Bug Summary

File:tools/clang/lib/AST/ASTContext.cpp
Location:line 8743, column 13
Description:Potential leak of memory pointed to by 'Vector'

Annotated Source Code

1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/MangleNumberingContext.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/VTableBuilder.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/Triple.h"
39#include "llvm/Support/Capacity.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include <map>
43
44using namespace clang;
45
46unsigned ASTContext::NumImplicitDefaultConstructors;
47unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyConstructors;
49unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50unsigned ASTContext::NumImplicitMoveConstructors;
51unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56unsigned ASTContext::NumImplicitDestructors;
57unsigned ASTContext::NumImplicitDestructorsDeclared;
58
59enum FloatingRank {
60 HalfRank, FloatRank, DoubleRank, LongDoubleRank
61};
62
63RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64 if (!CommentsLoaded && ExternalSource) {
65 ExternalSource->ReadComments();
66
67#ifndef NDEBUG
68 ArrayRef<RawComment *> RawComments = Comments.getComments();
69 assert(std::is_sorted(RawComments.begin(), RawComments.end(),((std::is_sorted(RawComments.begin(), RawComments.end(), BeforeThanCompare
<RawComment>(SourceMgr))) ? static_cast<void> (0)
: __assert_fail ("std::is_sorted(RawComments.begin(), RawComments.end(), BeforeThanCompare<RawComment>(SourceMgr))"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 70, __PRETTY_FUNCTION__))
70 BeforeThanCompare<RawComment>(SourceMgr)))((std::is_sorted(RawComments.begin(), RawComments.end(), BeforeThanCompare
<RawComment>(SourceMgr))) ? static_cast<void> (0)
: __assert_fail ("std::is_sorted(RawComments.begin(), RawComments.end(), BeforeThanCompare<RawComment>(SourceMgr))"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 70, __PRETTY_FUNCTION__))
;
71#endif
72
73 CommentsLoaded = true;
74 }
75
76 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 76, __PRETTY_FUNCTION__))
;
77
78 // User can not attach documentation to implicit declarations.
79 if (D->isImplicit())
80 return nullptr;
81
82 // User can not attach documentation to implicit instantiations.
83 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85 return nullptr;
86 }
87
88 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89 if (VD->isStaticDataMember() &&
90 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91 return nullptr;
92 }
93
94 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96 return nullptr;
97 }
98
99 if (const ClassTemplateSpecializationDecl *CTSD =
100 dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101 TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102 if (TSK == TSK_ImplicitInstantiation ||
103 TSK == TSK_Undeclared)
104 return nullptr;
105 }
106
107 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109 return nullptr;
110 }
111 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112 // When tag declaration (but not definition!) is part of the
113 // decl-specifier-seq of some other declaration, it doesn't get comment
114 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115 return nullptr;
116 }
117 // TODO: handle comments for function parameters properly.
118 if (isa<ParmVarDecl>(D))
119 return nullptr;
120
121 // TODO: we could look up template parameter documentation in the template
122 // documentation.
123 if (isa<TemplateTypeParmDecl>(D) ||
124 isa<NonTypeTemplateParmDecl>(D) ||
125 isa<TemplateTemplateParmDecl>(D))
126 return nullptr;
127
128 ArrayRef<RawComment *> RawComments = Comments.getComments();
129
130 // If there are no comments anywhere, we won't find anything.
131 if (RawComments.empty())
132 return nullptr;
133
134 // Find declaration location.
135 // For Objective-C declarations we generally don't expect to have multiple
136 // declarators, thus use declaration starting location as the "declaration
137 // location".
138 // For all other declarations multiple declarators are used quite frequently,
139 // so we use the location of the identifier as the "declaration location".
140 SourceLocation DeclLoc;
141 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142 isa<ObjCPropertyDecl>(D) ||
143 isa<RedeclarableTemplateDecl>(D) ||
144 isa<ClassTemplateSpecializationDecl>(D))
145 DeclLoc = D->getLocStart();
146 else {
147 DeclLoc = D->getLocation();
148 if (DeclLoc.isMacroID()) {
149 if (isa<TypedefDecl>(D)) {
150 // If location of the typedef name is in a macro, it is because being
151 // declared via a macro. Try using declaration's starting location as
152 // the "declaration location".
153 DeclLoc = D->getLocStart();
154 } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155 // If location of the tag decl is inside a macro, but the spelling of
156 // the tag name comes from a macro argument, it looks like a special
157 // macro like NS_ENUM is being used to define the tag decl. In that
158 // case, adjust the source location to the expansion loc so that we can
159 // attach the comment to the tag decl.
160 if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161 TD->isCompleteDefinition())
162 DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163 }
164 }
165 }
166
167 // If the declaration doesn't map directly to a location in a file, we
168 // can't find the comment.
169 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170 return nullptr;
171
172 // Find the comment that occurs just after this declaration.
173 ArrayRef<RawComment *>::iterator Comment;
174 {
175 // When searching for comments during parsing, the comment we are looking
176 // for is usually among the last two comments we parsed -- check them
177 // first.
178 RawComment CommentAtDeclLoc(
179 SourceMgr, SourceRange(DeclLoc), false,
180 LangOpts.CommentOpts.ParseAllComments);
181 BeforeThanCompare<RawComment> Compare(SourceMgr);
182 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184 if (!Found && RawComments.size() >= 2) {
185 MaybeBeforeDecl--;
186 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187 }
188
189 if (Found) {
190 Comment = MaybeBeforeDecl + 1;
191 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),((Comment == std::lower_bound(RawComments.begin(), RawComments
.end(), &CommentAtDeclLoc, Compare)) ? static_cast<void
> (0) : __assert_fail ("Comment == std::lower_bound(RawComments.begin(), RawComments.end(), &CommentAtDeclLoc, Compare)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 192, __PRETTY_FUNCTION__))
192 &CommentAtDeclLoc, Compare))((Comment == std::lower_bound(RawComments.begin(), RawComments
.end(), &CommentAtDeclLoc, Compare)) ? static_cast<void
> (0) : __assert_fail ("Comment == std::lower_bound(RawComments.begin(), RawComments.end(), &CommentAtDeclLoc, Compare)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 192, __PRETTY_FUNCTION__))
;
193 } else {
194 // Slow path.
195 Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196 &CommentAtDeclLoc, Compare);
197 }
198 }
199
200 // Decompose the location for the declaration and find the beginning of the
201 // file buffer.
202 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203
204 // First check whether we have a trailing comment.
205 if (Comment != RawComments.end() &&
206 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209 std::pair<FileID, unsigned> CommentBeginDecomp
210 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211 // Check that Doxygen trailing comment comes after the declaration, starts
212 // on the same line and in the same file as the declaration.
213 if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215 == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216 CommentBeginDecomp.second)) {
217 return *Comment;
218 }
219 }
220
221 // The comment just after the declaration was not a trailing comment.
222 // Let's look at the previous comment.
223 if (Comment == RawComments.begin())
224 return nullptr;
225 --Comment;
226
227 // Check that we actually have a non-member Doxygen comment.
228 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229 return nullptr;
230
231 // Decompose the end of the comment.
232 std::pair<FileID, unsigned> CommentEndDecomp
233 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234
235 // If the comment and the declaration aren't in the same file, then they
236 // aren't related.
237 if (DeclLocDecomp.first != CommentEndDecomp.first)
238 return nullptr;
239
240 // Get the corresponding buffer.
241 bool Invalid = false;
242 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243 &Invalid).data();
244 if (Invalid)
245 return nullptr;
246
247 // Extract text between the comment and declaration.
248 StringRef Text(Buffer + CommentEndDecomp.second,
249 DeclLocDecomp.second - CommentEndDecomp.second);
250
251 // There should be no other declarations or preprocessor directives between
252 // comment and declaration.
253 if (Text.find_first_of(";{}#@") != StringRef::npos)
254 return nullptr;
255
256 return *Comment;
257}
258
259namespace {
260/// If we have a 'templated' declaration for a template, adjust 'D' to
261/// refer to the actual template.
262/// If we have an implicit instantiation, adjust 'D' to refer to template.
263const Decl *adjustDeclToTemplate(const Decl *D) {
264 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265 // Is this function declaration part of a function template?
266 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267 return FTD;
268
269 // Nothing to do if function is not an implicit instantiation.
270 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271 return D;
272
273 // Function is an implicit instantiation of a function template?
274 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275 return FTD;
276
277 // Function is instantiated from a member definition of a class template?
278 if (const FunctionDecl *MemberDecl =
279 FD->getInstantiatedFromMemberFunction())
280 return MemberDecl;
281
282 return D;
283 }
284 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285 // Static data member is instantiated from a member definition of a class
286 // template?
287 if (VD->isStaticDataMember())
288 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289 return MemberDecl;
290
291 return D;
292 }
293 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294 // Is this class declaration part of a class template?
295 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296 return CTD;
297
298 // Class is an implicit instantiation of a class template or partial
299 // specialization?
300 if (const ClassTemplateSpecializationDecl *CTSD =
301 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303 return D;
304 llvm::PointerUnion<ClassTemplateDecl *,
305 ClassTemplatePartialSpecializationDecl *>
306 PU = CTSD->getSpecializedTemplateOrPartial();
307 return PU.is<ClassTemplateDecl*>() ?
308 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309 static_cast<const Decl*>(
310 PU.get<ClassTemplatePartialSpecializationDecl *>());
311 }
312
313 // Class is instantiated from a member definition of a class template?
314 if (const MemberSpecializationInfo *Info =
315 CRD->getMemberSpecializationInfo())
316 return Info->getInstantiatedFrom();
317
318 return D;
319 }
320 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321 // Enum is instantiated from a member definition of a class template?
322 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323 return MemberDecl;
324
325 return D;
326 }
327 // FIXME: Adjust alias templates?
328 return D;
329}
330} // unnamed namespace
331
332const RawComment *ASTContext::getRawCommentForAnyRedecl(
333 const Decl *D,
334 const Decl **OriginalDecl) const {
335 D = adjustDeclToTemplate(D);
336
337 // Check whether we have cached a comment for this declaration already.
338 {
339 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340 RedeclComments.find(D);
341 if (Pos != RedeclComments.end()) {
342 const RawCommentAndCacheFlags &Raw = Pos->second;
343 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344 if (OriginalDecl)
345 *OriginalDecl = Raw.getOriginalDecl();
346 return Raw.getRaw();
347 }
348 }
349 }
350
351 // Search for comments attached to declarations in the redeclaration chain.
352 const RawComment *RC = nullptr;
353 const Decl *OriginalDeclForRC = nullptr;
354 for (auto I : D->redecls()) {
355 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356 RedeclComments.find(I);
357 if (Pos != RedeclComments.end()) {
358 const RawCommentAndCacheFlags &Raw = Pos->second;
359 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360 RC = Raw.getRaw();
361 OriginalDeclForRC = Raw.getOriginalDecl();
362 break;
363 }
364 } else {
365 RC = getRawCommentForDeclNoCache(I);
366 OriginalDeclForRC = I;
367 RawCommentAndCacheFlags Raw;
368 if (RC) {
369 Raw.setRaw(RC);
370 Raw.setKind(RawCommentAndCacheFlags::FromDecl);
371 } else
372 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
373 Raw.setOriginalDecl(I);
374 RedeclComments[I] = Raw;
375 if (RC)
376 break;
377 }
378 }
379
380 // If we found a comment, it should be a documentation comment.
381 assert(!RC || RC->isDocumentation())((!RC || RC->isDocumentation()) ? static_cast<void> (
0) : __assert_fail ("!RC || RC->isDocumentation()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 381, __PRETTY_FUNCTION__))
;
382
383 if (OriginalDecl)
384 *OriginalDecl = OriginalDeclForRC;
385
386 // Update cache for every declaration in the redeclaration chain.
387 RawCommentAndCacheFlags Raw;
388 Raw.setRaw(RC);
389 Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
390 Raw.setOriginalDecl(OriginalDeclForRC);
391
392 for (auto I : D->redecls()) {
393 RawCommentAndCacheFlags &R = RedeclComments[I];
394 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
395 R = Raw;
396 }
397
398 return RC;
399}
400
401static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
402 SmallVectorImpl<const NamedDecl *> &Redeclared) {
403 const DeclContext *DC = ObjCMethod->getDeclContext();
404 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
405 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
406 if (!ID)
407 return;
408 // Add redeclared method here.
409 for (const auto *Ext : ID->known_extensions()) {
410 if (ObjCMethodDecl *RedeclaredMethod =
411 Ext->getMethod(ObjCMethod->getSelector(),
412 ObjCMethod->isInstanceMethod()))
413 Redeclared.push_back(RedeclaredMethod);
414 }
415 }
416}
417
418comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
419 const Decl *D) const {
420 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
421 ThisDeclInfo->CommentDecl = D;
422 ThisDeclInfo->IsFilled = false;
423 ThisDeclInfo->fill();
424 ThisDeclInfo->CommentDecl = FC->getDecl();
425 if (!ThisDeclInfo->TemplateParameters)
426 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
427 comments::FullComment *CFC =
428 new (*this) comments::FullComment(FC->getBlocks(),
429 ThisDeclInfo);
430 return CFC;
431
432}
433
434comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
435 const RawComment *RC = getRawCommentForDeclNoCache(D);
436 return RC ? RC->parse(*this, nullptr, D) : nullptr;
437}
438
439comments::FullComment *ASTContext::getCommentForDecl(
440 const Decl *D,
441 const Preprocessor *PP) const {
442 if (D->isInvalidDecl())
443 return nullptr;
444 D = adjustDeclToTemplate(D);
445
446 const Decl *Canonical = D->getCanonicalDecl();
447 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
448 ParsedComments.find(Canonical);
449
450 if (Pos != ParsedComments.end()) {
451 if (Canonical != D) {
452 comments::FullComment *FC = Pos->second;
453 comments::FullComment *CFC = cloneFullComment(FC, D);
454 return CFC;
455 }
456 return Pos->second;
457 }
458
459 const Decl *OriginalDecl;
460
461 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
462 if (!RC) {
463 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
464 SmallVector<const NamedDecl*, 8> Overridden;
465 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
466 if (OMD && OMD->isPropertyAccessor())
467 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
468 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
469 return cloneFullComment(FC, D);
470 if (OMD)
471 addRedeclaredMethods(OMD, Overridden);
472 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
473 for (unsigned i = 0, e = Overridden.size(); i < e; i++)
474 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
475 return cloneFullComment(FC, D);
476 }
477 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
478 // Attach any tag type's documentation to its typedef if latter
479 // does not have one of its own.
480 QualType QT = TD->getUnderlyingType();
481 if (const TagType *TT = QT->getAs<TagType>())
482 if (const Decl *TD = TT->getDecl())
483 if (comments::FullComment *FC = getCommentForDecl(TD, PP))
484 return cloneFullComment(FC, D);
485 }
486 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
487 while (IC->getSuperClass()) {
488 IC = IC->getSuperClass();
489 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
490 return cloneFullComment(FC, D);
491 }
492 }
493 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
494 if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
495 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
496 return cloneFullComment(FC, D);
497 }
498 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
499 if (!(RD = RD->getDefinition()))
500 return nullptr;
501 // Check non-virtual bases.
502 for (const auto &I : RD->bases()) {
503 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
504 continue;
505 QualType Ty = I.getType();
506 if (Ty.isNull())
507 continue;
508 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
509 if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
510 continue;
511
512 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
513 return cloneFullComment(FC, D);
514 }
515 }
516 // Check virtual bases.
517 for (const auto &I : RD->vbases()) {
518 if (I.getAccessSpecifier() != AS_public)
519 continue;
520 QualType Ty = I.getType();
521 if (Ty.isNull())
522 continue;
523 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
524 if (!(VirtualBase= VirtualBase->getDefinition()))
525 continue;
526 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
527 return cloneFullComment(FC, D);
528 }
529 }
530 }
531 return nullptr;
532 }
533
534 // If the RawComment was attached to other redeclaration of this Decl, we
535 // should parse the comment in context of that other Decl. This is important
536 // because comments can contain references to parameter names which can be
537 // different across redeclarations.
538 if (D != OriginalDecl)
539 return getCommentForDecl(OriginalDecl, PP);
540
541 comments::FullComment *FC = RC->parse(*this, PP, D);
542 ParsedComments[Canonical] = FC;
543 return FC;
544}
545
546void
547ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
548 TemplateTemplateParmDecl *Parm) {
549 ID.AddInteger(Parm->getDepth());
550 ID.AddInteger(Parm->getPosition());
551 ID.AddBoolean(Parm->isParameterPack());
552
553 TemplateParameterList *Params = Parm->getTemplateParameters();
554 ID.AddInteger(Params->size());
555 for (TemplateParameterList::const_iterator P = Params->begin(),
556 PEnd = Params->end();
557 P != PEnd; ++P) {
558 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
559 ID.AddInteger(0);
560 ID.AddBoolean(TTP->isParameterPack());
561 continue;
562 }
563
564 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
565 ID.AddInteger(1);
566 ID.AddBoolean(NTTP->isParameterPack());
567 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
568 if (NTTP->isExpandedParameterPack()) {
569 ID.AddBoolean(true);
570 ID.AddInteger(NTTP->getNumExpansionTypes());
571 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
572 QualType T = NTTP->getExpansionType(I);
573 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
574 }
575 } else
576 ID.AddBoolean(false);
577 continue;
578 }
579
580 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
581 ID.AddInteger(2);
582 Profile(ID, TTP);
583 }
584}
585
586TemplateTemplateParmDecl *
587ASTContext::getCanonicalTemplateTemplateParmDecl(
588 TemplateTemplateParmDecl *TTP) const {
589 // Check if we already have a canonical template template parameter.
590 llvm::FoldingSetNodeID ID;
591 CanonicalTemplateTemplateParm::Profile(ID, TTP);
592 void *InsertPos = nullptr;
593 CanonicalTemplateTemplateParm *Canonical
594 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
595 if (Canonical)
596 return Canonical->getParam();
597
598 // Build a canonical template parameter list.
599 TemplateParameterList *Params = TTP->getTemplateParameters();
600 SmallVector<NamedDecl *, 4> CanonParams;
601 CanonParams.reserve(Params->size());
602 for (TemplateParameterList::const_iterator P = Params->begin(),
603 PEnd = Params->end();
604 P != PEnd; ++P) {
605 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
606 CanonParams.push_back(
607 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
608 SourceLocation(),
609 SourceLocation(),
610 TTP->getDepth(),
611 TTP->getIndex(), nullptr, false,
612 TTP->isParameterPack()));
613 else if (NonTypeTemplateParmDecl *NTTP
614 = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
615 QualType T = getCanonicalType(NTTP->getType());
616 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
617 NonTypeTemplateParmDecl *Param;
618 if (NTTP->isExpandedParameterPack()) {
619 SmallVector<QualType, 2> ExpandedTypes;
620 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
621 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
622 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
623 ExpandedTInfos.push_back(
624 getTrivialTypeSourceInfo(ExpandedTypes.back()));
625 }
626
627 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628 SourceLocation(),
629 SourceLocation(),
630 NTTP->getDepth(),
631 NTTP->getPosition(), nullptr,
632 T,
633 TInfo,
634 ExpandedTypes.data(),
635 ExpandedTypes.size(),
636 ExpandedTInfos.data());
637 } else {
638 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
639 SourceLocation(),
640 SourceLocation(),
641 NTTP->getDepth(),
642 NTTP->getPosition(), nullptr,
643 T,
644 NTTP->isParameterPack(),
645 TInfo);
646 }
647 CanonParams.push_back(Param);
648
649 } else
650 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
651 cast<TemplateTemplateParmDecl>(*P)));
652 }
653
654 TemplateTemplateParmDecl *CanonTTP
655 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
656 SourceLocation(), TTP->getDepth(),
657 TTP->getPosition(),
658 TTP->isParameterPack(),
659 nullptr,
660 TemplateParameterList::Create(*this, SourceLocation(),
661 SourceLocation(),
662 CanonParams.data(),
663 CanonParams.size(),
664 SourceLocation()));
665
666 // Get the new insert position for the node we care about.
667 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
668 assert(!Canonical && "Shouldn't be in the map!")((!Canonical && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!Canonical && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 668, __PRETTY_FUNCTION__))
;
669 (void)Canonical;
670
671 // Create the canonical template template parameter entry.
672 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
673 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
674 return CanonTTP;
675}
676
677CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
678 if (!LangOpts.CPlusPlus) return nullptr;
679
680 switch (T.getCXXABI().getKind()) {
681 case TargetCXXABI::GenericARM: // Same as Itanium at this level
682 case TargetCXXABI::iOS:
683 case TargetCXXABI::iOS64:
684 case TargetCXXABI::GenericAArch64:
685 case TargetCXXABI::GenericMIPS:
686 case TargetCXXABI::GenericItanium:
687 case TargetCXXABI::WebAssembly:
688 return CreateItaniumCXXABI(*this);
689 case TargetCXXABI::Microsoft:
690 return CreateMicrosoftCXXABI(*this);
691 }
692 llvm_unreachable("Invalid CXXABI type!")::llvm::llvm_unreachable_internal("Invalid CXXABI type!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 692)
;
693}
694
695static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
696 const LangOptions &LOpts) {
697 if (LOpts.FakeAddressSpaceMap) {
698 // The fake address space map must have a distinct entry for each
699 // language-specific address space.
700 static const unsigned FakeAddrSpaceMap[] = {
701 1, // opencl_global
702 2, // opencl_local
703 3, // opencl_constant
704 4, // opencl_generic
705 5, // cuda_device
706 6, // cuda_constant
707 7 // cuda_shared
708 };
709 return &FakeAddrSpaceMap;
710 } else {
711 return &T.getAddressSpaceMap();
712 }
713}
714
715static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
716 const LangOptions &LangOpts) {
717 switch (LangOpts.getAddressSpaceMapMangling()) {
718 case LangOptions::ASMM_Target:
719 return TI.useAddressSpaceMapMangling();
720 case LangOptions::ASMM_On:
721 return true;
722 case LangOptions::ASMM_Off:
723 return false;
724 }
725 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.")::llvm::llvm_unreachable_internal("getAddressSpaceMapMangling() doesn't cover anything."
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 725)
;
726}
727
728ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
729 IdentifierTable &idents, SelectorTable &sels,
730 Builtin::Context &builtins)
731 : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
732 DependentTemplateSpecializationTypes(this_()),
733 SubstTemplateTemplateParmPacks(this_()),
734 GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
735 UInt128Decl(nullptr), Float128StubDecl(nullptr),
736 BuiltinVaListDecl(nullptr), BuiltinMSVaListDecl(nullptr),
737 ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr),
738 ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
739 CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
740 FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
741 ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
742 BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
743 FirstLocalImport(), LastLocalImport(), ExternCContext(nullptr),
744 SourceMgr(SM), LangOpts(LOpts),
745 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
746 AddrSpaceMap(nullptr), Target(nullptr), AuxTarget(nullptr),
747 PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
748 BuiltinInfo(builtins), DeclarationNames(*this), ExternalSource(nullptr),
749 Listener(nullptr), Comments(SM), CommentsLoaded(false),
750 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
751 TUDecl = TranslationUnitDecl::Create(*this);
752}
753
754ASTContext::~ASTContext() {
755 ReleaseParentMapEntries();
756
757 // Release the DenseMaps associated with DeclContext objects.
758 // FIXME: Is this the ideal solution?
759 ReleaseDeclContextMaps();
760
761 // Call all of the deallocation functions on all of their targets.
762 for (DeallocationMap::const_iterator I = Deallocations.begin(),
763 E = Deallocations.end(); I != E; ++I)
764 for (unsigned J = 0, N = I->second.size(); J != N; ++J)
765 (I->first)((I->second)[J]);
766
767 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
768 // because they can contain DenseMaps.
769 for (llvm::DenseMap<const ObjCContainerDecl*,
770 const ASTRecordLayout*>::iterator
771 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
772 // Increment in loop to prevent using deallocated memory.
773 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
774 R->Destroy(*this);
775
776 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
777 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
778 // Increment in loop to prevent using deallocated memory.
779 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
780 R->Destroy(*this);
781 }
782
783 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
784 AEnd = DeclAttrs.end();
785 A != AEnd; ++A)
786 A->second->~AttrVec();
787
788 for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair :
789 MaterializedTemporaryValues)
790 MTVPair.second->~APValue();
791
792 llvm::DeleteContainerSeconds(MangleNumberingContexts);
793}
794
795void ASTContext::ReleaseParentMapEntries() {
796 if (!AllParents) return;
797 for (const auto &Entry : *AllParents) {
798 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
799 delete Entry.second.get<ast_type_traits::DynTypedNode *>();
800 } else {
801 assert(Entry.second.is<ParentVector *>())((Entry.second.is<ParentVector *>()) ? static_cast<void
> (0) : __assert_fail ("Entry.second.is<ParentVector *>()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 801, __PRETTY_FUNCTION__))
;
802 delete Entry.second.get<ParentVector *>();
803 }
804 }
805}
806
807void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
808 Deallocations[Callback].push_back(Data);
809}
810
811void
812ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
813 ExternalSource = Source;
814}
815
816void ASTContext::PrintStats() const {
817 llvm::errs() << "\n*** AST Context Stats:\n";
818 llvm::errs() << " " << Types.size() << " types total.\n";
819
820 unsigned counts[] = {
821#define TYPE(Name, Parent) 0,
822#define ABSTRACT_TYPE(Name, Parent)
823#include "clang/AST/TypeNodes.def"
824 0 // Extra
825 };
826
827 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
828 Type *T = Types[i];
829 counts[(unsigned)T->getTypeClass()]++;
830 }
831
832 unsigned Idx = 0;
833 unsigned TotalBytes = 0;
834#define TYPE(Name, Parent) \
835 if (counts[Idx]) \
836 llvm::errs() << " " << counts[Idx] << " " << #Name \
837 << " types\n"; \
838 TotalBytes += counts[Idx] * sizeof(Name##Type); \
839 ++Idx;
840#define ABSTRACT_TYPE(Name, Parent)
841#include "clang/AST/TypeNodes.def"
842
843 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
844
845 // Implicit special member functions.
846 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
847 << NumImplicitDefaultConstructors
848 << " implicit default constructors created\n";
849 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
850 << NumImplicitCopyConstructors
851 << " implicit copy constructors created\n";
852 if (getLangOpts().CPlusPlus)
853 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
854 << NumImplicitMoveConstructors
855 << " implicit move constructors created\n";
856 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
857 << NumImplicitCopyAssignmentOperators
858 << " implicit copy assignment operators created\n";
859 if (getLangOpts().CPlusPlus)
860 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
861 << NumImplicitMoveAssignmentOperators
862 << " implicit move assignment operators created\n";
863 llvm::errs() << NumImplicitDestructorsDeclared << "/"
864 << NumImplicitDestructors
865 << " implicit destructors created\n";
866
867 if (ExternalSource) {
868 llvm::errs() << "\n";
869 ExternalSource->PrintStats();
870 }
871
872 BumpAlloc.PrintStats();
873}
874
875void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
876 bool NotifyListeners) {
877 if (NotifyListeners)
878 if (auto *Listener = getASTMutationListener())
879 Listener->RedefinedHiddenDefinition(ND, M);
880
881 if (getLangOpts().ModulesLocalVisibility)
882 MergedDefModules[ND].push_back(M);
883 else
884 ND->setHidden(false);
885}
886
887void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
888 auto It = MergedDefModules.find(ND);
889 if (It == MergedDefModules.end())
890 return;
891
892 auto &Merged = It->second;
893 llvm::DenseSet<Module*> Found;
894 for (Module *&M : Merged)
895 if (!Found.insert(M).second)
896 M = nullptr;
897 Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
898}
899
900ExternCContextDecl *ASTContext::getExternCContextDecl() const {
901 if (!ExternCContext)
902 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
903
904 return ExternCContext;
905}
906
907RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
908 RecordDecl::TagKind TK) const {
909 SourceLocation Loc;
910 RecordDecl *NewDecl;
911 if (getLangOpts().CPlusPlus)
912 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
913 Loc, &Idents.get(Name));
914 else
915 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
916 &Idents.get(Name));
917 NewDecl->setImplicit();
918 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
919 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
920 return NewDecl;
921}
922
923TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
924 StringRef Name) const {
925 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
926 TypedefDecl *NewDecl = TypedefDecl::Create(
927 const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
928 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
929 NewDecl->setImplicit();
930 return NewDecl;
931}
932
933TypedefDecl *ASTContext::getInt128Decl() const {
934 if (!Int128Decl)
935 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
936 return Int128Decl;
937}
938
939TypedefDecl *ASTContext::getUInt128Decl() const {
940 if (!UInt128Decl)
941 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
942 return UInt128Decl;
943}
944
945TypeDecl *ASTContext::getFloat128StubType() const {
946 assert(LangOpts.CPlusPlus && "should only be called for c++")((LangOpts.CPlusPlus && "should only be called for c++"
) ? static_cast<void> (0) : __assert_fail ("LangOpts.CPlusPlus && \"should only be called for c++\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 946, __PRETTY_FUNCTION__))
;
947 if (!Float128StubDecl)
948 Float128StubDecl = buildImplicitRecord("__float128");
949
950 return Float128StubDecl;
951}
952
953void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
954 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
955 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
956 Types.push_back(Ty);
957}
958
959void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
960 const TargetInfo *AuxTarget) {
961 assert((!this->Target || this->Target == &Target) &&(((!this->Target || this->Target == &Target) &&
"Incorrect target reinitialization") ? static_cast<void>
(0) : __assert_fail ("(!this->Target || this->Target == &Target) && \"Incorrect target reinitialization\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 962, __PRETTY_FUNCTION__))
962 "Incorrect target reinitialization")(((!this->Target || this->Target == &Target) &&
"Incorrect target reinitialization") ? static_cast<void>
(0) : __assert_fail ("(!this->Target || this->Target == &Target) && \"Incorrect target reinitialization\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 962, __PRETTY_FUNCTION__))
;
963 assert(VoidTy.isNull() && "Context reinitialized?")((VoidTy.isNull() && "Context reinitialized?") ? static_cast
<void> (0) : __assert_fail ("VoidTy.isNull() && \"Context reinitialized?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 963, __PRETTY_FUNCTION__))
;
964
965 this->Target = &Target;
966 this->AuxTarget = AuxTarget;
967
968 ABI.reset(createCXXABI(Target));
969 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
970 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
971
972 // C99 6.2.5p19.
973 InitBuiltinType(VoidTy, BuiltinType::Void);
974
975 // C99 6.2.5p2.
976 InitBuiltinType(BoolTy, BuiltinType::Bool);
977 // C99 6.2.5p3.
978 if (LangOpts.CharIsSigned)
979 InitBuiltinType(CharTy, BuiltinType::Char_S);
980 else
981 InitBuiltinType(CharTy, BuiltinType::Char_U);
982 // C99 6.2.5p4.
983 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
984 InitBuiltinType(ShortTy, BuiltinType::Short);
985 InitBuiltinType(IntTy, BuiltinType::Int);
986 InitBuiltinType(LongTy, BuiltinType::Long);
987 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
988
989 // C99 6.2.5p6.
990 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
991 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
992 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
993 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
994 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
995
996 // C99 6.2.5p10.
997 InitBuiltinType(FloatTy, BuiltinType::Float);
998 InitBuiltinType(DoubleTy, BuiltinType::Double);
999 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
1000
1001 // GNU extension, 128-bit integers.
1002 InitBuiltinType(Int128Ty, BuiltinType::Int128);
1003 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
1004
1005 // C++ 3.9.1p5
1006 if (TargetInfo::isTypeSigned(Target.getWCharType()))
1007 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
1008 else // -fshort-wchar makes wchar_t be unsigned.
1009 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
1010 if (LangOpts.CPlusPlus && LangOpts.WChar)
1011 WideCharTy = WCharTy;
1012 else {
1013 // C99 (or C++ using -fno-wchar).
1014 WideCharTy = getFromTargetType(Target.getWCharType());
1015 }
1016
1017 WIntTy = getFromTargetType(Target.getWIntType());
1018
1019 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1020 InitBuiltinType(Char16Ty, BuiltinType::Char16);
1021 else // C99
1022 Char16Ty = getFromTargetType(Target.getChar16Type());
1023
1024 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1025 InitBuiltinType(Char32Ty, BuiltinType::Char32);
1026 else // C99
1027 Char32Ty = getFromTargetType(Target.getChar32Type());
1028
1029 // Placeholder type for type-dependent expressions whose type is
1030 // completely unknown. No code should ever check a type against
1031 // DependentTy and users should never see it; however, it is here to
1032 // help diagnose failures to properly check for type-dependent
1033 // expressions.
1034 InitBuiltinType(DependentTy, BuiltinType::Dependent);
1035
1036 // Placeholder type for functions.
1037 InitBuiltinType(OverloadTy, BuiltinType::Overload);
1038
1039 // Placeholder type for bound members.
1040 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
1041
1042 // Placeholder type for pseudo-objects.
1043 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1044
1045 // "any" type; useful for debugger-like clients.
1046 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1047
1048 // Placeholder type for unbridged ARC casts.
1049 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1050
1051 // Placeholder type for builtin functions.
1052 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1053
1054 // Placeholder type for OMP array sections.
1055 if (LangOpts.OpenMP)
1056 InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1057
1058 // C99 6.2.5p11.
1059 FloatComplexTy = getComplexType(FloatTy);
1060 DoubleComplexTy = getComplexType(DoubleTy);
1061 LongDoubleComplexTy = getComplexType(LongDoubleTy);
1062
1063 // Builtin types for 'id', 'Class', and 'SEL'.
1064 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1065 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1066 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1067
1068 if (LangOpts.OpenCL) {
1069 InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1070 InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1071 InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1072 InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1073 InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1074 InitBuiltinType(OCLImage2dDepthTy, BuiltinType::OCLImage2dDepth);
1075 InitBuiltinType(OCLImage2dArrayDepthTy, BuiltinType::OCLImage2dArrayDepth);
1076 InitBuiltinType(OCLImage2dMSAATy, BuiltinType::OCLImage2dMSAA);
1077 InitBuiltinType(OCLImage2dArrayMSAATy, BuiltinType::OCLImage2dArrayMSAA);
1078 InitBuiltinType(OCLImage2dMSAADepthTy, BuiltinType::OCLImage2dMSAADepth);
1079 InitBuiltinType(OCLImage2dArrayMSAADepthTy,
1080 BuiltinType::OCLImage2dArrayMSAADepth);
1081 InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1082
1083 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1084 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1085 InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1086 InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1087 InitBuiltinType(OCLNDRangeTy, BuiltinType::OCLNDRange);
1088 InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1089 }
1090
1091 // Builtin type for __objc_yes and __objc_no
1092 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1093 SignedCharTy : BoolTy);
1094
1095 ObjCConstantStringType = QualType();
1096
1097 ObjCSuperType = QualType();
1098
1099 // void * type
1100 VoidPtrTy = getPointerType(VoidTy);
1101
1102 // nullptr type (C++0x 2.14.7)
1103 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1104
1105 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1106 InitBuiltinType(HalfTy, BuiltinType::Half);
1107
1108 // Builtin type used to help define __builtin_va_list.
1109 VaListTagDecl = nullptr;
1110}
1111
1112DiagnosticsEngine &ASTContext::getDiagnostics() const {
1113 return SourceMgr.getDiagnostics();
1114}
1115
1116AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1117 AttrVec *&Result = DeclAttrs[D];
1118 if (!Result) {
1119 void *Mem = Allocate(sizeof(AttrVec));
1120 Result = new (Mem) AttrVec;
1121 }
1122
1123 return *Result;
1124}
1125
1126/// \brief Erase the attributes corresponding to the given declaration.
1127void ASTContext::eraseDeclAttrs(const Decl *D) {
1128 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1129 if (Pos != DeclAttrs.end()) {
1130 Pos->second->~AttrVec();
1131 DeclAttrs.erase(Pos);
1132 }
1133}
1134
1135// FIXME: Remove ?
1136MemberSpecializationInfo *
1137ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1138 assert(Var->isStaticDataMember() && "Not a static data member")((Var->isStaticDataMember() && "Not a static data member"
) ? static_cast<void> (0) : __assert_fail ("Var->isStaticDataMember() && \"Not a static data member\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1138, __PRETTY_FUNCTION__))
;
1139 return getTemplateOrSpecializationInfo(Var)
1140 .dyn_cast<MemberSpecializationInfo *>();
1141}
1142
1143ASTContext::TemplateOrSpecializationInfo
1144ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1145 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1146 TemplateOrInstantiation.find(Var);
1147 if (Pos == TemplateOrInstantiation.end())
1148 return TemplateOrSpecializationInfo();
1149
1150 return Pos->second;
1151}
1152
1153void
1154ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1155 TemplateSpecializationKind TSK,
1156 SourceLocation PointOfInstantiation) {
1157 assert(Inst->isStaticDataMember() && "Not a static data member")((Inst->isStaticDataMember() && "Not a static data member"
) ? static_cast<void> (0) : __assert_fail ("Inst->isStaticDataMember() && \"Not a static data member\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1157, __PRETTY_FUNCTION__))
;
1158 assert(Tmpl->isStaticDataMember() && "Not a static data member")((Tmpl->isStaticDataMember() && "Not a static data member"
) ? static_cast<void> (0) : __assert_fail ("Tmpl->isStaticDataMember() && \"Not a static data member\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1158, __PRETTY_FUNCTION__))
;
1159 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1160 Tmpl, TSK, PointOfInstantiation));
1161}
1162
1163void
1164ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1165 TemplateOrSpecializationInfo TSI) {
1166 assert(!TemplateOrInstantiation[Inst] &&((!TemplateOrInstantiation[Inst] && "Already noted what the variable was instantiated from"
) ? static_cast<void> (0) : __assert_fail ("!TemplateOrInstantiation[Inst] && \"Already noted what the variable was instantiated from\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1167, __PRETTY_FUNCTION__))
1167 "Already noted what the variable was instantiated from")((!TemplateOrInstantiation[Inst] && "Already noted what the variable was instantiated from"
) ? static_cast<void> (0) : __assert_fail ("!TemplateOrInstantiation[Inst] && \"Already noted what the variable was instantiated from\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1167, __PRETTY_FUNCTION__))
;
1168 TemplateOrInstantiation[Inst] = TSI;
1169}
1170
1171FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1172 const FunctionDecl *FD){
1173 assert(FD && "Specialization is 0")((FD && "Specialization is 0") ? static_cast<void>
(0) : __assert_fail ("FD && \"Specialization is 0\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1173, __PRETTY_FUNCTION__))
;
1174 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1175 = ClassScopeSpecializationPattern.find(FD);
1176 if (Pos == ClassScopeSpecializationPattern.end())
1177 return nullptr;
1178
1179 return Pos->second;
1180}
1181
1182void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1183 FunctionDecl *Pattern) {
1184 assert(FD && "Specialization is 0")((FD && "Specialization is 0") ? static_cast<void>
(0) : __assert_fail ("FD && \"Specialization is 0\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1184, __PRETTY_FUNCTION__))
;
1185 assert(Pattern && "Class scope specialization pattern is 0")((Pattern && "Class scope specialization pattern is 0"
) ? static_cast<void> (0) : __assert_fail ("Pattern && \"Class scope specialization pattern is 0\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1185, __PRETTY_FUNCTION__))
;
1186 ClassScopeSpecializationPattern[FD] = Pattern;
1187}
1188
1189NamedDecl *
1190ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1191 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1192 = InstantiatedFromUsingDecl.find(UUD);
1193 if (Pos == InstantiatedFromUsingDecl.end())
1194 return nullptr;
1195
1196 return Pos->second;
1197}
1198
1199void
1200ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1201 assert((isa<UsingDecl>(Pattern) ||(((isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl
>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern
)) && "pattern decl is not a using decl") ? static_cast
<void> (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1204, __PRETTY_FUNCTION__))
1202 isa<UnresolvedUsingValueDecl>(Pattern) ||(((isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl
>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern
)) && "pattern decl is not a using decl") ? static_cast
<void> (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1204, __PRETTY_FUNCTION__))
1203 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&(((isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl
>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern
)) && "pattern decl is not a using decl") ? static_cast
<void> (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1204, __PRETTY_FUNCTION__))
1204 "pattern decl is not a using decl")(((isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl
>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern
)) && "pattern decl is not a using decl") ? static_cast
<void> (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1204, __PRETTY_FUNCTION__))
;
1205 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists")((!InstantiatedFromUsingDecl[Inst] && "pattern already exists"
) ? static_cast<void> (0) : __assert_fail ("!InstantiatedFromUsingDecl[Inst] && \"pattern already exists\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1205, __PRETTY_FUNCTION__))
;
1206 InstantiatedFromUsingDecl[Inst] = Pattern;
1207}
1208
1209UsingShadowDecl *
1210ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1211 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1212 = InstantiatedFromUsingShadowDecl.find(Inst);
1213 if (Pos == InstantiatedFromUsingShadowDecl.end())
1214 return nullptr;
1215
1216 return Pos->second;
1217}
1218
1219void
1220ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1221 UsingShadowDecl *Pattern) {
1222 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists")((!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"
) ? static_cast<void> (0) : __assert_fail ("!InstantiatedFromUsingShadowDecl[Inst] && \"pattern already exists\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1222, __PRETTY_FUNCTION__))
;
1223 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1224}
1225
1226FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1227 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1228 = InstantiatedFromUnnamedFieldDecl.find(Field);
1229 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1230 return nullptr;
1231
1232 return Pos->second;
1233}
1234
1235void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1236 FieldDecl *Tmpl) {
1237 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed")((!Inst->getDeclName() && "Instantiated field decl is not unnamed"
) ? static_cast<void> (0) : __assert_fail ("!Inst->getDeclName() && \"Instantiated field decl is not unnamed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1237, __PRETTY_FUNCTION__))
;
1238 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed")((!Tmpl->getDeclName() && "Template field decl is not unnamed"
) ? static_cast<void> (0) : __assert_fail ("!Tmpl->getDeclName() && \"Template field decl is not unnamed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1238, __PRETTY_FUNCTION__))
;
1239 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&((!InstantiatedFromUnnamedFieldDecl[Inst] && "Already noted what unnamed field was instantiated from"
) ? static_cast<void> (0) : __assert_fail ("!InstantiatedFromUnnamedFieldDecl[Inst] && \"Already noted what unnamed field was instantiated from\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1240, __PRETTY_FUNCTION__))
1240 "Already noted what unnamed field was instantiated from")((!InstantiatedFromUnnamedFieldDecl[Inst] && "Already noted what unnamed field was instantiated from"
) ? static_cast<void> (0) : __assert_fail ("!InstantiatedFromUnnamedFieldDecl[Inst] && \"Already noted what unnamed field was instantiated from\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1240, __PRETTY_FUNCTION__))
;
1241
1242 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1243}
1244
1245ASTContext::overridden_cxx_method_iterator
1246ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1247 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1248 = OverriddenMethods.find(Method->getCanonicalDecl());
1249 if (Pos == OverriddenMethods.end())
1250 return nullptr;
1251
1252 return Pos->second.begin();
1253}
1254
1255ASTContext::overridden_cxx_method_iterator
1256ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1257 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1258 = OverriddenMethods.find(Method->getCanonicalDecl());
1259 if (Pos == OverriddenMethods.end())
1260 return nullptr;
1261
1262 return Pos->second.end();
1263}
1264
1265unsigned
1266ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1267 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1268 = OverriddenMethods.find(Method->getCanonicalDecl());
1269 if (Pos == OverriddenMethods.end())
1270 return 0;
1271
1272 return Pos->second.size();
1273}
1274
1275void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1276 const CXXMethodDecl *Overridden) {
1277 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl())((Method->isCanonicalDecl() && Overridden->isCanonicalDecl
()) ? static_cast<void> (0) : __assert_fail ("Method->isCanonicalDecl() && Overridden->isCanonicalDecl()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1277, __PRETTY_FUNCTION__))
;
1278 OverriddenMethods[Method].push_back(Overridden);
1279}
1280
1281void ASTContext::getOverriddenMethods(
1282 const NamedDecl *D,
1283 SmallVectorImpl<const NamedDecl *> &Overridden) const {
1284 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1284, __PRETTY_FUNCTION__))
;
1285
1286 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1287 Overridden.append(overridden_methods_begin(CXXMethod),
1288 overridden_methods_end(CXXMethod));
1289 return;
1290 }
1291
1292 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1293 if (!Method)
1294 return;
1295
1296 SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1297 Method->getOverriddenMethods(OverDecls);
1298 Overridden.append(OverDecls.begin(), OverDecls.end());
1299}
1300
1301void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1302 assert(!Import->NextLocalImport && "Import declaration already in the chain")((!Import->NextLocalImport && "Import declaration already in the chain"
) ? static_cast<void> (0) : __assert_fail ("!Import->NextLocalImport && \"Import declaration already in the chain\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1302, __PRETTY_FUNCTION__))
;
1303 assert(!Import->isFromASTFile() && "Non-local import declaration")((!Import->isFromASTFile() && "Non-local import declaration"
) ? static_cast<void> (0) : __assert_fail ("!Import->isFromASTFile() && \"Non-local import declaration\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1303, __PRETTY_FUNCTION__))
;
1304 if (!FirstLocalImport) {
1305 FirstLocalImport = Import;
1306 LastLocalImport = Import;
1307 return;
1308 }
1309
1310 LastLocalImport->NextLocalImport = Import;
1311 LastLocalImport = Import;
1312}
1313
1314//===----------------------------------------------------------------------===//
1315// Type Sizing and Analysis
1316//===----------------------------------------------------------------------===//
1317
1318/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1319/// scalar floating point type.
1320const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1321 const BuiltinType *BT = T->getAs<BuiltinType>();
1322 assert(BT && "Not a floating point type!")((BT && "Not a floating point type!") ? static_cast<
void> (0) : __assert_fail ("BT && \"Not a floating point type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1322, __PRETTY_FUNCTION__))
;
1323 switch (BT->getKind()) {
1324 default: llvm_unreachable("Not a floating point type!")::llvm::llvm_unreachable_internal("Not a floating point type!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1324)
;
1325 case BuiltinType::Half: return Target->getHalfFormat();
1326 case BuiltinType::Float: return Target->getFloatFormat();
1327 case BuiltinType::Double: return Target->getDoubleFormat();
1328 case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1329 }
1330}
1331
1332CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1333 unsigned Align = Target->getCharWidth();
1334
1335 bool UseAlignAttrOnly = false;
1336 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1337 Align = AlignFromAttr;
1338
1339 // __attribute__((aligned)) can increase or decrease alignment
1340 // *except* on a struct or struct member, where it only increases
1341 // alignment unless 'packed' is also specified.
1342 //
1343 // It is an error for alignas to decrease alignment, so we can
1344 // ignore that possibility; Sema should diagnose it.
1345 if (isa<FieldDecl>(D)) {
1346 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1347 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1348 } else {
1349 UseAlignAttrOnly = true;
1350 }
1351 }
1352 else if (isa<FieldDecl>(D))
1353 UseAlignAttrOnly =
1354 D->hasAttr<PackedAttr>() ||
1355 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1356
1357 // If we're using the align attribute only, just ignore everything
1358 // else about the declaration and its type.
1359 if (UseAlignAttrOnly) {
1360 // do nothing
1361
1362 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1363 QualType T = VD->getType();
1364 if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1365 if (ForAlignof)
1366 T = RT->getPointeeType();
1367 else
1368 T = getPointerType(RT->getPointeeType());
1369 }
1370 QualType BaseT = getBaseElementType(T);
1371 if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1372 // Adjust alignments of declarations with array type by the
1373 // large-array alignment on the target.
1374 if (const ArrayType *arrayType = getAsArrayType(T)) {
1375 unsigned MinWidth = Target->getLargeArrayMinWidth();
1376 if (!ForAlignof && MinWidth) {
1377 if (isa<VariableArrayType>(arrayType))
1378 Align = std::max(Align, Target->getLargeArrayAlign());
1379 else if (isa<ConstantArrayType>(arrayType) &&
1380 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1381 Align = std::max(Align, Target->getLargeArrayAlign());
1382 }
1383 }
1384 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1385 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1386 if (VD->hasGlobalStorage() && !ForAlignof)
1387 Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1388 }
1389 }
1390
1391 // Fields can be subject to extra alignment constraints, like if
1392 // the field is packed, the struct is packed, or the struct has a
1393 // a max-field-alignment constraint (#pragma pack). So calculate
1394 // the actual alignment of the field within the struct, and then
1395 // (as we're expected to) constrain that by the alignment of the type.
1396 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1397 const RecordDecl *Parent = Field->getParent();
1398 // We can only produce a sensible answer if the record is valid.
1399 if (!Parent->isInvalidDecl()) {
1400 const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1401
1402 // Start with the record's overall alignment.
1403 unsigned FieldAlign = toBits(Layout.getAlignment());
1404
1405 // Use the GCD of that and the offset within the record.
1406 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1407 if (Offset > 0) {
1408 // Alignment is always a power of 2, so the GCD will be a power of 2,
1409 // which means we get to do this crazy thing instead of Euclid's.
1410 uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1411 if (LowBitOfOffset < FieldAlign)
1412 FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1413 }
1414
1415 Align = std::min(Align, FieldAlign);
1416 }
1417 }
1418 }
1419
1420 return toCharUnitsFromBits(Align);
1421}
1422
1423// getTypeInfoDataSizeInChars - Return the size of a type, in
1424// chars. If the type is a record, its data size is returned. This is
1425// the size of the memcpy that's performed when assigning this type
1426// using a trivial copy/move assignment operator.
1427std::pair<CharUnits, CharUnits>
1428ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1429 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1430
1431 // In C++, objects can sometimes be allocated into the tail padding
1432 // of a base-class subobject. We decide whether that's possible
1433 // during class layout, so here we can just trust the layout results.
1434 if (getLangOpts().CPlusPlus) {
1435 if (const RecordType *RT = T->getAs<RecordType>()) {
1436 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1437 sizeAndAlign.first = layout.getDataSize();
1438 }
1439 }
1440
1441 return sizeAndAlign;
1442}
1443
1444/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1445/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1446std::pair<CharUnits, CharUnits>
1447static getConstantArrayInfoInChars(const ASTContext &Context,
1448 const ConstantArrayType *CAT) {
1449 std::pair<CharUnits, CharUnits> EltInfo =
1450 Context.getTypeInfoInChars(CAT->getElementType());
1451 uint64_t Size = CAT->getSize().getZExtValue();
1452 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=(((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity
()) <= (uint64_t)(-1)/Size) && "Overflow in array type char size evaluation"
) ? static_cast<void> (0) : __assert_fail ("(Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= (uint64_t)(-1)/Size) && \"Overflow in array type char size evaluation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1454, __PRETTY_FUNCTION__))
1453 (uint64_t)(-1)/Size) &&(((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity
()) <= (uint64_t)(-1)/Size) && "Overflow in array type char size evaluation"
) ? static_cast<void> (0) : __assert_fail ("(Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= (uint64_t)(-1)/Size) && \"Overflow in array type char size evaluation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1454, __PRETTY_FUNCTION__))
1454 "Overflow in array type char size evaluation")(((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity
()) <= (uint64_t)(-1)/Size) && "Overflow in array type char size evaluation"
) ? static_cast<void> (0) : __assert_fail ("(Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= (uint64_t)(-1)/Size) && \"Overflow in array type char size evaluation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1454, __PRETTY_FUNCTION__))
;
1455 uint64_t Width = EltInfo.first.getQuantity() * Size;
1456 unsigned Align = EltInfo.second.getQuantity();
1457 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1458 Context.getTargetInfo().getPointerWidth(0) == 64)
1459 Width = llvm::RoundUpToAlignment(Width, Align);
1460 return std::make_pair(CharUnits::fromQuantity(Width),
1461 CharUnits::fromQuantity(Align));
1462}
1463
1464std::pair<CharUnits, CharUnits>
1465ASTContext::getTypeInfoInChars(const Type *T) const {
1466 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1467 return getConstantArrayInfoInChars(*this, CAT);
1468 TypeInfo Info = getTypeInfo(T);
1469 return std::make_pair(toCharUnitsFromBits(Info.Width),
1470 toCharUnitsFromBits(Info.Align));
1471}
1472
1473std::pair<CharUnits, CharUnits>
1474ASTContext::getTypeInfoInChars(QualType T) const {
1475 return getTypeInfoInChars(T.getTypePtr());
1476}
1477
1478bool ASTContext::isAlignmentRequired(const Type *T) const {
1479 return getTypeInfo(T).AlignIsRequired;
1480}
1481
1482bool ASTContext::isAlignmentRequired(QualType T) const {
1483 return isAlignmentRequired(T.getTypePtr());
1484}
1485
1486TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1487 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1488 if (I != MemoizedTypeInfo.end())
1489 return I->second;
1490
1491 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1492 TypeInfo TI = getTypeInfoImpl(T);
1493 MemoizedTypeInfo[T] = TI;
1494 return TI;
1495}
1496
1497/// getTypeInfoImpl - Return the size of the specified type, in bits. This
1498/// method does not work on incomplete types.
1499///
1500/// FIXME: Pointers into different addr spaces could have different sizes and
1501/// alignment requirements: getPointerInfo should take an AddrSpace, this
1502/// should take a QualType, &c.
1503TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1504 uint64_t Width = 0;
1505 unsigned Align = 8;
1506 bool AlignIsRequired = false;
1507 switch (T->getTypeClass()) {
1508#define TYPE(Class, Base)
1509#define ABSTRACT_TYPE(Class, Base)
1510#define NON_CANONICAL_TYPE(Class, Base)
1511#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1512#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1513 case Type::Class: \
1514 assert(!T->isDependentType() && "should not see dependent types here")((!T->isDependentType() && "should not see dependent types here"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"should not see dependent types here\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1514, __PRETTY_FUNCTION__))
; \
1515 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1516#include "clang/AST/TypeNodes.def"
1517 llvm_unreachable("Should not see dependent types")::llvm::llvm_unreachable_internal("Should not see dependent types"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1517)
;
1518
1519 case Type::FunctionNoProto:
1520 case Type::FunctionProto:
1521 // GCC extension: alignof(function) = 32 bits
1522 Width = 0;
1523 Align = 32;
1524 break;
1525
1526 case Type::IncompleteArray:
1527 case Type::VariableArray:
1528 Width = 0;
1529 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1530 break;
1531
1532 case Type::ConstantArray: {
1533 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1534
1535 TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1536 uint64_t Size = CAT->getSize().getZExtValue();
1537 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&(((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
"Overflow in array type bit size evaluation") ? static_cast<
void> (0) : __assert_fail ("(Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && \"Overflow in array type bit size evaluation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1538, __PRETTY_FUNCTION__))
1538 "Overflow in array type bit size evaluation")(((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
"Overflow in array type bit size evaluation") ? static_cast<
void> (0) : __assert_fail ("(Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && \"Overflow in array type bit size evaluation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1538, __PRETTY_FUNCTION__))
;
1539 Width = EltInfo.Width * Size;
1540 Align = EltInfo.Align;
1541 if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1542 getTargetInfo().getPointerWidth(0) == 64)
1543 Width = llvm::RoundUpToAlignment(Width, Align);
1544 break;
1545 }
1546 case Type::ExtVector:
1547 case Type::Vector: {
1548 const VectorType *VT = cast<VectorType>(T);
1549 TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1550 Width = EltInfo.Width * VT->getNumElements();
1551 Align = Width;
1552 // If the alignment is not a power of 2, round up to the next power of 2.
1553 // This happens for non-power-of-2 length vectors.
1554 if (Align & (Align-1)) {
1555 Align = llvm::NextPowerOf2(Align);
1556 Width = llvm::RoundUpToAlignment(Width, Align);
1557 }
1558 // Adjust the alignment based on the target max.
1559 uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1560 if (TargetVectorAlign && TargetVectorAlign < Align)
1561 Align = TargetVectorAlign;
1562 break;
1563 }
1564
1565 case Type::Builtin:
1566 switch (cast<BuiltinType>(T)->getKind()) {
1567 default: llvm_unreachable("Unknown builtin type!")::llvm::llvm_unreachable_internal("Unknown builtin type!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1567)
;
1568 case BuiltinType::Void:
1569 // GCC extension: alignof(void) = 8 bits.
1570 Width = 0;
1571 Align = 8;
1572 break;
1573
1574 case BuiltinType::Bool:
1575 Width = Target->getBoolWidth();
1576 Align = Target->getBoolAlign();
1577 break;
1578 case BuiltinType::Char_S:
1579 case BuiltinType::Char_U:
1580 case BuiltinType::UChar:
1581 case BuiltinType::SChar:
1582 Width = Target->getCharWidth();
1583 Align = Target->getCharAlign();
1584 break;
1585 case BuiltinType::WChar_S:
1586 case BuiltinType::WChar_U:
1587 Width = Target->getWCharWidth();
1588 Align = Target->getWCharAlign();
1589 break;
1590 case BuiltinType::Char16:
1591 Width = Target->getChar16Width();
1592 Align = Target->getChar16Align();
1593 break;
1594 case BuiltinType::Char32:
1595 Width = Target->getChar32Width();
1596 Align = Target->getChar32Align();
1597 break;
1598 case BuiltinType::UShort:
1599 case BuiltinType::Short:
1600 Width = Target->getShortWidth();
1601 Align = Target->getShortAlign();
1602 break;
1603 case BuiltinType::UInt:
1604 case BuiltinType::Int:
1605 Width = Target->getIntWidth();
1606 Align = Target->getIntAlign();
1607 break;
1608 case BuiltinType::ULong:
1609 case BuiltinType::Long:
1610 Width = Target->getLongWidth();
1611 Align = Target->getLongAlign();
1612 break;
1613 case BuiltinType::ULongLong:
1614 case BuiltinType::LongLong:
1615 Width = Target->getLongLongWidth();
1616 Align = Target->getLongLongAlign();
1617 break;
1618 case BuiltinType::Int128:
1619 case BuiltinType::UInt128:
1620 Width = 128;
1621 Align = 128; // int128_t is 128-bit aligned on all targets.
1622 break;
1623 case BuiltinType::Half:
1624 Width = Target->getHalfWidth();
1625 Align = Target->getHalfAlign();
1626 break;
1627 case BuiltinType::Float:
1628 Width = Target->getFloatWidth();
1629 Align = Target->getFloatAlign();
1630 break;
1631 case BuiltinType::Double:
1632 Width = Target->getDoubleWidth();
1633 Align = Target->getDoubleAlign();
1634 break;
1635 case BuiltinType::LongDouble:
1636 Width = Target->getLongDoubleWidth();
1637 Align = Target->getLongDoubleAlign();
1638 break;
1639 case BuiltinType::NullPtr:
1640 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1641 Align = Target->getPointerAlign(0); // == sizeof(void*)
1642 break;
1643 case BuiltinType::ObjCId:
1644 case BuiltinType::ObjCClass:
1645 case BuiltinType::ObjCSel:
1646 Width = Target->getPointerWidth(0);
1647 Align = Target->getPointerAlign(0);
1648 break;
1649 case BuiltinType::OCLSampler:
1650 // Samplers are modeled as integers.
1651 Width = Target->getIntWidth();
1652 Align = Target->getIntAlign();
1653 break;
1654 case BuiltinType::OCLEvent:
1655 case BuiltinType::OCLClkEvent:
1656 case BuiltinType::OCLQueue:
1657 case BuiltinType::OCLNDRange:
1658 case BuiltinType::OCLReserveID:
1659 case BuiltinType::OCLImage1d:
1660 case BuiltinType::OCLImage1dArray:
1661 case BuiltinType::OCLImage1dBuffer:
1662 case BuiltinType::OCLImage2d:
1663 case BuiltinType::OCLImage2dArray:
1664 case BuiltinType::OCLImage2dDepth:
1665 case BuiltinType::OCLImage2dArrayDepth:
1666 case BuiltinType::OCLImage2dMSAA:
1667 case BuiltinType::OCLImage2dArrayMSAA:
1668 case BuiltinType::OCLImage2dMSAADepth:
1669 case BuiltinType::OCLImage2dArrayMSAADepth:
1670 case BuiltinType::OCLImage3d:
1671 // Currently these types are pointers to opaque types.
1672 Width = Target->getPointerWidth(0);
1673 Align = Target->getPointerAlign(0);
1674 break;
1675 }
1676 break;
1677 case Type::ObjCObjectPointer:
1678 Width = Target->getPointerWidth(0);
1679 Align = Target->getPointerAlign(0);
1680 break;
1681 case Type::BlockPointer: {
1682 unsigned AS = getTargetAddressSpace(
1683 cast<BlockPointerType>(T)->getPointeeType());
1684 Width = Target->getPointerWidth(AS);
1685 Align = Target->getPointerAlign(AS);
1686 break;
1687 }
1688 case Type::LValueReference:
1689 case Type::RValueReference: {
1690 // alignof and sizeof should never enter this code path here, so we go
1691 // the pointer route.
1692 unsigned AS = getTargetAddressSpace(
1693 cast<ReferenceType>(T)->getPointeeType());
1694 Width = Target->getPointerWidth(AS);
1695 Align = Target->getPointerAlign(AS);
1696 break;
1697 }
1698 case Type::Pointer: {
1699 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1700 Width = Target->getPointerWidth(AS);
1701 Align = Target->getPointerAlign(AS);
1702 break;
1703 }
1704 case Type::MemberPointer: {
1705 const MemberPointerType *MPT = cast<MemberPointerType>(T);
1706 std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1707 break;
1708 }
1709 case Type::Complex: {
1710 // Complex types have the same alignment as their elements, but twice the
1711 // size.
1712 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1713 Width = EltInfo.Width * 2;
1714 Align = EltInfo.Align;
1715 break;
1716 }
1717 case Type::ObjCObject:
1718 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1719 case Type::Adjusted:
1720 case Type::Decayed:
1721 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1722 case Type::ObjCInterface: {
1723 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1724 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1725 Width = toBits(Layout.getSize());
1726 Align = toBits(Layout.getAlignment());
1727 break;
1728 }
1729 case Type::Record:
1730 case Type::Enum: {
1731 const TagType *TT = cast<TagType>(T);
1732
1733 if (TT->getDecl()->isInvalidDecl()) {
1734 Width = 8;
1735 Align = 8;
1736 break;
1737 }
1738
1739 if (const EnumType *ET = dyn_cast<EnumType>(TT)) {
1740 const EnumDecl *ED = ET->getDecl();
1741 TypeInfo Info =
1742 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
1743 if (unsigned AttrAlign = ED->getMaxAlignment()) {
1744 Info.Align = AttrAlign;
1745 Info.AlignIsRequired = true;
1746 }
1747 return Info;
1748 }
1749
1750 const RecordType *RT = cast<RecordType>(TT);
1751 const RecordDecl *RD = RT->getDecl();
1752 const ASTRecordLayout &Layout = getASTRecordLayout(RD);
1753 Width = toBits(Layout.getSize());
1754 Align = toBits(Layout.getAlignment());
1755 AlignIsRequired = RD->hasAttr<AlignedAttr>();
1756 break;
1757 }
1758
1759 case Type::SubstTemplateTypeParm:
1760 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1761 getReplacementType().getTypePtr());
1762
1763 case Type::Auto: {
1764 const AutoType *A = cast<AutoType>(T);
1765 assert(!A->getDeducedType().isNull() &&((!A->getDeducedType().isNull() && "cannot request the size of an undeduced or dependent auto type"
) ? static_cast<void> (0) : __assert_fail ("!A->getDeducedType().isNull() && \"cannot request the size of an undeduced or dependent auto type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1766, __PRETTY_FUNCTION__))
1766 "cannot request the size of an undeduced or dependent auto type")((!A->getDeducedType().isNull() && "cannot request the size of an undeduced or dependent auto type"
) ? static_cast<void> (0) : __assert_fail ("!A->getDeducedType().isNull() && \"cannot request the size of an undeduced or dependent auto type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1766, __PRETTY_FUNCTION__))
;
1767 return getTypeInfo(A->getDeducedType().getTypePtr());
1768 }
1769
1770 case Type::Paren:
1771 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1772
1773 case Type::Typedef: {
1774 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1775 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1776 // If the typedef has an aligned attribute on it, it overrides any computed
1777 // alignment we have. This violates the GCC documentation (which says that
1778 // attribute(aligned) can only round up) but matches its implementation.
1779 if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
1780 Align = AttrAlign;
1781 AlignIsRequired = true;
1782 } else {
1783 Align = Info.Align;
1784 AlignIsRequired = Info.AlignIsRequired;
1785 }
1786 Width = Info.Width;
1787 break;
1788 }
1789
1790 case Type::Elaborated:
1791 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1792
1793 case Type::Attributed:
1794 return getTypeInfo(
1795 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1796
1797 case Type::Atomic: {
1798 // Start with the base type information.
1799 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
1800 Width = Info.Width;
1801 Align = Info.Align;
1802
1803 // If the size of the type doesn't exceed the platform's max
1804 // atomic promotion width, make the size and alignment more
1805 // favorable to atomic operations:
1806 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1807 // Round the size up to a power of 2.
1808 if (!llvm::isPowerOf2_64(Width))
1809 Width = llvm::NextPowerOf2(Width);
1810
1811 // Set the alignment equal to the size.
1812 Align = static_cast<unsigned>(Width);
1813 }
1814 }
1815
1816 }
1817
1818 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2")((llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"
) ? static_cast<void> (0) : __assert_fail ("llvm::isPowerOf2_32(Align) && \"Alignment must be power of 2\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 1818, __PRETTY_FUNCTION__))
;
1819 return TypeInfo(Width, Align, AlignIsRequired);
1820}
1821
1822unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
1823 unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
1824 // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
1825 if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
1826 getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
1827 getTargetInfo().getABI() == "elfv1-qpx" &&
1828 T->isSpecificBuiltinType(BuiltinType::Double))
1829 SimdAlign = 256;
1830 return SimdAlign;
1831}
1832
1833/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1834CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1835 return CharUnits::fromQuantity(BitSize / getCharWidth());
1836}
1837
1838/// toBits - Convert a size in characters to a size in characters.
1839int64_t ASTContext::toBits(CharUnits CharSize) const {
1840 return CharSize.getQuantity() * getCharWidth();
1841}
1842
1843/// getTypeSizeInChars - Return the size of the specified type, in characters.
1844/// This method does not work on incomplete types.
1845CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1846 return getTypeInfoInChars(T).first;
1847}
1848CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1849 return getTypeInfoInChars(T).first;
1850}
1851
1852/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1853/// characters. This method does not work on incomplete types.
1854CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1855 return toCharUnitsFromBits(getTypeAlign(T));
1856}
1857CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1858 return toCharUnitsFromBits(getTypeAlign(T));
1859}
1860
1861/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1862/// type for the current target in bits. This can be different than the ABI
1863/// alignment in cases where it is beneficial for performance to overalign
1864/// a data type.
1865unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1866 TypeInfo TI = getTypeInfo(T);
1867 unsigned ABIAlign = TI.Align;
1868
1869 T = T->getBaseElementTypeUnsafe();
1870
1871 // The preferred alignment of member pointers is that of a pointer.
1872 if (T->isMemberPointerType())
1873 return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
1874
1875 if (Target->getTriple().getArch() == llvm::Triple::xcore)
1876 return ABIAlign; // Never overalign on XCore.
1877
1878 // Double and long long should be naturally aligned if possible.
1879 if (const ComplexType *CT = T->getAs<ComplexType>())
1880 T = CT->getElementType().getTypePtr();
1881 if (const EnumType *ET = T->getAs<EnumType>())
1882 T = ET->getDecl()->getIntegerType().getTypePtr();
1883 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1884 T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1885 T->isSpecificBuiltinType(BuiltinType::ULongLong))
1886 // Don't increase the alignment if an alignment attribute was specified on a
1887 // typedef declaration.
1888 if (!TI.AlignIsRequired)
1889 return std::max(ABIAlign, (unsigned)getTypeSize(T));
1890
1891 return ABIAlign;
1892}
1893
1894/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
1895/// for __attribute__((aligned)) on this target, to be used if no alignment
1896/// value is specified.
1897unsigned ASTContext::getTargetDefaultAlignForAttributeAligned(void) const {
1898 return getTargetInfo().getDefaultAlignForAttributeAligned();
1899}
1900
1901/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1902/// to a global variable of the specified type.
1903unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1904 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1905}
1906
1907/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1908/// should be given to a global variable of the specified type.
1909CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1910 return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1911}
1912
1913CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
1914 CharUnits Offset = CharUnits::Zero();
1915 const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
1916 while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
1917 Offset += Layout->getBaseClassOffset(Base);
1918 Layout = &getASTRecordLayout(Base);
1919 }
1920 return Offset;
1921}
1922
1923/// DeepCollectObjCIvars -
1924/// This routine first collects all declared, but not synthesized, ivars in
1925/// super class and then collects all ivars, including those synthesized for
1926/// current class. This routine is used for implementation of current class
1927/// when all ivars, declared and synthesized are known.
1928///
1929void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1930 bool leafClass,
1931 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1932 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1933 DeepCollectObjCIvars(SuperClass, false, Ivars);
1934 if (!leafClass) {
1935 for (const auto *I : OI->ivars())
1936 Ivars.push_back(I);
1937 } else {
1938 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1939 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1940 Iv= Iv->getNextIvar())
1941 Ivars.push_back(Iv);
1942 }
1943}
1944
1945/// CollectInheritedProtocols - Collect all protocols in current class and
1946/// those inherited by it.
1947void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1948 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1949 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1950 // We can use protocol_iterator here instead of
1951 // all_referenced_protocol_iterator since we are walking all categories.
1952 for (auto *Proto : OI->all_referenced_protocols()) {
1953 CollectInheritedProtocols(Proto, Protocols);
1954 }
1955
1956 // Categories of this Interface.
1957 for (const auto *Cat : OI->visible_categories())
1958 CollectInheritedProtocols(Cat, Protocols);
1959
1960 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1961 while (SD) {
1962 CollectInheritedProtocols(SD, Protocols);
1963 SD = SD->getSuperClass();
1964 }
1965 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1966 for (auto *Proto : OC->protocols()) {
1967 CollectInheritedProtocols(Proto, Protocols);
1968 }
1969 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1970 // Insert the protocol.
1971 if (!Protocols.insert(
1972 const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
1973 return;
1974
1975 for (auto *Proto : OP->protocols())
1976 CollectInheritedProtocols(Proto, Protocols);
1977 }
1978}
1979
1980unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1981 unsigned count = 0;
1982 // Count ivars declared in class extension.
1983 for (const auto *Ext : OI->known_extensions())
1984 count += Ext->ivar_size();
1985
1986 // Count ivar defined in this class's implementation. This
1987 // includes synthesized ivars.
1988 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1989 count += ImplDecl->ivar_size();
1990
1991 return count;
1992}
1993
1994bool ASTContext::isSentinelNullExpr(const Expr *E) {
1995 if (!E)
1996 return false;
1997
1998 // nullptr_t is always treated as null.
1999 if (E->getType()->isNullPtrType()) return true;
2000
2001 if (E->getType()->isAnyPointerType() &&
2002 E->IgnoreParenCasts()->isNullPointerConstant(*this,
2003 Expr::NPC_ValueDependentIsNull))
2004 return true;
2005
2006 // Unfortunately, __null has type 'int'.
2007 if (isa<GNUNullExpr>(E)) return true;
2008
2009 return false;
2010}
2011
2012/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
2013ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2014 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2015 I = ObjCImpls.find(D);
2016 if (I != ObjCImpls.end())
2017 return cast<ObjCImplementationDecl>(I->second);
2018 return nullptr;
2019}
2020/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
2021ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2022 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2023 I = ObjCImpls.find(D);
2024 if (I != ObjCImpls.end())
2025 return cast<ObjCCategoryImplDecl>(I->second);
2026 return nullptr;
2027}
2028
2029/// \brief Set the implementation of ObjCInterfaceDecl.
2030void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2031 ObjCImplementationDecl *ImplD) {
2032 assert(IFaceD && ImplD && "Passed null params")((IFaceD && ImplD && "Passed null params") ? static_cast
<void> (0) : __assert_fail ("IFaceD && ImplD && \"Passed null params\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2032, __PRETTY_FUNCTION__))
;
2033 ObjCImpls[IFaceD] = ImplD;
2034}
2035/// \brief Set the implementation of ObjCCategoryDecl.
2036void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2037 ObjCCategoryImplDecl *ImplD) {
2038 assert(CatD && ImplD && "Passed null params")((CatD && ImplD && "Passed null params") ? static_cast
<void> (0) : __assert_fail ("CatD && ImplD && \"Passed null params\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2038, __PRETTY_FUNCTION__))
;
2039 ObjCImpls[CatD] = ImplD;
2040}
2041
2042const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2043 const NamedDecl *ND) const {
2044 if (const ObjCInterfaceDecl *ID =
2045 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2046 return ID;
2047 if (const ObjCCategoryDecl *CD =
2048 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2049 return CD->getClassInterface();
2050 if (const ObjCImplDecl *IMD =
2051 dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2052 return IMD->getClassInterface();
2053
2054 return nullptr;
2055}
2056
2057/// \brief Get the copy initialization expression of VarDecl,or NULL if
2058/// none exists.
2059Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
2060 assert(VD && "Passed null params")((VD && "Passed null params") ? static_cast<void>
(0) : __assert_fail ("VD && \"Passed null params\"",
"/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2060, __PRETTY_FUNCTION__))
;
2061 assert(VD->hasAttr<BlocksAttr>() &&((VD->hasAttr<BlocksAttr>() && "getBlockVarCopyInits - not __block var"
) ? static_cast<void> (0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"getBlockVarCopyInits - not __block var\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2062, __PRETTY_FUNCTION__))
2062 "getBlockVarCopyInits - not __block var")((VD->hasAttr<BlocksAttr>() && "getBlockVarCopyInits - not __block var"
) ? static_cast<void> (0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"getBlockVarCopyInits - not __block var\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2062, __PRETTY_FUNCTION__))
;
2063 llvm::DenseMap<const VarDecl*, Expr*>::iterator
2064 I = BlockVarCopyInits.find(VD);
2065 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
2066}
2067
2068/// \brief Set the copy inialization expression of a block var decl.
2069void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
2070 assert(VD && Init && "Passed null params")((VD && Init && "Passed null params") ? static_cast
<void> (0) : __assert_fail ("VD && Init && \"Passed null params\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2070, __PRETTY_FUNCTION__))
;
2071 assert(VD->hasAttr<BlocksAttr>() &&((VD->hasAttr<BlocksAttr>() && "setBlockVarCopyInits - not __block var"
) ? static_cast<void> (0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"setBlockVarCopyInits - not __block var\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2072, __PRETTY_FUNCTION__))
2072 "setBlockVarCopyInits - not __block var")((VD->hasAttr<BlocksAttr>() && "setBlockVarCopyInits - not __block var"
) ? static_cast<void> (0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"setBlockVarCopyInits - not __block var\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2072, __PRETTY_FUNCTION__))
;
2073 BlockVarCopyInits[VD] = Init;
2074}
2075
2076TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2077 unsigned DataSize) const {
2078 if (!DataSize)
2079 DataSize = TypeLoc::getFullDataSizeForType(T);
2080 else
2081 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&((DataSize == TypeLoc::getFullDataSizeForType(T) && "incorrect data size provided to CreateTypeSourceInfo!"
) ? static_cast<void> (0) : __assert_fail ("DataSize == TypeLoc::getFullDataSizeForType(T) && \"incorrect data size provided to CreateTypeSourceInfo!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2082, __PRETTY_FUNCTION__))
2082 "incorrect data size provided to CreateTypeSourceInfo!")((DataSize == TypeLoc::getFullDataSizeForType(T) && "incorrect data size provided to CreateTypeSourceInfo!"
) ? static_cast<void> (0) : __assert_fail ("DataSize == TypeLoc::getFullDataSizeForType(T) && \"incorrect data size provided to CreateTypeSourceInfo!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2082, __PRETTY_FUNCTION__))
;
2083
2084 TypeSourceInfo *TInfo =
2085 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2086 new (TInfo) TypeSourceInfo(T);
2087 return TInfo;
2088}
2089
2090TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2091 SourceLocation L) const {
2092 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2093 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2094 return DI;
2095}
2096
2097const ASTRecordLayout &
2098ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2099 return getObjCLayout(D, nullptr);
2100}
2101
2102const ASTRecordLayout &
2103ASTContext::getASTObjCImplementationLayout(
2104 const ObjCImplementationDecl *D) const {
2105 return getObjCLayout(D->getClassInterface(), D);
2106}
2107
2108//===----------------------------------------------------------------------===//
2109// Type creation/memoization methods
2110//===----------------------------------------------------------------------===//
2111
2112QualType
2113ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2114 unsigned fastQuals = quals.getFastQualifiers();
2115 quals.removeFastQualifiers();
2116
2117 // Check if we've already instantiated this type.
2118 llvm::FoldingSetNodeID ID;
2119 ExtQuals::Profile(ID, baseType, quals);
2120 void *insertPos = nullptr;
2121 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2122 assert(eq->getQualifiers() == quals)((eq->getQualifiers() == quals) ? static_cast<void> (
0) : __assert_fail ("eq->getQualifiers() == quals", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2122, __PRETTY_FUNCTION__))
;
2123 return QualType(eq, fastQuals);
2124 }
2125
2126 // If the base type is not canonical, make the appropriate canonical type.
2127 QualType canon;
2128 if (!baseType->isCanonicalUnqualified()) {
2129 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2130 canonSplit.Quals.addConsistentQualifiers(quals);
2131 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2132
2133 // Re-find the insert position.
2134 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2135 }
2136
2137 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2138 ExtQualNodes.InsertNode(eq, insertPos);
2139 return QualType(eq, fastQuals);
2140}
2141
2142QualType
2143ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2144 QualType CanT = getCanonicalType(T);
2145 if (CanT.getAddressSpace() == AddressSpace)
2146 return T;
2147
2148 // If we are composing extended qualifiers together, merge together
2149 // into one ExtQuals node.
2150 QualifierCollector Quals;
2151 const Type *TypeNode = Quals.strip(T);
2152
2153 // If this type already has an address space specified, it cannot get
2154 // another one.
2155 assert(!Quals.hasAddressSpace() &&((!Quals.hasAddressSpace() && "Type cannot be in multiple addr spaces!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasAddressSpace() && \"Type cannot be in multiple addr spaces!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2156, __PRETTY_FUNCTION__))
2156 "Type cannot be in multiple addr spaces!")((!Quals.hasAddressSpace() && "Type cannot be in multiple addr spaces!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasAddressSpace() && \"Type cannot be in multiple addr spaces!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2156, __PRETTY_FUNCTION__))
;
2157 Quals.addAddressSpace(AddressSpace);
2158
2159 return getExtQualType(TypeNode, Quals);
2160}
2161
2162QualType ASTContext::getObjCGCQualType(QualType T,
2163 Qualifiers::GC GCAttr) const {
2164 QualType CanT = getCanonicalType(T);
2165 if (CanT.getObjCGCAttr() == GCAttr)
2166 return T;
2167
2168 if (const PointerType *ptr = T->getAs<PointerType>()) {
2169 QualType Pointee = ptr->getPointeeType();
2170 if (Pointee->isAnyPointerType()) {
2171 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2172 return getPointerType(ResultType);
2173 }
2174 }
2175
2176 // If we are composing extended qualifiers together, merge together
2177 // into one ExtQuals node.
2178 QualifierCollector Quals;
2179 const Type *TypeNode = Quals.strip(T);
2180
2181 // If this type already has an ObjCGC specified, it cannot get
2182 // another one.
2183 assert(!Quals.hasObjCGCAttr() &&((!Quals.hasObjCGCAttr() && "Type cannot have multiple ObjCGCs!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasObjCGCAttr() && \"Type cannot have multiple ObjCGCs!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2184, __PRETTY_FUNCTION__))
2184 "Type cannot have multiple ObjCGCs!")((!Quals.hasObjCGCAttr() && "Type cannot have multiple ObjCGCs!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasObjCGCAttr() && \"Type cannot have multiple ObjCGCs!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2184, __PRETTY_FUNCTION__))
;
2185 Quals.addObjCGCAttr(GCAttr);
2186
2187 return getExtQualType(TypeNode, Quals);
2188}
2189
2190const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2191 FunctionType::ExtInfo Info) {
2192 if (T->getExtInfo() == Info)
2193 return T;
2194
2195 QualType Result;
2196 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2197 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2198 } else {
2199 const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2200 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2201 EPI.ExtInfo = Info;
2202 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2203 }
2204
2205 return cast<FunctionType>(Result.getTypePtr());
2206}
2207
2208void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2209 QualType ResultType) {
2210 FD = FD->getMostRecentDecl();
2211 while (true) {
2212 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2213 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2214 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2215 if (FunctionDecl *Next = FD->getPreviousDecl())
2216 FD = Next;
2217 else
2218 break;
2219 }
2220 if (ASTMutationListener *L = getASTMutationListener())
2221 L->DeducedReturnType(FD, ResultType);
2222}
2223
2224/// Get a function type and produce the equivalent function type with the
2225/// specified exception specification. Type sugar that can be present on a
2226/// declaration of a function with an exception specification is permitted
2227/// and preserved. Other type sugar (for instance, typedefs) is not.
2228static QualType getFunctionTypeWithExceptionSpec(
2229 ASTContext &Context, QualType Orig,
2230 const FunctionProtoType::ExceptionSpecInfo &ESI) {
2231 // Might have some parens.
2232 if (auto *PT = dyn_cast<ParenType>(Orig))
2233 return Context.getParenType(
2234 getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
2235
2236 // Might have a calling-convention attribute.
2237 if (auto *AT = dyn_cast<AttributedType>(Orig))
2238 return Context.getAttributedType(
2239 AT->getAttrKind(),
2240 getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
2241 getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
2242 ESI));
2243
2244 // Anything else must be a function type. Rebuild it with the new exception
2245 // specification.
2246 const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
2247 return Context.getFunctionType(
2248 Proto->getReturnType(), Proto->getParamTypes(),
2249 Proto->getExtProtoInfo().withExceptionSpec(ESI));
2250}
2251
2252void ASTContext::adjustExceptionSpec(
2253 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2254 bool AsWritten) {
2255 // Update the type.
2256 QualType Updated =
2257 getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
2258 FD->setType(Updated);
2259
2260 if (!AsWritten)
2261 return;
2262
2263 // Update the type in the type source information too.
2264 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2265 // If the type and the type-as-written differ, we may need to update
2266 // the type-as-written too.
2267 if (TSInfo->getType() != FD->getType())
2268 Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
2269
2270 // FIXME: When we get proper type location information for exceptions,
2271 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2272 // up the TypeSourceInfo;
2273 assert(TypeLoc::getFullDataSizeForType(Updated) ==((TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType
(TSInfo->getType()) && "TypeLoc size mismatch from updating exception specification"
) ? static_cast<void> (0) : __assert_fail ("TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) && \"TypeLoc size mismatch from updating exception specification\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2275, __PRETTY_FUNCTION__))
2274 TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&((TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType
(TSInfo->getType()) && "TypeLoc size mismatch from updating exception specification"
) ? static_cast<void> (0) : __assert_fail ("TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) && \"TypeLoc size mismatch from updating exception specification\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2275, __PRETTY_FUNCTION__))
2275 "TypeLoc size mismatch from updating exception specification")((TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType
(TSInfo->getType()) && "TypeLoc size mismatch from updating exception specification"
) ? static_cast<void> (0) : __assert_fail ("TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) && \"TypeLoc size mismatch from updating exception specification\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2275, __PRETTY_FUNCTION__))
;
2276 TSInfo->overrideType(Updated);
2277 }
2278}
2279
2280/// getComplexType - Return the uniqued reference to the type for a complex
2281/// number with the specified element type.
2282QualType ASTContext::getComplexType(QualType T) const {
2283 // Unique pointers, to guarantee there is only one pointer of a particular
2284 // structure.
2285 llvm::FoldingSetNodeID ID;
2286 ComplexType::Profile(ID, T);
2287
2288 void *InsertPos = nullptr;
2289 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2290 return QualType(CT, 0);
2291
2292 // If the pointee type isn't canonical, this won't be a canonical type either,
2293 // so fill in the canonical type field.
2294 QualType Canonical;
2295 if (!T.isCanonical()) {
2296 Canonical = getComplexType(getCanonicalType(T));
2297
2298 // Get the new insert position for the node we care about.
2299 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2300 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2300, __PRETTY_FUNCTION__))
; (void)NewIP;
2301 }
2302 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2303 Types.push_back(New);
2304 ComplexTypes.InsertNode(New, InsertPos);
2305 return QualType(New, 0);
2306}
2307
2308/// getPointerType - Return the uniqued reference to the type for a pointer to
2309/// the specified type.
2310QualType ASTContext::getPointerType(QualType T) const {
2311 // Unique pointers, to guarantee there is only one pointer of a particular
2312 // structure.
2313 llvm::FoldingSetNodeID ID;
2314 PointerType::Profile(ID, T);
2315
2316 void *InsertPos = nullptr;
2317 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2318 return QualType(PT, 0);
2319
2320 // If the pointee type isn't canonical, this won't be a canonical type either,
2321 // so fill in the canonical type field.
2322 QualType Canonical;
2323 if (!T.isCanonical()) {
2324 Canonical = getPointerType(getCanonicalType(T));
2325
2326 // Get the new insert position for the node we care about.
2327 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2328 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2328, __PRETTY_FUNCTION__))
; (void)NewIP;
2329 }
2330 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2331 Types.push_back(New);
2332 PointerTypes.InsertNode(New, InsertPos);
2333 return QualType(New, 0);
2334}
2335
2336QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2337 llvm::FoldingSetNodeID ID;
2338 AdjustedType::Profile(ID, Orig, New);
2339 void *InsertPos = nullptr;
2340 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2341 if (AT)
2342 return QualType(AT, 0);
2343
2344 QualType Canonical = getCanonicalType(New);
2345
2346 // Get the new insert position for the node we care about.
2347 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2348 assert(!AT && "Shouldn't be in the map!")((!AT && "Shouldn't be in the map!") ? static_cast<
void> (0) : __assert_fail ("!AT && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2348, __PRETTY_FUNCTION__))
;
2349
2350 AT = new (*this, TypeAlignment)
2351 AdjustedType(Type::Adjusted, Orig, New, Canonical);
2352 Types.push_back(AT);
2353 AdjustedTypes.InsertNode(AT, InsertPos);
2354 return QualType(AT, 0);
2355}
2356
2357QualType ASTContext::getDecayedType(QualType T) const {
2358 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay")(((T->isArrayType() || T->isFunctionType()) && "T does not decay"
) ? static_cast<void> (0) : __assert_fail ("(T->isArrayType() || T->isFunctionType()) && \"T does not decay\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2358, __PRETTY_FUNCTION__))
;
2359
2360 QualType Decayed;
2361
2362 // C99 6.7.5.3p7:
2363 // A declaration of a parameter as "array of type" shall be
2364 // adjusted to "qualified pointer to type", where the type
2365 // qualifiers (if any) are those specified within the [ and ] of
2366 // the array type derivation.
2367 if (T->isArrayType())
2368 Decayed = getArrayDecayedType(T);
2369
2370 // C99 6.7.5.3p8:
2371 // A declaration of a parameter as "function returning type"
2372 // shall be adjusted to "pointer to function returning type", as
2373 // in 6.3.2.1.
2374 if (T->isFunctionType())
2375 Decayed = getPointerType(T);
2376
2377 llvm::FoldingSetNodeID ID;
2378 AdjustedType::Profile(ID, T, Decayed);
2379 void *InsertPos = nullptr;
2380 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2381 if (AT)
2382 return QualType(AT, 0);
2383
2384 QualType Canonical = getCanonicalType(Decayed);
2385
2386 // Get the new insert position for the node we care about.
2387 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2388 assert(!AT && "Shouldn't be in the map!")((!AT && "Shouldn't be in the map!") ? static_cast<
void> (0) : __assert_fail ("!AT && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2388, __PRETTY_FUNCTION__))
;
2389
2390 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2391 Types.push_back(AT);
2392 AdjustedTypes.InsertNode(AT, InsertPos);
2393 return QualType(AT, 0);
2394}
2395
2396/// getBlockPointerType - Return the uniqued reference to the type for
2397/// a pointer to the specified block.
2398QualType ASTContext::getBlockPointerType(QualType T) const {
2399 assert(T->isFunctionType() && "block of function types only")((T->isFunctionType() && "block of function types only"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"block of function types only\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2399, __PRETTY_FUNCTION__))
;
2400 // Unique pointers, to guarantee there is only one block of a particular
2401 // structure.
2402 llvm::FoldingSetNodeID ID;
2403 BlockPointerType::Profile(ID, T);
2404
2405 void *InsertPos = nullptr;
2406 if (BlockPointerType *PT =
2407 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2408 return QualType(PT, 0);
2409
2410 // If the block pointee type isn't canonical, this won't be a canonical
2411 // type either so fill in the canonical type field.
2412 QualType Canonical;
2413 if (!T.isCanonical()) {
2414 Canonical = getBlockPointerType(getCanonicalType(T));
2415
2416 // Get the new insert position for the node we care about.
2417 BlockPointerType *NewIP =
2418 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2419 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2419, __PRETTY_FUNCTION__))
; (void)NewIP;
2420 }
2421 BlockPointerType *New
2422 = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2423 Types.push_back(New);
2424 BlockPointerTypes.InsertNode(New, InsertPos);
2425 return QualType(New, 0);
2426}
2427
2428/// getLValueReferenceType - Return the uniqued reference to the type for an
2429/// lvalue reference to the specified type.
2430QualType
2431ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2432 assert(getCanonicalType(T) != OverloadTy &&((getCanonicalType(T) != OverloadTy && "Unresolved overloaded function type"
) ? static_cast<void> (0) : __assert_fail ("getCanonicalType(T) != OverloadTy && \"Unresolved overloaded function type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2433, __PRETTY_FUNCTION__))
2433 "Unresolved overloaded function type")((getCanonicalType(T) != OverloadTy && "Unresolved overloaded function type"
) ? static_cast<void> (0) : __assert_fail ("getCanonicalType(T) != OverloadTy && \"Unresolved overloaded function type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2433, __PRETTY_FUNCTION__))
;
2434
2435 // Unique pointers, to guarantee there is only one pointer of a particular
2436 // structure.
2437 llvm::FoldingSetNodeID ID;
2438 ReferenceType::Profile(ID, T, SpelledAsLValue);
2439
2440 void *InsertPos = nullptr;
2441 if (LValueReferenceType *RT =
2442 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2443 return QualType(RT, 0);
2444
2445 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2446
2447 // If the referencee type isn't canonical, this won't be a canonical type
2448 // either, so fill in the canonical type field.
2449 QualType Canonical;
2450 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2451 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2452 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2453
2454 // Get the new insert position for the node we care about.
2455 LValueReferenceType *NewIP =
2456 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2457 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2457, __PRETTY_FUNCTION__))
; (void)NewIP;
2458 }
2459
2460 LValueReferenceType *New
2461 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2462 SpelledAsLValue);
2463 Types.push_back(New);
2464 LValueReferenceTypes.InsertNode(New, InsertPos);
2465
2466 return QualType(New, 0);
2467}
2468
2469/// getRValueReferenceType - Return the uniqued reference to the type for an
2470/// rvalue reference to the specified type.
2471QualType ASTContext::getRValueReferenceType(QualType T) const {
2472 // Unique pointers, to guarantee there is only one pointer of a particular
2473 // structure.
2474 llvm::FoldingSetNodeID ID;
2475 ReferenceType::Profile(ID, T, false);
2476
2477 void *InsertPos = nullptr;
2478 if (RValueReferenceType *RT =
2479 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2480 return QualType(RT, 0);
2481
2482 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2483
2484 // If the referencee type isn't canonical, this won't be a canonical type
2485 // either, so fill in the canonical type field.
2486 QualType Canonical;
2487 if (InnerRef || !T.isCanonical()) {
2488 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2489 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2490
2491 // Get the new insert position for the node we care about.
2492 RValueReferenceType *NewIP =
2493 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2494 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2494, __PRETTY_FUNCTION__))
; (void)NewIP;
2495 }
2496
2497 RValueReferenceType *New
2498 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2499 Types.push_back(New);
2500 RValueReferenceTypes.InsertNode(New, InsertPos);
2501 return QualType(New, 0);
2502}
2503
2504/// getMemberPointerType - Return the uniqued reference to the type for a
2505/// member pointer to the specified type, in the specified class.
2506QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2507 // Unique pointers, to guarantee there is only one pointer of a particular
2508 // structure.
2509 llvm::FoldingSetNodeID ID;
2510 MemberPointerType::Profile(ID, T, Cls);
2511
2512 void *InsertPos = nullptr;
2513 if (MemberPointerType *PT =
2514 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2515 return QualType(PT, 0);
2516
2517 // If the pointee or class type isn't canonical, this won't be a canonical
2518 // type either, so fill in the canonical type field.
2519 QualType Canonical;
2520 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2521 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2522
2523 // Get the new insert position for the node we care about.
2524 MemberPointerType *NewIP =
2525 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2526 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2526, __PRETTY_FUNCTION__))
; (void)NewIP;
2527 }
2528 MemberPointerType *New
2529 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2530 Types.push_back(New);
2531 MemberPointerTypes.InsertNode(New, InsertPos);
2532 return QualType(New, 0);
2533}
2534
2535/// getConstantArrayType - Return the unique reference to the type for an
2536/// array of the specified element type.
2537QualType ASTContext::getConstantArrayType(QualType EltTy,
2538 const llvm::APInt &ArySizeIn,
2539 ArrayType::ArraySizeModifier ASM,
2540 unsigned IndexTypeQuals) const {
2541 assert((EltTy->isDependentType() ||(((EltTy->isDependentType() || EltTy->isIncompleteType(
) || EltTy->isConstantSizeType()) && "Constant array of VLAs is illegal!"
) ? static_cast<void> (0) : __assert_fail ("(EltTy->isDependentType() || EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && \"Constant array of VLAs is illegal!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2543, __PRETTY_FUNCTION__))
2542 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&(((EltTy->isDependentType() || EltTy->isIncompleteType(
) || EltTy->isConstantSizeType()) && "Constant array of VLAs is illegal!"
) ? static_cast<void> (0) : __assert_fail ("(EltTy->isDependentType() || EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && \"Constant array of VLAs is illegal!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2543, __PRETTY_FUNCTION__))
2543 "Constant array of VLAs is illegal!")(((EltTy->isDependentType() || EltTy->isIncompleteType(
) || EltTy->isConstantSizeType()) && "Constant array of VLAs is illegal!"
) ? static_cast<void> (0) : __assert_fail ("(EltTy->isDependentType() || EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && \"Constant array of VLAs is illegal!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2543, __PRETTY_FUNCTION__))
;
2544
2545 // Convert the array size into a canonical width matching the pointer size for
2546 // the target.
2547 llvm::APInt ArySize(ArySizeIn);
2548 ArySize =
2549 ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2550
2551 llvm::FoldingSetNodeID ID;
2552 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2553
2554 void *InsertPos = nullptr;
2555 if (ConstantArrayType *ATP =
2556 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2557 return QualType(ATP, 0);
2558
2559 // If the element type isn't canonical or has qualifiers, this won't
2560 // be a canonical type either, so fill in the canonical type field.
2561 QualType Canon;
2562 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2563 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2564 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2565 ASM, IndexTypeQuals);
2566 Canon = getQualifiedType(Canon, canonSplit.Quals);
2567
2568 // Get the new insert position for the node we care about.
2569 ConstantArrayType *NewIP =
2570 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2571 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2571, __PRETTY_FUNCTION__))
; (void)NewIP;
2572 }
2573
2574 ConstantArrayType *New = new(*this,TypeAlignment)
2575 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2576 ConstantArrayTypes.InsertNode(New, InsertPos);
2577 Types.push_back(New);
2578 return QualType(New, 0);
2579}
2580
2581/// getVariableArrayDecayedType - Turns the given type, which may be
2582/// variably-modified, into the corresponding type with all the known
2583/// sizes replaced with [*].
2584QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2585 // Vastly most common case.
2586 if (!type->isVariablyModifiedType()) return type;
2587
2588 QualType result;
2589
2590 SplitQualType split = type.getSplitDesugaredType();
2591 const Type *ty = split.Ty;
2592 switch (ty->getTypeClass()) {
2593#define TYPE(Class, Base)
2594#define ABSTRACT_TYPE(Class, Base)
2595#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2596#include "clang/AST/TypeNodes.def"
2597 llvm_unreachable("didn't desugar past all non-canonical types?")::llvm::llvm_unreachable_internal("didn't desugar past all non-canonical types?"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2597)
;
2598
2599 // These types should never be variably-modified.
2600 case Type::Builtin:
2601 case Type::Complex:
2602 case Type::Vector:
2603 case Type::ExtVector:
2604 case Type::DependentSizedExtVector:
2605 case Type::ObjCObject:
2606 case Type::ObjCInterface:
2607 case Type::ObjCObjectPointer:
2608 case Type::Record:
2609 case Type::Enum:
2610 case Type::UnresolvedUsing:
2611 case Type::TypeOfExpr:
2612 case Type::TypeOf:
2613 case Type::Decltype:
2614 case Type::UnaryTransform:
2615 case Type::DependentName:
2616 case Type::InjectedClassName:
2617 case Type::TemplateSpecialization:
2618 case Type::DependentTemplateSpecialization:
2619 case Type::TemplateTypeParm:
2620 case Type::SubstTemplateTypeParmPack:
2621 case Type::Auto:
2622 case Type::PackExpansion:
2623 llvm_unreachable("type should never be variably-modified")::llvm::llvm_unreachable_internal("type should never be variably-modified"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2623)
;
2624
2625 // These types can be variably-modified but should never need to
2626 // further decay.
2627 case Type::FunctionNoProto:
2628 case Type::FunctionProto:
2629 case Type::BlockPointer:
2630 case Type::MemberPointer:
2631 return type;
2632
2633 // These types can be variably-modified. All these modifications
2634 // preserve structure except as noted by comments.
2635 // TODO: if we ever care about optimizing VLAs, there are no-op
2636 // optimizations available here.
2637 case Type::Pointer:
2638 result = getPointerType(getVariableArrayDecayedType(
2639 cast<PointerType>(ty)->getPointeeType()));
2640 break;
2641
2642 case Type::LValueReference: {
2643 const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2644 result = getLValueReferenceType(
2645 getVariableArrayDecayedType(lv->getPointeeType()),
2646 lv->isSpelledAsLValue());
2647 break;
2648 }
2649
2650 case Type::RValueReference: {
2651 const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2652 result = getRValueReferenceType(
2653 getVariableArrayDecayedType(lv->getPointeeType()));
2654 break;
2655 }
2656
2657 case Type::Atomic: {
2658 const AtomicType *at = cast<AtomicType>(ty);
2659 result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2660 break;
2661 }
2662
2663 case Type::ConstantArray: {
2664 const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2665 result = getConstantArrayType(
2666 getVariableArrayDecayedType(cat->getElementType()),
2667 cat->getSize(),
2668 cat->getSizeModifier(),
2669 cat->getIndexTypeCVRQualifiers());
2670 break;
2671 }
2672
2673 case Type::DependentSizedArray: {
2674 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2675 result = getDependentSizedArrayType(
2676 getVariableArrayDecayedType(dat->getElementType()),
2677 dat->getSizeExpr(),
2678 dat->getSizeModifier(),
2679 dat->getIndexTypeCVRQualifiers(),
2680 dat->getBracketsRange());
2681 break;
2682 }
2683
2684 // Turn incomplete types into [*] types.
2685 case Type::IncompleteArray: {
2686 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2687 result = getVariableArrayType(
2688 getVariableArrayDecayedType(iat->getElementType()),
2689 /*size*/ nullptr,
2690 ArrayType::Normal,
2691 iat->getIndexTypeCVRQualifiers(),
2692 SourceRange());
2693 break;
2694 }
2695
2696 // Turn VLA types into [*] types.
2697 case Type::VariableArray: {
2698 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2699 result = getVariableArrayType(
2700 getVariableArrayDecayedType(vat->getElementType()),
2701 /*size*/ nullptr,
2702 ArrayType::Star,
2703 vat->getIndexTypeCVRQualifiers(),
2704 vat->getBracketsRange());
2705 break;
2706 }
2707 }
2708
2709 // Apply the top-level qualifiers from the original.
2710 return getQualifiedType(result, split.Quals);
2711}
2712
2713/// getVariableArrayType - Returns a non-unique reference to the type for a
2714/// variable array of the specified element type.
2715QualType ASTContext::getVariableArrayType(QualType EltTy,
2716 Expr *NumElts,
2717 ArrayType::ArraySizeModifier ASM,
2718 unsigned IndexTypeQuals,
2719 SourceRange Brackets) const {
2720 // Since we don't unique expressions, it isn't possible to unique VLA's
2721 // that have an expression provided for their size.
2722 QualType Canon;
2723
2724 // Be sure to pull qualifiers off the element type.
2725 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2726 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2727 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2728 IndexTypeQuals, Brackets);
2729 Canon = getQualifiedType(Canon, canonSplit.Quals);
2730 }
2731
2732 VariableArrayType *New = new(*this, TypeAlignment)
2733 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2734
2735 VariableArrayTypes.push_back(New);
2736 Types.push_back(New);
2737 return QualType(New, 0);
2738}
2739
2740/// getDependentSizedArrayType - Returns a non-unique reference to
2741/// the type for a dependently-sized array of the specified element
2742/// type.
2743QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2744 Expr *numElements,
2745 ArrayType::ArraySizeModifier ASM,
2746 unsigned elementTypeQuals,
2747 SourceRange brackets) const {
2748 assert((!numElements || numElements->isTypeDependent() ||(((!numElements || numElements->isTypeDependent() || numElements
->isValueDependent()) && "Size must be type- or value-dependent!"
) ? static_cast<void> (0) : __assert_fail ("(!numElements || numElements->isTypeDependent() || numElements->isValueDependent()) && \"Size must be type- or value-dependent!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2750, __PRETTY_FUNCTION__))
2749 numElements->isValueDependent()) &&(((!numElements || numElements->isTypeDependent() || numElements
->isValueDependent()) && "Size must be type- or value-dependent!"
) ? static_cast<void> (0) : __assert_fail ("(!numElements || numElements->isTypeDependent() || numElements->isValueDependent()) && \"Size must be type- or value-dependent!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2750, __PRETTY_FUNCTION__))
2750 "Size must be type- or value-dependent!")(((!numElements || numElements->isTypeDependent() || numElements
->isValueDependent()) && "Size must be type- or value-dependent!"
) ? static_cast<void> (0) : __assert_fail ("(!numElements || numElements->isTypeDependent() || numElements->isValueDependent()) && \"Size must be type- or value-dependent!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2750, __PRETTY_FUNCTION__))
;
2751
2752 // Dependently-sized array types that do not have a specified number
2753 // of elements will have their sizes deduced from a dependent
2754 // initializer. We do no canonicalization here at all, which is okay
2755 // because they can't be used in most locations.
2756 if (!numElements) {
2757 DependentSizedArrayType *newType
2758 = new (*this, TypeAlignment)
2759 DependentSizedArrayType(*this, elementType, QualType(),
2760 numElements, ASM, elementTypeQuals,
2761 brackets);
2762 Types.push_back(newType);
2763 return QualType(newType, 0);
2764 }
2765
2766 // Otherwise, we actually build a new type every time, but we
2767 // also build a canonical type.
2768
2769 SplitQualType canonElementType = getCanonicalType(elementType).split();
2770
2771 void *insertPos = nullptr;
2772 llvm::FoldingSetNodeID ID;
2773 DependentSizedArrayType::Profile(ID, *this,
2774 QualType(canonElementType.Ty, 0),
2775 ASM, elementTypeQuals, numElements);
2776
2777 // Look for an existing type with these properties.
2778 DependentSizedArrayType *canonTy =
2779 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2780
2781 // If we don't have one, build one.
2782 if (!canonTy) {
2783 canonTy = new (*this, TypeAlignment)
2784 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2785 QualType(), numElements, ASM, elementTypeQuals,
2786 brackets);
2787 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2788 Types.push_back(canonTy);
2789 }
2790
2791 // Apply qualifiers from the element type to the array.
2792 QualType canon = getQualifiedType(QualType(canonTy,0),
2793 canonElementType.Quals);
2794
2795 // If we didn't need extra canonicalization for the element type or the size
2796 // expression, then just use that as our result.
2797 if (QualType(canonElementType.Ty, 0) == elementType &&
2798 canonTy->getSizeExpr() == numElements)
2799 return canon;
2800
2801 // Otherwise, we need to build a type which follows the spelling
2802 // of the element type.
2803 DependentSizedArrayType *sugaredType
2804 = new (*this, TypeAlignment)
2805 DependentSizedArrayType(*this, elementType, canon, numElements,
2806 ASM, elementTypeQuals, brackets);
2807 Types.push_back(sugaredType);
2808 return QualType(sugaredType, 0);
2809}
2810
2811QualType ASTContext::getIncompleteArrayType(QualType elementType,
2812 ArrayType::ArraySizeModifier ASM,
2813 unsigned elementTypeQuals) const {
2814 llvm::FoldingSetNodeID ID;
2815 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2816
2817 void *insertPos = nullptr;
2818 if (IncompleteArrayType *iat =
2819 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2820 return QualType(iat, 0);
2821
2822 // If the element type isn't canonical, this won't be a canonical type
2823 // either, so fill in the canonical type field. We also have to pull
2824 // qualifiers off the element type.
2825 QualType canon;
2826
2827 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2828 SplitQualType canonSplit = getCanonicalType(elementType).split();
2829 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2830 ASM, elementTypeQuals);
2831 canon = getQualifiedType(canon, canonSplit.Quals);
2832
2833 // Get the new insert position for the node we care about.
2834 IncompleteArrayType *existing =
2835 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2836 assert(!existing && "Shouldn't be in the map!")((!existing && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!existing && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2836, __PRETTY_FUNCTION__))
; (void) existing;
2837 }
2838
2839 IncompleteArrayType *newType = new (*this, TypeAlignment)
2840 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2841
2842 IncompleteArrayTypes.InsertNode(newType, insertPos);
2843 Types.push_back(newType);
2844 return QualType(newType, 0);
2845}
2846
2847/// getVectorType - Return the unique reference to a vector type of
2848/// the specified element type and size. VectorType must be a built-in type.
2849QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2850 VectorType::VectorKind VecKind) const {
2851 assert(vecType->isBuiltinType())((vecType->isBuiltinType()) ? static_cast<void> (0) :
__assert_fail ("vecType->isBuiltinType()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2851, __PRETTY_FUNCTION__))
;
2852
2853 // Check if we've already instantiated a vector of this type.
2854 llvm::FoldingSetNodeID ID;
2855 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2856
2857 void *InsertPos = nullptr;
2858 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2859 return QualType(VTP, 0);
2860
2861 // If the element type isn't canonical, this won't be a canonical type either,
2862 // so fill in the canonical type field.
2863 QualType Canonical;
2864 if (!vecType.isCanonical()) {
2865 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2866
2867 // Get the new insert position for the node we care about.
2868 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2869 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2869, __PRETTY_FUNCTION__))
; (void)NewIP;
2870 }
2871 VectorType *New = new (*this, TypeAlignment)
2872 VectorType(vecType, NumElts, Canonical, VecKind);
2873 VectorTypes.InsertNode(New, InsertPos);
2874 Types.push_back(New);
2875 return QualType(New, 0);
2876}
2877
2878/// getExtVectorType - Return the unique reference to an extended vector type of
2879/// the specified element type and size. VectorType must be a built-in type.
2880QualType
2881ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2882 assert(vecType->isBuiltinType() || vecType->isDependentType())((vecType->isBuiltinType() || vecType->isDependentType(
)) ? static_cast<void> (0) : __assert_fail ("vecType->isBuiltinType() || vecType->isDependentType()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2882, __PRETTY_FUNCTION__))
;
2883
2884 // Check if we've already instantiated a vector of this type.
2885 llvm::FoldingSetNodeID ID;
2886 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2887 VectorType::GenericVector);
2888 void *InsertPos = nullptr;
2889 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2890 return QualType(VTP, 0);
2891
2892 // If the element type isn't canonical, this won't be a canonical type either,
2893 // so fill in the canonical type field.
2894 QualType Canonical;
2895 if (!vecType.isCanonical()) {
2896 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2897
2898 // Get the new insert position for the node we care about.
2899 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2900 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2900, __PRETTY_FUNCTION__))
; (void)NewIP;
2901 }
2902 ExtVectorType *New = new (*this, TypeAlignment)
2903 ExtVectorType(vecType, NumElts, Canonical);
2904 VectorTypes.InsertNode(New, InsertPos);
2905 Types.push_back(New);
2906 return QualType(New, 0);
2907}
2908
2909QualType
2910ASTContext::getDependentSizedExtVectorType(QualType vecType,
2911 Expr *SizeExpr,
2912 SourceLocation AttrLoc) const {
2913 llvm::FoldingSetNodeID ID;
2914 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2915 SizeExpr);
2916
2917 void *InsertPos = nullptr;
2918 DependentSizedExtVectorType *Canon
2919 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2920 DependentSizedExtVectorType *New;
2921 if (Canon) {
2922 // We already have a canonical version of this array type; use it as
2923 // the canonical type for a newly-built type.
2924 New = new (*this, TypeAlignment)
2925 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2926 SizeExpr, AttrLoc);
2927 } else {
2928 QualType CanonVecTy = getCanonicalType(vecType);
2929 if (CanonVecTy == vecType) {
2930 New = new (*this, TypeAlignment)
2931 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2932 AttrLoc);
2933
2934 DependentSizedExtVectorType *CanonCheck
2935 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2936 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken")((!CanonCheck && "Dependent-sized ext_vector canonical type broken"
) ? static_cast<void> (0) : __assert_fail ("!CanonCheck && \"Dependent-sized ext_vector canonical type broken\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2936, __PRETTY_FUNCTION__))
;
2937 (void)CanonCheck;
2938 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2939 } else {
2940 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2941 SourceLocation());
2942 New = new (*this, TypeAlignment)
2943 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2944 }
2945 }
2946
2947 Types.push_back(New);
2948 return QualType(New, 0);
2949}
2950
2951/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2952///
2953QualType
2954ASTContext::getFunctionNoProtoType(QualType ResultTy,
2955 const FunctionType::ExtInfo &Info) const {
2956 const CallingConv CallConv = Info.getCC();
2957
2958 // Unique functions, to guarantee there is only one function of a particular
2959 // structure.
2960 llvm::FoldingSetNodeID ID;
2961 FunctionNoProtoType::Profile(ID, ResultTy, Info);
2962
2963 void *InsertPos = nullptr;
2964 if (FunctionNoProtoType *FT =
2965 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2966 return QualType(FT, 0);
2967
2968 QualType Canonical;
2969 if (!ResultTy.isCanonical()) {
2970 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2971
2972 // Get the new insert position for the node we care about.
2973 FunctionNoProtoType *NewIP =
2974 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2975 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 2975, __PRETTY_FUNCTION__))
; (void)NewIP;
2976 }
2977
2978 FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2979 FunctionNoProtoType *New = new (*this, TypeAlignment)
2980 FunctionNoProtoType(ResultTy, Canonical, newInfo);
2981 Types.push_back(New);
2982 FunctionNoProtoTypes.InsertNode(New, InsertPos);
2983 return QualType(New, 0);
2984}
2985
2986/// \brief Determine whether \p T is canonical as the result type of a function.
2987static bool isCanonicalResultType(QualType T) {
2988 return T.isCanonical() &&
2989 (T.getObjCLifetime() == Qualifiers::OCL_None ||
2990 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2991}
2992
2993CanQualType
2994ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
2995 CanQualType CanResultType = getCanonicalType(ResultType);
2996
2997 // Canonical result types do not have ARC lifetime qualifiers.
2998 if (CanResultType.getQualifiers().hasObjCLifetime()) {
2999 Qualifiers Qs = CanResultType.getQualifiers();
3000 Qs.removeObjCLifetime();
3001 return CanQualType::CreateUnsafe(
3002 getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
3003 }
3004
3005 return CanResultType;
3006}
3007
3008QualType
3009ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
3010 const FunctionProtoType::ExtProtoInfo &EPI) const {
3011 size_t NumArgs = ArgArray.size();
3012
3013 // Unique functions, to guarantee there is only one function of a particular
3014 // structure.
3015 llvm::FoldingSetNodeID ID;
3016 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
3017 *this);
3018
3019 void *InsertPos = nullptr;
3020 if (FunctionProtoType *FTP =
3021 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
3022 return QualType(FTP, 0);
3023
3024 // Determine whether the type being created is already canonical or not.
3025 bool isCanonical =
3026 EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
3027 !EPI.HasTrailingReturn;
3028 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
3029 if (!ArgArray[i].isCanonicalAsParam())
3030 isCanonical = false;
3031
3032 // If this type isn't canonical, get the canonical version of it.
3033 // The exception spec is not part of the canonical type.
3034 QualType Canonical;
3035 if (!isCanonical) {
3036 SmallVector<QualType, 16> CanonicalArgs;
3037 CanonicalArgs.reserve(NumArgs);
3038 for (unsigned i = 0; i != NumArgs; ++i)
3039 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
3040
3041 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
3042 CanonicalEPI.HasTrailingReturn = false;
3043 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
3044
3045 // Adjust the canonical function result type.
3046 CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
3047 Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
3048
3049 // Get the new insert position for the node we care about.
3050 FunctionProtoType *NewIP =
3051 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3052 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3052, __PRETTY_FUNCTION__))
; (void)NewIP;
3053 }
3054
3055 // FunctionProtoType objects are allocated with extra bytes after
3056 // them for three variable size arrays at the end:
3057 // - parameter types
3058 // - exception types
3059 // - consumed-arguments flags
3060 // Instead of the exception types, there could be a noexcept
3061 // expression, or information used to resolve the exception
3062 // specification.
3063 size_t Size = sizeof(FunctionProtoType) +
3064 NumArgs * sizeof(QualType);
3065 if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3066 Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
3067 } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
3068 Size += sizeof(Expr*);
3069 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3070 Size += 2 * sizeof(FunctionDecl*);
3071 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3072 Size += sizeof(FunctionDecl*);
3073 }
3074 if (EPI.ConsumedParameters)
3075 Size += NumArgs * sizeof(bool);
3076
3077 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
3078 FunctionProtoType::ExtProtoInfo newEPI = EPI;
3079 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
3080 Types.push_back(FTP);
3081 FunctionProtoTypes.InsertNode(FTP, InsertPos);
3082 return QualType(FTP, 0);
3083}
3084
3085#ifndef NDEBUG
3086static bool NeedsInjectedClassNameType(const RecordDecl *D) {
3087 if (!isa<CXXRecordDecl>(D)) return false;
3088 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
3089 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
3090 return true;
3091 if (RD->getDescribedClassTemplate() &&
3092 !isa<ClassTemplateSpecializationDecl>(RD))
3093 return true;
3094 return false;
3095}
3096#endif
3097
3098/// getInjectedClassNameType - Return the unique reference to the
3099/// injected class name type for the specified templated declaration.
3100QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
3101 QualType TST) const {
3102 assert(NeedsInjectedClassNameType(Decl))((NeedsInjectedClassNameType(Decl)) ? static_cast<void>
(0) : __assert_fail ("NeedsInjectedClassNameType(Decl)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3102, __PRETTY_FUNCTION__))
;
3103 if (Decl->TypeForDecl) {
3104 assert(isa<InjectedClassNameType>(Decl->TypeForDecl))((isa<InjectedClassNameType>(Decl->TypeForDecl)) ? static_cast
<void> (0) : __assert_fail ("isa<InjectedClassNameType>(Decl->TypeForDecl)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3104, __PRETTY_FUNCTION__))
;
3105 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
3106 assert(PrevDecl->TypeForDecl && "previous declaration has no type")((PrevDecl->TypeForDecl && "previous declaration has no type"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->TypeForDecl && \"previous declaration has no type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3106, __PRETTY_FUNCTION__))
;
3107 Decl->TypeForDecl = PrevDecl->TypeForDecl;
3108 assert(isa<InjectedClassNameType>(Decl->TypeForDecl))((isa<InjectedClassNameType>(Decl->TypeForDecl)) ? static_cast
<void> (0) : __assert_fail ("isa<InjectedClassNameType>(Decl->TypeForDecl)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3108, __PRETTY_FUNCTION__))
;
3109 } else {
3110 Type *newType =
3111 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
3112 Decl->TypeForDecl = newType;
3113 Types.push_back(newType);
3114 }
3115 return QualType(Decl->TypeForDecl, 0);
3116}
3117
3118/// getTypeDeclType - Return the unique reference to the type for the
3119/// specified type declaration.
3120QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3121 assert(Decl && "Passed null for Decl param")((Decl && "Passed null for Decl param") ? static_cast
<void> (0) : __assert_fail ("Decl && \"Passed null for Decl param\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3121, __PRETTY_FUNCTION__))
;
3122 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case")((!Decl->TypeForDecl && "TypeForDecl present in slow case"
) ? static_cast<void> (0) : __assert_fail ("!Decl->TypeForDecl && \"TypeForDecl present in slow case\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3122, __PRETTY_FUNCTION__))
;
3123
3124 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3125 return getTypedefType(Typedef);
3126
3127 assert(!isa<TemplateTypeParmDecl>(Decl) &&((!isa<TemplateTypeParmDecl>(Decl) && "Template type parameter types are always available."
) ? static_cast<void> (0) : __assert_fail ("!isa<TemplateTypeParmDecl>(Decl) && \"Template type parameter types are always available.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3128, __PRETTY_FUNCTION__))
3128 "Template type parameter types are always available.")((!isa<TemplateTypeParmDecl>(Decl) && "Template type parameter types are always available."
) ? static_cast<void> (0) : __assert_fail ("!isa<TemplateTypeParmDecl>(Decl) && \"Template type parameter types are always available.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3128, __PRETTY_FUNCTION__))
;
3129
3130 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
3131 assert(Record->isFirstDecl() && "struct/union has previous declaration")((Record->isFirstDecl() && "struct/union has previous declaration"
) ? static_cast<void> (0) : __assert_fail ("Record->isFirstDecl() && \"struct/union has previous declaration\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3131, __PRETTY_FUNCTION__))
;
3132 assert(!NeedsInjectedClassNameType(Record))((!NeedsInjectedClassNameType(Record)) ? static_cast<void>
(0) : __assert_fail ("!NeedsInjectedClassNameType(Record)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3132, __PRETTY_FUNCTION__))
;
3133 return getRecordType(Record);
3134 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
3135 assert(Enum->isFirstDecl() && "enum has previous declaration")((Enum->isFirstDecl() && "enum has previous declaration"
) ? static_cast<void> (0) : __assert_fail ("Enum->isFirstDecl() && \"enum has previous declaration\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3135, __PRETTY_FUNCTION__))
;
3136 return getEnumType(Enum);
3137 } else if (const UnresolvedUsingTypenameDecl *Using =
3138 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3139 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3140 Decl->TypeForDecl = newType;
3141 Types.push_back(newType);
3142 } else
3143 llvm_unreachable("TypeDecl without a type?")::llvm::llvm_unreachable_internal("TypeDecl without a type?",
"/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3143)
;
3144
3145 return QualType(Decl->TypeForDecl, 0);
3146}
3147
3148/// getTypedefType - Return the unique reference to the type for the
3149/// specified typedef name decl.
3150QualType
3151ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3152 QualType Canonical) const {
3153 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3154
3155 if (Canonical.isNull())
3156 Canonical = getCanonicalType(Decl->getUnderlyingType());
3157 TypedefType *newType = new(*this, TypeAlignment)
3158 TypedefType(Type::Typedef, Decl, Canonical);
3159 Decl->TypeForDecl = newType;
3160 Types.push_back(newType);
3161 return QualType(newType, 0);
3162}
3163
3164QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3165 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3166
3167 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3168 if (PrevDecl->TypeForDecl)
3169 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3170
3171 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
3172 Decl->TypeForDecl = newType;
3173 Types.push_back(newType);
3174 return QualType(newType, 0);
3175}
3176
3177QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3178 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3179
3180 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3181 if (PrevDecl->TypeForDecl)
3182 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3183
3184 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3185 Decl->TypeForDecl = newType;
3186 Types.push_back(newType);
3187 return QualType(newType, 0);
3188}
3189
3190QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3191 QualType modifiedType,
3192 QualType equivalentType) {
3193 llvm::FoldingSetNodeID id;
3194 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3195
3196 void *insertPos = nullptr;
3197 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3198 if (type) return QualType(type, 0);
3199
3200 QualType canon = getCanonicalType(equivalentType);
3201 type = new (*this, TypeAlignment)
3202 AttributedType(canon, attrKind, modifiedType, equivalentType);
3203
3204 Types.push_back(type);
3205 AttributedTypes.InsertNode(type, insertPos);
3206
3207 return QualType(type, 0);
3208}
3209
3210
3211/// \brief Retrieve a substitution-result type.
3212QualType
3213ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3214 QualType Replacement) const {
3215 assert(Replacement.isCanonical()((Replacement.isCanonical() && "replacement types must always be canonical"
) ? static_cast<void> (0) : __assert_fail ("Replacement.isCanonical() && \"replacement types must always be canonical\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3216, __PRETTY_FUNCTION__))
3216 && "replacement types must always be canonical")((Replacement.isCanonical() && "replacement types must always be canonical"
) ? static_cast<void> (0) : __assert_fail ("Replacement.isCanonical() && \"replacement types must always be canonical\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3216, __PRETTY_FUNCTION__))
;
3217
3218 llvm::FoldingSetNodeID ID;
3219 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3220 void *InsertPos = nullptr;
3221 SubstTemplateTypeParmType *SubstParm
3222 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3223
3224 if (!SubstParm) {
3225 SubstParm = new (*this, TypeAlignment)
3226 SubstTemplateTypeParmType(Parm, Replacement);
3227 Types.push_back(SubstParm);
3228 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3229 }
3230
3231 return QualType(SubstParm, 0);
3232}
3233
3234/// \brief Retrieve a
3235QualType ASTContext::getSubstTemplateTypeParmPackType(
3236 const TemplateTypeParmType *Parm,
3237 const TemplateArgument &ArgPack) {
3238#ifndef NDEBUG
3239 for (const auto &P : ArgPack.pack_elements()) {
3240 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type")((P.getKind() == TemplateArgument::Type &&"Pack contains a non-type"
) ? static_cast<void> (0) : __assert_fail ("P.getKind() == TemplateArgument::Type &&\"Pack contains a non-type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3240, __PRETTY_FUNCTION__))
;
3241 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type")((P.getAsType().isCanonical() && "Pack contains non-canonical type"
) ? static_cast<void> (0) : __assert_fail ("P.getAsType().isCanonical() && \"Pack contains non-canonical type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3241, __PRETTY_FUNCTION__))
;
3242 }
3243#endif
3244
3245 llvm::FoldingSetNodeID ID;
3246 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3247 void *InsertPos = nullptr;
3248 if (SubstTemplateTypeParmPackType *SubstParm
3249 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3250 return QualType(SubstParm, 0);
3251
3252 QualType Canon;
3253 if (!Parm->isCanonicalUnqualified()) {
3254 Canon = getCanonicalType(QualType(Parm, 0));
3255 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3256 ArgPack);
3257 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3258 }
3259
3260 SubstTemplateTypeParmPackType *SubstParm
3261 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3262 ArgPack);
3263 Types.push_back(SubstParm);
3264 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3265 return QualType(SubstParm, 0);
3266}
3267
3268/// \brief Retrieve the template type parameter type for a template
3269/// parameter or parameter pack with the given depth, index, and (optionally)
3270/// name.
3271QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3272 bool ParameterPack,
3273 TemplateTypeParmDecl *TTPDecl) const {
3274 llvm::FoldingSetNodeID ID;
3275 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3276 void *InsertPos = nullptr;
3277 TemplateTypeParmType *TypeParm
3278 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3279
3280 if (TypeParm)
3281 return QualType(TypeParm, 0);
3282
3283 if (TTPDecl) {
3284 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3285 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3286
3287 TemplateTypeParmType *TypeCheck
3288 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3289 assert(!TypeCheck && "Template type parameter canonical type broken")((!TypeCheck && "Template type parameter canonical type broken"
) ? static_cast<void> (0) : __assert_fail ("!TypeCheck && \"Template type parameter canonical type broken\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3289, __PRETTY_FUNCTION__))
;
3290 (void)TypeCheck;
3291 } else
3292 TypeParm = new (*this, TypeAlignment)
3293 TemplateTypeParmType(Depth, Index, ParameterPack);
3294
3295 Types.push_back(TypeParm);
3296 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3297
3298 return QualType(TypeParm, 0);
3299}
3300
3301TypeSourceInfo *
3302ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3303 SourceLocation NameLoc,
3304 const TemplateArgumentListInfo &Args,
3305 QualType Underlying) const {
3306 assert(!Name.getAsDependentTemplateName() &&((!Name.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Name.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3307, __PRETTY_FUNCTION__))
3307 "No dependent template names here!")((!Name.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Name.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3307, __PRETTY_FUNCTION__))
;
3308 QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3309
3310 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3311 TemplateSpecializationTypeLoc TL =
3312 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3313 TL.setTemplateKeywordLoc(SourceLocation());
3314 TL.setTemplateNameLoc(NameLoc);
3315 TL.setLAngleLoc(Args.getLAngleLoc());
3316 TL.setRAngleLoc(Args.getRAngleLoc());
3317 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3318 TL.setArgLocInfo(i, Args[i].getLocInfo());
3319 return DI;
3320}
3321
3322QualType
3323ASTContext::getTemplateSpecializationType(TemplateName Template,
3324 const TemplateArgumentListInfo &Args,
3325 QualType Underlying) const {
3326 assert(!Template.getAsDependentTemplateName() &&((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3327, __PRETTY_FUNCTION__))
3327 "No dependent template names here!")((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3327, __PRETTY_FUNCTION__))
;
3328
3329 unsigned NumArgs = Args.size();
3330
3331 SmallVector<TemplateArgument, 4> ArgVec;
3332 ArgVec.reserve(NumArgs);
3333 for (unsigned i = 0; i != NumArgs; ++i)
3334 ArgVec.push_back(Args[i].getArgument());
3335
3336 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3337 Underlying);
3338}
3339
3340#ifndef NDEBUG
3341static bool hasAnyPackExpansions(const TemplateArgument *Args,
3342 unsigned NumArgs) {
3343 for (unsigned I = 0; I != NumArgs; ++I)
3344 if (Args[I].isPackExpansion())
3345 return true;
3346
3347 return true;
3348}
3349#endif
3350
3351QualType
3352ASTContext::getTemplateSpecializationType(TemplateName Template,
3353 const TemplateArgument *Args,
3354 unsigned NumArgs,
3355 QualType Underlying) const {
3356 assert(!Template.getAsDependentTemplateName() &&((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3357, __PRETTY_FUNCTION__))
3357 "No dependent template names here!")((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3357, __PRETTY_FUNCTION__))
;
3358 // Look through qualified template names.
3359 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3360 Template = TemplateName(QTN->getTemplateDecl());
3361
3362 bool IsTypeAlias =
3363 Template.getAsTemplateDecl() &&
3364 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3365 QualType CanonType;
3366 if (!Underlying.isNull())
3367 CanonType = getCanonicalType(Underlying);
3368 else {
3369 // We can get here with an alias template when the specialization contains
3370 // a pack expansion that does not match up with a parameter pack.
3371 assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&(((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
"Caller must compute aliased type") ? static_cast<void>
(0) : __assert_fail ("(!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) && \"Caller must compute aliased type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3372, __PRETTY_FUNCTION__))
3372 "Caller must compute aliased type")(((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
"Caller must compute aliased type") ? static_cast<void>
(0) : __assert_fail ("(!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) && \"Caller must compute aliased type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3372, __PRETTY_FUNCTION__))
;
3373 IsTypeAlias = false;
3374 CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3375 NumArgs);
3376 }
3377
3378 // Allocate the (non-canonical) template specialization type, but don't
3379 // try to unique it: these types typically have location information that
3380 // we don't unique and don't want to lose.
3381 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3382 sizeof(TemplateArgument) * NumArgs +
3383 (IsTypeAlias? sizeof(QualType) : 0),
3384 TypeAlignment);
3385 TemplateSpecializationType *Spec
3386 = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3387 IsTypeAlias ? Underlying : QualType());
3388
3389 Types.push_back(Spec);
3390 return QualType(Spec, 0);
3391}
3392
3393QualType
3394ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3395 const TemplateArgument *Args,
3396 unsigned NumArgs) const {
3397 assert(!Template.getAsDependentTemplateName() &&((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3398, __PRETTY_FUNCTION__))
3398 "No dependent template names here!")((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3398, __PRETTY_FUNCTION__))
;
3399
3400 // Look through qualified template names.
3401 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3402 Template = TemplateName(QTN->getTemplateDecl());
3403
3404 // Build the canonical template specialization type.
3405 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3406 SmallVector<TemplateArgument, 4> CanonArgs;
3407 CanonArgs.reserve(NumArgs);
3408 for (unsigned I = 0; I != NumArgs; ++I)
3409 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3410
3411 // Determine whether this canonical template specialization type already
3412 // exists.
3413 llvm::FoldingSetNodeID ID;
3414 TemplateSpecializationType::Profile(ID, CanonTemplate,
3415 CanonArgs.data(), NumArgs, *this);
3416
3417 void *InsertPos = nullptr;
3418 TemplateSpecializationType *Spec
3419 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3420
3421 if (!Spec) {
3422 // Allocate a new canonical template specialization type.
3423 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3424 sizeof(TemplateArgument) * NumArgs),
3425 TypeAlignment);
3426 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3427 CanonArgs.data(), NumArgs,
3428 QualType(), QualType());
3429 Types.push_back(Spec);
3430 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3431 }
3432
3433 assert(Spec->isDependentType() &&((Spec->isDependentType() && "Non-dependent template-id type must have a canonical type"
) ? static_cast<void> (0) : __assert_fail ("Spec->isDependentType() && \"Non-dependent template-id type must have a canonical type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3434, __PRETTY_FUNCTION__))
3434 "Non-dependent template-id type must have a canonical type")((Spec->isDependentType() && "Non-dependent template-id type must have a canonical type"
) ? static_cast<void> (0) : __assert_fail ("Spec->isDependentType() && \"Non-dependent template-id type must have a canonical type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3434, __PRETTY_FUNCTION__))
;
3435 return QualType(Spec, 0);
3436}
3437
3438QualType
3439ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3440 NestedNameSpecifier *NNS,
3441 QualType NamedType) const {
3442 llvm::FoldingSetNodeID ID;
3443 ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3444
3445 void *InsertPos = nullptr;
3446 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3447 if (T)
3448 return QualType(T, 0);
3449
3450 QualType Canon = NamedType;
3451 if (!Canon.isCanonical()) {
3452 Canon = getCanonicalType(NamedType);
3453 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3454 assert(!CheckT && "Elaborated canonical type broken")((!CheckT && "Elaborated canonical type broken") ? static_cast
<void> (0) : __assert_fail ("!CheckT && \"Elaborated canonical type broken\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3454, __PRETTY_FUNCTION__))
;
3455 (void)CheckT;
3456 }
3457
3458 T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon);
3459 Types.push_back(T);
3460 ElaboratedTypes.InsertNode(T, InsertPos);
3461 return QualType(T, 0);
3462}
3463
3464QualType
3465ASTContext::getParenType(QualType InnerType) const {
3466 llvm::FoldingSetNodeID ID;
3467 ParenType::Profile(ID, InnerType);
3468
3469 void *InsertPos = nullptr;
3470 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3471 if (T)
3472 return QualType(T, 0);
3473
3474 QualType Canon = InnerType;
3475 if (!Canon.isCanonical()) {
3476 Canon = getCanonicalType(InnerType);
3477 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3478 assert(!CheckT && "Paren canonical type broken")((!CheckT && "Paren canonical type broken") ? static_cast
<void> (0) : __assert_fail ("!CheckT && \"Paren canonical type broken\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3478, __PRETTY_FUNCTION__))
;
3479 (void)CheckT;
3480 }
3481
3482 T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
3483 Types.push_back(T);
3484 ParenTypes.InsertNode(T, InsertPos);
3485 return QualType(T, 0);
3486}
3487
3488QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3489 NestedNameSpecifier *NNS,
3490 const IdentifierInfo *Name,
3491 QualType Canon) const {
3492 if (Canon.isNull()) {
3493 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3494 ElaboratedTypeKeyword CanonKeyword = Keyword;
3495 if (Keyword == ETK_None)
3496 CanonKeyword = ETK_Typename;
3497
3498 if (CanonNNS != NNS || CanonKeyword != Keyword)
3499 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3500 }
3501
3502 llvm::FoldingSetNodeID ID;
3503 DependentNameType::Profile(ID, Keyword, NNS, Name);
3504
3505 void *InsertPos = nullptr;
3506 DependentNameType *T
3507 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3508 if (T)
3509 return QualType(T, 0);
3510
3511 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
3512 Types.push_back(T);
3513 DependentNameTypes.InsertNode(T, InsertPos);
3514 return QualType(T, 0);
3515}
3516
3517QualType
3518ASTContext::getDependentTemplateSpecializationType(
3519 ElaboratedTypeKeyword Keyword,
3520 NestedNameSpecifier *NNS,
3521 const IdentifierInfo *Name,
3522 const TemplateArgumentListInfo &Args) const {
3523 // TODO: avoid this copy
3524 SmallVector<TemplateArgument, 16> ArgCopy;
3525 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3526 ArgCopy.push_back(Args[I].getArgument());
3527 return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3528 ArgCopy.size(),
3529 ArgCopy.data());
3530}
3531
3532QualType
3533ASTContext::getDependentTemplateSpecializationType(
3534 ElaboratedTypeKeyword Keyword,
3535 NestedNameSpecifier *NNS,
3536 const IdentifierInfo *Name,
3537 unsigned NumArgs,
3538 const TemplateArgument *Args) const {
3539 assert((!NNS || NNS->isDependent()) &&(((!NNS || NNS->isDependent()) && "nested-name-specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"nested-name-specifier must be dependent\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3540, __PRETTY_FUNCTION__))
3540 "nested-name-specifier must be dependent")(((!NNS || NNS->isDependent()) && "nested-name-specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"nested-name-specifier must be dependent\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3540, __PRETTY_FUNCTION__))
;
3541
3542 llvm::FoldingSetNodeID ID;
3543 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3544 Name, NumArgs, Args);
3545
3546 void *InsertPos = nullptr;
3547 DependentTemplateSpecializationType *T
3548 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3549 if (T)
3550 return QualType(T, 0);
3551
3552 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3553
3554 ElaboratedTypeKeyword CanonKeyword = Keyword;
3555 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3556
3557 bool AnyNonCanonArgs = false;
3558 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3559 for (unsigned I = 0; I != NumArgs; ++I) {
3560 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3561 if (!CanonArgs[I].structurallyEquals(Args[I]))
3562 AnyNonCanonArgs = true;
3563 }
3564
3565 QualType Canon;
3566 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3567 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3568 Name, NumArgs,
3569 CanonArgs.data());
3570
3571 // Find the insert position again.
3572 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3573 }
3574
3575 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3576 sizeof(TemplateArgument) * NumArgs),
3577 TypeAlignment);
3578 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3579 Name, NumArgs, Args, Canon);
3580 Types.push_back(T);
3581 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3582 return QualType(T, 0);
3583}
3584
3585QualType ASTContext::getPackExpansionType(QualType Pattern,
3586 Optional<unsigned> NumExpansions) {
3587 llvm::FoldingSetNodeID ID;
3588 PackExpansionType::Profile(ID, Pattern, NumExpansions);
3589
3590 assert(Pattern->containsUnexpandedParameterPack() &&((Pattern->containsUnexpandedParameterPack() && "Pack expansions must expand one or more parameter packs"
) ? static_cast<void> (0) : __assert_fail ("Pattern->containsUnexpandedParameterPack() && \"Pack expansions must expand one or more parameter packs\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3591, __PRETTY_FUNCTION__))
3591 "Pack expansions must expand one or more parameter packs")((Pattern->containsUnexpandedParameterPack() && "Pack expansions must expand one or more parameter packs"
) ? static_cast<void> (0) : __assert_fail ("Pattern->containsUnexpandedParameterPack() && \"Pack expansions must expand one or more parameter packs\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3591, __PRETTY_FUNCTION__))
;
3592 void *InsertPos = nullptr;
3593 PackExpansionType *T
3594 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3595 if (T)
3596 return QualType(T, 0);
3597
3598 QualType Canon;
3599 if (!Pattern.isCanonical()) {
3600 Canon = getCanonicalType(Pattern);
3601 // The canonical type might not contain an unexpanded parameter pack, if it
3602 // contains an alias template specialization which ignores one of its
3603 // parameters.
3604 if (Canon->containsUnexpandedParameterPack()) {
3605 Canon = getPackExpansionType(Canon, NumExpansions);
3606
3607 // Find the insert position again, in case we inserted an element into
3608 // PackExpansionTypes and invalidated our insert position.
3609 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3610 }
3611 }
3612
3613 T = new (*this, TypeAlignment)
3614 PackExpansionType(Pattern, Canon, NumExpansions);
3615 Types.push_back(T);
3616 PackExpansionTypes.InsertNode(T, InsertPos);
3617 return QualType(T, 0);
3618}
3619
3620/// CmpProtocolNames - Comparison predicate for sorting protocols
3621/// alphabetically.
3622static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
3623 ObjCProtocolDecl *const *RHS) {
3624 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
3625}
3626
3627static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3628 unsigned NumProtocols) {
3629 if (NumProtocols == 0) return true;
3630
3631 if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3632 return false;
3633
3634 for (unsigned i = 1; i != NumProtocols; ++i)
3635 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
3636 Protocols[i]->getCanonicalDecl() != Protocols[i])
3637 return false;
3638 return true;
3639}
3640
3641static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3642 unsigned &NumProtocols) {
3643 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3644
3645 // Sort protocols, keyed by name.
3646 llvm::array_pod_sort(Protocols, ProtocolsEnd, CmpProtocolNames);
3647
3648 // Canonicalize.
3649 for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3650 Protocols[I] = Protocols[I]->getCanonicalDecl();
3651
3652 // Remove duplicates.
3653 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3654 NumProtocols = ProtocolsEnd-Protocols;
3655}
3656
3657QualType ASTContext::getObjCObjectType(QualType BaseType,
3658 ObjCProtocolDecl * const *Protocols,
3659 unsigned NumProtocols) const {
3660 return getObjCObjectType(BaseType, { },
3661 llvm::makeArrayRef(Protocols, NumProtocols),
3662 /*isKindOf=*/false);
3663}
3664
3665QualType ASTContext::getObjCObjectType(
3666 QualType baseType,
3667 ArrayRef<QualType> typeArgs,
3668 ArrayRef<ObjCProtocolDecl *> protocols,
3669 bool isKindOf) const {
3670 // If the base type is an interface and there aren't any protocols or
3671 // type arguments to add, then the interface type will do just fine.
3672 if (typeArgs.empty() && protocols.empty() && !isKindOf &&
3673 isa<ObjCInterfaceType>(baseType))
3674 return baseType;
3675
3676 // Look in the folding set for an existing type.
3677 llvm::FoldingSetNodeID ID;
3678 ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
3679 void *InsertPos = nullptr;
3680 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3681 return QualType(QT, 0);
3682
3683 // Determine the type arguments to be used for canonicalization,
3684 // which may be explicitly specified here or written on the base
3685 // type.
3686 ArrayRef<QualType> effectiveTypeArgs = typeArgs;
3687 if (effectiveTypeArgs.empty()) {
3688 if (auto baseObject = baseType->getAs<ObjCObjectType>())
3689 effectiveTypeArgs = baseObject->getTypeArgs();
3690 }
3691
3692 // Build the canonical type, which has the canonical base type and a
3693 // sorted-and-uniqued list of protocols and the type arguments
3694 // canonicalized.
3695 QualType canonical;
3696 bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
3697 effectiveTypeArgs.end(),
3698 [&](QualType type) {
3699 return type.isCanonical();
3700 });
3701 bool protocolsSorted = areSortedAndUniqued(protocols.data(),
3702 protocols.size());
3703 if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
3704 // Determine the canonical type arguments.
3705 ArrayRef<QualType> canonTypeArgs;
3706 SmallVector<QualType, 4> canonTypeArgsVec;
3707 if (!typeArgsAreCanonical) {
3708 canonTypeArgsVec.reserve(effectiveTypeArgs.size());
3709 for (auto typeArg : effectiveTypeArgs)
3710 canonTypeArgsVec.push_back(getCanonicalType(typeArg));
3711 canonTypeArgs = canonTypeArgsVec;
3712 } else {
3713 canonTypeArgs = effectiveTypeArgs;
3714 }
3715
3716 ArrayRef<ObjCProtocolDecl *> canonProtocols;
3717 SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
3718 if (!protocolsSorted) {
3719 canonProtocolsVec.insert(canonProtocolsVec.begin(),
3720 protocols.begin(),
3721 protocols.end());
3722 unsigned uniqueCount = protocols.size();
3723 SortAndUniqueProtocols(&canonProtocolsVec[0], uniqueCount);
3724 canonProtocols = llvm::makeArrayRef(&canonProtocolsVec[0], uniqueCount);
3725 } else {
3726 canonProtocols = protocols;
3727 }
3728
3729 canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
3730 canonProtocols, isKindOf);
3731
3732 // Regenerate InsertPos.
3733 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3734 }
3735
3736 unsigned size = sizeof(ObjCObjectTypeImpl);
3737 size += typeArgs.size() * sizeof(QualType);
3738 size += protocols.size() * sizeof(ObjCProtocolDecl *);
3739 void *mem = Allocate(size, TypeAlignment);
3740 ObjCObjectTypeImpl *T =
3741 new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
3742 isKindOf);
3743
3744 Types.push_back(T);
3745 ObjCObjectTypes.InsertNode(T, InsertPos);
3746 return QualType(T, 0);
3747}
3748
3749/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3750/// protocol list adopt all protocols in QT's qualified-id protocol
3751/// list.
3752bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3753 ObjCInterfaceDecl *IC) {
3754 if (!QT->isObjCQualifiedIdType())
3755 return false;
3756
3757 if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3758 // If both the right and left sides have qualifiers.
3759 for (auto *Proto : OPT->quals()) {
3760 if (!IC->ClassImplementsProtocol(Proto, false))
3761 return false;
3762 }
3763 return true;
3764 }
3765 return false;
3766}
3767
3768/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3769/// QT's qualified-id protocol list adopt all protocols in IDecl's list
3770/// of protocols.
3771bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3772 ObjCInterfaceDecl *IDecl) {
3773 if (!QT->isObjCQualifiedIdType())
3774 return false;
3775 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3776 if (!OPT)
3777 return false;
3778 if (!IDecl->hasDefinition())
3779 return false;
3780 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3781 CollectInheritedProtocols(IDecl, InheritedProtocols);
3782 if (InheritedProtocols.empty())
3783 return false;
3784 // Check that if every protocol in list of id<plist> conforms to a protcol
3785 // of IDecl's, then bridge casting is ok.
3786 bool Conforms = false;
3787 for (auto *Proto : OPT->quals()) {
3788 Conforms = false;
3789 for (auto *PI : InheritedProtocols) {
3790 if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3791 Conforms = true;
3792 break;
3793 }
3794 }
3795 if (!Conforms)
3796 break;
3797 }
3798 if (Conforms)
3799 return true;
3800
3801 for (auto *PI : InheritedProtocols) {
3802 // If both the right and left sides have qualifiers.
3803 bool Adopts = false;
3804 for (auto *Proto : OPT->quals()) {
3805 // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3806 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3807 break;
3808 }
3809 if (!Adopts)
3810 return false;
3811 }
3812 return true;
3813}
3814
3815/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3816/// the given object type.
3817QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3818 llvm::FoldingSetNodeID ID;
3819 ObjCObjectPointerType::Profile(ID, ObjectT);
3820
3821 void *InsertPos = nullptr;
3822 if (ObjCObjectPointerType *QT =
3823 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3824 return QualType(QT, 0);
3825
3826 // Find the canonical object type.
3827 QualType Canonical;
3828 if (!ObjectT.isCanonical()) {
3829 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3830
3831 // Regenerate InsertPos.
3832 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3833 }
3834
3835 // No match.
3836 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3837 ObjCObjectPointerType *QType =
3838 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3839
3840 Types.push_back(QType);
3841 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3842 return QualType(QType, 0);
3843}
3844
3845/// getObjCInterfaceType - Return the unique reference to the type for the
3846/// specified ObjC interface decl. The list of protocols is optional.
3847QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3848 ObjCInterfaceDecl *PrevDecl) const {
3849 if (Decl->TypeForDecl)
3850 return QualType(Decl->TypeForDecl, 0);
3851
3852 if (PrevDecl) {
3853 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl")((PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->TypeForDecl && \"previous decl has no TypeForDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 3853, __PRETTY_FUNCTION__))
;
3854 Decl->TypeForDecl = PrevDecl->TypeForDecl;
3855 return QualType(PrevDecl->TypeForDecl, 0);
3856 }
3857
3858 // Prefer the definition, if there is one.
3859 if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3860 Decl = Def;
3861
3862 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3863 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3864 Decl->TypeForDecl = T;
3865 Types.push_back(T);
3866 return QualType(T, 0);
3867}
3868
3869/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3870/// TypeOfExprType AST's (since expression's are never shared). For example,
3871/// multiple declarations that refer to "typeof(x)" all contain different
3872/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3873/// on canonical type's (which are always unique).
3874QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3875 TypeOfExprType *toe;
3876 if (tofExpr->isTypeDependent()) {
3877 llvm::FoldingSetNodeID ID;
3878 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3879
3880 void *InsertPos = nullptr;
3881 DependentTypeOfExprType *Canon
3882 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3883 if (Canon) {
3884 // We already have a "canonical" version of an identical, dependent
3885 // typeof(expr) type. Use that as our canonical type.
3886 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3887 QualType((TypeOfExprType*)Canon, 0));
3888 } else {
3889 // Build a new, canonical typeof(expr) type.
3890 Canon
3891 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3892 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3893 toe = Canon;
3894 }
3895 } else {
3896 QualType Canonical = getCanonicalType(tofExpr->getType());
3897 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3898 }
3899 Types.push_back(toe);
3900 return QualType(toe, 0);
3901}
3902
3903/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
3904/// TypeOfType nodes. The only motivation to unique these nodes would be
3905/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3906/// an issue. This doesn't affect the type checker, since it operates
3907/// on canonical types (which are always unique).
3908QualType ASTContext::getTypeOfType(QualType tofType) const {
3909 QualType Canonical = getCanonicalType(tofType);
3910 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3911 Types.push_back(tot);
3912 return QualType(tot, 0);
3913}
3914
3915
3916/// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3917/// nodes. This would never be helpful, since each such type has its own
3918/// expression, and would not give a significant memory saving, since there
3919/// is an Expr tree under each such type.
3920QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3921 DecltypeType *dt;
3922
3923 // C++11 [temp.type]p2:
3924 // If an expression e involves a template parameter, decltype(e) denotes a
3925 // unique dependent type. Two such decltype-specifiers refer to the same
3926 // type only if their expressions are equivalent (14.5.6.1).
3927 if (e->isInstantiationDependent()) {
3928 llvm::FoldingSetNodeID ID;
3929 DependentDecltypeType::Profile(ID, *this, e);
3930
3931 void *InsertPos = nullptr;
3932 DependentDecltypeType *Canon
3933 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3934 if (!Canon) {
3935 // Build a new, canonical typeof(expr) type.
3936 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3937 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3938 }
3939 dt = new (*this, TypeAlignment)
3940 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3941 } else {
3942 dt = new (*this, TypeAlignment)
3943 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3944 }
3945 Types.push_back(dt);
3946 return QualType(dt, 0);
3947}
3948
3949/// getUnaryTransformationType - We don't unique these, since the memory
3950/// savings are minimal and these are rare.
3951QualType ASTContext::getUnaryTransformType(QualType BaseType,
3952 QualType UnderlyingType,
3953 UnaryTransformType::UTTKind Kind)
3954 const {
3955 UnaryTransformType *Ty =
3956 new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3957 Kind,
3958 UnderlyingType->isDependentType() ?
3959 QualType() : getCanonicalType(UnderlyingType));
3960 Types.push_back(Ty);
3961 return QualType(Ty, 0);
3962}
3963
3964/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3965/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3966/// canonical deduced-but-dependent 'auto' type.
3967QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3968 bool IsDependent) const {
3969 if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3970 return getAutoDeductType();
3971
3972 // Look in the folding set for an existing type.
3973 void *InsertPos = nullptr;
3974 llvm::FoldingSetNodeID ID;
3975 AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3976 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3977 return QualType(AT, 0);
3978
3979 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3980 IsDecltypeAuto,
3981 IsDependent);
3982 Types.push_back(AT);
3983 if (InsertPos)
3984 AutoTypes.InsertNode(AT, InsertPos);
3985 return QualType(AT, 0);
3986}
3987
3988/// getAtomicType - Return the uniqued reference to the atomic type for
3989/// the given value type.
3990QualType ASTContext::getAtomicType(QualType T) const {
3991 // Unique pointers, to guarantee there is only one pointer of a particular
3992 // structure.
3993 llvm::FoldingSetNodeID ID;
3994 AtomicType::Profile(ID, T);
3995
3996 void *InsertPos = nullptr;
3997 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3998 return QualType(AT, 0);
3999
4000 // If the atomic value type isn't canonical, this won't be a canonical type
4001 // either, so fill in the canonical type field.
4002 QualType Canonical;
4003 if (!T.isCanonical()) {
4004 Canonical = getAtomicType(getCanonicalType(T));
4005
4006 // Get the new insert position for the node we care about.
4007 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
4008 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4008, __PRETTY_FUNCTION__))
; (void)NewIP;
4009 }
4010 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
4011 Types.push_back(New);
4012 AtomicTypes.InsertNode(New, InsertPos);
4013 return QualType(New, 0);
4014}
4015
4016/// getAutoDeductType - Get type pattern for deducing against 'auto'.
4017QualType ASTContext::getAutoDeductType() const {
4018 if (AutoDeductTy.isNull())
4019 AutoDeductTy = QualType(
4020 new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
4021 /*dependent*/false),
4022 0);
4023 return AutoDeductTy;
4024}
4025
4026/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
4027QualType ASTContext::getAutoRRefDeductType() const {
4028 if (AutoRRefDeductTy.isNull())
4029 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
4030 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern")((!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"
) ? static_cast<void> (0) : __assert_fail ("!AutoRRefDeductTy.isNull() && \"can't build 'auto &&' pattern\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4030, __PRETTY_FUNCTION__))
;
4031 return AutoRRefDeductTy;
4032}
4033
4034/// getTagDeclType - Return the unique reference to the type for the
4035/// specified TagDecl (struct/union/class/enum) decl.
4036QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
4037 assert (Decl)((Decl) ? static_cast<void> (0) : __assert_fail ("Decl"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4037, __PRETTY_FUNCTION__))
;
4038 // FIXME: What is the design on getTagDeclType when it requires casting
4039 // away const? mutable?
4040 return getTypeDeclType(const_cast<TagDecl*>(Decl));
4041}
4042
4043/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
4044/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
4045/// needs to agree with the definition in <stddef.h>.
4046CanQualType ASTContext::getSizeType() const {
4047 return getFromTargetType(Target->getSizeType());
4048}
4049
4050/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
4051CanQualType ASTContext::getIntMaxType() const {
4052 return getFromTargetType(Target->getIntMaxType());
4053}
4054
4055/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
4056CanQualType ASTContext::getUIntMaxType() const {
4057 return getFromTargetType(Target->getUIntMaxType());
4058}
4059
4060/// getSignedWCharType - Return the type of "signed wchar_t".
4061/// Used when in C++, as a GCC extension.
4062QualType ASTContext::getSignedWCharType() const {
4063 // FIXME: derive from "Target" ?
4064 return WCharTy;
4065}
4066
4067/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
4068/// Used when in C++, as a GCC extension.
4069QualType ASTContext::getUnsignedWCharType() const {
4070 // FIXME: derive from "Target" ?
4071 return UnsignedIntTy;
4072}
4073
4074QualType ASTContext::getIntPtrType() const {
4075 return getFromTargetType(Target->getIntPtrType());
4076}
4077
4078QualType ASTContext::getUIntPtrType() const {
4079 return getCorrespondingUnsignedType(getIntPtrType());
4080}
4081
4082/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
4083/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
4084QualType ASTContext::getPointerDiffType() const {
4085 return getFromTargetType(Target->getPtrDiffType(0));
4086}
4087
4088/// \brief Return the unique type for "pid_t" defined in
4089/// <sys/types.h>. We need this to compute the correct type for vfork().
4090QualType ASTContext::getProcessIDType() const {
4091 return getFromTargetType(Target->getProcessIDType());
4092}
4093
4094//===----------------------------------------------------------------------===//
4095// Type Operators
4096//===----------------------------------------------------------------------===//
4097
4098CanQualType ASTContext::getCanonicalParamType(QualType T) const {
4099 // Push qualifiers into arrays, and then discard any remaining
4100 // qualifiers.
4101 T = getCanonicalType(T);
4102 T = getVariableArrayDecayedType(T);
4103 const Type *Ty = T.getTypePtr();
4104 QualType Result;
4105 if (isa<ArrayType>(Ty)) {
4106 Result = getArrayDecayedType(QualType(Ty,0));
4107 } else if (isa<FunctionType>(Ty)) {
4108 Result = getPointerType(QualType(Ty, 0));
4109 } else {
4110 Result = QualType(Ty, 0);
4111 }
4112
4113 return CanQualType::CreateUnsafe(Result);
4114}
4115
4116QualType ASTContext::getUnqualifiedArrayType(QualType type,
4117 Qualifiers &quals) {
4118 SplitQualType splitType = type.getSplitUnqualifiedType();
4119
4120 // FIXME: getSplitUnqualifiedType() actually walks all the way to
4121 // the unqualified desugared type and then drops it on the floor.
4122 // We then have to strip that sugar back off with
4123 // getUnqualifiedDesugaredType(), which is silly.
4124 const ArrayType *AT =
4125 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
4126
4127 // If we don't have an array, just use the results in splitType.
4128 if (!AT) {
4129 quals = splitType.Quals;
4130 return QualType(splitType.Ty, 0);
4131 }
4132
4133 // Otherwise, recurse on the array's element type.
4134 QualType elementType = AT->getElementType();
4135 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
4136
4137 // If that didn't change the element type, AT has no qualifiers, so we
4138 // can just use the results in splitType.
4139 if (elementType == unqualElementType) {
4140 assert(quals.empty())((quals.empty()) ? static_cast<void> (0) : __assert_fail
("quals.empty()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4140, __PRETTY_FUNCTION__))
; // from the recursive call
4141 quals = splitType.Quals;
4142 return QualType(splitType.Ty, 0);
4143 }
4144
4145 // Otherwise, add in the qualifiers from the outermost type, then
4146 // build the type back up.
4147 quals.addConsistentQualifiers(splitType.Quals);
4148
4149 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4150 return getConstantArrayType(unqualElementType, CAT->getSize(),
4151 CAT->getSizeModifier(), 0);
4152 }
4153
4154 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
4155 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
4156 }
4157
4158 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
4159 return getVariableArrayType(unqualElementType,
4160 VAT->getSizeExpr(),
4161 VAT->getSizeModifier(),
4162 VAT->getIndexTypeCVRQualifiers(),
4163 VAT->getBracketsRange());
4164 }
4165
4166 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
4167 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
4168 DSAT->getSizeModifier(), 0,
4169 SourceRange());
4170}
4171
4172/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
4173/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
4174/// they point to and return true. If T1 and T2 aren't pointer types
4175/// or pointer-to-member types, or if they are not similar at this
4176/// level, returns false and leaves T1 and T2 unchanged. Top-level
4177/// qualifiers on T1 and T2 are ignored. This function will typically
4178/// be called in a loop that successively "unwraps" pointer and
4179/// pointer-to-member types to compare them at each level.
4180bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
4181 const PointerType *T1PtrType = T1->getAs<PointerType>(),
4182 *T2PtrType = T2->getAs<PointerType>();
4183 if (T1PtrType && T2PtrType) {
4184 T1 = T1PtrType->getPointeeType();
4185 T2 = T2PtrType->getPointeeType();
4186 return true;
4187 }
4188
4189 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
4190 *T2MPType = T2->getAs<MemberPointerType>();
4191 if (T1MPType && T2MPType &&
4192 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
4193 QualType(T2MPType->getClass(), 0))) {
4194 T1 = T1MPType->getPointeeType();
4195 T2 = T2MPType->getPointeeType();
4196 return true;
4197 }
4198
4199 if (getLangOpts().ObjC1) {
4200 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
4201 *T2OPType = T2->getAs<ObjCObjectPointerType>();
4202 if (T1OPType && T2OPType) {
4203 T1 = T1OPType->getPointeeType();
4204 T2 = T2OPType->getPointeeType();
4205 return true;
4206 }
4207 }
4208
4209 // FIXME: Block pointers, too?
4210
4211 return false;
4212}
4213
4214DeclarationNameInfo
4215ASTContext::getNameForTemplate(TemplateName Name,
4216 SourceLocation NameLoc) const {
4217 switch (Name.getKind()) {
4218 case TemplateName::QualifiedTemplate:
4219 case TemplateName::Template:
4220 // DNInfo work in progress: CHECKME: what about DNLoc?
4221 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4222 NameLoc);
4223
4224 case TemplateName::OverloadedTemplate: {
4225 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4226 // DNInfo work in progress: CHECKME: what about DNLoc?
4227 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4228 }
4229
4230 case TemplateName::DependentTemplate: {
4231 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4232 DeclarationName DName;
4233 if (DTN->isIdentifier()) {
4234 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4235 return DeclarationNameInfo(DName, NameLoc);
4236 } else {
4237 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4238 // DNInfo work in progress: FIXME: source locations?
4239 DeclarationNameLoc DNLoc;
4240 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4241 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4242 return DeclarationNameInfo(DName, NameLoc, DNLoc);
4243 }
4244 }
4245
4246 case TemplateName::SubstTemplateTemplateParm: {
4247 SubstTemplateTemplateParmStorage *subst
4248 = Name.getAsSubstTemplateTemplateParm();
4249 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4250 NameLoc);
4251 }
4252
4253 case TemplateName::SubstTemplateTemplateParmPack: {
4254 SubstTemplateTemplateParmPackStorage *subst
4255 = Name.getAsSubstTemplateTemplateParmPack();
4256 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4257 NameLoc);
4258 }
4259 }
4260
4261 llvm_unreachable("bad template name kind!")::llvm::llvm_unreachable_internal("bad template name kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4261)
;
4262}
4263
4264TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4265 switch (Name.getKind()) {
4266 case TemplateName::QualifiedTemplate:
4267 case TemplateName::Template: {
4268 TemplateDecl *Template = Name.getAsTemplateDecl();
4269 if (TemplateTemplateParmDecl *TTP
4270 = dyn_cast<TemplateTemplateParmDecl>(Template))
4271 Template = getCanonicalTemplateTemplateParmDecl(TTP);
4272
4273 // The canonical template name is the canonical template declaration.
4274 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4275 }
4276
4277 case TemplateName::OverloadedTemplate:
4278 llvm_unreachable("cannot canonicalize overloaded template")::llvm::llvm_unreachable_internal("cannot canonicalize overloaded template"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4278)
;
4279
4280 case TemplateName::DependentTemplate: {
4281 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4282 assert(DTN && "Non-dependent template names must refer to template decls.")((DTN && "Non-dependent template names must refer to template decls."
) ? static_cast<void> (0) : __assert_fail ("DTN && \"Non-dependent template names must refer to template decls.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4282, __PRETTY_FUNCTION__))
;
4283 return DTN->CanonicalTemplateName;
4284 }
4285
4286 case TemplateName::SubstTemplateTemplateParm: {
4287 SubstTemplateTemplateParmStorage *subst
4288 = Name.getAsSubstTemplateTemplateParm();
4289 return getCanonicalTemplateName(subst->getReplacement());
4290 }
4291
4292 case TemplateName::SubstTemplateTemplateParmPack: {
4293 SubstTemplateTemplateParmPackStorage *subst
4294 = Name.getAsSubstTemplateTemplateParmPack();
4295 TemplateTemplateParmDecl *canonParameter
4296 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4297 TemplateArgument canonArgPack
4298 = getCanonicalTemplateArgument(subst->getArgumentPack());
4299 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4300 }
4301 }
4302
4303 llvm_unreachable("bad template name!")::llvm::llvm_unreachable_internal("bad template name!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4303)
;
4304}
4305
4306bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4307 X = getCanonicalTemplateName(X);
4308 Y = getCanonicalTemplateName(Y);
4309 return X.getAsVoidPointer() == Y.getAsVoidPointer();
4310}
4311
4312TemplateArgument
4313ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4314 switch (Arg.getKind()) {
4315 case TemplateArgument::Null:
4316 return Arg;
4317
4318 case TemplateArgument::Expression:
4319 return Arg;
4320
4321 case TemplateArgument::Declaration: {
4322 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4323 return TemplateArgument(D, Arg.getParamTypeForDecl());
4324 }
4325
4326 case TemplateArgument::NullPtr:
4327 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4328 /*isNullPtr*/true);
4329
4330 case TemplateArgument::Template:
4331 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4332
4333 case TemplateArgument::TemplateExpansion:
4334 return TemplateArgument(getCanonicalTemplateName(
4335 Arg.getAsTemplateOrTemplatePattern()),
4336 Arg.getNumTemplateExpansions());
4337
4338 case TemplateArgument::Integral:
4339 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4340
4341 case TemplateArgument::Type:
4342 return TemplateArgument(getCanonicalType(Arg.getAsType()));
4343
4344 case TemplateArgument::Pack: {
4345 if (Arg.pack_size() == 0)
4346 return Arg;
4347
4348 TemplateArgument *CanonArgs
4349 = new (*this) TemplateArgument[Arg.pack_size()];
4350 unsigned Idx = 0;
4351 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4352 AEnd = Arg.pack_end();
4353 A != AEnd; (void)++A, ++Idx)
4354 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4355
4356 return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
4357 }
4358 }
4359
4360 // Silence GCC warning
4361 llvm_unreachable("Unhandled template argument kind")::llvm::llvm_unreachable_internal("Unhandled template argument kind"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4361)
;
4362}
4363
4364NestedNameSpecifier *
4365ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4366 if (!NNS)
4367 return nullptr;
4368
4369 switch (NNS->getKind()) {
4370 case NestedNameSpecifier::Identifier:
4371 // Canonicalize the prefix but keep the identifier the same.
4372 return NestedNameSpecifier::Create(*this,
4373 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4374 NNS->getAsIdentifier());
4375
4376 case NestedNameSpecifier::Namespace:
4377 // A namespace is canonical; build a nested-name-specifier with
4378 // this namespace and no prefix.
4379 return NestedNameSpecifier::Create(*this, nullptr,
4380 NNS->getAsNamespace()->getOriginalNamespace());
4381
4382 case NestedNameSpecifier::NamespaceAlias:
4383 // A namespace is canonical; build a nested-name-specifier with
4384 // this namespace and no prefix.
4385 return NestedNameSpecifier::Create(*this, nullptr,
4386 NNS->getAsNamespaceAlias()->getNamespace()
4387 ->getOriginalNamespace());
4388
4389 case NestedNameSpecifier::TypeSpec:
4390 case NestedNameSpecifier::TypeSpecWithTemplate: {
4391 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4392
4393 // If we have some kind of dependent-named type (e.g., "typename T::type"),
4394 // break it apart into its prefix and identifier, then reconsititute those
4395 // as the canonical nested-name-specifier. This is required to canonicalize
4396 // a dependent nested-name-specifier involving typedefs of dependent-name
4397 // types, e.g.,
4398 // typedef typename T::type T1;
4399 // typedef typename T1::type T2;
4400 if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4401 return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4402 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4403
4404 // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4405 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4406 // first place?
4407 return NestedNameSpecifier::Create(*this, nullptr, false,
4408 const_cast<Type *>(T.getTypePtr()));
4409 }
4410
4411 case NestedNameSpecifier::Global:
4412 case NestedNameSpecifier::Super:
4413 // The global specifier and __super specifer are canonical and unique.
4414 return NNS;
4415 }
4416
4417 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")::llvm::llvm_unreachable_internal("Invalid NestedNameSpecifier::Kind!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4417)
;
4418}
4419
4420
4421const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4422 // Handle the non-qualified case efficiently.
4423 if (!T.hasLocalQualifiers()) {
4424 // Handle the common positive case fast.
4425 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4426 return AT;
4427 }
4428
4429 // Handle the common negative case fast.
4430 if (!isa<ArrayType>(T.getCanonicalType()))
4431 return nullptr;
4432
4433 // Apply any qualifiers from the array type to the element type. This
4434 // implements C99 6.7.3p8: "If the specification of an array type includes
4435 // any type qualifiers, the element type is so qualified, not the array type."
4436
4437 // If we get here, we either have type qualifiers on the type, or we have
4438 // sugar such as a typedef in the way. If we have type qualifiers on the type
4439 // we must propagate them down into the element type.
4440
4441 SplitQualType split = T.getSplitDesugaredType();
4442 Qualifiers qs = split.Quals;
4443
4444 // If we have a simple case, just return now.
4445 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4446 if (!ATy || qs.empty())
4447 return ATy;
4448
4449 // Otherwise, we have an array and we have qualifiers on it. Push the
4450 // qualifiers into the array element type and return a new array type.
4451 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4452
4453 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4454 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4455 CAT->getSizeModifier(),
4456 CAT->getIndexTypeCVRQualifiers()));
4457 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4458 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4459 IAT->getSizeModifier(),
4460 IAT->getIndexTypeCVRQualifiers()));
4461
4462 if (const DependentSizedArrayType *DSAT
4463 = dyn_cast<DependentSizedArrayType>(ATy))
4464 return cast<ArrayType>(
4465 getDependentSizedArrayType(NewEltTy,
4466 DSAT->getSizeExpr(),
4467 DSAT->getSizeModifier(),
4468 DSAT->getIndexTypeCVRQualifiers(),
4469 DSAT->getBracketsRange()));
4470
4471 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4472 return cast<ArrayType>(getVariableArrayType(NewEltTy,
4473 VAT->getSizeExpr(),
4474 VAT->getSizeModifier(),
4475 VAT->getIndexTypeCVRQualifiers(),
4476 VAT->getBracketsRange()));
4477}
4478
4479QualType ASTContext::getAdjustedParameterType(QualType T) const {
4480 if (T->isArrayType() || T->isFunctionType())
4481 return getDecayedType(T);
4482 return T;
4483}
4484
4485QualType ASTContext::getSignatureParameterType(QualType T) const {
4486 T = getVariableArrayDecayedType(T);
4487 T = getAdjustedParameterType(T);
4488 return T.getUnqualifiedType();
4489}
4490
4491QualType ASTContext::getExceptionObjectType(QualType T) const {
4492 // C++ [except.throw]p3:
4493 // A throw-expression initializes a temporary object, called the exception
4494 // object, the type of which is determined by removing any top-level
4495 // cv-qualifiers from the static type of the operand of throw and adjusting
4496 // the type from "array of T" or "function returning T" to "pointer to T"
4497 // or "pointer to function returning T", [...]
4498 T = getVariableArrayDecayedType(T);
4499 if (T->isArrayType() || T->isFunctionType())
4500 T = getDecayedType(T);
4501 return T.getUnqualifiedType();
4502}
4503
4504/// getArrayDecayedType - Return the properly qualified result of decaying the
4505/// specified array type to a pointer. This operation is non-trivial when
4506/// handling typedefs etc. The canonical type of "T" must be an array type,
4507/// this returns a pointer to a properly qualified element of the array.
4508///
4509/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4510QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4511 // Get the element type with 'getAsArrayType' so that we don't lose any
4512 // typedefs in the element type of the array. This also handles propagation
4513 // of type qualifiers from the array type into the element type if present
4514 // (C99 6.7.3p8).
4515 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4516 assert(PrettyArrayType && "Not an array type!")((PrettyArrayType && "Not an array type!") ? static_cast
<void> (0) : __assert_fail ("PrettyArrayType && \"Not an array type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4516, __PRETTY_FUNCTION__))
;
4517
4518 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4519
4520 // int x[restrict 4] -> int *restrict
4521 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4522}
4523
4524QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4525 return getBaseElementType(array->getElementType());
4526}
4527
4528QualType ASTContext::getBaseElementType(QualType type) const {
4529 Qualifiers qs;
4530 while (true) {
4531 SplitQualType split = type.getSplitDesugaredType();
4532 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4533 if (!array) break;
4534
4535 type = array->getElementType();
4536 qs.addConsistentQualifiers(split.Quals);
4537 }
4538
4539 return getQualifiedType(type, qs);
4540}
4541
4542/// getConstantArrayElementCount - Returns number of constant array elements.
4543uint64_t
4544ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
4545 uint64_t ElementCount = 1;
4546 do {
4547 ElementCount *= CA->getSize().getZExtValue();
4548 CA = dyn_cast_or_null<ConstantArrayType>(
4549 CA->getElementType()->getAsArrayTypeUnsafe());
4550 } while (CA);
4551 return ElementCount;
4552}
4553
4554/// getFloatingRank - Return a relative rank for floating point types.
4555/// This routine will assert if passed a built-in type that isn't a float.
4556static FloatingRank getFloatingRank(QualType T) {
4557 if (const ComplexType *CT = T->getAs<ComplexType>())
4558 return getFloatingRank(CT->getElementType());
4559
4560 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type")((T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type"
) ? static_cast<void> (0) : __assert_fail ("T->getAs<BuiltinType>() && \"getFloatingRank(): not a floating type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4560, __PRETTY_FUNCTION__))
;
4561 switch (T->getAs<BuiltinType>()->getKind()) {
4562 default: llvm_unreachable("getFloatingRank(): not a floating type")::llvm::llvm_unreachable_internal("getFloatingRank(): not a floating type"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4562)
;
4563 case BuiltinType::Half: return HalfRank;
4564 case BuiltinType::Float: return FloatRank;
4565 case BuiltinType::Double: return DoubleRank;
4566 case BuiltinType::LongDouble: return LongDoubleRank;
4567 }
4568}
4569
4570/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4571/// point or a complex type (based on typeDomain/typeSize).
4572/// 'typeDomain' is a real floating point or complex type.
4573/// 'typeSize' is a real floating point or complex type.
4574QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4575 QualType Domain) const {
4576 FloatingRank EltRank = getFloatingRank(Size);
4577 if (Domain->isComplexType()) {
4578 switch (EltRank) {
4579 case HalfRank: llvm_unreachable("Complex half is not supported")::llvm::llvm_unreachable_internal("Complex half is not supported"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4579)
;
4580 case FloatRank: return FloatComplexTy;
4581 case DoubleRank: return DoubleComplexTy;
4582 case LongDoubleRank: return LongDoubleComplexTy;
4583 }
4584 }
4585
4586 assert(Domain->isRealFloatingType() && "Unknown domain!")((Domain->isRealFloatingType() && "Unknown domain!"
) ? static_cast<void> (0) : __assert_fail ("Domain->isRealFloatingType() && \"Unknown domain!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4586, __PRETTY_FUNCTION__))
;
4587 switch (EltRank) {
4588 case HalfRank: return HalfTy;
4589 case FloatRank: return FloatTy;
4590 case DoubleRank: return DoubleTy;
4591 case LongDoubleRank: return LongDoubleTy;
4592 }
4593 llvm_unreachable("getFloatingRank(): illegal value for rank")::llvm::llvm_unreachable_internal("getFloatingRank(): illegal value for rank"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4593)
;
4594}
4595
4596/// getFloatingTypeOrder - Compare the rank of the two specified floating
4597/// point types, ignoring the domain of the type (i.e. 'double' ==
4598/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
4599/// LHS < RHS, return -1.
4600int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4601 FloatingRank LHSR = getFloatingRank(LHS);
4602 FloatingRank RHSR = getFloatingRank(RHS);
4603
4604 if (LHSR == RHSR)
4605 return 0;
4606 if (LHSR > RHSR)
4607 return 1;
4608 return -1;
4609}
4610
4611/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4612/// routine will assert if passed a built-in type that isn't an integer or enum,
4613/// or if it is not canonicalized.
4614unsigned ASTContext::getIntegerRank(const Type *T) const {
4615 assert(T->isCanonicalUnqualified() && "T should be canonicalized")((T->isCanonicalUnqualified() && "T should be canonicalized"
) ? static_cast<void> (0) : __assert_fail ("T->isCanonicalUnqualified() && \"T should be canonicalized\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4615, __PRETTY_FUNCTION__))
;
4616
4617 switch (cast<BuiltinType>(T)->getKind()) {
4618 default: llvm_unreachable("getIntegerRank(): not a built-in integer")::llvm::llvm_unreachable_internal("getIntegerRank(): not a built-in integer"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4618)
;
4619 case BuiltinType::Bool:
4620 return 1 + (getIntWidth(BoolTy) << 3);
4621 case BuiltinType::Char_S:
4622 case BuiltinType::Char_U:
4623 case BuiltinType::SChar:
4624 case BuiltinType::UChar:
4625 return 2 + (getIntWidth(CharTy) << 3);
4626 case BuiltinType::Short:
4627 case BuiltinType::UShort:
4628 return 3 + (getIntWidth(ShortTy) << 3);
4629 case BuiltinType::Int:
4630 case BuiltinType::UInt:
4631 return 4 + (getIntWidth(IntTy) << 3);
4632 case BuiltinType::Long:
4633 case BuiltinType::ULong:
4634 return 5 + (getIntWidth(LongTy) << 3);
4635 case BuiltinType::LongLong:
4636 case BuiltinType::ULongLong:
4637 return 6 + (getIntWidth(LongLongTy) << 3);
4638 case BuiltinType::Int128:
4639 case BuiltinType::UInt128:
4640 return 7 + (getIntWidth(Int128Ty) << 3);
4641 }
4642}
4643
4644/// \brief Whether this is a promotable bitfield reference according
4645/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4646///
4647/// \returns the type this bit-field will promote to, or NULL if no
4648/// promotion occurs.
4649QualType ASTContext::isPromotableBitField(Expr *E) const {
4650 if (E->isTypeDependent() || E->isValueDependent())
4651 return QualType();
4652
4653 // FIXME: We should not do this unless E->refersToBitField() is true. This
4654 // matters in C where getSourceBitField() will find bit-fields for various
4655 // cases where the source expression is not a bit-field designator.
4656
4657 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4658 if (!Field)
4659 return QualType();
4660
4661 QualType FT = Field->getType();
4662
4663 uint64_t BitWidth = Field->getBitWidthValue(*this);
4664 uint64_t IntSize = getTypeSize(IntTy);
4665 // C++ [conv.prom]p5:
4666 // A prvalue for an integral bit-field can be converted to a prvalue of type
4667 // int if int can represent all the values of the bit-field; otherwise, it
4668 // can be converted to unsigned int if unsigned int can represent all the
4669 // values of the bit-field. If the bit-field is larger yet, no integral
4670 // promotion applies to it.
4671 // C11 6.3.1.1/2:
4672 // [For a bit-field of type _Bool, int, signed int, or unsigned int:]
4673 // If an int can represent all values of the original type (as restricted by
4674 // the width, for a bit-field), the value is converted to an int; otherwise,
4675 // it is converted to an unsigned int.
4676 //
4677 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
4678 // We perform that promotion here to match GCC and C++.
4679 if (BitWidth < IntSize)
4680 return IntTy;
4681
4682 if (BitWidth == IntSize)
4683 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4684
4685 // Types bigger than int are not subject to promotions, and therefore act
4686 // like the base type. GCC has some weird bugs in this area that we
4687 // deliberately do not follow (GCC follows a pre-standard resolution to
4688 // C's DR315 which treats bit-width as being part of the type, and this leaks
4689 // into their semantics in some cases).
4690 return QualType();
4691}
4692
4693/// getPromotedIntegerType - Returns the type that Promotable will
4694/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4695/// integer type.
4696QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4697 assert(!Promotable.isNull())((!Promotable.isNull()) ? static_cast<void> (0) : __assert_fail
("!Promotable.isNull()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4697, __PRETTY_FUNCTION__))
;
4698 assert(Promotable->isPromotableIntegerType())((Promotable->isPromotableIntegerType()) ? static_cast<
void> (0) : __assert_fail ("Promotable->isPromotableIntegerType()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4698, __PRETTY_FUNCTION__))
;
4699 if (const EnumType *ET = Promotable->getAs<EnumType>())
4700 return ET->getDecl()->getPromotionType();
4701
4702 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4703 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4704 // (3.9.1) can be converted to a prvalue of the first of the following
4705 // types that can represent all the values of its underlying type:
4706 // int, unsigned int, long int, unsigned long int, long long int, or
4707 // unsigned long long int [...]
4708 // FIXME: Is there some better way to compute this?
4709 if (BT->getKind() == BuiltinType::WChar_S ||
4710 BT->getKind() == BuiltinType::WChar_U ||
4711 BT->getKind() == BuiltinType::Char16 ||
4712 BT->getKind() == BuiltinType::Char32) {
4713 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4714 uint64_t FromSize = getTypeSize(BT);
4715 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4716 LongLongTy, UnsignedLongLongTy };
4717 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4718 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4719 if (FromSize < ToSize ||
4720 (FromSize == ToSize &&
4721 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4722 return PromoteTypes[Idx];
4723 }
4724 llvm_unreachable("char type should fit into long long")::llvm::llvm_unreachable_internal("char type should fit into long long"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4724)
;
4725 }
4726 }
4727
4728 // At this point, we should have a signed or unsigned integer type.
4729 if (Promotable->isSignedIntegerType())
4730 return IntTy;
4731 uint64_t PromotableSize = getIntWidth(Promotable);
4732 uint64_t IntSize = getIntWidth(IntTy);
4733 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize)((Promotable->isUnsignedIntegerType() && PromotableSize
<= IntSize) ? static_cast<void> (0) : __assert_fail
("Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4733, __PRETTY_FUNCTION__))
;
4734 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4735}
4736
4737/// \brief Recurses in pointer/array types until it finds an objc retainable
4738/// type and returns its ownership.
4739Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4740 while (!T.isNull()) {
4741 if (T.getObjCLifetime() != Qualifiers::OCL_None)
4742 return T.getObjCLifetime();
4743 if (T->isArrayType())
4744 T = getBaseElementType(T);
4745 else if (const PointerType *PT = T->getAs<PointerType>())
4746 T = PT->getPointeeType();
4747 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4748 T = RT->getPointeeType();
4749 else
4750 break;
4751 }
4752
4753 return Qualifiers::OCL_None;
4754}
4755
4756static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4757 // Incomplete enum types are not treated as integer types.
4758 // FIXME: In C++, enum types are never integer types.
4759 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4760 return ET->getDecl()->getIntegerType().getTypePtr();
4761 return nullptr;
4762}
4763
4764/// getIntegerTypeOrder - Returns the highest ranked integer type:
4765/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
4766/// LHS < RHS, return -1.
4767int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4768 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4769 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4770
4771 // Unwrap enums to their underlying type.
4772 if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4773 LHSC = getIntegerTypeForEnum(ET);
4774 if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4775 RHSC = getIntegerTypeForEnum(ET);
4776
4777 if (LHSC == RHSC) return 0;
4778
4779 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4780 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4781
4782 unsigned LHSRank = getIntegerRank(LHSC);
4783 unsigned RHSRank = getIntegerRank(RHSC);
4784
4785 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
4786 if (LHSRank == RHSRank) return 0;
4787 return LHSRank > RHSRank ? 1 : -1;
4788 }
4789
4790 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4791 if (LHSUnsigned) {
4792 // If the unsigned [LHS] type is larger, return it.
4793 if (LHSRank >= RHSRank)
4794 return 1;
4795
4796 // If the signed type can represent all values of the unsigned type, it
4797 // wins. Because we are dealing with 2's complement and types that are
4798 // powers of two larger than each other, this is always safe.
4799 return -1;
4800 }
4801
4802 // If the unsigned [RHS] type is larger, return it.
4803 if (RHSRank >= LHSRank)
4804 return -1;
4805
4806 // If the signed type can represent all values of the unsigned type, it
4807 // wins. Because we are dealing with 2's complement and types that are
4808 // powers of two larger than each other, this is always safe.
4809 return 1;
4810}
4811
4812// getCFConstantStringType - Return the type used for constant CFStrings.
4813QualType ASTContext::getCFConstantStringType() const {
4814 if (!CFConstantStringTypeDecl) {
4815 CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4816 CFConstantStringTypeDecl->startDefinition();
4817
4818 QualType FieldTypes[4];
4819
4820 // const int *isa;
4821 FieldTypes[0] = getPointerType(IntTy.withConst());
4822 // int flags;
4823 FieldTypes[1] = IntTy;
4824 // const char *str;
4825 FieldTypes[2] = getPointerType(CharTy.withConst());
4826 // long length;
4827 FieldTypes[3] = LongTy;
4828
4829 // Create fields
4830 for (unsigned i = 0; i < 4; ++i) {
4831 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4832 SourceLocation(),
4833 SourceLocation(), nullptr,
4834 FieldTypes[i], /*TInfo=*/nullptr,
4835 /*BitWidth=*/nullptr,
4836 /*Mutable=*/false,
4837 ICIS_NoInit);
4838 Field->setAccess(AS_public);
4839 CFConstantStringTypeDecl->addDecl(Field);
4840 }
4841
4842 CFConstantStringTypeDecl->completeDefinition();
4843 }
4844
4845 return getTagDeclType(CFConstantStringTypeDecl);
4846}
4847
4848QualType ASTContext::getObjCSuperType() const {
4849 if (ObjCSuperType.isNull()) {
4850 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4851 TUDecl->addDecl(ObjCSuperTypeDecl);
4852 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4853 }
4854 return ObjCSuperType;
4855}
4856
4857void ASTContext::setCFConstantStringType(QualType T) {
4858 const RecordType *Rec = T->getAs<RecordType>();
4859 assert(Rec && "Invalid CFConstantStringType")((Rec && "Invalid CFConstantStringType") ? static_cast
<void> (0) : __assert_fail ("Rec && \"Invalid CFConstantStringType\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4859, __PRETTY_FUNCTION__))
;
4860 CFConstantStringTypeDecl = Rec->getDecl();
4861}
4862
4863QualType ASTContext::getBlockDescriptorType() const {
4864 if (BlockDescriptorType)
4865 return getTagDeclType(BlockDescriptorType);
4866
4867 RecordDecl *RD;
4868 // FIXME: Needs the FlagAppleBlock bit.
4869 RD = buildImplicitRecord("__block_descriptor");
4870 RD->startDefinition();
4871
4872 QualType FieldTypes[] = {
4873 UnsignedLongTy,
4874 UnsignedLongTy,
4875 };
4876
4877 static const char *const FieldNames[] = {
4878 "reserved",
4879 "Size"
4880 };
4881
4882 for (size_t i = 0; i < 2; ++i) {
4883 FieldDecl *Field = FieldDecl::Create(
4884 *this, RD, SourceLocation(), SourceLocation(),
4885 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4886 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4887 Field->setAccess(AS_public);
4888 RD->addDecl(Field);
4889 }
4890
4891 RD->completeDefinition();
4892
4893 BlockDescriptorType = RD;
4894
4895 return getTagDeclType(BlockDescriptorType);
4896}
4897
4898QualType ASTContext::getBlockDescriptorExtendedType() const {
4899 if (BlockDescriptorExtendedType)
4900 return getTagDeclType(BlockDescriptorExtendedType);
4901
4902 RecordDecl *RD;
4903 // FIXME: Needs the FlagAppleBlock bit.
4904 RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4905 RD->startDefinition();
4906
4907 QualType FieldTypes[] = {
4908 UnsignedLongTy,
4909 UnsignedLongTy,
4910 getPointerType(VoidPtrTy),
4911 getPointerType(VoidPtrTy)
4912 };
4913
4914 static const char *const FieldNames[] = {
4915 "reserved",
4916 "Size",
4917 "CopyFuncPtr",
4918 "DestroyFuncPtr"
4919 };
4920
4921 for (size_t i = 0; i < 4; ++i) {
4922 FieldDecl *Field = FieldDecl::Create(
4923 *this, RD, SourceLocation(), SourceLocation(),
4924 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4925 /*BitWidth=*/nullptr,
4926 /*Mutable=*/false, ICIS_NoInit);
4927 Field->setAccess(AS_public);
4928 RD->addDecl(Field);
4929 }
4930
4931 RD->completeDefinition();
4932
4933 BlockDescriptorExtendedType = RD;
4934 return getTagDeclType(BlockDescriptorExtendedType);
4935}
4936
4937/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4938/// requires copy/dispose. Note that this must match the logic
4939/// in buildByrefHelpers.
4940bool ASTContext::BlockRequiresCopying(QualType Ty,
4941 const VarDecl *D) {
4942 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4943 const Expr *copyExpr = getBlockVarCopyInits(D);
4944 if (!copyExpr && record->hasTrivialDestructor()) return false;
4945
4946 return true;
4947 }
4948
4949 if (!Ty->isObjCRetainableType()) return false;
4950
4951 Qualifiers qs = Ty.getQualifiers();
4952
4953 // If we have lifetime, that dominates.
4954 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4955 assert(getLangOpts().ObjCAutoRefCount)((getLangOpts().ObjCAutoRefCount) ? static_cast<void> (
0) : __assert_fail ("getLangOpts().ObjCAutoRefCount", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4955, __PRETTY_FUNCTION__))
;
4956
4957 switch (lifetime) {
4958 case Qualifiers::OCL_None: llvm_unreachable("impossible")::llvm::llvm_unreachable_internal("impossible", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4958)
;
4959
4960 // These are just bits as far as the runtime is concerned.
4961 case Qualifiers::OCL_ExplicitNone:
4962 case Qualifiers::OCL_Autoreleasing:
4963 return false;
4964
4965 // Tell the runtime that this is ARC __weak, called by the
4966 // byref routines.
4967 case Qualifiers::OCL_Weak:
4968 // ARC __strong __block variables need to be retained.
4969 case Qualifiers::OCL_Strong:
4970 return true;
4971 }
4972 llvm_unreachable("fell out of lifetime switch!")::llvm::llvm_unreachable_internal("fell out of lifetime switch!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 4972)
;
4973 }
4974 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4975 Ty->isObjCObjectPointerType());
4976}
4977
4978bool ASTContext::getByrefLifetime(QualType Ty,
4979 Qualifiers::ObjCLifetime &LifeTime,
4980 bool &HasByrefExtendedLayout) const {
4981
4982 if (!getLangOpts().ObjC1 ||
4983 getLangOpts().getGC() != LangOptions::NonGC)
4984 return false;
4985
4986 HasByrefExtendedLayout = false;
4987 if (Ty->isRecordType()) {
4988 HasByrefExtendedLayout = true;
4989 LifeTime = Qualifiers::OCL_None;
4990 }
4991 else if (getLangOpts().ObjCAutoRefCount)
4992 LifeTime = Ty.getObjCLifetime();
4993 // MRR.
4994 else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4995 LifeTime = Qualifiers::OCL_ExplicitNone;
4996 else
4997 LifeTime = Qualifiers::OCL_None;
4998 return true;
4999}
5000
5001TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
5002 if (!ObjCInstanceTypeDecl)
5003 ObjCInstanceTypeDecl =
5004 buildImplicitTypedef(getObjCIdType(), "instancetype");
5005 return ObjCInstanceTypeDecl;
5006}
5007
5008// This returns true if a type has been typedefed to BOOL:
5009// typedef <type> BOOL;
5010static bool isTypeTypedefedAsBOOL(QualType T) {
5011 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
5012 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
5013 return II->isStr("BOOL");
5014
5015 return false;
5016}
5017
5018/// getObjCEncodingTypeSize returns size of type for objective-c encoding
5019/// purpose.
5020CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
5021 if (!type->isIncompleteArrayType() && type->isIncompleteType())
5022 return CharUnits::Zero();
5023
5024 CharUnits sz = getTypeSizeInChars(type);
5025
5026 // Make all integer and enum types at least as large as an int
5027 if (sz.isPositive() && type->isIntegralOrEnumerationType())
5028 sz = std::max(sz, getTypeSizeInChars(IntTy));
5029 // Treat arrays as pointers, since that's how they're passed in.
5030 else if (type->isArrayType())
5031 sz = getTypeSizeInChars(VoidPtrTy);
5032 return sz;
5033}
5034
5035bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
5036 return getTargetInfo().getCXXABI().isMicrosoft() &&
5037 VD->isStaticDataMember() &&
5038 VD->getType()->isIntegralOrEnumerationType() &&
5039 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
5040}
5041
5042static inline
5043std::string charUnitsToString(const CharUnits &CU) {
5044 return llvm::itostr(CU.getQuantity());
5045}
5046
5047/// getObjCEncodingForBlock - Return the encoded type for this block
5048/// declaration.
5049std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
5050 std::string S;
5051
5052 const BlockDecl *Decl = Expr->getBlockDecl();
5053 QualType BlockTy =
5054 Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
5055 // Encode result type.
5056 if (getLangOpts().EncodeExtendedBlockSig)
5057 getObjCEncodingForMethodParameter(
5058 Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
5059 true /*Extended*/);
5060 else
5061 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
5062 // Compute size of all parameters.
5063 // Start with computing size of a pointer in number of bytes.
5064 // FIXME: There might(should) be a better way of doing this computation!
5065 SourceLocation Loc;
5066 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
5067 CharUnits ParmOffset = PtrSize;
5068 for (auto PI : Decl->params()) {
5069 QualType PType = PI->getType();
5070 CharUnits sz = getObjCEncodingTypeSize(PType);
5071 if (sz.isZero())
5072 continue;
5073 assert (sz.isPositive() && "BlockExpr - Incomplete param type")((sz.isPositive() && "BlockExpr - Incomplete param type"
) ? static_cast<void> (0) : __assert_fail ("sz.isPositive() && \"BlockExpr - Incomplete param type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5073, __PRETTY_FUNCTION__))
;
5074 ParmOffset += sz;
5075 }
5076 // Size of the argument frame
5077 S += charUnitsToString(ParmOffset);
5078 // Block pointer and offset.
5079 S += "@?0";
5080
5081 // Argument types.
5082 ParmOffset = PtrSize;
5083 for (auto PVDecl : Decl->params()) {
5084 QualType PType = PVDecl->getOriginalType();
5085 if (const ArrayType *AT =
5086 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5087 // Use array's original type only if it has known number of
5088 // elements.
5089 if (!isa<ConstantArrayType>(AT))
5090 PType = PVDecl->getType();
5091 } else if (PType->isFunctionType())
5092 PType = PVDecl->getType();
5093 if (getLangOpts().EncodeExtendedBlockSig)
5094 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
5095 S, true /*Extended*/);
5096 else
5097 getObjCEncodingForType(PType, S);
5098 S += charUnitsToString(ParmOffset);
5099 ParmOffset += getObjCEncodingTypeSize(PType);
5100 }
5101
5102 return S;
5103}
5104
5105bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
5106 std::string& S) {
5107 // Encode result type.
5108 getObjCEncodingForType(Decl->getReturnType(), S);
5109 CharUnits ParmOffset;
5110 // Compute size of all parameters.
5111 for (auto PI : Decl->params()) {
5112 QualType PType = PI->getType();
5113 CharUnits sz = getObjCEncodingTypeSize(PType);
5114 if (sz.isZero())
5115 continue;
5116
5117 assert (sz.isPositive() &&((sz.isPositive() && "getObjCEncodingForFunctionDecl - Incomplete param type"
) ? static_cast<void> (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForFunctionDecl - Incomplete param type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5118, __PRETTY_FUNCTION__))
5118 "getObjCEncodingForFunctionDecl - Incomplete param type")((sz.isPositive() && "getObjCEncodingForFunctionDecl - Incomplete param type"
) ? static_cast<void> (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForFunctionDecl - Incomplete param type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5118, __PRETTY_FUNCTION__))
;
5119 ParmOffset += sz;
5120 }
5121 S += charUnitsToString(ParmOffset);
5122 ParmOffset = CharUnits::Zero();
5123
5124 // Argument types.
5125 for (auto PVDecl : Decl->params()) {
5126 QualType PType = PVDecl->getOriginalType();
5127 if (const ArrayType *AT =
5128 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5129 // Use array's original type only if it has known number of
5130 // elements.
5131 if (!isa<ConstantArrayType>(AT))
5132 PType = PVDecl->getType();
5133 } else if (PType->isFunctionType())
5134 PType = PVDecl->getType();
5135 getObjCEncodingForType(PType, S);
5136 S += charUnitsToString(ParmOffset);
5137 ParmOffset += getObjCEncodingTypeSize(PType);
5138 }
5139
5140 return false;
5141}
5142
5143/// getObjCEncodingForMethodParameter - Return the encoded type for a single
5144/// method parameter or return type. If Extended, include class names and
5145/// block object types.
5146void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
5147 QualType T, std::string& S,
5148 bool Extended) const {
5149 // Encode type qualifer, 'in', 'inout', etc. for the parameter.
5150 getObjCEncodingForTypeQualifier(QT, S);
5151 // Encode parameter type.
5152 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5153 true /*OutermostType*/,
5154 false /*EncodingProperty*/,
5155 false /*StructField*/,
5156 Extended /*EncodeBlockParameters*/,
5157 Extended /*EncodeClassNames*/);
5158}
5159
5160/// getObjCEncodingForMethodDecl - Return the encoded type for this method
5161/// declaration.
5162bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
5163 std::string& S,
5164 bool Extended) const {
5165 // FIXME: This is not very efficient.
5166 // Encode return type.
5167 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
5168 Decl->getReturnType(), S, Extended);
5169 // Compute size of all parameters.
5170 // Start with computing size of a pointer in number of bytes.
5171 // FIXME: There might(should) be a better way of doing this computation!
5172 SourceLocation Loc;
5173 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
5174 // The first two arguments (self and _cmd) are pointers; account for
5175 // their size.
5176 CharUnits ParmOffset = 2 * PtrSize;
5177 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5178 E = Decl->sel_param_end(); PI != E; ++PI) {
5179 QualType PType = (*PI)->getType();
5180 CharUnits sz = getObjCEncodingTypeSize(PType);
5181 if (sz.isZero())
5182 continue;
5183
5184 assert (sz.isPositive() &&((sz.isPositive() && "getObjCEncodingForMethodDecl - Incomplete param type"
) ? static_cast<void> (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForMethodDecl - Incomplete param type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5185, __PRETTY_FUNCTION__))
5185 "getObjCEncodingForMethodDecl - Incomplete param type")((sz.isPositive() && "getObjCEncodingForMethodDecl - Incomplete param type"
) ? static_cast<void> (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForMethodDecl - Incomplete param type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5185, __PRETTY_FUNCTION__))
;
5186 ParmOffset += sz;
5187 }
5188 S += charUnitsToString(ParmOffset);
5189 S += "@0:";
5190 S += charUnitsToString(PtrSize);
5191
5192 // Argument types.
5193 ParmOffset = 2 * PtrSize;
5194 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5195 E = Decl->sel_param_end(); PI != E; ++PI) {
5196 const ParmVarDecl *PVDecl = *PI;
5197 QualType PType = PVDecl->getOriginalType();
5198 if (const ArrayType *AT =
5199 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5200 // Use array's original type only if it has known number of
5201 // elements.
5202 if (!isa<ConstantArrayType>(AT))
5203 PType = PVDecl->getType();
5204 } else if (PType->isFunctionType())
5205 PType = PVDecl->getType();
5206 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
5207 PType, S, Extended);
5208 S += charUnitsToString(ParmOffset);
5209 ParmOffset += getObjCEncodingTypeSize(PType);
5210 }
5211
5212 return false;
5213}
5214
5215ObjCPropertyImplDecl *
5216ASTContext::getObjCPropertyImplDeclForPropertyDecl(
5217 const ObjCPropertyDecl *PD,
5218 const Decl *Container) const {
5219 if (!Container)
5220 return nullptr;
5221 if (const ObjCCategoryImplDecl *CID =
5222 dyn_cast<ObjCCategoryImplDecl>(Container)) {
5223 for (auto *PID : CID->property_impls())
5224 if (PID->getPropertyDecl() == PD)
5225 return PID;
5226 } else {
5227 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
5228 for (auto *PID : OID->property_impls())
5229 if (PID->getPropertyDecl() == PD)
5230 return PID;
5231 }
5232 return nullptr;
5233}
5234
5235/// getObjCEncodingForPropertyDecl - Return the encoded type for this
5236/// property declaration. If non-NULL, Container must be either an
5237/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
5238/// NULL when getting encodings for protocol properties.
5239/// Property attributes are stored as a comma-delimited C string. The simple
5240/// attributes readonly and bycopy are encoded as single characters. The
5241/// parametrized attributes, getter=name, setter=name, and ivar=name, are
5242/// encoded as single characters, followed by an identifier. Property types
5243/// are also encoded as a parametrized attribute. The characters used to encode
5244/// these attributes are defined by the following enumeration:
5245/// @code
5246/// enum PropertyAttributes {
5247/// kPropertyReadOnly = 'R', // property is read-only.
5248/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
5249/// kPropertyByref = '&', // property is a reference to the value last assigned
5250/// kPropertyDynamic = 'D', // property is dynamic
5251/// kPropertyGetter = 'G', // followed by getter selector name
5252/// kPropertySetter = 'S', // followed by setter selector name
5253/// kPropertyInstanceVariable = 'V' // followed by instance variable name
5254/// kPropertyType = 'T' // followed by old-style type encoding.
5255/// kPropertyWeak = 'W' // 'weak' property
5256/// kPropertyStrong = 'P' // property GC'able
5257/// kPropertyNonAtomic = 'N' // property non-atomic
5258/// };
5259/// @endcode
5260void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5261 const Decl *Container,
5262 std::string& S) const {
5263 // Collect information from the property implementation decl(s).
5264 bool Dynamic = false;
5265 ObjCPropertyImplDecl *SynthesizePID = nullptr;
5266
5267 if (ObjCPropertyImplDecl *PropertyImpDecl =
5268 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5269 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5270 Dynamic = true;
5271 else
5272 SynthesizePID = PropertyImpDecl;
5273 }
5274
5275 // FIXME: This is not very efficient.
5276 S = "T";
5277
5278 // Encode result type.
5279 // GCC has some special rules regarding encoding of properties which
5280 // closely resembles encoding of ivars.
5281 getObjCEncodingForPropertyType(PD->getType(), S);
5282
5283 if (PD->isReadOnly()) {
5284 S += ",R";
5285 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5286 S += ",C";
5287 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5288 S += ",&";
5289 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5290 S += ",W";
5291 } else {
5292 switch (PD->getSetterKind()) {
5293 case ObjCPropertyDecl::Assign: break;
5294 case ObjCPropertyDecl::Copy: S += ",C"; break;
5295 case ObjCPropertyDecl::Retain: S += ",&"; break;
5296 case ObjCPropertyDecl::Weak: S += ",W"; break;
5297 }
5298 }
5299
5300 // It really isn't clear at all what this means, since properties
5301 // are "dynamic by default".
5302 if (Dynamic)
5303 S += ",D";
5304
5305 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5306 S += ",N";
5307
5308 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5309 S += ",G";
5310 S += PD->getGetterName().getAsString();
5311 }
5312
5313 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5314 S += ",S";
5315 S += PD->getSetterName().getAsString();
5316 }
5317
5318 if (SynthesizePID) {
5319 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5320 S += ",V";
5321 S += OID->getNameAsString();
5322 }
5323
5324 // FIXME: OBJCGC: weak & strong
5325}
5326
5327/// getLegacyIntegralTypeEncoding -
5328/// Another legacy compatibility encoding: 32-bit longs are encoded as
5329/// 'l' or 'L' , but not always. For typedefs, we need to use
5330/// 'i' or 'I' instead if encoding a struct field, or a pointer!
5331///
5332void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5333 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5334 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5335 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5336 PointeeTy = UnsignedIntTy;
5337 else
5338 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5339 PointeeTy = IntTy;
5340 }
5341 }
5342}
5343
5344void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5345 const FieldDecl *Field,
5346 QualType *NotEncodedT) const {
5347 // We follow the behavior of gcc, expanding structures which are
5348 // directly pointed to, and expanding embedded structures. Note that
5349 // these rules are sufficient to prevent recursive encoding of the
5350 // same type.
5351 getObjCEncodingForTypeImpl(T, S, true, true, Field,
5352 true /* outermost type */, false, false,
5353 false, false, false, NotEncodedT);
5354}
5355
5356void ASTContext::getObjCEncodingForPropertyType(QualType T,
5357 std::string& S) const {
5358 // Encode result type.
5359 // GCC has some special rules regarding encoding of properties which
5360 // closely resembles encoding of ivars.
5361 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5362 true /* outermost type */,
5363 true /* encoding property */);
5364}
5365
5366static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5367 BuiltinType::Kind kind) {
5368 switch (kind) {
5369 case BuiltinType::Void: return 'v';
5370 case BuiltinType::Bool: return 'B';
5371 case BuiltinType::Char_U:
5372 case BuiltinType::UChar: return 'C';
5373 case BuiltinType::Char16:
5374 case BuiltinType::UShort: return 'S';
5375 case BuiltinType::Char32:
5376 case BuiltinType::UInt: return 'I';
5377 case BuiltinType::ULong:
5378 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5379 case BuiltinType::UInt128: return 'T';
5380 case BuiltinType::ULongLong: return 'Q';
5381 case BuiltinType::Char_S:
5382 case BuiltinType::SChar: return 'c';
5383 case BuiltinType::Short: return 's';
5384 case BuiltinType::WChar_S:
5385 case BuiltinType::WChar_U:
5386 case BuiltinType::Int: return 'i';
5387 case BuiltinType::Long:
5388 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5389 case BuiltinType::LongLong: return 'q';
5390 case BuiltinType::Int128: return 't';
5391 case BuiltinType::Float: return 'f';
5392 case BuiltinType::Double: return 'd';
5393 case BuiltinType::LongDouble: return 'D';
5394 case BuiltinType::NullPtr: return '*'; // like char*
5395
5396 case BuiltinType::Half:
5397 // FIXME: potentially need @encodes for these!
5398 return ' ';
5399
5400 case BuiltinType::ObjCId:
5401 case BuiltinType::ObjCClass:
5402 case BuiltinType::ObjCSel:
5403 llvm_unreachable("@encoding ObjC primitive type")::llvm::llvm_unreachable_internal("@encoding ObjC primitive type"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5403)
;
5404
5405 // OpenCL and placeholder types don't need @encodings.
5406 case BuiltinType::OCLImage1d:
5407 case BuiltinType::OCLImage1dArray:
5408 case BuiltinType::OCLImage1dBuffer:
5409 case BuiltinType::OCLImage2d:
5410 case BuiltinType::OCLImage2dArray:
5411 case BuiltinType::OCLImage2dDepth:
5412 case BuiltinType::OCLImage2dArrayDepth:
5413 case BuiltinType::OCLImage2dMSAA:
5414 case BuiltinType::OCLImage2dArrayMSAA:
5415 case BuiltinType::OCLImage2dMSAADepth:
5416 case BuiltinType::OCLImage2dArrayMSAADepth:
5417 case BuiltinType::OCLImage3d:
5418 case BuiltinType::OCLEvent:
5419 case BuiltinType::OCLClkEvent:
5420 case BuiltinType::OCLQueue:
5421 case BuiltinType::OCLNDRange:
5422 case BuiltinType::OCLReserveID:
5423 case BuiltinType::OCLSampler:
5424 case BuiltinType::Dependent:
5425#define BUILTIN_TYPE(KIND, ID)
5426#define PLACEHOLDER_TYPE(KIND, ID) \
5427 case BuiltinType::KIND:
5428#include "clang/AST/BuiltinTypes.def"
5429 llvm_unreachable("invalid builtin type for @encode")::llvm::llvm_unreachable_internal("invalid builtin type for @encode"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5429)
;
5430 }
5431 llvm_unreachable("invalid BuiltinType::Kind value")::llvm::llvm_unreachable_internal("invalid BuiltinType::Kind value"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5431)
;
5432}
5433
5434static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5435 EnumDecl *Enum = ET->getDecl();
5436
5437 // The encoding of an non-fixed enum type is always 'i', regardless of size.
5438 if (!Enum->isFixed())
5439 return 'i';
5440
5441 // The encoding of a fixed enum type matches its fixed underlying type.
5442 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5443 return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5444}
5445
5446static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5447 QualType T, const FieldDecl *FD) {
5448 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl")((FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"
) ? static_cast<void> (0) : __assert_fail ("FD->isBitField() && \"not a bitfield - getObjCEncodingForTypeImpl\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5448, __PRETTY_FUNCTION__))
;
5449 S += 'b';
5450 // The NeXT runtime encodes bit fields as b followed by the number of bits.
5451 // The GNU runtime requires more information; bitfields are encoded as b,
5452 // then the offset (in bits) of the first element, then the type of the
5453 // bitfield, then the size in bits. For example, in this structure:
5454 //
5455 // struct
5456 // {
5457 // int integer;
5458 // int flags:2;
5459 // };
5460 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5461 // runtime, but b32i2 for the GNU runtime. The reason for this extra
5462 // information is not especially sensible, but we're stuck with it for
5463 // compatibility with GCC, although providing it breaks anything that
5464 // actually uses runtime introspection and wants to work on both runtimes...
5465 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5466 const RecordDecl *RD = FD->getParent();
5467 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5468 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5469 if (const EnumType *ET = T->getAs<EnumType>())
5470 S += ObjCEncodingForEnumType(Ctx, ET);
5471 else {
5472 const BuiltinType *BT = T->castAs<BuiltinType>();
5473 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5474 }
5475 }
5476 S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5477}
5478
5479// FIXME: Use SmallString for accumulating string.
5480void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5481 bool ExpandPointedToStructures,
5482 bool ExpandStructures,
5483 const FieldDecl *FD,
5484 bool OutermostType,
5485 bool EncodingProperty,
5486 bool StructField,
5487 bool EncodeBlockParameters,
5488 bool EncodeClassNames,
5489 bool EncodePointerToObjCTypedef,
5490 QualType *NotEncodedT) const {
5491 CanQualType CT = getCanonicalType(T);
5492 switch (CT->getTypeClass()) {
5493 case Type::Builtin:
5494 case Type::Enum:
5495 if (FD && FD->isBitField())
5496 return EncodeBitField(this, S, T, FD);
5497 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5498 S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5499 else
5500 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5501 return;
5502
5503 case Type::Complex: {
5504 const ComplexType *CT = T->castAs<ComplexType>();
5505 S += 'j';
5506 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
5507 return;
5508 }
5509
5510 case Type::Atomic: {
5511 const AtomicType *AT = T->castAs<AtomicType>();
5512 S += 'A';
5513 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
5514 return;
5515 }
5516
5517 // encoding for pointer or reference types.
5518 case Type::Pointer:
5519 case Type::LValueReference:
5520 case Type::RValueReference: {
5521 QualType PointeeTy;
5522 if (isa<PointerType>(CT)) {
5523 const PointerType *PT = T->castAs<PointerType>();
5524 if (PT->isObjCSelType()) {
5525 S += ':';
5526 return;
5527 }
5528 PointeeTy = PT->getPointeeType();
5529 } else {
5530 PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5531 }
5532
5533 bool isReadOnly = false;
5534 // For historical/compatibility reasons, the read-only qualifier of the
5535 // pointee gets emitted _before_ the '^'. The read-only qualifier of
5536 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5537 // Also, do not emit the 'r' for anything but the outermost type!
5538 if (isa<TypedefType>(T.getTypePtr())) {
5539 if (OutermostType && T.isConstQualified()) {
5540 isReadOnly = true;
5541 S += 'r';
5542 }
5543 } else if (OutermostType) {
5544 QualType P = PointeeTy;
5545 while (P->getAs<PointerType>())
5546 P = P->getAs<PointerType>()->getPointeeType();
5547 if (P.isConstQualified()) {
5548 isReadOnly = true;
5549 S += 'r';
5550 }
5551 }
5552 if (isReadOnly) {
5553 // Another legacy compatibility encoding. Some ObjC qualifier and type
5554 // combinations need to be rearranged.
5555 // Rewrite "in const" from "nr" to "rn"
5556 if (StringRef(S).endswith("nr"))
5557 S.replace(S.end()-2, S.end(), "rn");
5558 }
5559
5560 if (PointeeTy->isCharType()) {
5561 // char pointer types should be encoded as '*' unless it is a
5562 // type that has been typedef'd to 'BOOL'.
5563 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5564 S += '*';
5565 return;
5566 }
5567 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5568 // GCC binary compat: Need to convert "struct objc_class *" to "#".
5569 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5570 S += '#';
5571 return;
5572 }
5573 // GCC binary compat: Need to convert "struct objc_object *" to "@".
5574 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5575 S += '@';
5576 return;
5577 }
5578 // fall through...
5579 }
5580 S += '^';
5581 getLegacyIntegralTypeEncoding(PointeeTy);
5582
5583 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5584 nullptr, false, false, false, false, false, false,
5585 NotEncodedT);
5586 return;
5587 }
5588
5589 case Type::ConstantArray:
5590 case Type::IncompleteArray:
5591 case Type::VariableArray: {
5592 const ArrayType *AT = cast<ArrayType>(CT);
5593
5594 if (isa<IncompleteArrayType>(AT) && !StructField) {
5595 // Incomplete arrays are encoded as a pointer to the array element.
5596 S += '^';
5597
5598 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5599 false, ExpandStructures, FD);
5600 } else {
5601 S += '[';
5602
5603 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5604 S += llvm::utostr(CAT->getSize().getZExtValue());
5605 else {
5606 //Variable length arrays are encoded as a regular array with 0 elements.
5607 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&(((isa<VariableArrayType>(AT) || isa<IncompleteArrayType
>(AT)) && "Unknown array type!") ? static_cast<
void> (0) : __assert_fail ("(isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && \"Unknown array type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5608, __PRETTY_FUNCTION__))
5608 "Unknown array type!")(((isa<VariableArrayType>(AT) || isa<IncompleteArrayType
>(AT)) && "Unknown array type!") ? static_cast<
void> (0) : __assert_fail ("(isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && \"Unknown array type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5608, __PRETTY_FUNCTION__))
;
5609 S += '0';
5610 }
5611
5612 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5613 false, ExpandStructures, FD,
5614 false, false, false, false, false, false,
5615 NotEncodedT);
5616 S += ']';
5617 }
5618 return;
5619 }
5620
5621 case Type::FunctionNoProto:
5622 case Type::FunctionProto:
5623 S += '?';
5624 return;
5625
5626 case Type::Record: {
5627 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5628 S += RDecl->isUnion() ? '(' : '{';
5629 // Anonymous structures print as '?'
5630 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5631 S += II->getName();
5632 if (ClassTemplateSpecializationDecl *Spec
5633 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5634 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5635 llvm::raw_string_ostream OS(S);
5636 TemplateSpecializationType::PrintTemplateArgumentList(OS,
5637 TemplateArgs.data(),
5638 TemplateArgs.size(),
5639 (*this).getPrintingPolicy());
5640 }
5641 } else {
5642 S += '?';
5643 }
5644 if (ExpandStructures) {
5645 S += '=';
5646 if (!RDecl->isUnion()) {
5647 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
5648 } else {
5649 for (const auto *Field : RDecl->fields()) {
5650 if (FD) {
5651 S += '"';
5652 S += Field->getNameAsString();
5653 S += '"';
5654 }
5655
5656 // Special case bit-fields.
5657 if (Field->isBitField()) {
5658 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5659 Field);
5660 } else {
5661 QualType qt = Field->getType();
5662 getLegacyIntegralTypeEncoding(qt);
5663 getObjCEncodingForTypeImpl(qt, S, false, true,
5664 FD, /*OutermostType*/false,
5665 /*EncodingProperty*/false,
5666 /*StructField*/true,
5667 false, false, false, NotEncodedT);
5668 }
5669 }
5670 }
5671 }
5672 S += RDecl->isUnion() ? ')' : '}';
5673 return;
5674 }
5675
5676 case Type::BlockPointer: {
5677 const BlockPointerType *BT = T->castAs<BlockPointerType>();
5678 S += "@?"; // Unlike a pointer-to-function, which is "^?".
5679 if (EncodeBlockParameters) {
5680 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5681
5682 S += '<';
5683 // Block return type
5684 getObjCEncodingForTypeImpl(
5685 FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5686 FD, false /* OutermostType */, EncodingProperty,
5687 false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
5688 NotEncodedT);
5689 // Block self
5690 S += "@?";
5691 // Block parameters
5692 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5693 for (const auto &I : FPT->param_types())
5694 getObjCEncodingForTypeImpl(
5695 I, S, ExpandPointedToStructures, ExpandStructures, FD,
5696 false /* OutermostType */, EncodingProperty,
5697 false /* StructField */, EncodeBlockParameters, EncodeClassNames,
5698 false, NotEncodedT);
5699 }
5700 S += '>';
5701 }
5702 return;
5703 }
5704
5705 case Type::ObjCObject: {
5706 // hack to match legacy encoding of *id and *Class
5707 QualType Ty = getObjCObjectPointerType(CT);
5708 if (Ty->isObjCIdType()) {
5709 S += "{objc_object=}";
5710 return;
5711 }
5712 else if (Ty->isObjCClassType()) {
5713 S += "{objc_class=}";
5714 return;
5715 }
5716 }
5717
5718 case Type::ObjCInterface: {
5719 // Ignore protocol qualifiers when mangling at this level.
5720 // @encode(class_name)
5721 ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
5722 S += '{';
5723 S += OI->getObjCRuntimeNameAsString();
5724 S += '=';
5725 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5726 DeepCollectObjCIvars(OI, true, Ivars);
5727 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5728 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5729 if (Field->isBitField())
5730 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5731 else
5732 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5733 false, false, false, false, false,
5734 EncodePointerToObjCTypedef,
5735 NotEncodedT);
5736 }
5737 S += '}';
5738 return;
5739 }
5740
5741 case Type::ObjCObjectPointer: {
5742 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5743 if (OPT->isObjCIdType()) {
5744 S += '@';
5745 return;
5746 }
5747
5748 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5749 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5750 // Since this is a binary compatibility issue, need to consult with runtime
5751 // folks. Fortunately, this is a *very* obsure construct.
5752 S += '#';
5753 return;
5754 }
5755
5756 if (OPT->isObjCQualifiedIdType()) {
5757 getObjCEncodingForTypeImpl(getObjCIdType(), S,
5758 ExpandPointedToStructures,
5759 ExpandStructures, FD);
5760 if (FD || EncodingProperty || EncodeClassNames) {
5761 // Note that we do extended encoding of protocol qualifer list
5762 // Only when doing ivar or property encoding.
5763 S += '"';
5764 for (const auto *I : OPT->quals()) {
5765 S += '<';
5766 S += I->getObjCRuntimeNameAsString();
5767 S += '>';
5768 }
5769 S += '"';
5770 }
5771 return;
5772 }
5773
5774 QualType PointeeTy = OPT->getPointeeType();
5775 if (!EncodingProperty &&
5776 isa<TypedefType>(PointeeTy.getTypePtr()) &&
5777 !EncodePointerToObjCTypedef) {
5778 // Another historical/compatibility reason.
5779 // We encode the underlying type which comes out as
5780 // {...};
5781 S += '^';
5782 if (FD && OPT->getInterfaceDecl()) {
5783 // Prevent recursive encoding of fields in some rare cases.
5784 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5785 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5786 DeepCollectObjCIvars(OI, true, Ivars);
5787 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5788 if (cast<FieldDecl>(Ivars[i]) == FD) {
5789 S += '{';
5790 S += OI->getObjCRuntimeNameAsString();
5791 S += '}';
5792 return;
5793 }
5794 }
5795 }
5796 getObjCEncodingForTypeImpl(PointeeTy, S,
5797 false, ExpandPointedToStructures,
5798 nullptr,
5799 false, false, false, false, false,
5800 /*EncodePointerToObjCTypedef*/true);
5801 return;
5802 }
5803
5804 S += '@';
5805 if (OPT->getInterfaceDecl() &&
5806 (FD || EncodingProperty || EncodeClassNames)) {
5807 S += '"';
5808 S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
5809 for (const auto *I : OPT->quals()) {
5810 S += '<';
5811 S += I->getObjCRuntimeNameAsString();
5812 S += '>';
5813 }
5814 S += '"';
5815 }
5816 return;
5817 }
5818
5819 // gcc just blithely ignores member pointers.
5820 // FIXME: we shoul do better than that. 'M' is available.
5821 case Type::MemberPointer:
5822 // This matches gcc's encoding, even though technically it is insufficient.
5823 //FIXME. We should do a better job than gcc.
5824 case Type::Vector:
5825 case Type::ExtVector:
5826 // Until we have a coherent encoding of these three types, issue warning.
5827 { if (NotEncodedT)
5828 *NotEncodedT = T;
5829 return;
5830 }
5831
5832 // We could see an undeduced auto type here during error recovery.
5833 // Just ignore it.
5834 case Type::Auto:
5835 return;
5836
5837
5838#define ABSTRACT_TYPE(KIND, BASE)
5839#define TYPE(KIND, BASE)
5840#define DEPENDENT_TYPE(KIND, BASE) \
5841 case Type::KIND:
5842#define NON_CANONICAL_TYPE(KIND, BASE) \
5843 case Type::KIND:
5844#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5845 case Type::KIND:
5846#include "clang/AST/TypeNodes.def"
5847 llvm_unreachable("@encode for dependent type!")::llvm::llvm_unreachable_internal("@encode for dependent type!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5847)
;
5848 }
5849 llvm_unreachable("bad type kind!")::llvm::llvm_unreachable_internal("bad type kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5849)
;
5850}
5851
5852void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5853 std::string &S,
5854 const FieldDecl *FD,
5855 bool includeVBases,
5856 QualType *NotEncodedT) const {
5857 assert(RDecl && "Expected non-null RecordDecl")((RDecl && "Expected non-null RecordDecl") ? static_cast
<void> (0) : __assert_fail ("RDecl && \"Expected non-null RecordDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5857, __PRETTY_FUNCTION__))
;
5858 assert(!RDecl->isUnion() && "Should not be called for unions")((!RDecl->isUnion() && "Should not be called for unions"
) ? static_cast<void> (0) : __assert_fail ("!RDecl->isUnion() && \"Should not be called for unions\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5858, __PRETTY_FUNCTION__))
;
5859 if (!RDecl->getDefinition())
5860 return;
5861
5862 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5863 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5864 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5865
5866 if (CXXRec) {
5867 for (const auto &BI : CXXRec->bases()) {
5868 if (!BI.isVirtual()) {
5869 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5870 if (base->isEmpty())
5871 continue;
5872 uint64_t offs = toBits(layout.getBaseClassOffset(base));
5873 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5874 std::make_pair(offs, base));
5875 }
5876 }
5877 }
5878
5879 unsigned i = 0;
5880 for (auto *Field : RDecl->fields()) {
5881 uint64_t offs = layout.getFieldOffset(i);
5882 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5883 std::make_pair(offs, Field));
5884 ++i;
5885 }
5886
5887 if (CXXRec && includeVBases) {
5888 for (const auto &BI : CXXRec->vbases()) {
5889 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5890 if (base->isEmpty())
5891 continue;
5892 uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5893 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5894 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5895 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5896 std::make_pair(offs, base));
5897 }
5898 }
5899
5900 CharUnits size;
5901 if (CXXRec) {
5902 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5903 } else {
5904 size = layout.getSize();
5905 }
5906
5907#ifndef NDEBUG
5908 uint64_t CurOffs = 0;
5909#endif
5910 std::multimap<uint64_t, NamedDecl *>::iterator
5911 CurLayObj = FieldOrBaseOffsets.begin();
5912
5913 if (CXXRec && CXXRec->isDynamicClass() &&
5914 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5915 if (FD) {
5916 S += "\"_vptr$";
5917 std::string recname = CXXRec->getNameAsString();
5918 if (recname.empty()) recname = "?";
5919 S += recname;
5920 S += '"';
5921 }
5922 S += "^^?";
5923#ifndef NDEBUG
5924 CurOffs += getTypeSize(VoidPtrTy);
5925#endif
5926 }
5927
5928 if (!RDecl->hasFlexibleArrayMember()) {
5929 // Mark the end of the structure.
5930 uint64_t offs = toBits(size);
5931 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5932 std::make_pair(offs, nullptr));
5933 }
5934
5935 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5936#ifndef NDEBUG
5937 assert(CurOffs <= CurLayObj->first)((CurOffs <= CurLayObj->first) ? static_cast<void>
(0) : __assert_fail ("CurOffs <= CurLayObj->first", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5937, __PRETTY_FUNCTION__))
;
5938 if (CurOffs < CurLayObj->first) {
5939 uint64_t padding = CurLayObj->first - CurOffs;
5940 // FIXME: There doesn't seem to be a way to indicate in the encoding that
5941 // packing/alignment of members is different that normal, in which case
5942 // the encoding will be out-of-sync with the real layout.
5943 // If the runtime switches to just consider the size of types without
5944 // taking into account alignment, we could make padding explicit in the
5945 // encoding (e.g. using arrays of chars). The encoding strings would be
5946 // longer then though.
5947 CurOffs += padding;
5948 }
5949#endif
5950
5951 NamedDecl *dcl = CurLayObj->second;
5952 if (!dcl)
5953 break; // reached end of structure.
5954
5955 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5956 // We expand the bases without their virtual bases since those are going
5957 // in the initial structure. Note that this differs from gcc which
5958 // expands virtual bases each time one is encountered in the hierarchy,
5959 // making the encoding type bigger than it really is.
5960 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
5961 NotEncodedT);
5962 assert(!base->isEmpty())((!base->isEmpty()) ? static_cast<void> (0) : __assert_fail
("!base->isEmpty()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 5962, __PRETTY_FUNCTION__))
;
5963#ifndef NDEBUG
5964 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5965#endif
5966 } else {
5967 FieldDecl *field = cast<FieldDecl>(dcl);
5968 if (FD) {
5969 S += '"';
5970 S += field->getNameAsString();
5971 S += '"';
5972 }
5973
5974 if (field->isBitField()) {
5975 EncodeBitField(this, S, field->getType(), field);
5976#ifndef NDEBUG
5977 CurOffs += field->getBitWidthValue(*this);
5978#endif
5979 } else {
5980 QualType qt = field->getType();
5981 getLegacyIntegralTypeEncoding(qt);
5982 getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5983 /*OutermostType*/false,
5984 /*EncodingProperty*/false,
5985 /*StructField*/true,
5986 false, false, false, NotEncodedT);
5987#ifndef NDEBUG
5988 CurOffs += getTypeSize(field->getType());
5989#endif
5990 }
5991 }
5992 }
5993}
5994
5995void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5996 std::string& S) const {
5997 if (QT & Decl::OBJC_TQ_In)
5998 S += 'n';
5999 if (QT & Decl::OBJC_TQ_Inout)
6000 S += 'N';
6001 if (QT & Decl::OBJC_TQ_Out)
6002 S += 'o';
6003 if (QT & Decl::OBJC_TQ_Bycopy)
6004 S += 'O';
6005 if (QT & Decl::OBJC_TQ_Byref)
6006 S += 'R';
6007 if (QT & Decl::OBJC_TQ_Oneway)
6008 S += 'V';
6009}
6010
6011TypedefDecl *ASTContext::getObjCIdDecl() const {
6012 if (!ObjCIdDecl) {
6013 QualType T = getObjCObjectType(ObjCBuiltinIdTy, { }, { });
6014 T = getObjCObjectPointerType(T);
6015 ObjCIdDecl = buildImplicitTypedef(T, "id");
6016 }
6017 return ObjCIdDecl;
6018}
6019
6020TypedefDecl *ASTContext::getObjCSelDecl() const {
6021 if (!ObjCSelDecl) {
6022 QualType T = getPointerType(ObjCBuiltinSelTy);
6023 ObjCSelDecl = buildImplicitTypedef(T, "SEL");
6024 }
6025 return ObjCSelDecl;
6026}
6027
6028TypedefDecl *ASTContext::getObjCClassDecl() const {
6029 if (!ObjCClassDecl) {
6030 QualType T = getObjCObjectType(ObjCBuiltinClassTy, { }, { });
6031 T = getObjCObjectPointerType(T);
6032 ObjCClassDecl = buildImplicitTypedef(T, "Class");
6033 }
6034 return ObjCClassDecl;
6035}
6036
6037ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
6038 if (!ObjCProtocolClassDecl) {
6039 ObjCProtocolClassDecl
6040 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
6041 SourceLocation(),
6042 &Idents.get("Protocol"),
6043 /*typeParamList=*/nullptr,
6044 /*PrevDecl=*/nullptr,
6045 SourceLocation(), true);
6046 }
6047
6048 return ObjCProtocolClassDecl;
6049}
6050
6051//===----------------------------------------------------------------------===//
6052// __builtin_va_list Construction Functions
6053//===----------------------------------------------------------------------===//
6054
6055static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
6056 StringRef Name) {
6057 // typedef char* __builtin[_ms]_va_list;
6058 QualType T = Context->getPointerType(Context->CharTy);
6059 return Context->buildImplicitTypedef(T, Name);
6060}
6061
6062static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
6063 return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
6064}
6065
6066static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
6067 return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
6068}
6069
6070static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
6071 // typedef void* __builtin_va_list;
6072 QualType T = Context->getPointerType(Context->VoidTy);
6073 return Context->buildImplicitTypedef(T, "__builtin_va_list");
6074}
6075
6076static TypedefDecl *
6077CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
6078 // struct __va_list
6079 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
6080 if (Context->getLangOpts().CPlusPlus) {
6081 // namespace std { struct __va_list {
6082 NamespaceDecl *NS;
6083 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6084 Context->getTranslationUnitDecl(),
6085 /*Inline*/ false, SourceLocation(),
6086 SourceLocation(), &Context->Idents.get("std"),
6087 /*PrevDecl*/ nullptr);
6088 NS->setImplicit();
6089 VaListTagDecl->setDeclContext(NS);
6090 }
6091
6092 VaListTagDecl->startDefinition();
6093
6094 const size_t NumFields = 5;
6095 QualType FieldTypes[NumFields];
6096 const char *FieldNames[NumFields];
6097
6098 // void *__stack;
6099 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
6100 FieldNames[0] = "__stack";
6101
6102 // void *__gr_top;
6103 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
6104 FieldNames[1] = "__gr_top";
6105
6106 // void *__vr_top;
6107 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6108 FieldNames[2] = "__vr_top";
6109
6110 // int __gr_offs;
6111 FieldTypes[3] = Context->IntTy;
6112 FieldNames[3] = "__gr_offs";
6113
6114 // int __vr_offs;
6115 FieldTypes[4] = Context->IntTy;
6116 FieldNames[4] = "__vr_offs";
6117
6118 // Create fields
6119 for (unsigned i = 0; i < NumFields; ++i) {
6120 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6121 VaListTagDecl,
6122 SourceLocation(),
6123 SourceLocation(),
6124 &Context->Idents.get(FieldNames[i]),
6125 FieldTypes[i], /*TInfo=*/nullptr,
6126 /*BitWidth=*/nullptr,
6127 /*Mutable=*/false,
6128 ICIS_NoInit);
6129 Field->setAccess(AS_public);
6130 VaListTagDecl->addDecl(Field);
6131 }
6132 VaListTagDecl->completeDefinition();
6133 Context->VaListTagDecl = VaListTagDecl;
6134 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6135
6136 // } __builtin_va_list;
6137 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
6138}
6139
6140static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
6141 // typedef struct __va_list_tag {
6142 RecordDecl *VaListTagDecl;
6143
6144 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6145 VaListTagDecl->startDefinition();
6146
6147 const size_t NumFields = 5;
6148 QualType FieldTypes[NumFields];
6149 const char *FieldNames[NumFields];
6150
6151 // unsigned char gpr;
6152 FieldTypes[0] = Context->UnsignedCharTy;
6153 FieldNames[0] = "gpr";
6154
6155 // unsigned char fpr;
6156 FieldTypes[1] = Context->UnsignedCharTy;
6157 FieldNames[1] = "fpr";
6158
6159 // unsigned short reserved;
6160 FieldTypes[2] = Context->UnsignedShortTy;
6161 FieldNames[2] = "reserved";
6162
6163 // void* overflow_arg_area;
6164 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6165 FieldNames[3] = "overflow_arg_area";
6166
6167 // void* reg_save_area;
6168 FieldTypes[4] = Context->getPointerType(Context->VoidTy);
6169 FieldNames[4] = "reg_save_area";
6170
6171 // Create fields
6172 for (unsigned i = 0; i < NumFields; ++i) {
6173 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
6174 SourceLocation(),
6175 SourceLocation(),
6176 &Context->Idents.get(FieldNames[i]),
6177 FieldTypes[i], /*TInfo=*/nullptr,
6178 /*BitWidth=*/nullptr,
6179 /*Mutable=*/false,
6180 ICIS_NoInit);
6181 Field->setAccess(AS_public);
6182 VaListTagDecl->addDecl(Field);
6183 }
6184 VaListTagDecl->completeDefinition();
6185 Context->VaListTagDecl = VaListTagDecl;
6186 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6187
6188 // } __va_list_tag;
6189 TypedefDecl *VaListTagTypedefDecl =
6190 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6191
6192 QualType VaListTagTypedefType =
6193 Context->getTypedefType(VaListTagTypedefDecl);
6194
6195 // typedef __va_list_tag __builtin_va_list[1];
6196 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6197 QualType VaListTagArrayType
6198 = Context->getConstantArrayType(VaListTagTypedefType,
6199 Size, ArrayType::Normal, 0);
6200 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6201}
6202
6203static TypedefDecl *
6204CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
6205 // struct __va_list_tag {
6206 RecordDecl *VaListTagDecl;
6207 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6208 VaListTagDecl->startDefinition();
6209
6210 const size_t NumFields = 4;
6211 QualType FieldTypes[NumFields];
6212 const char *FieldNames[NumFields];
6213
6214 // unsigned gp_offset;
6215 FieldTypes[0] = Context->UnsignedIntTy;
6216 FieldNames[0] = "gp_offset";
6217
6218 // unsigned fp_offset;
6219 FieldTypes[1] = Context->UnsignedIntTy;
6220 FieldNames[1] = "fp_offset";
6221
6222 // void* overflow_arg_area;
6223 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6224 FieldNames[2] = "overflow_arg_area";
6225
6226 // void* reg_save_area;
6227 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6228 FieldNames[3] = "reg_save_area";
6229
6230 // Create fields
6231 for (unsigned i = 0; i < NumFields; ++i) {
6232 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6233 VaListTagDecl,
6234 SourceLocation(),
6235 SourceLocation(),
6236 &Context->Idents.get(FieldNames[i]),
6237 FieldTypes[i], /*TInfo=*/nullptr,
6238 /*BitWidth=*/nullptr,
6239 /*Mutable=*/false,
6240 ICIS_NoInit);
6241 Field->setAccess(AS_public);
6242 VaListTagDecl->addDecl(Field);
6243 }
6244 VaListTagDecl->completeDefinition();
6245 Context->VaListTagDecl = VaListTagDecl;
6246 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6247
6248 // };
6249
6250 // typedef struct __va_list_tag __builtin_va_list[1];
6251 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6252 QualType VaListTagArrayType =
6253 Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
6254 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6255}
6256
6257static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
6258 // typedef int __builtin_va_list[4];
6259 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
6260 QualType IntArrayType
6261 = Context->getConstantArrayType(Context->IntTy,
6262 Size, ArrayType::Normal, 0);
6263 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
6264}
6265
6266static TypedefDecl *
6267CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
6268 // struct __va_list
6269 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
6270 if (Context->getLangOpts().CPlusPlus) {
6271 // namespace std { struct __va_list {
6272 NamespaceDecl *NS;
6273 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6274 Context->getTranslationUnitDecl(),
6275 /*Inline*/false, SourceLocation(),
6276 SourceLocation(), &Context->Idents.get("std"),
6277 /*PrevDecl*/ nullptr);
6278 NS->setImplicit();
6279 VaListDecl->setDeclContext(NS);
6280 }
6281
6282 VaListDecl->startDefinition();
6283
6284 // void * __ap;
6285 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6286 VaListDecl,
6287 SourceLocation(),
6288 SourceLocation(),
6289 &Context->Idents.get("__ap"),
6290 Context->getPointerType(Context->VoidTy),
6291 /*TInfo=*/nullptr,
6292 /*BitWidth=*/nullptr,
6293 /*Mutable=*/false,
6294 ICIS_NoInit);
6295 Field->setAccess(AS_public);
6296 VaListDecl->addDecl(Field);
6297
6298 // };
6299 VaListDecl->completeDefinition();
6300
6301 // typedef struct __va_list __builtin_va_list;
6302 QualType T = Context->getRecordType(VaListDecl);
6303 return Context->buildImplicitTypedef(T, "__builtin_va_list");
6304}
6305
6306static TypedefDecl *
6307CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6308 // struct __va_list_tag {
6309 RecordDecl *VaListTagDecl;
6310 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6311 VaListTagDecl->startDefinition();
6312
6313 const size_t NumFields = 4;
6314 QualType FieldTypes[NumFields];
6315 const char *FieldNames[NumFields];
6316
6317 // long __gpr;
6318 FieldTypes[0] = Context->LongTy;
6319 FieldNames[0] = "__gpr";
6320
6321 // long __fpr;
6322 FieldTypes[1] = Context->LongTy;
6323 FieldNames[1] = "__fpr";
6324
6325 // void *__overflow_arg_area;
6326 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6327 FieldNames[2] = "__overflow_arg_area";
6328
6329 // void *__reg_save_area;
6330 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6331 FieldNames[3] = "__reg_save_area";
6332
6333 // Create fields
6334 for (unsigned i = 0; i < NumFields; ++i) {
6335 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6336 VaListTagDecl,
6337 SourceLocation(),
6338 SourceLocation(),
6339 &Context->Idents.get(FieldNames[i]),
6340 FieldTypes[i], /*TInfo=*/nullptr,
6341 /*BitWidth=*/nullptr,
6342 /*Mutable=*/false,
6343 ICIS_NoInit);
6344 Field->setAccess(AS_public);
6345 VaListTagDecl->addDecl(Field);
6346 }
6347 VaListTagDecl->completeDefinition();
6348 Context->VaListTagDecl = VaListTagDecl;
6349 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6350
6351 // };
6352
6353 // typedef __va_list_tag __builtin_va_list[1];
6354 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6355 QualType VaListTagArrayType =
6356 Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
6357
6358 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6359}
6360
6361static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6362 TargetInfo::BuiltinVaListKind Kind) {
6363 switch (Kind) {
6364 case TargetInfo::CharPtrBuiltinVaList:
6365 return CreateCharPtrBuiltinVaListDecl(Context);
6366 case TargetInfo::VoidPtrBuiltinVaList:
6367 return CreateVoidPtrBuiltinVaListDecl(Context);
6368 case TargetInfo::AArch64ABIBuiltinVaList:
6369 return CreateAArch64ABIBuiltinVaListDecl(Context);
6370 case TargetInfo::PowerABIBuiltinVaList:
6371 return CreatePowerABIBuiltinVaListDecl(Context);
6372 case TargetInfo::X86_64ABIBuiltinVaList:
6373 return CreateX86_64ABIBuiltinVaListDecl(Context);
6374 case TargetInfo::PNaClABIBuiltinVaList:
6375 return CreatePNaClABIBuiltinVaListDecl(Context);
6376 case TargetInfo::AAPCSABIBuiltinVaList:
6377 return CreateAAPCSABIBuiltinVaListDecl(Context);
6378 case TargetInfo::SystemZBuiltinVaList:
6379 return CreateSystemZBuiltinVaListDecl(Context);
6380 }
6381
6382 llvm_unreachable("Unhandled __builtin_va_list type kind")::llvm::llvm_unreachable_internal("Unhandled __builtin_va_list type kind"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6382)
;
6383}
6384
6385TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6386 if (!BuiltinVaListDecl) {
6387 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6388 assert(BuiltinVaListDecl->isImplicit())((BuiltinVaListDecl->isImplicit()) ? static_cast<void>
(0) : __assert_fail ("BuiltinVaListDecl->isImplicit()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6388, __PRETTY_FUNCTION__))
;
6389 }
6390
6391 return BuiltinVaListDecl;
6392}
6393
6394Decl *ASTContext::getVaListTagDecl() const {
6395 // Force the creation of VaListTagDecl by building the __builtin_va_list
6396 // declaration.
6397 if (!VaListTagDecl)
6398 (void)getBuiltinVaListDecl();
6399
6400 return VaListTagDecl;
6401}
6402
6403TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
6404 if (!BuiltinMSVaListDecl)
6405 BuiltinMSVaListDecl = CreateMSVaListDecl(this);
6406
6407 return BuiltinMSVaListDecl;
6408}
6409
6410void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6411 assert(ObjCConstantStringType.isNull() &&((ObjCConstantStringType.isNull() && "'NSConstantString' type already set!"
) ? static_cast<void> (0) : __assert_fail ("ObjCConstantStringType.isNull() && \"'NSConstantString' type already set!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6412, __PRETTY_FUNCTION__))
6412 "'NSConstantString' type already set!")((ObjCConstantStringType.isNull() && "'NSConstantString' type already set!"
) ? static_cast<void> (0) : __assert_fail ("ObjCConstantStringType.isNull() && \"'NSConstantString' type already set!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6412, __PRETTY_FUNCTION__))
;
6413
6414 ObjCConstantStringType = getObjCInterfaceType(Decl);
6415}
6416
6417/// \brief Retrieve the template name that corresponds to a non-empty
6418/// lookup.
6419TemplateName
6420ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6421 UnresolvedSetIterator End) const {
6422 unsigned size = End - Begin;
6423 assert(size > 1 && "set is not overloaded!")((size > 1 && "set is not overloaded!") ? static_cast
<void> (0) : __assert_fail ("size > 1 && \"set is not overloaded!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6423, __PRETTY_FUNCTION__))
;
6424
6425 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6426 size * sizeof(FunctionTemplateDecl*));
6427 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6428
6429 NamedDecl **Storage = OT->getStorage();
6430 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6431 NamedDecl *D = *I;
6432 assert(isa<FunctionTemplateDecl>(D) ||((isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl
>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl
()))) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6434, __PRETTY_FUNCTION__))
6433 (isa<UsingShadowDecl>(D) &&((isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl
>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl
()))) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6434, __PRETTY_FUNCTION__))
6434 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())))((isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl
>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl
()))) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6434, __PRETTY_FUNCTION__))
;
6435 *Storage++ = D;
6436 }
6437
6438 return TemplateName(OT);
6439}
6440
6441/// \brief Retrieve the template name that represents a qualified
6442/// template name such as \c std::vector.
6443TemplateName
6444ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6445 bool TemplateKeyword,
6446 TemplateDecl *Template) const {
6447 assert(NNS && "Missing nested-name-specifier in qualified template name")((NNS && "Missing nested-name-specifier in qualified template name"
) ? static_cast<void> (0) : __assert_fail ("NNS && \"Missing nested-name-specifier in qualified template name\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6447, __PRETTY_FUNCTION__))
;
6448
6449 // FIXME: Canonicalization?
6450 llvm::FoldingSetNodeID ID;
6451 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6452
6453 void *InsertPos = nullptr;
6454 QualifiedTemplateName *QTN =
6455 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6456 if (!QTN) {
6457 QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6458 QualifiedTemplateName(NNS, TemplateKeyword, Template);
6459 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6460 }
6461
6462 return TemplateName(QTN);
6463}
6464
6465/// \brief Retrieve the template name that represents a dependent
6466/// template name such as \c MetaFun::template apply.
6467TemplateName
6468ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6469 const IdentifierInfo *Name) const {
6470 assert((!NNS || NNS->isDependent()) &&(((!NNS || NNS->isDependent()) && "Nested name specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6471, __PRETTY_FUNCTION__))
6471 "Nested name specifier must be dependent")(((!NNS || NNS->isDependent()) && "Nested name specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6471, __PRETTY_FUNCTION__))
;
6472
6473 llvm::FoldingSetNodeID ID;
6474 DependentTemplateName::Profile(ID, NNS, Name);
6475
6476 void *InsertPos = nullptr;
6477 DependentTemplateName *QTN =
6478 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6479
6480 if (QTN)
6481 return TemplateName(QTN);
6482
6483 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6484 if (CanonNNS == NNS) {
6485 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6486 DependentTemplateName(NNS, Name);
6487 } else {
6488 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6489 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6490 DependentTemplateName(NNS, Name, Canon);
6491 DependentTemplateName *CheckQTN =
6492 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6493 assert(!CheckQTN && "Dependent type name canonicalization broken")((!CheckQTN && "Dependent type name canonicalization broken"
) ? static_cast<void> (0) : __assert_fail ("!CheckQTN && \"Dependent type name canonicalization broken\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6493, __PRETTY_FUNCTION__))
;
6494 (void)CheckQTN;
6495 }
6496
6497 DependentTemplateNames.InsertNode(QTN, InsertPos);
6498 return TemplateName(QTN);
6499}
6500
6501/// \brief Retrieve the template name that represents a dependent
6502/// template name such as \c MetaFun::template operator+.
6503TemplateName
6504ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6505 OverloadedOperatorKind Operator) const {
6506 assert((!NNS || NNS->isDependent()) &&(((!NNS || NNS->isDependent()) && "Nested name specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6507, __PRETTY_FUNCTION__))
6507 "Nested name specifier must be dependent")(((!NNS || NNS->isDependent()) && "Nested name specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6507, __PRETTY_FUNCTION__))
;
6508
6509 llvm::FoldingSetNodeID ID;
6510 DependentTemplateName::Profile(ID, NNS, Operator);
6511
6512 void *InsertPos = nullptr;
6513 DependentTemplateName *QTN
6514 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6515
6516 if (QTN)
6517 return TemplateName(QTN);
6518
6519 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6520 if (CanonNNS == NNS) {
6521 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6522 DependentTemplateName(NNS, Operator);
6523 } else {
6524 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6525 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6526 DependentTemplateName(NNS, Operator, Canon);
6527
6528 DependentTemplateName *CheckQTN
6529 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6530 assert(!CheckQTN && "Dependent template name canonicalization broken")((!CheckQTN && "Dependent template name canonicalization broken"
) ? static_cast<void> (0) : __assert_fail ("!CheckQTN && \"Dependent template name canonicalization broken\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6530, __PRETTY_FUNCTION__))
;
6531 (void)CheckQTN;
6532 }
6533
6534 DependentTemplateNames.InsertNode(QTN, InsertPos);
6535 return TemplateName(QTN);
6536}
6537
6538TemplateName
6539ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6540 TemplateName replacement) const {
6541 llvm::FoldingSetNodeID ID;
6542 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6543
6544 void *insertPos = nullptr;
6545 SubstTemplateTemplateParmStorage *subst
6546 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6547
6548 if (!subst) {
6549 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6550 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6551 }
6552
6553 return TemplateName(subst);
6554}
6555
6556TemplateName
6557ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6558 const TemplateArgument &ArgPack) const {
6559 ASTContext &Self = const_cast<ASTContext &>(*this);
6560 llvm::FoldingSetNodeID ID;
6561 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6562
6563 void *InsertPos = nullptr;
6564 SubstTemplateTemplateParmPackStorage *Subst
6565 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6566
6567 if (!Subst) {
6568 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6569 ArgPack.pack_size(),
6570 ArgPack.pack_begin());
6571 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6572 }
6573
6574 return TemplateName(Subst);
6575}
6576
6577/// getFromTargetType - Given one of the integer types provided by
6578/// TargetInfo, produce the corresponding type. The unsigned @p Type
6579/// is actually a value of type @c TargetInfo::IntType.
6580CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6581 switch (Type) {
6582 case TargetInfo::NoInt: return CanQualType();
6583 case TargetInfo::SignedChar: return SignedCharTy;
6584 case TargetInfo::UnsignedChar: return UnsignedCharTy;
6585 case TargetInfo::SignedShort: return ShortTy;
6586 case TargetInfo::UnsignedShort: return UnsignedShortTy;
6587 case TargetInfo::SignedInt: return IntTy;
6588 case TargetInfo::UnsignedInt: return UnsignedIntTy;
6589 case TargetInfo::SignedLong: return LongTy;
6590 case TargetInfo::UnsignedLong: return UnsignedLongTy;
6591 case TargetInfo::SignedLongLong: return LongLongTy;
6592 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6593 }
6594
6595 llvm_unreachable("Unhandled TargetInfo::IntType value")::llvm::llvm_unreachable_internal("Unhandled TargetInfo::IntType value"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6595)
;
6596}
6597
6598//===----------------------------------------------------------------------===//
6599// Type Predicates.
6600//===----------------------------------------------------------------------===//
6601
6602/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6603/// garbage collection attribute.
6604///
6605Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6606 if (getLangOpts().getGC() == LangOptions::NonGC)
6607 return Qualifiers::GCNone;
6608
6609 assert(getLangOpts().ObjC1)((getLangOpts().ObjC1) ? static_cast<void> (0) : __assert_fail
("getLangOpts().ObjC1", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6609, __PRETTY_FUNCTION__))
;
6610 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6611
6612 // Default behaviour under objective-C's gc is for ObjC pointers
6613 // (or pointers to them) be treated as though they were declared
6614 // as __strong.
6615 if (GCAttrs == Qualifiers::GCNone) {
6616 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6617 return Qualifiers::Strong;
6618 else if (Ty->isPointerType())
6619 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6620 } else {
6621 // It's not valid to set GC attributes on anything that isn't a
6622 // pointer.
6623#ifndef NDEBUG
6624 QualType CT = Ty->getCanonicalTypeInternal();
6625 while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6626 CT = AT->getElementType();
6627 assert(CT->isAnyPointerType() || CT->isBlockPointerType())((CT->isAnyPointerType() || CT->isBlockPointerType()) ?
static_cast<void> (0) : __assert_fail ("CT->isAnyPointerType() || CT->isBlockPointerType()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6627, __PRETTY_FUNCTION__))
;
6628#endif
6629 }
6630 return GCAttrs;
6631}
6632
6633//===----------------------------------------------------------------------===//
6634// Type Compatibility Testing
6635//===----------------------------------------------------------------------===//
6636
6637/// areCompatVectorTypes - Return true if the two specified vector types are
6638/// compatible.
6639static bool areCompatVectorTypes(const VectorType *LHS,
6640 const VectorType *RHS) {
6641 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified())((LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified
()) ? static_cast<void> (0) : __assert_fail ("LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6641, __PRETTY_FUNCTION__))
;
6642 return LHS->getElementType() == RHS->getElementType() &&
6643 LHS->getNumElements() == RHS->getNumElements();
6644}
6645
6646bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6647 QualType SecondVec) {
6648 assert(FirstVec->isVectorType() && "FirstVec should be a vector type")((FirstVec->isVectorType() && "FirstVec should be a vector type"
) ? static_cast<void> (0) : __assert_fail ("FirstVec->isVectorType() && \"FirstVec should be a vector type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6648, __PRETTY_FUNCTION__))
;
6649 assert(SecondVec->isVectorType() && "SecondVec should be a vector type")((SecondVec->isVectorType() && "SecondVec should be a vector type"
) ? static_cast<void> (0) : __assert_fail ("SecondVec->isVectorType() && \"SecondVec should be a vector type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6649, __PRETTY_FUNCTION__))
;
6650
6651 if (hasSameUnqualifiedType(FirstVec, SecondVec))
6652 return true;
6653
6654 // Treat Neon vector types and most AltiVec vector types as if they are the
6655 // equivalent GCC vector types.
6656 const VectorType *First = FirstVec->getAs<VectorType>();
6657 const VectorType *Second = SecondVec->getAs<VectorType>();
6658 if (First->getNumElements() == Second->getNumElements() &&
6659 hasSameType(First->getElementType(), Second->getElementType()) &&
6660 First->getVectorKind() != VectorType::AltiVecPixel &&
6661 First->getVectorKind() != VectorType::AltiVecBool &&
6662 Second->getVectorKind() != VectorType::AltiVecPixel &&
6663 Second->getVectorKind() != VectorType::AltiVecBool)
6664 return true;
6665
6666 return false;
6667}
6668
6669//===----------------------------------------------------------------------===//
6670// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6671//===----------------------------------------------------------------------===//
6672
6673/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6674/// inheritance hierarchy of 'rProto'.
6675bool
6676ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6677 ObjCProtocolDecl *rProto) const {
6678 if (declaresSameEntity(lProto, rProto))
6679 return true;
6680 for (auto *PI : rProto->protocols())
6681 if (ProtocolCompatibleWithProtocol(lProto, PI))
6682 return true;
6683 return false;
6684}
6685
6686/// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
6687/// Class<pr1, ...>.
6688bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6689 QualType rhs) {
6690 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6691 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6692 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible")(((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible"
) ? static_cast<void> (0) : __assert_fail ("(lhsQID && rhsOPT) && \"ObjCQualifiedClassTypesAreCompatible\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6692, __PRETTY_FUNCTION__))
;
6693
6694 for (auto *lhsProto : lhsQID->quals()) {
6695 bool match = false;
6696 for (auto *rhsProto : rhsOPT->quals()) {
6697 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6698 match = true;
6699 break;
6700 }
6701 }
6702 if (!match)
6703 return false;
6704 }
6705 return true;
6706}
6707
6708/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6709/// ObjCQualifiedIDType.
6710bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6711 bool compare) {
6712 // Allow id<P..> and an 'id' or void* type in all cases.
6713 if (lhs->isVoidPointerType() ||
6714 lhs->isObjCIdType() || lhs->isObjCClassType())
6715 return true;
6716 else if (rhs->isVoidPointerType() ||
6717 rhs->isObjCIdType() || rhs->isObjCClassType())
6718 return true;
6719
6720 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6721 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6722
6723 if (!rhsOPT) return false;
6724
6725 if (rhsOPT->qual_empty()) {
6726 // If the RHS is a unqualified interface pointer "NSString*",
6727 // make sure we check the class hierarchy.
6728 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6729 for (auto *I : lhsQID->quals()) {
6730 // when comparing an id<P> on lhs with a static type on rhs,
6731 // see if static class implements all of id's protocols, directly or
6732 // through its super class and categories.
6733 if (!rhsID->ClassImplementsProtocol(I, true))
6734 return false;
6735 }
6736 }
6737 // If there are no qualifiers and no interface, we have an 'id'.
6738 return true;
6739 }
6740 // Both the right and left sides have qualifiers.
6741 for (auto *lhsProto : lhsQID->quals()) {
6742 bool match = false;
6743
6744 // when comparing an id<P> on lhs with a static type on rhs,
6745 // see if static class implements all of id's protocols, directly or
6746 // through its super class and categories.
6747 for (auto *rhsProto : rhsOPT->quals()) {
6748 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6749 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6750 match = true;
6751 break;
6752 }
6753 }
6754 // If the RHS is a qualified interface pointer "NSString<P>*",
6755 // make sure we check the class hierarchy.
6756 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6757 for (auto *I : lhsQID->quals()) {
6758 // when comparing an id<P> on lhs with a static type on rhs,
6759 // see if static class implements all of id's protocols, directly or
6760 // through its super class and categories.
6761 if (rhsID->ClassImplementsProtocol(I, true)) {
6762 match = true;
6763 break;
6764 }
6765 }
6766 }
6767 if (!match)
6768 return false;
6769 }
6770
6771 return true;
6772 }
6773
6774 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6775 assert(rhsQID && "One of the LHS/RHS should be id<x>")((rhsQID && "One of the LHS/RHS should be id<x>"
) ? static_cast<void> (0) : __assert_fail ("rhsQID && \"One of the LHS/RHS should be id<x>\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6775, __PRETTY_FUNCTION__))
;
6776
6777 if (const ObjCObjectPointerType *lhsOPT =
6778 lhs->getAsObjCInterfacePointerType()) {
6779 // If both the right and left sides have qualifiers.
6780 for (auto *lhsProto : lhsOPT->quals()) {
6781 bool match = false;
6782
6783 // when comparing an id<P> on rhs with a static type on lhs,
6784 // see if static class implements all of id's protocols, directly or
6785 // through its super class and categories.
6786 // First, lhs protocols in the qualifier list must be found, direct
6787 // or indirect in rhs's qualifier list or it is a mismatch.
6788 for (auto *rhsProto : rhsQID->quals()) {
6789 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6790 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6791 match = true;
6792 break;
6793 }
6794 }
6795 if (!match)
6796 return false;
6797 }
6798
6799 // Static class's protocols, or its super class or category protocols
6800 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6801 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6802 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6803 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6804 // This is rather dubious but matches gcc's behavior. If lhs has
6805 // no type qualifier and its class has no static protocol(s)
6806 // assume that it is mismatch.
6807 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6808 return false;
6809 for (auto *lhsProto : LHSInheritedProtocols) {
6810 bool match = false;
6811 for (auto *rhsProto : rhsQID->quals()) {
6812 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6813 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6814 match = true;
6815 break;
6816 }
6817 }
6818 if (!match)
6819 return false;
6820 }
6821 }
6822 return true;
6823 }
6824 return false;
6825}
6826
6827/// canAssignObjCInterfaces - Return true if the two interface types are
6828/// compatible for assignment from RHS to LHS. This handles validation of any
6829/// protocol qualifiers on the LHS or RHS.
6830///
6831bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6832 const ObjCObjectPointerType *RHSOPT) {
6833 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6834 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6835
6836 // If either type represents the built-in 'id' or 'Class' types, return true.
6837 if (LHS->isObjCUnqualifiedIdOrClass() ||
6838 RHS->isObjCUnqualifiedIdOrClass())
6839 return true;
6840
6841 // Function object that propagates a successful result or handles
6842 // __kindof types.
6843 auto finish = [&](bool succeeded) -> bool {
6844 if (succeeded)
6845 return true;
6846
6847 if (!RHS->isKindOfType())
6848 return false;
6849
6850 // Strip off __kindof and protocol qualifiers, then check whether
6851 // we can assign the other way.
6852 return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
6853 LHSOPT->stripObjCKindOfTypeAndQuals(*this));
6854 };
6855
6856 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
6857 return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6858 QualType(RHSOPT,0),
6859 false));
6860 }
6861
6862 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
6863 return finish(ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6864 QualType(RHSOPT,0)));
6865 }
6866
6867 // If we have 2 user-defined types, fall into that path.
6868 if (LHS->getInterface() && RHS->getInterface()) {
6869 return finish(canAssignObjCInterfaces(LHS, RHS));
6870 }
6871
6872 return false;
6873}
6874
6875/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6876/// for providing type-safety for objective-c pointers used to pass/return
6877/// arguments in block literals. When passed as arguments, passing 'A*' where
6878/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6879/// not OK. For the return type, the opposite is not OK.
6880bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6881 const ObjCObjectPointerType *LHSOPT,
6882 const ObjCObjectPointerType *RHSOPT,
6883 bool BlockReturnType) {
6884
6885 // Function object that propagates a successful result or handles
6886 // __kindof types.
6887 auto finish = [&](bool succeeded) -> bool {
6888 if (succeeded)
6889 return true;
6890
6891 const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
6892 if (!Expected->isKindOfType())
6893 return false;
6894
6895 // Strip off __kindof and protocol qualifiers, then check whether
6896 // we can assign the other way.
6897 return canAssignObjCInterfacesInBlockPointer(
6898 RHSOPT->stripObjCKindOfTypeAndQuals(*this),
6899 LHSOPT->stripObjCKindOfTypeAndQuals(*this),
6900 BlockReturnType);
6901 };
6902
6903 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6904 return true;
6905
6906 if (LHSOPT->isObjCBuiltinType()) {
6907 return finish(RHSOPT->isObjCBuiltinType() ||
6908 RHSOPT->isObjCQualifiedIdType());
6909 }
6910
6911 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6912 return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6913 QualType(RHSOPT,0),
6914 false));
6915
6916 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6917 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6918 if (LHS && RHS) { // We have 2 user-defined types.
6919 if (LHS != RHS) {
6920 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6921 return finish(BlockReturnType);
6922 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6923 return finish(!BlockReturnType);
6924 }
6925 else
6926 return true;
6927 }
6928 return false;
6929}
6930
6931/// Comparison routine for Objective-C protocols to be used with
6932/// llvm::array_pod_sort.
6933static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
6934 ObjCProtocolDecl * const *rhs) {
6935 return (*lhs)->getName().compare((*rhs)->getName());
6936
6937}
6938
6939/// getIntersectionOfProtocols - This routine finds the intersection of set
6940/// of protocols inherited from two distinct objective-c pointer objects with
6941/// the given common base.
6942/// It is used to build composite qualifier list of the composite type of
6943/// the conditional expression involving two objective-c pointer objects.
6944static
6945void getIntersectionOfProtocols(ASTContext &Context,
6946 const ObjCInterfaceDecl *CommonBase,
6947 const ObjCObjectPointerType *LHSOPT,
6948 const ObjCObjectPointerType *RHSOPT,
6949 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
6950
6951 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6952 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6953 assert(LHS->getInterface() && "LHS must have an interface base")((LHS->getInterface() && "LHS must have an interface base"
) ? static_cast<void> (0) : __assert_fail ("LHS->getInterface() && \"LHS must have an interface base\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6953, __PRETTY_FUNCTION__))
;
6954 assert(RHS->getInterface() && "RHS must have an interface base")((RHS->getInterface() && "RHS must have an interface base"
) ? static_cast<void> (0) : __assert_fail ("RHS->getInterface() && \"RHS must have an interface base\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 6954, __PRETTY_FUNCTION__))
;
6955
6956 // Add all of the protocols for the LHS.
6957 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
6958
6959 // Start with the protocol qualifiers.
6960 for (auto proto : LHS->quals()) {
6961 Context.CollectInheritedProtocols(proto, LHSProtocolSet);
6962 }
6963
6964 // Also add the protocols associated with the LHS interface.
6965 Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
6966
6967 // Add all of the protocls for the RHS.
6968 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
6969
6970 // Start with the protocol qualifiers.
6971 for (auto proto : RHS->quals()) {
6972 Context.CollectInheritedProtocols(proto, RHSProtocolSet);
6973 }
6974
6975 // Also add the protocols associated with the RHS interface.
6976 Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
6977
6978 // Compute the intersection of the collected protocol sets.
6979 for (auto proto : LHSProtocolSet) {
6980 if (RHSProtocolSet.count(proto))
6981 IntersectionSet.push_back(proto);
6982 }
6983
6984 // Compute the set of protocols that is implied by either the common type or
6985 // the protocols within the intersection.
6986 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
6987 Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
6988
6989 // Remove any implied protocols from the list of inherited protocols.
6990 if (!ImpliedProtocols.empty()) {
6991 IntersectionSet.erase(
6992 std::remove_if(IntersectionSet.begin(),
6993 IntersectionSet.end(),
6994 [&](ObjCProtocolDecl *proto) -> bool {
6995 return ImpliedProtocols.count(proto) > 0;
6996 }),
6997 IntersectionSet.end());
6998 }
6999
7000 // Sort the remaining protocols by name.
7001 llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
7002 compareObjCProtocolsByName);
7003}
7004
7005/// Determine whether the first type is a subtype of the second.
7006static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
7007 QualType rhs) {
7008 // Common case: two object pointers.
7009 const ObjCObjectPointerType *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
7010 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
7011 if (lhsOPT && rhsOPT)
7012 return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
7013
7014 // Two block pointers.
7015 const BlockPointerType *lhsBlock = lhs->getAs<BlockPointerType>();
7016 const BlockPointerType *rhsBlock = rhs->getAs<BlockPointerType>();
7017 if (lhsBlock && rhsBlock)
7018 return ctx.typesAreBlockPointerCompatible(lhs, rhs);
7019
7020 // If either is an unqualified 'id' and the other is a block, it's
7021 // acceptable.
7022 if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
7023 (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
7024 return true;
7025
7026 return false;
7027}
7028
7029// Check that the given Objective-C type argument lists are equivalent.
7030static bool sameObjCTypeArgs(ASTContext &ctx,
7031 const ObjCInterfaceDecl *iface,
7032 ArrayRef<QualType> lhsArgs,
7033 ArrayRef<QualType> rhsArgs,
7034 bool stripKindOf) {
7035 if (lhsArgs.size() != rhsArgs.size())
7036 return false;
7037
7038 ObjCTypeParamList *typeParams = iface->getTypeParamList();
7039 for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
7040 if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
7041 continue;
7042
7043 switch (typeParams->begin()[i]->getVariance()) {
7044 case ObjCTypeParamVariance::Invariant:
7045 if (!stripKindOf ||
7046 !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
7047 rhsArgs[i].stripObjCKindOfType(ctx))) {
7048 return false;
7049 }
7050 break;
7051
7052 case ObjCTypeParamVariance::Covariant:
7053 if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
7054 return false;
7055 break;
7056
7057 case ObjCTypeParamVariance::Contravariant:
7058 if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
7059 return false;
7060 break;
7061 }
7062 }
7063
7064 return true;
7065}
7066
7067QualType ASTContext::areCommonBaseCompatible(
7068 const ObjCObjectPointerType *Lptr,
7069 const ObjCObjectPointerType *Rptr) {
7070 const ObjCObjectType *LHS = Lptr->getObjectType();
7071 const ObjCObjectType *RHS = Rptr->getObjectType();
7072 const ObjCInterfaceDecl* LDecl = LHS->getInterface();
7073 const ObjCInterfaceDecl* RDecl = RHS->getInterface();
7074
7075 if (!LDecl || !RDecl)
7076 return QualType();
7077
7078 // Follow the left-hand side up the class hierarchy until we either hit a
7079 // root or find the RHS. Record the ancestors in case we don't find it.
7080 llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
7081 LHSAncestors;
7082 while (true) {
7083 // Record this ancestor. We'll need this if the common type isn't in the
7084 // path from the LHS to the root.
7085 LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
7086
7087 if (declaresSameEntity(LHS->getInterface(), RDecl)) {
7088 // Get the type arguments.
7089 ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
7090 bool anyChanges = false;
7091 if (LHS->isSpecialized() && RHS->isSpecialized()) {
7092 // Both have type arguments, compare them.
7093 if (!sameObjCTypeArgs(*this, LHS->getInterface(),
7094 LHS->getTypeArgs(), RHS->getTypeArgs(),
7095 /*stripKindOf=*/true))
7096 return QualType();
7097 } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
7098 // If only one has type arguments, the result will not have type
7099 // arguments.
7100 LHSTypeArgs = { };
7101 anyChanges = true;
7102 }
7103
7104 // Compute the intersection of protocols.
7105 SmallVector<ObjCProtocolDecl *, 8> Protocols;
7106 getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
7107 Protocols);
7108 if (!Protocols.empty())
7109 anyChanges = true;
7110
7111 // If anything in the LHS will have changed, build a new result type.
7112 if (anyChanges) {
7113 QualType Result = getObjCInterfaceType(LHS->getInterface());
7114 Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
7115 LHS->isKindOfType());
7116 return getObjCObjectPointerType(Result);
7117 }
7118
7119 return getObjCObjectPointerType(QualType(LHS, 0));
7120 }
7121
7122 // Find the superclass.
7123 QualType LHSSuperType = LHS->getSuperClassType();
7124 if (LHSSuperType.isNull())
7125 break;
7126
7127 LHS = LHSSuperType->castAs<ObjCObjectType>();
7128 }
7129
7130 // We didn't find anything by following the LHS to its root; now check
7131 // the RHS against the cached set of ancestors.
7132 while (true) {
7133 auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
7134 if (KnownLHS != LHSAncestors.end()) {
7135 LHS = KnownLHS->second;
7136
7137 // Get the type arguments.
7138 ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
7139 bool anyChanges = false;
7140 if (LHS->isSpecialized() && RHS->isSpecialized()) {
7141 // Both have type arguments, compare them.
7142 if (!sameObjCTypeArgs(*this, LHS->getInterface(),
7143 LHS->getTypeArgs(), RHS->getTypeArgs(),
7144 /*stripKindOf=*/true))
7145 return QualType();
7146 } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
7147 // If only one has type arguments, the result will not have type
7148 // arguments.
7149 RHSTypeArgs = { };
7150 anyChanges = true;
7151 }
7152
7153 // Compute the intersection of protocols.
7154 SmallVector<ObjCProtocolDecl *, 8> Protocols;
7155 getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
7156 Protocols);
7157 if (!Protocols.empty())
7158 anyChanges = true;
7159
7160 if (anyChanges) {
7161 QualType Result = getObjCInterfaceType(RHS->getInterface());
7162 Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
7163 RHS->isKindOfType());
7164 return getObjCObjectPointerType(Result);
7165 }
7166
7167 return getObjCObjectPointerType(QualType(RHS, 0));
7168 }
7169
7170 // Find the superclass of the RHS.
7171 QualType RHSSuperType = RHS->getSuperClassType();
7172 if (RHSSuperType.isNull())
7173 break;
7174
7175 RHS = RHSSuperType->castAs<ObjCObjectType>();
7176 }
7177
7178 return QualType();
7179}
7180
7181bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
7182 const ObjCObjectType *RHS) {
7183 assert(LHS->getInterface() && "LHS is not an interface type")((LHS->getInterface() && "LHS is not an interface type"
) ? static_cast<void> (0) : __assert_fail ("LHS->getInterface() && \"LHS is not an interface type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7183, __PRETTY_FUNCTION__))
;
7184 assert(RHS->getInterface() && "RHS is not an interface type")((RHS->getInterface() && "RHS is not an interface type"
) ? static_cast<void> (0) : __assert_fail ("RHS->getInterface() && \"RHS is not an interface type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7184, __PRETTY_FUNCTION__))
;
7185
7186 // Verify that the base decls are compatible: the RHS must be a subclass of
7187 // the LHS.
7188 ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
7189 bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
7190 if (!IsSuperClass)
7191 return false;
7192
7193 // If the LHS has protocol qualifiers, determine whether all of them are
7194 // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
7195 // LHS).
7196 if (LHS->getNumProtocols() > 0) {
7197 // OK if conversion of LHS to SuperClass results in narrowing of types
7198 // ; i.e., SuperClass may implement at least one of the protocols
7199 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
7200 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
7201 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
7202 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
7203 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
7204 // qualifiers.
7205 for (auto *RHSPI : RHS->quals())
7206 CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
7207 // If there is no protocols associated with RHS, it is not a match.
7208 if (SuperClassInheritedProtocols.empty())
7209 return false;
7210
7211 for (const auto *LHSProto : LHS->quals()) {
7212 bool SuperImplementsProtocol = false;
7213 for (auto *SuperClassProto : SuperClassInheritedProtocols)
7214 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
7215 SuperImplementsProtocol = true;
7216 break;
7217 }
7218 if (!SuperImplementsProtocol)
7219 return false;
7220 }
7221 }
7222
7223 // If the LHS is specialized, we may need to check type arguments.
7224 if (LHS->isSpecialized()) {
7225 // Follow the superclass chain until we've matched the LHS class in the
7226 // hierarchy. This substitutes type arguments through.
7227 const ObjCObjectType *RHSSuper = RHS;
7228 while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
7229 RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
7230
7231 // If the RHS is specializd, compare type arguments.
7232 if (RHSSuper->isSpecialized() &&
7233 !sameObjCTypeArgs(*this, LHS->getInterface(),
7234 LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
7235 /*stripKindOf=*/true)) {
7236 return false;
7237 }
7238 }
7239
7240 return true;
7241}
7242
7243bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
7244 // get the "pointed to" types
7245 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
7246 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
7247
7248 if (!LHSOPT || !RHSOPT)
7249 return false;
7250
7251 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
7252 canAssignObjCInterfaces(RHSOPT, LHSOPT);
7253}
7254
7255bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
7256 return canAssignObjCInterfaces(
7257 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
7258 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
7259}
7260
7261/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
7262/// both shall have the identically qualified version of a compatible type.
7263/// C99 6.2.7p1: Two types have compatible types if their types are the
7264/// same. See 6.7.[2,3,5] for additional rules.
7265bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
7266 bool CompareUnqualified) {
7267 if (getLangOpts().CPlusPlus)
7268 return hasSameType(LHS, RHS);
7269
7270 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
7271}
7272
7273bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
7274 return typesAreCompatible(LHS, RHS);
7275}
7276
7277bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
7278 return !mergeTypes(LHS, RHS, true).isNull();
7279}
7280
7281/// mergeTransparentUnionType - if T is a transparent union type and a member
7282/// of T is compatible with SubType, return the merged type, else return
7283/// QualType()
7284QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
7285 bool OfBlockPointer,
7286 bool Unqualified) {
7287 if (const RecordType *UT = T->getAsUnionType()) {
7288 RecordDecl *UD = UT->getDecl();
7289 if (UD->hasAttr<TransparentUnionAttr>()) {
7290 for (const auto *I : UD->fields()) {
7291 QualType ET = I->getType().getUnqualifiedType();
7292 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
7293 if (!MT.isNull())
7294 return MT;
7295 }
7296 }
7297 }
7298
7299 return QualType();
7300}
7301
7302/// mergeFunctionParameterTypes - merge two types which appear as function
7303/// parameter types
7304QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
7305 bool OfBlockPointer,
7306 bool Unqualified) {
7307 // GNU extension: two types are compatible if they appear as a function
7308 // argument, one of the types is a transparent union type and the other
7309 // type is compatible with a union member
7310 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
7311 Unqualified);
7312 if (!lmerge.isNull())
7313 return lmerge;
7314
7315 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
7316 Unqualified);
7317 if (!rmerge.isNull())
7318 return rmerge;
7319
7320 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
7321}
7322
7323QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
7324 bool OfBlockPointer,
7325 bool Unqualified) {
7326 const FunctionType *lbase = lhs->getAs<FunctionType>();
7327 const FunctionType *rbase = rhs->getAs<FunctionType>();
7328 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
7329 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
7330 bool allLTypes = true;
7331 bool allRTypes = true;
7332
7333 // Check return type
7334 QualType retType;
7335 if (OfBlockPointer) {
7336 QualType RHS = rbase->getReturnType();
7337 QualType LHS = lbase->getReturnType();
7338 bool UnqualifiedResult = Unqualified;
7339 if (!UnqualifiedResult)
7340 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
7341 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
7342 }
7343 else
7344 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
7345 Unqualified);
7346 if (retType.isNull()) return QualType();
7347
7348 if (Unqualified)
7349 retType = retType.getUnqualifiedType();
7350
7351 CanQualType LRetType = getCanonicalType(lbase->getReturnType());
7352 CanQualType RRetType = getCanonicalType(rbase->getReturnType());
7353 if (Unqualified) {
7354 LRetType = LRetType.getUnqualifiedType();
7355 RRetType = RRetType.getUnqualifiedType();
7356 }
7357
7358 if (getCanonicalType(retType) != LRetType)
7359 allLTypes = false;
7360 if (getCanonicalType(retType) != RRetType)
7361 allRTypes = false;
7362
7363 // FIXME: double check this
7364 // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
7365 // rbase->getRegParmAttr() != 0 &&
7366 // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
7367 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
7368 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
7369
7370 // Compatible functions must have compatible calling conventions
7371 if (lbaseInfo.getCC() != rbaseInfo.getCC())
7372 return QualType();
7373
7374 // Regparm is part of the calling convention.
7375 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
7376 return QualType();
7377 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
7378 return QualType();
7379
7380 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
7381 return QualType();
7382
7383 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
7384 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
7385
7386 if (lbaseInfo.getNoReturn() != NoReturn)
7387 allLTypes = false;
7388 if (rbaseInfo.getNoReturn() != NoReturn)
7389 allRTypes = false;
7390
7391 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
7392
7393 if (lproto && rproto) { // two C99 style function prototypes
7394 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&((!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec
() && "C++ shouldn't be here") ? static_cast<void>
(0) : __assert_fail ("!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && \"C++ shouldn't be here\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7395, __PRETTY_FUNCTION__))
7395 "C++ shouldn't be here")((!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec
() && "C++ shouldn't be here") ? static_cast<void>
(0) : __assert_fail ("!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && \"C++ shouldn't be here\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7395, __PRETTY_FUNCTION__))
;
7396 // Compatible functions must have the same number of parameters
7397 if (lproto->getNumParams() != rproto->getNumParams())
7398 return QualType();
7399
7400 // Variadic and non-variadic functions aren't compatible
7401 if (lproto->isVariadic() != rproto->isVariadic())
7402 return QualType();
7403
7404 if (lproto->getTypeQuals() != rproto->getTypeQuals())
7405 return QualType();
7406
7407 if (LangOpts.ObjCAutoRefCount &&
7408 !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
7409 return QualType();
7410
7411 // Check parameter type compatibility
7412 SmallVector<QualType, 10> types;
7413 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
7414 QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
7415 QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
7416 QualType paramType = mergeFunctionParameterTypes(
7417 lParamType, rParamType, OfBlockPointer, Unqualified);
7418 if (paramType.isNull())
7419 return QualType();
7420
7421 if (Unqualified)
7422 paramType = paramType.getUnqualifiedType();
7423
7424 types.push_back(paramType);
7425 if (Unqualified) {
7426 lParamType = lParamType.getUnqualifiedType();
7427 rParamType = rParamType.getUnqualifiedType();
7428 }
7429
7430 if (getCanonicalType(paramType) != getCanonicalType(lParamType))
7431 allLTypes = false;
7432 if (getCanonicalType(paramType) != getCanonicalType(rParamType))
7433 allRTypes = false;
7434 }
7435
7436 if (allLTypes) return lhs;
7437 if (allRTypes) return rhs;
7438
7439 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7440 EPI.ExtInfo = einfo;
7441 return getFunctionType(retType, types, EPI);
7442 }
7443
7444 if (lproto) allRTypes = false;
7445 if (rproto) allLTypes = false;
7446
7447 const FunctionProtoType *proto = lproto ? lproto : rproto;
7448 if (proto) {
7449 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here")((!proto->hasExceptionSpec() && "C++ shouldn't be here"
) ? static_cast<void> (0) : __assert_fail ("!proto->hasExceptionSpec() && \"C++ shouldn't be here\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7449, __PRETTY_FUNCTION__))
;
7450 if (proto->isVariadic()) return QualType();
7451 // Check that the types are compatible with the types that
7452 // would result from default argument promotions (C99 6.7.5.3p15).
7453 // The only types actually affected are promotable integer
7454 // types and floats, which would be passed as a different
7455 // type depending on whether the prototype is visible.
7456 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
7457 QualType paramTy = proto->getParamType(i);
7458
7459 // Look at the converted type of enum types, since that is the type used
7460 // to pass enum values.
7461 if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
7462 paramTy = Enum->getDecl()->getIntegerType();
7463 if (paramTy.isNull())
7464 return QualType();
7465 }
7466
7467 if (paramTy->isPromotableIntegerType() ||
7468 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
7469 return QualType();
7470 }
7471
7472 if (allLTypes) return lhs;
7473 if (allRTypes) return rhs;
7474
7475 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7476 EPI.ExtInfo = einfo;
7477 return getFunctionType(retType, proto->getParamTypes(), EPI);
7478 }
7479
7480 if (allLTypes) return lhs;
7481 if (allRTypes) return rhs;
7482 return getFunctionNoProtoType(retType, einfo);
7483}
7484
7485/// Given that we have an enum type and a non-enum type, try to merge them.
7486static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7487 QualType other, bool isBlockReturnType) {
7488 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7489 // a signed integer type, or an unsigned integer type.
7490 // Compatibility is based on the underlying type, not the promotion
7491 // type.
7492 QualType underlyingType = ET->getDecl()->getIntegerType();
7493 if (underlyingType.isNull()) return QualType();
7494 if (Context.hasSameType(underlyingType, other))
7495 return other;
7496
7497 // In block return types, we're more permissive and accept any
7498 // integral type of the same size.
7499 if (isBlockReturnType && other->isIntegerType() &&
7500 Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7501 return other;
7502
7503 return QualType();
7504}
7505
7506QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7507 bool OfBlockPointer,
7508 bool Unqualified, bool BlockReturnType) {
7509 // C++ [expr]: If an expression initially has the type "reference to T", the
7510 // type is adjusted to "T" prior to any further analysis, the expression
7511 // designates the object or function denoted by the reference, and the
7512 // expression is an lvalue unless the reference is an rvalue reference and
7513 // the expression is a function call (possibly inside parentheses).
7514 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?")((!LHS->getAs<ReferenceType>() && "LHS is a reference type?"
) ? static_cast<void> (0) : __assert_fail ("!LHS->getAs<ReferenceType>() && \"LHS is a reference type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7514, __PRETTY_FUNCTION__))
;
7515 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?")((!RHS->getAs<ReferenceType>() && "RHS is a reference type?"
) ? static_cast<void> (0) : __assert_fail ("!RHS->getAs<ReferenceType>() && \"RHS is a reference type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7515, __PRETTY_FUNCTION__))
;
7516
7517 if (Unqualified) {
7518 LHS = LHS.getUnqualifiedType();
7519 RHS = RHS.getUnqualifiedType();
7520 }
7521
7522 QualType LHSCan = getCanonicalType(LHS),
7523 RHSCan = getCanonicalType(RHS);
7524
7525 // If two types are identical, they are compatible.
7526 if (LHSCan == RHSCan)
7527 return LHS;
7528
7529 // If the qualifiers are different, the types aren't compatible... mostly.
7530 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7531 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7532 if (LQuals != RQuals) {
7533 // If any of these qualifiers are different, we have a type
7534 // mismatch.
7535 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7536 LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7537 LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7538 return QualType();
7539
7540 // Exactly one GC qualifier difference is allowed: __strong is
7541 // okay if the other type has no GC qualifier but is an Objective
7542 // C object pointer (i.e. implicitly strong by default). We fix
7543 // this by pretending that the unqualified type was actually
7544 // qualified __strong.
7545 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7546 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7547 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements")(((GC_L != GC_R) && "unequal qualifier sets had only equal elements"
) ? static_cast<void> (0) : __assert_fail ("(GC_L != GC_R) && \"unequal qualifier sets had only equal elements\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7547, __PRETTY_FUNCTION__))
;
7548
7549 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7550 return QualType();
7551
7552 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7553 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7554 }
7555 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7556 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7557 }
7558 return QualType();
7559 }
7560
7561 // Okay, qualifiers are equal.
7562
7563 Type::TypeClass LHSClass = LHSCan->getTypeClass();
7564 Type::TypeClass RHSClass = RHSCan->getTypeClass();
7565
7566 // We want to consider the two function types to be the same for these
7567 // comparisons, just force one to the other.
7568 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7569 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7570
7571 // Same as above for arrays
7572 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7573 LHSClass = Type::ConstantArray;
7574 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7575 RHSClass = Type::ConstantArray;
7576
7577 // ObjCInterfaces are just specialized ObjCObjects.
7578 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7579 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7580
7581 // Canonicalize ExtVector -> Vector.
7582 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7583 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7584
7585 // If the canonical type classes don't match.
7586 if (LHSClass != RHSClass) {
7587 // Note that we only have special rules for turning block enum
7588 // returns into block int returns, not vice-versa.
7589 if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7590 return mergeEnumWithInteger(*this, ETy, RHS, false);
7591 }
7592 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7593 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7594 }
7595 // allow block pointer type to match an 'id' type.
7596 if (OfBlockPointer && !BlockReturnType) {
7597 if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7598 return LHS;
7599 if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7600 return RHS;
7601 }
7602
7603 return QualType();
7604 }
7605
7606 // The canonical type classes match.
7607 switch (LHSClass) {
7608#define TYPE(Class, Base)
7609#define ABSTRACT_TYPE(Class, Base)
7610#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7611#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7612#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7613#include "clang/AST/TypeNodes.def"
7614 llvm_unreachable("Non-canonical and dependent types shouldn't get here")::llvm::llvm_unreachable_internal("Non-canonical and dependent types shouldn't get here"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7614)
;
7615
7616 case Type::Auto:
7617 case Type::LValueReference:
7618 case Type::RValueReference:
7619 case Type::MemberPointer:
7620 llvm_unreachable("C++ should never be in mergeTypes")::llvm::llvm_unreachable_internal("C++ should never be in mergeTypes"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7620)
;
7621
7622 case Type::ObjCInterface:
7623 case Type::IncompleteArray:
7624 case Type::VariableArray:
7625 case Type::FunctionProto:
7626 case Type::ExtVector:
7627 llvm_unreachable("Types are eliminated above")::llvm::llvm_unreachable_internal("Types are eliminated above"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7627)
;
7628
7629 case Type::Pointer:
7630 {
7631 // Merge two pointer types, while trying to preserve typedef info
7632 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7633 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7634 if (Unqualified) {
7635 LHSPointee = LHSPointee.getUnqualifiedType();
7636 RHSPointee = RHSPointee.getUnqualifiedType();
7637 }
7638 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7639 Unqualified);
7640 if (ResultType.isNull()) return QualType();
7641 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7642 return LHS;
7643 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7644 return RHS;
7645 return getPointerType(ResultType);
7646 }
7647 case Type::BlockPointer:
7648 {
7649 // Merge two block pointer types, while trying to preserve typedef info
7650 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7651 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7652 if (Unqualified) {
7653 LHSPointee = LHSPointee.getUnqualifiedType();
7654 RHSPointee = RHSPointee.getUnqualifiedType();
7655 }
7656 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7657 Unqualified);
7658 if (ResultType.isNull()) return QualType();
7659 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7660 return LHS;
7661 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7662 return RHS;
7663 return getBlockPointerType(ResultType);
7664 }
7665 case Type::Atomic:
7666 {
7667 // Merge two pointer types, while trying to preserve typedef info
7668 QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7669 QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7670 if (Unqualified) {
7671 LHSValue = LHSValue.getUnqualifiedType();
7672 RHSValue = RHSValue.getUnqualifiedType();
7673 }
7674 QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7675 Unqualified);
7676 if (ResultType.isNull()) return QualType();
7677 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7678 return LHS;
7679 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7680 return RHS;
7681 return getAtomicType(ResultType);
7682 }
7683 case Type::ConstantArray:
7684 {
7685 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7686 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7687 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7688 return QualType();
7689
7690 QualType LHSElem = getAsArrayType(LHS)->getElementType();
7691 QualType RHSElem = getAsArrayType(RHS)->getElementType();
7692 if (Unqualified) {
7693 LHSElem = LHSElem.getUnqualifiedType();
7694 RHSElem = RHSElem.getUnqualifiedType();
7695 }
7696
7697 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7698 if (ResultType.isNull()) return QualType();
7699 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7700 return LHS;
7701 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7702 return RHS;
7703 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7704 ArrayType::ArraySizeModifier(), 0);
7705 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7706 ArrayType::ArraySizeModifier(), 0);
7707 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7708 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7709 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7710 return LHS;
7711 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7712 return RHS;
7713 if (LVAT) {
7714 // FIXME: This isn't correct! But tricky to implement because
7715 // the array's size has to be the size of LHS, but the type
7716 // has to be different.
7717 return LHS;
7718 }
7719 if (RVAT) {
7720 // FIXME: This isn't correct! But tricky to implement because
7721 // the array's size has to be the size of RHS, but the type
7722 // has to be different.
7723 return RHS;
7724 }
7725 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7726 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7727 return getIncompleteArrayType(ResultType,
7728 ArrayType::ArraySizeModifier(), 0);
7729 }
7730 case Type::FunctionNoProto:
7731 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7732 case Type::Record:
7733 case Type::Enum:
7734 return QualType();
7735 case Type::Builtin:
7736 // Only exactly equal builtin types are compatible, which is tested above.
7737 return QualType();
7738 case Type::Complex:
7739 // Distinct complex types are incompatible.
7740 return QualType();
7741 case Type::Vector:
7742 // FIXME: The merged type should be an ExtVector!
7743 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7744 RHSCan->getAs<VectorType>()))
7745 return LHS;
7746 return QualType();
7747 case Type::ObjCObject: {
7748 // Check if the types are assignment compatible.
7749 // FIXME: This should be type compatibility, e.g. whether
7750 // "LHS x; RHS x;" at global scope is legal.
7751 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7752 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7753 if (canAssignObjCInterfaces(LHSIface, RHSIface))
7754 return LHS;
7755
7756 return QualType();
7757 }
7758 case Type::ObjCObjectPointer: {
7759 if (OfBlockPointer) {
7760 if (canAssignObjCInterfacesInBlockPointer(
7761 LHS->getAs<ObjCObjectPointerType>(),
7762 RHS->getAs<ObjCObjectPointerType>(),
7763 BlockReturnType))
7764 return LHS;
7765 return QualType();
7766 }
7767 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7768 RHS->getAs<ObjCObjectPointerType>()))
7769 return LHS;
7770
7771 return QualType();
7772 }
7773 }
7774
7775 llvm_unreachable("Invalid Type::Class!")::llvm::llvm_unreachable_internal("Invalid Type::Class!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7775)
;
7776}
7777
7778bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7779 const FunctionProtoType *FromFunctionType,
7780 const FunctionProtoType *ToFunctionType) {
7781 if (FromFunctionType->hasAnyConsumedParams() !=
7782 ToFunctionType->hasAnyConsumedParams())
7783 return false;
7784 FunctionProtoType::ExtProtoInfo FromEPI =
7785 FromFunctionType->getExtProtoInfo();
7786 FunctionProtoType::ExtProtoInfo ToEPI =
7787 ToFunctionType->getExtProtoInfo();
7788 if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7789 for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7790 if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7791 return false;
7792 }
7793 return true;
7794}
7795
7796/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7797/// 'RHS' attributes and returns the merged version; including for function
7798/// return types.
7799QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7800 QualType LHSCan = getCanonicalType(LHS),
7801 RHSCan = getCanonicalType(RHS);
7802 // If two types are identical, they are compatible.
7803 if (LHSCan == RHSCan)
7804 return LHS;
7805 if (RHSCan->isFunctionType()) {
7806 if (!LHSCan->isFunctionType())
7807 return QualType();
7808 QualType OldReturnType =
7809 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7810 QualType NewReturnType =
7811 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7812 QualType ResReturnType =
7813 mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7814 if (ResReturnType.isNull())
7815 return QualType();
7816 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7817 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7818 // In either case, use OldReturnType to build the new function type.
7819 const FunctionType *F = LHS->getAs<FunctionType>();
7820 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7821 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7822 EPI.ExtInfo = getFunctionExtInfo(LHS);
7823 QualType ResultType =
7824 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7825 return ResultType;
7826 }
7827 }
7828 return QualType();
7829 }
7830
7831 // If the qualifiers are different, the types can still be merged.
7832 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7833 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7834 if (LQuals != RQuals) {
7835 // If any of these qualifiers are different, we have a type mismatch.
7836 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7837 LQuals.getAddressSpace() != RQuals.getAddressSpace())
7838 return QualType();
7839
7840 // Exactly one GC qualifier difference is allowed: __strong is
7841 // okay if the other type has no GC qualifier but is an Objective
7842 // C object pointer (i.e. implicitly strong by default). We fix
7843 // this by pretending that the unqualified type was actually
7844 // qualified __strong.
7845 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7846 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7847 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements")(((GC_L != GC_R) && "unequal qualifier sets had only equal elements"
) ? static_cast<void> (0) : __assert_fail ("(GC_L != GC_R) && \"unequal qualifier sets had only equal elements\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7847, __PRETTY_FUNCTION__))
;
7848
7849 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7850 return QualType();
7851
7852 if (GC_L == Qualifiers::Strong)
7853 return LHS;
7854 if (GC_R == Qualifiers::Strong)
7855 return RHS;
7856 return QualType();
7857 }
7858
7859 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7860 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7861 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7862 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7863 if (ResQT == LHSBaseQT)
7864 return LHS;
7865 if (ResQT == RHSBaseQT)
7866 return RHS;
7867 }
7868 return QualType();
7869}
7870
7871//===----------------------------------------------------------------------===//
7872// Integer Predicates
7873//===----------------------------------------------------------------------===//
7874
7875unsigned ASTContext::getIntWidth(QualType T) const {
7876 if (const EnumType *ET = T->getAs<EnumType>())
7877 T = ET->getDecl()->getIntegerType();
7878 if (T->isBooleanType())
7879 return 1;
7880 // For builtin types, just use the standard type sizing method
7881 return (unsigned)getTypeSize(T);
7882}
7883
7884QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7885 assert(T->hasSignedIntegerRepresentation() && "Unexpected type")((T->hasSignedIntegerRepresentation() && "Unexpected type"
) ? static_cast<void> (0) : __assert_fail ("T->hasSignedIntegerRepresentation() && \"Unexpected type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7885, __PRETTY_FUNCTION__))
;
7886
7887 // Turn <4 x signed int> -> <4 x unsigned int>
7888 if (const VectorType *VTy = T->getAs<VectorType>())
7889 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7890 VTy->getNumElements(), VTy->getVectorKind());
7891
7892 // For enums, we return the unsigned version of the base type.
7893 if (const EnumType *ETy = T->getAs<EnumType>())
7894 T = ETy->getDecl()->getIntegerType();
7895
7896 const BuiltinType *BTy = T->getAs<BuiltinType>();
7897 assert(BTy && "Unexpected signed integer type")((BTy && "Unexpected signed integer type") ? static_cast
<void> (0) : __assert_fail ("BTy && \"Unexpected signed integer type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7897, __PRETTY_FUNCTION__))
;
7898 switch (BTy->getKind()) {
7899 case BuiltinType::Char_S:
7900 case BuiltinType::SChar:
7901 return UnsignedCharTy;
7902 case BuiltinType::Short:
7903 return UnsignedShortTy;
7904 case BuiltinType::Int:
7905 return UnsignedIntTy;
7906 case BuiltinType::Long:
7907 return UnsignedLongTy;
7908 case BuiltinType::LongLong:
7909 return UnsignedLongLongTy;
7910 case BuiltinType::Int128:
7911 return UnsignedInt128Ty;
7912 default:
7913 llvm_unreachable("Unexpected signed integer type")::llvm::llvm_unreachable_internal("Unexpected signed integer type"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7913)
;
7914 }
7915}
7916
7917ASTMutationListener::~ASTMutationListener() { }
7918
7919void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7920 QualType ReturnType) {}
7921
7922//===----------------------------------------------------------------------===//
7923// Builtin Type Computation
7924//===----------------------------------------------------------------------===//
7925
7926/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7927/// pointer over the consumed characters. This returns the resultant type. If
7928/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7929/// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
7930/// a vector of "i*".
7931///
7932/// RequiresICE is filled in on return to indicate whether the value is required
7933/// to be an Integer Constant Expression.
7934static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7935 ASTContext::GetBuiltinTypeError &Error,
7936 bool &RequiresICE,
7937 bool AllowTypeModifiers) {
7938 // Modifiers.
7939 int HowLong = 0;
7940 bool Signed = false, Unsigned = false;
7941 RequiresICE = false;
7942
7943 // Read the prefixed modifiers first.
7944 bool Done = false;
7945 while (!Done) {
7946 switch (*Str++) {
7947 default: Done = true; --Str; break;
7948 case 'I':
7949 RequiresICE = true;
7950 break;
7951 case 'S':
7952 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!")((!Unsigned && "Can't use both 'S' and 'U' modifiers!"
) ? static_cast<void> (0) : __assert_fail ("!Unsigned && \"Can't use both 'S' and 'U' modifiers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7952, __PRETTY_FUNCTION__))
;
7953 assert(!Signed && "Can't use 'S' modifier multiple times!")((!Signed && "Can't use 'S' modifier multiple times!"
) ? static_cast<void> (0) : __assert_fail ("!Signed && \"Can't use 'S' modifier multiple times!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7953, __PRETTY_FUNCTION__))
;
7954 Signed = true;
7955 break;
7956 case 'U':
7957 assert(!Signed && "Can't use both 'S' and 'U' modifiers!")((!Signed && "Can't use both 'S' and 'U' modifiers!")
? static_cast<void> (0) : __assert_fail ("!Signed && \"Can't use both 'S' and 'U' modifiers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7957, __PRETTY_FUNCTION__))
;
7958 assert(!Unsigned && "Can't use 'U' modifier multiple times!")((!Unsigned && "Can't use 'U' modifier multiple times!"
) ? static_cast<void> (0) : __assert_fail ("!Unsigned && \"Can't use 'U' modifier multiple times!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7958, __PRETTY_FUNCTION__))
;
7959 Unsigned = true;
7960 break;
7961 case 'L':
7962 assert(HowLong <= 2 && "Can't have LLLL modifier")((HowLong <= 2 && "Can't have LLLL modifier") ? static_cast
<void> (0) : __assert_fail ("HowLong <= 2 && \"Can't have LLLL modifier\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7962, __PRETTY_FUNCTION__))
;
7963 ++HowLong;
7964 break;
7965 case 'W':
7966 // This modifier represents int64 type.
7967 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!")((HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"
) ? static_cast<void> (0) : __assert_fail ("HowLong == 0 && \"Can't use both 'L' and 'W' modifiers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7967, __PRETTY_FUNCTION__))
;
7968 switch (Context.getTargetInfo().getInt64Type()) {
7969 default:
7970 llvm_unreachable("Unexpected integer type")::llvm::llvm_unreachable_internal("Unexpected integer type", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7970)
;
7971 case TargetInfo::SignedLong:
7972 HowLong = 1;
7973 break;
7974 case TargetInfo::SignedLongLong:
7975 HowLong = 2;
7976 break;
7977 }
7978 }
7979 }
7980
7981 QualType Type;
7982
7983 // Read the base type.
7984 switch (*Str++) {
7985 default: llvm_unreachable("Unknown builtin type letter!")::llvm::llvm_unreachable_internal("Unknown builtin type letter!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7985)
;
7986 case 'v':
7987 assert(HowLong == 0 && !Signed && !Unsigned &&((HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'v'!") ? static_cast<void> (0
) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'v'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7988, __PRETTY_FUNCTION__))
7988 "Bad modifiers used with 'v'!")((HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'v'!") ? static_cast<void> (0
) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'v'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7988, __PRETTY_FUNCTION__))
;
7989 Type = Context.VoidTy;
7990 break;
7991 case 'h':
7992 assert(HowLong == 0 && !Signed && !Unsigned &&((HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'h'!") ? static_cast<void> (0
) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'h'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7993, __PRETTY_FUNCTION__))
7993 "Bad modifiers used with 'h'!")((HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'h'!") ? static_cast<void> (0
) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'h'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7993, __PRETTY_FUNCTION__))
;
7994 Type = Context.HalfTy;
7995 break;
7996 case 'f':
7997 assert(HowLong == 0 && !Signed && !Unsigned &&((HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'f'!") ? static_cast<void> (0
) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'f'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7998, __PRETTY_FUNCTION__))
7998 "Bad modifiers used with 'f'!")((HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'f'!") ? static_cast<void> (0
) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'f'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 7998, __PRETTY_FUNCTION__))
;
7999 Type = Context.FloatTy;
8000 break;
8001 case 'd':
8002 assert(HowLong < 2 && !Signed && !Unsigned &&((HowLong < 2 && !Signed && !Unsigned &&
"Bad modifiers used with 'd'!") ? static_cast<void> (0
) : __assert_fail ("HowLong < 2 && !Signed && !Unsigned && \"Bad modifiers used with 'd'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8003, __PRETTY_FUNCTION__))
8003 "Bad modifiers used with 'd'!")((HowLong < 2 && !Signed && !Unsigned &&
"Bad modifiers used with 'd'!") ? static_cast<void> (0
) : __assert_fail ("HowLong < 2 && !Signed && !Unsigned && \"Bad modifiers used with 'd'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8003, __PRETTY_FUNCTION__))
;
8004 if (HowLong)
8005 Type = Context.LongDoubleTy;
8006 else
8007 Type = Context.DoubleTy;
8008 break;
8009 case 's':
8010 assert(HowLong == 0 && "Bad modifiers used with 's'!")((HowLong == 0 && "Bad modifiers used with 's'!") ? static_cast
<void> (0) : __assert_fail ("HowLong == 0 && \"Bad modifiers used with 's'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8010, __PRETTY_FUNCTION__))
;
8011 if (Unsigned)
8012 Type = Context.UnsignedShortTy;
8013 else
8014 Type = Context.ShortTy;
8015 break;
8016 case 'i':
8017 if (HowLong == 3)
8018 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
8019 else if (HowLong == 2)
8020 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
8021 else if (HowLong == 1)
8022 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
8023 else
8024 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
8025 break;
8026 case 'c':
8027 assert(HowLong == 0 && "Bad modifiers used with 'c'!")((HowLong == 0 && "Bad modifiers used with 'c'!") ? static_cast
<void> (0) : __assert_fail ("HowLong == 0 && \"Bad modifiers used with 'c'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8027, __PRETTY_FUNCTION__))
;
8028 if (Signed)
8029 Type = Context.SignedCharTy;
8030 else if (Unsigned)
8031 Type = Context.UnsignedCharTy;
8032 else
8033 Type = Context.CharTy;
8034 break;
8035 case 'b': // boolean
8036 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!")((HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers for 'b'!") ? static_cast<void> (0) : __assert_fail
("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers for 'b'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8036, __PRETTY_FUNCTION__))
;
8037 Type = Context.BoolTy;
8038 break;
8039 case 'z': // size_t.
8040 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!")((HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers for 'z'!") ? static_cast<void> (0) : __assert_fail
("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers for 'z'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8040, __PRETTY_FUNCTION__))
;
8041 Type = Context.getSizeType();
8042 break;
8043 case 'F':
8044 Type = Context.getCFConstantStringType();
8045 break;
8046 case 'G':
8047 Type = Context.getObjCIdType();
8048 break;
8049 case 'H':
8050 Type = Context.getObjCSelType();
8051 break;
8052 case 'M':
8053 Type = Context.getObjCSuperType();
8054 break;
8055 case 'a':
8056 Type = Context.getBuiltinVaListType();
8057 assert(!Type.isNull() && "builtin va list type not initialized!")((!Type.isNull() && "builtin va list type not initialized!"
) ? static_cast<void> (0) : __assert_fail ("!Type.isNull() && \"builtin va list type not initialized!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8057, __PRETTY_FUNCTION__))
;
8058 break;
8059 case 'A':
8060 // This is a "reference" to a va_list; however, what exactly
8061 // this means depends on how va_list is defined. There are two
8062 // different kinds of va_list: ones passed by value, and ones
8063 // passed by reference. An example of a by-value va_list is
8064 // x86, where va_list is a char*. An example of by-ref va_list
8065 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
8066 // we want this argument to be a char*&; for x86-64, we want
8067 // it to be a __va_list_tag*.
8068 Type = Context.getBuiltinVaListType();
8069 assert(!Type.isNull() && "builtin va list type not initialized!")((!Type.isNull() && "builtin va list type not initialized!"
) ? static_cast<void> (0) : __assert_fail ("!Type.isNull() && \"builtin va list type not initialized!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8069, __PRETTY_FUNCTION__))
;
8070 if (Type->isArrayType())
8071 Type = Context.getArrayDecayedType(Type);
8072 else
8073 Type = Context.getLValueReferenceType(Type);
8074 break;
8075 case 'V': {
8076 char *End;
8077 unsigned NumElements = strtoul(Str, &End, 10);
8078 assert(End != Str && "Missing vector size")((End != Str && "Missing vector size") ? static_cast<
void> (0) : __assert_fail ("End != Str && \"Missing vector size\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8078, __PRETTY_FUNCTION__))
;
8079 Str = End;
8080
8081 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
8082 RequiresICE, false);
8083 assert(!RequiresICE && "Can't require vector ICE")((!RequiresICE && "Can't require vector ICE") ? static_cast
<void> (0) : __assert_fail ("!RequiresICE && \"Can't require vector ICE\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8083, __PRETTY_FUNCTION__))
;
8084
8085 // TODO: No way to make AltiVec vectors in builtins yet.
8086 Type = Context.getVectorType(ElementType, NumElements,
8087 VectorType::GenericVector);
8088 break;
8089 }
8090 case 'E': {
8091 char *End;
8092
8093 unsigned NumElements = strtoul(Str, &End, 10);
8094 assert(End != Str && "Missing vector size")((End != Str && "Missing vector size") ? static_cast<
void> (0) : __assert_fail ("End != Str && \"Missing vector size\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8094, __PRETTY_FUNCTION__))
;
8095
8096 Str = End;
8097
8098 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
8099 false);
8100 Type = Context.getExtVectorType(ElementType, NumElements);
8101 break;
8102 }
8103 case 'X': {
8104 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
8105 false);
8106 assert(!RequiresICE && "Can't require complex ICE")((!RequiresICE && "Can't require complex ICE") ? static_cast
<void> (0) : __assert_fail ("!RequiresICE && \"Can't require complex ICE\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8106, __PRETTY_FUNCTION__))
;
8107 Type = Context.getComplexType(ElementType);
8108 break;
8109 }
8110 case 'Y' : {
8111 Type = Context.getPointerDiffType();
8112 break;
8113 }
8114 case 'P':
8115 Type = Context.getFILEType();
8116 if (Type.isNull()) {
8117 Error = ASTContext::GE_Missing_stdio;
8118 return QualType();
8119 }
8120 break;
8121 case 'J':
8122 if (Signed)
8123 Type = Context.getsigjmp_bufType();
8124 else
8125 Type = Context.getjmp_bufType();
8126
8127 if (Type.isNull()) {
8128 Error = ASTContext::GE_Missing_setjmp;
8129 return QualType();
8130 }
8131 break;
8132 case 'K':
8133 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!")((HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers for 'K'!") ? static_cast<void> (0) : __assert_fail
("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers for 'K'!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8133, __PRETTY_FUNCTION__))
;
8134 Type = Context.getucontext_tType();
8135
8136 if (Type.isNull()) {
8137 Error = ASTContext::GE_Missing_ucontext;
8138 return QualType();
8139 }
8140 break;
8141 case 'p':
8142 Type = Context.getProcessIDType();
8143 break;
8144 }
8145
8146 // If there are modifiers and if we're allowed to parse them, go for it.
8147 Done = !AllowTypeModifiers;
8148 while (!Done) {
8149 switch (char c = *Str++) {
8150 default: Done = true; --Str; break;
8151 case '*':
8152 case '&': {
8153 // Both pointers and references can have their pointee types
8154 // qualified with an address space.
8155 char *End;
8156 unsigned AddrSpace = strtoul(Str, &End, 10);
8157 if (End != Str && AddrSpace != 0) {
8158 Type = Context.getAddrSpaceQualType(Type, AddrSpace);
8159 Str = End;
8160 }
8161 if (c == '*')
8162 Type = Context.getPointerType(Type);
8163 else
8164 Type = Context.getLValueReferenceType(Type);
8165 break;
8166 }
8167 // FIXME: There's no way to have a built-in with an rvalue ref arg.
8168 case 'C':
8169 Type = Type.withConst();
8170 break;
8171 case 'D':
8172 Type = Context.getVolatileType(Type);
8173 break;
8174 case 'R':
8175 Type = Type.withRestrict();
8176 break;
8177 }
8178 }
8179
8180 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&(((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
"Integer constant 'I' type must be an integer") ? static_cast
<void> (0) : __assert_fail ("(!RequiresICE || Type->isIntegralOrEnumerationType()) && \"Integer constant 'I' type must be an integer\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8181, __PRETTY_FUNCTION__))
8181 "Integer constant 'I' type must be an integer")(((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
"Integer constant 'I' type must be an integer") ? static_cast
<void> (0) : __assert_fail ("(!RequiresICE || Type->isIntegralOrEnumerationType()) && \"Integer constant 'I' type must be an integer\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8181, __PRETTY_FUNCTION__))
;
8182
8183 return Type;
8184}
8185
8186/// GetBuiltinType - Return the type for the specified builtin.
8187QualType ASTContext::GetBuiltinType(unsigned Id,
8188 GetBuiltinTypeError &Error,
8189 unsigned *IntegerConstantArgs) const {
8190 const char *TypeStr = BuiltinInfo.getTypeString(Id);
8191
8192 SmallVector<QualType, 8> ArgTypes;
8193
8194 bool RequiresICE = false;
8195 Error = GE_None;
8196 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
8197 RequiresICE, true);
8198 if (Error != GE_None)
8199 return QualType();
8200
8201 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE")((!RequiresICE && "Result of intrinsic cannot be required to be an ICE"
) ? static_cast<void> (0) : __assert_fail ("!RequiresICE && \"Result of intrinsic cannot be required to be an ICE\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8201, __PRETTY_FUNCTION__))
;
8202
8203 while (TypeStr[0] && TypeStr[0] != '.') {
8204 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
8205 if (Error != GE_None)
8206 return QualType();
8207
8208 // If this argument is required to be an IntegerConstantExpression and the
8209 // caller cares, fill in the bitmask we return.
8210 if (RequiresICE && IntegerConstantArgs)
8211 *IntegerConstantArgs |= 1 << ArgTypes.size();
8212
8213 // Do array -> pointer decay. The builtin should use the decayed type.
8214 if (Ty->isArrayType())
8215 Ty = getArrayDecayedType(Ty);
8216
8217 ArgTypes.push_back(Ty);
8218 }
8219
8220 if (Id == Builtin::BI__GetExceptionInfo)
8221 return QualType();
8222
8223 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&(((TypeStr[0] != '.' || TypeStr[1] == 0) && "'.' should only occur at end of builtin type list!"
) ? static_cast<void> (0) : __assert_fail ("(TypeStr[0] != '.' || TypeStr[1] == 0) && \"'.' should only occur at end of builtin type list!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8224, __PRETTY_FUNCTION__))
8224 "'.' should only occur at end of builtin type list!")(((TypeStr[0] != '.' || TypeStr[1] == 0) && "'.' should only occur at end of builtin type list!"
) ? static_cast<void> (0) : __assert_fail ("(TypeStr[0] != '.' || TypeStr[1] == 0) && \"'.' should only occur at end of builtin type list!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8224, __PRETTY_FUNCTION__))
;
8225
8226 FunctionType::ExtInfo EI(CC_C);
8227 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
8228
8229 bool Variadic = (TypeStr[0] == '.');
8230
8231 // We really shouldn't be making a no-proto type here, especially in C++.
8232 if (ArgTypes.empty() && Variadic)
8233 return getFunctionNoProtoType(ResType, EI);
8234
8235 FunctionProtoType::ExtProtoInfo EPI;
8236 EPI.ExtInfo = EI;
8237 EPI.Variadic = Variadic;
8238
8239 return getFunctionType(ResType, ArgTypes, EPI);
8240}
8241
8242static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
8243 const FunctionDecl *FD) {
8244 if (!FD->isExternallyVisible())
8245 return GVA_Internal;
8246
8247 GVALinkage External = GVA_StrongExternal;
8248 switch (FD->getTemplateSpecializationKind()) {
8249 case TSK_Undeclared:
8250 case TSK_ExplicitSpecialization:
8251 External = GVA_StrongExternal;
8252 break;
8253
8254 case TSK_ExplicitInstantiationDefinition:
8255 return GVA_StrongODR;
8256
8257 // C++11 [temp.explicit]p10:
8258 // [ Note: The intent is that an inline function that is the subject of
8259 // an explicit instantiation declaration will still be implicitly
8260 // instantiated when used so that the body can be considered for
8261 // inlining, but that no out-of-line copy of the inline function would be
8262 // generated in the translation unit. -- end note ]
8263 case TSK_ExplicitInstantiationDeclaration:
8264 return GVA_AvailableExternally;
8265
8266 case TSK_ImplicitInstantiation:
8267 External = GVA_DiscardableODR;
8268 break;
8269 }
8270
8271 if (!FD->isInlined())
8272 return External;
8273
8274 if ((!Context.getLangOpts().CPlusPlus &&
8275 !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
8276 !FD->hasAttr<DLLExportAttr>()) ||
8277 FD->hasAttr<GNUInlineAttr>()) {
8278 // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
8279
8280 // GNU or C99 inline semantics. Determine whether this symbol should be
8281 // externally visible.
8282 if (FD->isInlineDefinitionExternallyVisible())
8283 return External;
8284
8285 // C99 inline semantics, where the symbol is not externally visible.
8286 return GVA_AvailableExternally;
8287 }
8288
8289 // Functions specified with extern and inline in -fms-compatibility mode
8290 // forcibly get emitted. While the body of the function cannot be later
8291 // replaced, the function definition cannot be discarded.
8292 if (FD->isMSExternInline())
8293 return GVA_StrongODR;
8294
8295 return GVA_DiscardableODR;
8296}
8297
8298static GVALinkage adjustGVALinkageForAttributes(GVALinkage L, const Decl *D) {
8299 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
8300 // dllexport/dllimport on inline functions.
8301 if (D->hasAttr<DLLImportAttr>()) {
8302 if (L == GVA_DiscardableODR || L == GVA_StrongODR)
8303 return GVA_AvailableExternally;
8304 } else if (D->hasAttr<DLLExportAttr>() || D->hasAttr<CUDAGlobalAttr>()) {
8305 if (L == GVA_DiscardableODR)
8306 return GVA_StrongODR;
8307 }
8308 return L;
8309}
8310
8311GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
8312 return adjustGVALinkageForAttributes(basicGVALinkageForFunction(*this, FD),
8313 FD);
8314}
8315
8316static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
8317 const VarDecl *VD) {
8318 if (!VD->isExternallyVisible())
8319 return GVA_Internal;
8320
8321 if (VD->isStaticLocal()) {
8322 GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
8323 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
8324 while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
8325 LexicalContext = LexicalContext->getLexicalParent();
8326
8327 // Let the static local variable inherit its linkage from the nearest
8328 // enclosing function.
8329 if (LexicalContext)
8330 StaticLocalLinkage =
8331 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
8332
8333 // GVA_StrongODR function linkage is stronger than what we need,
8334 // downgrade to GVA_DiscardableODR.
8335 // This allows us to discard the variable if we never end up needing it.
8336 return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
8337 : StaticLocalLinkage;
8338 }
8339
8340 // MSVC treats in-class initialized static data members as definitions.
8341 // By giving them non-strong linkage, out-of-line definitions won't
8342 // cause link errors.
8343 if (Context.isMSStaticDataMemberInlineDefinition(VD))
8344 return GVA_DiscardableODR;
8345
8346 switch (VD->getTemplateSpecializationKind()) {
8347 case TSK_Undeclared:
8348 return GVA_StrongExternal;
8349
8350 case TSK_ExplicitSpecialization:
8351 return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
8352 VD->isStaticDataMember()
8353 ? GVA_StrongODR
8354 : GVA_StrongExternal;
8355
8356 case TSK_ExplicitInstantiationDefinition:
8357 return GVA_StrongODR;
8358
8359 case TSK_ExplicitInstantiationDeclaration:
8360 return GVA_AvailableExternally;
8361
8362 case TSK_ImplicitInstantiation:
8363 return GVA_DiscardableODR;
8364 }
8365
8366 llvm_unreachable("Invalid Linkage!")::llvm::llvm_unreachable_internal("Invalid Linkage!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8366)
;
8367}
8368
8369GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
8370 return adjustGVALinkageForAttributes(basicGVALinkageForVariable(*this, VD),
8371 VD);
8372}
8373
8374bool ASTContext::DeclMustBeEmitted(const Decl *D) {
8375 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8376 if (!VD->isFileVarDecl())
8377 return false;
8378 // Global named register variables (GNU extension) are never emitted.
8379 if (VD->getStorageClass() == SC_Register)
8380 return false;
8381 if (VD->getDescribedVarTemplate() ||
8382 isa<VarTemplatePartialSpecializationDecl>(VD))
8383 return false;
8384 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8385 // We never need to emit an uninstantiated function template.
8386 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
8387 return false;
8388 } else if (isa<OMPThreadPrivateDecl>(D))
8389 return true;
8390 else
8391 return false;
8392
8393 // If this is a member of a class template, we do not need to emit it.
8394 if (D->getDeclContext()->isDependentContext())
8395 return false;
8396
8397 // Weak references don't produce any output by themselves.
8398 if (D->hasAttr<WeakRefAttr>())
8399 return false;
8400
8401 // Aliases and used decls are required.
8402 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
8403 return true;
8404
8405 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8406 // Forward declarations aren't required.
8407 if (!FD->doesThisDeclarationHaveABody())
8408 return FD->doesDeclarationForceExternallyVisibleDefinition();
8409
8410 // Constructors and destructors are required.
8411 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
8412 return true;
8413
8414 // The key function for a class is required. This rule only comes
8415 // into play when inline functions can be key functions, though.
8416 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
8417 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8418 const CXXRecordDecl *RD = MD->getParent();
8419 if (MD->isOutOfLine() && RD->isDynamicClass()) {
8420 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
8421 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
8422 return true;
8423 }
8424 }
8425 }
8426
8427 GVALinkage Linkage = GetGVALinkageForFunction(FD);
8428
8429 // static, static inline, always_inline, and extern inline functions can
8430 // always be deferred. Normal inline functions can be deferred in C99/C++.
8431 // Implicit template instantiations can also be deferred in C++.
8432 if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
8433 Linkage == GVA_DiscardableODR)
8434 return false;
8435 return true;
8436 }
8437
8438 const VarDecl *VD = cast<VarDecl>(D);
8439 assert(VD->isFileVarDecl() && "Expected file scoped var")((VD->isFileVarDecl() && "Expected file scoped var"
) ? static_cast<void> (0) : __assert_fail ("VD->isFileVarDecl() && \"Expected file scoped var\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8439, __PRETTY_FUNCTION__))
;
8440
8441 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
8442 !isMSStaticDataMemberInlineDefinition(VD))
8443 return false;
8444
8445 // Variables that can be needed in other TUs are required.
8446 GVALinkage L = GetGVALinkageForVariable(VD);
8447 if (L != GVA_Internal && L != GVA_AvailableExternally &&
8448 L != GVA_DiscardableODR)
8449 return true;
8450
8451 // Variables that have destruction with side-effects are required.
8452 if (VD->getType().isDestructedType())
8453 return true;
8454
8455 // Variables that have initialization with side-effects are required.
8456 if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
8457 !VD->evaluateValue())
8458 return true;
8459
8460 return false;
8461}
8462
8463CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
8464 bool IsCXXMethod) const {
8465 // Pass through to the C++ ABI object
8466 if (IsCXXMethod)
8467 return ABI->getDefaultMethodCallConv(IsVariadic);
8468
8469 if (LangOpts.MRTD && !IsVariadic) return CC_X86StdCall;
8470
8471 return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown);
8472}
8473
8474bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
8475 // Pass through to the C++ ABI object
8476 return ABI->isNearlyEmpty(RD);
8477}
8478
8479VTableContextBase *ASTContext::getVTableContext() {
8480 if (!VTContext.get()) {
8481 if (Target->getCXXABI().isMicrosoft())
8482 VTContext.reset(new MicrosoftVTableContext(*this));
8483 else
8484 VTContext.reset(new ItaniumVTableContext(*this));
8485 }
8486 return VTContext.get();
8487}
8488
8489MangleContext *ASTContext::createMangleContext() {
8490 switch (Target->getCXXABI().getKind()) {
8491 case TargetCXXABI::GenericAArch64:
8492 case TargetCXXABI::GenericItanium:
8493 case TargetCXXABI::GenericARM:
8494 case TargetCXXABI::GenericMIPS:
8495 case TargetCXXABI::iOS:
8496 case TargetCXXABI::iOS64:
8497 case TargetCXXABI::WebAssembly:
8498 return ItaniumMangleContext::create(*this, getDiagnostics());
8499 case TargetCXXABI::Microsoft:
8500 return MicrosoftMangleContext::create(*this, getDiagnostics());
8501 }
8502 llvm_unreachable("Unsupported ABI")::llvm::llvm_unreachable_internal("Unsupported ABI", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8502)
;
8503}
8504
8505CXXABI::~CXXABI() {}
8506
8507size_t ASTContext::getSideTableAllocatedMemory() const {
8508 return ASTRecordLayouts.getMemorySize() +
8509 llvm::capacity_in_bytes(ObjCLayouts) +
8510 llvm::capacity_in_bytes(KeyFunctions) +
8511 llvm::capacity_in_bytes(ObjCImpls) +
8512 llvm::capacity_in_bytes(BlockVarCopyInits) +
8513 llvm::capacity_in_bytes(DeclAttrs) +
8514 llvm::capacity_in_bytes(TemplateOrInstantiation) +
8515 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8516 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8517 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8518 llvm::capacity_in_bytes(OverriddenMethods) +
8519 llvm::capacity_in_bytes(Types) +
8520 llvm::capacity_in_bytes(VariableArrayTypes) +
8521 llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8522}
8523
8524/// getIntTypeForBitwidth -
8525/// sets integer QualTy according to specified details:
8526/// bitwidth, signed/unsigned.
8527/// Returns empty type if there is no appropriate target types.
8528QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8529 unsigned Signed) const {
8530 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8531 CanQualType QualTy = getFromTargetType(Ty);
8532 if (!QualTy && DestWidth == 128)
8533 return Signed ? Int128Ty : UnsignedInt128Ty;
8534 return QualTy;
8535}
8536
8537/// getRealTypeForBitwidth -
8538/// sets floating point QualTy according to specified bitwidth.
8539/// Returns empty type if there is no appropriate target types.
8540QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8541 TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8542 switch (Ty) {
8543 case TargetInfo::Float:
8544 return FloatTy;
8545 case TargetInfo::Double:
8546 return DoubleTy;
8547 case TargetInfo::LongDouble:
8548 return LongDoubleTy;
8549 case TargetInfo::NoFloat:
8550 return QualType();
8551 }
8552
8553 llvm_unreachable("Unhandled TargetInfo::RealType value")::llvm::llvm_unreachable_internal("Unhandled TargetInfo::RealType value"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8553)
;
8554}
8555
8556void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8557 if (Number > 1)
8558 MangleNumbers[ND] = Number;
8559}
8560
8561unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8562 llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8563 MangleNumbers.find(ND);
8564 return I != MangleNumbers.end() ? I->second : 1;
8565}
8566
8567void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8568 if (Number > 1)
8569 StaticLocalNumbers[VD] = Number;
8570}
8571
8572unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8573 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8574 StaticLocalNumbers.find(VD);
8575 return I != StaticLocalNumbers.end() ? I->second : 1;
8576}
8577
8578MangleNumberingContext &
8579ASTContext::getManglingNumberContext(const DeclContext *DC) {
8580 assert(LangOpts.CPlusPlus)((LangOpts.CPlusPlus) ? static_cast<void> (0) : __assert_fail
("LangOpts.CPlusPlus", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8580, __PRETTY_FUNCTION__))
; // We don't need mangling numbers for plain C.
8581 MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8582 if (!MCtx)
8583 MCtx = createMangleNumberingContext();
8584 return *MCtx;
8585}
8586
8587MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8588 return ABI->createMangleNumberingContext();
8589}
8590
8591const CXXConstructorDecl *
8592ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
8593 return ABI->getCopyConstructorForExceptionObject(
8594 cast<CXXRecordDecl>(RD->getFirstDecl()));
8595}
8596
8597void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
8598 CXXConstructorDecl *CD) {
8599 return ABI->addCopyConstructorForExceptionObject(
8600 cast<CXXRecordDecl>(RD->getFirstDecl()),
8601 cast<CXXConstructorDecl>(CD->getFirstDecl()));
8602}
8603
8604void ASTContext::addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
8605 unsigned ParmIdx, Expr *DAE) {
8606 ABI->addDefaultArgExprForConstructor(
8607 cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx, DAE);
8608}
8609
8610Expr *ASTContext::getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
8611 unsigned ParmIdx) {
8612 return ABI->getDefaultArgExprForConstructor(
8613 cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx);
8614}
8615
8616void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
8617 TypedefNameDecl *DD) {
8618 return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
8619}
8620
8621TypedefNameDecl *
8622ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
8623 return ABI->getTypedefNameForUnnamedTagDecl(TD);
8624}
8625
8626void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
8627 DeclaratorDecl *DD) {
8628 return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
8629}
8630
8631DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
8632 return ABI->getDeclaratorForUnnamedTagDecl(TD);
8633}
8634
8635void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8636 ParamIndices[D] = index;
8637}
8638
8639unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8640 ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8641 assert(I != ParamIndices.end() &&((I != ParamIndices.end() && "ParmIndices lacks entry set by ParmVarDecl"
) ? static_cast<void> (0) : __assert_fail ("I != ParamIndices.end() && \"ParmIndices lacks entry set by ParmVarDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8642, __PRETTY_FUNCTION__))
8642 "ParmIndices lacks entry set by ParmVarDecl")((I != ParamIndices.end() && "ParmIndices lacks entry set by ParmVarDecl"
) ? static_cast<void> (0) : __assert_fail ("I != ParamIndices.end() && \"ParmIndices lacks entry set by ParmVarDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8642, __PRETTY_FUNCTION__))
;
8643 return I->second;
8644}
8645
8646APValue *
8647ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8648 bool MayCreate) {
8649 assert(E && E->getStorageDuration() == SD_Static &&((E && E->getStorageDuration() == SD_Static &&
"don't need to cache the computed value for this temporary")
? static_cast<void> (0) : __assert_fail ("E && E->getStorageDuration() == SD_Static && \"don't need to cache the computed value for this temporary\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8650, __PRETTY_FUNCTION__))
8650 "don't need to cache the computed value for this temporary")((E && E->getStorageDuration() == SD_Static &&
"don't need to cache the computed value for this temporary")
? static_cast<void> (0) : __assert_fail ("E && E->getStorageDuration() == SD_Static && \"don't need to cache the computed value for this temporary\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8650, __PRETTY_FUNCTION__))
;
8651 if (MayCreate) {
8652 APValue *&MTVI = MaterializedTemporaryValues[E];
8653 if (!MTVI)
8654 MTVI = new (*this) APValue;
8655 return MTVI;
8656 }
8657
8658 return MaterializedTemporaryValues.lookup(E);
8659}
8660
8661bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8662 const llvm::Triple &T = getTargetInfo().getTriple();
8663 if (!T.isOSDarwin())
8664 return false;
8665
8666 if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8667 !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8668 return false;
8669
8670 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8671 CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8672 uint64_t Size = sizeChars.getQuantity();
8673 CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8674 unsigned Align = alignChars.getQuantity();
8675 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8676 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8677}
8678
8679namespace {
8680
8681 /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8682 /// parents as defined by the \c RecursiveASTVisitor.
8683 ///
8684 /// Note that the relationship described here is purely in terms of AST
8685 /// traversal - there are other relationships (for example declaration context)
8686 /// in the AST that are better modeled by special matchers.
8687 ///
8688 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8689 class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8690
8691 public:
8692 /// \brief Builds and returns the translation unit's parent map.
8693 ///
8694 /// The caller takes ownership of the returned \c ParentMap.
8695 static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8696 ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8697 Visitor.TraverseDecl(&TU);
1
Calling 'ParentMapASTVisitor::TraverseDecl'
8698 return Visitor.Parents;
8699 }
8700
8701 private:
8702 typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8703
8704 ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8705 }
8706
8707 bool shouldVisitTemplateInstantiations() const {
8708 return true;
8709 }
8710 bool shouldVisitImplicitCode() const {
8711 return true;
8712 }
8713 // Disables data recursion. We intercept Traverse* methods in the RAV, which
8714 // are not triggered during data recursion.
8715 bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8716 return false;
8717 }
8718
8719 template <typename T>
8720 bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8721 if (!Node)
3
Taking false branch
8722 return true;
8723 if (ParentStack.size() > 0) {
4
Taking true branch
8724 // FIXME: Currently we add the same parent multiple times, but only
8725 // when no memoization data is available for the type.
8726 // For example when we visit all subexpressions of template
8727 // instantiations; this is suboptimal, but benign: the only way to
8728 // visit those is with hasAncestor / hasParent, and those do not create
8729 // new matches.
8730 // The plan is to enable DynTypedNode to be storable in a map or hash
8731 // map. The main problem there is to implement hash functions /
8732 // comparison operators for all types that DynTypedNode supports that
8733 // do not have pointer identity.
8734 auto &NodeOrVector = (*Parents)[Node];
8735 if (NodeOrVector.isNull()) {
5
Taking false branch
8736 NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
8737 } else {
8738 if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
6
Taking true branch
8739 auto *Node =
8740 NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
8741 auto *Vector = new ASTContext::ParentVector(1, *Node);
7
Memory is allocated
8742 NodeOrVector = Vector;
8743 delete Node;
8
Potential leak of memory pointed to by 'Vector'
8744 }
8745 assert(NodeOrVector.template is<ASTContext::ParentVector *>())((NodeOrVector.template is<ASTContext::ParentVector *>(
)) ? static_cast<void> (0) : __assert_fail ("NodeOrVector.template is<ASTContext::ParentVector *>()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8745, __PRETTY_FUNCTION__))
;
8746
8747 auto *Vector =
8748 NodeOrVector.template get<ASTContext::ParentVector *>();
8749 // Skip duplicates for types that have memoization data.
8750 // We must check that the type has memoization data before calling
8751 // std::find() because DynTypedNode::operator== can't compare all
8752 // types.
8753 bool Found = ParentStack.back().getMemoizationData() &&
8754 std::find(Vector->begin(), Vector->end(),
8755 ParentStack.back()) != Vector->end();
8756 if (!Found)
8757 Vector->push_back(ParentStack.back());
8758 }
8759 }
8760 ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8761 bool Result = (this ->* traverse) (Node);
8762 ParentStack.pop_back();
8763 return Result;
8764 }
8765
8766 bool TraverseDecl(Decl *DeclNode) {
8767 return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
2
Calling 'ParentMapASTVisitor::TraverseNode'
8768 }
8769
8770 bool TraverseStmt(Stmt *StmtNode) {
8771 return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8772 }
8773
8774 ASTContext::ParentMap *Parents;
8775 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8776
8777 friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8778 };
8779
8780} // end namespace
8781
8782ArrayRef<ast_type_traits::DynTypedNode>
8783ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8784 assert(Node.getMemoizationData() &&((Node.getMemoizationData() && "Invariant broken: only nodes that support memoization may be "
"used in the parent map.") ? static_cast<void> (0) : __assert_fail
("Node.getMemoizationData() && \"Invariant broken: only nodes that support memoization may be \" \"used in the parent map.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8786, __PRETTY_FUNCTION__))
8785 "Invariant broken: only nodes that support memoization may be "((Node.getMemoizationData() && "Invariant broken: only nodes that support memoization may be "
"used in the parent map.") ? static_cast<void> (0) : __assert_fail
("Node.getMemoizationData() && \"Invariant broken: only nodes that support memoization may be \" \"used in the parent map.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8786, __PRETTY_FUNCTION__))
8786 "used in the parent map.")((Node.getMemoizationData() && "Invariant broken: only nodes that support memoization may be "
"used in the parent map.") ? static_cast<void> (0) : __assert_fail
("Node.getMemoizationData() && \"Invariant broken: only nodes that support memoization may be \" \"used in the parent map.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn250810/tools/clang/lib/AST/ASTContext.cpp"
, 8786, __PRETTY_FUNCTION__))
;
8787 if (!AllParents) {
8788 // We always need to run over the whole translation unit, as
8789 // hasAncestor can escape any subtree.
8790 AllParents.reset(
8791 ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8792 }
8793 ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8794 if (I == AllParents->end()) {
8795 return None;
8796 }
8797 if (auto *N = I->second.dyn_cast<ast_type_traits::DynTypedNode *>()) {
8798 return llvm::makeArrayRef(N, 1);
8799 }
8800 return *I->second.get<ParentVector *>();
8801}
8802
8803bool
8804ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8805 const ObjCMethodDecl *MethodImpl) {
8806 // No point trying to match an unavailable/deprecated mothod.
8807 if (MethodDecl->hasAttr<UnavailableAttr>()
8808 || MethodDecl->hasAttr<DeprecatedAttr>())
8809 return false;
8810 if (MethodDecl->getObjCDeclQualifier() !=
8811 MethodImpl->getObjCDeclQualifier())
8812 return false;
8813 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8814 return false;
8815
8816 if (MethodDecl->param_size() != MethodImpl->param_size())
8817 return false;
8818
8819 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8820 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8821 EF = MethodDecl->param_end();
8822 IM != EM && IF != EF; ++IM, ++IF) {
8823 const ParmVarDecl *DeclVar = (*IF);
8824 const ParmVarDecl *ImplVar = (*IM);
8825 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8826 return false;
8827 if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8828 return false;
8829 }
8830 return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8831
8832}
8833
8834// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8835// doesn't include ASTContext.h
8836template
8837clang::LazyGenerationalUpdatePtr<
8838 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8839clang::LazyGenerationalUpdatePtr<
8840 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8841 const clang::ASTContext &Ctx, Decl *Value);