Bug Summary

File:lib/Bitcode/Reader/BitcodeReader.cpp
Warning:line 2878, column 3
1st function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name BitcodeReader.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn326246/build-llvm/lib/Bitcode/Reader -I /build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader -I /build/llvm-toolchain-snapshot-7~svn326246/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn326246/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn326246/build-llvm/lib/Bitcode/Reader -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-02-28-041547-14988-1 -x c++ /build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp

/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp

1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Bitcode/BitcodeReader.h"
11#include "MetadataLoader.h"
12#include "ValueList.h"
13#include "llvm/ADT/APFloat.h"
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/Optional.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/Bitcode/BitstreamReader.h"
25#include "llvm/Bitcode/LLVMBitCodes.h"
26#include "llvm/IR/Argument.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/AutoUpgrade.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallSite.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/Comdat.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DebugInfo.h"
37#include "llvm/IR/DebugInfoMetadata.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GVMaterializer.h"
42#include "llvm/IR/GlobalAlias.h"
43#include "llvm/IR/GlobalIFunc.h"
44#include "llvm/IR/GlobalIndirectSymbol.h"
45#include "llvm/IR/GlobalObject.h"
46#include "llvm/IR/GlobalValue.h"
47#include "llvm/IR/GlobalVariable.h"
48#include "llvm/IR/InlineAsm.h"
49#include "llvm/IR/InstIterator.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/Intrinsics.h"
54#include "llvm/IR/LLVMContext.h"
55#include "llvm/IR/Metadata.h"
56#include "llvm/IR/Module.h"
57#include "llvm/IR/ModuleSummaryIndex.h"
58#include "llvm/IR/Operator.h"
59#include "llvm/IR/Type.h"
60#include "llvm/IR/Value.h"
61#include "llvm/IR/Verifier.h"
62#include "llvm/Support/AtomicOrdering.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/Debug.h"
67#include "llvm/Support/Error.h"
68#include "llvm/Support/ErrorHandling.h"
69#include "llvm/Support/ErrorOr.h"
70#include "llvm/Support/ManagedStatic.h"
71#include "llvm/Support/MathExtras.h"
72#include "llvm/Support/MemoryBuffer.h"
73#include "llvm/Support/raw_ostream.h"
74#include <algorithm>
75#include <cassert>
76#include <cstddef>
77#include <cstdint>
78#include <deque>
79#include <map>
80#include <memory>
81#include <set>
82#include <string>
83#include <system_error>
84#include <tuple>
85#include <utility>
86#include <vector>
87
88using namespace llvm;
89
90static cl::opt<bool> PrintSummaryGUIDs(
91 "print-summary-global-ids", cl::init(false), cl::Hidden,
92 cl::desc(
93 "Print the global id for each value when reading the module summary"));
94
95namespace {
96
97enum {
98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99};
100
101} // end anonymous namespace
102
103static Error error(const Twine &Message) {
104 return make_error<StringError>(
53
Calling 'make_error'
64
Returning from 'make_error'
105 Message, make_error_code(BitcodeError::CorruptedBitcode));
31
Calling 'make_error_code'
52
Returning from 'make_error_code'
106}
107
108/// Helper to read the header common to all bitcode files.
109static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
110 // Sniff for the signature.
111 if (!Stream.canSkipToPos(4) ||
112 Stream.Read(8) != 'B' ||
113 Stream.Read(8) != 'C' ||
114 Stream.Read(4) != 0x0 ||
115 Stream.Read(4) != 0xC ||
116 Stream.Read(4) != 0xE ||
117 Stream.Read(4) != 0xD)
118 return false;
119 return true;
120}
121
122static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125
126 if (Buffer.getBufferSize() & 3)
127 return error("Invalid bitcode signature");
128
129 // If we have a wrapper header, parse it and ignore the non-bc file contents.
130 // The magic number is 0x0B17C0DE stored in little endian.
131 if (isBitcodeWrapper(BufPtr, BufEnd))
132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133 return error("Invalid bitcode wrapper header");
134
135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136 if (!hasValidBitcodeHeader(Stream))
137 return error("Invalid bitcode signature");
138
139 return std::move(Stream);
140}
141
142/// Convert a string from a record into an std::string, return true on failure.
143template <typename StrTy>
144static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145 StrTy &Result) {
146 if (Idx > Record.size())
147 return true;
148
149 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150 Result += (char)Record[i];
151 return false;
152}
153
154// Strip all the TBAA attachment for the module.
155static void stripTBAA(Module *M) {
156 for (auto &F : *M) {
157 if (F.isMaterializable())
158 continue;
159 for (auto &I : instructions(F))
160 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161 }
162}
163
164/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165/// "epoch" encoded in the bitcode, and return the producer name if any.
166static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
168 return error("Invalid record");
169
170 // Read all the records.
171 SmallVector<uint64_t, 64> Record;
172
173 std::string ProducerIdentification;
174
175 while (true) {
176 BitstreamEntry Entry = Stream.advance();
177
178 switch (Entry.Kind) {
179 default:
180 case BitstreamEntry::Error:
181 return error("Malformed block");
182 case BitstreamEntry::EndBlock:
183 return ProducerIdentification;
184 case BitstreamEntry::Record:
185 // The interesting case.
186 break;
187 }
188
189 // Read a record.
190 Record.clear();
191 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192 switch (BitCode) {
193 default: // Default behavior: reject
194 return error("Invalid value");
195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196 convertToString(Record, 0, ProducerIdentification);
197 break;
198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199 unsigned epoch = (unsigned)Record[0];
200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201 return error(
202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204 }
205 }
206 }
207 }
208}
209
210static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
211 // We expect a number of well-defined blocks, though we don't necessarily
212 // need to understand them all.
213 while (true) {
214 if (Stream.AtEndOfStream())
215 return "";
216
217 BitstreamEntry Entry = Stream.advance();
218 switch (Entry.Kind) {
219 case BitstreamEntry::EndBlock:
220 case BitstreamEntry::Error:
221 return error("Malformed block");
222
223 case BitstreamEntry::SubBlock:
224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225 return readIdentificationBlock(Stream);
226
227 // Ignore other sub-blocks.
228 if (Stream.SkipBlock())
229 return error("Malformed block");
230 continue;
231 case BitstreamEntry::Record:
232 Stream.skipRecord(Entry.ID);
233 continue;
234 }
235 }
236}
237
238static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
240 return error("Invalid record");
241
242 SmallVector<uint64_t, 64> Record;
243 // Read all the records for this module.
244
245 while (true) {
246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247
248 switch (Entry.Kind) {
249 case BitstreamEntry::SubBlock: // Handled for us already.
250 case BitstreamEntry::Error:
251 return error("Malformed block");
252 case BitstreamEntry::EndBlock:
253 return false;
254 case BitstreamEntry::Record:
255 // The interesting case.
256 break;
257 }
258
259 // Read a record.
260 switch (Stream.readRecord(Entry.ID, Record)) {
261 default:
262 break; // Default behavior, ignore unknown content.
263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264 std::string S;
265 if (convertToString(Record, 0, S))
266 return error("Invalid record");
267 // Check for the i386 and other (x86_64, ARM) conventions
268 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269 S.find("__OBJC,__category") != std::string::npos)
270 return true;
271 break;
272 }
273 }
274 Record.clear();
275 }
276 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 276)
;
277}
278
279static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
280 // We expect a number of well-defined blocks, though we don't necessarily
281 // need to understand them all.
282 while (true) {
283 BitstreamEntry Entry = Stream.advance();
284
285 switch (Entry.Kind) {
286 case BitstreamEntry::Error:
287 return error("Malformed block");
288 case BitstreamEntry::EndBlock:
289 return false;
290
291 case BitstreamEntry::SubBlock:
292 if (Entry.ID == bitc::MODULE_BLOCK_ID)
293 return hasObjCCategoryInModule(Stream);
294
295 // Ignore other sub-blocks.
296 if (Stream.SkipBlock())
297 return error("Malformed block");
298 continue;
299
300 case BitstreamEntry::Record:
301 Stream.skipRecord(Entry.ID);
302 continue;
303 }
304 }
305}
306
307static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
309 return error("Invalid record");
310
311 SmallVector<uint64_t, 64> Record;
312
313 std::string Triple;
314
315 // Read all the records for this module.
316 while (true) {
317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318
319 switch (Entry.Kind) {
320 case BitstreamEntry::SubBlock: // Handled for us already.
321 case BitstreamEntry::Error:
322 return error("Malformed block");
323 case BitstreamEntry::EndBlock:
324 return Triple;
325 case BitstreamEntry::Record:
326 // The interesting case.
327 break;
328 }
329
330 // Read a record.
331 switch (Stream.readRecord(Entry.ID, Record)) {
332 default: break; // Default behavior, ignore unknown content.
333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
334 std::string S;
335 if (convertToString(Record, 0, S))
336 return error("Invalid record");
337 Triple = S;
338 break;
339 }
340 }
341 Record.clear();
342 }
343 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 343)
;
344}
345
346static Expected<std::string> readTriple(BitstreamCursor &Stream) {
347 // We expect a number of well-defined blocks, though we don't necessarily
348 // need to understand them all.
349 while (true) {
350 BitstreamEntry Entry = Stream.advance();
351
352 switch (Entry.Kind) {
353 case BitstreamEntry::Error:
354 return error("Malformed block");
355 case BitstreamEntry::EndBlock:
356 return "";
357
358 case BitstreamEntry::SubBlock:
359 if (Entry.ID == bitc::MODULE_BLOCK_ID)
360 return readModuleTriple(Stream);
361
362 // Ignore other sub-blocks.
363 if (Stream.SkipBlock())
364 return error("Malformed block");
365 continue;
366
367 case BitstreamEntry::Record:
368 Stream.skipRecord(Entry.ID);
369 continue;
370 }
371 }
372}
373
374namespace {
375
376class BitcodeReaderBase {
377protected:
378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379 : Stream(std::move(Stream)), Strtab(Strtab) {
380 this->Stream.setBlockInfo(&BlockInfo);
381 }
382
383 BitstreamBlockInfo BlockInfo;
384 BitstreamCursor Stream;
385 StringRef Strtab;
386
387 /// In version 2 of the bitcode we store names of global values and comdats in
388 /// a string table rather than in the VST.
389 bool UseStrtab = false;
390
391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392
393 /// If this module uses a string table, pop the reference to the string table
394 /// and return the referenced string and the rest of the record. Otherwise
395 /// just return the record itself.
396 std::pair<StringRef, ArrayRef<uint64_t>>
397 readNameFromStrtab(ArrayRef<uint64_t> Record);
398
399 bool readBlockInfo();
400
401 // Contains an arbitrary and optional string identifying the bitcode producer
402 std::string ProducerIdentification;
403
404 Error error(const Twine &Message);
405};
406
407} // end anonymous namespace
408
409Error BitcodeReaderBase::error(const Twine &Message) {
410 std::string FullMsg = Message.str();
411 if (!ProducerIdentification.empty())
21
Assuming the condition is false
22
Taking false branch
412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413 LLVM_VERSION_STRING"7.0.0" "')";
414 return ::error(FullMsg);
23
Calling constructor for 'Twine'
29
Returning from constructor for 'Twine'
30
Calling 'error'
65
Returning from 'error'
415}
416
417Expected<unsigned>
418BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419 if (Record.empty())
420 return error("Invalid record");
421 unsigned ModuleVersion = Record[0];
422 if (ModuleVersion > 2)
423 return error("Invalid value");
424 UseStrtab = ModuleVersion >= 2;
425 return ModuleVersion;
426}
427
428std::pair<StringRef, ArrayRef<uint64_t>>
429BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430 if (!UseStrtab)
431 return {"", Record};
432 // Invalid reference. Let the caller complain about the record being empty.
433 if (Record[0] + Record[1] > Strtab.size())
434 return {"", {}};
435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436}
437
438namespace {
439
440class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441 LLVMContext &Context;
442 Module *TheModule = nullptr;
443 // Next offset to start scanning for lazy parsing of function bodies.
444 uint64_t NextUnreadBit = 0;
445 // Last function offset found in the VST.
446 uint64_t LastFunctionBlockBit = 0;
447 bool SeenValueSymbolTable = false;
448 uint64_t VSTOffset = 0;
449
450 std::vector<std::string> SectionTable;
451 std::vector<std::string> GCTable;
452
453 std::vector<Type*> TypeList;
454 BitcodeReaderValueList ValueList;
455 Optional<MetadataLoader> MDLoader;
456 std::vector<Comdat *> ComdatList;
457 SmallVector<Instruction *, 64> InstructionList;
458
459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464
465 /// The set of attributes by index. Index zero in the file is for null, and
466 /// is thus not represented here. As such all indices are off by one.
467 std::vector<AttributeList> MAttributes;
468
469 /// The set of attribute groups.
470 std::map<unsigned, AttributeList> MAttributeGroups;
471
472 /// While parsing a function body, this is a list of the basic blocks for the
473 /// function.
474 std::vector<BasicBlock*> FunctionBBs;
475
476 // When reading the module header, this list is populated with functions that
477 // have bodies later in the file.
478 std::vector<Function*> FunctionsWithBodies;
479
480 // When intrinsic functions are encountered which require upgrading they are
481 // stored here with their replacement function.
482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483 UpdatedIntrinsicMap UpgradedIntrinsics;
484 // Intrinsics which were remangled because of types rename
485 UpdatedIntrinsicMap RemangledIntrinsics;
486
487 // Several operations happen after the module header has been read, but
488 // before function bodies are processed. This keeps track of whether
489 // we've done this yet.
490 bool SeenFirstFunctionBody = false;
491
492 /// When function bodies are initially scanned, this map contains info about
493 /// where to find deferred function body in the stream.
494 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495
496 /// When Metadata block is initially scanned when parsing the module, we may
497 /// choose to defer parsing of the metadata. This vector contains info about
498 /// which Metadata blocks are deferred.
499 std::vector<uint64_t> DeferredMetadataInfo;
500
501 /// These are basic blocks forward-referenced by block addresses. They are
502 /// inserted lazily into functions when they're loaded. The basic block ID is
503 /// its index into the vector.
504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505 std::deque<Function *> BasicBlockFwdRefQueue;
506
507 /// Indicates that we are using a new encoding for instruction operands where
508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509 /// instruction number, for a more compact encoding. Some instruction
510 /// operands are not relative to the instruction ID: basic block numbers, and
511 /// types. Once the old style function blocks have been phased out, we would
512 /// not need this flag.
513 bool UseRelativeIDs = false;
514
515 /// True if all functions will be materialized, negating the need to process
516 /// (e.g.) blockaddress forward references.
517 bool WillMaterializeAllForwardRefs = false;
518
519 bool StripDebugInfo = false;
520 TBAAVerifier TBAAVerifyHelper;
521
522 std::vector<std::string> BundleTags;
523 SmallVector<SyncScope::ID, 8> SSIDs;
524
525public:
526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527 StringRef ProducerIdentification, LLVMContext &Context);
528
529 Error materializeForwardReferencedFunctions();
530
531 Error materialize(GlobalValue *GV) override;
532 Error materializeModule() override;
533 std::vector<StructType *> getIdentifiedStructTypes() const override;
534
535 /// \brief Main interface to parsing a bitcode buffer.
536 /// \returns true if an error occurred.
537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538 bool IsImporting = false);
539
540 static uint64_t decodeSignRotatedValue(uint64_t V);
541
542 /// Materialize any deferred Metadata block.
543 Error materializeMetadata() override;
544
545 void setStripDebugInfo() override;
546
547private:
548 std::vector<StructType *> IdentifiedStructTypes;
549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550 StructType *createIdentifiedStructType(LLVMContext &Context);
551
552 Type *getTypeByID(unsigned ID);
553
554 Value *getFnValueByID(unsigned ID, Type *Ty) {
555 if (Ty && Ty->isMetadataTy())
556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557 return ValueList.getValueFwdRef(ID, Ty);
558 }
559
560 Metadata *getFnMetadataByID(unsigned ID) {
561 return MDLoader->getMetadataFwdRefOrLoad(ID);
562 }
563
564 BasicBlock *getBasicBlock(unsigned ID) const {
565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566 return FunctionBBs[ID];
567 }
568
569 AttributeList getAttributes(unsigned i) const {
570 if (i-1 < MAttributes.size())
571 return MAttributes[i-1];
572 return AttributeList();
573 }
574
575 /// Read a value/type pair out of the specified record from slot 'Slot'.
576 /// Increment Slot past the number of slots used in the record. Return true on
577 /// failure.
578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579 unsigned InstNum, Value *&ResVal) {
580 if (Slot == Record.size()) return true;
581 unsigned ValNo = (unsigned)Record[Slot++];
582 // Adjust the ValNo, if it was encoded relative to the InstNum.
583 if (UseRelativeIDs)
584 ValNo = InstNum - ValNo;
585 if (ValNo < InstNum) {
586 // If this is not a forward reference, just return the value we already
587 // have.
588 ResVal = getFnValueByID(ValNo, nullptr);
589 return ResVal == nullptr;
590 }
591 if (Slot == Record.size())
592 return true;
593
594 unsigned TypeNo = (unsigned)Record[Slot++];
595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596 return ResVal == nullptr;
597 }
598
599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600 /// past the number of slots used by the value in the record. Return true if
601 /// there is an error.
602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603 unsigned InstNum, Type *Ty, Value *&ResVal) {
604 if (getValue(Record, Slot, InstNum, Ty, ResVal))
605 return true;
606 // All values currently take a single record slot.
607 ++Slot;
608 return false;
609 }
610
611 /// Like popValue, but does not increment the Slot number.
612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613 unsigned InstNum, Type *Ty, Value *&ResVal) {
614 ResVal = getValue(Record, Slot, InstNum, Ty);
615 return ResVal == nullptr;
616 }
617
618 /// Version of getValue that returns ResVal directly, or 0 if there is an
619 /// error.
620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621 unsigned InstNum, Type *Ty) {
622 if (Slot == Record.size()) return nullptr;
623 unsigned ValNo = (unsigned)Record[Slot];
624 // Adjust the ValNo, if it was encoded relative to the InstNum.
625 if (UseRelativeIDs)
626 ValNo = InstNum - ValNo;
627 return getFnValueByID(ValNo, Ty);
628 }
629
630 /// Like getValue, but decodes signed VBRs.
631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632 unsigned InstNum, Type *Ty) {
633 if (Slot == Record.size()) return nullptr;
634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635 // Adjust the ValNo, if it was encoded relative to the InstNum.
636 if (UseRelativeIDs)
637 ValNo = InstNum - ValNo;
638 return getFnValueByID(ValNo, Ty);
639 }
640
641 /// Converts alignment exponent (i.e. power of two (or zero)) to the
642 /// corresponding alignment to use. If alignment is too large, returns
643 /// a corresponding error code.
644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647
648 Error parseComdatRecord(ArrayRef<uint64_t> Record);
649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652 ArrayRef<uint64_t> Record);
653
654 Error parseAttributeBlock();
655 Error parseAttributeGroupBlock();
656 Error parseTypeTable();
657 Error parseTypeTableBody();
658 Error parseOperandBundleTags();
659 Error parseSyncScopeNames();
660
661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662 unsigned NameIndex, Triple &TT);
663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664 ArrayRef<uint64_t> Record);
665 Error parseValueSymbolTable(uint64_t Offset = 0);
666 Error parseGlobalValueSymbolTable();
667 Error parseConstants();
668 Error rememberAndSkipFunctionBodies();
669 Error rememberAndSkipFunctionBody();
670 /// Save the positions of the Metadata blocks and skip parsing the blocks.
671 Error rememberAndSkipMetadata();
672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673 Error parseFunctionBody(Function *F);
674 Error globalCleanup();
675 Error resolveGlobalAndIndirectSymbolInits();
676 Error parseUseLists();
677 Error findFunctionInStream(
678 Function *F,
679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680
681 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682};
683
684/// Class to manage reading and parsing function summary index bitcode
685/// files/sections.
686class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687 /// The module index built during parsing.
688 ModuleSummaryIndex &TheIndex;
689
690 /// Indicates whether we have encountered a global value summary section
691 /// yet during parsing.
692 bool SeenGlobalValSummary = false;
693
694 /// Indicates whether we have already parsed the VST, used for error checking.
695 bool SeenValueSymbolTable = false;
696
697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698 /// Used to enable on-demand parsing of the VST.
699 uint64_t VSTOffset = 0;
700
701 // Map to save ValueId to ValueInfo association that was recorded in the
702 // ValueSymbolTable. It is used after the VST is parsed to convert
703 // call graph edges read from the function summary from referencing
704 // callees by their ValueId to using the ValueInfo instead, which is how
705 // they are recorded in the summary index being built.
706 // We save a GUID which refers to the same global as the ValueInfo, but
707 // ignoring the linkage, i.e. for values other than local linkage they are
708 // identical.
709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
710 ValueIdToValueInfoMap;
711
712 /// Map populated during module path string table parsing, from the
713 /// module ID to a string reference owned by the index's module
714 /// path string table, used to correlate with combined index
715 /// summary records.
716 DenseMap<uint64_t, StringRef> ModuleIdMap;
717
718 /// Original source file name recorded in a bitcode record.
719 std::string SourceFileName;
720
721 /// The string identifier given to this module by the client, normally the
722 /// path to the bitcode file.
723 StringRef ModulePath;
724
725 /// For per-module summary indexes, the unique numerical identifier given to
726 /// this module by the client.
727 unsigned ModuleId;
728
729public:
730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731 ModuleSummaryIndex &TheIndex,
732 StringRef ModulePath, unsigned ModuleId);
733
734 Error parseModule();
735
736private:
737 void setValueGUID(uint64_t ValueID, StringRef ValueName,
738 GlobalValue::LinkageTypes Linkage,
739 StringRef SourceFileName);
740 Error parseValueSymbolTable(
741 uint64_t Offset,
742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745 bool IsOldProfileFormat,
746 bool HasProfile,
747 bool HasRelBF);
748 Error parseEntireSummary(unsigned ID);
749 Error parseModuleStringTable();
750
751 std::pair<ValueInfo, GlobalValue::GUID>
752 getValueInfoFromValueId(unsigned ValueId);
753
754 ModuleSummaryIndex::ModuleInfo *addThisModule();
755};
756
757} // end anonymous namespace
758
759std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
760 Error Err) {
761 if (Err) {
762 std::error_code EC;
763 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
764 EC = EIB.convertToErrorCode();
765 Ctx.emitError(EIB.message());
766 });
767 return EC;
768 }
769 return std::error_code();
770}
771
772BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
773 StringRef ProducerIdentification,
774 LLVMContext &Context)
775 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
776 ValueList(Context) {
777 this->ProducerIdentification = ProducerIdentification;
778}
779
780Error BitcodeReader::materializeForwardReferencedFunctions() {
781 if (WillMaterializeAllForwardRefs)
782 return Error::success();
783
784 // Prevent recursion.
785 WillMaterializeAllForwardRefs = true;
786
787 while (!BasicBlockFwdRefQueue.empty()) {
788 Function *F = BasicBlockFwdRefQueue.front();
789 BasicBlockFwdRefQueue.pop_front();
790 assert(F && "Expected valid function")(static_cast <bool> (F && "Expected valid function"
) ? void (0) : __assert_fail ("F && \"Expected valid function\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 790, __extension__ __PRETTY_FUNCTION__))
;
791 if (!BasicBlockFwdRefs.count(F))
792 // Already materialized.
793 continue;
794
795 // Check for a function that isn't materializable to prevent an infinite
796 // loop. When parsing a blockaddress stored in a global variable, there
797 // isn't a trivial way to check if a function will have a body without a
798 // linear search through FunctionsWithBodies, so just check it here.
799 if (!F->isMaterializable())
800 return error("Never resolved function from blockaddress");
801
802 // Try to materialize F.
803 if (Error Err = materialize(F))
804 return Err;
805 }
806 assert(BasicBlockFwdRefs.empty() && "Function missing from queue")(static_cast <bool> (BasicBlockFwdRefs.empty() &&
"Function missing from queue") ? void (0) : __assert_fail ("BasicBlockFwdRefs.empty() && \"Function missing from queue\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 806, __extension__ __PRETTY_FUNCTION__))
;
807
808 // Reset state.
809 WillMaterializeAllForwardRefs = false;
810 return Error::success();
811}
812
813//===----------------------------------------------------------------------===//
814// Helper functions to implement forward reference resolution, etc.
815//===----------------------------------------------------------------------===//
816
817static bool hasImplicitComdat(size_t Val) {
818 switch (Val) {
819 default:
820 return false;
821 case 1: // Old WeakAnyLinkage
822 case 4: // Old LinkOnceAnyLinkage
823 case 10: // Old WeakODRLinkage
824 case 11: // Old LinkOnceODRLinkage
825 return true;
826 }
827}
828
829static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
830 switch (Val) {
831 default: // Map unknown/new linkages to external
832 case 0:
833 return GlobalValue::ExternalLinkage;
834 case 2:
835 return GlobalValue::AppendingLinkage;
836 case 3:
837 return GlobalValue::InternalLinkage;
838 case 5:
839 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
840 case 6:
841 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
842 case 7:
843 return GlobalValue::ExternalWeakLinkage;
844 case 8:
845 return GlobalValue::CommonLinkage;
846 case 9:
847 return GlobalValue::PrivateLinkage;
848 case 12:
849 return GlobalValue::AvailableExternallyLinkage;
850 case 13:
851 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
852 case 14:
853 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
854 case 15:
855 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
856 case 1: // Old value with implicit comdat.
857 case 16:
858 return GlobalValue::WeakAnyLinkage;
859 case 10: // Old value with implicit comdat.
860 case 17:
861 return GlobalValue::WeakODRLinkage;
862 case 4: // Old value with implicit comdat.
863 case 18:
864 return GlobalValue::LinkOnceAnyLinkage;
865 case 11: // Old value with implicit comdat.
866 case 19:
867 return GlobalValue::LinkOnceODRLinkage;
868 }
869}
870
871static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
872 FunctionSummary::FFlags Flags;
873 Flags.ReadNone = RawFlags & 0x1;
874 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
875 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
876 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
877 return Flags;
878}
879
880/// Decode the flags for GlobalValue in the summary.
881static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
882 uint64_t Version) {
883 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
884 // like getDecodedLinkage() above. Any future change to the linkage enum and
885 // to getDecodedLinkage() will need to be taken into account here as above.
886 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
887 RawFlags = RawFlags >> 4;
888 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
889 // The Live flag wasn't introduced until version 3. For dead stripping
890 // to work correctly on earlier versions, we must conservatively treat all
891 // values as live.
892 bool Live = (RawFlags & 0x2) || Version < 3;
893 bool Local = (RawFlags & 0x4);
894
895 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
896}
897
898static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
899 switch (Val) {
900 default: // Map unknown visibilities to default.
901 case 0: return GlobalValue::DefaultVisibility;
902 case 1: return GlobalValue::HiddenVisibility;
903 case 2: return GlobalValue::ProtectedVisibility;
904 }
905}
906
907static GlobalValue::DLLStorageClassTypes
908getDecodedDLLStorageClass(unsigned Val) {
909 switch (Val) {
910 default: // Map unknown values to default.
911 case 0: return GlobalValue::DefaultStorageClass;
912 case 1: return GlobalValue::DLLImportStorageClass;
913 case 2: return GlobalValue::DLLExportStorageClass;
914 }
915}
916
917static bool getDecodedDSOLocal(unsigned Val) {
918 switch(Val) {
919 default: // Map unknown values to preemptable.
920 case 0: return false;
921 case 1: return true;
922 }
923}
924
925static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
926 switch (Val) {
927 case 0: return GlobalVariable::NotThreadLocal;
928 default: // Map unknown non-zero value to general dynamic.
929 case 1: return GlobalVariable::GeneralDynamicTLSModel;
930 case 2: return GlobalVariable::LocalDynamicTLSModel;
931 case 3: return GlobalVariable::InitialExecTLSModel;
932 case 4: return GlobalVariable::LocalExecTLSModel;
933 }
934}
935
936static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
937 switch (Val) {
938 default: // Map unknown to UnnamedAddr::None.
939 case 0: return GlobalVariable::UnnamedAddr::None;
940 case 1: return GlobalVariable::UnnamedAddr::Global;
941 case 2: return GlobalVariable::UnnamedAddr::Local;
942 }
943}
944
945static int getDecodedCastOpcode(unsigned Val) {
946 switch (Val) {
947 default: return -1;
948 case bitc::CAST_TRUNC : return Instruction::Trunc;
949 case bitc::CAST_ZEXT : return Instruction::ZExt;
950 case bitc::CAST_SEXT : return Instruction::SExt;
951 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
952 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
953 case bitc::CAST_UITOFP : return Instruction::UIToFP;
954 case bitc::CAST_SITOFP : return Instruction::SIToFP;
955 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
956 case bitc::CAST_FPEXT : return Instruction::FPExt;
957 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
958 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
959 case bitc::CAST_BITCAST : return Instruction::BitCast;
960 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
961 }
962}
963
964static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
965 bool IsFP = Ty->isFPOrFPVectorTy();
966 // BinOps are only valid for int/fp or vector of int/fp types
967 if (!IsFP && !Ty->isIntOrIntVectorTy())
968 return -1;
969
970 switch (Val) {
971 default:
972 return -1;
973 case bitc::BINOP_ADD:
974 return IsFP ? Instruction::FAdd : Instruction::Add;
975 case bitc::BINOP_SUB:
976 return IsFP ? Instruction::FSub : Instruction::Sub;
977 case bitc::BINOP_MUL:
978 return IsFP ? Instruction::FMul : Instruction::Mul;
979 case bitc::BINOP_UDIV:
980 return IsFP ? -1 : Instruction::UDiv;
981 case bitc::BINOP_SDIV:
982 return IsFP ? Instruction::FDiv : Instruction::SDiv;
983 case bitc::BINOP_UREM:
984 return IsFP ? -1 : Instruction::URem;
985 case bitc::BINOP_SREM:
986 return IsFP ? Instruction::FRem : Instruction::SRem;
987 case bitc::BINOP_SHL:
988 return IsFP ? -1 : Instruction::Shl;
989 case bitc::BINOP_LSHR:
990 return IsFP ? -1 : Instruction::LShr;
991 case bitc::BINOP_ASHR:
992 return IsFP ? -1 : Instruction::AShr;
993 case bitc::BINOP_AND:
994 return IsFP ? -1 : Instruction::And;
995 case bitc::BINOP_OR:
996 return IsFP ? -1 : Instruction::Or;
997 case bitc::BINOP_XOR:
998 return IsFP ? -1 : Instruction::Xor;
999 }
1000}
1001
1002static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1003 switch (Val) {
1004 default: return AtomicRMWInst::BAD_BINOP;
1005 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1006 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1007 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1008 case bitc::RMW_AND: return AtomicRMWInst::And;
1009 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1010 case bitc::RMW_OR: return AtomicRMWInst::Or;
1011 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1012 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1013 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1014 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1015 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1016 }
1017}
1018
1019static AtomicOrdering getDecodedOrdering(unsigned Val) {
1020 switch (Val) {
1021 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1022 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1023 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1024 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1025 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1026 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1027 default: // Map unknown orderings to sequentially-consistent.
1028 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1029 }
1030}
1031
1032static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1033 switch (Val) {
1034 default: // Map unknown selection kinds to any.
1035 case bitc::COMDAT_SELECTION_KIND_ANY:
1036 return Comdat::Any;
1037 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1038 return Comdat::ExactMatch;
1039 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1040 return Comdat::Largest;
1041 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1042 return Comdat::NoDuplicates;
1043 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1044 return Comdat::SameSize;
1045 }
1046}
1047
1048static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1049 FastMathFlags FMF;
1050 if (0 != (Val & bitc::UnsafeAlgebra))
1051 FMF.setFast();
1052 if (0 != (Val & bitc::AllowReassoc))
1053 FMF.setAllowReassoc();
1054 if (0 != (Val & bitc::NoNaNs))
1055 FMF.setNoNaNs();
1056 if (0 != (Val & bitc::NoInfs))
1057 FMF.setNoInfs();
1058 if (0 != (Val & bitc::NoSignedZeros))
1059 FMF.setNoSignedZeros();
1060 if (0 != (Val & bitc::AllowReciprocal))
1061 FMF.setAllowReciprocal();
1062 if (0 != (Val & bitc::AllowContract))
1063 FMF.setAllowContract(true);
1064 if (0 != (Val & bitc::ApproxFunc))
1065 FMF.setApproxFunc();
1066 return FMF;
1067}
1068
1069static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1070 switch (Val) {
1071 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1072 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1073 }
1074}
1075
1076Type *BitcodeReader::getTypeByID(unsigned ID) {
1077 // The type table size is always specified correctly.
1078 if (ID >= TypeList.size())
1079 return nullptr;
1080
1081 if (Type *Ty = TypeList[ID])
1082 return Ty;
1083
1084 // If we have a forward reference, the only possible case is when it is to a
1085 // named struct. Just create a placeholder for now.
1086 return TypeList[ID] = createIdentifiedStructType(Context);
1087}
1088
1089StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1090 StringRef Name) {
1091 auto *Ret = StructType::create(Context, Name);
1092 IdentifiedStructTypes.push_back(Ret);
1093 return Ret;
1094}
1095
1096StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1097 auto *Ret = StructType::create(Context);
1098 IdentifiedStructTypes.push_back(Ret);
1099 return Ret;
1100}
1101
1102//===----------------------------------------------------------------------===//
1103// Functions for parsing blocks from the bitcode file
1104//===----------------------------------------------------------------------===//
1105
1106static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1107 switch (Val) {
1108 case Attribute::EndAttrKinds:
1109 llvm_unreachable("Synthetic enumerators which should never get here")::llvm::llvm_unreachable_internal("Synthetic enumerators which should never get here"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1109)
;
1110
1111 case Attribute::None: return 0;
1112 case Attribute::ZExt: return 1 << 0;
1113 case Attribute::SExt: return 1 << 1;
1114 case Attribute::NoReturn: return 1 << 2;
1115 case Attribute::InReg: return 1 << 3;
1116 case Attribute::StructRet: return 1 << 4;
1117 case Attribute::NoUnwind: return 1 << 5;
1118 case Attribute::NoAlias: return 1 << 6;
1119 case Attribute::ByVal: return 1 << 7;
1120 case Attribute::Nest: return 1 << 8;
1121 case Attribute::ReadNone: return 1 << 9;
1122 case Attribute::ReadOnly: return 1 << 10;
1123 case Attribute::NoInline: return 1 << 11;
1124 case Attribute::AlwaysInline: return 1 << 12;
1125 case Attribute::OptimizeForSize: return 1 << 13;
1126 case Attribute::StackProtect: return 1 << 14;
1127 case Attribute::StackProtectReq: return 1 << 15;
1128 case Attribute::Alignment: return 31 << 16;
1129 case Attribute::NoCapture: return 1 << 21;
1130 case Attribute::NoRedZone: return 1 << 22;
1131 case Attribute::NoImplicitFloat: return 1 << 23;
1132 case Attribute::Naked: return 1 << 24;
1133 case Attribute::InlineHint: return 1 << 25;
1134 case Attribute::StackAlignment: return 7 << 26;
1135 case Attribute::ReturnsTwice: return 1 << 29;
1136 case Attribute::UWTable: return 1 << 30;
1137 case Attribute::NonLazyBind: return 1U << 31;
1138 case Attribute::SanitizeAddress: return 1ULL << 32;
1139 case Attribute::MinSize: return 1ULL << 33;
1140 case Attribute::NoDuplicate: return 1ULL << 34;
1141 case Attribute::StackProtectStrong: return 1ULL << 35;
1142 case Attribute::SanitizeThread: return 1ULL << 36;
1143 case Attribute::SanitizeMemory: return 1ULL << 37;
1144 case Attribute::NoBuiltin: return 1ULL << 38;
1145 case Attribute::Returned: return 1ULL << 39;
1146 case Attribute::Cold: return 1ULL << 40;
1147 case Attribute::Builtin: return 1ULL << 41;
1148 case Attribute::OptimizeNone: return 1ULL << 42;
1149 case Attribute::InAlloca: return 1ULL << 43;
1150 case Attribute::NonNull: return 1ULL << 44;
1151 case Attribute::JumpTable: return 1ULL << 45;
1152 case Attribute::Convergent: return 1ULL << 46;
1153 case Attribute::SafeStack: return 1ULL << 47;
1154 case Attribute::NoRecurse: return 1ULL << 48;
1155 case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1156 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1157 case Attribute::SwiftSelf: return 1ULL << 51;
1158 case Attribute::SwiftError: return 1ULL << 52;
1159 case Attribute::WriteOnly: return 1ULL << 53;
1160 case Attribute::Speculatable: return 1ULL << 54;
1161 case Attribute::StrictFP: return 1ULL << 55;
1162 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1163 case Attribute::Dereferenceable:
1164 llvm_unreachable("dereferenceable attribute not supported in raw format")::llvm::llvm_unreachable_internal("dereferenceable attribute not supported in raw format"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1164)
;
1165 break;
1166 case Attribute::DereferenceableOrNull:
1167 llvm_unreachable("dereferenceable_or_null attribute not supported in raw "::llvm::llvm_unreachable_internal("dereferenceable_or_null attribute not supported in raw "
"format", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1168)
1168 "format")::llvm::llvm_unreachable_internal("dereferenceable_or_null attribute not supported in raw "
"format", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1168)
;
1169 break;
1170 case Attribute::ArgMemOnly:
1171 llvm_unreachable("argmemonly attribute not supported in raw format")::llvm::llvm_unreachable_internal("argmemonly attribute not supported in raw format"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1171)
;
1172 break;
1173 case Attribute::AllocSize:
1174 llvm_unreachable("allocsize not supported in raw format")::llvm::llvm_unreachable_internal("allocsize not supported in raw format"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1174)
;
1175 break;
1176 }
1177 llvm_unreachable("Unsupported attribute type")::llvm::llvm_unreachable_internal("Unsupported attribute type"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1177)
;
1178}
1179
1180static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1181 if (!Val) return;
1182
1183 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1184 I = Attribute::AttrKind(I + 1)) {
1185 if (I == Attribute::Dereferenceable ||
1186 I == Attribute::DereferenceableOrNull ||
1187 I == Attribute::ArgMemOnly ||
1188 I == Attribute::AllocSize)
1189 continue;
1190 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1191 if (I == Attribute::Alignment)
1192 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1193 else if (I == Attribute::StackAlignment)
1194 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1195 else
1196 B.addAttribute(I);
1197 }
1198 }
1199}
1200
1201/// \brief This fills an AttrBuilder object with the LLVM attributes that have
1202/// been decoded from the given integer. This function must stay in sync with
1203/// 'encodeLLVMAttributesForBitcode'.
1204static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1205 uint64_t EncodedAttrs) {
1206 // FIXME: Remove in 4.0.
1207
1208 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1209 // the bits above 31 down by 11 bits.
1210 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1211 assert((!Alignment || isPowerOf2_32(Alignment)) &&(static_cast <bool> ((!Alignment || isPowerOf2_32(Alignment
)) && "Alignment must be a power of two.") ? void (0)
: __assert_fail ("(!Alignment || isPowerOf2_32(Alignment)) && \"Alignment must be a power of two.\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1212, __extension__ __PRETTY_FUNCTION__))
1212 "Alignment must be a power of two.")(static_cast <bool> ((!Alignment || isPowerOf2_32(Alignment
)) && "Alignment must be a power of two.") ? void (0)
: __assert_fail ("(!Alignment || isPowerOf2_32(Alignment)) && \"Alignment must be a power of two.\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1212, __extension__ __PRETTY_FUNCTION__))
;
1213
1214 if (Alignment)
1215 B.addAlignmentAttr(Alignment);
1216 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1217 (EncodedAttrs & 0xffff));
1218}
1219
1220Error BitcodeReader::parseAttributeBlock() {
1221 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1222 return error("Invalid record");
1223
1224 if (!MAttributes.empty())
1225 return error("Invalid multiple blocks");
1226
1227 SmallVector<uint64_t, 64> Record;
1228
1229 SmallVector<AttributeList, 8> Attrs;
1230
1231 // Read all the records.
1232 while (true) {
1233 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1234
1235 switch (Entry.Kind) {
1236 case BitstreamEntry::SubBlock: // Handled for us already.
1237 case BitstreamEntry::Error:
1238 return error("Malformed block");
1239 case BitstreamEntry::EndBlock:
1240 return Error::success();
1241 case BitstreamEntry::Record:
1242 // The interesting case.
1243 break;
1244 }
1245
1246 // Read a record.
1247 Record.clear();
1248 switch (Stream.readRecord(Entry.ID, Record)) {
1249 default: // Default behavior: ignore.
1250 break;
1251 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1252 // FIXME: Remove in 4.0.
1253 if (Record.size() & 1)
1254 return error("Invalid record");
1255
1256 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1257 AttrBuilder B;
1258 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1259 Attrs.push_back(AttributeList::get(Context, Record[i], B));
1260 }
1261
1262 MAttributes.push_back(AttributeList::get(Context, Attrs));
1263 Attrs.clear();
1264 break;
1265 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1266 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1267 Attrs.push_back(MAttributeGroups[Record[i]]);
1268
1269 MAttributes.push_back(AttributeList::get(Context, Attrs));
1270 Attrs.clear();
1271 break;
1272 }
1273 }
1274}
1275
1276// Returns Attribute::None on unrecognized codes.
1277static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1278 switch (Code) {
1279 default:
1280 return Attribute::None;
1281 case bitc::ATTR_KIND_ALIGNMENT:
1282 return Attribute::Alignment;
1283 case bitc::ATTR_KIND_ALWAYS_INLINE:
1284 return Attribute::AlwaysInline;
1285 case bitc::ATTR_KIND_ARGMEMONLY:
1286 return Attribute::ArgMemOnly;
1287 case bitc::ATTR_KIND_BUILTIN:
1288 return Attribute::Builtin;
1289 case bitc::ATTR_KIND_BY_VAL:
1290 return Attribute::ByVal;
1291 case bitc::ATTR_KIND_IN_ALLOCA:
1292 return Attribute::InAlloca;
1293 case bitc::ATTR_KIND_COLD:
1294 return Attribute::Cold;
1295 case bitc::ATTR_KIND_CONVERGENT:
1296 return Attribute::Convergent;
1297 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1298 return Attribute::InaccessibleMemOnly;
1299 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1300 return Attribute::InaccessibleMemOrArgMemOnly;
1301 case bitc::ATTR_KIND_INLINE_HINT:
1302 return Attribute::InlineHint;
1303 case bitc::ATTR_KIND_IN_REG:
1304 return Attribute::InReg;
1305 case bitc::ATTR_KIND_JUMP_TABLE:
1306 return Attribute::JumpTable;
1307 case bitc::ATTR_KIND_MIN_SIZE:
1308 return Attribute::MinSize;
1309 case bitc::ATTR_KIND_NAKED:
1310 return Attribute::Naked;
1311 case bitc::ATTR_KIND_NEST:
1312 return Attribute::Nest;
1313 case bitc::ATTR_KIND_NO_ALIAS:
1314 return Attribute::NoAlias;
1315 case bitc::ATTR_KIND_NO_BUILTIN:
1316 return Attribute::NoBuiltin;
1317 case bitc::ATTR_KIND_NO_CAPTURE:
1318 return Attribute::NoCapture;
1319 case bitc::ATTR_KIND_NO_DUPLICATE:
1320 return Attribute::NoDuplicate;
1321 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1322 return Attribute::NoImplicitFloat;
1323 case bitc::ATTR_KIND_NO_INLINE:
1324 return Attribute::NoInline;
1325 case bitc::ATTR_KIND_NO_RECURSE:
1326 return Attribute::NoRecurse;
1327 case bitc::ATTR_KIND_NON_LAZY_BIND:
1328 return Attribute::NonLazyBind;
1329 case bitc::ATTR_KIND_NON_NULL:
1330 return Attribute::NonNull;
1331 case bitc::ATTR_KIND_DEREFERENCEABLE:
1332 return Attribute::Dereferenceable;
1333 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1334 return Attribute::DereferenceableOrNull;
1335 case bitc::ATTR_KIND_ALLOC_SIZE:
1336 return Attribute::AllocSize;
1337 case bitc::ATTR_KIND_NO_RED_ZONE:
1338 return Attribute::NoRedZone;
1339 case bitc::ATTR_KIND_NO_RETURN:
1340 return Attribute::NoReturn;
1341 case bitc::ATTR_KIND_NO_UNWIND:
1342 return Attribute::NoUnwind;
1343 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1344 return Attribute::OptimizeForSize;
1345 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1346 return Attribute::OptimizeNone;
1347 case bitc::ATTR_KIND_READ_NONE:
1348 return Attribute::ReadNone;
1349 case bitc::ATTR_KIND_READ_ONLY:
1350 return Attribute::ReadOnly;
1351 case bitc::ATTR_KIND_RETURNED:
1352 return Attribute::Returned;
1353 case bitc::ATTR_KIND_RETURNS_TWICE:
1354 return Attribute::ReturnsTwice;
1355 case bitc::ATTR_KIND_S_EXT:
1356 return Attribute::SExt;
1357 case bitc::ATTR_KIND_SPECULATABLE:
1358 return Attribute::Speculatable;
1359 case bitc::ATTR_KIND_STACK_ALIGNMENT:
1360 return Attribute::StackAlignment;
1361 case bitc::ATTR_KIND_STACK_PROTECT:
1362 return Attribute::StackProtect;
1363 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1364 return Attribute::StackProtectReq;
1365 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1366 return Attribute::StackProtectStrong;
1367 case bitc::ATTR_KIND_SAFESTACK:
1368 return Attribute::SafeStack;
1369 case bitc::ATTR_KIND_STRICT_FP:
1370 return Attribute::StrictFP;
1371 case bitc::ATTR_KIND_STRUCT_RET:
1372 return Attribute::StructRet;
1373 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1374 return Attribute::SanitizeAddress;
1375 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1376 return Attribute::SanitizeHWAddress;
1377 case bitc::ATTR_KIND_SANITIZE_THREAD:
1378 return Attribute::SanitizeThread;
1379 case bitc::ATTR_KIND_SANITIZE_MEMORY:
1380 return Attribute::SanitizeMemory;
1381 case bitc::ATTR_KIND_SWIFT_ERROR:
1382 return Attribute::SwiftError;
1383 case bitc::ATTR_KIND_SWIFT_SELF:
1384 return Attribute::SwiftSelf;
1385 case bitc::ATTR_KIND_UW_TABLE:
1386 return Attribute::UWTable;
1387 case bitc::ATTR_KIND_WRITEONLY:
1388 return Attribute::WriteOnly;
1389 case bitc::ATTR_KIND_Z_EXT:
1390 return Attribute::ZExt;
1391 }
1392}
1393
1394Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1395 unsigned &Alignment) {
1396 // Note: Alignment in bitcode files is incremented by 1, so that zero
1397 // can be used for default alignment.
1398 if (Exponent > Value::MaxAlignmentExponent + 1)
10
Assuming the condition is true
11
Taking true branch
1399 return error("Invalid alignment value");
12
Calling constructor for 'Twine'
19
Returning from constructor for 'Twine'
20
Calling 'BitcodeReaderBase::error'
66
Returning from 'BitcodeReaderBase::error'
67
Returning without writing to 'Alignment'
1400 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1401 return Error::success();
1402}
1403
1404Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1405 *Kind = getAttrFromCode(Code);
1406 if (*Kind == Attribute::None)
1407 return error("Unknown attribute kind (" + Twine(Code) + ")");
1408 return Error::success();
1409}
1410
1411Error BitcodeReader::parseAttributeGroupBlock() {
1412 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1413 return error("Invalid record");
1414
1415 if (!MAttributeGroups.empty())
1416 return error("Invalid multiple blocks");
1417
1418 SmallVector<uint64_t, 64> Record;
1419
1420 // Read all the records.
1421 while (true) {
1422 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1423
1424 switch (Entry.Kind) {
1425 case BitstreamEntry::SubBlock: // Handled for us already.
1426 case BitstreamEntry::Error:
1427 return error("Malformed block");
1428 case BitstreamEntry::EndBlock:
1429 return Error::success();
1430 case BitstreamEntry::Record:
1431 // The interesting case.
1432 break;
1433 }
1434
1435 // Read a record.
1436 Record.clear();
1437 switch (Stream.readRecord(Entry.ID, Record)) {
1438 default: // Default behavior: ignore.
1439 break;
1440 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1441 if (Record.size() < 3)
1442 return error("Invalid record");
1443
1444 uint64_t GrpID = Record[0];
1445 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1446
1447 AttrBuilder B;
1448 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1449 if (Record[i] == 0) { // Enum attribute
1450 Attribute::AttrKind Kind;
1451 if (Error Err = parseAttrKind(Record[++i], &Kind))
1452 return Err;
1453
1454 B.addAttribute(Kind);
1455 } else if (Record[i] == 1) { // Integer attribute
1456 Attribute::AttrKind Kind;
1457 if (Error Err = parseAttrKind(Record[++i], &Kind))
1458 return Err;
1459 if (Kind == Attribute::Alignment)
1460 B.addAlignmentAttr(Record[++i]);
1461 else if (Kind == Attribute::StackAlignment)
1462 B.addStackAlignmentAttr(Record[++i]);
1463 else if (Kind == Attribute::Dereferenceable)
1464 B.addDereferenceableAttr(Record[++i]);
1465 else if (Kind == Attribute::DereferenceableOrNull)
1466 B.addDereferenceableOrNullAttr(Record[++i]);
1467 else if (Kind == Attribute::AllocSize)
1468 B.addAllocSizeAttrFromRawRepr(Record[++i]);
1469 } else { // String attribute
1470 assert((Record[i] == 3 || Record[i] == 4) &&(static_cast <bool> ((Record[i] == 3 || Record[i] == 4)
&& "Invalid attribute group entry") ? void (0) : __assert_fail
("(Record[i] == 3 || Record[i] == 4) && \"Invalid attribute group entry\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1471, __extension__ __PRETTY_FUNCTION__))
1471 "Invalid attribute group entry")(static_cast <bool> ((Record[i] == 3 || Record[i] == 4)
&& "Invalid attribute group entry") ? void (0) : __assert_fail
("(Record[i] == 3 || Record[i] == 4) && \"Invalid attribute group entry\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1471, __extension__ __PRETTY_FUNCTION__))
;
1472 bool HasValue = (Record[i++] == 4);
1473 SmallString<64> KindStr;
1474 SmallString<64> ValStr;
1475
1476 while (Record[i] != 0 && i != e)
1477 KindStr += Record[i++];
1478 assert(Record[i] == 0 && "Kind string not null terminated")(static_cast <bool> (Record[i] == 0 && "Kind string not null terminated"
) ? void (0) : __assert_fail ("Record[i] == 0 && \"Kind string not null terminated\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1478, __extension__ __PRETTY_FUNCTION__))
;
1479
1480 if (HasValue) {
1481 // Has a value associated with it.
1482 ++i; // Skip the '0' that terminates the "kind" string.
1483 while (Record[i] != 0 && i != e)
1484 ValStr += Record[i++];
1485 assert(Record[i] == 0 && "Value string not null terminated")(static_cast <bool> (Record[i] == 0 && "Value string not null terminated"
) ? void (0) : __assert_fail ("Record[i] == 0 && \"Value string not null terminated\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1485, __extension__ __PRETTY_FUNCTION__))
;
1486 }
1487
1488 B.addAttribute(KindStr.str(), ValStr.str());
1489 }
1490 }
1491
1492 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1493 break;
1494 }
1495 }
1496 }
1497}
1498
1499Error BitcodeReader::parseTypeTable() {
1500 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1501 return error("Invalid record");
1502
1503 return parseTypeTableBody();
1504}
1505
1506Error BitcodeReader::parseTypeTableBody() {
1507 if (!TypeList.empty())
1508 return error("Invalid multiple blocks");
1509
1510 SmallVector<uint64_t, 64> Record;
1511 unsigned NumRecords = 0;
1512
1513 SmallString<64> TypeName;
1514
1515 // Read all the records for this type table.
1516 while (true) {
1517 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1518
1519 switch (Entry.Kind) {
1520 case BitstreamEntry::SubBlock: // Handled for us already.
1521 case BitstreamEntry::Error:
1522 return error("Malformed block");
1523 case BitstreamEntry::EndBlock:
1524 if (NumRecords != TypeList.size())
1525 return error("Malformed block");
1526 return Error::success();
1527 case BitstreamEntry::Record:
1528 // The interesting case.
1529 break;
1530 }
1531
1532 // Read a record.
1533 Record.clear();
1534 Type *ResultTy = nullptr;
1535 switch (Stream.readRecord(Entry.ID, Record)) {
1536 default:
1537 return error("Invalid value");
1538 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1539 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1540 // type list. This allows us to reserve space.
1541 if (Record.size() < 1)
1542 return error("Invalid record");
1543 TypeList.resize(Record[0]);
1544 continue;
1545 case bitc::TYPE_CODE_VOID: // VOID
1546 ResultTy = Type::getVoidTy(Context);
1547 break;
1548 case bitc::TYPE_CODE_HALF: // HALF
1549 ResultTy = Type::getHalfTy(Context);
1550 break;
1551 case bitc::TYPE_CODE_FLOAT: // FLOAT
1552 ResultTy = Type::getFloatTy(Context);
1553 break;
1554 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1555 ResultTy = Type::getDoubleTy(Context);
1556 break;
1557 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1558 ResultTy = Type::getX86_FP80Ty(Context);
1559 break;
1560 case bitc::TYPE_CODE_FP128: // FP128
1561 ResultTy = Type::getFP128Ty(Context);
1562 break;
1563 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1564 ResultTy = Type::getPPC_FP128Ty(Context);
1565 break;
1566 case bitc::TYPE_CODE_LABEL: // LABEL
1567 ResultTy = Type::getLabelTy(Context);
1568 break;
1569 case bitc::TYPE_CODE_METADATA: // METADATA
1570 ResultTy = Type::getMetadataTy(Context);
1571 break;
1572 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1573 ResultTy = Type::getX86_MMXTy(Context);
1574 break;
1575 case bitc::TYPE_CODE_TOKEN: // TOKEN
1576 ResultTy = Type::getTokenTy(Context);
1577 break;
1578 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1579 if (Record.size() < 1)
1580 return error("Invalid record");
1581
1582 uint64_t NumBits = Record[0];
1583 if (NumBits < IntegerType::MIN_INT_BITS ||
1584 NumBits > IntegerType::MAX_INT_BITS)
1585 return error("Bitwidth for integer type out of range");
1586 ResultTy = IntegerType::get(Context, NumBits);
1587 break;
1588 }
1589 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1590 // [pointee type, address space]
1591 if (Record.size() < 1)
1592 return error("Invalid record");
1593 unsigned AddressSpace = 0;
1594 if (Record.size() == 2)
1595 AddressSpace = Record[1];
1596 ResultTy = getTypeByID(Record[0]);
1597 if (!ResultTy ||
1598 !PointerType::isValidElementType(ResultTy))
1599 return error("Invalid type");
1600 ResultTy = PointerType::get(ResultTy, AddressSpace);
1601 break;
1602 }
1603 case bitc::TYPE_CODE_FUNCTION_OLD: {
1604 // FIXME: attrid is dead, remove it in LLVM 4.0
1605 // FUNCTION: [vararg, attrid, retty, paramty x N]
1606 if (Record.size() < 3)
1607 return error("Invalid record");
1608 SmallVector<Type*, 8> ArgTys;
1609 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1610 if (Type *T = getTypeByID(Record[i]))
1611 ArgTys.push_back(T);
1612 else
1613 break;
1614 }
1615
1616 ResultTy = getTypeByID(Record[2]);
1617 if (!ResultTy || ArgTys.size() < Record.size()-3)
1618 return error("Invalid type");
1619
1620 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1621 break;
1622 }
1623 case bitc::TYPE_CODE_FUNCTION: {
1624 // FUNCTION: [vararg, retty, paramty x N]
1625 if (Record.size() < 2)
1626 return error("Invalid record");
1627 SmallVector<Type*, 8> ArgTys;
1628 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1629 if (Type *T = getTypeByID(Record[i])) {
1630 if (!FunctionType::isValidArgumentType(T))
1631 return error("Invalid function argument type");
1632 ArgTys.push_back(T);
1633 }
1634 else
1635 break;
1636 }
1637
1638 ResultTy = getTypeByID(Record[1]);
1639 if (!ResultTy || ArgTys.size() < Record.size()-2)
1640 return error("Invalid type");
1641
1642 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1643 break;
1644 }
1645 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1646 if (Record.size() < 1)
1647 return error("Invalid record");
1648 SmallVector<Type*, 8> EltTys;
1649 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1650 if (Type *T = getTypeByID(Record[i]))
1651 EltTys.push_back(T);
1652 else
1653 break;
1654 }
1655 if (EltTys.size() != Record.size()-1)
1656 return error("Invalid type");
1657 ResultTy = StructType::get(Context, EltTys, Record[0]);
1658 break;
1659 }
1660 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1661 if (convertToString(Record, 0, TypeName))
1662 return error("Invalid record");
1663 continue;
1664
1665 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1666 if (Record.size() < 1)
1667 return error("Invalid record");
1668
1669 if (NumRecords >= TypeList.size())
1670 return error("Invalid TYPE table");
1671
1672 // Check to see if this was forward referenced, if so fill in the temp.
1673 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1674 if (Res) {
1675 Res->setName(TypeName);
1676 TypeList[NumRecords] = nullptr;
1677 } else // Otherwise, create a new struct.
1678 Res = createIdentifiedStructType(Context, TypeName);
1679 TypeName.clear();
1680
1681 SmallVector<Type*, 8> EltTys;
1682 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1683 if (Type *T = getTypeByID(Record[i]))
1684 EltTys.push_back(T);
1685 else
1686 break;
1687 }
1688 if (EltTys.size() != Record.size()-1)
1689 return error("Invalid record");
1690 Res->setBody(EltTys, Record[0]);
1691 ResultTy = Res;
1692 break;
1693 }
1694 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1695 if (Record.size() != 1)
1696 return error("Invalid record");
1697
1698 if (NumRecords >= TypeList.size())
1699 return error("Invalid TYPE table");
1700
1701 // Check to see if this was forward referenced, if so fill in the temp.
1702 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1703 if (Res) {
1704 Res->setName(TypeName);
1705 TypeList[NumRecords] = nullptr;
1706 } else // Otherwise, create a new struct with no body.
1707 Res = createIdentifiedStructType(Context, TypeName);
1708 TypeName.clear();
1709 ResultTy = Res;
1710 break;
1711 }
1712 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1713 if (Record.size() < 2)
1714 return error("Invalid record");
1715 ResultTy = getTypeByID(Record[1]);
1716 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1717 return error("Invalid type");
1718 ResultTy = ArrayType::get(ResultTy, Record[0]);
1719 break;
1720 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1721 if (Record.size() < 2)
1722 return error("Invalid record");
1723 if (Record[0] == 0)
1724 return error("Invalid vector length");
1725 ResultTy = getTypeByID(Record[1]);
1726 if (!ResultTy || !StructType::isValidElementType(ResultTy))
1727 return error("Invalid type");
1728 ResultTy = VectorType::get(ResultTy, Record[0]);
1729 break;
1730 }
1731
1732 if (NumRecords >= TypeList.size())
1733 return error("Invalid TYPE table");
1734 if (TypeList[NumRecords])
1735 return error(
1736 "Invalid TYPE table: Only named structs can be forward referenced");
1737 assert(ResultTy && "Didn't read a type?")(static_cast <bool> (ResultTy && "Didn't read a type?"
) ? void (0) : __assert_fail ("ResultTy && \"Didn't read a type?\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1737, __extension__ __PRETTY_FUNCTION__))
;
1738 TypeList[NumRecords++] = ResultTy;
1739 }
1740}
1741
1742Error BitcodeReader::parseOperandBundleTags() {
1743 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1744 return error("Invalid record");
1745
1746 if (!BundleTags.empty())
1747 return error("Invalid multiple blocks");
1748
1749 SmallVector<uint64_t, 64> Record;
1750
1751 while (true) {
1752 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1753
1754 switch (Entry.Kind) {
1755 case BitstreamEntry::SubBlock: // Handled for us already.
1756 case BitstreamEntry::Error:
1757 return error("Malformed block");
1758 case BitstreamEntry::EndBlock:
1759 return Error::success();
1760 case BitstreamEntry::Record:
1761 // The interesting case.
1762 break;
1763 }
1764
1765 // Tags are implicitly mapped to integers by their order.
1766
1767 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1768 return error("Invalid record");
1769
1770 // OPERAND_BUNDLE_TAG: [strchr x N]
1771 BundleTags.emplace_back();
1772 if (convertToString(Record, 0, BundleTags.back()))
1773 return error("Invalid record");
1774 Record.clear();
1775 }
1776}
1777
1778Error BitcodeReader::parseSyncScopeNames() {
1779 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1780 return error("Invalid record");
1781
1782 if (!SSIDs.empty())
1783 return error("Invalid multiple synchronization scope names blocks");
1784
1785 SmallVector<uint64_t, 64> Record;
1786 while (true) {
1787 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1788 switch (Entry.Kind) {
1789 case BitstreamEntry::SubBlock: // Handled for us already.
1790 case BitstreamEntry::Error:
1791 return error("Malformed block");
1792 case BitstreamEntry::EndBlock:
1793 if (SSIDs.empty())
1794 return error("Invalid empty synchronization scope names block");
1795 return Error::success();
1796 case BitstreamEntry::Record:
1797 // The interesting case.
1798 break;
1799 }
1800
1801 // Synchronization scope names are implicitly mapped to synchronization
1802 // scope IDs by their order.
1803
1804 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1805 return error("Invalid record");
1806
1807 SmallString<16> SSN;
1808 if (convertToString(Record, 0, SSN))
1809 return error("Invalid record");
1810
1811 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1812 Record.clear();
1813 }
1814}
1815
1816/// Associate a value with its name from the given index in the provided record.
1817Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1818 unsigned NameIndex, Triple &TT) {
1819 SmallString<128> ValueName;
1820 if (convertToString(Record, NameIndex, ValueName))
1821 return error("Invalid record");
1822 unsigned ValueID = Record[0];
1823 if (ValueID >= ValueList.size() || !ValueList[ValueID])
1824 return error("Invalid record");
1825 Value *V = ValueList[ValueID];
1826
1827 StringRef NameStr(ValueName.data(), ValueName.size());
1828 if (NameStr.find_first_of(0) != StringRef::npos)
1829 return error("Invalid value name");
1830 V->setName(NameStr);
1831 auto *GO = dyn_cast<GlobalObject>(V);
1832 if (GO) {
1833 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1834 if (TT.supportsCOMDAT())
1835 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1836 else
1837 GO->setComdat(nullptr);
1838 }
1839 }
1840 return V;
1841}
1842
1843/// Helper to note and return the current location, and jump to the given
1844/// offset.
1845static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1846 BitstreamCursor &Stream) {
1847 // Save the current parsing location so we can jump back at the end
1848 // of the VST read.
1849 uint64_t CurrentBit = Stream.GetCurrentBitNo();
1850 Stream.JumpToBit(Offset * 32);
1851#ifndef NDEBUG
1852 // Do some checking if we are in debug mode.
1853 BitstreamEntry Entry = Stream.advance();
1854 assert(Entry.Kind == BitstreamEntry::SubBlock)(static_cast <bool> (Entry.Kind == BitstreamEntry::SubBlock
) ? void (0) : __assert_fail ("Entry.Kind == BitstreamEntry::SubBlock"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1854, __extension__ __PRETTY_FUNCTION__))
;
1855 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID)(static_cast <bool> (Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID
) ? void (0) : __assert_fail ("Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 1855, __extension__ __PRETTY_FUNCTION__))
;
1856#else
1857 // In NDEBUG mode ignore the output so we don't get an unused variable
1858 // warning.
1859 Stream.advance();
1860#endif
1861 return CurrentBit;
1862}
1863
1864void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1865 Function *F,
1866 ArrayRef<uint64_t> Record) {
1867 // Note that we subtract 1 here because the offset is relative to one word
1868 // before the start of the identification or module block, which was
1869 // historically always the start of the regular bitcode header.
1870 uint64_t FuncWordOffset = Record[1] - 1;
1871 uint64_t FuncBitOffset = FuncWordOffset * 32;
1872 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1873 // Set the LastFunctionBlockBit to point to the last function block.
1874 // Later when parsing is resumed after function materialization,
1875 // we can simply skip that last function block.
1876 if (FuncBitOffset > LastFunctionBlockBit)
1877 LastFunctionBlockBit = FuncBitOffset;
1878}
1879
1880/// Read a new-style GlobalValue symbol table.
1881Error BitcodeReader::parseGlobalValueSymbolTable() {
1882 unsigned FuncBitcodeOffsetDelta =
1883 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1884
1885 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1886 return error("Invalid record");
1887
1888 SmallVector<uint64_t, 64> Record;
1889 while (true) {
1890 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1891
1892 switch (Entry.Kind) {
1893 case BitstreamEntry::SubBlock:
1894 case BitstreamEntry::Error:
1895 return error("Malformed block");
1896 case BitstreamEntry::EndBlock:
1897 return Error::success();
1898 case BitstreamEntry::Record:
1899 break;
1900 }
1901
1902 Record.clear();
1903 switch (Stream.readRecord(Entry.ID, Record)) {
1904 case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1905 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1906 cast<Function>(ValueList[Record[0]]), Record);
1907 break;
1908 }
1909 }
1910}
1911
1912/// Parse the value symbol table at either the current parsing location or
1913/// at the given bit offset if provided.
1914Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1915 uint64_t CurrentBit;
1916 // Pass in the Offset to distinguish between calling for the module-level
1917 // VST (where we want to jump to the VST offset) and the function-level
1918 // VST (where we don't).
1919 if (Offset > 0) {
1920 CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1921 // If this module uses a string table, read this as a module-level VST.
1922 if (UseStrtab) {
1923 if (Error Err = parseGlobalValueSymbolTable())
1924 return Err;
1925 Stream.JumpToBit(CurrentBit);
1926 return Error::success();
1927 }
1928 // Otherwise, the VST will be in a similar format to a function-level VST,
1929 // and will contain symbol names.
1930 }
1931
1932 // Compute the delta between the bitcode indices in the VST (the word offset
1933 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1934 // expected by the lazy reader. The reader's EnterSubBlock expects to have
1935 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1936 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1937 // just before entering the VST subblock because: 1) the EnterSubBlock
1938 // changes the AbbrevID width; 2) the VST block is nested within the same
1939 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1940 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1941 // jump to the FUNCTION_BLOCK using this offset later, we don't want
1942 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1943 unsigned FuncBitcodeOffsetDelta =
1944 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1945
1946 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1947 return error("Invalid record");
1948
1949 SmallVector<uint64_t, 64> Record;
1950
1951 Triple TT(TheModule->getTargetTriple());
1952
1953 // Read all the records for this value table.
1954 SmallString<128> ValueName;
1955
1956 while (true) {
1957 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1958
1959 switch (Entry.Kind) {
1960 case BitstreamEntry::SubBlock: // Handled for us already.
1961 case BitstreamEntry::Error:
1962 return error("Malformed block");
1963 case BitstreamEntry::EndBlock:
1964 if (Offset > 0)
1965 Stream.JumpToBit(CurrentBit);
1966 return Error::success();
1967 case BitstreamEntry::Record:
1968 // The interesting case.
1969 break;
1970 }
1971
1972 // Read a record.
1973 Record.clear();
1974 switch (Stream.readRecord(Entry.ID, Record)) {
1975 default: // Default behavior: unknown type.
1976 break;
1977 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
1978 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1979 if (Error Err = ValOrErr.takeError())
1980 return Err;
1981 ValOrErr.get();
1982 break;
1983 }
1984 case bitc::VST_CODE_FNENTRY: {
1985 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1986 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1987 if (Error Err = ValOrErr.takeError())
1988 return Err;
1989 Value *V = ValOrErr.get();
1990
1991 // Ignore function offsets emitted for aliases of functions in older
1992 // versions of LLVM.
1993 if (auto *F = dyn_cast<Function>(V))
1994 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
1995 break;
1996 }
1997 case bitc::VST_CODE_BBENTRY: {
1998 if (convertToString(Record, 1, ValueName))
1999 return error("Invalid record");
2000 BasicBlock *BB = getBasicBlock(Record[0]);
2001 if (!BB)
2002 return error("Invalid record");
2003
2004 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2005 ValueName.clear();
2006 break;
2007 }
2008 }
2009 }
2010}
2011
2012/// Decode a signed value stored with the sign bit in the LSB for dense VBR
2013/// encoding.
2014uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2015 if ((V & 1) == 0)
2016 return V >> 1;
2017 if (V != 1)
2018 return -(V >> 1);
2019 // There is no such thing as -0 with integers. "-0" really means MININT.
2020 return 1ULL << 63;
2021}
2022
2023/// Resolve all of the initializers for global values and aliases that we can.
2024Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2025 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2026 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2027 IndirectSymbolInitWorklist;
2028 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2029 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2030 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2031
2032 GlobalInitWorklist.swap(GlobalInits);
2033 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2034 FunctionPrefixWorklist.swap(FunctionPrefixes);
2035 FunctionPrologueWorklist.swap(FunctionPrologues);
2036 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2037
2038 while (!GlobalInitWorklist.empty()) {
2039 unsigned ValID = GlobalInitWorklist.back().second;
2040 if (ValID >= ValueList.size()) {
2041 // Not ready to resolve this yet, it requires something later in the file.
2042 GlobalInits.push_back(GlobalInitWorklist.back());
2043 } else {
2044 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2045 GlobalInitWorklist.back().first->setInitializer(C);
2046 else
2047 return error("Expected a constant");
2048 }
2049 GlobalInitWorklist.pop_back();
2050 }
2051
2052 while (!IndirectSymbolInitWorklist.empty()) {
2053 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2054 if (ValID >= ValueList.size()) {
2055 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2056 } else {
2057 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2058 if (!C)
2059 return error("Expected a constant");
2060 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2061 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2062 return error("Alias and aliasee types don't match");
2063 GIS->setIndirectSymbol(C);
2064 }
2065 IndirectSymbolInitWorklist.pop_back();
2066 }
2067
2068 while (!FunctionPrefixWorklist.empty()) {
2069 unsigned ValID = FunctionPrefixWorklist.back().second;
2070 if (ValID >= ValueList.size()) {
2071 FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2072 } else {
2073 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2074 FunctionPrefixWorklist.back().first->setPrefixData(C);
2075 else
2076 return error("Expected a constant");
2077 }
2078 FunctionPrefixWorklist.pop_back();
2079 }
2080
2081 while (!FunctionPrologueWorklist.empty()) {
2082 unsigned ValID = FunctionPrologueWorklist.back().second;
2083 if (ValID >= ValueList.size()) {
2084 FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2085 } else {
2086 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2087 FunctionPrologueWorklist.back().first->setPrologueData(C);
2088 else
2089 return error("Expected a constant");
2090 }
2091 FunctionPrologueWorklist.pop_back();
2092 }
2093
2094 while (!FunctionPersonalityFnWorklist.empty()) {
2095 unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2096 if (ValID >= ValueList.size()) {
2097 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2098 } else {
2099 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2100 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2101 else
2102 return error("Expected a constant");
2103 }
2104 FunctionPersonalityFnWorklist.pop_back();
2105 }
2106
2107 return Error::success();
2108}
2109
2110static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2111 SmallVector<uint64_t, 8> Words(Vals.size());
2112 transform(Vals, Words.begin(),
2113 BitcodeReader::decodeSignRotatedValue);
2114
2115 return APInt(TypeBits, Words);
2116}
2117
2118Error BitcodeReader::parseConstants() {
2119 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2120 return error("Invalid record");
2121
2122 SmallVector<uint64_t, 64> Record;
2123
2124 // Read all the records for this value table.
2125 Type *CurTy = Type::getInt32Ty(Context);
2126 unsigned NextCstNo = ValueList.size();
2127
2128 while (true) {
2129 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2130
2131 switch (Entry.Kind) {
2132 case BitstreamEntry::SubBlock: // Handled for us already.
2133 case BitstreamEntry::Error:
2134 return error("Malformed block");
2135 case BitstreamEntry::EndBlock:
2136 if (NextCstNo != ValueList.size())
2137 return error("Invalid constant reference");
2138
2139 // Once all the constants have been read, go through and resolve forward
2140 // references.
2141 ValueList.resolveConstantForwardRefs();
2142 return Error::success();
2143 case BitstreamEntry::Record:
2144 // The interesting case.
2145 break;
2146 }
2147
2148 // Read a record.
2149 Record.clear();
2150 Type *VoidType = Type::getVoidTy(Context);
2151 Value *V = nullptr;
2152 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2153 switch (BitCode) {
2154 default: // Default behavior: unknown constant
2155 case bitc::CST_CODE_UNDEF: // UNDEF
2156 V = UndefValue::get(CurTy);
2157 break;
2158 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2159 if (Record.empty())
2160 return error("Invalid record");
2161 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2162 return error("Invalid record");
2163 if (TypeList[Record[0]] == VoidType)
2164 return error("Invalid constant type");
2165 CurTy = TypeList[Record[0]];
2166 continue; // Skip the ValueList manipulation.
2167 case bitc::CST_CODE_NULL: // NULL
2168 V = Constant::getNullValue(CurTy);
2169 break;
2170 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2171 if (!CurTy->isIntegerTy() || Record.empty())
2172 return error("Invalid record");
2173 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2174 break;
2175 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2176 if (!CurTy->isIntegerTy() || Record.empty())
2177 return error("Invalid record");
2178
2179 APInt VInt =
2180 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2181 V = ConstantInt::get(Context, VInt);
2182
2183 break;
2184 }
2185 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2186 if (Record.empty())
2187 return error("Invalid record");
2188 if (CurTy->isHalfTy())
2189 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2190 APInt(16, (uint16_t)Record[0])));
2191 else if (CurTy->isFloatTy())
2192 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2193 APInt(32, (uint32_t)Record[0])));
2194 else if (CurTy->isDoubleTy())
2195 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2196 APInt(64, Record[0])));
2197 else if (CurTy->isX86_FP80Ty()) {
2198 // Bits are not stored the same way as a normal i80 APInt, compensate.
2199 uint64_t Rearrange[2];
2200 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2201 Rearrange[1] = Record[0] >> 48;
2202 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2203 APInt(80, Rearrange)));
2204 } else if (CurTy->isFP128Ty())
2205 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2206 APInt(128, Record)));
2207 else if (CurTy->isPPC_FP128Ty())
2208 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2209 APInt(128, Record)));
2210 else
2211 V = UndefValue::get(CurTy);
2212 break;
2213 }
2214
2215 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2216 if (Record.empty())
2217 return error("Invalid record");
2218
2219 unsigned Size = Record.size();
2220 SmallVector<Constant*, 16> Elts;
2221
2222 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2223 for (unsigned i = 0; i != Size; ++i)
2224 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2225 STy->getElementType(i)));
2226 V = ConstantStruct::get(STy, Elts);
2227 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2228 Type *EltTy = ATy->getElementType();
2229 for (unsigned i = 0; i != Size; ++i)
2230 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2231 V = ConstantArray::get(ATy, Elts);
2232 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2233 Type *EltTy = VTy->getElementType();
2234 for (unsigned i = 0; i != Size; ++i)
2235 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2236 V = ConstantVector::get(Elts);
2237 } else {
2238 V = UndefValue::get(CurTy);
2239 }
2240 break;
2241 }
2242 case bitc::CST_CODE_STRING: // STRING: [values]
2243 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2244 if (Record.empty())
2245 return error("Invalid record");
2246
2247 SmallString<16> Elts(Record.begin(), Record.end());
2248 V = ConstantDataArray::getString(Context, Elts,
2249 BitCode == bitc::CST_CODE_CSTRING);
2250 break;
2251 }
2252 case bitc::CST_CODE_DATA: {// DATA: [n x value]
2253 if (Record.empty())
2254 return error("Invalid record");
2255
2256 Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2257 if (EltTy->isIntegerTy(8)) {
2258 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2259 if (isa<VectorType>(CurTy))
2260 V = ConstantDataVector::get(Context, Elts);
2261 else
2262 V = ConstantDataArray::get(Context, Elts);
2263 } else if (EltTy->isIntegerTy(16)) {
2264 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2265 if (isa<VectorType>(CurTy))
2266 V = ConstantDataVector::get(Context, Elts);
2267 else
2268 V = ConstantDataArray::get(Context, Elts);
2269 } else if (EltTy->isIntegerTy(32)) {
2270 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2271 if (isa<VectorType>(CurTy))
2272 V = ConstantDataVector::get(Context, Elts);
2273 else
2274 V = ConstantDataArray::get(Context, Elts);
2275 } else if (EltTy->isIntegerTy(64)) {
2276 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2277 if (isa<VectorType>(CurTy))
2278 V = ConstantDataVector::get(Context, Elts);
2279 else
2280 V = ConstantDataArray::get(Context, Elts);
2281 } else if (EltTy->isHalfTy()) {
2282 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2283 if (isa<VectorType>(CurTy))
2284 V = ConstantDataVector::getFP(Context, Elts);
2285 else
2286 V = ConstantDataArray::getFP(Context, Elts);
2287 } else if (EltTy->isFloatTy()) {
2288 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2289 if (isa<VectorType>(CurTy))
2290 V = ConstantDataVector::getFP(Context, Elts);
2291 else
2292 V = ConstantDataArray::getFP(Context, Elts);
2293 } else if (EltTy->isDoubleTy()) {
2294 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2295 if (isa<VectorType>(CurTy))
2296 V = ConstantDataVector::getFP(Context, Elts);
2297 else
2298 V = ConstantDataArray::getFP(Context, Elts);
2299 } else {
2300 return error("Invalid type for value");
2301 }
2302 break;
2303 }
2304 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2305 if (Record.size() < 3)
2306 return error("Invalid record");
2307 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2308 if (Opc < 0) {
2309 V = UndefValue::get(CurTy); // Unknown binop.
2310 } else {
2311 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2312 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2313 unsigned Flags = 0;
2314 if (Record.size() >= 4) {
2315 if (Opc == Instruction::Add ||
2316 Opc == Instruction::Sub ||
2317 Opc == Instruction::Mul ||
2318 Opc == Instruction::Shl) {
2319 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2320 Flags |= OverflowingBinaryOperator::NoSignedWrap;
2321 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2322 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2323 } else if (Opc == Instruction::SDiv ||
2324 Opc == Instruction::UDiv ||
2325 Opc == Instruction::LShr ||
2326 Opc == Instruction::AShr) {
2327 if (Record[3] & (1 << bitc::PEO_EXACT))
2328 Flags |= SDivOperator::IsExact;
2329 }
2330 }
2331 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2332 }
2333 break;
2334 }
2335 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2336 if (Record.size() < 3)
2337 return error("Invalid record");
2338 int Opc = getDecodedCastOpcode(Record[0]);
2339 if (Opc < 0) {
2340 V = UndefValue::get(CurTy); // Unknown cast.
2341 } else {
2342 Type *OpTy = getTypeByID(Record[1]);
2343 if (!OpTy)
2344 return error("Invalid record");
2345 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2346 V = UpgradeBitCastExpr(Opc, Op, CurTy);
2347 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2348 }
2349 break;
2350 }
2351 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2352 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2353 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2354 // operands]
2355 unsigned OpNum = 0;
2356 Type *PointeeType = nullptr;
2357 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2358 Record.size() % 2)
2359 PointeeType = getTypeByID(Record[OpNum++]);
2360
2361 bool InBounds = false;
2362 Optional<unsigned> InRangeIndex;
2363 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2364 uint64_t Op = Record[OpNum++];
2365 InBounds = Op & 1;
2366 InRangeIndex = Op >> 1;
2367 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2368 InBounds = true;
2369
2370 SmallVector<Constant*, 16> Elts;
2371 while (OpNum != Record.size()) {
2372 Type *ElTy = getTypeByID(Record[OpNum++]);
2373 if (!ElTy)
2374 return error("Invalid record");
2375 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2376 }
2377
2378 if (PointeeType &&
2379 PointeeType !=
2380 cast<PointerType>(Elts[0]->getType()->getScalarType())
2381 ->getElementType())
2382 return error("Explicit gep operator type does not match pointee type "
2383 "of pointer operand");
2384
2385 if (Elts.size() < 1)
2386 return error("Invalid gep with no operands");
2387
2388 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2389 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2390 InBounds, InRangeIndex);
2391 break;
2392 }
2393 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2394 if (Record.size() < 3)
2395 return error("Invalid record");
2396
2397 Type *SelectorTy = Type::getInt1Ty(Context);
2398
2399 // The selector might be an i1 or an <n x i1>
2400 // Get the type from the ValueList before getting a forward ref.
2401 if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2402 if (Value *V = ValueList[Record[0]])
2403 if (SelectorTy != V->getType())
2404 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2405
2406 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2407 SelectorTy),
2408 ValueList.getConstantFwdRef(Record[1],CurTy),
2409 ValueList.getConstantFwdRef(Record[2],CurTy));
2410 break;
2411 }
2412 case bitc::CST_CODE_CE_EXTRACTELT
2413 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2414 if (Record.size() < 3)
2415 return error("Invalid record");
2416 VectorType *OpTy =
2417 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2418 if (!OpTy)
2419 return error("Invalid record");
2420 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2421 Constant *Op1 = nullptr;
2422 if (Record.size() == 4) {
2423 Type *IdxTy = getTypeByID(Record[2]);
2424 if (!IdxTy)
2425 return error("Invalid record");
2426 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2427 } else // TODO: Remove with llvm 4.0
2428 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2429 if (!Op1)
2430 return error("Invalid record");
2431 V = ConstantExpr::getExtractElement(Op0, Op1);
2432 break;
2433 }
2434 case bitc::CST_CODE_CE_INSERTELT
2435 : { // CE_INSERTELT: [opval, opval, opty, opval]
2436 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2437 if (Record.size() < 3 || !OpTy)
2438 return error("Invalid record");
2439 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2440 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2441 OpTy->getElementType());
2442 Constant *Op2 = nullptr;
2443 if (Record.size() == 4) {
2444 Type *IdxTy = getTypeByID(Record[2]);
2445 if (!IdxTy)
2446 return error("Invalid record");
2447 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2448 } else // TODO: Remove with llvm 4.0
2449 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2450 if (!Op2)
2451 return error("Invalid record");
2452 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2453 break;
2454 }
2455 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2456 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2457 if (Record.size() < 3 || !OpTy)
2458 return error("Invalid record");
2459 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2460 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2461 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2462 OpTy->getNumElements());
2463 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2464 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2465 break;
2466 }
2467 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2468 VectorType *RTy = dyn_cast<VectorType>(CurTy);
2469 VectorType *OpTy =
2470 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2471 if (Record.size() < 4 || !RTy || !OpTy)
2472 return error("Invalid record");
2473 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2474 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2475 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2476 RTy->getNumElements());
2477 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2478 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2479 break;
2480 }
2481 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2482 if (Record.size() < 4)
2483 return error("Invalid record");
2484 Type *OpTy = getTypeByID(Record[0]);
2485 if (!OpTy)
2486 return error("Invalid record");
2487 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2488 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2489
2490 if (OpTy->isFPOrFPVectorTy())
2491 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2492 else
2493 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2494 break;
2495 }
2496 // This maintains backward compatibility, pre-asm dialect keywords.
2497 // FIXME: Remove with the 4.0 release.
2498 case bitc::CST_CODE_INLINEASM_OLD: {
2499 if (Record.size() < 2)
2500 return error("Invalid record");
2501 std::string AsmStr, ConstrStr;
2502 bool HasSideEffects = Record[0] & 1;
2503 bool IsAlignStack = Record[0] >> 1;
2504 unsigned AsmStrSize = Record[1];
2505 if (2+AsmStrSize >= Record.size())
2506 return error("Invalid record");
2507 unsigned ConstStrSize = Record[2+AsmStrSize];
2508 if (3+AsmStrSize+ConstStrSize > Record.size())
2509 return error("Invalid record");
2510
2511 for (unsigned i = 0; i != AsmStrSize; ++i)
2512 AsmStr += (char)Record[2+i];
2513 for (unsigned i = 0; i != ConstStrSize; ++i)
2514 ConstrStr += (char)Record[3+AsmStrSize+i];
2515 PointerType *PTy = cast<PointerType>(CurTy);
2516 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2517 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2518 break;
2519 }
2520 // This version adds support for the asm dialect keywords (e.g.,
2521 // inteldialect).
2522 case bitc::CST_CODE_INLINEASM: {
2523 if (Record.size() < 2)
2524 return error("Invalid record");
2525 std::string AsmStr, ConstrStr;
2526 bool HasSideEffects = Record[0] & 1;
2527 bool IsAlignStack = (Record[0] >> 1) & 1;
2528 unsigned AsmDialect = Record[0] >> 2;
2529 unsigned AsmStrSize = Record[1];
2530 if (2+AsmStrSize >= Record.size())
2531 return error("Invalid record");
2532 unsigned ConstStrSize = Record[2+AsmStrSize];
2533 if (3+AsmStrSize+ConstStrSize > Record.size())
2534 return error("Invalid record");
2535
2536 for (unsigned i = 0; i != AsmStrSize; ++i)
2537 AsmStr += (char)Record[2+i];
2538 for (unsigned i = 0; i != ConstStrSize; ++i)
2539 ConstrStr += (char)Record[3+AsmStrSize+i];
2540 PointerType *PTy = cast<PointerType>(CurTy);
2541 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2542 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2543 InlineAsm::AsmDialect(AsmDialect));
2544 break;
2545 }
2546 case bitc::CST_CODE_BLOCKADDRESS:{
2547 if (Record.size() < 3)
2548 return error("Invalid record");
2549 Type *FnTy = getTypeByID(Record[0]);
2550 if (!FnTy)
2551 return error("Invalid record");
2552 Function *Fn =
2553 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2554 if (!Fn)
2555 return error("Invalid record");
2556
2557 // If the function is already parsed we can insert the block address right
2558 // away.
2559 BasicBlock *BB;
2560 unsigned BBID = Record[2];
2561 if (!BBID)
2562 // Invalid reference to entry block.
2563 return error("Invalid ID");
2564 if (!Fn->empty()) {
2565 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2566 for (size_t I = 0, E = BBID; I != E; ++I) {
2567 if (BBI == BBE)
2568 return error("Invalid ID");
2569 ++BBI;
2570 }
2571 BB = &*BBI;
2572 } else {
2573 // Otherwise insert a placeholder and remember it so it can be inserted
2574 // when the function is parsed.
2575 auto &FwdBBs = BasicBlockFwdRefs[Fn];
2576 if (FwdBBs.empty())
2577 BasicBlockFwdRefQueue.push_back(Fn);
2578 if (FwdBBs.size() < BBID + 1)
2579 FwdBBs.resize(BBID + 1);
2580 if (!FwdBBs[BBID])
2581 FwdBBs[BBID] = BasicBlock::Create(Context);
2582 BB = FwdBBs[BBID];
2583 }
2584 V = BlockAddress::get(Fn, BB);
2585 break;
2586 }
2587 }
2588
2589 ValueList.assignValue(V, NextCstNo);
2590 ++NextCstNo;
2591 }
2592}
2593
2594Error BitcodeReader::parseUseLists() {
2595 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2596 return error("Invalid record");
2597
2598 // Read all the records.
2599 SmallVector<uint64_t, 64> Record;
2600
2601 while (true) {
2602 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2603
2604 switch (Entry.Kind) {
2605 case BitstreamEntry::SubBlock: // Handled for us already.
2606 case BitstreamEntry::Error:
2607 return error("Malformed block");
2608 case BitstreamEntry::EndBlock:
2609 return Error::success();
2610 case BitstreamEntry::Record:
2611 // The interesting case.
2612 break;
2613 }
2614
2615 // Read a use list record.
2616 Record.clear();
2617 bool IsBB = false;
2618 switch (Stream.readRecord(Entry.ID, Record)) {
2619 default: // Default behavior: unknown type.
2620 break;
2621 case bitc::USELIST_CODE_BB:
2622 IsBB = true;
2623 LLVM_FALLTHROUGH[[clang::fallthrough]];
2624 case bitc::USELIST_CODE_DEFAULT: {
2625 unsigned RecordLength = Record.size();
2626 if (RecordLength < 3)
2627 // Records should have at least an ID and two indexes.
2628 return error("Invalid record");
2629 unsigned ID = Record.back();
2630 Record.pop_back();
2631
2632 Value *V;
2633 if (IsBB) {
2634 assert(ID < FunctionBBs.size() && "Basic block not found")(static_cast <bool> (ID < FunctionBBs.size() &&
"Basic block not found") ? void (0) : __assert_fail ("ID < FunctionBBs.size() && \"Basic block not found\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 2634, __extension__ __PRETTY_FUNCTION__))
;
2635 V = FunctionBBs[ID];
2636 } else
2637 V = ValueList[ID];
2638 unsigned NumUses = 0;
2639 SmallDenseMap<const Use *, unsigned, 16> Order;
2640 for (const Use &U : V->materialized_uses()) {
2641 if (++NumUses > Record.size())
2642 break;
2643 Order[&U] = Record[NumUses - 1];
2644 }
2645 if (Order.size() != Record.size() || NumUses > Record.size())
2646 // Mismatches can happen if the functions are being materialized lazily
2647 // (out-of-order), or a value has been upgraded.
2648 break;
2649
2650 V->sortUseList([&](const Use &L, const Use &R) {
2651 return Order.lookup(&L) < Order.lookup(&R);
2652 });
2653 break;
2654 }
2655 }
2656 }
2657}
2658
2659/// When we see the block for metadata, remember where it is and then skip it.
2660/// This lets us lazily deserialize the metadata.
2661Error BitcodeReader::rememberAndSkipMetadata() {
2662 // Save the current stream state.
2663 uint64_t CurBit = Stream.GetCurrentBitNo();
2664 DeferredMetadataInfo.push_back(CurBit);
2665
2666 // Skip over the block for now.
2667 if (Stream.SkipBlock())
2668 return error("Invalid record");
2669 return Error::success();
2670}
2671
2672Error BitcodeReader::materializeMetadata() {
2673 for (uint64_t BitPos : DeferredMetadataInfo) {
2674 // Move the bit stream to the saved position.
2675 Stream.JumpToBit(BitPos);
2676 if (Error Err = MDLoader->parseModuleMetadata())
2677 return Err;
2678 }
2679
2680 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2681 // metadata.
2682 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2683 NamedMDNode *LinkerOpts =
2684 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2685 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2686 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2687 }
2688
2689 DeferredMetadataInfo.clear();
2690 return Error::success();
2691}
2692
2693void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2694
2695/// When we see the block for a function body, remember where it is and then
2696/// skip it. This lets us lazily deserialize the functions.
2697Error BitcodeReader::rememberAndSkipFunctionBody() {
2698 // Get the function we are talking about.
2699 if (FunctionsWithBodies.empty())
2700 return error("Insufficient function protos");
2701
2702 Function *Fn = FunctionsWithBodies.back();
2703 FunctionsWithBodies.pop_back();
2704
2705 // Save the current stream state.
2706 uint64_t CurBit = Stream.GetCurrentBitNo();
2707 assert((static_cast <bool> ((DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo
[Fn] == CurBit) && "Mismatch between VST and scanned function offsets"
) ? void (0) : __assert_fail ("(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && \"Mismatch between VST and scanned function offsets\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 2709, __extension__ __PRETTY_FUNCTION__))
2708 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&(static_cast <bool> ((DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo
[Fn] == CurBit) && "Mismatch between VST and scanned function offsets"
) ? void (0) : __assert_fail ("(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && \"Mismatch between VST and scanned function offsets\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 2709, __extension__ __PRETTY_FUNCTION__))
2709 "Mismatch between VST and scanned function offsets")(static_cast <bool> ((DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo
[Fn] == CurBit) && "Mismatch between VST and scanned function offsets"
) ? void (0) : __assert_fail ("(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && \"Mismatch between VST and scanned function offsets\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 2709, __extension__ __PRETTY_FUNCTION__))
;
2710 DeferredFunctionInfo[Fn] = CurBit;
2711
2712 // Skip over the function block for now.
2713 if (Stream.SkipBlock())
2714 return error("Invalid record");
2715 return Error::success();
2716}
2717
2718Error BitcodeReader::globalCleanup() {
2719 // Patch the initializers for globals and aliases up.
2720 if (Error Err = resolveGlobalAndIndirectSymbolInits())
2721 return Err;
2722 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2723 return error("Malformed global initializer set");
2724
2725 // Look for intrinsic functions which need to be upgraded at some point
2726 for (Function &F : *TheModule) {
2727 MDLoader->upgradeDebugIntrinsics(F);
2728 Function *NewFn;
2729 if (UpgradeIntrinsicFunction(&F, NewFn))
2730 UpgradedIntrinsics[&F] = NewFn;
2731 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2732 // Some types could be renamed during loading if several modules are
2733 // loaded in the same LLVMContext (LTO scenario). In this case we should
2734 // remangle intrinsics names as well.
2735 RemangledIntrinsics[&F] = Remangled.getValue();
2736 }
2737
2738 // Look for global variables which need to be renamed.
2739 for (GlobalVariable &GV : TheModule->globals())
2740 UpgradeGlobalVariable(&GV);
2741
2742 // Force deallocation of memory for these vectors to favor the client that
2743 // want lazy deserialization.
2744 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2745 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2746 IndirectSymbolInits);
2747 return Error::success();
2748}
2749
2750/// Support for lazy parsing of function bodies. This is required if we
2751/// either have an old bitcode file without a VST forward declaration record,
2752/// or if we have an anonymous function being materialized, since anonymous
2753/// functions do not have a name and are therefore not in the VST.
2754Error BitcodeReader::rememberAndSkipFunctionBodies() {
2755 Stream.JumpToBit(NextUnreadBit);
2756
2757 if (Stream.AtEndOfStream())
2758 return error("Could not find function in stream");
2759
2760 if (!SeenFirstFunctionBody)
2761 return error("Trying to materialize functions before seeing function blocks");
2762
2763 // An old bitcode file with the symbol table at the end would have
2764 // finished the parse greedily.
2765 assert(SeenValueSymbolTable)(static_cast <bool> (SeenValueSymbolTable) ? void (0) :
__assert_fail ("SeenValueSymbolTable", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 2765, __extension__ __PRETTY_FUNCTION__))
;
2766
2767 SmallVector<uint64_t, 64> Record;
2768
2769 while (true) {
2770 BitstreamEntry Entry = Stream.advance();
2771 switch (Entry.Kind) {
2772 default:
2773 return error("Expect SubBlock");
2774 case BitstreamEntry::SubBlock:
2775 switch (Entry.ID) {
2776 default:
2777 return error("Expect function block");
2778 case bitc::FUNCTION_BLOCK_ID:
2779 if (Error Err = rememberAndSkipFunctionBody())
2780 return Err;
2781 NextUnreadBit = Stream.GetCurrentBitNo();
2782 return Error::success();
2783 }
2784 }
2785 }
2786}
2787
2788bool BitcodeReaderBase::readBlockInfo() {
2789 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2790 if (!NewBlockInfo)
2791 return true;
2792 BlockInfo = std::move(*NewBlockInfo);
2793 return false;
2794}
2795
2796Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2797 // v1: [selection_kind, name]
2798 // v2: [strtab_offset, strtab_size, selection_kind]
2799 StringRef Name;
2800 std::tie(Name, Record) = readNameFromStrtab(Record);
2801
2802 if (Record.empty())
2803 return error("Invalid record");
2804 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2805 std::string OldFormatName;
2806 if (!UseStrtab) {
2807 if (Record.size() < 2)
2808 return error("Invalid record");
2809 unsigned ComdatNameSize = Record[1];
2810 OldFormatName.reserve(ComdatNameSize);
2811 for (unsigned i = 0; i != ComdatNameSize; ++i)
2812 OldFormatName += (char)Record[2 + i];
2813 Name = OldFormatName;
2814 }
2815 Comdat *C = TheModule->getOrInsertComdat(Name);
2816 C->setSelectionKind(SK);
2817 ComdatList.push_back(C);
2818 return Error::success();
2819}
2820
2821Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2822 // v1: [pointer type, isconst, initid, linkage, alignment, section,
2823 // visibility, threadlocal, unnamed_addr, externally_initialized,
2824 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2825 // v2: [strtab_offset, strtab_size, v1]
2826 StringRef Name;
2827 std::tie(Name, Record) = readNameFromStrtab(Record);
2828
2829 if (Record.size() < 6)
1
Assuming the condition is false
2
Taking false branch
2830 return error("Invalid record");
2831 Type *Ty = getTypeByID(Record[0]);
2832 if (!Ty)
3
Assuming 'Ty' is non-null
4
Taking false branch
2833 return error("Invalid record");
2834 bool isConstant = Record[1] & 1;
2835 bool explicitType = Record[1] & 2;
2836 unsigned AddressSpace;
2837 if (explicitType) {
5
Assuming 'explicitType' is 0
6
Taking false branch
2838 AddressSpace = Record[1] >> 2;
2839 } else {
2840 if (!Ty->isPointerTy())
7
Taking false branch
2841 return error("Invalid type for value");
2842 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2843 Ty = cast<PointerType>(Ty)->getElementType();
2844 }
2845
2846 uint64_t RawLinkage = Record[3];
2847 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2848 unsigned Alignment;
8
'Alignment' declared without an initial value
2849 if (Error Err = parseAlignmentValue(Record[4], Alignment))
9
Calling 'BitcodeReader::parseAlignmentValue'
68
Returning from 'BitcodeReader::parseAlignmentValue'
69
Taking false branch
2850 return Err;
2851 std::string Section;
2852 if (Record[5]) {
70
Assuming the condition is false
71
Taking false branch
2853 if (Record[5] - 1 >= SectionTable.size())
2854 return error("Invalid ID");
2855 Section = SectionTable[Record[5] - 1];
2856 }
2857 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2858 // Local linkage must have default visibility.
2859 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
72
Assuming the condition is false
2860 // FIXME: Change to an error if non-default in 4.0.
2861 Visibility = getDecodedVisibility(Record[6]);
2862
2863 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2864 if (Record.size() > 7)
73
Assuming the condition is false
74
Taking false branch
2865 TLM = getDecodedThreadLocalMode(Record[7]);
2866
2867 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2868 if (Record.size() > 8)
75
Assuming the condition is false
76
Taking false branch
2869 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2870
2871 bool ExternallyInitialized = false;
2872 if (Record.size() > 9)
77
Assuming the condition is false
78
Taking false branch
2873 ExternallyInitialized = Record[9];
2874
2875 GlobalVariable *NewGV =
2876 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2877 nullptr, TLM, AddressSpace, ExternallyInitialized);
2878 NewGV->setAlignment(Alignment);
79
1st function call argument is an uninitialized value
2879 if (!Section.empty())
2880 NewGV->setSection(Section);
2881 NewGV->setVisibility(Visibility);
2882 NewGV->setUnnamedAddr(UnnamedAddr);
2883
2884 if (Record.size() > 10)
2885 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2886 else
2887 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2888
2889 ValueList.push_back(NewGV);
2890
2891 // Remember which value to use for the global initializer.
2892 if (unsigned InitID = Record[2])
2893 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2894
2895 if (Record.size() > 11) {
2896 if (unsigned ComdatID = Record[11]) {
2897 if (ComdatID > ComdatList.size())
2898 return error("Invalid global variable comdat ID");
2899 NewGV->setComdat(ComdatList[ComdatID - 1]);
2900 }
2901 } else if (hasImplicitComdat(RawLinkage)) {
2902 NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2903 }
2904
2905 if (Record.size() > 12) {
2906 auto AS = getAttributes(Record[12]).getFnAttributes();
2907 NewGV->setAttributes(AS);
2908 }
2909
2910 if (Record.size() > 13) {
2911 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2912 }
2913
2914 return Error::success();
2915}
2916
2917Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2918 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2919 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2920 // prefixdata, personalityfn, preemption specifier] (name in VST)
2921 // v2: [strtab_offset, strtab_size, v1]
2922 StringRef Name;
2923 std::tie(Name, Record) = readNameFromStrtab(Record);
2924
2925 if (Record.size() < 8)
2926 return error("Invalid record");
2927 Type *Ty = getTypeByID(Record[0]);
2928 if (!Ty)
2929 return error("Invalid record");
2930 if (auto *PTy = dyn_cast<PointerType>(Ty))
2931 Ty = PTy->getElementType();
2932 auto *FTy = dyn_cast<FunctionType>(Ty);
2933 if (!FTy)
2934 return error("Invalid type for value");
2935 auto CC = static_cast<CallingConv::ID>(Record[1]);
2936 if (CC & ~CallingConv::MaxID)
2937 return error("Invalid calling convention ID");
2938
2939 Function *Func =
2940 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
2941
2942 Func->setCallingConv(CC);
2943 bool isProto = Record[2];
2944 uint64_t RawLinkage = Record[3];
2945 Func->setLinkage(getDecodedLinkage(RawLinkage));
2946 Func->setAttributes(getAttributes(Record[4]));
2947
2948 unsigned Alignment;
2949 if (Error Err = parseAlignmentValue(Record[5], Alignment))
2950 return Err;
2951 Func->setAlignment(Alignment);
2952 if (Record[6]) {
2953 if (Record[6] - 1 >= SectionTable.size())
2954 return error("Invalid ID");
2955 Func->setSection(SectionTable[Record[6] - 1]);
2956 }
2957 // Local linkage must have default visibility.
2958 if (!Func->hasLocalLinkage())
2959 // FIXME: Change to an error if non-default in 4.0.
2960 Func->setVisibility(getDecodedVisibility(Record[7]));
2961 if (Record.size() > 8 && Record[8]) {
2962 if (Record[8] - 1 >= GCTable.size())
2963 return error("Invalid ID");
2964 Func->setGC(GCTable[Record[8] - 1]);
2965 }
2966 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2967 if (Record.size() > 9)
2968 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2969 Func->setUnnamedAddr(UnnamedAddr);
2970 if (Record.size() > 10 && Record[10] != 0)
2971 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
2972
2973 if (Record.size() > 11)
2974 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2975 else
2976 upgradeDLLImportExportLinkage(Func, RawLinkage);
2977
2978 if (Record.size() > 12) {
2979 if (unsigned ComdatID = Record[12]) {
2980 if (ComdatID > ComdatList.size())
2981 return error("Invalid function comdat ID");
2982 Func->setComdat(ComdatList[ComdatID - 1]);
2983 }
2984 } else if (hasImplicitComdat(RawLinkage)) {
2985 Func->setComdat(reinterpret_cast<Comdat *>(1));
2986 }
2987
2988 if (Record.size() > 13 && Record[13] != 0)
2989 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
2990
2991 if (Record.size() > 14 && Record[14] != 0)
2992 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
2993
2994 if (Record.size() > 15) {
2995 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
2996 }
2997
2998 ValueList.push_back(Func);
2999
3000 // If this is a function with a body, remember the prototype we are
3001 // creating now, so that we can match up the body with them later.
3002 if (!isProto) {
3003 Func->setIsMaterializable(true);
3004 FunctionsWithBodies.push_back(Func);
3005 DeferredFunctionInfo[Func] = 0;
3006 }
3007 return Error::success();
3008}
3009
3010Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3011 unsigned BitCode, ArrayRef<uint64_t> Record) {
3012 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3013 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3014 // dllstorageclass, threadlocal, unnamed_addr,
3015 // preemption specifier] (name in VST)
3016 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3017 // visibility, dllstorageclass, threadlocal, unnamed_addr,
3018 // preemption specifier] (name in VST)
3019 // v2: [strtab_offset, strtab_size, v1]
3020 StringRef Name;
3021 std::tie(Name, Record) = readNameFromStrtab(Record);
3022
3023 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3024 if (Record.size() < (3 + (unsigned)NewRecord))
3025 return error("Invalid record");
3026 unsigned OpNum = 0;
3027 Type *Ty = getTypeByID(Record[OpNum++]);
3028 if (!Ty)
3029 return error("Invalid record");
3030
3031 unsigned AddrSpace;
3032 if (!NewRecord) {
3033 auto *PTy = dyn_cast<PointerType>(Ty);
3034 if (!PTy)
3035 return error("Invalid type for value");
3036 Ty = PTy->getElementType();
3037 AddrSpace = PTy->getAddressSpace();
3038 } else {
3039 AddrSpace = Record[OpNum++];
3040 }
3041
3042 auto Val = Record[OpNum++];
3043 auto Linkage = Record[OpNum++];
3044 GlobalIndirectSymbol *NewGA;
3045 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3046 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3047 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3048 TheModule);
3049 else
3050 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3051 nullptr, TheModule);
3052 // Old bitcode files didn't have visibility field.
3053 // Local linkage must have default visibility.
3054 if (OpNum != Record.size()) {
3055 auto VisInd = OpNum++;
3056 if (!NewGA->hasLocalLinkage())
3057 // FIXME: Change to an error if non-default in 4.0.
3058 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3059 }
3060 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3061 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3062 if (OpNum != Record.size())
3063 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3064 else
3065 upgradeDLLImportExportLinkage(NewGA, Linkage);
3066 if (OpNum != Record.size())
3067 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3068 if (OpNum != Record.size())
3069 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3070 }
3071 if (OpNum != Record.size())
3072 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3073 ValueList.push_back(NewGA);
3074 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3075 return Error::success();
3076}
3077
3078Error BitcodeReader::parseModule(uint64_t ResumeBit,
3079 bool ShouldLazyLoadMetadata) {
3080 if (ResumeBit)
3081 Stream.JumpToBit(ResumeBit);
3082 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3083 return error("Invalid record");
3084
3085 SmallVector<uint64_t, 64> Record;
3086
3087 // Read all the records for this module.
3088 while (true) {
3089 BitstreamEntry Entry = Stream.advance();
3090
3091 switch (Entry.Kind) {
3092 case BitstreamEntry::Error:
3093 return error("Malformed block");
3094 case BitstreamEntry::EndBlock:
3095 return globalCleanup();
3096
3097 case BitstreamEntry::SubBlock:
3098 switch (Entry.ID) {
3099 default: // Skip unknown content.
3100 if (Stream.SkipBlock())
3101 return error("Invalid record");
3102 break;
3103 case bitc::BLOCKINFO_BLOCK_ID:
3104 if (readBlockInfo())
3105 return error("Malformed block");
3106 break;
3107 case bitc::PARAMATTR_BLOCK_ID:
3108 if (Error Err = parseAttributeBlock())
3109 return Err;
3110 break;
3111 case bitc::PARAMATTR_GROUP_BLOCK_ID:
3112 if (Error Err = parseAttributeGroupBlock())
3113 return Err;
3114 break;
3115 case bitc::TYPE_BLOCK_ID_NEW:
3116 if (Error Err = parseTypeTable())
3117 return Err;
3118 break;
3119 case bitc::VALUE_SYMTAB_BLOCK_ID:
3120 if (!SeenValueSymbolTable) {
3121 // Either this is an old form VST without function index and an
3122 // associated VST forward declaration record (which would have caused
3123 // the VST to be jumped to and parsed before it was encountered
3124 // normally in the stream), or there were no function blocks to
3125 // trigger an earlier parsing of the VST.
3126 assert(VSTOffset == 0 || FunctionsWithBodies.empty())(static_cast <bool> (VSTOffset == 0 || FunctionsWithBodies
.empty()) ? void (0) : __assert_fail ("VSTOffset == 0 || FunctionsWithBodies.empty()"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 3126, __extension__ __PRETTY_FUNCTION__))
;
3127 if (Error Err = parseValueSymbolTable())
3128 return Err;
3129 SeenValueSymbolTable = true;
3130 } else {
3131 // We must have had a VST forward declaration record, which caused
3132 // the parser to jump to and parse the VST earlier.
3133 assert(VSTOffset > 0)(static_cast <bool> (VSTOffset > 0) ? void (0) : __assert_fail
("VSTOffset > 0", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 3133, __extension__ __PRETTY_FUNCTION__))
;
3134 if (Stream.SkipBlock())
3135 return error("Invalid record");
3136 }
3137 break;
3138 case bitc::CONSTANTS_BLOCK_ID:
3139 if (Error Err = parseConstants())
3140 return Err;
3141 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3142 return Err;
3143 break;
3144 case bitc::METADATA_BLOCK_ID:
3145 if (ShouldLazyLoadMetadata) {
3146 if (Error Err = rememberAndSkipMetadata())
3147 return Err;
3148 break;
3149 }
3150 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata")(static_cast <bool> (DeferredMetadataInfo.empty() &&
"Unexpected deferred metadata") ? void (0) : __assert_fail (
"DeferredMetadataInfo.empty() && \"Unexpected deferred metadata\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 3150, __extension__ __PRETTY_FUNCTION__))
;
3151 if (Error Err = MDLoader->parseModuleMetadata())
3152 return Err;
3153 break;
3154 case bitc::METADATA_KIND_BLOCK_ID:
3155 if (Error Err = MDLoader->parseMetadataKinds())
3156 return Err;
3157 break;
3158 case bitc::FUNCTION_BLOCK_ID:
3159 // If this is the first function body we've seen, reverse the
3160 // FunctionsWithBodies list.
3161 if (!SeenFirstFunctionBody) {
3162 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3163 if (Error Err = globalCleanup())
3164 return Err;
3165 SeenFirstFunctionBody = true;
3166 }
3167
3168 if (VSTOffset > 0) {
3169 // If we have a VST forward declaration record, make sure we
3170 // parse the VST now if we haven't already. It is needed to
3171 // set up the DeferredFunctionInfo vector for lazy reading.
3172 if (!SeenValueSymbolTable) {
3173 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3174 return Err;
3175 SeenValueSymbolTable = true;
3176 // Fall through so that we record the NextUnreadBit below.
3177 // This is necessary in case we have an anonymous function that
3178 // is later materialized. Since it will not have a VST entry we
3179 // need to fall back to the lazy parse to find its offset.
3180 } else {
3181 // If we have a VST forward declaration record, but have already
3182 // parsed the VST (just above, when the first function body was
3183 // encountered here), then we are resuming the parse after
3184 // materializing functions. The ResumeBit points to the
3185 // start of the last function block recorded in the
3186 // DeferredFunctionInfo map. Skip it.
3187 if (Stream.SkipBlock())
3188 return error("Invalid record");
3189 continue;
3190 }
3191 }
3192
3193 // Support older bitcode files that did not have the function
3194 // index in the VST, nor a VST forward declaration record, as
3195 // well as anonymous functions that do not have VST entries.
3196 // Build the DeferredFunctionInfo vector on the fly.
3197 if (Error Err = rememberAndSkipFunctionBody())
3198 return Err;
3199
3200 // Suspend parsing when we reach the function bodies. Subsequent
3201 // materialization calls will resume it when necessary. If the bitcode
3202 // file is old, the symbol table will be at the end instead and will not
3203 // have been seen yet. In this case, just finish the parse now.
3204 if (SeenValueSymbolTable) {
3205 NextUnreadBit = Stream.GetCurrentBitNo();
3206 // After the VST has been parsed, we need to make sure intrinsic name
3207 // are auto-upgraded.
3208 return globalCleanup();
3209 }
3210 break;
3211 case bitc::USELIST_BLOCK_ID:
3212 if (Error Err = parseUseLists())
3213 return Err;
3214 break;
3215 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3216 if (Error Err = parseOperandBundleTags())
3217 return Err;
3218 break;
3219 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3220 if (Error Err = parseSyncScopeNames())
3221 return Err;
3222 break;
3223 }
3224 continue;
3225
3226 case BitstreamEntry::Record:
3227 // The interesting case.
3228 break;
3229 }
3230
3231 // Read a record.
3232 auto BitCode = Stream.readRecord(Entry.ID, Record);
3233 switch (BitCode) {
3234 default: break; // Default behavior, ignore unknown content.
3235 case bitc::MODULE_CODE_VERSION: {
3236 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3237 if (!VersionOrErr)
3238 return VersionOrErr.takeError();
3239 UseRelativeIDs = *VersionOrErr >= 1;
3240 break;
3241 }
3242 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3243 std::string S;
3244 if (convertToString(Record, 0, S))
3245 return error("Invalid record");
3246 TheModule->setTargetTriple(S);
3247 break;
3248 }
3249 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3250 std::string S;
3251 if (convertToString(Record, 0, S))
3252 return error("Invalid record");
3253 TheModule->setDataLayout(S);
3254 break;
3255 }
3256 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3257 std::string S;
3258 if (convertToString(Record, 0, S))
3259 return error("Invalid record");
3260 TheModule->setModuleInlineAsm(S);
3261 break;
3262 }
3263 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3264 // FIXME: Remove in 4.0.
3265 std::string S;
3266 if (convertToString(Record, 0, S))
3267 return error("Invalid record");
3268 // Ignore value.
3269 break;
3270 }
3271 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3272 std::string S;
3273 if (convertToString(Record, 0, S))
3274 return error("Invalid record");
3275 SectionTable.push_back(S);
3276 break;
3277 }
3278 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3279 std::string S;
3280 if (convertToString(Record, 0, S))
3281 return error("Invalid record");
3282 GCTable.push_back(S);
3283 break;
3284 }
3285 case bitc::MODULE_CODE_COMDAT:
3286 if (Error Err = parseComdatRecord(Record))
3287 return Err;
3288 break;
3289 case bitc::MODULE_CODE_GLOBALVAR:
3290 if (Error Err = parseGlobalVarRecord(Record))
3291 return Err;
3292 break;
3293 case bitc::MODULE_CODE_FUNCTION:
3294 if (Error Err = parseFunctionRecord(Record))
3295 return Err;
3296 break;
3297 case bitc::MODULE_CODE_IFUNC:
3298 case bitc::MODULE_CODE_ALIAS:
3299 case bitc::MODULE_CODE_ALIAS_OLD:
3300 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3301 return Err;
3302 break;
3303 /// MODULE_CODE_VSTOFFSET: [offset]
3304 case bitc::MODULE_CODE_VSTOFFSET:
3305 if (Record.size() < 1)
3306 return error("Invalid record");
3307 // Note that we subtract 1 here because the offset is relative to one word
3308 // before the start of the identification or module block, which was
3309 // historically always the start of the regular bitcode header.
3310 VSTOffset = Record[0] - 1;
3311 break;
3312 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3313 case bitc::MODULE_CODE_SOURCE_FILENAME:
3314 SmallString<128> ValueName;
3315 if (convertToString(Record, 0, ValueName))
3316 return error("Invalid record");
3317 TheModule->setSourceFileName(ValueName);
3318 break;
3319 }
3320 Record.clear();
3321 }
3322}
3323
3324Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3325 bool IsImporting) {
3326 TheModule = M;
3327 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3328 [&](unsigned ID) { return getTypeByID(ID); });
3329 return parseModule(0, ShouldLazyLoadMetadata);
3330}
3331
3332Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3333 if (!isa<PointerType>(PtrType))
3334 return error("Load/Store operand is not a pointer type");
3335 Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3336
3337 if (ValType && ValType != ElemType)
3338 return error("Explicit load/store type does not match pointee "
3339 "type of pointer operand");
3340 if (!PointerType::isLoadableOrStorableType(ElemType))
3341 return error("Cannot load/store from pointer");
3342 return Error::success();
3343}
3344
3345/// Lazily parse the specified function body block.
3346Error BitcodeReader::parseFunctionBody(Function *F) {
3347 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3348 return error("Invalid record");
3349
3350 // Unexpected unresolved metadata when parsing function.
3351 if (MDLoader->hasFwdRefs())
3352 return error("Invalid function metadata: incoming forward references");
3353
3354 InstructionList.clear();
3355 unsigned ModuleValueListSize = ValueList.size();
3356 unsigned ModuleMDLoaderSize = MDLoader->size();
3357
3358 // Add all the function arguments to the value table.
3359 for (Argument &I : F->args())
3360 ValueList.push_back(&I);
3361
3362 unsigned NextValueNo = ValueList.size();
3363 BasicBlock *CurBB = nullptr;
3364 unsigned CurBBNo = 0;
3365
3366 DebugLoc LastLoc;
3367 auto getLastInstruction = [&]() -> Instruction * {
3368 if (CurBB && !CurBB->empty())
3369 return &CurBB->back();
3370 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3371 !FunctionBBs[CurBBNo - 1]->empty())
3372 return &FunctionBBs[CurBBNo - 1]->back();
3373 return nullptr;
3374 };
3375
3376 std::vector<OperandBundleDef> OperandBundles;
3377
3378 // Read all the records.
3379 SmallVector<uint64_t, 64> Record;
3380
3381 while (true) {
3382 BitstreamEntry Entry = Stream.advance();
3383
3384 switch (Entry.Kind) {
3385 case BitstreamEntry::Error:
3386 return error("Malformed block");
3387 case BitstreamEntry::EndBlock:
3388 goto OutOfRecordLoop;
3389
3390 case BitstreamEntry::SubBlock:
3391 switch (Entry.ID) {
3392 default: // Skip unknown content.
3393 if (Stream.SkipBlock())
3394 return error("Invalid record");
3395 break;
3396 case bitc::CONSTANTS_BLOCK_ID:
3397 if (Error Err = parseConstants())
3398 return Err;
3399 NextValueNo = ValueList.size();
3400 break;
3401 case bitc::VALUE_SYMTAB_BLOCK_ID:
3402 if (Error Err = parseValueSymbolTable())
3403 return Err;
3404 break;
3405 case bitc::METADATA_ATTACHMENT_ID:
3406 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3407 return Err;
3408 break;
3409 case bitc::METADATA_BLOCK_ID:
3410 assert(DeferredMetadataInfo.empty() &&(static_cast <bool> (DeferredMetadataInfo.empty() &&
"Must read all module-level metadata before function-level")
? void (0) : __assert_fail ("DeferredMetadataInfo.empty() && \"Must read all module-level metadata before function-level\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 3411, __extension__ __PRETTY_FUNCTION__))
3411 "Must read all module-level metadata before function-level")(static_cast <bool> (DeferredMetadataInfo.empty() &&
"Must read all module-level metadata before function-level")
? void (0) : __assert_fail ("DeferredMetadataInfo.empty() && \"Must read all module-level metadata before function-level\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 3411, __extension__ __PRETTY_FUNCTION__))
;
3412 if (Error Err = MDLoader->parseFunctionMetadata())
3413 return Err;
3414 break;
3415 case bitc::USELIST_BLOCK_ID:
3416 if (Error Err = parseUseLists())
3417 return Err;
3418 break;
3419 }
3420 continue;
3421
3422 case BitstreamEntry::Record:
3423 // The interesting case.
3424 break;
3425 }
3426
3427 // Read a record.
3428 Record.clear();
3429 Instruction *I = nullptr;
3430 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3431 switch (BitCode) {
3432 default: // Default behavior: reject
3433 return error("Invalid value");
3434 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
3435 if (Record.size() < 1 || Record[0] == 0)
3436 return error("Invalid record");
3437 // Create all the basic blocks for the function.
3438 FunctionBBs.resize(Record[0]);
3439
3440 // See if anything took the address of blocks in this function.
3441 auto BBFRI = BasicBlockFwdRefs.find(F);
3442 if (BBFRI == BasicBlockFwdRefs.end()) {
3443 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3444 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3445 } else {
3446 auto &BBRefs = BBFRI->second;
3447 // Check for invalid basic block references.
3448 if (BBRefs.size() > FunctionBBs.size())
3449 return error("Invalid ID");
3450 assert(!BBRefs.empty() && "Unexpected empty array")(static_cast <bool> (!BBRefs.empty() && "Unexpected empty array"
) ? void (0) : __assert_fail ("!BBRefs.empty() && \"Unexpected empty array\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 3450, __extension__ __PRETTY_FUNCTION__))
;
3451 assert(!BBRefs.front() && "Invalid reference to entry block")(static_cast <bool> (!BBRefs.front() && "Invalid reference to entry block"
) ? void (0) : __assert_fail ("!BBRefs.front() && \"Invalid reference to entry block\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 3451, __extension__ __PRETTY_FUNCTION__))
;
3452 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3453 ++I)
3454 if (I < RE && BBRefs[I]) {
3455 BBRefs[I]->insertInto(F);
3456 FunctionBBs[I] = BBRefs[I];
3457 } else {
3458 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3459 }
3460
3461 // Erase from the table.
3462 BasicBlockFwdRefs.erase(BBFRI);
3463 }
3464
3465 CurBB = FunctionBBs[0];
3466 continue;
3467 }
3468
3469 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
3470 // This record indicates that the last instruction is at the same
3471 // location as the previous instruction with a location.
3472 I = getLastInstruction();
3473
3474 if (!I)
3475 return error("Invalid record");
3476 I->setDebugLoc(LastLoc);
3477 I = nullptr;
3478 continue;
3479
3480 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
3481 I = getLastInstruction();
3482 if (!I || Record.size() < 4)
3483 return error("Invalid record");
3484
3485 unsigned Line = Record[0], Col = Record[1];
3486 unsigned ScopeID = Record[2], IAID = Record[3];
3487
3488 MDNode *Scope = nullptr, *IA = nullptr;
3489 if (ScopeID) {
3490 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3491 if (!Scope)
3492 return error("Invalid record");
3493 }
3494 if (IAID) {
3495 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3496 if (!IA)
3497 return error("Invalid record");
3498 }
3499 LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3500 I->setDebugLoc(LastLoc);
3501 I = nullptr;
3502 continue;
3503 }
3504
3505 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
3506 unsigned OpNum = 0;
3507 Value *LHS, *RHS;
3508 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3509 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3510 OpNum+1 > Record.size())
3511 return error("Invalid record");
3512
3513 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3514 if (Opc == -1)
3515 return error("Invalid record");
3516 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3517 InstructionList.push_back(I);
3518 if (OpNum < Record.size()) {
3519 if (Opc == Instruction::Add ||
3520 Opc == Instruction::Sub ||
3521 Opc == Instruction::Mul ||
3522 Opc == Instruction::Shl) {
3523 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3524 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3525 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3526 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3527 } else if (Opc == Instruction::SDiv ||
3528 Opc == Instruction::UDiv ||
3529 Opc == Instruction::LShr ||
3530 Opc == Instruction::AShr) {
3531 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3532 cast<BinaryOperator>(I)->setIsExact(true);
3533 } else if (isa<FPMathOperator>(I)) {
3534 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3535 if (FMF.any())
3536 I->setFastMathFlags(FMF);
3537 }
3538
3539 }
3540 break;
3541 }
3542 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
3543 unsigned OpNum = 0;
3544 Value *Op;
3545 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3546 OpNum+2 != Record.size())
3547 return error("Invalid record");
3548
3549 Type *ResTy = getTypeByID(Record[OpNum]);
3550 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3551 if (Opc == -1 || !ResTy)
3552 return error("Invalid record");
3553 Instruction *Temp = nullptr;
3554 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3555 if (Temp) {
3556 InstructionList.push_back(Temp);
3557 CurBB->getInstList().push_back(Temp);
3558 }
3559 } else {
3560 auto CastOp = (Instruction::CastOps)Opc;
3561 if (!CastInst::castIsValid(CastOp, Op, ResTy))
3562 return error("Invalid cast");
3563 I = CastInst::Create(CastOp, Op, ResTy);
3564 }
3565 InstructionList.push_back(I);
3566 break;
3567 }
3568 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3569 case bitc::FUNC_CODE_INST_GEP_OLD:
3570 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3571 unsigned OpNum = 0;
3572
3573 Type *Ty;
3574 bool InBounds;
3575
3576 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3577 InBounds = Record[OpNum++];
3578 Ty = getTypeByID(Record[OpNum++]);
3579 } else {
3580 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3581 Ty = nullptr;
3582 }
3583
3584 Value *BasePtr;
3585 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3586 return error("Invalid record");
3587
3588 if (!Ty)
3589 Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3590 ->getElementType();
3591 else if (Ty !=
3592 cast<PointerType>(BasePtr->getType()->getScalarType())
3593 ->getElementType())
3594 return error(
3595 "Explicit gep type does not match pointee type of pointer operand");
3596
3597 SmallVector<Value*, 16> GEPIdx;
3598 while (OpNum != Record.size()) {
3599 Value *Op;
3600 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3601 return error("Invalid record");
3602 GEPIdx.push_back(Op);
3603 }
3604
3605 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3606
3607 InstructionList.push_back(I);
3608 if (InBounds)
3609 cast<GetElementPtrInst>(I)->setIsInBounds(true);
3610 break;
3611 }
3612
3613 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3614 // EXTRACTVAL: [opty, opval, n x indices]
3615 unsigned OpNum = 0;
3616 Value *Agg;
3617 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3618 return error("Invalid record");
3619
3620 unsigned RecSize = Record.size();
3621 if (OpNum == RecSize)
3622 return error("EXTRACTVAL: Invalid instruction with 0 indices");
3623
3624 SmallVector<unsigned, 4> EXTRACTVALIdx;
3625 Type *CurTy = Agg->getType();
3626 for (; OpNum != RecSize; ++OpNum) {
3627 bool IsArray = CurTy->isArrayTy();
3628 bool IsStruct = CurTy->isStructTy();
3629 uint64_t Index = Record[OpNum];
3630
3631 if (!IsStruct && !IsArray)
3632 return error("EXTRACTVAL: Invalid type");
3633 if ((unsigned)Index != Index)
3634 return error("Invalid value");
3635 if (IsStruct && Index >= CurTy->subtypes().size())
3636 return error("EXTRACTVAL: Invalid struct index");
3637 if (IsArray && Index >= CurTy->getArrayNumElements())
3638 return error("EXTRACTVAL: Invalid array index");
3639 EXTRACTVALIdx.push_back((unsigned)Index);
3640
3641 if (IsStruct)
3642 CurTy = CurTy->subtypes()[Index];
3643 else
3644 CurTy = CurTy->subtypes()[0];
3645 }
3646
3647 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3648 InstructionList.push_back(I);
3649 break;
3650 }
3651
3652 case bitc::FUNC_CODE_INST_INSERTVAL: {
3653 // INSERTVAL: [opty, opval, opty, opval, n x indices]
3654 unsigned OpNum = 0;
3655 Value *Agg;
3656 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3657 return error("Invalid record");
3658 Value *Val;
3659 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3660 return error("Invalid record");
3661
3662 unsigned RecSize = Record.size();
3663 if (OpNum == RecSize)
3664 return error("INSERTVAL: Invalid instruction with 0 indices");
3665
3666 SmallVector<unsigned, 4> INSERTVALIdx;
3667 Type *CurTy = Agg->getType();
3668 for (; OpNum != RecSize; ++OpNum) {
3669 bool IsArray = CurTy->isArrayTy();
3670 bool IsStruct = CurTy->isStructTy();
3671 uint64_t Index = Record[OpNum];
3672
3673 if (!IsStruct && !IsArray)
3674 return error("INSERTVAL: Invalid type");
3675 if ((unsigned)Index != Index)
3676 return error("Invalid value");
3677 if (IsStruct && Index >= CurTy->subtypes().size())
3678 return error("INSERTVAL: Invalid struct index");
3679 if (IsArray && Index >= CurTy->getArrayNumElements())
3680 return error("INSERTVAL: Invalid array index");
3681
3682 INSERTVALIdx.push_back((unsigned)Index);
3683 if (IsStruct)
3684 CurTy = CurTy->subtypes()[Index];
3685 else
3686 CurTy = CurTy->subtypes()[0];
3687 }
3688
3689 if (CurTy != Val->getType())
3690 return error("Inserted value type doesn't match aggregate type");
3691
3692 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3693 InstructionList.push_back(I);
3694 break;
3695 }
3696
3697 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3698 // obsolete form of select
3699 // handles select i1 ... in old bitcode
3700 unsigned OpNum = 0;
3701 Value *TrueVal, *FalseVal, *Cond;
3702 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3703 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3704 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3705 return error("Invalid record");
3706
3707 I = SelectInst::Create(Cond, TrueVal, FalseVal);
3708 InstructionList.push_back(I);
3709 break;
3710 }
3711
3712 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3713 // new form of select
3714 // handles select i1 or select [N x i1]
3715 unsigned OpNum = 0;
3716 Value *TrueVal, *FalseVal, *Cond;
3717 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3718 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3719 getValueTypePair(Record, OpNum, NextValueNo, Cond))
3720 return error("Invalid record");
3721
3722 // select condition can be either i1 or [N x i1]
3723 if (VectorType* vector_type =
3724 dyn_cast<VectorType>(Cond->getType())) {
3725 // expect <n x i1>
3726 if (vector_type->getElementType() != Type::getInt1Ty(Context))
3727 return error("Invalid type for value");
3728 } else {
3729 // expect i1
3730 if (Cond->getType() != Type::getInt1Ty(Context))
3731 return error("Invalid type for value");
3732 }
3733
3734 I = SelectInst::Create(Cond, TrueVal, FalseVal);
3735 InstructionList.push_back(I);
3736 break;
3737 }
3738
3739 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3740 unsigned OpNum = 0;
3741 Value *Vec, *Idx;
3742 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3743 getValueTypePair(Record, OpNum, NextValueNo, Idx))
3744 return error("Invalid record");
3745 if (!Vec->getType()->isVectorTy())
3746 return error("Invalid type for value");
3747 I = ExtractElementInst::Create(Vec, Idx);
3748 InstructionList.push_back(I);
3749 break;
3750 }
3751
3752 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3753 unsigned OpNum = 0;
3754 Value *Vec, *Elt, *Idx;
3755 if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3756 return error("Invalid record");
3757 if (!Vec->getType()->isVectorTy())
3758 return error("Invalid type for value");
3759 if (popValue(Record, OpNum, NextValueNo,
3760 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3761 getValueTypePair(Record, OpNum, NextValueNo, Idx))
3762 return error("Invalid record");
3763 I = InsertElementInst::Create(Vec, Elt, Idx);
3764 InstructionList.push_back(I);
3765 break;
3766 }
3767
3768 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3769 unsigned OpNum = 0;
3770 Value *Vec1, *Vec2, *Mask;
3771 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3772 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3773 return error("Invalid record");
3774
3775 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3776 return error("Invalid record");
3777 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3778 return error("Invalid type for value");
3779 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3780 InstructionList.push_back(I);
3781 break;
3782 }
3783
3784 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
3785 // Old form of ICmp/FCmp returning bool
3786 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3787 // both legal on vectors but had different behaviour.
3788 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3789 // FCmp/ICmp returning bool or vector of bool
3790
3791 unsigned OpNum = 0;
3792 Value *LHS, *RHS;
3793 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3794 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3795 return error("Invalid record");
3796
3797 unsigned PredVal = Record[OpNum];
3798 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3799 FastMathFlags FMF;
3800 if (IsFP && Record.size() > OpNum+1)
3801 FMF = getDecodedFastMathFlags(Record[++OpNum]);
3802
3803 if (OpNum+1 != Record.size())
3804 return error("Invalid record");
3805
3806 if (LHS->getType()->isFPOrFPVectorTy())
3807 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3808 else
3809 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3810
3811 if (FMF.any())
3812 I->setFastMathFlags(FMF);
3813 InstructionList.push_back(I);
3814 break;
3815 }
3816
3817 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3818 {
3819 unsigned Size = Record.size();
3820 if (Size == 0) {
3821 I = ReturnInst::Create(Context);
3822 InstructionList.push_back(I);
3823 break;
3824 }
3825
3826 unsigned OpNum = 0;
3827 Value *Op = nullptr;
3828 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3829 return error("Invalid record");
3830 if (OpNum != Record.size())
3831 return error("Invalid record");
3832
3833 I = ReturnInst::Create(Context, Op);
3834 InstructionList.push_back(I);
3835 break;
3836 }
3837 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3838 if (Record.size() != 1 && Record.size() != 3)
3839 return error("Invalid record");
3840 BasicBlock *TrueDest = getBasicBlock(Record[0]);
3841 if (!TrueDest)
3842 return error("Invalid record");
3843
3844 if (Record.size() == 1) {
3845 I = BranchInst::Create(TrueDest);
3846 InstructionList.push_back(I);
3847 }
3848 else {
3849 BasicBlock *FalseDest = getBasicBlock(Record[1]);
3850 Value *Cond = getValue(Record, 2, NextValueNo,
3851 Type::getInt1Ty(Context));
3852 if (!FalseDest || !Cond)
3853 return error("Invalid record");
3854 I = BranchInst::Create(TrueDest, FalseDest, Cond);
3855 InstructionList.push_back(I);
3856 }
3857 break;
3858 }
3859 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3860 if (Record.size() != 1 && Record.size() != 2)
3861 return error("Invalid record");
3862 unsigned Idx = 0;
3863 Value *CleanupPad =
3864 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3865 if (!CleanupPad)
3866 return error("Invalid record");
3867 BasicBlock *UnwindDest = nullptr;
3868 if (Record.size() == 2) {
3869 UnwindDest = getBasicBlock(Record[Idx++]);
3870 if (!UnwindDest)
3871 return error("Invalid record");
3872 }
3873
3874 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3875 InstructionList.push_back(I);
3876 break;
3877 }
3878 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3879 if (Record.size() != 2)
3880 return error("Invalid record");
3881 unsigned Idx = 0;
3882 Value *CatchPad =
3883 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3884 if (!CatchPad)
3885 return error("Invalid record");
3886 BasicBlock *BB = getBasicBlock(Record[Idx++]);
3887 if (!BB)
3888 return error("Invalid record");
3889
3890 I = CatchReturnInst::Create(CatchPad, BB);
3891 InstructionList.push_back(I);
3892 break;
3893 }
3894 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3895 // We must have, at minimum, the outer scope and the number of arguments.
3896 if (Record.size() < 2)
3897 return error("Invalid record");
3898
3899 unsigned Idx = 0;
3900
3901 Value *ParentPad =
3902 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3903
3904 unsigned NumHandlers = Record[Idx++];
3905
3906 SmallVector<BasicBlock *, 2> Handlers;
3907 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3908 BasicBlock *BB = getBasicBlock(Record[Idx++]);
3909 if (!BB)
3910 return error("Invalid record");
3911 Handlers.push_back(BB);
3912 }
3913
3914 BasicBlock *UnwindDest = nullptr;
3915 if (Idx + 1 == Record.size()) {
3916 UnwindDest = getBasicBlock(Record[Idx++]);
3917 if (!UnwindDest)
3918 return error("Invalid record");
3919 }
3920
3921 if (Record.size() != Idx)
3922 return error("Invalid record");
3923
3924 auto *CatchSwitch =
3925 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3926 for (BasicBlock *Handler : Handlers)
3927 CatchSwitch->addHandler(Handler);
3928 I = CatchSwitch;
3929 InstructionList.push_back(I);
3930 break;
3931 }
3932 case bitc::FUNC_CODE_INST_CATCHPAD:
3933 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3934 // We must have, at minimum, the outer scope and the number of arguments.
3935 if (Record.size() < 2)
3936 return error("Invalid record");
3937
3938 unsigned Idx = 0;
3939
3940 Value *ParentPad =
3941 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3942
3943 unsigned NumArgOperands = Record[Idx++];
3944
3945 SmallVector<Value *, 2> Args;
3946 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3947 Value *Val;
3948 if (getValueTypePair(Record, Idx, NextValueNo, Val))
3949 return error("Invalid record");
3950 Args.push_back(Val);
3951 }
3952
3953 if (Record.size() != Idx)
3954 return error("Invalid record");
3955
3956 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3957 I = CleanupPadInst::Create(ParentPad, Args);
3958 else
3959 I = CatchPadInst::Create(ParentPad, Args);
3960 InstructionList.push_back(I);
3961 break;
3962 }
3963 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3964 // Check magic
3965 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3966 // "New" SwitchInst format with case ranges. The changes to write this
3967 // format were reverted but we still recognize bitcode that uses it.
3968 // Hopefully someday we will have support for case ranges and can use
3969 // this format again.
3970
3971 Type *OpTy = getTypeByID(Record[1]);
3972 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3973
3974 Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3975 BasicBlock *Default = getBasicBlock(Record[3]);
3976 if (!OpTy || !Cond || !Default)
3977 return error("Invalid record");
3978
3979 unsigned NumCases = Record[4];
3980
3981 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3982 InstructionList.push_back(SI);
3983
3984 unsigned CurIdx = 5;
3985 for (unsigned i = 0; i != NumCases; ++i) {
3986 SmallVector<ConstantInt*, 1> CaseVals;
3987 unsigned NumItems = Record[CurIdx++];
3988 for (unsigned ci = 0; ci != NumItems; ++ci) {
3989 bool isSingleNumber = Record[CurIdx++];
3990
3991 APInt Low;
3992 unsigned ActiveWords = 1;
3993 if (ValueBitWidth > 64)
3994 ActiveWords = Record[CurIdx++];
3995 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3996 ValueBitWidth);
3997 CurIdx += ActiveWords;
3998
3999 if (!isSingleNumber) {
4000 ActiveWords = 1;
4001 if (ValueBitWidth > 64)
4002 ActiveWords = Record[CurIdx++];
4003 APInt High = readWideAPInt(
4004 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4005 CurIdx += ActiveWords;
4006
4007 // FIXME: It is not clear whether values in the range should be
4008 // compared as signed or unsigned values. The partially
4009 // implemented changes that used this format in the past used
4010 // unsigned comparisons.
4011 for ( ; Low.ule(High); ++Low)
4012 CaseVals.push_back(ConstantInt::get(Context, Low));
4013 } else
4014 CaseVals.push_back(ConstantInt::get(Context, Low));
4015 }
4016 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4017 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4018 cve = CaseVals.end(); cvi != cve; ++cvi)
4019 SI->addCase(*cvi, DestBB);
4020 }
4021 I = SI;
4022 break;
4023 }
4024
4025 // Old SwitchInst format without case ranges.
4026
4027 if (Record.size() < 3 || (Record.size() & 1) == 0)
4028 return error("Invalid record");
4029 Type *OpTy = getTypeByID(Record[0]);
4030 Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4031 BasicBlock *Default = getBasicBlock(Record[2]);
4032 if (!OpTy || !Cond || !Default)
4033 return error("Invalid record");
4034 unsigned NumCases = (Record.size()-3)/2;
4035 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4036 InstructionList.push_back(SI);
4037 for (unsigned i = 0, e = NumCases; i != e; ++i) {
4038 ConstantInt *CaseVal =
4039 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4040 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4041 if (!CaseVal || !DestBB) {
4042 delete SI;
4043 return error("Invalid record");
4044 }
4045 SI->addCase(CaseVal, DestBB);
4046 }
4047 I = SI;
4048 break;
4049 }
4050 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4051 if (Record.size() < 2)
4052 return error("Invalid record");
4053 Type *OpTy = getTypeByID(Record[0]);
4054 Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4055 if (!OpTy || !Address)
4056 return error("Invalid record");
4057 unsigned NumDests = Record.size()-2;
4058 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4059 InstructionList.push_back(IBI);
4060 for (unsigned i = 0, e = NumDests; i != e; ++i) {
4061 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4062 IBI->addDestination(DestBB);
4063 } else {
4064 delete IBI;
4065 return error("Invalid record");
4066 }
4067 }
4068 I = IBI;
4069 break;
4070 }
4071
4072 case bitc::FUNC_CODE_INST_INVOKE: {
4073 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4074 if (Record.size() < 4)
4075 return error("Invalid record");
4076 unsigned OpNum = 0;
4077 AttributeList PAL = getAttributes(Record[OpNum++]);
4078 unsigned CCInfo = Record[OpNum++];
4079 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4080 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4081
4082 FunctionType *FTy = nullptr;
4083 if (CCInfo >> 13 & 1 &&
4084 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4085 return error("Explicit invoke type is not a function type");
4086
4087 Value *Callee;
4088 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4089 return error("Invalid record");
4090
4091 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4092 if (!CalleeTy)
4093 return error("Callee is not a pointer");
4094 if (!FTy) {
4095 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4096 if (!FTy)
4097 return error("Callee is not of pointer to function type");
4098 } else if (CalleeTy->getElementType() != FTy)
4099 return error("Explicit invoke type does not match pointee type of "
4100 "callee operand");
4101 if (Record.size() < FTy->getNumParams() + OpNum)
4102 return error("Insufficient operands to call");
4103
4104 SmallVector<Value*, 16> Ops;
4105 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4106 Ops.push_back(getValue(Record, OpNum, NextValueNo,
4107 FTy->getParamType(i)));
4108 if (!Ops.back())
4109 return error("Invalid record");
4110 }
4111
4112 if (!FTy->isVarArg()) {
4113 if (Record.size() != OpNum)
4114 return error("Invalid record");
4115 } else {
4116 // Read type/value pairs for varargs params.
4117 while (OpNum != Record.size()) {
4118 Value *Op;
4119 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4120 return error("Invalid record");
4121 Ops.push_back(Op);
4122 }
4123 }
4124
4125 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4126 OperandBundles.clear();
4127 InstructionList.push_back(I);
4128 cast<InvokeInst>(I)->setCallingConv(
4129 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4130 cast<InvokeInst>(I)->setAttributes(PAL);
4131 break;
4132 }
4133 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4134 unsigned Idx = 0;
4135 Value *Val = nullptr;
4136 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4137 return error("Invalid record");
4138 I = ResumeInst::Create(Val);
4139 InstructionList.push_back(I);
4140 break;
4141 }
4142 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4143 I = new UnreachableInst(Context);
4144 InstructionList.push_back(I);
4145 break;
4146 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4147 if (Record.size() < 1 || ((Record.size()-1)&1))
4148 return error("Invalid record");
4149 Type *Ty = getTypeByID(Record[0]);
4150 if (!Ty)
4151 return error("Invalid record");
4152
4153 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4154 InstructionList.push_back(PN);
4155
4156 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4157 Value *V;
4158 // With the new function encoding, it is possible that operands have
4159 // negative IDs (for forward references). Use a signed VBR
4160 // representation to keep the encoding small.
4161 if (UseRelativeIDs)
4162 V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4163 else
4164 V = getValue(Record, 1+i, NextValueNo, Ty);
4165 BasicBlock *BB = getBasicBlock(Record[2+i]);
4166 if (!V || !BB)
4167 return error("Invalid record");
4168 PN->addIncoming(V, BB);
4169 }
4170 I = PN;
4171 break;
4172 }
4173
4174 case bitc::FUNC_CODE_INST_LANDINGPAD:
4175 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4176 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4177 unsigned Idx = 0;
4178 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4179 if (Record.size() < 3)
4180 return error("Invalid record");
4181 } else {
4182 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD)(static_cast <bool> (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD
) ? void (0) : __assert_fail ("BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4182, __extension__ __PRETTY_FUNCTION__))
;
4183 if (Record.size() < 4)
4184 return error("Invalid record");
4185 }
4186 Type *Ty = getTypeByID(Record[Idx++]);
4187 if (!Ty)
4188 return error("Invalid record");
4189 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4190 Value *PersFn = nullptr;
4191 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4192 return error("Invalid record");
4193
4194 if (!F->hasPersonalityFn())
4195 F->setPersonalityFn(cast<Constant>(PersFn));
4196 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4197 return error("Personality function mismatch");
4198 }
4199
4200 bool IsCleanup = !!Record[Idx++];
4201 unsigned NumClauses = Record[Idx++];
4202 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4203 LP->setCleanup(IsCleanup);
4204 for (unsigned J = 0; J != NumClauses; ++J) {
4205 LandingPadInst::ClauseType CT =
4206 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4207 Value *Val;
4208
4209 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4210 delete LP;
4211 return error("Invalid record");
4212 }
4213
4214 assert((CT != LandingPadInst::Catch ||(static_cast <bool> ((CT != LandingPadInst::Catch || !isa
<ArrayType>(Val->getType())) && "Catch clause has a invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Catch || !isa<ArrayType>(Val->getType())) && \"Catch clause has a invalid type!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4216, __extension__ __PRETTY_FUNCTION__))
4215 !isa<ArrayType>(Val->getType())) &&(static_cast <bool> ((CT != LandingPadInst::Catch || !isa
<ArrayType>(Val->getType())) && "Catch clause has a invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Catch || !isa<ArrayType>(Val->getType())) && \"Catch clause has a invalid type!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4216, __extension__ __PRETTY_FUNCTION__))
4216 "Catch clause has a invalid type!")(static_cast <bool> ((CT != LandingPadInst::Catch || !isa
<ArrayType>(Val->getType())) && "Catch clause has a invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Catch || !isa<ArrayType>(Val->getType())) && \"Catch clause has a invalid type!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4216, __extension__ __PRETTY_FUNCTION__))
;
4217 assert((CT != LandingPadInst::Filter ||(static_cast <bool> ((CT != LandingPadInst::Filter || isa
<ArrayType>(Val->getType())) && "Filter clause has invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Filter || isa<ArrayType>(Val->getType())) && \"Filter clause has invalid type!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4219, __extension__ __PRETTY_FUNCTION__))
4218 isa<ArrayType>(Val->getType())) &&(static_cast <bool> ((CT != LandingPadInst::Filter || isa
<ArrayType>(Val->getType())) && "Filter clause has invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Filter || isa<ArrayType>(Val->getType())) && \"Filter clause has invalid type!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4219, __extension__ __PRETTY_FUNCTION__))
4219 "Filter clause has invalid type!")(static_cast <bool> ((CT != LandingPadInst::Filter || isa
<ArrayType>(Val->getType())) && "Filter clause has invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Filter || isa<ArrayType>(Val->getType())) && \"Filter clause has invalid type!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4219, __extension__ __PRETTY_FUNCTION__))
;
4220 LP->addClause(cast<Constant>(Val));
4221 }
4222
4223 I = LP;
4224 InstructionList.push_back(I);
4225 break;
4226 }
4227
4228 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4229 if (Record.size() != 4)
4230 return error("Invalid record");
4231 uint64_t AlignRecord = Record[3];
4232 const uint64_t InAllocaMask = uint64_t(1) << 5;
4233 const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4234 const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4235 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4236 SwiftErrorMask;
4237 bool InAlloca = AlignRecord & InAllocaMask;
4238 bool SwiftError = AlignRecord & SwiftErrorMask;
4239 Type *Ty = getTypeByID(Record[0]);
4240 if ((AlignRecord & ExplicitTypeMask) == 0) {
4241 auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4242 if (!PTy)
4243 return error("Old-style alloca with a non-pointer type");
4244 Ty = PTy->getElementType();
4245 }
4246 Type *OpTy = getTypeByID(Record[1]);
4247 Value *Size = getFnValueByID(Record[2], OpTy);
4248 unsigned Align;
4249 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4250 return Err;
4251 }
4252 if (!Ty || !Size)
4253 return error("Invalid record");
4254
4255 // FIXME: Make this an optional field.
4256 const DataLayout &DL = TheModule->getDataLayout();
4257 unsigned AS = DL.getAllocaAddrSpace();
4258
4259 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4260 AI->setUsedWithInAlloca(InAlloca);
4261 AI->setSwiftError(SwiftError);
4262 I = AI;
4263 InstructionList.push_back(I);
4264 break;
4265 }
4266 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4267 unsigned OpNum = 0;
4268 Value *Op;
4269 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4270 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4271 return error("Invalid record");
4272
4273 Type *Ty = nullptr;
4274 if (OpNum + 3 == Record.size())
4275 Ty = getTypeByID(Record[OpNum++]);
4276 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4277 return Err;
4278 if (!Ty)
4279 Ty = cast<PointerType>(Op->getType())->getElementType();
4280
4281 unsigned Align;
4282 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4283 return Err;
4284 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4285
4286 InstructionList.push_back(I);
4287 break;
4288 }
4289 case bitc::FUNC_CODE_INST_LOADATOMIC: {
4290 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4291 unsigned OpNum = 0;
4292 Value *Op;
4293 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4294 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4295 return error("Invalid record");
4296
4297 Type *Ty = nullptr;
4298 if (OpNum + 5 == Record.size())
4299 Ty = getTypeByID(Record[OpNum++]);
4300 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4301 return Err;
4302 if (!Ty)
4303 Ty = cast<PointerType>(Op->getType())->getElementType();
4304
4305 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4306 if (Ordering == AtomicOrdering::NotAtomic ||
4307 Ordering == AtomicOrdering::Release ||
4308 Ordering == AtomicOrdering::AcquireRelease)
4309 return error("Invalid record");
4310 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4311 return error("Invalid record");
4312 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4313
4314 unsigned Align;
4315 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4316 return Err;
4317 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4318
4319 InstructionList.push_back(I);
4320 break;
4321 }
4322 case bitc::FUNC_CODE_INST_STORE:
4323 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4324 unsigned OpNum = 0;
4325 Value *Val, *Ptr;
4326 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4327 (BitCode == bitc::FUNC_CODE_INST_STORE
4328 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4329 : popValue(Record, OpNum, NextValueNo,
4330 cast<PointerType>(Ptr->getType())->getElementType(),
4331 Val)) ||
4332 OpNum + 2 != Record.size())
4333 return error("Invalid record");
4334
4335 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4336 return Err;
4337 unsigned Align;
4338 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4339 return Err;
4340 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4341 InstructionList.push_back(I);
4342 break;
4343 }
4344 case bitc::FUNC_CODE_INST_STOREATOMIC:
4345 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4346 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4347 unsigned OpNum = 0;
4348 Value *Val, *Ptr;
4349 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4350 !isa<PointerType>(Ptr->getType()) ||
4351 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4352 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4353 : popValue(Record, OpNum, NextValueNo,
4354 cast<PointerType>(Ptr->getType())->getElementType(),
4355 Val)) ||
4356 OpNum + 4 != Record.size())
4357 return error("Invalid record");
4358
4359 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4360 return Err;
4361 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4362 if (Ordering == AtomicOrdering::NotAtomic ||
4363 Ordering == AtomicOrdering::Acquire ||
4364 Ordering == AtomicOrdering::AcquireRelease)
4365 return error("Invalid record");
4366 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4367 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4368 return error("Invalid record");
4369
4370 unsigned Align;
4371 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4372 return Err;
4373 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4374 InstructionList.push_back(I);
4375 break;
4376 }
4377 case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4378 case bitc::FUNC_CODE_INST_CMPXCHG: {
4379 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4380 // failureordering?, isweak?]
4381 unsigned OpNum = 0;
4382 Value *Ptr, *Cmp, *New;
4383 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4384 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4385 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4386 : popValue(Record, OpNum, NextValueNo,
4387 cast<PointerType>(Ptr->getType())->getElementType(),
4388 Cmp)) ||
4389 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4390 Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4391 return error("Invalid record");
4392 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4393 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4394 SuccessOrdering == AtomicOrdering::Unordered)
4395 return error("Invalid record");
4396 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4397
4398 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4399 return Err;
4400 AtomicOrdering FailureOrdering;
4401 if (Record.size() < 7)
4402 FailureOrdering =
4403 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4404 else
4405 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4406
4407 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4408 SSID);
4409 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4410
4411 if (Record.size() < 8) {
4412 // Before weak cmpxchgs existed, the instruction simply returned the
4413 // value loaded from memory, so bitcode files from that era will be
4414 // expecting the first component of a modern cmpxchg.
4415 CurBB->getInstList().push_back(I);
4416 I = ExtractValueInst::Create(I, 0);
4417 } else {
4418 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4419 }
4420
4421 InstructionList.push_back(I);
4422 break;
4423 }
4424 case bitc::FUNC_CODE_INST_ATOMICRMW: {
4425 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4426 unsigned OpNum = 0;
4427 Value *Ptr, *Val;
4428 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4429 !isa<PointerType>(Ptr->getType()) ||
4430 popValue(Record, OpNum, NextValueNo,
4431 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4432 OpNum+4 != Record.size())
4433 return error("Invalid record");
4434 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4435 if (Operation < AtomicRMWInst::FIRST_BINOP ||
4436 Operation > AtomicRMWInst::LAST_BINOP)
4437 return error("Invalid record");
4438 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4439 if (Ordering == AtomicOrdering::NotAtomic ||
4440 Ordering == AtomicOrdering::Unordered)
4441 return error("Invalid record");
4442 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4443 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4444 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4445 InstructionList.push_back(I);
4446 break;
4447 }
4448 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4449 if (2 != Record.size())
4450 return error("Invalid record");
4451 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4452 if (Ordering == AtomicOrdering::NotAtomic ||
4453 Ordering == AtomicOrdering::Unordered ||
4454 Ordering == AtomicOrdering::Monotonic)
4455 return error("Invalid record");
4456 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4457 I = new FenceInst(Context, Ordering, SSID);
4458 InstructionList.push_back(I);
4459 break;
4460 }
4461 case bitc::FUNC_CODE_INST_CALL: {
4462 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4463 if (Record.size() < 3)
4464 return error("Invalid record");
4465
4466 unsigned OpNum = 0;
4467 AttributeList PAL = getAttributes(Record[OpNum++]);
4468 unsigned CCInfo = Record[OpNum++];
4469
4470 FastMathFlags FMF;
4471 if ((CCInfo >> bitc::CALL_FMF) & 1) {
4472 FMF = getDecodedFastMathFlags(Record[OpNum++]);
4473 if (!FMF.any())
4474 return error("Fast math flags indicator set for call with no FMF");
4475 }
4476
4477 FunctionType *FTy = nullptr;
4478 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4479 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4480 return error("Explicit call type is not a function type");
4481
4482 Value *Callee;
4483 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4484 return error("Invalid record");
4485
4486 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4487 if (!OpTy)
4488 return error("Callee is not a pointer type");
4489 if (!FTy) {
4490 FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4491 if (!FTy)
4492 return error("Callee is not of pointer to function type");
4493 } else if (OpTy->getElementType() != FTy)
4494 return error("Explicit call type does not match pointee type of "
4495 "callee operand");
4496 if (Record.size() < FTy->getNumParams() + OpNum)
4497 return error("Insufficient operands to call");
4498
4499 SmallVector<Value*, 16> Args;
4500 // Read the fixed params.
4501 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4502 if (FTy->getParamType(i)->isLabelTy())
4503 Args.push_back(getBasicBlock(Record[OpNum]));
4504 else
4505 Args.push_back(getValue(Record, OpNum, NextValueNo,
4506 FTy->getParamType(i)));
4507 if (!Args.back())
4508 return error("Invalid record");
4509 }
4510
4511 // Read type/value pairs for varargs params.
4512 if (!FTy->isVarArg()) {
4513 if (OpNum != Record.size())
4514 return error("Invalid record");
4515 } else {
4516 while (OpNum != Record.size()) {
4517 Value *Op;
4518 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4519 return error("Invalid record");
4520 Args.push_back(Op);
4521 }
4522 }
4523
4524 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4525 OperandBundles.clear();
4526 InstructionList.push_back(I);
4527 cast<CallInst>(I)->setCallingConv(
4528 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4529 CallInst::TailCallKind TCK = CallInst::TCK_None;
4530 if (CCInfo & 1 << bitc::CALL_TAIL)
4531 TCK = CallInst::TCK_Tail;
4532 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4533 TCK = CallInst::TCK_MustTail;
4534 if (CCInfo & (1 << bitc::CALL_NOTAIL))
4535 TCK = CallInst::TCK_NoTail;
4536 cast<CallInst>(I)->setTailCallKind(TCK);
4537 cast<CallInst>(I)->setAttributes(PAL);
4538 if (FMF.any()) {
4539 if (!isa<FPMathOperator>(I))
4540 return error("Fast-math-flags specified for call without "
4541 "floating-point scalar or vector return type");
4542 I->setFastMathFlags(FMF);
4543 }
4544 break;
4545 }
4546 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4547 if (Record.size() < 3)
4548 return error("Invalid record");
4549 Type *OpTy = getTypeByID(Record[0]);
4550 Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4551 Type *ResTy = getTypeByID(Record[2]);
4552 if (!OpTy || !Op || !ResTy)
4553 return error("Invalid record");
4554 I = new VAArgInst(Op, ResTy);
4555 InstructionList.push_back(I);
4556 break;
4557 }
4558
4559 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4560 // A call or an invoke can be optionally prefixed with some variable
4561 // number of operand bundle blocks. These blocks are read into
4562 // OperandBundles and consumed at the next call or invoke instruction.
4563
4564 if (Record.size() < 1 || Record[0] >= BundleTags.size())
4565 return error("Invalid record");
4566
4567 std::vector<Value *> Inputs;
4568
4569 unsigned OpNum = 1;
4570 while (OpNum != Record.size()) {
4571 Value *Op;
4572 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4573 return error("Invalid record");
4574 Inputs.push_back(Op);
4575 }
4576
4577 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4578 continue;
4579 }
4580 }
4581
4582 // Add instruction to end of current BB. If there is no current BB, reject
4583 // this file.
4584 if (!CurBB) {
4585 I->deleteValue();
4586 return error("Invalid instruction with no BB");
4587 }
4588 if (!OperandBundles.empty()) {
4589 I->deleteValue();
4590 return error("Operand bundles found with no consumer");
4591 }
4592 CurBB->getInstList().push_back(I);
4593
4594 // If this was a terminator instruction, move to the next block.
4595 if (isa<TerminatorInst>(I)) {
4596 ++CurBBNo;
4597 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4598 }
4599
4600 // Non-void values get registered in the value table for future use.
4601 if (I && !I->getType()->isVoidTy())
4602 ValueList.assignValue(I, NextValueNo++);
4603 }
4604
4605OutOfRecordLoop:
4606
4607 if (!OperandBundles.empty())
4608 return error("Operand bundles found with no consumer");
4609
4610 // Check the function list for unresolved values.
4611 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4612 if (!A->getParent()) {
4613 // We found at least one unresolved value. Nuke them all to avoid leaks.
4614 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4615 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4616 A->replaceAllUsesWith(UndefValue::get(A->getType()));
4617 delete A;
4618 }
4619 }
4620 return error("Never resolved value found in function");
4621 }
4622 }
4623
4624 // Unexpected unresolved metadata about to be dropped.
4625 if (MDLoader->hasFwdRefs())
4626 return error("Invalid function metadata: outgoing forward refs");
4627
4628 // Trim the value list down to the size it was before we parsed this function.
4629 ValueList.shrinkTo(ModuleValueListSize);
4630 MDLoader->shrinkTo(ModuleMDLoaderSize);
4631 std::vector<BasicBlock*>().swap(FunctionBBs);
4632 return Error::success();
4633}
4634
4635/// Find the function body in the bitcode stream
4636Error BitcodeReader::findFunctionInStream(
4637 Function *F,
4638 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4639 while (DeferredFunctionInfoIterator->second == 0) {
4640 // This is the fallback handling for the old format bitcode that
4641 // didn't contain the function index in the VST, or when we have
4642 // an anonymous function which would not have a VST entry.
4643 // Assert that we have one of those two cases.
4644 assert(VSTOffset == 0 || !F->hasName())(static_cast <bool> (VSTOffset == 0 || !F->hasName()
) ? void (0) : __assert_fail ("VSTOffset == 0 || !F->hasName()"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4644, __extension__ __PRETTY_FUNCTION__))
;
4645 // Parse the next body in the stream and set its position in the
4646 // DeferredFunctionInfo map.
4647 if (Error Err = rememberAndSkipFunctionBodies())
4648 return Err;
4649 }
4650 return Error::success();
4651}
4652
4653SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4654 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4655 return SyncScope::ID(Val);
4656 if (Val >= SSIDs.size())
4657 return SyncScope::System; // Map unknown synchronization scopes to system.
4658 return SSIDs[Val];
4659}
4660
4661//===----------------------------------------------------------------------===//
4662// GVMaterializer implementation
4663//===----------------------------------------------------------------------===//
4664
4665Error BitcodeReader::materialize(GlobalValue *GV) {
4666 Function *F = dyn_cast<Function>(GV);
4667 // If it's not a function or is already material, ignore the request.
4668 if (!F || !F->isMaterializable())
4669 return Error::success();
4670
4671 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4672 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!")(static_cast <bool> (DFII != DeferredFunctionInfo.end()
&& "Deferred function not found!") ? void (0) : __assert_fail
("DFII != DeferredFunctionInfo.end() && \"Deferred function not found!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4672, __extension__ __PRETTY_FUNCTION__))
;
4673 // If its position is recorded as 0, its body is somewhere in the stream
4674 // but we haven't seen it yet.
4675 if (DFII->second == 0)
4676 if (Error Err = findFunctionInStream(F, DFII))
4677 return Err;
4678
4679 // Materialize metadata before parsing any function bodies.
4680 if (Error Err = materializeMetadata())
4681 return Err;
4682
4683 // Move the bit stream to the saved position of the deferred function body.
4684 Stream.JumpToBit(DFII->second);
4685
4686 if (Error Err = parseFunctionBody(F))
4687 return Err;
4688 F->setIsMaterializable(false);
4689
4690 if (StripDebugInfo)
4691 stripDebugInfo(*F);
4692
4693 // Upgrade any old intrinsic calls in the function.
4694 for (auto &I : UpgradedIntrinsics) {
4695 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4696 UI != UE;) {
4697 User *U = *UI;
4698 ++UI;
4699 if (CallInst *CI = dyn_cast<CallInst>(U))
4700 UpgradeIntrinsicCall(CI, I.second);
4701 }
4702 }
4703
4704 // Update calls to the remangled intrinsics
4705 for (auto &I : RemangledIntrinsics)
4706 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4707 UI != UE;)
4708 // Don't expect any other users than call sites
4709 CallSite(*UI++).setCalledFunction(I.second);
4710
4711 // Finish fn->subprogram upgrade for materialized functions.
4712 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4713 F->setSubprogram(SP);
4714
4715 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4716 if (!MDLoader->isStrippingTBAA()) {
4717 for (auto &I : instructions(F)) {
4718 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4719 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4720 continue;
4721 MDLoader->setStripTBAA(true);
4722 stripTBAA(F->getParent());
4723 }
4724 }
4725
4726 // Bring in any functions that this function forward-referenced via
4727 // blockaddresses.
4728 return materializeForwardReferencedFunctions();
4729}
4730
4731Error BitcodeReader::materializeModule() {
4732 if (Error Err = materializeMetadata())
4733 return Err;
4734
4735 // Promise to materialize all forward references.
4736 WillMaterializeAllForwardRefs = true;
4737
4738 // Iterate over the module, deserializing any functions that are still on
4739 // disk.
4740 for (Function &F : *TheModule) {
4741 if (Error Err = materialize(&F))
4742 return Err;
4743 }
4744 // At this point, if there are any function bodies, parse the rest of
4745 // the bits in the module past the last function block we have recorded
4746 // through either lazy scanning or the VST.
4747 if (LastFunctionBlockBit || NextUnreadBit)
4748 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4749 ? LastFunctionBlockBit
4750 : NextUnreadBit))
4751 return Err;
4752
4753 // Check that all block address forward references got resolved (as we
4754 // promised above).
4755 if (!BasicBlockFwdRefs.empty())
4756 return error("Never resolved function from blockaddress");
4757
4758 // Upgrade any intrinsic calls that slipped through (should not happen!) and
4759 // delete the old functions to clean up. We can't do this unless the entire
4760 // module is materialized because there could always be another function body
4761 // with calls to the old function.
4762 for (auto &I : UpgradedIntrinsics) {
4763 for (auto *U : I.first->users()) {
4764 if (CallInst *CI = dyn_cast<CallInst>(U))
4765 UpgradeIntrinsicCall(CI, I.second);
4766 }
4767 if (!I.first->use_empty())
4768 I.first->replaceAllUsesWith(I.second);
4769 I.first->eraseFromParent();
4770 }
4771 UpgradedIntrinsics.clear();
4772 // Do the same for remangled intrinsics
4773 for (auto &I : RemangledIntrinsics) {
4774 I.first->replaceAllUsesWith(I.second);
4775 I.first->eraseFromParent();
4776 }
4777 RemangledIntrinsics.clear();
4778
4779 UpgradeDebugInfo(*TheModule);
4780
4781 UpgradeModuleFlags(*TheModule);
4782 return Error::success();
4783}
4784
4785std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4786 return IdentifiedStructTypes;
4787}
4788
4789ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4790 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4791 StringRef ModulePath, unsigned ModuleId)
4792 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4793 ModulePath(ModulePath), ModuleId(ModuleId) {}
4794
4795ModuleSummaryIndex::ModuleInfo *
4796ModuleSummaryIndexBitcodeReader::addThisModule() {
4797 return TheIndex.addModule(ModulePath, ModuleId);
4798}
4799
4800std::pair<ValueInfo, GlobalValue::GUID>
4801ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4802 auto VGI = ValueIdToValueInfoMap[ValueId];
4803 assert(VGI.first)(static_cast <bool> (VGI.first) ? void (0) : __assert_fail
("VGI.first", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4803, __extension__ __PRETTY_FUNCTION__))
;
4804 return VGI;
4805}
4806
4807void ModuleSummaryIndexBitcodeReader::setValueGUID(
4808 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4809 StringRef SourceFileName) {
4810 std::string GlobalId =
4811 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4812 auto ValueGUID = GlobalValue::getGUID(GlobalId);
4813 auto OriginalNameID = ValueGUID;
4814 if (GlobalValue::isLocalLinkage(Linkage))
4815 OriginalNameID = GlobalValue::getGUID(ValueName);
4816 if (PrintSummaryGUIDs)
4817 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4818 << ValueName << "\n";
4819
4820 // UseStrtab is false for legacy summary formats and value names are
4821 // created on stack. We can't use them outside of parseValueSymbolTable.
4822 ValueIdToValueInfoMap[ValueID] = std::make_pair(
4823 TheIndex.getOrInsertValueInfo(ValueGUID, UseStrtab ? ValueName : ""),
4824 OriginalNameID);
4825}
4826
4827// Specialized value symbol table parser used when reading module index
4828// blocks where we don't actually create global values. The parsed information
4829// is saved in the bitcode reader for use when later parsing summaries.
4830Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4831 uint64_t Offset,
4832 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4833 // With a strtab the VST is not required to parse the summary.
4834 if (UseStrtab)
4835 return Error::success();
4836
4837 assert(Offset > 0 && "Expected non-zero VST offset")(static_cast <bool> (Offset > 0 && "Expected non-zero VST offset"
) ? void (0) : __assert_fail ("Offset > 0 && \"Expected non-zero VST offset\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4837, __extension__ __PRETTY_FUNCTION__))
;
4838 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4839
4840 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4841 return error("Invalid record");
4842
4843 SmallVector<uint64_t, 64> Record;
4844
4845 // Read all the records for this value table.
4846 SmallString<128> ValueName;
4847
4848 while (true) {
4849 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4850
4851 switch (Entry.Kind) {
4852 case BitstreamEntry::SubBlock: // Handled for us already.
4853 case BitstreamEntry::Error:
4854 return error("Malformed block");
4855 case BitstreamEntry::EndBlock:
4856 // Done parsing VST, jump back to wherever we came from.
4857 Stream.JumpToBit(CurrentBit);
4858 return Error::success();
4859 case BitstreamEntry::Record:
4860 // The interesting case.
4861 break;
4862 }
4863
4864 // Read a record.
4865 Record.clear();
4866 switch (Stream.readRecord(Entry.ID, Record)) {
4867 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4868 break;
4869 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4870 if (convertToString(Record, 1, ValueName))
4871 return error("Invalid record");
4872 unsigned ValueID = Record[0];
4873 assert(!SourceFileName.empty())(static_cast <bool> (!SourceFileName.empty()) ? void (0
) : __assert_fail ("!SourceFileName.empty()", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4873, __extension__ __PRETTY_FUNCTION__))
;
4874 auto VLI = ValueIdToLinkageMap.find(ValueID);
4875 assert(VLI != ValueIdToLinkageMap.end() &&(static_cast <bool> (VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?") ? void (0) : __assert_fail
("VLI != ValueIdToLinkageMap.end() && \"No linkage found for VST entry?\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4876, __extension__ __PRETTY_FUNCTION__))
4876 "No linkage found for VST entry?")(static_cast <bool> (VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?") ? void (0) : __assert_fail
("VLI != ValueIdToLinkageMap.end() && \"No linkage found for VST entry?\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4876, __extension__ __PRETTY_FUNCTION__))
;
4877 auto Linkage = VLI->second;
4878 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4879 ValueName.clear();
4880 break;
4881 }
4882 case bitc::VST_CODE_FNENTRY: {
4883 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4884 if (convertToString(Record, 2, ValueName))
4885 return error("Invalid record");
4886 unsigned ValueID = Record[0];
4887 assert(!SourceFileName.empty())(static_cast <bool> (!SourceFileName.empty()) ? void (0
) : __assert_fail ("!SourceFileName.empty()", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4887, __extension__ __PRETTY_FUNCTION__))
;
4888 auto VLI = ValueIdToLinkageMap.find(ValueID);
4889 assert(VLI != ValueIdToLinkageMap.end() &&(static_cast <bool> (VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?") ? void (0) : __assert_fail
("VLI != ValueIdToLinkageMap.end() && \"No linkage found for VST entry?\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4890, __extension__ __PRETTY_FUNCTION__))
4890 "No linkage found for VST entry?")(static_cast <bool> (VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?") ? void (0) : __assert_fail
("VLI != ValueIdToLinkageMap.end() && \"No linkage found for VST entry?\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4890, __extension__ __PRETTY_FUNCTION__))
;
4891 auto Linkage = VLI->second;
4892 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4893 ValueName.clear();
4894 break;
4895 }
4896 case bitc::VST_CODE_COMBINED_ENTRY: {
4897 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4898 unsigned ValueID = Record[0];
4899 GlobalValue::GUID RefGUID = Record[1];
4900 // The "original name", which is the second value of the pair will be
4901 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4902 ValueIdToValueInfoMap[ValueID] =
4903 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4904 break;
4905 }
4906 }
4907 }
4908}
4909
4910// Parse just the blocks needed for building the index out of the module.
4911// At the end of this routine the module Index is populated with a map
4912// from global value id to GlobalValueSummary objects.
4913Error ModuleSummaryIndexBitcodeReader::parseModule() {
4914 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4915 return error("Invalid record");
4916
4917 SmallVector<uint64_t, 64> Record;
4918 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
4919 unsigned ValueId = 0;
4920
4921 // Read the index for this module.
4922 while (true) {
4923 BitstreamEntry Entry = Stream.advance();
4924
4925 switch (Entry.Kind) {
4926 case BitstreamEntry::Error:
4927 return error("Malformed block");
4928 case BitstreamEntry::EndBlock:
4929 return Error::success();
4930
4931 case BitstreamEntry::SubBlock:
4932 switch (Entry.ID) {
4933 default: // Skip unknown content.
4934 if (Stream.SkipBlock())
4935 return error("Invalid record");
4936 break;
4937 case bitc::BLOCKINFO_BLOCK_ID:
4938 // Need to parse these to get abbrev ids (e.g. for VST)
4939 if (readBlockInfo())
4940 return error("Malformed block");
4941 break;
4942 case bitc::VALUE_SYMTAB_BLOCK_ID:
4943 // Should have been parsed earlier via VSTOffset, unless there
4944 // is no summary section.
4945 assert(((SeenValueSymbolTable && VSTOffset > 0) ||(static_cast <bool> (((SeenValueSymbolTable && VSTOffset
> 0) || !SeenGlobalValSummary) && "Expected early VST parse via VSTOffset record"
) ? void (0) : __assert_fail ("((SeenValueSymbolTable && VSTOffset > 0) || !SeenGlobalValSummary) && \"Expected early VST parse via VSTOffset record\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4947, __extension__ __PRETTY_FUNCTION__))
4946 !SeenGlobalValSummary) &&(static_cast <bool> (((SeenValueSymbolTable && VSTOffset
> 0) || !SeenGlobalValSummary) && "Expected early VST parse via VSTOffset record"
) ? void (0) : __assert_fail ("((SeenValueSymbolTable && VSTOffset > 0) || !SeenGlobalValSummary) && \"Expected early VST parse via VSTOffset record\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4947, __extension__ __PRETTY_FUNCTION__))
4947 "Expected early VST parse via VSTOffset record")(static_cast <bool> (((SeenValueSymbolTable && VSTOffset
> 0) || !SeenGlobalValSummary) && "Expected early VST parse via VSTOffset record"
) ? void (0) : __assert_fail ("((SeenValueSymbolTable && VSTOffset > 0) || !SeenGlobalValSummary) && \"Expected early VST parse via VSTOffset record\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4947, __extension__ __PRETTY_FUNCTION__))
;
4948 if (Stream.SkipBlock())
4949 return error("Invalid record");
4950 break;
4951 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
4952 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
4953 assert(!SeenValueSymbolTable &&(static_cast <bool> (!SeenValueSymbolTable && "Already read VST when parsing summary block?"
) ? void (0) : __assert_fail ("!SeenValueSymbolTable && \"Already read VST when parsing summary block?\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4954, __extension__ __PRETTY_FUNCTION__))
4954 "Already read VST when parsing summary block?")(static_cast <bool> (!SeenValueSymbolTable && "Already read VST when parsing summary block?"
) ? void (0) : __assert_fail ("!SeenValueSymbolTable && \"Already read VST when parsing summary block?\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4954, __extension__ __PRETTY_FUNCTION__))
;
4955 // We might not have a VST if there were no values in the
4956 // summary. An empty summary block generated when we are
4957 // performing ThinLTO compiles so we don't later invoke
4958 // the regular LTO process on them.
4959 if (VSTOffset > 0) {
4960 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4961 return Err;
4962 SeenValueSymbolTable = true;
4963 }
4964 SeenGlobalValSummary = true;
4965 if (Error Err = parseEntireSummary(Entry.ID))
4966 return Err;
4967 break;
4968 case bitc::MODULE_STRTAB_BLOCK_ID:
4969 if (Error Err = parseModuleStringTable())
4970 return Err;
4971 break;
4972 }
4973 continue;
4974
4975 case BitstreamEntry::Record: {
4976 Record.clear();
4977 auto BitCode = Stream.readRecord(Entry.ID, Record);
4978 switch (BitCode) {
4979 default:
4980 break; // Default behavior, ignore unknown content.
4981 case bitc::MODULE_CODE_VERSION: {
4982 if (Error Err = parseVersionRecord(Record).takeError())
4983 return Err;
4984 break;
4985 }
4986 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4987 case bitc::MODULE_CODE_SOURCE_FILENAME: {
4988 SmallString<128> ValueName;
4989 if (convertToString(Record, 0, ValueName))
4990 return error("Invalid record");
4991 SourceFileName = ValueName.c_str();
4992 break;
4993 }
4994 /// MODULE_CODE_HASH: [5*i32]
4995 case bitc::MODULE_CODE_HASH: {
4996 if (Record.size() != 5)
4997 return error("Invalid hash length " + Twine(Record.size()).str());
4998 auto &Hash = addThisModule()->second.second;
4999 int Pos = 0;
5000 for (auto &Val : Record) {
5001 assert(!(Val >> 32) && "Unexpected high bits set")(static_cast <bool> (!(Val >> 32) && "Unexpected high bits set"
) ? void (0) : __assert_fail ("!(Val >> 32) && \"Unexpected high bits set\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5001, __extension__ __PRETTY_FUNCTION__))
;
5002 Hash[Pos++] = Val;
5003 }
5004 break;
5005 }
5006 /// MODULE_CODE_VSTOFFSET: [offset]
5007 case bitc::MODULE_CODE_VSTOFFSET:
5008 if (Record.size() < 1)
5009 return error("Invalid record");
5010 // Note that we subtract 1 here because the offset is relative to one
5011 // word before the start of the identification or module block, which
5012 // was historically always the start of the regular bitcode header.
5013 VSTOffset = Record[0] - 1;
5014 break;
5015 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
5016 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
5017 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
5018 // v2: [strtab offset, strtab size, v1]
5019 case bitc::MODULE_CODE_GLOBALVAR:
5020 case bitc::MODULE_CODE_FUNCTION:
5021 case bitc::MODULE_CODE_ALIAS: {
5022 StringRef Name;
5023 ArrayRef<uint64_t> GVRecord;
5024 std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5025 if (GVRecord.size() <= 3)
5026 return error("Invalid record");
5027 uint64_t RawLinkage = GVRecord[3];
5028 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5029 if (!UseStrtab) {
5030 ValueIdToLinkageMap[ValueId++] = Linkage;
5031 break;
5032 }
5033
5034 setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5035 break;
5036 }
5037 }
5038 }
5039 continue;
5040 }
5041 }
5042}
5043
5044std::vector<ValueInfo>
5045ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5046 std::vector<ValueInfo> Ret;
5047 Ret.reserve(Record.size());
5048 for (uint64_t RefValueId : Record)
5049 Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5050 return Ret;
5051}
5052
5053std::vector<FunctionSummary::EdgeTy>
5054ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5055 bool IsOldProfileFormat,
5056 bool HasProfile, bool HasRelBF) {
5057 std::vector<FunctionSummary::EdgeTy> Ret;
5058 Ret.reserve(Record.size());
5059 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5060 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5061 uint64_t RelBF = 0;
5062 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5063 if (IsOldProfileFormat) {
5064 I += 1; // Skip old callsitecount field
5065 if (HasProfile)
5066 I += 1; // Skip old profilecount field
5067 } else if (HasProfile)
5068 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5069 else if (HasRelBF)
5070 RelBF = Record[++I];
5071 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5072 }
5073 return Ret;
5074}
5075
5076static void
5077parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5078 WholeProgramDevirtResolution &Wpd) {
5079 uint64_t ArgNum = Record[Slot++];
5080 WholeProgramDevirtResolution::ByArg &B =
5081 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5082 Slot += ArgNum;
5083
5084 B.TheKind =
5085 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5086 B.Info = Record[Slot++];
5087 B.Byte = Record[Slot++];
5088 B.Bit = Record[Slot++];
5089}
5090
5091static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5092 StringRef Strtab, size_t &Slot,
5093 TypeIdSummary &TypeId) {
5094 uint64_t Id = Record[Slot++];
5095 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5096
5097 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5098 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5099 static_cast<size_t>(Record[Slot + 1])};
5100 Slot += 2;
5101
5102 uint64_t ResByArgNum = Record[Slot++];
5103 for (uint64_t I = 0; I != ResByArgNum; ++I)
5104 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5105}
5106
5107static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5108 StringRef Strtab,
5109 ModuleSummaryIndex &TheIndex) {
5110 size_t Slot = 0;
5111 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5112 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5113 Slot += 2;
5114
5115 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5116 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5117 TypeId.TTRes.AlignLog2 = Record[Slot++];
5118 TypeId.TTRes.SizeM1 = Record[Slot++];
5119 TypeId.TTRes.BitMask = Record[Slot++];
5120 TypeId.TTRes.InlineBits = Record[Slot++];
5121
5122 while (Slot < Record.size())
5123 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5124}
5125
5126// Eagerly parse the entire summary block. This populates the GlobalValueSummary
5127// objects in the index.
5128Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5129 if (Stream.EnterSubBlock(ID))
5130 return error("Invalid record");
5131 SmallVector<uint64_t, 64> Record;
5132
5133 // Parse version
5134 {
5135 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5136 if (Entry.Kind != BitstreamEntry::Record)
5137 return error("Invalid Summary Block: record for version expected");
5138 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5139 return error("Invalid Summary Block: version expected");
5140 }
5141 const uint64_t Version = Record[0];
5142 const bool IsOldProfileFormat = Version == 1;
5143 if (Version < 1 || Version > 4)
5144 return error("Invalid summary version " + Twine(Version) +
5145 ", 1, 2, 3 or 4 expected");
5146 Record.clear();
5147
5148 // Keep around the last seen summary to be used when we see an optional
5149 // "OriginalName" attachement.
5150 GlobalValueSummary *LastSeenSummary = nullptr;
5151 GlobalValue::GUID LastSeenGUID = 0;
5152
5153 // We can expect to see any number of type ID information records before
5154 // each function summary records; these variables store the information
5155 // collected so far so that it can be used to create the summary object.
5156 std::vector<GlobalValue::GUID> PendingTypeTests;
5157 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5158 PendingTypeCheckedLoadVCalls;
5159 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5160 PendingTypeCheckedLoadConstVCalls;
5161
5162 while (true) {
5163 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5164
5165 switch (Entry.Kind) {
5166 case BitstreamEntry::SubBlock: // Handled for us already.
5167 case BitstreamEntry::Error:
5168 return error("Malformed block");
5169 case BitstreamEntry::EndBlock:
5170 return Error::success();
5171 case BitstreamEntry::Record:
5172 // The interesting case.
5173 break;
5174 }
5175
5176 // Read a record. The record format depends on whether this
5177 // is a per-module index or a combined index file. In the per-module
5178 // case the records contain the associated value's ID for correlation
5179 // with VST entries. In the combined index the correlation is done
5180 // via the bitcode offset of the summary records (which were saved
5181 // in the combined index VST entries). The records also contain
5182 // information used for ThinLTO renaming and importing.
5183 Record.clear();
5184 auto BitCode = Stream.readRecord(Entry.ID, Record);
5185 switch (BitCode) {
5186 default: // Default behavior: ignore.
5187 break;
5188 case bitc::FS_FLAGS: { // [flags]
5189 uint64_t Flags = Record[0];
5190 // Scan flags (set only on the combined index).
5191 assert(Flags <= 0x3 && "Unexpected bits in flag")(static_cast <bool> (Flags <= 0x3 && "Unexpected bits in flag"
) ? void (0) : __assert_fail ("Flags <= 0x3 && \"Unexpected bits in flag\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5191, __extension__ __PRETTY_FUNCTION__))
;
5192
5193 // 1 bit: WithGlobalValueDeadStripping flag.
5194 if (Flags & 0x1)
5195 TheIndex.setWithGlobalValueDeadStripping();
5196 // 1 bit: SkipModuleByDistributedBackend flag.
5197 if (Flags & 0x2)
5198 TheIndex.setSkipModuleByDistributedBackend();
5199 break;
5200 }
5201 case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5202 uint64_t ValueID = Record[0];
5203 GlobalValue::GUID RefGUID = Record[1];
5204 ValueIdToValueInfoMap[ValueID] =
5205 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5206 break;
5207 }
5208 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5209 // numrefs x valueid, n x (valueid)]
5210 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5211 // numrefs x valueid,
5212 // n x (valueid, hotness)]
5213 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5214 // numrefs x valueid,
5215 // n x (valueid, relblockfreq)]
5216 case bitc::FS_PERMODULE:
5217 case bitc::FS_PERMODULE_RELBF:
5218 case bitc::FS_PERMODULE_PROFILE: {
5219 unsigned ValueID = Record[0];
5220 uint64_t RawFlags = Record[1];
5221 unsigned InstCount = Record[2];
5222 uint64_t RawFunFlags = 0;
5223 unsigned NumRefs = Record[3];
5224 int RefListStartIndex = 4;
5225 if (Version >= 4) {
5226 RawFunFlags = Record[3];
5227 NumRefs = Record[4];
5228 RefListStartIndex = 5;
5229 }
5230
5231 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5232 // The module path string ref set in the summary must be owned by the
5233 // index's module string table. Since we don't have a module path
5234 // string table section in the per-module index, we create a single
5235 // module path string table entry with an empty (0) ID to take
5236 // ownership.
5237 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5238 assert(Record.size() >= RefListStartIndex + NumRefs &&(static_cast <bool> (Record.size() >= RefListStartIndex
+ NumRefs && "Record size inconsistent with number of references"
) ? void (0) : __assert_fail ("Record.size() >= RefListStartIndex + NumRefs && \"Record size inconsistent with number of references\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5239, __extension__ __PRETTY_FUNCTION__))
5239 "Record size inconsistent with number of references")(static_cast <bool> (Record.size() >= RefListStartIndex
+ NumRefs && "Record size inconsistent with number of references"
) ? void (0) : __assert_fail ("Record.size() >= RefListStartIndex + NumRefs && \"Record size inconsistent with number of references\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5239, __extension__ __PRETTY_FUNCTION__))
;
5240 std::vector<ValueInfo> Refs = makeRefList(
5241 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5242 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5243 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5244 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5245 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5246 IsOldProfileFormat, HasProfile, HasRelBF);
5247 auto FS = llvm::make_unique<FunctionSummary>(
5248 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5249 std::move(Calls), std::move(PendingTypeTests),
5250 std::move(PendingTypeTestAssumeVCalls),
5251 std::move(PendingTypeCheckedLoadVCalls),
5252 std::move(PendingTypeTestAssumeConstVCalls),
5253 std::move(PendingTypeCheckedLoadConstVCalls));
5254 PendingTypeTests.clear();
5255 PendingTypeTestAssumeVCalls.clear();
5256 PendingTypeCheckedLoadVCalls.clear();
5257 PendingTypeTestAssumeConstVCalls.clear();
5258 PendingTypeCheckedLoadConstVCalls.clear();
5259 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5260 FS->setModulePath(addThisModule()->first());
5261 FS->setOriginalName(VIAndOriginalGUID.second);
5262 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5263 break;
5264 }
5265 // FS_ALIAS: [valueid, flags, valueid]
5266 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5267 // they expect all aliasee summaries to be available.
5268 case bitc::FS_ALIAS: {
5269 unsigned ValueID = Record[0];
5270 uint64_t RawFlags = Record[1];
5271 unsigned AliaseeID = Record[2];
5272 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5273 auto AS = llvm::make_unique<AliasSummary>(Flags);
5274 // The module path string ref set in the summary must be owned by the
5275 // index's module string table. Since we don't have a module path
5276 // string table section in the per-module index, we create a single
5277 // module path string table entry with an empty (0) ID to take
5278 // ownership.
5279 AS->setModulePath(addThisModule()->first());
5280
5281 GlobalValue::GUID AliaseeGUID =
5282 getValueInfoFromValueId(AliaseeID).first.getGUID();
5283 auto AliaseeInModule =
5284 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5285 if (!AliaseeInModule)
5286 return error("Alias expects aliasee summary to be parsed");
5287 AS->setAliasee(AliaseeInModule);
5288 AS->setAliaseeGUID(AliaseeGUID);
5289
5290 auto GUID = getValueInfoFromValueId(ValueID);
5291 AS->setOriginalName(GUID.second);
5292 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5293 break;
5294 }
5295 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5296 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5297 unsigned ValueID = Record[0];
5298 uint64_t RawFlags = Record[1];
5299 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5300 std::vector<ValueInfo> Refs =
5301 makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5302 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5303 FS->setModulePath(addThisModule()->first());
5304 auto GUID = getValueInfoFromValueId(ValueID);
5305 FS->setOriginalName(GUID.second);
5306 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5307 break;
5308 }
5309 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5310 // numrefs x valueid, n x (valueid)]
5311 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5312 // numrefs x valueid, n x (valueid, hotness)]
5313 case bitc::FS_COMBINED:
5314 case bitc::FS_COMBINED_PROFILE: {
5315 unsigned ValueID = Record[0];
5316 uint64_t ModuleId = Record[1];
5317 uint64_t RawFlags = Record[2];
5318 unsigned InstCount = Record[3];
5319 uint64_t RawFunFlags = 0;
5320 unsigned NumRefs = Record[4];
5321 int RefListStartIndex = 5;
5322
5323 if (Version >= 4) {
5324 RawFunFlags = Record[4];
5325 NumRefs = Record[5];
5326 RefListStartIndex = 6;
5327 }
5328
5329 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5330 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5331 assert(Record.size() >= RefListStartIndex + NumRefs &&(static_cast <bool> (Record.size() >= RefListStartIndex
+ NumRefs && "Record size inconsistent with number of references"
) ? void (0) : __assert_fail ("Record.size() >= RefListStartIndex + NumRefs && \"Record size inconsistent with number of references\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5332, __extension__ __PRETTY_FUNCTION__))
5332 "Record size inconsistent with number of references")(static_cast <bool> (Record.size() >= RefListStartIndex
+ NumRefs && "Record size inconsistent with number of references"
) ? void (0) : __assert_fail ("Record.size() >= RefListStartIndex + NumRefs && \"Record size inconsistent with number of references\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5332, __extension__ __PRETTY_FUNCTION__))
;
5333 std::vector<ValueInfo> Refs = makeRefList(
5334 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5335 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5336 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5337 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5338 IsOldProfileFormat, HasProfile, false);
5339 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5340 auto FS = llvm::make_unique<FunctionSummary>(
5341 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5342 std::move(Edges), std::move(PendingTypeTests),
5343 std::move(PendingTypeTestAssumeVCalls),
5344 std::move(PendingTypeCheckedLoadVCalls),
5345 std::move(PendingTypeTestAssumeConstVCalls),
5346 std::move(PendingTypeCheckedLoadConstVCalls));
5347 PendingTypeTests.clear();
5348 PendingTypeTestAssumeVCalls.clear();
5349 PendingTypeCheckedLoadVCalls.clear();
5350 PendingTypeTestAssumeConstVCalls.clear();
5351 PendingTypeCheckedLoadConstVCalls.clear();
5352 LastSeenSummary = FS.get();
5353 LastSeenGUID = VI.getGUID();
5354 FS->setModulePath(ModuleIdMap[ModuleId]);
5355 TheIndex.addGlobalValueSummary(VI, std::move(FS));
5356 break;
5357 }
5358 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5359 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5360 // they expect all aliasee summaries to be available.
5361 case bitc::FS_COMBINED_ALIAS: {
5362 unsigned ValueID = Record[0];
5363 uint64_t ModuleId = Record[1];
5364 uint64_t RawFlags = Record[2];
5365 unsigned AliaseeValueId = Record[3];
5366 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5367 auto AS = llvm::make_unique<AliasSummary>(Flags);
5368 LastSeenSummary = AS.get();
5369 AS->setModulePath(ModuleIdMap[ModuleId]);
5370
5371 auto AliaseeGUID =
5372 getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5373 auto AliaseeInModule =
5374 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5375 AS->setAliasee(AliaseeInModule);
5376 AS->setAliaseeGUID(AliaseeGUID);
5377
5378 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5379 LastSeenGUID = VI.getGUID();
5380 TheIndex.addGlobalValueSummary(VI, std::move(AS));
5381 break;
5382 }
5383 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5384 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5385 unsigned ValueID = Record[0];
5386 uint64_t ModuleId = Record[1];
5387 uint64_t RawFlags = Record[2];
5388 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5389 std::vector<ValueInfo> Refs =
5390 makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5391 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5392 LastSeenSummary = FS.get();
5393 FS->setModulePath(ModuleIdMap[ModuleId]);
5394 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5395 LastSeenGUID = VI.getGUID();
5396 TheIndex.addGlobalValueSummary(VI, std::move(FS));
5397 break;
5398 }
5399 // FS_COMBINED_ORIGINAL_NAME: [original_name]
5400 case bitc::FS_COMBINED_ORIGINAL_NAME: {
5401 uint64_t OriginalName = Record[0];
5402 if (!LastSeenSummary)
5403 return error("Name attachment that does not follow a combined record");
5404 LastSeenSummary->setOriginalName(OriginalName);
5405 TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5406 // Reset the LastSeenSummary
5407 LastSeenSummary = nullptr;
5408 LastSeenGUID = 0;
5409 break;
5410 }
5411 case bitc::FS_TYPE_TESTS:
5412 assert(PendingTypeTests.empty())(static_cast <bool> (PendingTypeTests.empty()) ? void (
0) : __assert_fail ("PendingTypeTests.empty()", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5412, __extension__ __PRETTY_FUNCTION__))
;
5413 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5414 Record.end());
5415 break;
5416
5417 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5418 assert(PendingTypeTestAssumeVCalls.empty())(static_cast <bool> (PendingTypeTestAssumeVCalls.empty(
)) ? void (0) : __assert_fail ("PendingTypeTestAssumeVCalls.empty()"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5418, __extension__ __PRETTY_FUNCTION__))
;
5419 for (unsigned I = 0; I != Record.size(); I += 2)
5420 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5421 break;
5422
5423 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5424 assert(PendingTypeCheckedLoadVCalls.empty())(static_cast <bool> (PendingTypeCheckedLoadVCalls.empty
()) ? void (0) : __assert_fail ("PendingTypeCheckedLoadVCalls.empty()"
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5424, __extension__ __PRETTY_FUNCTION__))
;
5425 for (unsigned I = 0; I != Record.size(); I += 2)
5426 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5427 break;
5428
5429 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5430 PendingTypeTestAssumeConstVCalls.push_back(
5431 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5432 break;
5433
5434 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5435 PendingTypeCheckedLoadConstVCalls.push_back(
5436 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5437 break;
5438
5439 case bitc::FS_CFI_FUNCTION_DEFS: {
5440 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5441 for (unsigned I = 0; I != Record.size(); I += 2)
5442 CfiFunctionDefs.insert(
5443 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5444 break;
5445 }
5446
5447 case bitc::FS_CFI_FUNCTION_DECLS: {
5448 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5449 for (unsigned I = 0; I != Record.size(); I += 2)
5450 CfiFunctionDecls.insert(
5451 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5452 break;
5453 }
5454
5455 case bitc::FS_TYPE_ID:
5456 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
5457 break;
5458 }
5459 }
5460 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5460)
;
5461}
5462
5463// Parse the module string table block into the Index.
5464// This populates the ModulePathStringTable map in the index.
5465Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5466 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5467 return error("Invalid record");
5468
5469 SmallVector<uint64_t, 64> Record;
5470
5471 SmallString<128> ModulePath;
5472 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5473
5474 while (true) {
5475 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5476
5477 switch (Entry.Kind) {
5478 case BitstreamEntry::SubBlock: // Handled for us already.
5479 case BitstreamEntry::Error:
5480 return error("Malformed block");
5481 case BitstreamEntry::EndBlock:
5482 return Error::success();
5483 case BitstreamEntry::Record:
5484 // The interesting case.
5485 break;
5486 }
5487
5488 Record.clear();
5489 switch (Stream.readRecord(Entry.ID, Record)) {
5490 default: // Default behavior: ignore.
5491 break;
5492 case bitc::MST_CODE_ENTRY: {
5493 // MST_ENTRY: [modid, namechar x N]
5494 uint64_t ModuleId = Record[0];
5495
5496 if (convertToString(Record, 1, ModulePath))
5497 return error("Invalid record");
5498
5499 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5500 ModuleIdMap[ModuleId] = LastSeenModule->first();
5501
5502 ModulePath.clear();
5503 break;
5504 }
5505 /// MST_CODE_HASH: [5*i32]
5506 case bitc::MST_CODE_HASH: {
5507 if (Record.size() != 5)
5508 return error("Invalid hash length " + Twine(Record.size()).str());
5509 if (!LastSeenModule)
5510 return error("Invalid hash that does not follow a module path");
5511 int Pos = 0;
5512 for (auto &Val : Record) {
5513 assert(!(Val >> 32) && "Unexpected high bits set")(static_cast <bool> (!(Val >> 32) && "Unexpected high bits set"
) ? void (0) : __assert_fail ("!(Val >> 32) && \"Unexpected high bits set\""
, "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5513, __extension__ __PRETTY_FUNCTION__))
;
5514 LastSeenModule->second.second[Pos++] = Val;
5515 }
5516 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5517 LastSeenModule = nullptr;
5518 break;
5519 }
5520 }
5521 }
5522 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5522)
;
5523}
5524
5525namespace {
5526
5527// FIXME: This class is only here to support the transition to llvm::Error. It
5528// will be removed once this transition is complete. Clients should prefer to
5529// deal with the Error value directly, rather than converting to error_code.
5530class BitcodeErrorCategoryType : public std::error_category {
5531 const char *name() const noexcept override {
5532 return "llvm.bitcode";
5533 }
5534
5535 std::string message(int IE) const override {
5536 BitcodeError E = static_cast<BitcodeError>(IE);
5537 switch (E) {
5538 case BitcodeError::CorruptedBitcode:
5539 return "Corrupted bitcode";
5540 }
5541 llvm_unreachable("Unknown error type!")::llvm::llvm_unreachable_internal("Unknown error type!", "/build/llvm-toolchain-snapshot-7~svn326246/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5541)
;
5542 }
5543};
5544
5545} // end anonymous namespace
5546
5547static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5548
5549const std::error_category &llvm::BitcodeErrorCategory() {
5550 return *ErrorCategory;
33
Calling 'ManagedStatic::operator*'
48
Returning from 'ManagedStatic::operator*'
5551}
5552
5553static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5554 unsigned Block, unsigned RecordID) {
5555 if (Stream.EnterSubBlock(Block))
5556 return error("Invalid record");
5557
5558 StringRef Strtab;
5559 while (true) {
5560 BitstreamEntry Entry = Stream.advance();
5561 switch (Entry.Kind) {
5562 case BitstreamEntry::EndBlock:
5563 return Strtab;
5564
5565 case BitstreamEntry::Error:
5566 return error("Malformed block");
5567
5568 case BitstreamEntry::SubBlock:
5569 if (Stream.SkipBlock())
5570 return error("Malformed block");
5571 break;
5572
5573 case BitstreamEntry::Record:
5574 StringRef Blob;
5575 SmallVector<uint64_t, 1> Record;
5576 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5577 Strtab = Blob;
5578 break;
5579 }
5580 }
5581}
5582
5583//===----------------------------------------------------------------------===//
5584// External interface
5585//===----------------------------------------------------------------------===//
5586
5587Expected<std::vector<BitcodeModule>>
5588llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5589 auto FOrErr = getBitcodeFileContents(Buffer);
5590 if (!FOrErr)
5591 return FOrErr.takeError();
5592 return std::move(FOrErr->Mods);
5593}
5594
5595Expected<BitcodeFileContents>
5596llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5597 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5598 if (!StreamOrErr)
5599 return StreamOrErr.takeError();
5600 BitstreamCursor &Stream = *StreamOrErr;
5601
5602 BitcodeFileContents F;
5603 while (true) {
5604 uint64_t BCBegin = Stream.getCurrentByteNo();
5605
5606 // We may be consuming bitcode from a client that leaves garbage at the end
5607 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5608 // the end that there cannot possibly be another module, stop looking.
5609 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5610 return F;
5611
5612 BitstreamEntry Entry = Stream.advance();
5613 switch (Entry.Kind) {
5614 case BitstreamEntry::EndBlock:
5615 case BitstreamEntry::Error:
5616 return error("Malformed block");
5617
5618 case BitstreamEntry::SubBlock: {
5619 uint64_t IdentificationBit = -1ull;
5620 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5621 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5622 if (Stream.SkipBlock())
5623 return error("Malformed block");
5624
5625 Entry = Stream.advance();
5626 if (Entry.Kind != BitstreamEntry::SubBlock ||
5627 Entry.ID != bitc::MODULE_BLOCK_ID)
5628 return error("Malformed block");
5629 }
5630
5631 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5632 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5633 if (Stream.SkipBlock())
5634 return error("Malformed block");
5635
5636 F.Mods.push_back({Stream.getBitcodeBytes().slice(
5637 BCBegin, Stream.getCurrentByteNo() - BCBegin),
5638 Buffer.getBufferIdentifier(), IdentificationBit,
5639 ModuleBit});
5640 continue;
5641 }
5642
5643 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5644 Expected<StringRef> Strtab =
5645 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5646 if (!Strtab)
5647 return Strtab.takeError();
5648 // This string table is used by every preceding bitcode module that does
5649 // not have its own string table. A bitcode file may have multiple
5650 // string tables if it was created by binary concatenation, for example
5651 // with "llvm-cat -b".
5652 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5653 if (!I->Strtab.empty())
5654 break;
5655 I->Strtab = *Strtab;
5656 }
5657 // Similarly, the string table is used by every preceding symbol table;
5658 // normally there will be just one unless the bitcode file was created
5659 // by binary concatenation.
5660 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5661 F.StrtabForSymtab = *Strtab;
5662 continue;
5663 }
5664
5665 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5666 Expected<StringRef> SymtabOrErr =
5667 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5668 if (!SymtabOrErr)
5669 return SymtabOrErr.takeError();
5670
5671 // We can expect the bitcode file to have multiple symbol tables if it
5672 // was created by binary concatenation. In that case we silently
5673 // ignore any subsequent symbol tables, which is fine because this is a
5674 // low level function. The client is expected to notice that the number
5675 // of modules in the symbol table does not match the number of modules
5676 // in the input file and regenerate the symbol table.
5677 if (F.Symtab.empty())
5678 F.Symtab = *SymtabOrErr;
5679 continue;
5680 }
5681
5682 if (Stream.SkipBlock())
5683 return error("Malformed block");
5684 continue;
5685 }
5686 case BitstreamEntry::Record:
5687 Stream.skipRecord(Entry.ID);
5688 continue;
5689 }
5690 }
5691}
5692
5693/// \brief Get a lazy one-at-time loading module from bitcode.
5694///
5695/// This isn't always used in a lazy context. In particular, it's also used by
5696/// \a parseModule(). If this is truly lazy, then we need to eagerly pull
5697/// in forward-referenced functions from block address references.
5698///
5699/// \param[in] MaterializeAll Set to \c true if we should materialize
5700/// everything.
5701Expected<std::unique_ptr<Module>>
5702BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5703 bool ShouldLazyLoadMetadata, bool IsImporting) {
5704 BitstreamCursor Stream(Buffer);
5705
5706 std::string ProducerIdentification;
5707 if (IdentificationBit != -1ull) {
5708 Stream.JumpToBit(IdentificationBit);
5709 Expected<std::string> ProducerIdentificationOrErr =
5710 readIdentificationBlock(Stream);
5711 if (!ProducerIdentificationOrErr)
5712 return ProducerIdentificationOrErr.takeError();
5713
5714 ProducerIdentification = *ProducerIdentificationOrErr;
5715 }
5716
5717 Stream.JumpToBit(ModuleBit);
5718 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5719 Context);
5720
5721 std::unique_ptr<Module> M =
5722 llvm::make_unique<Module>(ModuleIdentifier, Context);
5723 M->setMaterializer(R);
5724
5725 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5726 if (Error Err =
5727 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5728 return std::move(Err);
5729
5730 if (MaterializeAll) {
5731 // Read in the entire module, and destroy the BitcodeReader.
5732 if (Error Err = M->materializeAll())
5733 return std::move(Err);
5734 } else {
5735 // Resolve forward references from blockaddresses.
5736 if (Error Err = R->materializeForwardReferencedFunctions())
5737 return std::move(Err);
5738 }
5739 return std::move(M);
5740}
5741
5742Expected<std::unique_ptr<Module>>
5743BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5744 bool IsImporting) {
5745 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5746}
5747
5748// Parse the specified bitcode buffer and merge the index into CombinedIndex.
5749// We don't use ModuleIdentifier here because the client may need to control the
5750// module path used in the combined summary (e.g. when reading summaries for
5751// regular LTO modules).
5752Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5753 StringRef ModulePath, uint64_t ModuleId) {
5754 BitstreamCursor Stream(Buffer);
5755 Stream.JumpToBit(ModuleBit);
5756
5757 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5758 ModulePath, ModuleId);
5759 return R.parseModule();
5760}
5761
5762// Parse the specified bitcode buffer, returning the function info index.
5763Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5764 BitstreamCursor Stream(Buffer);
5765 Stream.JumpToBit(ModuleBit);
5766
5767 auto Index =
5768 llvm::make_unique<ModuleSummaryIndex>(/*IsPerformingAnalysis=*/false);
5769 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5770 ModuleIdentifier, 0);
5771
5772 if (Error Err = R.parseModule())
5773 return std::move(Err);
5774
5775 return std::move(Index);
5776}
5777
5778// Check if the given bitcode buffer contains a global value summary block.
5779Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
5780 BitstreamCursor Stream(Buffer);
5781 Stream.JumpToBit(ModuleBit);
5782
5783 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5784 return error("Invalid record");
5785
5786 while (true) {
5787 BitstreamEntry Entry = Stream.advance();
5788
5789 switch (Entry.Kind) {
5790 case BitstreamEntry::Error:
5791 return error("Malformed block");
5792 case BitstreamEntry::EndBlock:
5793 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false};
5794
5795 case BitstreamEntry::SubBlock:
5796 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
5797 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true};
5798
5799 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID)
5800 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true};
5801
5802 // Ignore other sub-blocks.
5803 if (Stream.SkipBlock())
5804 return error("Malformed block");
5805 continue;
5806
5807 case BitstreamEntry::Record:
5808 Stream.skipRecord(Entry.ID);
5809 continue;
5810 }
5811 }
5812}
5813
5814static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
5815 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
5816 if (!MsOrErr)
5817 return MsOrErr.takeError();
5818
5819 if (MsOrErr->size() != 1)
5820 return error("Expected a single module");
5821
5822 return (*MsOrErr)[0];
5823}
5824
5825Expected<std::unique_ptr<Module>>
5826llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
5827 bool ShouldLazyLoadMetadata, bool IsImporting) {
5828 Expected<BitcodeModule> BM = getSingleModule(Buffer);
5829 if (!BM)
5830 return BM.takeError();
5831
5832 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
5833}
5834
5835Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
5836 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5837 bool ShouldLazyLoadMetadata, bool IsImporting) {
5838 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
5839 IsImporting);
5840 if (MOrErr)
5841 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
5842 return MOrErr;
5843}
5844
5845Expected<std::unique_ptr<Module>>
5846BitcodeModule::parseModule(LLVMContext &Context) {
5847 return getModuleImpl(Context, true, false, false);
5848 // TODO: Restore the use-lists to the in-memory state when the bitcode was
5849 // written. We must defer until the Module has been fully materialized.
5850}
5851
5852Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5853 LLVMContext &Context) {
5854 Expected<BitcodeModule> BM = getSingleModule(Buffer);
5855 if (!BM)
5856 return BM.takeError();
5857
5858 return BM->parseModule(Context);
5859}
5860
5861Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
5862 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5863 if (!StreamOrErr)
5864 return StreamOrErr.takeError();
5865
5866 return readTriple(*StreamOrErr);
5867}
5868
5869Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
5870 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5871 if (!StreamOrErr)
5872 return StreamOrErr.takeError();
5873
5874 return hasObjCCategory(*StreamOrErr);
5875}
5876
5877Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
5878 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5879 if (!StreamOrErr)
5880 return StreamOrErr.takeError();
5881
5882 return readIdentificationCode(*StreamOrErr);
5883}
5884
5885Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
5886 ModuleSummaryIndex &CombinedIndex,
5887 uint64_t ModuleId) {
5888 Expected<BitcodeModule> BM = getSingleModule(Buffer);
5889 if (!BM)
5890 return BM.takeError();
5891
5892 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
5893}
5894
5895Expected<std::unique_ptr<ModuleSummaryIndex>>
5896llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
5897 Expected<BitcodeModule> BM = getSingleModule(Buffer);
5898 if (!BM)
5899 return BM.takeError();
5900
5901 return BM->getSummary();
5902}
5903
5904Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
5905 Expected<BitcodeModule> BM = getSingleModule(Buffer);
5906 if (!BM)
5907 return BM.takeError();
5908
5909 return BM->getLTOInfo();
5910}
5911
5912Expected<std::unique_ptr<ModuleSummaryIndex>>
5913llvm::getModuleSummaryIndexForFile(StringRef Path,
5914 bool IgnoreEmptyThinLTOIndexFile) {
5915 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5916 MemoryBuffer::getFileOrSTDIN(Path);
5917 if (!FileOrErr)
5918 return errorCodeToError(FileOrErr.getError());
5919 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
5920 return nullptr;
5921 return getModuleSummaryIndex(**FileOrErr);
5922}

/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h

1//===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_TWINE_H
11#define LLVM_ADT_TWINE_H
12
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/ADT/StringRef.h"
15#include "llvm/Support/ErrorHandling.h"
16#include <cassert>
17#include <cstdint>
18#include <string>
19
20namespace llvm {
21
22 class formatv_object_base;
23 class raw_ostream;
24
25 /// Twine - A lightweight data structure for efficiently representing the
26 /// concatenation of temporary values as strings.
27 ///
28 /// A Twine is a kind of rope, it represents a concatenated string using a
29 /// binary-tree, where the string is the preorder of the nodes. Since the
30 /// Twine can be efficiently rendered into a buffer when its result is used,
31 /// it avoids the cost of generating temporary values for intermediate string
32 /// results -- particularly in cases when the Twine result is never
33 /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34 /// the creation of temporary strings for conversions operations (such as
35 /// appending an integer to a string).
36 ///
37 /// A Twine is not intended for use directly and should not be stored, its
38 /// implementation relies on the ability to store pointers to temporary stack
39 /// objects which may be deallocated at the end of a statement. Twines should
40 /// only be used accepted as const references in arguments, when an API wishes
41 /// to accept possibly-concatenated strings.
42 ///
43 /// Twines support a special 'null' value, which always concatenates to form
44 /// itself, and renders as an empty string. This can be returned from APIs to
45 /// effectively nullify any concatenations performed on the result.
46 ///
47 /// \b Implementation
48 ///
49 /// Given the nature of a Twine, it is not possible for the Twine's
50 /// concatenation method to construct interior nodes; the result must be
51 /// represented inside the returned value. For this reason a Twine object
52 /// actually holds two values, the left- and right-hand sides of a
53 /// concatenation. We also have nullary Twine objects, which are effectively
54 /// sentinel values that represent empty strings.
55 ///
56 /// Thus, a Twine can effectively have zero, one, or two children. The \see
57 /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58 /// testing the number of children.
59 ///
60 /// We maintain a number of invariants on Twine objects (FIXME: Why):
61 /// - Nullary twines are always represented with their Kind on the left-hand
62 /// side, and the Empty kind on the right-hand side.
63 /// - Unary twines are always represented with the value on the left-hand
64 /// side, and the Empty kind on the right-hand side.
65 /// - If a Twine has another Twine as a child, that child should always be
66 /// binary (otherwise it could have been folded into the parent).
67 ///
68 /// These invariants are check by \see isValid().
69 ///
70 /// \b Efficiency Considerations
71 ///
72 /// The Twine is designed to yield efficient and small code for common
73 /// situations. For this reason, the concat() method is inlined so that
74 /// concatenations of leaf nodes can be optimized into stores directly into a
75 /// single stack allocated object.
76 ///
77 /// In practice, not all compilers can be trusted to optimize concat() fully,
78 /// so we provide two additional methods (and accompanying operator+
79 /// overloads) to guarantee that particularly important cases (cstring plus
80 /// StringRef) codegen as desired.
81 class Twine {
82 /// NodeKind - Represent the type of an argument.
83 enum NodeKind : unsigned char {
84 /// An empty string; the result of concatenating anything with it is also
85 /// empty.
86 NullKind,
87
88 /// The empty string.
89 EmptyKind,
90
91 /// A pointer to a Twine instance.
92 TwineKind,
93
94 /// A pointer to a C string instance.
95 CStringKind,
96
97 /// A pointer to an std::string instance.
98 StdStringKind,
99
100 /// A pointer to a StringRef instance.
101 StringRefKind,
102
103 /// A pointer to a SmallString instance.
104 SmallStringKind,
105
106 /// A pointer to a formatv_object_base instance.
107 FormatvObjectKind,
108
109 /// A char value, to render as a character.
110 CharKind,
111
112 /// An unsigned int value, to render as an unsigned decimal integer.
113 DecUIKind,
114
115 /// An int value, to render as a signed decimal integer.
116 DecIKind,
117
118 /// A pointer to an unsigned long value, to render as an unsigned decimal
119 /// integer.
120 DecULKind,
121
122 /// A pointer to a long value, to render as a signed decimal integer.
123 DecLKind,
124
125 /// A pointer to an unsigned long long value, to render as an unsigned
126 /// decimal integer.
127 DecULLKind,
128
129 /// A pointer to a long long value, to render as a signed decimal integer.
130 DecLLKind,
131
132 /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
133 /// integer.
134 UHexKind
135 };
136
137 union Child
138 {
139 const Twine *twine;
140 const char *cString;
141 const std::string *stdString;
142 const StringRef *stringRef;
143 const SmallVectorImpl<char> *smallString;
144 const formatv_object_base *formatvObject;
145 char character;
146 unsigned int decUI;
147 int decI;
148 const unsigned long *decUL;
149 const long *decL;
150 const unsigned long long *decULL;
151 const long long *decLL;
152 const uint64_t *uHex;
153 };
154
155 /// LHS - The prefix in the concatenation, which may be uninitialized for
156 /// Null or Empty kinds.
157 Child LHS;
158
159 /// RHS - The suffix in the concatenation, which may be uninitialized for
160 /// Null or Empty kinds.
161 Child RHS;
162
163 /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
164 NodeKind LHSKind = EmptyKind;
165
166 /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
167 NodeKind RHSKind = EmptyKind;
168
169 /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
170 explicit Twine(NodeKind Kind) : LHSKind(Kind) {
171 assert(isNullary() && "Invalid kind!")(static_cast <bool> (isNullary() && "Invalid kind!"
) ? void (0) : __assert_fail ("isNullary() && \"Invalid kind!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 171, __extension__ __PRETTY_FUNCTION__))
;
172 }
173
174 /// Construct a binary twine.
175 explicit Twine(const Twine &LHS, const Twine &RHS)
176 : LHSKind(TwineKind), RHSKind(TwineKind) {
177 this->LHS.twine = &LHS;
178 this->RHS.twine = &RHS;
179 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 179, __extension__ __PRETTY_FUNCTION__))
;
180 }
181
182 /// Construct a twine from explicit values.
183 explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
184 : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
185 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 185, __extension__ __PRETTY_FUNCTION__))
;
186 }
187
188 /// Check for the null twine.
189 bool isNull() const {
190 return getLHSKind() == NullKind;
191 }
192
193 /// Check for the empty twine.
194 bool isEmpty() const {
195 return getLHSKind() == EmptyKind;
196 }
197
198 /// Check if this is a nullary twine (null or empty).
199 bool isNullary() const {
200 return isNull() || isEmpty();
201 }
202
203 /// Check if this is a unary twine.
204 bool isUnary() const {
205 return getRHSKind() == EmptyKind && !isNullary();
206 }
207
208 /// Check if this is a binary twine.
209 bool isBinary() const {
210 return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
211 }
212
213 /// Check if this is a valid twine (satisfying the invariants on
214 /// order and number of arguments).
215 bool isValid() const {
216 // Nullary twines always have Empty on the RHS.
217 if (isNullary() && getRHSKind() != EmptyKind)
218 return false;
219
220 // Null should never appear on the RHS.
221 if (getRHSKind() == NullKind)
222 return false;
223
224 // The RHS cannot be non-empty if the LHS is empty.
225 if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
226 return false;
227
228 // A twine child should always be binary.
229 if (getLHSKind() == TwineKind &&
230 !LHS.twine->isBinary())
231 return false;
232 if (getRHSKind() == TwineKind &&
233 !RHS.twine->isBinary())
234 return false;
235
236 return true;
237 }
238
239 /// Get the NodeKind of the left-hand side.
240 NodeKind getLHSKind() const { return LHSKind; }
241
242 /// Get the NodeKind of the right-hand side.
243 NodeKind getRHSKind() const { return RHSKind; }
244
245 /// Print one child from a twine.
246 void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
247
248 /// Print the representation of one child from a twine.
249 void printOneChildRepr(raw_ostream &OS, Child Ptr,
250 NodeKind Kind) const;
251
252 public:
253 /// @name Constructors
254 /// @{
255
256 /// Construct from an empty string.
257 /*implicit*/ Twine() {
258 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 258, __extension__ __PRETTY_FUNCTION__))
;
259 }
260
261 Twine(const Twine &) = default;
262
263 /// Construct from a C string.
264 ///
265 /// We take care here to optimize "" into the empty twine -- this will be
266 /// optimized out for string constants. This allows Twine arguments have
267 /// default "" values, without introducing unnecessary string constants.
268 /*implicit*/ Twine(const char *Str) {
13
Calling implicit default constructor for 'Child'
14
Returning from default constructor for 'Child'
15
Calling implicit default constructor for 'Child'
16
Returning from default constructor for 'Child'
269 if (Str[0] != '\0') {
17
Taking true branch
270 LHS.cString = Str;
271 LHSKind = CStringKind;
272 } else
273 LHSKind = EmptyKind;
274
275 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 275, __extension__ __PRETTY_FUNCTION__))
;
18
Within the expansion of the macro 'assert':
a
Assuming the condition is true
276 }
277
278 /// Construct from an std::string.
279 /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) {
24
Calling implicit default constructor for 'Child'
25
Returning from default constructor for 'Child'
26
Calling implicit default constructor for 'Child'
27
Returning from default constructor for 'Child'
280 LHS.stdString = &Str;
281 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 281, __extension__ __PRETTY_FUNCTION__))
;
28
Within the expansion of the macro 'assert':
a
Assuming the condition is true
282 }
283
284 /// Construct from a StringRef.
285 /*implicit*/ Twine(const StringRef &Str) : LHSKind(StringRefKind) {
286 LHS.stringRef = &Str;
287 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 287, __extension__ __PRETTY_FUNCTION__))
;
288 }
289
290 /// Construct from a SmallString.
291 /*implicit*/ Twine(const SmallVectorImpl<char> &Str)
292 : LHSKind(SmallStringKind) {
293 LHS.smallString = &Str;
294 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 294, __extension__ __PRETTY_FUNCTION__))
;
295 }
296
297 /// Construct from a formatv_object_base.
298 /*implicit*/ Twine(const formatv_object_base &Fmt)
299 : LHSKind(FormatvObjectKind) {
300 LHS.formatvObject = &Fmt;
301 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 301, __extension__ __PRETTY_FUNCTION__))
;
302 }
303
304 /// Construct from a char.
305 explicit Twine(char Val) : LHSKind(CharKind) {
306 LHS.character = Val;
307 }
308
309 /// Construct from a signed char.
310 explicit Twine(signed char Val) : LHSKind(CharKind) {
311 LHS.character = static_cast<char>(Val);
312 }
313
314 /// Construct from an unsigned char.
315 explicit Twine(unsigned char Val) : LHSKind(CharKind) {
316 LHS.character = static_cast<char>(Val);
317 }
318
319 /// Construct a twine to print \p Val as an unsigned decimal integer.
320 explicit Twine(unsigned Val) : LHSKind(DecUIKind) {
321 LHS.decUI = Val;
322 }
323
324 /// Construct a twine to print \p Val as a signed decimal integer.
325 explicit Twine(int Val) : LHSKind(DecIKind) {
326 LHS.decI = Val;
327 }
328
329 /// Construct a twine to print \p Val as an unsigned decimal integer.
330 explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) {
331 LHS.decUL = &Val;
332 }
333
334 /// Construct a twine to print \p Val as a signed decimal integer.
335 explicit Twine(const long &Val) : LHSKind(DecLKind) {
336 LHS.decL = &Val;
337 }
338
339 /// Construct a twine to print \p Val as an unsigned decimal integer.
340 explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) {
341 LHS.decULL = &Val;
342 }
343
344 /// Construct a twine to print \p Val as a signed decimal integer.
345 explicit Twine(const long long &Val) : LHSKind(DecLLKind) {
346 LHS.decLL = &Val;
347 }
348
349 // FIXME: Unfortunately, to make sure this is as efficient as possible we
350 // need extra binary constructors from particular types. We can't rely on
351 // the compiler to be smart enough to fold operator+()/concat() down to the
352 // right thing. Yet.
353
354 /// Construct as the concatenation of a C string and a StringRef.
355 /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
356 : LHSKind(CStringKind), RHSKind(StringRefKind) {
357 this->LHS.cString = LHS;
358 this->RHS.stringRef = &RHS;
359 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 359, __extension__ __PRETTY_FUNCTION__))
;
360 }
361
362 /// Construct as the concatenation of a StringRef and a C string.
363 /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
364 : LHSKind(StringRefKind), RHSKind(CStringKind) {
365 this->LHS.stringRef = &LHS;
366 this->RHS.cString = RHS;
367 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 367, __extension__ __PRETTY_FUNCTION__))
;
368 }
369
370 /// Since the intended use of twines is as temporary objects, assignments
371 /// when concatenating might cause undefined behavior or stack corruptions
372 Twine &operator=(const Twine &) = delete;
373
374 /// Create a 'null' string, which is an empty string that always
375 /// concatenates to form another empty string.
376 static Twine createNull() {
377 return Twine(NullKind);
378 }
379
380 /// @}
381 /// @name Numeric Conversions
382 /// @{
383
384 // Construct a twine to print \p Val as an unsigned hexadecimal integer.
385 static Twine utohexstr(const uint64_t &Val) {
386 Child LHS, RHS;
387 LHS.uHex = &Val;
388 RHS.twine = nullptr;
389 return Twine(LHS, UHexKind, RHS, EmptyKind);
390 }
391
392 /// @}
393 /// @name Predicate Operations
394 /// @{
395
396 /// Check if this twine is trivially empty; a false return value does not
397 /// necessarily mean the twine is empty.
398 bool isTriviallyEmpty() const {
399 return isNullary();
400 }
401
402 /// Return true if this twine can be dynamically accessed as a single
403 /// StringRef value with getSingleStringRef().
404 bool isSingleStringRef() const {
405 if (getRHSKind() != EmptyKind) return false;
406
407 switch (getLHSKind()) {
408 case EmptyKind:
409 case CStringKind:
410 case StdStringKind:
411 case StringRefKind:
412 case SmallStringKind:
413 return true;
414 default:
415 return false;
416 }
417 }
418
419 /// @}
420 /// @name String Operations
421 /// @{
422
423 Twine concat(const Twine &Suffix) const;
424
425 /// @}
426 /// @name Output & Conversion.
427 /// @{
428
429 /// Return the twine contents as a std::string.
430 std::string str() const;
431
432 /// Append the concatenated string into the given SmallString or SmallVector.
433 void toVector(SmallVectorImpl<char> &Out) const;
434
435 /// This returns the twine as a single StringRef. This method is only valid
436 /// if isSingleStringRef() is true.
437 StringRef getSingleStringRef() const {
438 assert(isSingleStringRef() &&"This cannot be had as a single stringref!")(static_cast <bool> (isSingleStringRef() &&"This cannot be had as a single stringref!"
) ? void (0) : __assert_fail ("isSingleStringRef() &&\"This cannot be had as a single stringref!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 438, __extension__ __PRETTY_FUNCTION__))
;
439 switch (getLHSKind()) {
440 default: llvm_unreachable("Out of sync with isSingleStringRef")::llvm::llvm_unreachable_internal("Out of sync with isSingleStringRef"
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/Twine.h"
, 440)
;
441 case EmptyKind: return StringRef();
442 case CStringKind: return StringRef(LHS.cString);
443 case StdStringKind: return StringRef(*LHS.stdString);
444 case StringRefKind: return *LHS.stringRef;
445 case SmallStringKind:
446 return StringRef(LHS.smallString->data(), LHS.smallString->size());
447 }
448 }
449
450 /// This returns the twine as a single StringRef if it can be
451 /// represented as such. Otherwise the twine is written into the given
452 /// SmallVector and a StringRef to the SmallVector's data is returned.
453 StringRef toStringRef(SmallVectorImpl<char> &Out) const {
454 if (isSingleStringRef())
455 return getSingleStringRef();
456 toVector(Out);
457 return StringRef(Out.data(), Out.size());
458 }
459
460 /// This returns the twine as a single null terminated StringRef if it
461 /// can be represented as such. Otherwise the twine is written into the
462 /// given SmallVector and a StringRef to the SmallVector's data is returned.
463 ///
464 /// The returned StringRef's size does not include the null terminator.
465 StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
466
467 /// Write the concatenated string represented by this twine to the
468 /// stream \p OS.
469 void print(raw_ostream &OS) const;
470
471 /// Dump the concatenated string represented by this twine to stderr.
472 void dump() const;
473
474 /// Write the representation of this twine to the stream \p OS.
475 void printRepr(raw_ostream &OS) const;
476
477 /// Dump the representation of this twine to stderr.
478 void dumpRepr() const;
479
480 /// @}
481 };
482
483 /// @name Twine Inline Implementations
484 /// @{
485
486 inline Twine Twine::concat(const Twine &Suffix) const {
487 // Concatenation with null is null.
488 if (isNull() || Suffix.isNull())
489 return Twine(NullKind);
490
491 // Concatenation with empty yields the other side.
492 if (isEmpty())
493 return Suffix;
494 if (Suffix.isEmpty())
495 return *this;
496
497 // Otherwise we need to create a new node, taking care to fold in unary
498 // twines.
499 Child NewLHS, NewRHS;
500 NewLHS.twine = this;
501 NewRHS.twine = &Suffix;
502 NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
503 if (isUnary()) {
504 NewLHS = LHS;
505 NewLHSKind = getLHSKind();
506 }
507 if (Suffix.isUnary()) {
508 NewRHS = Suffix.LHS;
509 NewRHSKind = Suffix.getLHSKind();
510 }
511
512 return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
513 }
514
515 inline Twine operator+(const Twine &LHS, const Twine &RHS) {
516 return LHS.concat(RHS);
517 }
518
519 /// Additional overload to guarantee simplified codegen; this is equivalent to
520 /// concat().
521
522 inline Twine operator+(const char *LHS, const StringRef &RHS) {
523 return Twine(LHS, RHS);
524 }
525
526 /// Additional overload to guarantee simplified codegen; this is equivalent to
527 /// concat().
528
529 inline Twine operator+(const StringRef &LHS, const char *RHS) {
530 return Twine(LHS, RHS);
531 }
532
533 inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
534 RHS.print(OS);
535 return OS;
536 }
537
538 /// @}
539
540} // end namespace llvm
541
542#endif // LLVM_ADT_TWINE_H

/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Bitcode/BitcodeReader.h

1//===- llvm/Bitcode/BitcodeReader.h - Bitcode reader ------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines interfaces to read LLVM bitcode files/streams.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_BITCODE_BITCODEREADER_H
15#define LLVM_BITCODE_BITCODEREADER_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/Bitcode/BitCodes.h"
20#include "llvm/IR/ModuleSummaryIndex.h"
21#include "llvm/Support/Endian.h"
22#include "llvm/Support/Error.h"
23#include "llvm/Support/ErrorOr.h"
24#include "llvm/Support/MemoryBuffer.h"
25#include <cstdint>
26#include <memory>
27#include <string>
28#include <system_error>
29#include <vector>
30namespace llvm {
31
32class LLVMContext;
33class Module;
34
35 // These functions are for converting Expected/Error values to
36 // ErrorOr/std::error_code for compatibility with legacy clients. FIXME:
37 // Remove these functions once no longer needed by the C and libLTO APIs.
38
39 std::error_code errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, Error Err);
40
41 template <typename T>
42 ErrorOr<T> expectedToErrorOrAndEmitErrors(LLVMContext &Ctx, Expected<T> Val) {
43 if (!Val)
44 return errorToErrorCodeAndEmitErrors(Ctx, Val.takeError());
45 return std::move(*Val);
46 }
47
48 struct BitcodeFileContents;
49
50 /// Basic information extracted from a bitcode module to be used for LTO.
51 struct BitcodeLTOInfo {
52 bool IsThinLTO;
53 bool HasSummary;
54 };
55
56 /// Represents a module in a bitcode file.
57 class BitcodeModule {
58 // This covers the identification (if present) and module blocks.
59 ArrayRef<uint8_t> Buffer;
60 StringRef ModuleIdentifier;
61
62 // The string table used to interpret this module.
63 StringRef Strtab;
64
65 // The bitstream location of the IDENTIFICATION_BLOCK.
66 uint64_t IdentificationBit;
67
68 // The bitstream location of this module's MODULE_BLOCK.
69 uint64_t ModuleBit;
70
71 BitcodeModule(ArrayRef<uint8_t> Buffer, StringRef ModuleIdentifier,
72 uint64_t IdentificationBit, uint64_t ModuleBit)
73 : Buffer(Buffer), ModuleIdentifier(ModuleIdentifier),
74 IdentificationBit(IdentificationBit), ModuleBit(ModuleBit) {}
75
76 // Calls the ctor.
77 friend Expected<BitcodeFileContents>
78 getBitcodeFileContents(MemoryBufferRef Buffer);
79
80 Expected<std::unique_ptr<Module>> getModuleImpl(LLVMContext &Context,
81 bool MaterializeAll,
82 bool ShouldLazyLoadMetadata,
83 bool IsImporting);
84
85 public:
86 StringRef getBuffer() const {
87 return StringRef((const char *)Buffer.begin(), Buffer.size());
88 }
89
90 StringRef getStrtab() const { return Strtab; }
91
92 StringRef getModuleIdentifier() const { return ModuleIdentifier; }
93
94 /// Read the bitcode module and prepare for lazy deserialization of function
95 /// bodies. If ShouldLazyLoadMetadata is true, lazily load metadata as well.
96 /// If IsImporting is true, this module is being parsed for ThinLTO
97 /// importing into another module.
98 Expected<std::unique_ptr<Module>> getLazyModule(LLVMContext &Context,
99 bool ShouldLazyLoadMetadata,
100 bool IsImporting);
101
102 /// Read the entire bitcode module and return it.
103 Expected<std::unique_ptr<Module>> parseModule(LLVMContext &Context);
104
105 /// Returns information about the module to be used for LTO: whether to
106 /// compile with ThinLTO, and whether it has a summary.
107 Expected<BitcodeLTOInfo> getLTOInfo();
108
109 /// Parse the specified bitcode buffer, returning the module summary index.
110 Expected<std::unique_ptr<ModuleSummaryIndex>> getSummary();
111
112 /// Parse the specified bitcode buffer and merge its module summary index
113 /// into CombinedIndex.
114 Error readSummary(ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
115 uint64_t ModuleId);
116 };
117
118 struct BitcodeFileContents {
119 std::vector<BitcodeModule> Mods;
120 StringRef Symtab, StrtabForSymtab;
121 };
122
123 /// Returns the contents of a bitcode file. This includes the raw contents of
124 /// the symbol table embedded in the bitcode file. Clients which require a
125 /// symbol table should prefer to use irsymtab::read instead of this function
126 /// because it creates a reader for the irsymtab and handles upgrading bitcode
127 /// files without a symbol table or with an old symbol table.
128 Expected<BitcodeFileContents> getBitcodeFileContents(MemoryBufferRef Buffer);
129
130 /// Returns a list of modules in the specified bitcode buffer.
131 Expected<std::vector<BitcodeModule>>
132 getBitcodeModuleList(MemoryBufferRef Buffer);
133
134 /// Read the header of the specified bitcode buffer and prepare for lazy
135 /// deserialization of function bodies. If ShouldLazyLoadMetadata is true,
136 /// lazily load metadata as well. If IsImporting is true, this module is
137 /// being parsed for ThinLTO importing into another module.
138 Expected<std::unique_ptr<Module>>
139 getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
140 bool ShouldLazyLoadMetadata = false,
141 bool IsImporting = false);
142
143 /// Like getLazyBitcodeModule, except that the module takes ownership of
144 /// the memory buffer if successful. If successful, this moves Buffer. On
145 /// error, this *does not* move Buffer. If IsImporting is true, this module is
146 /// being parsed for ThinLTO importing into another module.
147 Expected<std::unique_ptr<Module>> getOwningLazyBitcodeModule(
148 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
149 bool ShouldLazyLoadMetadata = false, bool IsImporting = false);
150
151 /// Read the header of the specified bitcode buffer and extract just the
152 /// triple information. If successful, this returns a string. On error, this
153 /// returns "".
154 Expected<std::string> getBitcodeTargetTriple(MemoryBufferRef Buffer);
155
156 /// Return true if \p Buffer contains a bitcode file with ObjC code (category
157 /// or class) in it.
158 Expected<bool> isBitcodeContainingObjCCategory(MemoryBufferRef Buffer);
159
160 /// Read the header of the specified bitcode buffer and extract just the
161 /// producer string information. If successful, this returns a string. On
162 /// error, this returns "".
163 Expected<std::string> getBitcodeProducerString(MemoryBufferRef Buffer);
164
165 /// Read the specified bitcode file, returning the module.
166 Expected<std::unique_ptr<Module>> parseBitcodeFile(MemoryBufferRef Buffer,
167 LLVMContext &Context);
168
169 /// Returns LTO information for the specified bitcode file.
170 Expected<BitcodeLTOInfo> getBitcodeLTOInfo(MemoryBufferRef Buffer);
171
172 /// Parse the specified bitcode buffer, returning the module summary index.
173 Expected<std::unique_ptr<ModuleSummaryIndex>>
174 getModuleSummaryIndex(MemoryBufferRef Buffer);
175
176 /// Parse the specified bitcode buffer and merge the index into CombinedIndex.
177 Error readModuleSummaryIndex(MemoryBufferRef Buffer,
178 ModuleSummaryIndex &CombinedIndex,
179 uint64_t ModuleId);
180
181 /// Parse the module summary index out of an IR file and return the module
182 /// summary index object if found, or an empty summary if not. If Path refers
183 /// to an empty file and IgnoreEmptyThinLTOIndexFile is true, then
184 /// this function will return nullptr.
185 Expected<std::unique_ptr<ModuleSummaryIndex>>
186 getModuleSummaryIndexForFile(StringRef Path,
187 bool IgnoreEmptyThinLTOIndexFile = false);
188
189 /// isBitcodeWrapper - Return true if the given bytes are the magic bytes
190 /// for an LLVM IR bitcode wrapper.
191 inline bool isBitcodeWrapper(const unsigned char *BufPtr,
192 const unsigned char *BufEnd) {
193 // See if you can find the hidden message in the magic bytes :-).
194 // (Hint: it's a little-endian encoding.)
195 return BufPtr != BufEnd &&
196 BufPtr[0] == 0xDE &&
197 BufPtr[1] == 0xC0 &&
198 BufPtr[2] == 0x17 &&
199 BufPtr[3] == 0x0B;
200 }
201
202 /// isRawBitcode - Return true if the given bytes are the magic bytes for
203 /// raw LLVM IR bitcode (without a wrapper).
204 inline bool isRawBitcode(const unsigned char *BufPtr,
205 const unsigned char *BufEnd) {
206 // These bytes sort of have a hidden message, but it's not in
207 // little-endian this time, and it's a little redundant.
208 return BufPtr != BufEnd &&
209 BufPtr[0] == 'B' &&
210 BufPtr[1] == 'C' &&
211 BufPtr[2] == 0xc0 &&
212 BufPtr[3] == 0xde;
213 }
214
215 /// isBitcode - Return true if the given bytes are the magic bytes for
216 /// LLVM IR bitcode, either with or without a wrapper.
217 inline bool isBitcode(const unsigned char *BufPtr,
218 const unsigned char *BufEnd) {
219 return isBitcodeWrapper(BufPtr, BufEnd) ||
220 isRawBitcode(BufPtr, BufEnd);
221 }
222
223 /// SkipBitcodeWrapperHeader - Some systems wrap bc files with a special
224 /// header for padding or other reasons. The format of this header is:
225 ///
226 /// struct bc_header {
227 /// uint32_t Magic; // 0x0B17C0DE
228 /// uint32_t Version; // Version, currently always 0.
229 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
230 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
231 /// ... potentially other gunk ...
232 /// };
233 ///
234 /// This function is called when we find a file with a matching magic number.
235 /// In this case, skip down to the subsection of the file that is actually a
236 /// BC file.
237 /// If 'VerifyBufferSize' is true, check that the buffer is large enough to
238 /// contain the whole bitcode file.
239 inline bool SkipBitcodeWrapperHeader(const unsigned char *&BufPtr,
240 const unsigned char *&BufEnd,
241 bool VerifyBufferSize) {
242 // Must contain the offset and size field!
243 if (unsigned(BufEnd - BufPtr) < BWH_SizeField + 4)
244 return true;
245
246 unsigned Offset = support::endian::read32le(&BufPtr[BWH_OffsetField]);
247 unsigned Size = support::endian::read32le(&BufPtr[BWH_SizeField]);
248 uint64_t BitcodeOffsetEnd = (uint64_t)Offset + (uint64_t)Size;
249
250 // Verify that Offset+Size fits in the file.
251 if (VerifyBufferSize && BitcodeOffsetEnd > uint64_t(BufEnd-BufPtr))
252 return true;
253 BufPtr += Offset;
254 BufEnd = BufPtr+Size;
255 return false;
256 }
257
258 const std::error_category &BitcodeErrorCategory();
259 enum class BitcodeError { CorruptedBitcode = 1 };
260 inline std::error_code make_error_code(BitcodeError E) {
261 return std::error_code(static_cast<int>(E), BitcodeErrorCategory());
32
Calling 'BitcodeErrorCategory'
49
Returning from 'BitcodeErrorCategory'
50
Calling constructor for 'error_code'
51
Returning from constructor for 'error_code'
262 }
263
264} // end namespace llvm
265
266namespace std {
267
268template <> struct is_error_code_enum<llvm::BitcodeError> : std::true_type {};
269
270} // end namespace std
271
272#endif // LLVM_BITCODE_BITCODEREADER_H

/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/ManagedStatic.h

1//===-- llvm/Support/ManagedStatic.h - Static Global wrapper ----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ManagedStatic class and the llvm_shutdown() function.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_MANAGEDSTATIC_H
15#define LLVM_SUPPORT_MANAGEDSTATIC_H
16
17#include <atomic>
18#include <cstddef>
19
20namespace llvm {
21
22/// object_creator - Helper method for ManagedStatic.
23template <class C> struct object_creator {
24 static void *call() { return new C(); }
25};
26
27/// object_deleter - Helper method for ManagedStatic.
28///
29template <typename T> struct object_deleter {
30 static void call(void *Ptr) { delete (T *)Ptr; }
31};
32template <typename T, size_t N> struct object_deleter<T[N]> {
33 static void call(void *Ptr) { delete[](T *)Ptr; }
34};
35
36/// ManagedStaticBase - Common base class for ManagedStatic instances.
37class ManagedStaticBase {
38protected:
39 // This should only be used as a static variable, which guarantees that this
40 // will be zero initialized.
41 mutable std::atomic<void *> Ptr;
42 mutable void (*DeleterFn)(void*);
43 mutable const ManagedStaticBase *Next;
44
45 void RegisterManagedStatic(void *(*creator)(), void (*deleter)(void*)) const;
46
47public:
48 /// isConstructed - Return true if this object has not been created yet.
49 bool isConstructed() const { return Ptr != nullptr; }
50
51 void destroy() const;
52};
53
54/// ManagedStatic - This transparently changes the behavior of global statics to
55/// be lazily constructed on demand (good for reducing startup times of dynamic
56/// libraries that link in LLVM components) and for making destruction be
57/// explicit through the llvm_shutdown() function call.
58///
59template <class C, class Creator = object_creator<C>,
60 class Deleter = object_deleter<C>>
61class ManagedStatic : public ManagedStaticBase {
62public:
63 // Accessors.
64 C &operator*() {
65 void *Tmp = Ptr.load(std::memory_order_acquire);
34
Calling 'atomic::load'
39
Returning from 'atomic::load'
66 if (!Tmp)
40
Assuming 'Tmp' is non-null
41
Taking false branch
67 RegisterManagedStatic(Creator::call, Deleter::call);
68
69 return *static_cast<C *>(Ptr.load(std::memory_order_relaxed));
42
Calling 'atomic::load'
47
Returning from 'atomic::load'
70 }
71
72 C *operator->() { return &**this; }
73
74 const C &operator*() const {
75 void *Tmp = Ptr.load(std::memory_order_acquire);
76 if (!Tmp)
77 RegisterManagedStatic(Creator::call, Deleter::call);
78
79 return *static_cast<C *>(Ptr.load(std::memory_order_relaxed));
80 }
81
82 const C *operator->() const { return &**this; }
83};
84
85/// llvm_shutdown - Deallocate and destroy all ManagedStatic variables.
86void llvm_shutdown();
87
88/// llvm_shutdown_obj - This is a simple helper class that calls
89/// llvm_shutdown() when it is destroyed.
90struct llvm_shutdown_obj {
91 llvm_shutdown_obj() = default;
92 ~llvm_shutdown_obj() { llvm_shutdown(); }
93};
94
95} // end namespace llvm
96
97#endif // LLVM_SUPPORT_MANAGEDSTATIC_H

/usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/atomic

1// -*- C++ -*- header.
2
3// Copyright (C) 2008-2017 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/atomic
26 * This is a Standard C++ Library header.
27 */
28
29// Based on "C++ Atomic Types and Operations" by Hans Boehm and Lawrence Crowl.
30// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html
31
32#ifndef _GLIBCXX_ATOMIC1
33#define _GLIBCXX_ATOMIC1 1
34
35#pragma GCC system_header
36
37#if __cplusplus201103L < 201103L
38# include <bits/c++0x_warning.h>
39#else
40
41#include <bits/atomic_base.h>
42#include <bits/move.h>
43
44namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
45{
46_GLIBCXX_BEGIN_NAMESPACE_VERSION
47
48 /**
49 * @addtogroup atomics
50 * @{
51 */
52
53#if __cplusplus201103L > 201402L
54# define __cpp_lib_atomic_is_always_lock_free 201603
55#endif
56
57 template<typename _Tp>
58 struct atomic;
59
60 /// atomic<bool>
61 // NB: No operators or fetch-operations for this type.
62 template<>
63 struct atomic<bool>
64 {
65 private:
66 __atomic_base<bool> _M_base;
67
68 public:
69 atomic() noexcept = default;
70 ~atomic() noexcept = default;
71 atomic(const atomic&) = delete;
72 atomic& operator=(const atomic&) = delete;
73 atomic& operator=(const atomic&) volatile = delete;
74
75 constexpr atomic(bool __i) noexcept : _M_base(__i) { }
76
77 bool
78 operator=(bool __i) noexcept
79 { return _M_base.operator=(__i); }
80
81 bool
82 operator=(bool __i) volatile noexcept
83 { return _M_base.operator=(__i); }
84
85 operator bool() const noexcept
86 { return _M_base.load(); }
87
88 operator bool() const volatile noexcept
89 { return _M_base.load(); }
90
91 bool
92 is_lock_free() const noexcept { return _M_base.is_lock_free(); }
93
94 bool
95 is_lock_free() const volatile noexcept { return _M_base.is_lock_free(); }
96
97#if __cplusplus201103L > 201402L
98 static constexpr bool is_always_lock_free = ATOMIC_BOOL_LOCK_FREE2 == 2;
99#endif
100
101 void
102 store(bool __i, memory_order __m = memory_order_seq_cst) noexcept
103 { _M_base.store(__i, __m); }
104
105 void
106 store(bool __i, memory_order __m = memory_order_seq_cst) volatile noexcept
107 { _M_base.store(__i, __m); }
108
109 bool
110 load(memory_order __m = memory_order_seq_cst) const noexcept
111 { return _M_base.load(__m); }
112
113 bool
114 load(memory_order __m = memory_order_seq_cst) const volatile noexcept
115 { return _M_base.load(__m); }
116
117 bool
118 exchange(bool __i, memory_order __m = memory_order_seq_cst) noexcept
119 { return _M_base.exchange(__i, __m); }
120
121 bool
122 exchange(bool __i,
123 memory_order __m = memory_order_seq_cst) volatile noexcept
124 { return _M_base.exchange(__i, __m); }
125
126 bool
127 compare_exchange_weak(bool& __i1, bool __i2, memory_order __m1,
128 memory_order __m2) noexcept
129 { return _M_base.compare_exchange_weak(__i1, __i2, __m1, __m2); }
130
131 bool
132 compare_exchange_weak(bool& __i1, bool __i2, memory_order __m1,
133 memory_order __m2) volatile noexcept
134 { return _M_base.compare_exchange_weak(__i1, __i2, __m1, __m2); }
135
136 bool
137 compare_exchange_weak(bool& __i1, bool __i2,
138 memory_order __m = memory_order_seq_cst) noexcept
139 { return _M_base.compare_exchange_weak(__i1, __i2, __m); }
140
141 bool
142 compare_exchange_weak(bool& __i1, bool __i2,
143 memory_order __m = memory_order_seq_cst) volatile noexcept
144 { return _M_base.compare_exchange_weak(__i1, __i2, __m); }
145
146 bool
147 compare_exchange_strong(bool& __i1, bool __i2, memory_order __m1,
148 memory_order __m2) noexcept
149 { return _M_base.compare_exchange_strong(__i1, __i2, __m1, __m2); }
150
151 bool
152 compare_exchange_strong(bool& __i1, bool __i2, memory_order __m1,
153 memory_order __m2) volatile noexcept
154 { return _M_base.compare_exchange_strong(__i1, __i2, __m1, __m2); }
155
156 bool
157 compare_exchange_strong(bool& __i1, bool __i2,
158 memory_order __m = memory_order_seq_cst) noexcept
159 { return _M_base.compare_exchange_strong(__i1, __i2, __m); }
160
161 bool
162 compare_exchange_strong(bool& __i1, bool __i2,
163 memory_order __m = memory_order_seq_cst) volatile noexcept
164 { return _M_base.compare_exchange_strong(__i1, __i2, __m); }
165 };
166
167
168 /**
169 * @brief Generic atomic type, primary class template.
170 *
171 * @tparam _Tp Type to be made atomic, must be trivally copyable.
172 */
173 template<typename _Tp>
174 struct atomic
175 {
176 private:
177 // Align 1/2/4/8/16-byte types to at least their size.
178 static constexpr int _S_min_alignment
179 = (sizeof(_Tp) & (sizeof(_Tp) - 1)) || sizeof(_Tp) > 16
180 ? 0 : sizeof(_Tp);
181
182 static constexpr int _S_alignment
183 = _S_min_alignment > alignof(_Tp) ? _S_min_alignment : alignof(_Tp);
184
185 alignas(_S_alignment) _Tp _M_i;
186
187 static_assert(__is_trivially_copyable(_Tp),
188 "std::atomic requires a trivially copyable type");
189
190 static_assert(sizeof(_Tp) > 0,
191 "Incomplete or zero-sized types are not supported");
192
193 public:
194 atomic() noexcept = default;
195 ~atomic() noexcept = default;
196 atomic(const atomic&) = delete;
197 atomic& operator=(const atomic&) = delete;
198 atomic& operator=(const atomic&) volatile = delete;
199
200 constexpr atomic(_Tp __i) noexcept : _M_i(__i) { }
201
202 operator _Tp() const noexcept
203 { return load(); }
204
205 operator _Tp() const volatile noexcept
206 { return load(); }
207
208 _Tp
209 operator=(_Tp __i) noexcept
210 { store(__i); return __i; }
211
212 _Tp
213 operator=(_Tp __i) volatile noexcept
214 { store(__i); return __i; }
215
216 bool
217 is_lock_free() const noexcept
218 {
219 // Produce a fake, minimally aligned pointer.
220 return __atomic_is_lock_free(sizeof(_M_i),
221 reinterpret_cast<void *>(-__alignof(_M_i)));
222 }
223
224 bool
225 is_lock_free() const volatile noexcept
226 {
227 // Produce a fake, minimally aligned pointer.
228 return __atomic_is_lock_free(sizeof(_M_i),
229 reinterpret_cast<void *>(-__alignof(_M_i)));
230 }
231
232#if __cplusplus201103L > 201402L
233 static constexpr bool is_always_lock_free
234 = __atomic_always_lock_free(sizeof(_M_i), 0);
235#endif
236
237 void
238 store(_Tp __i, memory_order __m = memory_order_seq_cst) noexcept
239 { __atomic_store(std::__addressof(_M_i), std::__addressof(__i), __m); }
240
241 void
242 store(_Tp __i, memory_order __m = memory_order_seq_cst) volatile noexcept
243 { __atomic_store(std::__addressof(_M_i), std::__addressof(__i), __m); }
244
245 _Tp
246 load(memory_order __m = memory_order_seq_cst) const noexcept
247 {
248 alignas(_Tp) unsigned char __buf[sizeof(_Tp)];
249 _Tp* __ptr = reinterpret_cast<_Tp*>(__buf);
250 __atomic_load(std::__addressof(_M_i), __ptr, __m);
251 return *__ptr;
252 }
253
254 _Tp
255 load(memory_order __m = memory_order_seq_cst) const volatile noexcept
256 {
257 alignas(_Tp) unsigned char __buf[sizeof(_Tp)];
258 _Tp* __ptr = reinterpret_cast<_Tp*>(__buf);
259 __atomic_load(std::__addressof(_M_i), __ptr, __m);
260 return *__ptr;
261 }
262
263 _Tp
264 exchange(_Tp __i, memory_order __m = memory_order_seq_cst) noexcept
265 {
266 alignas(_Tp) unsigned char __buf[sizeof(_Tp)];
267 _Tp* __ptr = reinterpret_cast<_Tp*>(__buf);
268 __atomic_exchange(std::__addressof(_M_i), std::__addressof(__i),
269 __ptr, __m);
270 return *__ptr;
271 }
272
273 _Tp
274 exchange(_Tp __i,
275 memory_order __m = memory_order_seq_cst) volatile noexcept
276 {
277 alignas(_Tp) unsigned char __buf[sizeof(_Tp)];
278 _Tp* __ptr = reinterpret_cast<_Tp*>(__buf);
279 __atomic_exchange(std::__addressof(_M_i), std::__addressof(__i),
280 __ptr, __m);
281 return *__ptr;
282 }
283
284 bool
285 compare_exchange_weak(_Tp& __e, _Tp __i, memory_order __s,
286 memory_order __f) noexcept
287 {
288 return __atomic_compare_exchange(std::__addressof(_M_i),
289 std::__addressof(__e),
290 std::__addressof(__i),
291 true, __s, __f);
292 }
293
294 bool
295 compare_exchange_weak(_Tp& __e, _Tp __i, memory_order __s,
296 memory_order __f) volatile noexcept
297 {
298 return __atomic_compare_exchange(std::__addressof(_M_i),
299 std::__addressof(__e),
300 std::__addressof(__i),
301 true, __s, __f);
302 }
303
304 bool
305 compare_exchange_weak(_Tp& __e, _Tp __i,
306 memory_order __m = memory_order_seq_cst) noexcept
307 { return compare_exchange_weak(__e, __i, __m,
308 __cmpexch_failure_order(__m)); }
309
310 bool
311 compare_exchange_weak(_Tp& __e, _Tp __i,
312 memory_order __m = memory_order_seq_cst) volatile noexcept
313 { return compare_exchange_weak(__e, __i, __m,
314 __cmpexch_failure_order(__m)); }
315
316 bool
317 compare_exchange_strong(_Tp& __e, _Tp __i, memory_order __s,
318 memory_order __f) noexcept
319 {
320 return __atomic_compare_exchange(std::__addressof(_M_i),
321 std::__addressof(__e),
322 std::__addressof(__i),
323 false, __s, __f);
324 }
325
326 bool
327 compare_exchange_strong(_Tp& __e, _Tp __i, memory_order __s,
328 memory_order __f) volatile noexcept
329 {
330 return __atomic_compare_exchange(std::__addressof(_M_i),
331 std::__addressof(__e),
332 std::__addressof(__i),
333 false, __s, __f);
334 }
335
336 bool
337 compare_exchange_strong(_Tp& __e, _Tp __i,
338 memory_order __m = memory_order_seq_cst) noexcept
339 { return compare_exchange_strong(__e, __i, __m,
340 __cmpexch_failure_order(__m)); }
341
342 bool
343 compare_exchange_strong(_Tp& __e, _Tp __i,
344 memory_order __m = memory_order_seq_cst) volatile noexcept
345 { return compare_exchange_strong(__e, __i, __m,
346 __cmpexch_failure_order(__m)); }
347 };
348
349
350 /// Partial specialization for pointer types.
351 template<typename _Tp>
352 struct atomic<_Tp*>
353 {
354 typedef _Tp* __pointer_type;
355 typedef __atomic_base<_Tp*> __base_type;
356 __base_type _M_b;
357
358 atomic() noexcept = default;
359 ~atomic() noexcept = default;
360 atomic(const atomic&) = delete;
361 atomic& operator=(const atomic&) = delete;
362 atomic& operator=(const atomic&) volatile = delete;
363
364 constexpr atomic(__pointer_type __p) noexcept : _M_b(__p) { }
365
366 operator __pointer_type() const noexcept
367 { return __pointer_type(_M_b); }
368
369 operator __pointer_type() const volatile noexcept
370 { return __pointer_type(_M_b); }
371
372 __pointer_type
373 operator=(__pointer_type __p) noexcept
374 { return _M_b.operator=(__p); }
375
376 __pointer_type
377 operator=(__pointer_type __p) volatile noexcept
378 { return _M_b.operator=(__p); }
379
380 __pointer_type
381 operator++(int) noexcept
382 { return _M_b++; }
383
384 __pointer_type
385 operator++(int) volatile noexcept
386 { return _M_b++; }
387
388 __pointer_type
389 operator--(int) noexcept
390 { return _M_b--; }
391
392 __pointer_type
393 operator--(int) volatile noexcept
394 { return _M_b--; }
395
396 __pointer_type
397 operator++() noexcept
398 { return ++_M_b; }
399
400 __pointer_type
401 operator++() volatile noexcept
402 { return ++_M_b; }
403
404 __pointer_type
405 operator--() noexcept
406 { return --_M_b; }
407
408 __pointer_type
409 operator--() volatile noexcept
410 { return --_M_b; }
411
412 __pointer_type
413 operator+=(ptrdiff_t __d) noexcept
414 { return _M_b.operator+=(__d); }
415
416 __pointer_type
417 operator+=(ptrdiff_t __d) volatile noexcept
418 { return _M_b.operator+=(__d); }
419
420 __pointer_type
421 operator-=(ptrdiff_t __d) noexcept
422 { return _M_b.operator-=(__d); }
423
424 __pointer_type
425 operator-=(ptrdiff_t __d) volatile noexcept
426 { return _M_b.operator-=(__d); }
427
428 bool
429 is_lock_free() const noexcept
430 { return _M_b.is_lock_free(); }
431
432 bool
433 is_lock_free() const volatile noexcept
434 { return _M_b.is_lock_free(); }
435
436#if __cplusplus201103L > 201402L
437 static constexpr bool is_always_lock_free = ATOMIC_POINTER_LOCK_FREE2 == 2;
438#endif
439
440 void
441 store(__pointer_type __p,
442 memory_order __m = memory_order_seq_cst) noexcept
443 { return _M_b.store(__p, __m); }
444
445 void
446 store(__pointer_type __p,
447 memory_order __m = memory_order_seq_cst) volatile noexcept
448 { return _M_b.store(__p, __m); }
449
450 __pointer_type
451 load(memory_order __m = memory_order_seq_cst) const noexcept
452 { return _M_b.load(__m); }
35
Calling '__atomic_base::load'
38
Returning from '__atomic_base::load'
43
Calling '__atomic_base::load'
46
Returning from '__atomic_base::load'
453
454 __pointer_type
455 load(memory_order __m = memory_order_seq_cst) const volatile noexcept
456 { return _M_b.load(__m); }
457
458 __pointer_type
459 exchange(__pointer_type __p,
460 memory_order __m = memory_order_seq_cst) noexcept
461 { return _M_b.exchange(__p, __m); }
462
463 __pointer_type
464 exchange(__pointer_type __p,
465 memory_order __m = memory_order_seq_cst) volatile noexcept
466 { return _M_b.exchange(__p, __m); }
467
468 bool
469 compare_exchange_weak(__pointer_type& __p1, __pointer_type __p2,
470 memory_order __m1, memory_order __m2) noexcept
471 { return _M_b.compare_exchange_strong(__p1, __p2, __m1, __m2); }
472
473 bool
474 compare_exchange_weak(__pointer_type& __p1, __pointer_type __p2,
475 memory_order __m1,
476 memory_order __m2) volatile noexcept
477 { return _M_b.compare_exchange_strong(__p1, __p2, __m1, __m2); }
478
479 bool
480 compare_exchange_weak(__pointer_type& __p1, __pointer_type __p2,
481 memory_order __m = memory_order_seq_cst) noexcept
482 {
483 return compare_exchange_weak(__p1, __p2, __m,
484 __cmpexch_failure_order(__m));
485 }
486
487 bool
488 compare_exchange_weak(__pointer_type& __p1, __pointer_type __p2,
489 memory_order __m = memory_order_seq_cst) volatile noexcept
490 {
491 return compare_exchange_weak(__p1, __p2, __m,
492 __cmpexch_failure_order(__m));
493 }
494
495 bool
496 compare_exchange_strong(__pointer_type& __p1, __pointer_type __p2,
497 memory_order __m1, memory_order __m2) noexcept
498 { return _M_b.compare_exchange_strong(__p1, __p2, __m1, __m2); }
499
500 bool
501 compare_exchange_strong(__pointer_type& __p1, __pointer_type __p2,
502 memory_order __m1,
503 memory_order __m2) volatile noexcept
504 { return _M_b.compare_exchange_strong(__p1, __p2, __m1, __m2); }
505
506 bool
507 compare_exchange_strong(__pointer_type& __p1, __pointer_type __p2,
508 memory_order __m = memory_order_seq_cst) noexcept
509 {
510 return _M_b.compare_exchange_strong(__p1, __p2, __m,
511 __cmpexch_failure_order(__m));
512 }
513
514 bool
515 compare_exchange_strong(__pointer_type& __p1, __pointer_type __p2,
516 memory_order __m = memory_order_seq_cst) volatile noexcept
517 {
518 return _M_b.compare_exchange_strong(__p1, __p2, __m,
519 __cmpexch_failure_order(__m));
520 }
521
522 __pointer_type
523 fetch_add(ptrdiff_t __d,
524 memory_order __m = memory_order_seq_cst) noexcept
525 { return _M_b.fetch_add(__d, __m); }
526
527 __pointer_type
528 fetch_add(ptrdiff_t __d,
529 memory_order __m = memory_order_seq_cst) volatile noexcept
530 { return _M_b.fetch_add(__d, __m); }
531
532 __pointer_type
533 fetch_sub(ptrdiff_t __d,
534 memory_order __m = memory_order_seq_cst) noexcept
535 { return _M_b.fetch_sub(__d, __m); }
536
537 __pointer_type
538 fetch_sub(ptrdiff_t __d,
539 memory_order __m = memory_order_seq_cst) volatile noexcept
540 { return _M_b.fetch_sub(__d, __m); }
541 };
542
543
544 /// Explicit specialization for char.
545 template<>
546 struct atomic<char> : __atomic_base<char>
547 {
548 typedef char __integral_type;
549 typedef __atomic_base<char> __base_type;
550
551 atomic() noexcept = default;
552 ~atomic() noexcept = default;
553 atomic(const atomic&) = delete;
554 atomic& operator=(const atomic&) = delete;
555 atomic& operator=(const atomic&) volatile = delete;
556
557 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
558
559 using __base_type::operator __integral_type;
560 using __base_type::operator=;
561
562#if __cplusplus201103L > 201402L
563 static constexpr bool is_always_lock_free = ATOMIC_CHAR_LOCK_FREE2 == 2;
564#endif
565 };
566
567 /// Explicit specialization for signed char.
568 template<>
569 struct atomic<signed char> : __atomic_base<signed char>
570 {
571 typedef signed char __integral_type;
572 typedef __atomic_base<signed char> __base_type;
573
574 atomic() noexcept= default;
575 ~atomic() noexcept = default;
576 atomic(const atomic&) = delete;
577 atomic& operator=(const atomic&) = delete;
578 atomic& operator=(const atomic&) volatile = delete;
579
580 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
581
582 using __base_type::operator __integral_type;
583 using __base_type::operator=;
584
585#if __cplusplus201103L > 201402L
586 static constexpr bool is_always_lock_free = ATOMIC_CHAR_LOCK_FREE2 == 2;
587#endif
588 };
589
590 /// Explicit specialization for unsigned char.
591 template<>
592 struct atomic<unsigned char> : __atomic_base<unsigned char>
593 {
594 typedef unsigned char __integral_type;
595 typedef __atomic_base<unsigned char> __base_type;
596
597 atomic() noexcept= default;
598 ~atomic() noexcept = default;
599 atomic(const atomic&) = delete;
600 atomic& operator=(const atomic&) = delete;
601 atomic& operator=(const atomic&) volatile = delete;
602
603 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
604
605 using __base_type::operator __integral_type;
606 using __base_type::operator=;
607
608#if __cplusplus201103L > 201402L
609 static constexpr bool is_always_lock_free = ATOMIC_CHAR_LOCK_FREE2 == 2;
610#endif
611 };
612
613 /// Explicit specialization for short.
614 template<>
615 struct atomic<short> : __atomic_base<short>
616 {
617 typedef short __integral_type;
618 typedef __atomic_base<short> __base_type;
619
620 atomic() noexcept = default;
621 ~atomic() noexcept = default;
622 atomic(const atomic&) = delete;
623 atomic& operator=(const atomic&) = delete;
624 atomic& operator=(const atomic&) volatile = delete;
625
626 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
627
628 using __base_type::operator __integral_type;
629 using __base_type::operator=;
630
631#if __cplusplus201103L > 201402L
632 static constexpr bool is_always_lock_free = ATOMIC_SHORT_LOCK_FREE2 == 2;
633#endif
634 };
635
636 /// Explicit specialization for unsigned short.
637 template<>
638 struct atomic<unsigned short> : __atomic_base<unsigned short>
639 {
640 typedef unsigned short __integral_type;
641 typedef __atomic_base<unsigned short> __base_type;
642
643 atomic() noexcept = default;
644 ~atomic() noexcept = default;
645 atomic(const atomic&) = delete;
646 atomic& operator=(const atomic&) = delete;
647 atomic& operator=(const atomic&) volatile = delete;
648
649 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
650
651 using __base_type::operator __integral_type;
652 using __base_type::operator=;
653
654#if __cplusplus201103L > 201402L
655 static constexpr bool is_always_lock_free = ATOMIC_SHORT_LOCK_FREE2 == 2;
656#endif
657 };
658
659 /// Explicit specialization for int.
660 template<>
661 struct atomic<int> : __atomic_base<int>
662 {
663 typedef int __integral_type;
664 typedef __atomic_base<int> __base_type;
665
666 atomic() noexcept = default;
667 ~atomic() noexcept = default;
668 atomic(const atomic&) = delete;
669 atomic& operator=(const atomic&) = delete;
670 atomic& operator=(const atomic&) volatile = delete;
671
672 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
673
674 using __base_type::operator __integral_type;
675 using __base_type::operator=;
676
677#if __cplusplus201103L > 201402L
678 static constexpr bool is_always_lock_free = ATOMIC_INT_LOCK_FREE2 == 2;
679#endif
680 };
681
682 /// Explicit specialization for unsigned int.
683 template<>
684 struct atomic<unsigned int> : __atomic_base<unsigned int>
685 {
686 typedef unsigned int __integral_type;
687 typedef __atomic_base<unsigned int> __base_type;
688
689 atomic() noexcept = default;
690 ~atomic() noexcept = default;
691 atomic(const atomic&) = delete;
692 atomic& operator=(const atomic&) = delete;
693 atomic& operator=(const atomic&) volatile = delete;
694
695 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
696
697 using __base_type::operator __integral_type;
698 using __base_type::operator=;
699
700#if __cplusplus201103L > 201402L
701 static constexpr bool is_always_lock_free = ATOMIC_INT_LOCK_FREE2 == 2;
702#endif
703 };
704
705 /// Explicit specialization for long.
706 template<>
707 struct atomic<long> : __atomic_base<long>
708 {
709 typedef long __integral_type;
710 typedef __atomic_base<long> __base_type;
711
712 atomic() noexcept = default;
713 ~atomic() noexcept = default;
714 atomic(const atomic&) = delete;
715 atomic& operator=(const atomic&) = delete;
716 atomic& operator=(const atomic&) volatile = delete;
717
718 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
719
720 using __base_type::operator __integral_type;
721 using __base_type::operator=;
722
723#if __cplusplus201103L > 201402L
724 static constexpr bool is_always_lock_free = ATOMIC_LONG_LOCK_FREE2 == 2;
725#endif
726 };
727
728 /// Explicit specialization for unsigned long.
729 template<>
730 struct atomic<unsigned long> : __atomic_base<unsigned long>
731 {
732 typedef unsigned long __integral_type;
733 typedef __atomic_base<unsigned long> __base_type;
734
735 atomic() noexcept = default;
736 ~atomic() noexcept = default;
737 atomic(const atomic&) = delete;
738 atomic& operator=(const atomic&) = delete;
739 atomic& operator=(const atomic&) volatile = delete;
740
741 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
742
743 using __base_type::operator __integral_type;
744 using __base_type::operator=;
745
746#if __cplusplus201103L > 201402L
747 static constexpr bool is_always_lock_free = ATOMIC_LONG_LOCK_FREE2 == 2;
748#endif
749 };
750
751 /// Explicit specialization for long long.
752 template<>
753 struct atomic<long long> : __atomic_base<long long>
754 {
755 typedef long long __integral_type;
756 typedef __atomic_base<long long> __base_type;
757
758 atomic() noexcept = default;
759 ~atomic() noexcept = default;
760 atomic(const atomic&) = delete;
761 atomic& operator=(const atomic&) = delete;
762 atomic& operator=(const atomic&) volatile = delete;
763
764 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
765
766 using __base_type::operator __integral_type;
767 using __base_type::operator=;
768
769#if __cplusplus201103L > 201402L
770 static constexpr bool is_always_lock_free = ATOMIC_LLONG_LOCK_FREE2 == 2;
771#endif
772 };
773
774 /// Explicit specialization for unsigned long long.
775 template<>
776 struct atomic<unsigned long long> : __atomic_base<unsigned long long>
777 {
778 typedef unsigned long long __integral_type;
779 typedef __atomic_base<unsigned long long> __base_type;
780
781 atomic() noexcept = default;
782 ~atomic() noexcept = default;
783 atomic(const atomic&) = delete;
784 atomic& operator=(const atomic&) = delete;
785 atomic& operator=(const atomic&) volatile = delete;
786
787 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
788
789 using __base_type::operator __integral_type;
790 using __base_type::operator=;
791
792#if __cplusplus201103L > 201402L
793 static constexpr bool is_always_lock_free = ATOMIC_LLONG_LOCK_FREE2 == 2;
794#endif
795 };
796
797 /// Explicit specialization for wchar_t.
798 template<>
799 struct atomic<wchar_t> : __atomic_base<wchar_t>
800 {
801 typedef wchar_t __integral_type;
802 typedef __atomic_base<wchar_t> __base_type;
803
804 atomic() noexcept = default;
805 ~atomic() noexcept = default;
806 atomic(const atomic&) = delete;
807 atomic& operator=(const atomic&) = delete;
808 atomic& operator=(const atomic&) volatile = delete;
809
810 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
811
812 using __base_type::operator __integral_type;
813 using __base_type::operator=;
814
815#if __cplusplus201103L > 201402L
816 static constexpr bool is_always_lock_free = ATOMIC_WCHAR_T_LOCK_FREE2 == 2;
817#endif
818 };
819
820 /// Explicit specialization for char16_t.
821 template<>
822 struct atomic<char16_t> : __atomic_base<char16_t>
823 {
824 typedef char16_t __integral_type;
825 typedef __atomic_base<char16_t> __base_type;
826
827 atomic() noexcept = default;
828 ~atomic() noexcept = default;
829 atomic(const atomic&) = delete;
830 atomic& operator=(const atomic&) = delete;
831 atomic& operator=(const atomic&) volatile = delete;
832
833 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
834
835 using __base_type::operator __integral_type;
836 using __base_type::operator=;
837
838#if __cplusplus201103L > 201402L
839 static constexpr bool is_always_lock_free = ATOMIC_CHAR16_T_LOCK_FREE2 == 2;
840#endif
841 };
842
843 /// Explicit specialization for char32_t.
844 template<>
845 struct atomic<char32_t> : __atomic_base<char32_t>
846 {
847 typedef char32_t __integral_type;
848 typedef __atomic_base<char32_t> __base_type;
849
850 atomic() noexcept = default;
851 ~atomic() noexcept = default;
852 atomic(const atomic&) = delete;
853 atomic& operator=(const atomic&) = delete;
854 atomic& operator=(const atomic&) volatile = delete;
855
856 constexpr atomic(__integral_type __i) noexcept : __base_type(__i) { }
857
858 using __base_type::operator __integral_type;
859 using __base_type::operator=;
860
861#if __cplusplus201103L > 201402L
862 static constexpr bool is_always_lock_free = ATOMIC_CHAR32_T_LOCK_FREE2 == 2;
863#endif
864 };
865
866
867 /// atomic_bool
868 typedef atomic<bool> atomic_bool;
869
870 /// atomic_char
871 typedef atomic<char> atomic_char;
872
873 /// atomic_schar
874 typedef atomic<signed char> atomic_schar;
875
876 /// atomic_uchar
877 typedef atomic<unsigned char> atomic_uchar;
878
879 /// atomic_short
880 typedef atomic<short> atomic_short;
881
882 /// atomic_ushort
883 typedef atomic<unsigned short> atomic_ushort;
884
885 /// atomic_int
886 typedef atomic<int> atomic_int;
887
888 /// atomic_uint
889 typedef atomic<unsigned int> atomic_uint;
890
891 /// atomic_long
892 typedef atomic<long> atomic_long;
893
894 /// atomic_ulong
895 typedef atomic<unsigned long> atomic_ulong;
896
897 /// atomic_llong
898 typedef atomic<long long> atomic_llong;
899
900 /// atomic_ullong
901 typedef atomic<unsigned long long> atomic_ullong;
902
903 /// atomic_wchar_t
904 typedef atomic<wchar_t> atomic_wchar_t;
905
906 /// atomic_char16_t
907 typedef atomic<char16_t> atomic_char16_t;
908
909 /// atomic_char32_t
910 typedef atomic<char32_t> atomic_char32_t;
911
912
913 // _GLIBCXX_RESOLVE_LIB_DEFECTS
914 // 2441. Exact-width atomic typedefs should be provided
915
916 /// atomic_int8_t
917 typedef atomic<int8_t> atomic_int8_t;
918
919 /// atomic_uint8_t
920 typedef atomic<uint8_t> atomic_uint8_t;
921
922 /// atomic_int16_t
923 typedef atomic<int16_t> atomic_int16_t;
924
925 /// atomic_uint16_t
926 typedef atomic<uint16_t> atomic_uint16_t;
927
928 /// atomic_int32_t
929 typedef atomic<int32_t> atomic_int32_t;
930
931 /// atomic_uint32_t
932 typedef atomic<uint32_t> atomic_uint32_t;
933
934 /// atomic_int64_t
935 typedef atomic<int64_t> atomic_int64_t;
936
937 /// atomic_uint64_t
938 typedef atomic<uint64_t> atomic_uint64_t;
939
940
941 /// atomic_int_least8_t
942 typedef atomic<int_least8_t> atomic_int_least8_t;
943
944 /// atomic_uint_least8_t
945 typedef atomic<uint_least8_t> atomic_uint_least8_t;
946
947 /// atomic_int_least16_t
948 typedef atomic<int_least16_t> atomic_int_least16_t;
949
950 /// atomic_uint_least16_t
951 typedef atomic<uint_least16_t> atomic_uint_least16_t;
952
953 /// atomic_int_least32_t
954 typedef atomic<int_least32_t> atomic_int_least32_t;
955
956 /// atomic_uint_least32_t
957 typedef atomic<uint_least32_t> atomic_uint_least32_t;
958
959 /// atomic_int_least64_t
960 typedef atomic<int_least64_t> atomic_int_least64_t;
961
962 /// atomic_uint_least64_t
963 typedef atomic<uint_least64_t> atomic_uint_least64_t;
964
965
966 /// atomic_int_fast8_t
967 typedef atomic<int_fast8_t> atomic_int_fast8_t;
968
969 /// atomic_uint_fast8_t
970 typedef atomic<uint_fast8_t> atomic_uint_fast8_t;
971
972 /// atomic_int_fast16_t
973 typedef atomic<int_fast16_t> atomic_int_fast16_t;
974
975 /// atomic_uint_fast16_t
976 typedef atomic<uint_fast16_t> atomic_uint_fast16_t;
977
978 /// atomic_int_fast32_t
979 typedef atomic<int_fast32_t> atomic_int_fast32_t;
980
981 /// atomic_uint_fast32_t
982 typedef atomic<uint_fast32_t> atomic_uint_fast32_t;
983
984 /// atomic_int_fast64_t
985 typedef atomic<int_fast64_t> atomic_int_fast64_t;
986
987 /// atomic_uint_fast64_t
988 typedef atomic<uint_fast64_t> atomic_uint_fast64_t;
989
990
991 /// atomic_intptr_t
992 typedef atomic<intptr_t> atomic_intptr_t;
993
994 /// atomic_uintptr_t
995 typedef atomic<uintptr_t> atomic_uintptr_t;
996
997 /// atomic_size_t
998 typedef atomic<size_t> atomic_size_t;
999
1000 /// atomic_intmax_t
1001 typedef atomic<intmax_t> atomic_intmax_t;
1002
1003 /// atomic_uintmax_t
1004 typedef atomic<uintmax_t> atomic_uintmax_t;
1005
1006 /// atomic_ptrdiff_t
1007 typedef atomic<ptrdiff_t> atomic_ptrdiff_t;
1008
1009
1010 // Function definitions, atomic_flag operations.
1011 inline bool
1012 atomic_flag_test_and_set_explicit(atomic_flag* __a,
1013 memory_order __m) noexcept
1014 { return __a->test_and_set(__m); }
1015
1016 inline bool
1017 atomic_flag_test_and_set_explicit(volatile atomic_flag* __a,
1018 memory_order __m) noexcept
1019 { return __a->test_and_set(__m); }
1020
1021 inline void
1022 atomic_flag_clear_explicit(atomic_flag* __a, memory_order __m) noexcept
1023 { __a->clear(__m); }
1024
1025 inline void
1026 atomic_flag_clear_explicit(volatile atomic_flag* __a,
1027 memory_order __m) noexcept
1028 { __a->clear(__m); }
1029
1030 inline bool
1031 atomic_flag_test_and_set(atomic_flag* __a) noexcept
1032 { return atomic_flag_test_and_set_explicit(__a, memory_order_seq_cst); }
1033
1034 inline bool
1035 atomic_flag_test_and_set(volatile atomic_flag* __a) noexcept
1036 { return atomic_flag_test_and_set_explicit(__a, memory_order_seq_cst); }
1037
1038 inline void
1039 atomic_flag_clear(atomic_flag* __a) noexcept
1040 { atomic_flag_clear_explicit(__a, memory_order_seq_cst); }
1041
1042 inline void
1043 atomic_flag_clear(volatile atomic_flag* __a) noexcept
1044 { atomic_flag_clear_explicit(__a, memory_order_seq_cst); }
1045
1046
1047 // Function templates generally applicable to atomic types.
1048 template<typename _ITp>
1049 inline bool
1050 atomic_is_lock_free(const atomic<_ITp>* __a) noexcept
1051 { return __a->is_lock_free(); }
1052
1053 template<typename _ITp>
1054 inline bool
1055 atomic_is_lock_free(const volatile atomic<_ITp>* __a) noexcept
1056 { return __a->is_lock_free(); }
1057
1058 template<typename _ITp>
1059 inline void
1060 atomic_init(atomic<_ITp>* __a, _ITp __i) noexcept
1061 { __a->store(__i, memory_order_relaxed); }
1062
1063 template<typename _ITp>
1064 inline void
1065 atomic_init(volatile atomic<_ITp>* __a, _ITp __i) noexcept
1066 { __a->store(__i, memory_order_relaxed); }
1067
1068 template<typename _ITp>
1069 inline void
1070 atomic_store_explicit(atomic<_ITp>* __a, _ITp __i,
1071 memory_order __m) noexcept
1072 { __a->store(__i, __m); }
1073
1074 template<typename _ITp>
1075 inline void
1076 atomic_store_explicit(volatile atomic<_ITp>* __a, _ITp __i,
1077 memory_order __m) noexcept
1078 { __a->store(__i, __m); }
1079
1080 template<typename _ITp>
1081 inline _ITp
1082 atomic_load_explicit(const atomic<_ITp>* __a, memory_order __m) noexcept
1083 { return __a->load(__m); }
1084
1085 template<typename _ITp>
1086 inline _ITp
1087 atomic_load_explicit(const volatile atomic<_ITp>* __a,
1088 memory_order __m) noexcept
1089 { return __a->load(__m); }
1090
1091 template<typename _ITp>
1092 inline _ITp
1093 atomic_exchange_explicit(atomic<_ITp>* __a, _ITp __i,
1094 memory_order __m) noexcept
1095 { return __a->exchange(__i, __m); }
1096
1097 template<typename _ITp>
1098 inline _ITp
1099 atomic_exchange_explicit(volatile atomic<_ITp>* __a, _ITp __i,
1100 memory_order __m) noexcept
1101 { return __a->exchange(__i, __m); }
1102
1103 template<typename _ITp>
1104 inline bool
1105 atomic_compare_exchange_weak_explicit(atomic<_ITp>* __a,
1106 _ITp* __i1, _ITp __i2,
1107 memory_order __m1,
1108 memory_order __m2) noexcept
1109 { return __a->compare_exchange_weak(*__i1, __i2, __m1, __m2); }
1110
1111 template<typename _ITp>
1112 inline bool
1113 atomic_compare_exchange_weak_explicit(volatile atomic<_ITp>* __a,
1114 _ITp* __i1, _ITp __i2,
1115 memory_order __m1,
1116 memory_order __m2) noexcept
1117 { return __a->compare_exchange_weak(*__i1, __i2, __m1, __m2); }
1118
1119 template<typename _ITp>
1120 inline bool
1121 atomic_compare_exchange_strong_explicit(atomic<_ITp>* __a,
1122 _ITp* __i1, _ITp __i2,
1123 memory_order __m1,
1124 memory_order __m2) noexcept
1125 { return __a->compare_exchange_strong(*__i1, __i2, __m1, __m2); }
1126
1127 template<typename _ITp>
1128 inline bool
1129 atomic_compare_exchange_strong_explicit(volatile atomic<_ITp>* __a,
1130 _ITp* __i1, _ITp __i2,
1131 memory_order __m1,
1132 memory_order __m2) noexcept
1133 { return __a->compare_exchange_strong(*__i1, __i2, __m1, __m2); }
1134
1135
1136 template<typename _ITp>
1137 inline void
1138 atomic_store(atomic<_ITp>* __a, _ITp __i) noexcept
1139 { atomic_store_explicit(__a, __i, memory_order_seq_cst); }
1140
1141 template<typename _ITp>
1142 inline void
1143 atomic_store(volatile atomic<_ITp>* __a, _ITp __i) noexcept
1144 { atomic_store_explicit(__a, __i, memory_order_seq_cst); }
1145
1146 template<typename _ITp>
1147 inline _ITp
1148 atomic_load(const atomic<_ITp>* __a) noexcept
1149 { return atomic_load_explicit(__a, memory_order_seq_cst); }
1150
1151 template<typename _ITp>
1152 inline _ITp
1153 atomic_load(const volatile atomic<_ITp>* __a) noexcept
1154 { return atomic_load_explicit(__a, memory_order_seq_cst); }
1155
1156 template<typename _ITp>
1157 inline _ITp
1158 atomic_exchange(atomic<_ITp>* __a, _ITp __i) noexcept
1159 { return atomic_exchange_explicit(__a, __i, memory_order_seq_cst); }
1160
1161 template<typename _ITp>
1162 inline _ITp
1163 atomic_exchange(volatile atomic<_ITp>* __a, _ITp __i) noexcept
1164 { return atomic_exchange_explicit(__a, __i, memory_order_seq_cst); }
1165
1166 template<typename _ITp>
1167 inline bool
1168 atomic_compare_exchange_weak(atomic<_ITp>* __a,
1169 _ITp* __i1, _ITp __i2) noexcept
1170 {
1171 return atomic_compare_exchange_weak_explicit(__a, __i1, __i2,
1172 memory_order_seq_cst,
1173 memory_order_seq_cst);
1174 }
1175
1176 template<typename _ITp>
1177 inline bool
1178 atomic_compare_exchange_weak(volatile atomic<_ITp>* __a,
1179 _ITp* __i1, _ITp __i2) noexcept
1180 {
1181 return atomic_compare_exchange_weak_explicit(__a, __i1, __i2,
1182 memory_order_seq_cst,
1183 memory_order_seq_cst);
1184 }
1185
1186 template<typename _ITp>
1187 inline bool
1188 atomic_compare_exchange_strong(atomic<_ITp>* __a,
1189 _ITp* __i1, _ITp __i2) noexcept
1190 {
1191 return atomic_compare_exchange_strong_explicit(__a, __i1, __i2,
1192 memory_order_seq_cst,
1193 memory_order_seq_cst);
1194 }
1195
1196 template<typename _ITp>
1197 inline bool
1198 atomic_compare_exchange_strong(volatile atomic<_ITp>* __a,
1199 _ITp* __i1, _ITp __i2) noexcept
1200 {
1201 return atomic_compare_exchange_strong_explicit(__a, __i1, __i2,
1202 memory_order_seq_cst,
1203 memory_order_seq_cst);
1204 }
1205
1206 // Function templates for atomic_integral operations only, using
1207 // __atomic_base. Template argument should be constricted to
1208 // intergral types as specified in the standard, excluding address
1209 // types.
1210 template<typename _ITp>
1211 inline _ITp
1212 atomic_fetch_add_explicit(__atomic_base<_ITp>* __a, _ITp __i,
1213 memory_order __m) noexcept
1214 { return __a->fetch_add(__i, __m); }
1215
1216 template<typename _ITp>
1217 inline _ITp
1218 atomic_fetch_add_explicit(volatile __atomic_base<_ITp>* __a, _ITp __i,
1219 memory_order __m) noexcept
1220 { return __a->fetch_add(__i, __m); }
1221
1222 template<typename _ITp>
1223 inline _ITp
1224 atomic_fetch_sub_explicit(__atomic_base<_ITp>* __a, _ITp __i,
1225 memory_order __m) noexcept
1226 { return __a->fetch_sub(__i, __m); }
1227
1228 template<typename _ITp>
1229 inline _ITp
1230 atomic_fetch_sub_explicit(volatile __atomic_base<_ITp>* __a, _ITp __i,
1231 memory_order __m) noexcept
1232 { return __a->fetch_sub(__i, __m); }
1233
1234 template<typename _ITp>
1235 inline _ITp
1236 atomic_fetch_and_explicit(__atomic_base<_ITp>* __a, _ITp __i,
1237 memory_order __m) noexcept
1238 { return __a->fetch_and(__i, __m); }
1239
1240 template<typename _ITp>
1241 inline _ITp
1242 atomic_fetch_and_explicit(volatile __atomic_base<_ITp>* __a, _ITp __i,
1243 memory_order __m) noexcept
1244 { return __a->fetch_and(__i, __m); }
1245
1246 template<typename _ITp>
1247 inline _ITp
1248 atomic_fetch_or_explicit(__atomic_base<_ITp>* __a, _ITp __i,
1249 memory_order __m) noexcept
1250 { return __a->fetch_or(__i, __m); }
1251
1252 template<typename _ITp>
1253 inline _ITp
1254 atomic_fetch_or_explicit(volatile __atomic_base<_ITp>* __a, _ITp __i,
1255 memory_order __m) noexcept
1256 { return __a->fetch_or(__i, __m); }
1257
1258 template<typename _ITp>
1259 inline _ITp
1260 atomic_fetch_xor_explicit(__atomic_base<_ITp>* __a, _ITp __i,
1261 memory_order __m) noexcept
1262 { return __a->fetch_xor(__i, __m); }
1263
1264 template<typename _ITp>
1265 inline _ITp
1266 atomic_fetch_xor_explicit(volatile __atomic_base<_ITp>* __a, _ITp __i,
1267 memory_order __m) noexcept
1268 { return __a->fetch_xor(__i, __m); }
1269
1270 template<typename _ITp>
1271 inline _ITp
1272 atomic_fetch_add(__atomic_base<_ITp>* __a, _ITp __i) noexcept
1273 { return atomic_fetch_add_explicit(__a, __i, memory_order_seq_cst); }
1274
1275 template<typename _ITp>
1276 inline _ITp
1277 atomic_fetch_add(volatile __atomic_base<_ITp>* __a, _ITp __i) noexcept
1278 { return atomic_fetch_add_explicit(__a, __i, memory_order_seq_cst); }
1279
1280 template<typename _ITp>
1281 inline _ITp
1282 atomic_fetch_sub(__atomic_base<_ITp>* __a, _ITp __i) noexcept
1283 { return atomic_fetch_sub_explicit(__a, __i, memory_order_seq_cst); }
1284
1285 template<typename _ITp>
1286 inline _ITp
1287 atomic_fetch_sub(volatile __atomic_base<_ITp>* __a, _ITp __i) noexcept
1288 { return atomic_fetch_sub_explicit(__a, __i, memory_order_seq_cst); }
1289
1290 template<typename _ITp>
1291 inline _ITp
1292 atomic_fetch_and(__atomic_base<_ITp>* __a, _ITp __i) noexcept
1293 { return atomic_fetch_and_explicit(__a, __i, memory_order_seq_cst); }
1294
1295 template<typename _ITp>
1296 inline _ITp
1297 atomic_fetch_and(volatile __atomic_base<_ITp>* __a, _ITp __i) noexcept
1298 { return atomic_fetch_and_explicit(__a, __i, memory_order_seq_cst); }
1299
1300 template<typename _ITp>
1301 inline _ITp
1302 atomic_fetch_or(__atomic_base<_ITp>* __a, _ITp __i) noexcept
1303 { return atomic_fetch_or_explicit(__a, __i, memory_order_seq_cst); }
1304
1305 template<typename _ITp>
1306 inline _ITp
1307 atomic_fetch_or(volatile __atomic_base<_ITp>* __a, _ITp __i) noexcept
1308 { return atomic_fetch_or_explicit(__a, __i, memory_order_seq_cst); }
1309
1310 template<typename _ITp>
1311 inline _ITp
1312 atomic_fetch_xor(__atomic_base<_ITp>* __a, _ITp __i) noexcept
1313 { return atomic_fetch_xor_explicit(__a, __i, memory_order_seq_cst); }
1314
1315 template<typename _ITp>
1316 inline _ITp
1317 atomic_fetch_xor(volatile __atomic_base<_ITp>* __a, _ITp __i) noexcept
1318 { return atomic_fetch_xor_explicit(__a, __i, memory_order_seq_cst); }
1319
1320
1321 // Partial specializations for pointers.
1322 template<typename _ITp>
1323 inline _ITp*
1324 atomic_fetch_add_explicit(atomic<_ITp*>* __a, ptrdiff_t __d,
1325 memory_order __m) noexcept
1326 { return __a->fetch_add(__d, __m); }
1327
1328 template<typename _ITp>
1329 inline _ITp*
1330 atomic_fetch_add_explicit(volatile atomic<_ITp*>* __a, ptrdiff_t __d,
1331 memory_order __m) noexcept
1332 { return __a->fetch_add(__d, __m); }
1333
1334 template<typename _ITp>
1335 inline _ITp*
1336 atomic_fetch_add(volatile atomic<_ITp*>* __a, ptrdiff_t __d) noexcept
1337 { return __a->fetch_add(__d); }
1338
1339 template<typename _ITp>
1340 inline _ITp*
1341 atomic_fetch_add(atomic<_ITp*>* __a, ptrdiff_t __d) noexcept
1342 { return __a->fetch_add(__d); }
1343
1344 template<typename _ITp>
1345 inline _ITp*
1346 atomic_fetch_sub_explicit(volatile atomic<_ITp*>* __a,
1347 ptrdiff_t __d, memory_order __m) noexcept
1348 { return __a->fetch_sub(__d, __m); }
1349
1350 template<typename _ITp>
1351 inline _ITp*
1352 atomic_fetch_sub_explicit(atomic<_ITp*>* __a, ptrdiff_t __d,
1353 memory_order __m) noexcept
1354 { return __a->fetch_sub(__d, __m); }
1355
1356 template<typename _ITp>
1357 inline _ITp*
1358 atomic_fetch_sub(volatile atomic<_ITp*>* __a, ptrdiff_t __d) noexcept
1359 { return __a->fetch_sub(__d); }
1360
1361 template<typename _ITp>
1362 inline _ITp*
1363 atomic_fetch_sub(atomic<_ITp*>* __a, ptrdiff_t __d) noexcept
1364 { return __a->fetch_sub(__d); }
1365 // @} group atomics
1366
1367_GLIBCXX_END_NAMESPACE_VERSION
1368} // namespace
1369
1370#endif // C++11
1371
1372#endif // _GLIBCXX_ATOMIC

/usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/bits/atomic_base.h

1// -*- C++ -*- header.
2
3// Copyright (C) 2008-2017 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file bits/atomic_base.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{atomic}
28 */
29
30#ifndef _GLIBCXX_ATOMIC_BASE_H1
31#define _GLIBCXX_ATOMIC_BASE_H1 1
32
33#pragma GCC system_header
34
35#include <bits/c++config.h>
36#include <stdint.h>
37#include <bits/atomic_lockfree_defines.h>
38
39#ifndef _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__))
40#define _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) inline __attribute__((__always_inline__))
41#endif
42
43namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
44{
45_GLIBCXX_BEGIN_NAMESPACE_VERSION
46
47 /**
48 * @defgroup atomics Atomics
49 *
50 * Components for performing atomic operations.
51 * @{
52 */
53
54 /// Enumeration for memory_order
55 typedef enum memory_order
56 {
57 memory_order_relaxed,
58 memory_order_consume,
59 memory_order_acquire,
60 memory_order_release,
61 memory_order_acq_rel,
62 memory_order_seq_cst
63 } memory_order;
64
65 enum __memory_order_modifier
66 {
67 __memory_order_mask = 0x0ffff,
68 __memory_order_modifier_mask = 0xffff0000,
69 __memory_order_hle_acquire = 0x10000,
70 __memory_order_hle_release = 0x20000
71 };
72
73 constexpr memory_order
74 operator|(memory_order __m, __memory_order_modifier __mod)
75 {
76 return memory_order(__m | int(__mod));
77 }
78
79 constexpr memory_order
80 operator&(memory_order __m, __memory_order_modifier __mod)
81 {
82 return memory_order(__m & int(__mod));
83 }
84
85 // Drop release ordering as per [atomics.types.operations.req]/21
86 constexpr memory_order
87 __cmpexch_failure_order2(memory_order __m) noexcept
88 {
89 return __m == memory_order_acq_rel ? memory_order_acquire
90 : __m == memory_order_release ? memory_order_relaxed : __m;
91 }
92
93 constexpr memory_order
94 __cmpexch_failure_order(memory_order __m) noexcept
95 {
96 return memory_order(__cmpexch_failure_order2(__m & __memory_order_mask)
97 | (__m & __memory_order_modifier_mask));
98 }
99
100 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) void
101 atomic_thread_fence(memory_order __m) noexcept
102 { __atomic_thread_fence(__m); }
103
104 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) void
105 atomic_signal_fence(memory_order __m) noexcept
106 { __atomic_signal_fence(__m); }
107
108 /// kill_dependency
109 template<typename _Tp>
110 inline _Tp
111 kill_dependency(_Tp __y) noexcept
112 {
113 _Tp __ret(__y);
114 return __ret;
115 }
116
117
118 // Base types for atomics.
119 template<typename _IntTp>
120 struct __atomic_base;
121
122
123#define ATOMIC_VAR_INIT(_VI){ _VI } { _VI }
124
125 template<typename _Tp>
126 struct atomic;
127
128 template<typename _Tp>
129 struct atomic<_Tp*>;
130
131 /* The target's "set" value for test-and-set may not be exactly 1. */
132#if __GCC_ATOMIC_TEST_AND_SET_TRUEVAL1 == 1
133 typedef bool __atomic_flag_data_type;
134#else
135 typedef unsigned char __atomic_flag_data_type;
136#endif
137
138 /**
139 * @brief Base type for atomic_flag.
140 *
141 * Base type is POD with data, allowing atomic_flag to derive from
142 * it and meet the standard layout type requirement. In addition to
143 * compatibility with a C interface, this allows different
144 * implementations of atomic_flag to use the same atomic operation
145 * functions, via a standard conversion to the __atomic_flag_base
146 * argument.
147 */
148 _GLIBCXX_BEGIN_EXTERN_Cextern "C" {
149
150 struct __atomic_flag_base
151 {
152 __atomic_flag_data_type _M_i;
153 };
154
155 _GLIBCXX_END_EXTERN_C}
156
157#define ATOMIC_FLAG_INIT{ 0 } { 0 }
158
159 /// atomic_flag
160 struct atomic_flag : public __atomic_flag_base
161 {
162 atomic_flag() noexcept = default;
163 ~atomic_flag() noexcept = default;
164 atomic_flag(const atomic_flag&) = delete;
165 atomic_flag& operator=(const atomic_flag&) = delete;
166 atomic_flag& operator=(const atomic_flag&) volatile = delete;
167
168 // Conversion to ATOMIC_FLAG_INIT.
169 constexpr atomic_flag(bool __i) noexcept
170 : __atomic_flag_base{ _S_init(__i) }
171 { }
172
173 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
174 test_and_set(memory_order __m = memory_order_seq_cst) noexcept
175 {
176 return __atomic_test_and_set (&_M_i, __m);
177 }
178
179 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
180 test_and_set(memory_order __m = memory_order_seq_cst) volatile noexcept
181 {
182 return __atomic_test_and_set (&_M_i, __m);
183 }
184
185 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) void
186 clear(memory_order __m = memory_order_seq_cst) noexcept
187 {
188 memory_order __b = __m & __memory_order_mask;
189 __glibcxx_assert(__b != memory_order_consume);
190 __glibcxx_assert(__b != memory_order_acquire);
191 __glibcxx_assert(__b != memory_order_acq_rel);
192
193 __atomic_clear (&_M_i, __m);
194 }
195
196 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) void
197 clear(memory_order __m = memory_order_seq_cst) volatile noexcept
198 {
199 memory_order __b = __m & __memory_order_mask;
200 __glibcxx_assert(__b != memory_order_consume);
201 __glibcxx_assert(__b != memory_order_acquire);
202 __glibcxx_assert(__b != memory_order_acq_rel);
203
204 __atomic_clear (&_M_i, __m);
205 }
206
207 private:
208 static constexpr __atomic_flag_data_type
209 _S_init(bool __i)
210 { return __i ? __GCC_ATOMIC_TEST_AND_SET_TRUEVAL1 : 0; }
211 };
212
213
214 /// Base class for atomic integrals.
215 //
216 // For each of the integral types, define atomic_[integral type] struct
217 //
218 // atomic_bool bool
219 // atomic_char char
220 // atomic_schar signed char
221 // atomic_uchar unsigned char
222 // atomic_short short
223 // atomic_ushort unsigned short
224 // atomic_int int
225 // atomic_uint unsigned int
226 // atomic_long long
227 // atomic_ulong unsigned long
228 // atomic_llong long long
229 // atomic_ullong unsigned long long
230 // atomic_char16_t char16_t
231 // atomic_char32_t char32_t
232 // atomic_wchar_t wchar_t
233 //
234 // NB: Assuming _ITp is an integral scalar type that is 1, 2, 4, or
235 // 8 bytes, since that is what GCC built-in functions for atomic
236 // memory access expect.
237 template<typename _ITp>
238 struct __atomic_base
239 {
240 private:
241 typedef _ITp __int_type;
242
243 static constexpr int _S_alignment =
244 sizeof(_ITp) > alignof(_ITp) ? sizeof(_ITp) : alignof(_ITp);
245
246 alignas(_S_alignment) __int_type _M_i;
247
248 public:
249 __atomic_base() noexcept = default;
250 ~__atomic_base() noexcept = default;
251 __atomic_base(const __atomic_base&) = delete;
252 __atomic_base& operator=(const __atomic_base&) = delete;
253 __atomic_base& operator=(const __atomic_base&) volatile = delete;
254
255 // Requires __int_type convertible to _M_i.
256 constexpr __atomic_base(__int_type __i) noexcept : _M_i (__i) { }
257
258 operator __int_type() const noexcept
259 { return load(); }
260
261 operator __int_type() const volatile noexcept
262 { return load(); }
263
264 __int_type
265 operator=(__int_type __i) noexcept
266 {
267 store(__i);
268 return __i;
269 }
270
271 __int_type
272 operator=(__int_type __i) volatile noexcept
273 {
274 store(__i);
275 return __i;
276 }
277
278 __int_type
279 operator++(int) noexcept
280 { return fetch_add(1); }
281
282 __int_type
283 operator++(int) volatile noexcept
284 { return fetch_add(1); }
285
286 __int_type
287 operator--(int) noexcept
288 { return fetch_sub(1); }
289
290 __int_type
291 operator--(int) volatile noexcept
292 { return fetch_sub(1); }
293
294 __int_type
295 operator++() noexcept
296 { return __atomic_add_fetch(&_M_i, 1, memory_order_seq_cst); }
297
298 __int_type
299 operator++() volatile noexcept
300 { return __atomic_add_fetch(&_M_i, 1, memory_order_seq_cst); }
301
302 __int_type
303 operator--() noexcept
304 { return __atomic_sub_fetch(&_M_i, 1, memory_order_seq_cst); }
305
306 __int_type
307 operator--() volatile noexcept
308 { return __atomic_sub_fetch(&_M_i, 1, memory_order_seq_cst); }
309
310 __int_type
311 operator+=(__int_type __i) noexcept
312 { return __atomic_add_fetch(&_M_i, __i, memory_order_seq_cst); }
313
314 __int_type
315 operator+=(__int_type __i) volatile noexcept
316 { return __atomic_add_fetch(&_M_i, __i, memory_order_seq_cst); }
317
318 __int_type
319 operator-=(__int_type __i) noexcept
320 { return __atomic_sub_fetch(&_M_i, __i, memory_order_seq_cst); }
321
322 __int_type
323 operator-=(__int_type __i) volatile noexcept
324 { return __atomic_sub_fetch(&_M_i, __i, memory_order_seq_cst); }
325
326 __int_type
327 operator&=(__int_type __i) noexcept
328 { return __atomic_and_fetch(&_M_i, __i, memory_order_seq_cst); }
329
330 __int_type
331 operator&=(__int_type __i) volatile noexcept
332 { return __atomic_and_fetch(&_M_i, __i, memory_order_seq_cst); }
333
334 __int_type
335 operator|=(__int_type __i) noexcept
336 { return __atomic_or_fetch(&_M_i, __i, memory_order_seq_cst); }
337
338 __int_type
339 operator|=(__int_type __i) volatile noexcept
340 { return __atomic_or_fetch(&_M_i, __i, memory_order_seq_cst); }
341
342 __int_type
343 operator^=(__int_type __i) noexcept
344 { return __atomic_xor_fetch(&_M_i, __i, memory_order_seq_cst); }
345
346 __int_type
347 operator^=(__int_type __i) volatile noexcept
348 { return __atomic_xor_fetch(&_M_i, __i, memory_order_seq_cst); }
349
350 bool
351 is_lock_free() const noexcept
352 {
353 // Use a fake, minimally aligned pointer.
354 return __atomic_is_lock_free(sizeof(_M_i),
355 reinterpret_cast<void *>(-__alignof(_M_i)));
356 }
357
358 bool
359 is_lock_free() const volatile noexcept
360 {
361 // Use a fake, minimally aligned pointer.
362 return __atomic_is_lock_free(sizeof(_M_i),
363 reinterpret_cast<void *>(-__alignof(_M_i)));
364 }
365
366 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) void
367 store(__int_type __i, memory_order __m = memory_order_seq_cst) noexcept
368 {
369 memory_order __b = __m & __memory_order_mask;
370 __glibcxx_assert(__b != memory_order_acquire);
371 __glibcxx_assert(__b != memory_order_acq_rel);
372 __glibcxx_assert(__b != memory_order_consume);
373
374 __atomic_store_n(&_M_i, __i, __m);
375 }
376
377 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) void
378 store(__int_type __i,
379 memory_order __m = memory_order_seq_cst) volatile noexcept
380 {
381 memory_order __b = __m & __memory_order_mask;
382 __glibcxx_assert(__b != memory_order_acquire);
383 __glibcxx_assert(__b != memory_order_acq_rel);
384 __glibcxx_assert(__b != memory_order_consume);
385
386 __atomic_store_n(&_M_i, __i, __m);
387 }
388
389 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
390 load(memory_order __m = memory_order_seq_cst) const noexcept
391 {
392 memory_order __b = __m & __memory_order_mask;
393 __glibcxx_assert(__b != memory_order_release);
394 __glibcxx_assert(__b != memory_order_acq_rel);
395
396 return __atomic_load_n(&_M_i, __m);
397 }
398
399 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
400 load(memory_order __m = memory_order_seq_cst) const volatile noexcept
401 {
402 memory_order __b = __m & __memory_order_mask;
403 __glibcxx_assert(__b != memory_order_release);
404 __glibcxx_assert(__b != memory_order_acq_rel);
405
406 return __atomic_load_n(&_M_i, __m);
407 }
408
409 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
410 exchange(__int_type __i,
411 memory_order __m = memory_order_seq_cst) noexcept
412 {
413 return __atomic_exchange_n(&_M_i, __i, __m);
414 }
415
416
417 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
418 exchange(__int_type __i,
419 memory_order __m = memory_order_seq_cst) volatile noexcept
420 {
421 return __atomic_exchange_n(&_M_i, __i, __m);
422 }
423
424 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
425 compare_exchange_weak(__int_type& __i1, __int_type __i2,
426 memory_order __m1, memory_order __m2) noexcept
427 {
428 memory_order __b2 = __m2 & __memory_order_mask;
429 memory_order __b1 = __m1 & __memory_order_mask;
430 __glibcxx_assert(__b2 != memory_order_release);
431 __glibcxx_assert(__b2 != memory_order_acq_rel);
432 __glibcxx_assert(__b2 <= __b1);
433
434 return __atomic_compare_exchange_n(&_M_i, &__i1, __i2, 1, __m1, __m2);
435 }
436
437 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
438 compare_exchange_weak(__int_type& __i1, __int_type __i2,
439 memory_order __m1,
440 memory_order __m2) volatile noexcept
441 {
442 memory_order __b2 = __m2 & __memory_order_mask;
443 memory_order __b1 = __m1 & __memory_order_mask;
444 __glibcxx_assert(__b2 != memory_order_release);
445 __glibcxx_assert(__b2 != memory_order_acq_rel);
446 __glibcxx_assert(__b2 <= __b1);
447
448 return __atomic_compare_exchange_n(&_M_i, &__i1, __i2, 1, __m1, __m2);
449 }
450
451 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
452 compare_exchange_weak(__int_type& __i1, __int_type __i2,
453 memory_order __m = memory_order_seq_cst) noexcept
454 {
455 return compare_exchange_weak(__i1, __i2, __m,
456 __cmpexch_failure_order(__m));
457 }
458
459 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
460 compare_exchange_weak(__int_type& __i1, __int_type __i2,
461 memory_order __m = memory_order_seq_cst) volatile noexcept
462 {
463 return compare_exchange_weak(__i1, __i2, __m,
464 __cmpexch_failure_order(__m));
465 }
466
467 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
468 compare_exchange_strong(__int_type& __i1, __int_type __i2,
469 memory_order __m1, memory_order __m2) noexcept
470 {
471 memory_order __b2 = __m2 & __memory_order_mask;
472 memory_order __b1 = __m1 & __memory_order_mask;
473 __glibcxx_assert(__b2 != memory_order_release);
474 __glibcxx_assert(__b2 != memory_order_acq_rel);
475 __glibcxx_assert(__b2 <= __b1);
476
477 return __atomic_compare_exchange_n(&_M_i, &__i1, __i2, 0, __m1, __m2);
478 }
479
480 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
481 compare_exchange_strong(__int_type& __i1, __int_type __i2,
482 memory_order __m1,
483 memory_order __m2) volatile noexcept
484 {
485 memory_order __b2 = __m2 & __memory_order_mask;
486 memory_order __b1 = __m1 & __memory_order_mask;
487
488 __glibcxx_assert(__b2 != memory_order_release);
489 __glibcxx_assert(__b2 != memory_order_acq_rel);
490 __glibcxx_assert(__b2 <= __b1);
491
492 return __atomic_compare_exchange_n(&_M_i, &__i1, __i2, 0, __m1, __m2);
493 }
494
495 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
496 compare_exchange_strong(__int_type& __i1, __int_type __i2,
497 memory_order __m = memory_order_seq_cst) noexcept
498 {
499 return compare_exchange_strong(__i1, __i2, __m,
500 __cmpexch_failure_order(__m));
501 }
502
503 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
504 compare_exchange_strong(__int_type& __i1, __int_type __i2,
505 memory_order __m = memory_order_seq_cst) volatile noexcept
506 {
507 return compare_exchange_strong(__i1, __i2, __m,
508 __cmpexch_failure_order(__m));
509 }
510
511 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
512 fetch_add(__int_type __i,
513 memory_order __m = memory_order_seq_cst) noexcept
514 { return __atomic_fetch_add(&_M_i, __i, __m); }
515
516 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
517 fetch_add(__int_type __i,
518 memory_order __m = memory_order_seq_cst) volatile noexcept
519 { return __atomic_fetch_add(&_M_i, __i, __m); }
520
521 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
522 fetch_sub(__int_type __i,
523 memory_order __m = memory_order_seq_cst) noexcept
524 { return __atomic_fetch_sub(&_M_i, __i, __m); }
525
526 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
527 fetch_sub(__int_type __i,
528 memory_order __m = memory_order_seq_cst) volatile noexcept
529 { return __atomic_fetch_sub(&_M_i, __i, __m); }
530
531 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
532 fetch_and(__int_type __i,
533 memory_order __m = memory_order_seq_cst) noexcept
534 { return __atomic_fetch_and(&_M_i, __i, __m); }
535
536 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
537 fetch_and(__int_type __i,
538 memory_order __m = memory_order_seq_cst) volatile noexcept
539 { return __atomic_fetch_and(&_M_i, __i, __m); }
540
541 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
542 fetch_or(__int_type __i,
543 memory_order __m = memory_order_seq_cst) noexcept
544 { return __atomic_fetch_or(&_M_i, __i, __m); }
545
546 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
547 fetch_or(__int_type __i,
548 memory_order __m = memory_order_seq_cst) volatile noexcept
549 { return __atomic_fetch_or(&_M_i, __i, __m); }
550
551 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
552 fetch_xor(__int_type __i,
553 memory_order __m = memory_order_seq_cst) noexcept
554 { return __atomic_fetch_xor(&_M_i, __i, __m); }
555
556 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __int_type
557 fetch_xor(__int_type __i,
558 memory_order __m = memory_order_seq_cst) volatile noexcept
559 { return __atomic_fetch_xor(&_M_i, __i, __m); }
560 };
561
562
563 /// Partial specialization for pointer types.
564 template<typename _PTp>
565 struct __atomic_base<_PTp*>
566 {
567 private:
568 typedef _PTp* __pointer_type;
569
570 __pointer_type _M_p;
571
572 // Factored out to facilitate explicit specialization.
573 constexpr ptrdiff_t
574 _M_type_size(ptrdiff_t __d) const { return __d * sizeof(_PTp); }
575
576 constexpr ptrdiff_t
577 _M_type_size(ptrdiff_t __d) const volatile { return __d * sizeof(_PTp); }
578
579 public:
580 __atomic_base() noexcept = default;
581 ~__atomic_base() noexcept = default;
582 __atomic_base(const __atomic_base&) = delete;
583 __atomic_base& operator=(const __atomic_base&) = delete;
584 __atomic_base& operator=(const __atomic_base&) volatile = delete;
585
586 // Requires __pointer_type convertible to _M_p.
587 constexpr __atomic_base(__pointer_type __p) noexcept : _M_p (__p) { }
588
589 operator __pointer_type() const noexcept
590 { return load(); }
591
592 operator __pointer_type() const volatile noexcept
593 { return load(); }
594
595 __pointer_type
596 operator=(__pointer_type __p) noexcept
597 {
598 store(__p);
599 return __p;
600 }
601
602 __pointer_type
603 operator=(__pointer_type __p) volatile noexcept
604 {
605 store(__p);
606 return __p;
607 }
608
609 __pointer_type
610 operator++(int) noexcept
611 { return fetch_add(1); }
612
613 __pointer_type
614 operator++(int) volatile noexcept
615 { return fetch_add(1); }
616
617 __pointer_type
618 operator--(int) noexcept
619 { return fetch_sub(1); }
620
621 __pointer_type
622 operator--(int) volatile noexcept
623 { return fetch_sub(1); }
624
625 __pointer_type
626 operator++() noexcept
627 { return __atomic_add_fetch(&_M_p, _M_type_size(1),
628 memory_order_seq_cst); }
629
630 __pointer_type
631 operator++() volatile noexcept
632 { return __atomic_add_fetch(&_M_p, _M_type_size(1),
633 memory_order_seq_cst); }
634
635 __pointer_type
636 operator--() noexcept
637 { return __atomic_sub_fetch(&_M_p, _M_type_size(1),
638 memory_order_seq_cst); }
639
640 __pointer_type
641 operator--() volatile noexcept
642 { return __atomic_sub_fetch(&_M_p, _M_type_size(1),
643 memory_order_seq_cst); }
644
645 __pointer_type
646 operator+=(ptrdiff_t __d) noexcept
647 { return __atomic_add_fetch(&_M_p, _M_type_size(__d),
648 memory_order_seq_cst); }
649
650 __pointer_type
651 operator+=(ptrdiff_t __d) volatile noexcept
652 { return __atomic_add_fetch(&_M_p, _M_type_size(__d),
653 memory_order_seq_cst); }
654
655 __pointer_type
656 operator-=(ptrdiff_t __d) noexcept
657 { return __atomic_sub_fetch(&_M_p, _M_type_size(__d),
658 memory_order_seq_cst); }
659
660 __pointer_type
661 operator-=(ptrdiff_t __d) volatile noexcept
662 { return __atomic_sub_fetch(&_M_p, _M_type_size(__d),
663 memory_order_seq_cst); }
664
665 bool
666 is_lock_free() const noexcept
667 {
668 // Produce a fake, minimally aligned pointer.
669 return __atomic_is_lock_free(sizeof(_M_p),
670 reinterpret_cast<void *>(-__alignof(_M_p)));
671 }
672
673 bool
674 is_lock_free() const volatile noexcept
675 {
676 // Produce a fake, minimally aligned pointer.
677 return __atomic_is_lock_free(sizeof(_M_p),
678 reinterpret_cast<void *>(-__alignof(_M_p)));
679 }
680
681 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) void
682 store(__pointer_type __p,
683 memory_order __m = memory_order_seq_cst) noexcept
684 {
685 memory_order __b = __m & __memory_order_mask;
686
687 __glibcxx_assert(__b != memory_order_acquire);
688 __glibcxx_assert(__b != memory_order_acq_rel);
689 __glibcxx_assert(__b != memory_order_consume);
690
691 __atomic_store_n(&_M_p, __p, __m);
692 }
693
694 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) void
695 store(__pointer_type __p,
696 memory_order __m = memory_order_seq_cst) volatile noexcept
697 {
698 memory_order __b = __m & __memory_order_mask;
699 __glibcxx_assert(__b != memory_order_acquire);
700 __glibcxx_assert(__b != memory_order_acq_rel);
701 __glibcxx_assert(__b != memory_order_consume);
702
703 __atomic_store_n(&_M_p, __p, __m);
704 }
705
706 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __pointer_type
707 load(memory_order __m = memory_order_seq_cst) const noexcept
708 {
709 memory_order __b = __m & __memory_order_mask;
36
Calling 'operator&'
37
Returning from 'operator&'
44
Calling 'operator&'
45
Returning from 'operator&'
710 __glibcxx_assert(__b != memory_order_release);
711 __glibcxx_assert(__b != memory_order_acq_rel);
712
713 return __atomic_load_n(&_M_p, __m);
714 }
715
716 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __pointer_type
717 load(memory_order __m = memory_order_seq_cst) const volatile noexcept
718 {
719 memory_order __b = __m & __memory_order_mask;
720 __glibcxx_assert(__b != memory_order_release);
721 __glibcxx_assert(__b != memory_order_acq_rel);
722
723 return __atomic_load_n(&_M_p, __m);
724 }
725
726 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __pointer_type
727 exchange(__pointer_type __p,
728 memory_order __m = memory_order_seq_cst) noexcept
729 {
730 return __atomic_exchange_n(&_M_p, __p, __m);
731 }
732
733
734 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __pointer_type
735 exchange(__pointer_type __p,
736 memory_order __m = memory_order_seq_cst) volatile noexcept
737 {
738 return __atomic_exchange_n(&_M_p, __p, __m);
739 }
740
741 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
742 compare_exchange_strong(__pointer_type& __p1, __pointer_type __p2,
743 memory_order __m1,
744 memory_order __m2) noexcept
745 {
746 memory_order __b2 = __m2 & __memory_order_mask;
747 memory_order __b1 = __m1 & __memory_order_mask;
748 __glibcxx_assert(__b2 != memory_order_release);
749 __glibcxx_assert(__b2 != memory_order_acq_rel);
750 __glibcxx_assert(__b2 <= __b1);
751
752 return __atomic_compare_exchange_n(&_M_p, &__p1, __p2, 0, __m1, __m2);
753 }
754
755 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) bool
756 compare_exchange_strong(__pointer_type& __p1, __pointer_type __p2,
757 memory_order __m1,
758 memory_order __m2) volatile noexcept
759 {
760 memory_order __b2 = __m2 & __memory_order_mask;
761 memory_order __b1 = __m1 & __memory_order_mask;
762
763 __glibcxx_assert(__b2 != memory_order_release);
764 __glibcxx_assert(__b2 != memory_order_acq_rel);
765 __glibcxx_assert(__b2 <= __b1);
766
767 return __atomic_compare_exchange_n(&_M_p, &__p1, __p2, 0, __m1, __m2);
768 }
769
770 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __pointer_type
771 fetch_add(ptrdiff_t __d,
772 memory_order __m = memory_order_seq_cst) noexcept
773 { return __atomic_fetch_add(&_M_p, _M_type_size(__d), __m); }
774
775 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __pointer_type
776 fetch_add(ptrdiff_t __d,
777 memory_order __m = memory_order_seq_cst) volatile noexcept
778 { return __atomic_fetch_add(&_M_p, _M_type_size(__d), __m); }
779
780 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __pointer_type
781 fetch_sub(ptrdiff_t __d,
782 memory_order __m = memory_order_seq_cst) noexcept
783 { return __atomic_fetch_sub(&_M_p, _M_type_size(__d), __m); }
784
785 _GLIBCXX_ALWAYS_INLINEinline __attribute__((__always_inline__)) __pointer_type
786 fetch_sub(ptrdiff_t __d,
787 memory_order __m = memory_order_seq_cst) volatile noexcept
788 { return __atomic_fetch_sub(&_M_p, _M_type_size(__d), __m); }
789 };
790
791 // @} group atomics
792
793_GLIBCXX_END_NAMESPACE_VERSION
794} // namespace std
795
796#endif

/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm>
29#include <cassert>
30#include <cstdint>
31#include <cstdlib>
32#include <functional>
33#include <memory>
34#include <new>
35#include <string>
36#include <system_error>
37#include <type_traits>
38#include <utility>
39#include <vector>
40
41namespace llvm {
42
43class ErrorSuccess;
44
45/// Base class for error info classes. Do not extend this directly: Extend
46/// the ErrorInfo template subclass instead.
47class ErrorInfoBase {
48public:
49 virtual ~ErrorInfoBase() = default;
50
51 /// Print an error message to an output stream.
52 virtual void log(raw_ostream &OS) const = 0;
53
54 /// Return the error message as a string.
55 virtual std::string message() const {
56 std::string Msg;
57 raw_string_ostream OS(Msg);
58 log(OS);
59 return OS.str();
60 }
61
62 /// Convert this error to a std::error_code.
63 ///
64 /// This is a temporary crutch to enable interaction with code still
65 /// using std::error_code. It will be removed in the future.
66 virtual std::error_code convertToErrorCode() const = 0;
67
68 // Returns the class ID for this type.
69 static const void *classID() { return &ID; }
70
71 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
72 virtual const void *dynamicClassID() const = 0;
73
74 // Check whether this instance is a subclass of the class identified by
75 // ClassID.
76 virtual bool isA(const void *const ClassID) const {
77 return ClassID == classID();
78 }
79
80 // Check whether this instance is a subclass of ErrorInfoT.
81 template <typename ErrorInfoT> bool isA() const {
82 return isA(ErrorInfoT::classID());
83 }
84
85private:
86 virtual void anchor();
87
88 static char ID;
89};
90
91/// Lightweight error class with error context and mandatory checking.
92///
93/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
94/// are represented by setting the pointer to a ErrorInfoBase subclass
95/// instance containing information describing the failure. Success is
96/// represented by a null pointer value.
97///
98/// Instances of Error also contains a 'Checked' flag, which must be set
99/// before the destructor is called, otherwise the destructor will trigger a
100/// runtime error. This enforces at runtime the requirement that all Error
101/// instances be checked or returned to the caller.
102///
103/// There are two ways to set the checked flag, depending on what state the
104/// Error instance is in. For Error instances indicating success, it
105/// is sufficient to invoke the boolean conversion operator. E.g.:
106///
107/// @code{.cpp}
108/// Error foo(<...>);
109///
110/// if (auto E = foo(<...>))
111/// return E; // <- Return E if it is in the error state.
112/// // We have verified that E was in the success state. It can now be safely
113/// // destroyed.
114/// @endcode
115///
116/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
117/// without testing the return value will raise a runtime error, even if foo
118/// returns success.
119///
120/// For Error instances representing failure, you must use either the
121/// handleErrors or handleAllErrors function with a typed handler. E.g.:
122///
123/// @code{.cpp}
124/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
125/// // Custom error info.
126/// };
127///
128/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
129///
130/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
131/// auto NewE =
132/// handleErrors(E,
133/// [](const MyErrorInfo &M) {
134/// // Deal with the error.
135/// },
136/// [](std::unique_ptr<OtherError> M) -> Error {
137/// if (canHandle(*M)) {
138/// // handle error.
139/// return Error::success();
140/// }
141/// // Couldn't handle this error instance. Pass it up the stack.
142/// return Error(std::move(M));
143/// );
144/// // Note - we must check or return NewE in case any of the handlers
145/// // returned a new error.
146/// @endcode
147///
148/// The handleAllErrors function is identical to handleErrors, except
149/// that it has a void return type, and requires all errors to be handled and
150/// no new errors be returned. It prevents errors (assuming they can all be
151/// handled) from having to be bubbled all the way to the top-level.
152///
153/// *All* Error instances must be checked before destruction, even if
154/// they're moved-assigned or constructed from Success values that have already
155/// been checked. This enforces checking through all levels of the call stack.
156class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
157 // ErrorList needs to be able to yank ErrorInfoBase pointers out of this
158 // class to add to the error list.
159 friend class ErrorList;
160
161 // handleErrors needs to be able to set the Checked flag.
162 template <typename... HandlerTs>
163 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
164
165 // Expected<T> needs to be able to steal the payload when constructed from an
166 // error.
167 template <typename T> friend class Expected;
168
169protected:
170 /// Create a success value. Prefer using 'Error::success()' for readability
171 Error() {
172 setPtr(nullptr);
173 setChecked(false);
174 }
175
176public:
177 /// Create a success value.
178 static ErrorSuccess success();
179
180 // Errors are not copy-constructable.
181 Error(const Error &Other) = delete;
182
183 /// Move-construct an error value. The newly constructed error is considered
184 /// unchecked, even if the source error had been checked. The original error
185 /// becomes a checked Success value, regardless of its original state.
186 Error(Error &&Other) {
187 setChecked(true);
188 *this = std::move(Other);
189 }
190
191 /// Create an error value. Prefer using the 'make_error' function, but
192 /// this constructor can be useful when "re-throwing" errors from handlers.
193 Error(std::unique_ptr<ErrorInfoBase> Payload) {
194 setPtr(Payload.release());
195 setChecked(false);
196 }
197
198 // Errors are not copy-assignable.
199 Error &operator=(const Error &Other) = delete;
200
201 /// Move-assign an error value. The current error must represent success, you
202 /// you cannot overwrite an unhandled error. The current error is then
203 /// considered unchecked. The source error becomes a checked success value,
204 /// regardless of its original state.
205 Error &operator=(Error &&Other) {
206 // Don't allow overwriting of unchecked values.
207 assertIsChecked();
208 setPtr(Other.getPtr());
209
210 // This Error is unchecked, even if the source error was checked.
211 setChecked(false);
212
213 // Null out Other's payload and set its checked bit.
214 Other.setPtr(nullptr);
215 Other.setChecked(true);
216
217 return *this;
218 }
219
220 /// Destroy a Error. Fails with a call to abort() if the error is
221 /// unchecked.
222 ~Error() {
223 assertIsChecked();
224 delete getPtr();
225 }
226
227 /// Bool conversion. Returns true if this Error is in a failure state,
228 /// and false if it is in an accept state. If the error is in a Success state
229 /// it will be considered checked.
230 explicit operator bool() {
231 setChecked(getPtr() == nullptr);
232 return getPtr() != nullptr;
233 }
234
235 /// Check whether one error is a subclass of another.
236 template <typename ErrT> bool isA() const {
237 return getPtr() && getPtr()->isA(ErrT::classID());
238 }
239
240 /// Returns the dynamic class id of this error, or null if this is a success
241 /// value.
242 const void* dynamicClassID() const {
243 if (!getPtr())
244 return nullptr;
245 return getPtr()->dynamicClassID();
246 }
247
248private:
249#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
250 // assertIsChecked() happens very frequently, but under normal circumstances
251 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
252 // of debug prints can cause the function to be too large for inlining. So
253 // it's important that we define this function out of line so that it can't be
254 // inlined.
255 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
256 void fatalUncheckedError() const;
257#endif
258
259 void assertIsChecked() {
260#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
261 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
262 fatalUncheckedError();
263#endif
264 }
265
266 ErrorInfoBase *getPtr() const {
267 return reinterpret_cast<ErrorInfoBase*>(
268 reinterpret_cast<uintptr_t>(Payload) &
269 ~static_cast<uintptr_t>(0x1));
270 }
271
272 void setPtr(ErrorInfoBase *EI) {
273#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
274 Payload = reinterpret_cast<ErrorInfoBase*>(
275 (reinterpret_cast<uintptr_t>(EI) &
276 ~static_cast<uintptr_t>(0x1)) |
277 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
278#else
279 Payload = EI;
280#endif
281 }
282
283 bool getChecked() const {
284#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
285 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
286#else
287 return true;
288#endif
289 }
290
291 void setChecked(bool V) {
292 Payload = reinterpret_cast<ErrorInfoBase*>(
293 (reinterpret_cast<uintptr_t>(Payload) &
294 ~static_cast<uintptr_t>(0x1)) |
295 (V ? 0 : 1));
296 }
297
298 std::unique_ptr<ErrorInfoBase> takePayload() {
299 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
300 setPtr(nullptr);
301 setChecked(true);
302 return Tmp;
303 }
304
305 ErrorInfoBase *Payload = nullptr;
306};
307
308/// Subclass of Error for the sole purpose of identifying the success path in
309/// the type system. This allows to catch invalid conversion to Expected<T> at
310/// compile time.
311class ErrorSuccess : public Error {};
312
313inline ErrorSuccess Error::success() { return ErrorSuccess(); }
314
315/// Make a Error instance representing failure using the given error info
316/// type.
317template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
318 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
54
Calling 'forward'
55
Returning from 'forward'
56
Calling 'forward'
57
Returning from 'forward'
58
Calling 'make_unique'
63
Returning from 'make_unique'
319}
320
321/// Base class for user error types. Users should declare their error types
322/// like:
323///
324/// class MyError : public ErrorInfo<MyError> {
325/// ....
326/// };
327///
328/// This class provides an implementation of the ErrorInfoBase::kind
329/// method, which is used by the Error RTTI system.
330template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
331class ErrorInfo : public ParentErrT {
332public:
333 static const void *classID() { return &ThisErrT::ID; }
334
335 const void *dynamicClassID() const override { return &ThisErrT::ID; }
336
337 bool isA(const void *const ClassID) const override {
338 return ClassID == classID() || ParentErrT::isA(ClassID);
339 }
340};
341
342/// Special ErrorInfo subclass representing a list of ErrorInfos.
343/// Instances of this class are constructed by joinError.
344class ErrorList final : public ErrorInfo<ErrorList> {
345 // handleErrors needs to be able to iterate the payload list of an
346 // ErrorList.
347 template <typename... HandlerTs>
348 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
349
350 // joinErrors is implemented in terms of join.
351 friend Error joinErrors(Error, Error);
352
353public:
354 void log(raw_ostream &OS) const override {
355 OS << "Multiple errors:\n";
356 for (auto &ErrPayload : Payloads) {
357 ErrPayload->log(OS);
358 OS << "\n";
359 }
360 }
361
362 std::error_code convertToErrorCode() const override;
363
364 // Used by ErrorInfo::classID.
365 static char ID;
366
367private:
368 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
369 std::unique_ptr<ErrorInfoBase> Payload2) {
370 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&(static_cast <bool> (!Payload1->isA<ErrorList>
() && !Payload2->isA<ErrorList>() &&
"ErrorList constructor payloads should be singleton errors")
? void (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 371, __extension__ __PRETTY_FUNCTION__))
371 "ErrorList constructor payloads should be singleton errors")(static_cast <bool> (!Payload1->isA<ErrorList>
() && !Payload2->isA<ErrorList>() &&
"ErrorList constructor payloads should be singleton errors")
? void (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 371, __extension__ __PRETTY_FUNCTION__))
;
372 Payloads.push_back(std::move(Payload1));
373 Payloads.push_back(std::move(Payload2));
374 }
375
376 static Error join(Error E1, Error E2) {
377 if (!E1)
378 return E2;
379 if (!E2)
380 return E1;
381 if (E1.isA<ErrorList>()) {
382 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
383 if (E2.isA<ErrorList>()) {
384 auto E2Payload = E2.takePayload();
385 auto &E2List = static_cast<ErrorList &>(*E2Payload);
386 for (auto &Payload : E2List.Payloads)
387 E1List.Payloads.push_back(std::move(Payload));
388 } else
389 E1List.Payloads.push_back(E2.takePayload());
390
391 return E1;
392 }
393 if (E2.isA<ErrorList>()) {
394 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
395 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
396 return E2;
397 }
398 return Error(std::unique_ptr<ErrorList>(
399 new ErrorList(E1.takePayload(), E2.takePayload())));
400 }
401
402 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
403};
404
405/// Concatenate errors. The resulting Error is unchecked, and contains the
406/// ErrorInfo(s), if any, contained in E1, followed by the
407/// ErrorInfo(s), if any, contained in E2.
408inline Error joinErrors(Error E1, Error E2) {
409 return ErrorList::join(std::move(E1), std::move(E2));
410}
411
412/// Tagged union holding either a T or a Error.
413///
414/// This class parallels ErrorOr, but replaces error_code with Error. Since
415/// Error cannot be copied, this class replaces getError() with
416/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
417/// error class type.
418template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
419 template <class T1> friend class ExpectedAsOutParameter;
420 template <class OtherT> friend class Expected;
421
422 static const bool isRef = std::is_reference<T>::value;
423
424 using wrap = ReferenceStorage<typename std::remove_reference<T>::type>;
425
426 using error_type = std::unique_ptr<ErrorInfoBase>;
427
428public:
429 using storage_type = typename std::conditional<isRef, wrap, T>::type;
430 using value_type = T;
431
432private:
433 using reference = typename std::remove_reference<T>::type &;
434 using const_reference = const typename std::remove_reference<T>::type &;
435 using pointer = typename std::remove_reference<T>::type *;
436 using const_pointer = const typename std::remove_reference<T>::type *;
437
438public:
439 /// Create an Expected<T> error value from the given Error.
440 Expected(Error Err)
441 : HasError(true)
442#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
443 // Expected is unchecked upon construction in Debug builds.
444 , Unchecked(true)
445#endif
446 {
447 assert(Err && "Cannot create Expected<T> from Error success value.")(static_cast <bool> (Err && "Cannot create Expected<T> from Error success value."
) ? void (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 447, __extension__ __PRETTY_FUNCTION__))
;
448 new (getErrorStorage()) error_type(Err.takePayload());
449 }
450
451 /// Forbid to convert from Error::success() implicitly, this avoids having
452 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
453 /// but triggers the assertion above.
454 Expected(ErrorSuccess) = delete;
455
456 /// Create an Expected<T> success value from the given OtherT value, which
457 /// must be convertible to T.
458 template <typename OtherT>
459 Expected(OtherT &&Val,
460 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
461 * = nullptr)
462 : HasError(false)
463#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
464 // Expected is unchecked upon construction in Debug builds.
465 , Unchecked(true)
466#endif
467 {
468 new (getStorage()) storage_type(std::forward<OtherT>(Val));
469 }
470
471 /// Move construct an Expected<T> value.
472 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
473
474 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
475 /// must be convertible to T.
476 template <class OtherT>
477 Expected(Expected<OtherT> &&Other,
478 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
479 * = nullptr) {
480 moveConstruct(std::move(Other));
481 }
482
483 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
484 /// isn't convertible to T.
485 template <class OtherT>
486 explicit Expected(
487 Expected<OtherT> &&Other,
488 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
489 nullptr) {
490 moveConstruct(std::move(Other));
491 }
492
493 /// Move-assign from another Expected<T>.
494 Expected &operator=(Expected &&Other) {
495 moveAssign(std::move(Other));
496 return *this;
497 }
498
499 /// Destroy an Expected<T>.
500 ~Expected() {
501 assertIsChecked();
502 if (!HasError)
503 getStorage()->~storage_type();
504 else
505 getErrorStorage()->~error_type();
506 }
507
508 /// \brief Return false if there is an error.
509 explicit operator bool() {
510#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
511 Unchecked = HasError;
512#endif
513 return !HasError;
514 }
515
516 /// \brief Returns a reference to the stored T value.
517 reference get() {
518 assertIsChecked();
519 return *getStorage();
520 }
521
522 /// \brief Returns a const reference to the stored T value.
523 const_reference get() const {
524 assertIsChecked();
525 return const_cast<Expected<T> *>(this)->get();
526 }
527
528 /// \brief Check that this Expected<T> is an error of type ErrT.
529 template <typename ErrT> bool errorIsA() const {
530 return HasError && (*getErrorStorage())->template isA<ErrT>();
531 }
532
533 /// \brief Take ownership of the stored error.
534 /// After calling this the Expected<T> is in an indeterminate state that can
535 /// only be safely destructed. No further calls (beside the destructor) should
536 /// be made on the Expected<T> vaule.
537 Error takeError() {
538#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
539 Unchecked = false;
540#endif
541 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
542 }
543
544 /// \brief Returns a pointer to the stored T value.
545 pointer operator->() {
546 assertIsChecked();
547 return toPointer(getStorage());
548 }
549
550 /// \brief Returns a const pointer to the stored T value.
551 const_pointer operator->() const {
552 assertIsChecked();
553 return toPointer(getStorage());
554 }
555
556 /// \brief Returns a reference to the stored T value.
557 reference operator*() {
558 assertIsChecked();
559 return *getStorage();
560 }
561
562 /// \brief Returns a const reference to the stored T value.
563 const_reference operator*() const {
564 assertIsChecked();
565 return *getStorage();
566 }
567
568private:
569 template <class T1>
570 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
571 return &a == &b;
572 }
573
574 template <class T1, class T2>
575 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
576 return false;
577 }
578
579 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
580 HasError = Other.HasError;
581#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
582 Unchecked = true;
583 Other.Unchecked = false;
584#endif
585
586 if (!HasError)
587 new (getStorage()) storage_type(std::move(*Other.getStorage()));
588 else
589 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
590 }
591
592 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
593 assertIsChecked();
594
595 if (compareThisIfSameType(*this, Other))
596 return;
597
598 this->~Expected();
599 new (this) Expected(std::move(Other));
600 }
601
602 pointer toPointer(pointer Val) { return Val; }
603
604 const_pointer toPointer(const_pointer Val) const { return Val; }
605
606 pointer toPointer(wrap *Val) { return &Val->get(); }
607
608 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
609
610 storage_type *getStorage() {
611 assert(!HasError && "Cannot get value when an error exists!")(static_cast <bool> (!HasError && "Cannot get value when an error exists!"
) ? void (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 611, __extension__ __PRETTY_FUNCTION__))
;
612 return reinterpret_cast<storage_type *>(TStorage.buffer);
613 }
614
615 const storage_type *getStorage() const {
616 assert(!HasError && "Cannot get value when an error exists!")(static_cast <bool> (!HasError && "Cannot get value when an error exists!"
) ? void (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 616, __extension__ __PRETTY_FUNCTION__))
;
617 return reinterpret_cast<const storage_type *>(TStorage.buffer);
618 }
619
620 error_type *getErrorStorage() {
621 assert(HasError && "Cannot get error when a value exists!")(static_cast <bool> (HasError && "Cannot get error when a value exists!"
) ? void (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 621, __extension__ __PRETTY_FUNCTION__))
;
622 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
623 }
624
625 const error_type *getErrorStorage() const {
626 assert(HasError && "Cannot get error when a value exists!")(static_cast <bool> (HasError && "Cannot get error when a value exists!"
) ? void (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 626, __extension__ __PRETTY_FUNCTION__))
;
627 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
628 }
629
630 // Used by ExpectedAsOutParameter to reset the checked flag.
631 void setUnchecked() {
632#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
633 Unchecked = true;
634#endif
635 }
636
637#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
638 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
639 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
640 void fatalUncheckedExpected() const {
641 dbgs() << "Expected<T> must be checked before access or destruction.\n";
642 if (HasError) {
643 dbgs() << "Unchecked Expected<T> contained error:\n";
644 (*getErrorStorage())->log(dbgs());
645 } else
646 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
647 "values in success mode must still be checked prior to being "
648 "destroyed).\n";
649 abort();
650 }
651#endif
652
653 void assertIsChecked() {
654#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
655 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
656 fatalUncheckedExpected();
657#endif
658 }
659
660 union {
661 AlignedCharArrayUnion<storage_type> TStorage;
662 AlignedCharArrayUnion<error_type> ErrorStorage;
663 };
664 bool HasError : 1;
665#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
666 bool Unchecked : 1;
667#endif
668};
669
670/// Report a serious error, calling any installed error handler. See
671/// ErrorHandling.h.
672LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
673 bool gen_crash_diag = true);
674
675/// Report a fatal error if Err is a failure value.
676///
677/// This function can be used to wrap calls to fallible functions ONLY when it
678/// is known that the Error will always be a success value. E.g.
679///
680/// @code{.cpp}
681/// // foo only attempts the fallible operation if DoFallibleOperation is
682/// // true. If DoFallibleOperation is false then foo always returns
683/// // Error::success().
684/// Error foo(bool DoFallibleOperation);
685///
686/// cantFail(foo(false));
687/// @endcode
688inline void cantFail(Error Err, const char *Msg = nullptr) {
689 if (Err) {
690 if (!Msg)
691 Msg = "Failure value returned from cantFail wrapped call";
692 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 692)
;
693 }
694}
695
696/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
697/// returns the contained value.
698///
699/// This function can be used to wrap calls to fallible functions ONLY when it
700/// is known that the Error will always be a success value. E.g.
701///
702/// @code{.cpp}
703/// // foo only attempts the fallible operation if DoFallibleOperation is
704/// // true. If DoFallibleOperation is false then foo always returns an int.
705/// Expected<int> foo(bool DoFallibleOperation);
706///
707/// int X = cantFail(foo(false));
708/// @endcode
709template <typename T>
710T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
711 if (ValOrErr)
712 return std::move(*ValOrErr);
713 else {
714 if (!Msg)
715 Msg = "Failure value returned from cantFail wrapped call";
716 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 716)
;
717 }
718}
719
720/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
721/// returns the contained reference.
722///
723/// This function can be used to wrap calls to fallible functions ONLY when it
724/// is known that the Error will always be a success value. E.g.
725///
726/// @code{.cpp}
727/// // foo only attempts the fallible operation if DoFallibleOperation is
728/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
729/// Expected<Bar&> foo(bool DoFallibleOperation);
730///
731/// Bar &X = cantFail(foo(false));
732/// @endcode
733template <typename T>
734T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
735 if (ValOrErr)
736 return *ValOrErr;
737 else {
738 if (!Msg)
739 Msg = "Failure value returned from cantFail wrapped call";
740 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 740)
;
741 }
742}
743
744/// Helper for testing applicability of, and applying, handlers for
745/// ErrorInfo types.
746template <typename HandlerT>
747class ErrorHandlerTraits
748 : public ErrorHandlerTraits<decltype(
749 &std::remove_reference<HandlerT>::type::operator())> {};
750
751// Specialization functions of the form 'Error (const ErrT&)'.
752template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
753public:
754 static bool appliesTo(const ErrorInfoBase &E) {
755 return E.template isA<ErrT>();
756 }
757
758 template <typename HandlerT>
759 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
760 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 760, __extension__ __PRETTY_FUNCTION__))
;
761 return H(static_cast<ErrT &>(*E));
762 }
763};
764
765// Specialization functions of the form 'void (const ErrT&)'.
766template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
767public:
768 static bool appliesTo(const ErrorInfoBase &E) {
769 return E.template isA<ErrT>();
770 }
771
772 template <typename HandlerT>
773 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
774 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 774, __extension__ __PRETTY_FUNCTION__))
;
775 H(static_cast<ErrT &>(*E));
776 return Error::success();
777 }
778};
779
780/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
781template <typename ErrT>
782class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 790, __extension__ __PRETTY_FUNCTION__))
;
791 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
792 return H(std::move(SubE));
793 }
794};
795
796/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/Support/Error.h"
, 806, __extension__ __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 H(std::move(SubE));
809 return Error::success();
810 }
811};
812
813// Specialization for member functions of the form 'RetT (const ErrT&)'.
814template <typename C, typename RetT, typename ErrT>
815class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
816 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
817
818// Specialization for member functions of the form 'RetT (const ErrT&) const'.
819template <typename C, typename RetT, typename ErrT>
820class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
821 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
822
823// Specialization for member functions of the form 'RetT (const ErrT&)'.
824template <typename C, typename RetT, typename ErrT>
825class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
826 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
827
828// Specialization for member functions of the form 'RetT (const ErrT&) const'.
829template <typename C, typename RetT, typename ErrT>
830class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
831 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
832
833/// Specialization for member functions of the form
834/// 'RetT (std::unique_ptr<ErrT>)'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
837 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
838
839/// Specialization for member functions of the form
840/// 'RetT (std::unique_ptr<ErrT>) const'.
841template <typename C, typename RetT, typename ErrT>
842class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
843 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
844
845inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
846 return Error(std::move(Payload));
847}
848
849template <typename HandlerT, typename... HandlerTs>
850Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
851 HandlerT &&Handler, HandlerTs &&... Handlers) {
852 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
853 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
854 std::move(Payload));
855 return handleErrorImpl(std::move(Payload),
856 std::forward<HandlerTs>(Handlers)...);
857}
858
859/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
860/// unhandled errors (or Errors returned by handlers) are re-concatenated and
861/// returned.
862/// Because this function returns an error, its result must also be checked
863/// or returned. If you intend to handle all errors use handleAllErrors
864/// (which returns void, and will abort() on unhandled errors) instead.
865template <typename... HandlerTs>
866Error handleErrors(Error E, HandlerTs &&... Hs) {
867 if (!E)
868 return Error::success();
869
870 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
871
872 if (Payload->isA<ErrorList>()) {
873 ErrorList &List = static_cast<ErrorList &>(*Payload);
874 Error R;
875 for (auto &P : List.Payloads)
876 R = ErrorList::join(
877 std::move(R),
878 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
879 return R;
880 }
881
882 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
883}
884
885/// Behaves the same as handleErrors, except that it requires that all
886/// errors be handled by the given handlers. If any unhandled error remains
887/// after the handlers have run, report_fatal_error() will be called.
888template <typename... HandlerTs>
889void handleAllErrors(Error E, HandlerTs &&... Handlers) {
890 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
891}
892
893/// Check that E is a non-error, then drop it.
894/// If E is an error report_fatal_error will be called.
895inline void handleAllErrors(Error E) {
896 cantFail(std::move(E));
897}
898
899/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
900///
901/// If the incoming value is a success value it is returned unmodified. If it
902/// is a failure value then it the contained error is passed to handleErrors.
903/// If handleErrors is able to handle the error then the RecoveryPath functor
904/// is called to supply the final result. If handleErrors is not able to
905/// handle all errors then the unhandled errors are returned.
906///
907/// This utility enables the follow pattern:
908///
909/// @code{.cpp}
910/// enum FooStrategy { Aggressive, Conservative };
911/// Expected<Foo> foo(FooStrategy S);
912///
913/// auto ResultOrErr =
914/// handleExpected(
915/// foo(Aggressive),
916/// []() { return foo(Conservative); },
917/// [](AggressiveStrategyError&) {
918/// // Implicitly conusme this - we'll recover by using a conservative
919/// // strategy.
920/// });
921///
922/// @endcode
923template <typename T, typename RecoveryFtor, typename... HandlerTs>
924Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
925 HandlerTs &&... Handlers) {
926 if (ValOrErr)
927 return ValOrErr;
928
929 if (auto Err = handleErrors(ValOrErr.takeError(),
930 std::forward<HandlerTs>(Handlers)...))
931 return std::move(Err);
932
933 return RecoveryPath();
934}
935
936/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
937/// will be printed before the first one is logged. A newline will be printed
938/// after each error.
939///
940/// This is useful in the base level of your program to allow clean termination
941/// (allowing clean deallocation of resources, etc.), while reporting error
942/// information to the user.
943void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner);
944
945/// Write all error messages (if any) in E to a string. The newline character
946/// is used to separate error messages.
947inline std::string toString(Error E) {
948 SmallVector<std::string, 2> Errors;
949 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
950 Errors.push_back(EI.message());
951 });
952 return join(Errors.begin(), Errors.end(), "\n");
953}
954
955/// Consume a Error without doing anything. This method should be used
956/// only where an error can be considered a reasonable and expected return
957/// value.
958///
959/// Uses of this method are potentially indicative of design problems: If it's
960/// legitimate to do nothing while processing an "error", the error-producer
961/// might be more clearly refactored to return an Optional<T>.
962inline void consumeError(Error Err) {
963 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
964}
965
966/// Helper for converting an Error to a bool.
967///
968/// This method returns true if Err is in an error state, or false if it is
969/// in a success state. Puts Err in a checked state in both cases (unlike
970/// Error::operator bool(), which only does this for success states).
971inline bool errorToBool(Error Err) {
972 bool IsError = static_cast<bool>(Err);
973 if (IsError)
974 consumeError(std::move(Err));
975 return IsError;
976}
977
978/// Helper for Errors used as out-parameters.
979///
980/// This helper is for use with the Error-as-out-parameter idiom, where an error
981/// is passed to a function or method by reference, rather than being returned.
982/// In such cases it is helpful to set the checked bit on entry to the function
983/// so that the error can be written to (unchecked Errors abort on assignment)
984/// and clear the checked bit on exit so that clients cannot accidentally forget
985/// to check the result. This helper performs these actions automatically using
986/// RAII:
987///
988/// @code{.cpp}
989/// Result foo(Error &Err) {
990/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
991/// // <body of foo>
992/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
993/// }
994/// @endcode
995///
996/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
997/// used with optional Errors (Error pointers that are allowed to be null). If
998/// ErrorAsOutParameter took an Error reference, an instance would have to be
999/// created inside every condition that verified that Error was non-null. By
1000/// taking an Error pointer we can just create one instance at the top of the
1001/// function.
1002class ErrorAsOutParameter {
1003public:
1004 ErrorAsOutParameter(Error *Err) : Err(Err) {
1005 // Raise the checked bit if Err is success.
1006 if (Err)
1007 (void)!!*Err;
1008 }
1009
1010 ~ErrorAsOutParameter() {
1011 // Clear the checked bit.
1012 if (Err && !*Err)
1013 *Err = Error::success();
1014 }
1015
1016private:
1017 Error *Err;
1018};
1019
1020/// Helper for Expected<T>s used as out-parameters.
1021///
1022/// See ErrorAsOutParameter.
1023template <typename T>
1024class ExpectedAsOutParameter {
1025public:
1026 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1027 : ValOrErr(ValOrErr) {
1028 if (ValOrErr)
1029 (void)!!*ValOrErr;
1030 }
1031
1032 ~ExpectedAsOutParameter() {
1033 if (ValOrErr)
1034 ValOrErr->setUnchecked();
1035 }
1036
1037private:
1038 Expected<T> *ValOrErr;
1039};
1040
1041/// This class wraps a std::error_code in a Error.
1042///
1043/// This is useful if you're writing an interface that returns a Error
1044/// (or Expected) and you want to call code that still returns
1045/// std::error_codes.
1046class ECError : public ErrorInfo<ECError> {
1047 friend Error errorCodeToError(std::error_code);
1048
1049public:
1050 void setErrorCode(std::error_code EC) { this->EC = EC; }
1051 std::error_code convertToErrorCode() const override { return EC; }
1052 void log(raw_ostream &OS) const override { OS << EC.message(); }
1053
1054 // Used by ErrorInfo::classID.
1055 static char ID;
1056
1057protected:
1058 ECError() = default;
1059 ECError(std::error_code EC) : EC(EC) {}
1060
1061 std::error_code EC;
1062};
1063
1064/// The value returned by this function can be returned from convertToErrorCode
1065/// for Error values where no sensible translation to std::error_code exists.
1066/// It should only be used in this situation, and should never be used where a
1067/// sensible conversion to std::error_code is available, as attempts to convert
1068/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1069///error to try to convert such a value).
1070std::error_code inconvertibleErrorCode();
1071
1072/// Helper for converting an std::error_code to a Error.
1073Error errorCodeToError(std::error_code EC);
1074
1075/// Helper for converting an ECError to a std::error_code.
1076///
1077/// This method requires that Err be Error() or an ECError, otherwise it
1078/// will trigger a call to abort().
1079std::error_code errorToErrorCode(Error Err);
1080
1081/// Convert an ErrorOr<T> to an Expected<T>.
1082template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1083 if (auto EC = EO.getError())
1084 return errorCodeToError(EC);
1085 return std::move(*EO);
1086}
1087
1088/// Convert an Expected<T> to an ErrorOr<T>.
1089template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1090 if (auto Err = E.takeError())
1091 return errorToErrorCode(std::move(Err));
1092 return std::move(*E);
1093}
1094
1095/// This class wraps a string in an Error.
1096///
1097/// StringError is useful in cases where the client is not expected to be able
1098/// to consume the specific error message programmatically (for example, if the
1099/// error message is to be presented to the user).
1100class StringError : public ErrorInfo<StringError> {
1101public:
1102 static char ID;
1103
1104 StringError(const Twine &S, std::error_code EC);
1105
1106 void log(raw_ostream &OS) const override;
1107 std::error_code convertToErrorCode() const override;
1108
1109 const std::string &getMessage() const { return Msg; }
1110
1111private:
1112 std::string Msg;
1113 std::error_code EC;
1114};
1115
1116/// Helper for check-and-exit error handling.
1117///
1118/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1119///
1120class ExitOnError {
1121public:
1122 /// Create an error on exit helper.
1123 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1124 : Banner(std::move(Banner)),
1125 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1126
1127 /// Set the banner string for any errors caught by operator().
1128 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1129
1130 /// Set the exit-code mapper function.
1131 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1132 this->GetExitCode = std::move(GetExitCode);
1133 }
1134
1135 /// Check Err. If it's in a failure state log the error(s) and exit.
1136 void operator()(Error Err) const { checkError(std::move(Err)); }
1137
1138 /// Check E. If it's in a success state then return the contained value. If
1139 /// it's in a failure state log the error(s) and exit.
1140 template <typename T> T operator()(Expected<T> &&E) const {
1141 checkError(E.takeError());
1142 return std::move(*E);
1143 }
1144
1145 /// Check E. If it's in a success state then return the contained reference. If
1146 /// it's in a failure state log the error(s) and exit.
1147 template <typename T> T& operator()(Expected<T&> &&E) const {
1148 checkError(E.takeError());
1149 return *E;
1150 }
1151
1152private:
1153 void checkError(Error Err) const {
1154 if (Err) {
1155 int ExitCode = GetExitCode(Err);
1156 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1157 exit(ExitCode);
1158 }
1159 }
1160
1161 std::string Banner;
1162 std::function<int(const Error &)> GetExitCode;
1163};
1164
1165} // end namespace llvm
1166
1167#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39namespace llvm {
40
41// Only used by compiler if both template types are the same. Useful when
42// using SFINAE to test for the existence of member functions.
43template <typename T, T> struct SameType;
44
45namespace detail {
46
47template <typename RangeT>
48using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
49
50template <typename RangeT>
51using ValueOfRange = typename std::remove_reference<decltype(
52 *std::begin(std::declval<RangeT &>()))>::type;
53
54} // end namespace detail
55
56//===----------------------------------------------------------------------===//
57// Extra additions to <functional>
58//===----------------------------------------------------------------------===//
59
60template <class Ty> struct identity {
61 using argument_type = Ty;
62
63 Ty &operator()(Ty &self) const {
64 return self;
65 }
66 const Ty &operator()(const Ty &self) const {
67 return self;
68 }
69};
70
71template <class Ty> struct less_ptr {
72 bool operator()(const Ty* left, const Ty* right) const {
73 return *left < *right;
74 }
75};
76
77template <class Ty> struct greater_ptr {
78 bool operator()(const Ty* left, const Ty* right) const {
79 return *right < *left;
80 }
81};
82
83/// An efficient, type-erasing, non-owning reference to a callable. This is
84/// intended for use as the type of a function parameter that is not used
85/// after the function in question returns.
86///
87/// This class does not own the callable, so it is not in general safe to store
88/// a function_ref.
89template<typename Fn> class function_ref;
90
91template<typename Ret, typename ...Params>
92class function_ref<Ret(Params...)> {
93 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
94 intptr_t callable;
95
96 template<typename Callable>
97 static Ret callback_fn(intptr_t callable, Params ...params) {
98 return (*reinterpret_cast<Callable*>(callable))(
99 std::forward<Params>(params)...);
100 }
101
102public:
103 function_ref() = default;
104 function_ref(std::nullptr_t) {}
105
106 template <typename Callable>
107 function_ref(Callable &&callable,
108 typename std::enable_if<
109 !std::is_same<typename std::remove_reference<Callable>::type,
110 function_ref>::value>::type * = nullptr)
111 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
112 callable(reinterpret_cast<intptr_t>(&callable)) {}
113
114 Ret operator()(Params ...params) const {
115 return callback(callable, std::forward<Params>(params)...);
116 }
117
118 operator bool() const { return callback; }
119};
120
121// deleter - Very very very simple method that is used to invoke operator
122// delete on something. It is used like this:
123//
124// for_each(V.begin(), B.end(), deleter<Interval>);
125template <class T>
126inline void deleter(T *Ptr) {
127 delete Ptr;
128}
129
130//===----------------------------------------------------------------------===//
131// Extra additions to <iterator>
132//===----------------------------------------------------------------------===//
133
134namespace adl_detail {
135
136using std::begin;
137
138template <typename ContainerTy>
139auto adl_begin(ContainerTy &&container)
140 -> decltype(begin(std::forward<ContainerTy>(container))) {
141 return begin(std::forward<ContainerTy>(container));
142}
143
144using std::end;
145
146template <typename ContainerTy>
147auto adl_end(ContainerTy &&container)
148 -> decltype(end(std::forward<ContainerTy>(container))) {
149 return end(std::forward<ContainerTy>(container));
150}
151
152using std::swap;
153
154template <typename T>
155void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
156 std::declval<T>()))) {
157 swap(std::forward<T>(lhs), std::forward<T>(rhs));
158}
159
160} // end namespace adl_detail
161
162template <typename ContainerTy>
163auto adl_begin(ContainerTy &&container)
164 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
165 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
166}
167
168template <typename ContainerTy>
169auto adl_end(ContainerTy &&container)
170 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
171 return adl_detail::adl_end(std::forward<ContainerTy>(container));
172}
173
174template <typename T>
175void adl_swap(T &&lhs, T &&rhs) noexcept(
176 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
177 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
178}
179
180// mapped_iterator - This is a simple iterator adapter that causes a function to
181// be applied whenever operator* is invoked on the iterator.
182
183template <typename ItTy, typename FuncTy,
184 typename FuncReturnTy =
185 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
186class mapped_iterator
187 : public iterator_adaptor_base<
188 mapped_iterator<ItTy, FuncTy>, ItTy,
189 typename std::iterator_traits<ItTy>::iterator_category,
190 typename std::remove_reference<FuncReturnTy>::type> {
191public:
192 mapped_iterator(ItTy U, FuncTy F)
193 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
194
195 ItTy getCurrent() { return this->I; }
196
197 FuncReturnTy operator*() { return F(*this->I); }
198
199private:
200 FuncTy F;
201};
202
203// map_iterator - Provide a convenient way to create mapped_iterators, just like
204// make_pair is useful for creating pairs...
205template <class ItTy, class FuncTy>
206inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
207 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
208}
209
210/// Helper to determine if type T has a member called rbegin().
211template <typename Ty> class has_rbegin_impl {
212 using yes = char[1];
213 using no = char[2];
214
215 template <typename Inner>
216 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
217
218 template <typename>
219 static no& test(...);
220
221public:
222 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
223};
224
225/// Metafunction to determine if T& or T has a member called rbegin().
226template <typename Ty>
227struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
228};
229
230// Returns an iterator_range over the given container which iterates in reverse.
231// Note that the container must have rbegin()/rend() methods for this to work.
232template <typename ContainerTy>
233auto reverse(ContainerTy &&C,
234 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
235 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
236 return make_range(C.rbegin(), C.rend());
237}
238
239// Returns a std::reverse_iterator wrapped around the given iterator.
240template <typename IteratorTy>
241std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
242 return std::reverse_iterator<IteratorTy>(It);
243}
244
245// Returns an iterator_range over the given container which iterates in reverse.
246// Note that the container must have begin()/end() methods which return
247// bidirectional iterators for this to work.
248template <typename ContainerTy>
249auto reverse(
250 ContainerTy &&C,
251 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
252 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
253 llvm::make_reverse_iterator(std::begin(C)))) {
254 return make_range(llvm::make_reverse_iterator(std::end(C)),
255 llvm::make_reverse_iterator(std::begin(C)));
256}
257
258/// An iterator adaptor that filters the elements of given inner iterators.
259///
260/// The predicate parameter should be a callable object that accepts the wrapped
261/// iterator's reference type and returns a bool. When incrementing or
262/// decrementing the iterator, it will call the predicate on each element and
263/// skip any where it returns false.
264///
265/// \code
266/// int A[] = { 1, 2, 3, 4 };
267/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
268/// // R contains { 1, 3 }.
269/// \endcode
270template <typename WrappedIteratorT, typename PredicateT>
271class filter_iterator
272 : public iterator_adaptor_base<
273 filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
274 typename std::common_type<
275 std::forward_iterator_tag,
276 typename std::iterator_traits<
277 WrappedIteratorT>::iterator_category>::type> {
278 using BaseT = iterator_adaptor_base<
279 filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
280 typename std::common_type<
281 std::forward_iterator_tag,
282 typename std::iterator_traits<WrappedIteratorT>::iterator_category>::
283 type>;
284
285 struct PayloadType {
286 WrappedIteratorT End;
287 PredicateT Pred;
288 };
289
290 Optional<PayloadType> Payload;
291
292 void findNextValid() {
293 assert(Payload && "Payload should be engaged when findNextValid is called")(static_cast <bool> (Payload && "Payload should be engaged when findNextValid is called"
) ? void (0) : __assert_fail ("Payload && \"Payload should be engaged when findNextValid is called\""
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/STLExtras.h"
, 293, __extension__ __PRETTY_FUNCTION__))
;
294 while (this->I != Payload->End && !Payload->Pred(*this->I))
295 BaseT::operator++();
296 }
297
298 // Construct the begin iterator. The begin iterator requires to know where end
299 // is, so that it can properly stop when it hits end.
300 filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred)
301 : BaseT(std::move(Begin)),
302 Payload(PayloadType{std::move(End), std::move(Pred)}) {
303 findNextValid();
304 }
305
306 // Construct the end iterator. It's not incrementable, so Payload doesn't
307 // have to be engaged.
308 filter_iterator(WrappedIteratorT End) : BaseT(End) {}
309
310public:
311 using BaseT::operator++;
312
313 filter_iterator &operator++() {
314 BaseT::operator++();
315 findNextValid();
316 return *this;
317 }
318
319 template <typename RT, typename PT>
320 friend iterator_range<filter_iterator<detail::IterOfRange<RT>, PT>>
321 make_filter_range(RT &&, PT);
322};
323
324/// Convenience function that takes a range of elements and a predicate,
325/// and return a new filter_iterator range.
326///
327/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
328/// lifetime of that temporary is not kept by the returned range object, and the
329/// temporary is going to be dropped on the floor after the make_iterator_range
330/// full expression that contains this function call.
331template <typename RangeT, typename PredicateT>
332iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
333make_filter_range(RangeT &&Range, PredicateT Pred) {
334 using FilterIteratorT =
335 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
336 return make_range(FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
337 std::end(std::forward<RangeT>(Range)),
338 std::move(Pred)),
339 FilterIteratorT(std::end(std::forward<RangeT>(Range))));
340}
341
342// forward declarations required by zip_shortest/zip_first
343template <typename R, typename UnaryPredicate>
344bool all_of(R &&range, UnaryPredicate P);
345
346template <size_t... I> struct index_sequence;
347
348template <class... Ts> struct index_sequence_for;
349
350namespace detail {
351
352using std::declval;
353
354// We have to alias this since inlining the actual type at the usage site
355// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
356template<typename... Iters> struct ZipTupleType {
357 using type = std::tuple<decltype(*declval<Iters>())...>;
358};
359
360template <typename ZipType, typename... Iters>
361using zip_traits = iterator_facade_base<
362 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
363 typename std::iterator_traits<
364 Iters>::iterator_category...>::type,
365 // ^ TODO: Implement random access methods.
366 typename ZipTupleType<Iters...>::type,
367 typename std::iterator_traits<typename std::tuple_element<
368 0, std::tuple<Iters...>>::type>::difference_type,
369 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
370 // inner iterators have the same difference_type. It would fail if, for
371 // instance, the second field's difference_type were non-numeric while the
372 // first is.
373 typename ZipTupleType<Iters...>::type *,
374 typename ZipTupleType<Iters...>::type>;
375
376template <typename ZipType, typename... Iters>
377struct zip_common : public zip_traits<ZipType, Iters...> {
378 using Base = zip_traits<ZipType, Iters...>;
379 using value_type = typename Base::value_type;
380
381 std::tuple<Iters...> iterators;
382
383protected:
384 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
385 return value_type(*std::get<Ns>(iterators)...);
386 }
387
388 template <size_t... Ns>
389 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
390 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
391 }
392
393 template <size_t... Ns>
394 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
395 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
396 }
397
398public:
399 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
400
401 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
402
403 const value_type operator*() const {
404 return deref(index_sequence_for<Iters...>{});
405 }
406
407 ZipType &operator++() {
408 iterators = tup_inc(index_sequence_for<Iters...>{});
409 return *reinterpret_cast<ZipType *>(this);
410 }
411
412 ZipType &operator--() {
413 static_assert(Base::IsBidirectional,
414 "All inner iterators must be at least bidirectional.");
415 iterators = tup_dec(index_sequence_for<Iters...>{});
416 return *reinterpret_cast<ZipType *>(this);
417 }
418};
419
420template <typename... Iters>
421struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
422 using Base = zip_common<zip_first<Iters...>, Iters...>;
423
424 bool operator==(const zip_first<Iters...> &other) const {
425 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
426 }
427
428 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
429};
430
431template <typename... Iters>
432class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
433 template <size_t... Ns>
434 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
435 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
436 std::get<Ns>(other.iterators)...},
437 identity<bool>{});
438 }
439
440public:
441 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
442
443 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
444
445 bool operator==(const zip_shortest<Iters...> &other) const {
446 return !test(other, index_sequence_for<Iters...>{});
447 }
448};
449
450template <template <typename...> class ItType, typename... Args> class zippy {
451public:
452 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
453 using iterator_category = typename iterator::iterator_category;
454 using value_type = typename iterator::value_type;
455 using difference_type = typename iterator::difference_type;
456 using pointer = typename iterator::pointer;
457 using reference = typename iterator::reference;
458
459private:
460 std::tuple<Args...> ts;
461
462 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
463 return iterator(std::begin(std::get<Ns>(ts))...);
464 }
465 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
466 return iterator(std::end(std::get<Ns>(ts))...);
467 }
468
469public:
470 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
471
472 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
473 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
474};
475
476} // end namespace detail
477
478/// zip iterator for two or more iteratable types.
479template <typename T, typename U, typename... Args>
480detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
481 Args &&... args) {
482 return detail::zippy<detail::zip_shortest, T, U, Args...>(
483 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
484}
485
486/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
487/// be the shortest.
488template <typename T, typename U, typename... Args>
489detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
490 Args &&... args) {
491 return detail::zippy<detail::zip_first, T, U, Args...>(
492 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
493}
494
495/// Iterator wrapper that concatenates sequences together.
496///
497/// This can concatenate different iterators, even with different types, into
498/// a single iterator provided the value types of all the concatenated
499/// iterators expose `reference` and `pointer` types that can be converted to
500/// `ValueT &` and `ValueT *` respectively. It doesn't support more
501/// interesting/customized pointer or reference types.
502///
503/// Currently this only supports forward or higher iterator categories as
504/// inputs and always exposes a forward iterator interface.
505template <typename ValueT, typename... IterTs>
506class concat_iterator
507 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
508 std::forward_iterator_tag, ValueT> {
509 using BaseT = typename concat_iterator::iterator_facade_base;
510
511 /// We store both the current and end iterators for each concatenated
512 /// sequence in a tuple of pairs.
513 ///
514 /// Note that something like iterator_range seems nice at first here, but the
515 /// range properties are of little benefit and end up getting in the way
516 /// because we need to do mutation on the current iterators.
517 std::tuple<std::pair<IterTs, IterTs>...> IterPairs;
518
519 /// Attempts to increment a specific iterator.
520 ///
521 /// Returns true if it was able to increment the iterator. Returns false if
522 /// the iterator is already at the end iterator.
523 template <size_t Index> bool incrementHelper() {
524 auto &IterPair = std::get<Index>(IterPairs);
525 if (IterPair.first == IterPair.second)
526 return false;
527
528 ++IterPair.first;
529 return true;
530 }
531
532 /// Increments the first non-end iterator.
533 ///
534 /// It is an error to call this with all iterators at the end.
535 template <size_t... Ns> void increment(index_sequence<Ns...>) {
536 // Build a sequence of functions to increment each iterator if possible.
537 bool (concat_iterator::*IncrementHelperFns[])() = {
538 &concat_iterator::incrementHelper<Ns>...};
539
540 // Loop over them, and stop as soon as we succeed at incrementing one.
541 for (auto &IncrementHelperFn : IncrementHelperFns)
542 if ((this->*IncrementHelperFn)())
543 return;
544
545 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/STLExtras.h"
, 545)
;
546 }
547
548 /// Returns null if the specified iterator is at the end. Otherwise,
549 /// dereferences the iterator and returns the address of the resulting
550 /// reference.
551 template <size_t Index> ValueT *getHelper() const {
552 auto &IterPair = std::get<Index>(IterPairs);
553 if (IterPair.first == IterPair.second)
554 return nullptr;
555
556 return &*IterPair.first;
557 }
558
559 /// Finds the first non-end iterator, dereferences, and returns the resulting
560 /// reference.
561 ///
562 /// It is an error to call this with all iterators at the end.
563 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
564 // Build a sequence of functions to get from iterator if possible.
565 ValueT *(concat_iterator::*GetHelperFns[])() const = {
566 &concat_iterator::getHelper<Ns>...};
567
568 // Loop over them, and return the first result we find.
569 for (auto &GetHelperFn : GetHelperFns)
570 if (ValueT *P = (this->*GetHelperFn)())
571 return *P;
572
573 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/STLExtras.h"
, 573)
;
574 }
575
576public:
577 /// Constructs an iterator from a squence of ranges.
578 ///
579 /// We need the full range to know how to switch between each of the
580 /// iterators.
581 template <typename... RangeTs>
582 explicit concat_iterator(RangeTs &&... Ranges)
583 : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {}
584
585 using BaseT::operator++;
586
587 concat_iterator &operator++() {
588 increment(index_sequence_for<IterTs...>());
589 return *this;
590 }
591
592 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
593
594 bool operator==(const concat_iterator &RHS) const {
595 return IterPairs == RHS.IterPairs;
596 }
597};
598
599namespace detail {
600
601/// Helper to store a sequence of ranges being concatenated and access them.
602///
603/// This is designed to facilitate providing actual storage when temporaries
604/// are passed into the constructor such that we can use it as part of range
605/// based for loops.
606template <typename ValueT, typename... RangeTs> class concat_range {
607public:
608 using iterator =
609 concat_iterator<ValueT,
610 decltype(std::begin(std::declval<RangeTs &>()))...>;
611
612private:
613 std::tuple<RangeTs...> Ranges;
614
615 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
616 return iterator(std::get<Ns>(Ranges)...);
617 }
618 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
619 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
620 std::end(std::get<Ns>(Ranges)))...);
621 }
622
623public:
624 concat_range(RangeTs &&... Ranges)
625 : Ranges(std::forward<RangeTs>(Ranges)...) {}
626
627 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
628 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
629};
630
631} // end namespace detail
632
633/// Concatenated range across two or more ranges.
634///
635/// The desired value type must be explicitly specified.
636template <typename ValueT, typename... RangeTs>
637detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
638 static_assert(sizeof...(RangeTs) > 1,
639 "Need more than one range to concatenate!");
640 return detail::concat_range<ValueT, RangeTs...>(
641 std::forward<RangeTs>(Ranges)...);
642}
643
644//===----------------------------------------------------------------------===//
645// Extra additions to <utility>
646//===----------------------------------------------------------------------===//
647
648/// \brief Function object to check whether the first component of a std::pair
649/// compares less than the first component of another std::pair.
650struct less_first {
651 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
652 return lhs.first < rhs.first;
653 }
654};
655
656/// \brief Function object to check whether the second component of a std::pair
657/// compares less than the second component of another std::pair.
658struct less_second {
659 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
660 return lhs.second < rhs.second;
661 }
662};
663
664// A subset of N3658. More stuff can be added as-needed.
665
666/// \brief Represents a compile-time sequence of integers.
667template <class T, T... I> struct integer_sequence {
668 using value_type = T;
669
670 static constexpr size_t size() { return sizeof...(I); }
671};
672
673/// \brief Alias for the common case of a sequence of size_ts.
674template <size_t... I>
675struct index_sequence : integer_sequence<std::size_t, I...> {};
676
677template <std::size_t N, std::size_t... I>
678struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
679template <std::size_t... I>
680struct build_index_impl<0, I...> : index_sequence<I...> {};
681
682/// \brief Creates a compile-time integer sequence for a parameter pack.
683template <class... Ts>
684struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
685
686/// Utility type to build an inheritance chain that makes it easy to rank
687/// overload candidates.
688template <int N> struct rank : rank<N - 1> {};
689template <> struct rank<0> {};
690
691/// \brief traits class for checking whether type T is one of any of the given
692/// types in the variadic list.
693template <typename T, typename... Ts> struct is_one_of {
694 static const bool value = false;
695};
696
697template <typename T, typename U, typename... Ts>
698struct is_one_of<T, U, Ts...> {
699 static const bool value =
700 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
701};
702
703/// \brief traits class for checking whether type T is a base class for all
704/// the given types in the variadic list.
705template <typename T, typename... Ts> struct are_base_of {
706 static const bool value = true;
707};
708
709template <typename T, typename U, typename... Ts>
710struct are_base_of<T, U, Ts...> {
711 static const bool value =
712 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
713};
714
715//===----------------------------------------------------------------------===//
716// Extra additions for arrays
717//===----------------------------------------------------------------------===//
718
719/// Find the length of an array.
720template <class T, std::size_t N>
721constexpr inline size_t array_lengthof(T (&)[N]) {
722 return N;
723}
724
725/// Adapt std::less<T> for array_pod_sort.
726template<typename T>
727inline int array_pod_sort_comparator(const void *P1, const void *P2) {
728 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
729 *reinterpret_cast<const T*>(P2)))
730 return -1;
731 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
732 *reinterpret_cast<const T*>(P1)))
733 return 1;
734 return 0;
735}
736
737/// get_array_pod_sort_comparator - This is an internal helper function used to
738/// get type deduction of T right.
739template<typename T>
740inline int (*get_array_pod_sort_comparator(const T &))
741 (const void*, const void*) {
742 return array_pod_sort_comparator<T>;
743}
744
745/// array_pod_sort - This sorts an array with the specified start and end
746/// extent. This is just like std::sort, except that it calls qsort instead of
747/// using an inlined template. qsort is slightly slower than std::sort, but
748/// most sorts are not performance critical in LLVM and std::sort has to be
749/// template instantiated for each type, leading to significant measured code
750/// bloat. This function should generally be used instead of std::sort where
751/// possible.
752///
753/// This function assumes that you have simple POD-like types that can be
754/// compared with std::less and can be moved with memcpy. If this isn't true,
755/// you should use std::sort.
756///
757/// NOTE: If qsort_r were portable, we could allow a custom comparator and
758/// default to std::less.
759template<class IteratorTy>
760inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
761 // Don't inefficiently call qsort with one element or trigger undefined
762 // behavior with an empty sequence.
763 auto NElts = End - Start;
764 if (NElts <= 1) return;
765 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
766}
767
768template <class IteratorTy>
769inline void array_pod_sort(
770 IteratorTy Start, IteratorTy End,
771 int (*Compare)(
772 const typename std::iterator_traits<IteratorTy>::value_type *,
773 const typename std::iterator_traits<IteratorTy>::value_type *)) {
774 // Don't inefficiently call qsort with one element or trigger undefined
775 // behavior with an empty sequence.
776 auto NElts = End - Start;
777 if (NElts <= 1) return;
778 qsort(&*Start, NElts, sizeof(*Start),
779 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
780}
781
782//===----------------------------------------------------------------------===//
783// Extra additions to <algorithm>
784//===----------------------------------------------------------------------===//
785
786/// For a container of pointers, deletes the pointers and then clears the
787/// container.
788template<typename Container>
789void DeleteContainerPointers(Container &C) {
790 for (auto V : C)
791 delete V;
792 C.clear();
793}
794
795/// In a container of pairs (usually a map) whose second element is a pointer,
796/// deletes the second elements and then clears the container.
797template<typename Container>
798void DeleteContainerSeconds(Container &C) {
799 for (auto &V : C)
800 delete V.second;
801 C.clear();
802}
803
804/// Provide wrappers to std::for_each which take ranges instead of having to
805/// pass begin/end explicitly.
806template <typename R, typename UnaryPredicate>
807UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
808 return std::for_each(adl_begin(Range), adl_end(Range), P);
809}
810
811/// Provide wrappers to std::all_of which take ranges instead of having to pass
812/// begin/end explicitly.
813template <typename R, typename UnaryPredicate>
814bool all_of(R &&Range, UnaryPredicate P) {
815 return std::all_of(adl_begin(Range), adl_end(Range), P);
816}
817
818/// Provide wrappers to std::any_of which take ranges instead of having to pass
819/// begin/end explicitly.
820template <typename R, typename UnaryPredicate>
821bool any_of(R &&Range, UnaryPredicate P) {
822 return std::any_of(adl_begin(Range), adl_end(Range), P);
823}
824
825/// Provide wrappers to std::none_of which take ranges instead of having to pass
826/// begin/end explicitly.
827template <typename R, typename UnaryPredicate>
828bool none_of(R &&Range, UnaryPredicate P) {
829 return std::none_of(adl_begin(Range), adl_end(Range), P);
830}
831
832/// Provide wrappers to std::find which take ranges instead of having to pass
833/// begin/end explicitly.
834template <typename R, typename T>
835auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
836 return std::find(adl_begin(Range), adl_end(Range), Val);
837}
838
839/// Provide wrappers to std::find_if which take ranges instead of having to pass
840/// begin/end explicitly.
841template <typename R, typename UnaryPredicate>
842auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
843 return std::find_if(adl_begin(Range), adl_end(Range), P);
844}
845
846template <typename R, typename UnaryPredicate>
847auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
848 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
849}
850
851/// Provide wrappers to std::remove_if which take ranges instead of having to
852/// pass begin/end explicitly.
853template <typename R, typename UnaryPredicate>
854auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
855 return std::remove_if(adl_begin(Range), adl_end(Range), P);
856}
857
858/// Provide wrappers to std::copy_if which take ranges instead of having to
859/// pass begin/end explicitly.
860template <typename R, typename OutputIt, typename UnaryPredicate>
861OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
862 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
863}
864
865template <typename R, typename OutputIt>
866OutputIt copy(R &&Range, OutputIt Out) {
867 return std::copy(adl_begin(Range), adl_end(Range), Out);
868}
869
870/// Wrapper function around std::find to detect if an element exists
871/// in a container.
872template <typename R, typename E>
873bool is_contained(R &&Range, const E &Element) {
874 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
875}
876
877/// Wrapper function around std::count to count the number of times an element
878/// \p Element occurs in the given range \p Range.
879template <typename R, typename E>
880auto count(R &&Range, const E &Element) ->
881 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
882 return std::count(adl_begin(Range), adl_end(Range), Element);
883}
884
885/// Wrapper function around std::count_if to count the number of times an
886/// element satisfying a given predicate occurs in a range.
887template <typename R, typename UnaryPredicate>
888auto count_if(R &&Range, UnaryPredicate P) ->
889 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
890 return std::count_if(adl_begin(Range), adl_end(Range), P);
891}
892
893/// Wrapper function around std::transform to apply a function to a range and
894/// store the result elsewhere.
895template <typename R, typename OutputIt, typename UnaryPredicate>
896OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
897 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
898}
899
900/// Provide wrappers to std::partition which take ranges instead of having to
901/// pass begin/end explicitly.
902template <typename R, typename UnaryPredicate>
903auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
904 return std::partition(adl_begin(Range), adl_end(Range), P);
905}
906
907/// Provide wrappers to std::lower_bound which take ranges instead of having to
908/// pass begin/end explicitly.
909template <typename R, typename ForwardIt>
910auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
911 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
912}
913
914/// \brief Given a range of type R, iterate the entire range and return a
915/// SmallVector with elements of the vector. This is useful, for example,
916/// when you want to iterate a range and then sort the results.
917template <unsigned Size, typename R>
918SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
919to_vector(R &&Range) {
920 return {adl_begin(Range), adl_end(Range)};
921}
922
923/// Provide a container algorithm similar to C++ Library Fundamentals v2's
924/// `erase_if` which is equivalent to:
925///
926/// C.erase(remove_if(C, pred), C.end());
927///
928/// This version works for any container with an erase method call accepting
929/// two iterators.
930template <typename Container, typename UnaryPredicate>
931void erase_if(Container &C, UnaryPredicate P) {
932 C.erase(remove_if(C, P), C.end());
933}
934
935//===----------------------------------------------------------------------===//
936// Extra additions to <memory>
937//===----------------------------------------------------------------------===//
938
939// Implement make_unique according to N3656.
940
941/// \brief Constructs a `new T()` with the given args and returns a
942/// `unique_ptr<T>` which owns the object.
943///
944/// Example:
945///
946/// auto p = make_unique<int>();
947/// auto p = make_unique<std::tuple<int, int>>(0, 1);
948template <class T, class... Args>
949typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
950make_unique(Args &&... args) {
951 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
59
Calling 'forward'
60
Returning from 'forward'
61
Calling 'forward'
62
Returning from 'forward'
952}
953
954/// \brief Constructs a `new T[n]` with the given args and returns a
955/// `unique_ptr<T[]>` which owns the object.
956///
957/// \param n size of the new array.
958///
959/// Example:
960///
961/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
962template <class T>
963typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
964 std::unique_ptr<T>>::type
965make_unique(size_t n) {
966 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
967}
968
969/// This function isn't used and is only here to provide better compile errors.
970template <class T, class... Args>
971typename std::enable_if<std::extent<T>::value != 0>::type
972make_unique(Args &&...) = delete;
973
974struct FreeDeleter {
975 void operator()(void* v) {
976 ::free(v);
977 }
978};
979
980template<typename First, typename Second>
981struct pair_hash {
982 size_t operator()(const std::pair<First, Second> &P) const {
983 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
984 }
985};
986
987/// A functor like C++14's std::less<void> in its absence.
988struct less {
989 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
990 return std::forward<A>(a) < std::forward<B>(b);
991 }
992};
993
994/// A functor like C++14's std::equal<void> in its absence.
995struct equal {
996 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
997 return std::forward<A>(a) == std::forward<B>(b);
998 }
999};
1000
1001/// Binary functor that adapts to any other binary functor after dereferencing
1002/// operands.
1003template <typename T> struct deref {
1004 T func;
1005
1006 // Could be further improved to cope with non-derivable functors and
1007 // non-binary functors (should be a variadic template member function
1008 // operator()).
1009 template <typename A, typename B>
1010 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1011 assert(lhs)(static_cast <bool> (lhs) ? void (0) : __assert_fail ("lhs"
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/STLExtras.h"
, 1011, __extension__ __PRETTY_FUNCTION__))
;
1012 assert(rhs)(static_cast <bool> (rhs) ? void (0) : __assert_fail ("rhs"
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/STLExtras.h"
, 1012, __extension__ __PRETTY_FUNCTION__))
;
1013 return func(*lhs, *rhs);
1014 }
1015};
1016
1017namespace detail {
1018
1019template <typename R> class enumerator_iter;
1020
1021template <typename R> struct result_pair {
1022 friend class enumerator_iter<R>;
1023
1024 result_pair() = default;
1025 result_pair(std::size_t Index, IterOfRange<R> Iter)
1026 : Index(Index), Iter(Iter) {}
1027
1028 result_pair<R> &operator=(const result_pair<R> &Other) {
1029 Index = Other.Index;
1030 Iter = Other.Iter;
1031 return *this;
1032 }
1033
1034 std::size_t index() const { return Index; }
1035 const ValueOfRange<R> &value() const { return *Iter; }
1036 ValueOfRange<R> &value() { return *Iter; }
1037
1038private:
1039 std::size_t Index = std::numeric_limits<std::size_t>::max();
1040 IterOfRange<R> Iter;
1041};
1042
1043template <typename R>
1044class enumerator_iter
1045 : public iterator_facade_base<
1046 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1047 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1048 typename std::iterator_traits<IterOfRange<R>>::pointer,
1049 typename std::iterator_traits<IterOfRange<R>>::reference> {
1050 using result_type = result_pair<R>;
1051
1052public:
1053 explicit enumerator_iter(IterOfRange<R> EndIter)
1054 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1055
1056 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1057 : Result(Index, Iter) {}
1058
1059 result_type &operator*() { return Result; }
1060 const result_type &operator*() const { return Result; }
1061
1062 enumerator_iter<R> &operator++() {
1063 assert(Result.Index != std::numeric_limits<size_t>::max())(static_cast <bool> (Result.Index != std::numeric_limits
<size_t>::max()) ? void (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-7~svn326246/include/llvm/ADT/STLExtras.h"
, 1063, __extension__ __PRETTY_FUNCTION__))
;
1064 ++Result.Iter;
1065 ++Result.Index;
1066 return *this;
1067 }
1068
1069 bool operator==(const enumerator_iter<R> &RHS) const {
1070 // Don't compare indices here, only iterators. It's possible for an end
1071 // iterator to have different indices depending on whether it was created
1072 // by calling std::end() versus incrementing a valid iterator.
1073 return Result.Iter == RHS.Result.Iter;
1074 }
1075
1076 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1077 Result = Other.Result;
1078 return *this;
1079 }
1080
1081private:
1082 result_type Result;
1083};
1084
1085template <typename R> class enumerator {
1086public:
1087 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1088
1089 enumerator_iter<R> begin() {
1090 return enumerator_iter<R>(0, std::begin(TheRange));
1091 }
1092
1093 enumerator_iter<R> end() {
1094 return enumerator_iter<R>(std::end(TheRange));
1095 }
1096
1097private:
1098 R TheRange;
1099};
1100
1101} // end namespace detail
1102
1103/// Given an input range, returns a new range whose values are are pair (A,B)
1104/// such that A is the 0-based index of the item in the sequence, and B is
1105/// the value from the original sequence. Example:
1106///
1107/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1108/// for (auto X : enumerate(Items)) {
1109/// printf("Item %d - %c\n", X.index(), X.value());
1110/// }
1111///
1112/// Output:
1113/// Item 0 - A
1114/// Item 1 - B
1115/// Item 2 - C
1116/// Item 3 - D
1117///
1118template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1119 return detail::enumerator<R>(std::forward<R>(TheRange));
1120}
1121
1122namespace detail {
1123
1124template <typename F, typename Tuple, std::size_t... I>
1125auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1126 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1127 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1128}
1129
1130} // end namespace detail
1131
1132/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1133/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1134/// return the result.
1135template <typename F, typename Tuple>
1136auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1137 std::forward<F>(f), std::forward<Tuple>(t),
1138 build_index_impl<
1139 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1140 using Indices = build_index_impl<
1141 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1142
1143 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1144 Indices{});
1145}
1146
1147} // end namespace llvm
1148
1149#endif // LLVM_ADT_STLEXTRAS_H