG;
7844 EVT VT = N->getValueType(0);
7845 SDValue NonConstantVal;
7846 SDValue CCOp;
7847 bool SwapSelectOps;
7848 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7849 NonConstantVal, DAG))
7850 return SDValue();
7851
7852 // Slct is now know to be the desired identity constant when CC is true.
7853 SDValue TrueVal = OtherOp;
7854 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
7855 OtherOp, NonConstantVal);
7856 // Unless SwapSelectOps says CC should be false.
7857 if (SwapSelectOps)
7858 std::swap(TrueVal, FalseVal);
7859
7860 return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7861 CCOp, TrueVal, FalseVal);
7862}
7863
7864// Attempt combineSelectAndUse on each operand of a commutative operator N.
7865static
7866SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7867 TargetLowering::DAGCombinerInfo &DCI) {
7868 SDValue N0 = N->getOperand(0);
7869 SDValue N1 = N->getOperand(1);
7870 if (N0.getNode()->hasOneUse()) {
7871 SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7872 if (Result.getNode())
7873 return Result;
7874 }
7875 if (N1.getNode()->hasOneUse()) {
7876 SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7877 if (Result.getNode())
7878 return Result;
7879 }
7880 return SDValue();
7881}
7882
7883// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7884// (only after legalization).
7885static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7886 TargetLowering::DAGCombinerInfo &DCI,
7887 const ARMSubtarget *Subtarget) {
7888
7889 // Only perform optimization if after legalize, and if NEON is available. We
7890 // also expected both operands to be BUILD_VECTORs.
7891 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7892 || N0.getOpcode() != ISD::BUILD_VECTOR
7893 || N1.getOpcode() != ISD::BUILD_VECTOR)
7894 return SDValue();
7895
7896 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7897 EVT VT = N->getValueType(0);
7898 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7899 return SDValue();
7900
7901 // Check that the vector operands are of the right form.
7902 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7903 // operands, where N is the size of the formed vector.
7904 // Each EXTRACT_VECTOR should have the same input vector and odd or even
7905 // index such that we have a pair wise add pattern.
7906
7907 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7908 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7909 return SDValue();
7910 SDValue Vec = N0->getOperand(0)->getOperand(0);
7911 SDNode *V = Vec.getNode();
7912 unsigned nextIndex = 0;
7913
7914 // For each operands to the ADD which are BUILD_VECTORs,
7915 // check to see if each of their operands are an EXTRACT_VECTOR with
7916 // the same vector and appropriate index.
7917 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7918 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7919 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7920
7921 SDValue ExtVec0 = N0->getOperand(i);
7922 SDValue ExtVec1 = N1->getOperand(i);
7923
7924 // First operand is the vector, verify its the same.
7925 if (V != ExtVec0->getOperand(0).getNode() ||
7926 V != ExtVec1->getOperand(0).getNode())
7927 return SDValue();
7928
7929 // Second is the constant, verify its correct.
7930 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7931 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7932
7933 // For the constant, we want to see all the even or all the odd.
7934 if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7935 || C1->getZExtValue() != nextIndex+1)
7936 return SDValue();
7937
7938 // Increment index.
7939 nextIndex+=2;
7940 } else
7941 return SDValue();
7942 }
7943
7944 // Create VPADDL node.
7945 SelectionDAG &DAG = DCI.DAG;
7946 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7947
7948 // Build operand list.
7949 SmallVector<SDValue, 8> Ops;
7950 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7951 TLI.getPointerTy()));
7952
7953 // Input is the vector.
7954 Ops.push_back(Vec);
7955
7956 // Get widened type and narrowed type.
7957 MVT widenType;
7958 unsigned numElem = VT.getVectorNumElements();
7959
7960 EVT inputLaneType = Vec.getValueType().getVectorElementType();
7961 switch (inputLaneType.getSimpleVT().SimpleTy) {
7962 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7963 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7964 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7965 default:
7966 llvm_unreachable("Invalid vector element type for padd optimization.")::llvm::llvm_unreachable_internal("Invalid vector element type for padd optimization."
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 7966)
;
7967 }
7968
7969 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), widenType, Ops);
7970 unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
7971 return DAG.getNode(ExtOp, SDLoc(N), VT, tmp);
7972}
7973
7974static SDValue findMUL_LOHI(SDValue V) {
7975 if (V->getOpcode() == ISD::UMUL_LOHI ||
7976 V->getOpcode() == ISD::SMUL_LOHI)
7977 return V;
7978 return SDValue();
7979}
7980
7981static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7982 TargetLowering::DAGCombinerInfo &DCI,
7983 const ARMSubtarget *Subtarget) {
7984
7985 if (Subtarget->isThumb1Only()) return SDValue();
7986
7987 // Only perform the checks after legalize when the pattern is available.
7988 if (DCI.isBeforeLegalize()) return SDValue();
7989
7990 // Look for multiply add opportunities.
7991 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
7992 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
7993 // a glue link from the first add to the second add.
7994 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
7995 // a S/UMLAL instruction.
7996 // loAdd UMUL_LOHI
7997 // \ / :lo \ :hi
7998 // \ / \ [no multiline comment]
7999 // ADDC | hiAdd
8000 // \ :glue / /
8001 // \ / /
8002 // ADDE
8003 //
8004 assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC")((AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC"
) ? static_cast<void> (0) : __assert_fail ("AddcNode->getOpcode() == ISD::ADDC && \"Expect an ADDC\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 8004, __PRETTY_FUNCTION__))
;
8005 SDValue AddcOp0 = AddcNode->getOperand(0);
8006 SDValue AddcOp1 = AddcNode->getOperand(1);
8007
8008 // Check if the two operands are from the same mul_lohi node.
8009 if (AddcOp0.getNode() == AddcOp1.getNode())
8010 return SDValue();
8011
8012 assert(AddcNode->getNumValues() == 2 &&((AddcNode->getNumValues() == 2 && AddcNode->getValueType
(0) == MVT::i32 && "Expect ADDC with two result values. First: i32"
) ? static_cast<void> (0) : __assert_fail ("AddcNode->getNumValues() == 2 && AddcNode->getValueType(0) == MVT::i32 && \"Expect ADDC with two result values. First: i32\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 8014, __PRETTY_FUNCTION__))
8013 AddcNode->getValueType(0) == MVT::i32 &&((AddcNode->getNumValues() == 2 && AddcNode->getValueType
(0) == MVT::i32 && "Expect ADDC with two result values. First: i32"
) ? static_cast<void> (0) : __assert_fail ("AddcNode->getNumValues() == 2 && AddcNode->getValueType(0) == MVT::i32 && \"Expect ADDC with two result values. First: i32\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 8014, __PRETTY_FUNCTION__))
8014 "Expect ADDC with two result values. First: i32")((AddcNode->getNumValues() == 2 && AddcNode->getValueType
(0) == MVT::i32 && "Expect ADDC with two result values. First: i32"
) ? static_cast<void> (0) : __assert_fail ("AddcNode->getNumValues() == 2 && AddcNode->getValueType(0) == MVT::i32 && \"Expect ADDC with two result values. First: i32\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 8014, __PRETTY_FUNCTION__))
;
8015
8016 // Check that we have a glued ADDC node.
8017 if (AddcNode->getValueType(1) != MVT::Glue)
8018 return SDValue();
8019
8020 // Check that the ADDC adds the low result of the S/UMUL_LOHI.
8021 if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
8022 AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
8023 AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
8024 AddcOp1->getOpcode() != ISD::SMUL_LOHI)
8025 return SDValue();
8026
8027 // Look for the glued ADDE.
8028 SDNode* AddeNode = AddcNode->getGluedUser();
8029 if (!AddeNode)
8030 return SDValue();
8031
8032 // Make sure it is really an ADDE.
8033 if (AddeNode->getOpcode() != ISD::ADDE)
8034 return SDValue();
8035
8036 assert(AddeNode->getNumOperands() == 3 &&((AddeNode->getNumOperands() == 3 && AddeNode->
getOperand(2).getValueType() == MVT::Glue && "ADDE node has the wrong inputs"
) ? static_cast<void> (0) : __assert_fail ("AddeNode->getNumOperands() == 3 && AddeNode->getOperand(2).getValueType() == MVT::Glue && \"ADDE node has the wrong inputs\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 8038, __PRETTY_FUNCTION__))
8037 AddeNode->getOperand(2).getValueType() == MVT::Glue &&((AddeNode->getNumOperands() == 3 && AddeNode->
getOperand(2).getValueType() == MVT::Glue && "ADDE node has the wrong inputs"
) ? static_cast<void> (0) : __assert_fail ("AddeNode->getNumOperands() == 3 && AddeNode->getOperand(2).getValueType() == MVT::Glue && \"ADDE node has the wrong inputs\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 8038, __PRETTY_FUNCTION__))
8038 "ADDE node has the wrong inputs")((AddeNode->getNumOperands() == 3 && AddeNode->
getOperand(2).getValueType() == MVT::Glue && "ADDE node has the wrong inputs"
) ? static_cast<void> (0) : __assert_fail ("AddeNode->getNumOperands() == 3 && AddeNode->getOperand(2).getValueType() == MVT::Glue && \"ADDE node has the wrong inputs\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 8038, __PRETTY_FUNCTION__))
;
8039
8040 // Check for the triangle shape.
8041 SDValue AddeOp0 = AddeNode->getOperand(0);
8042 SDValue AddeOp1 = AddeNode->getOperand(1);
8043
8044 // Make sure that the ADDE operands are not coming from the same node.
8045 if (AddeOp0.getNode() == AddeOp1.getNode())
8046 return SDValue();
8047
8048 // Find the MUL_LOHI node walking up ADDE's operands.
8049 bool IsLeftOperandMUL = false;
8050 SDValue MULOp = findMUL_LOHI(AddeOp0);
8051 if (MULOp == SDValue())
8052 MULOp = findMUL_LOHI(AddeOp1);
8053 else
8054 IsLeftOperandMUL = true;
8055 if (MULOp == SDValue())
8056 return SDValue();
8057
8058 // Figure out the right opcode.
8059 unsigned Opc = MULOp->getOpcode();
8060 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
8061
8062 // Figure out the high and low input values to the MLAL node.
8063 SDValue* HiMul = &MULOp;
8064 SDValue* HiAdd = nullptr;
8065 SDValue* LoMul = nullptr;
8066 SDValue* LowAdd = nullptr;
8067
8068 if (IsLeftOperandMUL)
8069 HiAdd = &AddeOp1;
8070 else
8071 HiAdd = &AddeOp0;
8072
8073
8074 if (AddcOp0->getOpcode() == Opc) {
8075 LoMul = &AddcOp0;
8076 LowAdd = &AddcOp1;
8077 }
8078 if (AddcOp1->getOpcode() == Opc) {
8079 LoMul = &AddcOp1;
8080 LowAdd = &AddcOp0;
8081 }
8082
8083 if (!LoMul)
8084 return SDValue();
8085
8086 if (LoMul->getNode() != HiMul->getNode())
8087 return SDValue();
8088
8089 // Create the merged node.
8090 SelectionDAG &DAG = DCI.DAG;
8091
8092 // Build operand list.
8093 SmallVector<SDValue, 8> Ops;
8094 Ops.push_back(LoMul->getOperand(0));
8095 Ops.push_back(LoMul->getOperand(1));
8096 Ops.push_back(*LowAdd);
8097 Ops.push_back(*HiAdd);
8098
8099 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode),
8100 DAG.getVTList(MVT::i32, MVT::i32), Ops);
8101
8102 // Replace the ADDs' nodes uses by the MLA node's values.
8103 SDValue HiMLALResult(MLALNode.getNode(), 1);
8104 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
8105
8106 SDValue LoMLALResult(MLALNode.getNode(), 0);
8107 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
8108
8109 // Return original node to notify the driver to stop replacing.
8110 SDValue resNode(AddcNode, 0);
8111 return resNode;
8112}
8113
8114/// PerformADDCCombine - Target-specific dag combine transform from
8115/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
8116static SDValue PerformADDCCombine(SDNode *N,
8117 TargetLowering::DAGCombinerInfo &DCI,
8118 const ARMSubtarget *Subtarget) {
8119
8120 return AddCombineTo64bitMLAL(N, DCI, Subtarget);
8121
8122}
8123
8124/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
8125/// operands N0 and N1. This is a helper for PerformADDCombine that is
8126/// called with the default operands, and if that fails, with commuted
8127/// operands.
8128static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
8129 TargetLowering::DAGCombinerInfo &DCI,
8130 const ARMSubtarget *Subtarget){
8131
8132 // Attempt to create vpaddl for this add.
8133 SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
8134 if (Result.getNode())
8135 return Result;
8136
8137 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
8138 if (N0.getNode()->hasOneUse()) {
8139 SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
8140 if (Result.getNode()) return Result;
8141 }
8142 return SDValue();
8143}
8144
8145/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
8146///
8147static SDValue PerformADDCombine(SDNode *N,
8148 TargetLowering::DAGCombinerInfo &DCI,
8149 const ARMSubtarget *Subtarget) {
8150 SDValue N0 = N->getOperand(0);
8151 SDValue N1 = N->getOperand(1);
8152
8153 // First try with the default operand order.
8154 SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
8155 if (Result.getNode())
8156 return Result;
8157
8158 // If that didn't work, try again with the operands commuted.
8159 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
8160}
8161
8162/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
8163///
8164static SDValue PerformSUBCombine(SDNode *N,
8165 TargetLowering::DAGCombinerInfo &DCI) {
8166 SDValue N0 = N->getOperand(0);
8167 SDValue N1 = N->getOperand(1);
8168
8169 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
8170 if (N1.getNode()->hasOneUse()) {
8171 SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
8172 if (Result.getNode()) return Result;
8173 }
8174
8175 return SDValue();
8176}
8177
8178/// PerformVMULCombine
8179/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
8180/// special multiplier accumulator forwarding.
8181/// vmul d3, d0, d2
8182/// vmla d3, d1, d2
8183/// is faster than
8184/// vadd d3, d0, d1
8185/// vmul d3, d3, d2
8186// However, for (A + B) * (A + B),
8187// vadd d2, d0, d1
8188// vmul d3, d0, d2
8189// vmla d3, d1, d2
8190// is slower than
8191// vadd d2, d0, d1
8192// vmul d3, d2, d2
8193static SDValue PerformVMULCombine(SDNode *N,
8194 TargetLowering::DAGCombinerInfo &DCI,
8195 const ARMSubtarget *Subtarget) {
8196 if (!Subtarget->hasVMLxForwarding())
8197 return SDValue();
8198
8199 SelectionDAG &DAG = DCI.DAG;
8200 SDValue N0 = N->getOperand(0);
8201 SDValue N1 = N->getOperand(1);
8202 unsigned Opcode = N0.getOpcode();
8203 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8204 Opcode != ISD::FADD && Opcode != ISD::FSUB) {
8205 Opcode = N1.getOpcode();
8206 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8207 Opcode != ISD::FADD && Opcode != ISD::FSUB)
8208 return SDValue();
8209 std::swap(N0, N1);
8210 }
8211
8212 if (N0 == N1)
8213 return SDValue();
8214
8215 EVT VT = N->getValueType(0);
8216 SDLoc DL(N);
8217 SDValue N00 = N0->getOperand(0);
8218 SDValue N01 = N0->getOperand(1);
8219 return DAG.getNode(Opcode, DL, VT,
8220 DAG.getNode(ISD::MUL, DL, VT, N00, N1),
8221 DAG.getNode(ISD::MUL, DL, VT, N01, N1));
8222}
8223
8224static SDValue PerformMULCombine(SDNode *N,
8225 TargetLowering::DAGCombinerInfo &DCI,
8226 const ARMSubtarget *Subtarget) {
8227 SelectionDAG &DAG = DCI.DAG;
8228
8229 if (Subtarget->isThumb1Only())
8230 return SDValue();
8231
8232 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8233 return SDValue();
8234
8235 EVT VT = N->getValueType(0);
8236 if (VT.is64BitVector() || VT.is128BitVector())
8237 return PerformVMULCombine(N, DCI, Subtarget);
8238 if (VT != MVT::i32)
8239 return SDValue();
8240
8241 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8242 if (!C)
8243 return SDValue();
8244
8245 int64_t MulAmt = C->getSExtValue();
8246 unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
8247
8248 ShiftAmt = ShiftAmt & (32 - 1);
8249 SDValue V = N->getOperand(0);
8250 SDLoc DL(N);
8251
8252 SDValue Res;
8253 MulAmt >>= ShiftAmt;
8254
8255 if (MulAmt >= 0) {
8256 if (isPowerOf2_32(MulAmt - 1)) {
8257 // (mul x, 2^N + 1) => (add (shl x, N), x)
8258 Res = DAG.getNode(ISD::ADD, DL, VT,
8259 V,
8260 DAG.getNode(ISD::SHL, DL, VT,
8261 V,
8262 DAG.getConstant(Log2_32(MulAmt - 1),
8263 MVT::i32)));
8264 } else if (isPowerOf2_32(MulAmt + 1)) {
8265 // (mul x, 2^N - 1) => (sub (shl x, N), x)
8266 Res = DAG.getNode(ISD::SUB, DL, VT,
8267 DAG.getNode(ISD::SHL, DL, VT,
8268 V,
8269 DAG.getConstant(Log2_32(MulAmt + 1),
8270 MVT::i32)),
8271 V);
8272 } else
8273 return SDValue();
8274 } else {
8275 uint64_t MulAmtAbs = -MulAmt;
8276 if (isPowerOf2_32(MulAmtAbs + 1)) {
8277 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
8278 Res = DAG.getNode(ISD::SUB, DL, VT,
8279 V,
8280 DAG.getNode(ISD::SHL, DL, VT,
8281 V,
8282 DAG.getConstant(Log2_32(MulAmtAbs + 1),
8283 MVT::i32)));
8284 } else if (isPowerOf2_32(MulAmtAbs - 1)) {
8285 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
8286 Res = DAG.getNode(ISD::ADD, DL, VT,
8287 V,
8288 DAG.getNode(ISD::SHL, DL, VT,
8289 V,
8290 DAG.getConstant(Log2_32(MulAmtAbs-1),
8291 MVT::i32)));
8292 Res = DAG.getNode(ISD::SUB, DL, VT,
8293 DAG.getConstant(0, MVT::i32),Res);
8294
8295 } else
8296 return SDValue();
8297 }
8298
8299 if (ShiftAmt != 0)
8300 Res = DAG.getNode(ISD::SHL, DL, VT,
8301 Res, DAG.getConstant(ShiftAmt, MVT::i32));
8302
8303 // Do not add new nodes to DAG combiner worklist.
8304 DCI.CombineTo(N, Res, false);
8305 return SDValue();
8306}
8307
8308static SDValue PerformANDCombine(SDNode *N,
8309 TargetLowering::DAGCombinerInfo &DCI,
8310 const ARMSubtarget *Subtarget) {
8311
8312 // Attempt to use immediate-form VBIC
8313 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8314 SDLoc dl(N);
8315 EVT VT = N->getValueType(0);
8316 SelectionDAG &DAG = DCI.DAG;
8317
8318 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8319 return SDValue();
8320
8321 APInt SplatBits, SplatUndef;
8322 unsigned SplatBitSize;
8323 bool HasAnyUndefs;
8324 if (BVN &&
8325 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8326 if (SplatBitSize <= 64) {
8327 EVT VbicVT;
8328 SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
8329 SplatUndef.getZExtValue(), SplatBitSize,
8330 DAG, VbicVT, VT.is128BitVector(),
8331 OtherModImm);
8332 if (Val.getNode()) {
8333 SDValue Input =
8334 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
8335 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
8336 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
8337 }
8338 }
8339 }
8340
8341 if (!Subtarget->isThumb1Only()) {
8342 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
8343 SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
8344 if (Result.getNode())
8345 return Result;
8346 }
8347
8348 return SDValue();
8349}
8350
8351/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
8352static SDValue PerformORCombine(SDNode *N,
8353 TargetLowering::DAGCombinerInfo &DCI,
8354 const ARMSubtarget *Subtarget) {
8355 // Attempt to use immediate-form VORR
8356 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8357 SDLoc dl(N);
8358 EVT VT = N->getValueType(0);
8359 SelectionDAG &DAG = DCI.DAG;
8360
8361 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8362 return SDValue();
8363
8364 APInt SplatBits, SplatUndef;
8365 unsigned SplatBitSize;
8366 bool HasAnyUndefs;
8367 if (BVN && Subtarget->hasNEON() &&
8368 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8369 if (SplatBitSize <= 64) {
8370 EVT VorrVT;
8371 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
8372 SplatUndef.getZExtValue(), SplatBitSize,
8373 DAG, VorrVT, VT.is128BitVector(),
8374 OtherModImm);
8375 if (Val.getNode()) {
8376 SDValue Input =
8377 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
8378 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
8379 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
8380 }
8381 }
8382 }
8383
8384 if (!Subtarget->isThumb1Only()) {
8385 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
8386 SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8387 if (Result.getNode())
8388 return Result;
8389 }
8390
8391 // The code below optimizes (or (and X, Y), Z).
8392 // The AND operand needs to have a single user to make these optimizations
8393 // profitable.
8394 SDValue N0 = N->getOperand(0);
8395 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
8396 return SDValue();
8397 SDValue N1 = N->getOperand(1);
8398
8399 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
8400 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
8401 DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
8402 APInt SplatUndef;
8403 unsigned SplatBitSize;
8404 bool HasAnyUndefs;
8405
8406 APInt SplatBits0, SplatBits1;
8407 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
8408 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
8409 // Ensure that the second operand of both ands are constants
8410 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
8411 HasAnyUndefs) && !HasAnyUndefs) {
8412 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
8413 HasAnyUndefs) && !HasAnyUndefs) {
8414 // Ensure that the bit width of the constants are the same and that
8415 // the splat arguments are logical inverses as per the pattern we
8416 // are trying to simplify.
8417 if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
8418 SplatBits0 == ~SplatBits1) {
8419 // Canonicalize the vector type to make instruction selection
8420 // simpler.
8421 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
8422 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
8423 N0->getOperand(1),
8424 N0->getOperand(0),
8425 N1->getOperand(0));
8426 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
8427 }
8428 }
8429 }
8430 }
8431
8432 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
8433 // reasonable.
8434
8435 // BFI is only available on V6T2+
8436 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
8437 return SDValue();
8438
8439 SDLoc DL(N);
8440 // 1) or (and A, mask), val => ARMbfi A, val, mask
8441 // iff (val & mask) == val
8442 //
8443 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8444 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
8445 // && mask == ~mask2
8446 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
8447 // && ~mask == mask2
8448 // (i.e., copy a bitfield value into another bitfield of the same width)
8449
8450 if (VT != MVT::i32)
8451 return SDValue();
8452
8453 SDValue N00 = N0.getOperand(0);
8454
8455 // The value and the mask need to be constants so we can verify this is
8456 // actually a bitfield set. If the mask is 0xffff, we can do better
8457 // via a movt instruction, so don't use BFI in that case.
8458 SDValue MaskOp = N0.getOperand(1);
8459 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
8460 if (!MaskC)
8461 return SDValue();
8462 unsigned Mask = MaskC->getZExtValue();
8463 if (Mask == 0xffff)
8464 return SDValue();
8465 SDValue Res;
8466 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
8467 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
8468 if (N1C) {
8469 unsigned Val = N1C->getZExtValue();
8470 if ((Val & ~Mask) != Val)
8471 return SDValue();
8472
8473 if (ARM::isBitFieldInvertedMask(Mask)) {
8474 Val >>= countTrailingZeros(~Mask);
8475
8476 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
8477 DAG.getConstant(Val, MVT::i32),
8478 DAG.getConstant(Mask, MVT::i32));
8479
8480 // Do not add new nodes to DAG combiner worklist.
8481 DCI.CombineTo(N, Res, false);
8482 return SDValue();
8483 }
8484 } else if (N1.getOpcode() == ISD::AND) {
8485 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8486 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8487 if (!N11C)
8488 return SDValue();
8489 unsigned Mask2 = N11C->getZExtValue();
8490
8491 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
8492 // as is to match.
8493 if (ARM::isBitFieldInvertedMask(Mask) &&
8494 (Mask == ~Mask2)) {
8495 // The pack halfword instruction works better for masks that fit it,
8496 // so use that when it's available.
8497 if (Subtarget->hasT2ExtractPack() &&
8498 (Mask == 0xffff || Mask == 0xffff0000))
8499 return SDValue();
8500 // 2a
8501 unsigned amt = countTrailingZeros(Mask2);
8502 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
8503 DAG.getConstant(amt, MVT::i32));
8504 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
8505 DAG.getConstant(Mask, MVT::i32));
8506 // Do not add new nodes to DAG combiner worklist.
8507 DCI.CombineTo(N, Res, false);
8508 return SDValue();
8509 } else if (ARM::isBitFieldInvertedMask(~Mask) &&
8510 (~Mask == Mask2)) {
8511 // The pack halfword instruction works better for masks that fit it,
8512 // so use that when it's available.
8513 if (Subtarget->hasT2ExtractPack() &&
8514 (Mask2 == 0xffff || Mask2 == 0xffff0000))
8515 return SDValue();
8516 // 2b
8517 unsigned lsb = countTrailingZeros(Mask);
8518 Res = DAG.getNode(ISD::SRL, DL, VT, N00,
8519 DAG.getConstant(lsb, MVT::i32));
8520 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
8521 DAG.getConstant(Mask2, MVT::i32));
8522 // Do not add new nodes to DAG combiner worklist.
8523 DCI.CombineTo(N, Res, false);
8524 return SDValue();
8525 }
8526 }
8527
8528 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
8529 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
8530 ARM::isBitFieldInvertedMask(~Mask)) {
8531 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
8532 // where lsb(mask) == #shamt and masked bits of B are known zero.
8533 SDValue ShAmt = N00.getOperand(1);
8534 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
8535 unsigned LSB = countTrailingZeros(Mask);
8536 if (ShAmtC != LSB)
8537 return SDValue();
8538
8539 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
8540 DAG.getConstant(~Mask, MVT::i32));
8541
8542 // Do not add new nodes to DAG combiner worklist.
8543 DCI.CombineTo(N, Res, false);
8544 }
8545
8546 return SDValue();
8547}
8548
8549static SDValue PerformXORCombine(SDNode *N,
8550 TargetLowering::DAGCombinerInfo &DCI,
8551 const ARMSubtarget *Subtarget) {
8552 EVT VT = N->getValueType(0);
8553 SelectionDAG &DAG = DCI.DAG;
8554
8555 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8556 return SDValue();
8557
8558 if (!Subtarget->isThumb1Only()) {
8559 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
8560 SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8561 if (Result.getNode())
8562 return Result;
8563 }
8564
8565 return SDValue();
8566}
8567
8568/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
8569/// the bits being cleared by the AND are not demanded by the BFI.
8570static SDValue PerformBFICombine(SDNode *N,
8571 TargetLowering::DAGCombinerInfo &DCI) {
8572 SDValue N1 = N->getOperand(1);
8573 if (N1.getOpcode() == ISD::AND) {
1
Taking true branch
8574 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8575 if (!N11C)
2
Assuming 'N11C' is non-null
3
Taking false branch
8576 return SDValue();
8577 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
8578 unsigned LSB = countTrailingZeros(~InvMask);
8579 unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
8580 unsigned Mask = (1 << Width)-1;
4
The result of the '<<' expression is undefined
8581 unsigned Mask2 = N11C->getZExtValue();
8582 if ((Mask & (~Mask2)) == 0)
8583 return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
8584 N->getOperand(0), N1.getOperand(0),
8585 N->getOperand(2));
8586 }
8587 return SDValue();
8588}
8589
8590/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
8591/// ARMISD::VMOVRRD.
8592static SDValue PerformVMOVRRDCombine(SDNode *N,
8593 TargetLowering::DAGCombinerInfo &DCI,
8594 const ARMSubtarget *Subtarget) {
8595 // vmovrrd(vmovdrr x, y) -> x,y
8596 SDValue InDouble = N->getOperand(0);
8597 if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
8598 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
8599
8600 // vmovrrd(load f64) -> (load i32), (load i32)
8601 SDNode *InNode = InDouble.getNode();
8602 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
8603 InNode->getValueType(0) == MVT::f64 &&
8604 InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
8605 !cast<LoadSDNode>(InNode)->isVolatile()) {
8606 // TODO: Should this be done for non-FrameIndex operands?
8607 LoadSDNode *LD = cast<LoadSDNode>(InNode);
8608
8609 SelectionDAG &DAG = DCI.DAG;
8610 SDLoc DL(LD);
8611 SDValue BasePtr = LD->getBasePtr();
8612 SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
8613 LD->getPointerInfo(), LD->isVolatile(),
8614 LD->isNonTemporal(), LD->isInvariant(),
8615 LD->getAlignment());
8616
8617 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8618 DAG.getConstant(4, MVT::i32));
8619 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
8620 LD->getPointerInfo(), LD->isVolatile(),
8621 LD->isNonTemporal(), LD->isInvariant(),
8622 std::min(4U, LD->getAlignment() / 2));
8623
8624 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
8625 if (DCI.DAG.getTargetLoweringInfo().isBigEndian())
8626 std::swap (NewLD1, NewLD2);
8627 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
8628 return Result;
8629 }
8630
8631 return SDValue();
8632}
8633
8634/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
8635/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
8636static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
8637 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
8638 SDValue Op0 = N->getOperand(0);
8639 SDValue Op1 = N->getOperand(1);
8640 if (Op0.getOpcode() == ISD::BITCAST)
8641 Op0 = Op0.getOperand(0);
8642 if (Op1.getOpcode() == ISD::BITCAST)
8643 Op1 = Op1.getOperand(0);
8644 if (Op0.getOpcode() == ARMISD::VMOVRRD &&
8645 Op0.getNode() == Op1.getNode() &&
8646 Op0.getResNo() == 0 && Op1.getResNo() == 1)
8647 return DAG.getNode(ISD::BITCAST, SDLoc(N),
8648 N->getValueType(0), Op0.getOperand(0));
8649 return SDValue();
8650}
8651
8652/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8653/// are normal, non-volatile loads. If so, it is profitable to bitcast an
8654/// i64 vector to have f64 elements, since the value can then be loaded
8655/// directly into a VFP register.
8656static bool hasNormalLoadOperand(SDNode *N) {
8657 unsigned NumElts = N->getValueType(0).getVectorNumElements();
8658 for (unsigned i = 0; i < NumElts; ++i) {
8659 SDNode *Elt = N->getOperand(i).getNode();
8660 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8661 return true;
8662 }
8663 return false;
8664}
8665
8666/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8667/// ISD::BUILD_VECTOR.
8668static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8669 TargetLowering::DAGCombinerInfo &DCI,
8670 const ARMSubtarget *Subtarget) {
8671 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8672 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
8673 // into a pair of GPRs, which is fine when the value is used as a scalar,
8674 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8675 SelectionDAG &DAG = DCI.DAG;
8676 if (N->getNumOperands() == 2) {
8677 SDValue RV = PerformVMOVDRRCombine(N, DAG);
8678 if (RV.getNode())
8679 return RV;
8680 }
8681
8682 // Load i64 elements as f64 values so that type legalization does not split
8683 // them up into i32 values.
8684 EVT VT = N->getValueType(0);
8685 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8686 return SDValue();
8687 SDLoc dl(N);
8688 SmallVector<SDValue, 8> Ops;
8689 unsigned NumElts = VT.getVectorNumElements();
8690 for (unsigned i = 0; i < NumElts; ++i) {
8691 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8692 Ops.push_back(V);
8693 // Make the DAGCombiner fold the bitcast.
8694 DCI.AddToWorklist(V.getNode());
8695 }
8696 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8697 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops);
8698 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8699}
8700
8701/// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
8702static SDValue
8703PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8704 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
8705 // At that time, we may have inserted bitcasts from integer to float.
8706 // If these bitcasts have survived DAGCombine, change the lowering of this
8707 // BUILD_VECTOR in something more vector friendly, i.e., that does not
8708 // force to use floating point types.
8709
8710 // Make sure we can change the type of the vector.
8711 // This is possible iff:
8712 // 1. The vector is only used in a bitcast to a integer type. I.e.,
8713 // 1.1. Vector is used only once.
8714 // 1.2. Use is a bit convert to an integer type.
8715 // 2. The size of its operands are 32-bits (64-bits are not legal).
8716 EVT VT = N->getValueType(0);
8717 EVT EltVT = VT.getVectorElementType();
8718
8719 // Check 1.1. and 2.
8720 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
8721 return SDValue();
8722
8723 // By construction, the input type must be float.
8724 assert(EltVT == MVT::f32 && "Unexpected type!")((EltVT == MVT::f32 && "Unexpected type!") ? static_cast
<void> (0) : __assert_fail ("EltVT == MVT::f32 && \"Unexpected type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 8724, __PRETTY_FUNCTION__))
;
8725
8726 // Check 1.2.
8727 SDNode *Use = *N->use_begin();
8728 if (Use->getOpcode() != ISD::BITCAST ||
8729 Use->getValueType(0).isFloatingPoint())
8730 return SDValue();
8731
8732 // Check profitability.
8733 // Model is, if more than half of the relevant operands are bitcast from
8734 // i32, turn the build_vector into a sequence of insert_vector_elt.
8735 // Relevant operands are everything that is not statically
8736 // (i.e., at compile time) bitcasted.
8737 unsigned NumOfBitCastedElts = 0;
8738 unsigned NumElts = VT.getVectorNumElements();
8739 unsigned NumOfRelevantElts = NumElts;
8740 for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
8741 SDValue Elt = N->getOperand(Idx);
8742 if (Elt->getOpcode() == ISD::BITCAST) {
8743 // Assume only bit cast to i32 will go away.
8744 if (Elt->getOperand(0).getValueType() == MVT::i32)
8745 ++NumOfBitCastedElts;
8746 } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
8747 // Constants are statically casted, thus do not count them as
8748 // relevant operands.
8749 --NumOfRelevantElts;
8750 }
8751
8752 // Check if more than half of the elements require a non-free bitcast.
8753 if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
8754 return SDValue();
8755
8756 SelectionDAG &DAG = DCI.DAG;
8757 // Create the new vector type.
8758 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
8759 // Check if the type is legal.
8760 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8761 if (!TLI.isTypeLegal(VecVT))
8762 return SDValue();
8763
8764 // Combine:
8765 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
8766 // => BITCAST INSERT_VECTOR_ELT
8767 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
8768 // (BITCAST EN), N.
8769 SDValue Vec = DAG.getUNDEF(VecVT);
8770 SDLoc dl(N);
8771 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
8772 SDValue V = N->getOperand(Idx);
8773 if (V.getOpcode() == ISD::UNDEF)
8774 continue;
8775 if (V.getOpcode() == ISD::BITCAST &&
8776 V->getOperand(0).getValueType() == MVT::i32)
8777 // Fold obvious case.
8778 V = V.getOperand(0);
8779 else {
8780 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
8781 // Make the DAGCombiner fold the bitcasts.
8782 DCI.AddToWorklist(V.getNode());
8783 }
8784 SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32);
8785 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
8786 }
8787 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
8788 // Make the DAGCombiner fold the bitcasts.
8789 DCI.AddToWorklist(Vec.getNode());
8790 return Vec;
8791}
8792
8793/// PerformInsertEltCombine - Target-specific dag combine xforms for
8794/// ISD::INSERT_VECTOR_ELT.
8795static SDValue PerformInsertEltCombine(SDNode *N,
8796 TargetLowering::DAGCombinerInfo &DCI) {
8797 // Bitcast an i64 load inserted into a vector to f64.
8798 // Otherwise, the i64 value will be legalized to a pair of i32 values.
8799 EVT VT = N->getValueType(0);
8800 SDNode *Elt = N->getOperand(1).getNode();
8801 if (VT.getVectorElementType() != MVT::i64 ||
8802 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8803 return SDValue();
8804
8805 SelectionDAG &DAG = DCI.DAG;
8806 SDLoc dl(N);
8807 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8808 VT.getVectorNumElements());
8809 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8810 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8811 // Make the DAGCombiner fold the bitcasts.
8812 DCI.AddToWorklist(Vec.getNode());
8813 DCI.AddToWorklist(V.getNode());
8814 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8815 Vec, V, N->getOperand(2));
8816 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8817}
8818
8819/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8820/// ISD::VECTOR_SHUFFLE.
8821static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8822 // The LLVM shufflevector instruction does not require the shuffle mask
8823 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8824 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
8825 // operands do not match the mask length, they are extended by concatenating
8826 // them with undef vectors. That is probably the right thing for other
8827 // targets, but for NEON it is better to concatenate two double-register
8828 // size vector operands into a single quad-register size vector. Do that
8829 // transformation here:
8830 // shuffle(concat(v1, undef), concat(v2, undef)) ->
8831 // shuffle(concat(v1, v2), undef)
8832 SDValue Op0 = N->getOperand(0);
8833 SDValue Op1 = N->getOperand(1);
8834 if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8835 Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8836 Op0.getNumOperands() != 2 ||
8837 Op1.getNumOperands() != 2)
8838 return SDValue();
8839 SDValue Concat0Op1 = Op0.getOperand(1);
8840 SDValue Concat1Op1 = Op1.getOperand(1);
8841 if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8842 Concat1Op1.getOpcode() != ISD::UNDEF)
8843 return SDValue();
8844 // Skip the transformation if any of the types are illegal.
8845 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8846 EVT VT = N->getValueType(0);
8847 if (!TLI.isTypeLegal(VT) ||
8848 !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8849 !TLI.isTypeLegal(Concat1Op1.getValueType()))
8850 return SDValue();
8851
8852 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
8853 Op0.getOperand(0), Op1.getOperand(0));
8854 // Translate the shuffle mask.
8855 SmallVector<int, 16> NewMask;
8856 unsigned NumElts = VT.getVectorNumElements();
8857 unsigned HalfElts = NumElts/2;
8858 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8859 for (unsigned n = 0; n < NumElts; ++n) {
8860 int MaskElt = SVN->getMaskElt(n);
8861 int NewElt = -1;
8862 if (MaskElt < (int)HalfElts)
8863 NewElt = MaskElt;
8864 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
8865 NewElt = HalfElts + MaskElt - NumElts;
8866 NewMask.push_back(NewElt);
8867 }
8868 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
8869 DAG.getUNDEF(VT), NewMask.data());
8870}
8871
8872/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
8873/// NEON load/store intrinsics, and generic vector load/stores, to merge
8874/// base address updates.
8875/// For generic load/stores, the memory type is assumed to be a vector.
8876/// The caller is assumed to have checked legality.
8877static SDValue CombineBaseUpdate(SDNode *N,
8878 TargetLowering::DAGCombinerInfo &DCI) {
8879 SelectionDAG &DAG = DCI.DAG;
8880 bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
8881 N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
8882 bool isStore = N->getOpcode() == ISD::STORE;
8883 unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
8884 SDValue Addr = N->getOperand(AddrOpIdx);
8885
8886 // Search for a use of the address operand that is an increment.
8887 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8888 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8889 SDNode *User = *UI;
8890 if (User->getOpcode() != ISD::ADD ||
8891 UI.getUse().getResNo() != Addr.getResNo())
8892 continue;
8893
8894 // Check that the add is independent of the load/store. Otherwise, folding
8895 // it would create a cycle.
8896 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8897 continue;
8898
8899 // Find the new opcode for the updating load/store.
8900 bool isLoad = true;
8901 bool isLaneOp = false;
8902 unsigned NewOpc = 0;
8903 unsigned NumVecs = 0;
8904 if (isIntrinsic) {
8905 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8906 switch (IntNo) {
8907 default: llvm_unreachable("unexpected intrinsic for Neon base update")::llvm::llvm_unreachable_internal("unexpected intrinsic for Neon base update"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 8907)
;
8908 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
8909 NumVecs = 1; break;
8910 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
8911 NumVecs = 2; break;
8912 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
8913 NumVecs = 3; break;
8914 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
8915 NumVecs = 4; break;
8916 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
8917 NumVecs = 2; isLaneOp = true; break;
8918 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
8919 NumVecs = 3; isLaneOp = true; break;
8920 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
8921 NumVecs = 4; isLaneOp = true; break;
8922 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
8923 NumVecs = 1; isLoad = false; break;
8924 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
8925 NumVecs = 2; isLoad = false; break;
8926 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
8927 NumVecs = 3; isLoad = false; break;
8928 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
8929 NumVecs = 4; isLoad = false; break;
8930 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
8931 NumVecs = 2; isLoad = false; isLaneOp = true; break;
8932 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
8933 NumVecs = 3; isLoad = false; isLaneOp = true; break;
8934 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
8935 NumVecs = 4; isLoad = false; isLaneOp = true; break;
8936 }
8937 } else {
8938 isLaneOp = true;
8939 switch (N->getOpcode()) {
8940 default: llvm_unreachable("unexpected opcode for Neon base update")::llvm::llvm_unreachable_internal("unexpected opcode for Neon base update"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 8940)
;
8941 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
8942 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
8943 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
8944 case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
8945 NumVecs = 1; isLaneOp = false; break;
8946 case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
8947 NumVecs = 1; isLoad = false; isLaneOp = false; break;
8948 }
8949 }
8950
8951 // Find the size of memory referenced by the load/store.
8952 EVT VecTy;
8953 if (isLoad)
8954 VecTy = N->getValueType(0);
8955 else if (isIntrinsic)
8956 VecTy = N->getOperand(AddrOpIdx+1).getValueType();
8957 else
8958 VecTy = N->getOperand(1).getValueType();
8959
8960 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8961 if (isLaneOp)
8962 NumBytes /= VecTy.getVectorNumElements();
8963
8964 // If the increment is a constant, it must match the memory ref size.
8965 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8966 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8967 uint64_t IncVal = CInc->getZExtValue();
8968 if (IncVal != NumBytes)
8969 continue;
8970 } else if (NumBytes >= 3 * 16) {
8971 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
8972 // separate instructions that make it harder to use a non-constant update.
8973 continue;
8974 }
8975
8976 // Create the new updating load/store node.
8977 // First, create an SDVTList for the new updating node's results.
8978 EVT Tys[6];
8979 unsigned NumResultVecs = (isLoad ? NumVecs : 0);
8980 unsigned n;
8981 for (n = 0; n < NumResultVecs; ++n)
8982 Tys[n] = VecTy;
8983 Tys[n++] = MVT::i32;
8984 Tys[n] = MVT::Other;
8985 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
8986
8987 // Then, gather the new node's operands.
8988 SmallVector<SDValue, 8> Ops;
8989 Ops.push_back(N->getOperand(0)); // incoming chain
8990 Ops.push_back(N->getOperand(AddrOpIdx));
8991 Ops.push_back(Inc);
8992 if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
8993 // Try to match the intrinsic's signature
8994 Ops.push_back(StN->getValue());
8995 Ops.push_back(DAG.getConstant(StN->getAlignment(), MVT::i32));
8996 } else {
8997 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i)
8998 Ops.push_back(N->getOperand(i));
8999 }
9000 MemSDNode *MemInt = cast<MemSDNode>(N);
9001 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
9002 Ops, MemInt->getMemoryVT(),
9003 MemInt->getMemOperand());
9004
9005 // Update the uses.
9006 std::vector<SDValue> NewResults;
9007 for (unsigned i = 0; i < NumResultVecs; ++i) {
9008 NewResults.push_back(SDValue(UpdN.getNode(), i));
9009 }
9010 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
9011 DCI.CombineTo(N, NewResults);
9012 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9013
9014 break;
9015 }
9016 return SDValue();
9017}
9018
9019static SDValue PerformVLDCombine(SDNode *N,
9020 TargetLowering::DAGCombinerInfo &DCI) {
9021 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9022 return SDValue();
9023
9024 return CombineBaseUpdate(N, DCI);
9025}
9026
9027/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
9028/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
9029/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
9030/// return true.
9031static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
9032 SelectionDAG &DAG = DCI.DAG;
9033 EVT VT = N->getValueType(0);
9034 // vldN-dup instructions only support 64-bit vectors for N > 1.
9035 if (!VT.is64BitVector())
9036 return false;
9037
9038 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
9039 SDNode *VLD = N->getOperand(0).getNode();
9040 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
9041 return false;
9042 unsigned NumVecs = 0;
9043 unsigned NewOpc = 0;
9044 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
9045 if (IntNo == Intrinsic::arm_neon_vld2lane) {
9046 NumVecs = 2;
9047 NewOpc = ARMISD::VLD2DUP;
9048 } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
9049 NumVecs = 3;
9050 NewOpc = ARMISD::VLD3DUP;
9051 } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
9052 NumVecs = 4;
9053 NewOpc = ARMISD::VLD4DUP;
9054 } else {
9055 return false;
9056 }
9057
9058 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
9059 // numbers match the load.
9060 unsigned VLDLaneNo =
9061 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
9062 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9063 UI != UE; ++UI) {
9064 // Ignore uses of the chain result.
9065 if (UI.getUse().getResNo() == NumVecs)
9066 continue;
9067 SDNode *User = *UI;
9068 if (User->getOpcode() != ARMISD::VDUPLANE ||
9069 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
9070 return false;
9071 }
9072
9073 // Create the vldN-dup node.
9074 EVT Tys[5];
9075 unsigned n;
9076 for (n = 0; n < NumVecs; ++n)
9077 Tys[n] = VT;
9078 Tys[n] = MVT::Other;
9079 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
9080 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
9081 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
9082 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
9083 Ops, VLDMemInt->getMemoryVT(),
9084 VLDMemInt->getMemOperand());
9085
9086 // Update the uses.
9087 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9088 UI != UE; ++UI) {
9089 unsigned ResNo = UI.getUse().getResNo();
9090 // Ignore uses of the chain result.
9091 if (ResNo == NumVecs)
9092 continue;
9093 SDNode *User = *UI;
9094 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
9095 }
9096
9097 // Now the vldN-lane intrinsic is dead except for its chain result.
9098 // Update uses of the chain.
9099 std::vector<SDValue> VLDDupResults;
9100 for (unsigned n = 0; n < NumVecs; ++n)
9101 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
9102 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
9103 DCI.CombineTo(VLD, VLDDupResults);
9104
9105 return true;
9106}
9107
9108/// PerformVDUPLANECombine - Target-specific dag combine xforms for
9109/// ARMISD::VDUPLANE.
9110static SDValue PerformVDUPLANECombine(SDNode *N,
9111 TargetLowering::DAGCombinerInfo &DCI) {
9112 SDValue Op = N->getOperand(0);
9113
9114 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
9115 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
9116 if (CombineVLDDUP(N, DCI))
9117 return SDValue(N, 0);
9118
9119 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
9120 // redundant. Ignore bit_converts for now; element sizes are checked below.
9121 while (Op.getOpcode() == ISD::BITCAST)
9122 Op = Op.getOperand(0);
9123 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
9124 return SDValue();
9125
9126 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
9127 unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
9128 // The canonical VMOV for a zero vector uses a 32-bit element size.
9129 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9130 unsigned EltBits;
9131 if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
9132 EltSize = 8;
9133 EVT VT = N->getValueType(0);
9134 if (EltSize > VT.getVectorElementType().getSizeInBits())
9135 return SDValue();
9136
9137 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
9138}
9139
9140static SDValue PerformLOADCombine(SDNode *N,
9141 TargetLowering::DAGCombinerInfo &DCI) {
9142 EVT VT = N->getValueType(0);
9143
9144 // If this is a legal vector load, try to combine it into a VLD1_UPD.
9145 if (ISD::isNormalLoad(N) && VT.isVector() &&
9146 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
9147 return CombineBaseUpdate(N, DCI);
9148
9149 return SDValue();
9150}
9151
9152/// PerformSTORECombine - Target-specific dag combine xforms for
9153/// ISD::STORE.
9154static SDValue PerformSTORECombine(SDNode *N,
9155 TargetLowering::DAGCombinerInfo &DCI) {
9156 StoreSDNode *St = cast<StoreSDNode>(N);
9157 if (St->isVolatile())
9158 return SDValue();
9159
9160 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
9161 // pack all of the elements in one place. Next, store to memory in fewer
9162 // chunks.
9163 SDValue StVal = St->getValue();
9164 EVT VT = StVal.getValueType();
9165 if (St->isTruncatingStore() && VT.isVector()) {
9166 SelectionDAG &DAG = DCI.DAG;
9167 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9168 EVT StVT = St->getMemoryVT();
9169 unsigned NumElems = VT.getVectorNumElements();
9170 assert(StVT != VT && "Cannot truncate to the same type")((StVT != VT && "Cannot truncate to the same type") ?
static_cast<void> (0) : __assert_fail ("StVT != VT && \"Cannot truncate to the same type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9170, __PRETTY_FUNCTION__))
;
9171 unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
9172 unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
9173
9174 // From, To sizes and ElemCount must be pow of two
9175 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
9176
9177 // We are going to use the original vector elt for storing.
9178 // Accumulated smaller vector elements must be a multiple of the store size.
9179 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
9180
9181 unsigned SizeRatio = FromEltSz / ToEltSz;
9182 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits())((SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()) ? static_cast
<void> (0) : __assert_fail ("SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9182, __PRETTY_FUNCTION__))
;
9183
9184 // Create a type on which we perform the shuffle.
9185 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
9186 NumElems*SizeRatio);
9187 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits())((WideVecVT.getSizeInBits() == VT.getSizeInBits()) ? static_cast
<void> (0) : __assert_fail ("WideVecVT.getSizeInBits() == VT.getSizeInBits()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9187, __PRETTY_FUNCTION__))
;
9188
9189 SDLoc DL(St);
9190 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
9191 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
9192 for (unsigned i = 0; i < NumElems; ++i)
9193 ShuffleVec[i] = TLI.isBigEndian() ? (i+1) * SizeRatio - 1 : i * SizeRatio;
9194
9195 // Can't shuffle using an illegal type.
9196 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
9197
9198 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
9199 DAG.getUNDEF(WideVec.getValueType()),
9200 ShuffleVec.data());
9201 // At this point all of the data is stored at the bottom of the
9202 // register. We now need to save it to mem.
9203
9204 // Find the largest store unit
9205 MVT StoreType = MVT::i8;
9206 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
9207 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
9208 MVT Tp = (MVT::SimpleValueType)tp;
9209 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
9210 StoreType = Tp;
9211 }
9212 // Didn't find a legal store type.
9213 if (!TLI.isTypeLegal(StoreType))
9214 return SDValue();
9215
9216 // Bitcast the original vector into a vector of store-size units
9217 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
9218 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
9219 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits())((StoreVecVT.getSizeInBits() == VT.getSizeInBits()) ? static_cast
<void> (0) : __assert_fail ("StoreVecVT.getSizeInBits() == VT.getSizeInBits()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9219, __PRETTY_FUNCTION__))
;
9220 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
9221 SmallVector<SDValue, 8> Chains;
9222 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
9223 TLI.getPointerTy());
9224 SDValue BasePtr = St->getBasePtr();
9225
9226 // Perform one or more big stores into memory.
9227 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
9228 for (unsigned I = 0; I < E; I++) {
9229 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
9230 StoreType, ShuffWide,
9231 DAG.getIntPtrConstant(I));
9232 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
9233 St->getPointerInfo(), St->isVolatile(),
9234 St->isNonTemporal(), St->getAlignment());
9235 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
9236 Increment);
9237 Chains.push_back(Ch);
9238 }
9239 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
9240 }
9241
9242 if (!ISD::isNormalStore(St))
9243 return SDValue();
9244
9245 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
9246 // ARM stores of arguments in the same cache line.
9247 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
9248 StVal.getNode()->hasOneUse()) {
9249 SelectionDAG &DAG = DCI.DAG;
9250 bool isBigEndian = DAG.getTargetLoweringInfo().isBigEndian();
9251 SDLoc DL(St);
9252 SDValue BasePtr = St->getBasePtr();
9253 SDValue NewST1 = DAG.getStore(St->getChain(), DL,
9254 StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
9255 BasePtr, St->getPointerInfo(), St->isVolatile(),
9256 St->isNonTemporal(), St->getAlignment());
9257
9258 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
9259 DAG.getConstant(4, MVT::i32));
9260 return DAG.getStore(NewST1.getValue(0), DL,
9261 StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
9262 OffsetPtr, St->getPointerInfo(), St->isVolatile(),
9263 St->isNonTemporal(),
9264 std::min(4U, St->getAlignment() / 2));
9265 }
9266
9267 if (StVal.getValueType() == MVT::i64 &&
9268 StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9269
9270 // Bitcast an i64 store extracted from a vector to f64.
9271 // Otherwise, the i64 value will be legalized to a pair of i32 values.
9272 SelectionDAG &DAG = DCI.DAG;
9273 SDLoc dl(StVal);
9274 SDValue IntVec = StVal.getOperand(0);
9275 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
9276 IntVec.getValueType().getVectorNumElements());
9277 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
9278 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
9279 Vec, StVal.getOperand(1));
9280 dl = SDLoc(N);
9281 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
9282 // Make the DAGCombiner fold the bitcasts.
9283 DCI.AddToWorklist(Vec.getNode());
9284 DCI.AddToWorklist(ExtElt.getNode());
9285 DCI.AddToWorklist(V.getNode());
9286 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
9287 St->getPointerInfo(), St->isVolatile(),
9288 St->isNonTemporal(), St->getAlignment(),
9289 St->getAAInfo());
9290 }
9291
9292 // If this is a legal vector store, try to combine it into a VST1_UPD.
9293 if (ISD::isNormalStore(N) && VT.isVector() &&
9294 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
9295 return CombineBaseUpdate(N, DCI);
9296
9297 return SDValue();
9298}
9299
9300// isConstVecPow2 - Return true if each vector element is a power of 2, all
9301// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
9302static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
9303{
9304 integerPart cN;
9305 integerPart c0 = 0;
9306 for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
9307 I != E; I++) {
9308 ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
9309 if (!C)
9310 return false;
9311
9312 bool isExact;
9313 APFloat APF = C->getValueAPF();
9314 if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
9315 != APFloat::opOK || !isExact)
9316 return false;
9317
9318 c0 = (I == 0) ? cN : c0;
9319 if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
9320 return false;
9321 }
9322 C = c0;
9323 return true;
9324}
9325
9326/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
9327/// can replace combinations of VMUL and VCVT (floating-point to integer)
9328/// when the VMUL has a constant operand that is a power of 2.
9329///
9330/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9331/// vmul.f32 d16, d17, d16
9332/// vcvt.s32.f32 d16, d16
9333/// becomes:
9334/// vcvt.s32.f32 d16, d16, #3
9335static SDValue PerformVCVTCombine(SDNode *N,
9336 TargetLowering::DAGCombinerInfo &DCI,
9337 const ARMSubtarget *Subtarget) {
9338 SelectionDAG &DAG = DCI.DAG;
9339 SDValue Op = N->getOperand(0);
9340
9341 if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
9342 Op.getOpcode() != ISD::FMUL)
9343 return SDValue();
9344
9345 uint64_t C;
9346 SDValue N0 = Op->getOperand(0);
9347 SDValue ConstVec = Op->getOperand(1);
9348 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
9349
9350 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9351 !isConstVecPow2(ConstVec, isSigned, C))
9352 return SDValue();
9353
9354 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9355 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
9356 if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9357 // These instructions only exist converting from f32 to i32. We can handle
9358 // smaller integers by generating an extra truncate, but larger ones would
9359 // be lossy.
9360 return SDValue();
9361 }
9362
9363 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
9364 Intrinsic::arm_neon_vcvtfp2fxu;
9365 unsigned NumLanes = Op.getValueType().getVectorNumElements();
9366 SDValue FixConv = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9367 NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9368 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
9369 DAG.getConstant(Log2_64(C), MVT::i32));
9370
9371 if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9372 FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv);
9373
9374 return FixConv;
9375}
9376
9377/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
9378/// can replace combinations of VCVT (integer to floating-point) and VDIV
9379/// when the VDIV has a constant operand that is a power of 2.
9380///
9381/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9382/// vcvt.f32.s32 d16, d16
9383/// vdiv.f32 d16, d17, d16
9384/// becomes:
9385/// vcvt.f32.s32 d16, d16, #3
9386static SDValue PerformVDIVCombine(SDNode *N,
9387 TargetLowering::DAGCombinerInfo &DCI,
9388 const ARMSubtarget *Subtarget) {
9389 SelectionDAG &DAG = DCI.DAG;
9390 SDValue Op = N->getOperand(0);
9391 unsigned OpOpcode = Op.getNode()->getOpcode();
9392
9393 if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
9394 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
9395 return SDValue();
9396
9397 uint64_t C;
9398 SDValue ConstVec = N->getOperand(1);
9399 bool isSigned = OpOpcode == ISD::SINT_TO_FP;
9400
9401 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9402 !isConstVecPow2(ConstVec, isSigned, C))
9403 return SDValue();
9404
9405 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
9406 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
9407 if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9408 // These instructions only exist converting from i32 to f32. We can handle
9409 // smaller integers by generating an extra extend, but larger ones would
9410 // be lossy.
9411 return SDValue();
9412 }
9413
9414 SDValue ConvInput = Op.getOperand(0);
9415 unsigned NumLanes = Op.getValueType().getVectorNumElements();
9416 if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9417 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9418 SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9419 ConvInput);
9420
9421 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
9422 Intrinsic::arm_neon_vcvtfxu2fp;
9423 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9424 Op.getValueType(),
9425 DAG.getConstant(IntrinsicOpcode, MVT::i32),
9426 ConvInput, DAG.getConstant(Log2_64(C), MVT::i32));
9427}
9428
9429/// Getvshiftimm - Check if this is a valid build_vector for the immediate
9430/// operand of a vector shift operation, where all the elements of the
9431/// build_vector must have the same constant integer value.
9432static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
9433 // Ignore bit_converts.
9434 while (Op.getOpcode() == ISD::BITCAST)
9435 Op = Op.getOperand(0);
9436 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9437 APInt SplatBits, SplatUndef;
9438 unsigned SplatBitSize;
9439 bool HasAnyUndefs;
9440 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
9441 HasAnyUndefs, ElementBits) ||
9442 SplatBitSize > ElementBits)
9443 return false;
9444 Cnt = SplatBits.getSExtValue();
9445 return true;
9446}
9447
9448/// isVShiftLImm - Check if this is a valid build_vector for the immediate
9449/// operand of a vector shift left operation. That value must be in the range:
9450/// 0 <= Value < ElementBits for a left shift; or
9451/// 0 <= Value <= ElementBits for a long left shift.
9452static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
9453 assert(VT.isVector() && "vector shift count is not a vector type")((VT.isVector() && "vector shift count is not a vector type"
) ? static_cast<void> (0) : __assert_fail ("VT.isVector() && \"vector shift count is not a vector type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9453, __PRETTY_FUNCTION__))
;
9454 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9455 if (! getVShiftImm(Op, ElementBits, Cnt))
9456 return false;
9457 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
9458}
9459
9460/// isVShiftRImm - Check if this is a valid build_vector for the immediate
9461/// operand of a vector shift right operation. For a shift opcode, the value
9462/// is positive, but for an intrinsic the value count must be negative. The
9463/// absolute value must be in the range:
9464/// 1 <= |Value| <= ElementBits for a right shift; or
9465/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
9466static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
9467 int64_t &Cnt) {
9468 assert(VT.isVector() && "vector shift count is not a vector type")((VT.isVector() && "vector shift count is not a vector type"
) ? static_cast<void> (0) : __assert_fail ("VT.isVector() && \"vector shift count is not a vector type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9468, __PRETTY_FUNCTION__))
;
9469 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9470 if (! getVShiftImm(Op, ElementBits, Cnt))
9471 return false;
9472 if (isIntrinsic)
9473 Cnt = -Cnt;
9474 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
9475}
9476
9477/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
9478static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
9479 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9480 switch (IntNo) {
9481 default:
9482 // Don't do anything for most intrinsics.
9483 break;
9484
9485 // Vector shifts: check for immediate versions and lower them.
9486 // Note: This is done during DAG combining instead of DAG legalizing because
9487 // the build_vectors for 64-bit vector element shift counts are generally
9488 // not legal, and it is hard to see their values after they get legalized to
9489 // loads from a constant pool.
9490 case Intrinsic::arm_neon_vshifts:
9491 case Intrinsic::arm_neon_vshiftu:
9492 case Intrinsic::arm_neon_vrshifts:
9493 case Intrinsic::arm_neon_vrshiftu:
9494 case Intrinsic::arm_neon_vrshiftn:
9495 case Intrinsic::arm_neon_vqshifts:
9496 case Intrinsic::arm_neon_vqshiftu:
9497 case Intrinsic::arm_neon_vqshiftsu:
9498 case Intrinsic::arm_neon_vqshiftns:
9499 case Intrinsic::arm_neon_vqshiftnu:
9500 case Intrinsic::arm_neon_vqshiftnsu:
9501 case Intrinsic::arm_neon_vqrshiftns:
9502 case Intrinsic::arm_neon_vqrshiftnu:
9503 case Intrinsic::arm_neon_vqrshiftnsu: {
9504 EVT VT = N->getOperand(1).getValueType();
9505 int64_t Cnt;
9506 unsigned VShiftOpc = 0;
9507
9508 switch (IntNo) {
9509 case Intrinsic::arm_neon_vshifts:
9510 case Intrinsic::arm_neon_vshiftu:
9511 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
9512 VShiftOpc = ARMISD::VSHL;
9513 break;
9514 }
9515 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
9516 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
9517 ARMISD::VSHRs : ARMISD::VSHRu);
9518 break;
9519 }
9520 return SDValue();
9521
9522 case Intrinsic::arm_neon_vrshifts:
9523 case Intrinsic::arm_neon_vrshiftu:
9524 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
9525 break;
9526 return SDValue();
9527
9528 case Intrinsic::arm_neon_vqshifts:
9529 case Intrinsic::arm_neon_vqshiftu:
9530 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9531 break;
9532 return SDValue();
9533
9534 case Intrinsic::arm_neon_vqshiftsu:
9535 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9536 break;
9537 llvm_unreachable("invalid shift count for vqshlu intrinsic")::llvm::llvm_unreachable_internal("invalid shift count for vqshlu intrinsic"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9537)
;
9538
9539 case Intrinsic::arm_neon_vrshiftn:
9540 case Intrinsic::arm_neon_vqshiftns:
9541 case Intrinsic::arm_neon_vqshiftnu:
9542 case Intrinsic::arm_neon_vqshiftnsu:
9543 case Intrinsic::arm_neon_vqrshiftns:
9544 case Intrinsic::arm_neon_vqrshiftnu:
9545 case Intrinsic::arm_neon_vqrshiftnsu:
9546 // Narrowing shifts require an immediate right shift.
9547 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
9548 break;
9549 llvm_unreachable("invalid shift count for narrowing vector shift "::llvm::llvm_unreachable_internal("invalid shift count for narrowing vector shift "
"intrinsic", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9550)
9550 "intrinsic")::llvm::llvm_unreachable_internal("invalid shift count for narrowing vector shift "
"intrinsic", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9550)
;
9551
9552 default:
9553 llvm_unreachable("unhandled vector shift")::llvm::llvm_unreachable_internal("unhandled vector shift", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9553)
;
9554 }
9555
9556 switch (IntNo) {
9557 case Intrinsic::arm_neon_vshifts:
9558 case Intrinsic::arm_neon_vshiftu:
9559 // Opcode already set above.
9560 break;
9561 case Intrinsic::arm_neon_vrshifts:
9562 VShiftOpc = ARMISD::VRSHRs; break;
9563 case Intrinsic::arm_neon_vrshiftu:
9564 VShiftOpc = ARMISD::VRSHRu; break;
9565 case Intrinsic::arm_neon_vrshiftn:
9566 VShiftOpc = ARMISD::VRSHRN; break;
9567 case Intrinsic::arm_neon_vqshifts:
9568 VShiftOpc = ARMISD::VQSHLs; break;
9569 case Intrinsic::arm_neon_vqshiftu:
9570 VShiftOpc = ARMISD::VQSHLu; break;
9571 case Intrinsic::arm_neon_vqshiftsu:
9572 VShiftOpc = ARMISD::VQSHLsu; break;
9573 case Intrinsic::arm_neon_vqshiftns:
9574 VShiftOpc = ARMISD::VQSHRNs; break;
9575 case Intrinsic::arm_neon_vqshiftnu:
9576 VShiftOpc = ARMISD::VQSHRNu; break;
9577 case Intrinsic::arm_neon_vqshiftnsu:
9578 VShiftOpc = ARMISD::VQSHRNsu; break;
9579 case Intrinsic::arm_neon_vqrshiftns:
9580 VShiftOpc = ARMISD::VQRSHRNs; break;
9581 case Intrinsic::arm_neon_vqrshiftnu:
9582 VShiftOpc = ARMISD::VQRSHRNu; break;
9583 case Intrinsic::arm_neon_vqrshiftnsu:
9584 VShiftOpc = ARMISD::VQRSHRNsu; break;
9585 }
9586
9587 return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9588 N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
9589 }
9590
9591 case Intrinsic::arm_neon_vshiftins: {
9592 EVT VT = N->getOperand(1).getValueType();
9593 int64_t Cnt;
9594 unsigned VShiftOpc = 0;
9595
9596 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
9597 VShiftOpc = ARMISD::VSLI;
9598 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
9599 VShiftOpc = ARMISD::VSRI;
9600 else {
9601 llvm_unreachable("invalid shift count for vsli/vsri intrinsic")::llvm::llvm_unreachable_internal("invalid shift count for vsli/vsri intrinsic"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9601)
;
9602 }
9603
9604 return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9605 N->getOperand(1), N->getOperand(2),
9606 DAG.getConstant(Cnt, MVT::i32));
9607 }
9608
9609 case Intrinsic::arm_neon_vqrshifts:
9610 case Intrinsic::arm_neon_vqrshiftu:
9611 // No immediate versions of these to check for.
9612 break;
9613 }
9614
9615 return SDValue();
9616}
9617
9618/// PerformShiftCombine - Checks for immediate versions of vector shifts and
9619/// lowers them. As with the vector shift intrinsics, this is done during DAG
9620/// combining instead of DAG legalizing because the build_vectors for 64-bit
9621/// vector element shift counts are generally not legal, and it is hard to see
9622/// their values after they get legalized to loads from a constant pool.
9623static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
9624 const ARMSubtarget *ST) {
9625 EVT VT = N->getValueType(0);
9626 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
9627 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
9628 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
9629 SDValue N1 = N->getOperand(1);
9630 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9631 SDValue N0 = N->getOperand(0);
9632 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
9633 DAG.MaskedValueIsZero(N0.getOperand(0),
9634 APInt::getHighBitsSet(32, 16)))
9635 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
9636 }
9637 }
9638
9639 // Nothing to be done for scalar shifts.
9640 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9641 if (!VT.isVector() || !TLI.isTypeLegal(VT))
9642 return SDValue();
9643
9644 assert(ST->hasNEON() && "unexpected vector shift")((ST->hasNEON() && "unexpected vector shift") ? static_cast
<void> (0) : __assert_fail ("ST->hasNEON() && \"unexpected vector shift\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9644, __PRETTY_FUNCTION__))
;
9645 int64_t Cnt;
9646
9647 switch (N->getOpcode()) {
9648 default: llvm_unreachable("unexpected shift opcode")::llvm::llvm_unreachable_internal("unexpected shift opcode", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9648)
;
9649
9650 case ISD::SHL:
9651 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
9652 return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0),
9653 DAG.getConstant(Cnt, MVT::i32));
9654 break;
9655
9656 case ISD::SRA:
9657 case ISD::SRL:
9658 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
9659 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
9660 ARMISD::VSHRs : ARMISD::VSHRu);
9661 return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0),
9662 DAG.getConstant(Cnt, MVT::i32));
9663 }
9664 }
9665 return SDValue();
9666}
9667
9668/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
9669/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
9670static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
9671 const ARMSubtarget *ST) {
9672 SDValue N0 = N->getOperand(0);
9673
9674 // Check for sign- and zero-extensions of vector extract operations of 8-
9675 // and 16-bit vector elements. NEON supports these directly. They are
9676 // handled during DAG combining because type legalization will promote them
9677 // to 32-bit types and it is messy to recognize the operations after that.
9678 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9679 SDValue Vec = N0.getOperand(0);
9680 SDValue Lane = N0.getOperand(1);
9681 EVT VT = N->getValueType(0);
9682 EVT EltVT = N0.getValueType();
9683 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9684
9685 if (VT == MVT::i32 &&
9686 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
9687 TLI.isTypeLegal(Vec.getValueType()) &&
9688 isa<ConstantSDNode>(Lane)) {
9689
9690 unsigned Opc = 0;
9691 switch (N->getOpcode()) {
9692 default: llvm_unreachable("unexpected opcode")::llvm::llvm_unreachable_internal("unexpected opcode", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 9692)
;
9693 case ISD::SIGN_EXTEND:
9694 Opc = ARMISD::VGETLANEs;
9695 break;
9696 case ISD::ZERO_EXTEND:
9697 case ISD::ANY_EXTEND:
9698 Opc = ARMISD::VGETLANEu;
9699 break;
9700 }
9701 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
9702 }
9703 }
9704
9705 return SDValue();
9706}
9707
9708/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
9709/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
9710static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
9711 const ARMSubtarget *ST) {
9712 // If the target supports NEON, try to use vmax/vmin instructions for f32
9713 // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set,
9714 // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
9715 // a NaN; only do the transformation when it matches that behavior.
9716
9717 // For now only do this when using NEON for FP operations; if using VFP, it
9718 // is not obvious that the benefit outweighs the cost of switching to the
9719 // NEON pipeline.
9720 if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
9721 N->getValueType(0) != MVT::f32)
9722 return SDValue();
9723
9724 SDValue CondLHS = N->getOperand(0);
9725 SDValue CondRHS = N->getOperand(1);
9726 SDValue LHS = N->getOperand(2);
9727 SDValue RHS = N->getOperand(3);
9728 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
9729
9730 unsigned Opcode = 0;
9731 bool IsReversed;
9732 if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
9733 IsReversed = false; // x CC y ? x : y
9734 } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
9735 IsReversed = true ; // x CC y ? y : x
9736 } else {
9737 return SDValue();
9738 }
9739
9740 bool IsUnordered;
9741 switch (CC) {
9742 default: break;
9743 case ISD::SETOLT:
9744 case ISD::SETOLE:
9745 case ISD::SETLT:
9746 case ISD::SETLE:
9747 case ISD::SETULT:
9748 case ISD::SETULE:
9749 // If LHS is NaN, an ordered comparison will be false and the result will
9750 // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
9751 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
9752 IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
9753 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9754 break;
9755 // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
9756 // will return -0, so vmin can only be used for unsafe math or if one of
9757 // the operands is known to be nonzero.
9758 if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
9759 !DAG.getTarget().Options.UnsafeFPMath &&
9760 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9761 break;
9762 Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
9763 break;
9764
9765 case ISD::SETOGT:
9766 case ISD::SETOGE:
9767 case ISD::SETGT:
9768 case ISD::SETGE:
9769 case ISD::SETUGT:
9770 case ISD::SETUGE:
9771 // If LHS is NaN, an ordered comparison will be false and the result will
9772 // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
9773 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
9774 IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
9775 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9776 break;
9777 // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
9778 // will return +0, so vmax can only be used for unsafe math or if one of
9779 // the operands is known to be nonzero.
9780 if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
9781 !DAG.getTarget().Options.UnsafeFPMath &&
9782 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9783 break;
9784 Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
9785 break;
9786 }
9787
9788 if (!Opcode)
9789 return SDValue();
9790 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
9791}
9792
9793/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
9794SDValue
9795ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
9796 SDValue Cmp = N->getOperand(4);
9797 if (Cmp.getOpcode() != ARMISD::CMPZ)
9798 // Only looking at EQ and NE cases.
9799 return SDValue();
9800
9801 EVT VT = N->getValueType(0);
9802 SDLoc dl(N);
9803 SDValue LHS = Cmp.getOperand(0);
9804 SDValue RHS = Cmp.getOperand(1);
9805 SDValue FalseVal = N->getOperand(0);
9806 SDValue TrueVal = N->getOperand(1);
9807 SDValue ARMcc = N->getOperand(2);
9808 ARMCC::CondCodes CC =
9809 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
9810
9811 // Simplify
9812 // mov r1, r0
9813 // cmp r1, x
9814 // mov r0, y
9815 // moveq r0, x
9816 // to
9817 // cmp r0, x
9818 // movne r0, y
9819 //
9820 // mov r1, r0
9821 // cmp r1, x
9822 // mov r0, x
9823 // movne r0, y
9824 // to
9825 // cmp r0, x
9826 // movne r0, y
9827 /// FIXME: Turn this into a target neutral optimization?
9828 SDValue Res;
9829 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
9830 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
9831 N->getOperand(3), Cmp);
9832 } else if (CC == ARMCC::EQ && TrueVal == RHS) {
9833 SDValue ARMcc;
9834 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
9835 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
9836 N->getOperand(3), NewCmp);
9837 }
9838
9839 if (Res.getNode()) {
9840 APInt KnownZero, KnownOne;
9841 DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
9842 // Capture demanded bits information that would be otherwise lost.
9843 if (KnownZero == 0xfffffffe)
9844 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9845 DAG.getValueType(MVT::i1));
9846 else if (KnownZero == 0xffffff00)
9847 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9848 DAG.getValueType(MVT::i8));
9849 else if (KnownZero == 0xffff0000)
9850 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9851 DAG.getValueType(MVT::i16));
9852 }
9853
9854 return Res;
9855}
9856
9857SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
9858 DAGCombinerInfo &DCI) const {
9859 switch (N->getOpcode()) {
9860 default: break;
9861 case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget);
9862 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
9863 case ISD::SUB: return PerformSUBCombine(N, DCI);
9864 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
9865 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
9866 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
9867 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
9868 case ARMISD::BFI: return PerformBFICombine(N, DCI);
9869 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
9870 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
9871 case ISD::STORE: return PerformSTORECombine(N, DCI);
9872 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
9873 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
9874 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
9875 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
9876 case ISD::FP_TO_SINT:
9877 case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
9878 case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget);
9879 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
9880 case ISD::SHL:
9881 case ISD::SRA:
9882 case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
9883 case ISD::SIGN_EXTEND:
9884 case ISD::ZERO_EXTEND:
9885 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
9886 case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
9887 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
9888 case ISD::LOAD: return PerformLOADCombine(N, DCI);
9889 case ARMISD::VLD2DUP:
9890 case ARMISD::VLD3DUP:
9891 case ARMISD::VLD4DUP:
9892 return PerformVLDCombine(N, DCI);
9893 case ARMISD::BUILD_VECTOR:
9894 return PerformARMBUILD_VECTORCombine(N, DCI);
9895 case ISD::INTRINSIC_VOID:
9896 case ISD::INTRINSIC_W_CHAIN:
9897 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9898 case Intrinsic::arm_neon_vld1:
9899 case Intrinsic::arm_neon_vld2:
9900 case Intrinsic::arm_neon_vld3:
9901 case Intrinsic::arm_neon_vld4:
9902 case Intrinsic::arm_neon_vld2lane:
9903 case Intrinsic::arm_neon_vld3lane:
9904 case Intrinsic::arm_neon_vld4lane:
9905 case Intrinsic::arm_neon_vst1:
9906 case Intrinsic::arm_neon_vst2:
9907 case Intrinsic::arm_neon_vst3:
9908 case Intrinsic::arm_neon_vst4:
9909 case Intrinsic::arm_neon_vst2lane:
9910 case Intrinsic::arm_neon_vst3lane:
9911 case Intrinsic::arm_neon_vst4lane:
9912 return PerformVLDCombine(N, DCI);
9913 default: break;
9914 }
9915 break;
9916 }
9917 return SDValue();
9918}
9919
9920bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9921 EVT VT) const {
9922 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9923}
9924
9925bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
9926 unsigned,
9927 unsigned,
9928 bool *Fast) const {
9929 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
9930 bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
9931
9932 switch (VT.getSimpleVT().SimpleTy) {
9933 default:
9934 return false;
9935 case MVT::i8:
9936 case MVT::i16:
9937 case MVT::i32: {
9938 // Unaligned access can use (for example) LRDB, LRDH, LDR
9939 if (AllowsUnaligned) {
9940 if (Fast)
9941 *Fast = Subtarget->hasV7Ops();
9942 return true;
9943 }
9944 return false;
9945 }
9946 case MVT::f64:
9947 case MVT::v2f64: {
9948 // For any little-endian targets with neon, we can support unaligned ld/st
9949 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
9950 // A big-endian target may also explicitly support unaligned accesses
9951 if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
9952 if (Fast)
9953 *Fast = true;
9954 return true;
9955 }
9956 return false;
9957 }
9958 }
9959}
9960
9961static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9962 unsigned AlignCheck) {
9963 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9964 (DstAlign == 0 || DstAlign % AlignCheck == 0));
9965}
9966
9967EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9968 unsigned DstAlign, unsigned SrcAlign,
9969 bool IsMemset, bool ZeroMemset,
9970 bool MemcpyStrSrc,
9971 MachineFunction &MF) const {
9972 const Function *F = MF.getFunction();
9973
9974 // See if we can use NEON instructions for this...
9975 if ((!IsMemset || ZeroMemset) &&
9976 Subtarget->hasNEON() &&
9977 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
9978 Attribute::NoImplicitFloat)) {
9979 bool Fast;
9980 if (Size >= 16 &&
9981 (memOpAlign(SrcAlign, DstAlign, 16) ||
9982 (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
9983 return MVT::v2f64;
9984 } else if (Size >= 8 &&
9985 (memOpAlign(SrcAlign, DstAlign, 8) ||
9986 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
9987 Fast))) {
9988 return MVT::f64;
9989 }
9990 }
9991
9992 // Lowering to i32/i16 if the size permits.
9993 if (Size >= 4)
9994 return MVT::i32;
9995 else if (Size >= 2)
9996 return MVT::i16;
9997
9998 // Let the target-independent logic figure it out.
9999 return MVT::Other;
10000}
10001
10002bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
10003 if (Val.getOpcode() != ISD::LOAD)
10004 return false;
10005
10006 EVT VT1 = Val.getValueType();
10007 if (!VT1.isSimple() || !VT1.isInteger() ||
10008 !VT2.isSimple() || !VT2.isInteger())
10009 return false;
10010
10011 switch (VT1.getSimpleVT().SimpleTy) {
10012 default: break;
10013 case MVT::i1:
10014 case MVT::i8:
10015 case MVT::i16:
10016 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
10017 return true;
10018 }
10019
10020 return false;
10021}
10022
10023bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
10024 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10025 return false;
10026
10027 if (!isTypeLegal(EVT::getEVT(Ty1)))
10028 return false;
10029
10030 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop")((Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"
) ? static_cast<void> (0) : __assert_fail ("Ty1->getPrimitiveSizeInBits() <= 64 && \"i128 is probably not a noop\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10030, __PRETTY_FUNCTION__))
;
10031
10032 // Assuming the caller doesn't have a zeroext or signext return parameter,
10033 // truncation all the way down to i1 is valid.
10034 return true;
10035}
10036
10037
10038static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
10039 if (V < 0)
10040 return false;
10041
10042 unsigned Scale = 1;
10043 switch (VT.getSimpleVT().SimpleTy) {
10044 default: return false;
10045 case MVT::i1:
10046 case MVT::i8:
10047 // Scale == 1;
10048 break;
10049 case MVT::i16:
10050 // Scale == 2;
10051 Scale = 2;
10052 break;
10053 case MVT::i32:
10054 // Scale == 4;
10055 Scale = 4;
10056 break;
10057 }
10058
10059 if ((V & (Scale - 1)) != 0)
10060 return false;
10061 V /= Scale;
10062 return V == (V & ((1LL << 5) - 1));
10063}
10064
10065static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
10066 const ARMSubtarget *Subtarget) {
10067 bool isNeg = false;
10068 if (V < 0) {
10069 isNeg = true;
10070 V = - V;
10071 }
10072
10073 switch (VT.getSimpleVT().SimpleTy) {
10074 default: return false;
10075 case MVT::i1:
10076 case MVT::i8:
10077 case MVT::i16:
10078 case MVT::i32:
10079 // + imm12 or - imm8
10080 if (isNeg)
10081 return V == (V & ((1LL << 8) - 1));
10082 return V == (V & ((1LL << 12) - 1));
10083 case MVT::f32:
10084 case MVT::f64:
10085 // Same as ARM mode. FIXME: NEON?
10086 if (!Subtarget->hasVFP2())
10087 return false;
10088 if ((V & 3) != 0)
10089 return false;
10090 V >>= 2;
10091 return V == (V & ((1LL << 8) - 1));
10092 }
10093}
10094
10095/// isLegalAddressImmediate - Return true if the integer value can be used
10096/// as the offset of the target addressing mode for load / store of the
10097/// given type.
10098static bool isLegalAddressImmediate(int64_t V, EVT VT,
10099 const ARMSubtarget *Subtarget) {
10100 if (V == 0)
10101 return true;
10102
10103 if (!VT.isSimple())
10104 return false;
10105
10106 if (Subtarget->isThumb1Only())
10107 return isLegalT1AddressImmediate(V, VT);
10108 else if (Subtarget->isThumb2())
10109 return isLegalT2AddressImmediate(V, VT, Subtarget);
10110
10111 // ARM mode.
10112 if (V < 0)
10113 V = - V;
10114 switch (VT.getSimpleVT().SimpleTy) {
10115 default: return false;
10116 case MVT::i1:
10117 case MVT::i8:
10118 case MVT::i32:
10119 // +- imm12
10120 return V == (V & ((1LL << 12) - 1));
10121 case MVT::i16:
10122 // +- imm8
10123 return V == (V & ((1LL << 8) - 1));
10124 case MVT::f32:
10125 case MVT::f64:
10126 if (!Subtarget->hasVFP2()) // FIXME: NEON?
10127 return false;
10128 if ((V & 3) != 0)
10129 return false;
10130 V >>= 2;
10131 return V == (V & ((1LL << 8) - 1));
10132 }
10133}
10134
10135bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
10136 EVT VT) const {
10137 int Scale = AM.Scale;
10138 if (Scale < 0)
10139 return false;
10140
10141 switch (VT.getSimpleVT().SimpleTy) {
10142 default: return false;
10143 case MVT::i1:
10144 case MVT::i8:
10145 case MVT::i16:
10146 case MVT::i32:
10147 if (Scale == 1)
10148 return true;
10149 // r + r << imm
10150 Scale = Scale & ~1;
10151 return Scale == 2 || Scale == 4 || Scale == 8;
10152 case MVT::i64:
10153 // r + r
10154 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
10155 return true;
10156 return false;
10157 case MVT::isVoid:
10158 // Note, we allow "void" uses (basically, uses that aren't loads or
10159 // stores), because arm allows folding a scale into many arithmetic
10160 // operations. This should be made more precise and revisited later.
10161
10162 // Allow r << imm, but the imm has to be a multiple of two.
10163 if (Scale & 1) return false;
10164 return isPowerOf2_32(Scale);
10165 }
10166}
10167
10168/// isLegalAddressingMode - Return true if the addressing mode represented
10169/// by AM is legal for this target, for a load/store of the specified type.
10170bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
10171 Type *Ty) const {
10172 EVT VT = getValueType(Ty, true);
10173 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
10174 return false;
10175
10176 // Can never fold addr of global into load/store.
10177 if (AM.BaseGV)
10178 return false;
10179
10180 switch (AM.Scale) {
10181 case 0: // no scale reg, must be "r+i" or "r", or "i".
10182 break;
10183 case 1:
10184 if (Subtarget->isThumb1Only())
10185 return false;
10186 // FALL THROUGH.
10187 default:
10188 // ARM doesn't support any R+R*scale+imm addr modes.
10189 if (AM.BaseOffs)
10190 return false;
10191
10192 if (!VT.isSimple())
10193 return false;
10194
10195 if (Subtarget->isThumb2())
10196 return isLegalT2ScaledAddressingMode(AM, VT);
10197
10198 int Scale = AM.Scale;
10199 switch (VT.getSimpleVT().SimpleTy) {
10200 default: return false;
10201 case MVT::i1:
10202 case MVT::i8:
10203 case MVT::i32:
10204 if (Scale < 0) Scale = -Scale;
10205 if (Scale == 1)
10206 return true;
10207 // r + r << imm
10208 return isPowerOf2_32(Scale & ~1);
10209 case MVT::i16:
10210 case MVT::i64:
10211 // r + r
10212 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
10213 return true;
10214 return false;
10215
10216 case MVT::isVoid:
10217 // Note, we allow "void" uses (basically, uses that aren't loads or
10218 // stores), because arm allows folding a scale into many arithmetic
10219 // operations. This should be made more precise and revisited later.
10220
10221 // Allow r << imm, but the imm has to be a multiple of two.
10222 if (Scale & 1) return false;
10223 return isPowerOf2_32(Scale);
10224 }
10225 }
10226 return true;
10227}
10228
10229/// isLegalICmpImmediate - Return true if the specified immediate is legal
10230/// icmp immediate, that is the target has icmp instructions which can compare
10231/// a register against the immediate without having to materialize the
10232/// immediate into a register.
10233bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
10234 // Thumb2 and ARM modes can use cmn for negative immediates.
10235 if (!Subtarget->isThumb())
10236 return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
10237 if (Subtarget->isThumb2())
10238 return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
10239 // Thumb1 doesn't have cmn, and only 8-bit immediates.
10240 return Imm >= 0 && Imm <= 255;
10241}
10242
10243/// isLegalAddImmediate - Return true if the specified immediate is a legal add
10244/// *or sub* immediate, that is the target has add or sub instructions which can
10245/// add a register with the immediate without having to materialize the
10246/// immediate into a register.
10247bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
10248 // Same encoding for add/sub, just flip the sign.
10249 int64_t AbsImm = llvm::abs64(Imm);
10250 if (!Subtarget->isThumb())
10251 return ARM_AM::getSOImmVal(AbsImm) != -1;
10252 if (Subtarget->isThumb2())
10253 return ARM_AM::getT2SOImmVal(AbsImm) != -1;
10254 // Thumb1 only has 8-bit unsigned immediate.
10255 return AbsImm >= 0 && AbsImm <= 255;
10256}
10257
10258static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
10259 bool isSEXTLoad, SDValue &Base,
10260 SDValue &Offset, bool &isInc,
10261 SelectionDAG &DAG) {
10262 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
10263 return false;
10264
10265 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
10266 // AddressingMode 3
10267 Base = Ptr->getOperand(0);
10268 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10269 int RHSC = (int)RHS->getZExtValue();
10270 if (RHSC < 0 && RHSC > -256) {
10271 assert(Ptr->getOpcode() == ISD::ADD)((Ptr->getOpcode() == ISD::ADD) ? static_cast<void> (
0) : __assert_fail ("Ptr->getOpcode() == ISD::ADD", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10271, __PRETTY_FUNCTION__))
;
10272 isInc = false;
10273 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10274 return true;
10275 }
10276 }
10277 isInc = (Ptr->getOpcode() == ISD::ADD);
10278 Offset = Ptr->getOperand(1);
10279 return true;
10280 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
10281 // AddressingMode 2
10282 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10283 int RHSC = (int)RHS->getZExtValue();
10284 if (RHSC < 0 && RHSC > -0x1000) {
10285 assert(Ptr->getOpcode() == ISD::ADD)((Ptr->getOpcode() == ISD::ADD) ? static_cast<void> (
0) : __assert_fail ("Ptr->getOpcode() == ISD::ADD", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10285, __PRETTY_FUNCTION__))
;
10286 isInc = false;
10287 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10288 Base = Ptr->getOperand(0);
10289 return true;
10290 }
10291 }
10292
10293 if (Ptr->getOpcode() == ISD::ADD) {
10294 isInc = true;
10295 ARM_AM::ShiftOpc ShOpcVal=
10296 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
10297 if (ShOpcVal != ARM_AM::no_shift) {
10298 Base = Ptr->getOperand(1);
10299 Offset = Ptr->getOperand(0);
10300 } else {
10301 Base = Ptr->getOperand(0);
10302 Offset = Ptr->getOperand(1);
10303 }
10304 return true;
10305 }
10306
10307 isInc = (Ptr->getOpcode() == ISD::ADD);
10308 Base = Ptr->getOperand(0);
10309 Offset = Ptr->getOperand(1);
10310 return true;
10311 }
10312
10313 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
10314 return false;
10315}
10316
10317static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
10318 bool isSEXTLoad, SDValue &Base,
10319 SDValue &Offset, bool &isInc,
10320 SelectionDAG &DAG) {
10321 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
10322 return false;
10323
10324 Base = Ptr->getOperand(0);
10325 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10326 int RHSC = (int)RHS->getZExtValue();
10327 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
10328 assert(Ptr->getOpcode() == ISD::ADD)((Ptr->getOpcode() == ISD::ADD) ? static_cast<void> (
0) : __assert_fail ("Ptr->getOpcode() == ISD::ADD", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10328, __PRETTY_FUNCTION__))
;
10329 isInc = false;
10330 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10331 return true;
10332 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
10333 isInc = Ptr->getOpcode() == ISD::ADD;
10334 Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
10335 return true;
10336 }
10337 }
10338
10339 return false;
10340}
10341
10342/// getPreIndexedAddressParts - returns true by value, base pointer and
10343/// offset pointer and addressing mode by reference if the node's address
10344/// can be legally represented as pre-indexed load / store address.
10345bool
10346ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
10347 SDValue &Offset,
10348 ISD::MemIndexedMode &AM,
10349 SelectionDAG &DAG) const {
10350 if (Subtarget->isThumb1Only())
10351 return false;
10352
10353 EVT VT;
10354 SDValue Ptr;
10355 bool isSEXTLoad = false;
10356 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10357 Ptr = LD->getBasePtr();
10358 VT = LD->getMemoryVT();
10359 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10360 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10361 Ptr = ST->getBasePtr();
10362 VT = ST->getMemoryVT();
10363 } else
10364 return false;
10365
10366 bool isInc;
10367 bool isLegal = false;
10368 if (Subtarget->isThumb2())
10369 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10370 Offset, isInc, DAG);
10371 else
10372 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10373 Offset, isInc, DAG);
10374 if (!isLegal)
10375 return false;
10376
10377 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
10378 return true;
10379}
10380
10381/// getPostIndexedAddressParts - returns true by value, base pointer and
10382/// offset pointer and addressing mode by reference if this node can be
10383/// combined with a load / store to form a post-indexed load / store.
10384bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
10385 SDValue &Base,
10386 SDValue &Offset,
10387 ISD::MemIndexedMode &AM,
10388 SelectionDAG &DAG) const {
10389 if (Subtarget->isThumb1Only())
10390 return false;
10391
10392 EVT VT;
10393 SDValue Ptr;
10394 bool isSEXTLoad = false;
10395 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10396 VT = LD->getMemoryVT();
10397 Ptr = LD->getBasePtr();
10398 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10399 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10400 VT = ST->getMemoryVT();
10401 Ptr = ST->getBasePtr();
10402 } else
10403 return false;
10404
10405 bool isInc;
10406 bool isLegal = false;
10407 if (Subtarget->isThumb2())
10408 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10409 isInc, DAG);
10410 else
10411 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10412 isInc, DAG);
10413 if (!isLegal)
10414 return false;
10415
10416 if (Ptr != Base) {
10417 // Swap base ptr and offset to catch more post-index load / store when
10418 // it's legal. In Thumb2 mode, offset must be an immediate.
10419 if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
10420 !Subtarget->isThumb2())
10421 std::swap(Base, Offset);
10422
10423 // Post-indexed load / store update the base pointer.
10424 if (Ptr != Base)
10425 return false;
10426 }
10427
10428 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
10429 return true;
10430}
10431
10432void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
10433 APInt &KnownZero,
10434 APInt &KnownOne,
10435 const SelectionDAG &DAG,
10436 unsigned Depth) const {
10437 unsigned BitWidth = KnownOne.getBitWidth();
10438 KnownZero = KnownOne = APInt(BitWidth, 0);
10439 switch (Op.getOpcode()) {
10440 default: break;
10441 case ARMISD::ADDC:
10442 case ARMISD::ADDE:
10443 case ARMISD::SUBC:
10444 case ARMISD::SUBE:
10445 // These nodes' second result is a boolean
10446 if (Op.getResNo() == 0)
10447 break;
10448 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
10449 break;
10450 case ARMISD::CMOV: {
10451 // Bits are known zero/one if known on the LHS and RHS.
10452 DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
10453 if (KnownZero == 0 && KnownOne == 0) return;
10454
10455 APInt KnownZeroRHS, KnownOneRHS;
10456 DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
10457 KnownZero &= KnownZeroRHS;
10458 KnownOne &= KnownOneRHS;
10459 return;
10460 }
10461 case ISD::INTRINSIC_W_CHAIN: {
10462 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
10463 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
10464 switch (IntID) {
10465 default: return;
10466 case Intrinsic::arm_ldaex:
10467 case Intrinsic::arm_ldrex: {
10468 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
10469 unsigned MemBits = VT.getScalarType().getSizeInBits();
10470 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
10471 return;
10472 }
10473 }
10474 }
10475 }
10476}
10477
10478//===----------------------------------------------------------------------===//
10479// ARM Inline Assembly Support
10480//===----------------------------------------------------------------------===//
10481
10482bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
10483 // Looking for "rev" which is V6+.
10484 if (!Subtarget->hasV6Ops())
10485 return false;
10486
10487 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10488 std::string AsmStr = IA->getAsmString();
10489 SmallVector<StringRef, 4> AsmPieces;
10490 SplitString(AsmStr, AsmPieces, ";\n");
10491
10492 switch (AsmPieces.size()) {
10493 default: return false;
10494 case 1:
10495 AsmStr = AsmPieces[0];
10496 AsmPieces.clear();
10497 SplitString(AsmStr, AsmPieces, " \t,");
10498
10499 // rev $0, $1
10500 if (AsmPieces.size() == 3 &&
10501 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
10502 IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
10503 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10504 if (Ty && Ty->getBitWidth() == 32)
10505 return IntrinsicLowering::LowerToByteSwap(CI);
10506 }
10507 break;
10508 }
10509
10510 return false;
10511}
10512
10513/// getConstraintType - Given a constraint letter, return the type of
10514/// constraint it is for this target.
10515ARMTargetLowering::ConstraintType
10516ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
10517 if (Constraint.size() == 1) {
10518 switch (Constraint[0]) {
10519 default: break;
10520 case 'l': return C_RegisterClass;
10521 case 'w': return C_RegisterClass;
10522 case 'h': return C_RegisterClass;
10523 case 'x': return C_RegisterClass;
10524 case 't': return C_RegisterClass;
10525 case 'j': return C_Other; // Constant for movw.
10526 // An address with a single base register. Due to the way we
10527 // currently handle addresses it is the same as an 'r' memory constraint.
10528 case 'Q': return C_Memory;
10529 }
10530 } else if (Constraint.size() == 2) {
10531 switch (Constraint[0]) {
10532 default: break;
10533 // All 'U+' constraints are addresses.
10534 case 'U': return C_Memory;
10535 }
10536 }
10537 return TargetLowering::getConstraintType(Constraint);
10538}
10539
10540/// Examine constraint type and operand type and determine a weight value.
10541/// This object must already have been set up with the operand type
10542/// and the current alternative constraint selected.
10543TargetLowering::ConstraintWeight
10544ARMTargetLowering::getSingleConstraintMatchWeight(
10545 AsmOperandInfo &info, const char *constraint) const {
10546 ConstraintWeight weight = CW_Invalid;
10547 Value *CallOperandVal = info.CallOperandVal;
10548 // If we don't have a value, we can't do a match,
10549 // but allow it at the lowest weight.
10550 if (!CallOperandVal)
10551 return CW_Default;
10552 Type *type = CallOperandVal->getType();
10553 // Look at the constraint type.
10554 switch (*constraint) {
10555 default:
10556 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10557 break;
10558 case 'l':
10559 if (type->isIntegerTy()) {
10560 if (Subtarget->isThumb())
10561 weight = CW_SpecificReg;
10562 else
10563 weight = CW_Register;
10564 }
10565 break;
10566 case 'w':
10567 if (type->isFloatingPointTy())
10568 weight = CW_Register;
10569 break;
10570 }
10571 return weight;
10572}
10573
10574typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
10575RCPair
10576ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10577 MVT VT) const {
10578 if (Constraint.size() == 1) {
10579 // GCC ARM Constraint Letters
10580 switch (Constraint[0]) {
10581 case 'l': // Low regs or general regs.
10582 if (Subtarget->isThumb())
10583 return RCPair(0U, &ARM::tGPRRegClass);
10584 return RCPair(0U, &ARM::GPRRegClass);
10585 case 'h': // High regs or no regs.
10586 if (Subtarget->isThumb())
10587 return RCPair(0U, &ARM::hGPRRegClass);
10588 break;
10589 case 'r':
10590 if (Subtarget->isThumb1Only())
10591 return RCPair(0U, &ARM::tGPRRegClass);
10592 return RCPair(0U, &ARM::GPRRegClass);
10593 case 'w':
10594 if (VT == MVT::Other)
10595 break;
10596 if (VT == MVT::f32)
10597 return RCPair(0U, &ARM::SPRRegClass);
10598 if (VT.getSizeInBits() == 64)
10599 return RCPair(0U, &ARM::DPRRegClass);
10600 if (VT.getSizeInBits() == 128)
10601 return RCPair(0U, &ARM::QPRRegClass);
10602 break;
10603 case 'x':
10604 if (VT == MVT::Other)
10605 break;
10606 if (VT == MVT::f32)
10607 return RCPair(0U, &ARM::SPR_8RegClass);
10608 if (VT.getSizeInBits() == 64)
10609 return RCPair(0U, &ARM::DPR_8RegClass);
10610 if (VT.getSizeInBits() == 128)
10611 return RCPair(0U, &ARM::QPR_8RegClass);
10612 break;
10613 case 't':
10614 if (VT == MVT::f32)
10615 return RCPair(0U, &ARM::SPRRegClass);
10616 break;
10617 }
10618 }
10619 if (StringRef("{cc}").equals_lower(Constraint))
10620 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
10621
10622 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10623}
10624
10625/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10626/// vector. If it is invalid, don't add anything to Ops.
10627void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10628 std::string &Constraint,
10629 std::vector<SDValue>&Ops,
10630 SelectionDAG &DAG) const {
10631 SDValue Result;
10632
10633 // Currently only support length 1 constraints.
10634 if (Constraint.length() != 1) return;
10635
10636 char ConstraintLetter = Constraint[0];
10637 switch (ConstraintLetter) {
10638 default: break;
10639 case 'j':
10640 case 'I': case 'J': case 'K': case 'L':
10641 case 'M': case 'N': case 'O':
10642 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
10643 if (!C)
10644 return;
10645
10646 int64_t CVal64 = C->getSExtValue();
10647 int CVal = (int) CVal64;
10648 // None of these constraints allow values larger than 32 bits. Check
10649 // that the value fits in an int.
10650 if (CVal != CVal64)
10651 return;
10652
10653 switch (ConstraintLetter) {
10654 case 'j':
10655 // Constant suitable for movw, must be between 0 and
10656 // 65535.
10657 if (Subtarget->hasV6T2Ops())
10658 if (CVal >= 0 && CVal <= 65535)
10659 break;
10660 return;
10661 case 'I':
10662 if (Subtarget->isThumb1Only()) {
10663 // This must be a constant between 0 and 255, for ADD
10664 // immediates.
10665 if (CVal >= 0 && CVal <= 255)
10666 break;
10667 } else if (Subtarget->isThumb2()) {
10668 // A constant that can be used as an immediate value in a
10669 // data-processing instruction.
10670 if (ARM_AM::getT2SOImmVal(CVal) != -1)
10671 break;
10672 } else {
10673 // A constant that can be used as an immediate value in a
10674 // data-processing instruction.
10675 if (ARM_AM::getSOImmVal(CVal) != -1)
10676 break;
10677 }
10678 return;
10679
10680 case 'J':
10681 if (Subtarget->isThumb()) { // FIXME thumb2
10682 // This must be a constant between -255 and -1, for negated ADD
10683 // immediates. This can be used in GCC with an "n" modifier that
10684 // prints the negated value, for use with SUB instructions. It is
10685 // not useful otherwise but is implemented for compatibility.
10686 if (CVal >= -255 && CVal <= -1)
10687 break;
10688 } else {
10689 // This must be a constant between -4095 and 4095. It is not clear
10690 // what this constraint is intended for. Implemented for
10691 // compatibility with GCC.
10692 if (CVal >= -4095 && CVal <= 4095)
10693 break;
10694 }
10695 return;
10696
10697 case 'K':
10698 if (Subtarget->isThumb1Only()) {
10699 // A 32-bit value where only one byte has a nonzero value. Exclude
10700 // zero to match GCC. This constraint is used by GCC internally for
10701 // constants that can be loaded with a move/shift combination.
10702 // It is not useful otherwise but is implemented for compatibility.
10703 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
10704 break;
10705 } else if (Subtarget->isThumb2()) {
10706 // A constant whose bitwise inverse can be used as an immediate
10707 // value in a data-processing instruction. This can be used in GCC
10708 // with a "B" modifier that prints the inverted value, for use with
10709 // BIC and MVN instructions. It is not useful otherwise but is
10710 // implemented for compatibility.
10711 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
10712 break;
10713 } else {
10714 // A constant whose bitwise inverse can be used as an immediate
10715 // value in a data-processing instruction. This can be used in GCC
10716 // with a "B" modifier that prints the inverted value, for use with
10717 // BIC and MVN instructions. It is not useful otherwise but is
10718 // implemented for compatibility.
10719 if (ARM_AM::getSOImmVal(~CVal) != -1)
10720 break;
10721 }
10722 return;
10723
10724 case 'L':
10725 if (Subtarget->isThumb1Only()) {
10726 // This must be a constant between -7 and 7,
10727 // for 3-operand ADD/SUB immediate instructions.
10728 if (CVal >= -7 && CVal < 7)
10729 break;
10730 } else if (Subtarget->isThumb2()) {
10731 // A constant whose negation can be used as an immediate value in a
10732 // data-processing instruction. This can be used in GCC with an "n"
10733 // modifier that prints the negated value, for use with SUB
10734 // instructions. It is not useful otherwise but is implemented for
10735 // compatibility.
10736 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
10737 break;
10738 } else {
10739 // A constant whose negation can be used as an immediate value in a
10740 // data-processing instruction. This can be used in GCC with an "n"
10741 // modifier that prints the negated value, for use with SUB
10742 // instructions. It is not useful otherwise but is implemented for
10743 // compatibility.
10744 if (ARM_AM::getSOImmVal(-CVal) != -1)
10745 break;
10746 }
10747 return;
10748
10749 case 'M':
10750 if (Subtarget->isThumb()) { // FIXME thumb2
10751 // This must be a multiple of 4 between 0 and 1020, for
10752 // ADD sp + immediate.
10753 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
10754 break;
10755 } else {
10756 // A power of two or a constant between 0 and 32. This is used in
10757 // GCC for the shift amount on shifted register operands, but it is
10758 // useful in general for any shift amounts.
10759 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
10760 break;
10761 }
10762 return;
10763
10764 case 'N':
10765 if (Subtarget->isThumb()) { // FIXME thumb2
10766 // This must be a constant between 0 and 31, for shift amounts.
10767 if (CVal >= 0 && CVal <= 31)
10768 break;
10769 }
10770 return;
10771
10772 case 'O':
10773 if (Subtarget->isThumb()) { // FIXME thumb2
10774 // This must be a multiple of 4 between -508 and 508, for
10775 // ADD/SUB sp = sp + immediate.
10776 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
10777 break;
10778 }
10779 return;
10780 }
10781 Result = DAG.getTargetConstant(CVal, Op.getValueType());
10782 break;
10783 }
10784
10785 if (Result.getNode()) {
10786 Ops.push_back(Result);
10787 return;
10788 }
10789 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10790}
10791
10792SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
10793 assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only")((Subtarget->isTargetAEABI() && "Register-based DivRem lowering only"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetAEABI() && \"Register-based DivRem lowering only\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10793, __PRETTY_FUNCTION__))
;
10794 unsigned Opcode = Op->getOpcode();
10795 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&(((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
"Invalid opcode for Div/Rem lowering") ? static_cast<void
> (0) : __assert_fail ("(Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && \"Invalid opcode for Div/Rem lowering\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10796, __PRETTY_FUNCTION__))
10796 "Invalid opcode for Div/Rem lowering")(((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
"Invalid opcode for Div/Rem lowering") ? static_cast<void
> (0) : __assert_fail ("(Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && \"Invalid opcode for Div/Rem lowering\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10796, __PRETTY_FUNCTION__))
;
10797 bool isSigned = (Opcode == ISD::SDIVREM);
10798 EVT VT = Op->getValueType(0);
10799 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
10800
10801 RTLIB::Libcall LC;
10802 switch (VT.getSimpleVT().SimpleTy) {
10803 default: llvm_unreachable("Unexpected request for libcall!")::llvm::llvm_unreachable_internal("Unexpected request for libcall!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10803)
;
10804 case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
10805 case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
10806 case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
10807 case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
10808 }
10809
10810 SDValue InChain = DAG.getEntryNode();
10811
10812 TargetLowering::ArgListTy Args;
10813 TargetLowering::ArgListEntry Entry;
10814 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
10815 EVT ArgVT = Op->getOperand(i).getValueType();
10816 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10817 Entry.Node = Op->getOperand(i);
10818 Entry.Ty = ArgTy;
10819 Entry.isSExt = isSigned;
10820 Entry.isZExt = !isSigned;
10821 Args.push_back(Entry);
10822 }
10823
10824 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
10825 getPointerTy());
10826
10827 Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
10828
10829 SDLoc dl(Op);
10830 TargetLowering::CallLoweringInfo CLI(DAG);
10831 CLI.setDebugLoc(dl).setChain(InChain)
10832 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
10833 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
10834
10835 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
10836 return CallInfo.first;
10837}
10838
10839SDValue
10840ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
10841 assert(Subtarget->isTargetWindows() && "unsupported target platform")((Subtarget->isTargetWindows() && "unsupported target platform"
) ? static_cast<void> (0) : __assert_fail ("Subtarget->isTargetWindows() && \"unsupported target platform\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10841, __PRETTY_FUNCTION__))
;
10842 SDLoc DL(Op);
10843
10844 // Get the inputs.
10845 SDValue Chain = Op.getOperand(0);
10846 SDValue Size = Op.getOperand(1);
10847
10848 SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
10849 DAG.getConstant(2, MVT::i32));
10850
10851 SDValue Flag;
10852 Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
10853 Flag = Chain.getValue(1);
10854
10855 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10856 Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
10857
10858 SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
10859 Chain = NewSP.getValue(1);
10860
10861 SDValue Ops[2] = { NewSP, Chain };
10862 return DAG.getMergeValues(Ops, DL);
10863}
10864
10865SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10866 assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&((Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP
() && "Unexpected type for custom-lowering FP_EXTEND"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() && \"Unexpected type for custom-lowering FP_EXTEND\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10867, __PRETTY_FUNCTION__))
10867 "Unexpected type for custom-lowering FP_EXTEND")((Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP
() && "Unexpected type for custom-lowering FP_EXTEND"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() && \"Unexpected type for custom-lowering FP_EXTEND\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10867, __PRETTY_FUNCTION__))
;
10868
10869 RTLIB::Libcall LC;
10870 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
10871
10872 SDValue SrcVal = Op.getOperand(0);
10873 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
10874 /*isSigned*/ false, SDLoc(Op)).first;
10875}
10876
10877SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10878 assert(Op.getOperand(0).getValueType() == MVT::f64 &&((Op.getOperand(0).getValueType() == MVT::f64 && Subtarget
->isFPOnlySP() && "Unexpected type for custom-lowering FP_ROUND"
) ? static_cast<void> (0) : __assert_fail ("Op.getOperand(0).getValueType() == MVT::f64 && Subtarget->isFPOnlySP() && \"Unexpected type for custom-lowering FP_ROUND\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10880, __PRETTY_FUNCTION__))
10879 Subtarget->isFPOnlySP() &&((Op.getOperand(0).getValueType() == MVT::f64 && Subtarget
->isFPOnlySP() && "Unexpected type for custom-lowering FP_ROUND"
) ? static_cast<void> (0) : __assert_fail ("Op.getOperand(0).getValueType() == MVT::f64 && Subtarget->isFPOnlySP() && \"Unexpected type for custom-lowering FP_ROUND\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10880, __PRETTY_FUNCTION__))
10880 "Unexpected type for custom-lowering FP_ROUND")((Op.getOperand(0).getValueType() == MVT::f64 && Subtarget
->isFPOnlySP() && "Unexpected type for custom-lowering FP_ROUND"
) ? static_cast<void> (0) : __assert_fail ("Op.getOperand(0).getValueType() == MVT::f64 && Subtarget->isFPOnlySP() && \"Unexpected type for custom-lowering FP_ROUND\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 10880, __PRETTY_FUNCTION__))
;
10881
10882 RTLIB::Libcall LC;
10883 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
10884
10885 SDValue SrcVal = Op.getOperand(0);
10886 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
10887 /*isSigned*/ false, SDLoc(Op)).first;
10888}
10889
10890bool
10891ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
10892 // The ARM target isn't yet aware of offsets.
10893 return false;
10894}
10895
10896bool ARM::isBitFieldInvertedMask(unsigned v) {
10897 if (v == 0xffffffff)
10898 return false;
10899
10900 // there can be 1's on either or both "outsides", all the "inside"
10901 // bits must be 0's
10902 unsigned TO = CountTrailingOnes_32(v);
10903 unsigned LO = CountLeadingOnes_32(v);
10904 v = (v >> TO) << TO;
10905 v = (v << LO) >> LO;
10906 return v == 0;
10907}
10908
10909/// isFPImmLegal - Returns true if the target can instruction select the
10910/// specified FP immediate natively. If false, the legalizer will
10911/// materialize the FP immediate as a load from a constant pool.
10912bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
10913 if (!Subtarget->hasVFP3())
10914 return false;
10915 if (VT == MVT::f32)
10916 return ARM_AM::getFP32Imm(Imm) != -1;
10917 if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
10918 return ARM_AM::getFP64Imm(Imm) != -1;
10919 return false;
10920}
10921
10922/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
10923/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
10924/// specified in the intrinsic calls.
10925bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
10926 const CallInst &I,
10927 unsigned Intrinsic) const {
10928 switch (Intrinsic) {
10929 case Intrinsic::arm_neon_vld1:
10930 case Intrinsic::arm_neon_vld2:
10931 case Intrinsic::arm_neon_vld3:
10932 case Intrinsic::arm_neon_vld4:
10933 case Intrinsic::arm_neon_vld2lane:
10934 case Intrinsic::arm_neon_vld3lane:
10935 case Intrinsic::arm_neon_vld4lane: {
10936 Info.opc = ISD::INTRINSIC_W_CHAIN;
10937 // Conservatively set memVT to the entire set of vectors loaded.
10938 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
10939 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10940 Info.ptrVal = I.getArgOperand(0);
10941 Info.offset = 0;
10942 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10943 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10944 Info.vol = false; // volatile loads with NEON intrinsics not supported
10945 Info.readMem = true;
10946 Info.writeMem = false;
10947 return true;
10948 }
10949 case Intrinsic::arm_neon_vst1:
10950 case Intrinsic::arm_neon_vst2:
10951 case Intrinsic::arm_neon_vst3:
10952 case Intrinsic::arm_neon_vst4:
10953 case Intrinsic::arm_neon_vst2lane:
10954 case Intrinsic::arm_neon_vst3lane:
10955 case Intrinsic::arm_neon_vst4lane: {
10956 Info.opc = ISD::INTRINSIC_VOID;
10957 // Conservatively set memVT to the entire set of vectors stored.
10958 unsigned NumElts = 0;
10959 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
10960 Type *ArgTy = I.getArgOperand(ArgI)->getType();
10961 if (!ArgTy->isVectorTy())
10962 break;
10963 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
10964 }
10965 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10966 Info.ptrVal = I.getArgOperand(0);
10967 Info.offset = 0;
10968 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10969 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10970 Info.vol = false; // volatile stores with NEON intrinsics not supported
10971 Info.readMem = false;
10972 Info.writeMem = true;
10973 return true;
10974 }
10975 case Intrinsic::arm_ldaex:
10976 case Intrinsic::arm_ldrex: {
10977 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
10978 Info.opc = ISD::INTRINSIC_W_CHAIN;
10979 Info.memVT = MVT::getVT(PtrTy->getElementType());
10980 Info.ptrVal = I.getArgOperand(0);
10981 Info.offset = 0;
10982 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
10983 Info.vol = true;
10984 Info.readMem = true;
10985 Info.writeMem = false;
10986 return true;
10987 }
10988 case Intrinsic::arm_stlex:
10989 case Intrinsic::arm_strex: {
10990 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
10991 Info.opc = ISD::INTRINSIC_W_CHAIN;
10992 Info.memVT = MVT::getVT(PtrTy->getElementType());
10993 Info.ptrVal = I.getArgOperand(1);
10994 Info.offset = 0;
10995 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
10996 Info.vol = true;
10997 Info.readMem = false;
10998 Info.writeMem = true;
10999 return true;
11000 }
11001 case Intrinsic::arm_stlexd:
11002 case Intrinsic::arm_strexd: {
11003 Info.opc = ISD::INTRINSIC_W_CHAIN;
11004 Info.memVT = MVT::i64;
11005 Info.ptrVal = I.getArgOperand(2);
11006 Info.offset = 0;
11007 Info.align = 8;
11008 Info.vol = true;
11009 Info.readMem = false;
11010 Info.writeMem = true;
11011 return true;
11012 }
11013 case Intrinsic::arm_ldaexd:
11014 case Intrinsic::arm_ldrexd: {
11015 Info.opc = ISD::INTRINSIC_W_CHAIN;
11016 Info.memVT = MVT::i64;
11017 Info.ptrVal = I.getArgOperand(0);
11018 Info.offset = 0;
11019 Info.align = 8;
11020 Info.vol = true;
11021 Info.readMem = true;
11022 Info.writeMem = false;
11023 return true;
11024 }
11025 default:
11026 break;
11027 }
11028
11029 return false;
11030}
11031
11032/// \brief Returns true if it is beneficial to convert a load of a constant
11033/// to just the constant itself.
11034bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11035 Type *Ty) const {
11036 assert(Ty->isIntegerTy())((Ty->isIntegerTy()) ? static_cast<void> (0) : __assert_fail
("Ty->isIntegerTy()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 11036, __PRETTY_FUNCTION__))
;
11037
11038 unsigned Bits = Ty->getPrimitiveSizeInBits();
11039 if (Bits == 0 || Bits > 32)
11040 return false;
11041 return true;
11042}
11043
11044bool ARMTargetLowering::hasLoadLinkedStoreConditional() const { return true; }
11045
11046Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
11047 ARM_MB::MemBOpt Domain) const {
11048 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11049
11050 // First, if the target has no DMB, see what fallback we can use.
11051 if (!Subtarget->hasDataBarrier()) {
11052 // Some ARMv6 cpus can support data barriers with an mcr instruction.
11053 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
11054 // here.
11055 if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
11056 Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
11057 Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
11058 Builder.getInt32(0), Builder.getInt32(7),
11059 Builder.getInt32(10), Builder.getInt32(5)};
11060 return Builder.CreateCall(MCR, args);
11061 } else {
11062 // Instead of using barriers, atomic accesses on these subtargets use
11063 // libcalls.
11064 llvm_unreachable("makeDMB on a target so old that it has no barriers")::llvm::llvm_unreachable_internal("makeDMB on a target so old that it has no barriers"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 11064)
;
11065 }
11066 } else {
11067 Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
11068 // Only a full system barrier exists in the M-class architectures.
11069 Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
11070 Constant *CDomain = Builder.getInt32(Domain);
11071 return Builder.CreateCall(DMB, CDomain);
11072 }
11073}
11074
11075// Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11076Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
11077 AtomicOrdering Ord, bool IsStore,
11078 bool IsLoad) const {
11079 if (!getInsertFencesForAtomic())
11080 return nullptr;
11081
11082 switch (Ord) {
11083 case NotAtomic:
11084 case Unordered:
11085 llvm_unreachable("Invalid fence: unordered/non-atomic")::llvm::llvm_unreachable_internal("Invalid fence: unordered/non-atomic"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 11085)
;
11086 case Monotonic:
11087 case Acquire:
11088 return nullptr; // Nothing to do
11089 case SequentiallyConsistent:
11090 if (!IsStore)
11091 return nullptr; // Nothing to do
11092 /*FALLTHROUGH*/
11093 case Release:
11094 case AcquireRelease:
11095 if (Subtarget->isSwift())
11096 return makeDMB(Builder, ARM_MB::ISHST);
11097 // FIXME: add a comment with a link to documentation justifying this.
11098 else
11099 return makeDMB(Builder, ARM_MB::ISH);
11100 }
11101 llvm_unreachable("Unknown fence ordering in emitLeadingFence")::llvm::llvm_unreachable_internal("Unknown fence ordering in emitLeadingFence"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 11101)
;
11102}
11103
11104Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
11105 AtomicOrdering Ord, bool IsStore,
11106 bool IsLoad) const {
11107 if (!getInsertFencesForAtomic())
11108 return nullptr;
11109
11110 switch (Ord) {
11111 case NotAtomic:
11112 case Unordered:
11113 llvm_unreachable("Invalid fence: unordered/not-atomic")::llvm::llvm_unreachable_internal("Invalid fence: unordered/not-atomic"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 11113)
;
11114 case Monotonic:
11115 case Release:
11116 return nullptr; // Nothing to do
11117 case Acquire:
11118 case AcquireRelease:
11119 case SequentiallyConsistent:
11120 return makeDMB(Builder, ARM_MB::ISH);
11121 }
11122 llvm_unreachable("Unknown fence ordering in emitTrailingFence")::llvm::llvm_unreachable_internal("Unknown fence ordering in emitTrailingFence"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 11122)
;
11123}
11124
11125// Loads and stores less than 64-bits are already atomic; ones above that
11126// are doomed anyway, so defer to the default libcall and blame the OS when
11127// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
11128// anything for those.
11129bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
11130 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
11131 return (Size == 64) && !Subtarget->isMClass();
11132}
11133
11134// Loads and stores less than 64-bits are already atomic; ones above that
11135// are doomed anyway, so defer to the default libcall and blame the OS when
11136// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
11137// anything for those.
11138// FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
11139// guarantee, see DDI0406C ARM architecture reference manual,
11140// sections A8.8.72-74 LDRD)
11141bool ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
11142 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
11143 return (Size == 64) && !Subtarget->isMClass();
11144}
11145
11146// For the real atomic operations, we have ldrex/strex up to 32 bits,
11147// and up to 64 bits on the non-M profiles
11148bool ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11149 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11150 return Size <= (Subtarget->isMClass() ? 32U : 64U);
11151}
11152
11153// This has so far only been implemented for MachO.
11154bool ARMTargetLowering::useLoadStackGuardNode() const {
11155 return Subtarget->isTargetMachO();
11156}
11157
11158bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
11159 unsigned &Cost) const {
11160 // If we do not have NEON, vector types are not natively supported.
11161 if (!Subtarget->hasNEON())
11162 return false;
11163
11164 // Floating point values and vector values map to the same register file.
11165 // Therefore, althought we could do a store extract of a vector type, this is
11166 // better to leave at float as we have more freedom in the addressing mode for
11167 // those.
11168 if (VectorTy->isFPOrFPVectorTy())
11169 return false;
11170
11171 // If the index is unknown at compile time, this is very expensive to lower
11172 // and it is not possible to combine the store with the extract.
11173 if (!isa<ConstantInt>(Idx))
11174 return false;
11175
11176 assert(VectorTy->isVectorTy() && "VectorTy is not a vector type")((VectorTy->isVectorTy() && "VectorTy is not a vector type"
) ? static_cast<void> (0) : __assert_fail ("VectorTy->isVectorTy() && \"VectorTy is not a vector type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/Target/ARM/ARMISelLowering.cpp"
, 11176, __PRETTY_FUNCTION__))
;
11177 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
11178 // We can do a store + vector extract on any vector that fits perfectly in a D
11179 // or Q register.
11180 if (BitWidth == 64 || BitWidth == 128) {
11181 Cost = 0;
11182 return true;
11183 }
11184 return false;
11185}
11186
11187Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
11188 AtomicOrdering Ord) const {
11189 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11190 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
11191 bool IsAcquire = isAtLeastAcquire(Ord);
11192
11193 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
11194 // intrinsic must return {i32, i32} and we have to recombine them into a
11195 // single i64 here.
11196 if (ValTy->getPrimitiveSizeInBits() == 64) {
11197 Intrinsic::ID Int =
11198 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
11199 Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
11200
11201 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11202 Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
11203
11204 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
11205 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
11206 if (!Subtarget->isLittle())
11207 std::swap (Lo, Hi);
11208 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
11209 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
11210 return Builder.CreateOr(
11211 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
11212 }
11213
11214 Type *Tys[] = { Addr->getType() };
11215 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
11216 Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
11217
11218 return Builder.CreateTruncOrBitCast(
11219 Builder.CreateCall(Ldrex, Addr),
11220 cast<PointerType>(Addr->getType())->getElementType());
11221}
11222
11223Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
11224 Value *Addr,
11225 AtomicOrdering Ord) const {
11226 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11227 bool IsRelease = isAtLeastRelease(Ord);
11228
11229 // Since the intrinsics must have legal type, the i64 intrinsics take two
11230 // parameters: "i32, i32". We must marshal Val into the appropriate form
11231 // before the call.
11232 if (Val->getType()->getPrimitiveSizeInBits() == 64) {
11233 Intrinsic::ID Int =
11234 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
11235 Function *Strex = Intrinsic::getDeclaration(M, Int);
11236 Type *Int32Ty = Type::getInt32Ty(M->getContext());
11237
11238 Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
11239 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
11240 if (!Subtarget->isLittle())
11241 std::swap (Lo, Hi);
11242 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11243 return Builder.CreateCall3(Strex, Lo, Hi, Addr);
11244 }
11245
11246 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
11247 Type *Tys[] = { Addr->getType() };
11248 Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
11249
11250 return Builder.CreateCall2(
11251 Strex, Builder.CreateZExtOrBitCast(
11252 Val, Strex->getFunctionType()->getParamType(0)),
11253 Addr);
11254}
11255
11256enum HABaseType {
11257 HA_UNKNOWN = 0,
11258 HA_FLOAT,
11259 HA_DOUBLE,
11260 HA_VECT64,
11261 HA_VECT128
11262};
11263
11264static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
11265 uint64_t &Members) {
11266 if (const StructType *ST = dyn_cast<StructType>(Ty)) {
11267 for (unsigned i = 0; i < ST->getNumElements(); ++i) {
11268 uint64_t SubMembers = 0;
11269 if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
11270 return false;
11271 Members += SubMembers;
11272 }
11273 } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
11274 uint64_t SubMembers = 0;
11275 if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
11276 return false;
11277 Members += SubMembers * AT->getNumElements();
11278 } else if (Ty->isFloatTy()) {
11279 if (Base != HA_UNKNOWN && Base != HA_FLOAT)
11280 return false;
11281 Members = 1;
11282 Base = HA_FLOAT;
11283 } else if (Ty->isDoubleTy()) {
11284 if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
11285 return false;
11286 Members = 1;
11287 Base = HA_DOUBLE;
11288 } else if (const VectorType *VT = dyn_cast<VectorType>(Ty)) {
11289 Members = 1;
11290 switch (Base) {
11291 case HA_FLOAT:
11292 case HA_DOUBLE:
11293 return false;
11294 case HA_VECT64:
11295 return VT->getBitWidth() == 64;
11296 case HA_VECT128:
11297 return VT->getBitWidth() == 128;
11298 case HA_UNKNOWN:
11299 switch (VT->getBitWidth()) {
11300 case 64:
11301 Base = HA_VECT64;
11302 return true;
11303 case 128:
11304 Base = HA_VECT128;
11305 return true;
11306 default:
11307 return false;
11308 }
11309 }
11310 }
11311
11312 return (Members > 0 && Members <= 4);
11313}
11314
11315/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate.
11316bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
11317 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
11318 if (getEffectiveCallingConv(CallConv, isVarArg) !=
11319 CallingConv::ARM_AAPCS_VFP)
11320 return false;
11321
11322 HABaseType Base = HA_UNKNOWN;
11323 uint64_t Members = 0;
11324 bool result = isHomogeneousAggregate(Ty, Base, Members);
11325 DEBUG(dbgs() << "isHA: " << result << " "; Ty->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("arm-isel")) { dbgs() << "isHA: " << result <<
" "; Ty->dump(); } } while (0)
;
11326 return result;
11327}