Bug Summary

File:tools/clang/lib/AST/ASTContext.cpp
Warning:line 9583, column 15
Potential leak of memory pointed to by 'Vector'

Annotated Source Code

1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclContextInternals.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExternalASTSource.h"
28#include "clang/AST/Mangle.h"
29#include "clang/AST/MangleNumberingContext.h"
30#include "clang/AST/RecordLayout.h"
31#include "clang/AST/RecursiveASTVisitor.h"
32#include "clang/AST/TypeLoc.h"
33#include "clang/AST/VTableBuilder.h"
34#include "clang/Basic/Builtins.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/Triple.h"
39#include "llvm/Support/Capacity.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include <map>
43
44using namespace clang;
45
46unsigned ASTContext::NumImplicitDefaultConstructors;
47unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyConstructors;
49unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50unsigned ASTContext::NumImplicitMoveConstructors;
51unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56unsigned ASTContext::NumImplicitDestructors;
57unsigned ASTContext::NumImplicitDestructorsDeclared;
58
59enum FloatingRank {
60 Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
61};
62
63RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64 if (!CommentsLoaded && ExternalSource) {
65 ExternalSource->ReadComments();
66
67#ifndef NDEBUG
68 ArrayRef<RawComment *> RawComments = Comments.getComments();
69 assert(std::is_sorted(RawComments.begin(), RawComments.end(),((std::is_sorted(RawComments.begin(), RawComments.end(), BeforeThanCompare
<RawComment>(SourceMgr))) ? static_cast<void> (0)
: __assert_fail ("std::is_sorted(RawComments.begin(), RawComments.end(), BeforeThanCompare<RawComment>(SourceMgr))"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 70, __PRETTY_FUNCTION__))
70 BeforeThanCompare<RawComment>(SourceMgr)))((std::is_sorted(RawComments.begin(), RawComments.end(), BeforeThanCompare
<RawComment>(SourceMgr))) ? static_cast<void> (0)
: __assert_fail ("std::is_sorted(RawComments.begin(), RawComments.end(), BeforeThanCompare<RawComment>(SourceMgr))"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 70, __PRETTY_FUNCTION__))
;
71#endif
72
73 CommentsLoaded = true;
74 }
75
76 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 76, __PRETTY_FUNCTION__))
;
77
78 // User can not attach documentation to implicit declarations.
79 if (D->isImplicit())
80 return nullptr;
81
82 // User can not attach documentation to implicit instantiations.
83 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85 return nullptr;
86 }
87
88 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89 if (VD->isStaticDataMember() &&
90 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91 return nullptr;
92 }
93
94 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96 return nullptr;
97 }
98
99 if (const ClassTemplateSpecializationDecl *CTSD =
100 dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101 TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102 if (TSK == TSK_ImplicitInstantiation ||
103 TSK == TSK_Undeclared)
104 return nullptr;
105 }
106
107 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109 return nullptr;
110 }
111 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112 // When tag declaration (but not definition!) is part of the
113 // decl-specifier-seq of some other declaration, it doesn't get comment
114 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115 return nullptr;
116 }
117 // TODO: handle comments for function parameters properly.
118 if (isa<ParmVarDecl>(D))
119 return nullptr;
120
121 // TODO: we could look up template parameter documentation in the template
122 // documentation.
123 if (isa<TemplateTypeParmDecl>(D) ||
124 isa<NonTypeTemplateParmDecl>(D) ||
125 isa<TemplateTemplateParmDecl>(D))
126 return nullptr;
127
128 ArrayRef<RawComment *> RawComments = Comments.getComments();
129
130 // If there are no comments anywhere, we won't find anything.
131 if (RawComments.empty())
132 return nullptr;
133
134 // Find declaration location.
135 // For Objective-C declarations we generally don't expect to have multiple
136 // declarators, thus use declaration starting location as the "declaration
137 // location".
138 // For all other declarations multiple declarators are used quite frequently,
139 // so we use the location of the identifier as the "declaration location".
140 SourceLocation DeclLoc;
141 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142 isa<ObjCPropertyDecl>(D) ||
143 isa<RedeclarableTemplateDecl>(D) ||
144 isa<ClassTemplateSpecializationDecl>(D))
145 DeclLoc = D->getLocStart();
146 else {
147 DeclLoc = D->getLocation();
148 if (DeclLoc.isMacroID()) {
149 if (isa<TypedefDecl>(D)) {
150 // If location of the typedef name is in a macro, it is because being
151 // declared via a macro. Try using declaration's starting location as
152 // the "declaration location".
153 DeclLoc = D->getLocStart();
154 } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155 // If location of the tag decl is inside a macro, but the spelling of
156 // the tag name comes from a macro argument, it looks like a special
157 // macro like NS_ENUM is being used to define the tag decl. In that
158 // case, adjust the source location to the expansion loc so that we can
159 // attach the comment to the tag decl.
160 if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161 TD->isCompleteDefinition())
162 DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163 }
164 }
165 }
166
167 // If the declaration doesn't map directly to a location in a file, we
168 // can't find the comment.
169 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170 return nullptr;
171
172 // Find the comment that occurs just after this declaration.
173 ArrayRef<RawComment *>::iterator Comment;
174 {
175 // When searching for comments during parsing, the comment we are looking
176 // for is usually among the last two comments we parsed -- check them
177 // first.
178 RawComment CommentAtDeclLoc(
179 SourceMgr, SourceRange(DeclLoc), false,
180 LangOpts.CommentOpts.ParseAllComments);
181 BeforeThanCompare<RawComment> Compare(SourceMgr);
182 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184 if (!Found && RawComments.size() >= 2) {
185 MaybeBeforeDecl--;
186 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187 }
188
189 if (Found) {
190 Comment = MaybeBeforeDecl + 1;
191 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),((Comment == std::lower_bound(RawComments.begin(), RawComments
.end(), &CommentAtDeclLoc, Compare)) ? static_cast<void
> (0) : __assert_fail ("Comment == std::lower_bound(RawComments.begin(), RawComments.end(), &CommentAtDeclLoc, Compare)"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 192, __PRETTY_FUNCTION__))
192 &CommentAtDeclLoc, Compare))((Comment == std::lower_bound(RawComments.begin(), RawComments
.end(), &CommentAtDeclLoc, Compare)) ? static_cast<void
> (0) : __assert_fail ("Comment == std::lower_bound(RawComments.begin(), RawComments.end(), &CommentAtDeclLoc, Compare)"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 192, __PRETTY_FUNCTION__))
;
193 } else {
194 // Slow path.
195 Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196 &CommentAtDeclLoc, Compare);
197 }
198 }
199
200 // Decompose the location for the declaration and find the beginning of the
201 // file buffer.
202 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203
204 // First check whether we have a trailing comment.
205 if (Comment != RawComments.end() &&
206 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209 std::pair<FileID, unsigned> CommentBeginDecomp
210 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211 // Check that Doxygen trailing comment comes after the declaration, starts
212 // on the same line and in the same file as the declaration.
213 if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215 == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216 CommentBeginDecomp.second)) {
217 return *Comment;
218 }
219 }
220
221 // The comment just after the declaration was not a trailing comment.
222 // Let's look at the previous comment.
223 if (Comment == RawComments.begin())
224 return nullptr;
225 --Comment;
226
227 // Check that we actually have a non-member Doxygen comment.
228 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229 return nullptr;
230
231 // Decompose the end of the comment.
232 std::pair<FileID, unsigned> CommentEndDecomp
233 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234
235 // If the comment and the declaration aren't in the same file, then they
236 // aren't related.
237 if (DeclLocDecomp.first != CommentEndDecomp.first)
238 return nullptr;
239
240 // Get the corresponding buffer.
241 bool Invalid = false;
242 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243 &Invalid).data();
244 if (Invalid)
245 return nullptr;
246
247 // Extract text between the comment and declaration.
248 StringRef Text(Buffer + CommentEndDecomp.second,
249 DeclLocDecomp.second - CommentEndDecomp.second);
250
251 // There should be no other declarations or preprocessor directives between
252 // comment and declaration.
253 if (Text.find_first_of(";{}#@") != StringRef::npos)
254 return nullptr;
255
256 return *Comment;
257}
258
259namespace {
260/// If we have a 'templated' declaration for a template, adjust 'D' to
261/// refer to the actual template.
262/// If we have an implicit instantiation, adjust 'D' to refer to template.
263const Decl *adjustDeclToTemplate(const Decl *D) {
264 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265 // Is this function declaration part of a function template?
266 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267 return FTD;
268
269 // Nothing to do if function is not an implicit instantiation.
270 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271 return D;
272
273 // Function is an implicit instantiation of a function template?
274 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275 return FTD;
276
277 // Function is instantiated from a member definition of a class template?
278 if (const FunctionDecl *MemberDecl =
279 FD->getInstantiatedFromMemberFunction())
280 return MemberDecl;
281
282 return D;
283 }
284 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285 // Static data member is instantiated from a member definition of a class
286 // template?
287 if (VD->isStaticDataMember())
288 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289 return MemberDecl;
290
291 return D;
292 }
293 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294 // Is this class declaration part of a class template?
295 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296 return CTD;
297
298 // Class is an implicit instantiation of a class template or partial
299 // specialization?
300 if (const ClassTemplateSpecializationDecl *CTSD =
301 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303 return D;
304 llvm::PointerUnion<ClassTemplateDecl *,
305 ClassTemplatePartialSpecializationDecl *>
306 PU = CTSD->getSpecializedTemplateOrPartial();
307 return PU.is<ClassTemplateDecl*>() ?
308 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309 static_cast<const Decl*>(
310 PU.get<ClassTemplatePartialSpecializationDecl *>());
311 }
312
313 // Class is instantiated from a member definition of a class template?
314 if (const MemberSpecializationInfo *Info =
315 CRD->getMemberSpecializationInfo())
316 return Info->getInstantiatedFrom();
317
318 return D;
319 }
320 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321 // Enum is instantiated from a member definition of a class template?
322 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323 return MemberDecl;
324
325 return D;
326 }
327 // FIXME: Adjust alias templates?
328 return D;
329}
330} // anonymous namespace
331
332const RawComment *ASTContext::getRawCommentForAnyRedecl(
333 const Decl *D,
334 const Decl **OriginalDecl) const {
335 D = adjustDeclToTemplate(D);
336
337 // Check whether we have cached a comment for this declaration already.
338 {
339 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340 RedeclComments.find(D);
341 if (Pos != RedeclComments.end()) {
342 const RawCommentAndCacheFlags &Raw = Pos->second;
343 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344 if (OriginalDecl)
345 *OriginalDecl = Raw.getOriginalDecl();
346 return Raw.getRaw();
347 }
348 }
349 }
350
351 // Search for comments attached to declarations in the redeclaration chain.
352 const RawComment *RC = nullptr;
353 const Decl *OriginalDeclForRC = nullptr;
354 for (auto I : D->redecls()) {
355 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356 RedeclComments.find(I);
357 if (Pos != RedeclComments.end()) {
358 const RawCommentAndCacheFlags &Raw = Pos->second;
359 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360 RC = Raw.getRaw();
361 OriginalDeclForRC = Raw.getOriginalDecl();
362 break;
363 }
364 } else {
365 RC = getRawCommentForDeclNoCache(I);
366 OriginalDeclForRC = I;
367 RawCommentAndCacheFlags Raw;
368 if (RC) {
369 // Call order swapped to work around ICE in VS2015 RTM (Release Win32)
370 // https://connect.microsoft.com/VisualStudio/feedback/details/1741530
371 Raw.setKind(RawCommentAndCacheFlags::FromDecl);
372 Raw.setRaw(RC);
373 } else
374 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
375 Raw.setOriginalDecl(I);
376 RedeclComments[I] = Raw;
377 if (RC)
378 break;
379 }
380 }
381
382 // If we found a comment, it should be a documentation comment.
383 assert(!RC || RC->isDocumentation())((!RC || RC->isDocumentation()) ? static_cast<void> (
0) : __assert_fail ("!RC || RC->isDocumentation()", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 383, __PRETTY_FUNCTION__))
;
384
385 if (OriginalDecl)
386 *OriginalDecl = OriginalDeclForRC;
387
388 // Update cache for every declaration in the redeclaration chain.
389 RawCommentAndCacheFlags Raw;
390 Raw.setRaw(RC);
391 Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
392 Raw.setOriginalDecl(OriginalDeclForRC);
393
394 for (auto I : D->redecls()) {
395 RawCommentAndCacheFlags &R = RedeclComments[I];
396 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
397 R = Raw;
398 }
399
400 return RC;
401}
402
403static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
404 SmallVectorImpl<const NamedDecl *> &Redeclared) {
405 const DeclContext *DC = ObjCMethod->getDeclContext();
406 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
407 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
408 if (!ID)
409 return;
410 // Add redeclared method here.
411 for (const auto *Ext : ID->known_extensions()) {
412 if (ObjCMethodDecl *RedeclaredMethod =
413 Ext->getMethod(ObjCMethod->getSelector(),
414 ObjCMethod->isInstanceMethod()))
415 Redeclared.push_back(RedeclaredMethod);
416 }
417 }
418}
419
420comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
421 const Decl *D) const {
422 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
423 ThisDeclInfo->CommentDecl = D;
424 ThisDeclInfo->IsFilled = false;
425 ThisDeclInfo->fill();
426 ThisDeclInfo->CommentDecl = FC->getDecl();
427 if (!ThisDeclInfo->TemplateParameters)
428 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
429 comments::FullComment *CFC =
430 new (*this) comments::FullComment(FC->getBlocks(),
431 ThisDeclInfo);
432 return CFC;
433}
434
435comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
436 const RawComment *RC = getRawCommentForDeclNoCache(D);
437 return RC ? RC->parse(*this, nullptr, D) : nullptr;
438}
439
440comments::FullComment *ASTContext::getCommentForDecl(
441 const Decl *D,
442 const Preprocessor *PP) const {
443 if (D->isInvalidDecl())
444 return nullptr;
445 D = adjustDeclToTemplate(D);
446
447 const Decl *Canonical = D->getCanonicalDecl();
448 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
449 ParsedComments.find(Canonical);
450
451 if (Pos != ParsedComments.end()) {
452 if (Canonical != D) {
453 comments::FullComment *FC = Pos->second;
454 comments::FullComment *CFC = cloneFullComment(FC, D);
455 return CFC;
456 }
457 return Pos->second;
458 }
459
460 const Decl *OriginalDecl;
461
462 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
463 if (!RC) {
464 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
465 SmallVector<const NamedDecl*, 8> Overridden;
466 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
467 if (OMD && OMD->isPropertyAccessor())
468 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
469 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
470 return cloneFullComment(FC, D);
471 if (OMD)
472 addRedeclaredMethods(OMD, Overridden);
473 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
474 for (unsigned i = 0, e = Overridden.size(); i < e; i++)
475 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
476 return cloneFullComment(FC, D);
477 }
478 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
479 // Attach any tag type's documentation to its typedef if latter
480 // does not have one of its own.
481 QualType QT = TD->getUnderlyingType();
482 if (const TagType *TT = QT->getAs<TagType>())
483 if (const Decl *TD = TT->getDecl())
484 if (comments::FullComment *FC = getCommentForDecl(TD, PP))
485 return cloneFullComment(FC, D);
486 }
487 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
488 while (IC->getSuperClass()) {
489 IC = IC->getSuperClass();
490 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
491 return cloneFullComment(FC, D);
492 }
493 }
494 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
495 if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
496 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
497 return cloneFullComment(FC, D);
498 }
499 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
500 if (!(RD = RD->getDefinition()))
501 return nullptr;
502 // Check non-virtual bases.
503 for (const auto &I : RD->bases()) {
504 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
505 continue;
506 QualType Ty = I.getType();
507 if (Ty.isNull())
508 continue;
509 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
510 if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
511 continue;
512
513 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
514 return cloneFullComment(FC, D);
515 }
516 }
517 // Check virtual bases.
518 for (const auto &I : RD->vbases()) {
519 if (I.getAccessSpecifier() != AS_public)
520 continue;
521 QualType Ty = I.getType();
522 if (Ty.isNull())
523 continue;
524 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
525 if (!(VirtualBase= VirtualBase->getDefinition()))
526 continue;
527 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
528 return cloneFullComment(FC, D);
529 }
530 }
531 }
532 return nullptr;
533 }
534
535 // If the RawComment was attached to other redeclaration of this Decl, we
536 // should parse the comment in context of that other Decl. This is important
537 // because comments can contain references to parameter names which can be
538 // different across redeclarations.
539 if (D != OriginalDecl)
540 return getCommentForDecl(OriginalDecl, PP);
541
542 comments::FullComment *FC = RC->parse(*this, PP, D);
543 ParsedComments[Canonical] = FC;
544 return FC;
545}
546
547void
548ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
549 TemplateTemplateParmDecl *Parm) {
550 ID.AddInteger(Parm->getDepth());
551 ID.AddInteger(Parm->getPosition());
552 ID.AddBoolean(Parm->isParameterPack());
553
554 TemplateParameterList *Params = Parm->getTemplateParameters();
555 ID.AddInteger(Params->size());
556 for (TemplateParameterList::const_iterator P = Params->begin(),
557 PEnd = Params->end();
558 P != PEnd; ++P) {
559 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
560 ID.AddInteger(0);
561 ID.AddBoolean(TTP->isParameterPack());
562 continue;
563 }
564
565 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
566 ID.AddInteger(1);
567 ID.AddBoolean(NTTP->isParameterPack());
568 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
569 if (NTTP->isExpandedParameterPack()) {
570 ID.AddBoolean(true);
571 ID.AddInteger(NTTP->getNumExpansionTypes());
572 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
573 QualType T = NTTP->getExpansionType(I);
574 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
575 }
576 } else
577 ID.AddBoolean(false);
578 continue;
579 }
580
581 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
582 ID.AddInteger(2);
583 Profile(ID, TTP);
584 }
585}
586
587TemplateTemplateParmDecl *
588ASTContext::getCanonicalTemplateTemplateParmDecl(
589 TemplateTemplateParmDecl *TTP) const {
590 // Check if we already have a canonical template template parameter.
591 llvm::FoldingSetNodeID ID;
592 CanonicalTemplateTemplateParm::Profile(ID, TTP);
593 void *InsertPos = nullptr;
594 CanonicalTemplateTemplateParm *Canonical
595 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
596 if (Canonical)
597 return Canonical->getParam();
598
599 // Build a canonical template parameter list.
600 TemplateParameterList *Params = TTP->getTemplateParameters();
601 SmallVector<NamedDecl *, 4> CanonParams;
602 CanonParams.reserve(Params->size());
603 for (TemplateParameterList::const_iterator P = Params->begin(),
604 PEnd = Params->end();
605 P != PEnd; ++P) {
606 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
607 CanonParams.push_back(
608 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
609 SourceLocation(),
610 SourceLocation(),
611 TTP->getDepth(),
612 TTP->getIndex(), nullptr, false,
613 TTP->isParameterPack()));
614 else if (NonTypeTemplateParmDecl *NTTP
615 = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
616 QualType T = getCanonicalType(NTTP->getType());
617 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
618 NonTypeTemplateParmDecl *Param;
619 if (NTTP->isExpandedParameterPack()) {
620 SmallVector<QualType, 2> ExpandedTypes;
621 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
622 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
623 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
624 ExpandedTInfos.push_back(
625 getTrivialTypeSourceInfo(ExpandedTypes.back()));
626 }
627
628 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
629 SourceLocation(),
630 SourceLocation(),
631 NTTP->getDepth(),
632 NTTP->getPosition(), nullptr,
633 T,
634 TInfo,
635 ExpandedTypes,
636 ExpandedTInfos);
637 } else {
638 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
639 SourceLocation(),
640 SourceLocation(),
641 NTTP->getDepth(),
642 NTTP->getPosition(), nullptr,
643 T,
644 NTTP->isParameterPack(),
645 TInfo);
646 }
647 CanonParams.push_back(Param);
648
649 } else
650 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
651 cast<TemplateTemplateParmDecl>(*P)));
652 }
653
654 assert(!TTP->getRequiresClause() &&((!TTP->getRequiresClause() && "Unexpected requires-clause on template template-parameter"
) ? static_cast<void> (0) : __assert_fail ("!TTP->getRequiresClause() && \"Unexpected requires-clause on template template-parameter\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 655, __PRETTY_FUNCTION__))
655 "Unexpected requires-clause on template template-parameter")((!TTP->getRequiresClause() && "Unexpected requires-clause on template template-parameter"
) ? static_cast<void> (0) : __assert_fail ("!TTP->getRequiresClause() && \"Unexpected requires-clause on template template-parameter\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 655, __PRETTY_FUNCTION__))
;
656 Expr *const CanonRequiresClause = nullptr;
657
658 TemplateTemplateParmDecl *CanonTTP
659 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
660 SourceLocation(), TTP->getDepth(),
661 TTP->getPosition(),
662 TTP->isParameterPack(),
663 nullptr,
664 TemplateParameterList::Create(*this, SourceLocation(),
665 SourceLocation(),
666 CanonParams,
667 SourceLocation(),
668 CanonRequiresClause));
669
670 // Get the new insert position for the node we care about.
671 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
672 assert(!Canonical && "Shouldn't be in the map!")((!Canonical && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!Canonical && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 672, __PRETTY_FUNCTION__))
;
673 (void)Canonical;
674
675 // Create the canonical template template parameter entry.
676 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
677 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
678 return CanonTTP;
679}
680
681CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
682 if (!LangOpts.CPlusPlus) return nullptr;
683
684 switch (T.getCXXABI().getKind()) {
685 case TargetCXXABI::GenericARM: // Same as Itanium at this level
686 case TargetCXXABI::iOS:
687 case TargetCXXABI::iOS64:
688 case TargetCXXABI::WatchOS:
689 case TargetCXXABI::GenericAArch64:
690 case TargetCXXABI::GenericMIPS:
691 case TargetCXXABI::GenericItanium:
692 case TargetCXXABI::WebAssembly:
693 return CreateItaniumCXXABI(*this);
694 case TargetCXXABI::Microsoft:
695 return CreateMicrosoftCXXABI(*this);
696 }
697 llvm_unreachable("Invalid CXXABI type!")::llvm::llvm_unreachable_internal("Invalid CXXABI type!", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 697)
;
698}
699
700static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
701 const LangOptions &LOpts) {
702 if (LOpts.FakeAddressSpaceMap) {
703 // The fake address space map must have a distinct entry for each
704 // language-specific address space.
705 static const unsigned FakeAddrSpaceMap[] = {
706 0, // Default
707 1, // opencl_global
708 3, // opencl_local
709 2, // opencl_constant
710 0, // opencl_private
711 4, // opencl_generic
712 5, // cuda_device
713 6, // cuda_constant
714 7 // cuda_shared
715 };
716 return &FakeAddrSpaceMap;
717 } else {
718 return &T.getAddressSpaceMap();
719 }
720}
721
722static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
723 const LangOptions &LangOpts) {
724 switch (LangOpts.getAddressSpaceMapMangling()) {
725 case LangOptions::ASMM_Target:
726 return TI.useAddressSpaceMapMangling();
727 case LangOptions::ASMM_On:
728 return true;
729 case LangOptions::ASMM_Off:
730 return false;
731 }
732 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.")::llvm::llvm_unreachable_internal("getAddressSpaceMapMangling() doesn't cover anything."
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 732)
;
733}
734
735ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
736 IdentifierTable &idents, SelectorTable &sels,
737 Builtin::Context &builtins)
738 : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
739 DependentTemplateSpecializationTypes(this_()),
740 SubstTemplateTemplateParmPacks(this_()),
741 GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
742 UInt128Decl(nullptr), BuiltinVaListDecl(nullptr),
743 BuiltinMSVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr),
744 ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
745 CFConstantStringTagDecl(nullptr), CFConstantStringTypeDecl(nullptr),
746 ObjCInstanceTypeDecl(nullptr), FILEDecl(nullptr), jmp_bufDecl(nullptr),
747 sigjmp_bufDecl(nullptr), ucontext_tDecl(nullptr),
748 BlockDescriptorType(nullptr), BlockDescriptorExtendedType(nullptr),
749 cudaConfigureCallDecl(nullptr), FirstLocalImport(), LastLocalImport(),
750 ExternCContext(nullptr), MakeIntegerSeqDecl(nullptr),
751 TypePackElementDecl(nullptr), SourceMgr(SM), LangOpts(LOpts),
752 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
753 XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
754 LangOpts.XRayNeverInstrumentFiles, SM)),
755 AddrSpaceMap(nullptr), Target(nullptr), AuxTarget(nullptr),
756 PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
757 BuiltinInfo(builtins), DeclarationNames(*this), ExternalSource(nullptr),
758 Listener(nullptr), Comments(SM), CommentsLoaded(false),
759 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
760 TUDecl = TranslationUnitDecl::Create(*this);
761}
762
763ASTContext::~ASTContext() {
764 ReleaseParentMapEntries();
765
766 // Release the DenseMaps associated with DeclContext objects.
767 // FIXME: Is this the ideal solution?
768 ReleaseDeclContextMaps();
769
770 // Call all of the deallocation functions on all of their targets.
771 for (auto &Pair : Deallocations)
772 (Pair.first)(Pair.second);
773
774 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
775 // because they can contain DenseMaps.
776 for (llvm::DenseMap<const ObjCContainerDecl*,
777 const ASTRecordLayout*>::iterator
778 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
779 // Increment in loop to prevent using deallocated memory.
780 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
781 R->Destroy(*this);
782
783 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
784 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
785 // Increment in loop to prevent using deallocated memory.
786 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
787 R->Destroy(*this);
788 }
789
790 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
791 AEnd = DeclAttrs.end();
792 A != AEnd; ++A)
793 A->second->~AttrVec();
794
795 for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair :
796 MaterializedTemporaryValues)
797 MTVPair.second->~APValue();
798
799 for (const auto &Value : ModuleInitializers)
800 Value.second->~PerModuleInitializers();
801}
802
803void ASTContext::ReleaseParentMapEntries() {
804 if (!PointerParents) return;
805 for (const auto &Entry : *PointerParents) {
806 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
807 delete Entry.second.get<ast_type_traits::DynTypedNode *>();
808 } else if (Entry.second.is<ParentVector *>()) {
809 delete Entry.second.get<ParentVector *>();
810 }
811 }
812 for (const auto &Entry : *OtherParents) {
813 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
814 delete Entry.second.get<ast_type_traits::DynTypedNode *>();
815 } else if (Entry.second.is<ParentVector *>()) {
816 delete Entry.second.get<ParentVector *>();
817 }
818 }
819}
820
821void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
822 Deallocations.push_back({Callback, Data});
823}
824
825void
826ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
827 ExternalSource = std::move(Source);
828}
829
830void ASTContext::PrintStats() const {
831 llvm::errs() << "\n*** AST Context Stats:\n";
832 llvm::errs() << " " << Types.size() << " types total.\n";
833
834 unsigned counts[] = {
835#define TYPE(Name, Parent) 0,
836#define ABSTRACT_TYPE(Name, Parent)
837#include "clang/AST/TypeNodes.def"
838 0 // Extra
839 };
840
841 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
842 Type *T = Types[i];
843 counts[(unsigned)T->getTypeClass()]++;
844 }
845
846 unsigned Idx = 0;
847 unsigned TotalBytes = 0;
848#define TYPE(Name, Parent) \
849 if (counts[Idx]) \
850 llvm::errs() << " " << counts[Idx] << " " << #Name \
851 << " types\n"; \
852 TotalBytes += counts[Idx] * sizeof(Name##Type); \
853 ++Idx;
854#define ABSTRACT_TYPE(Name, Parent)
855#include "clang/AST/TypeNodes.def"
856
857 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
858
859 // Implicit special member functions.
860 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
861 << NumImplicitDefaultConstructors
862 << " implicit default constructors created\n";
863 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
864 << NumImplicitCopyConstructors
865 << " implicit copy constructors created\n";
866 if (getLangOpts().CPlusPlus)
867 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
868 << NumImplicitMoveConstructors
869 << " implicit move constructors created\n";
870 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
871 << NumImplicitCopyAssignmentOperators
872 << " implicit copy assignment operators created\n";
873 if (getLangOpts().CPlusPlus)
874 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
875 << NumImplicitMoveAssignmentOperators
876 << " implicit move assignment operators created\n";
877 llvm::errs() << NumImplicitDestructorsDeclared << "/"
878 << NumImplicitDestructors
879 << " implicit destructors created\n";
880
881 if (ExternalSource) {
882 llvm::errs() << "\n";
883 ExternalSource->PrintStats();
884 }
885
886 BumpAlloc.PrintStats();
887}
888
889void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
890 bool NotifyListeners) {
891 if (NotifyListeners)
892 if (auto *Listener = getASTMutationListener())
893 Listener->RedefinedHiddenDefinition(ND, M);
894
895 if (getLangOpts().ModulesLocalVisibility)
896 MergedDefModules[ND].push_back(M);
897 else
898 ND->setVisibleDespiteOwningModule();
899}
900
901void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
902 auto It = MergedDefModules.find(ND);
903 if (It == MergedDefModules.end())
904 return;
905
906 auto &Merged = It->second;
907 llvm::DenseSet<Module*> Found;
908 for (Module *&M : Merged)
909 if (!Found.insert(M).second)
910 M = nullptr;
911 Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
912}
913
914void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
915 if (LazyInitializers.empty())
916 return;
917
918 auto *Source = Ctx.getExternalSource();
919 assert(Source && "lazy initializers but no external source")((Source && "lazy initializers but no external source"
) ? static_cast<void> (0) : __assert_fail ("Source && \"lazy initializers but no external source\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 919, __PRETTY_FUNCTION__))
;
920
921 auto LazyInits = std::move(LazyInitializers);
922 LazyInitializers.clear();
923
924 for (auto ID : LazyInits)
925 Initializers.push_back(Source->GetExternalDecl(ID));
926
927 assert(LazyInitializers.empty() &&((LazyInitializers.empty() && "GetExternalDecl for lazy module initializer added more inits"
) ? static_cast<void> (0) : __assert_fail ("LazyInitializers.empty() && \"GetExternalDecl for lazy module initializer added more inits\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 928, __PRETTY_FUNCTION__))
928 "GetExternalDecl for lazy module initializer added more inits")((LazyInitializers.empty() && "GetExternalDecl for lazy module initializer added more inits"
) ? static_cast<void> (0) : __assert_fail ("LazyInitializers.empty() && \"GetExternalDecl for lazy module initializer added more inits\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 928, __PRETTY_FUNCTION__))
;
929}
930
931void ASTContext::addModuleInitializer(Module *M, Decl *D) {
932 // One special case: if we add a module initializer that imports another
933 // module, and that module's only initializer is an ImportDecl, simplify.
934 if (auto *ID = dyn_cast<ImportDecl>(D)) {
935 auto It = ModuleInitializers.find(ID->getImportedModule());
936
937 // Maybe the ImportDecl does nothing at all. (Common case.)
938 if (It == ModuleInitializers.end())
939 return;
940
941 // Maybe the ImportDecl only imports another ImportDecl.
942 auto &Imported = *It->second;
943 if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
944 Imported.resolve(*this);
945 auto *OnlyDecl = Imported.Initializers.front();
946 if (isa<ImportDecl>(OnlyDecl))
947 D = OnlyDecl;
948 }
949 }
950
951 auto *&Inits = ModuleInitializers[M];
952 if (!Inits)
953 Inits = new (*this) PerModuleInitializers;
954 Inits->Initializers.push_back(D);
955}
956
957void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
958 auto *&Inits = ModuleInitializers[M];
959 if (!Inits)
960 Inits = new (*this) PerModuleInitializers;
961 Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
962 IDs.begin(), IDs.end());
963}
964
965ArrayRef<Decl*> ASTContext::getModuleInitializers(Module *M) {
966 auto It = ModuleInitializers.find(M);
967 if (It == ModuleInitializers.end())
968 return None;
969
970 auto *Inits = It->second;
971 Inits->resolve(*this);
972 return Inits->Initializers;
973}
974
975ExternCContextDecl *ASTContext::getExternCContextDecl() const {
976 if (!ExternCContext)
977 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
978
979 return ExternCContext;
980}
981
982BuiltinTemplateDecl *
983ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
984 const IdentifierInfo *II) const {
985 auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
986 BuiltinTemplate->setImplicit();
987 TUDecl->addDecl(BuiltinTemplate);
988
989 return BuiltinTemplate;
990}
991
992BuiltinTemplateDecl *
993ASTContext::getMakeIntegerSeqDecl() const {
994 if (!MakeIntegerSeqDecl)
995 MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
996 getMakeIntegerSeqName());
997 return MakeIntegerSeqDecl;
998}
999
1000BuiltinTemplateDecl *
1001ASTContext::getTypePackElementDecl() const {
1002 if (!TypePackElementDecl)
1003 TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1004 getTypePackElementName());
1005 return TypePackElementDecl;
1006}
1007
1008RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1009 RecordDecl::TagKind TK) const {
1010 SourceLocation Loc;
1011 RecordDecl *NewDecl;
1012 if (getLangOpts().CPlusPlus)
1013 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1014 Loc, &Idents.get(Name));
1015 else
1016 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1017 &Idents.get(Name));
1018 NewDecl->setImplicit();
1019 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1020 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1021 return NewDecl;
1022}
1023
1024TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1025 StringRef Name) const {
1026 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1027 TypedefDecl *NewDecl = TypedefDecl::Create(
1028 const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1029 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1030 NewDecl->setImplicit();
1031 return NewDecl;
1032}
1033
1034TypedefDecl *ASTContext::getInt128Decl() const {
1035 if (!Int128Decl)
1036 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1037 return Int128Decl;
1038}
1039
1040TypedefDecl *ASTContext::getUInt128Decl() const {
1041 if (!UInt128Decl)
1042 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1043 return UInt128Decl;
1044}
1045
1046void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1047 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
1048 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1049 Types.push_back(Ty);
1050}
1051
1052void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1053 const TargetInfo *AuxTarget) {
1054 assert((!this->Target || this->Target == &Target) &&(((!this->Target || this->Target == &Target) &&
"Incorrect target reinitialization") ? static_cast<void>
(0) : __assert_fail ("(!this->Target || this->Target == &Target) && \"Incorrect target reinitialization\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1055, __PRETTY_FUNCTION__))
1055 "Incorrect target reinitialization")(((!this->Target || this->Target == &Target) &&
"Incorrect target reinitialization") ? static_cast<void>
(0) : __assert_fail ("(!this->Target || this->Target == &Target) && \"Incorrect target reinitialization\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1055, __PRETTY_FUNCTION__))
;
1056 assert(VoidTy.isNull() && "Context reinitialized?")((VoidTy.isNull() && "Context reinitialized?") ? static_cast
<void> (0) : __assert_fail ("VoidTy.isNull() && \"Context reinitialized?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1056, __PRETTY_FUNCTION__))
;
1057
1058 this->Target = &Target;
1059 this->AuxTarget = AuxTarget;
1060
1061 ABI.reset(createCXXABI(Target));
1062 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1063 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1064
1065 // C99 6.2.5p19.
1066 InitBuiltinType(VoidTy, BuiltinType::Void);
1067
1068 // C99 6.2.5p2.
1069 InitBuiltinType(BoolTy, BuiltinType::Bool);
1070 // C99 6.2.5p3.
1071 if (LangOpts.CharIsSigned)
1072 InitBuiltinType(CharTy, BuiltinType::Char_S);
1073 else
1074 InitBuiltinType(CharTy, BuiltinType::Char_U);
1075 // C99 6.2.5p4.
1076 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
1077 InitBuiltinType(ShortTy, BuiltinType::Short);
1078 InitBuiltinType(IntTy, BuiltinType::Int);
1079 InitBuiltinType(LongTy, BuiltinType::Long);
1080 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
1081
1082 // C99 6.2.5p6.
1083 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
1084 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
1085 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
1086 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
1087 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
1088
1089 // C99 6.2.5p10.
1090 InitBuiltinType(FloatTy, BuiltinType::Float);
1091 InitBuiltinType(DoubleTy, BuiltinType::Double);
1092 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
1093
1094 // GNU extension, __float128 for IEEE quadruple precision
1095 InitBuiltinType(Float128Ty, BuiltinType::Float128);
1096
1097 // C11 extension ISO/IEC TS 18661-3
1098 InitBuiltinType(Float16Ty, BuiltinType::Float16);
1099
1100 // GNU extension, 128-bit integers.
1101 InitBuiltinType(Int128Ty, BuiltinType::Int128);
1102 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
1103
1104 // C++ 3.9.1p5
1105 if (TargetInfo::isTypeSigned(Target.getWCharType()))
1106 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
1107 else // -fshort-wchar makes wchar_t be unsigned.
1108 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
1109 if (LangOpts.CPlusPlus && LangOpts.WChar)
1110 WideCharTy = WCharTy;
1111 else {
1112 // C99 (or C++ using -fno-wchar).
1113 WideCharTy = getFromTargetType(Target.getWCharType());
1114 }
1115
1116 WIntTy = getFromTargetType(Target.getWIntType());
1117
1118 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1119 InitBuiltinType(Char16Ty, BuiltinType::Char16);
1120 else // C99
1121 Char16Ty = getFromTargetType(Target.getChar16Type());
1122
1123 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1124 InitBuiltinType(Char32Ty, BuiltinType::Char32);
1125 else // C99
1126 Char32Ty = getFromTargetType(Target.getChar32Type());
1127
1128 // Placeholder type for type-dependent expressions whose type is
1129 // completely unknown. No code should ever check a type against
1130 // DependentTy and users should never see it; however, it is here to
1131 // help diagnose failures to properly check for type-dependent
1132 // expressions.
1133 InitBuiltinType(DependentTy, BuiltinType::Dependent);
1134
1135 // Placeholder type for functions.
1136 InitBuiltinType(OverloadTy, BuiltinType::Overload);
1137
1138 // Placeholder type for bound members.
1139 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
1140
1141 // Placeholder type for pseudo-objects.
1142 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1143
1144 // "any" type; useful for debugger-like clients.
1145 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1146
1147 // Placeholder type for unbridged ARC casts.
1148 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1149
1150 // Placeholder type for builtin functions.
1151 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1152
1153 // Placeholder type for OMP array sections.
1154 if (LangOpts.OpenMP)
1155 InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1156
1157 // C99 6.2.5p11.
1158 FloatComplexTy = getComplexType(FloatTy);
1159 DoubleComplexTy = getComplexType(DoubleTy);
1160 LongDoubleComplexTy = getComplexType(LongDoubleTy);
1161 Float128ComplexTy = getComplexType(Float128Ty);
1162
1163 // Builtin types for 'id', 'Class', and 'SEL'.
1164 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1165 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1166 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1167
1168 if (LangOpts.OpenCL) {
1169#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1170 InitBuiltinType(SingletonId, BuiltinType::Id);
1171#include "clang/Basic/OpenCLImageTypes.def"
1172
1173 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1174 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1175 InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1176 InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1177 InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1178 }
1179
1180 // Builtin type for __objc_yes and __objc_no
1181 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1182 SignedCharTy : BoolTy);
1183
1184 ObjCConstantStringType = QualType();
1185
1186 ObjCSuperType = QualType();
1187
1188 // void * type
1189 if (LangOpts.OpenCLVersion >= 200) {
1190 auto Q = VoidTy.getQualifiers();
1191 Q.setAddressSpace(LangAS::opencl_generic);
1192 VoidPtrTy = getPointerType(getCanonicalType(
1193 getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1194 } else {
1195 VoidPtrTy = getPointerType(VoidTy);
1196 }
1197
1198 // nullptr type (C++0x 2.14.7)
1199 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1200
1201 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1202 InitBuiltinType(HalfTy, BuiltinType::Half);
1203
1204 // Builtin type used to help define __builtin_va_list.
1205 VaListTagDecl = nullptr;
1206}
1207
1208DiagnosticsEngine &ASTContext::getDiagnostics() const {
1209 return SourceMgr.getDiagnostics();
1210}
1211
1212AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1213 AttrVec *&Result = DeclAttrs[D];
1214 if (!Result) {
1215 void *Mem = Allocate(sizeof(AttrVec));
1216 Result = new (Mem) AttrVec;
1217 }
1218
1219 return *Result;
1220}
1221
1222/// \brief Erase the attributes corresponding to the given declaration.
1223void ASTContext::eraseDeclAttrs(const Decl *D) {
1224 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1225 if (Pos != DeclAttrs.end()) {
1226 Pos->second->~AttrVec();
1227 DeclAttrs.erase(Pos);
1228 }
1229}
1230
1231// FIXME: Remove ?
1232MemberSpecializationInfo *
1233ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1234 assert(Var->isStaticDataMember() && "Not a static data member")((Var->isStaticDataMember() && "Not a static data member"
) ? static_cast<void> (0) : __assert_fail ("Var->isStaticDataMember() && \"Not a static data member\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1234, __PRETTY_FUNCTION__))
;
1235 return getTemplateOrSpecializationInfo(Var)
1236 .dyn_cast<MemberSpecializationInfo *>();
1237}
1238
1239ASTContext::TemplateOrSpecializationInfo
1240ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1241 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1242 TemplateOrInstantiation.find(Var);
1243 if (Pos == TemplateOrInstantiation.end())
1244 return TemplateOrSpecializationInfo();
1245
1246 return Pos->second;
1247}
1248
1249void
1250ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1251 TemplateSpecializationKind TSK,
1252 SourceLocation PointOfInstantiation) {
1253 assert(Inst->isStaticDataMember() && "Not a static data member")((Inst->isStaticDataMember() && "Not a static data member"
) ? static_cast<void> (0) : __assert_fail ("Inst->isStaticDataMember() && \"Not a static data member\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1253, __PRETTY_FUNCTION__))
;
1254 assert(Tmpl->isStaticDataMember() && "Not a static data member")((Tmpl->isStaticDataMember() && "Not a static data member"
) ? static_cast<void> (0) : __assert_fail ("Tmpl->isStaticDataMember() && \"Not a static data member\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1254, __PRETTY_FUNCTION__))
;
1255 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1256 Tmpl, TSK, PointOfInstantiation));
1257}
1258
1259void
1260ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1261 TemplateOrSpecializationInfo TSI) {
1262 assert(!TemplateOrInstantiation[Inst] &&((!TemplateOrInstantiation[Inst] && "Already noted what the variable was instantiated from"
) ? static_cast<void> (0) : __assert_fail ("!TemplateOrInstantiation[Inst] && \"Already noted what the variable was instantiated from\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1263, __PRETTY_FUNCTION__))
1263 "Already noted what the variable was instantiated from")((!TemplateOrInstantiation[Inst] && "Already noted what the variable was instantiated from"
) ? static_cast<void> (0) : __assert_fail ("!TemplateOrInstantiation[Inst] && \"Already noted what the variable was instantiated from\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1263, __PRETTY_FUNCTION__))
;
1264 TemplateOrInstantiation[Inst] = TSI;
1265}
1266
1267FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1268 const FunctionDecl *FD){
1269 assert(FD && "Specialization is 0")((FD && "Specialization is 0") ? static_cast<void>
(0) : __assert_fail ("FD && \"Specialization is 0\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1269, __PRETTY_FUNCTION__))
;
1270 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1271 = ClassScopeSpecializationPattern.find(FD);
1272 if (Pos == ClassScopeSpecializationPattern.end())
1273 return nullptr;
1274
1275 return Pos->second;
1276}
1277
1278void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1279 FunctionDecl *Pattern) {
1280 assert(FD && "Specialization is 0")((FD && "Specialization is 0") ? static_cast<void>
(0) : __assert_fail ("FD && \"Specialization is 0\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1280, __PRETTY_FUNCTION__))
;
1281 assert(Pattern && "Class scope specialization pattern is 0")((Pattern && "Class scope specialization pattern is 0"
) ? static_cast<void> (0) : __assert_fail ("Pattern && \"Class scope specialization pattern is 0\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1281, __PRETTY_FUNCTION__))
;
1282 ClassScopeSpecializationPattern[FD] = Pattern;
1283}
1284
1285NamedDecl *
1286ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1287 auto Pos = InstantiatedFromUsingDecl.find(UUD);
1288 if (Pos == InstantiatedFromUsingDecl.end())
1289 return nullptr;
1290
1291 return Pos->second;
1292}
1293
1294void
1295ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1296 assert((isa<UsingDecl>(Pattern) ||(((isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl
>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern
)) && "pattern decl is not a using decl") ? static_cast
<void> (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1299, __PRETTY_FUNCTION__))
1297 isa<UnresolvedUsingValueDecl>(Pattern) ||(((isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl
>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern
)) && "pattern decl is not a using decl") ? static_cast
<void> (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1299, __PRETTY_FUNCTION__))
1298 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&(((isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl
>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern
)) && "pattern decl is not a using decl") ? static_cast
<void> (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1299, __PRETTY_FUNCTION__))
1299 "pattern decl is not a using decl")(((isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl
>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern
)) && "pattern decl is not a using decl") ? static_cast
<void> (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1299, __PRETTY_FUNCTION__))
;
1300 assert((isa<UsingDecl>(Inst) ||(((isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl
>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) &&
"instantiation did not produce a using decl") ? static_cast<
void> (0) : __assert_fail ("(isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) && \"instantiation did not produce a using decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1303, __PRETTY_FUNCTION__))
1301 isa<UnresolvedUsingValueDecl>(Inst) ||(((isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl
>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) &&
"instantiation did not produce a using decl") ? static_cast<
void> (0) : __assert_fail ("(isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) && \"instantiation did not produce a using decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1303, __PRETTY_FUNCTION__))
1302 isa<UnresolvedUsingTypenameDecl>(Inst)) &&(((isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl
>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) &&
"instantiation did not produce a using decl") ? static_cast<
void> (0) : __assert_fail ("(isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) && \"instantiation did not produce a using decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1303, __PRETTY_FUNCTION__))
1303 "instantiation did not produce a using decl")(((isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl
>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) &&
"instantiation did not produce a using decl") ? static_cast<
void> (0) : __assert_fail ("(isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) && \"instantiation did not produce a using decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1303, __PRETTY_FUNCTION__))
;
1304 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists")((!InstantiatedFromUsingDecl[Inst] && "pattern already exists"
) ? static_cast<void> (0) : __assert_fail ("!InstantiatedFromUsingDecl[Inst] && \"pattern already exists\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1304, __PRETTY_FUNCTION__))
;
1305 InstantiatedFromUsingDecl[Inst] = Pattern;
1306}
1307
1308UsingShadowDecl *
1309ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1310 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1311 = InstantiatedFromUsingShadowDecl.find(Inst);
1312 if (Pos == InstantiatedFromUsingShadowDecl.end())
1313 return nullptr;
1314
1315 return Pos->second;
1316}
1317
1318void
1319ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1320 UsingShadowDecl *Pattern) {
1321 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists")((!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"
) ? static_cast<void> (0) : __assert_fail ("!InstantiatedFromUsingShadowDecl[Inst] && \"pattern already exists\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1321, __PRETTY_FUNCTION__))
;
1322 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1323}
1324
1325FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1326 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1327 = InstantiatedFromUnnamedFieldDecl.find(Field);
1328 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1329 return nullptr;
1330
1331 return Pos->second;
1332}
1333
1334void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1335 FieldDecl *Tmpl) {
1336 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed")((!Inst->getDeclName() && "Instantiated field decl is not unnamed"
) ? static_cast<void> (0) : __assert_fail ("!Inst->getDeclName() && \"Instantiated field decl is not unnamed\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1336, __PRETTY_FUNCTION__))
;
1337 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed")((!Tmpl->getDeclName() && "Template field decl is not unnamed"
) ? static_cast<void> (0) : __assert_fail ("!Tmpl->getDeclName() && \"Template field decl is not unnamed\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1337, __PRETTY_FUNCTION__))
;
1338 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&((!InstantiatedFromUnnamedFieldDecl[Inst] && "Already noted what unnamed field was instantiated from"
) ? static_cast<void> (0) : __assert_fail ("!InstantiatedFromUnnamedFieldDecl[Inst] && \"Already noted what unnamed field was instantiated from\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1339, __PRETTY_FUNCTION__))
1339 "Already noted what unnamed field was instantiated from")((!InstantiatedFromUnnamedFieldDecl[Inst] && "Already noted what unnamed field was instantiated from"
) ? static_cast<void> (0) : __assert_fail ("!InstantiatedFromUnnamedFieldDecl[Inst] && \"Already noted what unnamed field was instantiated from\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1339, __PRETTY_FUNCTION__))
;
1340
1341 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1342}
1343
1344ASTContext::overridden_cxx_method_iterator
1345ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1346 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1347 OverriddenMethods.find(Method->getCanonicalDecl());
1348 if (Pos == OverriddenMethods.end())
1349 return nullptr;
1350 return Pos->second.begin();
1351}
1352
1353ASTContext::overridden_cxx_method_iterator
1354ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1355 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1356 OverriddenMethods.find(Method->getCanonicalDecl());
1357 if (Pos == OverriddenMethods.end())
1358 return nullptr;
1359 return Pos->second.end();
1360}
1361
1362unsigned
1363ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1364 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1365 OverriddenMethods.find(Method->getCanonicalDecl());
1366 if (Pos == OverriddenMethods.end())
1367 return 0;
1368 return Pos->second.size();
1369}
1370
1371ASTContext::overridden_method_range
1372ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1373 return overridden_method_range(overridden_methods_begin(Method),
1374 overridden_methods_end(Method));
1375}
1376
1377void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1378 const CXXMethodDecl *Overridden) {
1379 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl())((Method->isCanonicalDecl() && Overridden->isCanonicalDecl
()) ? static_cast<void> (0) : __assert_fail ("Method->isCanonicalDecl() && Overridden->isCanonicalDecl()"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1379, __PRETTY_FUNCTION__))
;
1380 OverriddenMethods[Method].push_back(Overridden);
1381}
1382
1383void ASTContext::getOverriddenMethods(
1384 const NamedDecl *D,
1385 SmallVectorImpl<const NamedDecl *> &Overridden) const {
1386 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1386, __PRETTY_FUNCTION__))
;
1387
1388 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1389 Overridden.append(overridden_methods_begin(CXXMethod),
1390 overridden_methods_end(CXXMethod));
1391 return;
1392 }
1393
1394 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1395 if (!Method)
1396 return;
1397
1398 SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1399 Method->getOverriddenMethods(OverDecls);
1400 Overridden.append(OverDecls.begin(), OverDecls.end());
1401}
1402
1403void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1404 assert(!Import->NextLocalImport && "Import declaration already in the chain")((!Import->NextLocalImport && "Import declaration already in the chain"
) ? static_cast<void> (0) : __assert_fail ("!Import->NextLocalImport && \"Import declaration already in the chain\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1404, __PRETTY_FUNCTION__))
;
1405 assert(!Import->isFromASTFile() && "Non-local import declaration")((!Import->isFromASTFile() && "Non-local import declaration"
) ? static_cast<void> (0) : __assert_fail ("!Import->isFromASTFile() && \"Non-local import declaration\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1405, __PRETTY_FUNCTION__))
;
1406 if (!FirstLocalImport) {
1407 FirstLocalImport = Import;
1408 LastLocalImport = Import;
1409 return;
1410 }
1411
1412 LastLocalImport->NextLocalImport = Import;
1413 LastLocalImport = Import;
1414}
1415
1416//===----------------------------------------------------------------------===//
1417// Type Sizing and Analysis
1418//===----------------------------------------------------------------------===//
1419
1420/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1421/// scalar floating point type.
1422const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1423 const BuiltinType *BT = T->getAs<BuiltinType>();
1424 assert(BT && "Not a floating point type!")((BT && "Not a floating point type!") ? static_cast<
void> (0) : __assert_fail ("BT && \"Not a floating point type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1424, __PRETTY_FUNCTION__))
;
1425 switch (BT->getKind()) {
1426 default: llvm_unreachable("Not a floating point type!")::llvm::llvm_unreachable_internal("Not a floating point type!"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1426)
;
1427 case BuiltinType::Float16:
1428 case BuiltinType::Half:
1429 return Target->getHalfFormat();
1430 case BuiltinType::Float: return Target->getFloatFormat();
1431 case BuiltinType::Double: return Target->getDoubleFormat();
1432 case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1433 case BuiltinType::Float128: return Target->getFloat128Format();
1434 }
1435}
1436
1437CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1438 unsigned Align = Target->getCharWidth();
1439
1440 bool UseAlignAttrOnly = false;
1441 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1442 Align = AlignFromAttr;
1443
1444 // __attribute__((aligned)) can increase or decrease alignment
1445 // *except* on a struct or struct member, where it only increases
1446 // alignment unless 'packed' is also specified.
1447 //
1448 // It is an error for alignas to decrease alignment, so we can
1449 // ignore that possibility; Sema should diagnose it.
1450 if (isa<FieldDecl>(D)) {
1451 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1452 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1453 } else {
1454 UseAlignAttrOnly = true;
1455 }
1456 }
1457 else if (isa<FieldDecl>(D))
1458 UseAlignAttrOnly =
1459 D->hasAttr<PackedAttr>() ||
1460 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1461
1462 // If we're using the align attribute only, just ignore everything
1463 // else about the declaration and its type.
1464 if (UseAlignAttrOnly) {
1465 // do nothing
1466
1467 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1468 QualType T = VD->getType();
1469 if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1470 if (ForAlignof)
1471 T = RT->getPointeeType();
1472 else
1473 T = getPointerType(RT->getPointeeType());
1474 }
1475 QualType BaseT = getBaseElementType(T);
1476 if (T->isFunctionType())
1477 Align = getTypeInfoImpl(T.getTypePtr()).Align;
1478 else if (!BaseT->isIncompleteType()) {
1479 // Adjust alignments of declarations with array type by the
1480 // large-array alignment on the target.
1481 if (const ArrayType *arrayType = getAsArrayType(T)) {
1482 unsigned MinWidth = Target->getLargeArrayMinWidth();
1483 if (!ForAlignof && MinWidth) {
1484 if (isa<VariableArrayType>(arrayType))
1485 Align = std::max(Align, Target->getLargeArrayAlign());
1486 else if (isa<ConstantArrayType>(arrayType) &&
1487 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1488 Align = std::max(Align, Target->getLargeArrayAlign());
1489 }
1490 }
1491 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1492 if (BaseT.getQualifiers().hasUnaligned())
1493 Align = Target->getCharWidth();
1494 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1495 if (VD->hasGlobalStorage() && !ForAlignof)
1496 Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1497 }
1498 }
1499
1500 // Fields can be subject to extra alignment constraints, like if
1501 // the field is packed, the struct is packed, or the struct has a
1502 // a max-field-alignment constraint (#pragma pack). So calculate
1503 // the actual alignment of the field within the struct, and then
1504 // (as we're expected to) constrain that by the alignment of the type.
1505 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1506 const RecordDecl *Parent = Field->getParent();
1507 // We can only produce a sensible answer if the record is valid.
1508 if (!Parent->isInvalidDecl()) {
1509 const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1510
1511 // Start with the record's overall alignment.
1512 unsigned FieldAlign = toBits(Layout.getAlignment());
1513
1514 // Use the GCD of that and the offset within the record.
1515 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1516 if (Offset > 0) {
1517 // Alignment is always a power of 2, so the GCD will be a power of 2,
1518 // which means we get to do this crazy thing instead of Euclid's.
1519 uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1520 if (LowBitOfOffset < FieldAlign)
1521 FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1522 }
1523
1524 Align = std::min(Align, FieldAlign);
1525 }
1526 }
1527 }
1528
1529 return toCharUnitsFromBits(Align);
1530}
1531
1532// getTypeInfoDataSizeInChars - Return the size of a type, in
1533// chars. If the type is a record, its data size is returned. This is
1534// the size of the memcpy that's performed when assigning this type
1535// using a trivial copy/move assignment operator.
1536std::pair<CharUnits, CharUnits>
1537ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1538 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1539
1540 // In C++, objects can sometimes be allocated into the tail padding
1541 // of a base-class subobject. We decide whether that's possible
1542 // during class layout, so here we can just trust the layout results.
1543 if (getLangOpts().CPlusPlus) {
1544 if (const RecordType *RT = T->getAs<RecordType>()) {
1545 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1546 sizeAndAlign.first = layout.getDataSize();
1547 }
1548 }
1549
1550 return sizeAndAlign;
1551}
1552
1553/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1554/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1555std::pair<CharUnits, CharUnits>
1556static getConstantArrayInfoInChars(const ASTContext &Context,
1557 const ConstantArrayType *CAT) {
1558 std::pair<CharUnits, CharUnits> EltInfo =
1559 Context.getTypeInfoInChars(CAT->getElementType());
1560 uint64_t Size = CAT->getSize().getZExtValue();
1561 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=(((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity
()) <= (uint64_t)(-1)/Size) && "Overflow in array type char size evaluation"
) ? static_cast<void> (0) : __assert_fail ("(Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= (uint64_t)(-1)/Size) && \"Overflow in array type char size evaluation\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1563, __PRETTY_FUNCTION__))
1562 (uint64_t)(-1)/Size) &&(((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity
()) <= (uint64_t)(-1)/Size) && "Overflow in array type char size evaluation"
) ? static_cast<void> (0) : __assert_fail ("(Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= (uint64_t)(-1)/Size) && \"Overflow in array type char size evaluation\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1563, __PRETTY_FUNCTION__))
1563 "Overflow in array type char size evaluation")(((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity
()) <= (uint64_t)(-1)/Size) && "Overflow in array type char size evaluation"
) ? static_cast<void> (0) : __assert_fail ("(Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= (uint64_t)(-1)/Size) && \"Overflow in array type char size evaluation\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1563, __PRETTY_FUNCTION__))
;
1564 uint64_t Width = EltInfo.first.getQuantity() * Size;
1565 unsigned Align = EltInfo.second.getQuantity();
1566 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1567 Context.getTargetInfo().getPointerWidth(0) == 64)
1568 Width = llvm::alignTo(Width, Align);
1569 return std::make_pair(CharUnits::fromQuantity(Width),
1570 CharUnits::fromQuantity(Align));
1571}
1572
1573std::pair<CharUnits, CharUnits>
1574ASTContext::getTypeInfoInChars(const Type *T) const {
1575 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1576 return getConstantArrayInfoInChars(*this, CAT);
1577 TypeInfo Info = getTypeInfo(T);
1578 return std::make_pair(toCharUnitsFromBits(Info.Width),
1579 toCharUnitsFromBits(Info.Align));
1580}
1581
1582std::pair<CharUnits, CharUnits>
1583ASTContext::getTypeInfoInChars(QualType T) const {
1584 return getTypeInfoInChars(T.getTypePtr());
1585}
1586
1587bool ASTContext::isAlignmentRequired(const Type *T) const {
1588 return getTypeInfo(T).AlignIsRequired;
1589}
1590
1591bool ASTContext::isAlignmentRequired(QualType T) const {
1592 return isAlignmentRequired(T.getTypePtr());
1593}
1594
1595unsigned ASTContext::getTypeAlignIfKnown(QualType T) const {
1596 // An alignment on a typedef overrides anything else.
1597 if (auto *TT = T->getAs<TypedefType>())
1598 if (unsigned Align = TT->getDecl()->getMaxAlignment())
1599 return Align;
1600
1601 // If we have an (array of) complete type, we're done.
1602 T = getBaseElementType(T);
1603 if (!T->isIncompleteType())
1604 return getTypeAlign(T);
1605
1606 // If we had an array type, its element type might be a typedef
1607 // type with an alignment attribute.
1608 if (auto *TT = T->getAs<TypedefType>())
1609 if (unsigned Align = TT->getDecl()->getMaxAlignment())
1610 return Align;
1611
1612 // Otherwise, see if the declaration of the type had an attribute.
1613 if (auto *TT = T->getAs<TagType>())
1614 return TT->getDecl()->getMaxAlignment();
1615
1616 return 0;
1617}
1618
1619TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1620 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1621 if (I != MemoizedTypeInfo.end())
1622 return I->second;
1623
1624 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1625 TypeInfo TI = getTypeInfoImpl(T);
1626 MemoizedTypeInfo[T] = TI;
1627 return TI;
1628}
1629
1630/// getTypeInfoImpl - Return the size of the specified type, in bits. This
1631/// method does not work on incomplete types.
1632///
1633/// FIXME: Pointers into different addr spaces could have different sizes and
1634/// alignment requirements: getPointerInfo should take an AddrSpace, this
1635/// should take a QualType, &c.
1636TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1637 uint64_t Width = 0;
1638 unsigned Align = 8;
1639 bool AlignIsRequired = false;
1640 unsigned AS = 0;
1641 switch (T->getTypeClass()) {
1642#define TYPE(Class, Base)
1643#define ABSTRACT_TYPE(Class, Base)
1644#define NON_CANONICAL_TYPE(Class, Base)
1645#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1646#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1647 case Type::Class: \
1648 assert(!T->isDependentType() && "should not see dependent types here")((!T->isDependentType() && "should not see dependent types here"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"should not see dependent types here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1648, __PRETTY_FUNCTION__))
; \
1649 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1650#include "clang/AST/TypeNodes.def"
1651 llvm_unreachable("Should not see dependent types")::llvm::llvm_unreachable_internal("Should not see dependent types"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1651)
;
1652
1653 case Type::FunctionNoProto:
1654 case Type::FunctionProto:
1655 // GCC extension: alignof(function) = 32 bits
1656 Width = 0;
1657 Align = 32;
1658 break;
1659
1660 case Type::IncompleteArray:
1661 case Type::VariableArray:
1662 Width = 0;
1663 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1664 break;
1665
1666 case Type::ConstantArray: {
1667 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1668
1669 TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1670 uint64_t Size = CAT->getSize().getZExtValue();
1671 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&(((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
"Overflow in array type bit size evaluation") ? static_cast<
void> (0) : __assert_fail ("(Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && \"Overflow in array type bit size evaluation\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1672, __PRETTY_FUNCTION__))
1672 "Overflow in array type bit size evaluation")(((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
"Overflow in array type bit size evaluation") ? static_cast<
void> (0) : __assert_fail ("(Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && \"Overflow in array type bit size evaluation\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1672, __PRETTY_FUNCTION__))
;
1673 Width = EltInfo.Width * Size;
1674 Align = EltInfo.Align;
1675 if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1676 getTargetInfo().getPointerWidth(0) == 64)
1677 Width = llvm::alignTo(Width, Align);
1678 break;
1679 }
1680 case Type::ExtVector:
1681 case Type::Vector: {
1682 const VectorType *VT = cast<VectorType>(T);
1683 TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1684 Width = EltInfo.Width * VT->getNumElements();
1685 Align = Width;
1686 // If the alignment is not a power of 2, round up to the next power of 2.
1687 // This happens for non-power-of-2 length vectors.
1688 if (Align & (Align-1)) {
1689 Align = llvm::NextPowerOf2(Align);
1690 Width = llvm::alignTo(Width, Align);
1691 }
1692 // Adjust the alignment based on the target max.
1693 uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1694 if (TargetVectorAlign && TargetVectorAlign < Align)
1695 Align = TargetVectorAlign;
1696 break;
1697 }
1698
1699 case Type::Builtin:
1700 switch (cast<BuiltinType>(T)->getKind()) {
1701 default: llvm_unreachable("Unknown builtin type!")::llvm::llvm_unreachable_internal("Unknown builtin type!", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1701)
;
1702 case BuiltinType::Void:
1703 // GCC extension: alignof(void) = 8 bits.
1704 Width = 0;
1705 Align = 8;
1706 break;
1707
1708 case BuiltinType::Bool:
1709 Width = Target->getBoolWidth();
1710 Align = Target->getBoolAlign();
1711 break;
1712 case BuiltinType::Char_S:
1713 case BuiltinType::Char_U:
1714 case BuiltinType::UChar:
1715 case BuiltinType::SChar:
1716 Width = Target->getCharWidth();
1717 Align = Target->getCharAlign();
1718 break;
1719 case BuiltinType::WChar_S:
1720 case BuiltinType::WChar_U:
1721 Width = Target->getWCharWidth();
1722 Align = Target->getWCharAlign();
1723 break;
1724 case BuiltinType::Char16:
1725 Width = Target->getChar16Width();
1726 Align = Target->getChar16Align();
1727 break;
1728 case BuiltinType::Char32:
1729 Width = Target->getChar32Width();
1730 Align = Target->getChar32Align();
1731 break;
1732 case BuiltinType::UShort:
1733 case BuiltinType::Short:
1734 Width = Target->getShortWidth();
1735 Align = Target->getShortAlign();
1736 break;
1737 case BuiltinType::UInt:
1738 case BuiltinType::Int:
1739 Width = Target->getIntWidth();
1740 Align = Target->getIntAlign();
1741 break;
1742 case BuiltinType::ULong:
1743 case BuiltinType::Long:
1744 Width = Target->getLongWidth();
1745 Align = Target->getLongAlign();
1746 break;
1747 case BuiltinType::ULongLong:
1748 case BuiltinType::LongLong:
1749 Width = Target->getLongLongWidth();
1750 Align = Target->getLongLongAlign();
1751 break;
1752 case BuiltinType::Int128:
1753 case BuiltinType::UInt128:
1754 Width = 128;
1755 Align = 128; // int128_t is 128-bit aligned on all targets.
1756 break;
1757 case BuiltinType::Float16:
1758 case BuiltinType::Half:
1759 Width = Target->getHalfWidth();
1760 Align = Target->getHalfAlign();
1761 break;
1762 case BuiltinType::Float:
1763 Width = Target->getFloatWidth();
1764 Align = Target->getFloatAlign();
1765 break;
1766 case BuiltinType::Double:
1767 Width = Target->getDoubleWidth();
1768 Align = Target->getDoubleAlign();
1769 break;
1770 case BuiltinType::LongDouble:
1771 Width = Target->getLongDoubleWidth();
1772 Align = Target->getLongDoubleAlign();
1773 break;
1774 case BuiltinType::Float128:
1775 Width = Target->getFloat128Width();
1776 Align = Target->getFloat128Align();
1777 break;
1778 case BuiltinType::NullPtr:
1779 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1780 Align = Target->getPointerAlign(0); // == sizeof(void*)
1781 break;
1782 case BuiltinType::ObjCId:
1783 case BuiltinType::ObjCClass:
1784 case BuiltinType::ObjCSel:
1785 Width = Target->getPointerWidth(0);
1786 Align = Target->getPointerAlign(0);
1787 break;
1788 case BuiltinType::OCLSampler:
1789 case BuiltinType::OCLEvent:
1790 case BuiltinType::OCLClkEvent:
1791 case BuiltinType::OCLQueue:
1792 case BuiltinType::OCLReserveID:
1793#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1794 case BuiltinType::Id:
1795#include "clang/Basic/OpenCLImageTypes.def"
1796 AS = getTargetAddressSpace(Target->getOpenCLTypeAddrSpace(T));
1797 Width = Target->getPointerWidth(AS);
1798 Align = Target->getPointerAlign(AS);
1799 break;
1800 }
1801 break;
1802 case Type::ObjCObjectPointer:
1803 Width = Target->getPointerWidth(0);
1804 Align = Target->getPointerAlign(0);
1805 break;
1806 case Type::BlockPointer: {
1807 AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
1808 Width = Target->getPointerWidth(AS);
1809 Align = Target->getPointerAlign(AS);
1810 break;
1811 }
1812 case Type::LValueReference:
1813 case Type::RValueReference: {
1814 // alignof and sizeof should never enter this code path here, so we go
1815 // the pointer route.
1816 AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
1817 Width = Target->getPointerWidth(AS);
1818 Align = Target->getPointerAlign(AS);
1819 break;
1820 }
1821 case Type::Pointer: {
1822 AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1823 Width = Target->getPointerWidth(AS);
1824 Align = Target->getPointerAlign(AS);
1825 break;
1826 }
1827 case Type::MemberPointer: {
1828 const MemberPointerType *MPT = cast<MemberPointerType>(T);
1829 std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1830 break;
1831 }
1832 case Type::Complex: {
1833 // Complex types have the same alignment as their elements, but twice the
1834 // size.
1835 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1836 Width = EltInfo.Width * 2;
1837 Align = EltInfo.Align;
1838 break;
1839 }
1840 case Type::ObjCObject:
1841 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1842 case Type::Adjusted:
1843 case Type::Decayed:
1844 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1845 case Type::ObjCInterface: {
1846 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1847 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1848 Width = toBits(Layout.getSize());
1849 Align = toBits(Layout.getAlignment());
1850 break;
1851 }
1852 case Type::Record:
1853 case Type::Enum: {
1854 const TagType *TT = cast<TagType>(T);
1855
1856 if (TT->getDecl()->isInvalidDecl()) {
1857 Width = 8;
1858 Align = 8;
1859 break;
1860 }
1861
1862 if (const EnumType *ET = dyn_cast<EnumType>(TT)) {
1863 const EnumDecl *ED = ET->getDecl();
1864 TypeInfo Info =
1865 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
1866 if (unsigned AttrAlign = ED->getMaxAlignment()) {
1867 Info.Align = AttrAlign;
1868 Info.AlignIsRequired = true;
1869 }
1870 return Info;
1871 }
1872
1873 const RecordType *RT = cast<RecordType>(TT);
1874 const RecordDecl *RD = RT->getDecl();
1875 const ASTRecordLayout &Layout = getASTRecordLayout(RD);
1876 Width = toBits(Layout.getSize());
1877 Align = toBits(Layout.getAlignment());
1878 AlignIsRequired = RD->hasAttr<AlignedAttr>();
1879 break;
1880 }
1881
1882 case Type::SubstTemplateTypeParm:
1883 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1884 getReplacementType().getTypePtr());
1885
1886 case Type::Auto:
1887 case Type::DeducedTemplateSpecialization: {
1888 const DeducedType *A = cast<DeducedType>(T);
1889 assert(!A->getDeducedType().isNull() &&((!A->getDeducedType().isNull() && "cannot request the size of an undeduced or dependent auto type"
) ? static_cast<void> (0) : __assert_fail ("!A->getDeducedType().isNull() && \"cannot request the size of an undeduced or dependent auto type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1890, __PRETTY_FUNCTION__))
1890 "cannot request the size of an undeduced or dependent auto type")((!A->getDeducedType().isNull() && "cannot request the size of an undeduced or dependent auto type"
) ? static_cast<void> (0) : __assert_fail ("!A->getDeducedType().isNull() && \"cannot request the size of an undeduced or dependent auto type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1890, __PRETTY_FUNCTION__))
;
1891 return getTypeInfo(A->getDeducedType().getTypePtr());
1892 }
1893
1894 case Type::Paren:
1895 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1896
1897 case Type::ObjCTypeParam:
1898 return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
1899
1900 case Type::Typedef: {
1901 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1902 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1903 // If the typedef has an aligned attribute on it, it overrides any computed
1904 // alignment we have. This violates the GCC documentation (which says that
1905 // attribute(aligned) can only round up) but matches its implementation.
1906 if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
1907 Align = AttrAlign;
1908 AlignIsRequired = true;
1909 } else {
1910 Align = Info.Align;
1911 AlignIsRequired = Info.AlignIsRequired;
1912 }
1913 Width = Info.Width;
1914 break;
1915 }
1916
1917 case Type::Elaborated:
1918 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1919
1920 case Type::Attributed:
1921 return getTypeInfo(
1922 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1923
1924 case Type::Atomic: {
1925 // Start with the base type information.
1926 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
1927 Width = Info.Width;
1928 Align = Info.Align;
1929
1930 // If the size of the type doesn't exceed the platform's max
1931 // atomic promotion width, make the size and alignment more
1932 // favorable to atomic operations:
1933 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1934 // Round the size up to a power of 2.
1935 if (!llvm::isPowerOf2_64(Width))
1936 Width = llvm::NextPowerOf2(Width);
1937
1938 // Set the alignment equal to the size.
1939 Align = static_cast<unsigned>(Width);
1940 }
1941 }
1942 break;
1943
1944 case Type::Pipe: {
1945 Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
1946 Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
1947 }
1948
1949 }
1950
1951 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2")((llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"
) ? static_cast<void> (0) : __assert_fail ("llvm::isPowerOf2_32(Align) && \"Alignment must be power of 2\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 1951, __PRETTY_FUNCTION__))
;
1952 return TypeInfo(Width, Align, AlignIsRequired);
1953}
1954
1955unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
1956 unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
1957 // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
1958 if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
1959 getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
1960 getTargetInfo().getABI() == "elfv1-qpx" &&
1961 T->isSpecificBuiltinType(BuiltinType::Double))
1962 SimdAlign = 256;
1963 return SimdAlign;
1964}
1965
1966/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1967CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1968 return CharUnits::fromQuantity(BitSize / getCharWidth());
1969}
1970
1971/// toBits - Convert a size in characters to a size in characters.
1972int64_t ASTContext::toBits(CharUnits CharSize) const {
1973 return CharSize.getQuantity() * getCharWidth();
1974}
1975
1976/// getTypeSizeInChars - Return the size of the specified type, in characters.
1977/// This method does not work on incomplete types.
1978CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1979 return getTypeInfoInChars(T).first;
1980}
1981CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1982 return getTypeInfoInChars(T).first;
1983}
1984
1985/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1986/// characters. This method does not work on incomplete types.
1987CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1988 return toCharUnitsFromBits(getTypeAlign(T));
1989}
1990CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1991 return toCharUnitsFromBits(getTypeAlign(T));
1992}
1993
1994/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1995/// type for the current target in bits. This can be different than the ABI
1996/// alignment in cases where it is beneficial for performance to overalign
1997/// a data type.
1998unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1999 TypeInfo TI = getTypeInfo(T);
2000 unsigned ABIAlign = TI.Align;
2001
2002 T = T->getBaseElementTypeUnsafe();
2003
2004 // The preferred alignment of member pointers is that of a pointer.
2005 if (T->isMemberPointerType())
2006 return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2007
2008 if (!Target->allowsLargerPreferedTypeAlignment())
2009 return ABIAlign;
2010
2011 // Double and long long should be naturally aligned if possible.
2012 if (const ComplexType *CT = T->getAs<ComplexType>())
2013 T = CT->getElementType().getTypePtr();
2014 if (const EnumType *ET = T->getAs<EnumType>())
2015 T = ET->getDecl()->getIntegerType().getTypePtr();
2016 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2017 T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2018 T->isSpecificBuiltinType(BuiltinType::ULongLong))
2019 // Don't increase the alignment if an alignment attribute was specified on a
2020 // typedef declaration.
2021 if (!TI.AlignIsRequired)
2022 return std::max(ABIAlign, (unsigned)getTypeSize(T));
2023
2024 return ABIAlign;
2025}
2026
2027/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2028/// for __attribute__((aligned)) on this target, to be used if no alignment
2029/// value is specified.
2030unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2031 return getTargetInfo().getDefaultAlignForAttributeAligned();
2032}
2033
2034/// getAlignOfGlobalVar - Return the alignment in bits that should be given
2035/// to a global variable of the specified type.
2036unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2037 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
2038}
2039
2040/// getAlignOfGlobalVarInChars - Return the alignment in characters that
2041/// should be given to a global variable of the specified type.
2042CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2043 return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2044}
2045
2046CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2047 CharUnits Offset = CharUnits::Zero();
2048 const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2049 while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2050 Offset += Layout->getBaseClassOffset(Base);
2051 Layout = &getASTRecordLayout(Base);
2052 }
2053 return Offset;
2054}
2055
2056/// DeepCollectObjCIvars -
2057/// This routine first collects all declared, but not synthesized, ivars in
2058/// super class and then collects all ivars, including those synthesized for
2059/// current class. This routine is used for implementation of current class
2060/// when all ivars, declared and synthesized are known.
2061///
2062void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2063 bool leafClass,
2064 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2065 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2066 DeepCollectObjCIvars(SuperClass, false, Ivars);
2067 if (!leafClass) {
2068 for (const auto *I : OI->ivars())
2069 Ivars.push_back(I);
2070 } else {
2071 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2072 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2073 Iv= Iv->getNextIvar())
2074 Ivars.push_back(Iv);
2075 }
2076}
2077
2078/// CollectInheritedProtocols - Collect all protocols in current class and
2079/// those inherited by it.
2080void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2081 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2082 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2083 // We can use protocol_iterator here instead of
2084 // all_referenced_protocol_iterator since we are walking all categories.
2085 for (auto *Proto : OI->all_referenced_protocols()) {
2086 CollectInheritedProtocols(Proto, Protocols);
2087 }
2088
2089 // Categories of this Interface.
2090 for (const auto *Cat : OI->visible_categories())
2091 CollectInheritedProtocols(Cat, Protocols);
2092
2093 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2094 while (SD) {
2095 CollectInheritedProtocols(SD, Protocols);
2096 SD = SD->getSuperClass();
2097 }
2098 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2099 for (auto *Proto : OC->protocols()) {
2100 CollectInheritedProtocols(Proto, Protocols);
2101 }
2102 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2103 // Insert the protocol.
2104 if (!Protocols.insert(
2105 const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2106 return;
2107
2108 for (auto *Proto : OP->protocols())
2109 CollectInheritedProtocols(Proto, Protocols);
2110 }
2111}
2112
2113unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2114 unsigned count = 0;
2115 // Count ivars declared in class extension.
2116 for (const auto *Ext : OI->known_extensions())
2117 count += Ext->ivar_size();
2118
2119 // Count ivar defined in this class's implementation. This
2120 // includes synthesized ivars.
2121 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2122 count += ImplDecl->ivar_size();
2123
2124 return count;
2125}
2126
2127bool ASTContext::isSentinelNullExpr(const Expr *E) {
2128 if (!E)
2129 return false;
2130
2131 // nullptr_t is always treated as null.
2132 if (E->getType()->isNullPtrType()) return true;
2133
2134 if (E->getType()->isAnyPointerType() &&
2135 E->IgnoreParenCasts()->isNullPointerConstant(*this,
2136 Expr::NPC_ValueDependentIsNull))
2137 return true;
2138
2139 // Unfortunately, __null has type 'int'.
2140 if (isa<GNUNullExpr>(E)) return true;
2141
2142 return false;
2143}
2144
2145/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
2146ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2147 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2148 I = ObjCImpls.find(D);
2149 if (I != ObjCImpls.end())
2150 return cast<ObjCImplementationDecl>(I->second);
2151 return nullptr;
2152}
2153/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
2154ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2155 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2156 I = ObjCImpls.find(D);
2157 if (I != ObjCImpls.end())
2158 return cast<ObjCCategoryImplDecl>(I->second);
2159 return nullptr;
2160}
2161
2162/// \brief Set the implementation of ObjCInterfaceDecl.
2163void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2164 ObjCImplementationDecl *ImplD) {
2165 assert(IFaceD && ImplD && "Passed null params")((IFaceD && ImplD && "Passed null params") ? static_cast
<void> (0) : __assert_fail ("IFaceD && ImplD && \"Passed null params\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2165, __PRETTY_FUNCTION__))
;
2166 ObjCImpls[IFaceD] = ImplD;
2167}
2168/// \brief Set the implementation of ObjCCategoryDecl.
2169void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2170 ObjCCategoryImplDecl *ImplD) {
2171 assert(CatD && ImplD && "Passed null params")((CatD && ImplD && "Passed null params") ? static_cast
<void> (0) : __assert_fail ("CatD && ImplD && \"Passed null params\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2171, __PRETTY_FUNCTION__))
;
2172 ObjCImpls[CatD] = ImplD;
2173}
2174
2175const ObjCMethodDecl *
2176ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2177 return ObjCMethodRedecls.lookup(MD);
2178}
2179
2180void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2181 const ObjCMethodDecl *Redecl) {
2182 assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration")((!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration"
) ? static_cast<void> (0) : __assert_fail ("!getObjCMethodRedeclaration(MD) && \"MD already has a redeclaration\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2182, __PRETTY_FUNCTION__))
;
2183 ObjCMethodRedecls[MD] = Redecl;
2184}
2185
2186const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2187 const NamedDecl *ND) const {
2188 if (const ObjCInterfaceDecl *ID =
2189 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2190 return ID;
2191 if (const ObjCCategoryDecl *CD =
2192 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2193 return CD->getClassInterface();
2194 if (const ObjCImplDecl *IMD =
2195 dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2196 return IMD->getClassInterface();
2197
2198 return nullptr;
2199}
2200
2201/// \brief Get the copy initialization expression of VarDecl,or NULL if
2202/// none exists.
2203Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
2204 assert(VD && "Passed null params")((VD && "Passed null params") ? static_cast<void>
(0) : __assert_fail ("VD && \"Passed null params\"",
"/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2204, __PRETTY_FUNCTION__))
;
2205 assert(VD->hasAttr<BlocksAttr>() &&((VD->hasAttr<BlocksAttr>() && "getBlockVarCopyInits - not __block var"
) ? static_cast<void> (0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"getBlockVarCopyInits - not __block var\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2206, __PRETTY_FUNCTION__))
2206 "getBlockVarCopyInits - not __block var")((VD->hasAttr<BlocksAttr>() && "getBlockVarCopyInits - not __block var"
) ? static_cast<void> (0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"getBlockVarCopyInits - not __block var\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2206, __PRETTY_FUNCTION__))
;
2207 llvm::DenseMap<const VarDecl*, Expr*>::iterator
2208 I = BlockVarCopyInits.find(VD);
2209 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
2210}
2211
2212/// \brief Set the copy inialization expression of a block var decl.
2213void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
2214 assert(VD && Init && "Passed null params")((VD && Init && "Passed null params") ? static_cast
<void> (0) : __assert_fail ("VD && Init && \"Passed null params\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2214, __PRETTY_FUNCTION__))
;
2215 assert(VD->hasAttr<BlocksAttr>() &&((VD->hasAttr<BlocksAttr>() && "setBlockVarCopyInits - not __block var"
) ? static_cast<void> (0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"setBlockVarCopyInits - not __block var\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2216, __PRETTY_FUNCTION__))
2216 "setBlockVarCopyInits - not __block var")((VD->hasAttr<BlocksAttr>() && "setBlockVarCopyInits - not __block var"
) ? static_cast<void> (0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"setBlockVarCopyInits - not __block var\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2216, __PRETTY_FUNCTION__))
;
2217 BlockVarCopyInits[VD] = Init;
2218}
2219
2220TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2221 unsigned DataSize) const {
2222 if (!DataSize)
2223 DataSize = TypeLoc::getFullDataSizeForType(T);
2224 else
2225 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&((DataSize == TypeLoc::getFullDataSizeForType(T) && "incorrect data size provided to CreateTypeSourceInfo!"
) ? static_cast<void> (0) : __assert_fail ("DataSize == TypeLoc::getFullDataSizeForType(T) && \"incorrect data size provided to CreateTypeSourceInfo!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2226, __PRETTY_FUNCTION__))
2226 "incorrect data size provided to CreateTypeSourceInfo!")((DataSize == TypeLoc::getFullDataSizeForType(T) && "incorrect data size provided to CreateTypeSourceInfo!"
) ? static_cast<void> (0) : __assert_fail ("DataSize == TypeLoc::getFullDataSizeForType(T) && \"incorrect data size provided to CreateTypeSourceInfo!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2226, __PRETTY_FUNCTION__))
;
2227
2228 TypeSourceInfo *TInfo =
2229 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2230 new (TInfo) TypeSourceInfo(T);
2231 return TInfo;
2232}
2233
2234TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2235 SourceLocation L) const {
2236 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2237 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2238 return DI;
2239}
2240
2241const ASTRecordLayout &
2242ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2243 return getObjCLayout(D, nullptr);
2244}
2245
2246const ASTRecordLayout &
2247ASTContext::getASTObjCImplementationLayout(
2248 const ObjCImplementationDecl *D) const {
2249 return getObjCLayout(D->getClassInterface(), D);
2250}
2251
2252//===----------------------------------------------------------------------===//
2253// Type creation/memoization methods
2254//===----------------------------------------------------------------------===//
2255
2256QualType
2257ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2258 unsigned fastQuals = quals.getFastQualifiers();
2259 quals.removeFastQualifiers();
2260
2261 // Check if we've already instantiated this type.
2262 llvm::FoldingSetNodeID ID;
2263 ExtQuals::Profile(ID, baseType, quals);
2264 void *insertPos = nullptr;
2265 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2266 assert(eq->getQualifiers() == quals)((eq->getQualifiers() == quals) ? static_cast<void> (
0) : __assert_fail ("eq->getQualifiers() == quals", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2266, __PRETTY_FUNCTION__))
;
2267 return QualType(eq, fastQuals);
2268 }
2269
2270 // If the base type is not canonical, make the appropriate canonical type.
2271 QualType canon;
2272 if (!baseType->isCanonicalUnqualified()) {
2273 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2274 canonSplit.Quals.addConsistentQualifiers(quals);
2275 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2276
2277 // Re-find the insert position.
2278 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2279 }
2280
2281 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2282 ExtQualNodes.InsertNode(eq, insertPos);
2283 return QualType(eq, fastQuals);
2284}
2285
2286QualType ASTContext::getAddrSpaceQualType(QualType T,
2287 LangAS AddressSpace) const {
2288 QualType CanT = getCanonicalType(T);
2289 if (CanT.getAddressSpace() == AddressSpace)
2290 return T;
2291
2292 // If we are composing extended qualifiers together, merge together
2293 // into one ExtQuals node.
2294 QualifierCollector Quals;
2295 const Type *TypeNode = Quals.strip(T);
2296
2297 // If this type already has an address space specified, it cannot get
2298 // another one.
2299 assert(!Quals.hasAddressSpace() &&((!Quals.hasAddressSpace() && "Type cannot be in multiple addr spaces!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasAddressSpace() && \"Type cannot be in multiple addr spaces!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2300, __PRETTY_FUNCTION__))
2300 "Type cannot be in multiple addr spaces!")((!Quals.hasAddressSpace() && "Type cannot be in multiple addr spaces!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasAddressSpace() && \"Type cannot be in multiple addr spaces!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2300, __PRETTY_FUNCTION__))
;
2301 Quals.addAddressSpace(AddressSpace);
2302
2303 return getExtQualType(TypeNode, Quals);
2304}
2305
2306QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
2307 // If we are composing extended qualifiers together, merge together
2308 // into one ExtQuals node.
2309 QualifierCollector Quals;
2310 const Type *TypeNode = Quals.strip(T);
2311
2312 // If the qualifier doesn't have an address space just return it.
2313 if (!Quals.hasAddressSpace())
2314 return T;
2315
2316 Quals.removeAddressSpace();
2317
2318 // Removal of the address space can mean there are no longer any
2319 // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2320 // or required.
2321 if (Quals.hasNonFastQualifiers())
2322 return getExtQualType(TypeNode, Quals);
2323 else
2324 return QualType(TypeNode, Quals.getFastQualifiers());
2325}
2326
2327QualType ASTContext::getObjCGCQualType(QualType T,
2328 Qualifiers::GC GCAttr) const {
2329 QualType CanT = getCanonicalType(T);
2330 if (CanT.getObjCGCAttr() == GCAttr)
2331 return T;
2332
2333 if (const PointerType *ptr = T->getAs<PointerType>()) {
2334 QualType Pointee = ptr->getPointeeType();
2335 if (Pointee->isAnyPointerType()) {
2336 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2337 return getPointerType(ResultType);
2338 }
2339 }
2340
2341 // If we are composing extended qualifiers together, merge together
2342 // into one ExtQuals node.
2343 QualifierCollector Quals;
2344 const Type *TypeNode = Quals.strip(T);
2345
2346 // If this type already has an ObjCGC specified, it cannot get
2347 // another one.
2348 assert(!Quals.hasObjCGCAttr() &&((!Quals.hasObjCGCAttr() && "Type cannot have multiple ObjCGCs!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasObjCGCAttr() && \"Type cannot have multiple ObjCGCs!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2349, __PRETTY_FUNCTION__))
2349 "Type cannot have multiple ObjCGCs!")((!Quals.hasObjCGCAttr() && "Type cannot have multiple ObjCGCs!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasObjCGCAttr() && \"Type cannot have multiple ObjCGCs!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2349, __PRETTY_FUNCTION__))
;
2350 Quals.addObjCGCAttr(GCAttr);
2351
2352 return getExtQualType(TypeNode, Quals);
2353}
2354
2355const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2356 FunctionType::ExtInfo Info) {
2357 if (T->getExtInfo() == Info)
2358 return T;
2359
2360 QualType Result;
2361 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2362 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2363 } else {
2364 const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2365 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2366 EPI.ExtInfo = Info;
2367 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2368 }
2369
2370 return cast<FunctionType>(Result.getTypePtr());
2371}
2372
2373void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2374 QualType ResultType) {
2375 FD = FD->getMostRecentDecl();
2376 while (true) {
2377 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2378 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2379 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2380 if (FunctionDecl *Next = FD->getPreviousDecl())
2381 FD = Next;
2382 else
2383 break;
2384 }
2385 if (ASTMutationListener *L = getASTMutationListener())
2386 L->DeducedReturnType(FD, ResultType);
2387}
2388
2389/// Get a function type and produce the equivalent function type with the
2390/// specified exception specification. Type sugar that can be present on a
2391/// declaration of a function with an exception specification is permitted
2392/// and preserved. Other type sugar (for instance, typedefs) is not.
2393static QualType getFunctionTypeWithExceptionSpec(
2394 ASTContext &Context, QualType Orig,
2395 const FunctionProtoType::ExceptionSpecInfo &ESI) {
2396 // Might have some parens.
2397 if (auto *PT = dyn_cast<ParenType>(Orig))
2398 return Context.getParenType(
2399 getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
2400
2401 // Might have a calling-convention attribute.
2402 if (auto *AT = dyn_cast<AttributedType>(Orig))
2403 return Context.getAttributedType(
2404 AT->getAttrKind(),
2405 getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
2406 getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
2407 ESI));
2408
2409 // Anything else must be a function type. Rebuild it with the new exception
2410 // specification.
2411 const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
2412 return Context.getFunctionType(
2413 Proto->getReturnType(), Proto->getParamTypes(),
2414 Proto->getExtProtoInfo().withExceptionSpec(ESI));
2415}
2416
2417bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
2418 QualType U) {
2419 return hasSameType(T, U) ||
2420 (getLangOpts().CPlusPlus1z &&
2421 hasSameType(getFunctionTypeWithExceptionSpec(*this, T, EST_None),
2422 getFunctionTypeWithExceptionSpec(*this, U, EST_None)));
2423}
2424
2425void ASTContext::adjustExceptionSpec(
2426 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2427 bool AsWritten) {
2428 // Update the type.
2429 QualType Updated =
2430 getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
2431 FD->setType(Updated);
2432
2433 if (!AsWritten)
2434 return;
2435
2436 // Update the type in the type source information too.
2437 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2438 // If the type and the type-as-written differ, we may need to update
2439 // the type-as-written too.
2440 if (TSInfo->getType() != FD->getType())
2441 Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
2442
2443 // FIXME: When we get proper type location information for exceptions,
2444 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2445 // up the TypeSourceInfo;
2446 assert(TypeLoc::getFullDataSizeForType(Updated) ==((TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType
(TSInfo->getType()) && "TypeLoc size mismatch from updating exception specification"
) ? static_cast<void> (0) : __assert_fail ("TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) && \"TypeLoc size mismatch from updating exception specification\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2448, __PRETTY_FUNCTION__))
2447 TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&((TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType
(TSInfo->getType()) && "TypeLoc size mismatch from updating exception specification"
) ? static_cast<void> (0) : __assert_fail ("TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) && \"TypeLoc size mismatch from updating exception specification\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2448, __PRETTY_FUNCTION__))
2448 "TypeLoc size mismatch from updating exception specification")((TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType
(TSInfo->getType()) && "TypeLoc size mismatch from updating exception specification"
) ? static_cast<void> (0) : __assert_fail ("TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) && \"TypeLoc size mismatch from updating exception specification\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2448, __PRETTY_FUNCTION__))
;
2449 TSInfo->overrideType(Updated);
2450 }
2451}
2452
2453/// getComplexType - Return the uniqued reference to the type for a complex
2454/// number with the specified element type.
2455QualType ASTContext::getComplexType(QualType T) const {
2456 // Unique pointers, to guarantee there is only one pointer of a particular
2457 // structure.
2458 llvm::FoldingSetNodeID ID;
2459 ComplexType::Profile(ID, T);
2460
2461 void *InsertPos = nullptr;
2462 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2463 return QualType(CT, 0);
2464
2465 // If the pointee type isn't canonical, this won't be a canonical type either,
2466 // so fill in the canonical type field.
2467 QualType Canonical;
2468 if (!T.isCanonical()) {
2469 Canonical = getComplexType(getCanonicalType(T));
2470
2471 // Get the new insert position for the node we care about.
2472 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2473 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2473, __PRETTY_FUNCTION__))
; (void)NewIP;
2474 }
2475 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2476 Types.push_back(New);
2477 ComplexTypes.InsertNode(New, InsertPos);
2478 return QualType(New, 0);
2479}
2480
2481/// getPointerType - Return the uniqued reference to the type for a pointer to
2482/// the specified type.
2483QualType ASTContext::getPointerType(QualType T) const {
2484 // Unique pointers, to guarantee there is only one pointer of a particular
2485 // structure.
2486 llvm::FoldingSetNodeID ID;
2487 PointerType::Profile(ID, T);
2488
2489 void *InsertPos = nullptr;
2490 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2491 return QualType(PT, 0);
2492
2493 // If the pointee type isn't canonical, this won't be a canonical type either,
2494 // so fill in the canonical type field.
2495 QualType Canonical;
2496 if (!T.isCanonical()) {
2497 Canonical = getPointerType(getCanonicalType(T));
2498
2499 // Get the new insert position for the node we care about.
2500 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2501 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2501, __PRETTY_FUNCTION__))
; (void)NewIP;
2502 }
2503 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2504 Types.push_back(New);
2505 PointerTypes.InsertNode(New, InsertPos);
2506 return QualType(New, 0);
2507}
2508
2509QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2510 llvm::FoldingSetNodeID ID;
2511 AdjustedType::Profile(ID, Orig, New);
2512 void *InsertPos = nullptr;
2513 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2514 if (AT)
2515 return QualType(AT, 0);
2516
2517 QualType Canonical = getCanonicalType(New);
2518
2519 // Get the new insert position for the node we care about.
2520 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2521 assert(!AT && "Shouldn't be in the map!")((!AT && "Shouldn't be in the map!") ? static_cast<
void> (0) : __assert_fail ("!AT && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2521, __PRETTY_FUNCTION__))
;
2522
2523 AT = new (*this, TypeAlignment)
2524 AdjustedType(Type::Adjusted, Orig, New, Canonical);
2525 Types.push_back(AT);
2526 AdjustedTypes.InsertNode(AT, InsertPos);
2527 return QualType(AT, 0);
2528}
2529
2530QualType ASTContext::getDecayedType(QualType T) const {
2531 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay")(((T->isArrayType() || T->isFunctionType()) && "T does not decay"
) ? static_cast<void> (0) : __assert_fail ("(T->isArrayType() || T->isFunctionType()) && \"T does not decay\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2531, __PRETTY_FUNCTION__))
;
2532
2533 QualType Decayed;
2534
2535 // C99 6.7.5.3p7:
2536 // A declaration of a parameter as "array of type" shall be
2537 // adjusted to "qualified pointer to type", where the type
2538 // qualifiers (if any) are those specified within the [ and ] of
2539 // the array type derivation.
2540 if (T->isArrayType())
2541 Decayed = getArrayDecayedType(T);
2542
2543 // C99 6.7.5.3p8:
2544 // A declaration of a parameter as "function returning type"
2545 // shall be adjusted to "pointer to function returning type", as
2546 // in 6.3.2.1.
2547 if (T->isFunctionType())
2548 Decayed = getPointerType(T);
2549
2550 llvm::FoldingSetNodeID ID;
2551 AdjustedType::Profile(ID, T, Decayed);
2552 void *InsertPos = nullptr;
2553 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2554 if (AT)
2555 return QualType(AT, 0);
2556
2557 QualType Canonical = getCanonicalType(Decayed);
2558
2559 // Get the new insert position for the node we care about.
2560 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2561 assert(!AT && "Shouldn't be in the map!")((!AT && "Shouldn't be in the map!") ? static_cast<
void> (0) : __assert_fail ("!AT && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2561, __PRETTY_FUNCTION__))
;
2562
2563 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2564 Types.push_back(AT);
2565 AdjustedTypes.InsertNode(AT, InsertPos);
2566 return QualType(AT, 0);
2567}
2568
2569/// getBlockPointerType - Return the uniqued reference to the type for
2570/// a pointer to the specified block.
2571QualType ASTContext::getBlockPointerType(QualType T) const {
2572 assert(T->isFunctionType() && "block of function types only")((T->isFunctionType() && "block of function types only"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"block of function types only\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2572, __PRETTY_FUNCTION__))
;
2573 // Unique pointers, to guarantee there is only one block of a particular
2574 // structure.
2575 llvm::FoldingSetNodeID ID;
2576 BlockPointerType::Profile(ID, T);
2577
2578 void *InsertPos = nullptr;
2579 if (BlockPointerType *PT =
2580 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2581 return QualType(PT, 0);
2582
2583 // If the block pointee type isn't canonical, this won't be a canonical
2584 // type either so fill in the canonical type field.
2585 QualType Canonical;
2586 if (!T.isCanonical()) {
2587 Canonical = getBlockPointerType(getCanonicalType(T));
2588
2589 // Get the new insert position for the node we care about.
2590 BlockPointerType *NewIP =
2591 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2592 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2592, __PRETTY_FUNCTION__))
; (void)NewIP;
2593 }
2594 BlockPointerType *New
2595 = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2596 Types.push_back(New);
2597 BlockPointerTypes.InsertNode(New, InsertPos);
2598 return QualType(New, 0);
2599}
2600
2601/// getLValueReferenceType - Return the uniqued reference to the type for an
2602/// lvalue reference to the specified type.
2603QualType
2604ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2605 assert(getCanonicalType(T) != OverloadTy &&((getCanonicalType(T) != OverloadTy && "Unresolved overloaded function type"
) ? static_cast<void> (0) : __assert_fail ("getCanonicalType(T) != OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2606, __PRETTY_FUNCTION__))
2606 "Unresolved overloaded function type")((getCanonicalType(T) != OverloadTy && "Unresolved overloaded function type"
) ? static_cast<void> (0) : __assert_fail ("getCanonicalType(T) != OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2606, __PRETTY_FUNCTION__))
;
2607
2608 // Unique pointers, to guarantee there is only one pointer of a particular
2609 // structure.
2610 llvm::FoldingSetNodeID ID;
2611 ReferenceType::Profile(ID, T, SpelledAsLValue);
2612
2613 void *InsertPos = nullptr;
2614 if (LValueReferenceType *RT =
2615 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2616 return QualType(RT, 0);
2617
2618 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2619
2620 // If the referencee type isn't canonical, this won't be a canonical type
2621 // either, so fill in the canonical type field.
2622 QualType Canonical;
2623 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2624 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2625 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2626
2627 // Get the new insert position for the node we care about.
2628 LValueReferenceType *NewIP =
2629 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2630 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2630, __PRETTY_FUNCTION__))
; (void)NewIP;
2631 }
2632
2633 LValueReferenceType *New
2634 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2635 SpelledAsLValue);
2636 Types.push_back(New);
2637 LValueReferenceTypes.InsertNode(New, InsertPos);
2638
2639 return QualType(New, 0);
2640}
2641
2642/// getRValueReferenceType - Return the uniqued reference to the type for an
2643/// rvalue reference to the specified type.
2644QualType ASTContext::getRValueReferenceType(QualType T) const {
2645 // Unique pointers, to guarantee there is only one pointer of a particular
2646 // structure.
2647 llvm::FoldingSetNodeID ID;
2648 ReferenceType::Profile(ID, T, false);
2649
2650 void *InsertPos = nullptr;
2651 if (RValueReferenceType *RT =
2652 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2653 return QualType(RT, 0);
2654
2655 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2656
2657 // If the referencee type isn't canonical, this won't be a canonical type
2658 // either, so fill in the canonical type field.
2659 QualType Canonical;
2660 if (InnerRef || !T.isCanonical()) {
2661 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2662 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2663
2664 // Get the new insert position for the node we care about.
2665 RValueReferenceType *NewIP =
2666 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2667 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2667, __PRETTY_FUNCTION__))
; (void)NewIP;
2668 }
2669
2670 RValueReferenceType *New
2671 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2672 Types.push_back(New);
2673 RValueReferenceTypes.InsertNode(New, InsertPos);
2674 return QualType(New, 0);
2675}
2676
2677/// getMemberPointerType - Return the uniqued reference to the type for a
2678/// member pointer to the specified type, in the specified class.
2679QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2680 // Unique pointers, to guarantee there is only one pointer of a particular
2681 // structure.
2682 llvm::FoldingSetNodeID ID;
2683 MemberPointerType::Profile(ID, T, Cls);
2684
2685 void *InsertPos = nullptr;
2686 if (MemberPointerType *PT =
2687 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2688 return QualType(PT, 0);
2689
2690 // If the pointee or class type isn't canonical, this won't be a canonical
2691 // type either, so fill in the canonical type field.
2692 QualType Canonical;
2693 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2694 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2695
2696 // Get the new insert position for the node we care about.
2697 MemberPointerType *NewIP =
2698 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2699 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2699, __PRETTY_FUNCTION__))
; (void)NewIP;
2700 }
2701 MemberPointerType *New
2702 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2703 Types.push_back(New);
2704 MemberPointerTypes.InsertNode(New, InsertPos);
2705 return QualType(New, 0);
2706}
2707
2708/// getConstantArrayType - Return the unique reference to the type for an
2709/// array of the specified element type.
2710QualType ASTContext::getConstantArrayType(QualType EltTy,
2711 const llvm::APInt &ArySizeIn,
2712 ArrayType::ArraySizeModifier ASM,
2713 unsigned IndexTypeQuals) const {
2714 assert((EltTy->isDependentType() ||(((EltTy->isDependentType() || EltTy->isIncompleteType(
) || EltTy->isConstantSizeType()) && "Constant array of VLAs is illegal!"
) ? static_cast<void> (0) : __assert_fail ("(EltTy->isDependentType() || EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && \"Constant array of VLAs is illegal!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2716, __PRETTY_FUNCTION__))
2715 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&(((EltTy->isDependentType() || EltTy->isIncompleteType(
) || EltTy->isConstantSizeType()) && "Constant array of VLAs is illegal!"
) ? static_cast<void> (0) : __assert_fail ("(EltTy->isDependentType() || EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && \"Constant array of VLAs is illegal!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2716, __PRETTY_FUNCTION__))
2716 "Constant array of VLAs is illegal!")(((EltTy->isDependentType() || EltTy->isIncompleteType(
) || EltTy->isConstantSizeType()) && "Constant array of VLAs is illegal!"
) ? static_cast<void> (0) : __assert_fail ("(EltTy->isDependentType() || EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && \"Constant array of VLAs is illegal!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2716, __PRETTY_FUNCTION__))
;
2717
2718 // Convert the array size into a canonical width matching the pointer size for
2719 // the target.
2720 llvm::APInt ArySize(ArySizeIn);
2721 ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
2722
2723 llvm::FoldingSetNodeID ID;
2724 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2725
2726 void *InsertPos = nullptr;
2727 if (ConstantArrayType *ATP =
2728 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2729 return QualType(ATP, 0);
2730
2731 // If the element type isn't canonical or has qualifiers, this won't
2732 // be a canonical type either, so fill in the canonical type field.
2733 QualType Canon;
2734 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2735 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2736 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2737 ASM, IndexTypeQuals);
2738 Canon = getQualifiedType(Canon, canonSplit.Quals);
2739
2740 // Get the new insert position for the node we care about.
2741 ConstantArrayType *NewIP =
2742 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2743 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2743, __PRETTY_FUNCTION__))
; (void)NewIP;
2744 }
2745
2746 ConstantArrayType *New = new(*this,TypeAlignment)
2747 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2748 ConstantArrayTypes.InsertNode(New, InsertPos);
2749 Types.push_back(New);
2750 return QualType(New, 0);
2751}
2752
2753/// getVariableArrayDecayedType - Turns the given type, which may be
2754/// variably-modified, into the corresponding type with all the known
2755/// sizes replaced with [*].
2756QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2757 // Vastly most common case.
2758 if (!type->isVariablyModifiedType()) return type;
2759
2760 QualType result;
2761
2762 SplitQualType split = type.getSplitDesugaredType();
2763 const Type *ty = split.Ty;
2764 switch (ty->getTypeClass()) {
2765#define TYPE(Class, Base)
2766#define ABSTRACT_TYPE(Class, Base)
2767#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2768#include "clang/AST/TypeNodes.def"
2769 llvm_unreachable("didn't desugar past all non-canonical types?")::llvm::llvm_unreachable_internal("didn't desugar past all non-canonical types?"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2769)
;
2770
2771 // These types should never be variably-modified.
2772 case Type::Builtin:
2773 case Type::Complex:
2774 case Type::Vector:
2775 case Type::ExtVector:
2776 case Type::DependentSizedExtVector:
2777 case Type::DependentAddressSpace:
2778 case Type::ObjCObject:
2779 case Type::ObjCInterface:
2780 case Type::ObjCObjectPointer:
2781 case Type::Record:
2782 case Type::Enum:
2783 case Type::UnresolvedUsing:
2784 case Type::TypeOfExpr:
2785 case Type::TypeOf:
2786 case Type::Decltype:
2787 case Type::UnaryTransform:
2788 case Type::DependentName:
2789 case Type::InjectedClassName:
2790 case Type::TemplateSpecialization:
2791 case Type::DependentTemplateSpecialization:
2792 case Type::TemplateTypeParm:
2793 case Type::SubstTemplateTypeParmPack:
2794 case Type::Auto:
2795 case Type::DeducedTemplateSpecialization:
2796 case Type::PackExpansion:
2797 llvm_unreachable("type should never be variably-modified")::llvm::llvm_unreachable_internal("type should never be variably-modified"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2797)
;
2798
2799 // These types can be variably-modified but should never need to
2800 // further decay.
2801 case Type::FunctionNoProto:
2802 case Type::FunctionProto:
2803 case Type::BlockPointer:
2804 case Type::MemberPointer:
2805 case Type::Pipe:
2806 return type;
2807
2808 // These types can be variably-modified. All these modifications
2809 // preserve structure except as noted by comments.
2810 // TODO: if we ever care about optimizing VLAs, there are no-op
2811 // optimizations available here.
2812 case Type::Pointer:
2813 result = getPointerType(getVariableArrayDecayedType(
2814 cast<PointerType>(ty)->getPointeeType()));
2815 break;
2816
2817 case Type::LValueReference: {
2818 const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2819 result = getLValueReferenceType(
2820 getVariableArrayDecayedType(lv->getPointeeType()),
2821 lv->isSpelledAsLValue());
2822 break;
2823 }
2824
2825 case Type::RValueReference: {
2826 const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2827 result = getRValueReferenceType(
2828 getVariableArrayDecayedType(lv->getPointeeType()));
2829 break;
2830 }
2831
2832 case Type::Atomic: {
2833 const AtomicType *at = cast<AtomicType>(ty);
2834 result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2835 break;
2836 }
2837
2838 case Type::ConstantArray: {
2839 const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2840 result = getConstantArrayType(
2841 getVariableArrayDecayedType(cat->getElementType()),
2842 cat->getSize(),
2843 cat->getSizeModifier(),
2844 cat->getIndexTypeCVRQualifiers());
2845 break;
2846 }
2847
2848 case Type::DependentSizedArray: {
2849 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2850 result = getDependentSizedArrayType(
2851 getVariableArrayDecayedType(dat->getElementType()),
2852 dat->getSizeExpr(),
2853 dat->getSizeModifier(),
2854 dat->getIndexTypeCVRQualifiers(),
2855 dat->getBracketsRange());
2856 break;
2857 }
2858
2859 // Turn incomplete types into [*] types.
2860 case Type::IncompleteArray: {
2861 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2862 result = getVariableArrayType(
2863 getVariableArrayDecayedType(iat->getElementType()),
2864 /*size*/ nullptr,
2865 ArrayType::Normal,
2866 iat->getIndexTypeCVRQualifiers(),
2867 SourceRange());
2868 break;
2869 }
2870
2871 // Turn VLA types into [*] types.
2872 case Type::VariableArray: {
2873 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2874 result = getVariableArrayType(
2875 getVariableArrayDecayedType(vat->getElementType()),
2876 /*size*/ nullptr,
2877 ArrayType::Star,
2878 vat->getIndexTypeCVRQualifiers(),
2879 vat->getBracketsRange());
2880 break;
2881 }
2882 }
2883
2884 // Apply the top-level qualifiers from the original.
2885 return getQualifiedType(result, split.Quals);
2886}
2887
2888/// getVariableArrayType - Returns a non-unique reference to the type for a
2889/// variable array of the specified element type.
2890QualType ASTContext::getVariableArrayType(QualType EltTy,
2891 Expr *NumElts,
2892 ArrayType::ArraySizeModifier ASM,
2893 unsigned IndexTypeQuals,
2894 SourceRange Brackets) const {
2895 // Since we don't unique expressions, it isn't possible to unique VLA's
2896 // that have an expression provided for their size.
2897 QualType Canon;
2898
2899 // Be sure to pull qualifiers off the element type.
2900 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2901 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2902 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2903 IndexTypeQuals, Brackets);
2904 Canon = getQualifiedType(Canon, canonSplit.Quals);
2905 }
2906
2907 VariableArrayType *New = new(*this, TypeAlignment)
2908 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2909
2910 VariableArrayTypes.push_back(New);
2911 Types.push_back(New);
2912 return QualType(New, 0);
2913}
2914
2915/// getDependentSizedArrayType - Returns a non-unique reference to
2916/// the type for a dependently-sized array of the specified element
2917/// type.
2918QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2919 Expr *numElements,
2920 ArrayType::ArraySizeModifier ASM,
2921 unsigned elementTypeQuals,
2922 SourceRange brackets) const {
2923 assert((!numElements || numElements->isTypeDependent() ||(((!numElements || numElements->isTypeDependent() || numElements
->isValueDependent()) && "Size must be type- or value-dependent!"
) ? static_cast<void> (0) : __assert_fail ("(!numElements || numElements->isTypeDependent() || numElements->isValueDependent()) && \"Size must be type- or value-dependent!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2925, __PRETTY_FUNCTION__))
2924 numElements->isValueDependent()) &&(((!numElements || numElements->isTypeDependent() || numElements
->isValueDependent()) && "Size must be type- or value-dependent!"
) ? static_cast<void> (0) : __assert_fail ("(!numElements || numElements->isTypeDependent() || numElements->isValueDependent()) && \"Size must be type- or value-dependent!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2925, __PRETTY_FUNCTION__))
2925 "Size must be type- or value-dependent!")(((!numElements || numElements->isTypeDependent() || numElements
->isValueDependent()) && "Size must be type- or value-dependent!"
) ? static_cast<void> (0) : __assert_fail ("(!numElements || numElements->isTypeDependent() || numElements->isValueDependent()) && \"Size must be type- or value-dependent!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 2925, __PRETTY_FUNCTION__))
;
2926
2927 // Dependently-sized array types that do not have a specified number
2928 // of elements will have their sizes deduced from a dependent
2929 // initializer. We do no canonicalization here at all, which is okay
2930 // because they can't be used in most locations.
2931 if (!numElements) {
2932 DependentSizedArrayType *newType
2933 = new (*this, TypeAlignment)
2934 DependentSizedArrayType(*this, elementType, QualType(),
2935 numElements, ASM, elementTypeQuals,
2936 brackets);
2937 Types.push_back(newType);
2938 return QualType(newType, 0);
2939 }
2940
2941 // Otherwise, we actually build a new type every time, but we
2942 // also build a canonical type.
2943
2944 SplitQualType canonElementType = getCanonicalType(elementType).split();
2945
2946 void *insertPos = nullptr;
2947 llvm::FoldingSetNodeID ID;
2948 DependentSizedArrayType::Profile(ID, *this,
2949 QualType(canonElementType.Ty, 0),
2950 ASM, elementTypeQuals, numElements);
2951
2952 // Look for an existing type with these properties.
2953 DependentSizedArrayType *canonTy =
2954 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2955
2956 // If we don't have one, build one.
2957 if (!canonTy) {
2958 canonTy = new (*this, TypeAlignment)
2959 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2960 QualType(), numElements, ASM, elementTypeQuals,
2961 brackets);
2962 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2963 Types.push_back(canonTy);
2964 }
2965
2966 // Apply qualifiers from the element type to the array.
2967 QualType canon = getQualifiedType(QualType(canonTy,0),
2968 canonElementType.Quals);
2969
2970 // If we didn't need extra canonicalization for the element type or the size
2971 // expression, then just use that as our result.
2972 if (QualType(canonElementType.Ty, 0) == elementType &&
2973 canonTy->getSizeExpr() == numElements)
2974 return canon;
2975
2976 // Otherwise, we need to build a type which follows the spelling
2977 // of the element type.
2978 DependentSizedArrayType *sugaredType
2979 = new (*this, TypeAlignment)
2980 DependentSizedArrayType(*this, elementType, canon, numElements,
2981 ASM, elementTypeQuals, brackets);
2982 Types.push_back(sugaredType);
2983 return QualType(sugaredType, 0);
2984}
2985
2986QualType ASTContext::getIncompleteArrayType(QualType elementType,
2987 ArrayType::ArraySizeModifier ASM,
2988 unsigned elementTypeQuals) const {
2989 llvm::FoldingSetNodeID ID;
2990 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2991
2992 void *insertPos = nullptr;
2993 if (IncompleteArrayType *iat =
2994 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2995 return QualType(iat, 0);
2996
2997 // If the element type isn't canonical, this won't be a canonical type
2998 // either, so fill in the canonical type field. We also have to pull
2999 // qualifiers off the element type.
3000 QualType canon;
3001
3002 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3003 SplitQualType canonSplit = getCanonicalType(elementType).split();
3004 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3005 ASM, elementTypeQuals);
3006 canon = getQualifiedType(canon, canonSplit.Quals);
3007
3008 // Get the new insert position for the node we care about.
3009 IncompleteArrayType *existing =
3010 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3011 assert(!existing && "Shouldn't be in the map!")((!existing && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!existing && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3011, __PRETTY_FUNCTION__))
; (void) existing;
3012 }
3013
3014 IncompleteArrayType *newType = new (*this, TypeAlignment)
3015 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3016
3017 IncompleteArrayTypes.InsertNode(newType, insertPos);
3018 Types.push_back(newType);
3019 return QualType(newType, 0);
3020}
3021
3022/// getVectorType - Return the unique reference to a vector type of
3023/// the specified element type and size. VectorType must be a built-in type.
3024QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3025 VectorType::VectorKind VecKind) const {
3026 assert(vecType->isBuiltinType())((vecType->isBuiltinType()) ? static_cast<void> (0) :
__assert_fail ("vecType->isBuiltinType()", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3026, __PRETTY_FUNCTION__))
;
3027
3028 // Check if we've already instantiated a vector of this type.
3029 llvm::FoldingSetNodeID ID;
3030 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3031
3032 void *InsertPos = nullptr;
3033 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3034 return QualType(VTP, 0);
3035
3036 // If the element type isn't canonical, this won't be a canonical type either,
3037 // so fill in the canonical type field.
3038 QualType Canonical;
3039 if (!vecType.isCanonical()) {
3040 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3041
3042 // Get the new insert position for the node we care about.
3043 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3044 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3044, __PRETTY_FUNCTION__))
; (void)NewIP;
3045 }
3046 VectorType *New = new (*this, TypeAlignment)
3047 VectorType(vecType, NumElts, Canonical, VecKind);
3048 VectorTypes.InsertNode(New, InsertPos);
3049 Types.push_back(New);
3050 return QualType(New, 0);
3051}
3052
3053/// getExtVectorType - Return the unique reference to an extended vector type of
3054/// the specified element type and size. VectorType must be a built-in type.
3055QualType
3056ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3057 assert(vecType->isBuiltinType() || vecType->isDependentType())((vecType->isBuiltinType() || vecType->isDependentType(
)) ? static_cast<void> (0) : __assert_fail ("vecType->isBuiltinType() || vecType->isDependentType()"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3057, __PRETTY_FUNCTION__))
;
3058
3059 // Check if we've already instantiated a vector of this type.
3060 llvm::FoldingSetNodeID ID;
3061 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3062 VectorType::GenericVector);
3063 void *InsertPos = nullptr;
3064 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3065 return QualType(VTP, 0);
3066
3067 // If the element type isn't canonical, this won't be a canonical type either,
3068 // so fill in the canonical type field.
3069 QualType Canonical;
3070 if (!vecType.isCanonical()) {
3071 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3072
3073 // Get the new insert position for the node we care about.
3074 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3075 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3075, __PRETTY_FUNCTION__))
; (void)NewIP;
3076 }
3077 ExtVectorType *New = new (*this, TypeAlignment)
3078 ExtVectorType(vecType, NumElts, Canonical);
3079 VectorTypes.InsertNode(New, InsertPos);
3080 Types.push_back(New);
3081 return QualType(New, 0);
3082}
3083
3084QualType
3085ASTContext::getDependentSizedExtVectorType(QualType vecType,
3086 Expr *SizeExpr,
3087 SourceLocation AttrLoc) const {
3088 llvm::FoldingSetNodeID ID;
3089 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
3090 SizeExpr);
3091
3092 void *InsertPos = nullptr;
3093 DependentSizedExtVectorType *Canon
3094 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3095 DependentSizedExtVectorType *New;
3096 if (Canon) {
3097 // We already have a canonical version of this array type; use it as
3098 // the canonical type for a newly-built type.
3099 New = new (*this, TypeAlignment)
3100 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
3101 SizeExpr, AttrLoc);
3102 } else {
3103 QualType CanonVecTy = getCanonicalType(vecType);
3104 if (CanonVecTy == vecType) {
3105 New = new (*this, TypeAlignment)
3106 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
3107 AttrLoc);
3108
3109 DependentSizedExtVectorType *CanonCheck
3110 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3111 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken")((!CanonCheck && "Dependent-sized ext_vector canonical type broken"
) ? static_cast<void> (0) : __assert_fail ("!CanonCheck && \"Dependent-sized ext_vector canonical type broken\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3111, __PRETTY_FUNCTION__))
;
3112 (void)CanonCheck;
3113 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
3114 } else {
3115 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3116 SourceLocation());
3117 New = new (*this, TypeAlignment)
3118 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
3119 }
3120 }
3121
3122 Types.push_back(New);
3123 return QualType(New, 0);
3124}
3125
3126QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
3127 Expr *AddrSpaceExpr,
3128 SourceLocation AttrLoc) const {
3129 assert(AddrSpaceExpr->isInstantiationDependent())((AddrSpaceExpr->isInstantiationDependent()) ? static_cast
<void> (0) : __assert_fail ("AddrSpaceExpr->isInstantiationDependent()"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3129, __PRETTY_FUNCTION__))
;
3130
3131 QualType canonPointeeType = getCanonicalType(PointeeType);
3132
3133 void *insertPos = nullptr;
3134 llvm::FoldingSetNodeID ID;
3135 DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
3136 AddrSpaceExpr);
3137
3138 DependentAddressSpaceType *canonTy =
3139 DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
3140
3141 if (!canonTy) {
3142 canonTy = new (*this, TypeAlignment)
3143 DependentAddressSpaceType(*this, canonPointeeType,
3144 QualType(), AddrSpaceExpr, AttrLoc);
3145 DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
3146 Types.push_back(canonTy);
3147 }
3148
3149 if (canonPointeeType == PointeeType &&
3150 canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
3151 return QualType(canonTy, 0);
3152
3153 DependentAddressSpaceType *sugaredType
3154 = new (*this, TypeAlignment)
3155 DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
3156 AddrSpaceExpr, AttrLoc);
3157 Types.push_back(sugaredType);
3158 return QualType(sugaredType, 0);
3159}
3160
3161/// \brief Determine whether \p T is canonical as the result type of a function.
3162static bool isCanonicalResultType(QualType T) {
3163 return T.isCanonical() &&
3164 (T.getObjCLifetime() == Qualifiers::OCL_None ||
3165 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
3166}
3167
3168/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
3169///
3170QualType
3171ASTContext::getFunctionNoProtoType(QualType ResultTy,
3172 const FunctionType::ExtInfo &Info) const {
3173 // Unique functions, to guarantee there is only one function of a particular
3174 // structure.
3175 llvm::FoldingSetNodeID ID;
3176 FunctionNoProtoType::Profile(ID, ResultTy, Info);
3177
3178 void *InsertPos = nullptr;
3179 if (FunctionNoProtoType *FT =
3180 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
3181 return QualType(FT, 0);
3182
3183 QualType Canonical;
3184 if (!isCanonicalResultType(ResultTy)) {
3185 Canonical =
3186 getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
3187
3188 // Get the new insert position for the node we care about.
3189 FunctionNoProtoType *NewIP =
3190 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3191 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3191, __PRETTY_FUNCTION__))
; (void)NewIP;
3192 }
3193
3194 FunctionNoProtoType *New = new (*this, TypeAlignment)
3195 FunctionNoProtoType(ResultTy, Canonical, Info);
3196 Types.push_back(New);
3197 FunctionNoProtoTypes.InsertNode(New, InsertPos);
3198 return QualType(New, 0);
3199}
3200
3201CanQualType
3202ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
3203 CanQualType CanResultType = getCanonicalType(ResultType);
3204
3205 // Canonical result types do not have ARC lifetime qualifiers.
3206 if (CanResultType.getQualifiers().hasObjCLifetime()) {
3207 Qualifiers Qs = CanResultType.getQualifiers();
3208 Qs.removeObjCLifetime();
3209 return CanQualType::CreateUnsafe(
3210 getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
3211 }
3212
3213 return CanResultType;
3214}
3215
3216static bool isCanonicalExceptionSpecification(
3217 const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
3218 if (ESI.Type == EST_None)
3219 return true;
3220 if (!NoexceptInType)
3221 return false;
3222
3223 // C++17 onwards: exception specification is part of the type, as a simple
3224 // boolean "can this function type throw".
3225 if (ESI.Type == EST_BasicNoexcept)
3226 return true;
3227
3228 // A dynamic exception specification is canonical if it only contains pack
3229 // expansions (so we can't tell whether it's non-throwing) and all its
3230 // contained types are canonical.
3231 if (ESI.Type == EST_Dynamic) {
3232 bool AnyPackExpansions = false;
3233 for (QualType ET : ESI.Exceptions) {
3234 if (!ET.isCanonical())
3235 return false;
3236 if (ET->getAs<PackExpansionType>())
3237 AnyPackExpansions = true;
3238 }
3239 return AnyPackExpansions;
3240 }
3241
3242 // A noexcept(expr) specification is (possibly) canonical if expr is
3243 // value-dependent.
3244 if (ESI.Type == EST_ComputedNoexcept)
3245 return ESI.NoexceptExpr && ESI.NoexceptExpr->isValueDependent();
3246
3247 return false;
3248}
3249
3250QualType ASTContext::getFunctionTypeInternal(
3251 QualType ResultTy, ArrayRef<QualType> ArgArray,
3252 const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
3253 size_t NumArgs = ArgArray.size();
3254
3255 // Unique functions, to guarantee there is only one function of a particular
3256 // structure.
3257 llvm::FoldingSetNodeID ID;
3258 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
3259 *this, true);
3260
3261 QualType Canonical;
3262 bool Unique = false;
3263
3264 void *InsertPos = nullptr;
3265 if (FunctionProtoType *FPT =
3266 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
3267 QualType Existing = QualType(FPT, 0);
3268
3269 // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
3270 // it so long as our exception specification doesn't contain a dependent
3271 // noexcept expression, or we're just looking for a canonical type.
3272 // Otherwise, we're going to need to create a type
3273 // sugar node to hold the concrete expression.
3274 if (OnlyWantCanonical || EPI.ExceptionSpec.Type != EST_ComputedNoexcept ||
3275 EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
3276 return Existing;
3277
3278 // We need a new type sugar node for this one, to hold the new noexcept
3279 // expression. We do no canonicalization here, but that's OK since we don't
3280 // expect to see the same noexcept expression much more than once.
3281 Canonical = getCanonicalType(Existing);
3282 Unique = true;
3283 }
3284
3285 bool NoexceptInType = getLangOpts().CPlusPlus1z;
3286 bool IsCanonicalExceptionSpec =
3287 isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
3288
3289 // Determine whether the type being created is already canonical or not.
3290 bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
3291 isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
3292 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
3293 if (!ArgArray[i].isCanonicalAsParam())
3294 isCanonical = false;
3295
3296 if (OnlyWantCanonical)
3297 assert(isCanonical &&((isCanonical && "given non-canonical parameters constructing canonical type"
) ? static_cast<void> (0) : __assert_fail ("isCanonical && \"given non-canonical parameters constructing canonical type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3298, __PRETTY_FUNCTION__))
3298 "given non-canonical parameters constructing canonical type")((isCanonical && "given non-canonical parameters constructing canonical type"
) ? static_cast<void> (0) : __assert_fail ("isCanonical && \"given non-canonical parameters constructing canonical type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3298, __PRETTY_FUNCTION__))
;
3299
3300 // If this type isn't canonical, get the canonical version of it if we don't
3301 // already have it. The exception spec is only partially part of the
3302 // canonical type, and only in C++17 onwards.
3303 if (!isCanonical && Canonical.isNull()) {
3304 SmallVector<QualType, 16> CanonicalArgs;
3305 CanonicalArgs.reserve(NumArgs);
3306 for (unsigned i = 0; i != NumArgs; ++i)
3307 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
3308
3309 llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
3310 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
3311 CanonicalEPI.HasTrailingReturn = false;
3312
3313 if (IsCanonicalExceptionSpec) {
3314 // Exception spec is already OK.
3315 } else if (NoexceptInType) {
3316 switch (EPI.ExceptionSpec.Type) {
3317 case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
3318 // We don't know yet. It shouldn't matter what we pick here; no-one
3319 // should ever look at this.
3320 LLVM_FALLTHROUGH[[clang::fallthrough]];
3321 case EST_None: case EST_MSAny:
3322 CanonicalEPI.ExceptionSpec.Type = EST_None;
3323 break;
3324
3325 // A dynamic exception specification is almost always "not noexcept",
3326 // with the exception that a pack expansion might expand to no types.
3327 case EST_Dynamic: {
3328 bool AnyPacks = false;
3329 for (QualType ET : EPI.ExceptionSpec.Exceptions) {
3330 if (ET->getAs<PackExpansionType>())
3331 AnyPacks = true;
3332 ExceptionTypeStorage.push_back(getCanonicalType(ET));
3333 }
3334 if (!AnyPacks)
3335 CanonicalEPI.ExceptionSpec.Type = EST_None;
3336 else {
3337 CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
3338 CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
3339 }
3340 break;
3341 }
3342
3343 case EST_DynamicNone: case EST_BasicNoexcept:
3344 CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
3345 break;
3346
3347 case EST_ComputedNoexcept:
3348 llvm::APSInt Value(1);
3349 auto *E = CanonicalEPI.ExceptionSpec.NoexceptExpr;
3350 if (!E || !E->isIntegerConstantExpr(Value, *this, nullptr,
3351 /*IsEvaluated*/false)) {
3352 // This noexcept specification is invalid.
3353 // FIXME: Should this be able to happen?
3354 CanonicalEPI.ExceptionSpec.Type = EST_None;
3355 break;
3356 }
3357
3358 CanonicalEPI.ExceptionSpec.Type =
3359 Value.getBoolValue() ? EST_BasicNoexcept : EST_None;
3360 break;
3361 }
3362 } else {
3363 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
3364 }
3365
3366 // Adjust the canonical function result type.
3367 CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
3368 Canonical =
3369 getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
3370
3371 // Get the new insert position for the node we care about.
3372 FunctionProtoType *NewIP =
3373 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3374 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3374, __PRETTY_FUNCTION__))
; (void)NewIP;
3375 }
3376
3377 // FunctionProtoType objects are allocated with extra bytes after
3378 // them for three variable size arrays at the end:
3379 // - parameter types
3380 // - exception types
3381 // - extended parameter information
3382 // Instead of the exception types, there could be a noexcept
3383 // expression, or information used to resolve the exception
3384 // specification.
3385 size_t Size = sizeof(FunctionProtoType) +
3386 NumArgs * sizeof(QualType);
3387
3388 if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3389 Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
3390 } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
3391 Size += sizeof(Expr*);
3392 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3393 Size += 2 * sizeof(FunctionDecl*);
3394 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3395 Size += sizeof(FunctionDecl*);
3396 }
3397
3398 // Put the ExtParameterInfos last. If all were equal, it would make
3399 // more sense to put these before the exception specification, because
3400 // it's much easier to skip past them compared to the elaborate switch
3401 // required to skip the exception specification. However, all is not
3402 // equal; ExtParameterInfos are used to model very uncommon features,
3403 // and it's better not to burden the more common paths.
3404 if (EPI.ExtParameterInfos) {
3405 Size += NumArgs * sizeof(FunctionProtoType::ExtParameterInfo);
3406 }
3407
3408 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
3409 FunctionProtoType::ExtProtoInfo newEPI = EPI;
3410 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
3411 Types.push_back(FTP);
3412 if (!Unique)
3413 FunctionProtoTypes.InsertNode(FTP, InsertPos);
3414 return QualType(FTP, 0);
3415}
3416
3417QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
3418 llvm::FoldingSetNodeID ID;
3419 PipeType::Profile(ID, T, ReadOnly);
3420
3421 void *InsertPos = 0;
3422 if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
3423 return QualType(PT, 0);
3424
3425 // If the pipe element type isn't canonical, this won't be a canonical type
3426 // either, so fill in the canonical type field.
3427 QualType Canonical;
3428 if (!T.isCanonical()) {
3429 Canonical = getPipeType(getCanonicalType(T), ReadOnly);
3430
3431 // Get the new insert position for the node we care about.
3432 PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
3433 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3433, __PRETTY_FUNCTION__))
;
3434 (void)NewIP;
3435 }
3436 PipeType *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
3437 Types.push_back(New);
3438 PipeTypes.InsertNode(New, InsertPos);
3439 return QualType(New, 0);
3440}
3441
3442QualType ASTContext::getReadPipeType(QualType T) const {
3443 return getPipeType(T, true);
3444}
3445
3446QualType ASTContext::getWritePipeType(QualType T) const {
3447 return getPipeType(T, false);
3448}
3449
3450#ifndef NDEBUG
3451static bool NeedsInjectedClassNameType(const RecordDecl *D) {
3452 if (!isa<CXXRecordDecl>(D)) return false;
3453 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
3454 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
3455 return true;
3456 if (RD->getDescribedClassTemplate() &&
3457 !isa<ClassTemplateSpecializationDecl>(RD))
3458 return true;
3459 return false;
3460}
3461#endif
3462
3463/// getInjectedClassNameType - Return the unique reference to the
3464/// injected class name type for the specified templated declaration.
3465QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
3466 QualType TST) const {
3467 assert(NeedsInjectedClassNameType(Decl))((NeedsInjectedClassNameType(Decl)) ? static_cast<void>
(0) : __assert_fail ("NeedsInjectedClassNameType(Decl)", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3467, __PRETTY_FUNCTION__))
;
3468 if (Decl->TypeForDecl) {
3469 assert(isa<InjectedClassNameType>(Decl->TypeForDecl))((isa<InjectedClassNameType>(Decl->TypeForDecl)) ? static_cast
<void> (0) : __assert_fail ("isa<InjectedClassNameType>(Decl->TypeForDecl)"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3469, __PRETTY_FUNCTION__))
;
3470 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
3471 assert(PrevDecl->TypeForDecl && "previous declaration has no type")((PrevDecl->TypeForDecl && "previous declaration has no type"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->TypeForDecl && \"previous declaration has no type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3471, __PRETTY_FUNCTION__))
;
3472 Decl->TypeForDecl = PrevDecl->TypeForDecl;
3473 assert(isa<InjectedClassNameType>(Decl->TypeForDecl))((isa<InjectedClassNameType>(Decl->TypeForDecl)) ? static_cast
<void> (0) : __assert_fail ("isa<InjectedClassNameType>(Decl->TypeForDecl)"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3473, __PRETTY_FUNCTION__))
;
3474 } else {
3475 Type *newType =
3476 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
3477 Decl->TypeForDecl = newType;
3478 Types.push_back(newType);
3479 }
3480 return QualType(Decl->TypeForDecl, 0);
3481}
3482
3483/// getTypeDeclType - Return the unique reference to the type for the
3484/// specified type declaration.
3485QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3486 assert(Decl && "Passed null for Decl param")((Decl && "Passed null for Decl param") ? static_cast
<void> (0) : __assert_fail ("Decl && \"Passed null for Decl param\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3486, __PRETTY_FUNCTION__))
;
3487 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case")((!Decl->TypeForDecl && "TypeForDecl present in slow case"
) ? static_cast<void> (0) : __assert_fail ("!Decl->TypeForDecl && \"TypeForDecl present in slow case\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3487, __PRETTY_FUNCTION__))
;
3488
3489 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3490 return getTypedefType(Typedef);
3491
3492 assert(!isa<TemplateTypeParmDecl>(Decl) &&((!isa<TemplateTypeParmDecl>(Decl) && "Template type parameter types are always available."
) ? static_cast<void> (0) : __assert_fail ("!isa<TemplateTypeParmDecl>(Decl) && \"Template type parameter types are always available.\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3493, __PRETTY_FUNCTION__))
3493 "Template type parameter types are always available.")((!isa<TemplateTypeParmDecl>(Decl) && "Template type parameter types are always available."
) ? static_cast<void> (0) : __assert_fail ("!isa<TemplateTypeParmDecl>(Decl) && \"Template type parameter types are always available.\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3493, __PRETTY_FUNCTION__))
;
3494
3495 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
3496 assert(Record->isFirstDecl() && "struct/union has previous declaration")((Record->isFirstDecl() && "struct/union has previous declaration"
) ? static_cast<void> (0) : __assert_fail ("Record->isFirstDecl() && \"struct/union has previous declaration\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3496, __PRETTY_FUNCTION__))
;
3497 assert(!NeedsInjectedClassNameType(Record))((!NeedsInjectedClassNameType(Record)) ? static_cast<void>
(0) : __assert_fail ("!NeedsInjectedClassNameType(Record)", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3497, __PRETTY_FUNCTION__))
;
3498 return getRecordType(Record);
3499 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
3500 assert(Enum->isFirstDecl() && "enum has previous declaration")((Enum->isFirstDecl() && "enum has previous declaration"
) ? static_cast<void> (0) : __assert_fail ("Enum->isFirstDecl() && \"enum has previous declaration\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3500, __PRETTY_FUNCTION__))
;
3501 return getEnumType(Enum);
3502 } else if (const UnresolvedUsingTypenameDecl *Using =
3503 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3504 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3505 Decl->TypeForDecl = newType;
3506 Types.push_back(newType);
3507 } else
3508 llvm_unreachable("TypeDecl without a type?")::llvm::llvm_unreachable_internal("TypeDecl without a type?",
"/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3508)
;
3509
3510 return QualType(Decl->TypeForDecl, 0);
3511}
3512
3513/// getTypedefType - Return the unique reference to the type for the
3514/// specified typedef name decl.
3515QualType
3516ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3517 QualType Canonical) const {
3518 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3519
3520 if (Canonical.isNull())
3521 Canonical = getCanonicalType(Decl->getUnderlyingType());
3522 TypedefType *newType = new(*this, TypeAlignment)
3523 TypedefType(Type::Typedef, Decl, Canonical);
3524 Decl->TypeForDecl = newType;
3525 Types.push_back(newType);
3526 return QualType(newType, 0);
3527}
3528
3529QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3530 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3531
3532 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3533 if (PrevDecl->TypeForDecl)
3534 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3535
3536 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
3537 Decl->TypeForDecl = newType;
3538 Types.push_back(newType);
3539 return QualType(newType, 0);
3540}
3541
3542QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3543 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3544
3545 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3546 if (PrevDecl->TypeForDecl)
3547 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3548
3549 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3550 Decl->TypeForDecl = newType;
3551 Types.push_back(newType);
3552 return QualType(newType, 0);
3553}
3554
3555QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3556 QualType modifiedType,
3557 QualType equivalentType) {
3558 llvm::FoldingSetNodeID id;
3559 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3560
3561 void *insertPos = nullptr;
3562 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3563 if (type) return QualType(type, 0);
3564
3565 QualType canon = getCanonicalType(equivalentType);
3566 type = new (*this, TypeAlignment)
3567 AttributedType(canon, attrKind, modifiedType, equivalentType);
3568
3569 Types.push_back(type);
3570 AttributedTypes.InsertNode(type, insertPos);
3571
3572 return QualType(type, 0);
3573}
3574
3575/// \brief Retrieve a substitution-result type.
3576QualType
3577ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3578 QualType Replacement) const {
3579 assert(Replacement.isCanonical()((Replacement.isCanonical() && "replacement types must always be canonical"
) ? static_cast<void> (0) : __assert_fail ("Replacement.isCanonical() && \"replacement types must always be canonical\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3580, __PRETTY_FUNCTION__))
3580 && "replacement types must always be canonical")((Replacement.isCanonical() && "replacement types must always be canonical"
) ? static_cast<void> (0) : __assert_fail ("Replacement.isCanonical() && \"replacement types must always be canonical\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3580, __PRETTY_FUNCTION__))
;
3581
3582 llvm::FoldingSetNodeID ID;
3583 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3584 void *InsertPos = nullptr;
3585 SubstTemplateTypeParmType *SubstParm
3586 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3587
3588 if (!SubstParm) {
3589 SubstParm = new (*this, TypeAlignment)
3590 SubstTemplateTypeParmType(Parm, Replacement);
3591 Types.push_back(SubstParm);
3592 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3593 }
3594
3595 return QualType(SubstParm, 0);
3596}
3597
3598/// \brief Retrieve a
3599QualType ASTContext::getSubstTemplateTypeParmPackType(
3600 const TemplateTypeParmType *Parm,
3601 const TemplateArgument &ArgPack) {
3602#ifndef NDEBUG
3603 for (const auto &P : ArgPack.pack_elements()) {
3604 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type")((P.getKind() == TemplateArgument::Type &&"Pack contains a non-type"
) ? static_cast<void> (0) : __assert_fail ("P.getKind() == TemplateArgument::Type &&\"Pack contains a non-type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3604, __PRETTY_FUNCTION__))
;
3605 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type")((P.getAsType().isCanonical() && "Pack contains non-canonical type"
) ? static_cast<void> (0) : __assert_fail ("P.getAsType().isCanonical() && \"Pack contains non-canonical type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3605, __PRETTY_FUNCTION__))
;
3606 }
3607#endif
3608
3609 llvm::FoldingSetNodeID ID;
3610 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3611 void *InsertPos = nullptr;
3612 if (SubstTemplateTypeParmPackType *SubstParm
3613 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3614 return QualType(SubstParm, 0);
3615
3616 QualType Canon;
3617 if (!Parm->isCanonicalUnqualified()) {
3618 Canon = getCanonicalType(QualType(Parm, 0));
3619 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3620 ArgPack);
3621 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3622 }
3623
3624 SubstTemplateTypeParmPackType *SubstParm
3625 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3626 ArgPack);
3627 Types.push_back(SubstParm);
3628 SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
3629 return QualType(SubstParm, 0);
3630}
3631
3632/// \brief Retrieve the template type parameter type for a template
3633/// parameter or parameter pack with the given depth, index, and (optionally)
3634/// name.
3635QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3636 bool ParameterPack,
3637 TemplateTypeParmDecl *TTPDecl) const {
3638 llvm::FoldingSetNodeID ID;
3639 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3640 void *InsertPos = nullptr;
3641 TemplateTypeParmType *TypeParm
3642 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3643
3644 if (TypeParm)
3645 return QualType(TypeParm, 0);
3646
3647 if (TTPDecl) {
3648 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3649 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3650
3651 TemplateTypeParmType *TypeCheck
3652 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3653 assert(!TypeCheck && "Template type parameter canonical type broken")((!TypeCheck && "Template type parameter canonical type broken"
) ? static_cast<void> (0) : __assert_fail ("!TypeCheck && \"Template type parameter canonical type broken\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3653, __PRETTY_FUNCTION__))
;
3654 (void)TypeCheck;
3655 } else
3656 TypeParm = new (*this, TypeAlignment)
3657 TemplateTypeParmType(Depth, Index, ParameterPack);
3658
3659 Types.push_back(TypeParm);
3660 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3661
3662 return QualType(TypeParm, 0);
3663}
3664
3665TypeSourceInfo *
3666ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3667 SourceLocation NameLoc,
3668 const TemplateArgumentListInfo &Args,
3669 QualType Underlying) const {
3670 assert(!Name.getAsDependentTemplateName() &&((!Name.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Name.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3671, __PRETTY_FUNCTION__))
3671 "No dependent template names here!")((!Name.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Name.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3671, __PRETTY_FUNCTION__))
;
3672 QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3673
3674 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3675 TemplateSpecializationTypeLoc TL =
3676 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3677 TL.setTemplateKeywordLoc(SourceLocation());
3678 TL.setTemplateNameLoc(NameLoc);
3679 TL.setLAngleLoc(Args.getLAngleLoc());
3680 TL.setRAngleLoc(Args.getRAngleLoc());
3681 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3682 TL.setArgLocInfo(i, Args[i].getLocInfo());
3683 return DI;
3684}
3685
3686QualType
3687ASTContext::getTemplateSpecializationType(TemplateName Template,
3688 const TemplateArgumentListInfo &Args,
3689 QualType Underlying) const {
3690 assert(!Template.getAsDependentTemplateName() &&((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3691, __PRETTY_FUNCTION__))
3691 "No dependent template names here!")((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3691, __PRETTY_FUNCTION__))
;
3692
3693 SmallVector<TemplateArgument, 4> ArgVec;
3694 ArgVec.reserve(Args.size());
3695 for (const TemplateArgumentLoc &Arg : Args.arguments())
3696 ArgVec.push_back(Arg.getArgument());
3697
3698 return getTemplateSpecializationType(Template, ArgVec, Underlying);
3699}
3700
3701#ifndef NDEBUG
3702static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
3703 for (const TemplateArgument &Arg : Args)
3704 if (Arg.isPackExpansion())
3705 return true;
3706
3707 return true;
3708}
3709#endif
3710
3711QualType
3712ASTContext::getTemplateSpecializationType(TemplateName Template,
3713 ArrayRef<TemplateArgument> Args,
3714 QualType Underlying) const {
3715 assert(!Template.getAsDependentTemplateName() &&((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3716, __PRETTY_FUNCTION__))
3716 "No dependent template names here!")((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3716, __PRETTY_FUNCTION__))
;
3717 // Look through qualified template names.
3718 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3719 Template = TemplateName(QTN->getTemplateDecl());
3720
3721 bool IsTypeAlias =
3722 Template.getAsTemplateDecl() &&
3723 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3724 QualType CanonType;
3725 if (!Underlying.isNull())
3726 CanonType = getCanonicalType(Underlying);
3727 else {
3728 // We can get here with an alias template when the specialization contains
3729 // a pack expansion that does not match up with a parameter pack.
3730 assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&(((!IsTypeAlias || hasAnyPackExpansions(Args)) && "Caller must compute aliased type"
) ? static_cast<void> (0) : __assert_fail ("(!IsTypeAlias || hasAnyPackExpansions(Args)) && \"Caller must compute aliased type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3731, __PRETTY_FUNCTION__))
3731 "Caller must compute aliased type")(((!IsTypeAlias || hasAnyPackExpansions(Args)) && "Caller must compute aliased type"
) ? static_cast<void> (0) : __assert_fail ("(!IsTypeAlias || hasAnyPackExpansions(Args)) && \"Caller must compute aliased type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3731, __PRETTY_FUNCTION__))
;
3732 IsTypeAlias = false;
3733 CanonType = getCanonicalTemplateSpecializationType(Template, Args);
3734 }
3735
3736 // Allocate the (non-canonical) template specialization type, but don't
3737 // try to unique it: these types typically have location information that
3738 // we don't unique and don't want to lose.
3739 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3740 sizeof(TemplateArgument) * Args.size() +
3741 (IsTypeAlias? sizeof(QualType) : 0),
3742 TypeAlignment);
3743 TemplateSpecializationType *Spec
3744 = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
3745 IsTypeAlias ? Underlying : QualType());
3746
3747 Types.push_back(Spec);
3748 return QualType(Spec, 0);
3749}
3750
3751QualType ASTContext::getCanonicalTemplateSpecializationType(
3752 TemplateName Template, ArrayRef<TemplateArgument> Args) const {
3753 assert(!Template.getAsDependentTemplateName() &&((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3754, __PRETTY_FUNCTION__))
3754 "No dependent template names here!")((!Template.getAsDependentTemplateName() && "No dependent template names here!"
) ? static_cast<void> (0) : __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3754, __PRETTY_FUNCTION__))
;
3755
3756 // Look through qualified template names.
3757 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3758 Template = TemplateName(QTN->getTemplateDecl());
3759
3760 // Build the canonical template specialization type.
3761 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3762 SmallVector<TemplateArgument, 4> CanonArgs;
3763 unsigned NumArgs = Args.size();
3764 CanonArgs.reserve(NumArgs);
3765 for (const TemplateArgument &Arg : Args)
3766 CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
3767
3768 // Determine whether this canonical template specialization type already
3769 // exists.
3770 llvm::FoldingSetNodeID ID;
3771 TemplateSpecializationType::Profile(ID, CanonTemplate,
3772 CanonArgs, *this);
3773
3774 void *InsertPos = nullptr;
3775 TemplateSpecializationType *Spec
3776 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3777
3778 if (!Spec) {
3779 // Allocate a new canonical template specialization type.
3780 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3781 sizeof(TemplateArgument) * NumArgs),
3782 TypeAlignment);
3783 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3784 CanonArgs,
3785 QualType(), QualType());
3786 Types.push_back(Spec);
3787 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3788 }
3789
3790 assert(Spec->isDependentType() &&((Spec->isDependentType() && "Non-dependent template-id type must have a canonical type"
) ? static_cast<void> (0) : __assert_fail ("Spec->isDependentType() && \"Non-dependent template-id type must have a canonical type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3791, __PRETTY_FUNCTION__))
3791 "Non-dependent template-id type must have a canonical type")((Spec->isDependentType() && "Non-dependent template-id type must have a canonical type"
) ? static_cast<void> (0) : __assert_fail ("Spec->isDependentType() && \"Non-dependent template-id type must have a canonical type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3791, __PRETTY_FUNCTION__))
;
3792 return QualType(Spec, 0);
3793}
3794
3795QualType
3796ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3797 NestedNameSpecifier *NNS,
3798 QualType NamedType) const {
3799 llvm::FoldingSetNodeID ID;
3800 ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3801
3802 void *InsertPos = nullptr;
3803 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3804 if (T)
3805 return QualType(T, 0);
3806
3807 QualType Canon = NamedType;
3808 if (!Canon.isCanonical()) {
3809 Canon = getCanonicalType(NamedType);
3810 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3811 assert(!CheckT && "Elaborated canonical type broken")((!CheckT && "Elaborated canonical type broken") ? static_cast
<void> (0) : __assert_fail ("!CheckT && \"Elaborated canonical type broken\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3811, __PRETTY_FUNCTION__))
;
3812 (void)CheckT;
3813 }
3814
3815 T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon);
3816 Types.push_back(T);
3817 ElaboratedTypes.InsertNode(T, InsertPos);
3818 return QualType(T, 0);
3819}
3820
3821QualType
3822ASTContext::getParenType(QualType InnerType) const {
3823 llvm::FoldingSetNodeID ID;
3824 ParenType::Profile(ID, InnerType);
3825
3826 void *InsertPos = nullptr;
3827 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3828 if (T)
3829 return QualType(T, 0);
3830
3831 QualType Canon = InnerType;
3832 if (!Canon.isCanonical()) {
3833 Canon = getCanonicalType(InnerType);
3834 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3835 assert(!CheckT && "Paren canonical type broken")((!CheckT && "Paren canonical type broken") ? static_cast
<void> (0) : __assert_fail ("!CheckT && \"Paren canonical type broken\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3835, __PRETTY_FUNCTION__))
;
3836 (void)CheckT;
3837 }
3838
3839 T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
3840 Types.push_back(T);
3841 ParenTypes.InsertNode(T, InsertPos);
3842 return QualType(T, 0);
3843}
3844
3845QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3846 NestedNameSpecifier *NNS,
3847 const IdentifierInfo *Name,
3848 QualType Canon) const {
3849 if (Canon.isNull()) {
3850 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3851 if (CanonNNS != NNS)
3852 Canon = getDependentNameType(Keyword, CanonNNS, Name);
3853 }
3854
3855 llvm::FoldingSetNodeID ID;
3856 DependentNameType::Profile(ID, Keyword, NNS, Name);
3857
3858 void *InsertPos = nullptr;
3859 DependentNameType *T
3860 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3861 if (T)
3862 return QualType(T, 0);
3863
3864 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
3865 Types.push_back(T);
3866 DependentNameTypes.InsertNode(T, InsertPos);
3867 return QualType(T, 0);
3868}
3869
3870QualType
3871ASTContext::getDependentTemplateSpecializationType(
3872 ElaboratedTypeKeyword Keyword,
3873 NestedNameSpecifier *NNS,
3874 const IdentifierInfo *Name,
3875 const TemplateArgumentListInfo &Args) const {
3876 // TODO: avoid this copy
3877 SmallVector<TemplateArgument, 16> ArgCopy;
3878 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3879 ArgCopy.push_back(Args[I].getArgument());
3880 return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
3881}
3882
3883QualType
3884ASTContext::getDependentTemplateSpecializationType(
3885 ElaboratedTypeKeyword Keyword,
3886 NestedNameSpecifier *NNS,
3887 const IdentifierInfo *Name,
3888 ArrayRef<TemplateArgument> Args) const {
3889 assert((!NNS || NNS->isDependent()) &&(((!NNS || NNS->isDependent()) && "nested-name-specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"nested-name-specifier must be dependent\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3890, __PRETTY_FUNCTION__))
3890 "nested-name-specifier must be dependent")(((!NNS || NNS->isDependent()) && "nested-name-specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"nested-name-specifier must be dependent\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3890, __PRETTY_FUNCTION__))
;
3891
3892 llvm::FoldingSetNodeID ID;
3893 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3894 Name, Args);
3895
3896 void *InsertPos = nullptr;
3897 DependentTemplateSpecializationType *T
3898 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3899 if (T)
3900 return QualType(T, 0);
3901
3902 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3903
3904 ElaboratedTypeKeyword CanonKeyword = Keyword;
3905 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3906
3907 bool AnyNonCanonArgs = false;
3908 unsigned NumArgs = Args.size();
3909 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3910 for (unsigned I = 0; I != NumArgs; ++I) {
3911 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3912 if (!CanonArgs[I].structurallyEquals(Args[I]))
3913 AnyNonCanonArgs = true;
3914 }
3915
3916 QualType Canon;
3917 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3918 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3919 Name,
3920 CanonArgs);
3921
3922 // Find the insert position again.
3923 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3924 }
3925
3926 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3927 sizeof(TemplateArgument) * NumArgs),
3928 TypeAlignment);
3929 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3930 Name, Args, Canon);
3931 Types.push_back(T);
3932 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3933 return QualType(T, 0);
3934}
3935
3936TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
3937 TemplateArgument Arg;
3938 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3939 QualType ArgType = getTypeDeclType(TTP);
3940 if (TTP->isParameterPack())
3941 ArgType = getPackExpansionType(ArgType, None);
3942
3943 Arg = TemplateArgument(ArgType);
3944 } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3945 Expr *E = new (*this) DeclRefExpr(
3946 NTTP, /*enclosing*/false,
3947 NTTP->getType().getNonLValueExprType(*this),
3948 Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
3949
3950 if (NTTP->isParameterPack())
3951 E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
3952 None);
3953 Arg = TemplateArgument(E);
3954 } else {
3955 auto *TTP = cast<TemplateTemplateParmDecl>(Param);
3956 if (TTP->isParameterPack())
3957 Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
3958 else
3959 Arg = TemplateArgument(TemplateName(TTP));
3960 }
3961
3962 if (Param->isTemplateParameterPack())
3963 Arg = TemplateArgument::CreatePackCopy(*this, Arg);
3964
3965 return Arg;
3966}
3967
3968void
3969ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
3970 SmallVectorImpl<TemplateArgument> &Args) {
3971 Args.reserve(Args.size() + Params->size());
3972
3973 for (NamedDecl *Param : *Params)
3974 Args.push_back(getInjectedTemplateArg(Param));
3975}
3976
3977QualType ASTContext::getPackExpansionType(QualType Pattern,
3978 Optional<unsigned> NumExpansions) {
3979 llvm::FoldingSetNodeID ID;
3980 PackExpansionType::Profile(ID, Pattern, NumExpansions);
3981
3982 assert(Pattern->containsUnexpandedParameterPack() &&((Pattern->containsUnexpandedParameterPack() && "Pack expansions must expand one or more parameter packs"
) ? static_cast<void> (0) : __assert_fail ("Pattern->containsUnexpandedParameterPack() && \"Pack expansions must expand one or more parameter packs\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3983, __PRETTY_FUNCTION__))
3983 "Pack expansions must expand one or more parameter packs")((Pattern->containsUnexpandedParameterPack() && "Pack expansions must expand one or more parameter packs"
) ? static_cast<void> (0) : __assert_fail ("Pattern->containsUnexpandedParameterPack() && \"Pack expansions must expand one or more parameter packs\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 3983, __PRETTY_FUNCTION__))
;
3984 void *InsertPos = nullptr;
3985 PackExpansionType *T
3986 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3987 if (T)
3988 return QualType(T, 0);
3989
3990 QualType Canon;
3991 if (!Pattern.isCanonical()) {
3992 Canon = getCanonicalType(Pattern);
3993 // The canonical type might not contain an unexpanded parameter pack, if it
3994 // contains an alias template specialization which ignores one of its
3995 // parameters.
3996 if (Canon->containsUnexpandedParameterPack()) {
3997 Canon = getPackExpansionType(Canon, NumExpansions);
3998
3999 // Find the insert position again, in case we inserted an element into
4000 // PackExpansionTypes and invalidated our insert position.
4001 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4002 }
4003 }
4004
4005 T = new (*this, TypeAlignment)
4006 PackExpansionType(Pattern, Canon, NumExpansions);
4007 Types.push_back(T);
4008 PackExpansionTypes.InsertNode(T, InsertPos);
4009 return QualType(T, 0);
4010}
4011
4012/// CmpProtocolNames - Comparison predicate for sorting protocols
4013/// alphabetically.
4014static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
4015 ObjCProtocolDecl *const *RHS) {
4016 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
4017}
4018
4019static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
4020 if (Protocols.empty()) return true;
4021
4022 if (Protocols[0]->getCanonicalDecl() != Protocols[0])
4023 return false;
4024
4025 for (unsigned i = 1; i != Protocols.size(); ++i)
4026 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
4027 Protocols[i]->getCanonicalDecl() != Protocols[i])
4028 return false;
4029 return true;
4030}
4031
4032static void
4033SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
4034 // Sort protocols, keyed by name.
4035 llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
4036
4037 // Canonicalize.
4038 for (ObjCProtocolDecl *&P : Protocols)
4039 P = P->getCanonicalDecl();
4040
4041 // Remove duplicates.
4042 auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
4043 Protocols.erase(ProtocolsEnd, Protocols.end());
4044}
4045
4046QualType ASTContext::getObjCObjectType(QualType BaseType,
4047 ObjCProtocolDecl * const *Protocols,
4048 unsigned NumProtocols) const {
4049 return getObjCObjectType(BaseType, { },
4050 llvm::makeArrayRef(Protocols, NumProtocols),
4051 /*isKindOf=*/false);
4052}
4053
4054QualType ASTContext::getObjCObjectType(
4055 QualType baseType,
4056 ArrayRef<QualType> typeArgs,
4057 ArrayRef<ObjCProtocolDecl *> protocols,
4058 bool isKindOf) const {
4059 // If the base type is an interface and there aren't any protocols or
4060 // type arguments to add, then the interface type will do just fine.
4061 if (typeArgs.empty() && protocols.empty() && !isKindOf &&
4062 isa<ObjCInterfaceType>(baseType))
4063 return baseType;
4064
4065 // Look in the folding set for an existing type.
4066 llvm::FoldingSetNodeID ID;
4067 ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
4068 void *InsertPos = nullptr;
4069 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
4070 return QualType(QT, 0);
4071
4072 // Determine the type arguments to be used for canonicalization,
4073 // which may be explicitly specified here or written on the base
4074 // type.
4075 ArrayRef<QualType> effectiveTypeArgs = typeArgs;
4076 if (effectiveTypeArgs.empty()) {
4077 if (auto baseObject = baseType->getAs<ObjCObjectType>())
4078 effectiveTypeArgs = baseObject->getTypeArgs();
4079 }
4080
4081 // Build the canonical type, which has the canonical base type and a
4082 // sorted-and-uniqued list of protocols and the type arguments
4083 // canonicalized.
4084 QualType canonical;
4085 bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
4086 effectiveTypeArgs.end(),
4087 [&](QualType type) {
4088 return type.isCanonical();
4089 });
4090 bool protocolsSorted = areSortedAndUniqued(protocols);
4091 if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
4092 // Determine the canonical type arguments.
4093 ArrayRef<QualType> canonTypeArgs;
4094 SmallVector<QualType, 4> canonTypeArgsVec;
4095 if (!typeArgsAreCanonical) {
4096 canonTypeArgsVec.reserve(effectiveTypeArgs.size());
4097 for (auto typeArg : effectiveTypeArgs)
4098 canonTypeArgsVec.push_back(getCanonicalType(typeArg));
4099 canonTypeArgs = canonTypeArgsVec;
4100 } else {
4101 canonTypeArgs = effectiveTypeArgs;
4102 }
4103
4104 ArrayRef<ObjCProtocolDecl *> canonProtocols;
4105 SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
4106 if (!protocolsSorted) {
4107 canonProtocolsVec.append(protocols.begin(), protocols.end());
4108 SortAndUniqueProtocols(canonProtocolsVec);
4109 canonProtocols = canonProtocolsVec;
4110 } else {
4111 canonProtocols = protocols;
4112 }
4113
4114 canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
4115 canonProtocols, isKindOf);
4116
4117 // Regenerate InsertPos.
4118 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
4119 }
4120
4121 unsigned size = sizeof(ObjCObjectTypeImpl);
4122 size += typeArgs.size() * sizeof(QualType);
4123 size += protocols.size() * sizeof(ObjCProtocolDecl *);
4124 void *mem = Allocate(size, TypeAlignment);
4125 ObjCObjectTypeImpl *T =
4126 new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
4127 isKindOf);
4128
4129 Types.push_back(T);
4130 ObjCObjectTypes.InsertNode(T, InsertPos);
4131 return QualType(T, 0);
4132}
4133
4134/// Apply Objective-C protocol qualifiers to the given type.
4135/// If this is for the canonical type of a type parameter, we can apply
4136/// protocol qualifiers on the ObjCObjectPointerType.
4137QualType
4138ASTContext::applyObjCProtocolQualifiers(QualType type,
4139 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
4140 bool allowOnPointerType) const {
4141 hasError = false;
4142
4143 if (const ObjCTypeParamType *objT =
4144 dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
4145 return getObjCTypeParamType(objT->getDecl(), protocols);
4146 }
4147
4148 // Apply protocol qualifiers to ObjCObjectPointerType.
4149 if (allowOnPointerType) {
4150 if (const ObjCObjectPointerType *objPtr =
4151 dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
4152 const ObjCObjectType *objT = objPtr->getObjectType();
4153 // Merge protocol lists and construct ObjCObjectType.
4154 SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
4155 protocolsVec.append(objT->qual_begin(),
4156 objT->qual_end());
4157 protocolsVec.append(protocols.begin(), protocols.end());
4158 ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
4159 type = getObjCObjectType(
4160 objT->getBaseType(),
4161 objT->getTypeArgsAsWritten(),
4162 protocols,
4163 objT->isKindOfTypeAsWritten());
4164 return getObjCObjectPointerType(type);
4165 }
4166 }
4167
4168 // Apply protocol qualifiers to ObjCObjectType.
4169 if (const ObjCObjectType *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
4170 // FIXME: Check for protocols to which the class type is already
4171 // known to conform.
4172
4173 return getObjCObjectType(objT->getBaseType(),
4174 objT->getTypeArgsAsWritten(),
4175 protocols,
4176 objT->isKindOfTypeAsWritten());
4177 }
4178
4179 // If the canonical type is ObjCObjectType, ...
4180 if (type->isObjCObjectType()) {
4181 // Silently overwrite any existing protocol qualifiers.
4182 // TODO: determine whether that's the right thing to do.
4183
4184 // FIXME: Check for protocols to which the class type is already
4185 // known to conform.
4186 return getObjCObjectType(type, { }, protocols, false);
4187 }
4188
4189 // id<protocol-list>
4190 if (type->isObjCIdType()) {
4191 const ObjCObjectPointerType *objPtr = type->castAs<ObjCObjectPointerType>();
4192 type = getObjCObjectType(ObjCBuiltinIdTy, { }, protocols,
4193 objPtr->isKindOfType());
4194 return getObjCObjectPointerType(type);
4195 }
4196
4197 // Class<protocol-list>
4198 if (type->isObjCClassType()) {
4199 const ObjCObjectPointerType *objPtr = type->castAs<ObjCObjectPointerType>();
4200 type = getObjCObjectType(ObjCBuiltinClassTy, { }, protocols,
4201 objPtr->isKindOfType());
4202 return getObjCObjectPointerType(type);
4203 }
4204
4205 hasError = true;
4206 return type;
4207}
4208
4209QualType
4210ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
4211 ArrayRef<ObjCProtocolDecl *> protocols,
4212 QualType Canonical) const {
4213 // Look in the folding set for an existing type.
4214 llvm::FoldingSetNodeID ID;
4215 ObjCTypeParamType::Profile(ID, Decl, protocols);
4216 void *InsertPos = nullptr;
4217 if (ObjCTypeParamType *TypeParam =
4218 ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
4219 return QualType(TypeParam, 0);
4220
4221 if (Canonical.isNull()) {
4222 // We canonicalize to the underlying type.
4223 Canonical = getCanonicalType(Decl->getUnderlyingType());
4224 if (!protocols.empty()) {
4225 // Apply the protocol qualifers.
4226 bool hasError;
4227 Canonical = applyObjCProtocolQualifiers(Canonical, protocols, hasError,
4228 true/*allowOnPointerType*/);
4229 assert(!hasError && "Error when apply protocol qualifier to bound type")((!hasError && "Error when apply protocol qualifier to bound type"
) ? static_cast<void> (0) : __assert_fail ("!hasError && \"Error when apply protocol qualifier to bound type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4229, __PRETTY_FUNCTION__))
;
4230 }
4231 }
4232
4233 unsigned size = sizeof(ObjCTypeParamType);
4234 size += protocols.size() * sizeof(ObjCProtocolDecl *);
4235 void *mem = Allocate(size, TypeAlignment);
4236 ObjCTypeParamType *newType = new (mem)
4237 ObjCTypeParamType(Decl, Canonical, protocols);
4238
4239 Types.push_back(newType);
4240 ObjCTypeParamTypes.InsertNode(newType, InsertPos);
4241 return QualType(newType, 0);
4242}
4243
4244/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
4245/// protocol list adopt all protocols in QT's qualified-id protocol
4246/// list.
4247bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
4248 ObjCInterfaceDecl *IC) {
4249 if (!QT->isObjCQualifiedIdType())
4250 return false;
4251
4252 if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
4253 // If both the right and left sides have qualifiers.
4254 for (auto *Proto : OPT->quals()) {
4255 if (!IC->ClassImplementsProtocol(Proto, false))
4256 return false;
4257 }
4258 return true;
4259 }
4260 return false;
4261}
4262
4263/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
4264/// QT's qualified-id protocol list adopt all protocols in IDecl's list
4265/// of protocols.
4266bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
4267 ObjCInterfaceDecl *IDecl) {
4268 if (!QT->isObjCQualifiedIdType())
4269 return false;
4270 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
4271 if (!OPT)
4272 return false;
4273 if (!IDecl->hasDefinition())
4274 return false;
4275 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
4276 CollectInheritedProtocols(IDecl, InheritedProtocols);
4277 if (InheritedProtocols.empty())
4278 return false;
4279 // Check that if every protocol in list of id<plist> conforms to a protcol
4280 // of IDecl's, then bridge casting is ok.
4281 bool Conforms = false;
4282 for (auto *Proto : OPT->quals()) {
4283 Conforms = false;
4284 for (auto *PI : InheritedProtocols) {
4285 if (ProtocolCompatibleWithProtocol(Proto, PI)) {
4286 Conforms = true;
4287 break;
4288 }
4289 }
4290 if (!Conforms)
4291 break;
4292 }
4293 if (Conforms)
4294 return true;
4295
4296 for (auto *PI : InheritedProtocols) {
4297 // If both the right and left sides have qualifiers.
4298 bool Adopts = false;
4299 for (auto *Proto : OPT->quals()) {
4300 // return 'true' if 'PI' is in the inheritance hierarchy of Proto
4301 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
4302 break;
4303 }
4304 if (!Adopts)
4305 return false;
4306 }
4307 return true;
4308}
4309
4310/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
4311/// the given object type.
4312QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
4313 llvm::FoldingSetNodeID ID;
4314 ObjCObjectPointerType::Profile(ID, ObjectT);
4315
4316 void *InsertPos = nullptr;
4317 if (ObjCObjectPointerType *QT =
4318 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
4319 return QualType(QT, 0);
4320
4321 // Find the canonical object type.
4322 QualType Canonical;
4323 if (!ObjectT.isCanonical()) {
4324 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
4325
4326 // Regenerate InsertPos.
4327 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
4328 }
4329
4330 // No match.
4331 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
4332 ObjCObjectPointerType *QType =
4333 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
4334
4335 Types.push_back(QType);
4336 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
4337 return QualType(QType, 0);
4338}
4339
4340/// getObjCInterfaceType - Return the unique reference to the type for the
4341/// specified ObjC interface decl. The list of protocols is optional.
4342QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
4343 ObjCInterfaceDecl *PrevDecl) const {
4344 if (Decl->TypeForDecl)
4345 return QualType(Decl->TypeForDecl, 0);
4346
4347 if (PrevDecl) {
4348 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl")((PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->TypeForDecl && \"previous decl has no TypeForDecl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4348, __PRETTY_FUNCTION__))
;
4349 Decl->TypeForDecl = PrevDecl->TypeForDecl;
4350 return QualType(PrevDecl->TypeForDecl, 0);
4351 }
4352
4353 // Prefer the definition, if there is one.
4354 if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
4355 Decl = Def;
4356
4357 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
4358 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
4359 Decl->TypeForDecl = T;
4360 Types.push_back(T);
4361 return QualType(T, 0);
4362}
4363
4364/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
4365/// TypeOfExprType AST's (since expression's are never shared). For example,
4366/// multiple declarations that refer to "typeof(x)" all contain different
4367/// DeclRefExpr's. This doesn't effect the type checker, since it operates
4368/// on canonical type's (which are always unique).
4369QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
4370 TypeOfExprType *toe;
4371 if (tofExpr->isTypeDependent()) {
4372 llvm::FoldingSetNodeID ID;
4373 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
4374
4375 void *InsertPos = nullptr;
4376 DependentTypeOfExprType *Canon
4377 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
4378 if (Canon) {
4379 // We already have a "canonical" version of an identical, dependent
4380 // typeof(expr) type. Use that as our canonical type.
4381 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
4382 QualType((TypeOfExprType*)Canon, 0));
4383 } else {
4384 // Build a new, canonical typeof(expr) type.
4385 Canon
4386 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
4387 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
4388 toe = Canon;
4389 }
4390 } else {
4391 QualType Canonical = getCanonicalType(tofExpr->getType());
4392 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
4393 }
4394 Types.push_back(toe);
4395 return QualType(toe, 0);
4396}
4397
4398/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
4399/// TypeOfType nodes. The only motivation to unique these nodes would be
4400/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
4401/// an issue. This doesn't affect the type checker, since it operates
4402/// on canonical types (which are always unique).
4403QualType ASTContext::getTypeOfType(QualType tofType) const {
4404 QualType Canonical = getCanonicalType(tofType);
4405 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
4406 Types.push_back(tot);
4407 return QualType(tot, 0);
4408}
4409
4410/// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
4411/// nodes. This would never be helpful, since each such type has its own
4412/// expression, and would not give a significant memory saving, since there
4413/// is an Expr tree under each such type.
4414QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
4415 DecltypeType *dt;
4416
4417 // C++11 [temp.type]p2:
4418 // If an expression e involves a template parameter, decltype(e) denotes a
4419 // unique dependent type. Two such decltype-specifiers refer to the same
4420 // type only if their expressions are equivalent (14.5.6.1).
4421 if (e->isInstantiationDependent()) {
4422 llvm::FoldingSetNodeID ID;
4423 DependentDecltypeType::Profile(ID, *this, e);
4424
4425 void *InsertPos = nullptr;
4426 DependentDecltypeType *Canon
4427 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
4428 if (!Canon) {
4429 // Build a new, canonical decltype(expr) type.
4430 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
4431 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
4432 }
4433 dt = new (*this, TypeAlignment)
4434 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
4435 } else {
4436 dt = new (*this, TypeAlignment)
4437 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
4438 }
4439 Types.push_back(dt);
4440 return QualType(dt, 0);
4441}
4442
4443/// getUnaryTransformationType - We don't unique these, since the memory
4444/// savings are minimal and these are rare.
4445QualType ASTContext::getUnaryTransformType(QualType BaseType,
4446 QualType UnderlyingType,
4447 UnaryTransformType::UTTKind Kind)
4448 const {
4449 UnaryTransformType *ut = nullptr;
4450
4451 if (BaseType->isDependentType()) {
4452 // Look in the folding set for an existing type.
4453 llvm::FoldingSetNodeID ID;
4454 DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
4455
4456 void *InsertPos = nullptr;
4457 DependentUnaryTransformType *Canon
4458 = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
4459
4460 if (!Canon) {
4461 // Build a new, canonical __underlying_type(type) type.
4462 Canon = new (*this, TypeAlignment)
4463 DependentUnaryTransformType(*this, getCanonicalType(BaseType),
4464 Kind);
4465 DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
4466 }
4467 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
4468 QualType(), Kind,
4469 QualType(Canon, 0));
4470 } else {
4471 QualType CanonType = getCanonicalType(UnderlyingType);
4472 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
4473 UnderlyingType, Kind,
4474 CanonType);
4475 }
4476 Types.push_back(ut);
4477 return QualType(ut, 0);
4478}
4479
4480/// getAutoType - Return the uniqued reference to the 'auto' type which has been
4481/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
4482/// canonical deduced-but-dependent 'auto' type.
4483QualType ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
4484 bool IsDependent) const {
4485 if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent)
4486 return getAutoDeductType();
4487
4488 // Look in the folding set for an existing type.
4489 void *InsertPos = nullptr;
4490 llvm::FoldingSetNodeID ID;
4491 AutoType::Profile(ID, DeducedType, Keyword, IsDependent);
4492 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
4493 return QualType(AT, 0);
4494
4495 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
4496 Keyword,
4497 IsDependent);
4498 Types.push_back(AT);
4499 if (InsertPos)
4500 AutoTypes.InsertNode(AT, InsertPos);
4501 return QualType(AT, 0);
4502}
4503
4504/// Return the uniqued reference to the deduced template specialization type
4505/// which has been deduced to the given type, or to the canonical undeduced
4506/// such type, or the canonical deduced-but-dependent such type.
4507QualType ASTContext::getDeducedTemplateSpecializationType(
4508 TemplateName Template, QualType DeducedType, bool IsDependent) const {
4509 // Look in the folding set for an existing type.
4510 void *InsertPos = nullptr;
4511 llvm::FoldingSetNodeID ID;
4512 DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
4513 IsDependent);
4514 if (DeducedTemplateSpecializationType *DTST =
4515 DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
4516 return QualType(DTST, 0);
4517
4518 DeducedTemplateSpecializationType *DTST = new (*this, TypeAlignment)
4519 DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
4520 Types.push_back(DTST);
4521 if (InsertPos)
4522 DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
4523 return QualType(DTST, 0);
4524}
4525
4526/// getAtomicType - Return the uniqued reference to the atomic type for
4527/// the given value type.
4528QualType ASTContext::getAtomicType(QualType T) const {
4529 // Unique pointers, to guarantee there is only one pointer of a particular
4530 // structure.
4531 llvm::FoldingSetNodeID ID;
4532 AtomicType::Profile(ID, T);
4533
4534 void *InsertPos = nullptr;
4535 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
4536 return QualType(AT, 0);
4537
4538 // If the atomic value type isn't canonical, this won't be a canonical type
4539 // either, so fill in the canonical type field.
4540 QualType Canonical;
4541 if (!T.isCanonical()) {
4542 Canonical = getAtomicType(getCanonicalType(T));
4543
4544 // Get the new insert position for the node we care about.
4545 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
4546 assert(!NewIP && "Shouldn't be in the map!")((!NewIP && "Shouldn't be in the map!") ? static_cast
<void> (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4546, __PRETTY_FUNCTION__))
; (void)NewIP;
4547 }
4548 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
4549 Types.push_back(New);
4550 AtomicTypes.InsertNode(New, InsertPos);
4551 return QualType(New, 0);
4552}
4553
4554/// getAutoDeductType - Get type pattern for deducing against 'auto'.
4555QualType ASTContext::getAutoDeductType() const {
4556 if (AutoDeductTy.isNull())
4557 AutoDeductTy = QualType(
4558 new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
4559 /*dependent*/false),
4560 0);
4561 return AutoDeductTy;
4562}
4563
4564/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
4565QualType ASTContext::getAutoRRefDeductType() const {
4566 if (AutoRRefDeductTy.isNull())
4567 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
4568 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern")((!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"
) ? static_cast<void> (0) : __assert_fail ("!AutoRRefDeductTy.isNull() && \"can't build 'auto &&' pattern\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4568, __PRETTY_FUNCTION__))
;
4569 return AutoRRefDeductTy;
4570}
4571
4572/// getTagDeclType - Return the unique reference to the type for the
4573/// specified TagDecl (struct/union/class/enum) decl.
4574QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
4575 assert (Decl)((Decl) ? static_cast<void> (0) : __assert_fail ("Decl"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4575, __PRETTY_FUNCTION__))
;
4576 // FIXME: What is the design on getTagDeclType when it requires casting
4577 // away const? mutable?
4578 return getTypeDeclType(const_cast<TagDecl*>(Decl));
4579}
4580
4581/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
4582/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
4583/// needs to agree with the definition in <stddef.h>.
4584CanQualType ASTContext::getSizeType() const {
4585 return getFromTargetType(Target->getSizeType());
4586}
4587
4588/// Return the unique signed counterpart of the integer type
4589/// corresponding to size_t.
4590CanQualType ASTContext::getSignedSizeType() const {
4591 return getFromTargetType(Target->getSignedSizeType());
4592}
4593
4594/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
4595CanQualType ASTContext::getIntMaxType() const {
4596 return getFromTargetType(Target->getIntMaxType());
4597}
4598
4599/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
4600CanQualType ASTContext::getUIntMaxType() const {
4601 return getFromTargetType(Target->getUIntMaxType());
4602}
4603
4604/// getSignedWCharType - Return the type of "signed wchar_t".
4605/// Used when in C++, as a GCC extension.
4606QualType ASTContext::getSignedWCharType() const {
4607 // FIXME: derive from "Target" ?
4608 return WCharTy;
4609}
4610
4611/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
4612/// Used when in C++, as a GCC extension.
4613QualType ASTContext::getUnsignedWCharType() const {
4614 // FIXME: derive from "Target" ?
4615 return UnsignedIntTy;
4616}
4617
4618QualType ASTContext::getIntPtrType() const {
4619 return getFromTargetType(Target->getIntPtrType());
4620}
4621
4622QualType ASTContext::getUIntPtrType() const {
4623 return getCorrespondingUnsignedType(getIntPtrType());
4624}
4625
4626/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
4627/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
4628QualType ASTContext::getPointerDiffType() const {
4629 return getFromTargetType(Target->getPtrDiffType(0));
4630}
4631
4632/// \brief Return the unique unsigned counterpart of "ptrdiff_t"
4633/// integer type. The standard (C11 7.21.6.1p7) refers to this type
4634/// in the definition of %tu format specifier.
4635QualType ASTContext::getUnsignedPointerDiffType() const {
4636 return getFromTargetType(Target->getUnsignedPtrDiffType(0));
4637}
4638
4639/// \brief Return the unique type for "pid_t" defined in
4640/// <sys/types.h>. We need this to compute the correct type for vfork().
4641QualType ASTContext::getProcessIDType() const {
4642 return getFromTargetType(Target->getProcessIDType());
4643}
4644
4645//===----------------------------------------------------------------------===//
4646// Type Operators
4647//===----------------------------------------------------------------------===//
4648
4649CanQualType ASTContext::getCanonicalParamType(QualType T) const {
4650 // Push qualifiers into arrays, and then discard any remaining
4651 // qualifiers.
4652 T = getCanonicalType(T);
4653 T = getVariableArrayDecayedType(T);
4654 const Type *Ty = T.getTypePtr();
4655 QualType Result;
4656 if (isa<ArrayType>(Ty)) {
4657 Result = getArrayDecayedType(QualType(Ty,0));
4658 } else if (isa<FunctionType>(Ty)) {
4659 Result = getPointerType(QualType(Ty, 0));
4660 } else {
4661 Result = QualType(Ty, 0);
4662 }
4663
4664 return CanQualType::CreateUnsafe(Result);
4665}
4666
4667QualType ASTContext::getUnqualifiedArrayType(QualType type,
4668 Qualifiers &quals) {
4669 SplitQualType splitType = type.getSplitUnqualifiedType();
4670
4671 // FIXME: getSplitUnqualifiedType() actually walks all the way to
4672 // the unqualified desugared type and then drops it on the floor.
4673 // We then have to strip that sugar back off with
4674 // getUnqualifiedDesugaredType(), which is silly.
4675 const ArrayType *AT =
4676 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
4677
4678 // If we don't have an array, just use the results in splitType.
4679 if (!AT) {
4680 quals = splitType.Quals;
4681 return QualType(splitType.Ty, 0);
4682 }
4683
4684 // Otherwise, recurse on the array's element type.
4685 QualType elementType = AT->getElementType();
4686 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
4687
4688 // If that didn't change the element type, AT has no qualifiers, so we
4689 // can just use the results in splitType.
4690 if (elementType == unqualElementType) {
4691 assert(quals.empty())((quals.empty()) ? static_cast<void> (0) : __assert_fail
("quals.empty()", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4691, __PRETTY_FUNCTION__))
; // from the recursive call
4692 quals = splitType.Quals;
4693 return QualType(splitType.Ty, 0);
4694 }
4695
4696 // Otherwise, add in the qualifiers from the outermost type, then
4697 // build the type back up.
4698 quals.addConsistentQualifiers(splitType.Quals);
4699
4700 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4701 return getConstantArrayType(unqualElementType, CAT->getSize(),
4702 CAT->getSizeModifier(), 0);
4703 }
4704
4705 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
4706 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
4707 }
4708
4709 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
4710 return getVariableArrayType(unqualElementType,
4711 VAT->getSizeExpr(),
4712 VAT->getSizeModifier(),
4713 VAT->getIndexTypeCVRQualifiers(),
4714 VAT->getBracketsRange());
4715 }
4716
4717 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
4718 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
4719 DSAT->getSizeModifier(), 0,
4720 SourceRange());
4721}
4722
4723/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
4724/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
4725/// they point to and return true. If T1 and T2 aren't pointer types
4726/// or pointer-to-member types, or if they are not similar at this
4727/// level, returns false and leaves T1 and T2 unchanged. Top-level
4728/// qualifiers on T1 and T2 are ignored. This function will typically
4729/// be called in a loop that successively "unwraps" pointer and
4730/// pointer-to-member types to compare them at each level.
4731bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
4732 const PointerType *T1PtrType = T1->getAs<PointerType>(),
4733 *T2PtrType = T2->getAs<PointerType>();
4734 if (T1PtrType && T2PtrType) {
4735 T1 = T1PtrType->getPointeeType();
4736 T2 = T2PtrType->getPointeeType();
4737 return true;
4738 }
4739
4740 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
4741 *T2MPType = T2->getAs<MemberPointerType>();
4742 if (T1MPType && T2MPType &&
4743 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
4744 QualType(T2MPType->getClass(), 0))) {
4745 T1 = T1MPType->getPointeeType();
4746 T2 = T2MPType->getPointeeType();
4747 return true;
4748 }
4749
4750 if (getLangOpts().ObjC1) {
4751 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
4752 *T2OPType = T2->getAs<ObjCObjectPointerType>();
4753 if (T1OPType && T2OPType) {
4754 T1 = T1OPType->getPointeeType();
4755 T2 = T2OPType->getPointeeType();
4756 return true;
4757 }
4758 }
4759
4760 // FIXME: Block pointers, too?
4761
4762 return false;
4763}
4764
4765DeclarationNameInfo
4766ASTContext::getNameForTemplate(TemplateName Name,
4767 SourceLocation NameLoc) const {
4768 switch (Name.getKind()) {
4769 case TemplateName::QualifiedTemplate:
4770 case TemplateName::Template:
4771 // DNInfo work in progress: CHECKME: what about DNLoc?
4772 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4773 NameLoc);
4774
4775 case TemplateName::OverloadedTemplate: {
4776 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4777 // DNInfo work in progress: CHECKME: what about DNLoc?
4778 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4779 }
4780
4781 case TemplateName::DependentTemplate: {
4782 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4783 DeclarationName DName;
4784 if (DTN->isIdentifier()) {
4785 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4786 return DeclarationNameInfo(DName, NameLoc);
4787 } else {
4788 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4789 // DNInfo work in progress: FIXME: source locations?
4790 DeclarationNameLoc DNLoc;
4791 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4792 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4793 return DeclarationNameInfo(DName, NameLoc, DNLoc);
4794 }
4795 }
4796
4797 case TemplateName::SubstTemplateTemplateParm: {
4798 SubstTemplateTemplateParmStorage *subst
4799 = Name.getAsSubstTemplateTemplateParm();
4800 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4801 NameLoc);
4802 }
4803
4804 case TemplateName::SubstTemplateTemplateParmPack: {
4805 SubstTemplateTemplateParmPackStorage *subst
4806 = Name.getAsSubstTemplateTemplateParmPack();
4807 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4808 NameLoc);
4809 }
4810 }
4811
4812 llvm_unreachable("bad template name kind!")::llvm::llvm_unreachable_internal("bad template name kind!", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4812)
;
4813}
4814
4815TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4816 switch (Name.getKind()) {
4817 case TemplateName::QualifiedTemplate:
4818 case TemplateName::Template: {
4819 TemplateDecl *Template = Name.getAsTemplateDecl();
4820 if (TemplateTemplateParmDecl *TTP
4821 = dyn_cast<TemplateTemplateParmDecl>(Template))
4822 Template = getCanonicalTemplateTemplateParmDecl(TTP);
4823
4824 // The canonical template name is the canonical template declaration.
4825 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4826 }
4827
4828 case TemplateName::OverloadedTemplate:
4829 llvm_unreachable("cannot canonicalize overloaded template")::llvm::llvm_unreachable_internal("cannot canonicalize overloaded template"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4829)
;
4830
4831 case TemplateName::DependentTemplate: {
4832 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4833 assert(DTN && "Non-dependent template names must refer to template decls.")((DTN && "Non-dependent template names must refer to template decls."
) ? static_cast<void> (0) : __assert_fail ("DTN && \"Non-dependent template names must refer to template decls.\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4833, __PRETTY_FUNCTION__))
;
4834 return DTN->CanonicalTemplateName;
4835 }
4836
4837 case TemplateName::SubstTemplateTemplateParm: {
4838 SubstTemplateTemplateParmStorage *subst
4839 = Name.getAsSubstTemplateTemplateParm();
4840 return getCanonicalTemplateName(subst->getReplacement());
4841 }
4842
4843 case TemplateName::SubstTemplateTemplateParmPack: {
4844 SubstTemplateTemplateParmPackStorage *subst
4845 = Name.getAsSubstTemplateTemplateParmPack();
4846 TemplateTemplateParmDecl *canonParameter
4847 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4848 TemplateArgument canonArgPack
4849 = getCanonicalTemplateArgument(subst->getArgumentPack());
4850 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4851 }
4852 }
4853
4854 llvm_unreachable("bad template name!")::llvm::llvm_unreachable_internal("bad template name!", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4854)
;
4855}
4856
4857bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4858 X = getCanonicalTemplateName(X);
4859 Y = getCanonicalTemplateName(Y);
4860 return X.getAsVoidPointer() == Y.getAsVoidPointer();
4861}
4862
4863TemplateArgument
4864ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4865 switch (Arg.getKind()) {
4866 case TemplateArgument::Null:
4867 return Arg;
4868
4869 case TemplateArgument::Expression:
4870 return Arg;
4871
4872 case TemplateArgument::Declaration: {
4873 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4874 return TemplateArgument(D, Arg.getParamTypeForDecl());
4875 }
4876
4877 case TemplateArgument::NullPtr:
4878 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4879 /*isNullPtr*/true);
4880
4881 case TemplateArgument::Template:
4882 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4883
4884 case TemplateArgument::TemplateExpansion:
4885 return TemplateArgument(getCanonicalTemplateName(
4886 Arg.getAsTemplateOrTemplatePattern()),
4887 Arg.getNumTemplateExpansions());
4888
4889 case TemplateArgument::Integral:
4890 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4891
4892 case TemplateArgument::Type:
4893 return TemplateArgument(getCanonicalType(Arg.getAsType()));
4894
4895 case TemplateArgument::Pack: {
4896 if (Arg.pack_size() == 0)
4897 return Arg;
4898
4899 TemplateArgument *CanonArgs
4900 = new (*this) TemplateArgument[Arg.pack_size()];
4901 unsigned Idx = 0;
4902 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4903 AEnd = Arg.pack_end();
4904 A != AEnd; (void)++A, ++Idx)
4905 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4906
4907 return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
4908 }
4909 }
4910
4911 // Silence GCC warning
4912 llvm_unreachable("Unhandled template argument kind")::llvm::llvm_unreachable_internal("Unhandled template argument kind"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4912)
;
4913}
4914
4915NestedNameSpecifier *
4916ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4917 if (!NNS)
4918 return nullptr;
4919
4920 switch (NNS->getKind()) {
4921 case NestedNameSpecifier::Identifier:
4922 // Canonicalize the prefix but keep the identifier the same.
4923 return NestedNameSpecifier::Create(*this,
4924 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4925 NNS->getAsIdentifier());
4926
4927 case NestedNameSpecifier::Namespace:
4928 // A namespace is canonical; build a nested-name-specifier with
4929 // this namespace and no prefix.
4930 return NestedNameSpecifier::Create(*this, nullptr,
4931 NNS->getAsNamespace()->getOriginalNamespace());
4932
4933 case NestedNameSpecifier::NamespaceAlias:
4934 // A namespace is canonical; build a nested-name-specifier with
4935 // this namespace and no prefix.
4936 return NestedNameSpecifier::Create(*this, nullptr,
4937 NNS->getAsNamespaceAlias()->getNamespace()
4938 ->getOriginalNamespace());
4939
4940 case NestedNameSpecifier::TypeSpec:
4941 case NestedNameSpecifier::TypeSpecWithTemplate: {
4942 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4943
4944 // If we have some kind of dependent-named type (e.g., "typename T::type"),
4945 // break it apart into its prefix and identifier, then reconsititute those
4946 // as the canonical nested-name-specifier. This is required to canonicalize
4947 // a dependent nested-name-specifier involving typedefs of dependent-name
4948 // types, e.g.,
4949 // typedef typename T::type T1;
4950 // typedef typename T1::type T2;
4951 if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4952 return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4953 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4954
4955 // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4956 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4957 // first place?
4958 return NestedNameSpecifier::Create(*this, nullptr, false,
4959 const_cast<Type *>(T.getTypePtr()));
4960 }
4961
4962 case NestedNameSpecifier::Global:
4963 case NestedNameSpecifier::Super:
4964 // The global specifier and __super specifer are canonical and unique.
4965 return NNS;
4966 }
4967
4968 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")::llvm::llvm_unreachable_internal("Invalid NestedNameSpecifier::Kind!"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 4968)
;
4969}
4970
4971const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4972 // Handle the non-qualified case efficiently.
4973 if (!T.hasLocalQualifiers()) {
4974 // Handle the common positive case fast.
4975 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4976 return AT;
4977 }
4978
4979 // Handle the common negative case fast.
4980 if (!isa<ArrayType>(T.getCanonicalType()))
4981 return nullptr;
4982
4983 // Apply any qualifiers from the array type to the element type. This
4984 // implements C99 6.7.3p8: "If the specification of an array type includes
4985 // any type qualifiers, the element type is so qualified, not the array type."
4986
4987 // If we get here, we either have type qualifiers on the type, or we have
4988 // sugar such as a typedef in the way. If we have type qualifiers on the type
4989 // we must propagate them down into the element type.
4990
4991 SplitQualType split = T.getSplitDesugaredType();
4992 Qualifiers qs = split.Quals;
4993
4994 // If we have a simple case, just return now.
4995 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4996 if (!ATy || qs.empty())
4997 return ATy;
4998
4999 // Otherwise, we have an array and we have qualifiers on it. Push the
5000 // qualifiers into the array element type and return a new array type.
5001 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
5002
5003 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
5004 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
5005 CAT->getSizeModifier(),
5006 CAT->getIndexTypeCVRQualifiers()));
5007 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
5008 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
5009 IAT->getSizeModifier(),
5010 IAT->getIndexTypeCVRQualifiers()));
5011
5012 if (const DependentSizedArrayType *DSAT
5013 = dyn_cast<DependentSizedArrayType>(ATy))
5014 return cast<ArrayType>(
5015 getDependentSizedArrayType(NewEltTy,
5016 DSAT->getSizeExpr(),
5017 DSAT->getSizeModifier(),
5018 DSAT->getIndexTypeCVRQualifiers(),
5019 DSAT->getBracketsRange()));
5020
5021 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
5022 return cast<ArrayType>(getVariableArrayType(NewEltTy,
5023 VAT->getSizeExpr(),
5024 VAT->getSizeModifier(),
5025 VAT->getIndexTypeCVRQualifiers(),
5026 VAT->getBracketsRange()));
5027}
5028
5029QualType ASTContext::getAdjustedParameterType(QualType T) const {
5030 if (T->isArrayType() || T->isFunctionType())
5031 return getDecayedType(T);
5032 return T;
5033}
5034
5035QualType ASTContext::getSignatureParameterType(QualType T) const {
5036 T = getVariableArrayDecayedType(T);
5037 T = getAdjustedParameterType(T);
5038 return T.getUnqualifiedType();
5039}
5040
5041QualType ASTContext::getExceptionObjectType(QualType T) const {
5042 // C++ [except.throw]p3:
5043 // A throw-expression initializes a temporary object, called the exception
5044 // object, the type of which is determined by removing any top-level
5045 // cv-qualifiers from the static type of the operand of throw and adjusting
5046 // the type from "array of T" or "function returning T" to "pointer to T"
5047 // or "pointer to function returning T", [...]
5048 T = getVariableArrayDecayedType(T);
5049 if (T->isArrayType() || T->isFunctionType())
5050 T = getDecayedType(T);
5051 return T.getUnqualifiedType();
5052}
5053
5054/// getArrayDecayedType - Return the properly qualified result of decaying the
5055/// specified array type to a pointer. This operation is non-trivial when
5056/// handling typedefs etc. The canonical type of "T" must be an array type,
5057/// this returns a pointer to a properly qualified element of the array.
5058///
5059/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
5060QualType ASTContext::getArrayDecayedType(QualType Ty) const {
5061 // Get the element type with 'getAsArrayType' so that we don't lose any
5062 // typedefs in the element type of the array. This also handles propagation
5063 // of type qualifiers from the array type into the element type if present
5064 // (C99 6.7.3p8).
5065 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
5066 assert(PrettyArrayType && "Not an array type!")((PrettyArrayType && "Not an array type!") ? static_cast
<void> (0) : __assert_fail ("PrettyArrayType && \"Not an array type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5066, __PRETTY_FUNCTION__))
;
5067
5068 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
5069
5070 // int x[restrict 4] -> int *restrict
5071 QualType Result = getQualifiedType(PtrTy,
5072 PrettyArrayType->getIndexTypeQualifiers());
5073
5074 // int x[_Nullable] -> int * _Nullable
5075 if (auto Nullability = Ty->getNullability(*this)) {
5076 Result = const_cast<ASTContext *>(this)->getAttributedType(
5077 AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
5078 }
5079 return Result;
5080}
5081
5082QualType ASTContext::getBaseElementType(const ArrayType *array) const {
5083 return getBaseElementType(array->getElementType());
5084}
5085
5086QualType ASTContext::getBaseElementType(QualType type) const {
5087 Qualifiers qs;
5088 while (true) {
5089 SplitQualType split = type.getSplitDesugaredType();
5090 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
5091 if (!array) break;
5092
5093 type = array->getElementType();
5094 qs.addConsistentQualifiers(split.Quals);
5095 }
5096
5097 return getQualifiedType(type, qs);
5098}
5099
5100/// getConstantArrayElementCount - Returns number of constant array elements.
5101uint64_t
5102ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
5103 uint64_t ElementCount = 1;
5104 do {
5105 ElementCount *= CA->getSize().getZExtValue();
5106 CA = dyn_cast_or_null<ConstantArrayType>(
5107 CA->getElementType()->getAsArrayTypeUnsafe());
5108 } while (CA);
5109 return ElementCount;
5110}
5111
5112/// getFloatingRank - Return a relative rank for floating point types.
5113/// This routine will assert if passed a built-in type that isn't a float.
5114static FloatingRank getFloatingRank(QualType T) {
5115 if (const ComplexType *CT = T->getAs<ComplexType>())
5116 return getFloatingRank(CT->getElementType());
5117
5118 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type")((T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type"
) ? static_cast<void> (0) : __assert_fail ("T->getAs<BuiltinType>() && \"getFloatingRank(): not a floating type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5118, __PRETTY_FUNCTION__))
;
5119 switch (T->getAs<BuiltinType>()->getKind()) {
5120 default: llvm_unreachable("getFloatingRank(): not a floating type")::llvm::llvm_unreachable_internal("getFloatingRank(): not a floating type"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5120)
;
5121 case BuiltinType::Float16: return Float16Rank;
5122 case BuiltinType::Half: return HalfRank;
5123 case BuiltinType::Float: return FloatRank;
5124 case BuiltinType::Double: return DoubleRank;
5125 case BuiltinType::LongDouble: return LongDoubleRank;
5126 case BuiltinType::Float128: return Float128Rank;
5127 }
5128}
5129
5130/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
5131/// point or a complex type (based on typeDomain/typeSize).
5132/// 'typeDomain' is a real floating point or complex type.
5133/// 'typeSize' is a real floating point or complex type.
5134QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
5135 QualType Domain) const {
5136 FloatingRank EltRank = getFloatingRank(Size);
5137 if (Domain->isComplexType()) {
5138 switch (EltRank) {
5139 case Float16Rank:
5140 case HalfRank: llvm_unreachable("Complex half is not supported")::llvm::llvm_unreachable_internal("Complex half is not supported"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5140)
;
5141 case FloatRank: return FloatComplexTy;
5142 case DoubleRank: return DoubleComplexTy;
5143 case LongDoubleRank: return LongDoubleComplexTy;
5144 case Float128Rank: return Float128ComplexTy;
5145 }
5146 }
5147
5148 assert(Domain->isRealFloatingType() && "Unknown domain!")((Domain->isRealFloatingType() && "Unknown domain!"
) ? static_cast<void> (0) : __assert_fail ("Domain->isRealFloatingType() && \"Unknown domain!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5148, __PRETTY_FUNCTION__))
;
5149 switch (EltRank) {
5150 case Float16Rank: return HalfTy;
5151 case HalfRank: return HalfTy;
5152 case FloatRank: return FloatTy;
5153 case DoubleRank: return DoubleTy;
5154 case LongDoubleRank: return LongDoubleTy;
5155 case Float128Rank: return Float128Ty;
5156 }
5157 llvm_unreachable("getFloatingRank(): illegal value for rank")::llvm::llvm_unreachable_internal("getFloatingRank(): illegal value for rank"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5157)
;
5158}
5159
5160/// getFloatingTypeOrder - Compare the rank of the two specified floating
5161/// point types, ignoring the domain of the type (i.e. 'double' ==
5162/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
5163/// LHS < RHS, return -1.
5164int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
5165 FloatingRank LHSR = getFloatingRank(LHS);
5166 FloatingRank RHSR = getFloatingRank(RHS);
5167
5168 if (LHSR == RHSR)
5169 return 0;
5170 if (LHSR > RHSR)
5171 return 1;
5172 return -1;
5173}
5174
5175/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
5176/// routine will assert if passed a built-in type that isn't an integer or enum,
5177/// or if it is not canonicalized.
5178unsigned ASTContext::getIntegerRank(const Type *T) const {
5179 assert(T->isCanonicalUnqualified() && "T should be canonicalized")((T->isCanonicalUnqualified() && "T should be canonicalized"
) ? static_cast<void> (0) : __assert_fail ("T->isCanonicalUnqualified() && \"T should be canonicalized\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5179, __PRETTY_FUNCTION__))
;
5180
5181 switch (cast<BuiltinType>(T)->getKind()) {
5182 default: llvm_unreachable("getIntegerRank(): not a built-in integer")::llvm::llvm_unreachable_internal("getIntegerRank(): not a built-in integer"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5182)
;
5183 case BuiltinType::Bool:
5184 return 1 + (getIntWidth(BoolTy) << 3);
5185 case BuiltinType::Char_S:
5186 case BuiltinType::Char_U:
5187 case BuiltinType::SChar:
5188 case BuiltinType::UChar:
5189 return 2 + (getIntWidth(CharTy) << 3);
5190 case BuiltinType::Short:
5191 case BuiltinType::UShort:
5192 return 3 + (getIntWidth(ShortTy) << 3);
5193 case BuiltinType::Int:
5194 case BuiltinType::UInt:
5195 return 4 + (getIntWidth(IntTy) << 3);
5196 case BuiltinType::Long:
5197 case BuiltinType::ULong:
5198 return 5 + (getIntWidth(LongTy) << 3);
5199 case BuiltinType::LongLong:
5200 case BuiltinType::ULongLong:
5201 return 6 + (getIntWidth(LongLongTy) << 3);
5202 case BuiltinType::Int128:
5203 case BuiltinType::UInt128:
5204 return 7 + (getIntWidth(Int128Ty) << 3);
5205 }
5206}
5207
5208/// \brief Whether this is a promotable bitfield reference according
5209/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
5210///
5211/// \returns the type this bit-field will promote to, or NULL if no
5212/// promotion occurs.
5213QualType ASTContext::isPromotableBitField(Expr *E) const {
5214 if (E->isTypeDependent() || E->isValueDependent())
5215 return QualType();
5216
5217 // FIXME: We should not do this unless E->refersToBitField() is true. This
5218 // matters in C where getSourceBitField() will find bit-fields for various
5219 // cases where the source expression is not a bit-field designator.
5220
5221 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
5222 if (!Field)
5223 return QualType();
5224
5225 QualType FT = Field->getType();
5226
5227 uint64_t BitWidth = Field->getBitWidthValue(*this);
5228 uint64_t IntSize = getTypeSize(IntTy);
5229 // C++ [conv.prom]p5:
5230 // A prvalue for an integral bit-field can be converted to a prvalue of type
5231 // int if int can represent all the values of the bit-field; otherwise, it
5232 // can be converted to unsigned int if unsigned int can represent all the
5233 // values of the bit-field. If the bit-field is larger yet, no integral
5234 // promotion applies to it.
5235 // C11 6.3.1.1/2:
5236 // [For a bit-field of type _Bool, int, signed int, or unsigned int:]
5237 // If an int can represent all values of the original type (as restricted by
5238 // the width, for a bit-field), the value is converted to an int; otherwise,
5239 // it is converted to an unsigned int.
5240 //
5241 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
5242 // We perform that promotion here to match GCC and C++.
5243 if (BitWidth < IntSize)
5244 return IntTy;
5245
5246 if (BitWidth == IntSize)
5247 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
5248
5249 // Types bigger than int are not subject to promotions, and therefore act
5250 // like the base type. GCC has some weird bugs in this area that we
5251 // deliberately do not follow (GCC follows a pre-standard resolution to
5252 // C's DR315 which treats bit-width as being part of the type, and this leaks
5253 // into their semantics in some cases).
5254 return QualType();
5255}
5256
5257/// getPromotedIntegerType - Returns the type that Promotable will
5258/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
5259/// integer type.
5260QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
5261 assert(!Promotable.isNull())((!Promotable.isNull()) ? static_cast<void> (0) : __assert_fail
("!Promotable.isNull()", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5261, __PRETTY_FUNCTION__))
;
5262 assert(Promotable->isPromotableIntegerType())((Promotable->isPromotableIntegerType()) ? static_cast<
void> (0) : __assert_fail ("Promotable->isPromotableIntegerType()"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5262, __PRETTY_FUNCTION__))
;
5263 if (const EnumType *ET = Promotable->getAs<EnumType>())
5264 return ET->getDecl()->getPromotionType();
5265
5266 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
5267 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
5268 // (3.9.1) can be converted to a prvalue of the first of the following
5269 // types that can represent all the values of its underlying type:
5270 // int, unsigned int, long int, unsigned long int, long long int, or
5271 // unsigned long long int [...]
5272 // FIXME: Is there some better way to compute this?
5273 if (BT->getKind() == BuiltinType::WChar_S ||
5274 BT->getKind() == BuiltinType::WChar_U ||
5275 BT->getKind() == BuiltinType::Char16 ||
5276 BT->getKind() == BuiltinType::Char32) {
5277 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
5278 uint64_t FromSize = getTypeSize(BT);
5279 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
5280 LongLongTy, UnsignedLongLongTy };
5281 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
5282 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
5283 if (FromSize < ToSize ||
5284 (FromSize == ToSize &&
5285 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
5286 return PromoteTypes[Idx];
5287 }
5288 llvm_unreachable("char type should fit into long long")::llvm::llvm_unreachable_internal("char type should fit into long long"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5288)
;
5289 }
5290 }
5291
5292 // At this point, we should have a signed or unsigned integer type.
5293 if (Promotable->isSignedIntegerType())
5294 return IntTy;
5295 uint64_t PromotableSize = getIntWidth(Promotable);
5296 uint64_t IntSize = getIntWidth(IntTy);
5297 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize)((Promotable->isUnsignedIntegerType() && PromotableSize
<= IntSize) ? static_cast<void> (0) : __assert_fail
("Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5297, __PRETTY_FUNCTION__))
;
5298 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
5299}
5300
5301/// \brief Recurses in pointer/array types until it finds an objc retainable
5302/// type and returns its ownership.
5303Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
5304 while (!T.isNull()) {
5305 if (T.getObjCLifetime() != Qualifiers::OCL_None)
5306 return T.getObjCLifetime();
5307 if (T->isArrayType())
5308 T = getBaseElementType(T);
5309 else if (const PointerType *PT = T->getAs<PointerType>())
5310 T = PT->getPointeeType();
5311 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
5312 T = RT->getPointeeType();
5313 else
5314 break;
5315 }
5316
5317 return Qualifiers::OCL_None;
5318}
5319
5320static const Type *getIntegerTypeForEnum(const EnumType *ET) {
5321 // Incomplete enum types are not treated as integer types.
5322 // FIXME: In C++, enum types are never integer types.
5323 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
5324 return ET->getDecl()->getIntegerType().getTypePtr();
5325 return nullptr;
5326}
5327
5328/// getIntegerTypeOrder - Returns the highest ranked integer type:
5329/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
5330/// LHS < RHS, return -1.
5331int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
5332 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
5333 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
5334
5335 // Unwrap enums to their underlying type.
5336 if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
5337 LHSC = getIntegerTypeForEnum(ET);
5338 if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
5339 RHSC = getIntegerTypeForEnum(ET);
5340
5341 if (LHSC == RHSC) return 0;
5342
5343 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
5344 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
5345
5346 unsigned LHSRank = getIntegerRank(LHSC);
5347 unsigned RHSRank = getIntegerRank(RHSC);
5348
5349 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
5350 if (LHSRank == RHSRank) return 0;
5351 return LHSRank > RHSRank ? 1 : -1;
5352 }
5353
5354 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
5355 if (LHSUnsigned) {
5356 // If the unsigned [LHS] type is larger, return it.
5357 if (LHSRank >= RHSRank)
5358 return 1;
5359
5360 // If the signed type can represent all values of the unsigned type, it
5361 // wins. Because we are dealing with 2's complement and types that are
5362 // powers of two larger than each other, this is always safe.
5363 return -1;
5364 }
5365
5366 // If the unsigned [RHS] type is larger, return it.
5367 if (RHSRank >= LHSRank)
5368 return -1;
5369
5370 // If the signed type can represent all values of the unsigned type, it
5371 // wins. Because we are dealing with 2's complement and types that are
5372 // powers of two larger than each other, this is always safe.
5373 return 1;
5374}
5375
5376TypedefDecl *ASTContext::getCFConstantStringDecl() const {
5377 if (!CFConstantStringTypeDecl) {
5378 assert(!CFConstantStringTagDecl &&((!CFConstantStringTagDecl && "tag and typedef should be initialized together"
) ? static_cast<void> (0) : __assert_fail ("!CFConstantStringTagDecl && \"tag and typedef should be initialized together\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5379, __PRETTY_FUNCTION__))
5379 "tag and typedef should be initialized together")((!CFConstantStringTagDecl && "tag and typedef should be initialized together"
) ? static_cast<void> (0) : __assert_fail ("!CFConstantStringTagDecl && \"tag and typedef should be initialized together\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5379, __PRETTY_FUNCTION__))
;
5380 CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
5381 CFConstantStringTagDecl->startDefinition();
5382
5383 QualType FieldTypes[4];
5384 const char *FieldNames[4];
5385
5386 // const int *isa;
5387 FieldTypes[0] = getPointerType(IntTy.withConst());
5388 FieldNames[0] = "isa";
5389 // int flags;
5390 FieldTypes[1] = IntTy;
5391 FieldNames[1] = "flags";
5392 // const char *str;
5393 FieldTypes[2] = getPointerType(CharTy.withConst());
5394 FieldNames[2] = "str";
5395 // long length;
5396 FieldTypes[3] = LongTy;
5397 FieldNames[3] = "length";
5398
5399 // Create fields
5400 for (unsigned i = 0; i < 4; ++i) {
5401 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTagDecl,
5402 SourceLocation(),
5403 SourceLocation(),
5404 &Idents.get(FieldNames[i]),
5405 FieldTypes[i], /*TInfo=*/nullptr,
5406 /*BitWidth=*/nullptr,
5407 /*Mutable=*/false,
5408 ICIS_NoInit);
5409 Field->setAccess(AS_public);
5410 CFConstantStringTagDecl->addDecl(Field);
5411 }
5412
5413 CFConstantStringTagDecl->completeDefinition();
5414 // This type is designed to be compatible with NSConstantString, but cannot
5415 // use the same name, since NSConstantString is an interface.
5416 auto tagType = getTagDeclType(CFConstantStringTagDecl);
5417 CFConstantStringTypeDecl =
5418 buildImplicitTypedef(tagType, "__NSConstantString");
5419 }
5420
5421 return CFConstantStringTypeDecl;
5422}
5423
5424RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
5425 if (!CFConstantStringTagDecl)
5426 getCFConstantStringDecl(); // Build the tag and the typedef.
5427 return CFConstantStringTagDecl;
5428}
5429
5430// getCFConstantStringType - Return the type used for constant CFStrings.
5431QualType ASTContext::getCFConstantStringType() const {
5432 return getTypedefType(getCFConstantStringDecl());
5433}
5434
5435QualType ASTContext::getObjCSuperType() const {
5436 if (ObjCSuperType.isNull()) {
5437 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
5438 TUDecl->addDecl(ObjCSuperTypeDecl);
5439 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
5440 }
5441 return ObjCSuperType;
5442}
5443
5444void ASTContext::setCFConstantStringType(QualType T) {
5445 const TypedefType *TD = T->getAs<TypedefType>();
5446 assert(TD && "Invalid CFConstantStringType")((TD && "Invalid CFConstantStringType") ? static_cast
<void> (0) : __assert_fail ("TD && \"Invalid CFConstantStringType\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5446, __PRETTY_FUNCTION__))
;
5447 CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
5448 auto TagType =
5449 CFConstantStringTypeDecl->getUnderlyingType()->getAs<RecordType>();
5450 assert(TagType && "Invalid CFConstantStringType")((TagType && "Invalid CFConstantStringType") ? static_cast
<void> (0) : __assert_fail ("TagType && \"Invalid CFConstantStringType\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5450, __PRETTY_FUNCTION__))
;
5451 CFConstantStringTagDecl = TagType->getDecl();
5452}
5453
5454QualType ASTContext::getBlockDescriptorType() const {
5455 if (BlockDescriptorType)
5456 return getTagDeclType(BlockDescriptorType);
5457
5458 RecordDecl *RD;
5459 // FIXME: Needs the FlagAppleBlock bit.
5460 RD = buildImplicitRecord("__block_descriptor");
5461 RD->startDefinition();
5462
5463 QualType FieldTypes[] = {
5464 UnsignedLongTy,
5465 UnsignedLongTy,
5466 };
5467
5468 static const char *const FieldNames[] = {
5469 "reserved",
5470 "Size"
5471 };
5472
5473 for (size_t i = 0; i < 2; ++i) {
5474 FieldDecl *Field = FieldDecl::Create(
5475 *this, RD, SourceLocation(), SourceLocation(),
5476 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
5477 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
5478 Field->setAccess(AS_public);
5479 RD->addDecl(Field);
5480 }
5481
5482 RD->completeDefinition();
5483
5484 BlockDescriptorType = RD;
5485
5486 return getTagDeclType(BlockDescriptorType);
5487}
5488
5489QualType ASTContext::getBlockDescriptorExtendedType() const {
5490 if (BlockDescriptorExtendedType)
5491 return getTagDeclType(BlockDescriptorExtendedType);
5492
5493 RecordDecl *RD;
5494 // FIXME: Needs the FlagAppleBlock bit.
5495 RD = buildImplicitRecord("__block_descriptor_withcopydispose");
5496 RD->startDefinition();
5497
5498 QualType FieldTypes[] = {
5499 UnsignedLongTy,
5500 UnsignedLongTy,
5501 getPointerType(VoidPtrTy),
5502 getPointerType(VoidPtrTy)
5503 };
5504
5505 static const char *const FieldNames[] = {
5506 "reserved",
5507 "Size",
5508 "CopyFuncPtr",
5509 "DestroyFuncPtr"
5510 };
5511
5512 for (size_t i = 0; i < 4; ++i) {
5513 FieldDecl *Field = FieldDecl::Create(
5514 *this, RD, SourceLocation(), SourceLocation(),
5515 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
5516 /*BitWidth=*/nullptr,
5517 /*Mutable=*/false, ICIS_NoInit);
5518 Field->setAccess(AS_public);
5519 RD->addDecl(Field);
5520 }
5521
5522 RD->completeDefinition();
5523
5524 BlockDescriptorExtendedType = RD;
5525 return getTagDeclType(BlockDescriptorExtendedType);
5526}
5527
5528/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
5529/// requires copy/dispose. Note that this must match the logic
5530/// in buildByrefHelpers.
5531bool ASTContext::BlockRequiresCopying(QualType Ty,
5532 const VarDecl *D) {
5533 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
5534 const Expr *copyExpr = getBlockVarCopyInits(D);
5535 if (!copyExpr && record->hasTrivialDestructor()) return false;
5536
5537 return true;
5538 }
5539
5540 if (!Ty->isObjCRetainableType()) return false;
5541
5542 Qualifiers qs = Ty.getQualifiers();
5543
5544 // If we have lifetime, that dominates.
5545 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
5546 switch (lifetime) {
5547 case Qualifiers::OCL_None: llvm_unreachable("impossible")::llvm::llvm_unreachable_internal("impossible", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5547)
;
5548
5549 // These are just bits as far as the runtime is concerned.
5550 case Qualifiers::OCL_ExplicitNone:
5551 case Qualifiers::OCL_Autoreleasing:
5552 return false;
5553
5554 // Tell the runtime that this is ARC __weak, called by the
5555 // byref routines.
5556 case Qualifiers::OCL_Weak:
5557 // ARC __strong __block variables need to be retained.
5558 case Qualifiers::OCL_Strong:
5559 return true;
5560 }
5561 llvm_unreachable("fell out of lifetime switch!")::llvm::llvm_unreachable_internal("fell out of lifetime switch!"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5561)
;
5562 }
5563 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
5564 Ty->isObjCObjectPointerType());
5565}
5566
5567bool ASTContext::getByrefLifetime(QualType Ty,
5568 Qualifiers::ObjCLifetime &LifeTime,
5569 bool &HasByrefExtendedLayout) const {
5570
5571 if (!getLangOpts().ObjC1 ||
5572 getLangOpts().getGC() != LangOptions::NonGC)
5573 return false;
5574
5575 HasByrefExtendedLayout = false;
5576 if (Ty->isRecordType()) {
5577 HasByrefExtendedLayout = true;
5578 LifeTime = Qualifiers::OCL_None;
5579 } else if ((LifeTime = Ty.getObjCLifetime())) {
5580 // Honor the ARC qualifiers.
5581 } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
5582 // The MRR rule.
5583 LifeTime = Qualifiers::OCL_ExplicitNone;
5584 } else {
5585 LifeTime = Qualifiers::OCL_None;
5586 }
5587 return true;
5588}
5589
5590TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
5591 if (!ObjCInstanceTypeDecl)
5592 ObjCInstanceTypeDecl =
5593 buildImplicitTypedef(getObjCIdType(), "instancetype");
5594 return ObjCInstanceTypeDecl;
5595}
5596
5597// This returns true if a type has been typedefed to BOOL:
5598// typedef <type> BOOL;
5599static bool isTypeTypedefedAsBOOL(QualType T) {
5600 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
5601 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
5602 return II->isStr("BOOL");
5603
5604 return false;
5605}
5606
5607/// getObjCEncodingTypeSize returns size of type for objective-c encoding
5608/// purpose.
5609CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
5610 if (!type->isIncompleteArrayType() && type->isIncompleteType())
5611 return CharUnits::Zero();
5612
5613 CharUnits sz = getTypeSizeInChars(type);
5614
5615 // Make all integer and enum types at least as large as an int
5616 if (sz.isPositive() && type->isIntegralOrEnumerationType())
5617 sz = std::max(sz, getTypeSizeInChars(IntTy));
5618 // Treat arrays as pointers, since that's how they're passed in.
5619 else if (type->isArrayType())
5620 sz = getTypeSizeInChars(VoidPtrTy);
5621 return sz;
5622}
5623
5624bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
5625 return getTargetInfo().getCXXABI().isMicrosoft() &&
5626 VD->isStaticDataMember() &&
5627 VD->getType()->isIntegralOrEnumerationType() &&
5628 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
5629}
5630
5631ASTContext::InlineVariableDefinitionKind
5632ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
5633 if (!VD->isInline())
5634 return InlineVariableDefinitionKind::None;
5635
5636 // In almost all cases, it's a weak definition.
5637 auto *First = VD->getFirstDecl();
5638 if (!First->isConstexpr() || First->isInlineSpecified() ||
5639 !VD->isStaticDataMember())
5640 return InlineVariableDefinitionKind::Weak;
5641
5642 // If there's a file-context declaration in this translation unit, it's a
5643 // non-discardable definition.
5644 for (auto *D : VD->redecls())
5645 if (D->getLexicalDeclContext()->isFileContext())
5646 return InlineVariableDefinitionKind::Strong;
5647
5648 // If we've not seen one yet, we don't know.
5649 return InlineVariableDefinitionKind::WeakUnknown;
5650}
5651
5652static inline
5653std::string charUnitsToString(const CharUnits &CU) {
5654 return llvm::itostr(CU.getQuantity());
5655}
5656
5657/// getObjCEncodingForBlock - Return the encoded type for this block
5658/// declaration.
5659std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
5660 std::string S;
5661
5662 const BlockDecl *Decl = Expr->getBlockDecl();
5663 QualType BlockTy =
5664 Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
5665 // Encode result type.
5666 if (getLangOpts().EncodeExtendedBlockSig)
5667 getObjCEncodingForMethodParameter(
5668 Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
5669 true /*Extended*/);
5670 else
5671 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
5672 // Compute size of all parameters.
5673 // Start with computing size of a pointer in number of bytes.
5674 // FIXME: There might(should) be a better way of doing this computation!
5675 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
5676 CharUnits ParmOffset = PtrSize;
5677 for (auto PI : Decl->parameters()) {
5678 QualType PType = PI->getType();
5679 CharUnits sz = getObjCEncodingTypeSize(PType);
5680 if (sz.isZero())
5681 continue;
5682 assert (sz.isPositive() && "BlockExpr - Incomplete param type")((sz.isPositive() && "BlockExpr - Incomplete param type"
) ? static_cast<void> (0) : __assert_fail ("sz.isPositive() && \"BlockExpr - Incomplete param type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5682, __PRETTY_FUNCTION__))
;
5683 ParmOffset += sz;
5684 }
5685 // Size of the argument frame
5686 S += charUnitsToString(ParmOffset);
5687 // Block pointer and offset.
5688 S += "@?0";
5689
5690 // Argument types.
5691 ParmOffset = PtrSize;
5692 for (auto PVDecl : Decl->parameters()) {
5693 QualType PType = PVDecl->getOriginalType();
5694 if (const ArrayType *AT =
5695 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5696 // Use array's original type only if it has known number of
5697 // elements.
5698 if (!isa<ConstantArrayType>(AT))
5699 PType = PVDecl->getType();
5700 } else if (PType->isFunctionType())
5701 PType = PVDecl->getType();
5702 if (getLangOpts().EncodeExtendedBlockSig)
5703 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
5704 S, true /*Extended*/);
5705 else
5706 getObjCEncodingForType(PType, S);
5707 S += charUnitsToString(ParmOffset);
5708 ParmOffset += getObjCEncodingTypeSize(PType);
5709 }
5710
5711 return S;
5712}
5713
5714std::string
5715ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
5716 std::string S;
5717 // Encode result type.
5718 getObjCEncodingForType(Decl->getReturnType(), S);
5719 CharUnits ParmOffset;
5720 // Compute size of all parameters.
5721 for (auto PI : Decl->parameters()) {
5722 QualType PType = PI->getType();
5723 CharUnits sz = getObjCEncodingTypeSize(PType);
5724 if (sz.isZero())
5725 continue;
5726
5727 assert(sz.isPositive() &&((sz.isPositive() && "getObjCEncodingForFunctionDecl - Incomplete param type"
) ? static_cast<void> (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForFunctionDecl - Incomplete param type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5728, __PRETTY_FUNCTION__))
5728 "getObjCEncodingForFunctionDecl - Incomplete param type")((sz.isPositive() && "getObjCEncodingForFunctionDecl - Incomplete param type"
) ? static_cast<void> (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForFunctionDecl - Incomplete param type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5728, __PRETTY_FUNCTION__))
;
5729 ParmOffset += sz;
5730 }
5731 S += charUnitsToString(ParmOffset);
5732 ParmOffset = CharUnits::Zero();
5733
5734 // Argument types.
5735 for (auto PVDecl : Decl->parameters()) {
5736 QualType PType = PVDecl->getOriginalType();
5737 if (const ArrayType *AT =
5738 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5739 // Use array's original type only if it has known number of
5740 // elements.
5741 if (!isa<ConstantArrayType>(AT))
5742 PType = PVDecl->getType();
5743 } else if (PType->isFunctionType())
5744 PType = PVDecl->getType();
5745 getObjCEncodingForType(PType, S);
5746 S += charUnitsToString(ParmOffset);
5747 ParmOffset += getObjCEncodingTypeSize(PType);
5748 }
5749
5750 return S;
5751}
5752
5753/// getObjCEncodingForMethodParameter - Return the encoded type for a single
5754/// method parameter or return type. If Extended, include class names and
5755/// block object types.
5756void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
5757 QualType T, std::string& S,
5758 bool Extended) const {
5759 // Encode type qualifer, 'in', 'inout', etc. for the parameter.
5760 getObjCEncodingForTypeQualifier(QT, S);
5761 // Encode parameter type.
5762 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5763 true /*OutermostType*/,
5764 false /*EncodingProperty*/,
5765 false /*StructField*/,
5766 Extended /*EncodeBlockParameters*/,
5767 Extended /*EncodeClassNames*/);
5768}
5769
5770/// getObjCEncodingForMethodDecl - Return the encoded type for this method
5771/// declaration.
5772std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
5773 bool Extended) const {
5774 // FIXME: This is not very efficient.
5775 // Encode return type.
5776 std::string S;
5777 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
5778 Decl->getReturnType(), S, Extended);
5779 // Compute size of all parameters.
5780 // Start with computing size of a pointer in number of bytes.
5781 // FIXME: There might(should) be a better way of doing this computation!
5782 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
5783 // The first two arguments (self and _cmd) are pointers; account for
5784 // their size.
5785 CharUnits ParmOffset = 2 * PtrSize;
5786 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5787 E = Decl->sel_param_end(); PI != E; ++PI) {
5788 QualType PType = (*PI)->getType();
5789 CharUnits sz = getObjCEncodingTypeSize(PType);
5790 if (sz.isZero())
5791 continue;
5792
5793 assert (sz.isPositive() &&((sz.isPositive() && "getObjCEncodingForMethodDecl - Incomplete param type"
) ? static_cast<void> (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForMethodDecl - Incomplete param type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5794, __PRETTY_FUNCTION__))
5794 "getObjCEncodingForMethodDecl - Incomplete param type")((sz.isPositive() && "getObjCEncodingForMethodDecl - Incomplete param type"
) ? static_cast<void> (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForMethodDecl - Incomplete param type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 5794, __PRETTY_FUNCTION__))
;
5795 ParmOffset += sz;
5796 }
5797 S += charUnitsToString(ParmOffset);
5798 S += "@0:";
5799 S += charUnitsToString(PtrSize);
5800
5801 // Argument types.
5802 ParmOffset = 2 * PtrSize;
5803 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5804 E = Decl->sel_param_end(); PI != E; ++PI) {
5805 const ParmVarDecl *PVDecl = *PI;
5806 QualType PType = PVDecl->getOriginalType();
5807 if (const ArrayType *AT =
5808 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5809 // Use array's original type only if it has known number of
5810 // elements.
5811 if (!isa<ConstantArrayType>(AT))
5812 PType = PVDecl->getType();
5813 } else if (PType->isFunctionType())
5814 PType = PVDecl->getType();
5815 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
5816 PType, S, Extended);
5817 S += charUnitsToString(ParmOffset);
5818 ParmOffset += getObjCEncodingTypeSize(PType);
5819 }
5820
5821 return S;
5822}
5823
5824ObjCPropertyImplDecl *
5825ASTContext::getObjCPropertyImplDeclForPropertyDecl(
5826 const ObjCPropertyDecl *PD,
5827 const Decl *Container) const {
5828 if (!Container)
5829 return nullptr;
5830 if (const ObjCCategoryImplDecl *CID =
5831 dyn_cast<ObjCCategoryImplDecl>(Container)) {
5832 for (auto *PID : CID->property_impls())
5833 if (PID->getPropertyDecl() == PD)
5834 return PID;
5835 } else {
5836 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
5837 for (auto *PID : OID->property_impls())
5838 if (PID->getPropertyDecl() == PD)
5839 return PID;
5840 }
5841 return nullptr;
5842}
5843
5844/// getObjCEncodingForPropertyDecl - Return the encoded type for this
5845/// property declaration. If non-NULL, Container must be either an
5846/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
5847/// NULL when getting encodings for protocol properties.
5848/// Property attributes are stored as a comma-delimited C string. The simple
5849/// attributes readonly and bycopy are encoded as single characters. The
5850/// parametrized attributes, getter=name, setter=name, and ivar=name, are
5851/// encoded as single characters, followed by an identifier. Property types
5852/// are also encoded as a parametrized attribute. The characters used to encode
5853/// these attributes are defined by the following enumeration:
5854/// @code
5855/// enum PropertyAttributes {
5856/// kPropertyReadOnly = 'R', // property is read-only.
5857/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
5858/// kPropertyByref = '&', // property is a reference to the value last assigned
5859/// kPropertyDynamic = 'D', // property is dynamic
5860/// kPropertyGetter = 'G', // followed by getter selector name
5861/// kPropertySetter = 'S', // followed by setter selector name
5862/// kPropertyInstanceVariable = 'V' // followed by instance variable name
5863/// kPropertyType = 'T' // followed by old-style type encoding.
5864/// kPropertyWeak = 'W' // 'weak' property
5865/// kPropertyStrong = 'P' // property GC'able
5866/// kPropertyNonAtomic = 'N' // property non-atomic
5867/// };
5868/// @endcode
5869std::string
5870ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5871 const Decl *Container) const {
5872 // Collect information from the property implementation decl(s).
5873 bool Dynamic = false;
5874 ObjCPropertyImplDecl *SynthesizePID = nullptr;
5875
5876 if (ObjCPropertyImplDecl *PropertyImpDecl =
5877 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5878 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5879 Dynamic = true;
5880 else
5881 SynthesizePID = PropertyImpDecl;
5882 }
5883
5884 // FIXME: This is not very efficient.
5885 std::string S = "T";
5886
5887 // Encode result type.
5888 // GCC has some special rules regarding encoding of properties which
5889 // closely resembles encoding of ivars.
5890 getObjCEncodingForPropertyType(PD->getType(), S);
5891
5892 if (PD->isReadOnly()) {
5893 S += ",R";
5894 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5895 S += ",C";
5896 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5897 S += ",&";
5898 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5899 S += ",W";
5900 } else {
5901 switch (PD->getSetterKind()) {
5902 case ObjCPropertyDecl::Assign: break;
5903 case ObjCPropertyDecl::Copy: S += ",C"; break;
5904 case ObjCPropertyDecl::Retain: S += ",&"; break;
5905 case ObjCPropertyDecl::Weak: S += ",W"; break;
5906 }
5907 }
5908
5909 // It really isn't clear at all what this means, since properties
5910 // are "dynamic by default".
5911 if (Dynamic)
5912 S += ",D";
5913
5914 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5915 S += ",N";
5916
5917 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5918 S += ",G";
5919 S += PD->getGetterName().getAsString();
5920 }
5921
5922 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5923 S += ",S";
5924 S += PD->getSetterName().getAsString();
5925 }
5926
5927 if (SynthesizePID) {
5928 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5929 S += ",V";
5930 S += OID->getNameAsString();
5931 }
5932
5933 // FIXME: OBJCGC: weak & strong
5934 return S;
5935}
5936
5937/// getLegacyIntegralTypeEncoding -
5938/// Another legacy compatibility encoding: 32-bit longs are encoded as
5939/// 'l' or 'L' , but not always. For typedefs, we need to use
5940/// 'i' or 'I' instead if encoding a struct field, or a pointer!
5941///
5942void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5943 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5944 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5945 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5946 PointeeTy = UnsignedIntTy;
5947 else
5948 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5949 PointeeTy = IntTy;
5950 }
5951 }
5952}
5953
5954void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5955 const FieldDecl *Field,
5956 QualType *NotEncodedT) const {
5957 // We follow the behavior of gcc, expanding structures which are
5958 // directly pointed to, and expanding embedded structures. Note that
5959 // these rules are sufficient to prevent recursive encoding of the
5960 // same type.
5961 getObjCEncodingForTypeImpl(T, S, true, true, Field,
5962 true /* outermost type */, false, false,
5963 false, false, false, NotEncodedT);
5964}
5965
5966void ASTContext::getObjCEncodingForPropertyType(QualType T,
5967 std::string& S) const {
5968 // Encode result type.
5969 // GCC has some special rules regarding encoding of properties which
5970 // closely resembles encoding of ivars.
5971 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5972 true /* outermost type */,
5973 true /* encoding property */);
5974}
5975
5976static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5977 BuiltinType::Kind kind) {
5978 switch (kind) {
5979 case BuiltinType::Void: return 'v';
5980 case BuiltinType::Bool: return 'B';
5981 case BuiltinType::Char_U:
5982 case BuiltinType::UChar: return 'C';
5983 case BuiltinType::Char16:
5984 case BuiltinType::UShort: return 'S';
5985 case BuiltinType::Char32:
5986 case BuiltinType::UInt: return 'I';
5987 case BuiltinType::ULong:
5988 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5989 case BuiltinType::UInt128: return 'T';
5990 case BuiltinType::ULongLong: return 'Q';
5991 case BuiltinType::Char_S:
5992 case BuiltinType::SChar: return 'c';
5993 case BuiltinType::Short: return 's';
5994 case BuiltinType::WChar_S:
5995 case BuiltinType::WChar_U:
5996 case BuiltinType::Int: return 'i';
5997 case BuiltinType::Long:
5998 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5999 case BuiltinType::LongLong: return 'q';
6000 case BuiltinType::Int128: return 't';
6001 case BuiltinType::Float: return 'f';
6002 case BuiltinType::Double: return 'd';
6003 case BuiltinType::LongDouble: return 'D';
6004 case BuiltinType::NullPtr: return '*'; // like char*
6005
6006 case BuiltinType::Float16:
6007 case BuiltinType::Float128:
6008 case BuiltinType::Half:
6009 // FIXME: potentially need @encodes for these!
6010 return ' ';
6011
6012 case BuiltinType::ObjCId:
6013 case BuiltinType::ObjCClass:
6014 case BuiltinType::ObjCSel:
6015 llvm_unreachable("@encoding ObjC primitive type")::llvm::llvm_unreachable_internal("@encoding ObjC primitive type"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6015)
;
6016
6017 // OpenCL and placeholder types don't need @encodings.
6018#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6019 case BuiltinType::Id:
6020#include "clang/Basic/OpenCLImageTypes.def"
6021 case BuiltinType::OCLEvent:
6022 case BuiltinType::OCLClkEvent:
6023 case BuiltinType::OCLQueue:
6024 case BuiltinType::OCLReserveID:
6025 case BuiltinType::OCLSampler:
6026 case BuiltinType::Dependent:
6027#define BUILTIN_TYPE(KIND, ID)
6028#define PLACEHOLDER_TYPE(KIND, ID) \
6029 case BuiltinType::KIND:
6030#include "clang/AST/BuiltinTypes.def"
6031 llvm_unreachable("invalid builtin type for @encode")::llvm::llvm_unreachable_internal("invalid builtin type for @encode"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6031)
;
6032 }
6033 llvm_unreachable("invalid BuiltinType::Kind value")::llvm::llvm_unreachable_internal("invalid BuiltinType::Kind value"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6033)
;
6034}
6035
6036static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
6037 EnumDecl *Enum = ET->getDecl();
6038
6039 // The encoding of an non-fixed enum type is always 'i', regardless of size.
6040 if (!Enum->isFixed())
6041 return 'i';
6042
6043 // The encoding of a fixed enum type matches its fixed underlying type.
6044 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
6045 return getObjCEncodingForPrimitiveKind(C, BT->getKind());
6046}
6047
6048static void EncodeBitField(const ASTContext *Ctx, std::string& S,
6049 QualType T, const FieldDecl *FD) {
6050 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl")((FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"
) ? static_cast<void> (0) : __assert_fail ("FD->isBitField() && \"not a bitfield - getObjCEncodingForTypeImpl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6050, __PRETTY_FUNCTION__))
;
6051 S += 'b';
6052 // The NeXT runtime encodes bit fields as b followed by the number of bits.
6053 // The GNU runtime requires more information; bitfields are encoded as b,
6054 // then the offset (in bits) of the first element, then the type of the
6055 // bitfield, then the size in bits. For example, in this structure:
6056 //
6057 // struct
6058 // {
6059 // int integer;
6060 // int flags:2;
6061 // };
6062 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
6063 // runtime, but b32i2 for the GNU runtime. The reason for this extra
6064 // information is not especially sensible, but we're stuck with it for
6065 // compatibility with GCC, although providing it breaks anything that
6066 // actually uses runtime introspection and wants to work on both runtimes...
6067 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
6068 uint64_t Offset;
6069
6070 if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
6071 Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
6072 IVD);
6073 } else {
6074 const RecordDecl *RD = FD->getParent();
6075 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
6076 Offset = RL.getFieldOffset(FD->getFieldIndex());
6077 }
6078
6079 S += llvm::utostr(Offset);
6080
6081 if (const EnumType *ET = T->getAs<EnumType>())
6082 S += ObjCEncodingForEnumType(Ctx, ET);
6083 else {
6084 const BuiltinType *BT = T->castAs<BuiltinType>();
6085 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
6086 }
6087 }
6088 S += llvm::utostr(FD->getBitWidthValue(*Ctx));
6089}
6090
6091// FIXME: Use SmallString for accumulating string.
6092void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
6093 bool ExpandPointedToStructures,
6094 bool ExpandStructures,
6095 const FieldDecl *FD,
6096 bool OutermostType,
6097 bool EncodingProperty,
6098 bool StructField,
6099 bool EncodeBlockParameters,
6100 bool EncodeClassNames,
6101 bool EncodePointerToObjCTypedef,
6102 QualType *NotEncodedT) const {
6103 CanQualType CT = getCanonicalType(T);
6104 switch (CT->getTypeClass()) {
6105 case Type::Builtin:
6106 case Type::Enum:
6107 if (FD && FD->isBitField())
6108 return EncodeBitField(this, S, T, FD);
6109 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
6110 S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
6111 else
6112 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
6113 return;
6114
6115 case Type::Complex: {
6116 const ComplexType *CT = T->castAs<ComplexType>();
6117 S += 'j';
6118 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
6119 return;
6120 }
6121
6122 case Type::Atomic: {
6123 const AtomicType *AT = T->castAs<AtomicType>();
6124 S += 'A';
6125 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
6126 return;
6127 }
6128
6129 // encoding for pointer or reference types.
6130 case Type::Pointer:
6131 case Type::LValueReference:
6132 case Type::RValueReference: {
6133 QualType PointeeTy;
6134 if (isa<PointerType>(CT)) {
6135 const PointerType *PT = T->castAs<PointerType>();
6136 if (PT->isObjCSelType()) {
6137 S += ':';
6138 return;
6139 }
6140 PointeeTy = PT->getPointeeType();
6141 } else {
6142 PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
6143 }
6144
6145 bool isReadOnly = false;
6146 // For historical/compatibility reasons, the read-only qualifier of the
6147 // pointee gets emitted _before_ the '^'. The read-only qualifier of
6148 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
6149 // Also, do not emit the 'r' for anything but the outermost type!
6150 if (isa<TypedefType>(T.getTypePtr())) {
6151 if (OutermostType && T.isConstQualified()) {
6152 isReadOnly = true;
6153 S += 'r';
6154 }
6155 } else if (OutermostType) {
6156 QualType P = PointeeTy;
6157 while (P->getAs<PointerType>())
6158 P = P->getAs<PointerType>()->getPointeeType();
6159 if (P.isConstQualified()) {
6160 isReadOnly = true;
6161 S += 'r';
6162 }
6163 }
6164 if (isReadOnly) {
6165 // Another legacy compatibility encoding. Some ObjC qualifier and type
6166 // combinations need to be rearranged.
6167 // Rewrite "in const" from "nr" to "rn"
6168 if (StringRef(S).endswith("nr"))
6169 S.replace(S.end()-2, S.end(), "rn");
6170 }
6171
6172 if (PointeeTy->isCharType()) {
6173 // char pointer types should be encoded as '*' unless it is a
6174 // type that has been typedef'd to 'BOOL'.
6175 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
6176 S += '*';
6177 return;
6178 }
6179 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
6180 // GCC binary compat: Need to convert "struct objc_class *" to "#".
6181 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
6182 S += '#';
6183 return;
6184 }
6185 // GCC binary compat: Need to convert "struct objc_object *" to "@".
6186 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
6187 S += '@';
6188 return;
6189 }
6190 // fall through...
6191 }
6192 S += '^';
6193 getLegacyIntegralTypeEncoding(PointeeTy);
6194
6195 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
6196 nullptr, false, false, false, false, false, false,
6197 NotEncodedT);
6198 return;
6199 }
6200
6201 case Type::ConstantArray:
6202 case Type::IncompleteArray:
6203 case Type::VariableArray: {
6204 const ArrayType *AT = cast<ArrayType>(CT);
6205
6206 if (isa<IncompleteArrayType>(AT) && !StructField) {
6207 // Incomplete arrays are encoded as a pointer to the array element.
6208 S += '^';
6209
6210 getObjCEncodingForTypeImpl(AT->getElementType(), S,
6211 false, ExpandStructures, FD);
6212 } else {
6213 S += '[';
6214
6215 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6216 S += llvm::utostr(CAT->getSize().getZExtValue());
6217 else {
6218 //Variable length arrays are encoded as a regular array with 0 elements.
6219 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&(((isa<VariableArrayType>(AT) || isa<IncompleteArrayType
>(AT)) && "Unknown array type!") ? static_cast<
void> (0) : __assert_fail ("(isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && \"Unknown array type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6220, __PRETTY_FUNCTION__))
6220 "Unknown array type!")(((isa<VariableArrayType>(AT) || isa<IncompleteArrayType
>(AT)) && "Unknown array type!") ? static_cast<
void> (0) : __assert_fail ("(isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && \"Unknown array type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6220, __PRETTY_FUNCTION__))
;
6221 S += '0';
6222 }
6223
6224 getObjCEncodingForTypeImpl(AT->getElementType(), S,
6225 false, ExpandStructures, FD,
6226 false, false, false, false, false, false,
6227 NotEncodedT);
6228 S += ']';
6229 }
6230 return;
6231 }
6232
6233 case Type::FunctionNoProto:
6234 case Type::FunctionProto:
6235 S += '?';
6236 return;
6237
6238 case Type::Record: {
6239 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
6240 S += RDecl->isUnion() ? '(' : '{';
6241 // Anonymous structures print as '?'
6242 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
6243 S += II->getName();
6244 if (ClassTemplateSpecializationDecl *Spec
6245 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
6246 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
6247 llvm::raw_string_ostream OS(S);
6248 TemplateSpecializationType::PrintTemplateArgumentList(OS,
6249 TemplateArgs.asArray(),
6250 (*this).getPrintingPolicy());
6251 }
6252 } else {
6253 S += '?';
6254 }
6255 if (ExpandStructures) {
6256 S += '=';
6257 if (!RDecl->isUnion()) {
6258 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
6259 } else {
6260 for (const auto *Field : RDecl->fields()) {
6261 if (FD) {
6262 S += '"';
6263 S += Field->getNameAsString();
6264 S += '"';
6265 }
6266
6267 // Special case bit-fields.
6268 if (Field->isBitField()) {
6269 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
6270 Field);
6271 } else {
6272 QualType qt = Field->getType();
6273 getLegacyIntegralTypeEncoding(qt);
6274 getObjCEncodingForTypeImpl(qt, S, false, true,
6275 FD, /*OutermostType*/false,
6276 /*EncodingProperty*/false,
6277 /*StructField*/true,
6278 false, false, false, NotEncodedT);
6279 }
6280 }
6281 }
6282 }
6283 S += RDecl->isUnion() ? ')' : '}';
6284 return;
6285 }
6286
6287 case Type::BlockPointer: {
6288 const BlockPointerType *BT = T->castAs<BlockPointerType>();
6289 S += "@?"; // Unlike a pointer-to-function, which is "^?".
6290 if (EncodeBlockParameters) {
6291 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
6292
6293 S += '<';
6294 // Block return type
6295 getObjCEncodingForTypeImpl(
6296 FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
6297 FD, false /* OutermostType */, EncodingProperty,
6298 false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
6299 NotEncodedT);
6300 // Block self
6301 S += "@?";
6302 // Block parameters
6303 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
6304 for (const auto &I : FPT->param_types())
6305 getObjCEncodingForTypeImpl(
6306 I, S, ExpandPointedToStructures, ExpandStructures, FD,
6307 false /* OutermostType */, EncodingProperty,
6308 false /* StructField */, EncodeBlockParameters, EncodeClassNames,
6309 false, NotEncodedT);
6310 }
6311 S += '>';
6312 }
6313 return;
6314 }
6315
6316 case Type::ObjCObject: {
6317 // hack to match legacy encoding of *id and *Class
6318 QualType Ty = getObjCObjectPointerType(CT);
6319 if (Ty->isObjCIdType()) {
6320 S += "{objc_object=}";
6321 return;
6322 }
6323 else if (Ty->isObjCClassType()) {
6324 S += "{objc_class=}";
6325 return;
6326 }
6327 // TODO: Double check to make sure this intentially falls through.
6328 LLVM_FALLTHROUGH[[clang::fallthrough]];
6329 }
6330
6331 case Type::ObjCInterface: {
6332 // Ignore protocol qualifiers when mangling at this level.
6333 // @encode(class_name)
6334 ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
6335 S += '{';
6336 S += OI->getObjCRuntimeNameAsString();
6337 if (ExpandStructures) {
6338 S += '=';
6339 SmallVector<const ObjCIvarDecl*, 32> Ivars;
6340 DeepCollectObjCIvars(OI, true, Ivars);
6341 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
6342 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
6343 if (Field->isBitField())
6344 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
6345 else
6346 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
6347 false, false, false, false, false,
6348 EncodePointerToObjCTypedef,
6349 NotEncodedT);
6350 }
6351 }
6352 S += '}';
6353 return;
6354 }
6355
6356 case Type::ObjCObjectPointer: {
6357 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
6358 if (OPT->isObjCIdType()) {
6359 S += '@';
6360 return;
6361 }
6362
6363 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
6364 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
6365 // Since this is a binary compatibility issue, need to consult with runtime
6366 // folks. Fortunately, this is a *very* obsure construct.
6367 S += '#';
6368 return;
6369 }
6370
6371 if (OPT->isObjCQualifiedIdType()) {
6372 getObjCEncodingForTypeImpl(getObjCIdType(), S,
6373 ExpandPointedToStructures,
6374 ExpandStructures, FD);
6375 if (FD || EncodingProperty || EncodeClassNames) {
6376 // Note that we do extended encoding of protocol qualifer list
6377 // Only when doing ivar or property encoding.
6378 S += '"';
6379 for (const auto *I : OPT->quals()) {
6380 S += '<';
6381 S += I->getObjCRuntimeNameAsString();
6382 S += '>';
6383 }
6384 S += '"';
6385 }
6386 return;
6387 }
6388
6389 QualType PointeeTy = OPT->getPointeeType();
6390 if (!EncodingProperty &&
6391 isa<TypedefType>(PointeeTy.getTypePtr()) &&
6392 !EncodePointerToObjCTypedef) {
6393 // Another historical/compatibility reason.
6394 // We encode the underlying type which comes out as
6395 // {...};
6396 S += '^';
6397 if (FD && OPT->getInterfaceDecl()) {
6398 // Prevent recursive encoding of fields in some rare cases.
6399 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
6400 SmallVector<const ObjCIvarDecl*, 32> Ivars;
6401 DeepCollectObjCIvars(OI, true, Ivars);
6402 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
6403 if (cast<FieldDecl>(Ivars[i]) == FD) {
6404 S += '{';
6405 S += OI->getObjCRuntimeNameAsString();
6406 S += '}';
6407 return;
6408 }
6409 }
6410 }
6411 getObjCEncodingForTypeImpl(PointeeTy, S,
6412 false, ExpandPointedToStructures,
6413 nullptr,
6414 false, false, false, false, false,
6415 /*EncodePointerToObjCTypedef*/true);
6416 return;
6417 }
6418
6419 S += '@';
6420 if (OPT->getInterfaceDecl() &&
6421 (FD || EncodingProperty || EncodeClassNames)) {
6422 S += '"';
6423 S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
6424 for (const auto *I : OPT->quals()) {
6425 S += '<';
6426 S += I->getObjCRuntimeNameAsString();
6427 S += '>';
6428 }
6429 S += '"';
6430 }
6431 return;
6432 }
6433
6434 // gcc just blithely ignores member pointers.
6435 // FIXME: we shoul do better than that. 'M' is available.
6436 case Type::MemberPointer:
6437 // This matches gcc's encoding, even though technically it is insufficient.
6438 //FIXME. We should do a better job than gcc.
6439 case Type::Vector:
6440 case Type::ExtVector:
6441 // Until we have a coherent encoding of these three types, issue warning.
6442 { if (NotEncodedT)
6443 *NotEncodedT = T;
6444 return;
6445 }
6446
6447 // We could see an undeduced auto type here during error recovery.
6448 // Just ignore it.
6449 case Type::Auto:
6450 case Type::DeducedTemplateSpecialization:
6451 return;
6452
6453 case Type::Pipe:
6454#define ABSTRACT_TYPE(KIND, BASE)
6455#define TYPE(KIND, BASE)
6456#define DEPENDENT_TYPE(KIND, BASE) \
6457 case Type::KIND:
6458#define NON_CANONICAL_TYPE(KIND, BASE) \
6459 case Type::KIND:
6460#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
6461 case Type::KIND:
6462#include "clang/AST/TypeNodes.def"
6463 llvm_unreachable("@encode for dependent type!")::llvm::llvm_unreachable_internal("@encode for dependent type!"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6463)
;
6464 }
6465 llvm_unreachable("bad type kind!")::llvm::llvm_unreachable_internal("bad type kind!", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6465)
;
6466}
6467
6468void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
6469 std::string &S,
6470 const FieldDecl *FD,
6471 bool includeVBases,
6472 QualType *NotEncodedT) const {
6473 assert(RDecl && "Expected non-null RecordDecl")((RDecl && "Expected non-null RecordDecl") ? static_cast
<void> (0) : __assert_fail ("RDecl && \"Expected non-null RecordDecl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6473, __PRETTY_FUNCTION__))
;
6474 assert(!RDecl->isUnion() && "Should not be called for unions")((!RDecl->isUnion() && "Should not be called for unions"
) ? static_cast<void> (0) : __assert_fail ("!RDecl->isUnion() && \"Should not be called for unions\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6474, __PRETTY_FUNCTION__))
;
6475 if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
6476 return;
6477
6478 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
6479 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
6480 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
6481
6482 if (CXXRec) {
6483 for (const auto &BI : CXXRec->bases()) {
6484 if (!BI.isVirtual()) {
6485 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
6486 if (base->isEmpty())
6487 continue;
6488 uint64_t offs = toBits(layout.getBaseClassOffset(base));
6489 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
6490 std::make_pair(offs, base));
6491 }
6492 }
6493 }
6494
6495 unsigned i = 0;
6496 for (auto *Field : RDecl->fields()) {
6497 uint64_t offs = layout.getFieldOffset(i);
6498 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
6499 std::make_pair(offs, Field));
6500 ++i;
6501 }
6502
6503 if (CXXRec && includeVBases) {
6504 for (const auto &BI : CXXRec->vbases()) {
6505 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
6506 if (base->isEmpty())
6507 continue;
6508 uint64_t offs = toBits(layout.getVBaseClassOffset(base));
6509 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
6510 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
6511 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
6512 std::make_pair(offs, base));
6513 }
6514 }
6515
6516 CharUnits size;
6517 if (CXXRec) {
6518 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
6519 } else {
6520 size = layout.getSize();
6521 }
6522
6523#ifndef NDEBUG
6524 uint64_t CurOffs = 0;
6525#endif
6526 std::multimap<uint64_t, NamedDecl *>::iterator
6527 CurLayObj = FieldOrBaseOffsets.begin();
6528
6529 if (CXXRec && CXXRec->isDynamicClass() &&
6530 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
6531 if (FD) {
6532 S += "\"_vptr$";
6533 std::string recname = CXXRec->getNameAsString();
6534 if (recname.empty()) recname = "?";
6535 S += recname;
6536 S += '"';
6537 }
6538 S += "^^?";
6539#ifndef NDEBUG
6540 CurOffs += getTypeSize(VoidPtrTy);
6541#endif
6542 }
6543
6544 if (!RDecl->hasFlexibleArrayMember()) {
6545 // Mark the end of the structure.
6546 uint64_t offs = toBits(size);
6547 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
6548 std::make_pair(offs, nullptr));
6549 }
6550
6551 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
6552#ifndef NDEBUG
6553 assert(CurOffs <= CurLayObj->first)((CurOffs <= CurLayObj->first) ? static_cast<void>
(0) : __assert_fail ("CurOffs <= CurLayObj->first", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6553, __PRETTY_FUNCTION__))
;
6554 if (CurOffs < CurLayObj->first) {
6555 uint64_t padding = CurLayObj->first - CurOffs;
6556 // FIXME: There doesn't seem to be a way to indicate in the encoding that
6557 // packing/alignment of members is different that normal, in which case
6558 // the encoding will be out-of-sync with the real layout.
6559 // If the runtime switches to just consider the size of types without
6560 // taking into account alignment, we could make padding explicit in the
6561 // encoding (e.g. using arrays of chars). The encoding strings would be
6562 // longer then though.
6563 CurOffs += padding;
6564 }
6565#endif
6566
6567 NamedDecl *dcl = CurLayObj->second;
6568 if (!dcl)
6569 break; // reached end of structure.
6570
6571 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
6572 // We expand the bases without their virtual bases since those are going
6573 // in the initial structure. Note that this differs from gcc which
6574 // expands virtual bases each time one is encountered in the hierarchy,
6575 // making the encoding type bigger than it really is.
6576 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
6577 NotEncodedT);
6578 assert(!base->isEmpty())((!base->isEmpty()) ? static_cast<void> (0) : __assert_fail
("!base->isEmpty()", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6578, __PRETTY_FUNCTION__))
;
6579#ifndef NDEBUG
6580 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
6581#endif
6582 } else {
6583 FieldDecl *field = cast<FieldDecl>(dcl);
6584 if (FD) {
6585 S += '"';
6586 S += field->getNameAsString();
6587 S += '"';
6588 }
6589
6590 if (field->isBitField()) {
6591 EncodeBitField(this, S, field->getType(), field);
6592#ifndef NDEBUG
6593 CurOffs += field->getBitWidthValue(*this);
6594#endif
6595 } else {
6596 QualType qt = field->getType();
6597 getLegacyIntegralTypeEncoding(qt);
6598 getObjCEncodingForTypeImpl(qt, S, false, true, FD,
6599 /*OutermostType*/false,
6600 /*EncodingProperty*/false,
6601 /*StructField*/true,
6602 false, false, false, NotEncodedT);
6603#ifndef NDEBUG
6604 CurOffs += getTypeSize(field->getType());
6605#endif
6606 }
6607 }
6608 }
6609}
6610
6611void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
6612 std::string& S) const {
6613 if (QT & Decl::OBJC_TQ_In)
6614 S += 'n';
6615 if (QT & Decl::OBJC_TQ_Inout)
6616 S += 'N';
6617 if (QT & Decl::OBJC_TQ_Out)
6618 S += 'o';
6619 if (QT & Decl::OBJC_TQ_Bycopy)
6620 S += 'O';
6621 if (QT & Decl::OBJC_TQ_Byref)
6622 S += 'R';
6623 if (QT & Decl::OBJC_TQ_Oneway)
6624 S += 'V';
6625}
6626
6627TypedefDecl *ASTContext::getObjCIdDecl() const {
6628 if (!ObjCIdDecl) {
6629 QualType T = getObjCObjectType(ObjCBuiltinIdTy, { }, { });
6630 T = getObjCObjectPointerType(T);
6631 ObjCIdDecl = buildImplicitTypedef(T, "id");
6632 }
6633 return ObjCIdDecl;
6634}
6635
6636TypedefDecl *ASTContext::getObjCSelDecl() const {
6637 if (!ObjCSelDecl) {
6638 QualType T = getPointerType(ObjCBuiltinSelTy);
6639 ObjCSelDecl = buildImplicitTypedef(T, "SEL");
6640 }
6641 return ObjCSelDecl;
6642}
6643
6644TypedefDecl *ASTContext::getObjCClassDecl() const {
6645 if (!ObjCClassDecl) {
6646 QualType T = getObjCObjectType(ObjCBuiltinClassTy, { }, { });
6647 T = getObjCObjectPointerType(T);
6648 ObjCClassDecl = buildImplicitTypedef(T, "Class");
6649 }
6650 return ObjCClassDecl;
6651}
6652
6653ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
6654 if (!ObjCProtocolClassDecl) {
6655 ObjCProtocolClassDecl
6656 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
6657 SourceLocation(),
6658 &Idents.get("Protocol"),
6659 /*typeParamList=*/nullptr,
6660 /*PrevDecl=*/nullptr,
6661 SourceLocation(), true);
6662 }
6663
6664 return ObjCProtocolClassDecl;
6665}
6666
6667//===----------------------------------------------------------------------===//
6668// __builtin_va_list Construction Functions
6669//===----------------------------------------------------------------------===//
6670
6671static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
6672 StringRef Name) {
6673 // typedef char* __builtin[_ms]_va_list;
6674 QualType T = Context->getPointerType(Context->CharTy);
6675 return Context->buildImplicitTypedef(T, Name);
6676}
6677
6678static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
6679 return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
6680}
6681
6682static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
6683 return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
6684}
6685
6686static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
6687 // typedef void* __builtin_va_list;
6688 QualType T = Context->getPointerType(Context->VoidTy);
6689 return Context->buildImplicitTypedef(T, "__builtin_va_list");
6690}
6691
6692static TypedefDecl *
6693CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
6694 // struct __va_list
6695 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
6696 if (Context->getLangOpts().CPlusPlus) {
6697 // namespace std { struct __va_list {
6698 NamespaceDecl *NS;
6699 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6700 Context->getTranslationUnitDecl(),
6701 /*Inline*/ false, SourceLocation(),
6702 SourceLocation(), &Context->Idents.get("std"),
6703 /*PrevDecl*/ nullptr);
6704 NS->setImplicit();
6705 VaListTagDecl->setDeclContext(NS);
6706 }
6707
6708 VaListTagDecl->startDefinition();
6709
6710 const size_t NumFields = 5;
6711 QualType FieldTypes[NumFields];
6712 const char *FieldNames[NumFields];
6713
6714 // void *__stack;
6715 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
6716 FieldNames[0] = "__stack";
6717
6718 // void *__gr_top;
6719 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
6720 FieldNames[1] = "__gr_top";
6721
6722 // void *__vr_top;
6723 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6724 FieldNames[2] = "__vr_top";
6725
6726 // int __gr_offs;
6727 FieldTypes[3] = Context->IntTy;
6728 FieldNames[3] = "__gr_offs";
6729
6730 // int __vr_offs;
6731 FieldTypes[4] = Context->IntTy;
6732 FieldNames[4] = "__vr_offs";
6733
6734 // Create fields
6735 for (unsigned i = 0; i < NumFields; ++i) {
6736 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6737 VaListTagDecl,
6738 SourceLocation(),
6739 SourceLocation(),
6740 &Context->Idents.get(FieldNames[i]),
6741 FieldTypes[i], /*TInfo=*/nullptr,
6742 /*BitWidth=*/nullptr,
6743 /*Mutable=*/false,
6744 ICIS_NoInit);
6745 Field->setAccess(AS_public);
6746 VaListTagDecl->addDecl(Field);
6747 }
6748 VaListTagDecl->completeDefinition();
6749 Context->VaListTagDecl = VaListTagDecl;
6750 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6751
6752 // } __builtin_va_list;
6753 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
6754}
6755
6756static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
6757 // typedef struct __va_list_tag {
6758 RecordDecl *VaListTagDecl;
6759
6760 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6761 VaListTagDecl->startDefinition();
6762
6763 const size_t NumFields = 5;
6764 QualType FieldTypes[NumFields];
6765 const char *FieldNames[NumFields];
6766
6767 // unsigned char gpr;
6768 FieldTypes[0] = Context->UnsignedCharTy;
6769 FieldNames[0] = "gpr";
6770
6771 // unsigned char fpr;
6772 FieldTypes[1] = Context->UnsignedCharTy;
6773 FieldNames[1] = "fpr";
6774
6775 // unsigned short reserved;
6776 FieldTypes[2] = Context->UnsignedShortTy;
6777 FieldNames[2] = "reserved";
6778
6779 // void* overflow_arg_area;
6780 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6781 FieldNames[3] = "overflow_arg_area";
6782
6783 // void* reg_save_area;
6784 FieldTypes[4] = Context->getPointerType(Context->VoidTy);
6785 FieldNames[4] = "reg_save_area";
6786
6787 // Create fields
6788 for (unsigned i = 0; i < NumFields; ++i) {
6789 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
6790 SourceLocation(),
6791 SourceLocation(),
6792 &Context->Idents.get(FieldNames[i]),
6793 FieldTypes[i], /*TInfo=*/nullptr,
6794 /*BitWidth=*/nullptr,
6795 /*Mutable=*/false,
6796 ICIS_NoInit);
6797 Field->setAccess(AS_public);
6798 VaListTagDecl->addDecl(Field);
6799 }
6800 VaListTagDecl->completeDefinition();
6801 Context->VaListTagDecl = VaListTagDecl;
6802 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6803
6804 // } __va_list_tag;
6805 TypedefDecl *VaListTagTypedefDecl =
6806 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6807
6808 QualType VaListTagTypedefType =
6809 Context->getTypedefType(VaListTagTypedefDecl);
6810
6811 // typedef __va_list_tag __builtin_va_list[1];
6812 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6813 QualType VaListTagArrayType
6814 = Context->getConstantArrayType(VaListTagTypedefType,
6815 Size, ArrayType::Normal, 0);
6816 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6817}
6818
6819static TypedefDecl *
6820CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
6821 // struct __va_list_tag {
6822 RecordDecl *VaListTagDecl;
6823 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6824 VaListTagDecl->startDefinition();
6825
6826 const size_t NumFields = 4;
6827 QualType FieldTypes[NumFields];
6828 const char *FieldNames[NumFields];
6829
6830 // unsigned gp_offset;
6831 FieldTypes[0] = Context->UnsignedIntTy;
6832 FieldNames[0] = "gp_offset";
6833
6834 // unsigned fp_offset;
6835 FieldTypes[1] = Context->UnsignedIntTy;
6836 FieldNames[1] = "fp_offset";
6837
6838 // void* overflow_arg_area;
6839 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6840 FieldNames[2] = "overflow_arg_area";
6841
6842 // void* reg_save_area;
6843 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6844 FieldNames[3] = "reg_save_area";
6845
6846 // Create fields
6847 for (unsigned i = 0; i < NumFields; ++i) {
6848 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6849 VaListTagDecl,
6850 SourceLocation(),
6851 SourceLocation(),
6852 &Context->Idents.get(FieldNames[i]),
6853 FieldTypes[i], /*TInfo=*/nullptr,
6854 /*BitWidth=*/nullptr,
6855 /*Mutable=*/false,
6856 ICIS_NoInit);
6857 Field->setAccess(AS_public);
6858 VaListTagDecl->addDecl(Field);
6859 }
6860 VaListTagDecl->completeDefinition();
6861 Context->VaListTagDecl = VaListTagDecl;
6862 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6863
6864 // };
6865
6866 // typedef struct __va_list_tag __builtin_va_list[1];
6867 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6868 QualType VaListTagArrayType =
6869 Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
6870 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6871}
6872
6873static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
6874 // typedef int __builtin_va_list[4];
6875 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
6876 QualType IntArrayType =
6877 Context->getConstantArrayType(Context->IntTy, Size, ArrayType::Normal, 0);
6878 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
6879}
6880
6881static TypedefDecl *
6882CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
6883 // struct __va_list
6884 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
6885 if (Context->getLangOpts().CPlusPlus) {
6886 // namespace std { struct __va_list {
6887 NamespaceDecl *NS;
6888 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6889 Context->getTranslationUnitDecl(),
6890 /*Inline*/false, SourceLocation(),
6891 SourceLocation(), &Context->Idents.get("std"),
6892 /*PrevDecl*/ nullptr);
6893 NS->setImplicit();
6894 VaListDecl->setDeclContext(NS);
6895 }
6896
6897 VaListDecl->startDefinition();
6898
6899 // void * __ap;
6900 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6901 VaListDecl,
6902 SourceLocation(),
6903 SourceLocation(),
6904 &Context->Idents.get("__ap"),
6905 Context->getPointerType(Context->VoidTy),
6906 /*TInfo=*/nullptr,
6907 /*BitWidth=*/nullptr,
6908 /*Mutable=*/false,
6909 ICIS_NoInit);
6910 Field->setAccess(AS_public);
6911 VaListDecl->addDecl(Field);
6912
6913 // };
6914 VaListDecl->completeDefinition();
6915 Context->VaListTagDecl = VaListDecl;
6916
6917 // typedef struct __va_list __builtin_va_list;
6918 QualType T = Context->getRecordType(VaListDecl);
6919 return Context->buildImplicitTypedef(T, "__builtin_va_list");
6920}
6921
6922static TypedefDecl *
6923CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6924 // struct __va_list_tag {
6925 RecordDecl *VaListTagDecl;
6926 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6927 VaListTagDecl->startDefinition();
6928
6929 const size_t NumFields = 4;
6930 QualType FieldTypes[NumFields];
6931 const char *FieldNames[NumFields];
6932
6933 // long __gpr;
6934 FieldTypes[0] = Context->LongTy;
6935 FieldNames[0] = "__gpr";
6936
6937 // long __fpr;
6938 FieldTypes[1] = Context->LongTy;
6939 FieldNames[1] = "__fpr";
6940
6941 // void *__overflow_arg_area;
6942 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6943 FieldNames[2] = "__overflow_arg_area";
6944
6945 // void *__reg_save_area;
6946 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6947 FieldNames[3] = "__reg_save_area";
6948
6949 // Create fields
6950 for (unsigned i = 0; i < NumFields; ++i) {
6951 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6952 VaListTagDecl,
6953 SourceLocation(),
6954 SourceLocation(),
6955 &Context->Idents.get(FieldNames[i]),
6956 FieldTypes[i], /*TInfo=*/nullptr,
6957 /*BitWidth=*/nullptr,
6958 /*Mutable=*/false,
6959 ICIS_NoInit);
6960 Field->setAccess(AS_public);
6961 VaListTagDecl->addDecl(Field);
6962 }
6963 VaListTagDecl->completeDefinition();
6964 Context->VaListTagDecl = VaListTagDecl;
6965 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6966
6967 // };
6968
6969 // typedef __va_list_tag __builtin_va_list[1];
6970 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6971 QualType VaListTagArrayType =
6972 Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
6973
6974 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6975}
6976
6977static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6978 TargetInfo::BuiltinVaListKind Kind) {
6979 switch (Kind) {
6980 case TargetInfo::CharPtrBuiltinVaList:
6981 return CreateCharPtrBuiltinVaListDecl(Context);
6982 case TargetInfo::VoidPtrBuiltinVaList:
6983 return CreateVoidPtrBuiltinVaListDecl(Context);
6984 case TargetInfo::AArch64ABIBuiltinVaList:
6985 return CreateAArch64ABIBuiltinVaListDecl(Context);
6986 case TargetInfo::PowerABIBuiltinVaList:
6987 return CreatePowerABIBuiltinVaListDecl(Context);
6988 case TargetInfo::X86_64ABIBuiltinVaList:
6989 return CreateX86_64ABIBuiltinVaListDecl(Context);
6990 case TargetInfo::PNaClABIBuiltinVaList:
6991 return CreatePNaClABIBuiltinVaListDecl(Context);
6992 case TargetInfo::AAPCSABIBuiltinVaList:
6993 return CreateAAPCSABIBuiltinVaListDecl(Context);
6994 case TargetInfo::SystemZBuiltinVaList:
6995 return CreateSystemZBuiltinVaListDecl(Context);
6996 }
6997
6998 llvm_unreachable("Unhandled __builtin_va_list type kind")::llvm::llvm_unreachable_internal("Unhandled __builtin_va_list type kind"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 6998)
;
6999}
7000
7001TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
7002 if (!BuiltinVaListDecl) {
7003 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
7004 assert(BuiltinVaListDecl->isImplicit())((BuiltinVaListDecl->isImplicit()) ? static_cast<void>
(0) : __assert_fail ("BuiltinVaListDecl->isImplicit()", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7004, __PRETTY_FUNCTION__))
;
7005 }
7006
7007 return BuiltinVaListDecl;
7008}
7009
7010Decl *ASTContext::getVaListTagDecl() const {
7011 // Force the creation of VaListTagDecl by building the __builtin_va_list
7012 // declaration.
7013 if (!VaListTagDecl)
7014 (void)getBuiltinVaListDecl();
7015
7016 return VaListTagDecl;
7017}
7018
7019TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
7020 if (!BuiltinMSVaListDecl)
7021 BuiltinMSVaListDecl = CreateMSVaListDecl(this);
7022
7023 return BuiltinMSVaListDecl;
7024}
7025
7026void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
7027 assert(ObjCConstantStringType.isNull() &&((ObjCConstantStringType.isNull() && "'NSConstantString' type already set!"
) ? static_cast<void> (0) : __assert_fail ("ObjCConstantStringType.isNull() && \"'NSConstantString' type already set!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7028, __PRETTY_FUNCTION__))
7028 "'NSConstantString' type already set!")((ObjCConstantStringType.isNull() && "'NSConstantString' type already set!"
) ? static_cast<void> (0) : __assert_fail ("ObjCConstantStringType.isNull() && \"'NSConstantString' type already set!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7028, __PRETTY_FUNCTION__))
;
7029
7030 ObjCConstantStringType = getObjCInterfaceType(Decl);
7031}
7032
7033/// \brief Retrieve the template name that corresponds to a non-empty
7034/// lookup.
7035TemplateName
7036ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
7037 UnresolvedSetIterator End) const {
7038 unsigned size = End - Begin;
7039 assert(size > 1 && "set is not overloaded!")((size > 1 && "set is not overloaded!") ? static_cast
<void> (0) : __assert_fail ("size > 1 && \"set is not overloaded!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7039, __PRETTY_FUNCTION__))
;
7040
7041 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
7042 size * sizeof(FunctionTemplateDecl*));
7043 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
7044
7045 NamedDecl **Storage = OT->getStorage();
7046 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
7047 NamedDecl *D = *I;
7048 assert(isa<FunctionTemplateDecl>(D) ||((isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl
>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl
()))) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7050, __PRETTY_FUNCTION__))
7049 (isa<UsingShadowDecl>(D) &&((isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl
>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl
()))) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7050, __PRETTY_FUNCTION__))
7050 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())))((isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl
>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl
()))) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(D) || (isa<UsingShadowDecl>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7050, __PRETTY_FUNCTION__))
;
7051 *Storage++ = D;
7052 }
7053
7054 return TemplateName(OT);
7055}
7056
7057/// \brief Retrieve the template name that represents a qualified
7058/// template name such as \c std::vector.
7059TemplateName
7060ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
7061 bool TemplateKeyword,
7062 TemplateDecl *Template) const {
7063 assert(NNS && "Missing nested-name-specifier in qualified template name")((NNS && "Missing nested-name-specifier in qualified template name"
) ? static_cast<void> (0) : __assert_fail ("NNS && \"Missing nested-name-specifier in qualified template name\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7063, __PRETTY_FUNCTION__))
;
7064
7065 // FIXME: Canonicalization?
7066 llvm::FoldingSetNodeID ID;
7067 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
7068
7069 void *InsertPos = nullptr;
7070 QualifiedTemplateName *QTN =
7071 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7072 if (!QTN) {
7073 QTN = new (*this, alignof(QualifiedTemplateName))
7074 QualifiedTemplateName(NNS, TemplateKeyword, Template);
7075 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
7076 }
7077
7078 return TemplateName(QTN);
7079}
7080
7081/// \brief Retrieve the template name that represents a dependent
7082/// template name such as \c MetaFun::template apply.
7083TemplateName
7084ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
7085 const IdentifierInfo *Name) const {
7086 assert((!NNS || NNS->isDependent()) &&(((!NNS || NNS->isDependent()) && "Nested name specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7087, __PRETTY_FUNCTION__))
7087 "Nested name specifier must be dependent")(((!NNS || NNS->isDependent()) && "Nested name specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7087, __PRETTY_FUNCTION__))
;
7088
7089 llvm::FoldingSetNodeID ID;
7090 DependentTemplateName::Profile(ID, NNS, Name);
7091
7092 void *InsertPos = nullptr;
7093 DependentTemplateName *QTN =
7094 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7095
7096 if (QTN)
7097 return TemplateName(QTN);
7098
7099 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
7100 if (CanonNNS == NNS) {
7101 QTN = new (*this, alignof(DependentTemplateName))
7102 DependentTemplateName(NNS, Name);
7103 } else {
7104 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
7105 QTN = new (*this, alignof(DependentTemplateName))
7106 DependentTemplateName(NNS, Name, Canon);
7107 DependentTemplateName *CheckQTN =
7108 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7109 assert(!CheckQTN && "Dependent type name canonicalization broken")((!CheckQTN && "Dependent type name canonicalization broken"
) ? static_cast<void> (0) : __assert_fail ("!CheckQTN && \"Dependent type name canonicalization broken\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7109, __PRETTY_FUNCTION__))
;
7110 (void)CheckQTN;
7111 }
7112
7113 DependentTemplateNames.InsertNode(QTN, InsertPos);
7114 return TemplateName(QTN);
7115}
7116
7117/// \brief Retrieve the template name that represents a dependent
7118/// template name such as \c MetaFun::template operator+.
7119TemplateName
7120ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
7121 OverloadedOperatorKind Operator) const {
7122 assert((!NNS || NNS->isDependent()) &&(((!NNS || NNS->isDependent()) && "Nested name specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7123, __PRETTY_FUNCTION__))
7123 "Nested name specifier must be dependent")(((!NNS || NNS->isDependent()) && "Nested name specifier must be dependent"
) ? static_cast<void> (0) : __assert_fail ("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7123, __PRETTY_FUNCTION__))
;
7124
7125 llvm::FoldingSetNodeID ID;
7126 DependentTemplateName::Profile(ID, NNS, Operator);
7127
7128 void *InsertPos = nullptr;
7129 DependentTemplateName *QTN
7130 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7131
7132 if (QTN)
7133 return TemplateName(QTN);
7134
7135 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
7136 if (CanonNNS == NNS) {
7137 QTN = new (*this, alignof(DependentTemplateName))
7138 DependentTemplateName(NNS, Operator);
7139 } else {
7140 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
7141 QTN = new (*this, alignof(DependentTemplateName))
7142 DependentTemplateName(NNS, Operator, Canon);
7143
7144 DependentTemplateName *CheckQTN
7145 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7146 assert(!CheckQTN && "Dependent template name canonicalization broken")((!CheckQTN && "Dependent template name canonicalization broken"
) ? static_cast<void> (0) : __assert_fail ("!CheckQTN && \"Dependent template name canonicalization broken\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7146, __PRETTY_FUNCTION__))
;
7147 (void)CheckQTN;
7148 }
7149
7150 DependentTemplateNames.InsertNode(QTN, InsertPos);
7151 return TemplateName(QTN);
7152}
7153
7154TemplateName
7155ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
7156 TemplateName replacement) const {
7157 llvm::FoldingSetNodeID ID;
7158 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
7159
7160 void *insertPos = nullptr;
7161 SubstTemplateTemplateParmStorage *subst
7162 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
7163
7164 if (!subst) {
7165 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
7166 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
7167 }
7168
7169 return TemplateName(subst);
7170}
7171
7172TemplateName
7173ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
7174 const TemplateArgument &ArgPack) const {
7175 ASTContext &Self = const_cast<ASTContext &>(*this);
7176 llvm::FoldingSetNodeID ID;
7177 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
7178
7179 void *InsertPos = nullptr;
7180 SubstTemplateTemplateParmPackStorage *Subst
7181 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
7182
7183 if (!Subst) {
7184 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
7185 ArgPack.pack_size(),
7186 ArgPack.pack_begin());
7187 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
7188 }
7189
7190 return TemplateName(Subst);
7191}
7192
7193/// getFromTargetType - Given one of the integer types provided by
7194/// TargetInfo, produce the corresponding type. The unsigned @p Type
7195/// is actually a value of type @c TargetInfo::IntType.
7196CanQualType ASTContext::getFromTargetType(unsigned Type) const {
7197 switch (Type) {
7198 case TargetInfo::NoInt: return CanQualType();
7199 case TargetInfo::SignedChar: return SignedCharTy;
7200 case TargetInfo::UnsignedChar: return UnsignedCharTy;
7201 case TargetInfo::SignedShort: return ShortTy;
7202 case TargetInfo::UnsignedShort: return UnsignedShortTy;
7203 case TargetInfo::SignedInt: return IntTy;
7204 case TargetInfo::UnsignedInt: return UnsignedIntTy;
7205 case TargetInfo::SignedLong: return LongTy;
7206 case TargetInfo::UnsignedLong: return UnsignedLongTy;
7207 case TargetInfo::SignedLongLong: return LongLongTy;
7208 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
7209 }
7210
7211 llvm_unreachable("Unhandled TargetInfo::IntType value")::llvm::llvm_unreachable_internal("Unhandled TargetInfo::IntType value"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7211)
;
7212}
7213
7214//===----------------------------------------------------------------------===//
7215// Type Predicates.
7216//===----------------------------------------------------------------------===//
7217
7218/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
7219/// garbage collection attribute.
7220///
7221Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
7222 if (getLangOpts().getGC() == LangOptions::NonGC)
7223 return Qualifiers::GCNone;
7224
7225 assert(getLangOpts().ObjC1)((getLangOpts().ObjC1) ? static_cast<void> (0) : __assert_fail
("getLangOpts().ObjC1", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7225, __PRETTY_FUNCTION__))
;
7226 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
7227
7228 // Default behaviour under objective-C's gc is for ObjC pointers
7229 // (or pointers to them) be treated as though they were declared
7230 // as __strong.
7231 if (GCAttrs == Qualifiers::GCNone) {
7232 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
7233 return Qualifiers::Strong;
7234 else if (Ty->isPointerType())
7235 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
7236 } else {
7237 // It's not valid to set GC attributes on anything that isn't a
7238 // pointer.
7239#ifndef NDEBUG
7240 QualType CT = Ty->getCanonicalTypeInternal();
7241 while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
7242 CT = AT->getElementType();
7243 assert(CT->isAnyPointerType() || CT->isBlockPointerType())((CT->isAnyPointerType() || CT->isBlockPointerType()) ?
static_cast<void> (0) : __assert_fail ("CT->isAnyPointerType() || CT->isBlockPointerType()"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7243, __PRETTY_FUNCTION__))
;
7244#endif
7245 }
7246 return GCAttrs;
7247}
7248
7249//===----------------------------------------------------------------------===//
7250// Type Compatibility Testing
7251//===----------------------------------------------------------------------===//
7252
7253/// areCompatVectorTypes - Return true if the two specified vector types are
7254/// compatible.
7255static bool areCompatVectorTypes(const VectorType *LHS,
7256 const VectorType *RHS) {
7257 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified())((LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified
()) ? static_cast<void> (0) : __assert_fail ("LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7257, __PRETTY_FUNCTION__))
;
7258 return LHS->getElementType() == RHS->getElementType() &&
7259 LHS->getNumElements() == RHS->getNumElements();
7260}
7261
7262bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
7263 QualType SecondVec) {
7264 assert(FirstVec->isVectorType() && "FirstVec should be a vector type")((FirstVec->isVectorType() && "FirstVec should be a vector type"
) ? static_cast<void> (0) : __assert_fail ("FirstVec->isVectorType() && \"FirstVec should be a vector type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7264, __PRETTY_FUNCTION__))
;
7265 assert(SecondVec->isVectorType() && "SecondVec should be a vector type")((SecondVec->isVectorType() && "SecondVec should be a vector type"
) ? static_cast<void> (0) : __assert_fail ("SecondVec->isVectorType() && \"SecondVec should be a vector type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7265, __PRETTY_FUNCTION__))
;
7266
7267 if (hasSameUnqualifiedType(FirstVec, SecondVec))
7268 return true;
7269
7270 // Treat Neon vector types and most AltiVec vector types as if they are the
7271 // equivalent GCC vector types.
7272 const VectorType *First = FirstVec->getAs<VectorType>();
7273 const VectorType *Second = SecondVec->getAs<VectorType>();
7274 if (First->getNumElements() == Second->getNumElements() &&
7275 hasSameType(First->getElementType(), Second->getElementType()) &&
7276 First->getVectorKind() != VectorType::AltiVecPixel &&
7277 First->getVectorKind() != VectorType::AltiVecBool &&
7278 Second->getVectorKind() != VectorType::AltiVecPixel &&
7279 Second->getVectorKind() != VectorType::AltiVecBool)
7280 return true;
7281
7282 return false;
7283}
7284
7285//===----------------------------------------------------------------------===//
7286// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
7287//===----------------------------------------------------------------------===//
7288
7289/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
7290/// inheritance hierarchy of 'rProto'.
7291bool
7292ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
7293 ObjCProtocolDecl *rProto) const {
7294 if (declaresSameEntity(lProto, rProto))
7295 return true;
7296 for (auto *PI : rProto->protocols())
7297 if (ProtocolCompatibleWithProtocol(lProto, PI))
7298 return true;
7299 return false;
7300}
7301
7302/// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
7303/// Class<pr1, ...>.
7304bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
7305 QualType rhs) {
7306 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
7307 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
7308 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible")(((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible"
) ? static_cast<void> (0) : __assert_fail ("(lhsQID && rhsOPT) && \"ObjCQualifiedClassTypesAreCompatible\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7308, __PRETTY_FUNCTION__))
;
7309
7310 for (auto *lhsProto : lhsQID->quals()) {
7311 bool match = false;
7312 for (auto *rhsProto : rhsOPT->quals()) {
7313 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
7314 match = true;
7315 break;
7316 }
7317 }
7318 if (!match)
7319 return false;
7320 }
7321 return true;
7322}
7323
7324/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
7325/// ObjCQualifiedIDType.
7326bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
7327 bool compare) {
7328 // Allow id<P..> and an 'id' or void* type in all cases.
7329 if (lhs->isVoidPointerType() ||
7330 lhs->isObjCIdType() || lhs->isObjCClassType())
7331 return true;
7332 else if (rhs->isVoidPointerType() ||
7333 rhs->isObjCIdType() || rhs->isObjCClassType())
7334 return true;
7335
7336 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
7337 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
7338
7339 if (!rhsOPT) return false;
7340
7341 if (rhsOPT->qual_empty()) {
7342 // If the RHS is a unqualified interface pointer "NSString*",
7343 // make sure we check the class hierarchy.
7344 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
7345 for (auto *I : lhsQID->quals()) {
7346 // when comparing an id<P> on lhs with a static type on rhs,
7347 // see if static class implements all of id's protocols, directly or
7348 // through its super class and categories.
7349 if (!rhsID->ClassImplementsProtocol(I, true))
7350 return false;
7351 }
7352 }
7353 // If there are no qualifiers and no interface, we have an 'id'.
7354 return true;
7355 }
7356 // Both the right and left sides have qualifiers.
7357 for (auto *lhsProto : lhsQID->quals()) {
7358 bool match = false;
7359
7360 // when comparing an id<P> on lhs with a static type on rhs,
7361 // see if static class implements all of id's protocols, directly or
7362 // through its super class and categories.
7363 for (auto *rhsProto : rhsOPT->quals()) {
7364 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
7365 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
7366 match = true;
7367 break;
7368 }
7369 }
7370 // If the RHS is a qualified interface pointer "NSString<P>*",
7371 // make sure we check the class hierarchy.
7372 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
7373 for (auto *I : lhsQID->quals()) {
7374 // when comparing an id<P> on lhs with a static type on rhs,
7375 // see if static class implements all of id's protocols, directly or
7376 // through its super class and categories.
7377 if (rhsID->ClassImplementsProtocol(I, true)) {
7378 match = true;
7379 break;
7380 }
7381 }
7382 }
7383 if (!match)
7384 return false;
7385 }
7386
7387 return true;
7388 }
7389
7390 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
7391 assert(rhsQID && "One of the LHS/RHS should be id<x>")((rhsQID && "One of the LHS/RHS should be id<x>"
) ? static_cast<void> (0) : __assert_fail ("rhsQID && \"One of the LHS/RHS should be id<x>\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7391, __PRETTY_FUNCTION__))
;
7392
7393 if (const ObjCObjectPointerType *lhsOPT =
7394 lhs->getAsObjCInterfacePointerType()) {
7395 // If both the right and left sides have qualifiers.
7396 for (auto *lhsProto : lhsOPT->quals()) {
7397 bool match = false;
7398
7399 // when comparing an id<P> on rhs with a static type on lhs,
7400 // see if static class implements all of id's protocols, directly or
7401 // through its super class and categories.
7402 // First, lhs protocols in the qualifier list must be found, direct
7403 // or indirect in rhs's qualifier list or it is a mismatch.
7404 for (auto *rhsProto : rhsQID->quals()) {
7405 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
7406 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
7407 match = true;
7408 break;
7409 }
7410 }
7411 if (!match)
7412 return false;
7413 }
7414
7415 // Static class's protocols, or its super class or category protocols
7416 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
7417 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
7418 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
7419 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
7420 // This is rather dubious but matches gcc's behavior. If lhs has
7421 // no type qualifier and its class has no static protocol(s)
7422 // assume that it is mismatch.
7423 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
7424 return false;
7425 for (auto *lhsProto : LHSInheritedProtocols) {
7426 bool match = false;
7427 for (auto *rhsProto : rhsQID->quals()) {
7428 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
7429 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
7430 match = true;
7431 break;
7432 }
7433 }
7434 if (!match)
7435 return false;
7436 }
7437 }
7438 return true;
7439 }
7440 return false;
7441}
7442
7443/// canAssignObjCInterfaces - Return true if the two interface types are
7444/// compatible for assignment from RHS to LHS. This handles validation of any
7445/// protocol qualifiers on the LHS or RHS.
7446///
7447bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
7448 const ObjCObjectPointerType *RHSOPT) {
7449 const ObjCObjectType* LHS = LHSOPT->getObjectType();
7450 const ObjCObjectType* RHS = RHSOPT->getObjectType();
7451
7452 // If either type represents the built-in 'id' or 'Class' types, return true.
7453 if (LHS->isObjCUnqualifiedIdOrClass() ||
7454 RHS->isObjCUnqualifiedIdOrClass())
7455 return true;
7456
7457 // Function object that propagates a successful result or handles
7458 // __kindof types.
7459 auto finish = [&](bool succeeded) -> bool {
7460 if (succeeded)
7461 return true;
7462
7463 if (!RHS->isKindOfType())
7464 return false;
7465
7466 // Strip off __kindof and protocol qualifiers, then check whether
7467 // we can assign the other way.
7468 return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
7469 LHSOPT->stripObjCKindOfTypeAndQuals(*this));
7470 };
7471
7472 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
7473 return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
7474 QualType(RHSOPT,0),
7475 false));
7476 }
7477
7478 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
7479 return finish(ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
7480 QualType(RHSOPT,0)));
7481 }
7482
7483 // If we have 2 user-defined types, fall into that path.
7484 if (LHS->getInterface() && RHS->getInterface()) {
7485 return finish(canAssignObjCInterfaces(LHS, RHS));
7486 }
7487
7488 return false;
7489}
7490
7491/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
7492/// for providing type-safety for objective-c pointers used to pass/return
7493/// arguments in block literals. When passed as arguments, passing 'A*' where
7494/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
7495/// not OK. For the return type, the opposite is not OK.
7496bool ASTContext::canAssignObjCInterfacesInBlockPointer(
7497 const ObjCObjectPointerType *LHSOPT,
7498 const ObjCObjectPointerType *RHSOPT,
7499 bool BlockReturnType) {
7500
7501 // Function object that propagates a successful result or handles
7502 // __kindof types.
7503 auto finish = [&](bool succeeded) -> bool {
7504 if (succeeded)
7505 return true;
7506
7507 const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
7508 if (!Expected->isKindOfType())
7509 return false;
7510
7511 // Strip off __kindof and protocol qualifiers, then check whether
7512 // we can assign the other way.
7513 return canAssignObjCInterfacesInBlockPointer(
7514 RHSOPT->stripObjCKindOfTypeAndQuals(*this),
7515 LHSOPT->stripObjCKindOfTypeAndQuals(*this),
7516 BlockReturnType);
7517 };
7518
7519 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
7520 return true;
7521
7522 if (LHSOPT->isObjCBuiltinType()) {
7523 return finish(RHSOPT->isObjCBuiltinType() ||
7524 RHSOPT->isObjCQualifiedIdType());
7525 }
7526
7527 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
7528 return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
7529 QualType(RHSOPT,0),
7530 false));
7531
7532 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
7533 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
7534 if (LHS && RHS) { // We have 2 user-defined types.
7535 if (LHS != RHS) {
7536 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
7537 return finish(BlockReturnType);
7538 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
7539 return finish(!BlockReturnType);
7540 }
7541 else
7542 return true;
7543 }
7544 return false;
7545}
7546
7547/// Comparison routine for Objective-C protocols to be used with
7548/// llvm::array_pod_sort.
7549static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
7550 ObjCProtocolDecl * const *rhs) {
7551 return (*lhs)->getName().compare((*rhs)->getName());
7552
7553}
7554
7555/// getIntersectionOfProtocols - This routine finds the intersection of set
7556/// of protocols inherited from two distinct objective-c pointer objects with
7557/// the given common base.
7558/// It is used to build composite qualifier list of the composite type of
7559/// the conditional expression involving two objective-c pointer objects.
7560static
7561void getIntersectionOfProtocols(ASTContext &Context,
7562 const ObjCInterfaceDecl *CommonBase,
7563 const ObjCObjectPointerType *LHSOPT,
7564 const ObjCObjectPointerType *RHSOPT,
7565 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
7566
7567 const ObjCObjectType* LHS = LHSOPT->getObjectType();
7568 const ObjCObjectType* RHS = RHSOPT->getObjectType();
7569 assert(LHS->getInterface() && "LHS must have an interface base")((LHS->getInterface() && "LHS must have an interface base"
) ? static_cast<void> (0) : __assert_fail ("LHS->getInterface() && \"LHS must have an interface base\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7569, __PRETTY_FUNCTION__))
;
7570 assert(RHS->getInterface() && "RHS must have an interface base")((RHS->getInterface() && "RHS must have an interface base"
) ? static_cast<void> (0) : __assert_fail ("RHS->getInterface() && \"RHS must have an interface base\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/AST/ASTContext.cpp"
, 7570, __PRETTY_FUNCTION__))
;
7571
7572 // Add all of the protocols for the LHS.
7573 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
7574
7575 // Start with the protocol qualifiers.
7576 for (auto proto : LHS->quals()) {
7577 Context.CollectInheritedProtocols(proto, LHSProtocolSet);
7578 }
7579
7580 // Also add the protocols associated with the LHS interface.
7581 Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
7582
7583 // Add all of the protocls for the RHS.
7584 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
7585
7586 // Start with the protocol qualifiers.
7587 for (auto proto : RHS->quals()) {
7588 Context.CollectInheritedProtocols(proto, RHSProtocolSet);
7589 }
7590
7591 // Also add the protocols associated with the RHS interface.
7592 Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
7593
7594 // Compute the intersection of the collected protocol sets.
7595 for (auto proto : LHSProtocolSet) {
7596 if (RHSProtocolSet.count(proto))
7597 IntersectionSet.push_back(proto);
7598 }
7599
7600 // Compute the set of protocols that is implied by either the common type or
7601 // the protocols within the intersection.
7602 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
7603 Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
7604
7605 // Remove any implied protocols from the list of inherited protocols.
7606 if (!ImpliedProtocols.empty()) {
7607 IntersectionSet.erase(
7608 std::remove_if(IntersectionSet.begin(),
7609 IntersectionSet.end(),
7610 [&](ObjCProtocolDecl *proto) -> bool {
7611 return ImpliedProtocols.count(proto) > 0;
7612 }),
7613 IntersectionSet.end());
7614 }
7615
7616 // Sort the remaining protocols by name.
7617 llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
7618 compareObjCProtocolsByName);
7619}
7620
7621/// Determine whether the first type is a subtype of the second.
7622static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
7623 QualType rhs) {
7624 // Common case: two object pointers.
7625 const ObjCObjectPointerType *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
7626 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
7627 if (lhsOPT && rhsOPT)
7628 return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
7629
7630 // Two block pointers.
7631 const BlockPointerType *lhsBlock = lhs->getAs<BlockPointerType>();
7632 const BlockPointerType *rhsBlock = rhs->getAs<BlockPointerType>();
7633 if (lhsBlock && rhsBlock)
7634 return ctx.typesAreBlockPointerCompatible(lhs, rhs);
7635
7636 // If either is an unqualified 'id' and the other is a block, it's
7637 // acceptable.
7638 if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
7639 (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
7640 return true;
7641
7642 return false;
7643}
7644
7645// Check that the given Objective-C type argument lists are equivalent.
7646static bool sameObjCTypeArgs(ASTContext &ctx,
7647 const ObjCInterfaceDecl *iface,
7648 ArrayRef<QualType> lhsArgs,
7649 ArrayRef<QualType> rhsArgs,
7650 bool stripKindOf) {
7651 if (lhsArgs.size() != rhsArgs.size())
7652 return false;
7653
7654 ObjCTypeParamList *typeParams = iface->getTypeParamList();
7655 for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
7656 if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
7657 continue;
7658
7659 switch (typeParams->begin()[i]->getVariance()) {
7660 case ObjCTypeParamVariance::Invariant:
7661 if (!stripKindOf ||
7662 !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
7663 rhsArgs[i].stripObjCKindOfType(ctx))) {