Bug Summary

File:llvm/lib/Target/AVR/AVRISelLowering.cpp
Warning:line 1037, column 7
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AVRISelLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Target/AVR -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Target/AVR -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp
1//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that AVR uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AVRISelLowering.h"
15
16#include "llvm/ADT/StringSwitch.h"
17#include "llvm/CodeGen/CallingConvLower.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23#include "llvm/IR/Function.h"
24#include "llvm/Support/ErrorHandling.h"
25
26#include "AVR.h"
27#include "AVRMachineFunctionInfo.h"
28#include "AVRSubtarget.h"
29#include "AVRTargetMachine.h"
30#include "MCTargetDesc/AVRMCTargetDesc.h"
31
32namespace llvm {
33
34AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
35 const AVRSubtarget &STI)
36 : TargetLowering(TM), Subtarget(STI) {
37 // Set up the register classes.
38 addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
39 addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
40
41 // Compute derived properties from the register classes.
42 computeRegisterProperties(Subtarget.getRegisterInfo());
43
44 setBooleanContents(ZeroOrOneBooleanContent);
45 setBooleanVectorContents(ZeroOrOneBooleanContent);
46 setSchedulingPreference(Sched::RegPressure);
47 setStackPointerRegisterToSaveRestore(AVR::SP);
48 setSupportsUnalignedAtomics(true);
49
50 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
51 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
52
53 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
54 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
55 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
56 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
57
58 for (MVT VT : MVT::integer_valuetypes()) {
59 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
60 setLoadExtAction(N, VT, MVT::i1, Promote);
61 setLoadExtAction(N, VT, MVT::i8, Expand);
62 }
63 }
64
65 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
66
67 for (MVT VT : MVT::integer_valuetypes()) {
68 setOperationAction(ISD::ADDC, VT, Legal);
69 setOperationAction(ISD::SUBC, VT, Legal);
70 setOperationAction(ISD::ADDE, VT, Legal);
71 setOperationAction(ISD::SUBE, VT, Legal);
72 }
73
74 // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
75 // revert into a sub since we don't have an add with immediate instruction.
76 setOperationAction(ISD::ADD, MVT::i32, Custom);
77 setOperationAction(ISD::ADD, MVT::i64, Custom);
78
79 // our shift instructions are only able to shift 1 bit at a time, so handle
80 // this in a custom way.
81 setOperationAction(ISD::SRA, MVT::i8, Custom);
82 setOperationAction(ISD::SHL, MVT::i8, Custom);
83 setOperationAction(ISD::SRL, MVT::i8, Custom);
84 setOperationAction(ISD::SRA, MVT::i16, Custom);
85 setOperationAction(ISD::SHL, MVT::i16, Custom);
86 setOperationAction(ISD::SRL, MVT::i16, Custom);
87 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
88 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
89 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
90
91 setOperationAction(ISD::ROTL, MVT::i8, Custom);
92 setOperationAction(ISD::ROTL, MVT::i16, Expand);
93 setOperationAction(ISD::ROTR, MVT::i8, Custom);
94 setOperationAction(ISD::ROTR, MVT::i16, Expand);
95
96 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
97 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
98 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
99 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
100 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
101
102 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
103 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
104 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
105 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
106 setOperationAction(ISD::SETCC, MVT::i8, Custom);
107 setOperationAction(ISD::SETCC, MVT::i16, Custom);
108 setOperationAction(ISD::SETCC, MVT::i32, Custom);
109 setOperationAction(ISD::SETCC, MVT::i64, Custom);
110 setOperationAction(ISD::SELECT, MVT::i8, Expand);
111 setOperationAction(ISD::SELECT, MVT::i16, Expand);
112
113 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
114
115 // Add support for postincrement and predecrement load/stores.
116 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
117 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
118 setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
119 setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
120 setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
121 setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
122 setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
123 setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
124
125 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
126
127 setOperationAction(ISD::VASTART, MVT::Other, Custom);
128 setOperationAction(ISD::VAEND, MVT::Other, Expand);
129 setOperationAction(ISD::VAARG, MVT::Other, Expand);
130 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
131
132 // Atomic operations which must be lowered to rtlib calls
133 for (MVT VT : MVT::integer_valuetypes()) {
134 setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
135 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
136 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
137 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
138 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
139 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
140 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
141 }
142
143 // Division/remainder
144 setOperationAction(ISD::UDIV, MVT::i8, Expand);
145 setOperationAction(ISD::UDIV, MVT::i16, Expand);
146 setOperationAction(ISD::UREM, MVT::i8, Expand);
147 setOperationAction(ISD::UREM, MVT::i16, Expand);
148 setOperationAction(ISD::SDIV, MVT::i8, Expand);
149 setOperationAction(ISD::SDIV, MVT::i16, Expand);
150 setOperationAction(ISD::SREM, MVT::i8, Expand);
151 setOperationAction(ISD::SREM, MVT::i16, Expand);
152
153 // Make division and modulus custom
154 for (MVT VT : MVT::integer_valuetypes()) {
155 setOperationAction(ISD::UDIVREM, VT, Custom);
156 setOperationAction(ISD::SDIVREM, VT, Custom);
157 }
158
159 // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
160 setOperationAction(ISD::MUL, MVT::i8, Expand);
161 setOperationAction(ISD::MUL, MVT::i16, Expand);
162
163 // Expand 16 bit multiplications.
164 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
165 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
166
167 // Expand multiplications to libcalls when there is
168 // no hardware MUL.
169 if (!Subtarget.supportsMultiplication()) {
170 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
171 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
172 }
173
174 for (MVT VT : MVT::integer_valuetypes()) {
175 setOperationAction(ISD::MULHS, VT, Expand);
176 setOperationAction(ISD::MULHU, VT, Expand);
177 }
178
179 for (MVT VT : MVT::integer_valuetypes()) {
180 setOperationAction(ISD::CTPOP, VT, Expand);
181 setOperationAction(ISD::CTLZ, VT, Expand);
182 setOperationAction(ISD::CTTZ, VT, Expand);
183 }
184
185 for (MVT VT : MVT::integer_valuetypes()) {
186 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
187 // TODO: The generated code is pretty poor. Investigate using the
188 // same "shift and subtract with carry" trick that we do for
189 // extending 8-bit to 16-bit. This may require infrastructure
190 // improvements in how we treat 16-bit "registers" to be feasible.
191 }
192
193 // Division rtlib functions (not supported)
194 setLibcallName(RTLIB::SDIV_I8, nullptr);
195 setLibcallName(RTLIB::SDIV_I16, nullptr);
196 setLibcallName(RTLIB::SDIV_I32, nullptr);
197 setLibcallName(RTLIB::SDIV_I64, nullptr);
198 setLibcallName(RTLIB::SDIV_I128, nullptr);
199 setLibcallName(RTLIB::UDIV_I8, nullptr);
200 setLibcallName(RTLIB::UDIV_I16, nullptr);
201 setLibcallName(RTLIB::UDIV_I32, nullptr);
202 setLibcallName(RTLIB::UDIV_I64, nullptr);
203 setLibcallName(RTLIB::UDIV_I128, nullptr);
204
205 // Modulus rtlib functions (not supported)
206 setLibcallName(RTLIB::SREM_I8, nullptr);
207 setLibcallName(RTLIB::SREM_I16, nullptr);
208 setLibcallName(RTLIB::SREM_I32, nullptr);
209 setLibcallName(RTLIB::SREM_I64, nullptr);
210 setLibcallName(RTLIB::SREM_I128, nullptr);
211 setLibcallName(RTLIB::UREM_I8, nullptr);
212 setLibcallName(RTLIB::UREM_I16, nullptr);
213 setLibcallName(RTLIB::UREM_I32, nullptr);
214 setLibcallName(RTLIB::UREM_I64, nullptr);
215 setLibcallName(RTLIB::UREM_I128, nullptr);
216
217 // Division and modulus rtlib functions
218 setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
219 setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
220 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
221 setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4");
222 setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4");
223 setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
224 setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
225 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
226 setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4");
227 setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4");
228
229 // Several of the runtime library functions use a special calling conv
230 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
231 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
232 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
233 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
234
235 // Trigonometric rtlib functions
236 setLibcallName(RTLIB::SIN_F32, "sin");
237 setLibcallName(RTLIB::COS_F32, "cos");
238
239 setMinFunctionAlignment(Align(2));
240 setMinimumJumpTableEntries(UINT_MAX(2147483647 *2U +1U));
241}
242
243const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
244#define NODE(name) \
245 case AVRISD::name: \
246 return #name
247
248 switch (Opcode) {
249 default:
250 return nullptr;
251 NODE(RET_FLAG);
252 NODE(RETI_FLAG);
253 NODE(CALL);
254 NODE(WRAPPER);
255 NODE(LSL);
256 NODE(LSR);
257 NODE(ROL);
258 NODE(ROR);
259 NODE(ASR);
260 NODE(LSLLOOP);
261 NODE(LSRLOOP);
262 NODE(ROLLOOP);
263 NODE(RORLOOP);
264 NODE(ASRLOOP);
265 NODE(BRCOND);
266 NODE(CMP);
267 NODE(CMPC);
268 NODE(TST);
269 NODE(SELECT_CC);
270#undef NODE
271 }
272}
273
274EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
275 EVT VT) const {
276 assert(!VT.isVector() && "No AVR SetCC type for vectors!")((!VT.isVector() && "No AVR SetCC type for vectors!")
? static_cast<void> (0) : __assert_fail ("!VT.isVector() && \"No AVR SetCC type for vectors!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 276, __PRETTY_FUNCTION__))
;
277 return MVT::i8;
278}
279
280SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
281 //:TODO: this function has to be completely rewritten to produce optimal
282 // code, for now it's producing very long but correct code.
283 unsigned Opc8;
284 const SDNode *N = Op.getNode();
285 EVT VT = Op.getValueType();
286 SDLoc dl(N);
287
288 // Expand non-constant shifts to loops.
289 if (!isa<ConstantSDNode>(N->getOperand(1))) {
290 switch (Op.getOpcode()) {
291 default:
292 llvm_unreachable("Invalid shift opcode!")::llvm::llvm_unreachable_internal("Invalid shift opcode!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 292)
;
293 case ISD::SHL:
294 return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
295 N->getOperand(1));
296 case ISD::SRL:
297 return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
298 N->getOperand(1));
299 case ISD::ROTL:
300 return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0),
301 N->getOperand(1));
302 case ISD::ROTR:
303 return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0),
304 N->getOperand(1));
305 case ISD::SRA:
306 return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
307 N->getOperand(1));
308 }
309 }
310
311 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
312 SDValue Victim = N->getOperand(0);
313
314 switch (Op.getOpcode()) {
315 case ISD::SRA:
316 Opc8 = AVRISD::ASR;
317 break;
318 case ISD::ROTL:
319 Opc8 = AVRISD::ROL;
320 break;
321 case ISD::ROTR:
322 Opc8 = AVRISD::ROR;
323 break;
324 case ISD::SRL:
325 Opc8 = AVRISD::LSR;
326 break;
327 case ISD::SHL:
328 Opc8 = AVRISD::LSL;
329 break;
330 default:
331 llvm_unreachable("Invalid shift opcode")::llvm::llvm_unreachable_internal("Invalid shift opcode", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 331)
;
332 }
333
334 while (ShiftAmount--) {
335 Victim = DAG.getNode(Opc8, dl, VT, Victim);
336 }
337
338 return Victim;
339}
340
341SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
342 unsigned Opcode = Op->getOpcode();
343 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&(((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
"Invalid opcode for Div/Rem lowering") ? static_cast<void
> (0) : __assert_fail ("(Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && \"Invalid opcode for Div/Rem lowering\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 344, __PRETTY_FUNCTION__))
344 "Invalid opcode for Div/Rem lowering")(((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
"Invalid opcode for Div/Rem lowering") ? static_cast<void
> (0) : __assert_fail ("(Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && \"Invalid opcode for Div/Rem lowering\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 344, __PRETTY_FUNCTION__))
;
345 bool IsSigned = (Opcode == ISD::SDIVREM);
346 EVT VT = Op->getValueType(0);
347 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
348
349 RTLIB::Libcall LC;
350 switch (VT.getSimpleVT().SimpleTy) {
351 default:
352 llvm_unreachable("Unexpected request for libcall!")::llvm::llvm_unreachable_internal("Unexpected request for libcall!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 352)
;
353 case MVT::i8:
354 LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
355 break;
356 case MVT::i16:
357 LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
358 break;
359 case MVT::i32:
360 LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
361 break;
362 case MVT::i64:
363 LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
364 break;
365 case MVT::i128:
366 LC = IsSigned ? RTLIB::SDIVREM_I128 : RTLIB::UDIVREM_I128;
367 break;
368 }
369
370 SDValue InChain = DAG.getEntryNode();
371
372 TargetLowering::ArgListTy Args;
373 TargetLowering::ArgListEntry Entry;
374 for (SDValue const &Value : Op->op_values()) {
375 Entry.Node = Value;
376 Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
377 Entry.IsSExt = IsSigned;
378 Entry.IsZExt = !IsSigned;
379 Args.push_back(Entry);
380 }
381
382 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
383 getPointerTy(DAG.getDataLayout()));
384
385 Type *RetTy = (Type *)StructType::get(Ty, Ty);
386
387 SDLoc dl(Op);
388 TargetLowering::CallLoweringInfo CLI(DAG);
389 CLI.setDebugLoc(dl)
390 .setChain(InChain)
391 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
392 .setInRegister()
393 .setSExtResult(IsSigned)
394 .setZExtResult(!IsSigned);
395
396 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
397 return CallInfo.first;
398}
399
400SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
401 SelectionDAG &DAG) const {
402 auto DL = DAG.getDataLayout();
403
404 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
405 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
406
407 // Create the TargetGlobalAddress node, folding in the constant offset.
408 SDValue Result =
409 DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
410 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
411}
412
413SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
414 SelectionDAG &DAG) const {
415 auto DL = DAG.getDataLayout();
416 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
417
418 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
419
420 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
421}
422
423/// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
424static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
425 switch (CC) {
426 default:
427 llvm_unreachable("Unknown condition code!")::llvm::llvm_unreachable_internal("Unknown condition code!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 427)
;
428 case ISD::SETEQ:
429 return AVRCC::COND_EQ;
430 case ISD::SETNE:
431 return AVRCC::COND_NE;
432 case ISD::SETGE:
433 return AVRCC::COND_GE;
434 case ISD::SETLT:
435 return AVRCC::COND_LT;
436 case ISD::SETUGE:
437 return AVRCC::COND_SH;
438 case ISD::SETULT:
439 return AVRCC::COND_LO;
440 }
441}
442
443/// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
444/// the given operands.
445SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
446 SDValue &AVRcc, SelectionDAG &DAG,
447 SDLoc DL) const {
448 SDValue Cmp;
449 EVT VT = LHS.getValueType();
450 bool UseTest = false;
451
452 switch (CC) {
453 default:
454 break;
455 case ISD::SETLE: {
456 // Swap operands and reverse the branching condition.
457 std::swap(LHS, RHS);
458 CC = ISD::SETGE;
459 break;
460 }
461 case ISD::SETGT: {
462 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
463 switch (C->getSExtValue()) {
464 case -1: {
465 // When doing lhs > -1 use a tst instruction on the top part of lhs
466 // and use brpl instead of using a chain of cp/cpc.
467 UseTest = true;
468 AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
469 break;
470 }
471 case 0: {
472 // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
473 // __zero_reg__ in lhs.
474 RHS = LHS;
475 LHS = DAG.getConstant(0, DL, VT);
476 CC = ISD::SETLT;
477 break;
478 }
479 default: {
480 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
481 // us to fold the constant into the cmp instruction.
482 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
483 CC = ISD::SETGE;
484 break;
485 }
486 }
487 break;
488 }
489 // Swap operands and reverse the branching condition.
490 std::swap(LHS, RHS);
491 CC = ISD::SETLT;
492 break;
493 }
494 case ISD::SETLT: {
495 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
496 switch (C->getSExtValue()) {
497 case 1: {
498 // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
499 // __zero_reg__ in lhs.
500 RHS = LHS;
501 LHS = DAG.getConstant(0, DL, VT);
502 CC = ISD::SETGE;
503 break;
504 }
505 case 0: {
506 // When doing lhs < 0 use a tst instruction on the top part of lhs
507 // and use brmi instead of using a chain of cp/cpc.
508 UseTest = true;
509 AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
510 break;
511 }
512 }
513 }
514 break;
515 }
516 case ISD::SETULE: {
517 // Swap operands and reverse the branching condition.
518 std::swap(LHS, RHS);
519 CC = ISD::SETUGE;
520 break;
521 }
522 case ISD::SETUGT: {
523 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
524 // fold the constant into the cmp instruction.
525 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
526 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
527 CC = ISD::SETUGE;
528 break;
529 }
530 // Swap operands and reverse the branching condition.
531 std::swap(LHS, RHS);
532 CC = ISD::SETULT;
533 break;
534 }
535 }
536
537 // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
538 // using the default and/or/xor expansion code which is much longer.
539 if (VT == MVT::i32) {
540 SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
541 DAG.getIntPtrConstant(0, DL));
542 SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
543 DAG.getIntPtrConstant(1, DL));
544 SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
545 DAG.getIntPtrConstant(0, DL));
546 SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
547 DAG.getIntPtrConstant(1, DL));
548
549 if (UseTest) {
550 // When using tst we only care about the highest part.
551 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
552 DAG.getIntPtrConstant(1, DL));
553 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
554 } else {
555 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
556 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
557 }
558 } else if (VT == MVT::i64) {
559 SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
560 DAG.getIntPtrConstant(0, DL));
561 SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
562 DAG.getIntPtrConstant(1, DL));
563
564 SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
565 DAG.getIntPtrConstant(0, DL));
566 SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
567 DAG.getIntPtrConstant(1, DL));
568 SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
569 DAG.getIntPtrConstant(0, DL));
570 SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
571 DAG.getIntPtrConstant(1, DL));
572
573 SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
574 DAG.getIntPtrConstant(0, DL));
575 SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
576 DAG.getIntPtrConstant(1, DL));
577
578 SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
579 DAG.getIntPtrConstant(0, DL));
580 SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
581 DAG.getIntPtrConstant(1, DL));
582 SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
583 DAG.getIntPtrConstant(0, DL));
584 SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
585 DAG.getIntPtrConstant(1, DL));
586
587 if (UseTest) {
588 // When using tst we only care about the highest part.
589 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
590 DAG.getIntPtrConstant(1, DL));
591 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
592 } else {
593 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
594 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
595 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
596 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
597 }
598 } else if (VT == MVT::i8 || VT == MVT::i16) {
599 if (UseTest) {
600 // When using tst we only care about the highest part.
601 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
602 (VT == MVT::i8)
603 ? LHS
604 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
605 LHS, DAG.getIntPtrConstant(1, DL)));
606 } else {
607 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
608 }
609 } else {
610 llvm_unreachable("Invalid comparison size")::llvm::llvm_unreachable_internal("Invalid comparison size", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 610)
;
611 }
612
613 // When using a test instruction AVRcc is already set.
614 if (!UseTest) {
615 AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
616 }
617
618 return Cmp;
619}
620
621SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
622 SDValue Chain = Op.getOperand(0);
623 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
624 SDValue LHS = Op.getOperand(2);
625 SDValue RHS = Op.getOperand(3);
626 SDValue Dest = Op.getOperand(4);
627 SDLoc dl(Op);
628
629 SDValue TargetCC;
630 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
631
632 return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
633 Cmp);
634}
635
636SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
637 SDValue LHS = Op.getOperand(0);
638 SDValue RHS = Op.getOperand(1);
639 SDValue TrueV = Op.getOperand(2);
640 SDValue FalseV = Op.getOperand(3);
641 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
642 SDLoc dl(Op);
643
644 SDValue TargetCC;
645 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
646
647 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
648 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
649
650 return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
651}
652
653SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
654 SDValue LHS = Op.getOperand(0);
655 SDValue RHS = Op.getOperand(1);
656 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
657 SDLoc DL(Op);
658
659 SDValue TargetCC;
660 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
661
662 SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
663 SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
664 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
665 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
666
667 return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
668}
669
670SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
671 const MachineFunction &MF = DAG.getMachineFunction();
672 const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
673 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
674 auto DL = DAG.getDataLayout();
675 SDLoc dl(Op);
676
677 // Vastart just stores the address of the VarArgsFrameIndex slot into the
678 // memory location argument.
679 SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
680
681 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
682 MachinePointerInfo(SV), 0);
683}
684
685SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
686 switch (Op.getOpcode()) {
687 default:
688 llvm_unreachable("Don't know how to custom lower this!")::llvm::llvm_unreachable_internal("Don't know how to custom lower this!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 688)
;
689 case ISD::SHL:
690 case ISD::SRA:
691 case ISD::SRL:
692 case ISD::ROTL:
693 case ISD::ROTR:
694 return LowerShifts(Op, DAG);
695 case ISD::GlobalAddress:
696 return LowerGlobalAddress(Op, DAG);
697 case ISD::BlockAddress:
698 return LowerBlockAddress(Op, DAG);
699 case ISD::BR_CC:
700 return LowerBR_CC(Op, DAG);
701 case ISD::SELECT_CC:
702 return LowerSELECT_CC(Op, DAG);
703 case ISD::SETCC:
704 return LowerSETCC(Op, DAG);
705 case ISD::VASTART:
706 return LowerVASTART(Op, DAG);
707 case ISD::SDIVREM:
708 case ISD::UDIVREM:
709 return LowerDivRem(Op, DAG);
710 }
711
712 return SDValue();
713}
714
715/// Replace a node with an illegal result type
716/// with a new node built out of custom code.
717void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
718 SmallVectorImpl<SDValue> &Results,
719 SelectionDAG &DAG) const {
720 SDLoc DL(N);
721
722 switch (N->getOpcode()) {
723 case ISD::ADD: {
724 // Convert add (x, imm) into sub (x, -imm).
725 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
726 SDValue Sub = DAG.getNode(
727 ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
728 DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
729 Results.push_back(Sub);
730 }
731 break;
732 }
733 default: {
734 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
735
736 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
737 Results.push_back(Res.getValue(I));
738
739 break;
740 }
741 }
742}
743
744/// Return true if the addressing mode represented
745/// by AM is legal for this target, for a load/store of the specified type.
746bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
747 const AddrMode &AM, Type *Ty,
748 unsigned AS, Instruction *I) const {
749 int64_t Offs = AM.BaseOffs;
750
751 // Allow absolute addresses.
752 if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
753 return true;
754 }
755
756 // Flash memory instructions only allow zero offsets.
757 if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
758 return false;
759 }
760
761 // Allow reg+<6bit> offset.
762 if (Offs < 0)
763 Offs = -Offs;
764 if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
765 return true;
766 }
767
768 return false;
769}
770
771/// Returns true by value, base pointer and
772/// offset pointer and addressing mode by reference if the node's address
773/// can be legally represented as pre-indexed load / store address.
774bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
775 SDValue &Offset,
776 ISD::MemIndexedMode &AM,
777 SelectionDAG &DAG) const {
778 EVT VT;
779 const SDNode *Op;
780 SDLoc DL(N);
781
782 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
783 VT = LD->getMemoryVT();
784 Op = LD->getBasePtr().getNode();
785 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
786 return false;
787 if (AVR::isProgramMemoryAccess(LD)) {
788 return false;
789 }
790 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
791 VT = ST->getMemoryVT();
792 Op = ST->getBasePtr().getNode();
793 if (AVR::isProgramMemoryAccess(ST)) {
794 return false;
795 }
796 } else {
797 return false;
798 }
799
800 if (VT != MVT::i8 && VT != MVT::i16) {
801 return false;
802 }
803
804 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
805 return false;
806 }
807
808 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
809 int RHSC = RHS->getSExtValue();
810 if (Op->getOpcode() == ISD::SUB)
811 RHSC = -RHSC;
812
813 if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
814 return false;
815 }
816
817 Base = Op->getOperand(0);
818 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
819 AM = ISD::PRE_DEC;
820
821 return true;
822 }
823
824 return false;
825}
826
827/// Returns true by value, base pointer and
828/// offset pointer and addressing mode by reference if this node can be
829/// combined with a load / store to form a post-indexed load / store.
830bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
831 SDValue &Base,
832 SDValue &Offset,
833 ISD::MemIndexedMode &AM,
834 SelectionDAG &DAG) const {
835 EVT VT;
836 SDLoc DL(N);
837
838 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
839 VT = LD->getMemoryVT();
840 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
841 return false;
842 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
843 VT = ST->getMemoryVT();
844 if (AVR::isProgramMemoryAccess(ST)) {
845 return false;
846 }
847 } else {
848 return false;
849 }
850
851 if (VT != MVT::i8 && VT != MVT::i16) {
852 return false;
853 }
854
855 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
856 return false;
857 }
858
859 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
860 int RHSC = RHS->getSExtValue();
861 if (Op->getOpcode() == ISD::SUB)
862 RHSC = -RHSC;
863 if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
864 return false;
865 }
866
867 Base = Op->getOperand(0);
868 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
869 AM = ISD::POST_INC;
870
871 return true;
872 }
873
874 return false;
875}
876
877bool AVRTargetLowering::isOffsetFoldingLegal(
878 const GlobalAddressSDNode *GA) const {
879 return true;
880}
881
882//===----------------------------------------------------------------------===//
883// Formal Arguments Calling Convention Implementation
884//===----------------------------------------------------------------------===//
885
886#include "AVRGenCallingConv.inc"
887
888/// For each argument in a function store the number of pieces it is composed
889/// of.
890static void parseFunctionArgs(const SmallVectorImpl<ISD::InputArg> &Ins,
891 SmallVectorImpl<unsigned> &Out) {
892 for (const ISD::InputArg &Arg : Ins) {
893 if(Arg.PartOffset > 0) continue;
894 unsigned Bytes = ((Arg.ArgVT.getSizeInBits()) + 7) / 8;
895
896 Out.push_back((Bytes + 1) / 2);
897 }
898}
899
900/// For external symbols there is no function prototype information so we
901/// have to rely directly on argument sizes.
902static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In,
903 SmallVectorImpl<unsigned> &Out) {
904 for (unsigned i = 0, e = In.size(); i != e;) {
905 unsigned Size = 0;
906 unsigned Offset = 0;
907 while ((i != e) && (In[i].PartOffset == Offset)) {
908 Offset += In[i].VT.getStoreSize();
909 ++i;
910 ++Size;
911 }
912 Out.push_back(Size);
913 }
914}
915
916static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) {
917 SDValue Callee = CLI.Callee;
918
919 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) {
920 return G->getSymbol();
921 }
922
923 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
924 return G->getGlobal()->getName();
925 }
926
927 llvm_unreachable("don't know how to get the name for this callee")::llvm::llvm_unreachable_internal("don't know how to get the name for this callee"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 927)
;
928}
929
930/// Analyze incoming and outgoing function arguments. We need custom C++ code
931/// to handle special constraints in the ABI like reversing the order of the
932/// pieces of splitted arguments. In addition, all pieces of a certain argument
933/// have to be passed either using registers or the stack but never mixing both.
934static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI,
935 const Function *F, const DataLayout *TD,
936 const SmallVectorImpl<ISD::OutputArg> *Outs,
937 const SmallVectorImpl<ISD::InputArg> *Ins,
938 CallingConv::ID CallConv,
939 SmallVectorImpl<CCValAssign> &ArgLocs,
940 CCState &CCInfo, bool IsCall, bool IsVarArg) {
941 static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20,
942 AVR::R18, AVR::R16, AVR::R14,
943 AVR::R12, AVR::R10, AVR::R8};
944 static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20,
945 AVR::R19R18, AVR::R17R16, AVR::R15R14,
946 AVR::R13R12, AVR::R11R10, AVR::R9R8};
947 if (IsVarArg) {
948 // Variadic functions do not need all the analysis below.
949 if (IsCall) {
950 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg);
951 } else {
952 CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg);
953 }
954 return;
955 }
956
957 // Fill in the Args array which will contain original argument sizes.
958 SmallVector<unsigned, 8> Args;
959 if (IsCall) {
960 parseExternFuncCallArgs(*Outs, Args);
961 } else {
962 assert(F != nullptr && "function should not be null")((F != nullptr && "function should not be null") ? static_cast
<void> (0) : __assert_fail ("F != nullptr && \"function should not be null\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 962, __PRETTY_FUNCTION__))
;
963 parseFunctionArgs(*Ins, Args);
964 }
965
966 unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0;
967 // Variadic functions always use the stack.
968 bool UsesStack = false;
969 for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) {
970 unsigned Size = Args[i];
971
972 // If we have a zero-sized argument, don't attempt to lower it.
973 // AVR-GCC does not support zero-sized arguments and so we need not
974 // worry about ABI compatibility.
975 if (Size == 0) continue;
976
977 MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT;
978
979 // If we have plenty of regs to pass the whole argument do it.
980 if (!UsesStack && (Size <= RegsLeft)) {
981 const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8;
982
983 for (unsigned j = 0; j != Size; ++j) {
984 unsigned Reg = CCInfo.AllocateReg(
985 ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8)));
986 CCInfo.addLoc(
987 CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full));
988 --RegsLeft;
989 }
990
991 // Reverse the order of the pieces to agree with the "big endian" format
992 // required in the calling convention ABI.
993 std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size);
994 } else {
995 // Pass the rest of arguments using the stack.
996 UsesStack = true;
997 for (unsigned j = 0; j != Size; ++j) {
998 unsigned Offset = CCInfo.AllocateStack(
999 TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())),
1000 TD->getABITypeAlignment(
1001 EVT(LocVT).getTypeForEVT(CCInfo.getContext())));
1002 CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT,
1003 CCValAssign::Full));
1004 }
1005 }
1006 pos += Size;
1007 }
1008}
1009
1010static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI,
1011 const Function *F, const DataLayout *TD,
1012 const SmallVectorImpl<ISD::OutputArg> *Outs,
1013 const SmallVectorImpl<ISD::InputArg> *Ins,
1014 CallingConv::ID CallConv,
1015 SmallVectorImpl<CCValAssign> &ArgLocs,
1016 CCState &CCInfo, bool IsCall, bool IsVarArg) {
1017 StringRef FuncName = getFunctionName(CLI);
1018
1019 if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) {
1020 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV);
1021 } else {
1022 analyzeStandardArguments(&CLI, F, TD, Outs, Ins,
1023 CallConv, ArgLocs, CCInfo,
1024 IsCall, IsVarArg);
1025 }
1026}
1027
1028static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
1029 const Function *F, const DataLayout *TD,
1030 const SmallVectorImpl<ISD::OutputArg> *Outs,
1031 const SmallVectorImpl<ISD::InputArg> *Ins,
1032 CallingConv::ID CallConv,
1033 SmallVectorImpl<CCValAssign> &ArgLocs,
1034 CCState &CCInfo, bool IsCall, bool IsVarArg) {
1035 switch (CallConv) {
3
Control jumps to 'case AVR_BUILTIN:' at line 1036
1036 case CallingConv::AVR_BUILTIN: {
1037 analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins,
4
Forming reference to null pointer
1038 CallConv, ArgLocs, CCInfo,
1039 IsCall, IsVarArg);
1040 return;
1041 }
1042 default: {
1043 analyzeStandardArguments(CLI, F, TD, Outs, Ins,
1044 CallConv, ArgLocs, CCInfo,
1045 IsCall, IsVarArg);
1046 return;
1047 }
1048 }
1049}
1050
1051SDValue AVRTargetLowering::LowerFormalArguments(
1052 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1053 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1054 SmallVectorImpl<SDValue> &InVals) const {
1055 MachineFunction &MF = DAG.getMachineFunction();
1056 MachineFrameInfo &MFI = MF.getFrameInfo();
1057 auto DL = DAG.getDataLayout();
1058
1059 // Assign locations to all of the incoming arguments.
1060 SmallVector<CCValAssign, 16> ArgLocs;
1061 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1062 *DAG.getContext());
1063
1064 analyzeArguments(nullptr, &MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo,
1
Passing null pointer value via 1st parameter 'CLI'
2
Calling 'analyzeArguments'
1065 false, isVarArg);
1066
1067 SDValue ArgValue;
1068 for (CCValAssign &VA : ArgLocs) {
1069
1070 // Arguments stored on registers.
1071 if (VA.isRegLoc()) {
1072 EVT RegVT = VA.getLocVT();
1073 const TargetRegisterClass *RC;
1074 if (RegVT == MVT::i8) {
1075 RC = &AVR::GPR8RegClass;
1076 } else if (RegVT == MVT::i16) {
1077 RC = &AVR::DREGSRegClass;
1078 } else {
1079 llvm_unreachable("Unknown argument type!")::llvm::llvm_unreachable_internal("Unknown argument type!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1079)
;
1080 }
1081
1082 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1083 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1084
1085 // :NOTE: Clang should not promote any i8 into i16 but for safety the
1086 // following code will handle zexts or sexts generated by other
1087 // front ends. Otherwise:
1088 // If this is an 8 bit value, it is really passed promoted
1089 // to 16 bits. Insert an assert[sz]ext to capture this, then
1090 // truncate to the right size.
1091 switch (VA.getLocInfo()) {
1092 default:
1093 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1093)
;
1094 case CCValAssign::Full:
1095 break;
1096 case CCValAssign::BCvt:
1097 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1098 break;
1099 case CCValAssign::SExt:
1100 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1101 DAG.getValueType(VA.getValVT()));
1102 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1103 break;
1104 case CCValAssign::ZExt:
1105 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1106 DAG.getValueType(VA.getValVT()));
1107 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1108 break;
1109 }
1110
1111 InVals.push_back(ArgValue);
1112 } else {
1113 // Sanity check.
1114 assert(VA.isMemLoc())((VA.isMemLoc()) ? static_cast<void> (0) : __assert_fail
("VA.isMemLoc()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1114, __PRETTY_FUNCTION__))
;
1115
1116 EVT LocVT = VA.getLocVT();
1117
1118 // Create the frame index object for this incoming parameter.
1119 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1120 VA.getLocMemOffset(), true);
1121
1122 // Create the SelectionDAG nodes corresponding to a load
1123 // from this parameter.
1124 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1125 InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1126 MachinePointerInfo::getFixedStack(MF, FI),
1127 0));
1128 }
1129 }
1130
1131 // If the function takes variable number of arguments, make a frame index for
1132 // the start of the first vararg value... for expansion of llvm.va_start.
1133 if (isVarArg) {
1134 unsigned StackSize = CCInfo.getNextStackOffset();
1135 AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1136
1137 AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1138 }
1139
1140 return Chain;
1141}
1142
1143//===----------------------------------------------------------------------===//
1144// Call Calling Convention Implementation
1145//===----------------------------------------------------------------------===//
1146
1147SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1148 SmallVectorImpl<SDValue> &InVals) const {
1149 SelectionDAG &DAG = CLI.DAG;
1150 SDLoc &DL = CLI.DL;
1151 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1152 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1153 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1154 SDValue Chain = CLI.Chain;
1155 SDValue Callee = CLI.Callee;
1156 bool &isTailCall = CLI.IsTailCall;
1157 CallingConv::ID CallConv = CLI.CallConv;
1158 bool isVarArg = CLI.IsVarArg;
1159
1160 MachineFunction &MF = DAG.getMachineFunction();
1161
1162 // AVR does not yet support tail call optimization.
1163 isTailCall = false;
1164
1165 // Analyze operands of the call, assigning locations to each operand.
1166 SmallVector<CCValAssign, 16> ArgLocs;
1167 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1168 *DAG.getContext());
1169
1170 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1171 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1172 // node so that legalize doesn't hack it.
1173 const Function *F = nullptr;
1174 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1175 const GlobalValue *GV = G->getGlobal();
1176
1177 F = cast<Function>(GV);
1178 Callee =
1179 DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1180 } else if (const ExternalSymbolSDNode *ES =
1181 dyn_cast<ExternalSymbolSDNode>(Callee)) {
1182 Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1183 getPointerTy(DAG.getDataLayout()));
1184 }
1185
1186 analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo,
1187 true, isVarArg);
1188
1189 // Get a count of how many bytes are to be pushed on the stack.
1190 unsigned NumBytes = CCInfo.getNextStackOffset();
1191
1192 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1193
1194 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1195
1196 // First, walk the register assignments, inserting copies.
1197 unsigned AI, AE;
1198 bool HasStackArgs = false;
1199 for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1200 CCValAssign &VA = ArgLocs[AI];
1201 EVT RegVT = VA.getLocVT();
1202 SDValue Arg = OutVals[AI];
1203
1204 // Promote the value if needed. With Clang this should not happen.
1205 switch (VA.getLocInfo()) {
1206 default:
1207 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1207)
;
1208 case CCValAssign::Full:
1209 break;
1210 case CCValAssign::SExt:
1211 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1212 break;
1213 case CCValAssign::ZExt:
1214 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1215 break;
1216 case CCValAssign::AExt:
1217 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1218 break;
1219 case CCValAssign::BCvt:
1220 Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1221 break;
1222 }
1223
1224 // Stop when we encounter a stack argument, we need to process them
1225 // in reverse order in the loop below.
1226 if (VA.isMemLoc()) {
1227 HasStackArgs = true;
1228 break;
1229 }
1230
1231 // Arguments that can be passed on registers must be kept in the RegsToPass
1232 // vector.
1233 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1234 }
1235
1236 // Second, stack arguments have to walked in reverse order by inserting
1237 // chained stores, this ensures their order is not changed by the scheduler
1238 // and that the push instruction sequence generated is correct, otherwise they
1239 // can be freely intermixed.
1240 if (HasStackArgs) {
1241 for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
1242 unsigned Loc = AI - 1;
1243 CCValAssign &VA = ArgLocs[Loc];
1244 SDValue Arg = OutVals[Loc];
1245
1246 assert(VA.isMemLoc())((VA.isMemLoc()) ? static_cast<void> (0) : __assert_fail
("VA.isMemLoc()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1246, __PRETTY_FUNCTION__))
;
1247
1248 // SP points to one stack slot further so add one to adjust it.
1249 SDValue PtrOff = DAG.getNode(
1250 ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1251 DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1252 DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1253
1254 Chain =
1255 DAG.getStore(Chain, DL, Arg, PtrOff,
1256 MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
1257 0);
1258 }
1259 }
1260
1261 // Build a sequence of copy-to-reg nodes chained together with token chain and
1262 // flag operands which copy the outgoing args into registers. The InFlag in
1263 // necessary since all emited instructions must be stuck together.
1264 SDValue InFlag;
1265 for (auto Reg : RegsToPass) {
1266 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1267 InFlag = Chain.getValue(1);
1268 }
1269
1270 // Returns a chain & a flag for retval copy to use.
1271 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1272 SmallVector<SDValue, 8> Ops;
1273 Ops.push_back(Chain);
1274 Ops.push_back(Callee);
1275
1276 // Add argument registers to the end of the list so that they are known live
1277 // into the call.
1278 for (auto Reg : RegsToPass) {
1279 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1280 }
1281
1282 // Add a register mask operand representing the call-preserved registers.
1283 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1284 const uint32_t *Mask =
1285 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1286 assert(Mask && "Missing call preserved mask for calling convention")((Mask && "Missing call preserved mask for calling convention"
) ? static_cast<void> (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1286, __PRETTY_FUNCTION__))
;
1287 Ops.push_back(DAG.getRegisterMask(Mask));
1288
1289 if (InFlag.getNode()) {
1290 Ops.push_back(InFlag);
1291 }
1292
1293 Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1294 InFlag = Chain.getValue(1);
1295
1296 // Create the CALLSEQ_END node.
1297 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1298 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1299
1300 if (!Ins.empty()) {
1301 InFlag = Chain.getValue(1);
1302 }
1303
1304 // Handle result values, copying them out of physregs into vregs that we
1305 // return.
1306 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1307 InVals);
1308}
1309
1310/// Lower the result values of a call into the
1311/// appropriate copies out of appropriate physical registers.
1312///
1313SDValue AVRTargetLowering::LowerCallResult(
1314 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1315 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1316 SmallVectorImpl<SDValue> &InVals) const {
1317
1318 // Assign locations to each value returned by this call.
1319 SmallVector<CCValAssign, 16> RVLocs;
1320 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1321 *DAG.getContext());
1322
1323 // Handle runtime calling convs.
1324 auto CCFunction = CCAssignFnForReturn(CallConv);
1325 CCInfo.AnalyzeCallResult(Ins, CCFunction);
1326
1327 if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) {
1328 // Reverse splitted return values to get the "big endian" format required
1329 // to agree with the calling convention ABI.
1330 std::reverse(RVLocs.begin(), RVLocs.end());
1331 }
1332
1333 // Copy all of the result registers out of their specified physreg.
1334 for (CCValAssign const &RVLoc : RVLocs) {
1335 Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1336 InFlag)
1337 .getValue(1);
1338 InFlag = Chain.getValue(2);
1339 InVals.push_back(Chain.getValue(0));
1340 }
1341
1342 return Chain;
1343}
1344
1345//===----------------------------------------------------------------------===//
1346// Return Value Calling Convention Implementation
1347//===----------------------------------------------------------------------===//
1348
1349CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
1350 switch (CC) {
1351 case CallingConv::AVR_BUILTIN:
1352 return RetCC_AVR_BUILTIN;
1353 default:
1354 return RetCC_AVR;
1355 }
1356}
1357
1358bool
1359AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1360 MachineFunction &MF, bool isVarArg,
1361 const SmallVectorImpl<ISD::OutputArg> &Outs,
1362 LLVMContext &Context) const
1363{
1364 SmallVector<CCValAssign, 16> RVLocs;
1365 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1366
1367 auto CCFunction = CCAssignFnForReturn(CallConv);
1368 return CCInfo.CheckReturn(Outs, CCFunction);
1369}
1370
1371SDValue
1372AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1373 bool isVarArg,
1374 const SmallVectorImpl<ISD::OutputArg> &Outs,
1375 const SmallVectorImpl<SDValue> &OutVals,
1376 const SDLoc &dl, SelectionDAG &DAG) const {
1377 // CCValAssign - represent the assignment of the return value to locations.
1378 SmallVector<CCValAssign, 16> RVLocs;
1379
1380 // CCState - Info about the registers and stack slot.
1381 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1382 *DAG.getContext());
1383
1384 // Analyze return values.
1385 auto CCFunction = CCAssignFnForReturn(CallConv);
1386 CCInfo.AnalyzeReturn(Outs, CCFunction);
1387
1388 // If this is the first return lowered for this function, add the regs to
1389 // the liveout set for the function.
1390 MachineFunction &MF = DAG.getMachineFunction();
1391 unsigned e = RVLocs.size();
1392
1393 // Reverse splitted return values to get the "big endian" format required
1394 // to agree with the calling convention ABI.
1395 if (e > 1) {
1396 std::reverse(RVLocs.begin(), RVLocs.end());
1397 }
1398
1399 SDValue Flag;
1400 SmallVector<SDValue, 4> RetOps(1, Chain);
1401 // Copy the result values into the output registers.
1402 for (unsigned i = 0; i != e; ++i) {
1403 CCValAssign &VA = RVLocs[i];
1404 assert(VA.isRegLoc() && "Can only return in registers!")((VA.isRegLoc() && "Can only return in registers!") ?
static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1404, __PRETTY_FUNCTION__))
;
1405
1406 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1407
1408 // Guarantee that all emitted copies are stuck together with flags.
1409 Flag = Chain.getValue(1);
1410 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1411 }
1412
1413 // Don't emit the ret/reti instruction when the naked attribute is present in
1414 // the function being compiled.
1415 if (MF.getFunction().getAttributes().hasAttribute(
1416 AttributeList::FunctionIndex, Attribute::Naked)) {
1417 return Chain;
1418 }
1419
1420 unsigned RetOpc =
1421 (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL)
1422 ? AVRISD::RETI_FLAG
1423 : AVRISD::RET_FLAG;
1424
1425 RetOps[0] = Chain; // Update chain.
1426
1427 if (Flag.getNode()) {
1428 RetOps.push_back(Flag);
1429 }
1430
1431 return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1432}
1433
1434//===----------------------------------------------------------------------===//
1435// Custom Inserters
1436//===----------------------------------------------------------------------===//
1437
1438MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1439 MachineBasicBlock *BB) const {
1440 unsigned Opc;
1441 const TargetRegisterClass *RC;
1442 bool HasRepeatedOperand = false;
1443 MachineFunction *F = BB->getParent();
1444 MachineRegisterInfo &RI = F->getRegInfo();
1445 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1446 DebugLoc dl = MI.getDebugLoc();
1447
1448 switch (MI.getOpcode()) {
1449 default:
1450 llvm_unreachable("Invalid shift opcode!")::llvm::llvm_unreachable_internal("Invalid shift opcode!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1450)
;
1451 case AVR::Lsl8:
1452 Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
1453 RC = &AVR::GPR8RegClass;
1454 HasRepeatedOperand = true;
1455 break;
1456 case AVR::Lsl16:
1457 Opc = AVR::LSLWRd;
1458 RC = &AVR::DREGSRegClass;
1459 break;
1460 case AVR::Asr8:
1461 Opc = AVR::ASRRd;
1462 RC = &AVR::GPR8RegClass;
1463 break;
1464 case AVR::Asr16:
1465 Opc = AVR::ASRWRd;
1466 RC = &AVR::DREGSRegClass;
1467 break;
1468 case AVR::Lsr8:
1469 Opc = AVR::LSRRd;
1470 RC = &AVR::GPR8RegClass;
1471 break;
1472 case AVR::Lsr16:
1473 Opc = AVR::LSRWRd;
1474 RC = &AVR::DREGSRegClass;
1475 break;
1476 case AVR::Rol8:
1477 Opc = AVR::ROLBRd;
1478 RC = &AVR::GPR8RegClass;
1479 break;
1480 case AVR::Rol16:
1481 Opc = AVR::ROLWRd;
1482 RC = &AVR::DREGSRegClass;
1483 break;
1484 case AVR::Ror8:
1485 Opc = AVR::RORBRd;
1486 RC = &AVR::GPR8RegClass;
1487 break;
1488 case AVR::Ror16:
1489 Opc = AVR::RORWRd;
1490 RC = &AVR::DREGSRegClass;
1491 break;
1492 }
1493
1494 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1495
1496 MachineFunction::iterator I;
1497 for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
1498 if (I != F->end()) ++I;
1499
1500 // Create loop block.
1501 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1502 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1503
1504 F->insert(I, LoopBB);
1505 F->insert(I, RemBB);
1506
1507 // Update machine-CFG edges by transferring all successors of the current
1508 // block to the block containing instructions after shift.
1509 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1510 BB->end());
1511 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1512
1513 // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
1514 BB->addSuccessor(LoopBB);
1515 BB->addSuccessor(RemBB);
1516 LoopBB->addSuccessor(RemBB);
1517 LoopBB->addSuccessor(LoopBB);
1518
1519 Register ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
1520 Register ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
1521 Register ShiftReg = RI.createVirtualRegister(RC);
1522 Register ShiftReg2 = RI.createVirtualRegister(RC);
1523 Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1524 Register SrcReg = MI.getOperand(1).getReg();
1525 Register DstReg = MI.getOperand(0).getReg();
1526
1527 // BB:
1528 // cpi N, 0
1529 // breq RemBB
1530 BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
1531 BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
1532
1533 // LoopBB:
1534 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1535 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1536 // ShiftReg2 = shift ShiftReg
1537 // ShiftAmt2 = ShiftAmt - 1;
1538 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
1539 .addReg(SrcReg)
1540 .addMBB(BB)
1541 .addReg(ShiftReg2)
1542 .addMBB(LoopBB);
1543 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1544 .addReg(ShiftAmtSrcReg)
1545 .addMBB(BB)
1546 .addReg(ShiftAmtReg2)
1547 .addMBB(LoopBB);
1548
1549 auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1550 if (HasRepeatedOperand)
1551 ShiftMI.addReg(ShiftReg);
1552
1553 BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
1554 .addReg(ShiftAmtReg)
1555 .addImm(1);
1556 BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
1557
1558 // RemBB:
1559 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1560 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
1561 .addReg(SrcReg)
1562 .addMBB(BB)
1563 .addReg(ShiftReg2)
1564 .addMBB(LoopBB);
1565
1566 MI.eraseFromParent(); // The pseudo instruction is gone now.
1567 return RemBB;
1568}
1569
1570static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1571 if (I->getOpcode() == AVR::COPY) {
1572 Register SrcReg = I->getOperand(1).getReg();
1573 return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1574 }
1575
1576 return false;
1577}
1578
1579// The mul instructions wreak havock on our zero_reg R1. We need to clear it
1580// after the result has been evacuated. This is probably not the best way to do
1581// it, but it works for now.
1582MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1583 MachineBasicBlock *BB) const {
1584 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1585 MachineBasicBlock::iterator I(MI);
1586 ++I; // in any case insert *after* the mul instruction
1587 if (isCopyMulResult(I))
1588 ++I;
1589 if (isCopyMulResult(I))
1590 ++I;
1591 BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1592 .addReg(AVR::R1)
1593 .addReg(AVR::R1);
1594 return BB;
1595}
1596
1597MachineBasicBlock *
1598AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1599 MachineBasicBlock *MBB) const {
1600 int Opc = MI.getOpcode();
1601
1602 // Pseudo shift instructions with a non constant shift amount are expanded
1603 // into a loop.
1604 switch (Opc) {
1605 case AVR::Lsl8:
1606 case AVR::Lsl16:
1607 case AVR::Lsr8:
1608 case AVR::Lsr16:
1609 case AVR::Rol8:
1610 case AVR::Rol16:
1611 case AVR::Ror8:
1612 case AVR::Ror16:
1613 case AVR::Asr8:
1614 case AVR::Asr16:
1615 return insertShift(MI, MBB);
1616 case AVR::MULRdRr:
1617 case AVR::MULSRdRr:
1618 return insertMul(MI, MBB);
1619 }
1620
1621 assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&(((Opc == AVR::Select16 || Opc == AVR::Select8) && "Unexpected instr type to insert"
) ? static_cast<void> (0) : __assert_fail ("(Opc == AVR::Select16 || Opc == AVR::Select8) && \"Unexpected instr type to insert\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1622, __PRETTY_FUNCTION__))
1622 "Unexpected instr type to insert")(((Opc == AVR::Select16 || Opc == AVR::Select8) && "Unexpected instr type to insert"
) ? static_cast<void> (0) : __assert_fail ("(Opc == AVR::Select16 || Opc == AVR::Select8) && \"Unexpected instr type to insert\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1622, __PRETTY_FUNCTION__))
;
1623
1624 const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1625 ->getParent()
1626 ->getSubtarget()
1627 .getInstrInfo();
1628 DebugLoc dl = MI.getDebugLoc();
1629
1630 // To "insert" a SELECT instruction, we insert the diamond
1631 // control-flow pattern. The incoming instruction knows the
1632 // destination vreg to set, the condition code register to branch
1633 // on, the true/false values to select between, and a branch opcode
1634 // to use.
1635
1636 MachineFunction *MF = MBB->getParent();
1637 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1638 MachineBasicBlock *FallThrough = MBB->getFallThrough();
1639
1640 // If the current basic block falls through to another basic block,
1641 // we must insert an unconditional branch to the fallthrough destination
1642 // if we are to insert basic blocks at the prior fallthrough point.
1643 if (FallThrough != nullptr) {
1644 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough);
1645 }
1646
1647 MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1648 MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1649
1650 MachineFunction::iterator I;
1651 for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
1652 if (I != MF->end()) ++I;
1653 MF->insert(I, trueMBB);
1654 MF->insert(I, falseMBB);
1655
1656 // Transfer remaining instructions and all successors of the current
1657 // block to the block which will contain the Phi node for the
1658 // select.
1659 trueMBB->splice(trueMBB->begin(), MBB,
1660 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1661 trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1662
1663 AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1664 BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1665 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1666 MBB->addSuccessor(falseMBB);
1667 MBB->addSuccessor(trueMBB);
1668
1669 // Unconditionally flow back to the true block
1670 BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1671 falseMBB->addSuccessor(trueMBB);
1672
1673 // Set up the Phi node to determine where we came from
1674 BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
1675 .addReg(MI.getOperand(1).getReg())
1676 .addMBB(MBB)
1677 .addReg(MI.getOperand(2).getReg())
1678 .addMBB(falseMBB) ;
1679
1680 MI.eraseFromParent(); // The pseudo instruction is gone now.
1681 return trueMBB;
1682}
1683
1684//===----------------------------------------------------------------------===//
1685// Inline Asm Support
1686//===----------------------------------------------------------------------===//
1687
1688AVRTargetLowering::ConstraintType
1689AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1690 if (Constraint.size() == 1) {
1691 // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1692 switch (Constraint[0]) {
1693 default:
1694 break;
1695 case 'a': // Simple upper registers
1696 case 'b': // Base pointer registers pairs
1697 case 'd': // Upper register
1698 case 'l': // Lower registers
1699 case 'e': // Pointer register pairs
1700 case 'q': // Stack pointer register
1701 case 'r': // Any register
1702 case 'w': // Special upper register pairs
1703 return C_RegisterClass;
1704 case 't': // Temporary register
1705 case 'x': case 'X': // Pointer register pair X
1706 case 'y': case 'Y': // Pointer register pair Y
1707 case 'z': case 'Z': // Pointer register pair Z
1708 return C_Register;
1709 case 'Q': // A memory address based on Y or Z pointer with displacement.
1710 return C_Memory;
1711 case 'G': // Floating point constant
1712 case 'I': // 6-bit positive integer constant
1713 case 'J': // 6-bit negative integer constant
1714 case 'K': // Integer constant (Range: 2)
1715 case 'L': // Integer constant (Range: 0)
1716 case 'M': // 8-bit integer constant
1717 case 'N': // Integer constant (Range: -1)
1718 case 'O': // Integer constant (Range: 8, 16, 24)
1719 case 'P': // Integer constant (Range: 1)
1720 case 'R': // Integer constant (Range: -6 to 5)x
1721 return C_Immediate;
1722 }
1723 }
1724
1725 return TargetLowering::getConstraintType(Constraint);
1726}
1727
1728unsigned
1729AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1730 // Not sure if this is actually the right thing to do, but we got to do
1731 // *something* [agnat]
1732 switch (ConstraintCode[0]) {
1733 case 'Q':
1734 return InlineAsm::Constraint_Q;
1735 }
1736 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1737}
1738
1739AVRTargetLowering::ConstraintWeight
1740AVRTargetLowering::getSingleConstraintMatchWeight(
1741 AsmOperandInfo &info, const char *constraint) const {
1742 ConstraintWeight weight = CW_Invalid;
1743 Value *CallOperandVal = info.CallOperandVal;
1744
1745 // If we don't have a value, we can't do a match,
1746 // but allow it at the lowest weight.
1747 // (this behaviour has been copied from the ARM backend)
1748 if (!CallOperandVal) {
1749 return CW_Default;
1750 }
1751
1752 // Look at the constraint type.
1753 switch (*constraint) {
1754 default:
1755 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1756 break;
1757 case 'd':
1758 case 'r':
1759 case 'l':
1760 weight = CW_Register;
1761 break;
1762 case 'a':
1763 case 'b':
1764 case 'e':
1765 case 'q':
1766 case 't':
1767 case 'w':
1768 case 'x': case 'X':
1769 case 'y': case 'Y':
1770 case 'z': case 'Z':
1771 weight = CW_SpecificReg;
1772 break;
1773 case 'G':
1774 if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1775 if (C->isZero()) {
1776 weight = CW_Constant;
1777 }
1778 }
1779 break;
1780 case 'I':
1781 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1782 if (isUInt<6>(C->getZExtValue())) {
1783 weight = CW_Constant;
1784 }
1785 }
1786 break;
1787 case 'J':
1788 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1789 if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1790 weight = CW_Constant;
1791 }
1792 }
1793 break;
1794 case 'K':
1795 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1796 if (C->getZExtValue() == 2) {
1797 weight = CW_Constant;
1798 }
1799 }
1800 break;
1801 case 'L':
1802 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1803 if (C->getZExtValue() == 0) {
1804 weight = CW_Constant;
1805 }
1806 }
1807 break;
1808 case 'M':
1809 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1810 if (isUInt<8>(C->getZExtValue())) {
1811 weight = CW_Constant;
1812 }
1813 }
1814 break;
1815 case 'N':
1816 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1817 if (C->getSExtValue() == -1) {
1818 weight = CW_Constant;
1819 }
1820 }
1821 break;
1822 case 'O':
1823 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1824 if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1825 (C->getZExtValue() == 24)) {
1826 weight = CW_Constant;
1827 }
1828 }
1829 break;
1830 case 'P':
1831 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1832 if (C->getZExtValue() == 1) {
1833 weight = CW_Constant;
1834 }
1835 }
1836 break;
1837 case 'R':
1838 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1839 if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1840 weight = CW_Constant;
1841 }
1842 }
1843 break;
1844 case 'Q':
1845 weight = CW_Memory;
1846 break;
1847 }
1848
1849 return weight;
1850}
1851
1852std::pair<unsigned, const TargetRegisterClass *>
1853AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1854 StringRef Constraint,
1855 MVT VT) const {
1856 // We only support i8 and i16.
1857 //
1858 //:FIXME: remove this assert for now since it gets sometimes executed
1859 // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
1860
1861 if (Constraint.size() == 1) {
1862 switch (Constraint[0]) {
1863 case 'a': // Simple upper registers r16..r23.
1864 return std::make_pair(0U, &AVR::LD8loRegClass);
1865 case 'b': // Base pointer registers: y, z.
1866 return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1867 case 'd': // Upper registers r16..r31.
1868 return std::make_pair(0U, &AVR::LD8RegClass);
1869 case 'l': // Lower registers r0..r15.
1870 return std::make_pair(0U, &AVR::GPR8loRegClass);
1871 case 'e': // Pointer register pairs: x, y, z.
1872 return std::make_pair(0U, &AVR::PTRREGSRegClass);
1873 case 'q': // Stack pointer register: SPH:SPL.
1874 return std::make_pair(0U, &AVR::GPRSPRegClass);
1875 case 'r': // Any register: r0..r31.
1876 if (VT == MVT::i8)
1877 return std::make_pair(0U, &AVR::GPR8RegClass);
1878
1879 assert(VT == MVT::i16 && "inline asm constraint too large")((VT == MVT::i16 && "inline asm constraint too large"
) ? static_cast<void> (0) : __assert_fail ("VT == MVT::i16 && \"inline asm constraint too large\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1879, __PRETTY_FUNCTION__))
;
1880 return std::make_pair(0U, &AVR::DREGSRegClass);
1881 case 't': // Temporary register: r0.
1882 return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1883 case 'w': // Special upper register pairs: r24, r26, r28, r30.
1884 return std::make_pair(0U, &AVR::IWREGSRegClass);
1885 case 'x': // Pointer register pair X: r27:r26.
1886 case 'X':
1887 return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1888 case 'y': // Pointer register pair Y: r29:r28.
1889 case 'Y':
1890 return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1891 case 'z': // Pointer register pair Z: r31:r30.
1892 case 'Z':
1893 return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
1894 default:
1895 break;
1896 }
1897 }
1898
1899 return TargetLowering::getRegForInlineAsmConstraint(
1900 Subtarget.getRegisterInfo(), Constraint, VT);
1901}
1902
1903void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1904 std::string &Constraint,
1905 std::vector<SDValue> &Ops,
1906 SelectionDAG &DAG) const {
1907 SDValue Result(0, 0);
1908 SDLoc DL(Op);
1909 EVT Ty = Op.getValueType();
1910
1911 // Currently only support length 1 constraints.
1912 if (Constraint.length() != 1) {
1913 return;
1914 }
1915
1916 char ConstraintLetter = Constraint[0];
1917 switch (ConstraintLetter) {
1918 default:
1919 break;
1920 // Deal with integers first:
1921 case 'I':
1922 case 'J':
1923 case 'K':
1924 case 'L':
1925 case 'M':
1926 case 'N':
1927 case 'O':
1928 case 'P':
1929 case 'R': {
1930 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1931 if (!C) {
1932 return;
1933 }
1934
1935 int64_t CVal64 = C->getSExtValue();
1936 uint64_t CUVal64 = C->getZExtValue();
1937 switch (ConstraintLetter) {
1938 case 'I': // 0..63
1939 if (!isUInt<6>(CUVal64))
1940 return;
1941 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1942 break;
1943 case 'J': // -63..0
1944 if (CVal64 < -63 || CVal64 > 0)
1945 return;
1946 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1947 break;
1948 case 'K': // 2
1949 if (CUVal64 != 2)
1950 return;
1951 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1952 break;
1953 case 'L': // 0
1954 if (CUVal64 != 0)
1955 return;
1956 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1957 break;
1958 case 'M': // 0..255
1959 if (!isUInt<8>(CUVal64))
1960 return;
1961 // i8 type may be printed as a negative number,
1962 // e.g. 254 would be printed as -2,
1963 // so we force it to i16 at least.
1964 if (Ty.getSimpleVT() == MVT::i8) {
1965 Ty = MVT::i16;
1966 }
1967 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1968 break;
1969 case 'N': // -1
1970 if (CVal64 != -1)
1971 return;
1972 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1973 break;
1974 case 'O': // 8, 16, 24
1975 if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
1976 return;
1977 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1978 break;
1979 case 'P': // 1
1980 if (CUVal64 != 1)
1981 return;
1982 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1983 break;
1984 case 'R': // -6..5
1985 if (CVal64 < -6 || CVal64 > 5)
1986 return;
1987 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1988 break;
1989 }
1990
1991 break;
1992 }
1993 case 'G':
1994 const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
1995 if (!FC || !FC->isZero())
1996 return;
1997 // Soften float to i8 0
1998 Result = DAG.getTargetConstant(0, DL, MVT::i8);
1999 break;
2000 }
2001
2002 if (Result.getNode()) {
2003 Ops.push_back(Result);
2004 return;
2005 }
2006
2007 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2008}
2009
2010Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT,
2011 const MachineFunction &MF) const {
2012 Register Reg;
2013
2014 if (VT == LLT::scalar(8)) {
2015 Reg = StringSwitch<unsigned>(RegName)
2016 .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
2017 .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
2018 .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
2019 .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
2020 .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
2021 .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
2022 .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
2023 .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
2024 .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
2025 .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
2026 .Case("r30", AVR::R30).Case("r31", AVR::R31)
2027 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2028 .Default(0);
2029 } else {
2030 Reg = StringSwitch<unsigned>(RegName)
2031 .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
2032 .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
2033 .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
2034 .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
2035 .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
2036 .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
2037 .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
2038 .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
2039 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2040 .Default(0);
2041 }
2042
2043 if (Reg)
2044 return Reg;
2045
2046 report_fatal_error("Invalid register name global variable");
2047}
2048
2049} // end of namespace llvm