Bug Summary

File:lib/Bitcode/Writer/BitcodeWriter.cpp
Warning:line 2961, column 19
Assigned value is garbage or undefined

Annotated Source Code

1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/BitcodeWriter.h"
15#include "ValueEnumerator.h"
16#include "llvm/ADT/StringExtras.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/Bitcode/BitstreamWriter.h"
19#include "llvm/Bitcode/LLVMBitCodes.h"
20#include "llvm/IR/CallSite.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/DebugInfoMetadata.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/InlineAsm.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/LLVMContext.h"
27#include "llvm/IR/Module.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/IR/UseListOrder.h"
30#include "llvm/IR/ValueSymbolTable.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/Program.h"
34#include "llvm/Support/SHA1.h"
35#include "llvm/Support/raw_ostream.h"
36#include <cctype>
37#include <map>
38using namespace llvm;
39
40namespace {
41
42cl::opt<unsigned>
43 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
44 cl::desc("Number of metadatas above which we emit an index "
45 "to enable lazy-loading"));
46/// These are manifest constants used by the bitcode writer. They do not need to
47/// be kept in sync with the reader, but need to be consistent within this file.
48enum {
49 // VALUE_SYMTAB_BLOCK abbrev id's.
50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51 VST_ENTRY_7_ABBREV,
52 VST_ENTRY_6_ABBREV,
53 VST_BBENTRY_6_ABBREV,
54
55 // CONSTANTS_BLOCK abbrev id's.
56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
57 CONSTANTS_INTEGER_ABBREV,
58 CONSTANTS_CE_CAST_Abbrev,
59 CONSTANTS_NULL_Abbrev,
60
61 // FUNCTION_BLOCK abbrev id's.
62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
63 FUNCTION_INST_BINOP_ABBREV,
64 FUNCTION_INST_BINOP_FLAGS_ABBREV,
65 FUNCTION_INST_CAST_ABBREV,
66 FUNCTION_INST_RET_VOID_ABBREV,
67 FUNCTION_INST_RET_VAL_ABBREV,
68 FUNCTION_INST_UNREACHABLE_ABBREV,
69 FUNCTION_INST_GEP_ABBREV,
70};
71
72/// Abstract class to manage the bitcode writing, subclassed for each bitcode
73/// file type.
74class BitcodeWriterBase {
75protected:
76 /// The stream created and owned by the client.
77 BitstreamWriter &Stream;
78
79 /// Saves the offset of the VSTOffset record that must eventually be
80 /// backpatched with the offset of the actual VST.
81 uint64_t VSTOffsetPlaceholder = 0;
82
83public:
84 /// Constructs a BitcodeWriterBase object that writes to the provided
85 /// \p Stream.
86 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {}
87
88protected:
89 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
90 void writeValueSymbolTableForwardDecl();
91 void writeBitcodeHeader();
92};
93
94/// Class to manage the bitcode writing for a module.
95class ModuleBitcodeWriter : public BitcodeWriterBase {
96 /// Pointer to the buffer allocated by caller for bitcode writing.
97 const SmallVectorImpl<char> &Buffer;
98
99 /// The Module to write to bitcode.
100 const Module &M;
101
102 /// Enumerates ids for all values in the module.
103 ValueEnumerator VE;
104
105 /// Optional per-module index to write for ThinLTO.
106 const ModuleSummaryIndex *Index;
107
108 /// True if a module hash record should be written.
109 bool GenerateHash;
110
111 /// If non-null, when GenerateHash is true, the resulting hash is written
112 /// into ModHash. When GenerateHash is false, that specified value
113 /// is used as the hash instead of computing from the generated bitcode.
114 /// Can be used to produce the same module hash for a minimized bitcode
115 /// used just for the thin link as in the regular full bitcode that will
116 /// be used in the backend.
117 ModuleHash *ModHash;
118
119 /// The start bit of the identification block.
120 uint64_t BitcodeStartBit;
121
122 /// Map that holds the correspondence between GUIDs in the summary index,
123 /// that came from indirect call profiles, and a value id generated by this
124 /// class to use in the VST and summary block records.
125 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
126
127 /// Tracks the last value id recorded in the GUIDToValueMap.
128 unsigned GlobalValueId;
129
130public:
131 /// Constructs a ModuleBitcodeWriter object for the given Module,
132 /// writing to the provided \p Buffer.
133 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
134 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
135 const ModuleSummaryIndex *Index, bool GenerateHash,
136 ModuleHash *ModHash = nullptr)
137 : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M),
138 VE(*M, ShouldPreserveUseListOrder), Index(Index),
139 GenerateHash(GenerateHash), ModHash(ModHash),
140 BitcodeStartBit(Stream.GetCurrentBitNo()) {
141 // Assign ValueIds to any callee values in the index that came from
142 // indirect call profiles and were recorded as a GUID not a Value*
143 // (which would have been assigned an ID by the ValueEnumerator).
144 // The starting ValueId is just after the number of values in the
145 // ValueEnumerator, so that they can be emitted in the VST.
146 GlobalValueId = VE.getValues().size();
147 if (!Index)
148 return;
149 for (const auto &GUIDSummaryLists : *Index)
150 // Examine all summaries for this GUID.
151 for (auto &Summary : GUIDSummaryLists.second)
152 if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
153 // For each call in the function summary, see if the call
154 // is to a GUID (which means it is for an indirect call,
155 // otherwise we would have a Value for it). If so, synthesize
156 // a value id.
157 for (auto &CallEdge : FS->calls())
158 if (CallEdge.first.isGUID())
159 assignValueId(CallEdge.first.getGUID());
160 }
161
162 /// Emit the current module to the bitstream.
163 void write();
164
165private:
166 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
167
168 void writeAttributeGroupTable();
169 void writeAttributeTable();
170 void writeTypeTable();
171 void writeComdats();
172 void writeModuleInfo();
173 void writeValueAsMetadata(const ValueAsMetadata *MD,
174 SmallVectorImpl<uint64_t> &Record);
175 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
176 unsigned Abbrev);
177 unsigned createDILocationAbbrev();
178 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
179 unsigned &Abbrev);
180 unsigned createGenericDINodeAbbrev();
181 void writeGenericDINode(const GenericDINode *N,
182 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
183 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
184 unsigned Abbrev);
185 void writeDIEnumerator(const DIEnumerator *N,
186 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
187 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
188 unsigned Abbrev);
189 void writeDIDerivedType(const DIDerivedType *N,
190 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
191 void writeDICompositeType(const DICompositeType *N,
192 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
193 void writeDISubroutineType(const DISubroutineType *N,
194 SmallVectorImpl<uint64_t> &Record,
195 unsigned Abbrev);
196 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
197 unsigned Abbrev);
198 void writeDICompileUnit(const DICompileUnit *N,
199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
200 void writeDISubprogram(const DISubprogram *N,
201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
202 void writeDILexicalBlock(const DILexicalBlock *N,
203 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
204 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
205 SmallVectorImpl<uint64_t> &Record,
206 unsigned Abbrev);
207 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
208 unsigned Abbrev);
209 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
210 unsigned Abbrev);
211 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
212 unsigned Abbrev);
213 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
214 unsigned Abbrev);
215 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
216 SmallVectorImpl<uint64_t> &Record,
217 unsigned Abbrev);
218 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
219 SmallVectorImpl<uint64_t> &Record,
220 unsigned Abbrev);
221 void writeDIGlobalVariable(const DIGlobalVariable *N,
222 SmallVectorImpl<uint64_t> &Record,
223 unsigned Abbrev);
224 void writeDILocalVariable(const DILocalVariable *N,
225 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
226 void writeDIExpression(const DIExpression *N,
227 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
228 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
229 SmallVectorImpl<uint64_t> &Record,
230 unsigned Abbrev);
231 void writeDIObjCProperty(const DIObjCProperty *N,
232 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
233 void writeDIImportedEntity(const DIImportedEntity *N,
234 SmallVectorImpl<uint64_t> &Record,
235 unsigned Abbrev);
236 unsigned createNamedMetadataAbbrev();
237 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
238 unsigned createMetadataStringsAbbrev();
239 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
240 SmallVectorImpl<uint64_t> &Record);
241 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
242 SmallVectorImpl<uint64_t> &Record,
243 std::vector<unsigned> *MDAbbrevs = nullptr,
244 std::vector<uint64_t> *IndexPos = nullptr);
245 void writeModuleMetadata();
246 void writeFunctionMetadata(const Function &F);
247 void writeFunctionMetadataAttachment(const Function &F);
248 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
249 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
250 const GlobalObject &GO);
251 void writeModuleMetadataKinds();
252 void writeOperandBundleTags();
253 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
254 void writeModuleConstants();
255 bool pushValueAndType(const Value *V, unsigned InstID,
256 SmallVectorImpl<unsigned> &Vals);
257 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
258 void pushValue(const Value *V, unsigned InstID,
259 SmallVectorImpl<unsigned> &Vals);
260 void pushValueSigned(const Value *V, unsigned InstID,
261 SmallVectorImpl<uint64_t> &Vals);
262 void writeInstruction(const Instruction &I, unsigned InstID,
263 SmallVectorImpl<unsigned> &Vals);
264 void writeValueSymbolTable(
265 const ValueSymbolTable &VST, bool IsModuleLevel = false,
266 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
267 void writeUseList(UseListOrder &&Order);
268 void writeUseListBlock(const Function *F);
269 void
270 writeFunction(const Function &F,
271 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
272 void writeBlockInfo();
273 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
274 GlobalValueSummary *Summary,
275 unsigned ValueID,
276 unsigned FSCallsAbbrev,
277 unsigned FSCallsProfileAbbrev,
278 const Function &F);
279 void writeModuleLevelReferences(const GlobalVariable &V,
280 SmallVector<uint64_t, 64> &NameVals,
281 unsigned FSModRefsAbbrev);
282 void writePerModuleGlobalValueSummary();
283 void writeModuleHash(size_t BlockStartPos);
284
285 void assignValueId(GlobalValue::GUID ValGUID) {
286 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
287 }
288 unsigned getValueId(GlobalValue::GUID ValGUID) {
289 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
290 // Expect that any GUID value had a value Id assigned by an
291 // earlier call to assignValueId.
292 assert(VMI != GUIDToValueIdMap.end() &&((VMI != GUIDToValueIdMap.end() && "GUID does not have assigned value Id"
) ? static_cast<void> (0) : __assert_fail ("VMI != GUIDToValueIdMap.end() && \"GUID does not have assigned value Id\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 293, __PRETTY_FUNCTION__))
293 "GUID does not have assigned value Id")((VMI != GUIDToValueIdMap.end() && "GUID does not have assigned value Id"
) ? static_cast<void> (0) : __assert_fail ("VMI != GUIDToValueIdMap.end() && \"GUID does not have assigned value Id\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 293, __PRETTY_FUNCTION__))
;
294 return VMI->second;
295 }
296 // Helper to get the valueId for the type of value recorded in VI.
297 unsigned getValueId(ValueInfo VI) {
298 if (VI.isGUID())
299 return getValueId(VI.getGUID());
300 return VE.getValueID(VI.getValue());
301 }
302 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
303};
304
305/// Class to manage the bitcode writing for a combined index.
306class IndexBitcodeWriter : public BitcodeWriterBase {
307 /// The combined index to write to bitcode.
308 const ModuleSummaryIndex &Index;
309
310 /// When writing a subset of the index for distributed backends, client
311 /// provides a map of modules to the corresponding GUIDs/summaries to write.
312 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
313
314 /// Map that holds the correspondence between the GUID used in the combined
315 /// index and a value id generated by this class to use in references.
316 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
317
318 /// Tracks the last value id recorded in the GUIDToValueMap.
319 unsigned GlobalValueId = 0;
320
321public:
322 /// Constructs a IndexBitcodeWriter object for the given combined index,
323 /// writing to the provided \p Buffer. When writing a subset of the index
324 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
325 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index,
326 const std::map<std::string, GVSummaryMapTy>
327 *ModuleToSummariesForIndex = nullptr)
328 : BitcodeWriterBase(Stream), Index(Index),
329 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
330 // Assign unique value ids to all summaries to be written, for use
331 // in writing out the call graph edges. Save the mapping from GUID
332 // to the new global value id to use when writing those edges, which
333 // are currently saved in the index in terms of GUID.
334 for (const auto &I : *this)
335 GUIDToValueIdMap[I.first] = ++GlobalValueId;
336 }
337
338 /// The below iterator returns the GUID and associated summary.
339 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
340
341 /// Iterator over the value GUID and summaries to be written to bitcode,
342 /// hides the details of whether they are being pulled from the entire
343 /// index or just those in a provided ModuleToSummariesForIndex map.
344 class iterator
345 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
346 GVInfo> {
347 /// Enables access to parent class.
348 const IndexBitcodeWriter &Writer;
349
350 // Iterators used when writing only those summaries in a provided
351 // ModuleToSummariesForIndex map:
352
353 /// Points to the last element in outer ModuleToSummariesForIndex map.
354 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack;
355 /// Iterator on outer ModuleToSummariesForIndex map.
356 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter;
357 /// Iterator on an inner global variable summary map.
358 GVSummaryMapTy::const_iterator ModuleGVSummariesIter;
359
360 // Iterators used when writing all summaries in the index:
361
362 /// Points to the last element in the Index outer GlobalValueMap.
363 const_gvsummary_iterator IndexSummariesBack;
364 /// Iterator on outer GlobalValueMap.
365 const_gvsummary_iterator IndexSummariesIter;
366 /// Iterator on an inner GlobalValueSummaryList.
367 GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
368
369 public:
370 /// Construct iterator from parent \p Writer and indicate if we are
371 /// constructing the end iterator.
372 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
373 // Set up the appropriate set of iterators given whether we are writing
374 // the full index or just a subset.
375 // Can't setup the Back or inner iterators if the corresponding map
376 // is empty. This will be handled specially in operator== as well.
377 if (Writer.ModuleToSummariesForIndex &&
378 !Writer.ModuleToSummariesForIndex->empty()) {
379 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
380 std::next(ModuleSummariesBack) !=
381 Writer.ModuleToSummariesForIndex->end();
382 ModuleSummariesBack++)
383 ;
384 ModuleSummariesIter = !IsAtEnd
385 ? Writer.ModuleToSummariesForIndex->begin()
386 : ModuleSummariesBack;
387 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
388 : ModuleSummariesBack->second.end();
389 } else if (!Writer.ModuleToSummariesForIndex &&
390 Writer.Index.begin() != Writer.Index.end()) {
391 for (IndexSummariesBack = Writer.Index.begin();
392 std::next(IndexSummariesBack) != Writer.Index.end();
393 IndexSummariesBack++)
394 ;
395 IndexSummariesIter =
396 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
397 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
398 : IndexSummariesBack->second.end();
399 }
400 }
401
402 /// Increment the appropriate set of iterators.
403 iterator &operator++() {
404 // First the inner iterator is incremented, then if it is at the end
405 // and there are more outer iterations to go, the inner is reset to
406 // the start of the next inner list.
407 if (Writer.ModuleToSummariesForIndex) {
408 ++ModuleGVSummariesIter;
409 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
410 ModuleSummariesIter != ModuleSummariesBack) {
411 ++ModuleSummariesIter;
412 ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
413 }
414 } else {
415 ++IndexGVSummariesIter;
416 if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
417 IndexSummariesIter != IndexSummariesBack) {
418 ++IndexSummariesIter;
419 IndexGVSummariesIter = IndexSummariesIter->second.begin();
420 }
421 }
422 return *this;
423 }
424
425 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
426 /// outer and inner iterator positions.
427 GVInfo operator*() {
428 if (Writer.ModuleToSummariesForIndex)
429 return std::make_pair(ModuleGVSummariesIter->first,
430 ModuleGVSummariesIter->second);
431 return std::make_pair(IndexSummariesIter->first,
432 IndexGVSummariesIter->get());
433 }
434
435 /// Checks if the iterators are equal, with special handling for empty
436 /// indexes.
437 bool operator==(const iterator &RHS) const {
438 if (Writer.ModuleToSummariesForIndex) {
439 // First ensure that both are writing the same subset.
440 if (Writer.ModuleToSummariesForIndex !=
441 RHS.Writer.ModuleToSummariesForIndex)
442 return false;
443 // Already determined above that maps are the same, so if one is
444 // empty, they both are.
445 if (Writer.ModuleToSummariesForIndex->empty())
446 return true;
447 // Ensure the ModuleGVSummariesIter are iterating over the same
448 // container before checking them below.
449 if (ModuleSummariesIter != RHS.ModuleSummariesIter)
450 return false;
451 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
452 }
453 // First ensure RHS also writing the full index, and that both are
454 // writing the same full index.
455 if (RHS.Writer.ModuleToSummariesForIndex ||
456 &Writer.Index != &RHS.Writer.Index)
457 return false;
458 // Already determined above that maps are the same, so if one is
459 // empty, they both are.
460 if (Writer.Index.begin() == Writer.Index.end())
461 return true;
462 // Ensure the IndexGVSummariesIter are iterating over the same
463 // container before checking them below.
464 if (IndexSummariesIter != RHS.IndexSummariesIter)
465 return false;
466 return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
467 }
468 };
469
470 /// Obtain the start iterator over the summaries to be written.
471 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
472 /// Obtain the end iterator over the summaries to be written.
473 iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
474
475 /// Main entry point for writing a combined index to bitcode.
476 void write();
477
478private:
479 void writeIndex();
480 void writeModStrings();
481 void writeCombinedValueSymbolTable();
482 void writeCombinedGlobalValueSummary();
483
484 /// Indicates whether the provided \p ModulePath should be written into
485 /// the module string table, e.g. if full index written or if it is in
486 /// the provided subset.
487 bool doIncludeModule(StringRef ModulePath) {
488 return !ModuleToSummariesForIndex ||
489 ModuleToSummariesForIndex->count(ModulePath);
490 }
491
492 bool hasValueId(GlobalValue::GUID ValGUID) {
493 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
494 return VMI != GUIDToValueIdMap.end();
495 }
496 unsigned getValueId(GlobalValue::GUID ValGUID) {
497 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
498 // If this GUID doesn't have an entry, assign one.
499 if (VMI == GUIDToValueIdMap.end()) {
500 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
501 return GlobalValueId;
502 } else {
503 return VMI->second;
504 }
505 }
506 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
507};
508} // end anonymous namespace
509
510static unsigned getEncodedCastOpcode(unsigned Opcode) {
511 switch (Opcode) {
512 default: llvm_unreachable("Unknown cast instruction!")::llvm::llvm_unreachable_internal("Unknown cast instruction!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 512)
;
513 case Instruction::Trunc : return bitc::CAST_TRUNC;
514 case Instruction::ZExt : return bitc::CAST_ZEXT;
515 case Instruction::SExt : return bitc::CAST_SEXT;
516 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
517 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
518 case Instruction::UIToFP : return bitc::CAST_UITOFP;
519 case Instruction::SIToFP : return bitc::CAST_SITOFP;
520 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
521 case Instruction::FPExt : return bitc::CAST_FPEXT;
522 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
523 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
524 case Instruction::BitCast : return bitc::CAST_BITCAST;
525 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
526 }
527}
528
529static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
530 switch (Opcode) {
531 default: llvm_unreachable("Unknown binary instruction!")::llvm::llvm_unreachable_internal("Unknown binary instruction!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 531)
;
532 case Instruction::Add:
533 case Instruction::FAdd: return bitc::BINOP_ADD;
534 case Instruction::Sub:
535 case Instruction::FSub: return bitc::BINOP_SUB;
536 case Instruction::Mul:
537 case Instruction::FMul: return bitc::BINOP_MUL;
538 case Instruction::UDiv: return bitc::BINOP_UDIV;
539 case Instruction::FDiv:
540 case Instruction::SDiv: return bitc::BINOP_SDIV;
541 case Instruction::URem: return bitc::BINOP_UREM;
542 case Instruction::FRem:
543 case Instruction::SRem: return bitc::BINOP_SREM;
544 case Instruction::Shl: return bitc::BINOP_SHL;
545 case Instruction::LShr: return bitc::BINOP_LSHR;
546 case Instruction::AShr: return bitc::BINOP_ASHR;
547 case Instruction::And: return bitc::BINOP_AND;
548 case Instruction::Or: return bitc::BINOP_OR;
549 case Instruction::Xor: return bitc::BINOP_XOR;
550 }
551}
552
553static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
554 switch (Op) {
555 default: llvm_unreachable("Unknown RMW operation!")::llvm::llvm_unreachable_internal("Unknown RMW operation!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 555)
;
556 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
557 case AtomicRMWInst::Add: return bitc::RMW_ADD;
558 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
559 case AtomicRMWInst::And: return bitc::RMW_AND;
560 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
561 case AtomicRMWInst::Or: return bitc::RMW_OR;
562 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
563 case AtomicRMWInst::Max: return bitc::RMW_MAX;
564 case AtomicRMWInst::Min: return bitc::RMW_MIN;
565 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
566 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
567 }
568}
569
570static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
571 switch (Ordering) {
572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
579 }
580 llvm_unreachable("Invalid ordering")::llvm::llvm_unreachable_internal("Invalid ordering", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 580)
;
581}
582
583static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
584 switch (SynchScope) {
585 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
586 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
587 }
588 llvm_unreachable("Invalid synch scope")::llvm::llvm_unreachable_internal("Invalid synch scope", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 588)
;
589}
590
591static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
592 StringRef Str, unsigned AbbrevToUse) {
593 SmallVector<unsigned, 64> Vals;
594
595 // Code: [strchar x N]
596 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
597 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
598 AbbrevToUse = 0;
599 Vals.push_back(Str[i]);
600 }
601
602 // Emit the finished record.
603 Stream.EmitRecord(Code, Vals, AbbrevToUse);
604}
605
606static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
607 switch (Kind) {
608 case Attribute::Alignment:
609 return bitc::ATTR_KIND_ALIGNMENT;
610 case Attribute::AllocSize:
611 return bitc::ATTR_KIND_ALLOC_SIZE;
612 case Attribute::AlwaysInline:
613 return bitc::ATTR_KIND_ALWAYS_INLINE;
614 case Attribute::ArgMemOnly:
615 return bitc::ATTR_KIND_ARGMEMONLY;
616 case Attribute::Builtin:
617 return bitc::ATTR_KIND_BUILTIN;
618 case Attribute::ByVal:
619 return bitc::ATTR_KIND_BY_VAL;
620 case Attribute::Convergent:
621 return bitc::ATTR_KIND_CONVERGENT;
622 case Attribute::InAlloca:
623 return bitc::ATTR_KIND_IN_ALLOCA;
624 case Attribute::Cold:
625 return bitc::ATTR_KIND_COLD;
626 case Attribute::InaccessibleMemOnly:
627 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
628 case Attribute::InaccessibleMemOrArgMemOnly:
629 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
630 case Attribute::InlineHint:
631 return bitc::ATTR_KIND_INLINE_HINT;
632 case Attribute::InReg:
633 return bitc::ATTR_KIND_IN_REG;
634 case Attribute::JumpTable:
635 return bitc::ATTR_KIND_JUMP_TABLE;
636 case Attribute::MinSize:
637 return bitc::ATTR_KIND_MIN_SIZE;
638 case Attribute::Naked:
639 return bitc::ATTR_KIND_NAKED;
640 case Attribute::Nest:
641 return bitc::ATTR_KIND_NEST;
642 case Attribute::NoAlias:
643 return bitc::ATTR_KIND_NO_ALIAS;
644 case Attribute::NoBuiltin:
645 return bitc::ATTR_KIND_NO_BUILTIN;
646 case Attribute::NoCapture:
647 return bitc::ATTR_KIND_NO_CAPTURE;
648 case Attribute::NoDuplicate:
649 return bitc::ATTR_KIND_NO_DUPLICATE;
650 case Attribute::NoImplicitFloat:
651 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
652 case Attribute::NoInline:
653 return bitc::ATTR_KIND_NO_INLINE;
654 case Attribute::NoRecurse:
655 return bitc::ATTR_KIND_NO_RECURSE;
656 case Attribute::NonLazyBind:
657 return bitc::ATTR_KIND_NON_LAZY_BIND;
658 case Attribute::NonNull:
659 return bitc::ATTR_KIND_NON_NULL;
660 case Attribute::Dereferenceable:
661 return bitc::ATTR_KIND_DEREFERENCEABLE;
662 case Attribute::DereferenceableOrNull:
663 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
664 case Attribute::NoRedZone:
665 return bitc::ATTR_KIND_NO_RED_ZONE;
666 case Attribute::NoReturn:
667 return bitc::ATTR_KIND_NO_RETURN;
668 case Attribute::NoUnwind:
669 return bitc::ATTR_KIND_NO_UNWIND;
670 case Attribute::OptimizeForSize:
671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
672 case Attribute::OptimizeNone:
673 return bitc::ATTR_KIND_OPTIMIZE_NONE;
674 case Attribute::ReadNone:
675 return bitc::ATTR_KIND_READ_NONE;
676 case Attribute::ReadOnly:
677 return bitc::ATTR_KIND_READ_ONLY;
678 case Attribute::Returned:
679 return bitc::ATTR_KIND_RETURNED;
680 case Attribute::ReturnsTwice:
681 return bitc::ATTR_KIND_RETURNS_TWICE;
682 case Attribute::SExt:
683 return bitc::ATTR_KIND_S_EXT;
684 case Attribute::StackAlignment:
685 return bitc::ATTR_KIND_STACK_ALIGNMENT;
686 case Attribute::StackProtect:
687 return bitc::ATTR_KIND_STACK_PROTECT;
688 case Attribute::StackProtectReq:
689 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
690 case Attribute::StackProtectStrong:
691 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
692 case Attribute::SafeStack:
693 return bitc::ATTR_KIND_SAFESTACK;
694 case Attribute::StructRet:
695 return bitc::ATTR_KIND_STRUCT_RET;
696 case Attribute::SanitizeAddress:
697 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
698 case Attribute::SanitizeThread:
699 return bitc::ATTR_KIND_SANITIZE_THREAD;
700 case Attribute::SanitizeMemory:
701 return bitc::ATTR_KIND_SANITIZE_MEMORY;
702 case Attribute::SwiftError:
703 return bitc::ATTR_KIND_SWIFT_ERROR;
704 case Attribute::SwiftSelf:
705 return bitc::ATTR_KIND_SWIFT_SELF;
706 case Attribute::UWTable:
707 return bitc::ATTR_KIND_UW_TABLE;
708 case Attribute::WriteOnly:
709 return bitc::ATTR_KIND_WRITEONLY;
710 case Attribute::ZExt:
711 return bitc::ATTR_KIND_Z_EXT;
712 case Attribute::EndAttrKinds:
713 llvm_unreachable("Can not encode end-attribute kinds marker.")::llvm::llvm_unreachable_internal("Can not encode end-attribute kinds marker."
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 713)
;
714 case Attribute::None:
715 llvm_unreachable("Can not encode none-attribute.")::llvm::llvm_unreachable_internal("Can not encode none-attribute."
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 715)
;
716 }
717
718 llvm_unreachable("Trying to encode unknown attribute")::llvm::llvm_unreachable_internal("Trying to encode unknown attribute"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 718)
;
719}
720
721void ModuleBitcodeWriter::writeAttributeGroupTable() {
722 const std::vector<AttributeList> &AttrGrps = VE.getAttributeGroups();
723 if (AttrGrps.empty()) return;
724
725 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
726
727 SmallVector<uint64_t, 64> Record;
728 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
729 AttributeList AS = AttrGrps[i];
730 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
731 AttributeList A = AS.getSlotAttributes(i);
732
733 Record.push_back(VE.getAttributeGroupID(A));
734 Record.push_back(AS.getSlotIndex(i));
735
736 for (AttributeList::iterator I = AS.begin(0), E = AS.end(0); I != E;
737 ++I) {
738 Attribute Attr = *I;
739 if (Attr.isEnumAttribute()) {
740 Record.push_back(0);
741 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
742 } else if (Attr.isIntAttribute()) {
743 Record.push_back(1);
744 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
745 Record.push_back(Attr.getValueAsInt());
746 } else {
747 StringRef Kind = Attr.getKindAsString();
748 StringRef Val = Attr.getValueAsString();
749
750 Record.push_back(Val.empty() ? 3 : 4);
751 Record.append(Kind.begin(), Kind.end());
752 Record.push_back(0);
753 if (!Val.empty()) {
754 Record.append(Val.begin(), Val.end());
755 Record.push_back(0);
756 }
757 }
758 }
759
760 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
761 Record.clear();
762 }
763 }
764
765 Stream.ExitBlock();
766}
767
768void ModuleBitcodeWriter::writeAttributeTable() {
769 const std::vector<AttributeList> &Attrs = VE.getAttributes();
770 if (Attrs.empty()) return;
771
772 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
773
774 SmallVector<uint64_t, 64> Record;
775 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
776 const AttributeList &A = Attrs[i];
777 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
778 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
779
780 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
781 Record.clear();
782 }
783
784 Stream.ExitBlock();
785}
786
787/// WriteTypeTable - Write out the type table for a module.
788void ModuleBitcodeWriter::writeTypeTable() {
789 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
790
791 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
792 SmallVector<uint64_t, 64> TypeVals;
793
794 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
795
796 // Abbrev for TYPE_CODE_POINTER.
797 auto Abbv = std::make_shared<BitCodeAbbrev>();
798 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
800 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
801 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
802
803 // Abbrev for TYPE_CODE_FUNCTION.
804 Abbv = std::make_shared<BitCodeAbbrev>();
805 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
809
810 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
811
812 // Abbrev for TYPE_CODE_STRUCT_ANON.
813 Abbv = std::make_shared<BitCodeAbbrev>();
814 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
818
819 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
820
821 // Abbrev for TYPE_CODE_STRUCT_NAME.
822 Abbv = std::make_shared<BitCodeAbbrev>();
823 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
826 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
827
828 // Abbrev for TYPE_CODE_STRUCT_NAMED.
829 Abbv = std::make_shared<BitCodeAbbrev>();
830 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
834
835 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
836
837 // Abbrev for TYPE_CODE_ARRAY.
838 Abbv = std::make_shared<BitCodeAbbrev>();
839 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
842
843 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
844
845 // Emit an entry count so the reader can reserve space.
846 TypeVals.push_back(TypeList.size());
847 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
848 TypeVals.clear();
849
850 // Loop over all of the types, emitting each in turn.
851 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
852 Type *T = TypeList[i];
853 int AbbrevToUse = 0;
854 unsigned Code = 0;
855
856 switch (T->getTypeID()) {
857 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
858 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
859 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
860 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
861 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
862 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
863 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
864 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
865 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
866 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
867 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
868 case Type::IntegerTyID:
869 // INTEGER: [width]
870 Code = bitc::TYPE_CODE_INTEGER;
871 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
872 break;
873 case Type::PointerTyID: {
874 PointerType *PTy = cast<PointerType>(T);
875 // POINTER: [pointee type, address space]
876 Code = bitc::TYPE_CODE_POINTER;
877 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
878 unsigned AddressSpace = PTy->getAddressSpace();
879 TypeVals.push_back(AddressSpace);
880 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
881 break;
882 }
883 case Type::FunctionTyID: {
884 FunctionType *FT = cast<FunctionType>(T);
885 // FUNCTION: [isvararg, retty, paramty x N]
886 Code = bitc::TYPE_CODE_FUNCTION;
887 TypeVals.push_back(FT->isVarArg());
888 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
889 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
890 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
891 AbbrevToUse = FunctionAbbrev;
892 break;
893 }
894 case Type::StructTyID: {
895 StructType *ST = cast<StructType>(T);
896 // STRUCT: [ispacked, eltty x N]
897 TypeVals.push_back(ST->isPacked());
898 // Output all of the element types.
899 for (StructType::element_iterator I = ST->element_begin(),
900 E = ST->element_end(); I != E; ++I)
901 TypeVals.push_back(VE.getTypeID(*I));
902
903 if (ST->isLiteral()) {
904 Code = bitc::TYPE_CODE_STRUCT_ANON;
905 AbbrevToUse = StructAnonAbbrev;
906 } else {
907 if (ST->isOpaque()) {
908 Code = bitc::TYPE_CODE_OPAQUE;
909 } else {
910 Code = bitc::TYPE_CODE_STRUCT_NAMED;
911 AbbrevToUse = StructNamedAbbrev;
912 }
913
914 // Emit the name if it is present.
915 if (!ST->getName().empty())
916 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
917 StructNameAbbrev);
918 }
919 break;
920 }
921 case Type::ArrayTyID: {
922 ArrayType *AT = cast<ArrayType>(T);
923 // ARRAY: [numelts, eltty]
924 Code = bitc::TYPE_CODE_ARRAY;
925 TypeVals.push_back(AT->getNumElements());
926 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
927 AbbrevToUse = ArrayAbbrev;
928 break;
929 }
930 case Type::VectorTyID: {
931 VectorType *VT = cast<VectorType>(T);
932 // VECTOR [numelts, eltty]
933 Code = bitc::TYPE_CODE_VECTOR;
934 TypeVals.push_back(VT->getNumElements());
935 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
936 break;
937 }
938 }
939
940 // Emit the finished record.
941 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
942 TypeVals.clear();
943 }
944
945 Stream.ExitBlock();
946}
947
948static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
949 switch (Linkage) {
950 case GlobalValue::ExternalLinkage:
951 return 0;
952 case GlobalValue::WeakAnyLinkage:
953 return 16;
954 case GlobalValue::AppendingLinkage:
955 return 2;
956 case GlobalValue::InternalLinkage:
957 return 3;
958 case GlobalValue::LinkOnceAnyLinkage:
959 return 18;
960 case GlobalValue::ExternalWeakLinkage:
961 return 7;
962 case GlobalValue::CommonLinkage:
963 return 8;
964 case GlobalValue::PrivateLinkage:
965 return 9;
966 case GlobalValue::WeakODRLinkage:
967 return 17;
968 case GlobalValue::LinkOnceODRLinkage:
969 return 19;
970 case GlobalValue::AvailableExternallyLinkage:
971 return 12;
972 }
973 llvm_unreachable("Invalid linkage")::llvm::llvm_unreachable_internal("Invalid linkage", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 973)
;
974}
975
976static unsigned getEncodedLinkage(const GlobalValue &GV) {
977 return getEncodedLinkage(GV.getLinkage());
978}
979
980// Decode the flags for GlobalValue in the summary
981static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
982 uint64_t RawFlags = 0;
983
984 RawFlags |= Flags.NotEligibleToImport; // bool
985 RawFlags |= (Flags.LiveRoot << 1);
986 // Linkage don't need to be remapped at that time for the summary. Any future
987 // change to the getEncodedLinkage() function will need to be taken into
988 // account here as well.
989 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
990
991 return RawFlags;
992}
993
994static unsigned getEncodedVisibility(const GlobalValue &GV) {
995 switch (GV.getVisibility()) {
996 case GlobalValue::DefaultVisibility: return 0;
997 case GlobalValue::HiddenVisibility: return 1;
998 case GlobalValue::ProtectedVisibility: return 2;
999 }
1000 llvm_unreachable("Invalid visibility")::llvm::llvm_unreachable_internal("Invalid visibility", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1000)
;
1001}
1002
1003static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1004 switch (GV.getDLLStorageClass()) {
1005 case GlobalValue::DefaultStorageClass: return 0;
1006 case GlobalValue::DLLImportStorageClass: return 1;
1007 case GlobalValue::DLLExportStorageClass: return 2;
1008 }
1009 llvm_unreachable("Invalid DLL storage class")::llvm::llvm_unreachable_internal("Invalid DLL storage class"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1009)
;
1010}
1011
1012static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1013 switch (GV.getThreadLocalMode()) {
1014 case GlobalVariable::NotThreadLocal: return 0;
1015 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1016 case GlobalVariable::LocalDynamicTLSModel: return 2;
1017 case GlobalVariable::InitialExecTLSModel: return 3;
1018 case GlobalVariable::LocalExecTLSModel: return 4;
1019 }
1020 llvm_unreachable("Invalid TLS model")::llvm::llvm_unreachable_internal("Invalid TLS model", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1020)
;
1021}
1022
1023static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1024 switch (C.getSelectionKind()) {
1025 case Comdat::Any:
1026 return bitc::COMDAT_SELECTION_KIND_ANY;
1027 case Comdat::ExactMatch:
1028 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1029 case Comdat::Largest:
1030 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1031 case Comdat::NoDuplicates:
1032 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1033 case Comdat::SameSize:
1034 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1035 }
1036 llvm_unreachable("Invalid selection kind")::llvm::llvm_unreachable_internal("Invalid selection kind", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1036)
;
1037}
1038
1039static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1040 switch (GV.getUnnamedAddr()) {
1041 case GlobalValue::UnnamedAddr::None: return 0;
1042 case GlobalValue::UnnamedAddr::Local: return 2;
1043 case GlobalValue::UnnamedAddr::Global: return 1;
1044 }
1045 llvm_unreachable("Invalid unnamed_addr")::llvm::llvm_unreachable_internal("Invalid unnamed_addr", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1045)
;
1046}
1047
1048void ModuleBitcodeWriter::writeComdats() {
1049 SmallVector<unsigned, 64> Vals;
1050 for (const Comdat *C : VE.getComdats()) {
1051 // COMDAT: [selection_kind, name]
1052 Vals.push_back(getEncodedComdatSelectionKind(*C));
1053 size_t Size = C->getName().size();
1054 assert(isUInt<32>(Size))((isUInt<32>(Size)) ? static_cast<void> (0) : __assert_fail
("isUInt<32>(Size)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1054, __PRETTY_FUNCTION__))
;
1055 Vals.push_back(Size);
1056 for (char Chr : C->getName())
1057 Vals.push_back((unsigned char)Chr);
1058 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1059 Vals.clear();
1060 }
1061}
1062
1063/// Write a record that will eventually hold the word offset of the
1064/// module-level VST. For now the offset is 0, which will be backpatched
1065/// after the real VST is written. Saves the bit offset to backpatch.
1066void BitcodeWriterBase::writeValueSymbolTableForwardDecl() {
1067 // Write a placeholder value in for the offset of the real VST,
1068 // which is written after the function blocks so that it can include
1069 // the offset of each function. The placeholder offset will be
1070 // updated when the real VST is written.
1071 auto Abbv = std::make_shared<BitCodeAbbrev>();
1072 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1073 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1074 // hold the real VST offset. Must use fixed instead of VBR as we don't
1075 // know how many VBR chunks to reserve ahead of time.
1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1077 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1078
1079 // Emit the placeholder
1080 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1081 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1082
1083 // Compute and save the bit offset to the placeholder, which will be
1084 // patched when the real VST is written. We can simply subtract the 32-bit
1085 // fixed size from the current bit number to get the location to backpatch.
1086 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1087}
1088
1089enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1090
1091/// Determine the encoding to use for the given string name and length.
1092static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
1093 bool isChar6 = true;
1094 for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
1095 if (isChar6)
1096 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1097 if ((unsigned char)*C & 128)
1098 // don't bother scanning the rest.
1099 return SE_Fixed8;
1100 }
1101 if (isChar6)
1102 return SE_Char6;
1103 else
1104 return SE_Fixed7;
1105}
1106
1107/// Emit top-level description of module, including target triple, inline asm,
1108/// descriptors for global variables, and function prototype info.
1109/// Returns the bit offset to backpatch with the location of the real VST.
1110void ModuleBitcodeWriter::writeModuleInfo() {
1111 // Emit various pieces of data attached to a module.
1112 if (!M.getTargetTriple().empty())
1113 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1114 0 /*TODO*/);
1115 const std::string &DL = M.getDataLayoutStr();
1116 if (!DL.empty())
1117 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1118 if (!M.getModuleInlineAsm().empty())
1119 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1120 0 /*TODO*/);
1121
1122 // Emit information about sections and GC, computing how many there are. Also
1123 // compute the maximum alignment value.
1124 std::map<std::string, unsigned> SectionMap;
1125 std::map<std::string, unsigned> GCMap;
1126 unsigned MaxAlignment = 0;
1127 unsigned MaxGlobalType = 0;
1128 for (const GlobalValue &GV : M.globals()) {
1129 MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1130 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1131 if (GV.hasSection()) {
1132 // Give section names unique ID's.
1133 unsigned &Entry = SectionMap[GV.getSection()];
1134 if (!Entry) {
1135 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1136 0 /*TODO*/);
1137 Entry = SectionMap.size();
1138 }
1139 }
1140 }
1141 for (const Function &F : M) {
1142 MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1143 if (F.hasSection()) {
1144 // Give section names unique ID's.
1145 unsigned &Entry = SectionMap[F.getSection()];
1146 if (!Entry) {
1147 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1148 0 /*TODO*/);
1149 Entry = SectionMap.size();
1150 }
1151 }
1152 if (F.hasGC()) {
1153 // Same for GC names.
1154 unsigned &Entry = GCMap[F.getGC()];
1155 if (!Entry) {
1156 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1157 0 /*TODO*/);
1158 Entry = GCMap.size();
1159 }
1160 }
1161 }
1162
1163 // Emit abbrev for globals, now that we know # sections and max alignment.
1164 unsigned SimpleGVarAbbrev = 0;
1165 if (!M.global_empty()) {
1166 // Add an abbrev for common globals with no visibility or thread localness.
1167 auto Abbv = std::make_shared<BitCodeAbbrev>();
1168 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1170 Log2_32_Ceil(MaxGlobalType+1)));
1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1172 //| explicitType << 1
1173 //| constant
1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1176 if (MaxAlignment == 0) // Alignment.
1177 Abbv->Add(BitCodeAbbrevOp(0));
1178 else {
1179 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1181 Log2_32_Ceil(MaxEncAlignment+1)));
1182 }
1183 if (SectionMap.empty()) // Section.
1184 Abbv->Add(BitCodeAbbrevOp(0));
1185 else
1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1187 Log2_32_Ceil(SectionMap.size()+1)));
1188 // Don't bother emitting vis + thread local.
1189 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1190 }
1191
1192 // Emit the global variable information.
1193 SmallVector<unsigned, 64> Vals;
1194 for (const GlobalVariable &GV : M.globals()) {
1195 unsigned AbbrevToUse = 0;
1196
1197 // GLOBALVAR: [type, isconst, initid,
1198 // linkage, alignment, section, visibility, threadlocal,
1199 // unnamed_addr, externally_initialized, dllstorageclass,
1200 // comdat]
1201 Vals.push_back(VE.getTypeID(GV.getValueType()));
1202 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1203 Vals.push_back(GV.isDeclaration() ? 0 :
1204 (VE.getValueID(GV.getInitializer()) + 1));
1205 Vals.push_back(getEncodedLinkage(GV));
1206 Vals.push_back(Log2_32(GV.getAlignment())+1);
1207 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1208 if (GV.isThreadLocal() ||
1209 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1210 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1211 GV.isExternallyInitialized() ||
1212 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1213 GV.hasComdat()) {
1214 Vals.push_back(getEncodedVisibility(GV));
1215 Vals.push_back(getEncodedThreadLocalMode(GV));
1216 Vals.push_back(getEncodedUnnamedAddr(GV));
1217 Vals.push_back(GV.isExternallyInitialized());
1218 Vals.push_back(getEncodedDLLStorageClass(GV));
1219 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1220 } else {
1221 AbbrevToUse = SimpleGVarAbbrev;
1222 }
1223
1224 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1225 Vals.clear();
1226 }
1227
1228 // Emit the function proto information.
1229 for (const Function &F : M) {
1230 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
1231 // section, visibility, gc, unnamed_addr, prologuedata,
1232 // dllstorageclass, comdat, prefixdata, personalityfn]
1233 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1234 Vals.push_back(F.getCallingConv());
1235 Vals.push_back(F.isDeclaration());
1236 Vals.push_back(getEncodedLinkage(F));
1237 Vals.push_back(VE.getAttributeID(F.getAttributes()));
1238 Vals.push_back(Log2_32(F.getAlignment())+1);
1239 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1240 Vals.push_back(getEncodedVisibility(F));
1241 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1242 Vals.push_back(getEncodedUnnamedAddr(F));
1243 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1244 : 0);
1245 Vals.push_back(getEncodedDLLStorageClass(F));
1246 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1247 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1248 : 0);
1249 Vals.push_back(
1250 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1251
1252 unsigned AbbrevToUse = 0;
1253 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1254 Vals.clear();
1255 }
1256
1257 // Emit the alias information.
1258 for (const GlobalAlias &A : M.aliases()) {
1259 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass,
1260 // threadlocal, unnamed_addr]
1261 Vals.push_back(VE.getTypeID(A.getValueType()));
1262 Vals.push_back(A.getType()->getAddressSpace());
1263 Vals.push_back(VE.getValueID(A.getAliasee()));
1264 Vals.push_back(getEncodedLinkage(A));
1265 Vals.push_back(getEncodedVisibility(A));
1266 Vals.push_back(getEncodedDLLStorageClass(A));
1267 Vals.push_back(getEncodedThreadLocalMode(A));
1268 Vals.push_back(getEncodedUnnamedAddr(A));
1269 unsigned AbbrevToUse = 0;
1270 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1271 Vals.clear();
1272 }
1273
1274 // Emit the ifunc information.
1275 for (const GlobalIFunc &I : M.ifuncs()) {
1276 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
1277 Vals.push_back(VE.getTypeID(I.getValueType()));
1278 Vals.push_back(I.getType()->getAddressSpace());
1279 Vals.push_back(VE.getValueID(I.getResolver()));
1280 Vals.push_back(getEncodedLinkage(I));
1281 Vals.push_back(getEncodedVisibility(I));
1282 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1283 Vals.clear();
1284 }
1285
1286 // Emit the module's source file name.
1287 {
1288 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
1289 M.getSourceFileName().size());
1290 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1291 if (Bits == SE_Char6)
1292 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1293 else if (Bits == SE_Fixed7)
1294 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1295
1296 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1297 auto Abbv = std::make_shared<BitCodeAbbrev>();
1298 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1300 Abbv->Add(AbbrevOpToUse);
1301 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1302
1303 for (const auto P : M.getSourceFileName())
1304 Vals.push_back((unsigned char)P);
1305
1306 // Emit the finished record.
1307 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1308 Vals.clear();
1309 }
1310
1311 // If we have a VST, write the VSTOFFSET record placeholder.
1312 if (M.getValueSymbolTable().empty())
1313 return;
1314 writeValueSymbolTableForwardDecl();
1315}
1316
1317static uint64_t getOptimizationFlags(const Value *V) {
1318 uint64_t Flags = 0;
1319
1320 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1321 if (OBO->hasNoSignedWrap())
1322 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1323 if (OBO->hasNoUnsignedWrap())
1324 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1325 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1326 if (PEO->isExact())
1327 Flags |= 1 << bitc::PEO_EXACT;
1328 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1329 if (FPMO->hasUnsafeAlgebra())
1330 Flags |= FastMathFlags::UnsafeAlgebra;
1331 if (FPMO->hasNoNaNs())
1332 Flags |= FastMathFlags::NoNaNs;
1333 if (FPMO->hasNoInfs())
1334 Flags |= FastMathFlags::NoInfs;
1335 if (FPMO->hasNoSignedZeros())
1336 Flags |= FastMathFlags::NoSignedZeros;
1337 if (FPMO->hasAllowReciprocal())
1338 Flags |= FastMathFlags::AllowReciprocal;
1339 if (FPMO->hasAllowContract())
1340 Flags |= FastMathFlags::AllowContract;
1341 }
1342
1343 return Flags;
1344}
1345
1346void ModuleBitcodeWriter::writeValueAsMetadata(
1347 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1348 // Mimic an MDNode with a value as one operand.
1349 Value *V = MD->getValue();
1350 Record.push_back(VE.getTypeID(V->getType()));
1351 Record.push_back(VE.getValueID(V));
1352 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1353 Record.clear();
1354}
1355
1356void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1357 SmallVectorImpl<uint64_t> &Record,
1358 unsigned Abbrev) {
1359 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1360 Metadata *MD = N->getOperand(i);
1361 assert(!(MD && isa<LocalAsMetadata>(MD)) &&((!(MD && isa<LocalAsMetadata>(MD)) && "Unexpected function-local metadata"
) ? static_cast<void> (0) : __assert_fail ("!(MD && isa<LocalAsMetadata>(MD)) && \"Unexpected function-local metadata\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1362, __PRETTY_FUNCTION__))
1362 "Unexpected function-local metadata")((!(MD && isa<LocalAsMetadata>(MD)) && "Unexpected function-local metadata"
) ? static_cast<void> (0) : __assert_fail ("!(MD && isa<LocalAsMetadata>(MD)) && \"Unexpected function-local metadata\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1362, __PRETTY_FUNCTION__))
;
1363 Record.push_back(VE.getMetadataOrNullID(MD));
1364 }
1365 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1366 : bitc::METADATA_NODE,
1367 Record, Abbrev);
1368 Record.clear();
1369}
1370
1371unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1372 // Assume the column is usually under 128, and always output the inlined-at
1373 // location (it's never more expensive than building an array size 1).
1374 auto Abbv = std::make_shared<BitCodeAbbrev>();
1375 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1381 return Stream.EmitAbbrev(std::move(Abbv));
1382}
1383
1384void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1385 SmallVectorImpl<uint64_t> &Record,
1386 unsigned &Abbrev) {
1387 if (!Abbrev)
1388 Abbrev = createDILocationAbbrev();
1389
1390 Record.push_back(N->isDistinct());
1391 Record.push_back(N->getLine());
1392 Record.push_back(N->getColumn());
1393 Record.push_back(VE.getMetadataID(N->getScope()));
1394 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1395
1396 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1397 Record.clear();
1398}
1399
1400unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1401 // Assume the column is usually under 128, and always output the inlined-at
1402 // location (it's never more expensive than building an array size 1).
1403 auto Abbv = std::make_shared<BitCodeAbbrev>();
1404 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1411 return Stream.EmitAbbrev(std::move(Abbv));
1412}
1413
1414void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1415 SmallVectorImpl<uint64_t> &Record,
1416 unsigned &Abbrev) {
1417 if (!Abbrev)
1418 Abbrev = createGenericDINodeAbbrev();
1419
1420 Record.push_back(N->isDistinct());
1421 Record.push_back(N->getTag());
1422 Record.push_back(0); // Per-tag version field; unused for now.
1423
1424 for (auto &I : N->operands())
1425 Record.push_back(VE.getMetadataOrNullID(I));
1426
1427 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1428 Record.clear();
1429}
1430
1431static uint64_t rotateSign(int64_t I) {
1432 uint64_t U = I;
1433 return I < 0 ? ~(U << 1) : U << 1;
1434}
1435
1436void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1437 SmallVectorImpl<uint64_t> &Record,
1438 unsigned Abbrev) {
1439 Record.push_back(N->isDistinct());
1440 Record.push_back(N->getCount());
1441 Record.push_back(rotateSign(N->getLowerBound()));
1442
1443 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1444 Record.clear();
1445}
1446
1447void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1448 SmallVectorImpl<uint64_t> &Record,
1449 unsigned Abbrev) {
1450 Record.push_back(N->isDistinct());
1451 Record.push_back(rotateSign(N->getValue()));
1452 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1453
1454 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1455 Record.clear();
1456}
1457
1458void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1459 SmallVectorImpl<uint64_t> &Record,
1460 unsigned Abbrev) {
1461 Record.push_back(N->isDistinct());
1462 Record.push_back(N->getTag());
1463 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1464 Record.push_back(N->getSizeInBits());
1465 Record.push_back(N->getAlignInBits());
1466 Record.push_back(N->getEncoding());
1467
1468 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1469 Record.clear();
1470}
1471
1472void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1473 SmallVectorImpl<uint64_t> &Record,
1474 unsigned Abbrev) {
1475 Record.push_back(N->isDistinct());
1476 Record.push_back(N->getTag());
1477 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1478 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1479 Record.push_back(N->getLine());
1480 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1481 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1482 Record.push_back(N->getSizeInBits());
1483 Record.push_back(N->getAlignInBits());
1484 Record.push_back(N->getOffsetInBits());
1485 Record.push_back(N->getFlags());
1486 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1487
1488 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1489 // that there is no DWARF address space associated with DIDerivedType.
1490 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1491 Record.push_back(*DWARFAddressSpace + 1);
1492 else
1493 Record.push_back(0);
1494
1495 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1496 Record.clear();
1497}
1498
1499void ModuleBitcodeWriter::writeDICompositeType(
1500 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1501 unsigned Abbrev) {
1502 const unsigned IsNotUsedInOldTypeRef = 0x2;
1503 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1504 Record.push_back(N->getTag());
1505 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1506 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1507 Record.push_back(N->getLine());
1508 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1509 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1510 Record.push_back(N->getSizeInBits());
1511 Record.push_back(N->getAlignInBits());
1512 Record.push_back(N->getOffsetInBits());
1513 Record.push_back(N->getFlags());
1514 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1515 Record.push_back(N->getRuntimeLang());
1516 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1517 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1518 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1519
1520 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1521 Record.clear();
1522}
1523
1524void ModuleBitcodeWriter::writeDISubroutineType(
1525 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1526 unsigned Abbrev) {
1527 const unsigned HasNoOldTypeRefs = 0x2;
1528 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1529 Record.push_back(N->getFlags());
1530 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1531 Record.push_back(N->getCC());
1532
1533 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1534 Record.clear();
1535}
1536
1537void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1538 SmallVectorImpl<uint64_t> &Record,
1539 unsigned Abbrev) {
1540 Record.push_back(N->isDistinct());
1541 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1542 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1543 Record.push_back(N->getChecksumKind());
1544 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()));
1545
1546 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1547 Record.clear();
1548}
1549
1550void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1551 SmallVectorImpl<uint64_t> &Record,
1552 unsigned Abbrev) {
1553 assert(N->isDistinct() && "Expected distinct compile units")((N->isDistinct() && "Expected distinct compile units"
) ? static_cast<void> (0) : __assert_fail ("N->isDistinct() && \"Expected distinct compile units\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1553, __PRETTY_FUNCTION__))
;
1554 Record.push_back(/* IsDistinct */ true);
1555 Record.push_back(N->getSourceLanguage());
1556 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1557 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1558 Record.push_back(N->isOptimized());
1559 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1560 Record.push_back(N->getRuntimeVersion());
1561 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1562 Record.push_back(N->getEmissionKind());
1563 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1564 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1565 Record.push_back(/* subprograms */ 0);
1566 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1567 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1568 Record.push_back(N->getDWOId());
1569 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1570 Record.push_back(N->getSplitDebugInlining());
1571 Record.push_back(N->getDebugInfoForProfiling());
1572
1573 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1574 Record.clear();
1575}
1576
1577void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1578 SmallVectorImpl<uint64_t> &Record,
1579 unsigned Abbrev) {
1580 uint64_t HasUnitFlag = 1 << 1;
1581 Record.push_back(N->isDistinct() | HasUnitFlag);
1582 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1583 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1584 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1585 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1586 Record.push_back(N->getLine());
1587 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1588 Record.push_back(N->isLocalToUnit());
1589 Record.push_back(N->isDefinition());
1590 Record.push_back(N->getScopeLine());
1591 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1592 Record.push_back(N->getVirtuality());
1593 Record.push_back(N->getVirtualIndex());
1594 Record.push_back(N->getFlags());
1595 Record.push_back(N->isOptimized());
1596 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1597 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1598 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1599 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1600 Record.push_back(N->getThisAdjustment());
1601
1602 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1603 Record.clear();
1604}
1605
1606void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1607 SmallVectorImpl<uint64_t> &Record,
1608 unsigned Abbrev) {
1609 Record.push_back(N->isDistinct());
1610 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1611 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1612 Record.push_back(N->getLine());
1613 Record.push_back(N->getColumn());
1614
1615 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1616 Record.clear();
1617}
1618
1619void ModuleBitcodeWriter::writeDILexicalBlockFile(
1620 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1621 unsigned Abbrev) {
1622 Record.push_back(N->isDistinct());
1623 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1624 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1625 Record.push_back(N->getDiscriminator());
1626
1627 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1628 Record.clear();
1629}
1630
1631void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1632 SmallVectorImpl<uint64_t> &Record,
1633 unsigned Abbrev) {
1634 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1635 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1636 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1637 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1638 Record.push_back(N->getLine());
1639
1640 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1641 Record.clear();
1642}
1643
1644void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1645 SmallVectorImpl<uint64_t> &Record,
1646 unsigned Abbrev) {
1647 Record.push_back(N->isDistinct());
1648 Record.push_back(N->getMacinfoType());
1649 Record.push_back(N->getLine());
1650 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1651 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1652
1653 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1654 Record.clear();
1655}
1656
1657void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1658 SmallVectorImpl<uint64_t> &Record,
1659 unsigned Abbrev) {
1660 Record.push_back(N->isDistinct());
1661 Record.push_back(N->getMacinfoType());
1662 Record.push_back(N->getLine());
1663 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1664 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1665
1666 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1667 Record.clear();
1668}
1669
1670void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1671 SmallVectorImpl<uint64_t> &Record,
1672 unsigned Abbrev) {
1673 Record.push_back(N->isDistinct());
1674 for (auto &I : N->operands())
1675 Record.push_back(VE.getMetadataOrNullID(I));
1676
1677 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1678 Record.clear();
1679}
1680
1681void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1682 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1683 unsigned Abbrev) {
1684 Record.push_back(N->isDistinct());
1685 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1686 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1687
1688 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1689 Record.clear();
1690}
1691
1692void ModuleBitcodeWriter::writeDITemplateValueParameter(
1693 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1694 unsigned Abbrev) {
1695 Record.push_back(N->isDistinct());
1696 Record.push_back(N->getTag());
1697 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1698 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1699 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1700
1701 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1702 Record.clear();
1703}
1704
1705void ModuleBitcodeWriter::writeDIGlobalVariable(
1706 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1707 unsigned Abbrev) {
1708 const uint64_t Version = 1 << 1;
1709 Record.push_back((uint64_t)N->isDistinct() | Version);
1710 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1711 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1712 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1713 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1714 Record.push_back(N->getLine());
1715 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1716 Record.push_back(N->isLocalToUnit());
1717 Record.push_back(N->isDefinition());
1718 Record.push_back(/* expr */ 0);
1719 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1720 Record.push_back(N->getAlignInBits());
1721
1722 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1723 Record.clear();
1724}
1725
1726void ModuleBitcodeWriter::writeDILocalVariable(
1727 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1728 unsigned Abbrev) {
1729 // In order to support all possible bitcode formats in BitcodeReader we need
1730 // to distinguish the following cases:
1731 // 1) Record has no artificial tag (Record[1]),
1732 // has no obsolete inlinedAt field (Record[9]).
1733 // In this case Record size will be 8, HasAlignment flag is false.
1734 // 2) Record has artificial tag (Record[1]),
1735 // has no obsolete inlignedAt field (Record[9]).
1736 // In this case Record size will be 9, HasAlignment flag is false.
1737 // 3) Record has both artificial tag (Record[1]) and
1738 // obsolete inlignedAt field (Record[9]).
1739 // In this case Record size will be 10, HasAlignment flag is false.
1740 // 4) Record has neither artificial tag, nor inlignedAt field, but
1741 // HasAlignment flag is true and Record[8] contains alignment value.
1742 const uint64_t HasAlignmentFlag = 1 << 1;
1743 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1744 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1745 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1746 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1747 Record.push_back(N->getLine());
1748 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1749 Record.push_back(N->getArg());
1750 Record.push_back(N->getFlags());
1751 Record.push_back(N->getAlignInBits());
1752
1753 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1754 Record.clear();
1755}
1756
1757void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1758 SmallVectorImpl<uint64_t> &Record,
1759 unsigned Abbrev) {
1760 Record.reserve(N->getElements().size() + 1);
1761
1762 const uint64_t HasOpFragmentFlag = 1 << 1;
1763 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag);
1764 Record.append(N->elements_begin(), N->elements_end());
1765
1766 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1767 Record.clear();
1768}
1769
1770void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1771 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1772 unsigned Abbrev) {
1773 Record.push_back(N->isDistinct());
1774 Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1775 Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1776
1777 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1778 Record.clear();
1779}
1780
1781void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1782 SmallVectorImpl<uint64_t> &Record,
1783 unsigned Abbrev) {
1784 Record.push_back(N->isDistinct());
1785 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1786 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1787 Record.push_back(N->getLine());
1788 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1789 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1790 Record.push_back(N->getAttributes());
1791 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1792
1793 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1794 Record.clear();
1795}
1796
1797void ModuleBitcodeWriter::writeDIImportedEntity(
1798 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1799 unsigned Abbrev) {
1800 Record.push_back(N->isDistinct());
1801 Record.push_back(N->getTag());
1802 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1803 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1804 Record.push_back(N->getLine());
1805 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1806
1807 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1808 Record.clear();
1809}
1810
1811unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1812 auto Abbv = std::make_shared<BitCodeAbbrev>();
1813 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1816 return Stream.EmitAbbrev(std::move(Abbv));
1817}
1818
1819void ModuleBitcodeWriter::writeNamedMetadata(
1820 SmallVectorImpl<uint64_t> &Record) {
1821 if (M.named_metadata_empty())
1822 return;
1823
1824 unsigned Abbrev = createNamedMetadataAbbrev();
1825 for (const NamedMDNode &NMD : M.named_metadata()) {
1826 // Write name.
1827 StringRef Str = NMD.getName();
1828 Record.append(Str.bytes_begin(), Str.bytes_end());
1829 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1830 Record.clear();
1831
1832 // Write named metadata operands.
1833 for (const MDNode *N : NMD.operands())
1834 Record.push_back(VE.getMetadataID(N));
1835 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1836 Record.clear();
1837 }
1838}
1839
1840unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1841 auto Abbv = std::make_shared<BitCodeAbbrev>();
1842 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1846 return Stream.EmitAbbrev(std::move(Abbv));
1847}
1848
1849/// Write out a record for MDString.
1850///
1851/// All the metadata strings in a metadata block are emitted in a single
1852/// record. The sizes and strings themselves are shoved into a blob.
1853void ModuleBitcodeWriter::writeMetadataStrings(
1854 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1855 if (Strings.empty())
1856 return;
1857
1858 // Start the record with the number of strings.
1859 Record.push_back(bitc::METADATA_STRINGS);
1860 Record.push_back(Strings.size());
1861
1862 // Emit the sizes of the strings in the blob.
1863 SmallString<256> Blob;
1864 {
1865 BitstreamWriter W(Blob);
1866 for (const Metadata *MD : Strings)
1867 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1868 W.FlushToWord();
1869 }
1870
1871 // Add the offset to the strings to the record.
1872 Record.push_back(Blob.size());
1873
1874 // Add the strings to the blob.
1875 for (const Metadata *MD : Strings)
1876 Blob.append(cast<MDString>(MD)->getString());
1877
1878 // Emit the final record.
1879 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1880 Record.clear();
1881}
1882
1883// Generates an enum to use as an index in the Abbrev array of Metadata record.
1884enum MetadataAbbrev : unsigned {
1885#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1886#include "llvm/IR/Metadata.def"
1887 LastPlusOne
1888};
1889
1890void ModuleBitcodeWriter::writeMetadataRecords(
1891 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1892 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1893 if (MDs.empty())
1894 return;
1895
1896 // Initialize MDNode abbreviations.
1897#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1898#include "llvm/IR/Metadata.def"
1899
1900 for (const Metadata *MD : MDs) {
1901 if (IndexPos)
1902 IndexPos->push_back(Stream.GetCurrentBitNo());
1903 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1904 assert(N->isResolved() && "Expected forward references to be resolved")((N->isResolved() && "Expected forward references to be resolved"
) ? static_cast<void> (0) : __assert_fail ("N->isResolved() && \"Expected forward references to be resolved\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1904, __PRETTY_FUNCTION__))
;
1905
1906 switch (N->getMetadataID()) {
1907 default:
1908 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 1908)
;
1909#define HANDLE_MDNODE_LEAF(CLASS) \
1910 case Metadata::CLASS##Kind: \
1911 if (MDAbbrevs) \
1912 write##CLASS(cast<CLASS>(N), Record, \
1913 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
1914 else \
1915 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
1916 continue;
1917#include "llvm/IR/Metadata.def"
1918 }
1919 }
1920 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1921 }
1922}
1923
1924void ModuleBitcodeWriter::writeModuleMetadata() {
1925 if (!VE.hasMDs() && M.named_metadata_empty())
1926 return;
1927
1928 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1929 SmallVector<uint64_t, 64> Record;
1930
1931 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1932 // block and load any metadata.
1933 std::vector<unsigned> MDAbbrevs;
1934
1935 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1936 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1937 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1938 createGenericDINodeAbbrev();
1939
1940 auto Abbv = std::make_shared<BitCodeAbbrev>();
1941 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1944 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1945
1946 Abbv = std::make_shared<BitCodeAbbrev>();
1947 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
1948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1950 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1951
1952 // Emit MDStrings together upfront.
1953 writeMetadataStrings(VE.getMDStrings(), Record);
1954
1955 // We only emit an index for the metadata record if we have more than a given
1956 // (naive) threshold of metadatas, otherwise it is not worth it.
1957 if (VE.getNonMDStrings().size() > IndexThreshold) {
1958 // Write a placeholder value in for the offset of the metadata index,
1959 // which is written after the records, so that it can include
1960 // the offset of each entry. The placeholder offset will be
1961 // updated after all records are emitted.
1962 uint64_t Vals[] = {0, 0};
1963 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
1964 }
1965
1966 // Compute and save the bit offset to the current position, which will be
1967 // patched when we emit the index later. We can simply subtract the 64-bit
1968 // fixed size from the current bit number to get the location to backpatch.
1969 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
1970
1971 // This index will contain the bitpos for each individual record.
1972 std::vector<uint64_t> IndexPos;
1973 IndexPos.reserve(VE.getNonMDStrings().size());
1974
1975 // Write all the records
1976 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1977
1978 if (VE.getNonMDStrings().size() > IndexThreshold) {
1979 // Now that we have emitted all the records we will emit the index. But
1980 // first
1981 // backpatch the forward reference so that the reader can skip the records
1982 // efficiently.
1983 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
1984 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
1985
1986 // Delta encode the index.
1987 uint64_t PreviousValue = IndexOffsetRecordBitPos;
1988 for (auto &Elt : IndexPos) {
1989 auto EltDelta = Elt - PreviousValue;
1990 PreviousValue = Elt;
1991 Elt = EltDelta;
1992 }
1993 // Emit the index record.
1994 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
1995 IndexPos.clear();
1996 }
1997
1998 // Write the named metadata now.
1999 writeNamedMetadata(Record);
2000
2001 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2002 SmallVector<uint64_t, 4> Record;
2003 Record.push_back(VE.getValueID(&GO));
2004 pushGlobalMetadataAttachment(Record, GO);
2005 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2006 };
2007 for (const Function &F : M)
2008 if (F.isDeclaration() && F.hasMetadata())
2009 AddDeclAttachedMetadata(F);
2010 // FIXME: Only store metadata for declarations here, and move data for global
2011 // variable definitions to a separate block (PR28134).
2012 for (const GlobalVariable &GV : M.globals())
2013 if (GV.hasMetadata())
2014 AddDeclAttachedMetadata(GV);
2015
2016 Stream.ExitBlock();
2017}
2018
2019void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2020 if (!VE.hasMDs())
2021 return;
2022
2023 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2024 SmallVector<uint64_t, 64> Record;
2025 writeMetadataStrings(VE.getMDStrings(), Record);
2026 writeMetadataRecords(VE.getNonMDStrings(), Record);
2027 Stream.ExitBlock();
2028}
2029
2030void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2031 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2032 // [n x [id, mdnode]]
2033 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2034 GO.getAllMetadata(MDs);
2035 for (const auto &I : MDs) {
2036 Record.push_back(I.first);
2037 Record.push_back(VE.getMetadataID(I.second));
2038 }
2039}
2040
2041void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2042 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2043
2044 SmallVector<uint64_t, 64> Record;
2045
2046 if (F.hasMetadata()) {
2047 pushGlobalMetadataAttachment(Record, F);
2048 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2049 Record.clear();
2050 }
2051
2052 // Write metadata attachments
2053 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2054 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2055 for (const BasicBlock &BB : F)
2056 for (const Instruction &I : BB) {
2057 MDs.clear();
2058 I.getAllMetadataOtherThanDebugLoc(MDs);
2059
2060 // If no metadata, ignore instruction.
2061 if (MDs.empty()) continue;
2062
2063 Record.push_back(VE.getInstructionID(&I));
2064
2065 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2066 Record.push_back(MDs[i].first);
2067 Record.push_back(VE.getMetadataID(MDs[i].second));
2068 }
2069 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2070 Record.clear();
2071 }
2072
2073 Stream.ExitBlock();
2074}
2075
2076void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2077 SmallVector<uint64_t, 64> Record;
2078
2079 // Write metadata kinds
2080 // METADATA_KIND - [n x [id, name]]
2081 SmallVector<StringRef, 8> Names;
2082 M.getMDKindNames(Names);
2083
2084 if (Names.empty()) return;
2085
2086 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2087
2088 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2089 Record.push_back(MDKindID);
2090 StringRef KName = Names[MDKindID];
2091 Record.append(KName.begin(), KName.end());
2092
2093 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2094 Record.clear();
2095 }
2096
2097 Stream.ExitBlock();
2098}
2099
2100void ModuleBitcodeWriter::writeOperandBundleTags() {
2101 // Write metadata kinds
2102 //
2103 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2104 //
2105 // OPERAND_BUNDLE_TAG - [strchr x N]
2106
2107 SmallVector<StringRef, 8> Tags;
2108 M.getOperandBundleTags(Tags);
2109
2110 if (Tags.empty())
2111 return;
2112
2113 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2114
2115 SmallVector<uint64_t, 64> Record;
2116
2117 for (auto Tag : Tags) {
2118 Record.append(Tag.begin(), Tag.end());
2119
2120 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2121 Record.clear();
2122 }
2123
2124 Stream.ExitBlock();
2125}
2126
2127static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2128 if ((int64_t)V >= 0)
2129 Vals.push_back(V << 1);
2130 else
2131 Vals.push_back((-V << 1) | 1);
2132}
2133
2134void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2135 bool isGlobal) {
2136 if (FirstVal == LastVal) return;
2137
2138 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2139
2140 unsigned AggregateAbbrev = 0;
2141 unsigned String8Abbrev = 0;
2142 unsigned CString7Abbrev = 0;
2143 unsigned CString6Abbrev = 0;
2144 // If this is a constant pool for the module, emit module-specific abbrevs.
2145 if (isGlobal) {
2146 // Abbrev for CST_CODE_AGGREGATE.
2147 auto Abbv = std::make_shared<BitCodeAbbrev>();
2148 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2151 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2152
2153 // Abbrev for CST_CODE_STRING.
2154 Abbv = std::make_shared<BitCodeAbbrev>();
2155 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2158 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2159 // Abbrev for CST_CODE_CSTRING.
2160 Abbv = std::make_shared<BitCodeAbbrev>();
2161 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2164 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2165 // Abbrev for CST_CODE_CSTRING.
2166 Abbv = std::make_shared<BitCodeAbbrev>();
2167 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2170 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2171 }
2172
2173 SmallVector<uint64_t, 64> Record;
2174
2175 const ValueEnumerator::ValueList &Vals = VE.getValues();
2176 Type *LastTy = nullptr;
2177 for (unsigned i = FirstVal; i != LastVal; ++i) {
2178 const Value *V = Vals[i].first;
2179 // If we need to switch types, do so now.
2180 if (V->getType() != LastTy) {
2181 LastTy = V->getType();
2182 Record.push_back(VE.getTypeID(LastTy));
2183 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2184 CONSTANTS_SETTYPE_ABBREV);
2185 Record.clear();
2186 }
2187
2188 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2189 Record.push_back(unsigned(IA->hasSideEffects()) |
2190 unsigned(IA->isAlignStack()) << 1 |
2191 unsigned(IA->getDialect()&1) << 2);
2192
2193 // Add the asm string.
2194 const std::string &AsmStr = IA->getAsmString();
2195 Record.push_back(AsmStr.size());
2196 Record.append(AsmStr.begin(), AsmStr.end());
2197
2198 // Add the constraint string.
2199 const std::string &ConstraintStr = IA->getConstraintString();
2200 Record.push_back(ConstraintStr.size());
2201 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2202 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2203 Record.clear();
2204 continue;
2205 }
2206 const Constant *C = cast<Constant>(V);
2207 unsigned Code = -1U;
2208 unsigned AbbrevToUse = 0;
2209 if (C->isNullValue()) {
2210 Code = bitc::CST_CODE_NULL;
2211 } else if (isa<UndefValue>(C)) {
2212 Code = bitc::CST_CODE_UNDEF;
2213 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2214 if (IV->getBitWidth() <= 64) {
2215 uint64_t V = IV->getSExtValue();
2216 emitSignedInt64(Record, V);
2217 Code = bitc::CST_CODE_INTEGER;
2218 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2219 } else { // Wide integers, > 64 bits in size.
2220 // We have an arbitrary precision integer value to write whose
2221 // bit width is > 64. However, in canonical unsigned integer
2222 // format it is likely that the high bits are going to be zero.
2223 // So, we only write the number of active words.
2224 unsigned NWords = IV->getValue().getActiveWords();
2225 const uint64_t *RawWords = IV->getValue().getRawData();
2226 for (unsigned i = 0; i != NWords; ++i) {
2227 emitSignedInt64(Record, RawWords[i]);
2228 }
2229 Code = bitc::CST_CODE_WIDE_INTEGER;
2230 }
2231 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2232 Code = bitc::CST_CODE_FLOAT;
2233 Type *Ty = CFP->getType();
2234 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2235 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2236 } else if (Ty->isX86_FP80Ty()) {
2237 // api needed to prevent premature destruction
2238 // bits are not in the same order as a normal i80 APInt, compensate.
2239 APInt api = CFP->getValueAPF().bitcastToAPInt();
2240 const uint64_t *p = api.getRawData();
2241 Record.push_back((p[1] << 48) | (p[0] >> 16));
2242 Record.push_back(p[0] & 0xffffLL);
2243 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2244 APInt api = CFP->getValueAPF().bitcastToAPInt();
2245 const uint64_t *p = api.getRawData();
2246 Record.push_back(p[0]);
2247 Record.push_back(p[1]);
2248 } else {
2249 assert (0 && "Unknown FP type!")((0 && "Unknown FP type!") ? static_cast<void> (
0) : __assert_fail ("0 && \"Unknown FP type!\"", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2249, __PRETTY_FUNCTION__))
;
2250 }
2251 } else if (isa<ConstantDataSequential>(C) &&
2252 cast<ConstantDataSequential>(C)->isString()) {
2253 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2254 // Emit constant strings specially.
2255 unsigned NumElts = Str->getNumElements();
2256 // If this is a null-terminated string, use the denser CSTRING encoding.
2257 if (Str->isCString()) {
2258 Code = bitc::CST_CODE_CSTRING;
2259 --NumElts; // Don't encode the null, which isn't allowed by char6.
2260 } else {
2261 Code = bitc::CST_CODE_STRING;
2262 AbbrevToUse = String8Abbrev;
2263 }
2264 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2265 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2266 for (unsigned i = 0; i != NumElts; ++i) {
2267 unsigned char V = Str->getElementAsInteger(i);
2268 Record.push_back(V);
2269 isCStr7 &= (V & 128) == 0;
2270 if (isCStrChar6)
2271 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2272 }
2273
2274 if (isCStrChar6)
2275 AbbrevToUse = CString6Abbrev;
2276 else if (isCStr7)
2277 AbbrevToUse = CString7Abbrev;
2278 } else if (const ConstantDataSequential *CDS =
2279 dyn_cast<ConstantDataSequential>(C)) {
2280 Code = bitc::CST_CODE_DATA;
2281 Type *EltTy = CDS->getType()->getElementType();
2282 if (isa<IntegerType>(EltTy)) {
2283 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2284 Record.push_back(CDS->getElementAsInteger(i));
2285 } else {
2286 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2287 Record.push_back(
2288 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2289 }
2290 } else if (isa<ConstantAggregate>(C)) {
2291 Code = bitc::CST_CODE_AGGREGATE;
2292 for (const Value *Op : C->operands())
2293 Record.push_back(VE.getValueID(Op));
2294 AbbrevToUse = AggregateAbbrev;
2295 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2296 switch (CE->getOpcode()) {
2297 default:
2298 if (Instruction::isCast(CE->getOpcode())) {
2299 Code = bitc::CST_CODE_CE_CAST;
2300 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2301 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2302 Record.push_back(VE.getValueID(C->getOperand(0)));
2303 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2304 } else {
2305 assert(CE->getNumOperands() == 2 && "Unknown constant expr!")((CE->getNumOperands() == 2 && "Unknown constant expr!"
) ? static_cast<void> (0) : __assert_fail ("CE->getNumOperands() == 2 && \"Unknown constant expr!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2305, __PRETTY_FUNCTION__))
;
2306 Code = bitc::CST_CODE_CE_BINOP;
2307 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2308 Record.push_back(VE.getValueID(C->getOperand(0)));
2309 Record.push_back(VE.getValueID(C->getOperand(1)));
2310 uint64_t Flags = getOptimizationFlags(CE);
2311 if (Flags != 0)
2312 Record.push_back(Flags);
2313 }
2314 break;
2315 case Instruction::GetElementPtr: {
2316 Code = bitc::CST_CODE_CE_GEP;
2317 const auto *GO = cast<GEPOperator>(C);
2318 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2319 if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2320 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2321 Record.push_back((*Idx << 1) | GO->isInBounds());
2322 } else if (GO->isInBounds())
2323 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2324 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2325 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2326 Record.push_back(VE.getValueID(C->getOperand(i)));
2327 }
2328 break;
2329 }
2330 case Instruction::Select:
2331 Code = bitc::CST_CODE_CE_SELECT;
2332 Record.push_back(VE.getValueID(C->getOperand(0)));
2333 Record.push_back(VE.getValueID(C->getOperand(1)));
2334 Record.push_back(VE.getValueID(C->getOperand(2)));
2335 break;
2336 case Instruction::ExtractElement:
2337 Code = bitc::CST_CODE_CE_EXTRACTELT;
2338 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2339 Record.push_back(VE.getValueID(C->getOperand(0)));
2340 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2341 Record.push_back(VE.getValueID(C->getOperand(1)));
2342 break;
2343 case Instruction::InsertElement:
2344 Code = bitc::CST_CODE_CE_INSERTELT;
2345 Record.push_back(VE.getValueID(C->getOperand(0)));
2346 Record.push_back(VE.getValueID(C->getOperand(1)));
2347 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2348 Record.push_back(VE.getValueID(C->getOperand(2)));
2349 break;
2350 case Instruction::ShuffleVector:
2351 // If the return type and argument types are the same, this is a
2352 // standard shufflevector instruction. If the types are different,
2353 // then the shuffle is widening or truncating the input vectors, and
2354 // the argument type must also be encoded.
2355 if (C->getType() == C->getOperand(0)->getType()) {
2356 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2357 } else {
2358 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2359 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2360 }
2361 Record.push_back(VE.getValueID(C->getOperand(0)));
2362 Record.push_back(VE.getValueID(C->getOperand(1)));
2363 Record.push_back(VE.getValueID(C->getOperand(2)));
2364 break;
2365 case Instruction::ICmp:
2366 case Instruction::FCmp:
2367 Code = bitc::CST_CODE_CE_CMP;
2368 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2369 Record.push_back(VE.getValueID(C->getOperand(0)));
2370 Record.push_back(VE.getValueID(C->getOperand(1)));
2371 Record.push_back(CE->getPredicate());
2372 break;
2373 }
2374 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2375 Code = bitc::CST_CODE_BLOCKADDRESS;
2376 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2377 Record.push_back(VE.getValueID(BA->getFunction()));
2378 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2379 } else {
2380#ifndef NDEBUG
2381 C->dump();
2382#endif
2383 llvm_unreachable("Unknown constant!")::llvm::llvm_unreachable_internal("Unknown constant!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2383)
;
2384 }
2385 Stream.EmitRecord(Code, Record, AbbrevToUse);
2386 Record.clear();
2387 }
2388
2389 Stream.ExitBlock();
2390}
2391
2392void ModuleBitcodeWriter::writeModuleConstants() {
2393 const ValueEnumerator::ValueList &Vals = VE.getValues();
2394
2395 // Find the first constant to emit, which is the first non-globalvalue value.
2396 // We know globalvalues have been emitted by WriteModuleInfo.
2397 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2398 if (!isa<GlobalValue>(Vals[i].first)) {
2399 writeConstants(i, Vals.size(), true);
2400 return;
2401 }
2402 }
2403}
2404
2405/// pushValueAndType - The file has to encode both the value and type id for
2406/// many values, because we need to know what type to create for forward
2407/// references. However, most operands are not forward references, so this type
2408/// field is not needed.
2409///
2410/// This function adds V's value ID to Vals. If the value ID is higher than the
2411/// instruction ID, then it is a forward reference, and it also includes the
2412/// type ID. The value ID that is written is encoded relative to the InstID.
2413bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2414 SmallVectorImpl<unsigned> &Vals) {
2415 unsigned ValID = VE.getValueID(V);
2416 // Make encoding relative to the InstID.
2417 Vals.push_back(InstID - ValID);
2418 if (ValID >= InstID) {
2419 Vals.push_back(VE.getTypeID(V->getType()));
2420 return true;
2421 }
2422 return false;
2423}
2424
2425void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2426 unsigned InstID) {
2427 SmallVector<unsigned, 64> Record;
2428 LLVMContext &C = CS.getInstruction()->getContext();
2429
2430 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2431 const auto &Bundle = CS.getOperandBundleAt(i);
2432 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2433
2434 for (auto &Input : Bundle.Inputs)
2435 pushValueAndType(Input, InstID, Record);
2436
2437 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2438 Record.clear();
2439 }
2440}
2441
2442/// pushValue - Like pushValueAndType, but where the type of the value is
2443/// omitted (perhaps it was already encoded in an earlier operand).
2444void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2445 SmallVectorImpl<unsigned> &Vals) {
2446 unsigned ValID = VE.getValueID(V);
2447 Vals.push_back(InstID - ValID);
2448}
2449
2450void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2451 SmallVectorImpl<uint64_t> &Vals) {
2452 unsigned ValID = VE.getValueID(V);
2453 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2454 emitSignedInt64(Vals, diff);
2455}
2456
2457/// WriteInstruction - Emit an instruction to the specified stream.
2458void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2459 unsigned InstID,
2460 SmallVectorImpl<unsigned> &Vals) {
2461 unsigned Code = 0;
2462 unsigned AbbrevToUse = 0;
2463 VE.setInstructionID(&I);
2464 switch (I.getOpcode()) {
2465 default:
2466 if (Instruction::isCast(I.getOpcode())) {
2467 Code = bitc::FUNC_CODE_INST_CAST;
2468 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2469 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2470 Vals.push_back(VE.getTypeID(I.getType()));
2471 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2472 } else {
2473 assert(isa<BinaryOperator>(I) && "Unknown instruction!")((isa<BinaryOperator>(I) && "Unknown instruction!"
) ? static_cast<void> (0) : __assert_fail ("isa<BinaryOperator>(I) && \"Unknown instruction!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2473, __PRETTY_FUNCTION__))
;
2474 Code = bitc::FUNC_CODE_INST_BINOP;
2475 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2476 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2477 pushValue(I.getOperand(1), InstID, Vals);
2478 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2479 uint64_t Flags = getOptimizationFlags(&I);
2480 if (Flags != 0) {
2481 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2482 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2483 Vals.push_back(Flags);
2484 }
2485 }
2486 break;
2487
2488 case Instruction::GetElementPtr: {
2489 Code = bitc::FUNC_CODE_INST_GEP;
2490 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2491 auto &GEPInst = cast<GetElementPtrInst>(I);
2492 Vals.push_back(GEPInst.isInBounds());
2493 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2494 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2495 pushValueAndType(I.getOperand(i), InstID, Vals);
2496 break;
2497 }
2498 case Instruction::ExtractValue: {
2499 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2500 pushValueAndType(I.getOperand(0), InstID, Vals);
2501 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2502 Vals.append(EVI->idx_begin(), EVI->idx_end());
2503 break;
2504 }
2505 case Instruction::InsertValue: {
2506 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2507 pushValueAndType(I.getOperand(0), InstID, Vals);
2508 pushValueAndType(I.getOperand(1), InstID, Vals);
2509 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2510 Vals.append(IVI->idx_begin(), IVI->idx_end());
2511 break;
2512 }
2513 case Instruction::Select:
2514 Code = bitc::FUNC_CODE_INST_VSELECT;
2515 pushValueAndType(I.getOperand(1), InstID, Vals);
2516 pushValue(I.getOperand(2), InstID, Vals);
2517 pushValueAndType(I.getOperand(0), InstID, Vals);
2518 break;
2519 case Instruction::ExtractElement:
2520 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2521 pushValueAndType(I.getOperand(0), InstID, Vals);
2522 pushValueAndType(I.getOperand(1), InstID, Vals);
2523 break;
2524 case Instruction::InsertElement:
2525 Code = bitc::FUNC_CODE_INST_INSERTELT;
2526 pushValueAndType(I.getOperand(0), InstID, Vals);
2527 pushValue(I.getOperand(1), InstID, Vals);
2528 pushValueAndType(I.getOperand(2), InstID, Vals);
2529 break;
2530 case Instruction::ShuffleVector:
2531 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2532 pushValueAndType(I.getOperand(0), InstID, Vals);
2533 pushValue(I.getOperand(1), InstID, Vals);
2534 pushValue(I.getOperand(2), InstID, Vals);
2535 break;
2536 case Instruction::ICmp:
2537 case Instruction::FCmp: {
2538 // compare returning Int1Ty or vector of Int1Ty
2539 Code = bitc::FUNC_CODE_INST_CMP2;
2540 pushValueAndType(I.getOperand(0), InstID, Vals);
2541 pushValue(I.getOperand(1), InstID, Vals);
2542 Vals.push_back(cast<CmpInst>(I).getPredicate());
2543 uint64_t Flags = getOptimizationFlags(&I);
2544 if (Flags != 0)
2545 Vals.push_back(Flags);
2546 break;
2547 }
2548
2549 case Instruction::Ret:
2550 {
2551 Code = bitc::FUNC_CODE_INST_RET;
2552 unsigned NumOperands = I.getNumOperands();
2553 if (NumOperands == 0)
2554 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2555 else if (NumOperands == 1) {
2556 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2557 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2558 } else {
2559 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2560 pushValueAndType(I.getOperand(i), InstID, Vals);
2561 }
2562 }
2563 break;
2564 case Instruction::Br:
2565 {
2566 Code = bitc::FUNC_CODE_INST_BR;
2567 const BranchInst &II = cast<BranchInst>(I);
2568 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2569 if (II.isConditional()) {
2570 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2571 pushValue(II.getCondition(), InstID, Vals);
2572 }
2573 }
2574 break;
2575 case Instruction::Switch:
2576 {
2577 Code = bitc::FUNC_CODE_INST_SWITCH;
2578 const SwitchInst &SI = cast<SwitchInst>(I);
2579 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2580 pushValue(SI.getCondition(), InstID, Vals);
2581 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2582 for (SwitchInst::ConstCaseIt Case : SI.cases()) {
2583 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2584 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2585 }
2586 }
2587 break;
2588 case Instruction::IndirectBr:
2589 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2590 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2591 // Encode the address operand as relative, but not the basic blocks.
2592 pushValue(I.getOperand(0), InstID, Vals);
2593 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2594 Vals.push_back(VE.getValueID(I.getOperand(i)));
2595 break;
2596
2597 case Instruction::Invoke: {
2598 const InvokeInst *II = cast<InvokeInst>(&I);
2599 const Value *Callee = II->getCalledValue();
2600 FunctionType *FTy = II->getFunctionType();
2601
2602 if (II->hasOperandBundles())
2603 writeOperandBundles(II, InstID);
2604
2605 Code = bitc::FUNC_CODE_INST_INVOKE;
2606
2607 Vals.push_back(VE.getAttributeID(II->getAttributes()));
2608 Vals.push_back(II->getCallingConv() | 1 << 13);
2609 Vals.push_back(VE.getValueID(II->getNormalDest()));
2610 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2611 Vals.push_back(VE.getTypeID(FTy));
2612 pushValueAndType(Callee, InstID, Vals);
2613
2614 // Emit value #'s for the fixed parameters.
2615 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2616 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2617
2618 // Emit type/value pairs for varargs params.
2619 if (FTy->isVarArg()) {
2620 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2621 i != e; ++i)
2622 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2623 }
2624 break;
2625 }
2626 case Instruction::Resume:
2627 Code = bitc::FUNC_CODE_INST_RESUME;
2628 pushValueAndType(I.getOperand(0), InstID, Vals);
2629 break;
2630 case Instruction::CleanupRet: {
2631 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2632 const auto &CRI = cast<CleanupReturnInst>(I);
2633 pushValue(CRI.getCleanupPad(), InstID, Vals);
2634 if (CRI.hasUnwindDest())
2635 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2636 break;
2637 }
2638 case Instruction::CatchRet: {
2639 Code = bitc::FUNC_CODE_INST_CATCHRET;
2640 const auto &CRI = cast<CatchReturnInst>(I);
2641 pushValue(CRI.getCatchPad(), InstID, Vals);
2642 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2643 break;
2644 }
2645 case Instruction::CleanupPad:
2646 case Instruction::CatchPad: {
2647 const auto &FuncletPad = cast<FuncletPadInst>(I);
2648 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2649 : bitc::FUNC_CODE_INST_CLEANUPPAD;
2650 pushValue(FuncletPad.getParentPad(), InstID, Vals);
2651
2652 unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2653 Vals.push_back(NumArgOperands);
2654 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2655 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2656 break;
2657 }
2658 case Instruction::CatchSwitch: {
2659 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2660 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2661
2662 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2663
2664 unsigned NumHandlers = CatchSwitch.getNumHandlers();
2665 Vals.push_back(NumHandlers);
2666 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2667 Vals.push_back(VE.getValueID(CatchPadBB));
2668
2669 if (CatchSwitch.hasUnwindDest())
2670 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2671 break;
2672 }
2673 case Instruction::Unreachable:
2674 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2675 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2676 break;
2677
2678 case Instruction::PHI: {
2679 const PHINode &PN = cast<PHINode>(I);
2680 Code = bitc::FUNC_CODE_INST_PHI;
2681 // With the newer instruction encoding, forward references could give
2682 // negative valued IDs. This is most common for PHIs, so we use
2683 // signed VBRs.
2684 SmallVector<uint64_t, 128> Vals64;
2685 Vals64.push_back(VE.getTypeID(PN.getType()));
2686 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2687 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2688 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2689 }
2690 // Emit a Vals64 vector and exit.
2691 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2692 Vals64.clear();
2693 return;
2694 }
2695
2696 case Instruction::LandingPad: {
2697 const LandingPadInst &LP = cast<LandingPadInst>(I);
2698 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2699 Vals.push_back(VE.getTypeID(LP.getType()));
2700 Vals.push_back(LP.isCleanup());
2701 Vals.push_back(LP.getNumClauses());
2702 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2703 if (LP.isCatch(I))
2704 Vals.push_back(LandingPadInst::Catch);
2705 else
2706 Vals.push_back(LandingPadInst::Filter);
2707 pushValueAndType(LP.getClause(I), InstID, Vals);
2708 }
2709 break;
2710 }
2711
2712 case Instruction::Alloca: {
2713 Code = bitc::FUNC_CODE_INST_ALLOCA;
2714 const AllocaInst &AI = cast<AllocaInst>(I);
2715 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2716 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2717 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2718 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2719 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&((Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
"not enough bits for maximum alignment") ? static_cast<void
> (0) : __assert_fail ("Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && \"not enough bits for maximum alignment\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2720, __PRETTY_FUNCTION__))
2720 "not enough bits for maximum alignment")((Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
"not enough bits for maximum alignment") ? static_cast<void
> (0) : __assert_fail ("Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && \"not enough bits for maximum alignment\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2720, __PRETTY_FUNCTION__))
;
2721 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64")((AlignRecord < 1 << 5 && "alignment greater than 1 << 64"
) ? static_cast<void> (0) : __assert_fail ("AlignRecord < 1 << 5 && \"alignment greater than 1 << 64\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2721, __PRETTY_FUNCTION__))
;
2722 AlignRecord |= AI.isUsedWithInAlloca() << 5;
2723 AlignRecord |= 1 << 6;
2724 AlignRecord |= AI.isSwiftError() << 7;
2725 Vals.push_back(AlignRecord);
2726 break;
2727 }
2728
2729 case Instruction::Load:
2730 if (cast<LoadInst>(I).isAtomic()) {
2731 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2732 pushValueAndType(I.getOperand(0), InstID, Vals);
2733 } else {
2734 Code = bitc::FUNC_CODE_INST_LOAD;
2735 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2736 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2737 }
2738 Vals.push_back(VE.getTypeID(I.getType()));
2739 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2740 Vals.push_back(cast<LoadInst>(I).isVolatile());
2741 if (cast<LoadInst>(I).isAtomic()) {
2742 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2743 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2744 }
2745 break;
2746 case Instruction::Store:
2747 if (cast<StoreInst>(I).isAtomic())
2748 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2749 else
2750 Code = bitc::FUNC_CODE_INST_STORE;
2751 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2752 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2753 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2754 Vals.push_back(cast<StoreInst>(I).isVolatile());
2755 if (cast<StoreInst>(I).isAtomic()) {
2756 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2757 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2758 }
2759 break;
2760 case Instruction::AtomicCmpXchg:
2761 Code = bitc::FUNC_CODE_INST_CMPXCHG;
2762 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2763 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2764 pushValue(I.getOperand(2), InstID, Vals); // newval.
2765 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2766 Vals.push_back(
2767 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2768 Vals.push_back(
2769 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
2770 Vals.push_back(
2771 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2772 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2773 break;
2774 case Instruction::AtomicRMW:
2775 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2776 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2777 pushValue(I.getOperand(1), InstID, Vals); // val.
2778 Vals.push_back(
2779 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2780 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2781 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2782 Vals.push_back(
2783 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
2784 break;
2785 case Instruction::Fence:
2786 Code = bitc::FUNC_CODE_INST_FENCE;
2787 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2788 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2789 break;
2790 case Instruction::Call: {
2791 const CallInst &CI = cast<CallInst>(I);
2792 FunctionType *FTy = CI.getFunctionType();
2793
2794 if (CI.hasOperandBundles())
2795 writeOperandBundles(&CI, InstID);
2796
2797 Code = bitc::FUNC_CODE_INST_CALL;
2798
2799 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2800
2801 unsigned Flags = getOptimizationFlags(&I);
2802 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2803 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2804 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2805 1 << bitc::CALL_EXPLICIT_TYPE |
2806 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2807 unsigned(Flags != 0) << bitc::CALL_FMF);
2808 if (Flags != 0)
2809 Vals.push_back(Flags);
2810
2811 Vals.push_back(VE.getTypeID(FTy));
2812 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2813
2814 // Emit value #'s for the fixed parameters.
2815 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2816 // Check for labels (can happen with asm labels).
2817 if (FTy->getParamType(i)->isLabelTy())
2818 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2819 else
2820 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2821 }
2822
2823 // Emit type/value pairs for varargs params.
2824 if (FTy->isVarArg()) {
2825 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2826 i != e; ++i)
2827 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2828 }
2829 break;
2830 }
2831 case Instruction::VAArg:
2832 Code = bitc::FUNC_CODE_INST_VAARG;
2833 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
2834 pushValue(I.getOperand(0), InstID, Vals); // valist.
2835 Vals.push_back(VE.getTypeID(I.getType())); // restype.
2836 break;
2837 }
2838
2839 Stream.EmitRecord(Code, Vals, AbbrevToUse);
2840 Vals.clear();
2841}
2842
2843/// Emit names for globals/functions etc. \p IsModuleLevel is true when
2844/// we are writing the module-level VST, where we are including a function
2845/// bitcode index and need to backpatch the VST forward declaration record.
2846void ModuleBitcodeWriter::writeValueSymbolTable(
2847 const ValueSymbolTable &VST, bool IsModuleLevel,
2848 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
2849 if (VST.empty()) {
1
Assuming the condition is false
2
Taking false branch
2850 // writeValueSymbolTableForwardDecl should have returned early as
2851 // well. Ensure this handling remains in sync by asserting that
2852 // the placeholder offset is not set.
2853 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder())((!IsModuleLevel || !hasVSTOffsetPlaceholder()) ? static_cast
<void> (0) : __assert_fail ("!IsModuleLevel || !hasVSTOffsetPlaceholder()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2853, __PRETTY_FUNCTION__))
;
2854 return;
2855 }
2856
2857 if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
3
Assuming 'IsModuleLevel' is 0
2858 // Get the offset of the VST we are writing, and backpatch it into
2859 // the VST forward declaration record.
2860 uint64_t VSTOffset = Stream.GetCurrentBitNo();
2861 // The BitcodeStartBit was the stream offset of the identification block.
2862 VSTOffset -= bitcodeStartBit();
2863 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned")(((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"
) ? static_cast<void> (0) : __assert_fail ("(VSTOffset & 31) == 0 && \"VST block not 32-bit aligned\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2863, __PRETTY_FUNCTION__))
;
2864 // Note that we add 1 here because the offset is relative to one word
2865 // before the start of the identification block, which was historically
2866 // always the start of the regular bitcode header.
2867 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2868 }
2869
2870 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2871
2872 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2873 // records, which are not used in the per-function VSTs.
2874 unsigned FnEntry8BitAbbrev;
4
'FnEntry8BitAbbrev' declared without an initial value
2875 unsigned FnEntry7BitAbbrev;
2876 unsigned FnEntry6BitAbbrev;
2877 unsigned GUIDEntryAbbrev;
2878 if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2879 // 8-bit fixed-width VST_CODE_FNENTRY function strings.
2880 auto Abbv = std::make_shared<BitCodeAbbrev>();
2881 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2886 FnEntry8BitAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2887
2888 // 7-bit fixed width VST_CODE_FNENTRY function strings.
2889 Abbv = std::make_shared<BitCodeAbbrev>();
2890 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2895 FnEntry7BitAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2896
2897 // 6-bit char6 VST_CODE_FNENTRY function strings.
2898 Abbv = std::make_shared<BitCodeAbbrev>();
2899 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2904 FnEntry6BitAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2905
2906 // FIXME: Change the name of this record as it is now used by
2907 // the per-module index as well.
2908 Abbv = std::make_shared<BitCodeAbbrev>();
2909 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
2910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
2912 GUIDEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2913 }
2914
2915 // FIXME: Set up the abbrev, we know how many values there are!
2916 // FIXME: We know if the type names can use 7-bit ascii.
2917 SmallVector<uint64_t, 64> NameVals;
2918
2919 for (const ValueName &Name : VST) {
2920 // Figure out the encoding to use for the name.
2921 StringEncoding Bits =
2922 getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2923
2924 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2925 NameVals.push_back(VE.getValueID(Name.getValue()));
2926
2927 Function *F = dyn_cast<Function>(Name.getValue());
2928 if (!F) {
5
Taking true branch
12
Taking true branch
19
Taking true branch
24
Assuming 'F' is non-null
25
Taking false branch
2929 // If value is an alias, need to get the aliased base object to
2930 // see if it is a function.
2931 auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2932 if (GA && GA->getBaseObject())
2933 F = dyn_cast<Function>(GA->getBaseObject());
2934 }
2935
2936 // VST_CODE_ENTRY: [valueid, namechar x N]
2937 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
2938 // VST_CODE_BBENTRY: [bbid, namechar x N]
2939 unsigned Code;
2940 if (isa<BasicBlock>(Name.getValue())) {
6
Taking false branch
13
Taking false branch
20
Taking true branch
26
Taking false branch
2941 Code = bitc::VST_CODE_BBENTRY;
2942 if (Bits == SE_Char6)
21
Assuming 'Bits' is not equal to SE_Char6
22
Taking false branch
2943 AbbrevToUse = VST_BBENTRY_6_ABBREV;
2944 } else if (F && !F->isDeclaration()) {
27
Assuming the condition is true
28
Taking true branch
2945 // Must be the module-level VST, where we pass in the Index and
2946 // have a VSTOffsetPlaceholder. The function-level VST should not
2947 // contain any Function symbols.
2948 assert(FunctionToBitcodeIndex)((FunctionToBitcodeIndex) ? static_cast<void> (0) : __assert_fail
("FunctionToBitcodeIndex", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2948, __PRETTY_FUNCTION__))
;
2949 assert(hasVSTOffsetPlaceholder())((hasVSTOffsetPlaceholder()) ? static_cast<void> (0) : __assert_fail
("hasVSTOffsetPlaceholder()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2949, __PRETTY_FUNCTION__))
;
2950
2951 // Save the word offset of the function (from the start of the
2952 // actual bitcode written to the stream).
2953 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
2954 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned")(((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"
) ? static_cast<void> (0) : __assert_fail ("(BitcodeIndex & 31) == 0 && \"function block not 32-bit aligned\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2954, __PRETTY_FUNCTION__))
;
2955 // Note that we add 1 here because the offset is relative to one word
2956 // before the start of the identification block, which was historically
2957 // always the start of the regular bitcode header.
2958 NameVals.push_back(BitcodeIndex / 32 + 1);
2959
2960 Code = bitc::VST_CODE_FNENTRY;
2961 AbbrevToUse = FnEntry8BitAbbrev;
29
Assigned value is garbage or undefined
2962 if (Bits == SE_Char6)
2963 AbbrevToUse = FnEntry6BitAbbrev;
2964 else if (Bits == SE_Fixed7)
2965 AbbrevToUse = FnEntry7BitAbbrev;
2966 } else {
2967 Code = bitc::VST_CODE_ENTRY;
2968 if (Bits == SE_Char6)
7
Assuming 'Bits' is not equal to SE_Char6
8
Taking false branch
14
Assuming 'Bits' is not equal to SE_Char6
15
Taking false branch
2969 AbbrevToUse = VST_ENTRY_6_ABBREV;
2970 else if (Bits == SE_Fixed7)
9
Assuming 'Bits' is not equal to SE_Fixed7
10
Taking false branch
16
Assuming 'Bits' is not equal to SE_Fixed7
17
Taking false branch
2971 AbbrevToUse = VST_ENTRY_7_ABBREV;
2972 }
2973
2974 for (const auto P : Name.getKey())
11
Assuming '__begin' is equal to '__end'
18
Assuming '__begin' is equal to '__end'
23
Assuming '__begin' is equal to '__end'
2975 NameVals.push_back((unsigned char)P);
2976
2977 // Emit the finished record.
2978 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2979 NameVals.clear();
2980 }
2981 // Emit any GUID valueIDs created for indirect call edges into the
2982 // module-level VST.
2983 if (IsModuleLevel && hasVSTOffsetPlaceholder())
2984 for (const auto &GI : valueIds()) {
2985 NameVals.push_back(GI.second);
2986 NameVals.push_back(GI.first);
2987 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals,
2988 GUIDEntryAbbrev);
2989 NameVals.clear();
2990 }
2991 Stream.ExitBlock();
2992}
2993
2994/// Emit function names and summary offsets for the combined index
2995/// used by ThinLTO.
2996void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
2997 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder")((hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"
) ? static_cast<void> (0) : __assert_fail ("hasVSTOffsetPlaceholder() && \"Expected non-zero VSTOffsetPlaceholder\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 2997, __PRETTY_FUNCTION__))
;
2998 // Get the offset of the VST we are writing, and backpatch it into
2999 // the VST forward declaration record.
3000 uint64_t VSTOffset = Stream.GetCurrentBitNo();
3001 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned")(((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"
) ? static_cast<void> (0) : __assert_fail ("(VSTOffset & 31) == 0 && \"VST block not 32-bit aligned\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3001, __PRETTY_FUNCTION__))
;
3002 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
3003
3004 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3005
3006 auto Abbv = std::make_shared<BitCodeAbbrev>();
3007 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
3008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
3010 unsigned EntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3011
3012 SmallVector<uint64_t, 64> NameVals;
3013 for (const auto &GVI : valueIds()) {
3014 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
3015 NameVals.push_back(GVI.second);
3016 NameVals.push_back(GVI.first);
3017
3018 // Emit the finished record.
3019 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
3020 NameVals.clear();
3021 }
3022 Stream.ExitBlock();
3023}
3024
3025void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3026 assert(Order.Shuffle.size() >= 2 && "Shuffle too small")((Order.Shuffle.size() >= 2 && "Shuffle too small"
) ? static_cast<void> (0) : __assert_fail ("Order.Shuffle.size() >= 2 && \"Shuffle too small\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3026, __PRETTY_FUNCTION__))
;
3027 unsigned Code;
3028 if (isa<BasicBlock>(Order.V))
3029 Code = bitc::USELIST_CODE_BB;
3030 else
3031 Code = bitc::USELIST_CODE_DEFAULT;
3032
3033 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3034 Record.push_back(VE.getValueID(Order.V));
3035 Stream.EmitRecord(Code, Record);
3036}
3037
3038void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3039 assert(VE.shouldPreserveUseListOrder() &&((VE.shouldPreserveUseListOrder() && "Expected to be preserving use-list order"
) ? static_cast<void> (0) : __assert_fail ("VE.shouldPreserveUseListOrder() && \"Expected to be preserving use-list order\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3040, __PRETTY_FUNCTION__))
3040 "Expected to be preserving use-list order")((VE.shouldPreserveUseListOrder() && "Expected to be preserving use-list order"
) ? static_cast<void> (0) : __assert_fail ("VE.shouldPreserveUseListOrder() && \"Expected to be preserving use-list order\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3040, __PRETTY_FUNCTION__))
;
3041
3042 auto hasMore = [&]() {
3043 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3044 };
3045 if (!hasMore())
3046 // Nothing to do.
3047 return;
3048
3049 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3050 while (hasMore()) {
3051 writeUseList(std::move(VE.UseListOrders.back()));
3052 VE.UseListOrders.pop_back();
3053 }
3054 Stream.ExitBlock();
3055}
3056
3057/// Emit a function body to the module stream.
3058void ModuleBitcodeWriter::writeFunction(
3059 const Function &F,
3060 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3061 // Save the bitcode index of the start of this function block for recording
3062 // in the VST.
3063 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3064
3065 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3066 VE.incorporateFunction(F);
3067
3068 SmallVector<unsigned, 64> Vals;
3069
3070 // Emit the number of basic blocks, so the reader can create them ahead of
3071 // time.
3072 Vals.push_back(VE.getBasicBlocks().size());
3073 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3074 Vals.clear();
3075
3076 // If there are function-local constants, emit them now.
3077 unsigned CstStart, CstEnd;
3078 VE.getFunctionConstantRange(CstStart, CstEnd);
3079 writeConstants(CstStart, CstEnd, false);
3080
3081 // If there is function-local metadata, emit it now.
3082 writeFunctionMetadata(F);
3083
3084 // Keep a running idea of what the instruction ID is.
3085 unsigned InstID = CstEnd;
3086
3087 bool NeedsMetadataAttachment = F.hasMetadata();
3088
3089 DILocation *LastDL = nullptr;
3090 // Finally, emit all the instructions, in order.
3091 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3092 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3093 I != E; ++I) {
3094 writeInstruction(*I, InstID, Vals);
3095
3096 if (!I->getType()->isVoidTy())
3097 ++InstID;
3098
3099 // If the instruction has metadata, write a metadata attachment later.
3100 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3101
3102 // If the instruction has a debug location, emit it.
3103 DILocation *DL = I->getDebugLoc();
3104 if (!DL)
3105 continue;
3106
3107 if (DL == LastDL) {
3108 // Just repeat the same debug loc as last time.
3109 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3110 continue;
3111 }
3112
3113 Vals.push_back(DL->getLine());
3114 Vals.push_back(DL->getColumn());
3115 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3116 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3117 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3118 Vals.clear();
3119
3120 LastDL = DL;
3121 }
3122
3123 // Emit names for all the instructions etc.
3124 if (auto *Symtab = F.getValueSymbolTable())
3125 writeValueSymbolTable(*Symtab);
3126
3127 if (NeedsMetadataAttachment)
3128 writeFunctionMetadataAttachment(F);
3129 if (VE.shouldPreserveUseListOrder())
3130 writeUseListBlock(&F);
3131 VE.purgeFunction();
3132 Stream.ExitBlock();
3133}
3134
3135// Emit blockinfo, which defines the standard abbreviations etc.
3136void ModuleBitcodeWriter::writeBlockInfo() {
3137 // We only want to emit block info records for blocks that have multiple
3138 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3139 // Other blocks can define their abbrevs inline.
3140 Stream.EnterBlockInfoBlock();
3141
3142 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3143 auto Abbv = std::make_shared<BitCodeAbbrev>();
3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3148 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3149 VST_ENTRY_8_ABBREV)
3150 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3150)
;
3151 }
3152
3153 { // 7-bit fixed width VST_CODE_ENTRY strings.
3154 auto Abbv = std::make_shared<BitCodeAbbrev>();
3155 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3159 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3160 VST_ENTRY_7_ABBREV)
3161 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3161)
;
3162 }
3163 { // 6-bit char6 VST_CODE_ENTRY strings.
3164 auto Abbv = std::make_shared<BitCodeAbbrev>();
3165 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3169 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3170 VST_ENTRY_6_ABBREV)
3171 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3171)
;
3172 }
3173 { // 6-bit char6 VST_CODE_BBENTRY strings.
3174 auto Abbv = std::make_shared<BitCodeAbbrev>();
3175 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3179 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3180 VST_BBENTRY_6_ABBREV)
3181 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3181)
;
3182 }
3183
3184
3185
3186 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3187 auto Abbv = std::make_shared<BitCodeAbbrev>();
3188 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3190 VE.computeBitsRequiredForTypeIndicies()));
3191 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3192 CONSTANTS_SETTYPE_ABBREV)
3193 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3193)
;
3194 }
3195
3196 { // INTEGER abbrev for CONSTANTS_BLOCK.
3197 auto Abbv = std::make_shared<BitCodeAbbrev>();
3198 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3200 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3201 CONSTANTS_INTEGER_ABBREV)
3202 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3202)
;
3203 }
3204
3205 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3206 auto Abbv = std::make_shared<BitCodeAbbrev>();
3207 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3210 VE.computeBitsRequiredForTypeIndicies()));
3211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3212
3213 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3214 CONSTANTS_CE_CAST_Abbrev)
3215 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3215)
;
3216 }
3217 { // NULL abbrev for CONSTANTS_BLOCK.
3218 auto Abbv = std::make_shared<BitCodeAbbrev>();
3219 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3220 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3221 CONSTANTS_NULL_Abbrev)
3222 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3222)
;
3223 }
3224
3225 // FIXME: This should only use space for first class types!
3226
3227 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3228 auto Abbv = std::make_shared<BitCodeAbbrev>();
3229 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3232 VE.computeBitsRequiredForTypeIndicies()));
3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3235 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3236 FUNCTION_INST_LOAD_ABBREV)
3237 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3237)
;
3238 }
3239 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3240 auto Abbv = std::make_shared<BitCodeAbbrev>();
3241 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3245 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3246 FUNCTION_INST_BINOP_ABBREV)
3247 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3247)
;
3248 }
3249 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3250 auto Abbv = std::make_shared<BitCodeAbbrev>();
3251 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
3256 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3257 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3258 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3258)
;
3259 }
3260 { // INST_CAST abbrev for FUNCTION_BLOCK.
3261 auto Abbv = std::make_shared<BitCodeAbbrev>();
3262 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3265 VE.computeBitsRequiredForTypeIndicies()));
3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3267 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3268 FUNCTION_INST_CAST_ABBREV)
3269 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3269)
;
3270 }
3271
3272 { // INST_RET abbrev for FUNCTION_BLOCK.
3273 auto Abbv = std::make_shared<BitCodeAbbrev>();
3274 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3275 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3276 FUNCTION_INST_RET_VOID_ABBREV)
3277 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3277)
;
3278 }
3279 { // INST_RET abbrev for FUNCTION_BLOCK.
3280 auto Abbv = std::make_shared<BitCodeAbbrev>();
3281 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3283 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3284 FUNCTION_INST_RET_VAL_ABBREV)
3285 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3285)
;
3286 }
3287 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3288 auto Abbv = std::make_shared<BitCodeAbbrev>();
3289 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3290 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3291 FUNCTION_INST_UNREACHABLE_ABBREV)
3292 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3292)
;
3293 }
3294 {
3295 auto Abbv = std::make_shared<BitCodeAbbrev>();
3296 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3299 Log2_32_Ceil(VE.getTypes().size() + 1)));
3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3302 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3303 FUNCTION_INST_GEP_ABBREV)
3304 llvm_unreachable("Unexpected abbrev ordering!")::llvm::llvm_unreachable_internal("Unexpected abbrev ordering!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3304)
;
3305 }
3306
3307 Stream.ExitBlock();
3308}
3309
3310/// Write the module path strings, currently only used when generating
3311/// a combined index file.
3312void IndexBitcodeWriter::writeModStrings() {
3313 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3314
3315 // TODO: See which abbrev sizes we actually need to emit
3316
3317 // 8-bit fixed-width MST_ENTRY strings.
3318 auto Abbv = std::make_shared<BitCodeAbbrev>();
3319 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3323 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3324
3325 // 7-bit fixed width MST_ENTRY strings.
3326 Abbv = std::make_shared<BitCodeAbbrev>();
3327 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3331 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3332
3333 // 6-bit char6 MST_ENTRY strings.
3334 Abbv = std::make_shared<BitCodeAbbrev>();
3335 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3339 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3340
3341 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3342 Abbv = std::make_shared<BitCodeAbbrev>();
3343 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3349 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3350
3351 SmallVector<unsigned, 64> Vals;
3352 for (const auto &MPSE : Index.modulePaths()) {
3353 if (!doIncludeModule(MPSE.getKey()))
3354 continue;
3355 StringEncoding Bits =
3356 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
3357 unsigned AbbrevToUse = Abbrev8Bit;
3358 if (Bits == SE_Char6)
3359 AbbrevToUse = Abbrev6Bit;
3360 else if (Bits == SE_Fixed7)
3361 AbbrevToUse = Abbrev7Bit;
3362
3363 Vals.push_back(MPSE.getValue().first);
3364
3365 for (const auto P : MPSE.getKey())
3366 Vals.push_back((unsigned char)P);
3367
3368 // Emit the finished record.
3369 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3370
3371 Vals.clear();
3372 // Emit an optional hash for the module now
3373 auto &Hash = MPSE.getValue().second;
3374 bool AllZero = true; // Detect if the hash is empty, and do not generate it
3375 for (auto Val : Hash) {
3376 if (Val)
3377 AllZero = false;
3378 Vals.push_back(Val);
3379 }
3380 if (!AllZero) {
3381 // Emit the hash record.
3382 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3383 }
3384
3385 Vals.clear();
3386 }
3387 Stream.ExitBlock();
3388}
3389
3390/// Write the function type metadata related records that need to appear before
3391/// a function summary entry (whether per-module or combined).
3392static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3393 FunctionSummary *FS) {
3394 if (!FS->type_tests().empty())
3395 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3396
3397 SmallVector<uint64_t, 64> Record;
3398
3399 auto WriteVFuncIdVec = [&](uint64_t Ty,
3400 ArrayRef<FunctionSummary::VFuncId> VFs) {
3401 if (VFs.empty())
3402 return;
3403 Record.clear();
3404 for (auto &VF : VFs) {
3405 Record.push_back(VF.GUID);
3406 Record.push_back(VF.Offset);
3407 }
3408 Stream.EmitRecord(Ty, Record);
3409 };
3410
3411 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3412 FS->type_test_assume_vcalls());
3413 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3414 FS->type_checked_load_vcalls());
3415
3416 auto WriteConstVCallVec = [&](uint64_t Ty,
3417 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3418 for (auto &VC : VCs) {
3419 Record.clear();
3420 Record.push_back(VC.VFunc.GUID);
3421 Record.push_back(VC.VFunc.Offset);
3422 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3423 Stream.EmitRecord(Ty, Record);
3424 }
3425 };
3426
3427 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3428 FS->type_test_assume_const_vcalls());
3429 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3430 FS->type_checked_load_const_vcalls());
3431}
3432
3433// Helper to emit a single function summary record.
3434void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
3435 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3436 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3437 const Function &F) {
3438 NameVals.push_back(ValueID);
3439
3440 FunctionSummary *FS = cast<FunctionSummary>(Summary);
3441 writeFunctionTypeMetadataRecords(Stream, FS);
3442
3443 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3444 NameVals.push_back(FS->instCount());
3445 NameVals.push_back(FS->refs().size());
3446
3447 for (auto &RI : FS->refs())
3448 NameVals.push_back(VE.getValueID(RI.getValue()));
3449
3450 bool HasProfileData = F.getEntryCount().hasValue();
3451 for (auto &ECI : FS->calls()) {
3452 NameVals.push_back(getValueId(ECI.first));
3453 if (HasProfileData)
3454 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3455 }
3456
3457 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3458 unsigned Code =
3459 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
3460
3461 // Emit the finished record.
3462 Stream.EmitRecord(Code, NameVals, FSAbbrev);
3463 NameVals.clear();
3464}
3465
3466// Collect the global value references in the given variable's initializer,
3467// and emit them in a summary record.
3468void ModuleBitcodeWriter::writeModuleLevelReferences(
3469 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3470 unsigned FSModRefsAbbrev) {
3471 auto Summaries =
3472 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName()));
3473 if (Summaries == Index->end()) {
3474 // Only declarations should not have a summary (a declaration might however
3475 // have a summary if the def was in module level asm).
3476 assert(V.isDeclaration())((V.isDeclaration()) ? static_cast<void> (0) : __assert_fail
("V.isDeclaration()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3476, __PRETTY_FUNCTION__))
;
3477 return;
3478 }
3479 auto *Summary = Summaries->second.front().get();
3480 NameVals.push_back(VE.getValueID(&V));
3481 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3482 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3483
3484 unsigned SizeBeforeRefs = NameVals.size();
3485 for (auto &RI : VS->refs())
3486 NameVals.push_back(VE.getValueID(RI.getValue()));
3487 // Sort the refs for determinism output, the vector returned by FS->refs() has
3488 // been initialized from a DenseSet.
3489 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3490
3491 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3492 FSModRefsAbbrev);
3493 NameVals.clear();
3494}
3495
3496// Current version for the summary.
3497// This is bumped whenever we introduce changes in the way some record are
3498// interpreted, like flags for instance.
3499static const uint64_t INDEX_VERSION = 3;
3500
3501/// Emit the per-module summary section alongside the rest of
3502/// the module's bitcode.
3503void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
3504 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
3505
3506 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3507
3508 if (Index->begin() == Index->end()) {
3509 Stream.ExitBlock();
3510 return;
3511 }
3512
3513 // Abbrev for FS_PERMODULE.
3514 auto Abbv = std::make_shared<BitCodeAbbrev>();
3515 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3520 // numrefs x valueid, n x (valueid)
3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3523 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3524
3525 // Abbrev for FS_PERMODULE_PROFILE.
3526 Abbv = std::make_shared<BitCodeAbbrev>();
3527 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3532 // numrefs x valueid, n x (valueid, hotness)
3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3535 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3536
3537 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3538 Abbv = std::make_shared<BitCodeAbbrev>();
3539 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3544 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3545
3546 // Abbrev for FS_ALIAS.
3547 Abbv = std::make_shared<BitCodeAbbrev>();
3548 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3552 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3553
3554 SmallVector<uint64_t, 64> NameVals;
3555 // Iterate over the list of functions instead of the Index to
3556 // ensure the ordering is stable.
3557 for (const Function &F : M) {
3558 // Summary emission does not support anonymous functions, they have to
3559 // renamed using the anonymous function renaming pass.
3560 if (!F.hasName())
3561 report_fatal_error("Unexpected anonymous function when writing summary");
3562
3563 auto Summaries =
3564 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName()));
3565 if (Summaries == Index->end()) {
3566 // Only declarations should not have a summary (a declaration might
3567 // however have a summary if the def was in module level asm).
3568 assert(F.isDeclaration())((F.isDeclaration()) ? static_cast<void> (0) : __assert_fail
("F.isDeclaration()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3568, __PRETTY_FUNCTION__))
;
3569 continue;
3570 }
3571 auto *Summary = Summaries->second.front().get();
3572 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3573 FSCallsAbbrev, FSCallsProfileAbbrev, F);
3574 }
3575
3576 // Capture references from GlobalVariable initializers, which are outside
3577 // of a function scope.
3578 for (const GlobalVariable &G : M.globals())
3579 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3580
3581 for (const GlobalAlias &A : M.aliases()) {
3582 auto *Aliasee = A.getBaseObject();
3583 if (!Aliasee->hasName())
3584 // Nameless function don't have an entry in the summary, skip it.
3585 continue;
3586 auto AliasId = VE.getValueID(&A);
3587 auto AliaseeId = VE.getValueID(Aliasee);
3588 NameVals.push_back(AliasId);
3589 auto *Summary = Index->getGlobalValueSummary(A);
3590 AliasSummary *AS = cast<AliasSummary>(Summary);
3591 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3592 NameVals.push_back(AliaseeId);
3593 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3594 NameVals.clear();
3595 }
3596
3597 Stream.ExitBlock();
3598}
3599
3600/// Emit the combined summary section into the combined index file.
3601void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3602 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3603 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3604
3605 // Abbrev for FS_COMBINED.
3606 auto Abbv = std::make_shared<BitCodeAbbrev>();
3607 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3613 // numrefs x valueid, n x (valueid)
3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3616 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3617
3618 // Abbrev for FS_COMBINED_PROFILE.
3619 Abbv = std::make_shared<BitCodeAbbrev>();
3620 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3626 // numrefs x valueid, n x (valueid, hotness)
3627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3629 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3630
3631 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3632 Abbv = std::make_shared<BitCodeAbbrev>();
3633 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3639 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3640
3641 // Abbrev for FS_COMBINED_ALIAS.
3642 Abbv = std::make_shared<BitCodeAbbrev>();
3643 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3648 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3649
3650 // The aliases are emitted as a post-pass, and will point to the value
3651 // id of the aliasee. Save them in a vector for post-processing.
3652 SmallVector<AliasSummary *, 64> Aliases;
3653
3654 // Save the value id for each summary for alias emission.
3655 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3656
3657 SmallVector<uint64_t, 64> NameVals;
3658
3659 // For local linkage, we also emit the original name separately
3660 // immediately after the record.
3661 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3662 if (!GlobalValue::isLocalLinkage(S.linkage()))
3663 return;
3664 NameVals.push_back(S.getOriginalName());
3665 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3666 NameVals.clear();
3667 };
3668
3669 for (const auto &I : *this) {
3670 GlobalValueSummary *S = I.second;
3671 assert(S)((S) ? static_cast<void> (0) : __assert_fail ("S", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3671, __PRETTY_FUNCTION__))
;
3672
3673 assert(hasValueId(I.first))((hasValueId(I.first)) ? static_cast<void> (0) : __assert_fail
("hasValueId(I.first)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3673, __PRETTY_FUNCTION__))
;
3674 unsigned ValueId = getValueId(I.first);
3675 SummaryToValueIdMap[S] = ValueId;
3676
3677 if (auto *AS = dyn_cast<AliasSummary>(S)) {
3678 // Will process aliases as a post-pass because the reader wants all
3679 // global to be loaded first.
3680 Aliases.push_back(AS);
3681 continue;
3682 }
3683
3684 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3685 NameVals.push_back(ValueId);
3686 NameVals.push_back(Index.getModuleId(VS->modulePath()));
3687 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3688 for (auto &RI : VS->refs()) {
3689 NameVals.push_back(getValueId(RI.getGUID()));
3690 }
3691
3692 // Emit the finished record.
3693 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3694 FSModRefsAbbrev);
3695 NameVals.clear();
3696 MaybeEmitOriginalName(*S);
3697 continue;
3698 }
3699
3700 auto *FS = cast<FunctionSummary>(S);
3701 writeFunctionTypeMetadataRecords(Stream, FS);
3702
3703 NameVals.push_back(ValueId);
3704 NameVals.push_back(Index.getModuleId(FS->modulePath()));
3705 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3706 NameVals.push_back(FS->instCount());
3707 NameVals.push_back(FS->refs().size());
3708
3709 for (auto &RI : FS->refs()) {
3710 NameVals.push_back(getValueId(RI.getGUID()));
3711 }
3712
3713 bool HasProfileData = false;
3714 for (auto &EI : FS->calls()) {
3715 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown;
3716 if (HasProfileData)
3717 break;
3718 }
3719
3720 for (auto &EI : FS->calls()) {
3721 // If this GUID doesn't have a value id, it doesn't have a function
3722 // summary and we don't need to record any calls to it.
3723 GlobalValue::GUID GUID = EI.first.getGUID();
3724 if (!hasValueId(GUID)) {
3725 // For SamplePGO, the indirect call targets for local functions will
3726 // have its original name annotated in profile. We try to find the
3727 // corresponding PGOFuncName as the GUID.
3728 GUID = Index.getGUIDFromOriginalID(GUID);
3729 if (GUID == 0 || !hasValueId(GUID))
3730 continue;
3731 }
3732 NameVals.push_back(getValueId(GUID));
3733 if (HasProfileData)
3734 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3735 }
3736
3737 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3738 unsigned Code =
3739 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3740
3741 // Emit the finished record.
3742 Stream.EmitRecord(Code, NameVals, FSAbbrev);
3743 NameVals.clear();
3744 MaybeEmitOriginalName(*S);
3745 }
3746
3747 for (auto *AS : Aliases) {
3748 auto AliasValueId = SummaryToValueIdMap[AS];
3749 assert(AliasValueId)((AliasValueId) ? static_cast<void> (0) : __assert_fail
("AliasValueId", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3749, __PRETTY_FUNCTION__))
;
3750 NameVals.push_back(AliasValueId);
3751 NameVals.push_back(Index.getModuleId(AS->modulePath()));
3752 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3753 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3754 assert(AliaseeValueId)((AliaseeValueId) ? static_cast<void> (0) : __assert_fail
("AliaseeValueId", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3754, __PRETTY_FUNCTION__))
;
3755 NameVals.push_back(AliaseeValueId);
3756
3757 // Emit the finished record.
3758 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3759 NameVals.clear();
3760 MaybeEmitOriginalName(*AS);
3761 }
3762
3763 Stream.ExitBlock();
3764}
3765
3766/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3767/// current llvm version, and a record for the epoch number.
3768static void writeIdentificationBlock(BitstreamWriter &Stream) {
3769 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3770
3771 // Write the "user readable" string identifying the bitcode producer
3772 auto Abbv = std::make_shared<BitCodeAbbrev>();
3773 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3776 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3777 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3778 "LLVM" LLVM_VERSION_STRING"5.0.0", StringAbbrev);
3779
3780 // Write the epoch version
3781 Abbv = std::make_shared<BitCodeAbbrev>();
3782 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3784 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3785 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3786 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3787 Stream.ExitBlock();
3788}
3789
3790void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3791 // Emit the module's hash.
3792 // MODULE_CODE_HASH: [5*i32]
3793 if (GenerateHash) {
3794 SHA1 Hasher;
3795 uint32_t Vals[5];
3796 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3797 Buffer.size() - BlockStartPos));
3798 StringRef Hash = Hasher.result();
3799 for (int Pos = 0; Pos < 20; Pos += 4) {
3800 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3801 }
3802
3803 // Emit the finished record.
3804 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3805
3806 if (ModHash)
3807 // Save the written hash value.
3808 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
3809 } else if (ModHash)
3810 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
3811}
3812
3813void ModuleBitcodeWriter::write() {
3814 writeIdentificationBlock(Stream);
3815
3816 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3817 size_t BlockStartPos = Buffer.size();
3818
3819 SmallVector<unsigned, 1> Vals;
3820 unsigned CurVersion = 1;
3821 Vals.push_back(CurVersion);
3822 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3823
3824 // Emit blockinfo, which defines the standard abbreviations etc.
3825 writeBlockInfo();
3826
3827 // Emit information about attribute groups.
3828 writeAttributeGroupTable();
3829
3830 // Emit information about parameter attributes.
3831 writeAttributeTable();
3832
3833 // Emit information describing all of the types in the module.
3834 writeTypeTable();
3835
3836 writeComdats();
3837
3838 // Emit top-level description of module, including target triple, inline asm,
3839 // descriptors for global variables, and function prototype info.
3840 writeModuleInfo();
3841
3842 // Emit constants.
3843 writeModuleConstants();
3844
3845 // Emit metadata kind names.
3846 writeModuleMetadataKinds();
3847
3848 // Emit metadata.
3849 writeModuleMetadata();
3850
3851 // Emit module-level use-lists.
3852 if (VE.shouldPreserveUseListOrder())
3853 writeUseListBlock(nullptr);
3854
3855 writeOperandBundleTags();
3856
3857 // Emit function bodies.
3858 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3859 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3860 if (!F->isDeclaration())
3861 writeFunction(*F, FunctionToBitcodeIndex);
3862
3863 // Need to write after the above call to WriteFunction which populates
3864 // the summary information in the index.
3865 if (Index)
3866 writePerModuleGlobalValueSummary();
3867
3868 writeValueSymbolTable(M.getValueSymbolTable(),
3869 /* IsModuleLevel */ true, &FunctionToBitcodeIndex);
3870
3871 writeModuleHash(BlockStartPos);
3872
3873 Stream.ExitBlock();
3874}
3875
3876static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3877 uint32_t &Position) {
3878 support::endian::write32le(&Buffer[Position], Value);
3879 Position += 4;
3880}
3881
3882/// If generating a bc file on darwin, we have to emit a
3883/// header and trailer to make it compatible with the system archiver. To do
3884/// this we emit the following header, and then emit a trailer that pads the
3885/// file out to be a multiple of 16 bytes.
3886///
3887/// struct bc_header {
3888/// uint32_t Magic; // 0x0B17C0DE
3889/// uint32_t Version; // Version, currently always 0.
3890/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3891/// uint32_t BitcodeSize; // Size of traditional bitcode file.
3892/// uint32_t CPUType; // CPU specifier.
3893/// ... potentially more later ...
3894/// };
3895static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3896 const Triple &TT) {
3897 unsigned CPUType = ~0U;
3898
3899 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3900 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3901 // number from /usr/include/mach/machine.h. It is ok to reproduce the
3902 // specific constants here because they are implicitly part of the Darwin ABI.
3903 enum {
3904 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
3905 DARWIN_CPU_TYPE_X86 = 7,
3906 DARWIN_CPU_TYPE_ARM = 12,
3907 DARWIN_CPU_TYPE_POWERPC = 18
3908 };
3909
3910 Triple::ArchType Arch = TT.getArch();
3911 if (Arch == Triple::x86_64)
3912 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3913 else if (Arch == Triple::x86)
3914 CPUType = DARWIN_CPU_TYPE_X86;
3915 else if (Arch == Triple::ppc)
3916 CPUType = DARWIN_CPU_TYPE_POWERPC;
3917 else if (Arch == Triple::ppc64)
3918 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3919 else if (Arch == Triple::arm || Arch == Triple::thumb)
3920 CPUType = DARWIN_CPU_TYPE_ARM;
3921
3922 // Traditional Bitcode starts after header.
3923 assert(Buffer.size() >= BWH_HeaderSize &&((Buffer.size() >= BWH_HeaderSize && "Expected header size to be reserved"
) ? static_cast<void> (0) : __assert_fail ("Buffer.size() >= BWH_HeaderSize && \"Expected header size to be reserved\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3924, __PRETTY_FUNCTION__))
3924 "Expected header size to be reserved")((Buffer.size() >= BWH_HeaderSize && "Expected header size to be reserved"
) ? static_cast<void> (0) : __assert_fail ("Buffer.size() >= BWH_HeaderSize && \"Expected header size to be reserved\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299582/lib/Bitcode/Writer/BitcodeWriter.cpp"
, 3924, __PRETTY_FUNCTION__))
;
3925 unsigned BCOffset = BWH_HeaderSize;
3926 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3927
3928 // Write the magic and version.
3929 unsigned Position = 0;
3930 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
3931 writeInt32ToBuffer(0, Buffer, Position); // Version.
3932 writeInt32ToBuffer(BCOffset, Buffer, Position);
3933 writeInt32ToBuffer(BCSize, Buffer, Position);
3934 writeInt32ToBuffer(CPUType, Buffer, Position);
3935
3936 // If the file is not a multiple of 16 bytes, insert dummy padding.
3937 while (Buffer.size() & 15)
3938 Buffer.push_back(0);
3939}
3940
3941/// Helper to write the header common to all bitcode files.
3942static void writeBitcodeHeader(BitstreamWriter &Stream) {
3943 // Emit the file header.
3944 Stream.Emit((unsigned)'B', 8);
3945 Stream.Emit((unsigned)'C', 8);
3946 Stream.Emit(0x0, 4);
3947 Stream.Emit(0xC, 4);
3948 Stream.Emit(0xE, 4);
3949 Stream.Emit(0xD, 4);
3950}
3951
3952BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
3953 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
3954 writeBitcodeHeader(*Stream);
3955}
3956
3957BitcodeWriter::~BitcodeWriter() = default;
3958
3959void BitcodeWriter::writeModule(const Module *M,
3960 bool ShouldPreserveUseListOrder,
3961 const ModuleSummaryIndex *Index,
3962 bool GenerateHash, ModuleHash *ModHash) {
3963 ModuleBitcodeWriter ModuleWriter(M, Buffer, *Stream,
3964 ShouldPreserveUseListOrder, Index,
3965 GenerateHash, ModHash);
3966 ModuleWriter.write();
3967}
3968
3969/// WriteBitcodeToFile - Write the specified module to the specified output
3970/// stream.
3971void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3972 bool ShouldPreserveUseListOrder,
3973 const ModuleSummaryIndex *Index,
3974 bool GenerateHash, ModuleHash *ModHash) {
3975 SmallVector<char, 0> Buffer;
3976 Buffer.reserve(256*1024);
3977
3978 // If this is darwin or another generic macho target, reserve space for the
3979 // header.
3980 Triple TT(M->getTargetTriple());
3981 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3982 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3983
3984 BitcodeWriter Writer(Buffer);
3985 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
3986 ModHash);
3987
3988 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3989 emitDarwinBCHeaderAndTrailer(Buffer, TT);
3990
3991 // Write the generated bitstream to "Out".
3992 Out.write((char*)&Buffer.front(), Buffer.size());
3993}
3994
3995void IndexBitcodeWriter::write() {
3996 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3997
3998 SmallVector<unsigned, 1> Vals;
3999 unsigned CurVersion = 1;
4000 Vals.push_back(CurVersion);
4001 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
4002
4003 // If we have a VST, write the VSTOFFSET record placeholder.
4004 writeValueSymbolTableForwardDecl();
4005
4006 // Write the module paths in the combined index.
4007 writeModStrings();
4008
4009 // Write the summary combined index records.
4010 writeCombinedGlobalValueSummary();
4011
4012 // Need a special VST writer for the combined index (we don't have a
4013 // real VST and real values when this is invoked).
4014 writeCombinedValueSymbolTable();
4015
4016 Stream.ExitBlock();
4017}
4018
4019// Write the specified module summary index to the given raw output stream,
4020// where it will be written in a new bitcode block. This is used when
4021// writing the combined index file for ThinLTO. When writing a subset of the
4022// index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4023void llvm::WriteIndexToFile(
4024 const ModuleSummaryIndex &Index, raw_ostream &Out,
4025 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4026 SmallVector<char, 0> Buffer;
4027 Buffer.reserve(256 * 1024);
4028
4029 BitstreamWriter Stream(Buffer);
4030 writeBitcodeHeader(Stream);
4031
4032 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex);
4033 IndexWriter.write();
4034
4035 Out.write((char *)&Buffer.front(), Buffer.size());
4036}