Bug Summary

File:tools/clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 3702, column 29
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGBuiltin.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374877/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374877=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-233810-7101-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp

1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CGOpenCLRuntime.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "PatternInit.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/OSLog.h"
25#include "clang/Basic/TargetBuiltins.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/CodeGen/CGFunctionInfo.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/MDBuilder.h"
34#include "llvm/Support/ConvertUTF.h"
35#include "llvm/Support/ScopedPrinter.h"
36#include "llvm/Support/TargetParser.h"
37#include <sstream>
38
39using namespace clang;
40using namespace CodeGen;
41using namespace llvm;
42
43static
44int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
45 return std::min(High, std::max(Low, Value));
46}
47
48static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, unsigned AlignmentInBytes) {
49 ConstantInt *Byte;
50 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
51 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
52 // Nothing to initialize.
53 return;
54 case LangOptions::TrivialAutoVarInitKind::Zero:
55 Byte = CGF.Builder.getInt8(0x00);
56 break;
57 case LangOptions::TrivialAutoVarInitKind::Pattern: {
58 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
59 Byte = llvm::dyn_cast<llvm::ConstantInt>(
60 initializationPatternFor(CGF.CGM, Int8));
61 break;
62 }
63 }
64 CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
65}
66
67/// getBuiltinLibFunction - Given a builtin id for a function like
68/// "__builtin_fabsf", return a Function* for "fabsf".
69llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
70 unsigned BuiltinID) {
71 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))((Context.BuiltinInfo.isLibFunction(BuiltinID)) ? static_cast
<void> (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 71, __PRETTY_FUNCTION__))
;
72
73 // Get the name, skip over the __builtin_ prefix (if necessary).
74 StringRef Name;
75 GlobalDecl D(FD);
76
77 // If the builtin has been declared explicitly with an assembler label,
78 // use the mangled name. This differs from the plain label on platforms
79 // that prefix labels.
80 if (FD->hasAttr<AsmLabelAttr>())
81 Name = getMangledName(D);
82 else
83 Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
84
85 llvm::FunctionType *Ty =
86 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
87
88 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
89}
90
91/// Emit the conversions required to turn the given value into an
92/// integer of the given size.
93static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
94 QualType T, llvm::IntegerType *IntType) {
95 V = CGF.EmitToMemory(V, T);
96
97 if (V->getType()->isPointerTy())
98 return CGF.Builder.CreatePtrToInt(V, IntType);
99
100 assert(V->getType() == IntType)((V->getType() == IntType) ? static_cast<void> (0) :
__assert_fail ("V->getType() == IntType", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 100, __PRETTY_FUNCTION__))
;
101 return V;
102}
103
104static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
105 QualType T, llvm::Type *ResultType) {
106 V = CGF.EmitFromMemory(V, T);
107
108 if (ResultType->isPointerTy())
109 return CGF.Builder.CreateIntToPtr(V, ResultType);
110
111 assert(V->getType() == ResultType)((V->getType() == ResultType) ? static_cast<void> (0
) : __assert_fail ("V->getType() == ResultType", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 111, __PRETTY_FUNCTION__))
;
112 return V;
113}
114
115/// Utility to insert an atomic instruction based on Intrinsic::ID
116/// and the expression node.
117static Value *MakeBinaryAtomicValue(
118 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
119 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
120 QualType T = E->getType();
121 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 121, __PRETTY_FUNCTION__))
;
122 assert(CGF.getContext().hasSameUnqualifiedType(T,((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 123, __PRETTY_FUNCTION__))
123 E->getArg(0)->getType()->getPointeeType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 123, __PRETTY_FUNCTION__))
;
124 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->
getType())) ? static_cast<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 124, __PRETTY_FUNCTION__))
;
125
126 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
127 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
128
129 llvm::IntegerType *IntType =
130 llvm::IntegerType::get(CGF.getLLVMContext(),
131 CGF.getContext().getTypeSize(T));
132 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
133
134 llvm::Value *Args[2];
135 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
136 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
137 llvm::Type *ValueType = Args[1]->getType();
138 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
139
140 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
141 Kind, Args[0], Args[1], Ordering);
142 return EmitFromInt(CGF, Result, T, ValueType);
143}
144
145static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
146 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
147 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
148
149 // Convert the type of the pointer to a pointer to the stored type.
150 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
151 Value *BC = CGF.Builder.CreateBitCast(
152 Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
153 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
154 LV.setNontemporal(true);
155 CGF.EmitStoreOfScalar(Val, LV, false);
156 return nullptr;
157}
158
159static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
160 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
161
162 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
163 LV.setNontemporal(true);
164 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
165}
166
167static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
168 llvm::AtomicRMWInst::BinOp Kind,
169 const CallExpr *E) {
170 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
171}
172
173/// Utility to insert an atomic instruction based Intrinsic::ID and
174/// the expression node, where the return value is the result of the
175/// operation.
176static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
177 llvm::AtomicRMWInst::BinOp Kind,
178 const CallExpr *E,
179 Instruction::BinaryOps Op,
180 bool Invert = false) {
181 QualType T = E->getType();
182 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 182, __PRETTY_FUNCTION__))
;
183 assert(CGF.getContext().hasSameUnqualifiedType(T,((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 184, __PRETTY_FUNCTION__))
184 E->getArg(0)->getType()->getPointeeType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 184, __PRETTY_FUNCTION__))
;
185 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->
getType())) ? static_cast<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 185, __PRETTY_FUNCTION__))
;
186
187 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
188 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
189
190 llvm::IntegerType *IntType =
191 llvm::IntegerType::get(CGF.getLLVMContext(),
192 CGF.getContext().getTypeSize(T));
193 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
194
195 llvm::Value *Args[2];
196 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
197 llvm::Type *ValueType = Args[1]->getType();
198 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
199 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
200
201 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
202 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
203 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
204 if (Invert)
205 Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
206 llvm::ConstantInt::get(IntType, -1));
207 Result = EmitFromInt(CGF, Result, T, ValueType);
208 return RValue::get(Result);
209}
210
211/// Utility to insert an atomic cmpxchg instruction.
212///
213/// @param CGF The current codegen function.
214/// @param E Builtin call expression to convert to cmpxchg.
215/// arg0 - address to operate on
216/// arg1 - value to compare with
217/// arg2 - new value
218/// @param ReturnBool Specifies whether to return success flag of
219/// cmpxchg result or the old value.
220///
221/// @returns result of cmpxchg, according to ReturnBool
222///
223/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
224/// invoke the function EmitAtomicCmpXchgForMSIntrin.
225static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
226 bool ReturnBool) {
227 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
228 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
229 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
230
231 llvm::IntegerType *IntType = llvm::IntegerType::get(
232 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
233 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
234
235 Value *Args[3];
236 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
237 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
238 llvm::Type *ValueType = Args[1]->getType();
239 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
240 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
241
242 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
243 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
244 llvm::AtomicOrdering::SequentiallyConsistent);
245 if (ReturnBool)
246 // Extract boolean success flag and zext it to int.
247 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
248 CGF.ConvertType(E->getType()));
249 else
250 // Extract old value and emit it using the same type as compare value.
251 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
252 ValueType);
253}
254
255/// This function should be invoked to emit atomic cmpxchg for Microsoft's
256/// _InterlockedCompareExchange* intrinsics which have the following signature:
257/// T _InterlockedCompareExchange(T volatile *Destination,
258/// T Exchange,
259/// T Comparand);
260///
261/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
262/// cmpxchg *Destination, Comparand, Exchange.
263/// So we need to swap Comparand and Exchange when invoking
264/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
265/// function MakeAtomicCmpXchgValue since it expects the arguments to be
266/// already swapped.
267
268static
269Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
270 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
271 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 271, __PRETTY_FUNCTION__))
;
272 assert(CGF.getContext().hasSameUnqualifiedType(((CGF.getContext().hasSameUnqualifiedType( E->getType(), E
->getArg(0)->getType()->getPointeeType())) ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 273, __PRETTY_FUNCTION__))
273 E->getType(), E->getArg(0)->getType()->getPointeeType()))((CGF.getContext().hasSameUnqualifiedType( E->getType(), E
->getArg(0)->getType()->getPointeeType())) ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 273, __PRETTY_FUNCTION__))
;
274 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(1)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 275, __PRETTY_FUNCTION__))
275 E->getArg(1)->getType()))((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(1)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 275, __PRETTY_FUNCTION__))
;
276 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(2)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 277, __PRETTY_FUNCTION__))
277 E->getArg(2)->getType()))((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(2)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 277, __PRETTY_FUNCTION__))
;
278
279 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
280 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
281 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
282
283 // For Release ordering, the failure ordering should be Monotonic.
284 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
285 AtomicOrdering::Monotonic :
286 SuccessOrdering;
287
288 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
289 Destination, Comparand, Exchange,
290 SuccessOrdering, FailureOrdering);
291 Result->setVolatile(true);
292 return CGF.Builder.CreateExtractValue(Result, 0);
293}
294
295static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
296 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
297 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 297, __PRETTY_FUNCTION__))
;
298
299 auto *IntTy = CGF.ConvertType(E->getType());
300 auto *Result = CGF.Builder.CreateAtomicRMW(
301 AtomicRMWInst::Add,
302 CGF.EmitScalarExpr(E->getArg(0)),
303 ConstantInt::get(IntTy, 1),
304 Ordering);
305 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
306}
307
308static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
309 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
310 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 310, __PRETTY_FUNCTION__))
;
311
312 auto *IntTy = CGF.ConvertType(E->getType());
313 auto *Result = CGF.Builder.CreateAtomicRMW(
314 AtomicRMWInst::Sub,
315 CGF.EmitScalarExpr(E->getArg(0)),
316 ConstantInt::get(IntTy, 1),
317 Ordering);
318 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
319}
320
321// Build a plain volatile load.
322static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
323 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
324 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
325 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
326 llvm::Type *ITy =
327 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
328 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
329 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
330 Load->setVolatile(true);
331 return Load;
332}
333
334// Build a plain volatile store.
335static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
336 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
337 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
338 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
339 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
340 llvm::Type *ITy =
341 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
342 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
343 llvm::StoreInst *Store =
344 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
345 Store->setVolatile(true);
346 return Store;
347}
348
349// Emit a simple mangled intrinsic that has 1 argument and a return type
350// matching the argument type.
351static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
352 const CallExpr *E,
353 unsigned IntrinsicID) {
354 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
355
356 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
357 return CGF.Builder.CreateCall(F, Src0);
358}
359
360// Emit an intrinsic that has 2 operands of the same type as its result.
361static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
362 const CallExpr *E,
363 unsigned IntrinsicID) {
364 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
365 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
366
367 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
368 return CGF.Builder.CreateCall(F, { Src0, Src1 });
369}
370
371// Emit an intrinsic that has 3 operands of the same type as its result.
372static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
373 const CallExpr *E,
374 unsigned IntrinsicID) {
375 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
376 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
377 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
378
379 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
380 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
381}
382
383// Emit an intrinsic that has 1 float or double operand, and 1 integer.
384static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
385 const CallExpr *E,
386 unsigned IntrinsicID) {
387 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
388 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
389
390 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
391 return CGF.Builder.CreateCall(F, {Src0, Src1});
392}
393
394// Emit an intrinsic that has overloaded integer result and fp operand.
395static Value *emitFPToIntRoundBuiltin(CodeGenFunction &CGF,
396 const CallExpr *E,
397 unsigned IntrinsicID) {
398 llvm::Type *ResultType = CGF.ConvertType(E->getType());
399 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
400
401 Function *F = CGF.CGM.getIntrinsic(IntrinsicID,
402 {ResultType, Src0->getType()});
403 return CGF.Builder.CreateCall(F, Src0);
404}
405
406/// EmitFAbs - Emit a call to @llvm.fabs().
407static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
408 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
409 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
410 Call->setDoesNotAccessMemory();
411 return Call;
412}
413
414/// Emit the computation of the sign bit for a floating point value. Returns
415/// the i1 sign bit value.
416static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
417 LLVMContext &C = CGF.CGM.getLLVMContext();
418
419 llvm::Type *Ty = V->getType();
420 int Width = Ty->getPrimitiveSizeInBits();
421 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
422 V = CGF.Builder.CreateBitCast(V, IntTy);
423 if (Ty->isPPC_FP128Ty()) {
424 // We want the sign bit of the higher-order double. The bitcast we just
425 // did works as if the double-double was stored to memory and then
426 // read as an i128. The "store" will put the higher-order double in the
427 // lower address in both little- and big-Endian modes, but the "load"
428 // will treat those bits as a different part of the i128: the low bits in
429 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
430 // we need to shift the high bits down to the low before truncating.
431 Width >>= 1;
432 if (CGF.getTarget().isBigEndian()) {
433 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
434 V = CGF.Builder.CreateLShr(V, ShiftCst);
435 }
436 // We are truncating value in order to extract the higher-order
437 // double, which we will be using to extract the sign from.
438 IntTy = llvm::IntegerType::get(C, Width);
439 V = CGF.Builder.CreateTrunc(V, IntTy);
440 }
441 Value *Zero = llvm::Constant::getNullValue(IntTy);
442 return CGF.Builder.CreateICmpSLT(V, Zero);
443}
444
445static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
446 const CallExpr *E, llvm::Constant *calleeValue) {
447 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
448 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
449}
450
451/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
452/// depending on IntrinsicID.
453///
454/// \arg CGF The current codegen function.
455/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
456/// \arg X The first argument to the llvm.*.with.overflow.*.
457/// \arg Y The second argument to the llvm.*.with.overflow.*.
458/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
459/// \returns The result (i.e. sum/product) returned by the intrinsic.
460static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
461 const llvm::Intrinsic::ID IntrinsicID,
462 llvm::Value *X, llvm::Value *Y,
463 llvm::Value *&Carry) {
464 // Make sure we have integers of the same width.
465 assert(X->getType() == Y->getType() &&((X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? static_cast<
void> (0) : __assert_fail ("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 467, __PRETTY_FUNCTION__))
466 "Arguments must be the same type. (Did you forget to make sure both "((X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? static_cast<
void> (0) : __assert_fail ("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 467, __PRETTY_FUNCTION__))
467 "arguments have the same integer width?)")((X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? static_cast<
void> (0) : __assert_fail ("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 467, __PRETTY_FUNCTION__))
;
468
469 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
470 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
471 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
472 return CGF.Builder.CreateExtractValue(Tmp, 0);
473}
474
475static Value *emitRangedBuiltin(CodeGenFunction &CGF,
476 unsigned IntrinsicID,
477 int low, int high) {
478 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
479 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
480 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
481 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
482 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
483 return Call;
484}
485
486namespace {
487 struct WidthAndSignedness {
488 unsigned Width;
489 bool Signed;
490 };
491}
492
493static WidthAndSignedness
494getIntegerWidthAndSignedness(const clang::ASTContext &context,
495 const clang::QualType Type) {
496 assert(Type->isIntegerType() && "Given type is not an integer.")((Type->isIntegerType() && "Given type is not an integer."
) ? static_cast<void> (0) : __assert_fail ("Type->isIntegerType() && \"Given type is not an integer.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 496, __PRETTY_FUNCTION__))
;
497 unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
498 bool Signed = Type->isSignedIntegerType();
499 return {Width, Signed};
500}
501
502// Given one or more integer types, this function produces an integer type that
503// encompasses them: any value in one of the given types could be expressed in
504// the encompassing type.
505static struct WidthAndSignedness
506EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
507 assert(Types.size() > 0 && "Empty list of types.")((Types.size() > 0 && "Empty list of types.") ? static_cast
<void> (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 507, __PRETTY_FUNCTION__))
;
508
509 // If any of the given types is signed, we must return a signed type.
510 bool Signed = false;
511 for (const auto &Type : Types) {
512 Signed |= Type.Signed;
513 }
514
515 // The encompassing type must have a width greater than or equal to the width
516 // of the specified types. Additionally, if the encompassing type is signed,
517 // its width must be strictly greater than the width of any unsigned types
518 // given.
519 unsigned Width = 0;
520 for (const auto &Type : Types) {
521 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
522 if (Width < MinWidth) {
523 Width = MinWidth;
524 }
525 }
526
527 return {Width, Signed};
528}
529
530Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
531 llvm::Type *DestType = Int8PtrTy;
532 if (ArgValue->getType() != DestType)
533 ArgValue =
534 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
535
536 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
537 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
538}
539
540/// Checks if using the result of __builtin_object_size(p, @p From) in place of
541/// __builtin_object_size(p, @p To) is correct
542static bool areBOSTypesCompatible(int From, int To) {
543 // Note: Our __builtin_object_size implementation currently treats Type=0 and
544 // Type=2 identically. Encoding this implementation detail here may make
545 // improving __builtin_object_size difficult in the future, so it's omitted.
546 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
547}
548
549static llvm::Value *
550getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
551 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
552}
553
554llvm::Value *
555CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
556 llvm::IntegerType *ResType,
557 llvm::Value *EmittedE,
558 bool IsDynamic) {
559 uint64_t ObjectSize;
560 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
561 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
562 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
563}
564
565/// Returns a Value corresponding to the size of the given expression.
566/// This Value may be either of the following:
567/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
568/// it)
569/// - A call to the @llvm.objectsize intrinsic
570///
571/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
572/// and we wouldn't otherwise try to reference a pass_object_size parameter,
573/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
574llvm::Value *
575CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
576 llvm::IntegerType *ResType,
577 llvm::Value *EmittedE, bool IsDynamic) {
578 // We need to reference an argument if the pointer is a parameter with the
579 // pass_object_size attribute.
580 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
581 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
582 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
583 if (Param != nullptr && PS != nullptr &&
584 areBOSTypesCompatible(PS->getType(), Type)) {
585 auto Iter = SizeArguments.find(Param);
586 assert(Iter != SizeArguments.end())((Iter != SizeArguments.end()) ? static_cast<void> (0) :
__assert_fail ("Iter != SizeArguments.end()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 586, __PRETTY_FUNCTION__))
;
587
588 const ImplicitParamDecl *D = Iter->second;
589 auto DIter = LocalDeclMap.find(D);
590 assert(DIter != LocalDeclMap.end())((DIter != LocalDeclMap.end()) ? static_cast<void> (0) :
__assert_fail ("DIter != LocalDeclMap.end()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 590, __PRETTY_FUNCTION__))
;
591
592 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
593 getContext().getSizeType(), E->getBeginLoc());
594 }
595 }
596
597 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
598 // evaluate E for side-effects. In either case, we shouldn't lower to
599 // @llvm.objectsize.
600 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
601 return getDefaultBuiltinObjectSizeResult(Type, ResType);
602
603 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
604 assert(Ptr->getType()->isPointerTy() &&((Ptr->getType()->isPointerTy() && "Non-pointer passed to __builtin_object_size?"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 605, __PRETTY_FUNCTION__))
605 "Non-pointer passed to __builtin_object_size?")((Ptr->getType()->isPointerTy() && "Non-pointer passed to __builtin_object_size?"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 605, __PRETTY_FUNCTION__))
;
606
607 Function *F =
608 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
609
610 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
611 Value *Min = Builder.getInt1((Type & 2) != 0);
612 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
613 Value *NullIsUnknown = Builder.getTrue();
614 Value *Dynamic = Builder.getInt1(IsDynamic);
615 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
616}
617
618namespace {
619/// A struct to generically describe a bit test intrinsic.
620struct BitTest {
621 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
622 enum InterlockingKind : uint8_t {
623 Unlocked,
624 Sequential,
625 Acquire,
626 Release,
627 NoFence
628 };
629
630 ActionKind Action;
631 InterlockingKind Interlocking;
632 bool Is64Bit;
633
634 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
635};
636} // namespace
637
638BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
639 switch (BuiltinID) {
640 // Main portable variants.
641 case Builtin::BI_bittest:
642 return {TestOnly, Unlocked, false};
643 case Builtin::BI_bittestandcomplement:
644 return {Complement, Unlocked, false};
645 case Builtin::BI_bittestandreset:
646 return {Reset, Unlocked, false};
647 case Builtin::BI_bittestandset:
648 return {Set, Unlocked, false};
649 case Builtin::BI_interlockedbittestandreset:
650 return {Reset, Sequential, false};
651 case Builtin::BI_interlockedbittestandset:
652 return {Set, Sequential, false};
653
654 // X86-specific 64-bit variants.
655 case Builtin::BI_bittest64:
656 return {TestOnly, Unlocked, true};
657 case Builtin::BI_bittestandcomplement64:
658 return {Complement, Unlocked, true};
659 case Builtin::BI_bittestandreset64:
660 return {Reset, Unlocked, true};
661 case Builtin::BI_bittestandset64:
662 return {Set, Unlocked, true};
663 case Builtin::BI_interlockedbittestandreset64:
664 return {Reset, Sequential, true};
665 case Builtin::BI_interlockedbittestandset64:
666 return {Set, Sequential, true};
667
668 // ARM/AArch64-specific ordering variants.
669 case Builtin::BI_interlockedbittestandset_acq:
670 return {Set, Acquire, false};
671 case Builtin::BI_interlockedbittestandset_rel:
672 return {Set, Release, false};
673 case Builtin::BI_interlockedbittestandset_nf:
674 return {Set, NoFence, false};
675 case Builtin::BI_interlockedbittestandreset_acq:
676 return {Reset, Acquire, false};
677 case Builtin::BI_interlockedbittestandreset_rel:
678 return {Reset, Release, false};
679 case Builtin::BI_interlockedbittestandreset_nf:
680 return {Reset, NoFence, false};
681 }
682 llvm_unreachable("expected only bittest intrinsics")::llvm::llvm_unreachable_internal("expected only bittest intrinsics"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 682)
;
683}
684
685static char bitActionToX86BTCode(BitTest::ActionKind A) {
686 switch (A) {
687 case BitTest::TestOnly: return '\0';
688 case BitTest::Complement: return 'c';
689 case BitTest::Reset: return 'r';
690 case BitTest::Set: return 's';
691 }
692 llvm_unreachable("invalid action")::llvm::llvm_unreachable_internal("invalid action", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 692)
;
693}
694
695static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
696 BitTest BT,
697 const CallExpr *E, Value *BitBase,
698 Value *BitPos) {
699 char Action = bitActionToX86BTCode(BT.Action);
700 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
701
702 // Build the assembly.
703 SmallString<64> Asm;
704 raw_svector_ostream AsmOS(Asm);
705 if (BT.Interlocking != BitTest::Unlocked)
706 AsmOS << "lock ";
707 AsmOS << "bt";
708 if (Action)
709 AsmOS << Action;
710 AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
711
712 // Build the constraints. FIXME: We should support immediates when possible.
713 std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
714 llvm::IntegerType *IntType = llvm::IntegerType::get(
715 CGF.getLLVMContext(),
716 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
717 llvm::Type *IntPtrType = IntType->getPointerTo();
718 llvm::FunctionType *FTy =
719 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
720
721 llvm::InlineAsm *IA =
722 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
723 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
724}
725
726static llvm::AtomicOrdering
727getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
728 switch (I) {
729 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
730 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
731 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
732 case BitTest::Release: return llvm::AtomicOrdering::Release;
733 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
734 }
735 llvm_unreachable("invalid interlocking")::llvm::llvm_unreachable_internal("invalid interlocking", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 735)
;
736}
737
738/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
739/// bits and a bit position and read and optionally modify the bit at that
740/// position. The position index can be arbitrarily large, i.e. it can be larger
741/// than 31 or 63, so we need an indexed load in the general case.
742static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
743 unsigned BuiltinID,
744 const CallExpr *E) {
745 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
746 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
747
748 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
749
750 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
751 // indexing operation internally. Use them if possible.
752 llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch();
753 if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64)
754 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
755
756 // Otherwise, use generic code to load one byte and test the bit. Use all but
757 // the bottom three bits as the array index, and the bottom three bits to form
758 // a mask.
759 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
760 Value *ByteIndex = CGF.Builder.CreateAShr(
761 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
762 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
763 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
764 ByteIndex, "bittest.byteaddr"),
765 CharUnits::One());
766 Value *PosLow =
767 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
768 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
769
770 // The updating instructions will need a mask.
771 Value *Mask = nullptr;
772 if (BT.Action != BitTest::TestOnly) {
773 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
774 "bittest.mask");
775 }
776
777 // Check the action and ordering of the interlocked intrinsics.
778 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
779
780 Value *OldByte = nullptr;
781 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
782 // Emit a combined atomicrmw load/store operation for the interlocked
783 // intrinsics.
784 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
785 if (BT.Action == BitTest::Reset) {
786 Mask = CGF.Builder.CreateNot(Mask);
787 RMWOp = llvm::AtomicRMWInst::And;
788 }
789 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
790 Ordering);
791 } else {
792 // Emit a plain load for the non-interlocked intrinsics.
793 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
794 Value *NewByte = nullptr;
795 switch (BT.Action) {
796 case BitTest::TestOnly:
797 // Don't store anything.
798 break;
799 case BitTest::Complement:
800 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
801 break;
802 case BitTest::Reset:
803 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
804 break;
805 case BitTest::Set:
806 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
807 break;
808 }
809 if (NewByte)
810 CGF.Builder.CreateStore(NewByte, ByteAddr);
811 }
812
813 // However we loaded the old byte, either by plain load or atomicrmw, shift
814 // the bit into the low position and mask it to 0 or 1.
815 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
816 return CGF.Builder.CreateAnd(
817 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
818}
819
820namespace {
821enum class MSVCSetJmpKind {
822 _setjmpex,
823 _setjmp3,
824 _setjmp
825};
826}
827
828/// MSVC handles setjmp a bit differently on different platforms. On every
829/// architecture except 32-bit x86, the frame address is passed. On x86, extra
830/// parameters can be passed as variadic arguments, but we always pass none.
831static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
832 const CallExpr *E) {
833 llvm::Value *Arg1 = nullptr;
834 llvm::Type *Arg1Ty = nullptr;
835 StringRef Name;
836 bool IsVarArg = false;
837 if (SJKind == MSVCSetJmpKind::_setjmp3) {
838 Name = "_setjmp3";
839 Arg1Ty = CGF.Int32Ty;
840 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
841 IsVarArg = true;
842 } else {
843 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
844 Arg1Ty = CGF.Int8PtrTy;
845 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
846 Arg1 = CGF.Builder.CreateCall(
847 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
848 } else
849 Arg1 = CGF.Builder.CreateCall(
850 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
851 llvm::ConstantInt::get(CGF.Int32Ty, 0));
852 }
853
854 // Mark the call site and declaration with ReturnsTwice.
855 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
856 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
857 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
858 llvm::Attribute::ReturnsTwice);
859 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
860 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
861 ReturnsTwiceAttr, /*Local=*/true);
862
863 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
864 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
865 llvm::Value *Args[] = {Buf, Arg1};
866 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
867 CB->setAttributes(ReturnsTwiceAttr);
868 return RValue::get(CB);
869}
870
871// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
872// we handle them here.
873enum class CodeGenFunction::MSVCIntrin {
874 _BitScanForward,
875 _BitScanReverse,
876 _InterlockedAnd,
877 _InterlockedDecrement,
878 _InterlockedExchange,
879 _InterlockedExchangeAdd,
880 _InterlockedExchangeSub,
881 _InterlockedIncrement,
882 _InterlockedOr,
883 _InterlockedXor,
884 _InterlockedExchangeAdd_acq,
885 _InterlockedExchangeAdd_rel,
886 _InterlockedExchangeAdd_nf,
887 _InterlockedExchange_acq,
888 _InterlockedExchange_rel,
889 _InterlockedExchange_nf,
890 _InterlockedCompareExchange_acq,
891 _InterlockedCompareExchange_rel,
892 _InterlockedCompareExchange_nf,
893 _InterlockedOr_acq,
894 _InterlockedOr_rel,
895 _InterlockedOr_nf,
896 _InterlockedXor_acq,
897 _InterlockedXor_rel,
898 _InterlockedXor_nf,
899 _InterlockedAnd_acq,
900 _InterlockedAnd_rel,
901 _InterlockedAnd_nf,
902 _InterlockedIncrement_acq,
903 _InterlockedIncrement_rel,
904 _InterlockedIncrement_nf,
905 _InterlockedDecrement_acq,
906 _InterlockedDecrement_rel,
907 _InterlockedDecrement_nf,
908 __fastfail,
909};
910
911Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
912 const CallExpr *E) {
913 switch (BuiltinID) {
914 case MSVCIntrin::_BitScanForward:
915 case MSVCIntrin::_BitScanReverse: {
916 Value *ArgValue = EmitScalarExpr(E->getArg(1));
917
918 llvm::Type *ArgType = ArgValue->getType();
919 llvm::Type *IndexType =
920 EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
921 llvm::Type *ResultType = ConvertType(E->getType());
922
923 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
924 Value *ResZero = llvm::Constant::getNullValue(ResultType);
925 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
926
927 BasicBlock *Begin = Builder.GetInsertBlock();
928 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
929 Builder.SetInsertPoint(End);
930 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
931
932 Builder.SetInsertPoint(Begin);
933 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
934 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
935 Builder.CreateCondBr(IsZero, End, NotZero);
936 Result->addIncoming(ResZero, Begin);
937
938 Builder.SetInsertPoint(NotZero);
939 Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
940
941 if (BuiltinID == MSVCIntrin::_BitScanForward) {
942 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
943 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
944 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
945 Builder.CreateStore(ZeroCount, IndexAddress, false);
946 } else {
947 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
948 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
949
950 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
951 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
952 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
953 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
954 Builder.CreateStore(Index, IndexAddress, false);
955 }
956 Builder.CreateBr(End);
957 Result->addIncoming(ResOne, NotZero);
958
959 Builder.SetInsertPoint(End);
960 return Result;
961 }
962 case MSVCIntrin::_InterlockedAnd:
963 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
964 case MSVCIntrin::_InterlockedExchange:
965 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
966 case MSVCIntrin::_InterlockedExchangeAdd:
967 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
968 case MSVCIntrin::_InterlockedExchangeSub:
969 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
970 case MSVCIntrin::_InterlockedOr:
971 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
972 case MSVCIntrin::_InterlockedXor:
973 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
974 case MSVCIntrin::_InterlockedExchangeAdd_acq:
975 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
976 AtomicOrdering::Acquire);
977 case MSVCIntrin::_InterlockedExchangeAdd_rel:
978 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
979 AtomicOrdering::Release);
980 case MSVCIntrin::_InterlockedExchangeAdd_nf:
981 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
982 AtomicOrdering::Monotonic);
983 case MSVCIntrin::_InterlockedExchange_acq:
984 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
985 AtomicOrdering::Acquire);
986 case MSVCIntrin::_InterlockedExchange_rel:
987 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
988 AtomicOrdering::Release);
989 case MSVCIntrin::_InterlockedExchange_nf:
990 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
991 AtomicOrdering::Monotonic);
992 case MSVCIntrin::_InterlockedCompareExchange_acq:
993 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
994 case MSVCIntrin::_InterlockedCompareExchange_rel:
995 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
996 case MSVCIntrin::_InterlockedCompareExchange_nf:
997 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
998 case MSVCIntrin::_InterlockedOr_acq:
999 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1000 AtomicOrdering::Acquire);
1001 case MSVCIntrin::_InterlockedOr_rel:
1002 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1003 AtomicOrdering::Release);
1004 case MSVCIntrin::_InterlockedOr_nf:
1005 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1006 AtomicOrdering::Monotonic);
1007 case MSVCIntrin::_InterlockedXor_acq:
1008 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1009 AtomicOrdering::Acquire);
1010 case MSVCIntrin::_InterlockedXor_rel:
1011 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1012 AtomicOrdering::Release);
1013 case MSVCIntrin::_InterlockedXor_nf:
1014 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1015 AtomicOrdering::Monotonic);
1016 case MSVCIntrin::_InterlockedAnd_acq:
1017 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1018 AtomicOrdering::Acquire);
1019 case MSVCIntrin::_InterlockedAnd_rel:
1020 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1021 AtomicOrdering::Release);
1022 case MSVCIntrin::_InterlockedAnd_nf:
1023 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1024 AtomicOrdering::Monotonic);
1025 case MSVCIntrin::_InterlockedIncrement_acq:
1026 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1027 case MSVCIntrin::_InterlockedIncrement_rel:
1028 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1029 case MSVCIntrin::_InterlockedIncrement_nf:
1030 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1031 case MSVCIntrin::_InterlockedDecrement_acq:
1032 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1033 case MSVCIntrin::_InterlockedDecrement_rel:
1034 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1035 case MSVCIntrin::_InterlockedDecrement_nf:
1036 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1037
1038 case MSVCIntrin::_InterlockedDecrement:
1039 return EmitAtomicDecrementValue(*this, E);
1040 case MSVCIntrin::_InterlockedIncrement:
1041 return EmitAtomicIncrementValue(*this, E);
1042
1043 case MSVCIntrin::__fastfail: {
1044 // Request immediate process termination from the kernel. The instruction
1045 // sequences to do this are documented on MSDN:
1046 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1047 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1048 StringRef Asm, Constraints;
1049 switch (ISA) {
1050 default:
1051 ErrorUnsupported(E, "__fastfail call for this architecture");
1052 break;
1053 case llvm::Triple::x86:
1054 case llvm::Triple::x86_64:
1055 Asm = "int $$0x29";
1056 Constraints = "{cx}";
1057 break;
1058 case llvm::Triple::thumb:
1059 Asm = "udf #251";
1060 Constraints = "{r0}";
1061 break;
1062 case llvm::Triple::aarch64:
1063 Asm = "brk #0xF003";
1064 Constraints = "{w0}";
1065 }
1066 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1067 llvm::InlineAsm *IA =
1068 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1069 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1070 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1071 llvm::Attribute::NoReturn);
1072 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1073 CI->setAttributes(NoReturnAttr);
1074 return CI;
1075 }
1076 }
1077 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1077)
;
1078}
1079
1080namespace {
1081// ARC cleanup for __builtin_os_log_format
1082struct CallObjCArcUse final : EHScopeStack::Cleanup {
1083 CallObjCArcUse(llvm::Value *object) : object(object) {}
1084 llvm::Value *object;
1085
1086 void Emit(CodeGenFunction &CGF, Flags flags) override {
1087 CGF.EmitARCIntrinsicUse(object);
1088 }
1089};
1090}
1091
1092Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1093 BuiltinCheckKind Kind) {
1094 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) &&
"Unsupported builtin check kind") ? static_cast<void> (
0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1095, __PRETTY_FUNCTION__))
1095 && "Unsupported builtin check kind")(((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) &&
"Unsupported builtin check kind") ? static_cast<void> (
0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1095, __PRETTY_FUNCTION__))
;
1096
1097 Value *ArgValue = EmitScalarExpr(E);
1098 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1099 return ArgValue;
1100
1101 SanitizerScope SanScope(this);
1102 Value *Cond = Builder.CreateICmpNE(
1103 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1104 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1105 SanitizerHandler::InvalidBuiltin,
1106 {EmitCheckSourceLocation(E->getExprLoc()),
1107 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1108 None);
1109 return ArgValue;
1110}
1111
1112/// Get the argument type for arguments to os_log_helper.
1113static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1114 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1115 return C.getCanonicalType(UnsignedTy);
1116}
1117
1118llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1119 const analyze_os_log::OSLogBufferLayout &Layout,
1120 CharUnits BufferAlignment) {
1121 ASTContext &Ctx = getContext();
1122
1123 llvm::SmallString<64> Name;
1124 {
1125 raw_svector_ostream OS(Name);
1126 OS << "__os_log_helper";
1127 OS << "_" << BufferAlignment.getQuantity();
1128 OS << "_" << int(Layout.getSummaryByte());
1129 OS << "_" << int(Layout.getNumArgsByte());
1130 for (const auto &Item : Layout.Items)
1131 OS << "_" << int(Item.getSizeByte()) << "_"
1132 << int(Item.getDescriptorByte());
1133 }
1134
1135 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1136 return F;
1137
1138 llvm::SmallVector<QualType, 4> ArgTys;
1139 FunctionArgList Args;
1140 Args.push_back(ImplicitParamDecl::Create(
1141 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1142 ImplicitParamDecl::Other));
1143 ArgTys.emplace_back(Ctx.VoidPtrTy);
1144
1145 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1146 char Size = Layout.Items[I].getSizeByte();
1147 if (!Size)
1148 continue;
1149
1150 QualType ArgTy = getOSLogArgType(Ctx, Size);
1151 Args.push_back(ImplicitParamDecl::Create(
1152 Ctx, nullptr, SourceLocation(),
1153 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1154 ImplicitParamDecl::Other));
1155 ArgTys.emplace_back(ArgTy);
1156 }
1157
1158 QualType ReturnTy = Ctx.VoidTy;
1159 QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1160
1161 // The helper function has linkonce_odr linkage to enable the linker to merge
1162 // identical functions. To ensure the merging always happens, 'noinline' is
1163 // attached to the function when compiling with -Oz.
1164 const CGFunctionInfo &FI =
1165 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1166 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1167 llvm::Function *Fn = llvm::Function::Create(
1168 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1169 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1170 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1171 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1172 Fn->setDoesNotThrow();
1173
1174 // Attach 'noinline' at -Oz.
1175 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1176 Fn->addFnAttr(llvm::Attribute::NoInline);
1177
1178 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1179 IdentifierInfo *II = &Ctx.Idents.get(Name);
1180 FunctionDecl *FD = FunctionDecl::Create(
1181 Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1182 FuncionTy, nullptr, SC_PrivateExtern, false, false);
1183
1184 StartFunction(FD, ReturnTy, Fn, FI, Args);
1185
1186 // Create a scope with an artificial location for the body of this function.
1187 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1188
1189 CharUnits Offset;
1190 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1191 BufferAlignment);
1192 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1193 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1194 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1195 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1196
1197 unsigned I = 1;
1198 for (const auto &Item : Layout.Items) {
1199 Builder.CreateStore(
1200 Builder.getInt8(Item.getDescriptorByte()),
1201 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1202 Builder.CreateStore(
1203 Builder.getInt8(Item.getSizeByte()),
1204 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1205
1206 CharUnits Size = Item.size();
1207 if (!Size.getQuantity())
1208 continue;
1209
1210 Address Arg = GetAddrOfLocalVar(Args[I]);
1211 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1212 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1213 "argDataCast");
1214 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1215 Offset += Size;
1216 ++I;
1217 }
1218
1219 FinishFunction();
1220
1221 return Fn;
1222}
1223
1224RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1225 assert(E.getNumArgs() >= 2 &&((E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1226, __PRETTY_FUNCTION__))
1226 "__builtin_os_log_format takes at least 2 arguments")((E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1226, __PRETTY_FUNCTION__))
;
1227 ASTContext &Ctx = getContext();
1228 analyze_os_log::OSLogBufferLayout Layout;
1229 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1230 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1231 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1232
1233 // Ignore argument 1, the format string. It is not currently used.
1234 CallArgList Args;
1235 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1236
1237 for (const auto &Item : Layout.Items) {
1238 int Size = Item.getSizeByte();
1239 if (!Size)
1240 continue;
1241
1242 llvm::Value *ArgVal;
1243
1244 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1245 uint64_t Val = 0;
1246 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1247 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1248 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1249 } else if (const Expr *TheExpr = Item.getExpr()) {
1250 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1251
1252 // Check if this is a retainable type.
1253 if (TheExpr->getType()->isObjCRetainableType()) {
1254 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&((getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
"Only scalar can be a ObjC retainable type") ? static_cast<
void> (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1255, __PRETTY_FUNCTION__))
1255 "Only scalar can be a ObjC retainable type")((getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
"Only scalar can be a ObjC retainable type") ? static_cast<
void> (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1255, __PRETTY_FUNCTION__))
;
1256 // Check if the object is constant, if not, save it in
1257 // RetainableOperands.
1258 if (!isa<Constant>(ArgVal))
1259 RetainableOperands.push_back(ArgVal);
1260 }
1261 } else {
1262 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1263 }
1264
1265 unsigned ArgValSize =
1266 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1267 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1268 ArgValSize);
1269 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1270 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1271 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1272 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1273 Args.add(RValue::get(ArgVal), ArgTy);
1274 }
1275
1276 const CGFunctionInfo &FI =
1277 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1278 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1279 Layout, BufAddr.getAlignment());
1280 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1281
1282 // Push a clang.arc.use cleanup for each object in RetainableOperands. The
1283 // cleanup will cause the use to appear after the final log call, keeping
1284 // the object valid while it’s held in the log buffer. Note that if there’s
1285 // a release cleanup on the object, it will already be active; since
1286 // cleanups are emitted in reverse order, the use will occur before the
1287 // object is released.
1288 if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
1289 CGM.getCodeGenOpts().OptimizationLevel != 0)
1290 for (llvm::Value *Object : RetainableOperands)
1291 pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
1292
1293 return RValue::get(BufAddr.getPointer());
1294}
1295
1296/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1297static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1298 WidthAndSignedness Op1Info,
1299 WidthAndSignedness Op2Info,
1300 WidthAndSignedness ResultInfo) {
1301 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1302 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1303 Op1Info.Signed != Op2Info.Signed;
1304}
1305
1306/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1307/// the generic checked-binop irgen.
1308static RValue
1309EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1310 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1311 WidthAndSignedness Op2Info,
1312 const clang::Expr *ResultArg, QualType ResultQTy,
1313 WidthAndSignedness ResultInfo) {
1314 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,((isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow
, Op1Info, Op2Info, ResultInfo) && "Not a mixed-sign multipliction we can specialize"
) ? static_cast<void> (0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1316, __PRETTY_FUNCTION__))
1315 Op2Info, ResultInfo) &&((isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow
, Op1Info, Op2Info, ResultInfo) && "Not a mixed-sign multipliction we can specialize"
) ? static_cast<void> (0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1316, __PRETTY_FUNCTION__))
1316 "Not a mixed-sign multipliction we can specialize")((isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow
, Op1Info, Op2Info, ResultInfo) && "Not a mixed-sign multipliction we can specialize"
) ? static_cast<void> (0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1316, __PRETTY_FUNCTION__))
;
1317
1318 // Emit the signed and unsigned operands.
1319 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1320 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1321 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1322 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1323 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1324 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1325
1326 // One of the operands may be smaller than the other. If so, [s|z]ext it.
1327 if (SignedOpWidth < UnsignedOpWidth)
1328 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1329 if (UnsignedOpWidth < SignedOpWidth)
1330 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1331
1332 llvm::Type *OpTy = Signed->getType();
1333 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1334 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1335 llvm::Type *ResTy = ResultPtr.getElementType();
1336 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1337
1338 // Take the absolute value of the signed operand.
1339 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1340 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1341 llvm::Value *AbsSigned =
1342 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1343
1344 // Perform a checked unsigned multiplication.
1345 llvm::Value *UnsignedOverflow;
1346 llvm::Value *UnsignedResult =
1347 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1348 Unsigned, UnsignedOverflow);
1349
1350 llvm::Value *Overflow, *Result;
1351 if (ResultInfo.Signed) {
1352 // Signed overflow occurs if the result is greater than INT_MAX or lesser
1353 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1354 auto IntMax =
1355 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1356 llvm::Value *MaxResult =
1357 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1358 CGF.Builder.CreateZExt(IsNegative, OpTy));
1359 llvm::Value *SignedOverflow =
1360 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1361 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1362
1363 // Prepare the signed result (possibly by negating it).
1364 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1365 llvm::Value *SignedResult =
1366 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1367 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1368 } else {
1369 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1370 llvm::Value *Underflow = CGF.Builder.CreateAnd(
1371 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1372 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1373 if (ResultInfo.Width < OpWidth) {
1374 auto IntMax =
1375 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1376 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1377 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1378 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1379 }
1380
1381 // Negate the product if it would be negative in infinite precision.
1382 Result = CGF.Builder.CreateSelect(
1383 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1384
1385 Result = CGF.Builder.CreateTrunc(Result, ResTy);
1386 }
1387 assert(Overflow && Result && "Missing overflow or result")((Overflow && Result && "Missing overflow or result"
) ? static_cast<void> (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1387, __PRETTY_FUNCTION__))
;
1388
1389 bool isVolatile =
1390 ResultArg->getType()->getPointeeType().isVolatileQualified();
1391 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1392 isVolatile);
1393 return RValue::get(Overflow);
1394}
1395
1396static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1397 Value *&RecordPtr, CharUnits Align,
1398 llvm::FunctionCallee Func, int Lvl) {
1399 const auto *RT = RType->getAs<RecordType>();
1400 ASTContext &Context = CGF.getContext();
1401 RecordDecl *RD = RT->getDecl()->getDefinition();
1402 std::string Pad = std::string(Lvl * 4, ' ');
1403
1404 Value *GString =
1405 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1406 Value *Res = CGF.Builder.CreateCall(Func, {GString});
1407
1408 static llvm::DenseMap<QualType, const char *> Types;
1409 if (Types.empty()) {
1410 Types[Context.CharTy] = "%c";
1411 Types[Context.BoolTy] = "%d";
1412 Types[Context.SignedCharTy] = "%hhd";
1413 Types[Context.UnsignedCharTy] = "%hhu";
1414 Types[Context.IntTy] = "%d";
1415 Types[Context.UnsignedIntTy] = "%u";
1416 Types[Context.LongTy] = "%ld";
1417 Types[Context.UnsignedLongTy] = "%lu";
1418 Types[Context.LongLongTy] = "%lld";
1419 Types[Context.UnsignedLongLongTy] = "%llu";
1420 Types[Context.ShortTy] = "%hd";
1421 Types[Context.UnsignedShortTy] = "%hu";
1422 Types[Context.VoidPtrTy] = "%p";
1423 Types[Context.FloatTy] = "%f";
1424 Types[Context.DoubleTy] = "%f";
1425 Types[Context.LongDoubleTy] = "%Lf";
1426 Types[Context.getPointerType(Context.CharTy)] = "%s";
1427 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1428 }
1429
1430 for (const auto *FD : RD->fields()) {
1431 Value *FieldPtr = RecordPtr;
1432 if (RD->isUnion())
1433 FieldPtr = CGF.Builder.CreatePointerCast(
1434 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1435 else
1436 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1437 FD->getFieldIndex());
1438
1439 GString = CGF.Builder.CreateGlobalStringPtr(
1440 llvm::Twine(Pad)
1441 .concat(FD->getType().getAsString())
1442 .concat(llvm::Twine(' '))
1443 .concat(FD->getNameAsString())
1444 .concat(" : ")
1445 .str());
1446 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1447 Res = CGF.Builder.CreateAdd(Res, TmpRes);
1448
1449 QualType CanonicalType =
1450 FD->getType().getUnqualifiedType().getCanonicalType();
1451
1452 // We check whether we are in a recursive type
1453 if (CanonicalType->isRecordType()) {
1454 Value *TmpRes =
1455 dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1456 Res = CGF.Builder.CreateAdd(TmpRes, Res);
1457 continue;
1458 }
1459
1460 // We try to determine the best format to print the current field
1461 llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1462 ? Types[Context.VoidPtrTy]
1463 : Types[CanonicalType];
1464
1465 Address FieldAddress = Address(FieldPtr, Align);
1466 FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
1467
1468 // FIXME Need to handle bitfield here
1469 GString = CGF.Builder.CreateGlobalStringPtr(
1470 Format.concat(llvm::Twine('\n')).str());
1471 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
1472 Res = CGF.Builder.CreateAdd(Res, TmpRes);
1473 }
1474
1475 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
1476 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1477 Res = CGF.Builder.CreateAdd(Res, TmpRes);
1478 return Res;
1479}
1480
1481static bool
1482TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
1483 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
1484 if (const auto *Arr = Ctx.getAsArrayType(Ty))
1485 Ty = Ctx.getBaseElementType(Arr);
1486
1487 const auto *Record = Ty->getAsCXXRecordDecl();
1488 if (!Record)
1489 return false;
1490
1491 // We've already checked this type, or are in the process of checking it.
1492 if (!Seen.insert(Record).second)
1493 return false;
1494
1495 assert(Record->hasDefinition() &&((Record->hasDefinition() && "Incomplete types should already be diagnosed"
) ? static_cast<void> (0) : __assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1496, __PRETTY_FUNCTION__))
1496 "Incomplete types should already be diagnosed")((Record->hasDefinition() && "Incomplete types should already be diagnosed"
) ? static_cast<void> (0) : __assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1496, __PRETTY_FUNCTION__))
;
1497
1498 if (Record->isDynamicClass())
1499 return true;
1500
1501 for (FieldDecl *F : Record->fields()) {
1502 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
1503 return true;
1504 }
1505 return false;
1506}
1507
1508/// Determine if the specified type requires laundering by checking if it is a
1509/// dynamic class type or contains a subobject which is a dynamic class type.
1510static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
1511 if (!CGM.getCodeGenOpts().StrictVTablePointers)
1512 return false;
1513 llvm::SmallPtrSet<const Decl *, 16> Seen;
1514 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
1515}
1516
1517RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
1518 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
1519 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
1520
1521 // The builtin's shift arg may have a different type than the source arg and
1522 // result, but the LLVM intrinsic uses the same type for all values.
1523 llvm::Type *Ty = Src->getType();
1524 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
1525
1526 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
1527 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
1528 Function *F = CGM.getIntrinsic(IID, Ty);
1529 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
1530}
1531
1532RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
1533 const CallExpr *E,
1534 ReturnValueSlot ReturnValue) {
1535 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
1536 // See if we can constant fold this builtin. If so, don't emit it at all.
1537 Expr::EvalResult Result;
1538 if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
1
Assuming the condition is false
1539 !Result.hasSideEffects()) {
1540 if (Result.Val.isInt())
1541 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
1542 Result.Val.getInt()));
1543 if (Result.Val.isFloat())
1544 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
1545 Result.Val.getFloat()));
1546 }
1547
1548 // There are LLVM math intrinsics/instructions corresponding to math library
1549 // functions except the LLVM op will never set errno while the math library
1550 // might. Also, math builtins have the same semantics as their math library
1551 // twins. Thus, we can transform math library and builtin calls to their
1552 // LLVM counterparts if the call is marked 'const' (known to never set errno).
1553 if (FD->hasAttr<ConstAttr>()) {
2
Calling 'Decl::hasAttr'
5
Returning from 'Decl::hasAttr'
6
Taking false branch
1554 switch (BuiltinID) {
1555 case Builtin::BIceil:
1556 case Builtin::BIceilf:
1557 case Builtin::BIceill:
1558 case Builtin::BI__builtin_ceil:
1559 case Builtin::BI__builtin_ceilf:
1560 case Builtin::BI__builtin_ceilf16:
1561 case Builtin::BI__builtin_ceill:
1562 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
1563
1564 case Builtin::BIcopysign:
1565 case Builtin::BIcopysignf:
1566 case Builtin::BIcopysignl:
1567 case Builtin::BI__builtin_copysign:
1568 case Builtin::BI__builtin_copysignf:
1569 case Builtin::BI__builtin_copysignf16:
1570 case Builtin::BI__builtin_copysignl:
1571 case Builtin::BI__builtin_copysignf128:
1572 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
1573
1574 case Builtin::BIcos:
1575 case Builtin::BIcosf:
1576 case Builtin::BIcosl:
1577 case Builtin::BI__builtin_cos:
1578 case Builtin::BI__builtin_cosf:
1579 case Builtin::BI__builtin_cosf16:
1580 case Builtin::BI__builtin_cosl:
1581 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
1582
1583 case Builtin::BIexp:
1584 case Builtin::BIexpf:
1585 case Builtin::BIexpl:
1586 case Builtin::BI__builtin_exp:
1587 case Builtin::BI__builtin_expf:
1588 case Builtin::BI__builtin_expf16:
1589 case Builtin::BI__builtin_expl:
1590 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
1591
1592 case Builtin::BIexp2:
1593 case Builtin::BIexp2f:
1594 case Builtin::BIexp2l:
1595 case Builtin::BI__builtin_exp2:
1596 case Builtin::BI__builtin_exp2f:
1597 case Builtin::BI__builtin_exp2f16:
1598 case Builtin::BI__builtin_exp2l:
1599 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
1600
1601 case Builtin::BIfabs:
1602 case Builtin::BIfabsf:
1603 case Builtin::BIfabsl:
1604 case Builtin::BI__builtin_fabs:
1605 case Builtin::BI__builtin_fabsf:
1606 case Builtin::BI__builtin_fabsf16:
1607 case Builtin::BI__builtin_fabsl:
1608 case Builtin::BI__builtin_fabsf128:
1609 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1610
1611 case Builtin::BIfloor:
1612 case Builtin::BIfloorf:
1613 case Builtin::BIfloorl:
1614 case Builtin::BI__builtin_floor:
1615 case Builtin::BI__builtin_floorf:
1616 case Builtin::BI__builtin_floorf16:
1617 case Builtin::BI__builtin_floorl:
1618 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
1619
1620 case Builtin::BIfma:
1621 case Builtin::BIfmaf:
1622 case Builtin::BIfmal:
1623 case Builtin::BI__builtin_fma:
1624 case Builtin::BI__builtin_fmaf:
1625 case Builtin::BI__builtin_fmaf16:
1626 case Builtin::BI__builtin_fmal:
1627 return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
1628
1629 case Builtin::BIfmax:
1630 case Builtin::BIfmaxf:
1631 case Builtin::BIfmaxl:
1632 case Builtin::BI__builtin_fmax:
1633 case Builtin::BI__builtin_fmaxf:
1634 case Builtin::BI__builtin_fmaxf16:
1635 case Builtin::BI__builtin_fmaxl:
1636 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
1637
1638 case Builtin::BIfmin:
1639 case Builtin::BIfminf:
1640 case Builtin::BIfminl:
1641 case Builtin::BI__builtin_fmin:
1642 case Builtin::BI__builtin_fminf:
1643 case Builtin::BI__builtin_fminf16:
1644 case Builtin::BI__builtin_fminl:
1645 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
1646
1647 // fmod() is a special-case. It maps to the frem instruction rather than an
1648 // LLVM intrinsic.
1649 case Builtin::BIfmod:
1650 case Builtin::BIfmodf:
1651 case Builtin::BIfmodl:
1652 case Builtin::BI__builtin_fmod:
1653 case Builtin::BI__builtin_fmodf:
1654 case Builtin::BI__builtin_fmodf16:
1655 case Builtin::BI__builtin_fmodl: {
1656 Value *Arg1 = EmitScalarExpr(E->getArg(0));
1657 Value *Arg2 = EmitScalarExpr(E->getArg(1));
1658 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1659 }
1660
1661 case Builtin::BIlog:
1662 case Builtin::BIlogf:
1663 case Builtin::BIlogl:
1664 case Builtin::BI__builtin_log:
1665 case Builtin::BI__builtin_logf:
1666 case Builtin::BI__builtin_logf16:
1667 case Builtin::BI__builtin_logl:
1668 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
1669
1670 case Builtin::BIlog10:
1671 case Builtin::BIlog10f:
1672 case Builtin::BIlog10l:
1673 case Builtin::BI__builtin_log10:
1674 case Builtin::BI__builtin_log10f:
1675 case Builtin::BI__builtin_log10f16:
1676 case Builtin::BI__builtin_log10l:
1677 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
1678
1679 case Builtin::BIlog2:
1680 case Builtin::BIlog2f:
1681 case Builtin::BIlog2l:
1682 case Builtin::BI__builtin_log2:
1683 case Builtin::BI__builtin_log2f:
1684 case Builtin::BI__builtin_log2f16:
1685 case Builtin::BI__builtin_log2l:
1686 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
1687
1688 case Builtin::BInearbyint:
1689 case Builtin::BInearbyintf:
1690 case Builtin::BInearbyintl:
1691 case Builtin::BI__builtin_nearbyint:
1692 case Builtin::BI__builtin_nearbyintf:
1693 case Builtin::BI__builtin_nearbyintl:
1694 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
1695
1696 case Builtin::BIpow:
1697 case Builtin::BIpowf:
1698 case Builtin::BIpowl:
1699 case Builtin::BI__builtin_pow:
1700 case Builtin::BI__builtin_powf:
1701 case Builtin::BI__builtin_powf16:
1702 case Builtin::BI__builtin_powl:
1703 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
1704
1705 case Builtin::BIrint:
1706 case Builtin::BIrintf:
1707 case Builtin::BIrintl:
1708 case Builtin::BI__builtin_rint:
1709 case Builtin::BI__builtin_rintf:
1710 case Builtin::BI__builtin_rintf16:
1711 case Builtin::BI__builtin_rintl:
1712 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
1713
1714 case Builtin::BIround:
1715 case Builtin::BIroundf:
1716 case Builtin::BIroundl:
1717 case Builtin::BI__builtin_round:
1718 case Builtin::BI__builtin_roundf:
1719 case Builtin::BI__builtin_roundf16:
1720 case Builtin::BI__builtin_roundl:
1721 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
1722
1723 case Builtin::BIsin:
1724 case Builtin::BIsinf:
1725 case Builtin::BIsinl:
1726 case Builtin::BI__builtin_sin:
1727 case Builtin::BI__builtin_sinf:
1728 case Builtin::BI__builtin_sinf16:
1729 case Builtin::BI__builtin_sinl:
1730 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
1731
1732 case Builtin::BIsqrt:
1733 case Builtin::BIsqrtf:
1734 case Builtin::BIsqrtl:
1735 case Builtin::BI__builtin_sqrt:
1736 case Builtin::BI__builtin_sqrtf:
1737 case Builtin::BI__builtin_sqrtf16:
1738 case Builtin::BI__builtin_sqrtl:
1739 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
1740
1741 case Builtin::BItrunc:
1742 case Builtin::BItruncf:
1743 case Builtin::BItruncl:
1744 case Builtin::BI__builtin_trunc:
1745 case Builtin::BI__builtin_truncf:
1746 case Builtin::BI__builtin_truncf16:
1747 case Builtin::BI__builtin_truncl:
1748 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
1749
1750 case Builtin::BIlround:
1751 case Builtin::BIlroundf:
1752 case Builtin::BIlroundl:
1753 case Builtin::BI__builtin_lround:
1754 case Builtin::BI__builtin_lroundf:
1755 case Builtin::BI__builtin_lroundl:
1756 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lround));
1757
1758 case Builtin::BIllround:
1759 case Builtin::BIllroundf:
1760 case Builtin::BIllroundl:
1761 case Builtin::BI__builtin_llround:
1762 case Builtin::BI__builtin_llroundf:
1763 case Builtin::BI__builtin_llroundl:
1764 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llround));
1765
1766 case Builtin::BIlrint:
1767 case Builtin::BIlrintf:
1768 case Builtin::BIlrintl:
1769 case Builtin::BI__builtin_lrint:
1770 case Builtin::BI__builtin_lrintf:
1771 case Builtin::BI__builtin_lrintl:
1772 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lrint));
1773
1774 case Builtin::BIllrint:
1775 case Builtin::BIllrintf:
1776 case Builtin::BIllrintl:
1777 case Builtin::BI__builtin_llrint:
1778 case Builtin::BI__builtin_llrintf:
1779 case Builtin::BI__builtin_llrintl:
1780 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llrint));
1781
1782 default:
1783 break;
1784 }
1785 }
1786
1787 switch (BuiltinID) {
7
Control jumps to 'case BIget_pipe_num_packets:' at line 3693
1788 default: break;
1789 case Builtin::BI__builtin___CFStringMakeConstantString:
1790 case Builtin::BI__builtin___NSStringMakeConstantString:
1791 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1792 case Builtin::BI__builtin_stdarg_start:
1793 case Builtin::BI__builtin_va_start:
1794 case Builtin::BI__va_start:
1795 case Builtin::BI__builtin_va_end:
1796 return RValue::get(
1797 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1798 ? EmitScalarExpr(E->getArg(0))
1799 : EmitVAListRef(E->getArg(0)).getPointer(),
1800 BuiltinID != Builtin::BI__builtin_va_end));
1801 case Builtin::BI__builtin_va_copy: {
1802 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1803 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1804
1805 llvm::Type *Type = Int8PtrTy;
1806
1807 DstPtr = Builder.CreateBitCast(DstPtr, Type);
1808 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1809 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1810 {DstPtr, SrcPtr}));
1811 }
1812 case Builtin::BI__builtin_abs:
1813 case Builtin::BI__builtin_labs:
1814 case Builtin::BI__builtin_llabs: {
1815 // X < 0 ? -X : X
1816 // The negation has 'nsw' because abs of INT_MIN is undefined.
1817 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1818 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
1819 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
1820 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
1821 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
1822 return RValue::get(Result);
1823 }
1824 case Builtin::BI__builtin_conj:
1825 case Builtin::BI__builtin_conjf:
1826 case Builtin::BI__builtin_conjl: {
1827 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1828 Value *Real = ComplexVal.first;
1829 Value *Imag = ComplexVal.second;
1830 Value *Zero =
1831 Imag->getType()->isFPOrFPVectorTy()
1832 ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
1833 : llvm::Constant::getNullValue(Imag->getType());
1834
1835 Imag = Builder.CreateFSub(Zero, Imag, "sub");
1836 return RValue::getComplex(std::make_pair(Real, Imag));
1837 }
1838 case Builtin::BI__builtin_creal:
1839 case Builtin::BI__builtin_crealf:
1840 case Builtin::BI__builtin_creall:
1841 case Builtin::BIcreal:
1842 case Builtin::BIcrealf:
1843 case Builtin::BIcreall: {
1844 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1845 return RValue::get(ComplexVal.first);
1846 }
1847
1848 case Builtin::BI__builtin_dump_struct: {
1849 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
1850 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
1851 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
1852
1853 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
1854 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
1855
1856 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
1857 QualType Arg0Type = Arg0->getType()->getPointeeType();
1858
1859 Value *RecordPtr = EmitScalarExpr(Arg0);
1860 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
1861 {LLVMFuncType, Func}, 0);
1862 return RValue::get(Res);
1863 }
1864
1865 case Builtin::BI__builtin_preserve_access_index: {
1866 // Only enabled preserved access index region when debuginfo
1867 // is available as debuginfo is needed to preserve user-level
1868 // access pattern.
1869 if (!getDebugInfo()) {
1870 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
1871 return RValue::get(EmitScalarExpr(E->getArg(0)));
1872 }
1873
1874 // Nested builtin_preserve_access_index() not supported
1875 if (IsInPreservedAIRegion) {
1876 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
1877 return RValue::get(EmitScalarExpr(E->getArg(0)));
1878 }
1879
1880 IsInPreservedAIRegion = true;
1881 Value *Res = EmitScalarExpr(E->getArg(0));
1882 IsInPreservedAIRegion = false;
1883 return RValue::get(Res);
1884 }
1885
1886 case Builtin::BI__builtin_cimag:
1887 case Builtin::BI__builtin_cimagf:
1888 case Builtin::BI__builtin_cimagl:
1889 case Builtin::BIcimag:
1890 case Builtin::BIcimagf:
1891 case Builtin::BIcimagl: {
1892 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1893 return RValue::get(ComplexVal.second);
1894 }
1895
1896 case Builtin::BI__builtin_clrsb:
1897 case Builtin::BI__builtin_clrsbl:
1898 case Builtin::BI__builtin_clrsbll: {
1899 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
1900 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1901
1902 llvm::Type *ArgType = ArgValue->getType();
1903 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1904
1905 llvm::Type *ResultType = ConvertType(E->getType());
1906 Value *Zero = llvm::Constant::getNullValue(ArgType);
1907 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
1908 Value *Inverse = Builder.CreateNot(ArgValue, "not");
1909 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
1910 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
1911 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
1912 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1913 "cast");
1914 return RValue::get(Result);
1915 }
1916 case Builtin::BI__builtin_ctzs:
1917 case Builtin::BI__builtin_ctz:
1918 case Builtin::BI__builtin_ctzl:
1919 case Builtin::BI__builtin_ctzll: {
1920 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
1921
1922 llvm::Type *ArgType = ArgValue->getType();
1923 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1924
1925 llvm::Type *ResultType = ConvertType(E->getType());
1926 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1927 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1928 if (Result->getType() != ResultType)
1929 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1930 "cast");
1931 return RValue::get(Result);
1932 }
1933 case Builtin::BI__builtin_clzs:
1934 case Builtin::BI__builtin_clz:
1935 case Builtin::BI__builtin_clzl:
1936 case Builtin::BI__builtin_clzll: {
1937 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
1938
1939 llvm::Type *ArgType = ArgValue->getType();
1940 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1941
1942 llvm::Type *ResultType = ConvertType(E->getType());
1943 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1944 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1945 if (Result->getType() != ResultType)
1946 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1947 "cast");
1948 return RValue::get(Result);
1949 }
1950 case Builtin::BI__builtin_ffs:
1951 case Builtin::BI__builtin_ffsl:
1952 case Builtin::BI__builtin_ffsll: {
1953 // ffs(x) -> x ? cttz(x) + 1 : 0
1954 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1955
1956 llvm::Type *ArgType = ArgValue->getType();
1957 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1958
1959 llvm::Type *ResultType = ConvertType(E->getType());
1960 Value *Tmp =
1961 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
1962 llvm::ConstantInt::get(ArgType, 1));
1963 Value *Zero = llvm::Constant::getNullValue(ArgType);
1964 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
1965 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
1966 if (Result->getType() != ResultType)
1967 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1968 "cast");
1969 return RValue::get(Result);
1970 }
1971 case Builtin::BI__builtin_parity:
1972 case Builtin::BI__builtin_parityl:
1973 case Builtin::BI__builtin_parityll: {
1974 // parity(x) -> ctpop(x) & 1
1975 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1976
1977 llvm::Type *ArgType = ArgValue->getType();
1978 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1979
1980 llvm::Type *ResultType = ConvertType(E->getType());
1981 Value *Tmp = Builder.CreateCall(F, ArgValue);
1982 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
1983 if (Result->getType() != ResultType)
1984 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1985 "cast");
1986 return RValue::get(Result);
1987 }
1988 case Builtin::BI__lzcnt16:
1989 case Builtin::BI__lzcnt:
1990 case Builtin::BI__lzcnt64: {
1991 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1992
1993 llvm::Type *ArgType = ArgValue->getType();
1994 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1995
1996 llvm::Type *ResultType = ConvertType(E->getType());
1997 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
1998 if (Result->getType() != ResultType)
1999 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2000 "cast");
2001 return RValue::get(Result);
2002 }
2003 case Builtin::BI__popcnt16:
2004 case Builtin::BI__popcnt:
2005 case Builtin::BI__popcnt64:
2006 case Builtin::BI__builtin_popcount:
2007 case Builtin::BI__builtin_popcountl:
2008 case Builtin::BI__builtin_popcountll: {
2009 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2010
2011 llvm::Type *ArgType = ArgValue->getType();
2012 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2013
2014 llvm::Type *ResultType = ConvertType(E->getType());
2015 Value *Result = Builder.CreateCall(F, ArgValue);
2016 if (Result->getType() != ResultType)
2017 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2018 "cast");
2019 return RValue::get(Result);
2020 }
2021 case Builtin::BI__builtin_unpredictable: {
2022 // Always return the argument of __builtin_unpredictable. LLVM does not
2023 // handle this builtin. Metadata for this builtin should be added directly
2024 // to instructions such as branches or switches that use it.
2025 return RValue::get(EmitScalarExpr(E->getArg(0)));
2026 }
2027 case Builtin::BI__builtin_expect: {
2028 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2029 llvm::Type *ArgType = ArgValue->getType();
2030
2031 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2032 // Don't generate llvm.expect on -O0 as the backend won't use it for
2033 // anything.
2034 // Note, we still IRGen ExpectedValue because it could have side-effects.
2035 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2036 return RValue::get(ArgValue);
2037
2038 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2039 Value *Result =
2040 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2041 return RValue::get(Result);
2042 }
2043 case Builtin::BI__builtin_assume_aligned: {
2044 const Expr *Ptr = E->getArg(0);
2045 Value *PtrValue = EmitScalarExpr(Ptr);
2046 Value *OffsetValue =
2047 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2048
2049 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2050 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2051 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2052 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2053 llvm::Value::MaximumAlignment);
2054
2055 EmitAlignmentAssumption(PtrValue, Ptr,
2056 /*The expr loc is sufficient.*/ SourceLocation(),
2057 AlignmentCI, OffsetValue);
2058 return RValue::get(PtrValue);
2059 }
2060 case Builtin::BI__assume:
2061 case Builtin::BI__builtin_assume: {
2062 if (E->getArg(0)->HasSideEffects(getContext()))
2063 return RValue::get(nullptr);
2064
2065 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2066 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2067 return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2068 }
2069 case Builtin::BI__builtin_bswap16:
2070 case Builtin::BI__builtin_bswap32:
2071 case Builtin::BI__builtin_bswap64: {
2072 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2073 }
2074 case Builtin::BI__builtin_bitreverse8:
2075 case Builtin::BI__builtin_bitreverse16:
2076 case Builtin::BI__builtin_bitreverse32:
2077 case Builtin::BI__builtin_bitreverse64: {
2078 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2079 }
2080 case Builtin::BI__builtin_rotateleft8:
2081 case Builtin::BI__builtin_rotateleft16:
2082 case Builtin::BI__builtin_rotateleft32:
2083 case Builtin::BI__builtin_rotateleft64:
2084 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2085 case Builtin::BI_rotl16:
2086 case Builtin::BI_rotl:
2087 case Builtin::BI_lrotl:
2088 case Builtin::BI_rotl64:
2089 return emitRotate(E, false);
2090
2091 case Builtin::BI__builtin_rotateright8:
2092 case Builtin::BI__builtin_rotateright16:
2093 case Builtin::BI__builtin_rotateright32:
2094 case Builtin::BI__builtin_rotateright64:
2095 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2096 case Builtin::BI_rotr16:
2097 case Builtin::BI_rotr:
2098 case Builtin::BI_lrotr:
2099 case Builtin::BI_rotr64:
2100 return emitRotate(E, true);
2101
2102 case Builtin::BI__builtin_constant_p: {
2103 llvm::Type *ResultType = ConvertType(E->getType());
2104
2105 const Expr *Arg = E->getArg(0);
2106 QualType ArgType = Arg->getType();
2107 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2108 // and likely a mistake.
2109 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2110 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2111 // Per the GCC documentation, only numeric constants are recognized after
2112 // inlining.
2113 return RValue::get(ConstantInt::get(ResultType, 0));
2114
2115 if (Arg->HasSideEffects(getContext()))
2116 // The argument is unevaluated, so be conservative if it might have
2117 // side-effects.
2118 return RValue::get(ConstantInt::get(ResultType, 0));
2119
2120 Value *ArgValue = EmitScalarExpr(Arg);
2121 if (ArgType->isObjCObjectPointerType()) {
2122 // Convert Objective-C objects to id because we cannot distinguish between
2123 // LLVM types for Obj-C classes as they are opaque.
2124 ArgType = CGM.getContext().getObjCIdType();
2125 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2126 }
2127 Function *F =
2128 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2129 Value *Result = Builder.CreateCall(F, ArgValue);
2130 if (Result->getType() != ResultType)
2131 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2132 return RValue::get(Result);
2133 }
2134 case Builtin::BI__builtin_dynamic_object_size:
2135 case Builtin::BI__builtin_object_size: {
2136 unsigned Type =
2137 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2138 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2139
2140 // We pass this builtin onto the optimizer so that it can figure out the
2141 // object size in more complex cases.
2142 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2143 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2144 /*EmittedE=*/nullptr, IsDynamic));
2145 }
2146 case Builtin::BI__builtin_prefetch: {
2147 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2148 // FIXME: Technically these constants should of type 'int', yes?
2149 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2150 llvm::ConstantInt::get(Int32Ty, 0);
2151 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2152 llvm::ConstantInt::get(Int32Ty, 3);
2153 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2154 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2155 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2156 }
2157 case Builtin::BI__builtin_readcyclecounter: {
2158 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2159 return RValue::get(Builder.CreateCall(F));
2160 }
2161 case Builtin::BI__builtin___clear_cache: {
2162 Value *Begin = EmitScalarExpr(E->getArg(0));
2163 Value *End = EmitScalarExpr(E->getArg(1));
2164 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2165 return RValue::get(Builder.CreateCall(F, {Begin, End}));
2166 }
2167 case Builtin::BI__builtin_trap:
2168 return RValue::get(EmitTrapCall(Intrinsic::trap));
2169 case Builtin::BI__debugbreak:
2170 return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2171 case Builtin::BI__builtin_unreachable: {
2172 EmitUnreachable(E->getExprLoc());
2173
2174 // We do need to preserve an insertion point.
2175 EmitBlock(createBasicBlock("unreachable.cont"));
2176
2177 return RValue::get(nullptr);
2178 }
2179
2180 case Builtin::BI__builtin_powi:
2181 case Builtin::BI__builtin_powif:
2182 case Builtin::BI__builtin_powil: {
2183 Value *Base = EmitScalarExpr(E->getArg(0));
2184 Value *Exponent = EmitScalarExpr(E->getArg(1));
2185 llvm::Type *ArgType = Base->getType();
2186 Function *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
2187 return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
2188 }
2189
2190 case Builtin::BI__builtin_isgreater:
2191 case Builtin::BI__builtin_isgreaterequal:
2192 case Builtin::BI__builtin_isless:
2193 case Builtin::BI__builtin_islessequal:
2194 case Builtin::BI__builtin_islessgreater:
2195 case Builtin::BI__builtin_isunordered: {
2196 // Ordered comparisons: we know the arguments to these are matching scalar
2197 // floating point values.
2198 Value *LHS = EmitScalarExpr(E->getArg(0));
2199 Value *RHS = EmitScalarExpr(E->getArg(1));
2200
2201 switch (BuiltinID) {
2202 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2202)
;
2203 case Builtin::BI__builtin_isgreater:
2204 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2205 break;
2206 case Builtin::BI__builtin_isgreaterequal:
2207 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2208 break;
2209 case Builtin::BI__builtin_isless:
2210 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2211 break;
2212 case Builtin::BI__builtin_islessequal:
2213 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2214 break;
2215 case Builtin::BI__builtin_islessgreater:
2216 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2217 break;
2218 case Builtin::BI__builtin_isunordered:
2219 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2220 break;
2221 }
2222 // ZExt bool to int type.
2223 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2224 }
2225 case Builtin::BI__builtin_isnan: {
2226 Value *V = EmitScalarExpr(E->getArg(0));
2227 V = Builder.CreateFCmpUNO(V, V, "cmp");
2228 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2229 }
2230
2231 case Builtin::BIfinite:
2232 case Builtin::BI__finite:
2233 case Builtin::BIfinitef:
2234 case Builtin::BI__finitef:
2235 case Builtin::BIfinitel:
2236 case Builtin::BI__finitel:
2237 case Builtin::BI__builtin_isinf:
2238 case Builtin::BI__builtin_isfinite: {
2239 // isinf(x) --> fabs(x) == infinity
2240 // isfinite(x) --> fabs(x) != infinity
2241 // x != NaN via the ordered compare in either case.
2242 Value *V = EmitScalarExpr(E->getArg(0));
2243 Value *Fabs = EmitFAbs(*this, V);
2244 Constant *Infinity = ConstantFP::getInfinity(V->getType());
2245 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2246 ? CmpInst::FCMP_OEQ
2247 : CmpInst::FCMP_ONE;
2248 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2249 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2250 }
2251
2252 case Builtin::BI__builtin_isinf_sign: {
2253 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2254 Value *Arg = EmitScalarExpr(E->getArg(0));
2255 Value *AbsArg = EmitFAbs(*this, Arg);
2256 Value *IsInf = Builder.CreateFCmpOEQ(
2257 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2258 Value *IsNeg = EmitSignBit(*this, Arg);
2259
2260 llvm::Type *IntTy = ConvertType(E->getType());
2261 Value *Zero = Constant::getNullValue(IntTy);
2262 Value *One = ConstantInt::get(IntTy, 1);
2263 Value *NegativeOne = ConstantInt::get(IntTy, -1);
2264 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2265 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2266 return RValue::get(Result);
2267 }
2268
2269 case Builtin::BI__builtin_isnormal: {
2270 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2271 Value *V = EmitScalarExpr(E->getArg(0));
2272 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2273
2274 Value *Abs = EmitFAbs(*this, V);
2275 Value *IsLessThanInf =
2276 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2277 APFloat Smallest = APFloat::getSmallestNormalized(
2278 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2279 Value *IsNormal =
2280 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2281 "isnormal");
2282 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2283 V = Builder.CreateAnd(V, IsNormal, "and");
2284 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2285 }
2286
2287 case Builtin::BI__builtin_flt_rounds: {
2288 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
2289
2290 llvm::Type *ResultType = ConvertType(E->getType());
2291 Value *Result = Builder.CreateCall(F);
2292 if (Result->getType() != ResultType)
2293 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2294 "cast");
2295 return RValue::get(Result);
2296 }
2297
2298 case Builtin::BI__builtin_fpclassify: {
2299 Value *V = EmitScalarExpr(E->getArg(5));
2300 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2301
2302 // Create Result
2303 BasicBlock *Begin = Builder.GetInsertBlock();
2304 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
2305 Builder.SetInsertPoint(End);
2306 PHINode *Result =
2307 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
2308 "fpclassify_result");
2309
2310 // if (V==0) return FP_ZERO
2311 Builder.SetInsertPoint(Begin);
2312 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
2313 "iszero");
2314 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
2315 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
2316 Builder.CreateCondBr(IsZero, End, NotZero);
2317 Result->addIncoming(ZeroLiteral, Begin);
2318
2319 // if (V != V) return FP_NAN
2320 Builder.SetInsertPoint(NotZero);
2321 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
2322 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
2323 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
2324 Builder.CreateCondBr(IsNan, End, NotNan);
2325 Result->addIncoming(NanLiteral, NotZero);
2326
2327 // if (fabs(V) == infinity) return FP_INFINITY
2328 Builder.SetInsertPoint(NotNan);
2329 Value *VAbs = EmitFAbs(*this, V);
2330 Value *IsInf =
2331 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
2332 "isinf");
2333 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
2334 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
2335 Builder.CreateCondBr(IsInf, End, NotInf);
2336 Result->addIncoming(InfLiteral, NotNan);
2337
2338 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
2339 Builder.SetInsertPoint(NotInf);
2340 APFloat Smallest = APFloat::getSmallestNormalized(
2341 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
2342 Value *IsNormal =
2343 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
2344 "isnormal");
2345 Value *NormalResult =
2346 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
2347 EmitScalarExpr(E->getArg(3)));
2348 Builder.CreateBr(End);
2349 Result->addIncoming(NormalResult, NotInf);
2350
2351 // return Result
2352 Builder.SetInsertPoint(End);
2353 return RValue::get(Result);
2354 }
2355
2356 case Builtin::BIalloca:
2357 case Builtin::BI_alloca:
2358 case Builtin::BI__builtin_alloca: {
2359 Value *Size = EmitScalarExpr(E->getArg(0));
2360 const TargetInfo &TI = getContext().getTargetInfo();
2361 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
2362 unsigned SuitableAlignmentInBytes =
2363 CGM.getContext()
2364 .toCharUnitsFromBits(TI.getSuitableAlign())
2365 .getQuantity();
2366 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2367 AI->setAlignment(MaybeAlign(SuitableAlignmentInBytes));
2368 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
2369 return RValue::get(AI);
2370 }
2371
2372 case Builtin::BI__builtin_alloca_with_align: {
2373 Value *Size = EmitScalarExpr(E->getArg(0));
2374 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
2375 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
2376 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
2377 unsigned AlignmentInBytes =
2378 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
2379 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2380 AI->setAlignment(MaybeAlign(AlignmentInBytes));
2381 initializeAlloca(*this, AI, Size, AlignmentInBytes);
2382 return RValue::get(AI);
2383 }
2384
2385 case Builtin::BIbzero:
2386 case Builtin::BI__builtin_bzero: {
2387 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2388 Value *SizeVal = EmitScalarExpr(E->getArg(1));
2389 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2390 E->getArg(0)->getExprLoc(), FD, 0);
2391 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
2392 return RValue::get(nullptr);
2393 }
2394 case Builtin::BImemcpy:
2395 case Builtin::BI__builtin_memcpy: {
2396 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2397 Address Src = EmitPointerWithAlignment(E->getArg(1));
2398 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2399 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2400 E->getArg(0)->getExprLoc(), FD, 0);
2401 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2402 E->getArg(1)->getExprLoc(), FD, 1);
2403 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2404 return RValue::get(Dest.getPointer());
2405 }
2406
2407 case Builtin::BI__builtin_char_memchr:
2408 BuiltinID = Builtin::BI__builtin_memchr;
2409 break;
2410
2411 case Builtin::BI__builtin___memcpy_chk: {
2412 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
2413 Expr::EvalResult SizeResult, DstSizeResult;
2414 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2415 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2416 break;
2417 llvm::APSInt Size = SizeResult.Val.getInt();
2418 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2419 if (Size.ugt(DstSize))
2420 break;
2421 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2422 Address Src = EmitPointerWithAlignment(E->getArg(1));
2423 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2424 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2425 return RValue::get(Dest.getPointer());
2426 }
2427
2428 case Builtin::BI__builtin_objc_memmove_collectable: {
2429 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
2430 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
2431 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2432 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
2433 DestAddr, SrcAddr, SizeVal);
2434 return RValue::get(DestAddr.getPointer());
2435 }
2436
2437 case Builtin::BI__builtin___memmove_chk: {
2438 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
2439 Expr::EvalResult SizeResult, DstSizeResult;
2440 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2441 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2442 break;
2443 llvm::APSInt Size = SizeResult.Val.getInt();
2444 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2445 if (Size.ugt(DstSize))
2446 break;
2447 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2448 Address Src = EmitPointerWithAlignment(E->getArg(1));
2449 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2450 Builder.CreateMemMove(Dest, Src, SizeVal, false);
2451 return RValue::get(Dest.getPointer());
2452 }
2453
2454 case Builtin::BImemmove:
2455 case Builtin::BI__builtin_memmove: {
2456 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2457 Address Src = EmitPointerWithAlignment(E->getArg(1));
2458 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2459 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2460 E->getArg(0)->getExprLoc(), FD, 0);
2461 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2462 E->getArg(1)->getExprLoc(), FD, 1);
2463 Builder.CreateMemMove(Dest, Src, SizeVal, false);
2464 return RValue::get(Dest.getPointer());
2465 }
2466 case Builtin::BImemset:
2467 case Builtin::BI__builtin_memset: {
2468 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2469 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2470 Builder.getInt8Ty());
2471 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2472 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2473 E->getArg(0)->getExprLoc(), FD, 0);
2474 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2475 return RValue::get(Dest.getPointer());
2476 }
2477 case Builtin::BI__builtin___memset_chk: {
2478 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
2479 Expr::EvalResult SizeResult, DstSizeResult;
2480 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2481 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2482 break;
2483 llvm::APSInt Size = SizeResult.Val.getInt();
2484 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2485 if (Size.ugt(DstSize))
2486 break;
2487 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2488 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2489 Builder.getInt8Ty());
2490 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2491 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2492 return RValue::get(Dest.getPointer());
2493 }
2494 case Builtin::BI__builtin_wmemcmp: {
2495 // The MSVC runtime library does not provide a definition of wmemcmp, so we
2496 // need an inline implementation.
2497 if (!getTarget().getTriple().isOSMSVCRT())
2498 break;
2499
2500 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
2501
2502 Value *Dst = EmitScalarExpr(E->getArg(0));
2503 Value *Src = EmitScalarExpr(E->getArg(1));
2504 Value *Size = EmitScalarExpr(E->getArg(2));
2505
2506 BasicBlock *Entry = Builder.GetInsertBlock();
2507 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
2508 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
2509 BasicBlock *Next = createBasicBlock("wmemcmp.next");
2510 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
2511 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
2512 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
2513
2514 EmitBlock(CmpGT);
2515 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
2516 DstPhi->addIncoming(Dst, Entry);
2517 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
2518 SrcPhi->addIncoming(Src, Entry);
2519 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
2520 SizePhi->addIncoming(Size, Entry);
2521 CharUnits WCharAlign =
2522 getContext().getTypeAlignInChars(getContext().WCharTy);
2523 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
2524 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
2525 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
2526 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
2527
2528 EmitBlock(CmpLT);
2529 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
2530 Builder.CreateCondBr(DstLtSrc, Exit, Next);
2531
2532 EmitBlock(Next);
2533 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
2534 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
2535 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
2536 Value *NextSizeEq0 =
2537 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
2538 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
2539 DstPhi->addIncoming(NextDst, Next);
2540 SrcPhi->addIncoming(NextSrc, Next);
2541 SizePhi->addIncoming(NextSize, Next);
2542
2543 EmitBlock(Exit);
2544 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
2545 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
2546 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
2547 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
2548 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
2549 return RValue::get(Ret);
2550 }
2551 case Builtin::BI__builtin_dwarf_cfa: {
2552 // The offset in bytes from the first argument to the CFA.
2553 //
2554 // Why on earth is this in the frontend? Is there any reason at
2555 // all that the backend can't reasonably determine this while
2556 // lowering llvm.eh.dwarf.cfa()?
2557 //
2558 // TODO: If there's a satisfactory reason, add a target hook for
2559 // this instead of hard-coding 0, which is correct for most targets.
2560 int32_t Offset = 0;
2561
2562 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
2563 return RValue::get(Builder.CreateCall(F,
2564 llvm::ConstantInt::get(Int32Ty, Offset)));
2565 }
2566 case Builtin::BI__builtin_return_address: {
2567 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2568 getContext().UnsignedIntTy);
2569 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2570 return RValue::get(Builder.CreateCall(F, Depth));
2571 }
2572 case Builtin::BI_ReturnAddress: {
2573 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2574 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
2575 }
2576 case Builtin::BI__builtin_frame_address: {
2577 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2578 getContext().UnsignedIntTy);
2579 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
2580 return RValue::get(Builder.CreateCall(F, Depth));
2581 }
2582 case Builtin::BI__builtin_extract_return_addr: {
2583 Value *Address = EmitScalarExpr(E->getArg(0));
2584 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
2585 return RValue::get(Result);
2586 }
2587 case Builtin::BI__builtin_frob_return_addr: {
2588 Value *Address = EmitScalarExpr(E->getArg(0));
2589 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
2590 return RValue::get(Result);
2591 }
2592 case Builtin::BI__builtin_dwarf_sp_column: {
2593 llvm::IntegerType *Ty
2594 = cast<llvm::IntegerType>(ConvertType(E->getType()));
2595 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
2596 if (Column == -1) {
2597 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
2598 return RValue::get(llvm::UndefValue::get(Ty));
2599 }
2600 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
2601 }
2602 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
2603 Value *Address = EmitScalarExpr(E->getArg(0));
2604 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
2605 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
2606 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
2607 }
2608 case Builtin::BI__builtin_eh_return: {
2609 Value *Int = EmitScalarExpr(E->getArg(0));
2610 Value *Ptr = EmitScalarExpr(E->getArg(1));
2611
2612 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
2613 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() ==
64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? static_cast<void> (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2614, __PRETTY_FUNCTION__))
2614 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() ==
64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? static_cast<void> (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2614, __PRETTY_FUNCTION__))
;
2615 Function *F =
2616 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
2617 : Intrinsic::eh_return_i64);
2618 Builder.CreateCall(F, {Int, Ptr});
2619 Builder.CreateUnreachable();
2620
2621 // We do need to preserve an insertion point.
2622 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
2623
2624 return RValue::get(nullptr);
2625 }
2626 case Builtin::BI__builtin_unwind_init: {
2627 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
2628 return RValue::get(Builder.CreateCall(F));
2629 }
2630 case Builtin::BI__builtin_extend_pointer: {
2631 // Extends a pointer to the size of an _Unwind_Word, which is
2632 // uint64_t on all platforms. Generally this gets poked into a
2633 // register and eventually used as an address, so if the
2634 // addressing registers are wider than pointers and the platform
2635 // doesn't implicitly ignore high-order bits when doing
2636 // addressing, we need to make sure we zext / sext based on
2637 // the platform's expectations.
2638 //
2639 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
2640
2641 // Cast the pointer to intptr_t.
2642 Value *Ptr = EmitScalarExpr(E->getArg(0));
2643 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
2644
2645 // If that's 64 bits, we're done.
2646 if (IntPtrTy->getBitWidth() == 64)
2647 return RValue::get(Result);
2648
2649 // Otherwise, ask the codegen data what to do.
2650 if (getTargetHooks().extendPointerWithSExt())
2651 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
2652 else
2653 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
2654 }
2655 case Builtin::BI__builtin_setjmp: {
2656 // Buffer is a void**.
2657 Address Buf = EmitPointerWithAlignment(E->getArg(0));
2658
2659 // Store the frame pointer to the setjmp buffer.
2660 Value *FrameAddr = Builder.CreateCall(
2661 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
2662 ConstantInt::get(Int32Ty, 0));
2663 Builder.CreateStore(FrameAddr, Buf);
2664
2665 // Store the stack pointer to the setjmp buffer.
2666 Value *StackAddr =
2667 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
2668 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
2669 Builder.CreateStore(StackAddr, StackSaveSlot);
2670
2671 // Call LLVM's EH setjmp, which is lightweight.
2672 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
2673 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2674 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
2675 }
2676 case Builtin::BI__builtin_longjmp: {
2677 Value *Buf = EmitScalarExpr(E->getArg(0));
2678 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2679
2680 // Call LLVM's EH longjmp, which is lightweight.
2681 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
2682
2683 // longjmp doesn't return; mark this as unreachable.
2684 Builder.CreateUnreachable();
2685
2686 // We do need to preserve an insertion point.
2687 EmitBlock(createBasicBlock("longjmp.cont"));
2688
2689 return RValue::get(nullptr);
2690 }
2691 case Builtin::BI__builtin_launder: {
2692 const Expr *Arg = E->getArg(0);
2693 QualType ArgTy = Arg->getType()->getPointeeType();
2694 Value *Ptr = EmitScalarExpr(Arg);
2695 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
2696 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
2697
2698 return RValue::get(Ptr);
2699 }
2700 case Builtin::BI__sync_fetch_and_add:
2701 case Builtin::BI__sync_fetch_and_sub:
2702 case Builtin::BI__sync_fetch_and_or:
2703 case Builtin::BI__sync_fetch_and_and:
2704 case Builtin::BI__sync_fetch_and_xor:
2705 case Builtin::BI__sync_fetch_and_nand:
2706 case Builtin::BI__sync_add_and_fetch:
2707 case Builtin::BI__sync_sub_and_fetch:
2708 case Builtin::BI__sync_and_and_fetch:
2709 case Builtin::BI__sync_or_and_fetch:
2710 case Builtin::BI__sync_xor_and_fetch:
2711 case Builtin::BI__sync_nand_and_fetch:
2712 case Builtin::BI__sync_val_compare_and_swap:
2713 case Builtin::BI__sync_bool_compare_and_swap:
2714 case Builtin::BI__sync_lock_test_and_set:
2715 case Builtin::BI__sync_lock_release:
2716 case Builtin::BI__sync_swap:
2717 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2717)
;
2718 case Builtin::BI__sync_fetch_and_add_1:
2719 case Builtin::BI__sync_fetch_and_add_2:
2720 case Builtin::BI__sync_fetch_and_add_4:
2721 case Builtin::BI__sync_fetch_and_add_8:
2722 case Builtin::BI__sync_fetch_and_add_16:
2723 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
2724 case Builtin::BI__sync_fetch_and_sub_1:
2725 case Builtin::BI__sync_fetch_and_sub_2:
2726 case Builtin::BI__sync_fetch_and_sub_4:
2727 case Builtin::BI__sync_fetch_and_sub_8:
2728 case Builtin::BI__sync_fetch_and_sub_16:
2729 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
2730 case Builtin::BI__sync_fetch_and_or_1:
2731 case Builtin::BI__sync_fetch_and_or_2:
2732 case Builtin::BI__sync_fetch_and_or_4:
2733 case Builtin::BI__sync_fetch_and_or_8:
2734 case Builtin::BI__sync_fetch_and_or_16:
2735 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
2736 case Builtin::BI__sync_fetch_and_and_1:
2737 case Builtin::BI__sync_fetch_and_and_2:
2738 case Builtin::BI__sync_fetch_and_and_4:
2739 case Builtin::BI__sync_fetch_and_and_8:
2740 case Builtin::BI__sync_fetch_and_and_16:
2741 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
2742 case Builtin::BI__sync_fetch_and_xor_1:
2743 case Builtin::BI__sync_fetch_and_xor_2:
2744 case Builtin::BI__sync_fetch_and_xor_4:
2745 case Builtin::BI__sync_fetch_and_xor_8:
2746 case Builtin::BI__sync_fetch_and_xor_16:
2747 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
2748 case Builtin::BI__sync_fetch_and_nand_1:
2749 case Builtin::BI__sync_fetch_and_nand_2:
2750 case Builtin::BI__sync_fetch_and_nand_4:
2751 case Builtin::BI__sync_fetch_and_nand_8:
2752 case Builtin::BI__sync_fetch_and_nand_16:
2753 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
2754
2755 // Clang extensions: not overloaded yet.
2756 case Builtin::BI__sync_fetch_and_min:
2757 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
2758 case Builtin::BI__sync_fetch_and_max:
2759 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
2760 case Builtin::BI__sync_fetch_and_umin:
2761 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
2762 case Builtin::BI__sync_fetch_and_umax:
2763 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
2764
2765 case Builtin::BI__sync_add_and_fetch_1:
2766 case Builtin::BI__sync_add_and_fetch_2:
2767 case Builtin::BI__sync_add_and_fetch_4:
2768 case Builtin::BI__sync_add_and_fetch_8:
2769 case Builtin::BI__sync_add_and_fetch_16:
2770 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
2771 llvm::Instruction::Add);
2772 case Builtin::BI__sync_sub_and_fetch_1:
2773 case Builtin::BI__sync_sub_and_fetch_2:
2774 case Builtin::BI__sync_sub_and_fetch_4:
2775 case Builtin::BI__sync_sub_and_fetch_8:
2776 case Builtin::BI__sync_sub_and_fetch_16:
2777 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
2778 llvm::Instruction::Sub);
2779 case Builtin::BI__sync_and_and_fetch_1:
2780 case Builtin::BI__sync_and_and_fetch_2:
2781 case Builtin::BI__sync_and_and_fetch_4:
2782 case Builtin::BI__sync_and_and_fetch_8:
2783 case Builtin::BI__sync_and_and_fetch_16:
2784 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
2785 llvm::Instruction::And);
2786 case Builtin::BI__sync_or_and_fetch_1:
2787 case Builtin::BI__sync_or_and_fetch_2:
2788 case Builtin::BI__sync_or_and_fetch_4:
2789 case Builtin::BI__sync_or_and_fetch_8:
2790 case Builtin::BI__sync_or_and_fetch_16:
2791 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
2792 llvm::Instruction::Or);
2793 case Builtin::BI__sync_xor_and_fetch_1:
2794 case Builtin::BI__sync_xor_and_fetch_2:
2795 case Builtin::BI__sync_xor_and_fetch_4:
2796 case Builtin::BI__sync_xor_and_fetch_8:
2797 case Builtin::BI__sync_xor_and_fetch_16:
2798 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
2799 llvm::Instruction::Xor);
2800 case Builtin::BI__sync_nand_and_fetch_1:
2801 case Builtin::BI__sync_nand_and_fetch_2:
2802 case Builtin::BI__sync_nand_and_fetch_4:
2803 case Builtin::BI__sync_nand_and_fetch_8:
2804 case Builtin::BI__sync_nand_and_fetch_16:
2805 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
2806 llvm::Instruction::And, true);
2807
2808 case Builtin::BI__sync_val_compare_and_swap_1:
2809 case Builtin::BI__sync_val_compare_and_swap_2:
2810 case Builtin::BI__sync_val_compare_and_swap_4:
2811 case Builtin::BI__sync_val_compare_and_swap_8:
2812 case Builtin::BI__sync_val_compare_and_swap_16:
2813 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
2814
2815 case Builtin::BI__sync_bool_compare_and_swap_1:
2816 case Builtin::BI__sync_bool_compare_and_swap_2:
2817 case Builtin::BI__sync_bool_compare_and_swap_4:
2818 case Builtin::BI__sync_bool_compare_and_swap_8:
2819 case Builtin::BI__sync_bool_compare_and_swap_16:
2820 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
2821
2822 case Builtin::BI__sync_swap_1:
2823 case Builtin::BI__sync_swap_2:
2824 case Builtin::BI__sync_swap_4:
2825 case Builtin::BI__sync_swap_8:
2826 case Builtin::BI__sync_swap_16:
2827 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2828
2829 case Builtin::BI__sync_lock_test_and_set_1:
2830 case Builtin::BI__sync_lock_test_and_set_2:
2831 case Builtin::BI__sync_lock_test_and_set_4:
2832 case Builtin::BI__sync_lock_test_and_set_8:
2833 case Builtin::BI__sync_lock_test_and_set_16:
2834 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2835
2836 case Builtin::BI__sync_lock_release_1:
2837 case Builtin::BI__sync_lock_release_2:
2838 case Builtin::BI__sync_lock_release_4:
2839 case Builtin::BI__sync_lock_release_8:
2840 case Builtin::BI__sync_lock_release_16: {
2841 Value *Ptr = EmitScalarExpr(E->getArg(0));
2842 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
2843 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
2844 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
2845 StoreSize.getQuantity() * 8);
2846 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
2847 llvm::StoreInst *Store =
2848 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
2849 StoreSize);
2850 Store->setAtomic(llvm::AtomicOrdering::Release);
2851 return RValue::get(nullptr);
2852 }
2853
2854 case Builtin::BI__sync_synchronize: {
2855 // We assume this is supposed to correspond to a C++0x-style
2856 // sequentially-consistent fence (i.e. this is only usable for
2857 // synchronization, not device I/O or anything like that). This intrinsic
2858 // is really badly designed in the sense that in theory, there isn't
2859 // any way to safely use it... but in practice, it mostly works
2860 // to use it with non-atomic loads and stores to get acquire/release
2861 // semantics.
2862 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
2863 return RValue::get(nullptr);
2864 }
2865
2866 case Builtin::BI__builtin_nontemporal_load:
2867 return RValue::get(EmitNontemporalLoad(*this, E));
2868 case Builtin::BI__builtin_nontemporal_store:
2869 return RValue::get(EmitNontemporalStore(*this, E));
2870 case Builtin::BI__c11_atomic_is_lock_free:
2871 case Builtin::BI__atomic_is_lock_free: {
2872 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
2873 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
2874 // _Atomic(T) is always properly-aligned.
2875 const char *LibCallName = "__atomic_is_lock_free";
2876 CallArgList Args;
2877 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
2878 getContext().getSizeType());
2879 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
2880 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
2881 getContext().VoidPtrTy);
2882 else
2883 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
2884 getContext().VoidPtrTy);
2885 const CGFunctionInfo &FuncInfo =
2886 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
2887 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
2888 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2889 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
2890 ReturnValueSlot(), Args);
2891 }
2892
2893 case Builtin::BI__atomic_test_and_set: {
2894 // Look at the argument type to determine whether this is a volatile
2895 // operation. The parameter type is always volatile.
2896 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2897 bool Volatile =
2898 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2899
2900 Value *Ptr = EmitScalarExpr(E->getArg(0));
2901 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
2902 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2903 Value *NewVal = Builder.getInt8(1);
2904 Value *Order = EmitScalarExpr(E->getArg(1));
2905 if (isa<llvm::ConstantInt>(Order)) {
2906 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2907 AtomicRMWInst *Result = nullptr;
2908 switch (ord) {
2909 case 0: // memory_order_relaxed
2910 default: // invalid order
2911 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2912 llvm::AtomicOrdering::Monotonic);
2913 break;
2914 case 1: // memory_order_consume
2915 case 2: // memory_order_acquire
2916 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2917 llvm::AtomicOrdering::Acquire);
2918 break;
2919 case 3: // memory_order_release
2920 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2921 llvm::AtomicOrdering::Release);
2922 break;
2923 case 4: // memory_order_acq_rel
2924
2925 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2926 llvm::AtomicOrdering::AcquireRelease);
2927 break;
2928 case 5: // memory_order_seq_cst
2929 Result = Builder.CreateAtomicRMW(
2930 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2931 llvm::AtomicOrdering::SequentiallyConsistent);
2932 break;
2933 }
2934 Result->setVolatile(Volatile);
2935 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2936 }
2937
2938 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2939
2940 llvm::BasicBlock *BBs[5] = {
2941 createBasicBlock("monotonic", CurFn),
2942 createBasicBlock("acquire", CurFn),
2943 createBasicBlock("release", CurFn),
2944 createBasicBlock("acqrel", CurFn),
2945 createBasicBlock("seqcst", CurFn)
2946 };
2947 llvm::AtomicOrdering Orders[5] = {
2948 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
2949 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
2950 llvm::AtomicOrdering::SequentiallyConsistent};
2951
2952 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2953 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2954
2955 Builder.SetInsertPoint(ContBB);
2956 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
2957
2958 for (unsigned i = 0; i < 5; ++i) {
2959 Builder.SetInsertPoint(BBs[i]);
2960 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
2961 Ptr, NewVal, Orders[i]);
2962 RMW->setVolatile(Volatile);
2963 Result->addIncoming(RMW, BBs[i]);
2964 Builder.CreateBr(ContBB);
2965 }
2966
2967 SI->addCase(Builder.getInt32(0), BBs[0]);
2968 SI->addCase(Builder.getInt32(1), BBs[1]);
2969 SI->addCase(Builder.getInt32(2), BBs[1]);
2970 SI->addCase(Builder.getInt32(3), BBs[2]);
2971 SI->addCase(Builder.getInt32(4), BBs[3]);
2972 SI->addCase(Builder.getInt32(5), BBs[4]);
2973
2974 Builder.SetInsertPoint(ContBB);
2975 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2976 }
2977
2978 case Builtin::BI__atomic_clear: {
2979 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2980 bool Volatile =
2981 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2982
2983 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
2984 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
2985 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2986 Value *NewVal = Builder.getInt8(0);
2987 Value *Order = EmitScalarExpr(E->getArg(1));
2988 if (isa<llvm::ConstantInt>(Order)) {
2989 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2990 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2991 switch (ord) {
2992 case 0: // memory_order_relaxed
2993 default: // invalid order
2994 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
2995 break;
2996 case 3: // memory_order_release
2997 Store->setOrdering(llvm::AtomicOrdering::Release);
2998 break;
2999 case 5: // memory_order_seq_cst
3000 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3001 break;
3002 }
3003 return RValue::get(nullptr);
3004 }
3005
3006 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3007
3008 llvm::BasicBlock *BBs[3] = {
3009 createBasicBlock("monotonic", CurFn),
3010 createBasicBlock("release", CurFn),
3011 createBasicBlock("seqcst", CurFn)
3012 };
3013 llvm::AtomicOrdering Orders[3] = {
3014 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3015 llvm::AtomicOrdering::SequentiallyConsistent};
3016
3017 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3018 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3019
3020 for (unsigned i = 0; i < 3; ++i) {
3021 Builder.SetInsertPoint(BBs[i]);
3022 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3023 Store->setOrdering(Orders[i]);
3024 Builder.CreateBr(ContBB);
3025 }
3026
3027 SI->addCase(Builder.getInt32(0), BBs[0]);
3028 SI->addCase(Builder.getInt32(3), BBs[1]);
3029 SI->addCase(Builder.getInt32(5), BBs[2]);
3030
3031 Builder.SetInsertPoint(ContBB);
3032 return RValue::get(nullptr);
3033 }
3034
3035 case Builtin::BI__atomic_thread_fence:
3036 case Builtin::BI__atomic_signal_fence:
3037 case Builtin::BI__c11_atomic_thread_fence:
3038 case Builtin::BI__c11_atomic_signal_fence: {
3039 llvm::SyncScope::ID SSID;
3040 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3041 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3042 SSID = llvm::SyncScope::SingleThread;
3043 else
3044 SSID = llvm::SyncScope::System;
3045 Value *Order = EmitScalarExpr(E->getArg(0));
3046 if (isa<llvm::ConstantInt>(Order)) {
3047 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3048 switch (ord) {
3049 case 0: // memory_order_relaxed
3050 default: // invalid order
3051 break;
3052 case 1: // memory_order_consume
3053 case 2: // memory_order_acquire
3054 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3055 break;
3056 case 3: // memory_order_release
3057 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3058 break;
3059 case 4: // memory_order_acq_rel
3060 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3061 break;
3062 case 5: // memory_order_seq_cst
3063 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3064 break;
3065 }
3066 return RValue::get(nullptr);
3067 }
3068
3069 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3070 AcquireBB = createBasicBlock("acquire", CurFn);
3071 ReleaseBB = createBasicBlock("release", CurFn);
3072 AcqRelBB = createBasicBlock("acqrel", CurFn);
3073 SeqCstBB = createBasicBlock("seqcst", CurFn);
3074 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3075
3076 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3077 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3078
3079 Builder.SetInsertPoint(AcquireBB);
3080 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3081 Builder.CreateBr(ContBB);
3082 SI->addCase(Builder.getInt32(1), AcquireBB);
3083 SI->addCase(Builder.getInt32(2), AcquireBB);
3084
3085 Builder.SetInsertPoint(ReleaseBB);
3086 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3087 Builder.CreateBr(ContBB);
3088 SI->addCase(Builder.getInt32(3), ReleaseBB);
3089
3090 Builder.SetInsertPoint(AcqRelBB);
3091 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3092 Builder.CreateBr(ContBB);
3093 SI->addCase(Builder.getInt32(4), AcqRelBB);
3094
3095 Builder.SetInsertPoint(SeqCstBB);
3096 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3097 Builder.CreateBr(ContBB);
3098 SI->addCase(Builder.getInt32(5), SeqCstBB);
3099
3100 Builder.SetInsertPoint(ContBB);
3101 return RValue::get(nullptr);
3102 }
3103
3104 case Builtin::BI__builtin_signbit:
3105 case Builtin::BI__builtin_signbitf:
3106 case Builtin::BI__builtin_signbitl: {
3107 return RValue::get(
3108 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3109 ConvertType(E->getType())));
3110 }
3111 case Builtin::BI__annotation: {
3112 // Re-encode each wide string to UTF8 and make an MDString.
3113 SmallVector<Metadata *, 1> Strings;
3114 for (const Expr *Arg : E->arguments()) {
3115 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3116 assert(Str->getCharByteWidth() == 2)((Str->getCharByteWidth() == 2) ? static_cast<void> (
0) : __assert_fail ("Str->getCharByteWidth() == 2", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3116, __PRETTY_FUNCTION__))
;
3117 StringRef WideBytes = Str->getBytes();
3118 std::string StrUtf8;
3119 if (!convertUTF16ToUTF8String(
3120 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3121 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3122 continue;
3123 }
3124 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3125 }
3126
3127 // Build and MDTuple of MDStrings and emit the intrinsic call.
3128 llvm::Function *F =
3129 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3130 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3131 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3132 return RValue::getIgnored();
3133 }
3134 case Builtin::BI__builtin_annotation: {
3135 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3136 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3137 AnnVal->getType());
3138
3139 // Get the annotation string, go through casts. Sema requires this to be a
3140 // non-wide string literal, potentially casted, so the cast<> is safe.
3141 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3142 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3143 return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
3144 }
3145 case Builtin::BI__builtin_addcb:
3146 case Builtin::BI__builtin_addcs:
3147 case Builtin::BI__builtin_addc:
3148 case Builtin::BI__builtin_addcl:
3149 case Builtin::BI__builtin_addcll:
3150 case Builtin::BI__builtin_subcb:
3151 case Builtin::BI__builtin_subcs:
3152 case Builtin::BI__builtin_subc:
3153 case Builtin::BI__builtin_subcl:
3154 case Builtin::BI__builtin_subcll: {
3155
3156 // We translate all of these builtins from expressions of the form:
3157 // int x = ..., y = ..., carryin = ..., carryout, result;
3158 // result = __builtin_addc(x, y, carryin, &carryout);
3159 //
3160 // to LLVM IR of the form:
3161 //
3162 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
3163 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
3164 // %carry1 = extractvalue {i32, i1} %tmp1, 1
3165 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
3166 // i32 %carryin)
3167 // %result = extractvalue {i32, i1} %tmp2, 0
3168 // %carry2 = extractvalue {i32, i1} %tmp2, 1
3169 // %tmp3 = or i1 %carry1, %carry2
3170 // %tmp4 = zext i1 %tmp3 to i32
3171 // store i32 %tmp4, i32* %carryout
3172
3173 // Scalarize our inputs.
3174 llvm::Value *X = EmitScalarExpr(E->getArg(0));
3175 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3176 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3177 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3178
3179 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3180 llvm::Intrinsic::ID IntrinsicId;
3181 switch (BuiltinID) {
3182 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3182)
;
3183 case Builtin::BI__builtin_addcb:
3184 case Builtin::BI__builtin_addcs:
3185 case Builtin::BI__builtin_addc:
3186 case Builtin::BI__builtin_addcl:
3187 case Builtin::BI__builtin_addcll:
3188 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3189 break;
3190 case Builtin::BI__builtin_subcb:
3191 case Builtin::BI__builtin_subcs:
3192 case Builtin::BI__builtin_subc:
3193 case Builtin::BI__builtin_subcl:
3194 case Builtin::BI__builtin_subcll:
3195 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3196 break;
3197 }
3198
3199 // Construct our resulting LLVM IR expression.
3200 llvm::Value *Carry1;
3201 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3202 X, Y, Carry1);
3203 llvm::Value *Carry2;
3204 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3205 Sum1, Carryin, Carry2);
3206 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3207 X->getType());
3208 Builder.CreateStore(CarryOut, CarryOutPtr);
3209 return RValue::get(Sum2);
3210 }
3211
3212 case Builtin::BI__builtin_add_overflow:
3213 case Builtin::BI__builtin_sub_overflow:
3214 case Builtin::BI__builtin_mul_overflow: {
3215 const clang::Expr *LeftArg = E->getArg(0);
3216 const clang::Expr *RightArg = E->getArg(1);
3217 const clang::Expr *ResultArg = E->getArg(2);
3218
3219 clang::QualType ResultQTy =
3220 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3221
3222 WidthAndSignedness LeftInfo =
3223 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3224 WidthAndSignedness RightInfo =
3225 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3226 WidthAndSignedness ResultInfo =
3227 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3228
3229 // Handle mixed-sign multiplication as a special case, because adding
3230 // runtime or backend support for our generic irgen would be too expensive.
3231 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3232 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3233 RightInfo, ResultArg, ResultQTy,
3234 ResultInfo);
3235
3236 WidthAndSignedness EncompassingInfo =
3237 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3238
3239 llvm::Type *EncompassingLLVMTy =
3240 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3241
3242 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3243
3244 llvm::Intrinsic::ID IntrinsicId;
3245 switch (BuiltinID) {
3246 default:
3247 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3247)
;
3248 case Builtin::BI__builtin_add_overflow:
3249 IntrinsicId = EncompassingInfo.Signed
3250 ? llvm::Intrinsic::sadd_with_overflow
3251 : llvm::Intrinsic::uadd_with_overflow;
3252 break;
3253 case Builtin::BI__builtin_sub_overflow:
3254 IntrinsicId = EncompassingInfo.Signed
3255 ? llvm::Intrinsic::ssub_with_overflow
3256 : llvm::Intrinsic::usub_with_overflow;
3257 break;
3258 case Builtin::BI__builtin_mul_overflow:
3259 IntrinsicId = EncompassingInfo.Signed
3260 ? llvm::Intrinsic::smul_with_overflow
3261 : llvm::Intrinsic::umul_with_overflow;
3262 break;
3263 }
3264
3265 llvm::Value *Left = EmitScalarExpr(LeftArg);
3266 llvm::Value *Right = EmitScalarExpr(RightArg);
3267 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3268
3269 // Extend each operand to the encompassing type.
3270 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3271 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3272
3273 // Perform the operation on the extended values.
3274 llvm::Value *Overflow, *Result;
3275 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3276
3277 if (EncompassingInfo.Width > ResultInfo.Width) {
3278 // The encompassing type is wider than the result type, so we need to
3279 // truncate it.
3280 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
3281
3282 // To see if the truncation caused an overflow, we will extend
3283 // the result and then compare it to the original result.
3284 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
3285 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
3286 llvm::Value *TruncationOverflow =
3287 Builder.CreateICmpNE(Result, ResultTruncExt);
3288
3289 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
3290 Result = ResultTrunc;
3291 }
3292
3293 // Finally, store the result using the pointer.
3294 bool isVolatile =
3295 ResultArg->getType()->getPointeeType().isVolatileQualified();
3296 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
3297
3298 return RValue::get(Overflow);
3299 }
3300
3301 case Builtin::BI__builtin_uadd_overflow:
3302 case Builtin::BI__builtin_uaddl_overflow:
3303 case Builtin::BI__builtin_uaddll_overflow:
3304 case Builtin::BI__builtin_usub_overflow:
3305 case Builtin::BI__builtin_usubl_overflow:
3306 case Builtin::BI__builtin_usubll_overflow:
3307 case Builtin::BI__builtin_umul_overflow:
3308 case Builtin::BI__builtin_umull_overflow:
3309 case Builtin::BI__builtin_umulll_overflow:
3310 case Builtin::BI__builtin_sadd_overflow:
3311 case Builtin::BI__builtin_saddl_overflow:
3312 case Builtin::BI__builtin_saddll_overflow:
3313 case Builtin::BI__builtin_ssub_overflow:
3314 case Builtin::BI__builtin_ssubl_overflow:
3315 case Builtin::BI__builtin_ssubll_overflow:
3316 case Builtin::BI__builtin_smul_overflow:
3317 case Builtin::BI__builtin_smull_overflow:
3318 case Builtin::BI__builtin_smulll_overflow: {
3319
3320 // We translate all of these builtins directly to the relevant llvm IR node.
3321
3322 // Scalarize our inputs.
3323 llvm::Value *X = EmitScalarExpr(E->getArg(0));
3324 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3325 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
3326
3327 // Decide which of the overflow intrinsics we are lowering to:
3328 llvm::Intrinsic::ID IntrinsicId;
3329 switch (BuiltinID) {
3330 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3330)
;
3331 case Builtin::BI__builtin_uadd_overflow:
3332 case Builtin::BI__builtin_uaddl_overflow:
3333 case Builtin::BI__builtin_uaddll_overflow:
3334 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3335 break;
3336 case Builtin::BI__builtin_usub_overflow:
3337 case Builtin::BI__builtin_usubl_overflow:
3338 case Builtin::BI__builtin_usubll_overflow:
3339 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3340 break;
3341 case Builtin::BI__builtin_umul_overflow:
3342 case Builtin::BI__builtin_umull_overflow:
3343 case Builtin::BI__builtin_umulll_overflow:
3344 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
3345 break;
3346 case Builtin::BI__builtin_sadd_overflow:
3347 case Builtin::BI__builtin_saddl_overflow:
3348 case Builtin::BI__builtin_saddll_overflow:
3349 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
3350 break;
3351 case Builtin::BI__builtin_ssub_overflow:
3352 case Builtin::BI__builtin_ssubl_overflow:
3353 case Builtin::BI__builtin_ssubll_overflow:
3354 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
3355 break;
3356 case Builtin::BI__builtin_smul_overflow:
3357 case Builtin::BI__builtin_smull_overflow:
3358 case Builtin::BI__builtin_smulll_overflow:
3359 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
3360 break;
3361 }
3362
3363
3364 llvm::Value *Carry;
3365 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
3366 Builder.CreateStore(Sum, SumOutPtr);
3367
3368 return RValue::get(Carry);
3369 }
3370 case Builtin::BI__builtin_addressof:
3371 return RValue::get(EmitLValue(E->getArg(0)).getPointer());
3372 case Builtin::BI__builtin_operator_new:
3373 return EmitBuiltinNewDeleteCall(
3374 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
3375 case Builtin::BI__builtin_operator_delete:
3376 return EmitBuiltinNewDeleteCall(
3377 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
3378
3379 case Builtin::BI__noop:
3380 // __noop always evaluates to an integer literal zero.
3381 return RValue::get(ConstantInt::get(IntTy, 0));
3382 case Builtin::BI__builtin_call_with_static_chain: {
3383 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
3384 const Expr *Chain = E->getArg(1);
3385 return EmitCall(Call->getCallee()->getType(),
3386 EmitCallee(Call->getCallee()), Call, ReturnValue,
3387 EmitScalarExpr(Chain));
3388 }
3389 case Builtin::BI_InterlockedExchange8:
3390 case Builtin::BI_InterlockedExchange16:
3391 case Builtin::BI_InterlockedExchange:
3392 case Builtin::BI_InterlockedExchangePointer:
3393 return RValue::get(
3394 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
3395 case Builtin::BI_InterlockedCompareExchangePointer:
3396 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
3397 llvm::Type *RTy;
3398 llvm::IntegerType *IntType =
3399 IntegerType::get(getLLVMContext(),
3400 getContext().getTypeSize(E->getType()));
3401 llvm::Type *IntPtrType = IntType->getPointerTo();
3402
3403 llvm::Value *Destination =
3404 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
3405
3406 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
3407 RTy = Exchange->getType();
3408 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
3409
3410 llvm::Value *Comparand =
3411 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
3412
3413 auto Ordering =
3414 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
3415 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
3416
3417 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
3418 Ordering, Ordering);
3419 Result->setVolatile(true);
3420
3421 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
3422 0),
3423 RTy));
3424 }
3425 case Builtin::BI_InterlockedCompareExchange8:
3426 case Builtin::BI_InterlockedCompareExchange16:
3427 case Builtin::BI_InterlockedCompareExchange:
3428 case Builtin::BI_InterlockedCompareExchange64:
3429 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
3430 case Builtin::BI_InterlockedIncrement16:
3431 case Builtin::BI_InterlockedIncrement:
3432 return RValue::get(
3433 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
3434 case Builtin::BI_InterlockedDecrement16:
3435 case Builtin::BI_InterlockedDecrement:
3436 return RValue::get(
3437 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
3438 case Builtin::BI_InterlockedAnd8:
3439 case Builtin::BI_InterlockedAnd16:
3440 case Builtin::BI_InterlockedAnd:
3441 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
3442 case Builtin::BI_InterlockedExchangeAdd8:
3443 case Builtin::BI_InterlockedExchangeAdd16:
3444 case Builtin::BI_InterlockedExchangeAdd:
3445 return RValue::get(
3446 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
3447 case Builtin::BI_InterlockedExchangeSub8:
3448 case Builtin::BI_InterlockedExchangeSub16:
3449 case Builtin::BI_InterlockedExchangeSub:
3450 return RValue::get(
3451 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
3452 case Builtin::BI_InterlockedOr8:
3453 case Builtin::BI_InterlockedOr16:
3454 case Builtin::BI_InterlockedOr:
3455 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
3456 case Builtin::BI_InterlockedXor8:
3457 case Builtin::BI_InterlockedXor16:
3458 case Builtin::BI_InterlockedXor:
3459 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
3460
3461 case Builtin::BI_bittest64:
3462 case Builtin::BI_bittest:
3463 case Builtin::BI_bittestandcomplement64:
3464 case Builtin::BI_bittestandcomplement:
3465 case Builtin::BI_bittestandreset64:
3466 case Builtin::BI_bittestandreset:
3467 case Builtin::BI_bittestandset64:
3468 case Builtin::BI_bittestandset:
3469 case Builtin::BI_interlockedbittestandreset:
3470 case Builtin::BI_interlockedbittestandreset64:
3471 case Builtin::BI_interlockedbittestandset64:
3472 case Builtin::BI_interlockedbittestandset:
3473 case Builtin::BI_interlockedbittestandset_acq:
3474 case Builtin::BI_interlockedbittestandset_rel:
3475 case Builtin::BI_interlockedbittestandset_nf:
3476 case Builtin::BI_interlockedbittestandreset_acq:
3477 case Builtin::BI_interlockedbittestandreset_rel:
3478 case Builtin::BI_interlockedbittestandreset_nf:
3479 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
3480
3481 // These builtins exist to emit regular volatile loads and stores not
3482 // affected by the -fms-volatile setting.
3483 case Builtin::BI__iso_volatile_load8:
3484 case Builtin::BI__iso_volatile_load16:
3485 case Builtin::BI__iso_volatile_load32:
3486 case Builtin::BI__iso_volatile_load64:
3487 return RValue::get(EmitISOVolatileLoad(*this, E));
3488 case Builtin::BI__iso_volatile_store8:
3489 case Builtin::BI__iso_volatile_store16:
3490 case Builtin::BI__iso_volatile_store32:
3491 case Builtin::BI__iso_volatile_store64:
3492 return RValue::get(EmitISOVolatileStore(*this, E));
3493
3494 case Builtin::BI__exception_code:
3495 case Builtin::BI_exception_code:
3496 return RValue::get(EmitSEHExceptionCode());
3497 case Builtin::BI__exception_info:
3498 case Builtin::BI_exception_info:
3499 return RValue::get(EmitSEHExceptionInfo());
3500 case Builtin::BI__abnormal_termination:
3501 case Builtin::BI_abnormal_termination:
3502 return RValue::get(EmitSEHAbnormalTermination());
3503 case Builtin::BI_setjmpex:
3504 if (getTarget().getTriple().isOSMSVCRT())
3505 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3506 break;
3507 case Builtin::BI_setjmp:
3508 if (getTarget().getTriple().isOSMSVCRT()) {
3509 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
3510 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
3511 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
3512 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3513 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
3514 }
3515 break;
3516
3517 case Builtin::BI__GetExceptionInfo: {
3518 if (llvm::GlobalVariable *GV =
3519 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
3520 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
3521 break;
3522 }
3523
3524 case Builtin::BI__fastfail:
3525 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
3526
3527 case Builtin::BI__builtin_coro_size: {
3528 auto & Context = getContext();
3529 auto SizeTy = Context.getSizeType();
3530 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3531 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
3532 return RValue::get(Builder.CreateCall(F));
3533 }
3534
3535 case Builtin::BI__builtin_coro_id:
3536 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
3537 case Builtin::BI__builtin_coro_promise:
3538 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
3539 case Builtin::BI__builtin_coro_resume:
3540 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
3541 case Builtin::BI__builtin_coro_frame:
3542 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
3543 case Builtin::BI__builtin_coro_noop:
3544 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
3545 case Builtin::BI__builtin_coro_free:
3546 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
3547 case Builtin::BI__builtin_coro_destroy:
3548 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
3549 case Builtin::BI__builtin_coro_done:
3550 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
3551 case Builtin::BI__builtin_coro_alloc:
3552 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
3553 case Builtin::BI__builtin_coro_begin:
3554 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
3555 case Builtin::BI__builtin_coro_end:
3556 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
3557 case Builtin::BI__builtin_coro_suspend:
3558 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
3559 case Builtin::BI__builtin_coro_param:
3560 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
3561
3562 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
3563 case Builtin::BIread_pipe:
3564 case Builtin::BIwrite_pipe: {
3565 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3566 *Arg1 = EmitScalarExpr(E->getArg(1));
3567 CGOpenCLRuntime OpenCLRT(CGM);
3568 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3569 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3570
3571 // Type of the generic packet parameter.
3572 unsigned GenericAS =
3573 getContext().getTargetAddressSpace(LangAS::opencl_generic);
3574 llvm::Type *I8PTy = llvm::PointerType::get(
3575 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
3576
3577 // Testing which overloaded version we should generate the call for.
3578 if (2U == E->getNumArgs()) {
3579 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
3580 : "__write_pipe_2";
3581 // Creating a generic function type to be able to call with any builtin or
3582 // user defined type.
3583 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
3584 llvm::FunctionType *FTy = llvm::FunctionType::get(
3585 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3586 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
3587 return RValue::get(
3588 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3589 {Arg0, BCast, PacketSize, PacketAlign}));
3590 } else {
3591 assert(4 == E->getNumArgs() &&((4 == E->getNumArgs() && "Illegal number of parameters to pipe function"
) ? static_cast<void> (0) : __assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3592, __PRETTY_FUNCTION__))
3592 "Illegal number of parameters to pipe function")((4 == E->getNumArgs() && "Illegal number of parameters to pipe function"
) ? static_cast<void> (0) : __assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3592, __PRETTY_FUNCTION__))
;
3593 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
3594 : "__write_pipe_4";
3595
3596 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
3597 Int32Ty, Int32Ty};
3598 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
3599 *Arg3 = EmitScalarExpr(E->getArg(3));
3600 llvm::FunctionType *FTy = llvm::FunctionType::get(
3601 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3602 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
3603 // We know the third argument is an integer type, but we may need to cast
3604 // it to i32.
3605 if (Arg2->getType() != Int32Ty)
3606 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
3607 return RValue::get(Builder.CreateCall(
3608 CGM.CreateRuntimeFunction(FTy, Name),
3609 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
3610 }
3611 }
3612 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
3613 // functions
3614 case Builtin::BIreserve_read_pipe:
3615 case Builtin::BIreserve_write_pipe:
3616 case Builtin::BIwork_group_reserve_read_pipe:
3617 case Builtin::BIwork_group_reserve_write_pipe:
3618 case Builtin::BIsub_group_reserve_read_pipe:
3619 case Builtin::BIsub_group_reserve_write_pipe: {
3620 // Composing the mangled name for the function.
3621 const char *Name;
3622 if (BuiltinID == Builtin::BIreserve_read_pipe)
3623 Name = "__reserve_read_pipe";
3624 else if (BuiltinID == Builtin::BIreserve_write_pipe)
3625 Name = "__reserve_write_pipe";
3626 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
3627 Name = "__work_group_reserve_read_pipe";
3628 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
3629 Name = "__work_group_reserve_write_pipe";
3630 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
3631 Name = "__sub_group_reserve_read_pipe";
3632 else
3633 Name = "__sub_group_reserve_write_pipe";
3634
3635 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3636 *Arg1 = EmitScalarExpr(E->getArg(1));
3637 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
3638 CGOpenCLRuntime OpenCLRT(CGM);
3639 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3640 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3641
3642 // Building the generic function prototype.
3643 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
3644 llvm::FunctionType *FTy = llvm::FunctionType::get(
3645 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3646 // We know the second argument is an integer type, but we may need to cast
3647 // it to i32.
3648 if (Arg1->getType() != Int32Ty)
3649 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
3650 return RValue::get(
3651 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3652 {Arg0, Arg1, PacketSize, PacketAlign}));
3653 }
3654 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
3655 // functions
3656 case Builtin::BIcommit_read_pipe:
3657 case Builtin::BIcommit_write_pipe:
3658 case Builtin::BIwork_group_commit_read_pipe:
3659 case Builtin::BIwork_group_commit_write_pipe:
3660 case Builtin::BIsub_group_commit_read_pipe:
3661 case Builtin::BIsub_group_commit_write_pipe: {
3662 const char *Name;
3663 if (BuiltinID == Builtin::BIcommit_read_pipe)
3664 Name = "__commit_read_pipe";
3665 else if (BuiltinID == Builtin::BIcommit_write_pipe)
3666 Name = "__commit_write_pipe";
3667 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
3668 Name = "__work_group_commit_read_pipe";
3669 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
3670 Name = "__work_group_commit_write_pipe";
3671 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
3672 Name = "__sub_group_commit_read_pipe";
3673 else
3674 Name = "__sub_group_commit_write_pipe";
3675
3676 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3677 *Arg1 = EmitScalarExpr(E->getArg(1));
3678 CGOpenCLRuntime OpenCLRT(CGM);
3679 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3680 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3681
3682 // Building the generic function prototype.
3683 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
3684 llvm::FunctionType *FTy =
3685 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
3686 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3687
3688 return RValue::get(
3689 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3690 {Arg0, Arg1, PacketSize, PacketAlign}));
3691 }
3692 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
3693 case Builtin::BIget_pipe_num_packets:
3694 case Builtin::BIget_pipe_max_packets: {
3695 const char *BaseName;
3696 const PipeType *PipeTy = E->getArg(0)->getType()->getAs<PipeType>();
8
Assuming the object is not a 'PipeType'
9
'PipeTy' initialized to a null pointer value
3697 if (BuiltinID
9.1
'BuiltinID' is equal to BIget_pipe_num_packets
9.1
'BuiltinID' is equal to BIget_pipe_num_packets
== Builtin::BIget_pipe_num_packets)
10
Taking true branch
3698 BaseName = "__get_pipe_num_packets";
3699 else
3700 BaseName = "__get_pipe_max_packets";
3701 auto Name = std::string(BaseName) +
3702 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
11
Called C++ object pointer is null
3703
3704 // Building the generic function prototype.
3705 Value *Arg0 = EmitScalarExpr(E->getArg(0));
3706 CGOpenCLRuntime OpenCLRT(CGM);
3707 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3708 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3709 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
3710 llvm::FunctionType *FTy = llvm::FunctionType::get(
3711 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3712
3713 return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3714 {Arg0, PacketSize, PacketAlign}));
3715 }
3716
3717 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
3718 case Builtin::BIto_global:
3719 case Builtin::BIto_local:
3720 case Builtin::BIto_private: {
3721 auto Arg0 = EmitScalarExpr(E->getArg(0));
3722 auto NewArgT = llvm::PointerType::get(Int8Ty,
3723 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3724 auto NewRetT = llvm::PointerType::get(Int8Ty,
3725 CGM.getContext().getTargetAddressSpace(
3726 E->getType()->getPointeeType().getAddressSpace()));
3727 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
3728 llvm::Value *NewArg;
3729 if (Arg0->getType()->getPointerAddressSpace() !=
3730 NewArgT->getPointerAddressSpace())
3731 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
3732 else
3733 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
3734 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
3735 auto NewCall =
3736 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
3737 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
3738 ConvertType(E->getType())));
3739 }
3740
3741 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
3742 // It contains four different overload formats specified in Table 6.13.17.1.
3743 case Builtin::BIenqueue_kernel: {
3744 StringRef Name; // Generated function call name
3745 unsigned NumArgs = E->getNumArgs();
3746
3747 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
3748 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3749 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3750
3751 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
3752 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
3753 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
3754 llvm::Value *Range = NDRangeL.getAddress().getPointer();
3755 llvm::Type *RangeTy = NDRangeL.getAddress().getType();
3756
3757 if (NumArgs == 4) {
3758 // The most basic form of the call with parameters:
3759 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
3760 Name = "__enqueue_kernel_basic";
3761 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
3762 GenericVoidPtrTy};
3763 llvm::FunctionType *FTy = llvm::FunctionType::get(
3764 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3765
3766 auto Info =
3767 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3768 llvm::Value *Kernel =
3769 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3770 llvm::Value *Block =
3771 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3772
3773 AttrBuilder B;
3774 B.addByValAttr(NDRangeL.getAddress().getElementType());
3775 llvm::AttributeList ByValAttrSet =
3776 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
3777
3778 auto RTCall =
3779 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
3780 {Queue, Flags, Range, Kernel, Block});
3781 RTCall->setAttributes(ByValAttrSet);
3782 return RValue::get(RTCall);
3783 }
3784 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")((NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? static_cast<void> (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3784, __PRETTY_FUNCTION__))
;
3785
3786 // Create a temporary array to hold the sizes of local pointer arguments
3787 // for the block. \p First is the position of the first size argument.
3788 auto CreateArrayForSizeVar = [=](unsigned First)
3789 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
3790 llvm::APInt ArraySize(32, NumArgs - First);
3791 QualType SizeArrayTy = getContext().getConstantArrayType(
3792 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
3793 /*IndexTypeQuals=*/0);
3794 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
3795 llvm::Value *TmpPtr = Tmp.getPointer();
3796 llvm::Value *TmpSize = EmitLifetimeStart(
3797 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
3798 llvm::Value *ElemPtr;
3799 // Each of the following arguments specifies the size of the corresponding
3800 // argument passed to the enqueued block.
3801 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
3802 for (unsigned I = First; I < NumArgs; ++I) {
3803 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
3804 auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
3805 if (I == First)
3806 ElemPtr = GEP;
3807 auto *V =
3808 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
3809 Builder.CreateAlignedStore(
3810 V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
3811 }
3812 return std::tie(ElemPtr, TmpSize, TmpPtr);
3813 };
3814
3815 // Could have events and/or varargs.
3816 if (E->getArg(3)->getType()->isBlockPointerType()) {
3817 // No events passed, but has variadic arguments.
3818 Name = "__enqueue_kernel_varargs";
3819 auto Info =
3820 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3821 llvm::Value *Kernel =
3822 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3823 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3824 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3825 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
3826
3827 // Create a vector of the arguments, as well as a constant value to
3828 // express to the runtime the number of variadic arguments.
3829 std::vector<llvm::Value *> Args = {
3830 Queue, Flags, Range,
3831 Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
3832 ElemPtr};
3833 std::vector<llvm::Type *> ArgTys = {
3834 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
3835 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
3836
3837 llvm::FunctionType *FTy = llvm::FunctionType::get(
3838 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3839 auto Call =
3840 RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3841 llvm::ArrayRef<llvm::Value *>(Args)));
3842 if (TmpSize)
3843 EmitLifetimeEnd(TmpSize, TmpPtr);
3844 return Call;
3845 }
3846 // Any calls now have event arguments passed.
3847 if (NumArgs >= 7) {
3848 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
3849 llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
3850 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3851
3852 llvm::Value *NumEvents =
3853 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
3854
3855 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
3856 // to be a null pointer constant (including `0` literal), we can take it
3857 // into account and emit null pointer directly.
3858 llvm::Value *EventWaitList = nullptr;
3859 if (E->getArg(4)->isNullPointerConstant(
3860 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3861 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
3862 } else {
3863 EventWaitList = E->getArg(4)->getType()->isArrayType()
3864 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
3865 : EmitScalarExpr(E->getArg(4));
3866 // Convert to generic address space.
3867 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
3868 }
3869 llvm::Value *EventRet = nullptr;
3870 if (E->getArg(5)->isNullPointerConstant(
3871 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3872 EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
3873 } else {
3874 EventRet =
3875 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
3876 }
3877
3878 auto Info =
3879 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
3880 llvm::Value *Kernel =
3881 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3882 llvm::Value *Block =
3883 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3884
3885 std::vector<llvm::Type *> ArgTys = {
3886 QueueTy, Int32Ty, RangeTy, Int32Ty,
3887 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
3888
3889 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
3890 NumEvents, EventWaitList, EventRet,
3891 Kernel, Block};
3892
3893 if (NumArgs == 7) {
3894 // Has events but no variadics.
3895 Name = "__enqueue_kernel_basic_events";
3896 llvm::FunctionType *FTy = llvm::FunctionType::get(
3897 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3898 return RValue::get(
3899 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3900 llvm::ArrayRef<llvm::Value *>(Args)));
3901 }
3902 // Has event info and variadics
3903 // Pass the number of variadics to the runtime function too.
3904 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
3905 ArgTys.push_back(Int32Ty);
3906 Name = "__enqueue_kernel_events_varargs";
3907
3908 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3909 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
3910 Args.push_back(ElemPtr);
3911 ArgTys.push_back(ElemPtr->getType());
3912
3913 llvm::FunctionType *FTy = llvm::FunctionType::get(
3914 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3915 auto Call =
3916 RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3917 llvm::ArrayRef<llvm::Value *>(Args)));
3918 if (TmpSize)
3919 EmitLifetimeEnd(TmpSize, TmpPtr);
3920 return Call;
3921 }
3922 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3923 }
3924 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
3925 // parameter.
3926 case Builtin::BIget_kernel_work_group_size: {
3927 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3928 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3929 auto Info =
3930 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3931 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3932 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3933 return RValue::get(Builder.CreateCall(
3934 CGM.CreateRuntimeFunction(
3935 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3936 false),
3937 "__get_kernel_work_group_size_impl"),
3938 {Kernel, Arg}));
3939 }
3940 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
3941 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3942 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3943 auto Info =
3944 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3945 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3946 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3947 return RValue::get(Builder.CreateCall(
3948 CGM.CreateRuntimeFunction(
3949 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3950 false),
3951 "__get_kernel_preferred_work_group_size_multiple_impl"),
3952 {Kernel, Arg}));
3953 }
3954 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
3955 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
3956 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3957 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3958 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
3959 llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
3960 auto Info =
3961 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
3962 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3963 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3964 const char *Name =
3965 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
3966 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
3967 : "__get_kernel_sub_group_count_for_ndrange_impl";
3968 return RValue::get(Builder.CreateCall(
3969 CGM.CreateRuntimeFunction(
3970 llvm::FunctionType::get(
3971 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
3972 false),
3973 Name),
3974 {NDRange, Kernel, Block}));
3975 }
3976
3977 case Builtin::BI__builtin_store_half:
3978 case Builtin::BI__builtin_store_halff: {
3979 Value *Val = EmitScalarExpr(E->getArg(0));
3980 Address Address = EmitPointerWithAlignment(E->getArg(1));
3981 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
3982 return RValue::get(Builder.CreateStore(HalfVal, Address));
3983 }
3984 case Builtin::BI__builtin_load_half: {
3985 Address Address = EmitPointerWithAlignment(E->getArg(0));
3986 Value *HalfVal = Builder.CreateLoad(Address);
3987 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
3988 }
3989 case Builtin::BI__builtin_load_halff: {
3990 Address Address = EmitPointerWithAlignment(E->getArg(0));
3991 Value *HalfVal = Builder.CreateLoad(Address);
3992 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
3993 }
3994 case Builtin::BIprintf:
3995 if (getTarget().getTriple().isNVPTX())
3996 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
3997 break;
3998 case Builtin::BI__builtin_canonicalize:
3999 case Builtin::BI__builtin_canonicalizef:
4000 case Builtin::BI__builtin_canonicalizef16:
4001 case Builtin::BI__builtin_canonicalizel:
4002 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4003
4004 case Builtin::BI__builtin_thread_pointer: {
4005 if (!getContext().getTargetInfo().isTLSSupported())
4006 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4007 // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4008 break;
4009 }
4010 case Builtin::BI__builtin_os_log_format:
4011 return emitBuiltinOSLogFormat(*E);
4012
4013 case Builtin::BI__xray_customevent: {
4014 if (!ShouldXRayInstrumentFunction())
4015 return RValue::getIgnored();
4016
4017 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4018 XRayInstrKind::Custom))
4019 return RValue::getIgnored();
4020
4021 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4022 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4023 return RValue::getIgnored();
4024
4025 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4026 auto FTy = F->getFunctionType();
4027 auto Arg0 = E->getArg(0);
4028 auto Arg0Val = EmitScalarExpr(Arg0);
4029 auto Arg0Ty = Arg0->getType();
4030 auto PTy0 = FTy->getParamType(0);
4031 if (PTy0 != Arg0Val->getType()) {
4032 if (Arg0Ty->isArrayType())
4033 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4034 else
4035 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4036 }
4037 auto Arg1 = EmitScalarExpr(E->getArg(1));
4038 auto PTy1 = FTy->getParamType(1);
4039 if (PTy1 != Arg1->getType())
4040 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4041 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4042 }
4043
4044 case Builtin::BI__xray_typedevent: {
4045 // TODO: There should be a way to always emit events even if the current
4046 // function is not instrumented. Losing events in a stream can cripple
4047 // a trace.
4048 if (!ShouldXRayInstrumentFunction())
4049 return RValue::getIgnored();
4050
4051 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4052 XRayInstrKind::Typed))
4053 return RValue::getIgnored();
4054
4055 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4056 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4057 return RValue::getIgnored();
4058
4059 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4060 auto FTy = F->getFunctionType();
4061 auto Arg0 = EmitScalarExpr(E->getArg(0));
4062 auto PTy0 = FTy->getParamType(0);
4063 if (PTy0 != Arg0->getType())
4064 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4065 auto Arg1 = E->getArg(1);
4066 auto Arg1Val = EmitScalarExpr(Arg1);
4067 auto Arg1Ty = Arg1->getType();
4068 auto PTy1 = FTy->getParamType(1);
4069 if (PTy1 != Arg1Val->getType()) {
4070 if (Arg1Ty->isArrayType())
4071 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4072 else
4073 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4074 }
4075 auto Arg2 = EmitScalarExpr(E->getArg(2));
4076 auto PTy2 = FTy->getParamType(2);
4077 if (PTy2 != Arg2->getType())
4078 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4079 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4080 }
4081
4082 case Builtin::BI__builtin_ms_va_start:
4083 case Builtin::BI__builtin_ms_va_end:
4084 return RValue::get(
4085 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4086 BuiltinID == Builtin::BI__builtin_ms_va_start));
4087
4088 case Builtin::BI__builtin_ms_va_copy: {
4089 // Lower this manually. We can't reliably determine whether or not any
4090 // given va_copy() is for a Win64 va_list from the calling convention
4091 // alone, because it's legal to do this from a System V ABI function.
4092 // With opaque pointer types, we won't have enough information in LLVM
4093 // IR to determine this from the argument types, either. Best to do it
4094 // now, while we have enough information.
4095 Address DestAddr = EmitMSVAListRef(E->getArg(0));
4096 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4097
4098 llvm::Type *BPP = Int8PtrPtrTy;
4099
4100 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4101 DestAddr.getAlignment());
4102 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4103 SrcAddr.getAlignment());
4104
4105 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4106 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4107 }
4108 }
4109
4110 // If this is an alias for a lib function (e.g. __builtin_sin), emit
4111 // the call using the normal call path, but using the unmangled
4112 // version of the function name.
4113 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4114 return emitLibraryCall(*this, FD, E,
4115 CGM.getBuiltinLibFunction(FD, BuiltinID));
4116
4117 // If this is a predefined lib function (e.g. malloc), emit the call
4118 // using exactly the normal call path.
4119 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4120 return emitLibraryCall(*this, FD, E,
4121 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4122
4123 // Check that a call to a target specific builtin has the correct target
4124 // features.
4125 // This is down here to avoid non-target specific builtins, however, if
4126 // generic builtins start to require generic target features then we
4127 // can move this up to the beginning of the function.
4128 checkTargetFeatures(E, FD);
4129
4130 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4131 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4132
4133 // See if we have a target specific intrinsic.
4134 const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4135 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4136 StringRef Prefix =
4137 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4138 if (!Prefix.empty()) {
4139 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4140 // NOTE we don't need to perform a compatibility flag check here since the
4141 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4142 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4143 if (IntrinsicID == Intrinsic::not_intrinsic)
4144 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4145 }
4146
4147 if (IntrinsicID != Intrinsic::not_intrinsic) {
4148 SmallVector<Value*, 16> Args;
4149
4150 // Find out if any arguments are required to be integer constant
4151 // expressions.
4152 unsigned ICEArguments = 0;
4153 ASTContext::GetBuiltinTypeError Error;
4154 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4155 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4155, __PRETTY_FUNCTION__))
;
4156
4157 Function *F = CGM.getIntrinsic(IntrinsicID);
4158 llvm::FunctionType *FTy = F->getFunctionType();
4159
4160 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
4161 Value *ArgValue;
4162 // If this is a normal argument, just emit it as a scalar.
4163 if ((ICEArguments & (1 << i)) == 0) {
4164 ArgValue = EmitScalarExpr(E->getArg(i));
4165 } else {
4166 // If this is required to be a constant, constant fold it so that we
4167 // know that the generated intrinsic gets a ConstantInt.
4168 llvm::APSInt Result;
4169 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
4170 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4170, __PRETTY_FUNCTION__))
;
4171 (void)IsConst;
4172 ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
4173 }
4174
4175 // If the intrinsic arg type is different from the builtin arg type
4176 // we need to do a bit cast.
4177 llvm::Type *PTy = FTy->getParamType(i);
4178 if (PTy != ArgValue->getType()) {
4179 // XXX - vector of pointers?
4180 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
4181 if (PtrTy->getAddressSpace() !=
4182 ArgValue->getType()->getPointerAddressSpace()) {
4183 ArgValue = Builder.CreateAddrSpaceCast(
4184 ArgValue,
4185 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
4186 }
4187 }
4188
4189 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&((PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param") ? static_cast
<void> (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4190, __PRETTY_FUNCTION__))
4190 "Must be able to losslessly bit cast to param")((PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param") ? static_cast
<void> (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4190, __PRETTY_FUNCTION__))
;
4191 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
4192 }
4193
4194 Args.push_back(ArgValue);
4195 }
4196
4197 Value *V = Builder.CreateCall(F, Args);
4198 QualType BuiltinRetType = E->getType();
4199
4200 llvm::Type *RetTy = VoidTy;
4201 if (!BuiltinRetType->isVoidType())
4202 RetTy = ConvertType(BuiltinRetType);
4203
4204 if (RetTy != V->getType()) {
4205 // XXX - vector of pointers?
4206 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4207 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4208 V = Builder.CreateAddrSpaceCast(
4209 V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4210 }
4211 }
4212
4213 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&((V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type") ? static_cast
<void> (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4214, __PRETTY_FUNCTION__))
4214 "Must be able to losslessly bit cast result type")((V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type") ? static_cast
<void> (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4214, __PRETTY_FUNCTION__))
;
4215 V = Builder.CreateBitCast(V, RetTy);
4216 }
4217
4218 return RValue::get(V);
4219 }
4220
4221 // See if we have a target specific builtin that needs to be lowered.
4222 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
4223 return RValue::get(V);
4224
4225 ErrorUnsupported(E, "builtin function");
4226
4227 // Unknown builtin, for now just dump it out and return undef.
4228 return GetUndefRValue(E->getType());
4229}
4230
4231static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4232 unsigned BuiltinID, const CallExpr *E,
4233 llvm::Triple::ArchType Arch) {
4234 switch (Arch) {
4235 case llvm::Triple::arm:
4236 case llvm::Triple::armeb:
4237 case llvm::Triple::thumb:
4238 case llvm::Triple::thumbeb:
4239 return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch);
4240 case llvm::Triple::aarch64:
4241 case llvm::Triple::aarch64_be:
4242 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4243 case llvm::Triple::bpfeb:
4244 case llvm::Triple::bpfel:
4245 return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
4246 case llvm::Triple::x86:
4247 case llvm::Triple::x86_64:
4248 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4249 case llvm::Triple::ppc:
4250 case llvm::Triple::ppc64:
4251 case llvm::Triple::ppc64le:
4252 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
4253 case llvm::Triple::r600:
4254 case llvm::Triple::amdgcn:
4255 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
4256 case llvm::Triple::systemz:
4257 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
4258 case llvm::Triple::nvptx:
4259 case llvm::Triple::nvptx64:
4260 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
4261 case llvm::Triple::wasm32:
4262 case llvm::Triple::wasm64:
4263 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
4264 case llvm::Triple::hexagon:
4265 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
4266 default:
4267 return nullptr;
4268 }
4269}
4270
4271Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
4272 const CallExpr *E) {
4273 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
4274 assert(getContext().getAuxTargetInfo() && "Missing aux target info")((getContext().getAuxTargetInfo() && "Missing aux target info"
) ? static_cast<void> (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4274, __PRETTY_FUNCTION__))
;
4275 return EmitTargetArchBuiltinExpr(
4276 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
4277 getContext().getAuxTargetInfo()->getTriple().getArch());
4278 }
4279
4280 return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
4281 getTarget().getTriple().getArch());
4282}
4283
4284static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
4285 NeonTypeFlags TypeFlags,
4286 bool HasLegalHalfType=true,
4287 bool V1Ty=false) {
4288 int IsQuad = TypeFlags.isQuad();
4289 switch (TypeFlags.getEltType()) {
4290 case NeonTypeFlags::Int8:
4291 case NeonTypeFlags::Poly8:
4292 return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
4293 case NeonTypeFlags::Int16:
4294 case NeonTypeFlags::Poly16:
4295 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4296 case NeonTypeFlags::Float16:
4297 if (HasLegalHalfType)
4298 return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
4299 else
4300 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4301 case NeonTypeFlags::Int32:
4302 return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
4303 case NeonTypeFlags::Int64:
4304 case NeonTypeFlags::Poly64:
4305 return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
4306 case NeonTypeFlags::Poly128:
4307 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
4308 // There is a lot of i128 and f128 API missing.
4309 // so we use v16i8 to represent poly128 and get pattern matched.
4310 return llvm::VectorType::get(CGF->Int8Ty, 16);
4311 case NeonTypeFlags::Float32:
4312 return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
4313 case NeonTypeFlags::Float64:
4314 return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
4315 }
4316 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4316)
;
4317}
4318
4319static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
4320 NeonTypeFlags IntTypeFlags) {
4321 int IsQuad = IntTypeFlags.isQuad();
4322 switch (IntTypeFlags.getEltType()) {
4323 case NeonTypeFlags::Int16:
4324 return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
4325 case NeonTypeFlags::Int32:
4326 return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
4327 case NeonTypeFlags::Int64:
4328 return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
4329 default:
4330 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4330)
;
4331 }
4332}
4333
4334Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
4335 unsigned nElts = V->getType()->getVectorNumElements();
4336 Value* SV = llvm::ConstantVector::getSplat(nElts, C);
4337 return Builder.CreateShuffleVector(V, V, SV, "lane");
4338}
4339
4340Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
4341 const char *name,
4342 unsigned shift, bool rightshift) {
4343 unsigned j = 0;
4344 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4345 ai != ae; ++ai, ++j)
4346 if (shift > 0 && shift == j)
4347 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
4348 else
4349 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
4350
4351 return Builder.CreateCall(F, Ops, name);
4352}
4353
4354Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
4355 bool neg) {
4356 int SV = cast<ConstantInt>(V)->getSExtValue();
4357 return ConstantInt::get(Ty, neg ? -SV : SV);
4358}
4359
4360// Right-shift a vector by a constant.
4361Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
4362 llvm::Type *Ty, bool usgn,
4363 const char *name) {
4364 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4365
4366 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
4367 int EltSize = VTy->getScalarSizeInBits();
4368
4369 Vec = Builder.CreateBitCast(Vec, Ty);
4370
4371 // lshr/ashr are undefined when the shift amount is equal to the vector
4372 // element size.
4373 if (ShiftAmt == EltSize) {
4374 if (usgn) {
4375 // Right-shifting an unsigned value by its size yields 0.
4376 return llvm::ConstantAggregateZero::get(VTy);
4377 } else {
4378 // Right-shifting a signed value by its size is equivalent
4379 // to a shift of size-1.
4380 --ShiftAmt;
4381 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
4382 }
4383 }
4384
4385 Shift = EmitNeonShiftVector(Shift, Ty, false);
4386 if (usgn)
4387 return Builder.CreateLShr(Vec, Shift, name);
4388 else
4389 return Builder.CreateAShr(Vec, Shift, name);
4390}
4391
4392enum {
4393 AddRetType = (1 << 0),
4394 Add1ArgType = (1 << 1),
4395 Add2ArgTypes = (1 << 2),
4396
4397 VectorizeRetType = (1 << 3),
4398 VectorizeArgTypes = (1 << 4),
4399
4400 InventFloatType = (1 << 5),
4401 UnsignedAlts = (1 << 6),
4402
4403 Use64BitVectors = (1 << 7),
4404 Use128BitVectors = (1 << 8),
4405
4406 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
4407 VectorRet = AddRetType | VectorizeRetType,
4408 VectorRetGetArgs01 =
4409 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
4410 FpCmpzModifiers =
4411 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
4412};
4413
4414namespace {
4415struct NeonIntrinsicInfo {
4416 const char *NameHint;
4417 unsigned BuiltinID;
4418 unsigned LLVMIntrinsic;
4419 unsigned AltLLVMIntrinsic;
4420 unsigned TypeModifier;
4421
4422 bool operator<(unsigned RHSBuiltinID) const {
4423 return BuiltinID < RHSBuiltinID;
4424 }
4425 bool operator<(const NeonIntrinsicInfo &TE) const {
4426 return BuiltinID < TE.BuiltinID;
4427 }
4428};
4429} // end anonymous namespace
4430
4431#define NEONMAP0(NameBase) \
4432 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
4433
4434#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
4435 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4436 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
4437
4438#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
4439 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4440 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
4441 TypeModifier }
4442
4443static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
4444 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4445 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4446 NEONMAP1(vabs_v, arm_neon_vabs, 0),
4447 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
4448 NEONMAP0(vaddhn_v),
4449 NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
4450 NEONMAP1(vaeseq_v, arm_neon_aese, 0),
4451 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
4452 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
4453 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
4454 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
4455 NEONMAP1(vcage_v, arm_neon_vacge, 0),
4456 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
4457 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
4458 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
4459 NEONMAP1(vcale_v, arm_neon_vacge, 0),
4460 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
4461 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
4462 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
4463 NEONMAP0(vceqz_v),
4464 NEONMAP0(vceqzq_v),
4465 NEONMAP0(vcgez_v),
4466 NEONMAP0(vcgezq_v),
4467 NEONMAP0(vcgtz_v),
4468 NEONMAP0(vcgtzq_v),
4469 NEONMAP0(vclez_v),
4470 NEONMAP0(vclezq_v),
4471 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
4472 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
4473 NEONMAP0(vcltz_v),
4474 NEONMAP0(vcltzq_v),
4475 NEONMAP1(vclz_v, ctlz, Add1ArgType),
4476 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4477 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4478 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4479 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
4480 NEONMAP0(vcvt_f16_v),
4481 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
4482 NEONMAP0(vcvt_f32_v),
4483 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4484 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4485 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4486 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4487 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4488 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4489 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4490 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4491 NEONMAP0(vcvt_s16_v),
4492 NEONMAP0(vcvt_s32_v),
4493 NEONMAP0(vcvt_s64_v),
4494 NEONMAP0(vcvt_u16_v),
4495 NEONMAP0(vcvt_u32_v),
4496 NEONMAP0(vcvt_u64_v),
4497 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
4498 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
4499 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
4500 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
4501 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
4502 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
4503 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
4504 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
4505 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
4506 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
4507 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
4508 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
4509 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
4510 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
4511 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
4512 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
4513 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
4514 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
4515 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
4516 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
4517 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
4518 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
4519 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
4520 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
4521 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
4522 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
4523 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
4524 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
4525 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
4526 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
4527 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
4528 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
4529 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
4530 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
4531 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
4532 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
4533 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
4534 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
4535 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
4536 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
4537 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
4538 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
4539 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
4540 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
4541 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
4542 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
4543 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
4544 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
4545 NEONMAP0(vcvtq_f16_v),
4546 NEONMAP0(vcvtq_f32_v),
4547 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4548 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4549 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4550 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4551 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4552 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4553 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4554 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4555 NEONMAP0(vcvtq_s16_v),
4556 NEONMAP0(vcvtq_s32_v),
4557 NEONMAP0(vcvtq_s64_v),
4558 NEONMAP0(vcvtq_u16_v),
4559 NEONMAP0(vcvtq_u32_v),
4560 NEONMAP0(vcvtq_u64_v),
4561 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
4562 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
4563 NEONMAP0(vext_v),
4564 NEONMAP0(vextq_v),
4565 NEONMAP0(vfma_v),
4566 NEONMAP0(vfmaq_v),
4567 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4568 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4569 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4570 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4571 NEONMAP0(vld1_dup_v),
4572 NEONMAP1(vld1_v, arm_neon_vld1, 0),
4573 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
4574 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
4575 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
4576 NEONMAP0(vld1q_dup_v),
4577 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
4578 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
4579 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
4580 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
4581 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
4582 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
4583 NEONMAP1(vld2_v, arm_neon_vld2, 0),
4584 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
4585 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
4586 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
4587 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
4588 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
4589 NEONMAP1(vld3_v, arm_neon_vld3, 0),
4590 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
4591 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
4592 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
4593 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
4594 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
4595 NEONMAP1(vld4_v, arm_neon_vld4, 0),
4596 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
4597 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
4598 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
4599 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4600 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
4601 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
4602 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4603 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4604 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
4605 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
4606 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4607 NEONMAP0(vmovl_v),
4608 NEONMAP0(vmovn_v),
4609 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
4610 NEONMAP0(vmull_v),
4611 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
4612 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4613 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4614 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
4615 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4616 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4617 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
4618 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
4619 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
4620 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
4621 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
4622 NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4623 NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4624 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
4625 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
4626 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
4627 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
4628 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
4629 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
4630 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
4631 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
4632 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
4633 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
4634 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
4635 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4636 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4637 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4638 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4639 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4640 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4641 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
4642 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
4643 NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4644 NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4645 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
4646 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4647 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4648 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
4649 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
4650 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4651 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4652 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
4653 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
4654 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
4655 NEONMAP0(vrndi_v),
4656 NEONMAP0(vrndiq_v),
4657 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
4658 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
4659 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
4660 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
4661 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
4662 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
4663 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
4664 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
4665 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
4666 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4667 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4668 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4669 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4670 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4671 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4672 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
4673 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
4674 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
4675 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
4676 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
4677 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
4678 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
4679 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
4680 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
4681 NEONMAP0(vshl_n_v),
4682 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4683 NEONMAP0(vshll_n_v),
4684 NEONMAP0(vshlq_n_v),
4685 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4686 NEONMAP0(vshr_n_v),
4687 NEONMAP0(vshrn_n_v),
4688 NEONMAP0(vshrq_n_v),
4689 NEONMAP1(vst1_v, arm_neon_vst1, 0),
4690 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
4691 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
4692 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
4693 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
4694 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
4695 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
4696 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
4697 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
4698 NEONMAP1(vst2_v, arm_neon_vst2, 0),
4699 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
4700 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
4701 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
4702 NEONMAP1(vst3_v, arm_neon_vst3, 0),
4703 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
4704 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
4705 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
4706 NEONMAP1(vst4_v, arm_neon_vst4, 0),
4707 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
4708 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
4709 NEONMAP0(vsubhn_v),
4710 NEONMAP0(vtrn_v),
4711 NEONMAP0(vtrnq_v),
4712 NEONMAP0(vtst_v),
4713 NEONMAP0(vtstq_v),
4714 NEONMAP0(vuzp_v),
4715 NEONMAP0(vuzpq_v),
4716 NEONMAP0(vzip_v),
4717 NEONMAP0(vzipq_v)
4718};
4719
4720static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
4721 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
4722 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
4723 NEONMAP0(vaddhn_v),
4724 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
4725 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
4726 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
4727 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
4728 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
4729 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
4730 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
4731 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
4732 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
4733 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
4734 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
4735 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
4736 NEONMAP0(vceqz_v),
4737 NEONMAP0(vceqzq_v),
4738 NEONMAP0(vcgez_v),
4739 NEONMAP0(vcgezq_v),
4740 NEONMAP0(vcgtz_v),
4741 NEONMAP0(vcgtzq_v),
4742 NEONMAP0(vclez_v),
4743 NEONMAP0(vclezq_v),
4744 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
4745 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
4746 NEONMAP0(vcltz_v),
4747 NEONMAP0(vcltzq_v),
4748 NEONMAP1(vclz_v, ctlz, Add1ArgType),
4749 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4750 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4751 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4752 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
4753 NEONMAP0(vcvt_f16_v),
4754 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
4755 NEONMAP0(vcvt_f32_v),
4756 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4757 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4758 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4759 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4760 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4761 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4762 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4763 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4764 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4765 NEONMAP0(vcvtq_f16_v),
4766 NEONMAP0(vcvtq_f32_v),
4767 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4768 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4769 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4770 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4771 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4772 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4773 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4774 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4775 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4776 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
4777 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4778 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4779 NEONMAP0(vext_v),
4780 NEONMAP0(vextq_v),
4781 NEONMAP0(vfma_v),
4782 NEONMAP0(vfmaq_v),
4783 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
4784 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
4785 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
4786 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
4787 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
4788 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
4789 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
4790 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
4791 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4792 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4793 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4794 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4795 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
4796 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
4797 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
4798 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
4799 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
4800 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
4801 NEONMAP0(vmovl_v),
4802 NEONMAP0(vmovn_v),
4803 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
4804 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
4805 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
4806 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4807 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4808 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
4809 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
4810 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
4811 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4812 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4813 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
4814 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
4815 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
4816 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
4817 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
4818 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
4819 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
4820 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
4821 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
4822 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
4823 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
4824 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4825 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4826 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
4827 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4828 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
4829 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4830 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
4831 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
4832 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4833 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4834 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
4835 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4836 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4837 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
4838 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
4839 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4840 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4841 NEONMAP0(vrndi_v),
4842 NEONMAP0(vrndiq_v),
4843 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4844 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4845 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4846 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4847 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4848 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4849 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
4850 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
4851 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
4852 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
4853 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
4854 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
4855 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
4856 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
4857 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
4858 NEONMAP0(vshl_n_v),
4859 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4860 NEONMAP0(vshll_n_v),
4861 NEONMAP0(vshlq_n_v),
4862 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4863 NEONMAP0(vshr_n_v),
4864 NEONMAP0(vshrn_n_v),
4865 NEONMAP0(vshrq_n_v),
4866 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
4867 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
4868 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
4869 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
4870 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
4871 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
4872 NEONMAP0(vsubhn_v),
4873 NEONMAP0(vtst_v),
4874 NEONMAP0(vtstq_v),
4875};
4876
4877static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
4878 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
4879 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
4880 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
4881 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4882 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4883 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4884 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4885 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4886 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4887 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4888 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4889 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
4890 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4891 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
4892 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4893 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4894 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4895 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4896 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4897 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4898 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4899 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4900 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4901 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4902 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4903 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4904 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4905 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4906 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4907 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4908 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4909 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4910 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4911 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4912 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4913 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4914 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4915 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4916 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4917 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4918 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4919 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4920 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4921 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4922 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4923 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4924 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4925 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4926 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
4927 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4928 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4929 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4930 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4931 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4932 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4933 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4934 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4935 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4936 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4937 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4938 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4939 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4940 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4941 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4942 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4943 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4944 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4945 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4946 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4947 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
4948 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
4949 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
4950 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4951 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4952 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4953 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4954 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4955 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4956 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4957 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4958 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4959 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4960 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4961 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
4962 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4963 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
4964 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4965 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4966 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
4967 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
4968 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4969 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4970 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
4971 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
4972 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
4973 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
4974 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
4975 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
4976 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
4977 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
4978 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4979 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4980 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4981 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4982 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
4983 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4984 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4985 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4986 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
4987 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4988 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
4989 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
4990 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
4991 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4992 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4993 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
4994 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
4995 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4996 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4997 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
4998 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
4999 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
5000 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
5001 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5002 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5003 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5004 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5005 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
5006 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5007 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5008 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5009 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5010 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5011 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5012 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
5013 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
5014 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5015 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5016 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5017 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5018 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
5019 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
5020 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
5021 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
5022 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5023 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5024 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
5025 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
5026 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
5027 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5028 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5029 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5030 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5031 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
5032 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5033 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5034 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5035 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5036 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
5037 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
5038 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5039 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5040 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
5041 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
5042 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
5043 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
5044 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
5045 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
5046 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
5047 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
5048 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
5049 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
5050 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
5051 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
5052 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
5053 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
5054 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
5055 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
5056 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
5057 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
5058 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
5059 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
5060 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5061 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
5062 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5063 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
5064 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
5065 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
5066 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5067 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
5068 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5069 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
5070 // FP16 scalar intrinisics go here.
5071 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
5072 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5073 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5074 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5075 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5076 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5077 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5078 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5079 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5080 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5081 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5082 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5083 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5084 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5085 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5086 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5087 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5088 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5089 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5090 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5091 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5092 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5093 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5094 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5095 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5096 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
5097 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
5098 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
5099 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
5100 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
5101};
5102
5103#undef NEONMAP0
5104#undef NEONMAP1
5105#undef NEONMAP2
5106
5107static bool NEONSIMDIntrinsicsProvenSorted = false;
5108
5109static bool AArch64SIMDIntrinsicsProvenSorted = false;
5110static bool AArch64SISDIntrinsicsProvenSorted = false;
5111
5112
5113static const NeonIntrinsicInfo *
5114findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
5115 unsigned BuiltinID, bool &MapProvenSorted) {
5116
5117#ifndef NDEBUG
5118 if (!MapProvenSorted) {
5119 assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)))((std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap
))) ? static_cast<void> (0) : __assert_fail ("std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5119, __PRETTY_FUNCTION__))
;
5120 MapProvenSorted = true;
5121 }
5122#endif
5123
5124 const NeonIntrinsicInfo *Builtin = llvm::lower_bound(IntrinsicMap, BuiltinID);
5125
5126 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
5127 return Builtin;
5128
5129 return nullptr;
5130}
5131
5132Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
5133 unsigned Modifier,
5134 llvm::Type *ArgType,
5135 const CallExpr *E) {
5136 int VectorSize = 0;
5137 if (Modifier & Use64BitVectors)
5138 VectorSize = 64;
5139 else if (Modifier & Use128BitVectors)
5140 VectorSize = 128;
5141
5142 // Return type.
5143 SmallVector<llvm::Type *, 3> Tys;
5144 if (Modifier & AddRetType) {
5145 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5146 if (Modifier & VectorizeRetType)
5147 Ty = llvm::VectorType::get(
5148 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
5149
5150 Tys.push_back(Ty);
5151 }
5152
5153 // Arguments.
5154 if (Modifier & VectorizeArgTypes) {
5155 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
5156 ArgType = llvm::VectorType::get(ArgType, Elts);
5157 }
5158
5159 if (Modifier & (Add1ArgType | Add2ArgTypes))
5160 Tys.push_back(ArgType);
5161
5162 if (Modifier & Add2ArgTypes)
5163 Tys.push_back(ArgType);
5164
5165 if (Modifier & InventFloatType)
5166 Tys.push_back(FloatTy);
5167
5168 return CGM.getIntrinsic(IntrinsicID, Tys);
5169}
5170
5171static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
5172 const NeonIntrinsicInfo &SISDInfo,
5173 SmallVectorImpl<Value *> &Ops,
5174 const CallExpr *E) {
5175 unsigned BuiltinID = SISDInfo.BuiltinID;
5176 unsigned int Int = SISDInfo.LLVMIntrinsic;
5177 unsigned Modifier = SISDInfo.TypeModifier;
5178 const char *s = SISDInfo.NameHint;
5179
5180 switch (BuiltinID) {
5181 case NEON::BI__builtin_neon_vcled_s64:
5182 case NEON::BI__builtin_neon_vcled_u64:
5183 case NEON::BI__builtin_neon_vcles_f32:
5184 case NEON::BI__builtin_neon_vcled_f64:
5185 case NEON::BI__builtin_neon_vcltd_s64:
5186 case NEON::BI__builtin_neon_vcltd_u64:
5187 case NEON::BI__builtin_neon_vclts_f32:
5188 case NEON::BI__builtin_neon_vcltd_f64:
5189 case NEON::BI__builtin_neon_vcales_f32:
5190 case NEON::BI__builtin_neon_vcaled_f64:
5191 case NEON::BI__builtin_neon_vcalts_f32:
5192 case NEON::BI__builtin_neon_vcaltd_f64:
5193 // Only one direction of comparisons actually exist, cmle is actually a cmge
5194 // with swapped operands. The table gives us the right intrinsic but we
5195 // still need to do the swap.
5196 std::swap(Ops[0], Ops[1]);
5197 break;
5198 }
5199
5200 assert(Int && "Generic code assumes a valid intrinsic")((Int && "Generic code assumes a valid intrinsic") ? static_cast
<void> (0) : __assert_fail ("Int && \"Generic code assumes a valid intrinsic\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5200, __PRETTY_FUNCTION__))
;
5201
5202 // Determine the type(s) of this overloaded AArch64 intrinsic.
5203 const Expr *Arg = E->getArg(0);
5204 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
5205 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
5206
5207 int j = 0;
5208 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
5209 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5210 ai != ae; ++ai, ++j) {
5211 llvm::Type *ArgTy = ai->getType();
5212 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
5213 ArgTy->getPrimitiveSizeInBits())
5214 continue;
5215
5216 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy())((ArgTy->isVectorTy() && !Ops[j]->getType()->
isVectorTy()) ? static_cast<void> (0) : __assert_fail (
"ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5216, __PRETTY_FUNCTION__))
;
5217 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
5218 // it before inserting.
5219 Ops[j] =
5220 CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
5221 Ops[j] =
5222 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
5223 }
5224
5225 Value *Result = CGF.EmitNeonCall(F, Ops, s);
5226 llvm::Type *ResultType = CGF.ConvertType(E->getType());
5227 if (ResultType->getPrimitiveSizeInBits() <
5228 Result->getType()->getPrimitiveSizeInBits())
5229 return CGF.Builder.CreateExtractElement(Result, C0);
5230
5231 return CGF.Builder.CreateBitCast(Result, ResultType, s);
5232}
5233
5234Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
5235 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
5236 const char *NameHint, unsigned Modifier, const CallExpr *E,
5237 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
5238 llvm::Triple::ArchType Arch) {
5239 // Get the last argument, which specifies the vector type.
5240 llvm::APSInt NeonTypeConst;
5241 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5242 if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
5243 return nullptr;
5244
5245 // Determine the type of this overloaded NEON intrinsic.
5246 NeonTypeFlags Type(NeonTypeConst.getZExtValue());
5247 bool Usgn = Type.isUnsigned();
5248 bool Quad = Type.isQuad();
5249 const bool HasLegalHalfType = getTarget().hasLegalHalfType();
5250
5251 llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType);
5252 llvm::Type *Ty = VTy;
5253 if (!Ty)
5254 return nullptr;
5255
5256 auto getAlignmentValue32 = [&](Address addr) -> Value* {
5257 return Builder.getInt32(addr.getAlignment().getQuantity());
5258 };
5259
5260 unsigned Int = LLVMIntrinsic;
5261 if ((Modifier & UnsignedAlts) && !Usgn)
5262 Int = AltLLVMIntrinsic;
5263
5264 switch (BuiltinID) {
5265 default: break;
5266 case NEON::BI__builtin_neon_vpadd_v:
5267 case NEON::BI__builtin_neon_vpaddq_v:
5268 // We don't allow fp/int overloading of intrinsics.
5269 if (VTy->getElementType()->isFloatingPointTy() &&
5270 Int == Intrinsic::aarch64_neon_addp)
5271 Int = Intrinsic::aarch64_neon_faddp;
5272 break;
5273 case NEON::BI__builtin_neon_vabs_v:
5274 case NEON::BI__builtin_neon_vabsq_v:
5275 if (VTy->getElementType()->isFloatingPointTy())
5276 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
5277 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
5278 case NEON::BI__builtin_neon_vaddhn_v: {
5279 llvm::VectorType *SrcTy =
5280 llvm::VectorType::getExtendedElementVectorType(VTy);
5281
5282 // %sum = add <4 x i32> %lhs, %rhs
5283 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5284 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5285 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
5286
5287 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5288 Constant *ShiftAmt =
5289 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5290 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
5291
5292 // %res = trunc <4 x i32> %high to <4 x i16>
5293 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
5294 }
5295 case NEON::BI__builtin_neon_vcale_v:
5296 case NEON::BI__builtin_neon_vcaleq_v:
5297 case NEON::BI__builtin_neon_vcalt_v:
5298 case NEON::BI__builtin_neon_vcaltq_v:
5299 std::swap(Ops[0], Ops[1]);
5300 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5301 case NEON::BI__builtin_neon_vcage_v:
5302 case NEON::BI__builtin_neon_vcageq_v:
5303 case NEON::BI__builtin_neon_vcagt_v:
5304 case NEON::BI__builtin_neon_vcagtq_v: {
5305 llvm::Type *Ty;
5306 switch (VTy->getScalarSizeInBits()) {
5307 default: llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5307)
;
5308 case 32:
5309 Ty = FloatTy;
5310 break;
5311 case 64:
5312 Ty = DoubleTy;
5313 break;
5314 case 16:
5315 Ty = HalfTy;
5316 break;
5317 }
5318 llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
5319 llvm::Type *Tys[] = { VTy, VecFlt };
5320 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5321 return EmitNeonCall(F, Ops, NameHint);
5322 }
5323 case NEON::BI__builtin_neon_vceqz_v:
5324 case NEON::BI__builtin_neon_vceqzq_v:
5325 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5326 ICmpInst::ICMP_EQ, "vceqz");
5327 case NEON::BI__builtin_neon_vcgez_v:
5328 case NEON::BI__builtin_neon_vcgezq_v:
5329 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5330 ICmpInst::ICMP_SGE, "vcgez");
5331 case NEON::BI__builtin_neon_vclez_v:
5332 case NEON::BI__builtin_neon_vclezq_v:
5333 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5334 ICmpInst::ICMP_SLE, "vclez");
5335 case NEON::BI__builtin_neon_vcgtz_v:
5336 case NEON::BI__builtin_neon_vcgtzq_v:
5337 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5338 ICmpInst::ICMP_SGT, "vcgtz");
5339 case NEON::BI__builtin_neon_vcltz_v:
5340 case NEON::BI__builtin_neon_vcltzq_v:
5341 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5342 ICmpInst::ICMP_SLT, "vcltz");
5343 case NEON::BI__builtin_neon_vclz_v:
5344 case NEON::BI__builtin_neon_vclzq_v:
5345 // We generate target-independent intrinsic, which needs a second argument
5346 // for whether or not clz of zero is undefined; on ARM it isn't.
5347 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
5348 break;
5349 case NEON::BI__builtin_neon_vcvt_f32_v:
5350 case NEON::BI__builtin_neon_vcvtq_f32_v:
5351 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5352 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
5353 HasLegalHalfType);
5354 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5355 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5356 case NEON::BI__builtin_neon_vcvt_f16_v:
5357 case NEON::BI__builtin_neon_vcvtq_f16_v:
5358 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5359 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
5360 HasLegalHalfType);
5361 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5362 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5363 case NEON::BI__builtin_neon_vcvt_n_f16_v:
5364 case NEON::BI__builtin_neon_vcvt_n_f32_v:
5365 case NEON::BI__builtin_neon_vcvt_n_f64_v:
5366 case NEON::BI__builtin_neon_vcvtq_n_f16_v:
5367 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
5368 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
5369 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
5370 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5371 Function *F = CGM.getIntrinsic(Int, Tys);
5372 return EmitNeonCall(F, Ops, "vcvt_n");
5373 }
5374 case NEON::BI__builtin_neon_vcvt_n_s16_v:
5375 case NEON::BI__builtin_neon_vcvt_n_s32_v:
5376 case NEON::BI__builtin_neon_vcvt_n_u16_v:
5377 case NEON::BI__builtin_neon_vcvt_n_u32_v:
5378 case NEON::BI__builtin_neon_vcvt_n_s64_v:
5379 case NEON::BI__builtin_neon_vcvt_n_u64_v:
5380 case NEON::BI__builtin_neon_vcvtq_n_s16_v:
5381 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
5382 case NEON::BI__builtin_neon_vcvtq_n_u16_v:
5383 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
5384 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
5385 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
5386 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5387 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5388 return EmitNeonCall(F, Ops, "vcvt_n");
5389 }
5390 case NEON::BI__builtin_neon_vcvt_s32_v:
5391 case NEON::BI__builtin_neon_vcvt_u32_v:
5392 case NEON::BI__builtin_neon_vcvt_s64_v:
5393 case NEON::BI__builtin_neon_vcvt_u64_v:
5394 case NEON::BI__builtin_neon_vcvt_s16_v:
5395 case NEON::BI__builtin_neon_vcvt_u16_v:
5396 case NEON::BI__builtin_neon_vcvtq_s32_v:
5397 case NEON::BI__builtin_neon_vcvtq_u32_v:
5398 case NEON::BI__builtin_neon_vcvtq_s64_v:
5399 case NEON::BI__builtin_neon_vcvtq_u64_v:
5400 case NEON::BI__builtin_neon_vcvtq_s16_v:
5401 case NEON::BI__builtin_neon_vcvtq_u16_v: {
5402 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5403 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
5404 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
5405 }
5406 case NEON::BI__builtin_neon_vcvta_s16_v:
5407 case NEON::BI__builtin_neon_vcvta_s32_v:
5408 case NEON::BI__builtin_neon_vcvta_s64_v:
5409 case NEON::BI__builtin_neon_vcvta_u16_v:
5410 case NEON::BI__builtin_neon_vcvta_u32_v:
5411 case NEON::BI__builtin_neon_vcvta_u64_v:
5412 case NEON::BI__builtin_neon_vcvtaq_s16_v:
5413 case NEON::BI__builtin_neon_vcvtaq_s32_v:
5414 case NEON::BI__builtin_neon_vcvtaq_s64_v:
5415 case NEON::BI__builtin_neon_vcvtaq_u16_v:
5416 case NEON::BI__builtin_neon_vcvtaq_u32_v:
5417 case NEON::BI__builtin_neon_vcvtaq_u64_v:
5418 case NEON::BI__builtin_neon_vcvtn_s16_v:
5419 case NEON::BI__builtin_neon_vcvtn_s32_v:
5420 case NEON::BI__builtin_neon_vcvtn_s64_v:
5421 case NEON::BI__builtin_neon_vcvtn_u16_v:
5422 case NEON::BI__builtin_neon_vcvtn_u32_v:
5423 case NEON::BI__builtin_neon_vcvtn_u64_v:
5424 case NEON::BI__builtin_neon_vcvtnq_s16_v:
5425 case NEON::BI__builtin_neon_vcvtnq_s32_v:
5426 case NEON::BI__builtin_neon_vcvtnq_s64_v:
5427 case NEON::BI__builtin_neon_vcvtnq_u16_v:
5428 case NEON::BI__builtin_neon_vcvtnq_u32_v:
5429 case NEON::BI__builtin_neon_vcvtnq_u64_v:
5430 case NEON::BI__builtin_neon_vcvtp_s16_v:
5431 case NEON::BI__builtin_neon_vcvtp_s32_v:
5432 case NEON::BI__builtin_neon_vcvtp_s64_v:
5433 case NEON::BI__builtin_neon_vcvtp_u16_v:
5434 case NEON::BI__builtin_neon_vcvtp_u32_v:
5435 case NEON::BI__builtin_neon_vcvtp_u64_v:
5436 case NEON::BI__builtin_neon_vcvtpq_s16_v:
5437 case NEON::BI__builtin_neon_vcvtpq_s32_v:
5438 case NEON::BI__builtin_neon_vcvtpq_s64_v:
5439 case NEON::BI__builtin_neon_vcvtpq_u16_v:
5440 case NEON::BI__builtin_neon_vcvtpq_u32_v:
5441 case NEON::BI__builtin_neon_vcvtpq_u64_v:
5442 case NEON::BI__builtin_neon_vcvtm_s16_v:
5443 case NEON::BI__builtin_neon_vcvtm_s32_v:
5444 case NEON::BI__builtin_neon_vcvtm_s64_v:
5445 case NEON::BI__builtin_neon_vcvtm_u16_v:
5446 case NEON::BI__builtin_neon_vcvtm_u32_v:
5447 case NEON::BI__builtin_neon_vcvtm_u64_v:
5448 case NEON::BI__builtin_neon_vcvtmq_s16_v:
5449 case NEON::BI__builtin_neon_vcvtmq_s32_v:
5450 case NEON::BI__builtin_neon_vcvtmq_s64_v:
5451 case NEON::BI__builtin_neon_vcvtmq_u16_v:
5452 case NEON::BI__builtin_neon_vcvtmq_u32_v:
5453 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5454 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5455 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5456 }
5457 case NEON::BI__builtin_neon_vext_v:
5458 case NEON::BI__builtin_neon_vextq_v: {
5459 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
5460 SmallVector<uint32_t, 16> Indices;
5461 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5462 Indices.push_back(i+CV);
5463
5464 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5465 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5466 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
5467 }
5468 case NEON::BI__builtin_neon_vfma_v:
5469 case NEON::BI__builtin_neon_vfmaq_v: {
5470 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5471 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5472 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5473 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5474
5475 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
5476 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
5477 }
5478 case NEON::BI__builtin_neon_vld1_v:
5479 case NEON::BI__builtin_neon_vld1q_v: {
5480 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5481 Ops.push_back(getAlignmentValue32(PtrOp0));
5482 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
5483 }
5484 case NEON::BI__builtin_neon_vld1_x2_v:
5485 case NEON::BI__builtin_neon_vld1q_x2_v:
5486 case NEON::BI__builtin_neon_vld1_x3_v:
5487 case NEON::BI__builtin_neon_vld1q_x3_v:
5488 case NEON::BI__builtin_neon_vld1_x4_v:
5489 case NEON::BI__builtin_neon_vld1q_x4_v: {
5490 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5491 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5492 llvm::Type *Tys[2] = { VTy, PTy };
5493 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5494 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5495 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5496 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5497 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5498 }
5499 case NEON::BI__builtin_neon_vld2_v:
5500 case NEON::BI__builtin_neon_vld2q_v:
5501 case NEON::BI__builtin_neon_vld3_v:
5502 case NEON::BI__builtin_neon_vld3q_v:
5503 case NEON::BI__builtin_neon_vld4_v:
5504 case NEON::BI__builtin_neon_vld4q_v:
5505 case NEON::BI__builtin_neon_vld2_dup_v:
5506 case NEON::BI__builtin_neon_vld2q_dup_v:
5507 case NEON::BI__builtin_neon_vld3_dup_v:
5508 case NEON::BI__builtin_neon_vld3q_dup_v:
5509 case NEON::BI__builtin_neon_vld4_dup_v:
5510 case NEON::BI__builtin_neon_vld4q_dup_v: {
5511 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5512 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5513 Value *Align = getAlignmentValue32(PtrOp1);
5514 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
5515 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5516 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5517 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5518 }
5519 case NEON::BI__builtin_neon_vld1_dup_v:
5520 case NEON::BI__builtin_neon_vld1q_dup_v: {
5521 Value *V = UndefValue::get(Ty);
5522 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5523 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
5524 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
5525 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5526 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
5527 return EmitNeonSplat(Ops[0], CI);
5528 }
5529 case NEON::BI__builtin_neon_vld2_lane_v:
5530 case NEON::BI__builtin_neon_vld2q_lane_v:
5531 case NEON::BI__builtin_neon_vld3_lane_v:
5532 case NEON::BI__builtin_neon_vld3q_lane_v:
5533 case NEON::BI__builtin_neon_vld4_lane_v:
5534 case NEON::BI__builtin_neon_vld4q_lane_v: {
5535 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5536 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5537 for (unsigned I = 2; I < Ops.size() - 1; ++I)
5538 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
5539 Ops.push_back(getAlignmentValue32(PtrOp1));
5540 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
5541 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5542 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5543 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5544 }
5545 case NEON::BI__builtin_neon_vmovl_v: {
5546 llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
5547 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
5548 if (Usgn)
5549 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
5550 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
5551 }
5552 case NEON::BI__builtin_neon_vmovn_v: {
5553 llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5554 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
5555 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
5556 }
5557 case NEON::BI__builtin_neon_vmull_v:
5558 // FIXME: the integer vmull operations could be emitted in terms of pure
5559 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
5560 // hoisting the exts outside loops. Until global ISel comes along that can
5561 // see through such movement this leads to bad CodeGen. So we need an
5562 // intrinsic for now.
5563 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
5564 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
5565 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5566 case NEON::BI__builtin_neon_vpadal_v:
5567 case NEON::BI__builtin_neon_vpadalq_v: {
5568 // The source operand type has twice as many elements of half the size.
5569 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5570 llvm::Type *EltTy =
5571 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5572 llvm::Type *NarrowTy =
5573 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5574 llvm::Type *Tys[2] = { Ty, NarrowTy };
5575 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5576 }
5577 case NEON::BI__builtin_neon_vpaddl_v:
5578 case NEON::BI__builtin_neon_vpaddlq_v: {
5579 // The source operand type has twice as many elements of half the size.
5580 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5581 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5582 llvm::Type *NarrowTy =
5583 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5584 llvm::Type *Tys[2] = { Ty, NarrowTy };
5585 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
5586 }
5587 case NEON::BI__builtin_neon_vqdmlal_v:
5588 case NEON::BI__builtin_neon_vqdmlsl_v: {
5589 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
5590 Ops[1] =
5591 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
5592 Ops.resize(2);
5593 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
5594 }
5595 case NEON::BI__builtin_neon_vqshl_n_v:
5596 case NEON::BI__builtin_neon_vqshlq_n_v:
5597 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
5598 1, false);
5599 case NEON::BI__builtin_neon_vqshlu_n_v:
5600 case NEON::BI__builtin_neon_vqshluq_n_v:
5601 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
5602 1, false);
5603 case NEON::BI__builtin_neon_vrecpe_v:
5604 case NEON::BI__builtin_neon_vrecpeq_v:
5605 case NEON::BI__builtin_neon_vrsqrte_v:
5606 case NEON::BI__builtin_neon_vrsqrteq_v:
5607 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
5608 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5609 case NEON::BI__builtin_neon_vrndi_v:
5610 case NEON::BI__builtin_neon_vrndiq_v:
5611 Int = Intrinsic::nearbyint;
5612 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5613 case NEON::BI__builtin_neon_vrshr_n_v:
5614 case NEON::BI__builtin_neon_vrshrq_n_v:
5615 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
5616 1, true);
5617 case NEON::BI__builtin_neon_vshl_n_v:
5618 case NEON::BI__builtin_neon_vshlq_n_v:
5619 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
5620 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
5621 "vshl_n");
5622 case NEON::BI__builtin_neon_vshll_n_v: {
5623 llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
5624 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5625 if (Usgn)
5626 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
5627 else
5628 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
5629 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
5630 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
5631 }
5632 case NEON::BI__builtin_neon_vshrn_n_v: {
5633 llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5634 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5635 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
5636 if (Usgn)
5637 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
5638 else
5639 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
5640 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
5641 }
5642 case NEON::BI__builtin_neon_vshr_n_v:
5643 case NEON::BI__builtin_neon_vshrq_n_v:
5644 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
5645 case NEON::BI__builtin_neon_vst1_v:
5646 case NEON::BI__builtin_neon_vst1q_v:
5647 case NEON::BI__builtin_neon_vst2_v:
5648 case NEON::BI__builtin_neon_vst2q_v:
5649 case NEON::BI__builtin_neon_vst3_v:
5650 case NEON::BI__builtin_neon_vst3q_v:
5651 case NEON::BI__builtin_neon_vst4_v:
5652 case NEON::BI__builtin_neon_vst4q_v:
5653 case NEON::BI__builtin_neon_vst2_lane_v:
5654 case NEON::BI__builtin_neon_vst2q_lane_v:
5655 case NEON::BI__builtin_neon_vst3_lane_v:
5656 case NEON::BI__builtin_neon_vst3q_lane_v:
5657 case NEON::BI__builtin_neon_vst4_lane_v:
5658 case NEON::BI__builtin_neon_vst4q_lane_v: {
5659 llvm::Type *Tys[] = {Int8PtrTy, Ty};
5660 Ops.push_back(getAlignmentValue32(PtrOp0));
5661 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
5662 }
5663 case NEON::BI__builtin_neon_vst1_x2_v:
5664 case NEON::BI__builtin_neon_vst1q_x2_v:
5665 case NEON::BI__builtin_neon_vst1_x3_v:
5666 case NEON::BI__builtin_neon_vst1q_x3_v:
5667 case NEON::BI__builtin_neon_vst1_x4_v:
5668 case NEON::BI__builtin_neon_vst1q_x4_v: {
5669 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5670 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
5671 // in AArch64 it comes last. We may want to stick to one or another.
5672 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) {
5673 llvm::Type *Tys[2] = { VTy, PTy };
5674 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
5675 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5676 }
5677 llvm::Type *Tys[2] = { PTy, VTy };
5678 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5679 }
5680 case NEON::BI__builtin_neon_vsubhn_v: {
5681 llvm::VectorType *SrcTy =
5682 llvm::VectorType::getExtendedElementVectorType(VTy);
5683
5684 // %sum = add <4 x i32> %lhs, %rhs
5685 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5686 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5687 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
5688
5689 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5690 Constant *ShiftAmt =
5691 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5692 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
5693
5694 // %res = trunc <4 x i32> %high to <4 x i16>
5695 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
5696 }
5697 case NEON::BI__builtin_neon_vtrn_v:
5698 case NEON::BI__builtin_neon_vtrnq_v: {
5699 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5700 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5701 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5702 Value *SV = nullptr;
5703
5704 for (unsigned vi = 0; vi != 2; ++vi) {
5705 SmallVector<uint32_t, 16> Indices;
5706 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5707 Indices.push_back(i+vi);
5708 Indices.push_back(i+e+vi);
5709 }
5710 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5711 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
5712 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5713 }
5714 return SV;
5715 }
5716 case NEON::BI__builtin_neon_vtst_v:
5717 case NEON::BI__builtin_neon_vtstq_v: {
5718 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5719 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5720 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
5721 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
5722 ConstantAggregateZero::get(Ty));
5723 return Builder.CreateSExt(Ops[0], Ty, "vtst");
5724 }
5725 case NEON::BI__builtin_neon_vuzp_v:
5726 case NEON::BI__builtin_neon_vuzpq_v: {
5727 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5728 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5729 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5730 Value *SV = nullptr;
5731
5732 for (unsigned vi = 0; vi != 2; ++vi) {
5733 SmallVector<uint32_t, 16> Indices;
5734 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5735 Indices.push_back(2*i+vi);
5736
5737 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5738 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
5739 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5740 }
5741 return SV;
5742 }
5743 case NEON::BI__builtin_neon_vzip_v:
5744 case NEON::BI__builtin_neon_vzipq_v: {
5745 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5746 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5747 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5748 Value *SV = nullptr;
5749
5750 for (unsigned vi = 0; vi != 2; ++vi) {
5751 SmallVector<uint32_t, 16> Indices;
5752 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5753 Indices.push_back((i + vi*e) >> 1);
5754 Indices.push_back(((i + vi*e) >> 1)+e);
5755 }
5756 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5757 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
5758 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5759 }
5760 return SV;
5761 }
5762 case NEON::BI__builtin_neon_vdot_v:
5763 case NEON::BI__builtin_neon_vdotq_v: {
5764 llvm::Type *InputTy =
5765 llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
5766 llvm::Type *Tys[2] = { Ty, InputTy };
5767 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5768 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
5769 }
5770 case NEON::BI__builtin_neon_vfmlal_low_v:
5771 case NEON::BI__builtin_neon_vfmlalq_low_v: {
5772 llvm::Type *InputTy =
5773 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5774 llvm::Type *Tys[2] = { Ty, InputTy };
5775 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
5776 }
5777 case NEON::BI__builtin_neon_vfmlsl_low_v:
5778 case NEON::BI__builtin_neon_vfmlslq_low_v: {
5779 llvm::Type *InputTy =
5780 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5781 llvm::Type *Tys[2] = { Ty, InputTy };
5782 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
5783 }
5784 case NEON::BI__builtin_neon_vfmlal_high_v:
5785 case NEON::BI__builtin_neon_vfmlalq_high_v: {
5786 llvm::Type *InputTy =
5787 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5788 llvm::Type *Tys[2] = { Ty, InputTy };
5789 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
5790 }
5791 case NEON::BI__builtin_neon_vfmlsl_high_v:
5792 case NEON::BI__builtin_neon_vfmlslq_high_v: {
5793 llvm::Type *InputTy =
5794 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5795 llvm::Type *Tys[2] = { Ty, InputTy };
5796 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
5797 }
5798 }
5799
5800 assert(Int && "Expected valid intrinsic number")((Int && "Expected valid intrinsic number") ? static_cast
<void> (0) : __assert_fail ("Int && \"Expected valid intrinsic number\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5800, __PRETTY_FUNCTION__))
;
5801
5802 // Determine the type(s) of this overloaded AArch64 intrinsic.
5803 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
5804
5805 Value *Result = EmitNeonCall(F, Ops, NameHint);
5806 llvm::Type *ResultType = ConvertType(E->getType());
5807 // AArch64 intrinsic one-element vector type cast to
5808 // scalar type expected by the builtin
5809 return Builder.CreateBitCast(Result, ResultType, NameHint);
5810}
5811
5812Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
5813 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
5814 const CmpInst::Predicate Ip, const Twine &Name) {
5815 llvm::Type *OTy = Op->getType();
5816
5817 // FIXME: this is utterly horrific. We should not be looking at previous
5818 // codegen context to find out what needs doing. Unfortunately TableGen
5819 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
5820 // (etc).
5821 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
5822 OTy = BI->getOperand(0)->getType();
5823
5824 Op = Builder.CreateBitCast(Op, OTy);
5825 if (OTy->getScalarType()->isFloatingPointTy()) {
5826 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
5827 } else {
5828 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
5829 }
5830 return Builder.CreateSExt(Op, Ty, Name);
5831}
5832
5833static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
5834 Value *ExtOp, Value *IndexOp,
5835 llvm::Type *ResTy, unsigned IntID,
5836 const char *Name) {
5837 SmallVector<Value *, 2> TblOps;
5838 if (ExtOp)
5839 TblOps.push_back(ExtOp);
5840
5841 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
5842 SmallVector<uint32_t, 16> Indices;
5843 llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
5844 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
5845 Indices.push_back(2*i);
5846 Indices.push_back(2*i+1);
5847 }
5848
5849 int PairPos = 0, End = Ops.size() - 1;
5850 while (PairPos < End) {
5851 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5852 Ops[PairPos+1], Indices,
5853 Name));
5854 PairPos += 2;
5855 }
5856
5857 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
5858 // of the 128-bit lookup table with zero.
5859 if (PairPos == End) {
5860 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
5861 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5862 ZeroTbl, Indices, Name));
5863 }
5864
5865 Function *TblF;
5866 TblOps.push_back(IndexOp);
5867 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
5868
5869 return CGF.EmitNeonCall(TblF, TblOps, Name);
5870}
5871
5872Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
5873 unsigned Value;
5874 switch (BuiltinID) {
5875 default:
5876 return nullptr;
5877 case ARM::BI__builtin_arm_nop:
5878 Value = 0;
5879 break;
5880 case ARM::BI__builtin_arm_yield:
5881 case ARM::BI__yield:
5882 Value = 1;
5883 break;
5884 case ARM::BI__builtin_arm_wfe:
5885 case ARM::BI__wfe:
5886 Value = 2;
5887 break;
5888 case ARM::BI__builtin_arm_wfi:
5889 case ARM::BI__wfi:
5890 Value = 3;
5891 break;
5892 case ARM::BI__builtin_arm_sev:
5893 case ARM::BI__sev:
5894 Value = 4;
5895 break;
5896 case ARM::BI__builtin_arm_sevl:
5897 case ARM::BI__sevl:
5898 Value = 5;
5899 break;
5900 }
5901
5902 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
5903 llvm::ConstantInt::get(Int32Ty, Value));
5904}
5905
5906// Generates the IR for the read/write special register builtin,
5907// ValueType is the type of the value that is to be written or read,
5908// RegisterType is the type of the register being written to or read from.
5909static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
5910 const CallExpr *E,
5911 llvm::Type *RegisterType,
5912 llvm::Type *ValueType,
5913 bool IsRead,
5914 StringRef SysReg = "") {
5915 // write and register intrinsics only support 32 and 64 bit operations.
5916 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))(((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy
(64)) && "Unsupported size for register.") ? static_cast
<void> (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5917, __PRETTY_FUNCTION__))
5917 && "Unsupported size for register.")(((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy
(64)) && "Unsupported size for register.") ? static_cast
<void> (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5917, __PRETTY_FUNCTION__))
;
5918
5919 CodeGen::CGBuilderTy &Builder = CGF.Builder;
5920 CodeGen::CodeGenModule &CGM = CGF.CGM;
5921 LLVMContext &Context = CGM.getLLVMContext();
5922
5923 if (SysReg.empty()) {
5924 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
5925 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
5926 }
5927
5928 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
5929 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
5930 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
5931
5932 llvm::Type *Types[] = { RegisterType };
5933
5934 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
5935 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))((!(RegisterType->isIntegerTy(32) && ValueType->
isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? static_cast<void> (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5936, __PRETTY_FUNCTION__))
5936 && "Can't fit 64-bit value in 32-bit register")((!(RegisterType->isIntegerTy(32) && ValueType->
isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? static_cast<void> (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5936, __PRETTY_FUNCTION__))
;
5937
5938 if (IsRead) {
5939 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
5940 llvm::Value *Call = Builder.CreateCall(F, Metadata);
5941
5942 if (MixedTypes)
5943 // Read into 64 bit register and then truncate result to 32 bit.
5944 return Builder.CreateTrunc(Call, ValueType);
5945
5946 if (ValueType->isPointerTy())
5947 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
5948 return Builder.CreateIntToPtr(Call, ValueType);
5949
5950 return Call;
5951 }
5952
5953 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
5954 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
5955 if (MixedTypes) {
5956 // Extend 32 bit write value to 64 bit to pass to write.
5957 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
5958 return Builder.CreateCall(F, { Metadata, ArgValue });
5959 }
5960
5961 if (ValueType->isPointerTy()) {
5962 // Have VoidPtrTy ArgValue but want to return an i32/i64.
5963 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
5964 return Builder.CreateCall(F, { Metadata, ArgValue });
5965 }
5966
5967 return Builder.CreateCall(F, { Metadata, ArgValue });
5968}
5969
5970/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
5971/// argument that specifies the vector type.
5972static bool HasExtraNeonArgument(unsigned BuiltinID) {
5973 switch (BuiltinID) {
5974 default: break;
5975 case NEON::BI__builtin_neon_vget_lane_i8:
5976 case NEON::BI__builtin_neon_vget_lane_i16:
5977 case NEON::BI__builtin_neon_vget_lane_i32:
5978 case NEON::BI__builtin_neon_vget_lane_i64:
5979 case NEON::BI__builtin_neon_vget_lane_f32:
5980 case NEON::BI__builtin_neon_vgetq_lane_i8:
5981 case NEON::BI__builtin_neon_vgetq_lane_i16:
5982 case NEON::BI__builtin_neon_vgetq_lane_i32:
5983 case NEON::BI__builtin_neon_vgetq_lane_i64:
5984 case NEON::BI__builtin_neon_vgetq_lane_f32:
5985 case NEON::BI__builtin_neon_vset_lane_i8:
5986 case NEON::BI__builtin_neon_vset_lane_i16:
5987 case NEON::BI__builtin_neon_vset_lane_i32:
5988 case NEON::BI__builtin_neon_vset_lane_i64:
5989 case NEON::BI__builtin_neon_vset_lane_f32:
5990 case NEON::BI__builtin_neon_vsetq_lane_i8:
5991 case NEON::BI__builtin_neon_vsetq_lane_i16:
5992 case NEON::BI__builtin_neon_vsetq_lane_i32:
5993 case NEON::BI__builtin_neon_vsetq_lane_i64:
5994 case NEON::BI__builtin_neon_vsetq_lane_f32:
5995 case NEON::BI__builtin_neon_vsha1h_u32:
5996 case NEON::BI__builtin_neon_vsha1cq_u32:
5997 case NEON::BI__builtin_neon_vsha1pq_u32:
5998 case NEON::BI__builtin_neon_vsha1mq_u32:
5999 case clang::ARM::BI_MoveToCoprocessor:
6000 case clang::ARM::BI_MoveToCoprocessor2:
6001 return false;
6002 }
6003 return true;
6004}
6005
6006Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
6007 const CallExpr *E,
6008 llvm::Triple::ArchType Arch) {
6009 if (auto Hint = GetValueForARMHint(BuiltinID))
6010 return Hint;
6011
6012 if (BuiltinID == ARM::BI__emit) {
6013 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
6014 llvm::FunctionType *FTy =
6015 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
6016
6017 Expr::EvalResult Result;
6018 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
6019 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6019)
;
6020
6021 llvm::APSInt Value = Result.Val.getInt();
6022 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
6023
6024 llvm::InlineAsm *Emit =
6025 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
6026 /*hasSideEffects=*/true)
6027 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
6028 /*hasSideEffects=*/true);
6029
6030 return Builder.CreateCall(Emit);
6031 }
6032
6033 if (BuiltinID == ARM::BI__builtin_arm_dbg) {
6034 Value *Option = EmitScalarExpr(E->getArg(0));
6035 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
6036 }
6037
6038 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
6039 Value *Address = EmitScalarExpr(E->getArg(0));
6040 Value *RW = EmitScalarExpr(E->getArg(1));
6041 Value *IsData = EmitScalarExpr(E->getArg(2));
6042
6043 // Locality is not supported on ARM target
6044 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
6045
6046 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
6047 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6048 }
6049
6050 if (BuiltinID == ARM::BI__builtin_arm_rbit) {
6051 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6052 return Builder.CreateCall(
6053 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6054 }
6055
6056 if (BuiltinID == ARM::BI__clear_cache) {
6057 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")((E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6057, __PRETTY_FUNCTION__))
;
6058 const FunctionDecl *FD = E->getDirectCallee();
6059 Value *Ops[2];
6060 for (unsigned i = 0; i < 2; i++)
6061 Ops[i] = EmitScalarExpr(E->getArg(i));
6062 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6063 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6064 StringRef Name = FD->getName();
6065 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6066 }
6067
6068 if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
6069 BuiltinID == ARM::BI__builtin_arm_mcrr2) {
6070 Function *F;
6071
6072 switch (BuiltinID) {
6073 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6073)
;
6074 case ARM::BI__builtin_arm_mcrr:
6075 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
6076 break;
6077 case ARM::BI__builtin_arm_mcrr2:
6078 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
6079 break;
6080 }
6081
6082 // MCRR{2} instruction has 5 operands but
6083 // the intrinsic has 4 because Rt and Rt2
6084 // are represented as a single unsigned 64
6085 // bit integer in the intrinsic definition
6086 // but internally it's represented as 2 32
6087 // bit integers.
6088
6089 Value *Coproc = EmitScalarExpr(E->getArg(0));
6090 Value *Opc1 = EmitScalarExpr(E->getArg(1));
6091 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
6092 Value *CRm = EmitScalarExpr(E->getArg(3));
6093
6094 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6095 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
6096 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
6097 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
6098
6099 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
6100 }
6101
6102 if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
6103 BuiltinID == ARM::BI__builtin_arm_mrrc2) {
6104 Function *F;
6105
6106 switch (BuiltinID) {
6107 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6107)
;
6108 case ARM::BI__builtin_arm_mrrc:
6109 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
6110 break;
6111 case ARM::BI__builtin_arm_mrrc2:
6112 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
6113 break;
6114 }
6115
6116 Value *Coproc = EmitScalarExpr(E->getArg(0));
6117 Value *Opc1 = EmitScalarExpr(E->getArg(1));
6118 Value *CRm = EmitScalarExpr(E->getArg(2));
6119 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
6120
6121 // Returns an unsigned 64 bit integer, represented
6122 // as two 32 bit integers.
6123
6124 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
6125 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
6126 Rt = Builder.CreateZExt(Rt, Int64Ty);
6127 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
6128
6129 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
6130 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
6131 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
6132
6133 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
6134 }
6135
6136 if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
6137 ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
6138 BuiltinID == ARM::BI__builtin_arm_ldaex) &&
6139 getContext().getTypeSize(E->getType()) == 64) ||
6140 BuiltinID == ARM::BI__ldrexd) {
6141 Function *F;
6142
6143 switch (BuiltinID) {
6144 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6144)
;
6145 case ARM::BI__builtin_arm_ldaex:
6146 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
6147 break;
6148 case ARM::BI__builtin_arm_ldrexd:
6149 case ARM::BI__builtin_arm_ldrex:
6150 case ARM::BI__ldrexd:
6151 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
6152 break;
6153 }
6154
6155 Value *LdPtr = EmitScalarExpr(E->getArg(0));
6156 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6157 "ldrexd");
6158
6159 Value *Val0 = Builder.CreateExtractValue(Val, 1);
6160 Value *Val1 = Builder.CreateExtractValue(Val, 0);
6161 Val0 = Builder.CreateZExt(Val0, Int64Ty);
6162 Val1 = Builder.CreateZExt(Val1, Int64Ty);
6163
6164 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
6165 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6166 Val = Builder.CreateOr(Val, Val1);
6167 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6168 }
6169
6170 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
6171 BuiltinID == ARM::BI__builtin_arm_ldaex) {
6172 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6173
6174 QualType Ty = E->getType();
6175 llvm::Type *RealResTy = ConvertType(Ty);
6176 llvm::Type *PtrTy = llvm::IntegerType::get(
6177 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6178 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6179
6180 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
6181 ? Intrinsic::arm_ldaex
6182 : Intrinsic::arm_ldrex,
6183 PtrTy);
6184 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
6185
6186 if (RealResTy->isPointerTy())
6187 return Builder.CreateIntToPtr(Val, RealResTy);
6188 else {
6189 llvm::Type *IntResTy = llvm::IntegerType::get(
6190 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6191 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6192 return Builder.CreateBitCast(Val, RealResTy);
6193 }
6194 }
6195
6196 if (BuiltinID == ARM::BI__builtin_arm_strexd ||
6197 ((BuiltinID == ARM::BI__builtin_arm_stlex ||
6198 BuiltinID == ARM::BI__builtin_arm_strex) &&
6199 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
6200 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6201 ? Intrinsic::arm_stlexd
6202 : Intrinsic::arm_strexd);
6203 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
6204
6205 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6206 Value *Val = EmitScalarExpr(E->getArg(0));
6207 Builder.CreateStore(Val, Tmp);
6208
6209 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
6210 Val = Builder.CreateLoad(LdPtr);
6211
6212 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6213 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6214 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
6215 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
6216 }
6217
6218 if (BuiltinID == ARM::BI__builtin_arm_strex ||
6219 BuiltinID == ARM::BI__builtin_arm_stlex) {
6220 Value *StoreVal = EmitScalarExpr(E->getArg(0));
6221 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6222
6223 QualType Ty = E->getArg(0)->getType();
6224 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6225 getContext().getTypeSize(Ty));
6226 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6227
6228 if (StoreVal->getType()->isPointerTy())
6229 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
6230 else {
6231 llvm::Type *IntTy = llvm::IntegerType::get(
6232 getLLVMContext(),
6233 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6234 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6235 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
6236 }
6237
6238 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6239 ? Intrinsic::arm_stlex
6240 : Intrinsic::arm_strex,
6241 StoreAddr->getType());
6242 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
6243 }
6244
6245 if (BuiltinID == ARM::BI__builtin_arm_clrex) {
6246 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
6247 return Builder.CreateCall(F);
6248 }
6249
6250 // CRC32
6251 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6252 switch (BuiltinID) {
6253 case ARM::BI__builtin_arm_crc32b:
6254 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
6255 case ARM::BI__builtin_arm_crc32cb:
6256 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
6257 case ARM::BI__builtin_arm_crc32h:
6258 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
6259 case ARM::BI__builtin_arm_crc32ch:
6260 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
6261 case ARM::BI__builtin_arm_crc32w:
6262 case ARM::BI__builtin_arm_crc32d:
6263 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
6264 case ARM::BI__builtin_arm_crc32cw:
6265 case ARM::BI__builtin_arm_crc32cd:
6266 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
6267 }
6268
6269 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6270 Value *Arg0 = EmitScalarExpr(E->getArg(0));
6271 Value *Arg1 = EmitScalarExpr(E->getArg(1));
6272
6273 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
6274 // intrinsics, hence we need different codegen for these cases.
6275 if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
6276 BuiltinID == ARM::BI__builtin_arm_crc32cd) {
6277 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6278 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
6279 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
6280 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
6281
6282 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6283 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
6284 return Builder.CreateCall(F, {Res, Arg1b});
6285 } else {
6286 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
6287
6288 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6289 return Builder.CreateCall(F, {Arg0, Arg1});
6290 }
6291 }
6292
6293 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6294 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6295 BuiltinID == ARM::BI__builtin_arm_rsrp ||
6296 BuiltinID == ARM::BI__builtin_arm_wsr ||
6297 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6298 BuiltinID == ARM::BI__builtin_arm_wsrp) {
6299
6300 bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
6301 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6302 BuiltinID == ARM::BI__builtin_arm_rsrp;
6303
6304 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
6305 BuiltinID == ARM::BI__builtin_arm_wsrp;
6306
6307 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6308 BuiltinID == ARM::BI__builtin_arm_wsr64;
6309
6310 llvm::Type *ValueType;
6311 llvm::Type *RegisterType;
6312 if (IsPointerBuiltin) {
6313 ValueType = VoidPtrTy;
6314 RegisterType = Int32Ty;
6315 } else if (Is64Bit) {
6316 ValueType = RegisterType = Int64Ty;
6317 } else {
6318 ValueType = RegisterType = Int32Ty;
6319 }
6320
6321 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
6322 }
6323
6324 // Find out if any arguments are required to be integer constant
6325 // expressions.
6326 unsigned ICEArguments = 0;
6327 ASTContext::GetBuiltinTypeError Error;
6328 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6329 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6329, __PRETTY_FUNCTION__))
;
6330
6331 auto getAlignmentValue32 = [&](Address addr) -> Value* {
6332 return Builder.getInt32(addr.getAlignment().getQuantity());
6333 };
6334
6335 Address PtrOp0 = Address::invalid();
6336 Address PtrOp1 = Address::invalid();
6337 SmallVector<Value*, 4> Ops;
6338 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
6339 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
6340 for (unsigned i = 0, e = NumArgs; i != e; i++) {
6341 if (i == 0) {
6342 switch (BuiltinID) {
6343 case NEON::BI__builtin_neon_vld1_v:
6344 case NEON::BI__builtin_neon_vld1q_v:
6345 case NEON::BI__builtin_neon_vld1q_lane_v:
6346 case NEON::BI__builtin_neon_vld1_lane_v:
6347 case NEON::BI__builtin_neon_vld1_dup_v:
6348 case NEON::BI__builtin_neon_vld1q_dup_v:
6349 case NEON::BI__builtin_neon_vst1_v:
6350 case NEON::BI__builtin_neon_vst1q_v:
6351 case NEON::BI__builtin_neon_vst1q_lane_v:
6352 case NEON::BI__builtin_neon_vst1_lane_v:
6353 case NEON::BI__builtin_neon_vst2_v:
6354 case NEON::BI__builtin_neon_vst2q_v:
6355 case NEON::BI__builtin_neon_vst2_lane_v:
6356 case NEON::BI__builtin_neon_vst2q_lane_v:
6357 case NEON::BI__builtin_neon_vst3_v:
6358 case NEON::BI__builtin_neon_vst3q_v:
6359 case NEON::BI__builtin_neon_vst3_lane_v:
6360 case NEON::BI__builtin_neon_vst3q_lane_v:
6361 case NEON::BI__builtin_neon_vst4_v:
6362 case NEON::BI__builtin_neon_vst4q_v:
6363 case NEON::BI__builtin_neon_vst4_lane_v:
6364 case NEON::BI__builtin_neon_vst4q_lane_v:
6365 // Get the alignment for the argument in addition to the value;
6366 // we'll use it later.
6367 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
6368 Ops.push_back(PtrOp0.getPointer());
6369 continue;
6370 }
6371 }
6372 if (i == 1) {
6373 switch (BuiltinID) {
6374 case NEON::BI__builtin_neon_vld2_v:
6375 case NEON::BI__builtin_neon_vld2q_v:
6376 case NEON::BI__builtin_neon_vld3_v:
6377 case NEON::BI__builtin_neon_vld3q_v:
6378 case NEON::BI__builtin_neon_vld4_v:
6379 case NEON::BI__builtin_neon_vld4q_v:
6380 case NEON::BI__builtin_neon_vld2_lane_v:
6381 case NEON::BI__builtin_neon_vld2q_lane_v:
6382 case NEON::BI__builtin_neon_vld3_lane_v:
6383 case NEON::BI__builtin_neon_vld3q_lane_v:
6384 case NEON::BI__builtin_neon_vld4_lane_v:
6385 case NEON::BI__builtin_neon_vld4q_lane_v:
6386 case NEON::BI__builtin_neon_vld2_dup_v:
6387 case NEON::BI__builtin_neon_vld2q_dup_v:
6388 case NEON::BI__builtin_neon_vld3_dup_v:
6389 case NEON::BI__builtin_neon_vld3q_dup_v:
6390 case NEON::BI__builtin_neon_vld4_dup_v:
6391 case NEON::BI__builtin_neon_vld4q_dup_v:
6392 // Get the alignment for the argument in addition to the value;
6393 // we'll use it later.
6394 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
6395 Ops.push_back(PtrOp1.getPointer());
6396 continue;
6397 }
6398 }
6399
6400 if ((ICEArguments & (1 << i)) == 0) {
6401 Ops.push_back(EmitScalarExpr(E->getArg(i)));
6402 } else {
6403 // If this is required to be a constant, constant fold it so that we know
6404 // that the generated intrinsic gets a ConstantInt.
6405 llvm::APSInt Result;
6406 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6407 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6407, __PRETTY_FUNCTION__))
; (void)IsConst;
6408 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6409 }
6410 }
6411
6412 switch (BuiltinID) {
6413 default: break;
6414
6415 case NEON::BI__builtin_neon_vget_lane_i8:
6416 case NEON::BI__builtin_neon_vget_lane_i16:
6417 case NEON::BI__builtin_neon_vget_lane_i32:
6418 case NEON::BI__builtin_neon_vget_lane_i64:
6419 case NEON::BI__builtin_neon_vget_lane_f32:
6420 case NEON::BI__builtin_neon_vgetq_lane_i8:
6421 case NEON::BI__builtin_neon_vgetq_lane_i16:
6422 case NEON::BI__builtin_neon_vgetq_lane_i32:
6423 case NEON::BI__builtin_neon_vgetq_lane_i64:
6424 case NEON::BI__builtin_neon_vgetq_lane_f32:
6425 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
6426
6427 case NEON::BI__builtin_neon_vrndns_f32: {
6428 Value *Arg = EmitScalarExpr(E->getArg(0));
6429 llvm::Type *Tys[] = {Arg->getType()};
6430 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
6431 return Builder.CreateCall(F, {Arg}, "vrndn"); }
6432
6433 case NEON::BI__builtin_neon_vset_lane_i8:
6434 case NEON::BI__builtin_neon_vset_lane_i16:
6435 case NEON::BI__builtin_neon_vset_lane_i32:
6436 case NEON::BI__builtin_neon_vset_lane_i64:
6437 case NEON::BI__builtin_neon_vset_lane_f32:
6438 case NEON::BI__builtin_neon_vsetq_lane_i8:
6439 case NEON::BI__builtin_neon_vsetq_lane_i16:
6440 case NEON::BI__builtin_neon_vsetq_lane_i32:
6441 case NEON::BI__builtin_neon_vsetq_lane_i64:
6442 case NEON::BI__builtin_neon_vsetq_lane_f32:
6443 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6444
6445 case NEON::BI__builtin_neon_vsha1h_u32:
6446 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
6447 "vsha1h");
6448 case NEON::BI__builtin_neon_vsha1cq_u32:
6449 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
6450 "vsha1h");
6451 case NEON::BI__builtin_neon_vsha1pq_u32:
6452 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
6453 "vsha1h");
6454 case NEON::BI__builtin_neon_vsha1mq_u32:
6455 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
6456 "vsha1h");
6457
6458 // The ARM _MoveToCoprocessor builtins put the input register value as
6459 // the first argument, but the LLVM intrinsic expects it as the third one.
6460 case ARM::BI_MoveToCoprocessor:
6461 case ARM::BI_MoveToCoprocessor2: {
6462 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
6463 Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
6464 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
6465 Ops[3], Ops[4], Ops[5]});
6466 }
6467 case ARM::BI_BitScanForward:
6468 case ARM::BI_BitScanForward64:
6469 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
6470 case ARM::BI_BitScanReverse:
6471 case ARM::BI_BitScanReverse64:
6472 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
6473
6474 case ARM::BI_InterlockedAnd64:
6475 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
6476 case ARM::BI_InterlockedExchange64:
6477 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
6478 case ARM::BI_InterlockedExchangeAdd64:
6479 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
6480 case ARM::BI_InterlockedExchangeSub64:
6481 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
6482 case ARM::BI_InterlockedOr64:
6483 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
6484 case ARM::BI_InterlockedXor64:
6485 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
6486 case ARM::BI_InterlockedDecrement64:
6487 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
6488 case ARM::BI_InterlockedIncrement64:
6489 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
6490 case ARM::BI_InterlockedExchangeAdd8_acq:
6491 case ARM::BI_InterlockedExchangeAdd16_acq:
6492 case ARM::BI_InterlockedExchangeAdd_acq:
6493 case ARM::BI_InterlockedExchangeAdd64_acq:
6494 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
6495 case ARM::BI_InterlockedExchangeAdd8_rel:
6496 case ARM::BI_InterlockedExchangeAdd16_rel:
6497 case ARM::BI_InterlockedExchangeAdd_rel:
6498 case ARM::BI_InterlockedExchangeAdd64_rel:
6499 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
6500 case ARM::BI_InterlockedExchangeAdd8_nf:
6501 case ARM::BI_InterlockedExchangeAdd16_nf:
6502 case ARM::BI_InterlockedExchangeAdd_nf:
6503 case ARM::BI_InterlockedExchangeAdd64_nf:
6504 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
6505 case ARM::BI_InterlockedExchange8_acq:
6506 case ARM::BI_InterlockedExchange16_acq:
6507 case ARM::BI_InterlockedExchange_acq:
6508 case ARM::BI_InterlockedExchange64_acq:
6509 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
6510 case ARM::BI_InterlockedExchange8_rel:
6511 case ARM::BI_InterlockedExchange16_rel:
6512 case ARM::BI_InterlockedExchange_rel:
6513 case ARM::BI_InterlockedExchange64_rel:
6514 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
6515 case ARM::BI_InterlockedExchange8_nf:
6516 case ARM::BI_InterlockedExchange16_nf:
6517 case ARM::BI_InterlockedExchange_nf:
6518 case ARM::BI_InterlockedExchange64_nf:
6519 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
6520 case ARM::BI_InterlockedCompareExchange8_acq:
6521 case ARM::BI_InterlockedCompareExchange16_acq:
6522 case ARM::BI_InterlockedCompareExchange_acq:
6523 case ARM::BI_InterlockedCompareExchange64_acq:
6524 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
6525 case ARM::BI_InterlockedCompareExchange8_rel:
6526 case ARM::BI_InterlockedCompareExchange16_rel:
6527 case ARM::BI_InterlockedCompareExchange_rel:
6528 case ARM::BI_InterlockedCompareExchange64_rel:
6529 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
6530 case ARM::BI_InterlockedCompareExchange8_nf:
6531 case ARM::BI_InterlockedCompareExchange16_nf:
6532 case ARM::BI_InterlockedCompareExchange_nf:
6533 case ARM::BI_InterlockedCompareExchange64_nf:
6534 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
6535 case ARM::BI_InterlockedOr8_acq:
6536 case ARM::BI_InterlockedOr16_acq:
6537 case ARM::BI_InterlockedOr_acq:
6538 case ARM::BI_InterlockedOr64_acq:
6539 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
6540 case ARM::BI_InterlockedOr8_rel:
6541 case ARM::BI_InterlockedOr16_rel:
6542 case ARM::BI_InterlockedOr_rel:
6543 case ARM::BI_InterlockedOr64_rel:
6544 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
6545 case ARM::BI_InterlockedOr8_nf:
6546 case ARM::BI_InterlockedOr16_nf:
6547 case ARM::BI_InterlockedOr_nf:
6548 case ARM::BI_InterlockedOr64_nf:
6549 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
6550 case ARM::BI_InterlockedXor8_acq:
6551 case ARM::BI_InterlockedXor16_acq:
6552 case ARM::BI_InterlockedXor_acq:
6553 case ARM::BI_InterlockedXor64_acq:
6554 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
6555 case ARM::BI_InterlockedXor8_rel:
6556 case ARM::BI_InterlockedXor16_rel:
6557 case ARM::BI_InterlockedXor_rel:
6558 case ARM::BI_InterlockedXor64_rel:
6559 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
6560 case ARM::BI_InterlockedXor8_nf:
6561 case ARM::BI_InterlockedXor16_nf:
6562 case ARM::BI_InterlockedXor_nf:
6563 case ARM::BI_InterlockedXor64_nf:
6564 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
6565 case ARM::BI_InterlockedAnd8_acq:
6566 case ARM::BI_InterlockedAnd16_acq:
6567 case ARM::BI_InterlockedAnd_acq:
6568 case ARM::BI_InterlockedAnd64_acq:
6569 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
6570 case ARM::BI_InterlockedAnd8_rel:
6571 case ARM::BI_InterlockedAnd16_rel:
6572 case ARM::BI_InterlockedAnd_rel:
6573 case ARM::BI_InterlockedAnd64_rel:
6574 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
6575 case ARM::BI_InterlockedAnd8_nf:
6576 case ARM::BI_InterlockedAnd16_nf:
6577 case ARM::BI_InterlockedAnd_nf:
6578 case ARM::BI_InterlockedAnd64_nf:
6579 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
6580 case ARM::BI_InterlockedIncrement16_acq:
6581 case ARM::BI_InterlockedIncrement_acq:
6582 case ARM::BI_InterlockedIncrement64_acq:
6583 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
6584 case ARM::BI_InterlockedIncrement16_rel:
6585 case ARM::BI_InterlockedIncrement_rel:
6586 case ARM::BI_InterlockedIncrement64_rel:
6587 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
6588 case ARM::BI_InterlockedIncrement16_nf:
6589 case ARM::BI_InterlockedIncrement_nf:
6590 case ARM::BI_InterlockedIncrement64_nf:
6591 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
6592 case ARM::BI_InterlockedDecrement16_acq:
6593 case ARM::BI_InterlockedDecrement_acq:
6594 case ARM::BI_InterlockedDecrement64_acq:
6595 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
6596 case ARM::BI_InterlockedDecrement16_rel:
6597 case ARM::BI_InterlockedDecrement_rel:
6598 case ARM::BI_InterlockedDecrement64_rel:
6599 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
6600 case ARM::BI_InterlockedDecrement16_nf:
6601 case ARM::BI_InterlockedDecrement_nf:
6602 case ARM::BI_InterlockedDecrement64_nf:
6603 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
6604 }
6605
6606 // Get the last argument, which specifies the vector type.
6607 assert(HasExtraArg)((HasExtraArg) ? static_cast<void> (0) : __assert_fail (
"HasExtraArg", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6607, __PRETTY_FUNCTION__))
;
6608 llvm::APSInt Result;
6609 const Expr *Arg = E->getArg(E->getNumArgs()-1);
6610 if (!Arg->isIntegerConstantExpr(Result, getContext()))
6611 return nullptr;
6612
6613 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
6614 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
6615 // Determine the overloaded type of this builtin.
6616 llvm::Type *Ty;
6617 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
6618 Ty = FloatTy;
6619 else
6620 Ty = DoubleTy;
6621
6622 // Determine whether this is an unsigned conversion or not.
6623 bool usgn = Result.getZExtValue() == 1;
6624 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
6625
6626 // Call the appropriate intrinsic.
6627 Function *F = CGM.getIntrinsic(Int, Ty);
6628 return Builder.CreateCall(F, Ops, "vcvtr");
6629 }
6630
6631 // Determine the type of this overloaded NEON intrinsic.
6632 NeonTypeFlags Type(Result.getZExtValue());
6633 bool usgn = Type.isUnsigned();
6634 bool rightShift = false;
6635
6636 llvm::VectorType *VTy = GetNeonType(this, Type,
6637 getTarget().hasLegalHalfType());
6638 llvm::Type *Ty = VTy;
6639 if (!Ty)
6640 return nullptr;
6641
6642 // Many NEON builtins have identical semantics and uses in ARM and
6643 // AArch64. Emit these in a single function.
6644 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
6645 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
6646 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
6647 if (Builtin)
6648 return EmitCommonNeonBuiltinExpr(
6649 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
6650 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
6651
6652 unsigned Int;
6653 switch (BuiltinID) {
6654 default: return nullptr;
6655 case NEON::BI__builtin_neon_vld1q_lane_v:
6656 // Handle 64-bit integer elements as a special case. Use shuffles of
6657 // one-element vectors to avoid poor code for i64 in the backend.
6658 if (VTy->getElementType()->isIntegerTy(64)) {
6659 // Extract the other lane.
6660 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6661 uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
6662 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
6663 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6664 // Load the value as a one-element vector.
6665 Ty = llvm::VectorType::get(VTy->getElementType(), 1);
6666 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6667 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
6668 Value *Align = getAlignmentValue32(PtrOp0);
6669 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
6670 // Combine them.
6671 uint32_t Indices[] = {1 - Lane, Lane};
6672 SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
6673 return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
6674 }
6675 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6676 case NEON::BI__builtin_neon_vld1_lane_v: {
6677 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6678 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6679 Value *Ld = Builder.CreateLoad(PtrOp0);
6680 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
6681 }
6682 case NEON::BI__builtin_neon_vqrshrn_n_v:
6683 Int =
6684 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
6685 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
6686 1, true);
6687 case NEON::BI__builtin_neon_vqrshrun_n_v:
6688 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
6689 Ops, "vqrshrun_n", 1, true);
6690 case NEON::BI__builtin_neon_vqshrn_n_v:
6691 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
6692 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
6693 1, true);
6694 case NEON::BI__builtin_neon_vqshrun_n_v:
6695 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
6696 Ops, "vqshrun_n", 1, true);
6697 case NEON::BI__builtin_neon_vrecpe_v:
6698 case NEON::BI__builtin_neon_vrecpeq_v:
6699 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
6700 Ops, "vrecpe");
6701 case NEON::BI__builtin_neon_vrshrn_n_v:
6702 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
6703 Ops, "vrshrn_n", 1, true);
6704 case NEON::BI__builtin_neon_vrsra_n_v:
6705 case NEON::BI__builtin_neon_vrsraq_n_v:
6706 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6707 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6708 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
6709 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
6710 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
6711 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
6712 case NEON::BI__builtin_neon_vsri_n_v:
6713 case NEON::BI__builtin_neon_vsriq_n_v:
6714 rightShift = true;
6715 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6716 case NEON::BI__builtin_neon_vsli_n_v:
6717 case NEON::BI__builtin_neon_vsliq_n_v:
6718 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
6719 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
6720 Ops, "vsli_n");
6721 case NEON::BI__builtin_neon_vsra_n_v:
6722 case NEON::BI__builtin_neon_vsraq_n_v:
6723 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6724 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
6725 return Builder.CreateAdd(Ops[0], Ops[1]);
6726 case NEON::BI__builtin_neon_vst1q_lane_v:
6727 // Handle 64-bit integer elements as a special case. Use a shuffle to get
6728 // a one-element vector and avoid poor code for i64 in the backend.
6729 if (VTy->getElementType()->isIntegerTy(64)) {
6730 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6731 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
6732 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6733 Ops[2] = getAlignmentValue32(PtrOp0);
6734 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
6735 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
6736 Tys), Ops);
6737 }
6738 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6739 case NEON::BI__builtin_neon_vst1_lane_v: {
6740 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6741 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
6742 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6743 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
6744 return St;
6745 }
6746 case NEON::BI__builtin_neon_vtbl1_v:
6747 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
6748 Ops, "vtbl1");
6749 case NEON::BI__builtin_neon_vtbl2_v:
6750 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
6751 Ops, "vtbl2");
6752 case NEON::BI__builtin_neon_vtbl3_v:
6753 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
6754 Ops, "vtbl3");
6755 case NEON::BI__builtin_neon_vtbl4_v:
6756 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
6757 Ops, "vtbl4");
6758 case NEON::BI__builtin_neon_vtbx1_v:
6759 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
6760 Ops, "vtbx1");
6761 case NEON::BI__builtin_neon_vtbx2_v:
6762 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
6763 Ops, "vtbx2");
6764 case NEON::BI__builtin_neon_vtbx3_v:
6765 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
6766 Ops, "vtbx3");
6767 case NEON::BI__builtin_neon_vtbx4_v:
6768 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
6769 Ops, "vtbx4");
6770 }
6771}
6772
6773static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
6774 const CallExpr *E,
6775 SmallVectorImpl<Value *> &Ops,
6776 llvm::Triple::ArchType Arch) {
6777 unsigned int Int = 0;
6778 const char *s = nullptr;
6779
6780 switch (BuiltinID) {
6781 default:
6782 return nullptr;
6783 case NEON::BI__builtin_neon_vtbl1_v:
6784 case NEON::BI__builtin_neon_vqtbl1_v:
6785 case NEON::BI__builtin_neon_vqtbl1q_v:
6786 case NEON::BI__builtin_neon_vtbl2_v:
6787 case NEON::BI__builtin_neon_vqtbl2_v:
6788 case NEON::BI__builtin_neon_vqtbl2q_v:
6789 case NEON::BI__builtin_neon_vtbl3_v:
6790 case NEON::BI__builtin_neon_vqtbl3_v:
6791 case NEON::BI__builtin_neon_vqtbl3q_v:
6792 case NEON::BI__builtin_neon_vtbl4_v:
6793 case NEON::BI__builtin_neon_vqtbl4_v:
6794 case NEON::BI__builtin_neon_vqtbl4q_v:
6795 break;
6796 case NEON::BI__builtin_neon_vtbx1_v:
6797 case NEON::BI__builtin_neon_vqtbx1_v:
6798 case NEON::BI__builtin_neon_vqtbx1q_v:
6799 case NEON::BI__builtin_neon_vtbx2_v:
6800 case NEON::BI__builtin_neon_vqtbx2_v:
6801 case NEON::BI__builtin_neon_vqtbx2q_v:
6802 case NEON::BI__builtin_neon_vtbx3_v:
6803 case NEON::BI__builtin_neon_vqtbx3_v:
6804 case NEON::BI__builtin_neon_vqtbx3q_v:
6805 case NEON::BI__builtin_neon_vtbx4_v:
6806 case NEON::BI__builtin_neon_vqtbx4_v:
6807 case NEON::BI__builtin_neon_vqtbx4q_v:
6808 break;
6809 }
6810
6811 assert(E->getNumArgs() >= 3)((E->getNumArgs() >= 3) ? static_cast<void> (0) :
__assert_fail ("E->getNumArgs() >= 3", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6811, __PRETTY_FUNCTION__))
;
6812
6813 // Get the last argument, which specifies the vector type.
6814 llvm::APSInt Result;
6815 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6816 if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
6817 return nullptr;
6818
6819 // Determine the type of this overloaded NEON intrinsic.
6820 NeonTypeFlags Type(Result.getZExtValue());
6821 llvm::VectorType *Ty = GetNeonType(&CGF, Type);
6822 if (!Ty)
6823 return nullptr;
6824
6825 CodeGen::CGBuilderTy &Builder = CGF.Builder;
6826
6827 // AArch64 scalar builtins are not overloaded, they do not have an extra
6828 // argument that specifies the vector type, need to handle each case.
6829 switch (BuiltinID) {
6830 case NEON::BI__builtin_neon_vtbl1_v: {
6831 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
6832 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
6833 "vtbl1");
6834 }
6835 case NEON::BI__builtin_neon_vtbl2_v: {
6836 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
6837 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
6838 "vtbl1");
6839 }
6840 case NEON::BI__builtin_neon_vtbl3_v: {
6841 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
6842 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
6843 "vtbl2");
6844 }
6845 case NEON::BI__builtin_neon_vtbl4_v: {
6846 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
6847 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
6848 "vtbl2");
6849 }
6850 case NEON::BI__builtin_neon_vtbx1_v: {
6851 Value *TblRes =
6852 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
6853 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
6854
6855 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
6856 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
6857 CmpRes = Builder.CreateSExt(CmpRes, Ty);
6858
6859 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6860 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6861 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6862 }
6863 case NEON::BI__builtin_neon_vtbx2_v: {
6864 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
6865 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
6866 "vtbx1");
6867 }
6868 case NEON::BI__builtin_neon_vtbx3_v: {
6869 Value *TblRes =
6870 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
6871 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
6872
6873 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
6874 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
6875 TwentyFourV);
6876 CmpRes = Builder.CreateSExt(CmpRes, Ty);
6877
6878 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6879 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6880 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6881 }
6882 case NEON::BI__builtin_neon_vtbx4_v: {
6883 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
6884 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
6885 "vtbx2");
6886 }
6887 case NEON::BI__builtin_neon_vqtbl1_v:
6888 case NEON::BI__builtin_neon_vqtbl1q_v:
6889 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
6890 case NEON::BI__builtin_neon_vqtbl2_v:
6891 case NEON::BI__builtin_neon_vqtbl2q_v: {
6892 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
6893 case NEON::BI__builtin_neon_vqtbl3_v:
6894 case NEON::BI__builtin_neon_vqtbl3q_v:
6895 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
6896 case NEON::BI__builtin_neon_vqtbl4_v:
6897 case NEON::BI__builtin_neon_vqtbl4q_v:
6898 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
6899 case NEON::BI__builtin_neon_vqtbx1_v:
6900 case NEON::BI__builtin_neon_vqtbx1q_v:
6901 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
6902 case NEON::BI__builtin_neon_vqtbx2_v:
6903 case NEON::BI__builtin_neon_vqtbx2q_v:
6904 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
6905 case NEON::BI__builtin_neon_vqtbx3_v:
6906 case NEON::BI__builtin_neon_vqtbx3q_v:
6907 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
6908 case NEON::BI__builtin_neon_vqtbx4_v:
6909 case NEON::BI__builtin_neon_vqtbx4q_v:
6910 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
6911 }
6912 }
6913
6914 if (!Int)
6915 return nullptr;
6916
6917 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
6918 return CGF.EmitNeonCall(F, Ops, s);
6919}
6920
6921Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
6922 llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
6923 Op = Builder.CreateBitCast(Op, Int16Ty);
6924 Value *V = UndefValue::get(VTy);
6925 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6926 Op = Builder.CreateInsertElement(V, Op, CI);
6927 return Op;
6928}
6929
6930Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
6931 const CallExpr *E,
6932 llvm::Triple::ArchType Arch) {
6933 unsigned HintID = static_cast<unsigned>(-1);
6934 switch (BuiltinID) {
6935 default: break;
6936 case AArch64::BI__builtin_arm_nop:
6937 HintID = 0;
6938 break;
6939 case AArch64::BI__builtin_arm_yield:
6940 case AArch64::BI__yield:
6941 HintID = 1;
6942 break;
6943 case AArch64::BI__builtin_arm_wfe:
6944 case AArch64::BI__wfe:
6945 HintID = 2;
6946 break;
6947 case AArch64::BI__builtin_arm_wfi:
6948 case AArch64::BI__wfi:
6949 HintID = 3;
6950 break;
6951 case AArch64::BI__builtin_arm_sev:
6952 case AArch64::BI__sev:
6953 HintID = 4;
6954 break;
6955 case AArch64::BI__builtin_arm_sevl:
6956 case AArch64::BI__sevl:
6957 HintID = 5;
6958 break;
6959 }
6960
6961 if (HintID != static_cast<unsigned>(-1)) {
6962 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
6963 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
6964 }
6965
6966 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
6967 Value *Address = EmitScalarExpr(E->getArg(0));
6968 Value *RW = EmitScalarExpr(E->getArg(1));
6969 Value *CacheLevel = EmitScalarExpr(E->getArg(2));
6970 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
6971 Value *IsData = EmitScalarExpr(E->getArg(4));
6972
6973 Value *Locality = nullptr;
6974 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
6975 // Temporal fetch, needs to convert cache level to locality.
6976 Locality = llvm::ConstantInt::get(Int32Ty,
6977 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
6978 } else {
6979 // Streaming fetch.
6980 Locality = llvm::ConstantInt::get(Int32Ty, 0);
6981 }
6982
6983 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
6984 // PLDL3STRM or PLDL2STRM.
6985 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
6986 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6987 }
6988
6989 if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
6990 assert((getContext().getTypeSize(E->getType()) == 32) &&(((getContext().getTypeSize(E->getType()) == 32) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6991, __PRETTY_FUNCTION__))
6991 "rbit of unusual size!")(((getContext().getTypeSize(E->getType()) == 32) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6991, __PRETTY_FUNCTION__))
;
6992 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6993 return Builder.CreateCall(
6994 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6995 }
6996 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
6997 assert((getContext().getTypeSize(E->getType()) == 64) &&(((getContext().getTypeSize(E->getType()) == 64) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6998, __PRETTY_FUNCTION__))
6998 "rbit of unusual size!")(((getContext().getTypeSize(E->getType()) == 64) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6998, __PRETTY_FUNCTION__))
;
6999 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7000 return Builder.CreateCall(
7001 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7002 }
7003
7004 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
7005 assert((getContext().getTypeSize(E->getType()) == 32) &&(((getContext().getTypeSize(E->getType()) == 32) &&
"__jcvt of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7006, __PRETTY_FUNCTION__))
7006 "__jcvt of unusual size!")(((getContext().getTypeSize(E->getType()) == 32) &&
"__jcvt of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7006, __PRETTY_FUNCTION__))
;
7007 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7008 return Builder.CreateCall(
7009 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
7010 }
7011
7012 if (BuiltinID == AArch64::BI__clear_cache) {
7013 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")((E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7013, __PRETTY_FUNCTION__))
;
7014 const FunctionDecl *FD = E->getDirectCallee();
7015 Value *Ops[2];
7016 for (unsigned i = 0; i < 2; i++)
7017 Ops[i] = EmitScalarExpr(E->getArg(i));
7018 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7019 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7020 StringRef Name = FD->getName();
7021 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7022 }
7023
7024 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
7025 BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
7026 getContext().getTypeSize(E->getType()) == 128) {
7027 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
7028 ? Intrinsic::aarch64_ldaxp
7029 : Intrinsic::aarch64_ldxp);
7030
7031 Value *LdPtr = EmitScalarExpr(E->getArg(0));
7032 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7033 "ldxp");
7034
7035 Value *Val0 = Builder.CreateExtractValue(Val, 1);
7036 Value *Val1 = Builder.CreateExtractValue(Val, 0);
7037 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
7038 Val0 = Builder.CreateZExt(Val0, Int128Ty);
7039 Val1 = Builder.CreateZExt(Val1, Int128Ty);
7040
7041 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
7042 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7043 Val = Builder.CreateOr(Val, Val1);
7044 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7045 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
7046 BuiltinID == AArch64::BI__builtin_arm_ldaex) {
7047 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7048
7049 QualType Ty = E->getType();
7050 llvm::Type *RealResTy = ConvertType(Ty);
7051 llvm::Type *PtrTy = llvm::IntegerType::get(
7052 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7053 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7054
7055 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
7056 ? Intrinsic::aarch64_ldaxr
7057 : Intrinsic::aarch64_ldxr,
7058 PtrTy);
7059 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
7060
7061 if (RealResTy->isPointerTy())
7062 return Builder.CreateIntToPtr(Val, RealResTy);
7063
7064 llvm::Type *IntResTy = llvm::IntegerType::get(
7065 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7066 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7067 return Builder.CreateBitCast(Val, RealResTy);
7068 }
7069
7070 if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
7071 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
7072 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
7073 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7074 ? Intrinsic::aarch64_stlxp
7075 : Intrinsic::aarch64_stxp);
7076 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
7077
7078 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7079 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
7080
7081 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
7082 llvm::Value *Val = Builder.CreateLoad(Tmp);
7083
7084 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7085 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7086 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
7087 Int8PtrTy);
7088 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
7089 }
7090
7091 if (BuiltinID == AArch64::BI__builtin_arm_strex ||
7092 BuiltinID == AArch64::BI__builtin_arm_stlex) {
7093 Value *StoreVal = EmitScalarExpr(E->getArg(0));
7094 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7095
7096 QualType Ty = E->getArg(0)->getType();
7097 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7098 getContext().getTypeSize(Ty));
7099 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7100
7101 if (StoreVal->getType()->isPointerTy())
7102 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
7103 else {
7104 llvm::Type *IntTy = llvm::IntegerType::get(
7105 getLLVMContext(),
7106 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7107 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7108 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
7109 }
7110
7111 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7112 ? Intrinsic::aarch64_stlxr
7113 : Intrinsic::aarch64_stxr,
7114 StoreAddr->getType());
7115 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
7116 }
7117
7118 if (BuiltinID == AArch64::BI__getReg) {
7119 Expr::EvalResult Result;
7120 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7121 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7121)
;
7122
7123 llvm::APSInt Value = Result.Val.getInt();
7124 LLVMContext &Context = CGM.getLLVMContext();
7125 std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
7126
7127 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
7128 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7129 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7130
7131 llvm::Function *F =
7132 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
7133 return Builder.CreateCall(F, Metadata);
7134 }
7135
7136 if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
7137 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
7138 return Builder.CreateCall(F);
7139 }
7140
7141 if (BuiltinID == AArch64::BI_ReadWriteBarrier)
7142 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
7143 llvm::SyncScope::SingleThread);
7144
7145 // CRC32
7146 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7147 switch (BuiltinID) {
7148 case AArch64::BI__builtin_arm_crc32b:
7149 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
7150 case AArch64::BI__builtin_arm_crc32cb:
7151 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
7152 case AArch64::BI__builtin_arm_crc32h:
7153 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
7154 case AArch64::BI__builtin_arm_crc32ch:
7155 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
7156 case AArch64::BI__builtin_arm_crc32w:
7157 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
7158 case AArch64::BI__builtin_arm_crc32cw:
7159 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
7160 case AArch64::BI__builtin_arm_crc32d:
7161 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
7162 case AArch64::BI__builtin_arm_crc32cd:
7163 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
7164 }
7165
7166 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7167 Value *Arg0 = EmitScalarExpr(E->getArg(0));
7168 Value *Arg1 = EmitScalarExpr(E->getArg(1));
7169 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7170
7171 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
7172 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
7173
7174 return Builder.CreateCall(F, {Arg0, Arg1});
7175 }
7176
7177 // Memory Tagging Extensions (MTE) Intrinsics
7178 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
7179 switch (BuiltinID) {
7180 case AArch64::BI__builtin_arm_irg:
7181 MTEIntrinsicID = Intrinsic::aarch64_irg; break;
7182 case AArch64::BI__builtin_arm_addg:
7183 MTEIntrinsicID = Intrinsic::aarch64_addg; break;
7184 case AArch64::BI__builtin_arm_gmi:
7185 MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
7186 case AArch64::BI__builtin_arm_ldg:
7187 MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
7188 case AArch64::BI__builtin_arm_stg:
7189 MTEIntrinsicID = Intrinsic::aarch64_stg; break;
7190 case AArch64::BI__builtin_arm_subp:
7191 MTEIntrinsicID = Intrinsic::aarch64_subp; break;
7192 }
7193
7194 if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
7195 llvm::Type *T = ConvertType(E->getType());
7196
7197 if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
7198 Value *Pointer = EmitScalarExpr(E->getArg(0));
7199 Value *Mask = EmitScalarExpr(E->getArg(1));
7200
7201 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7202 Mask = Builder.CreateZExt(Mask, Int64Ty);
7203 Value *RV = Builder.CreateCall(
7204 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
7205 return Builder.CreatePointerCast(RV, T);
7206 }
7207 if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
7208 Value *Pointer = EmitScalarExpr(E->getArg(0));
7209 Value *TagOffset = EmitScalarExpr(E->getArg(1));
7210
7211 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7212 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
7213 Value *RV = Builder.CreateCall(
7214 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
7215 return Builder.CreatePointerCast(RV, T);
7216 }
7217 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
7218 Value *Pointer = EmitScalarExpr(E->getArg(0));
7219 Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
7220
7221 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
7222 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7223 return Builder.CreateCall(
7224 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
7225 }
7226 // Although it is possible to supply a different return
7227 // address (first arg) to this intrinsic, for now we set
7228 // return address same as input address.
7229 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
7230 Value *TagAddress = EmitScalarExpr(E->getArg(0));
7231 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7232 Value *RV = Builder.CreateCall(
7233 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7234 return Builder.CreatePointerCast(RV, T);
7235 }
7236 // Although it is possible to supply a different tag (to set)
7237 // to this intrinsic (as first arg), for now we supply
7238 // the tag that is in input address arg (common use case).
7239 if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
7240 Value *TagAddress = EmitScalarExpr(E->getArg(0));
7241 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7242 return Builder.CreateCall(
7243 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7244 }
7245 if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
7246 Value *PointerA = EmitScalarExpr(E->getArg(0));
7247 Value *PointerB = EmitScalarExpr(E->getArg(1));
7248 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
7249 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
7250 return Builder.CreateCall(
7251 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
7252 }
7253 }
7254
7255 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
7256 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7257 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7258 BuiltinID == AArch64::BI__builtin_arm_wsr ||
7259 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7260 BuiltinID == AArch64::BI__builtin_arm_wsrp) {
7261
7262 bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
7263 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7264 BuiltinID == AArch64::BI__builtin_arm_rsrp;
7265
7266 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7267 BuiltinID == AArch64::BI__builtin_arm_wsrp;
7268
7269 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
7270 BuiltinID != AArch64::BI__builtin_arm_wsr;
7271
7272 llvm::Type *ValueType;
7273 llvm::Type *RegisterType = Int64Ty;
7274 if (IsPointerBuiltin) {
7275 ValueType = VoidPtrTy;
7276 } else if (Is64Bit) {
7277 ValueType = Int64Ty;
7278 } else {
7279 ValueType = Int32Ty;
7280 }
7281
7282 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
7283 }
7284
7285 if (BuiltinID == AArch64::BI_ReadStatusReg ||
7286 BuiltinID == AArch64::BI_WriteStatusReg) {
7287 LLVMContext &Context = CGM.getLLVMContext();
7288
7289 unsigned SysReg =
7290 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
7291
7292 std::string SysRegStr;
7293 llvm::raw_string_ostream(SysRegStr) <<
7294 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
7295 ((SysReg >> 11) & 7) << ":" <<
7296 ((SysReg >> 7) & 15) << ":" <<
7297 ((SysReg >> 3) & 15) << ":" <<
7298 ( SysReg & 7);
7299
7300 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
7301 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7302 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7303
7304 llvm::Type *RegisterType = Int64Ty;
7305 llvm::Type *Types[] = { RegisterType };
7306
7307 if (BuiltinID == AArch64::BI_ReadStatusReg) {
7308 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
7309
7310 return Builder.CreateCall(F, Metadata);
7311 }
7312
7313 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7314 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
7315
7316 return Builder.CreateCall(F, { Metadata, ArgValue });
7317 }
7318
7319 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
7320 llvm::Function *F =
7321 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
7322 return Builder.CreateCall(F);
7323 }
7324
7325 if (BuiltinID == AArch64::BI__builtin_sponentry) {
7326 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
7327 return Builder.CreateCall(F);
7328 }
7329
7330 // Find out if any arguments are required to be integer constant
7331 // expressions.
7332 unsigned ICEArguments = 0;
7333 ASTContext::GetBuiltinTypeError Error;
7334 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7335 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7335, __PRETTY_FUNCTION__))
;
7336
7337 llvm::SmallVector<Value*, 4> Ops;
7338 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
7339 if ((ICEArguments & (1 << i)) == 0) {
7340 Ops.push_back(EmitScalarExpr(E->getArg(i)));
7341 } else {
7342 // If this is required to be a constant, constant fold it so that we know
7343 // that the generated intrinsic gets a ConstantInt.
7344 llvm::APSInt Result;
7345 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
7346 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7346, __PRETTY_FUNCTION__))
;
7347 (void)IsConst;
7348 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
7349 }
7350 }
7351
7352 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
7353 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
7354 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
7355
7356 if (Builtin) {
7357 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
7358 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
7359 assert(Result && "SISD intrinsic should have been handled")((Result && "SISD intrinsic should have been handled"
) ? static_cast<void> (0) : __assert_fail ("Result && \"SISD intrinsic should have been handled\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7359, __PRETTY_FUNCTION__))
;
7360 return Result;
7361 }
7362
7363 llvm::APSInt Result;
7364 const Expr *Arg = E->getArg(E->getNumArgs()-1);
7365 NeonTypeFlags Type(0);
7366 if (Arg->isIntegerConstantExpr(Result, getContext()))
7367 // Determine the type of this overloaded NEON intrinsic.
7368 Type = NeonTypeFlags(Result.getZExtValue());
7369
7370 bool usgn = Type.isUnsigned();
7371 bool quad = Type.isQuad();
7372
7373 // Handle non-overloaded intrinsics first.
7374 switch (BuiltinID) {
7375 default: break;
7376 case NEON::BI__builtin_neon_vabsh_f16:
7377 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7378 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
7379 case NEON::BI__builtin_neon_vldrq_p128: {
7380 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
7381 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
7382 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
7383 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
7384 CharUnits::fromQuantity(16));
7385 }
7386 case NEON::BI__builtin_neon_vstrq_p128: {
7387 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
7388 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
7389 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
7390 }
7391 case NEON::BI__builtin_neon_vcvts_u32_f32:
7392 case NEON::BI__builtin_neon_vcvtd_u64_f64:
7393 usgn = true;
7394 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7395 case NEON::BI__builtin_neon_vcvts_s32_f32:
7396 case NEON::BI__builtin_neon_vcvtd_s64_f64: {
7397 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7398 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7399 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7400 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7401 Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
7402 if (usgn)
7403 return Builder.CreateFPToUI(Ops[0], InTy);
7404 return Builder.CreateFPToSI(Ops[0], InTy);
7405 }
7406 case NEON::BI__builtin_neon_vcvts_f32_u32:
7407 case NEON::BI__builtin_neon_vcvtd_f64_u64:
7408 usgn = true;
7409 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7410 case NEON::BI__builtin_neon_vcvts_f32_s32:
7411 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
7412 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7413 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7414 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7415 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7416 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7417 if (usgn)
7418 return Builder.CreateUIToFP(Ops[0], FTy);
7419 return Builder.CreateSIToFP(Ops[0], FTy);
7420 }
7421 case NEON::BI__builtin_neon_vcvth_f16_u16:
7422 case NEON::BI__builtin_neon_vcvth_f16_u32:
7423 case NEON::BI__builtin_neon_vcvth_f16_u64:
7424 usgn = true;
7425 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7426 case NEON::BI__builtin_neon_vcvth_f16_s16:
7427 case NEON::BI__builtin_neon_vcvth_f16_s32:
7428 case NEON::BI__builtin_neon_vcvth_f16_s64: {
7429 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7430 llvm::Type *FTy = HalfTy;
7431 llvm::Type *InTy;
7432 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
7433 InTy = Int64Ty;
7434 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
7435 InTy = Int32Ty;
7436 else
7437 InTy = Int16Ty;
7438 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7439 if (usgn)
7440 return Builder.CreateUIToFP(Ops[0], FTy);
7441 return Builder.CreateSIToFP(Ops[0], FTy);
7442 }
7443 case NEON::BI__builtin_neon_vcvth_u16_f16:
7444 usgn = true;
7445 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7446 case NEON::BI__builtin_neon_vcvth_s16_f16: {
7447 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7448 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7449 if (usgn)
7450 return Builder.CreateFPToUI(Ops[0], Int16Ty);
7451 return Builder.CreateFPToSI(Ops[0], Int16Ty);
7452 }
7453 case NEON::BI__builtin_neon_vcvth_u32_f16:
7454 usgn = true;
7455 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7456 case NEON::BI__builtin_neon_vcvth_s32_f16: {
7457 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7458 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7459 if (usgn)
7460 return Builder.CreateFPToUI(Ops[0], Int32Ty);
7461 return Builder.CreateFPToSI(Ops[0], Int32Ty);
7462 }
7463 case NEON::BI__builtin_neon_vcvth_u64_f16:
7464 usgn = true;
7465 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7466 case NEON::BI__builtin_neon_vcvth_s64_f16: {
7467 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7468 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7469 if (usgn)
7470 return Builder.CreateFPToUI(Ops[0], Int64Ty);
7471 return Builder.CreateFPToSI(Ops[0], Int64Ty);
7472 }
7473 case NEON::BI__builtin_neon_vcvtah_u16_f16:
7474 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7475 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7476 case NEON::BI__builtin_neon_vcvtph_u16_f16:
7477 case NEON::BI__builtin_neon_vcvtah_s16_f16:
7478 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7479 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7480 case NEON::BI__builtin_neon_vcvtph_s16_f16: {
7481 unsigned Int;
7482 llvm::Type* InTy = Int32Ty;
7483 llvm::Type* FTy = HalfTy;
7484 llvm::Type *Tys[2] = {InTy, FTy};
7485 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7486 switch (BuiltinID) {
7487 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7487)
;
7488 case NEON::BI__builtin_neon_vcvtah_u16_f16:
7489 Int = Intrinsic::aarch64_neon_fcvtau; break;
7490 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7491 Int = Intrinsic::aarch64_neon_fcvtmu; break;
7492 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7493 Int = Intrinsic::aarch64_neon_fcvtnu; break;
7494 case NEON::BI__builtin_neon_vcvtph_u16_f16:
7495 Int = Intrinsic::aarch64_neon_fcvtpu; break;
7496 case NEON::BI__builtin_neon_vcvtah_s16_f16:
7497 Int = Intrinsic::aarch64_neon_fcvtas; break;
7498 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7499 Int = Intrinsic::aarch64_neon_fcvtms; break;
7500 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7501 Int = Intrinsic::aarch64_neon_fcvtns; break;
7502 case NEON::BI__builtin_neon_vcvtph_s16_f16:
7503 Int = Intrinsic::aarch64_neon_fcvtps; break;
7504 }
7505 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
7506 return Builder.CreateTrunc(Ops[0], Int16Ty);
7507 }
7508 case NEON::BI__builtin_neon_vcaleh_f16:
7509 case NEON::BI__builtin_neon_vcalth_f16:
7510 case NEON::BI__builtin_neon_vcageh_f16:
7511 case NEON::BI__builtin_neon_vcagth_f16: {
7512 unsigned Int;
7513 llvm::Type* InTy = Int32Ty;
7514 llvm::Type* FTy = HalfTy;
7515 llvm::Type *Tys[2] = {InTy, FTy};
7516 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7517 switch (BuiltinID) {
7518 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7518)
;
7519 case NEON::BI__builtin_neon_vcageh_f16:
7520 Int = Intrinsic::aarch64_neon_facge; break;
7521 case NEON::BI__builtin_neon_vcagth_f16:
7522 Int = Intrinsic::aarch64_neon_facgt; break;
7523 case NEON::BI__builtin_neon_vcaleh_f16:
7524 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
7525 case NEON::BI__builtin_neon_vcalth_f16:
7526 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
7527 }
7528 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
7529 return Builder.CreateTrunc(Ops[0], Int16Ty);
7530 }
7531 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7532 case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
7533 unsigned Int;
7534 llvm::Type* InTy = Int32Ty;
7535 llvm::Type* FTy = HalfTy;
7536 llvm::Type *Tys[2] = {InTy, FTy};
7537 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7538 switch (BuiltinID) {
7539 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7539)
;
7540 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7541 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
7542 case NEON::BI__builtin_neon_vcvth_n_u16_f16:
7543 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
7544 }
7545 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7546 return Builder.CreateTrunc(Ops[0], Int16Ty);
7547 }
7548 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7549 case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
7550 unsigned Int;
7551 llvm::Type* FTy = HalfTy;
7552 llvm::Type* InTy = Int32Ty;
7553 llvm::Type *Tys[2] = {FTy, InTy};
7554 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7555 switch (BuiltinID) {
7556 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7556)
;
7557 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7558 Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
7559 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
7560 break;
7561 case NEON::BI__builtin_neon_vcvth_n_f16_u16:
7562 Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
7563 Ops[0] = Builder.CreateZExt(Ops[0], InTy);
7564 break;
7565 }
7566 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7567 }
7568 case NEON::BI__builtin_neon_vpaddd_s64: {
7569 llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
7570 Value *Vec = EmitScalarExpr(E->getArg(0));
7571 // The vector is v2f64, so make sure it's bitcast to that.
7572 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
7573 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7574 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7575 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7576 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7577 // Pairwise addition of a v2f64 into a scalar f64.
7578 return Builder.CreateAdd(Op0, Op1, "vpaddd");
7579 }
7580 case NEON::BI__builtin_neon_vpaddd_f64: {
7581 llvm::Type *Ty =
7582 llvm::VectorType::get(DoubleTy, 2);
7583 Value *Vec = EmitScalarExpr(E->getArg(0));
7584 // The vector is v2f64, so make sure it's bitcast to that.
7585 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
7586 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7587 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7588 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7589 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7590 // Pairwise addition of a v2f64 into a scalar f64.
7591 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7592 }
7593 case NEON::BI__builtin_neon_vpadds_f32: {
7594 llvm::Type *Ty =
7595 llvm::VectorType::get(FloatTy, 2);
7596 Value *Vec = EmitScalarExpr(E->getArg(0));
7597 // The vector is v2f32, so make sure it's bitcast to that.
7598 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
7599 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7600 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7601 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7602 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7603 // Pairwise addition of a v2f32 into a scalar f32.
7604 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7605 }
7606 case NEON::BI__builtin_neon_vceqzd_s64:
7607 case NEON::BI__builtin_neon_vceqzd_f64:
7608 case NEON::BI__builtin_neon_vceqzs_f32:
7609 case NEON::BI__builtin_neon_vceqzh_f16:
7610 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7611 return EmitAArch64CompareBuiltinExpr(
7612 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7613 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
7614 case NEON::BI__builtin_neon_vcgezd_s64:
7615 case NEON::BI__builtin_neon_vcgezd_f64:
7616 case NEON::BI__builtin_neon_vcgezs_f32:
7617 case NEON::BI__builtin_neon_vcgezh_f16:
7618 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7619 return EmitAArch64CompareBuiltinExpr(
7620 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7621 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
7622 case NEON::BI__builtin_neon_vclezd_s64:
7623 case NEON::BI__builtin_neon_vclezd_f64:
7624 case NEON::BI__builtin_neon_vclezs_f32:
7625 case NEON::BI__builtin_neon_vclezh_f16:
7626 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7627 return EmitAArch64CompareBuiltinExpr(
7628 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7629 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
7630 case NEON::BI__builtin_neon_vcgtzd_s64:
7631 case NEON::BI__builtin_neon_vcgtzd_f64:
7632 case NEON::BI__builtin_neon_vcgtzs_f32:
7633 case NEON::BI__builtin_neon_vcgtzh_f16:
7634 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7635 return EmitAArch64CompareBuiltinExpr(
7636 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7637 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
7638 case NEON::BI__builtin_neon_vcltzd_s64:
7639 case NEON::BI__builtin_neon_vcltzd_f64:
7640 case NEON::BI__builtin_neon_vcltzs_f32:
7641 case NEON::BI__builtin_neon_vcltzh_f16:
7642 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7643 return EmitAArch64CompareBuiltinExpr(
7644 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7645 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
7646
7647 case NEON::BI__builtin_neon_vceqzd_u64: {
7648 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7649 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7650 Ops[0] =
7651 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
7652 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
7653 }
7654 case NEON::BI__builtin_neon_vceqd_f64:
7655 case NEON::BI__builtin_neon_vcled_f64:
7656 case NEON::BI__builtin_neon_vcltd_f64:
7657 case NEON::BI__builtin_neon_vcged_f64:
7658 case NEON::BI__builtin_neon_vcgtd_f64: {
7659 llvm::CmpInst::Predicate P;
7660 switch (BuiltinID) {
7661 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7661)
;
7662 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
7663 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
7664 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
7665 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
7666 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
7667 }
7668 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7669 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
7670 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
7671 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7672 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
7673 }
7674 case NEON::BI__builtin_neon_vceqs_f32:
7675 case NEON::BI__builtin_neon_vcles_f32:
7676 case NEON::BI__builtin_neon_vclts_f32:
7677 case NEON::BI__builtin_neon_vcges_f32:
7678 case NEON::BI__builtin_neon_vcgts_f32: {
7679 llvm::CmpInst::Predicate P;
7680 switch (BuiltinID) {
7681 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7681)
;
7682 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
7683 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
7684 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
7685 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
7686 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
7687 }
7688 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7689 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
7690 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
7691 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7692 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
7693 }
7694 case NEON::BI__builtin_neon_vceqh_f16:
7695 case NEON::BI__builtin_neon_vcleh_f16:
7696 case NEON::BI__builtin_neon_vclth_f16:
7697 case NEON::BI__builtin_neon_vcgeh_f16:
7698 case NEON::BI__builtin_neon_vcgth_f16: {
7699 llvm::CmpInst::Predicate P;
7700 switch (BuiltinID) {
7701 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7701)
;
7702 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
7703 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
7704 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
7705 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
7706 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
7707 }
7708 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7709 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7710 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
7711 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7712 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
7713 }
7714 case NEON::BI__builtin_neon_vceqd_s64:
7715 case NEON::BI__builtin_neon_vceqd_u64:
7716 case NEON::BI__builtin_neon_vcgtd_s64:
7717 case NEON::BI__builtin_neon_vcgtd_u64:
7718 case NEON::BI__builtin_neon_vcltd_s64:
7719 case NEON::BI__builtin_neon_vcltd_u64:
7720 case NEON::BI__builtin_neon_vcged_u64:
7721 case NEON::BI__builtin_neon_vcged_s64:
7722 case NEON::BI__builtin_neon_vcled_u64:
7723 case NEON::BI__builtin_neon_vcled_s64: {
7724 llvm::CmpInst::Predicate P;
7725 switch (BuiltinID) {
7726 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7726)
;
7727 case NEON::BI__builtin_neon_vceqd_s64:
7728 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
7729 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
7730 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
7731 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
7732 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
7733 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
7734 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
7735 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
7736 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
7737 }
7738 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7739 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7740 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7741 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
7742 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
7743 }
7744 case NEON::BI__builtin_neon_vtstd_s64:
7745 case NEON::BI__builtin_neon_vtstd_u64: {
7746 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7747 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7748 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7749 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7750 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7751 llvm::Constant::getNullValue(Int64Ty));
7752 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
7753 }
7754 case NEON::BI__builtin_neon_vset_lane_i8:
7755 case NEON::BI__builtin_neon_vset_lane_i16:
7756 case NEON::BI__builtin_neon_vset_lane_i32:
7757 case NEON::BI__builtin_neon_vset_lane_i64:
7758 case NEON::BI__builtin_neon_vset_lane_f32:
7759 case NEON::BI__builtin_neon_vsetq_lane_i8:
7760 case NEON::BI__builtin_neon_vsetq_lane_i16:
7761 case NEON::BI__builtin_neon_vsetq_lane_i32:
7762 case NEON::BI__builtin_neon_vsetq_lane_i64:
7763 case NEON::BI__builtin_neon_vsetq_lane_f32:
7764 Ops.push_back(EmitScalarExpr(E->getArg(2)));
7765 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7766 case NEON::BI__builtin_neon_vset_lane_f64:
7767 // The vector type needs a cast for the v1f64 variant.
7768 Ops[1] = Builder.CreateBitCast(Ops[1],
7769 llvm::VectorType::get(DoubleTy, 1));
7770 Ops.push_back(EmitScalarExpr(E->getArg(2)));
7771 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7772 case NEON::BI__builtin_neon_vsetq_lane_f64:
7773 // The vector type needs a cast for the v2f64 variant.
7774 Ops[1] = Builder.CreateBitCast(Ops[1],
7775 llvm::VectorType::get(DoubleTy, 2));
7776 Ops.push_back(EmitScalarExpr(E->getArg(2)));
7777 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7778
7779 case NEON::BI__builtin_neon_vget_lane_i8:
7780 case NEON::BI__builtin_neon_vdupb_lane_i8:
7781 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
7782 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7783 "vget_lane");
7784 case NEON::BI__builtin_neon_vgetq_lane_i8:
7785 case NEON::BI__builtin_neon_vdupb_laneq_i8:
7786 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
7787 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7788 "vgetq_lane");
7789 case NEON::BI__builtin_neon_vget_lane_i16:
7790 case NEON::BI__builtin_neon_vduph_lane_i16:
7791 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
7792 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7793 "vget_lane");
7794 case NEON::BI__builtin_neon_vgetq_lane_i16:
7795 case NEON::BI__builtin_neon_vduph_laneq_i16:
7796 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
7797 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7798 "vgetq_lane");
7799 case NEON::BI__builtin_neon_vget_lane_i32:
7800 case NEON::BI__builtin_neon_vdups_lane_i32:
7801 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
7802 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7803 "vget_lane");
7804 case NEON::BI__builtin_neon_vdups_lane_f32:
7805 Ops[0] = Builder.CreateBitCast(Ops[0],
7806 llvm::VectorType::get(FloatTy, 2));
7807 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7808 "vdups_lane");
7809 case NEON::BI__builtin_neon_vgetq_lane_i32:
7810 case NEON::BI__builtin_neon_vdups_laneq_i32:
7811 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
7812 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7813 "vgetq_lane");
7814 case NEON::BI__builtin_neon_vget_lane_i64:
7815 case NEON::BI__builtin_neon_vdupd_lane_i64:
7816 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
7817 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7818 "vget_lane");
7819 case NEON::BI__builtin_neon_vdupd_lane_f64:
7820 Ops[0] = Builder.CreateBitCast(Ops[0],
7821 llvm::VectorType::get(DoubleTy, 1));
7822 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7823 "vdupd_lane");
7824 case NEON::BI__builtin_neon_vgetq_lane_i64:
7825 case NEON::BI__builtin_neon_vdupd_laneq_i64:
7826 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
7827 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7828 "vgetq_lane");
7829 case NEON::BI__builtin_neon_vget_lane_f32:
7830 Ops[0] = Builder.CreateBitCast(Ops[0],
7831 llvm::VectorType::get(FloatTy, 2));
7832 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7833 "vget_lane");
7834 case NEON::BI__builtin_neon_vget_lane_f64:
7835 Ops[0] = Builder.CreateBitCast(Ops[0],
7836 llvm::VectorType::get(DoubleTy, 1));
7837 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7838 "vget_lane");
7839 case NEON::BI__builtin_neon_vgetq_lane_f32:
7840 case NEON::BI__builtin_neon_vdups_laneq_f32:
7841 Ops[0] = Builder.CreateBitCast(Ops[0],
7842 llvm::VectorType::get(FloatTy, 4));
7843 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7844 "vgetq_lane");
7845 case NEON::BI__builtin_neon_vgetq_lane_f64:
7846 case NEON::BI__builtin_neon_vdupd_laneq_f64:
7847 Ops[0] = Builder.CreateBitCast(Ops[0],
7848 llvm::VectorType::get(DoubleTy, 2));
7849 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7850 "vgetq_lane");
7851 case NEON::BI__builtin_neon_vaddh_f16:
7852 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7853 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
7854 case NEON::BI__builtin_neon_vsubh_f16:
7855 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7856 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
7857 case NEON::BI__builtin_neon_vmulh_f16:
7858 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7859 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
7860 case NEON::BI__builtin_neon_vdivh_f16:
7861 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7862 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
7863 case NEON::BI__builtin_neon_vfmah_f16: {
7864 Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7865 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7866 return Builder.CreateCall(F,
7867 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
7868 }
7869 case NEON::BI__builtin_neon_vfmsh_f16: {
7870 Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7871 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
7872 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
7873 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7874 return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
7875 }
7876 case NEON::BI__builtin_neon_vaddd_s64:
7877 case NEON::BI__builtin_neon_vaddd_u64:
7878 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
7879 case NEON::BI__builtin_neon_vsubd_s64:
7880 case NEON::BI__builtin_neon_vsubd_u64:
7881 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
7882 case NEON::BI__builtin_neon_vqdmlalh_s16:
7883 case NEON::BI__builtin_neon_vqdmlslh_s16: {
7884 SmallVector<Value *, 2> ProductOps;
7885 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
7886 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
7887 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
7888 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
7889 ProductOps, "vqdmlXl");
7890 Constant *CI = ConstantInt::get(SizeTy, 0);
7891 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
7892
7893 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
7894 ? Intrinsic::aarch64_neon_sqadd
7895 : Intrinsic::aarch64_neon_sqsub;
7896 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
7897 }
7898 case NEON::BI__builtin_neon_vqshlud_n_s64: {
7899 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7900 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
7901 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
7902 Ops, "vqshlu_n");
7903 }
7904 case NEON::BI__builtin_neon_vqshld_n_u64:
7905 case NEON::BI__builtin_neon_vqshld_n_s64: {
7906 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
7907 ? Intrinsic::aarch64_neon_uqshl
7908 : Intrinsic::aarch64_neon_sqshl;
7909 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7910 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
7911 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
7912 }
7913 case NEON::BI__builtin_neon_vrshrd_n_u64:
7914 case NEON::BI__builtin_neon_vrshrd_n_s64: {
7915 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
7916 ? Intrinsic::aarch64_neon_urshl
7917 : Intrinsic::aarch64_neon_srshl;
7918 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7919 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
7920 Ops[1] = ConstantInt::get(Int64Ty, -SV);
7921 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
7922 }
7923 case NEON::BI__builtin_neon_vrsrad_n_u64:
7924 case NEON::BI__builtin_neon_vrsrad_n_s64: {
7925 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
7926 ? Intrinsic::aarch64_neon_urshl
7927 : Intrinsic::aarch64_neon_srshl;
7928 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7929 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
7930 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
7931 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
7932 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
7933 }
7934 case NEON::BI__builtin_neon_vshld_n_s64:
7935 case NEON::BI__builtin_neon_vshld_n_u64: {
7936 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7937 return Builder.CreateShl(
7938 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
7939 }
7940 case NEON::BI__builtin_neon_vshrd_n_s64: {
7941 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7942 return Builder.CreateAShr(
7943 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
7944 Amt->getZExtValue())),
7945 "shrd_n");
7946 }
7947 case NEON::BI__builtin_neon_vshrd_n_u64: {
7948 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7949 uint64_t ShiftAmt = Amt->getZExtValue();
7950 // Right-shifting an unsigned value by its size yields 0.
7951 if (ShiftAmt == 64)
7952 return ConstantInt::get(Int64Ty, 0);
7953 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
7954 "shrd_n");
7955 }
7956 case NEON::BI__builtin_neon_vsrad_n_s64: {
7957 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
7958 Ops[1] = Builder.CreateAShr(
7959 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
7960 Amt->getZExtValue())),
7961 "shrd_n");
7962 return Builder.CreateAdd(Ops[0], Ops[1]);
7963 }
7964 case NEON::BI__builtin_neon_vsrad_n_u64: {
7965 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
7966 uint64_t ShiftAmt = Amt->getZExtValue();
7967 // Right-shifting an unsigned value by its size yields 0.
7968 // As Op + 0 = Op, return Ops[0] directly.
7969 if (ShiftAmt == 64)
7970 return Ops[0];
7971 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
7972 "shrd_n");
7973 return Builder.CreateAdd(Ops[0], Ops[1]);
7974 }
7975 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
7976 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
7977 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
7978 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
7979 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
7980 "lane");
7981 SmallVector<Value *, 2> ProductOps;
7982 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
7983 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
7984 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
7985 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
7986 ProductOps, "vqdmlXl");
7987 Constant *CI = ConstantInt::get(SizeTy, 0);
7988 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
7989 Ops.pop_back();
7990
7991 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
7992 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
7993 ? Intrinsic::aarch64_neon_sqadd
7994 : Intrinsic::aarch64_neon_sqsub;
7995 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
7996 }
7997 case NEON::BI__builtin_neon_vqdmlals_s32:
7998 case NEON::BI__builtin_neon_vqdmlsls_s32: {
7999 SmallVector<Value *, 2> ProductOps;
8000 ProductOps.push_back(Ops[1]);
8001 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
8002 Ops[1] =
8003 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
8004 ProductOps, "vqdmlXl");
8005
8006 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
8007 ? Intrinsic::aarch64_neon_sqadd
8008 : Intrinsic::aarch64_neon_sqsub;
8009 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
8010 }
8011 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
8012 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
8013 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
8014 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
8015 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
8016 "lane");
8017 SmallVector<Value *, 2> ProductOps;
8018 ProductOps.push_back(Ops[1]);
8019 ProductOps.push_back(Ops[2]);
8020 Ops[1] =
8021 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
8022 ProductOps, "vqdmlXl");
8023 Ops.pop_back();
8024
8025 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
8026 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
8027 ? Intrinsic::aarch64_neon_sqadd
8028 : Intrinsic::aarch64_neon_sqsub;
8029 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
8030 }
8031 case NEON::BI__builtin_neon_vduph_lane_f16: {
8032 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8033 "vget_lane");
8034 }
8035 case NEON::BI__builtin_neon_vduph_laneq_f16: {
8036 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8037 "vgetq_lane");
8038 }
8039 case AArch64::BI_BitScanForward:
8040 case AArch64::BI_BitScanForward64:
8041 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
8042 case AArch64::BI_BitScanReverse:
8043 case AArch64::BI_BitScanReverse64:
8044 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
8045 case AArch64::BI_InterlockedAnd64:
8046 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
8047 case AArch64::BI_InterlockedExchange64:
8048 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
8049 case AArch64::BI_InterlockedExchangeAdd64:
8050 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
8051 case AArch64::BI_InterlockedExchangeSub64:
8052 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
8053 case AArch64::BI_InterlockedOr64:
8054 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
8055 case AArch64::BI_InterlockedXor64:
8056 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
8057 case AArch64::BI_InterlockedDecrement64:
8058 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
8059 case AArch64::BI_InterlockedIncrement64:
8060 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
8061 case AArch64::BI_InterlockedExchangeAdd8_acq:
8062 case AArch64::BI_InterlockedExchangeAdd16_acq:
8063 case AArch64::BI_InterlockedExchangeAdd_acq:
8064 case AArch64::BI_InterlockedExchangeAdd64_acq:
8065 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
8066 case AArch64::BI_InterlockedExchangeAdd8_rel:
8067 case AArch64::BI_InterlockedExchangeAdd16_rel:
8068 case AArch64::BI_InterlockedExchangeAdd_rel:
8069 case AArch64::BI_InterlockedExchangeAdd64_rel:
8070 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
8071 case AArch64::BI_InterlockedExchangeAdd8_nf:
8072 case AArch64::BI_InterlockedExchangeAdd16_nf:
8073 case AArch64::BI_InterlockedExchangeAdd_nf:
8074 case AArch64::BI_InterlockedExchangeAdd64_nf:
8075 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
8076 case AArch64::BI_InterlockedExchange8_acq:
8077 case AArch64::BI_InterlockedExchange16_acq:
8078 case AArch64::BI_InterlockedExchange_acq:
8079 case AArch64::BI_InterlockedExchange64_acq:
8080 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
8081 case AArch64::BI_InterlockedExchange8_rel:
8082 case AArch64::BI_InterlockedExchange16_rel:
8083 case AArch64::BI_InterlockedExchange_rel:
8084 case AArch64::BI_InterlockedExchange64_rel:
8085 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
8086 case AArch64::BI_InterlockedExchange8_nf:
8087 case AArch64::BI_InterlockedExchange16_nf:
8088 case AArch64::BI_InterlockedExchange_nf:
8089 case AArch64::BI_InterlockedExchange64_nf:
8090 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
8091 case AArch64::BI_InterlockedCompareExchange8_acq:
8092 case AArch64::BI_InterlockedCompareExchange16_acq:
8093 case AArch64::BI_InterlockedCompareExchange_acq:
8094 case AArch64::BI_InterlockedCompareExchange64_acq:
8095 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
8096 case AArch64::BI_InterlockedCompareExchange8_rel:
8097 case AArch64::BI_InterlockedCompareExchange16_rel:
8098 case AArch64::BI_InterlockedCompareExchange_rel:
8099 case AArch64::BI_InterlockedCompareExchange64_rel:
8100 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
8101 case AArch64::BI_InterlockedCompareExchange8_nf:
8102 case AArch64::BI_InterlockedCompareExchange16_nf:
8103 case AArch64::BI_InterlockedCompareExchange_nf:
8104 case AArch64::BI_InterlockedCompareExchange64_nf:
8105 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
8106 case AArch64::BI_InterlockedOr8_acq:
8107 case AArch64::BI_InterlockedOr16_acq:
8108 case AArch64::BI_InterlockedOr_acq:
8109 case AArch64::BI_InterlockedOr64_acq:
8110 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
8111 case AArch64::BI_InterlockedOr8_rel:
8112 case AArch64::BI_InterlockedOr16_rel:
8113 case AArch64::BI_InterlockedOr_rel:
8114 case AArch64::BI_InterlockedOr64_rel:
8115 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
8116 case AArch64::BI_InterlockedOr8_nf:
8117 case AArch64::BI_InterlockedOr16_nf:
8118 case AArch64::BI_InterlockedOr_nf:
8119 case AArch64::BI_InterlockedOr64_nf:
8120 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
8121 case AArch64::BI_InterlockedXor8_acq:
8122 case AArch64::BI_InterlockedXor16_acq:
8123 case AArch64::BI_InterlockedXor_acq:
8124 case AArch64::BI_InterlockedXor64_acq:
8125 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
8126 case AArch64::BI_InterlockedXor8_rel:
8127 case AArch64::BI_InterlockedXor16_rel:
8128 case AArch64::BI_InterlockedXor_rel:
8129 case AArch64::BI_InterlockedXor64_rel:
8130 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
8131 case AArch64::BI_InterlockedXor8_nf:
8132 case AArch64::BI_InterlockedXor16_nf:
8133 case AArch64::BI_InterlockedXor_nf:
8134 case AArch64::BI_InterlockedXor64_nf:
8135 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
8136 case AArch64::BI_InterlockedAnd8_acq:
8137 case AArch64::BI_InterlockedAnd16_acq:
8138 case AArch64::BI_InterlockedAnd_acq:
8139 case AArch64::BI_InterlockedAnd64_acq:
8140 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
8141 case AArch64::BI_InterlockedAnd8_rel:
8142 case AArch64::BI_InterlockedAnd16_rel:
8143 case AArch64::BI_InterlockedAnd_rel:
8144 case AArch64::BI_InterlockedAnd64_rel:
8145 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
8146 case AArch64::BI_InterlockedAnd8_nf:
8147 case AArch64::BI_InterlockedAnd16_nf:
8148 case AArch64::BI_InterlockedAnd_nf:
8149 case AArch64::BI_InterlockedAnd64_nf:
8150 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
8151 case AArch64::BI_InterlockedIncrement16_acq:
8152 case AArch64::BI_InterlockedIncrement_acq:
8153 case AArch64::BI_InterlockedIncrement64_acq:
8154 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
8155 case AArch64::BI_InterlockedIncrement16_rel:
8156 case AArch64::BI_InterlockedIncrement_rel:
8157 case AArch64::BI_InterlockedIncrement64_rel:
8158 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
8159 case AArch64::BI_InterlockedIncrement16_nf:
8160 case AArch64::BI_InterlockedIncrement_nf:
8161 case AArch64::BI_InterlockedIncrement64_nf:
8162 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
8163 case AArch64::BI_InterlockedDecrement16_acq:
8164 case AArch64::BI_InterlockedDecrement_acq:
8165 case AArch64::BI_InterlockedDecrement64_acq:
8166 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
8167 case AArch64::BI_InterlockedDecrement16_rel:
8168 case AArch64::BI_InterlockedDecrement_rel:
8169 case AArch64::BI_InterlockedDecrement64_rel:
8170 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
8171 case AArch64::BI_InterlockedDecrement16_nf:
8172 case AArch64::BI_InterlockedDecrement_nf:
8173 case AArch64::BI_InterlockedDecrement64_nf:
8174 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
8175
8176 case AArch64::BI_InterlockedAdd: {
8177 Value *Arg0 = EmitScalarExpr(E->getArg(0));
8178 Value *Arg1 = EmitScalarExpr(E->getArg(1));
8179 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
8180 AtomicRMWInst::Add, Arg0, Arg1,
8181 llvm::AtomicOrdering::SequentiallyConsistent);
8182 return Builder.CreateAdd(RMWI, Arg1);
8183 }
8184 }
8185
8186 llvm::VectorType *VTy = GetNeonType(this, Type);
8187 llvm::Type *Ty = VTy;
8188 if (!Ty)
8189 return nullptr;
8190
8191 // Not all intrinsics handled by the common case work for AArch64 yet, so only
8192 // defer to common code if it's been added to our special map.
8193 Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
8194 AArch64SIMDIntrinsicsProvenSorted);
8195
8196 if (Builtin)
8197 return EmitCommonNeonBuiltinExpr(
8198 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8199 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
8200 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
8201
8202 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
8203 return V;
8204
8205 unsigned Int;
8206 switch (BuiltinID) {
8207 default: return nullptr;
8208 case NEON::BI__builtin_neon_vbsl_v:
8209 case NEON::BI__builtin_neon_vbslq_v: {
8210 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
8211 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
8212 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
8213 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
8214
8215 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
8216 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
8217 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
8218 return Builder.CreateBitCast(Ops[0], Ty);
8219 }
8220 case NEON::BI__builtin_neon_vfma_lane_v:
8221 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
8222 // The ARM builtins (and instructions) have the addend as the first
8223 // operand, but the 'fma' intrinsics have it last. Swap it around here.
8224 Value *Addend = Ops[0];
8225 Value *Multiplicand = Ops[1];
8226 Value *LaneSource = Ops[2];
8227 Ops[0] = Multiplicand;
8228 Ops[1] = LaneSource;
8229 Ops[2] = Addend;
8230
8231 // Now adjust things to handle the lane access.
8232 llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
8233 llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
8234 VTy;
8235 llvm::Constant *cst = cast<Constant>(Ops[3]);
8236 Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
8237 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
8238 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
8239
8240 Ops.pop_back();
8241 Int = Intrinsic::fma;
8242 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
8243 }
8244 case NEON::BI__builtin_neon_vfma_laneq_v: {
8245 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
8246 // v1f64 fma should be mapped to Neon scalar f64 fma
8247 if (VTy && VTy->getElementType() == DoubleTy) {
8248 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8249 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
8250 llvm::Type *VTy = GetNeonType(this,
8251 NeonTypeFlags(NeonTypeFlags::Float64, false, true));
8252 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
8253 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8254 Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
8255 Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8256 return Builder.CreateBitCast(Result, Ty);
8257 }
8258 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8259 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8260 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8261
8262 llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
8263 VTy->getNumElements() * 2);
8264 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
8265 Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
8266 cast<ConstantInt>(Ops[3]));
8267 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
8268
8269 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8270 }
8271 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
8272 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8273 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8274 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8275
8276 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8277 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
8278 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8279 }
8280 case NEON::BI__builtin_neon_vfmah_lane_f16:
8281 case NEON::BI__builtin_neon_vfmas_lane_f32:
8282 case NEON::BI__builtin_neon_vfmah_laneq_f16:
8283 case NEON::BI__builtin_neon_vfmas_laneq_f32:
8284 case NEON::BI__builtin_neon_vfmad_lane_f64:
8285 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
8286 Ops.push_back(EmitScalarExpr(E->getArg(3)));
8287 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
8288 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8289 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8290 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8291 }
8292 case NEON::BI__builtin_neon_vmull_v:
8293 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8294 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
8295 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
8296 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
8297 case NEON::BI__builtin_neon_vmax_v:
8298 case NEON::BI__builtin_neon_vmaxq_v:
8299 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8300 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
8301 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
8302 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
8303 case NEON::BI__builtin_neon_vmaxh_f16: {
8304 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8305 Int = Intrinsic::aarch64_neon_fmax;
8306 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
8307 }
8308 case NEON::BI__builtin_neon_vmin_v:
8309 case NEON::BI__builtin_neon_vminq_v:
8310 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8311 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
8312 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
8313 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
8314 case NEON::BI__builtin_neon_vminh_f16: {
8315 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8316 Int = Intrinsic::aarch64_neon_fmin;
8317 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
8318 }
8319 case NEON::BI__builtin_neon_vabd_v:
8320 case NEON::BI__builtin_neon_vabdq_v:
8321 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8322 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
8323 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
8324 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
8325 case NEON::BI__builtin_neon_vpadal_v:
8326 case NEON::BI__builtin_neon_vpadalq_v: {
8327 unsigned ArgElts = VTy->getNumElements();
8328 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
8329 unsigned BitWidth = EltTy->getBitWidth();
8330 llvm::Type *ArgTy = llvm::VectorType::get(
8331 llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
8332 llvm::Type* Tys[2] = { VTy, ArgTy };
8333 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
8334 SmallVector<llvm::Value*, 1> TmpOps;
8335 TmpOps.push_back(Ops[1]);
8336 Function *F = CGM.getIntrinsic(Int, Tys);
8337 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
8338 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
8339 return Builder.CreateAdd(tmp, addend);
8340 }
8341 case NEON::BI__builtin_neon_vpmin_v:
8342 case NEON::BI__builtin_neon_vpminq_v:
8343 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8344 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
8345 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
8346 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
8347 case NEON::BI__builtin_neon_vpmax_v:
8348 case NEON::BI__builtin_neon_vpmaxq_v:
8349 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8350 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
8351 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
8352 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
8353 case NEON::BI__builtin_neon_vminnm_v:
8354 case NEON::BI__builtin_neon_vminnmq_v:
8355 Int = Intrinsic::aarch64_neon_fminnm;
8356 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
8357 case NEON::BI__builtin_neon_vminnmh_f16:
8358 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8359 Int = Intrinsic::aarch64_neon_fminnm;
8360 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
8361 case NEON::BI__builtin_neon_vmaxnm_v:
8362 case NEON::BI__builtin_neon_vmaxnmq_v:
8363 Int = Intrinsic::aarch64_neon_fmaxnm;
8364 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
8365 case NEON::BI__builtin_neon_vmaxnmh_f16:
8366 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8367 Int = Intrinsic::aarch64_neon_fmaxnm;
8368 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
8369 case NEON::BI__builtin_neon_vrecpss_f32: {
8370 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8371 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
8372 Ops, "vrecps");
8373 }
8374 case NEON::BI__builtin_neon_vrecpsd_f64:
8375 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8376 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
8377 Ops, "vrecps");
8378 case NEON::BI__builtin_neon_vrecpsh_f16:
8379 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8380 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
8381 Ops, "vrecps");
8382 case NEON::BI__builtin_neon_vqshrun_n_v:
8383 Int = Intrinsic::aarch64_neon_sqshrun;
8384 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
8385 case NEON::BI__builtin_neon_vqrshrun_n_v:
8386 Int = Intrinsic::aarch64_neon_sqrshrun;
8387 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
8388 case NEON::BI__builtin_neon_vqshrn_n_v:
8389 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
8390 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
8391 case NEON::BI__builtin_neon_vrshrn_n_v:
8392 Int = Intrinsic::aarch64_neon_rshrn;
8393 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
8394 case NEON::BI__builtin_neon_vqrshrn_n_v:
8395 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
8396 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
8397 case NEON::BI__builtin_neon_vrndah_f16: {
8398 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8399 Int = Intrinsic::round;
8400 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
8401 }
8402 case NEON::BI__builtin_neon_vrnda_v:
8403 case NEON::BI__builtin_neon_vrndaq_v: {
8404 Int = Intrinsic::round;
8405 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
8406 }
8407 case NEON::BI__builtin_neon_vrndih_f16: {
8408 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8409 Int = Intrinsic::nearbyint;
8410 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
8411 }
8412 case NEON::BI__builtin_neon_vrndmh_f16: {
8413 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8414 Int = Intrinsic::floor;
8415 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
8416 }
8417 case NEON::BI__builtin_neon_vrndm_v:
8418 case NEON::BI__builtin_neon_vrndmq_v: {
8419 Int = Intrinsic::floor;
8420 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
8421 }
8422 case NEON::BI__builtin_neon_vrndnh_f16: {
8423 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8424 Int = Intrinsic::aarch64_neon_frintn;
8425 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
8426 }
8427 case NEON::BI__builtin_neon_vrndn_v:
8428 case NEON::BI__builtin_neon_vrndnq_v: {
8429 Int = Intrinsic::aarch64_neon_frintn;
8430 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
8431 }
8432 case NEON::BI__builtin_neon_vrndns_f32: {
8433 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8434 Int = Intrinsic::aarch64_neon_frintn;
8435 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
8436 }
8437 case NEON::BI__builtin_neon_vrndph_f16: {
8438 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8439 Int = Intrinsic::ceil;
8440 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
8441 }
8442 case NEON::BI__builtin_neon_vrndp_v:
8443 case NEON::BI__builtin_neon_vrndpq_v: {
8444 Int = Intrinsic::ceil;
8445 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
8446 }
8447 case NEON::BI__builtin_neon_vrndxh_f16: {
8448 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8449 Int = Intrinsic::rint;
8450 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
8451 }
8452 case NEON::BI__builtin_neon_vrndx_v:
8453 case NEON::BI__builtin_neon_vrndxq_v: {
8454 Int = Intrinsic::rint;
8455 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
8456 }
8457 case NEON::BI__builtin_neon_vrndh_f16: {
8458 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8459 Int = Intrinsic::trunc;
8460 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
8461 }
8462 case NEON::BI__builtin_neon_vrnd_v:
8463 case NEON::BI__builtin_neon_vrndq_v: {
8464 Int = Intrinsic::trunc;
8465 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
8466 }
8467 case NEON::BI__builtin_neon_vcvt_f64_v:
8468 case NEON::BI__builtin_neon_vcvtq_f64_v:
8469 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8470 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
8471 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
8472 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
8473 case NEON::BI__builtin_neon_vcvt_f64_f32: {
8474 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&((Type.getEltType() == NeonTypeFlags::Float64 && quad
&& "unexpected vcvt_f64_f32 builtin") ? static_cast<
void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8475, __PRETTY_FUNCTION__))
8475 "unexpected vcvt_f64_f32 builtin")((Type.getEltType() == NeonTypeFlags::Float64 && quad
&& "unexpected vcvt_f64_f32 builtin") ? static_cast<
void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8475, __PRETTY_FUNCTION__))
;
8476 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
8477 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8478
8479 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
8480 }
8481 case NEON::BI__builtin_neon_vcvt_f32_f64: {
8482 assert(Type.getEltType() == NeonTypeFlags::Float32 &&((Type.getEltType() == NeonTypeFlags::Float32 && "unexpected vcvt_f32_f64 builtin"
) ? static_cast<void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8483, __PRETTY_FUNCTION__))
8483 "unexpected vcvt_f32_f64 builtin")((Type.getEltType() == NeonTypeFlags::Float32 && "unexpected vcvt_f32_f64 builtin"
) ? static_cast<void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8483, __PRETTY_FUNCTION__))
;
8484 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
8485 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8486
8487 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
8488 }
8489 case NEON::BI__builtin_neon_vcvt_s32_v:
8490 case NEON::BI__builtin_neon_vcvt_u32_v:
8491 case NEON::BI__builtin_neon_vcvt_s64_v:
8492 case NEON::BI__builtin_neon_vcvt_u64_v:
8493 case NEON::BI__builtin_neon_vcvt_s16_v:
8494 case NEON::BI__builtin_neon_vcvt_u16_v:
8495 case NEON::BI__builtin_neon_vcvtq_s32_v:
8496 case NEON::BI__builtin_neon_vcvtq_u32_v:
8497 case NEON::BI__builtin_neon_vcvtq_s64_v:
8498 case NEON::BI__builtin_neon_vcvtq_u64_v:
8499 case NEON::BI__builtin_neon_vcvtq_s16_v:
8500 case NEON::BI__builtin_neon_vcvtq_u16_v: {
8501 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
8502 if (usgn)
8503 return Builder.CreateFPToUI(Ops[0], Ty);
8504 return Builder.CreateFPToSI(Ops[0], Ty);
8505 }
8506 case NEON::BI__builtin_neon_vcvta_s16_v:
8507 case NEON::BI__builtin_neon_vcvta_u16_v:
8508 case NEON::BI__builtin_neon_vcvta_s32_v:
8509 case NEON::BI__builtin_neon_vcvtaq_s16_v:
8510 case NEON::BI__builtin_neon_vcvtaq_s32_v:
8511 case NEON::BI__builtin_neon_vcvta_u32_v:
8512 case NEON::BI__builtin_neon_vcvtaq_u16_v:
8513 case NEON::BI__builtin_neon_vcvtaq_u32_v:
8514 case NEON::BI__builtin_neon_vcvta_s64_v:
8515 case NEON::BI__builtin_neon_vcvtaq_s64_v:
8516 case NEON::BI__builtin_neon_vcvta_u64_v:
8517 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
8518 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
8519 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8520 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
8521 }
8522 case NEON::BI__builtin_neon_vcvtm_s16_v:
8523 case NEON::BI__builtin_neon_vcvtm_s32_v:
8524 case NEON::BI__builtin_neon_vcvtmq_s16_v:
8525 case NEON::BI__builtin_neon_vcvtmq_s32_v:
8526 case NEON::BI__builtin_neon_vcvtm_u16_v:
8527 case NEON::BI__builtin_neon_vcvtm_u32_v:
8528 case NEON::BI__builtin_neon_vcvtmq_u16_v:
8529 case NEON::BI__builtin_neon_vcvtmq_u32_v:
8530 case NEON::BI__builtin_neon_vcvtm_s64_v:
8531 case NEON::BI__builtin_neon_vcvtmq_s64_v:
8532 case NEON::BI__builtin_neon_vcvtm_u64_v:
8533 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
8534 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
8535 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8536 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
8537 }
8538 case NEON::BI__builtin_neon_vcvtn_s16_v:
8539 case NEON::BI__builtin_neon_vcvtn_s32_v:
8540 case NEON::BI__builtin_neon_vcvtnq_s16_v:
8541 case NEON::BI__builtin_neon_vcvtnq_s32_v:
8542 case NEON::BI__builtin_neon_vcvtn_u16_v:
8543 case NEON::BI__builtin_neon_vcvtn_u32_v:
8544 case NEON::BI__builtin_neon_vcvtnq_u16_v:
8545 case NEON::BI__builtin_neon_vcvtnq_u32_v:
8546 case NEON::BI__builtin_neon_vcvtn_s64_v:
8547 case NEON::BI__builtin_neon_vcvtnq_s64_v:
8548 case NEON::BI__builtin_neon_vcvtn_u64_v:
8549 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
8550 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
8551 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8552 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
8553 }
8554 case NEON::BI__builtin_neon_vcvtp_s16_v:
8555 case NEON::BI__builtin_neon_vcvtp_s32_v:
8556 case NEON::BI__builtin_neon_vcvtpq_s16_v:
8557 case NEON::BI__builtin_neon_vcvtpq_s32_v:
8558 case NEON::BI__builtin_neon_vcvtp_u16_v:
8559 case NEON::BI__builtin_neon_vcvtp_u32_v:
8560 case NEON::BI__builtin_neon_vcvtpq_u16_v:
8561 case NEON::BI__builtin_neon_vcvtpq_u32_v:
8562 case NEON::BI__builtin_neon_vcvtp_s64_v:
8563 case NEON::BI__builtin_neon_vcvtpq_s64_v:
8564 case NEON::BI__builtin_neon_vcvtp_u64_v:
8565 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
8566 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
8567 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8568 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
8569 }
8570 case NEON::BI__builtin_neon_vmulx_v:
8571 case NEON::BI__builtin_neon_vmulxq_v: {
8572 Int = Intrinsic::aarch64_neon_fmulx;
8573 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
8574 }
8575 case NEON::BI__builtin_neon_vmulxh_lane_f16:
8576 case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
8577 // vmulx_lane should be mapped to Neon scalar mulx after
8578 // extracting the scalar element
8579 Ops.push_back(EmitScalarExpr(E->getArg(2)));
8580 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8581 Ops.pop_back();
8582 Int = Intrinsic::aarch64_neon_fmulx;
8583 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
8584 }
8585 case NEON::BI__builtin_neon_vmul_lane_v:
8586 case NEON::BI__builtin_neon_vmul_laneq_v: {
8587 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
8588 bool Quad = false;
8589 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
8590 Quad = true;
8591 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8592 llvm::Type *VTy = GetNeonType(this,
8593 NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
8594 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
8595 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8596 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
8597 return Builder.CreateBitCast(Result, Ty);
8598 }
8599 case NEON::BI__builtin_neon_vnegd_s64:
8600 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
8601 case NEON::BI__builtin_neon_vnegh_f16:
8602 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
8603 case NEON::BI__builtin_neon_vpmaxnm_v:
8604 case NEON::BI__builtin_neon_vpmaxnmq_v: {
8605 Int = Intrinsic::aarch64_neon_fmaxnmp;
8606 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
8607 }
8608 case NEON::BI__builtin_neon_vpminnm_v:
8609 case NEON::BI__builtin_neon_vpminnmq_v: {
8610 Int = Intrinsic::aarch64_neon_fminnmp;
8611 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
8612 }
8613 case NEON::BI__builtin_neon_vsqrth_f16: {
8614 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8615 Int = Intrinsic::sqrt;
8616 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
8617 }
8618 case NEON::BI__builtin_neon_vsqrt_v:
8619 case NEON::BI__builtin_neon_vsqrtq_v: {
8620 Int = Intrinsic::sqrt;
8621 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8622 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
8623 }
8624 case NEON::BI__builtin_neon_vrbit_v:
8625 case NEON::BI__builtin_neon_vrbitq_v: {
8626 Int = Intrinsic::aarch64_neon_rbit;
8627 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
8628 }
8629 case NEON::BI__builtin_neon_vaddv_u8:
8630 // FIXME: These are handled by the AArch64 scalar code.
8631 usgn = true;
8632 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8633 case NEON::BI__builtin_neon_vaddv_s8: {
8634 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8635 Ty = Int32Ty;
8636 VTy = llvm::VectorType::get(Int8Ty, 8);
8637 llvm::Type *Tys[2] = { Ty, VTy };
8638 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8639 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8640 return Builder.CreateTrunc(Ops[0], Int8Ty);
8641 }
8642 case NEON::BI__builtin_neon_vaddv_u16:
8643 usgn = true;
8644 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8645 case NEON::BI__builtin_neon_vaddv_s16: {
8646 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8647 Ty = Int32Ty;
8648 VTy = llvm::VectorType::get(Int16Ty, 4);
8649 llvm::Type *Tys[2] = { Ty, VTy };
8650 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8651 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8652 return Builder.CreateTrunc(Ops[0], Int16Ty);
8653 }
8654 case NEON::BI__builtin_neon_vaddvq_u8:
8655 usgn = true;
8656 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8657 case NEON::BI__builtin_neon_vaddvq_s8: {
8658 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8659 Ty = Int32Ty;
8660 VTy = llvm::VectorType::get(Int8Ty, 16);
8661 llvm::Type *Tys[2] = { Ty, VTy };
8662 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8663 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8664 return Builder.CreateTrunc(Ops[0], Int8Ty);
8665 }
8666 case NEON::BI__builtin_neon_vaddvq_u16:
8667 usgn = true;
8668 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8669 case NEON::BI__builtin_neon_vaddvq_s16: {
8670 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8671 Ty = Int32Ty;
8672 VTy = llvm::VectorType::get(Int16Ty, 8);
8673 llvm::Type *Tys[2] = { Ty, VTy };
8674 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8675 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8676 return Builder.CreateTrunc(Ops[0], Int16Ty);
8677 }
8678 case NEON::BI__builtin_neon_vmaxv_u8: {
8679 Int = Intrinsic::aarch64_neon_umaxv;
8680 Ty = Int32Ty;
8681 VTy = llvm::VectorType::get(Int8Ty, 8);
8682 llvm::Type *Tys[2] = { Ty, VTy };
8683 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8684 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8685 return Builder.CreateTrunc(Ops[0], Int8Ty);
8686 }
8687 case NEON::BI__builtin_neon_vmaxv_u16: {
8688 Int = Intrinsic::aarch64_neon_umaxv;
8689 Ty = Int32Ty;
8690 VTy = llvm::VectorType::get(Int16Ty, 4);
8691 llvm::Type *Tys[2] = { Ty, VTy };
8692 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8693 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8694 return Builder.CreateTrunc(Ops[0], Int16Ty);
8695 }
8696 case NEON::BI__builtin_neon_vmaxvq_u8: {
8697 Int = Intrinsic::aarch64_neon_umaxv;
8698 Ty = Int32Ty;
8699 VTy = llvm::VectorType::get(Int8Ty, 16);
8700 llvm::Type *Tys[2] = { Ty, VTy };
8701 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8702 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8703 return Builder.CreateTrunc(Ops[0], Int8Ty);
8704 }
8705 case NEON::BI__builtin_neon_vmaxvq_u16: {
8706 Int = Intrinsic::aarch64_neon_umaxv;
8707 Ty = Int32Ty;
8708 VTy = llvm::VectorType::get(Int16Ty, 8);
8709 llvm::Type *Tys[2] = { Ty, VTy };
8710 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8711 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8712 return Builder.CreateTrunc(Ops[0], Int16Ty);
8713 }
8714 case NEON::BI__builtin_neon_vmaxv_s8: {
8715 Int = Intrinsic::aarch64_neon_smaxv;
8716 Ty = Int32Ty;
8717 VTy = llvm::VectorType::get(Int8Ty, 8);
8718 llvm::Type *Tys[2] = { Ty, VTy };
8719 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8720 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8721 return Builder.CreateTrunc(Ops[0], Int8Ty);
8722 }
8723 case NEON::BI__builtin_neon_vmaxv_s16: {
8724 Int = Intrinsic::aarch64_neon_smaxv;
8725 Ty = Int32Ty;
8726 VTy = llvm::VectorType::get(Int16Ty, 4);
8727 llvm::Type *Tys[2] = { Ty, VTy };
8728 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8729 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8730 return Builder.CreateTrunc(Ops[0], Int16Ty);
8731 }
8732 case NEON::BI__builtin_neon_vmaxvq_s8: {
8733 Int = Intrinsic::aarch64_neon_smaxv;
8734 Ty = Int32Ty;
8735 VTy = llvm::VectorType::get(Int8Ty, 16);
8736 llvm::Type *Tys[2] = { Ty, VTy };
8737 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8738 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8739 return Builder.CreateTrunc(Ops[0], Int8Ty);
8740 }
8741 case NEON::BI__builtin_neon_vmaxvq_s16: {
8742 Int = Intrinsic::aarch64_neon_smaxv;
8743 Ty = Int32Ty;
8744 VTy = llvm::VectorType::get(Int16Ty, 8);
8745 llvm::Type *Tys[2] = { Ty, VTy };
8746 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8747 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8748 return Builder.CreateTrunc(Ops[0], Int16Ty);
8749 }
8750 case NEON::BI__builtin_neon_vmaxv_f16: {
8751 Int = Intrinsic::aarch64_neon_fmaxv;
8752 Ty = HalfTy;
8753 VTy = llvm::VectorType::get(HalfTy, 4);
8754 llvm::Type *Tys[2] = { Ty, VTy };
8755 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8756 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8757 return Builder.CreateTrunc(Ops[0], HalfTy);
8758 }
8759 case NEON::BI__builtin_neon_vmaxvq_f16: {
8760 Int = Intrinsic::aarch64_neon_fmaxv;
8761 Ty = HalfTy;
8762 VTy = llvm::VectorType::get(HalfTy, 8);
8763 llvm::Type *Tys[2] = { Ty, VTy };
8764 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8765 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8766 return Builder.CreateTrunc(Ops[0], HalfTy);
8767 }
8768 case NEON::BI__builtin_neon_vminv_u8: {
8769 Int = Intrinsic::aarch64_neon_uminv;
8770 Ty = Int32Ty;
8771 VTy = llvm::VectorType::get(Int8Ty, 8);
8772 llvm::Type *Tys[2] = { Ty, VTy };
8773 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8774 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8775 return Builder.CreateTrunc(Ops[0], Int8Ty);
8776 }
8777 case NEON::BI__builtin_neon_vminv_u16: {
8778 Int = Intrinsic::aarch64_neon_uminv;
8779 Ty = Int32Ty;
8780 VTy = llvm::VectorType::get(Int16Ty, 4);
8781 llvm::Type *Tys[2] = { Ty, VTy };
8782 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8783 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8784 return Builder.CreateTrunc(Ops[0], Int16Ty);
8785 }
8786 case NEON::BI__builtin_neon_vminvq_u8: {
8787 Int = Intrinsic::aarch64_neon_uminv;
8788 Ty = Int32Ty;
8789 VTy = llvm::VectorType::get(Int8Ty, 16);
8790 llvm::Type *Tys[2] = { Ty, VTy };
8791 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8792 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8793 return Builder.CreateTrunc(Ops[0], Int8Ty);
8794 }
8795 case NEON::BI__builtin_neon_vminvq_u16: {
8796 Int = Intrinsic::aarch64_neon_uminv;
8797 Ty = Int32Ty;
8798 VTy = llvm::VectorType::get(Int16Ty, 8);
8799 llvm::Type *Tys[2] = { Ty, VTy };
8800 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8801 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8802 return Builder.CreateTrunc(Ops[0], Int16Ty);
8803 }
8804 case NEON::BI__builtin_neon_vminv_s8: {
8805 Int = Intrinsic::aarch64_neon_sminv;
8806 Ty = Int32Ty;
8807 VTy = llvm::VectorType::get(Int8Ty, 8);
8808 llvm::Type *Tys[2] = { Ty, VTy };
8809 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8810 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8811 return Builder.CreateTrunc(Ops[0], Int8Ty);
8812 }
8813 case NEON::BI__builtin_neon_vminv_s16: {
8814 Int = Intrinsic::aarch64_neon_sminv;
8815 Ty = Int32Ty;
8816 VTy = llvm::VectorType::get(Int16Ty, 4);
8817 llvm::Type *Tys[2] = { Ty, VTy };
8818 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8819 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8820 return Builder.CreateTrunc(Ops[0], Int16Ty);
8821 }
8822 case NEON::BI__builtin_neon_vminvq_s8: {
8823 Int = Intrinsic::aarch64_neon_sminv;
8824 Ty = Int32Ty;
8825 VTy = llvm::VectorType::get(Int8Ty, 16);
8826 llvm::Type *Tys[2] = { Ty, VTy };
8827 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8828 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8829 return Builder.CreateTrunc(Ops[0], Int8Ty);
8830 }
8831 case NEON::BI__builtin_neon_vminvq_s16: {
8832 Int = Intrinsic::aarch64_neon_sminv;
8833 Ty = Int32Ty;
8834 VTy = llvm::VectorType::get(Int16Ty, 8);
8835 llvm::Type *Tys[2] = { Ty, VTy };
8836 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8837 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8838 return Builder.CreateTrunc(Ops[0], Int16Ty);
8839 }
8840 case NEON::BI__builtin_neon_vminv_f16: {
8841 Int = Intrinsic::aarch64_neon_fminv;
8842 Ty = HalfTy;
8843 VTy = llvm::VectorType::get(HalfTy, 4);
8844 llvm::Type *Tys[2] = { Ty, VTy };
8845 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8846 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8847 return Builder.CreateTrunc(Ops[0], HalfTy);
8848 }
8849 case NEON::BI__builtin_neon_vminvq_f16: {
8850 Int = Intrinsic::aarch64_neon_fminv;
8851 Ty = HalfTy;
8852 VTy = llvm::VectorType::get(HalfTy, 8);
8853 llvm::Type *Tys[2] = { Ty, VTy };
8854 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8855 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8856 return Builder.CreateTrunc(Ops[0], HalfTy);
8857 }
8858 case NEON::BI__builtin_neon_vmaxnmv_f16: {
8859 Int = Intrinsic::aarch64_neon_fmaxnmv;
8860 Ty = HalfTy;
8861 VTy = llvm::VectorType::get(HalfTy, 4);
8862 llvm::Type *Tys[2] = { Ty, VTy };
8863 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8864 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8865 return Builder.CreateTrunc(Ops[0], HalfTy);
8866 }
8867 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
8868 Int = Intrinsic::aarch64_neon_fmaxnmv;
8869 Ty = HalfTy;
8870 VTy = llvm::VectorType::get(HalfTy, 8);
8871 llvm::Type *Tys[2] = { Ty, VTy };
8872 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8873 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8874 return Builder.CreateTrunc(Ops[0], HalfTy);
8875 }
8876 case NEON::BI__builtin_neon_vminnmv_f16: {
8877 Int = Intrinsic::aarch64_neon_fminnmv;
8878 Ty = HalfTy;
8879 VTy = llvm::VectorType::get(HalfTy, 4);
8880 llvm::Type *Tys[2] = { Ty, VTy };
8881 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8882 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
8883 return Builder.CreateTrunc(Ops[0], HalfTy);
8884 }
8885 case NEON::BI__builtin_neon_vminnmvq_f16: {
8886 Int = Intrinsic::aarch64_neon_fminnmv;
8887 Ty = HalfTy;
8888 VTy = llvm::VectorType::get(HalfTy, 8);
8889 llvm::Type *Tys[2] = { Ty, VTy };
8890 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8891 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
8892 return Builder.CreateTrunc(Ops[0], HalfTy);
8893 }
8894 case NEON::BI__builtin_neon_vmul_n_f64: {
8895 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8896 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
8897 return Builder.CreateFMul(Ops[0], RHS);
8898 }
8899 case NEON::BI__builtin_neon_vaddlv_u8: {
8900 Int = Intrinsic::aarch64_neon_uaddlv;
8901 Ty = Int32Ty;
8902 VTy = llvm::VectorType::get(Int8Ty, 8);
8903 llvm::Type *Tys[2] = { Ty, VTy };
8904 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8905 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8906 return Builder.CreateTrunc(Ops[0], Int16Ty);
8907 }
8908 case NEON::BI__builtin_neon_vaddlv_u16: {
8909 Int = Intrinsic::aarch64_neon_uaddlv;
8910 Ty = Int32Ty;
8911 VTy = llvm::VectorType::get(Int16Ty, 4);
8912 llvm::Type *Tys[2] = { Ty, VTy };
8913 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8914 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8915 }
8916 case NEON::BI__builtin_neon_vaddlvq_u8: {
8917 Int = Intrinsic::aarch64_neon_uaddlv;
8918 Ty = Int32Ty;
8919 VTy = llvm::VectorType::get(Int8Ty, 16);
8920 llvm::Type *Tys[2] = { Ty, VTy };
8921 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8922 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8923 return Builder.CreateTrunc(Ops[0], Int16Ty);
8924 }
8925 case NEON::BI__builtin_neon_vaddlvq_u16: {
8926 Int = Intrinsic::aarch64_neon_uaddlv;
8927 Ty = Int32Ty;
8928 VTy = llvm::VectorType::get(Int16Ty, 8);
8929 llvm::Type *Tys[2] = { Ty, VTy };
8930 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8931 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8932 }
8933 case NEON::BI__builtin_neon_vaddlv_s8: {
8934 Int = Intrinsic::aarch64_neon_saddlv;
8935 Ty = Int32Ty;
8936 VTy = llvm::VectorType::get(Int8Ty, 8);
8937 llvm::Type *Tys[2] = { Ty, VTy };
8938 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8939 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8940 return Builder.CreateTrunc(Ops[0], Int16Ty);
8941 }
8942 case NEON::BI__builtin_neon_vaddlv_s16: {
8943 Int = Intrinsic::aarch64_neon_saddlv;
8944 Ty = Int32Ty;
8945 VTy = llvm::VectorType::get(Int16Ty, 4);
8946 llvm::Type *Tys[2] = { Ty, VTy };
8947 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8948 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8949 }
8950 case NEON::BI__builtin_neon_vaddlvq_s8: {
8951 Int = Intrinsic::aarch64_neon_saddlv;
8952 Ty = Int32Ty;
8953 VTy = llvm::VectorType::get(Int8Ty, 16);
8954 llvm::Type *Tys[2] = { Ty, VTy };
8955 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8956 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8957 return Builder.CreateTrunc(Ops[0], Int16Ty);
8958 }
8959 case NEON::BI__builtin_neon_vaddlvq_s16: {
8960 Int = Intrinsic::aarch64_neon_saddlv;
8961 Ty = Int32Ty;
8962 VTy = llvm::VectorType::get(Int16Ty, 8);
8963 llvm::Type *Tys[2] = { Ty, VTy };
8964 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8965 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8966 }
8967 case NEON::BI__builtin_neon_vsri_n_v:
8968 case NEON::BI__builtin_neon_vsriq_n_v: {
8969 Int = Intrinsic::aarch64_neon_vsri;
8970 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
8971 return EmitNeonCall(Intrin, Ops, "vsri_n");
8972 }
8973 case NEON::BI__builtin_neon_vsli_n_v:
8974 case NEON::BI__builtin_neon_vsliq_n_v: {
8975 Int = Intrinsic::aarch64_neon_vsli;
8976 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
8977 return EmitNeonCall(Intrin, Ops, "vsli_n");
8978 }
8979 case NEON::BI__builtin_neon_vsra_n_v:
8980 case NEON::BI__builtin_neon_vsraq_n_v:
8981 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8982 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8983 return Builder.CreateAdd(Ops[0], Ops[1]);
8984 case NEON::BI__builtin_neon_vrsra_n_v:
8985 case NEON::BI__builtin_neon_vrsraq_n_v: {
8986 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
8987 SmallVector<llvm::Value*,2> TmpOps;
8988 TmpOps.push_back(Ops[1]);
8989 TmpOps.push_back(Ops[2]);
8990 Function* F = CGM.getIntrinsic(Int, Ty);
8991 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
8992 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
8993 return Builder.CreateAdd(Ops[0], tmp);
8994 }
8995 case NEON::BI__builtin_neon_vld1_v:
8996 case NEON::BI__builtin_neon_vld1q_v: {
8997 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
8998 auto Alignment = CharUnits::fromQuantity(
8999 BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
9000 return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
9001 }
9002 case NEON::BI__builtin_neon_vst1_v:
9003 case NEON::BI__builtin_neon_vst1q_v:
9004 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
9005 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
9006 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9007 case NEON::BI__builtin_neon_vld1_lane_v:
9008 case NEON::BI__builtin_neon_vld1q_lane_v: {
9009 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9010 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
9011 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9012 auto Alignment = CharUnits::fromQuantity(
9013 BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
9014 Ops[0] =
9015 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
9016 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
9017 }
9018 case NEON::BI__builtin_neon_vld1_dup_v:
9019 case NEON::BI__builtin_neon_vld1q_dup_v: {
9020 Value *V = UndefValue::get(Ty);
9021 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
9022 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9023 auto Alignment = CharUnits::fromQuantity(
9024 BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
9025 Ops[0] =
9026 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
9027 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
9028 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
9029 return EmitNeonSplat(Ops[0], CI);
9030 }
9031 case NEON::BI__builtin_neon_vst1_lane_v:
9032 case NEON::BI__builtin_neon_vst1q_lane_v:
9033 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9034 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
9035 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9036 return Builder.CreateDefaultAlignedStore(Ops[1],
9037 Builder.CreateBitCast(Ops[0], Ty));
9038 case NEON::BI__builtin_neon_vld2_v:
9039 case NEON::BI__builtin_neon_vld2q_v: {
9040 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9041 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9042 llvm::Type *Tys[2] = { VTy, PTy };
9043 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
9044 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
9045 Ops[0] = Builder.CreateBitCast(Ops[0],
9046 llvm::PointerType::getUnqual(Ops[1]->getType()));
9047 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9048 }
9049 case NEON::BI__builtin_neon_vld3_v:
9050 case NEON::BI__builtin_neon_vld3q_v: {
9051 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9052 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9053 llvm::Type *Tys[2] = { VTy, PTy };
9054 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
9055 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
9056 Ops[0] = Builder.CreateBitCast(Ops[0],
9057 llvm::PointerType::getUnqual(Ops[1]->getType()));
9058 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9059 }
9060 case NEON::BI__builtin_neon_vld4_v:
9061 case NEON::BI__builtin_neon_vld4q_v: {
9062 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9063 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9064 llvm::Type *Tys[2] = { VTy, PTy };
9065 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
9066 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
9067 Ops[0] = Builder.CreateBitCast(Ops[0],
9068 llvm::PointerType::getUnqual(Ops[1]->getType()));
9069 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9070 }
9071 case NEON::BI__builtin_neon_vld2_dup_v:
9072 case NEON::BI__builtin_neon_vld2q_dup_v: {
9073 llvm::Type *PTy =
9074 llvm::PointerType::getUnqual(VTy->getElementType());
9075 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9076 llvm::Type *Tys[2] = { VTy, PTy };
9077 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
9078 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
9079 Ops[0] = Builder.CreateBitCast(Ops[0],
9080 llvm::PointerType::getUnqual(Ops[1]->getType()));
9081 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9082 }
9083 case NEON::BI__builtin_neon_vld3_dup_v:
9084 case NEON::BI__builtin_neon_vld3q_dup_v: {
9085 llvm::Type *PTy =
9086 llvm::PointerType::getUnqual(VTy->getElementType());
9087 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9088 llvm::Type *Tys[2] = { VTy, PTy };
9089 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
9090 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
9091 Ops[0] = Builder.CreateBitCast(Ops[0],
9092 llvm::PointerType::getUnqual(Ops[1]->getType()));
9093 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9094 }
9095 case NEON::BI__builtin_neon_vld4_dup_v:
9096 case NEON::BI__builtin_neon_vld4q_dup_v: {
9097 llvm::Type *PTy =
9098 llvm::PointerType::getUnqual(VTy->getElementType());
9099 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9100 llvm::Type *Tys[2] = { VTy, PTy };
9101 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
9102 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
9103 Ops[0] = Builder.CreateBitCast(Ops[0],
9104 llvm::PointerType::getUnqual(Ops[1]->getType()));
9105 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9106 }
9107 case NEON::BI__builtin_neon_vld2_lane_v:
9108 case NEON::BI__builtin_neon_vld2q_lane_v: {
9109 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9110 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
9111 Ops.push_back(Ops[1]);
9112 Ops.erase(Ops.begin()+1);
9113 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9114 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9115 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
9116 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
9117 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9118 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9119 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9120 }
9121 case NEON::BI__builtin_neon_vld3_lane_v:
9122 case NEON::BI__builtin_neon_vld3q_lane_v: {
9123 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9124 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
9125 Ops.push_back(Ops[1]);
9126 Ops.erase(Ops.begin()+1);
9127 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9128 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9129 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
9130 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
9131 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
9132 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9133 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9134 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9135 }
9136 case NEON::BI__builtin_neon_vld4_lane_v:
9137 case NEON::BI__builtin_neon_vld4q_lane_v: {
9138 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9139 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
9140 Ops.push_back(Ops[1]);
9141 Ops.erase(Ops.begin()+1);
9142 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9143 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9144 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
9145 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
9146 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
9147 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
9148 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9149 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9150 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9151 }
9152 case NEON::BI__builtin_neon_vst2_v:
9153 case NEON::BI__builtin_neon_vst2q_v: {
9154 Ops.push_back(Ops[0]);
9155 Ops.erase(Ops.begin());
9156 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
9157 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
9158 Ops, "");
9159 }
9160 case NEON::BI__builtin_neon_vst2_lane_v:
9161 case NEON::BI__builtin_neon_vst2q_lane_v: {
9162 Ops.push_back(Ops[0]);
9163 Ops.erase(Ops.begin());
9164 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
9165 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
9166 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
9167 Ops, "");
9168 }
9169 case NEON::BI__builtin_neon_vst3_v:
9170 case NEON::BI__builtin_neon_vst3q_v: {
9171 Ops.push_back(Ops[0]);
9172 Ops.erase(Ops.begin());
9173 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
9174 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
9175 Ops, "");
9176 }
9177 case NEON::BI__builtin_neon_vst3_lane_v:
9178 case NEON::BI__builtin_neon_vst3q_lane_v: {
9179 Ops.push_back(Ops[0]);
9180 Ops.erase(Ops.begin());
9181 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
9182 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
9183 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
9184 Ops, "");
9185 }
9186 case NEON::BI__builtin_neon_vst4_v:
9187 case NEON::BI__builtin_neon_vst4q_v: {
9188 Ops.push_back(Ops[0]);
9189 Ops.erase(Ops.begin());
9190 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
9191 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
9192 Ops, "");
9193 }
9194 case NEON::BI__builtin_neon_vst4_lane_v:
9195 case NEON::BI__builtin_neon_vst4q_lane_v: {
9196 Ops.push_back(Ops[0]);
9197 Ops.erase(Ops.begin());
9198 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
9199 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
9200 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
9201 Ops, "");
9202 }
9203 case NEON::BI__builtin_neon_vtrn_v:
9204 case NEON::BI__builtin_neon_vtrnq_v: {
9205 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9206 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9207 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9208 Value *SV = nullptr;
9209
9210 for (unsigned vi = 0; vi != 2; ++vi) {
9211 SmallVector<uint32_t, 16> Indices;
9212 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9213 Indices.push_back(i+vi);
9214 Indices.push_back(i+e+vi);
9215 }
9216 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9217 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
9218 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9219 }
9220 return SV;
9221 }
9222 case NEON::BI__builtin_neon_vuzp_v:
9223 case NEON::BI__builtin_neon_vuzpq_v: {
9224 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9225 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9226 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9227 Value *SV = nullptr;
9228
9229 for (unsigned vi = 0; vi != 2; ++vi) {
9230 SmallVector<uint32_t, 16> Indices;
9231 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
9232 Indices.push_back(2*i+vi);
9233
9234 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9235 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
9236 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9237 }
9238 return SV;
9239 }
9240 case NEON::BI__builtin_neon_vzip_v:
9241 case NEON::BI__builtin_neon_vzipq_v: {
9242 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9243 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9244 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9245 Value *SV = nullptr;
9246
9247 for (unsigned vi = 0; vi != 2; ++vi) {
9248 SmallVector<uint32_t, 16> Indices;
9249 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9250 Indices.push_back((i + vi*e) >> 1);
9251 Indices.push_back(((i + vi*e) >> 1)+e);
9252 }
9253 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9254 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
9255 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9256 }
9257 return SV;
9258 }
9259 case NEON::BI__builtin_neon_vqtbl1q_v: {
9260 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
9261 Ops, "vtbl1");
9262 }
9263 case NEON::BI__builtin_neon_vqtbl2q_v: {
9264 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
9265 Ops, "vtbl2");
9266 }
9267 case NEON::BI__builtin_neon_vqtbl3q_v: {
9268 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
9269 Ops, "vtbl3");
9270 }
9271 case NEON::BI__builtin_neon_vqtbl4q_v: {
9272 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
9273 Ops, "vtbl4");
9274 }
9275 case NEON::BI__builtin_neon_vqtbx1q_v: {
9276 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
9277 Ops, "vtbx1");
9278 }
9279 case NEON::BI__builtin_neon_vqtbx2q_v: {
9280 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
9281 Ops, "vtbx2");
9282 }
9283 case NEON::BI__builtin_neon_vqtbx3q_v: {
9284 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
9285 Ops, "vtbx3");
9286 }
9287 case NEON::BI__builtin_neon_vqtbx4q_v: {
9288 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
9289 Ops, "vtbx4");
9290 }
9291 case NEON::BI__builtin_neon_vsqadd_v:
9292 case NEON::BI__builtin_neon_vsqaddq_v: {
9293 Int = Intrinsic::aarch64_neon_usqadd;
9294 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
9295 }
9296 case NEON::BI__builtin_neon_vuqadd_v:
9297 case NEON::BI__builtin_neon_vuqaddq_v: {
9298 Int = Intrinsic::aarch64_neon_suqadd;
9299 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
9300 }
9301 }
9302}
9303
9304Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
9305 const CallExpr *E) {
9306 assert(BuiltinID == BPF::BI__builtin_preserve_field_info &&((BuiltinID == BPF::BI__builtin_preserve_field_info &&
"unexpected ARM builtin") ? static_cast<void> (0) : __assert_fail
("BuiltinID == BPF::BI__builtin_preserve_field_info && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9307, __PRETTY_FUNCTION__))
9307 "unexpected ARM builtin")((BuiltinID == BPF::BI__builtin_preserve_field_info &&
"unexpected ARM builtin") ? static_cast<void> (0) : __assert_fail
("BuiltinID == BPF::BI__builtin_preserve_field_info && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9307, __PRETTY_FUNCTION__))
;
9308
9309 const Expr *Arg = E->getArg(0);
9310 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
9311
9312 if (!getDebugInfo()) {
9313 CGM.Error(E->getExprLoc(), "using builtin_preserve_field_info() without -g");
9314 return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
9315 : EmitLValue(Arg).getPointer();
9316 }
9317
9318 // Enable underlying preserve_*_access_index() generation.
9319 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
9320 IsInPreservedAIRegion = true;
9321 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
9322 : EmitLValue(Arg).getPointer();
9323 IsInPreservedAIRegion = OldIsInPreservedAIRegion;
9324
9325 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9326 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
9327
9328 // Built the IR for the preserve_field_info intrinsic.
9329 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
9330 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
9331 {FieldAddr->getType()});
9332 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
9333}
9334
9335llvm::Value *CodeGenFunction::
9336BuildVector(ArrayRef<llvm::Value*> Ops) {
9337 assert((Ops.size() & (Ops.size() - 1)) == 0 &&(((Ops.size() & (Ops.size() - 1)) == 0 && "Not a power-of-two sized vector!"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9338, __PRETTY_FUNCTION__))
9338 "Not a power-of-two sized vector!")(((Ops.size() & (Ops.size() - 1)) == 0 && "Not a power-of-two sized vector!"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9338, __PRETTY_FUNCTION__))
;
9339 bool AllConstants = true;
9340 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
9341 AllConstants &= isa<Constant>(Ops[i]);
9342
9343 // If this is a constant vector, create a ConstantVector.
9344 if (AllConstants) {
9345 SmallVector<llvm::Constant*, 16> CstOps;
9346 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9347 CstOps.push_back(cast<Constant>(Ops[i]));
9348 return llvm::ConstantVector::get(CstOps);
9349 }
9350
9351 // Otherwise, insertelement the values to build the vector.
9352 Value *Result =
9353 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
9354
9355 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9356 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
9357
9358 return Result;
9359}
9360
9361// Convert the mask from an integer type to a vector of i1.
9362static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
9363 unsigned NumElts) {
9364
9365 llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9366 cast<IntegerType>(Mask->getType())->getBitWidth());
9367 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
9368
9369 // If we have less than 8 elements, then the starting mask was an i8 and
9370 // we need to extract down to the right number of elements.
9371 if (NumElts < 8) {
9372 uint32_t Indices[4];
9373 for (unsigned i = 0; i != NumElts; ++i)
9374 Indices[i] = i;
9375 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
9376 makeArrayRef(Indices, NumElts),
9377 "extract");
9378 }
9379 return MaskVec;
9380}
9381
9382static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
9383 ArrayRef<Value *> Ops,
9384 unsigned Align) {
9385 // Cast the pointer to right type.
9386 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9387 llvm::PointerType::getUnqual(Ops[1]->getType()));
9388
9389 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9390 Ops[1]->getType()->getVectorNumElements());
9391
9392 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec);
9393}
9394
9395static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
9396 ArrayRef<Value *> Ops, unsigned Align) {
9397 // Cast the pointer to right type.
9398 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9399 llvm::PointerType::getUnqual(Ops[1]->getType()));
9400
9401 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9402 Ops[1]->getType()->getVectorNumElements());
9403
9404 return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]);
9405}
9406
9407static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
9408 ArrayRef<Value *> Ops) {
9409 llvm::Type *ResultTy = Ops[1]->getType();
9410 llvm::Type *PtrTy = ResultTy->getVectorElementType();
9411
9412 // Cast the pointer to element type.
9413 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9414 llvm::PointerType::getUnqual(PtrTy));
9415
9416 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9417 ResultTy->getVectorNumElements());
9418
9419 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
9420 ResultTy);
9421 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
9422}
9423
9424static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
9425 ArrayRef<Value *> Ops,
9426 bool IsCompress) {
9427 llvm::Type *ResultTy = Ops[1]->getType();
9428
9429 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9430 ResultTy->getVectorNumElements());
9431
9432 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
9433 : Intrinsic::x86_avx512_mask_expand;
9434 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
9435 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
9436}
9437
9438static Value *EmitX86CompressStore(CodeGenFunction &CGF,
9439 ArrayRef<Value *> Ops) {
9440 llvm::Type *ResultTy = Ops[1]->getType();
9441 llvm::Type *PtrTy = ResultTy->getVectorElementType();
9442
9443 // Cast the pointer to element type.
9444 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9445 llvm::PointerType::getUnqual(PtrTy));
9446
9447 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9448 ResultTy->getVectorNumElements());
9449
9450 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
9451 ResultTy);
9452 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
9453}
9454
9455static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
9456 ArrayRef<Value *> Ops,
9457 bool InvertLHS = false) {
9458 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
9459 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
9460 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
9461
9462 if (InvertLHS)
9463 LHS = CGF.Builder.CreateNot(LHS);
9464
9465 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
9466 Ops[0]->getType());
9467}
9468
9469static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
9470 Value *Amt, bool IsRight) {
9471 llvm::Type *Ty = Op0->getType();
9472
9473 // Amount may be scalar immediate, in which case create a splat vector.
9474 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
9475 // we only care about the lowest log2 bits anyway.
9476 if (Amt->getType() != Ty) {
9477 unsigned NumElts = Ty->getVectorNumElements();
9478 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
9479 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
9480 }
9481
9482 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
9483 Function *F = CGF.CGM.getIntrinsic(IID, Ty);
9484 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
9485}
9486
9487static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9488 bool IsSigned) {
9489 Value *Op0 = Ops[0];
9490 Value *Op1 = Ops[1];
9491 llvm::Type *Ty = Op0->getType();
9492 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
9493
9494 CmpInst::Predicate Pred;
9495 switch (Imm) {
9496 case 0x0:
9497 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
9498 break;
9499 case 0x1:
9500 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9501 break;
9502 case 0x2:
9503 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
9504 break;
9505 case 0x3:
9506 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
9507 break;
9508 case 0x4:
9509 Pred = ICmpInst::ICMP_EQ;
9510 break;
9511 case 0x5:
9512 Pred = ICmpInst::ICMP_NE;
9513 break;
9514 case 0x6:
9515 return llvm::Constant::getNullValue(Ty); // FALSE
9516 case 0x7:
9517 return llvm::Constant::getAllOnesValue(Ty); // TRUE
9518 default:
9519 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate")::llvm::llvm_unreachable_internal("Unexpected XOP vpcom/vpcomu predicate"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9519)
;
9520 }
9521
9522 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
9523 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
9524 return Res;
9525}
9526
9527static Value *EmitX86Select(CodeGenFunction &CGF,
9528 Value *Mask, Value *Op0, Value *Op1) {
9529
9530 // If the mask is all ones just return first argument.
9531 if (const auto *C = dyn_cast<Constant>(Mask))
9532 if (C->isAllOnesValue())
9533 return Op0;
9534
9535 Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
9536
9537 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9538}
9539
9540static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
9541 Value *Mask, Value *Op0, Value *Op1) {
9542 // If the mask is all ones just return first argument.
9543 if (const auto *C = dyn_cast<Constant>(Mask))
9544 if (C->isAllOnesValue())
9545 return Op0;
9546
9547 llvm::VectorType *MaskTy =
9548 llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9549 Mask->getType()->getIntegerBitWidth());
9550 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
9551 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
9552 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9553}
9554
9555static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
9556 unsigned NumElts, Value *MaskIn) {
9557 if (MaskIn) {
9558 const auto *C = dyn_cast<Constant>(MaskIn);
9559 if (!C || !C->isAllOnesValue())
9560 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
9561 }
9562
9563 if (NumElts < 8) {
9564 uint32_t Indices[8];
9565 for (unsigned i = 0; i != NumElts; ++i)
9566 Indices[i] = i;
9567 for (unsigned i = NumElts; i != 8; ++i)
9568 Indices[i] = i % NumElts + NumElts;
9569 Cmp = CGF.Builder.CreateShuffleVector(
9570 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
9571 }
9572
9573 return CGF.Builder.CreateBitCast(Cmp,
9574 IntegerType::get(CGF.getLLVMContext(),
9575 std::max(NumElts, 8U)));
9576}
9577
9578static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
9579 bool Signed, ArrayRef<Value *> Ops) {
9580 assert((Ops.size() == 2 || Ops.size() == 4) &&(((Ops.size() == 2 || Ops.size() == 4) && "Unexpected number of arguments"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9581, __PRETTY_FUNCTION__))
9581 "Unexpected number of arguments")(((Ops.size() == 2 || Ops.size() == 4) && "Unexpected number of arguments"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9581, __PRETTY_FUNCTION__))
;
9582 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
9583 Value *Cmp;
9584
9585 if (CC == 3) {
9586 Cmp = Constant::getNullValue(
9587 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9588 } else if (CC == 7) {
9589 Cmp = Constant::getAllOnesValue(
9590 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9591 } else {
9592 ICmpInst::Predicate Pred;
9593 switch (CC) {
9594 default: llvm_unreachable("Unknown condition code")::llvm::llvm_unreachable_internal("Unknown condition code", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9594)
;
9595 case 0: Pred = ICmpInst::ICMP_EQ; break;
9596 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
9597 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
9598 case 4: Pred = ICmpInst::ICMP_NE; break;
9599 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
9600 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
9601 }
9602 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9603 }
9604
9605 Value *MaskIn = nullptr;
9606 if (Ops.size() == 4)
9607 MaskIn = Ops[3];
9608
9609 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
9610}
9611
9612static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
9613 Value *Zero = Constant::getNullValue(In->getType());
9614 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
9615}
9616
9617static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
9618 ArrayRef<Value *> Ops, bool IsSigned) {
9619 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
9620 llvm::Type *Ty = Ops[1]->getType();
9621
9622 Value *Res;
9623 if (Rnd != 4) {
9624 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
9625 : Intrinsic::x86_avx512_uitofp_round;
9626 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
9627 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
9628 } else {
9629 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
9630 : CGF.Builder.CreateUIToFP(Ops[0], Ty);
9631 }
9632
9633 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
9634}
9635
9636static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
9637
9638 llvm::Type *Ty = Ops[0]->getType();
9639 Value *Zero = llvm::Constant::getNullValue(Ty);
9640 Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
9641 Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
9642 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
9643 return Res;
9644}
9645
9646static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
9647 ArrayRef<Value *> Ops) {
9648 Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9649 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
9650
9651 assert(Ops.size() == 2)((Ops.size() == 2) ? static_cast<void> (0) : __assert_fail
("Ops.size() == 2", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9651, __PRETTY_FUNCTION__))
;
9652 return Res;
9653}
9654
9655// Lowers X86 FMA intrinsics to IR.
9656static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9657 unsigned BuiltinID, bool IsAddSub) {
9658
9659 bool Subtract = false;
9660 Intrinsic::ID IID = Intrinsic::not_intrinsic;
9661 switch (BuiltinID) {
9662 default: break;
9663 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9664 Subtract = true;
9665 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9666 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9667 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9668 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9669 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
9670 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9671 Subtract = true;
9672 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9673 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9674 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9675 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9676 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
9677 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9678 Subtract = true;
9679 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9680 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9681 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9682 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9683 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
9684 break;
9685 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9686 Subtract = true;
9687 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9688 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9689 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9690 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9691 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
9692 break;
9693 }
9694
9695 Value *A = Ops[0];
9696 Value *B = Ops[1];
9697 Value *C = Ops[2];
9698
9699 if (Subtract)
9700 C = CGF.Builder.CreateFNeg(C);
9701
9702 Value *Res;
9703
9704 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
9705 if (IID != Intrinsic::not_intrinsic &&
9706 cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) {
9707 Function *Intr = CGF.CGM.getIntrinsic(IID);
9708 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
9709 } else {
9710 llvm::Type *Ty = A->getType();
9711 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
9712 Res = CGF.Builder.CreateCall(FMA, {A, B, C} );
9713
9714 if (IsAddSub) {
9715 // Negate even elts in C using a mask.
9716 unsigned NumElts = Ty->getVectorNumElements();
9717 SmallVector<uint32_t, 16> Indices(NumElts);
9718 for (unsigned i = 0; i != NumElts; ++i)
9719 Indices[i] = i + (i % 2) * NumElts;
9720
9721 Value *NegC = CGF.Builder.CreateFNeg(C);
9722 Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} );
9723 Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices);
9724 }
9725 }
9726
9727 // Handle any required masking.
9728 Value *MaskFalseVal = nullptr;
9729 switch (BuiltinID) {
9730 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9731 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9732 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9733 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9734 MaskFalseVal = Ops[0];
9735 break;
9736 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9737 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9738 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9739 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9740 MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
9741 break;
9742 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9743 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9744 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9745 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9746 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9747 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9748 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9749 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9750 MaskFalseVal = Ops[2];
9751 break;
9752 }
9753
9754 if (MaskFalseVal)
9755 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
9756
9757 return Res;
9758}
9759
9760static Value *
9761EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
9762 Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
9763 bool NegAcc = false) {
9764 unsigned Rnd = 4;
9765 if (Ops.size() > 4)
9766 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
9767
9768 if (NegAcc)
9769 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
9770
9771 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
9772 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
9773 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
9774 Value *Res;
9775 if (Rnd != 4) {
9776 Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
9777 Intrinsic::x86_avx512_vfmadd_f32 :
9778 Intrinsic::x86_avx512_vfmadd_f64;
9779 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9780 {Ops[0], Ops[1], Ops[2], Ops[4]});
9781 } else {
9782 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
9783 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
9784 }
9785 // If we have more than 3 arguments, we need to do masking.
9786 if (Ops.size() > 3) {
9787 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
9788 : Ops[PTIdx];
9789
9790 // If we negated the accumulator and the its the PassThru value we need to
9791 // bypass the negate. Conveniently Upper should be the same thing in this
9792 // case.
9793 if (NegAcc && PTIdx == 2)
9794 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
9795
9796 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
9797 }
9798 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
9799}
9800
9801static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
9802 ArrayRef<Value *> Ops) {
9803 llvm::Type *Ty = Ops[0]->getType();
9804 // Arguments have a vXi32 type so cast to vXi64.
9805 Ty = llvm::VectorType::get(CGF.Int64Ty,
9806 Ty->getPrimitiveSizeInBits() / 64);
9807 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
9808 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
9809
9810 if (IsSigned) {
9811 // Shift left then arithmetic shift right.
9812 Constant *ShiftAmt = ConstantInt::get(Ty, 32);
9813 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
9814 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
9815 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
9816 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
9817 } else {
9818 // Clear the upper bits.
9819 Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
9820 LHS = CGF.Builder.CreateAnd(LHS, Mask);
9821 RHS = CGF.Builder.CreateAnd(RHS, Mask);
9822 }
9823
9824 return CGF.Builder.CreateMul(LHS, RHS);
9825}
9826
9827// Emit a masked pternlog intrinsic. This only exists because the header has to
9828// use a macro and we aren't able to pass the input argument to a pternlog
9829// builtin and a select builtin without evaluating it twice.
9830static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
9831 ArrayRef<Value *> Ops) {
9832 llvm::Type *Ty = Ops[0]->getType();
9833
9834 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
9835 unsigned EltWidth = Ty->getScalarSizeInBits();
9836 Intrinsic::ID IID;
9837 if (VecWidth == 128 && EltWidth == 32)
9838 IID = Intrinsic::x86_avx512_pternlog_d_128;
9839 else if (VecWidth == 256 && EltWidth == 32)
9840 IID = Intrinsic::x86_avx512_pternlog_d_256;
9841 else if (VecWidth == 512 && EltWidth == 32)
9842 IID = Intrinsic::x86_avx512_pternlog_d_512;
9843 else if (VecWidth == 128 && EltWidth == 64)
9844 IID = Intrinsic::x86_avx512_pternlog_q_128;
9845 else if (VecWidth == 256 && EltWidth == 64)
9846 IID = Intrinsic::x86_avx512_pternlog_q_256;
9847 else if (VecWidth == 512 && EltWidth == 64)
9848 IID = Intrinsic::x86_avx512_pternlog_q_512;
9849 else
9850 llvm_unreachable("Unexpected intrinsic")::llvm::llvm_unreachable_internal("Unexpected intrinsic", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9850)
;
9851
9852 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9853 Ops.drop_back());
9854 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
9855 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
9856}
9857
9858static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
9859 llvm::Type *DstTy) {
9860 unsigned NumberOfElements = DstTy->getVectorNumElements();
9861 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
9862 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
9863}
9864
9865// Emit addition or subtraction with signed/unsigned saturation.
9866static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
9867 ArrayRef<Value *> Ops, bool IsSigned,
9868 bool IsAddition) {
9869 Intrinsic::ID IID =
9870 IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
9871 : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
9872 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
9873 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
9874}
9875
9876Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
9877 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
9878 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
9879 return EmitX86CpuIs(CPUStr);
9880}
9881
9882// Convert a BF16 to a float.
9883static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
9884 const CallExpr *E,
9885 ArrayRef<Value *> Ops) {
9886 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
9887 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
9888 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
9889 llvm::Type *ResultType = CGF.ConvertType(E->getType());
9890 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
9891 return BitCast;
9892}
9893
9894Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
9895
9896 llvm::Type *Int32Ty = Builder.getInt32Ty();
9897
9898 // Matching the struct layout from the compiler-rt/libgcc structure that is
9899 // filled in:
9900 // unsigned int __cpu_vendor;
9901 // unsigned int __cpu_type;
9902 // unsigned int __cpu_subtype;
9903 // unsigned int __cpu_features[1];
9904 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
9905 llvm::ArrayType::get(Int32Ty, 1));
9906
9907 // Grab the global __cpu_model.
9908 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
9909 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
9910
9911 // Calculate the index needed to access the correct field based on the
9912 // range. Also adjust the expected value.
9913 unsigned Index;
9914 unsigned Value;
9915 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
9916#define X86_VENDOR(ENUM, STRING) \
9917 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
9918#define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \
9919 .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
9920#define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \
9921 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
9922#define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \
9923 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
9924#include "llvm/Support/X86TargetParser.def"
9925 .Default({0, 0});
9926 assert(Value != 0 && "Invalid CPUStr passed to CpuIs")((Value != 0 && "Invalid CPUStr passed to CpuIs") ? static_cast
<void> (0) : __assert_fail ("Value != 0 && \"Invalid CPUStr passed to CpuIs\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9926, __PRETTY_FUNCTION__))
;
9927
9928 // Grab the appropriate field from __cpu_model.
9929 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
9930 ConstantInt::get(Int32Ty, Index)};
9931 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
9932 CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
9933
9934 // Check the value of the field against the requested value.
9935 return Builder.CreateICmpEQ(CpuValue,
9936 llvm::ConstantInt::get(Int32Ty, Value));
9937}
9938
9939Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
9940 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
9941 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
9942 return EmitX86CpuSupports(FeatureStr);
9943}
9944
9945uint64_t
9946CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
9947 // Processor features and mapping to processor feature value.
9948 uint64_t FeaturesMask = 0;
9949 for (const StringRef &FeatureStr : FeatureStrs) {
9950 unsigned Feature =
9951 StringSwitch<unsigned>(FeatureStr)
9952#define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
9953#include "llvm/Support/X86TargetParser.def"
9954 ;
9955 FeaturesMask |= (1ULL << Feature);
9956 }
9957 return FeaturesMask;
9958}
9959
9960Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
9961 return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
9962}
9963
9964llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
9965 uint32_t Features1 = Lo_32(FeaturesMask);
9966 uint32_t Features2 = Hi_32(FeaturesMask);
9967
9968 Value *Result = Builder.getTrue();
9969
9970 if (Features1 != 0) {
9971 // Matching the struct layout from the compiler-rt/libgcc structure that is
9972 // filled in:
9973 // unsigned int __cpu_vendor;
9974 // unsigned int __cpu_type;
9975 // unsigned int __cpu_subtype;
9976 // unsigned int __cpu_features[1];
9977 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
9978 llvm::ArrayType::get(Int32Ty, 1));
9979
9980 // Grab the global __cpu_model.
9981 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
9982 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
9983
9984 // Grab the first (0th) element from the field __cpu_features off of the
9985 // global in the struct STy.
9986 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
9987 Builder.getInt32(0)};
9988 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
9989 Value *Features =
9990 Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
9991
9992 // Check the value of the bit corresponding to the feature requested.
9993 Value *Mask = Builder.getInt32(Features1);
9994 Value *Bitset = Builder.CreateAnd(Features, Mask);
9995 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
9996 Result = Builder.CreateAnd(Result, Cmp);
9997 }
9998
9999 if (Features2 != 0) {
10000 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
10001 "__cpu_features2");
10002 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
10003
10004 Value *Features =
10005 Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
10006
10007 // Check the value of the bit corresponding to the feature requested.
10008 Value *Mask = Builder.getInt32(Features2);
10009 Value *Bitset = Builder.CreateAnd(Features, Mask);
10010 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
10011 Result = Builder.CreateAnd(Result, Cmp);
10012 }
10013
10014 return Result;
10015}
10016
10017Value *CodeGenFunction::EmitX86CpuInit() {
10018 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
10019 /*Variadic*/ false);
10020 llvm::FunctionCallee Func =
10021 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
10022 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
10023 cast<llvm::GlobalValue>(Func.getCallee())
10024 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
10025 return Builder.CreateCall(Func);
10026}
10027
10028Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
10029 const CallExpr *E) {
10030 if (BuiltinID == X86::BI__builtin_cpu_is)
10031 return EmitX86CpuIs(E);
10032 if (BuiltinID == X86::BI__builtin_cpu_supports)
10033 return EmitX86CpuSupports(E);
10034 if (BuiltinID == X86::BI__builtin_cpu_init)
10035 return EmitX86CpuInit();
10036
10037 SmallVector<Value*, 4> Ops;
10038
10039 // Find out if any arguments are required to be integer constant expressions.
10040 unsigned ICEArguments = 0;
10041 ASTContext::GetBuiltinTypeError Error;
10042 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10043 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10043, __PRETTY_FUNCTION__))
;
10044
10045 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
10046 // If this is a normal argument, just emit it as a scalar.
10047 if ((ICEArguments & (1 << i)) == 0) {
10048 Ops.push_back(EmitScalarExpr(E->getArg(i)));
10049 continue;
10050 }
10051
10052 // If this is required to be a constant, constant fold it so that we know
10053 // that the generated intrinsic gets a ConstantInt.
10054 llvm::APSInt Result;
10055 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
10056 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10056, __PRETTY_FUNCTION__))
; (void)IsConst;
10057 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
10058 }
10059
10060 // These exist so that the builtin that takes an immediate can be bounds
10061 // checked by clang to avoid passing bad immediates to the backend. Since
10062 // AVX has a larger immediate than SSE we would need separate builtins to
10063 // do the different bounds checking. Rather than create a clang specific
10064 // SSE only builtin, this implements eight separate builtins to match gcc
10065 // implementation.
10066 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
10067 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
10068 llvm::Function *F = CGM.getIntrinsic(ID);
10069 return Builder.CreateCall(F, Ops);
10070 };
10071
10072 // For the vector forms of FP comparisons, translate the builtins directly to
10073 // IR.
10074 // TODO: The builtins could be removed if the SSE header files used vector
10075 // extension comparisons directly (vector ordered/unordered may need
10076 // additional support via __builtin_isnan()).
10077 auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
10078 Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
10079 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
10080 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
10081 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
10082 return Builder.CreateBitCast(Sext, FPVecTy);
10083 };
10084
10085 switch (BuiltinID) {
10086 default: return nullptr;
10087 case X86::BI_mm_prefetch: {
10088 Value *Address = Ops[0];
10089 ConstantInt *C = cast<ConstantInt>(Ops[1]);
10090 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
10091 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
10092 Value *Data = ConstantInt::get(Int32Ty, 1);
10093 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
10094 return Builder.CreateCall(F, {Address, RW, Locality, Data});
10095 }
10096 case X86::BI_mm_clflush: {
10097 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
10098 Ops[0]);
10099 }
10100 case X86::BI_mm_lfence: {
10101 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
10102 }
10103 case X86::BI_mm_mfence: {
10104 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
10105 }
10106 case X86::BI_mm_sfence: {
10107 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
10108 }
10109 case X86::BI_mm_pause: {
10110 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
10111 }
10112 case X86::BI__rdtsc: {
10113 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
10114 }
10115 case X86::BI__builtin_ia32_rdtscp: {
10116 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
10117 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
10118 Ops[0]);
10119 return Builder.CreateExtractValue(Call, 0);
10120 }
10121 case X86::BI__builtin_ia32_lzcnt_u16:
10122 case X86::BI__builtin_ia32_lzcnt_u32:
10123 case X86::BI__builtin_ia32_lzcnt_u64: {
10124 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
10125 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10126 }
10127 case X86::BI__builtin_ia32_tzcnt_u16:
10128 case X86::BI__builtin_ia32_tzcnt_u32:
10129 case X86::BI__builtin_ia32_tzcnt_u64: {
10130 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
10131 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10132 }
10133 case X86::BI__builtin_ia32_undef128:
10134 case X86::BI__builtin_ia32_undef256:
10135 case X86::BI__builtin_ia32_undef512:
10136 // The x86 definition of "undef" is not the same as the LLVM definition
10137 // (PR32176). We leave optimizing away an unnecessary zero constant to the
10138 // IR optimizer and backend.
10139 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
10140 // value, we should use that here instead of a zero.
10141 return llvm::Constant::getNullValue(ConvertType(E->getType()));
10142 case X86::BI__builtin_ia32_vec_init_v8qi:
10143 case X86::BI__builtin_ia32_vec_init_v4hi:
10144 case X86::BI__builtin_ia32_vec_init_v2si:
10145 return Builder.CreateBitCast(BuildVector(Ops),
10146 llvm::Type::getX86_MMXTy(getLLVMContext()));
10147 case X86::BI__builtin_ia32_vec_ext_v2si:
10148 case X86::BI__builtin_ia32_vec_ext_v16qi:
10149 case X86::BI__builtin_ia32_vec_ext_v8hi:
10150 case X86::BI__builtin_ia32_vec_ext_v4si:
10151 case X86::BI__builtin_ia32_vec_ext_v4sf:
10152 case X86::BI__builtin_ia32_vec_ext_v2di:
10153 case X86::BI__builtin_ia32_vec_ext_v32qi:
10154 case X86::BI__builtin_ia32_vec_ext_v16hi:
10155 case X86::BI__builtin_ia32_vec_ext_v8si:
10156 case X86::BI__builtin_ia32_vec_ext_v4di: {
10157 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10158 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10159 Index &= NumElts - 1;
10160 // These builtins exist so we can ensure the index is an ICE and in range.
10161 // Otherwise we could just do this in the header file.
10162 return Builder.CreateExtractElement(Ops[0], Index);
10163 }
10164 case X86::BI__builtin_ia32_vec_set_v16qi:
10165 case X86::BI__builtin_ia32_vec_set_v8hi:
10166 case X86::BI__builtin_ia32_vec_set_v4si:
10167 case X86::BI__builtin_ia32_vec_set_v2di:
10168 case X86::BI__builtin_ia32_vec_set_v32qi:
10169 case X86::BI__builtin_ia32_vec_set_v16hi:
10170 case X86::BI__builtin_ia32_vec_set_v8si:
10171 case X86::BI__builtin_ia32_vec_set_v4di: {
10172 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10173 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10174 Index &= NumElts - 1;
10175 // These builtins exist so we can ensure the index is an ICE and in range.
10176 // Otherwise we could just do this in the header file.
10177 return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
10178 }
10179 case X86::BI_mm_setcsr:
10180 case X86::BI__builtin_ia32_ldmxcsr: {
10181 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
10182 Builder.CreateStore(Ops[0], Tmp);
10183 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
10184 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10185 }
10186 case X86::BI_mm_getcsr:
10187 case X86::BI__builtin_ia32_stmxcsr: {
10188 Address Tmp = CreateMemTemp(E->getType());
10189 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
10190 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10191 return Builder.CreateLoad(Tmp, "stmxcsr");
10192 }
10193 case X86::BI__builtin_ia32_xsave:
10194 case X86::BI__builtin_ia32_xsave64:
10195 case X86::BI__builtin_ia32_xrstor:
10196 case X86::BI__builtin_ia32_xrstor64:
10197 case X86::BI__builtin_ia32_xsaveopt:
10198 case X86::BI__builtin_ia32_xsaveopt64:
10199 case X86::BI__builtin_ia32_xrstors:
10200 case X86::BI__builtin_ia32_xrstors64:
10201 case X86::BI__builtin_ia32_xsavec:
10202 case X86::BI__builtin_ia32_xsavec64:
10203 case X86::BI__builtin_ia32_xsaves:
10204 case X86::BI__builtin_ia32_xsaves64:
10205 case X86::BI__builtin_ia32_xsetbv:
10206 case X86::BI_xsetbv: {
10207 Intrinsic::ID ID;
10208#define INTRINSIC_X86_XSAVE_ID(NAME) \
10209 case X86::BI__builtin_ia32_##NAME: \
10210 ID = Intrinsic::x86_##NAME; \
10211 break
10212 switch (BuiltinID) {
10213 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10213)
;
10214 INTRINSIC_X86_XSAVE_ID(xsave);
10215 INTRINSIC_X86_XSAVE_ID(xsave64);
10216 INTRINSIC_X86_XSAVE_ID(xrstor);
10217 INTRINSIC_X86_XSAVE_ID(xrstor64);
10218 INTRINSIC_X86_XSAVE_ID(xsaveopt);
10219 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
10220 INTRINSIC_X86_XSAVE_ID(xrstors);
10221 INTRINSIC_X86_XSAVE_ID(xrstors64);
10222 INTRINSIC_X86_XSAVE_ID(xsavec);
10223 INTRINSIC_X86_XSAVE_ID(xsavec64);
10224 INTRINSIC_X86_XSAVE_ID(xsaves);
10225 INTRINSIC_X86_XSAVE_ID(xsaves64);
10226 INTRINSIC_X86_XSAVE_ID(xsetbv);
10227 case X86::BI_xsetbv:
10228 ID = Intrinsic::x86_xsetbv;
10229 break;
10230 }
10231#undef INTRINSIC_X86_XSAVE_ID
10232 Value *Mhi = Builder.CreateTrunc(
10233 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
10234 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
10235 Ops[1] = Mhi;
10236 Ops.push_back(Mlo);
10237 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
10238 }
10239 case X86::BI__builtin_ia32_xgetbv:
10240 case X86::BI_xgetbv:
10241 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
10242 case X86::BI__builtin_ia32_storedqudi128_mask:
10243 case X86::BI__builtin_ia32_storedqusi128_mask:
10244 case X86::BI__builtin_ia32_storedquhi128_mask:
10245 case X86::BI__builtin_ia32_storedquqi128_mask:
10246 case X86::BI__builtin_ia32_storeupd128_mask:
10247 case X86::BI__builtin_ia32_storeups128_mask:
10248 case X86::BI__builtin_ia32_storedqudi256_mask:
10249 case X86::BI__builtin_ia32_storedqusi256_mask:
10250 case X86::BI__builtin_ia32_storedquhi256_mask:
10251 case X86::BI__builtin_ia32_storedquqi256_mask:
10252 case X86::BI__builtin_ia32_storeupd256_mask:
10253 case X86::BI__builtin_ia32_storeups256_mask:
10254 case X86::BI__builtin_ia32_storedqudi512_mask:
10255 case X86::BI__builtin_ia32_storedqusi512_mask:
10256 case X86::BI__builtin_ia32_storedquhi512_mask:
10257 case X86::BI__builtin_ia32_storedquqi512_mask:
10258 case X86::BI__builtin_ia32_storeupd512_mask:
10259 case X86::BI__builtin_ia32_storeups512_mask:
10260 return EmitX86MaskedStore(*this, Ops, 1);
10261
10262 case X86::BI__builtin_ia32_storess128_mask:
10263 case X86::BI__builtin_ia32_storesd128_mask: {
10264 return EmitX86MaskedStore(*this, Ops, 1);
10265 }
10266 case X86::BI__builtin_ia32_vpopcntb_128:
10267 case X86::BI__builtin_ia32_vpopcntd_128:
10268 case X86::BI__builtin_ia32_vpopcntq_128:
10269 case X86::BI__builtin_ia32_vpopcntw_128:
10270 case X86::BI__builtin_ia32_vpopcntb_256:
10271 case X86::BI__builtin_ia32_vpopcntd_256:
10272 case X86::BI__builtin_ia32_vpopcntq_256:
10273 case X86::BI__builtin_ia32_vpopcntw_256:
10274 case X86::BI__builtin_ia32_vpopcntb_512:
10275 case X86::BI__builtin_ia32_vpopcntd_512:
10276 case X86::BI__builtin_ia32_vpopcntq_512:
10277 case X86::BI__builtin_ia32_vpopcntw_512: {
10278 llvm::Type *ResultType = ConvertType(E->getType());
10279 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
10280 return Builder.CreateCall(F, Ops);
10281 }
10282 case X86::BI__builtin_ia32_cvtmask2b128:
10283 case X86::BI__builtin_ia32_cvtmask2b256:
10284 case X86::BI__builtin_ia32_cvtmask2b512:
10285 case X86::BI__builtin_ia32_cvtmask2w128:
10286 case X86::BI__builtin_ia32_cvtmask2w256:
10287 case X86::BI__builtin_ia32_cvtmask2w512:
10288 case X86::BI__builtin_ia32_cvtmask2d128:
10289 case X86::BI__builtin_ia32_cvtmask2d256:
10290 case X86::BI__builtin_ia32_cvtmask2d512:
10291 case X86::BI__builtin_ia32_cvtmask2q128:
10292 case X86::BI__builtin_ia32_cvtmask2q256:
10293 case X86::BI__builtin_ia32_cvtmask2q512:
10294 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
10295
10296 case X86::BI__builtin_ia32_cvtb2mask128:
10297 case X86::BI__builtin_ia32_cvtb2mask256:
10298 case X86::BI__builtin_ia32_cvtb2mask512:
10299 case X86::BI__builtin_ia32_cvtw2mask128:
10300 case X86::BI__builtin_ia32_cvtw2mask256:
10301 case X86::BI__builtin_ia32_cvtw2mask512:
10302 case X86::BI__builtin_ia32_cvtd2mask128:
10303 case X86::BI__builtin_ia32_cvtd2mask256:
10304 case X86::BI__builtin_ia32_cvtd2mask512:
10305 case X86::BI__builtin_ia32_cvtq2mask128:
10306 case X86::BI__builtin_ia32_cvtq2mask256:
10307 case X86::BI__builtin_ia32_cvtq2mask512:
10308 return EmitX86ConvertToMask(*this, Ops[0]);
10309
10310 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
10311 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
10312 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
10313 return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
10314 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
10315 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
10316 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
10317 return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
10318
10319 case X86::BI__builtin_ia32_vfmaddss3:
10320 case X86::BI__builtin_ia32_vfmaddsd3:
10321 case X86::BI__builtin_ia32_vfmaddss3_mask:
10322 case X86::BI__builtin_ia32_vfmaddsd3_mask:
10323 return EmitScalarFMAExpr(*this, Ops, Ops[0]);
10324 case X86::BI__builtin_ia32_vfmaddss:
10325 case X86::BI__builtin_ia32_vfmaddsd:
10326 return EmitScalarFMAExpr(*this, Ops,
10327 Constant::getNullValue(Ops[0]->getType()));
10328 case X86::BI__builtin_ia32_vfmaddss3_maskz:
10329 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
10330 return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
10331 case X86::BI__builtin_ia32_vfmaddss3_mask3:
10332 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
10333 return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
10334 case X86::BI__builtin_ia32_vfmsubss3_mask3:
10335 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
10336 return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
10337 /*NegAcc*/true);
10338 case X86::BI__builtin_ia32_vfmaddps:
10339 case X86::BI__builtin_ia32_vfmaddpd:
10340 case X86::BI__builtin_ia32_vfmaddps256:
10341 case X86::BI__builtin_ia32_vfmaddpd256:
10342 case X86::BI__builtin_ia32_vfmaddps512_mask:
10343 case X86::BI__builtin_ia32_vfmaddps512_maskz:
10344 case X86::BI__builtin_ia32_vfmaddps512_mask3:
10345 case X86::BI__builtin_ia32_vfmsubps512_mask3:
10346 case X86::BI__builtin_ia32_vfmaddpd512_mask:
10347 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
10348 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
10349 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
10350 return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
10351 case X86::BI__builtin_ia32_vfmaddsubps:
10352 case X86::BI__builtin_ia32_vfmaddsubpd:
10353 case X86::BI__builtin_ia32_vfmaddsubps256:
10354 case X86::BI__builtin_ia32_vfmaddsubpd256:
10355 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
10356 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
10357 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
10358 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
10359 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
10360 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
10361 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
10362 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
10363 return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
10364
10365 case X86::BI__builtin_ia32_movdqa32store128_mask:
10366 case X86::BI__builtin_ia32_movdqa64store128_mask:
10367 case X86::BI__builtin_ia32_storeaps128_mask:
10368 case X86::BI__builtin_ia32_storeapd128_mask:
10369 case X86::BI__builtin_ia32_movdqa32store256_mask:
10370 case X86::BI__builtin_ia32_movdqa64store256_mask:
10371 case X86::BI__builtin_ia32_storeaps256_mask:
10372 case X86::BI__builtin_ia32_storeapd256_mask:
10373 case X86::BI__builtin_ia32_movdqa32store512_mask:
10374 case X86::BI__builtin_ia32_movdqa64store512_mask:
10375 case X86::BI__builtin_ia32_storeaps512_mask:
10376 case X86::BI__builtin_ia32_storeapd512_mask: {
10377 unsigned Align =
10378 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10379 return EmitX86MaskedStore(*this, Ops, Align);
10380 }
10381 case X86::BI__builtin_ia32_loadups128_mask:
10382 case X86::BI__builtin_ia32_loadups256_mask:
10383 case X86::BI__builtin_ia32_loadups512_mask:
10384 case X86::BI__builtin_ia32_loadupd128_mask:
10385 case X86::BI__builtin_ia32_loadupd256_mask:
10386 case X86::BI__builtin_ia32_loadupd512_mask:
10387 case X86::BI__builtin_ia32_loaddquqi128_mask:
10388 case X86::BI__builtin_ia32_loaddquqi256_mask:
10389 case X86::BI__builtin_ia32_loaddquqi512_mask:
10390 case X86::BI__builtin_ia32_loaddquhi128_mask:
10391 case X86::BI__builtin_ia32_loaddquhi256_mask:
10392 case X86::BI__builtin_ia32_loaddquhi512_mask:
10393 case X86::BI__builtin_ia32_loaddqusi128_mask:
10394 case X86::BI__builtin_ia32_loaddqusi256_mask:
10395 case X86::BI__builtin_ia32_loaddqusi512_mask:
10396 case X86::BI__builtin_ia32_loaddqudi128_mask:
10397 case X86::BI__builtin_ia32_loaddqudi256_mask:
10398 case X86::BI__builtin_ia32_loaddqudi512_mask:
10399 return EmitX86MaskedLoad(*this, Ops, 1);
10400
10401 case X86::BI__builtin_ia32_loadss128_mask:
10402 case X86::BI__builtin_ia32_loadsd128_mask:
10403 return EmitX86MaskedLoad(*this, Ops, 1);
10404
10405 case X86::BI__builtin_ia32_loadaps128_mask:
10406 case X86::BI__builtin_ia32_loadaps256_mask:
10407 case X86::BI__builtin_ia32_loadaps512_mask:
10408 case X86::BI__builtin_ia32_loadapd128_mask:
10409 case X86::BI__builtin_ia32_loadapd256_mask:
10410 case X86::BI__builtin_ia32_loadapd512_mask:
10411 case X86::BI__builtin_ia32_movdqa32load128_mask:
10412 case X86::BI__builtin_ia32_movdqa32load256_mask:
10413 case X86::BI__builtin_ia32_movdqa32load512_mask:
10414 case X86::BI__builtin_ia32_movdqa64load128_mask:
10415 case X86::BI__builtin_ia32_movdqa64load256_mask:
10416 case X86::BI__builtin_ia32_movdqa64load512_mask: {
10417 unsigned Align =
10418 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10419 return EmitX86MaskedLoad(*this, Ops, Align);
10420 }
10421
10422 case X86::BI__builtin_ia32_expandloaddf128_mask:
10423 case X86::BI__builtin_ia32_expandloaddf256_mask:
10424 case X86::BI__builtin_ia32_expandloaddf512_mask:
10425 case X86::BI__builtin_ia32_expandloadsf128_mask:
10426 case X86::BI__builtin_ia32_expandloadsf256_mask:
10427 case X86::BI__builtin_ia32_expandloadsf512_mask:
10428 case X86::BI__builtin_ia32_expandloaddi128_mask:
10429 case X86::BI__builtin_ia32_expandloaddi256_mask:
10430 case X86::BI__builtin_ia32_expandloaddi512_mask:
10431 case X86::BI__builtin_ia32_expandloadsi128_mask:
10432 case X86::BI__builtin_ia32_expandloadsi256_mask:
10433 case X86::BI__builtin_ia32_expandloadsi512_mask:
10434 case X86::BI__builtin_ia32_expandloadhi128_mask:
10435 case X86::BI__builtin_ia32_expandloadhi256_mask:
10436 case X86::BI__builtin_ia32_expandloadhi512_mask:
10437 case X86::BI__builtin_ia32_expandloadqi128_mask:
10438 case X86::BI__builtin_ia32_expandloadqi256_mask:
10439 case X86::BI__builtin_ia32_expandloadqi512_mask:
10440 return EmitX86ExpandLoad(*this, Ops);
10441
10442 case X86::BI__builtin_ia32_compressstoredf128_mask:
10443 case X86::BI__builtin_ia32_compressstoredf256_mask:
10444 case X86::BI__builtin_ia32_compressstoredf512_mask:
10445 case X86::BI__builtin_ia32_compressstoresf128_mask:
10446 case X86::BI__builtin_ia32_compressstoresf256_mask:
10447 case X86::BI__builtin_ia32_compressstoresf512_mask:
10448 case X86::BI__builtin_ia32_compressstoredi128_mask:
10449 case X86::BI__builtin_ia32_compressstoredi256_mask:
10450 case X86::BI__builtin_ia32_compressstoredi512_mask:
10451 case X86::BI__builtin_ia32_compressstoresi128_mask:
10452 case X86::BI__builtin_ia32_compressstoresi256_mask:
10453 case X86::BI__builtin_ia32_compressstoresi512_mask:
10454 case X86::BI__builtin_ia32_compressstorehi128_mask:
10455 case X86::BI__builtin_ia32_compressstorehi256_mask:
10456 case X86::BI__builtin_ia32_compressstorehi512_mask:
10457 case X86::BI__builtin_ia32_compressstoreqi128_mask:
10458 case X86::BI__builtin_ia32_compressstoreqi256_mask:
10459 case X86::BI__builtin_ia32_compressstoreqi512_mask:
10460 return EmitX86CompressStore(*this, Ops);
10461
10462 case X86::BI__builtin_ia32_expanddf128_mask:
10463 case X86::BI__builtin_ia32_expanddf256_mask:
10464 case X86::BI__builtin_ia32_expanddf512_mask:
10465 case X86::BI__builtin_ia32_expandsf128_mask:
10466 case X86::BI__builtin_ia32_expandsf256_mask:
10467 case X86::BI__builtin_ia32_expandsf512_mask:
10468 case X86::BI__builtin_ia32_expanddi128_mask:
10469 case X86::BI__builtin_ia32_expanddi256_mask:
10470 case X86::BI__builtin_ia32_expanddi512_mask:
10471 case X86::BI__builtin_ia32_expandsi128_mask:
10472 case X86::BI__builtin_ia32_expandsi256_mask:
10473 case X86::BI__builtin_ia32_expandsi512_mask:
10474 case X86::BI__builtin_ia32_expandhi128_mask:
10475 case X86::BI__builtin_ia32_expandhi256_mask:
10476 case X86::BI__builtin_ia32_expandhi512_mask:
10477 case X86::BI__builtin_ia32_expandqi128_mask:
10478 case X86::BI__builtin_ia32_expandqi256_mask:
10479 case X86::BI__builtin_ia32_expandqi512_mask:
10480 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
10481
10482 case X86::BI__builtin_ia32_compressdf128_mask:
10483 case X86::BI__builtin_ia32_compressdf256_mask:
10484 case X86::BI__builtin_ia32_compressdf512_mask:
10485 case X86::BI__builtin_ia32_compresssf128_mask:
10486 case X86::BI__builtin_ia32_compresssf256_mask:
10487 case X86::BI__builtin_ia32_compresssf512_mask:
10488 case X86::BI__builtin_ia32_compressdi128_mask:
10489 case X86::BI__builtin_ia32_compressdi256_mask:
10490 case X86::BI__builtin_ia32_compressdi512_mask:
10491 case X86::BI__builtin_ia32_compresssi128_mask:
10492 case X86::BI__builtin_ia32_compresssi256_mask:
10493 case X86::BI__builtin_ia32_compresssi512_mask:
10494 case X86::BI__builtin_ia32_compresshi128_mask:
10495 case X86::BI__builtin_ia32_compresshi256_mask:
10496 case X86::BI__builtin_ia32_compresshi512_mask:
10497 case X86::BI__builtin_ia32_compressqi128_mask:
10498 case X86::BI__builtin_ia32_compressqi256_mask:
10499 case X86::BI__builtin_ia32_compressqi512_mask:
10500 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
10501
10502 case X86::BI__builtin_ia32_gather3div2df:
10503 case X86::BI__builtin_ia32_gather3div2di:
10504 case X86::BI__builtin_ia32_gather3div4df:
10505 case X86::BI__builtin_ia32_gather3div4di:
10506 case X86::BI__builtin_ia32_gather3div4sf:
10507 case X86::BI__builtin_ia32_gather3div4si:
10508 case X86::BI__builtin_ia32_gather3div8sf:
10509 case X86::BI__builtin_ia32_gather3div8si:
10510 case X86::BI__builtin_ia32_gather3siv2df:
10511 case X86::BI__builtin_ia32_gather3siv2di:
10512 case X86::BI__builtin_ia32_gather3siv4df:
10513 case X86::BI__builtin_ia32_gather3siv4di:
10514 case X86::BI__builtin_ia32_gather3siv4sf:
10515 case X86::BI__builtin_ia32_gather3siv4si:
10516 case X86::BI__builtin_ia32_gather3siv8sf:
10517 case X86::BI__builtin_ia32_gather3siv8si:
10518 case X86::BI__builtin_ia32_gathersiv8df:
10519 case X86::BI__builtin_ia32_gathersiv16sf:
10520 case X86::BI__builtin_ia32_gatherdiv8df:
10521 case X86::BI__builtin_ia32_gatherdiv16sf:
10522 case X86::BI__builtin_ia32_gathersiv8di:
10523 case X86::BI__builtin_ia32_gathersiv16si:
10524 case X86::BI__builtin_ia32_gatherdiv8di:
10525 case X86::BI__builtin_ia32_gatherdiv16si: {
10526 Intrinsic::ID IID;
10527 switch (BuiltinID) {
10528 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10528)
;
10529 case X86::BI__builtin_ia32_gather3div2df:
10530 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
10531 break;
10532 case X86::BI__builtin_ia32_gather3div2di:
10533 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
10534 break;
10535 case X86::BI__builtin_ia32_gather3div4df:
10536 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
10537 break;
10538 case X86::BI__builtin_ia32_gather3div4di:
10539 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
10540 break;
10541 case X86::BI__builtin_ia32_gather3div4sf:
10542 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
10543 break;
10544 case X86::BI__builtin_ia32_gather3div4si:
10545 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
10546 break;
10547 case X86::BI__builtin_ia32_gather3div8sf:
10548 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
10549 break;
10550 case X86::BI__builtin_ia32_gather3div8si:
10551 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
10552 break;
10553 case X86::BI__builtin_ia32_gather3siv2df:
10554 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
10555 break;
10556 case X86::BI__builtin_ia32_gather3siv2di:
10557 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
10558 break;
10559 case X86::BI__builtin_ia32_gather3siv4df:
10560 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
10561 break;
10562 case X86::BI__builtin_ia32_gather3siv4di:
10563 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
10564 break;
10565 case X86::BI__builtin_ia32_gather3siv4sf:
10566 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
10567 break;
10568 case X86::BI__builtin_ia32_gather3siv4si:
10569 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
10570 break;
10571 case X86::BI__builtin_ia32_gather3siv8sf:
10572 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
10573 break;
10574 case X86::BI__builtin_ia32_gather3siv8si:
10575 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
10576 break;
10577 case X86::BI__builtin_ia32_gathersiv8df:
10578 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
10579 break;
10580 case X86::BI__builtin_ia32_gathersiv16sf:
10581 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
10582 break;
10583 case X86::BI__builtin_ia32_gatherdiv8df:
10584 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
10585 break;
10586 case X86::BI__builtin_ia32_gatherdiv16sf:
10587 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
10588 break;
10589 case X86::BI__builtin_ia32_gathersiv8di:
10590 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
10591 break;
10592 case X86::BI__builtin_ia32_gathersiv16si:
10593 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
10594 break;
10595 case X86::BI__builtin_ia32_gatherdiv8di:
10596 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
10597 break;
10598 case X86::BI__builtin_ia32_gatherdiv16si:
10599 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
10600 break;
10601 }
10602
10603 unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(),
10604 Ops[2]->getType()->getVectorNumElements());
10605 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
10606 Function *Intr = CGM.getIntrinsic(IID);
10607 return Builder.CreateCall(Intr, Ops);
10608 }
10609
10610 case X86::BI__builtin_ia32_scattersiv8df:
10611 case X86::BI__builtin_ia32_scattersiv16sf:
10612 case X86::BI__builtin_ia32_scatterdiv8df:
10613 case X86::BI__builtin_ia32_scatterdiv16sf:
10614 case X86::BI__builtin_ia32_scattersiv8di:
10615 case X86::BI__builtin_ia32_scattersiv16si:
10616 case X86::BI__builtin_ia32_scatterdiv8di:
10617 case X86::BI__builtin_ia32_scatterdiv16si:
10618 case X86::BI__builtin_ia32_scatterdiv2df:
10619 case X86::BI__builtin_ia32_scatterdiv2di:
10620 case X86::BI__builtin_ia32_scatterdiv4df:
10621 case X86::BI__builtin_ia32_scatterdiv4di:
10622 case X86::BI__builtin_ia32_scatterdiv4sf:
10623 case X86::BI__builtin_ia32_scatterdiv4si:
10624 case X86::BI__builtin_ia32_scatterdiv8sf:
10625 case X86::BI__builtin_ia32_scatterdiv8si:
10626 case X86::BI__builtin_ia32_scattersiv2df:
10627 case X86::BI__builtin_ia32_scattersiv2di:
10628 case X86::BI__builtin_ia32_scattersiv4df:
10629 case X86::BI__builtin_ia32_scattersiv4di:
10630 case X86::BI__builtin_ia32_scattersiv4sf:
10631 case X86::BI__builtin_ia32_scattersiv4si:
10632 case X86::BI__builtin_ia32_scattersiv8sf:
10633 case X86::BI__builtin_ia32_scattersiv8si: {
10634 Intrinsic::ID IID;
10635 switch (BuiltinID) {
10636 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10636)
;
10637 case X86::BI__builtin_ia32_scattersiv8df:
10638 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
10639 break;
10640 case X86::BI__builtin_ia32_scattersiv16sf:
10641 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
10642 break;
10643 case X86::BI__builtin_ia32_scatterdiv8df:
10644 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
10645 break;
10646 case X86::BI__builtin_ia32_scatterdiv16sf:
10647 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
10648 break;
10649 case X86::BI__builtin_ia32_scattersiv8di:
10650 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
10651 break;
10652 case X86::BI__builtin_ia32_scattersiv16si:
10653 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
10654 break;
10655 case X86::BI__builtin_ia32_scatterdiv8di:
10656 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
10657 break;
10658 case X86::BI__builtin_ia32_scatterdiv16si:
10659 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
10660 break;
10661 case X86::BI__builtin_ia32_scatterdiv2df:
10662 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
10663 break;
10664 case X86::BI__builtin_ia32_scatterdiv2di:
10665 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
10666 break;
10667 case X86::BI__builtin_ia32_scatterdiv4df:
10668 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
10669 break;
10670 case X86::BI__builtin_ia32_scatterdiv4di:
10671 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
10672 break;
10673 case X86::BI__builtin_ia32_scatterdiv4sf:
10674 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
10675 break;
10676 case X86::BI__builtin_ia32_scatterdiv4si:
10677 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
10678 break;
10679 case X86::BI__builtin_ia32_scatterdiv8sf:
10680 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
10681 break;
10682 case X86::BI__builtin_ia32_scatterdiv8si:
10683 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
10684 break;
10685 case X86::BI__builtin_ia32_scattersiv2df:
10686 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
10687 break;
10688 case X86::BI__builtin_ia32_scattersiv2di:
10689 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
10690 break;
10691 case X86::BI__builtin_ia32_scattersiv4df:
10692 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
10693 break;
10694 case X86::BI__builtin_ia32_scattersiv4di:
10695 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
10696 break;
10697 case X86::BI__builtin_ia32_scattersiv4sf:
10698 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
10699 break;
10700 case X86::BI__builtin_ia32_scattersiv4si:
10701 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
10702 break;
10703 case X86::BI__builtin_ia32_scattersiv8sf:
10704 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
10705 break;
10706 case X86::BI__builtin_ia32_scattersiv8si:
10707 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
10708 break;
10709 }
10710
10711 unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(),
10712 Ops[3]->getType()->getVectorNumElements());
10713 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
10714 Function *Intr = CGM.getIntrinsic(IID);
10715 return Builder.CreateCall(Intr, Ops);
10716 }
10717
10718 case X86::BI__builtin_ia32_vextractf128_pd256:
10719 case X86::BI__builtin_ia32_vextractf128_ps256:
10720 case X86::BI__builtin_ia32_vextractf128_si256:
10721 case X86::BI__builtin_ia32_extract128i256:
10722 case X86::BI__builtin_ia32_extractf64x4_mask:
10723 case X86::BI__builtin_ia32_extractf32x4_mask:
10724 case X86::BI__builtin_ia32_extracti64x4_mask:
10725 case X86::BI__builtin_ia32_extracti32x4_mask:
10726 case X86::BI__builtin_ia32_extractf32x8_mask:
10727 case X86::BI__builtin_ia32_extracti32x8_mask:
10728 case X86::BI__builtin_ia32_extractf32x4_256_mask:
10729 case X86::BI__builtin_ia32_extracti32x4_256_mask:
10730 case X86::BI__builtin_ia32_extractf64x2_256_mask:
10731 case X86::BI__builtin_ia32_extracti64x2_256_mask:
10732 case X86::BI__builtin_ia32_extractf64x2_512_mask:
10733 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
10734 llvm::Type *DstTy = ConvertType(E->getType());
10735 unsigned NumElts = DstTy->getVectorNumElements();
10736 unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements();
10737 unsigned SubVectors = SrcNumElts / NumElts;
10738 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10739 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")((llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"
) ? static_cast<void> (0) : __assert_fail ("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10739, __PRETTY_FUNCTION__))
;
10740 Index &= SubVectors - 1; // Remove any extra bits.
10741 Index *= NumElts;
10742
10743 uint32_t Indices[16];
10744 for (unsigned i = 0; i != NumElts; ++i)
10745 Indices[i] = i + Index;
10746
10747 Value *Res = Builder.CreateShuffleVector(Ops[0],
10748 UndefValue::get(Ops[0]->getType()),
10749 makeArrayRef(Indices, NumElts),
10750 "extract");
10751
10752 if (Ops.size() == 4)
10753 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
10754
10755 return Res;
10756 }
10757 case X86::BI__builtin_ia32_vinsertf128_pd256:
10758 case X86::BI__builtin_ia32_vinsertf128_ps256:
10759 case X86::BI__builtin_ia32_vinsertf128_si256:
10760 case X86::BI__builtin_ia32_insert128i256:
10761 case X86::BI__builtin_ia32_insertf64x4:
10762 case X86::BI__builtin_ia32_insertf32x4:
10763 case X86::BI__builtin_ia32_inserti64x4:
10764 case X86::BI__builtin_ia32_inserti32x4:
10765 case X86::BI__builtin_ia32_insertf32x8:
10766 case X86::BI__builtin_ia32_inserti32x8:
10767 case X86::BI__builtin_ia32_insertf32x4_256:
10768 case X86::BI__builtin_ia32_inserti32x4_256:
10769 case X86::BI__builtin_ia32_insertf64x2_256:
10770 case X86::BI__builtin_ia32_inserti64x2_256:
10771 case X86::BI__builtin_ia32_insertf64x2_512:
10772 case X86::BI__builtin_ia32_inserti64x2_512: {
10773 unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements();
10774 unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements();
10775 unsigned SubVectors = DstNumElts / SrcNumElts;
10776 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10777 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")((llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"
) ? static_cast<void> (0) : __assert_fail ("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10777, __PRETTY_FUNCTION__))
;
10778 Index &= SubVectors - 1; // Remove any extra bits.
10779 Index *= SrcNumElts;
10780
10781 uint32_t Indices[16];
10782 for (unsigned i = 0; i != DstNumElts; ++i)
10783 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
10784
10785 Value *Op1 = Builder.CreateShuffleVector(Ops[1],
10786 UndefValue::get(Ops[1]->getType()),
10787 makeArrayRef(Indices, DstNumElts),
10788 "widen");
10789
10790 for (unsigned i = 0; i != DstNumElts; ++i) {
10791 if (i >= Index && i < (Index + SrcNumElts))
10792 Indices[i] = (i - Index) + DstNumElts;
10793 else
10794 Indices[i] = i;
10795 }
10796
10797 return Builder.CreateShuffleVector(Ops[0], Op1,
10798 makeArrayRef(Indices, DstNumElts),
10799 "insert");
10800 }
10801 case X86::BI__builtin_ia32_pmovqd512_mask:
10802 case X86::BI__builtin_ia32_pmovwb512_mask: {
10803 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10804 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
10805 }
10806 case X86::BI__builtin_ia32_pmovdb512_mask:
10807 case X86::BI__builtin_ia32_pmovdw512_mask:
10808 case X86::BI__builtin_ia32_pmovqw512_mask: {
10809 if (const auto *C = dyn_cast<Constant>(Ops[2]))
10810 if (C->isAllOnesValue())
10811 return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10812
10813 Intrinsic::ID IID;
10814 switch (BuiltinID) {
10815 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10815)
;
10816 case X86::BI__builtin_ia32_pmovdb512_mask:
10817 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
10818 break;
10819 case X86::BI__builtin_ia32_pmovdw512_mask:
10820 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
10821 break;
10822 case X86::BI__builtin_ia32_pmovqw512_mask:
10823 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
10824 break;
10825 }
10826
10827 Function *Intr = CGM.getIntrinsic(IID);
10828 return Builder.CreateCall(Intr, Ops);
10829 }
10830 case X86::BI__builtin_ia32_pblendw128:
10831 case X86::BI__builtin_ia32_blendpd:
10832 case X86::BI__builtin_ia32_blendps:
10833 case X86::BI__builtin_ia32_blendpd256:
10834 case X86::BI__builtin_ia32_blendps256:
10835 case X86::BI__builtin_ia32_pblendw256:
10836 case X86::BI__builtin_ia32_pblendd128:
10837 case X86::BI__builtin_ia32_pblendd256: {
10838 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10839 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10840
10841 uint32_t Indices[16];
10842 // If there are more than 8 elements, the immediate is used twice so make
10843 // sure we handle that.
10844 for (unsigned i = 0; i != NumElts; ++i)
10845 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
10846
10847 return Builder.CreateShuffleVector(Ops[0], Ops[1],
10848 makeArrayRef(Indices, NumElts),
10849 "blend");
10850 }
10851 case X86::BI__builtin_ia32_pshuflw:
10852 case X86::BI__builtin_ia32_pshuflw256:
10853 case X86::BI__builtin_ia32_pshuflw512: {
10854 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10855 llvm::Type *Ty = Ops[0]->getType();
10856 unsigned NumElts = Ty->getVectorNumElements();
10857
10858 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10859 Imm = (Imm & 0xff) * 0x01010101;
10860
10861 uint32_t Indices[32];
10862 for (unsigned l = 0; l != NumElts; l += 8) {
10863 for (unsigned i = 0; i != 4; ++i) {
10864 Indices[l + i] = l + (Imm & 3);
10865 Imm >>= 2;
10866 }
10867 for (unsigned i = 4; i != 8; ++i)
10868 Indices[l + i] = l + i;
10869 }
10870
10871 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10872 makeArrayRef(Indices, NumElts),
10873 "pshuflw");
10874 }
10875 case X86::BI__builtin_ia32_pshufhw:
10876 case X86::BI__builtin_ia32_pshufhw256:
10877 case X86::BI__builtin_ia32_pshufhw512: {
10878 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10879 llvm::Type *Ty = Ops[0]->getType();
10880 unsigned NumElts = Ty->getVectorNumElements();
10881
10882 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10883 Imm = (Imm & 0xff) * 0x01010101;
10884
10885 uint32_t Indices[32];
10886 for (unsigned l = 0; l != NumElts; l += 8) {
10887 for (unsigned i = 0; i != 4; ++i)
10888 Indices[l + i] = l + i;
10889 for (unsigned i = 4; i != 8; ++i) {
10890 Indices[l + i] = l + 4 + (Imm & 3);
10891 Imm >>= 2;
10892 }
10893 }
10894
10895 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10896 makeArrayRef(Indices, NumElts),
10897 "pshufhw");
10898 }
10899 case X86::BI__builtin_ia32_pshufd:
10900 case X86::BI__builtin_ia32_pshufd256:
10901 case X86::BI__builtin_ia32_pshufd512:
10902 case X86::BI__builtin_ia32_vpermilpd:
10903 case X86::BI__builtin_ia32_vpermilps:
10904 case X86::BI__builtin_ia32_vpermilpd256:
10905 case X86::BI__builtin_ia32_vpermilps256:
10906 case X86::BI__builtin_ia32_vpermilpd512:
10907 case X86::BI__builtin_ia32_vpermilps512: {
10908 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10909 llvm::Type *Ty = Ops[0]->getType();
10910 unsigned NumElts = Ty->getVectorNumElements();
10911 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
10912 unsigned NumLaneElts = NumElts / NumLanes;
10913
10914 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10915 Imm = (Imm & 0xff) * 0x01010101;
10916
10917 uint32_t Indices[16];
10918 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10919 for (unsigned i = 0; i != NumLaneElts; ++i) {
10920 Indices[i + l] = (Imm % NumLaneElts) + l;
10921 Imm /= NumLaneElts;
10922 }
10923 }
10924
10925 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10926 makeArrayRef(Indices, NumElts),
10927 "permil");
10928 }
10929 case X86::BI__builtin_ia32_shufpd:
10930 case X86::BI__builtin_ia32_shufpd256:
10931 case X86::BI__builtin_ia32_shufpd512:
10932 case X86::BI__builtin_ia32_shufps:
10933 case X86::BI__builtin_ia32_shufps256:
10934 case X86::BI__builtin_ia32_shufps512: {
10935 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10936 llvm::Type *Ty = Ops[0]->getType();
10937 unsigned NumElts = Ty->getVectorNumElements();
10938 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
10939 unsigned NumLaneElts = NumElts / NumLanes;
10940
10941 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10942 Imm = (Imm & 0xff) * 0x01010101;
10943
10944 uint32_t Indices[16];
10945 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10946 for (unsigned i = 0; i != NumLaneElts; ++i) {
10947 unsigned Index = Imm % NumLaneElts;
10948 Imm /= NumLaneElts;
10949 if (i >= (NumLaneElts / 2))
10950 Index += NumElts;
10951 Indices[l + i] = l + Index;
10952 }
10953 }
10954
10955 return Builder.CreateShuffleVector(Ops[0], Ops[1],
10956 makeArrayRef(Indices, NumElts),
10957 "shufp");
10958 }
10959 case X86::BI__builtin_ia32_permdi256:
10960 case X86::BI__builtin_ia32_permdf256:
10961 case X86::BI__builtin_ia32_permdi512:
10962 case X86::BI__builtin_ia32_permdf512: {
10963 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10964 llvm::Type *Ty = Ops[0]->getType();
10965 unsigned NumElts = Ty->getVectorNumElements();
10966
10967 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
10968 uint32_t Indices[8];
10969 for (unsigned l = 0; l != NumElts; l += 4)
10970 for (unsigned i = 0; i != 4; ++i)
10971 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
10972
10973 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10974 makeArrayRef(Indices, NumElts),
10975 "perm");
10976 }
10977 case X86::BI__builtin_ia32_palignr128:
10978 case X86::BI__builtin_ia32_palignr256:
10979 case X86::BI__builtin_ia32_palignr512: {
10980 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
10981
10982 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10983 assert(NumElts % 16 == 0)((NumElts % 16 == 0) ? static_cast<void> (0) : __assert_fail
("NumElts % 16 == 0", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10983, __PRETTY_FUNCTION__))
;
10984
10985 // If palignr is shifting the pair of vectors more than the size of two
10986 // lanes, emit zero.
10987 if (ShiftVal >= 32)
10988 return llvm::Constant::getNullValue(ConvertType(E->getType()));
10989
10990 // If palignr is shifting the pair of input vectors more than one lane,
10991 // but less than two lanes, convert to shifting in zeroes.
10992 if (ShiftVal > 16) {
10993 ShiftVal -= 16;
10994 Ops[1] = Ops[0];
10995 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
10996 }
10997
10998 uint32_t Indices[64];
10999 // 256-bit palignr operates on 128-bit lanes so we need to handle that
11000 for (unsigned l = 0; l != NumElts; l += 16) {
11001 for (unsigned i = 0; i != 16; ++i) {
11002 unsigned Idx = ShiftVal + i;
11003 if (Idx >= 16)
11004 Idx += NumElts - 16; // End of lane, switch operand.
11005 Indices[l + i] = Idx + l;
11006 }
11007 }
11008
11009 return Builder.CreateShuffleVector(Ops[1], Ops[0],
11010 makeArrayRef(Indices, NumElts),
11011 "palignr");
11012 }
11013 case X86::BI__builtin_ia32_alignd128:
11014 case X86::BI__builtin_ia32_alignd256:
11015 case X86::BI__builtin_ia32_alignd512:
11016 case X86::BI__builtin_ia32_alignq128:
11017 case X86::BI__builtin_ia32_alignq256:
11018 case X86::BI__builtin_ia32_alignq512: {
11019 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11020 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
11021
11022 // Mask the shift amount to width of two vectors.
11023 ShiftVal &= (2 * NumElts) - 1;
11024
11025 uint32_t Indices[16];
11026 for (unsigned i = 0; i != NumElts; ++i)
11027 Indices[i] = i + ShiftVal;
11028
11029 return Builder.CreateShuffleVector(Ops[1], Ops[0],
11030 makeArrayRef(Indices, NumElts),
11031 "valign");
11032 }
11033 case X86::BI__builtin_ia32_shuf_f32x4_256:
11034 case X86::BI__builtin_ia32_shuf_f64x2_256:
11035 case X86::BI__builtin_ia32_shuf_i32x4_256:
11036 case X86::BI__builtin_ia32_shuf_i64x2_256:
11037 case X86::BI__builtin_ia32_shuf_f32x4:
11038 case X86::BI__builtin_ia32_shuf_f64x2:
11039 case X86::BI__builtin_ia32_shuf_i32x4:
11040 case X86::BI__builtin_ia32_shuf_i64x2: {
11041 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11042 llvm::Type *Ty = Ops[0]->getType();
11043 unsigned NumElts = Ty->getVectorNumElements();
11044 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
11045 unsigned NumLaneElts = NumElts / NumLanes;
11046
11047 uint32_t Indices[16];
11048 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
11049 unsigned Index = (Imm % NumLanes) * NumLaneElts;
11050 Imm /= NumLanes; // Discard the bits we just used.
11051 if (l >= (NumElts / 2))
11052 Index += NumElts; // Switch to other source.
11053 for (unsigned i = 0; i != NumLaneElts; ++i) {
11054 Indices[l + i] = Index + i;
11055 }
11056 }
11057
11058 return Builder.CreateShuffleVector(Ops[0], Ops[1],
11059 makeArrayRef(Indices, NumElts),
11060 "shuf");
11061 }
11062
11063 case X86::BI__builtin_ia32_vperm2f128_pd256:
11064 case X86::BI__builtin_ia32_vperm2f128_ps256:
11065 case X86::BI__builtin_ia32_vperm2f128_si256:
11066 case X86::BI__builtin_ia32_permti256: {
11067 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11068 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11069
11070 // This takes a very simple approach since there are two lanes and a
11071 // shuffle can have 2 inputs. So we reserve the first input for the first
11072 // lane and the second input for the second lane. This may result in
11073 // duplicate sources, but this can be dealt with in the backend.
11074
11075 Value *OutOps[2];
11076 uint32_t Indices[8];
11077 for (unsigned l = 0; l != 2; ++l) {
11078 // Determine the source for this lane.
11079 if (Imm & (1 << ((l * 4) + 3)))
11080 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
11081 else if (Imm & (1 << ((l * 4) + 1)))
11082 OutOps[l] = Ops[1];
11083 else
11084 OutOps[l] = Ops[0];
11085
11086 for (unsigned i = 0; i != NumElts/2; ++i) {
11087 // Start with ith element of the source for this lane.
11088 unsigned Idx = (l * NumElts) + i;
11089 // If bit 0 of the immediate half is set, switch to the high half of
11090 // the source.
11091 if (Imm & (1 << (l * 4)))
11092 Idx += NumElts/2;
11093 Indices[(l * (NumElts/2)) + i] = Idx;
11094 }
11095 }
11096
11097 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
11098 makeArrayRef(Indices, NumElts),
11099 "vperm");
11100 }
11101
11102 case X86::BI__builtin_ia32_pslldqi128_byteshift:
11103 case X86::BI__builtin_ia32_pslldqi256_byteshift:
11104 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
11105 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11106 llvm::Type *ResultType = Ops[0]->getType();
11107 // Builtin type is vXi64 so multiply by 8 to get bytes.
11108 unsigned NumElts = ResultType->getVectorNumElements() * 8;
11109
11110 // If pslldq is shifting the vector more than 15 bytes, emit zero.
11111 if (ShiftVal >= 16)
11112 return llvm::Constant::getNullValue(ResultType);
11113
11114 uint32_t Indices[64];
11115 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
11116 for (unsigned l = 0; l != NumElts; l += 16) {
11117 for (unsigned i = 0; i != 16; ++i) {
11118 unsigned Idx = NumElts + i - ShiftVal;
11119 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
11120 Indices[l + i] = Idx + l;
11121 }
11122 }
11123
11124 llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11125 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11126 Value *Zero = llvm::Constant::getNullValue(VecTy);
11127 Value *SV = Builder.CreateShuffleVector(Zero, Cast,
11128 makeArrayRef(Indices, NumElts),
11129 "pslldq");
11130 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
11131 }
11132 case X86::BI__builtin_ia32_psrldqi128_byteshift:
11133 case X86::BI__builtin_ia32_psrldqi256_byteshift:
11134 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
11135 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11136 llvm::Type *ResultType = Ops[0]->getType();
11137 // Builtin type is vXi64 so multiply by 8 to get bytes.
11138 unsigned NumElts = ResultType->getVectorNumElements() * 8;
11139
11140 // If psrldq is shifting the vector more than 15 bytes, emit zero.
11141 if (ShiftVal >= 16)
11142 return llvm::Constant::getNullValue(ResultType);
11143
11144 uint32_t Indices[64];
11145 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
11146 for (unsigned l = 0; l != NumElts; l += 16) {
11147 for (unsigned i = 0; i != 16; ++i) {
11148 unsigned Idx = i + ShiftVal;
11149 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
11150 Indices[l + i] = Idx + l;
11151 }
11152 }
11153
11154 llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11155 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11156 Value *Zero = llvm::Constant::getNullValue(VecTy);
11157 Value *SV = Builder.CreateShuffleVector(Cast, Zero,
11158 makeArrayRef(Indices, NumElts),
11159 "psrldq");
11160 return Builder.CreateBitCast(SV, ResultType, "cast");
11161 }
11162 case X86::BI__builtin_ia32_kshiftliqi:
11163 case X86::BI__builtin_ia32_kshiftlihi:
11164 case X86::BI__builtin_ia32_kshiftlisi:
11165 case X86::BI__builtin_ia32_kshiftlidi: {
11166 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11167 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11168
11169 if (ShiftVal >= NumElts)
11170 return llvm::Constant::getNullValue(Ops[0]->getType());
11171
11172 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11173
11174 uint32_t Indices[64];
11175 for (unsigned i = 0; i != NumElts; ++i)
11176 Indices[i] = NumElts + i - ShiftVal;
11177
11178 Value *Zero = llvm::Constant::getNullValue(In->getType());
11179 Value *SV = Builder.CreateShuffleVector(Zero, In,
11180 makeArrayRef(Indices, NumElts),
11181 "kshiftl");
11182 return Builder.CreateBitCast(SV, Ops[0]->getType());
11183 }
11184 case X86::BI__builtin_ia32_kshiftriqi:
11185 case X86::BI__builtin_ia32_kshiftrihi:
11186 case X86::BI__builtin_ia32_kshiftrisi:
11187 case X86::BI__builtin_ia32_kshiftridi: {
11188 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11189 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11190
11191 if (ShiftVal >= NumElts)
11192 return llvm::Constant::getNullValue(Ops[0]->getType());
11193
11194 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11195
11196 uint32_t Indices[64];
11197 for (unsigned i = 0; i != NumElts; ++i)
11198 Indices[i] = i + ShiftVal;
11199
11200 Value *Zero = llvm::Constant::getNullValue(In->getType());
11201 Value *SV = Builder.CreateShuffleVector(In, Zero,
11202 makeArrayRef(Indices, NumElts),
11203 "kshiftr");
11204 return Builder.CreateBitCast(SV, Ops[0]->getType());
11205 }
11206 case X86::BI__builtin_ia32_movnti:
11207 case X86::BI__builtin_ia32_movnti64:
11208 case X86::BI__builtin_ia32_movntsd:
11209 case X86::BI__builtin_ia32_movntss: {
11210 llvm::MDNode *Node = llvm::MDNode::get(
11211 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
11212
11213 Value *Ptr = Ops[0];
11214 Value *Src = Ops[1];
11215
11216 // Extract the 0'th element of the source vector.
11217 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
11218 BuiltinID == X86::BI__builtin_ia32_movntss)
11219 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
11220
11221 // Convert the type of the pointer to a pointer to the stored type.
11222 Value *BC = Builder.CreateBitCast(
11223 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
11224
11225 // Unaligned nontemporal store of the scalar value.
11226 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
11227 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
11228 SI->setAlignment(llvm::Align::None());
11229 return SI;
11230 }
11231 // Rotate is a special case of funnel shift - 1st 2 args are the same.
11232 case X86::BI__builtin_ia32_vprotb:
11233 case X86::BI__builtin_ia32_vprotw:
11234 case X86::BI__builtin_ia32_vprotd:
11235 case X86::BI__builtin_ia32_vprotq:
11236 case X86::BI__builtin_ia32_vprotbi:
11237 case X86::BI__builtin_ia32_vprotwi:
11238 case X86::BI__builtin_ia32_vprotdi:
11239 case X86::BI__builtin_ia32_vprotqi:
11240 case X86::BI__builtin_ia32_prold128:
11241 case X86::BI__builtin_ia32_prold256:
11242 case X86::BI__builtin_ia32_prold512:
11243 case X86::BI__builtin_ia32_prolq128:
11244 case X86::BI__builtin_ia32_prolq256:
11245 case X86::BI__builtin_ia32_prolq512:
11246 case X86::BI__builtin_ia32_prolvd128:
11247 case X86::BI__builtin_ia32_prolvd256:
11248 case X86::BI__builtin_ia32_prolvd512:
11249 case X86::BI__builtin_ia32_prolvq128:
11250 case X86::BI__builtin_ia32_prolvq256:
11251 case X86::BI__builtin_ia32_prolvq512:
11252 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
11253 case X86::BI__builtin_ia32_prord128:
11254 case X86::BI__builtin_ia32_prord256:
11255 case X86::BI__builtin_ia32_prord512:
11256 case X86::BI__builtin_ia32_prorq128:
11257 case X86::BI__builtin_ia32_prorq256:
11258 case X86::BI__builtin_ia32_prorq512:
11259 case X86::BI__builtin_ia32_prorvd128:
11260 case X86::BI__builtin_ia32_prorvd256:
11261 case X86::BI__builtin_ia32_prorvd512:
11262 case X86::BI__builtin_ia32_prorvq128:
11263 case X86::BI__builtin_ia32_prorvq256:
11264 case X86::BI__builtin_ia32_prorvq512:
11265 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
11266 case X86::BI__builtin_ia32_selectb_128:
11267 case X86::BI__builtin_ia32_selectb_256:
11268 case X86::BI__builtin_ia32_selectb_512:
11269 case X86::BI__builtin_ia32_selectw_128:
11270 case X86::BI__builtin_ia32_selectw_256:
11271 case X86::BI__builtin_ia32_selectw_512:
11272 case X86::BI__builtin_ia32_selectd_128:
11273 case X86::BI__builtin_ia32_selectd_256:
11274 case X86::BI__builtin_ia32_selectd_512:
11275 case X86::BI__builtin_ia32_selectq_128:
11276 case X86::BI__builtin_ia32_selectq_256:
11277 case X86::BI__builtin_ia32_selectq_512:
11278 case X86::BI__builtin_ia32_selectps_128:
11279 case X86::BI__builtin_ia32_selectps_256:
11280 case X86::BI__builtin_ia32_selectps_512:
11281 case X86::BI__builtin_ia32_selectpd_128:
11282 case X86::BI__builtin_ia32_selectpd_256:
11283 case X86::BI__builtin_ia32_selectpd_512:
11284 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
11285 case X86::BI__builtin_ia32_selectss_128:
11286 case X86::BI__builtin_ia32_selectsd_128: {
11287 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11288 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11289 A = EmitX86ScalarSelect(*this, Ops[0], A, B);
11290 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
11291 }
11292 case X86::BI__builtin_ia32_cmpb128_mask:
11293 case X86::BI__builtin_ia32_cmpb256_mask:
11294 case X86::BI__builtin_ia32_cmpb512_mask:
11295 case X86::BI__builtin_ia32_cmpw128_mask:
11296 case X86::BI__builtin_ia32_cmpw256_mask:
11297 case X86::BI__builtin_ia32_cmpw512_mask:
11298 case X86::BI__builtin_ia32_cmpd128_mask:
11299 case X86::BI__builtin_ia32_cmpd256_mask:
11300 case X86::BI__builtin_ia32_cmpd512_mask:
11301 case X86::BI__builtin_ia32_cmpq128_mask:
11302 case X86::BI__builtin_ia32_cmpq256_mask:
11303 case X86::BI__builtin_ia32_cmpq512_mask: {
11304 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11305 return EmitX86MaskedCompare(*this, CC, true, Ops);
11306 }
11307 case X86::BI__builtin_ia32_ucmpb128_mask:
11308 case X86::BI__builtin_ia32_ucmpb256_mask:
11309 case X86::BI__builtin_ia32_ucmpb512_mask:
11310 case X86::BI__builtin_ia32_ucmpw128_mask:
11311 case X86::BI__builtin_ia32_ucmpw256_mask:
11312 case X86::BI__builtin_ia32_ucmpw512_mask:
11313 case X86::BI__builtin_ia32_ucmpd128_mask:
11314 case X86::BI__builtin_ia32_ucmpd256_mask:
11315 case X86::BI__builtin_ia32_ucmpd512_mask:
11316 case X86::BI__builtin_ia32_ucmpq128_mask:
11317 case X86::BI__builtin_ia32_ucmpq256_mask:
11318 case X86::BI__builtin_ia32_ucmpq512_mask: {
11319 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11320 return EmitX86MaskedCompare(*this, CC, false, Ops);
11321 }
11322 case X86::BI__builtin_ia32_vpcomb:
11323 case X86::BI__builtin_ia32_vpcomw:
11324 case X86::BI__builtin_ia32_vpcomd:
11325 case X86::BI__builtin_ia32_vpcomq:
11326 return EmitX86vpcom(*this, Ops, true);
11327 case X86::BI__builtin_ia32_vpcomub:
11328 case X86::BI__builtin_ia32_vpcomuw:
11329 case X86::BI__builtin_ia32_vpcomud:
11330 case X86::BI__builtin_ia32_vpcomuq:
11331 return EmitX86vpcom(*this, Ops, false);
11332
11333 case X86::BI__builtin_ia32_kortestcqi:
11334 case X86::BI__builtin_ia32_kortestchi:
11335 case X86::BI__builtin_ia32_kortestcsi:
11336 case X86::BI__builtin_ia32_kortestcdi: {
11337 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11338 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
11339 Value *Cmp = Builder.CreateICmpEQ(Or, C);
11340 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11341 }
11342 case X86::BI__builtin_ia32_kortestzqi:
11343 case X86::BI__builtin_ia32_kortestzhi:
11344 case X86::BI__builtin_ia32_kortestzsi:
11345 case X86::BI__builtin_ia32_kortestzdi: {
11346 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11347 Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
11348 Value *Cmp = Builder.CreateICmpEQ(Or, C);
11349 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11350 }
11351
11352 case X86::BI__builtin_ia32_ktestcqi:
11353 case X86::BI__builtin_ia32_ktestzqi:
11354 case X86::BI__builtin_ia32_ktestchi:
11355 case X86::BI__builtin_ia32_ktestzhi:
11356 case X86::BI__builtin_ia32_ktestcsi:
11357 case X86::BI__builtin_ia32_ktestzsi:
11358 case X86::BI__builtin_ia32_ktestcdi:
11359 case X86::BI__builtin_ia32_ktestzdi: {
11360 Intrinsic::ID IID;
11361 switch (BuiltinID) {
11362 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11362)
;
11363 case X86::BI__builtin_ia32_ktestcqi:
11364 IID = Intrinsic::x86_avx512_ktestc_b;
11365 break;
11366 case X86::BI__builtin_ia32_ktestzqi:
11367 IID = Intrinsic::x86_avx512_ktestz_b;
11368 break;
11369 case X86::BI__builtin_ia32_ktestchi:
11370 IID = Intrinsic::x86_avx512_ktestc_w;
11371 break;
11372 case X86::BI__builtin_ia32_ktestzhi:
11373 IID = Intrinsic::x86_avx512_ktestz_w;
11374 break;
11375 case X86::BI__builtin_ia32_ktestcsi:
11376 IID = Intrinsic::x86_avx512_ktestc_d;
11377 break;
11378 case X86::BI__builtin_ia32_ktestzsi:
11379 IID = Intrinsic::x86_avx512_ktestz_d;
11380 break;
11381 case X86::BI__builtin_ia32_ktestcdi:
11382 IID = Intrinsic::x86_avx512_ktestc_q;
11383 break;
11384 case X86::BI__builtin_ia32_ktestzdi:
11385 IID = Intrinsic::x86_avx512_ktestz_q;
11386 break;
11387 }
11388
11389 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11390 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11391 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11392 Function *Intr = CGM.getIntrinsic(IID);
11393 return Builder.CreateCall(Intr, {LHS, RHS});
11394 }
11395
11396 case X86::BI__builtin_ia32_kaddqi:
11397 case X86::BI__builtin_ia32_kaddhi:
11398 case X86::BI__builtin_ia32_kaddsi:
11399 case X86::BI__builtin_ia32_kadddi: {
11400 Intrinsic::ID IID;
11401 switch (BuiltinID) {
11402 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11402)
;
11403 case X86::BI__builtin_ia32_kaddqi:
11404 IID = Intrinsic::x86_avx512_kadd_b;
11405 break;
11406 case X86::BI__builtin_ia32_kaddhi:
11407 IID = Intrinsic::x86_avx512_kadd_w;
11408 break;
11409 case X86::BI__builtin_ia32_kaddsi:
11410 IID = Intrinsic::x86_avx512_kadd_d;
11411 break;
11412 case X86::BI__builtin_ia32_kadddi:
11413 IID = Intrinsic::x86_avx512_kadd_q;
11414 break;
11415 }
11416
11417 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11418 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11419 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11420 Function *Intr = CGM.getIntrinsic(IID);
11421 Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
11422 return Builder.CreateBitCast(Res, Ops[0]->getType());
11423 }
11424 case X86::BI__builtin_ia32_kandqi:
11425 case X86::BI__builtin_ia32_kandhi:
11426 case X86::BI__builtin_ia32_kandsi:
11427 case X86::BI__builtin_ia32_kanddi:
11428 return EmitX86MaskLogic(*this, Instruction::And, Ops);
11429 case X86::BI__builtin_ia32_kandnqi:
11430 case X86::BI__builtin_ia32_kandnhi:
11431 case X86::BI__builtin_ia32_kandnsi:
11432 case X86::BI__builtin_ia32_kandndi:
11433 return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
11434 case X86::BI__builtin_ia32_korqi:
11435 case X86::BI__builtin_ia32_korhi:
11436 case X86::BI__builtin_ia32_korsi:
11437 case X86::BI__builtin_ia32_kordi:
11438 return EmitX86MaskLogic(*this, Instruction::Or, Ops);
11439 case X86::BI__builtin_ia32_kxnorqi:
11440 case X86::BI__builtin_ia32_kxnorhi:
11441 case X86::BI__builtin_ia32_kxnorsi:
11442 case X86::BI__builtin_ia32_kxnordi:
11443 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
11444 case X86::BI__builtin_ia32_kxorqi:
11445 case X86::BI__builtin_ia32_kxorhi:
11446 case X86::BI__builtin_ia32_kxorsi:
11447 case X86::BI__builtin_ia32_kxordi:
11448 return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
11449 case X86::BI__builtin_ia32_knotqi:
11450 case X86::BI__builtin_ia32_knothi:
11451 case X86::BI__builtin_ia32_knotsi:
11452 case X86::BI__builtin_ia32_knotdi: {
11453 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11454 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11455 return Builder.CreateBitCast(Builder.CreateNot(Res),
11456 Ops[0]->getType());
11457 }
11458 case X86::BI__builtin_ia32_kmovb:
11459 case X86::BI__builtin_ia32_kmovw:
11460 case X86::BI__builtin_ia32_kmovd:
11461 case X86::BI__builtin_ia32_kmovq: {
11462 // Bitcast to vXi1 type and then back to integer. This gets the mask
11463 // register type into the IR, but might be optimized out depending on
11464 // what's around it.
11465 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11466 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11467 return Builder.CreateBitCast(Res, Ops[0]->getType());
11468 }
11469
11470 case X86::BI__builtin_ia32_kunpckdi:
11471 case X86::BI__builtin_ia32_kunpcksi:
11472 case X86::BI__builtin_ia32_kunpckhi: {
11473 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11474 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11475 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11476 uint32_t Indices[64];
11477 for (unsigned i = 0; i != NumElts; ++i)
11478 Indices[i] = i;
11479
11480 // First extract half of each vector. This gives better codegen than
11481 // doing it in a single shuffle.
11482 LHS = Builder.CreateShuffleVector(LHS, LHS,
11483 makeArrayRef(Indices, NumElts / 2));
11484 RHS = Builder.CreateShuffleVector(RHS, RHS,
11485 makeArrayRef(Indices, NumElts / 2));
11486 // Concat the vectors.
11487 // NOTE: Operands are swapped to match the intrinsic definition.
11488 Value *Res = Builder.CreateShuffleVector(RHS, LHS,
11489 makeArrayRef(Indices, NumElts));
11490 return Builder.CreateBitCast(Res, Ops[0]->getType());
11491 }
11492
11493 case X86::BI__builtin_ia32_vplzcntd_128:
11494 case X86::BI__builtin_ia32_vplzcntd_256:
11495 case X86::BI__builtin_ia32_vplzcntd_512:
11496 case X86::BI__builtin_ia32_vplzcntq_128:
11497 case X86::BI__builtin_ia32_vplzcntq_256:
11498 case X86::BI__builtin_ia32_vplzcntq_512: {
11499 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
11500 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
11501 }
11502 case X86::BI__builtin_ia32_sqrtss:
11503 case X86::BI__builtin_ia32_sqrtsd: {
11504 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11505 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11506 A = Builder.CreateCall(F, {A});
11507 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11508 }
11509 case X86::BI__builtin_ia32_sqrtsd_round_mask:
11510 case X86::BI__builtin_ia32_sqrtss_round_mask: {
11511 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11512 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11513 // otherwise keep the intrinsic.
11514 if (CC != 4) {
11515 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
11516 Intrinsic::x86_avx512_mask_sqrt_sd :
11517 Intrinsic::x86_avx512_mask_sqrt_ss;
11518 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11519 }
11520 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11521 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11522 A = Builder.CreateCall(F, A);
11523 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11524 A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
11525 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11526 }
11527 case X86::BI__builtin_ia32_sqrtpd256:
11528 case X86::BI__builtin_ia32_sqrtpd:
11529 case X86::BI__builtin_ia32_sqrtps256:
11530 case X86::BI__builtin_ia32_sqrtps:
11531 case X86::BI__builtin_ia32_sqrtps512:
11532 case X86::BI__builtin_ia32_sqrtpd512: {
11533 if (Ops.size() == 2) {
11534 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11535 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11536 // otherwise keep the intrinsic.
11537 if (CC != 4) {
11538 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
11539 Intrinsic::x86_avx512_sqrt_ps_512 :
11540 Intrinsic::x86_avx512_sqrt_pd_512;
11541 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11542 }
11543 }
11544 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
11545 return Builder.CreateCall(F, Ops[0]);
11546 }
11547 case X86::BI__builtin_ia32_pabsb128:
11548 case X86::BI__builtin_ia32_pabsw128:
11549 case X86::BI__builtin_ia32_pabsd128:
11550 case X86::BI__builtin_ia32_pabsb256:
11551 case X86::BI__builtin_ia32_pabsw256:
11552 case X86::BI__builtin_ia32_pabsd256:
11553 case X86::BI__builtin_ia32_pabsq128:
11554 case X86::BI__builtin_ia32_pabsq256:
11555 case X86::BI__builtin_ia32_pabsb512:
11556 case X86::BI__builtin_ia32_pabsw512:
11557 case X86::BI__builtin_ia32_pabsd512:
11558 case X86::BI__builtin_ia32_pabsq512:
11559 return EmitX86Abs(*this, Ops);
11560
11561 case X86::BI__builtin_ia32_pmaxsb128:
11562 case X86::BI__builtin_ia32_pmaxsw128:
11563 case X86::BI__builtin_ia32_pmaxsd128:
11564 case X86::BI__builtin_ia32_pmaxsq128:
11565 case X86::BI__builtin_ia32_pmaxsb256:
11566 case X86::BI__builtin_ia32_pmaxsw256:
11567 case X86::BI__builtin_ia32_pmaxsd256:
11568 case X86::BI__builtin_ia32_pmaxsq256:
11569 case X86::BI__builtin_ia32_pmaxsb512:
11570 case X86::BI__builtin_ia32_pmaxsw512:
11571 case X86::BI__builtin_ia32_pmaxsd512:
11572 case X86::BI__builtin_ia32_pmaxsq512:
11573 return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
11574 case X86::BI__builtin_ia32_pmaxub128:
11575 case X86::BI__builtin_ia32_pmaxuw128:
11576 case X86::BI__builtin_ia32_pmaxud128:
11577 case X86::BI__builtin_ia32_pmaxuq128:
11578 case X86::BI__builtin_ia32_pmaxub256:
11579 case X86::BI__builtin_ia32_pmaxuw256:
11580 case X86::BI__builtin_ia32_pmaxud256:
11581 case X86::BI__builtin_ia32_pmaxuq256:
11582 case X86::BI__builtin_ia32_pmaxub512:
11583 case X86::BI__builtin_ia32_pmaxuw512:
11584 case X86::BI__builtin_ia32_pmaxud512:
11585 case X86::BI__builtin_ia32_pmaxuq512:
11586 return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
11587 case X86::BI__builtin_ia32_pminsb128:
11588 case X86::BI__builtin_ia32_pminsw128:
11589 case X86::BI__builtin_ia32_pminsd128:
11590 case X86::BI__builtin_ia32_pminsq128:
11591 case X86::BI__builtin_ia32_pminsb256:
11592 case X86::BI__builtin_ia32_pminsw256:
11593 case X86::BI__builtin_ia32_pminsd256:
11594 case X86::BI__builtin_ia32_pminsq256:
11595 case X86::BI__builtin_ia32_pminsb512:
11596 case X86::BI__builtin_ia32_pminsw512:
11597 case X86::BI__builtin_ia32_pminsd512:
11598 case X86::BI__builtin_ia32_pminsq512:
11599 return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
11600 case X86::BI__builtin_ia32_pminub128:
11601 case X86::BI__builtin_ia32_pminuw128:
11602 case X86::BI__builtin_ia32_pminud128:
11603 case X86::BI__builtin_ia32_pminuq128:
11604 case X86::BI__builtin_ia32_pminub256:
11605 case X86::BI__builtin_ia32_pminuw256:
11606 case X86::BI__builtin_ia32_pminud256:
11607 case X86::BI__builtin_ia32_pminuq256:
11608 case X86::BI__builtin_ia32_pminub512:
11609 case X86::BI__builtin_ia32_pminuw512:
11610 case X86::BI__builtin_ia32_pminud512:
11611 case X86::BI__builtin_ia32_pminuq512:
11612 return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
11613
11614 case X86::BI__builtin_ia32_pmuludq128:
11615 case X86::BI__builtin_ia32_pmuludq256:
11616 case X86::BI__builtin_ia32_pmuludq512:
11617 return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
11618
11619 case X86::BI__builtin_ia32_pmuldq128:
11620 case X86::BI__builtin_ia32_pmuldq256:
11621 case X86::BI__builtin_ia32_pmuldq512:
11622 return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
11623
11624 case X86::BI__builtin_ia32_pternlogd512_mask:
11625 case X86::BI__builtin_ia32_pternlogq512_mask:
11626 case X86::BI__builtin_ia32_pternlogd128_mask:
11627 case X86::BI__builtin_ia32_pternlogd256_mask:
11628 case X86::BI__builtin_ia32_pternlogq128_mask:
11629 case X86::BI__builtin_ia32_pternlogq256_mask:
11630 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
11631
11632 case X86::BI__builtin_ia32_pternlogd512_maskz:
11633 case X86::BI__builtin_ia32_pternlogq512_maskz:
11634 case X86::BI__builtin_ia32_pternlogd128_maskz:
11635 case X86::BI__builtin_ia32_pternlogd256_maskz:
11636 case X86::BI__builtin_ia32_pternlogq128_maskz:
11637 case X86::BI__builtin_ia32_pternlogq256_maskz:
11638 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
11639
11640 case X86::BI__builtin_ia32_vpshldd128:
11641 case X86::BI__builtin_ia32_vpshldd256:
11642 case X86::BI__builtin_ia32_vpshldd512:
11643 case X86::BI__builtin_ia32_vpshldq128:
11644 case X86::BI__builtin_ia32_vpshldq256:
11645 case X86::BI__builtin_ia32_vpshldq512:
11646 case X86::BI__builtin_ia32_vpshldw128:
11647 case X86::BI__builtin_ia32_vpshldw256:
11648 case X86::BI__builtin_ia32_vpshldw512:
11649 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11650
11651 case X86::BI__builtin_ia32_vpshrdd128:
11652 case X86::BI__builtin_ia32_vpshrdd256:
11653 case X86::BI__builtin_ia32_vpshrdd512:
11654 case X86::BI__builtin_ia32_vpshrdq128:
11655 case X86::BI__builtin_ia32_vpshrdq256:
11656 case X86::BI__builtin_ia32_vpshrdq512:
11657 case X86::BI__builtin_ia32_vpshrdw128:
11658 case X86::BI__builtin_ia32_vpshrdw256:
11659 case X86::BI__builtin_ia32_vpshrdw512:
11660 // Ops 0 and 1 are swapped.
11661 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11662
11663 case X86::BI__builtin_ia32_vpshldvd128:
11664 case X86::BI__builtin_ia32_vpshldvd256:
11665 case X86::BI__builtin_ia32_vpshldvd512:
11666 case X86::BI__builtin_ia32_vpshldvq128:
11667 case X86::BI__builtin_ia32_vpshldvq256:
11668 case X86::BI__builtin_ia32_vpshldvq512:
11669 case X86::BI__builtin_ia32_vpshldvw128:
11670 case X86::BI__builtin_ia32_vpshldvw256:
11671 case X86::BI__builtin_ia32_vpshldvw512:
11672 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11673
11674 case X86::BI__builtin_ia32_vpshrdvd128:
11675 case X86::BI__builtin_ia32_vpshrdvd256:
11676 case X86::BI__builtin_ia32_vpshrdvd512:
11677 case X86::BI__builtin_ia32_vpshrdvq128:
11678 case X86::BI__builtin_ia32_vpshrdvq256:
11679 case X86::BI__builtin_ia32_vpshrdvq512:
11680 case X86::BI__builtin_ia32_vpshrdvw128:
11681 case X86::BI__builtin_ia32_vpshrdvw256:
11682 case X86::BI__builtin_ia32_vpshrdvw512:
11683 // Ops 0 and 1 are swapped.
11684 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11685
11686 // 3DNow!
11687 case X86::BI__builtin_ia32_pswapdsf:
11688 case X86::BI__builtin_ia32_pswapdsi: {
11689 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
11690 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
11691 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
11692 return Builder.CreateCall(F, Ops, "pswapd");
11693 }
11694 case X86::BI__builtin_ia32_rdrand16_step:
11695 case X86::BI__builtin_ia32_rdrand32_step:
11696 case X86::BI__builtin_ia32_rdrand64_step:
11697 case X86::BI__builtin_ia32_rdseed16_step:
11698 case X86::BI__builtin_ia32_rdseed32_step:
11699 case X86::BI__builtin_ia32_rdseed64_step: {
11700 Intrinsic::ID ID;
11701 switch (BuiltinID) {
11702 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11702)
;
11703 case X86::BI__builtin_ia32_rdrand16_step:
11704 ID = Intrinsic::x86_rdrand_16;
11705 break;
11706 case X86::BI__builtin_ia32_rdrand32_step:
11707 ID = Intrinsic::x86_rdrand_32;
11708 break;
11709 case X86::BI__builtin_ia32_rdrand64_step:
11710 ID = Intrinsic::x86_rdrand_64;
11711 break;
11712 case X86::BI__builtin_ia32_rdseed16_step:
11713 ID = Intrinsic::x86_rdseed_16;
11714 break;
11715 case X86::BI__builtin_ia32_rdseed32_step:
11716 ID = Intrinsic::x86_rdseed_32;
11717 break;
11718 case X86::BI__builtin_ia32_rdseed64_step:
11719 ID = Intrinsic::x86_rdseed_64;
11720 break;
11721 }
11722
11723 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
11724 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
11725 Ops[0]);
11726 return Builder.CreateExtractValue(Call, 1);
11727 }
11728 case X86::BI__builtin_ia32_addcarryx_u32:
11729 case X86::BI__builtin_ia32_addcarryx_u64:
11730 case X86::BI__builtin_ia32_subborrow_u32:
11731 case X86::BI__builtin_ia32_subborrow_u64: {
11732 Intrinsic::ID IID;
11733 switch (BuiltinID) {
11734 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11734)
;
11735 case X86::BI__builtin_ia32_addcarryx_u32:
11736 IID = Intrinsic::x86_addcarry_32;
11737 break;
11738 case X86::BI__builtin_ia32_addcarryx_u64:
11739 IID = Intrinsic::x86_addcarry_64;
11740 break;
11741 case X86::BI__builtin_ia32_subborrow_u32:
11742 IID = Intrinsic::x86_subborrow_32;
11743 break;
11744 case X86::BI__builtin_ia32_subborrow_u64:
11745 IID = Intrinsic::x86_subborrow_64;
11746 break;
11747 }
11748
11749 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
11750 { Ops[0], Ops[1], Ops[2] });
11751 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
11752 Ops[3]);
11753 return Builder.CreateExtractValue(Call, 0);
11754 }
11755
11756 case X86::BI__builtin_ia32_fpclassps128_mask:
11757 case X86::BI__builtin_ia32_fpclassps256_mask:
11758 case X86::BI__builtin_ia32_fpclassps512_mask:
11759 case X86::BI__builtin_ia32_fpclasspd128_mask:
11760 case X86::BI__builtin_ia32_fpclasspd256_mask:
11761 case X86::BI__builtin_ia32_fpclasspd512_mask: {
11762 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11763 Value *MaskIn = Ops[2];
11764 Ops.erase(&Ops[2]);
11765
11766 Intrinsic::ID ID;
11767 switch (BuiltinID) {
11768 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11768)
;
11769 case X86::BI__builtin_ia32_fpclassps128_mask:
11770 ID = Intrinsic::x86_avx512_fpclass_ps_128;
11771 break;
11772 case X86::BI__builtin_ia32_fpclassps256_mask:
11773 ID = Intrinsic::x86_avx512_fpclass_ps_256;
11774 break;
11775 case X86::BI__builtin_ia32_fpclassps512_mask:
11776 ID = Intrinsic::x86_avx512_fpclass_ps_512;
11777 break;
11778 case X86::BI__builtin_ia32_fpclasspd128_mask:
11779 ID = Intrinsic::x86_avx512_fpclass_pd_128;
11780 break;
11781 case X86::BI__builtin_ia32_fpclasspd256_mask:
11782 ID = Intrinsic::x86_avx512_fpclass_pd_256;
11783 break;
11784 case X86::BI__builtin_ia32_fpclasspd512_mask:
11785 ID = Intrinsic::x86_avx512_fpclass_pd_512;
11786 break;
11787 }
11788
11789 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11790 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
11791 }
11792
11793 case X86::BI__builtin_ia32_vp2intersect_q_512:
11794 case X86::BI__builtin_ia32_vp2intersect_q_256:
11795 case X86::BI__builtin_ia32_vp2intersect_q_128:
11796 case X86::BI__builtin_ia32_vp2intersect_d_512:
11797 case X86::BI__builtin_ia32_vp2intersect_d_256:
11798 case X86::BI__builtin_ia32_vp2intersect_d_128: {
11799 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11800 Intrinsic::ID ID;
11801
11802 switch (BuiltinID) {
11803 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11803)
;
11804 case X86::BI__builtin_ia32_vp2intersect_q_512:
11805 ID = Intrinsic::x86_avx512_vp2intersect_q_512;
11806 break;
11807 case X86::BI__builtin_ia32_vp2intersect_q_256:
11808 ID = Intrinsic::x86_avx512_vp2intersect_q_256;
11809 break;
11810 case X86::BI__builtin_ia32_vp2intersect_q_128:
11811 ID = Intrinsic::x86_avx512_vp2intersect_q_128;
11812 break;
11813 case X86::BI__builtin_ia32_vp2intersect_d_512:
11814 ID = Intrinsic::x86_avx512_vp2intersect_d_512;
11815 break;
11816 case X86::BI__builtin_ia32_vp2intersect_d_256:
11817 ID = Intrinsic::x86_avx512_vp2intersect_d_256;
11818 break;
11819 case X86::BI__builtin_ia32_vp2intersect_d_128:
11820 ID = Intrinsic::x86_avx512_vp2intersect_d_128;
11821 break;
11822 }
11823
11824 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
11825 Value *Result = Builder.CreateExtractValue(Call, 0);
11826 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
11827 Builder.CreateDefaultAlignedStore(Result, Ops[2]);
11828
11829 Result = Builder.CreateExtractValue(Call, 1);
11830 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
11831 return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
11832 }
11833
11834 case X86::BI__builtin_ia32_vpmultishiftqb128:
11835 case X86::BI__builtin_ia32_vpmultishiftqb256:
11836 case X86::BI__builtin_ia32_vpmultishiftqb512: {
11837 Intrinsic::ID ID;
11838 switch (BuiltinID) {
11839 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11839)
;
11840 case X86::BI__builtin_ia32_vpmultishiftqb128:
11841 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
11842 break;
11843 case X86::BI__builtin_ia32_vpmultishiftqb256:
11844 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
11845 break;
11846 case X86::BI__builtin_ia32_vpmultishiftqb512:
11847 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
11848 break;
11849 }
11850
11851 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11852 }
11853
11854 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11855 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11856 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
11857 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11858 Value *MaskIn = Ops[2];
11859 Ops.erase(&Ops[2]);
11860
11861 Intrinsic::ID ID;
11862 switch (BuiltinID) {
11863 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11863)
;
11864 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11865 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
11866 break;
11867 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11868 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
11869 break;
11870 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
11871 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
11872 break;
11873 }
11874
11875 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11876 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
11877 }
11878
11879 // packed comparison intrinsics
11880 case X86::BI__builtin_ia32_cmpeqps:
11881 case X86::BI__builtin_ia32_cmpeqpd:
11882 return getVectorFCmpIR(CmpInst::FCMP_OEQ);
11883 case X86::BI__builtin_ia32_cmpltps:
11884 case X86::BI__builtin_ia32_cmpltpd:
11885 return getVectorFCmpIR(CmpInst::FCMP_OLT);
11886 case X86::BI__builtin_ia32_cmpleps:
11887 case X86::BI__builtin_ia32_cmplepd:
11888 return getVectorFCmpIR(CmpInst::FCMP_OLE);
11889 case X86::BI__builtin_ia32_cmpunordps:
11890 case X86::BI__builtin_ia32_cmpunordpd:
11891 return getVectorFCmpIR(CmpInst::FCMP_UNO);
11892 case X86::BI__builtin_ia32_cmpneqps:
11893 case X86::BI__builtin_ia32_cmpneqpd:
11894 return getVectorFCmpIR(CmpInst::FCMP_UNE);
11895 case X86::BI__builtin_ia32_cmpnltps:
11896 case X86::BI__builtin_ia32_cmpnltpd:
11897 return getVectorFCmpIR(CmpInst::FCMP_UGE);
11898 case X86::BI__builtin_ia32_cmpnleps:
11899 case X86::BI__builtin_ia32_cmpnlepd:
11900 return getVectorFCmpIR(CmpInst::FCMP_UGT);
11901 case X86::BI__builtin_ia32_cmpordps:
11902 case X86::BI__builtin_ia32_cmpordpd:
11903 return getVectorFCmpIR(CmpInst::FCMP_ORD);
11904 case X86::BI__builtin_ia32_cmpps:
11905 case X86::BI__builtin_ia32_cmpps256:
11906 case X86::BI__builtin_ia32_cmppd:
11907 case X86::BI__builtin_ia32_cmppd256:
11908 case X86::BI__builtin_ia32_cmpps128_mask:
11909 case X86::BI__builtin_ia32_cmpps256_mask:
11910 case X86::BI__builtin_ia32_cmpps512_mask:
11911 case X86::BI__builtin_ia32_cmppd128_mask:
11912 case X86::BI__builtin_ia32_cmppd256_mask:
11913 case X86::BI__builtin_ia32_cmppd512_mask: {
11914 // Lowering vector comparisons to fcmp instructions, while
11915 // ignoring signalling behaviour requested
11916 // ignoring rounding mode requested
11917 // This is is only possible as long as FENV_ACCESS is not implemented.
11918 // See also: https://reviews.llvm.org/D45616
11919
11920 // The third argument is the comparison condition, and integer in the
11921 // range [0, 31]
11922 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
11923
11924 // Lowering to IR fcmp instruction.
11925 // Ignoring requested signaling behaviour,
11926 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
11927 FCmpInst::Predicate Pred;
11928 switch (CC) {
11929 case 0x00: Pred = FCmpInst::FCMP_OEQ; break;
11930 case 0x01: Pred = FCmpInst::FCMP_OLT; break;
11931 case 0x02: Pred = FCmpInst::FCMP_OLE; break;
11932 case 0x03: Pred = FCmpInst::FCMP_UNO; break;
11933 case 0x04: Pred = FCmpInst::FCMP_UNE; break;
11934 case 0x05: Pred = FCmpInst::FCMP_UGE; break;
11935 case 0x06: Pred = FCmpInst::FCMP_UGT; break;
11936 case 0x07: Pred = FCmpInst::FCMP_ORD; break;
11937 case 0x08: Pred = FCmpInst::FCMP_UEQ; break;
11938 case 0x09: Pred = FCmpInst::FCMP_ULT; break;
11939 case 0x0a: Pred = FCmpInst::FCMP_ULE; break;
11940 case 0x0b: Pred = FCmpInst::FCMP_FALSE; break;
11941 case 0x0c: Pred = FCmpInst::FCMP_ONE; break;
11942 case 0x0d: Pred = FCmpInst::FCMP_OGE; break;
11943 case 0x0e: Pred = FCmpInst::FCMP_OGT; break;
11944 case 0x0f: Pred = FCmpInst::FCMP_TRUE; break;
11945 case 0x10: Pred = FCmpInst::FCMP_OEQ; break;
11946 case 0x11: Pred = FCmpInst::FCMP_OLT; break;
11947 case 0x12: Pred = FCmpInst::FCMP_OLE; break;
11948 case 0x13: Pred = FCmpInst::FCMP_UNO; break;
11949 case 0x14: Pred = FCmpInst::FCMP_UNE; break;
11950 case 0x15: Pred = FCmpInst::FCMP_UGE; break;
11951 case 0x16: Pred = FCmpInst::FCMP_UGT; break;
11952 case 0x17: Pred = FCmpInst::FCMP_ORD; break;
11953 case 0x18: Pred = FCmpInst::FCMP_UEQ; break;
11954 case 0x19: Pred = FCmpInst::FCMP_ULT; break;
11955 case 0x1a: Pred = FCmpInst::FCMP_ULE; break;
11956 case 0x1b: Pred = FCmpInst::FCMP_FALSE; break;
11957 case 0x1c: Pred = FCmpInst::FCMP_ONE; break;
11958 case 0x1d: Pred = FCmpInst::FCMP_OGE; break;
11959 case 0x1e: Pred = FCmpInst::FCMP_OGT; break;
11960 case 0x1f: Pred = FCmpInst::FCMP_TRUE; break;
11961 default: llvm_unreachable("Unhandled CC")::llvm::llvm_unreachable_internal("Unhandled CC", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11961)
;
11962 }
11963
11964 // Builtins without the _mask suffix return a vector of integers
11965 // of the same width as the input vectors
11966 switch (BuiltinID) {
11967 case X86::BI__builtin_ia32_cmpps512_mask:
11968 case X86::BI__builtin_ia32_cmppd512_mask:
11969 case X86::BI__builtin_ia32_cmpps128_mask:
11970 case X86::BI__builtin_ia32_cmpps256_mask:
11971 case X86::BI__builtin_ia32_cmppd128_mask:
11972 case X86::BI__builtin_ia32_cmppd256_mask: {
11973 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11974 Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
11975 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
11976 }
11977 default:
11978 return getVectorFCmpIR(Pred);
11979 }
11980 }
11981
11982 // SSE scalar comparison intrinsics
11983 case X86::BI__builtin_ia32_cmpeqss:
11984 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
11985 case X86::BI__builtin_ia32_cmpltss:
11986 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
11987 case X86::BI__builtin_ia32_cmpless:
11988 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
11989 case X86::BI__builtin_ia32_cmpunordss:
11990 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
11991 case X86::BI__builtin_ia32_cmpneqss:
11992 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
11993 case X86::BI__builtin_ia32_cmpnltss:
11994 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
11995 case X86::BI__builtin_ia32_cmpnless:
11996 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
11997 case X86::BI__builtin_ia32_cmpordss:
11998 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
11999 case X86::BI__builtin_ia32_cmpeqsd:
12000 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
12001 case X86::BI__builtin_ia32_cmpltsd:
12002 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
12003 case X86::BI__builtin_ia32_cmplesd:
12004 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
12005 case X86::BI__builtin_ia32_cmpunordsd:
12006 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
12007 case X86::BI__builtin_ia32_cmpneqsd:
12008 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
12009 case X86::BI__builtin_ia32_cmpnltsd:
12010 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
12011 case X86::BI__builtin_ia32_cmpnlesd:
12012 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
12013 case X86::BI__builtin_ia32_cmpordsd:
12014 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
12015
12016// AVX512 bf16 intrinsics
12017 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
12018 Ops[2] = getMaskVecValue(*this, Ops[2],
12019 Ops[0]->getType()->getVectorNumElements());
12020 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
12021 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
12022 }
12023 case X86::BI__builtin_ia32_cvtsbf162ss_32:
12024 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
12025
12026 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
12027 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
12028 Intrinsic::ID IID;
12029 switch (BuiltinID) {
12030 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12030)
;
12031 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
12032 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
12033 break;
12034 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
12035 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
12036 break;
12037 }
12038 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
12039 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
12040 }
12041
12042 case X86::BI__emul:
12043 case X86::BI__emulu: {
12044 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
12045 bool isSigned = (BuiltinID == X86::BI__emul);
12046 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
12047 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
12048 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
12049 }
12050 case X86::BI__mulh:
12051 case X86::BI__umulh:
12052 case X86::BI_mul128:
12053 case X86::BI_umul128: {
12054 llvm::Type *ResType = ConvertType(E->getType());
12055 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
12056
12057 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
12058 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
12059 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
12060
12061 Value *MulResult, *HigherBits;
12062 if (IsSigned) {
12063 MulResult = Builder.CreateNSWMul(LHS, RHS);
12064 HigherBits = Builder.CreateAShr(MulResult, 64);
12065 } else {
12066 MulResult = Builder.CreateNUWMul(LHS, RHS);
12067 HigherBits = Builder.CreateLShr(MulResult, 64);
12068 }
12069 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
12070
12071 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
12072 return HigherBits;
12073
12074 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
12075 Builder.CreateStore(HigherBits, HighBitsAddress);
12076 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
12077 }
12078
12079 case X86::BI__faststorefence: {
12080 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
12081 llvm::SyncScope::System);
12082 }
12083 case X86::BI__shiftleft128:
12084 case X86::BI__shiftright128: {
12085 // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
12086 // llvm::Function *F = CGM.getIntrinsic(
12087 // BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
12088 // Int64Ty);
12089 // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
12090 // return Builder.CreateCall(F, Ops);
12091 llvm::Type *Int128Ty = Builder.getInt128Ty();
12092 Value *HighPart128 =
12093 Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
12094 Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
12095 Value *Val = Builder.CreateOr(HighPart128, LowPart128);
12096 Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
12097 llvm::ConstantInt::get(Int128Ty, 0x3f));
12098 Value *Res;
12099 if (BuiltinID == X86::BI__shiftleft128)
12100 Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
12101 else
12102 Res = Builder.CreateLShr(Val, Amt);
12103 return Builder.CreateTrunc(Res, Int64Ty);
12104 }
12105 case X86::BI_ReadWriteBarrier:
12106 case X86::BI_ReadBarrier:
12107 case X86::BI_WriteBarrier: {
12108 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
12109 llvm::SyncScope::SingleThread);
12110 }
12111 case X86::BI_BitScanForward:
12112 case X86::BI_BitScanForward64:
12113 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
12114 case X86::BI_BitScanReverse:
12115 case X86::BI_BitScanReverse64:
12116 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
12117
12118 case X86::BI_InterlockedAnd64:
12119 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
12120 case X86::BI_InterlockedExchange64:
12121 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
12122 case X86::BI_InterlockedExchangeAdd64:
12123 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
12124 case X86::BI_InterlockedExchangeSub64:
12125 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
12126 case X86::BI_InterlockedOr64:
12127 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
12128 case X86::BI_InterlockedXor64:
12129 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
12130 case X86::BI_InterlockedDecrement64:
12131 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
12132 case X86::BI_InterlockedIncrement64:
12133 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
12134 case X86::BI_InterlockedCompareExchange128: {
12135 // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
12136 // instead it takes pointers to 64bit ints for Destination and
12137 // ComparandResult, and exchange is taken as two 64bit ints (high & low).
12138 // The previous value is written to ComparandResult, and success is
12139 // returned.
12140
12141 llvm::Type *Int128Ty = Builder.getInt128Ty();
12142 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
12143
12144 Value *Destination =
12145 Builder.CreateBitCast(Ops[0], Int128PtrTy);
12146 Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
12147 Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
12148 Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
12149 getContext().toCharUnitsFromBits(128));
12150
12151 Value *Exchange = Builder.CreateOr(
12152 Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
12153 ExchangeLow128);
12154
12155 Value *Comparand = Builder.CreateLoad(ComparandResult);
12156
12157 AtomicCmpXchgInst *CXI =
12158 Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
12159 AtomicOrdering::SequentiallyConsistent,
12160 AtomicOrdering::SequentiallyConsistent);
12161 CXI->setVolatile(true);
12162
12163 // Write the result back to the inout pointer.
12164 Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
12165
12166 // Get the success boolean and zero extend it to i8.
12167 Value *Success = Builder.CreateExtractValue(CXI, 1);
12168 return Builder.CreateZExt(Success, ConvertType(E->getType()));
12169 }
12170
12171 case X86::BI_AddressOfReturnAddress: {
12172 Function *F =
12173 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
12174 return Builder.CreateCall(F);
12175 }
12176 case X86::BI__stosb: {
12177 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
12178 // instruction, but it will create a memset that won't be optimized away.
12179 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
12180 }
12181 case X86::BI__ud2:
12182 // llvm.trap makes a ud2a instruction on x86.
12183 return EmitTrapCall(Intrinsic::trap);
12184 case X86::BI__int2c: {
12185 // This syscall signals a driver assertion failure in x86 NT kernels.
12186 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
12187 llvm::InlineAsm *IA =
12188 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
12189 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
12190 getLLVMContext(), llvm::AttributeList::FunctionIndex,
12191 llvm::Attribute::NoReturn);
12192 llvm::CallInst *CI = Builder.CreateCall(IA);
12193 CI->setAttributes(NoReturnAttr);
12194 return CI;
12195 }
12196 case X86::BI__readfsbyte:
12197 case X86::BI__readfsword:
12198 case X86::BI__readfsdword:
12199 case X86::BI__readfsqword: {
12200 llvm::Type *IntTy = ConvertType(E->getType());
12201 Value *Ptr =
12202 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
12203 LoadInst *Load = Builder.CreateAlignedLoad(
12204 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12205 Load->setVolatile(true);
12206 return Load;
12207 }
12208 case X86::BI__readgsbyte:
12209 case X86::BI__readgsword:
12210 case X86::BI__readgsdword:
12211 case X86::BI__readgsqword: {
12212 llvm::Type *IntTy = ConvertType(E->getType());
12213 Value *Ptr =
12214 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
12215 LoadInst *Load = Builder.CreateAlignedLoad(
12216 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12217 Load->setVolatile(true);
12218 return Load;
12219 }
12220 case X86::BI__builtin_ia32_paddsb512:
12221 case X86::BI__builtin_ia32_paddsw512:
12222 case X86::BI__builtin_ia32_paddsb256:
12223 case X86::BI__builtin_ia32_paddsw256:
12224 case X86::BI__builtin_ia32_paddsb128:
12225 case X86::BI__builtin_ia32_paddsw128:
12226 return EmitX86AddSubSatExpr(*this, Ops, true, true);
12227 case X86::BI__builtin_ia32_paddusb512:
12228 case X86::BI__builtin_ia32_paddusw512:
12229 case X86::BI__builtin_ia32_paddusb256:
12230 case X86::BI__builtin_ia32_paddusw256:
12231 case X86::BI__builtin_ia32_paddusb128:
12232 case X86::BI__builtin_ia32_paddusw128:
12233 return EmitX86AddSubSatExpr(*this, Ops, false, true);
12234 case X86::BI__builtin_ia32_psubsb512:
12235 case X86::BI__builtin_ia32_psubsw512:
12236 case X86::BI__builtin_ia32_psubsb256:
12237 case X86::BI__builtin_ia32_psubsw256:
12238 case X86::BI__builtin_ia32_psubsb128:
12239 case X86::BI__builtin_ia32_psubsw128:
12240 return EmitX86AddSubSatExpr(*this, Ops, true, false);
12241 case X86::BI__builtin_ia32_psubusb512:
12242 case X86::BI__builtin_ia32_psubusw512:
12243 case X86::BI__builtin_ia32_psubusb256:
12244 case X86::BI__builtin_ia32_psubusw256:
12245 case X86::BI__builtin_ia32_psubusb128:
12246 case X86::BI__builtin_ia32_psubusw128:
12247 return EmitX86AddSubSatExpr(*this, Ops, false, false);
12248 }
12249}
12250
12251Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
12252 const CallExpr *E) {
12253 SmallVector<Value*, 4> Ops;
12254
12255 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
12256 Ops.push_back(EmitScalarExpr(E->getArg(i)));
12257
12258 Intrinsic::ID ID = Intrinsic::not_intrinsic;
12259
12260 switch (BuiltinID) {
12261 default: return nullptr;
12262
12263 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
12264 // call __builtin_readcyclecounter.
12265 case PPC::BI__builtin_ppc_get_timebase:
12266 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
12267
12268 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
12269 case PPC::BI__builtin_altivec_lvx:
12270 case PPC::BI__builtin_altivec_lvxl:
12271 case PPC::BI__builtin_altivec_lvebx:
12272 case PPC::BI__builtin_altivec_lvehx:
12273 case PPC::BI__builtin_altivec_lvewx:
12274 case PPC::BI__builtin_altivec_lvsl:
12275 case PPC::BI__builtin_altivec_lvsr:
12276 case PPC::BI__builtin_vsx_lxvd2x:
12277 case PPC::BI__builtin_vsx_lxvw4x:
12278 case PPC::BI__builtin_vsx_lxvd2x_be:
12279 case PPC::BI__builtin_vsx_lxvw4x_be:
12280 case PPC::BI__builtin_vsx_lxvl:
12281 case PPC::BI__builtin_vsx_lxvll:
12282 {
12283 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
12284 BuiltinID == PPC::BI__builtin_vsx_lxvll){
12285 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
12286 }else {
12287 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12288 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
12289 Ops.pop_back();
12290 }
12291
12292 switch (BuiltinID) {
12293 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!")::llvm::llvm_unreachable_internal("Unsupported ld/lvsl/lvsr intrinsic!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12293)
;
12294 case PPC::BI__builtin_altivec_lvx:
12295 ID = Intrinsic::ppc_altivec_lvx;
12296 break;
12297 case PPC::BI__builtin_altivec_lvxl:
12298 ID = Intrinsic::ppc_altivec_lvxl;
12299 break;
12300 case PPC::BI__builtin_altivec_lvebx:
12301 ID = Intrinsic::ppc_altivec_lvebx;
12302 break;
12303 case PPC::BI__builtin_altivec_lvehx:
12304 ID = Intrinsic::ppc_altivec_lvehx;
12305 break;
12306 case PPC::BI__builtin_altivec_lvewx:
12307 ID = Intrinsic::ppc_altivec_lvewx;
12308 break;
12309 case PPC::BI__builtin_altivec_lvsl:
12310 ID = Intrinsic::ppc_altivec_lvsl;
12311 break;
12312 case PPC::BI__builtin_altivec_lvsr:
12313 ID = Intrinsic::ppc_altivec_lvsr;
12314 break;
12315 case PPC::BI__builtin_vsx_lxvd2x:
12316 ID = Intrinsic::ppc_vsx_lxvd2x;
12317 break;
12318 case PPC::BI__builtin_vsx_lxvw4x:
12319 ID = Intrinsic::ppc_vsx_lxvw4x;
12320 break;
12321 case PPC::BI__builtin_vsx_lxvd2x_be:
12322 ID = Intrinsic::ppc_vsx_lxvd2x_be;
12323 break;
12324 case PPC::BI__builtin_vsx_lxvw4x_be:
12325 ID = Intrinsic::ppc_vsx_lxvw4x_be;
12326 break;
12327 case PPC::BI__builtin_vsx_lxvl:
12328 ID = Intrinsic::ppc_vsx_lxvl;
12329 break;
12330 case PPC::BI__builtin_vsx_lxvll:
12331 ID = Intrinsic::ppc_vsx_lxvll;
12332 break;
12333 }
12334 llvm::Function *F = CGM.getIntrinsic(ID);
12335 return Builder.CreateCall(F, Ops, "");
12336 }
12337
12338 // vec_st, vec_xst_be
12339 case PPC::BI__builtin_altivec_stvx:
12340 case PPC::BI__builtin_altivec_stvxl:
12341 case PPC::BI__builtin_altivec_stvebx:
12342 case PPC::BI__builtin_altivec_stvehx:
12343 case PPC::BI__builtin_altivec_stvewx:
12344 case PPC::BI__builtin_vsx_stxvd2x:
12345 case PPC::BI__builtin_vsx_stxvw4x:
12346 case PPC::BI__builtin_vsx_stxvd2x_be:
12347 case PPC::BI__builtin_vsx_stxvw4x_be:
12348 case PPC::BI__builtin_vsx_stxvl:
12349 case PPC::BI__builtin_vsx_stxvll:
12350 {
12351 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
12352 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
12353 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12354 }else {
12355 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
12356 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
12357 Ops.pop_back();
12358 }
12359
12360 switch (BuiltinID) {
12361 default: llvm_unreachable("Unsupported st intrinsic!")::llvm::llvm_unreachable_internal("Unsupported st intrinsic!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12361)
;
12362 case PPC::BI__builtin_altivec_stvx:
12363 ID = Intrinsic::ppc_altivec_stvx;
12364 break;
12365 case PPC::BI__builtin_altivec_stvxl:
12366 ID = Intrinsic::ppc_altivec_stvxl;
12367 break;
12368 case PPC::BI__builtin_altivec_stvebx:
12369 ID = Intrinsic::ppc_altivec_stvebx;
12370 break;
12371 case PPC::BI__builtin_altivec_stvehx:
12372 ID = Intrinsic::ppc_altivec_stvehx;
12373 break;
12374 case PPC::BI__builtin_altivec_stvewx:
12375 ID = Intrinsic::ppc_altivec_stvewx;
12376 break;
12377 case PPC::BI__builtin_vsx_stxvd2x:
12378 ID = Intrinsic::ppc_vsx_stxvd2x;
12379 break;
12380 case PPC::BI__builtin_vsx_stxvw4x:
12381 ID = Intrinsic::ppc_vsx_stxvw4x;
12382 break;
12383 case PPC::BI__builtin_vsx_stxvd2x_be:
12384 ID = Intrinsic::ppc_vsx_stxvd2x_be;
12385 break;
12386 case PPC::BI__builtin_vsx_stxvw4x_be:
12387 ID = Intrinsic::ppc_vsx_stxvw4x_be;
12388 break;
12389 case PPC::BI__builtin_vsx_stxvl:
12390 ID = Intrinsic::ppc_vsx_stxvl;
12391 break;
12392 case PPC::BI__builtin_vsx_stxvll:
12393 ID = Intrinsic::ppc_vsx_stxvll;
12394 break;
12395 }
12396 llvm::Function *F = CGM.getIntrinsic(ID);
12397 return Builder.CreateCall(F, Ops, "");
12398 }
12399 // Square root
12400 case PPC::BI__builtin_vsx_xvsqrtsp:
12401 case PPC::BI__builtin_vsx_xvsqrtdp: {
12402 llvm::Type *ResultType = ConvertType(E->getType());
12403 Value *X = EmitScalarExpr(E->getArg(0));
12404 ID = Intrinsic::sqrt;
12405 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12406 return Builder.CreateCall(F, X);
12407 }
12408 // Count leading zeros
12409 case PPC::BI__builtin_altivec_vclzb:
12410 case PPC::BI__builtin_altivec_vclzh:
12411 case PPC::BI__builtin_altivec_vclzw:
12412 case PPC::BI__builtin_altivec_vclzd: {
12413 llvm::Type *ResultType = ConvertType(E->getType());
12414 Value *X = EmitScalarExpr(E->getArg(0));
12415 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12416 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12417 return Builder.CreateCall(F, {X, Undef});
12418 }
12419 case PPC::BI__builtin_altivec_vctzb:
12420 case PPC::BI__builtin_altivec_vctzh:
12421 case PPC::BI__builtin_altivec_vctzw:
12422 case PPC::BI__builtin_altivec_vctzd: {
12423 llvm::Type *ResultType = ConvertType(E->getType());
12424 Value *X = EmitScalarExpr(E->getArg(0));
12425 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12426 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12427 return Builder.CreateCall(F, {X, Undef});
12428 }
12429 case PPC::BI__builtin_altivec_vpopcntb:
12430 case PPC::BI__builtin_altivec_vpopcnth:
12431 case PPC::BI__builtin_altivec_vpopcntw:
12432 case PPC::BI__builtin_altivec_vpopcntd: {
12433 llvm::Type *ResultType = ConvertType(E->getType());
12434 Value *X = EmitScalarExpr(E->getArg(0));
12435 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12436 return Builder.CreateCall(F, X);
12437 }
12438 // Copy sign
12439 case PPC::BI__builtin_vsx_xvcpsgnsp:
12440 case PPC::BI__builtin_vsx_xvcpsgndp: {
12441 llvm::Type *ResultType = ConvertType(E->getType());
12442 Value *X = EmitScalarExpr(E->getArg(0));
12443 Value *Y = EmitScalarExpr(E->getArg(1));
12444 ID = Intrinsic::copysign;
12445 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12446 return Builder.CreateCall(F, {X, Y});
12447 }
12448 // Rounding/truncation
12449 case PPC::BI__builtin_vsx_xvrspip:
12450 case PPC::BI__builtin_vsx_xvrdpip:
12451 case PPC::BI__builtin_vsx_xvrdpim:
12452 case PPC::BI__builtin_vsx_xvrspim:
12453 case PPC::BI__builtin_vsx_xvrdpi:
12454 case PPC::BI__builtin_vsx_xvrspi:
12455 case PPC::BI__builtin_vsx_xvrdpic:
12456 case PPC::BI__builtin_vsx_xvrspic:
12457 case PPC::BI__builtin_vsx_xvrdpiz:
12458 case PPC::BI__builtin_vsx_xvrspiz: {
12459 llvm::Type *ResultType = ConvertType(E->getType());
12460 Value *X = EmitScalarExpr(E->getArg(0));
12461 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
12462 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
12463 ID = Intrinsic::floor;
12464 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
12465 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
12466 ID = Intrinsic::round;
12467 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
12468 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
12469 ID = Intrinsic::nearbyint;
12470 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
12471 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
12472 ID = Intrinsic::ceil;
12473 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
12474 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
12475 ID = Intrinsic::trunc;
12476 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12477 return Builder.CreateCall(F, X);
12478 }
12479
12480 // Absolute value
12481 case PPC::BI__builtin_vsx_xvabsdp:
12482 case PPC::BI__builtin_vsx_xvabssp: {
12483 llvm::Type *ResultType = ConvertType(E->getType());
12484 Value *X = EmitScalarExpr(E->getArg(0));
12485 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12486 return Builder.CreateCall(F, X);
12487 }
12488
12489 // FMA variations
12490 case PPC::BI__builtin_vsx_xvmaddadp:
12491 case PPC::BI__builtin_vsx_xvmaddasp:
12492 case PPC::BI__builtin_vsx_xvnmaddadp:
12493 case PPC::BI__builtin_vsx_xvnmaddasp:
12494 case PPC::BI__builtin_vsx_xvmsubadp:
12495 case PPC::BI__builtin_vsx_xvmsubasp:
12496 case PPC::BI__builtin_vsx_xvnmsubadp:
12497 case PPC::BI__builtin_vsx_xvnmsubasp: {
12498 llvm::Type *ResultType = ConvertType(E->getType());
12499 Value *X = EmitScalarExpr(E->getArg(0));
12500 Value *Y = EmitScalarExpr(E->getArg(1));
12501 Value *Z = EmitScalarExpr(E->getArg(2));
12502 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12503 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12504 switch (BuiltinID) {
12505 case PPC::BI__builtin_vsx_xvmaddadp:
12506 case PPC::BI__builtin_vsx_xvmaddasp:
12507 return Builder.CreateCall(F, {X, Y, Z});
12508 case PPC::BI__builtin_vsx_xvnmaddadp:
12509 case PPC::BI__builtin_vsx_xvnmaddasp:
12510 return Builder.CreateFSub(Zero,
12511 Builder.CreateCall(F, {X, Y, Z}), "sub");
12512 case PPC::BI__builtin_vsx_xvmsubadp:
12513 case PPC::BI__builtin_vsx_xvmsubasp:
12514 return Builder.CreateCall(F,
12515 {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12516 case PPC::BI__builtin_vsx_xvnmsubadp:
12517 case PPC::BI__builtin_vsx_xvnmsubasp:
12518 Value *FsubRes =
12519 Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12520 return Builder.CreateFSub(Zero, FsubRes, "sub");
12521 }
12522 llvm_unreachable("Unknown FMA operation")::llvm::llvm_unreachable_internal("Unknown FMA operation", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12522)
;
12523 return nullptr; // Suppress no-return warning
12524 }
12525
12526 case PPC::BI__builtin_vsx_insertword: {
12527 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
12528
12529 // Third argument is a compile time constant int. It must be clamped to
12530 // to the range [0, 12].
12531 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12532 assert(ArgCI &&((ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12533, __PRETTY_FUNCTION__))
12533 "Third arg to xxinsertw intrinsic must be constant integer")((ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12533, __PRETTY_FUNCTION__))
;
12534 const int64_t MaxIndex = 12;
12535 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12536
12537 // The builtin semantics don't exactly match the xxinsertw instructions
12538 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
12539 // word from the first argument, and inserts it in the second argument. The
12540 // instruction extracts the word from its second input register and inserts
12541 // it into its first input register, so swap the first and second arguments.
12542 std::swap(Ops[0], Ops[1]);
12543
12544 // Need to cast the second argument from a vector of unsigned int to a
12545 // vector of long long.
12546 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12547
12548 if (getTarget().isLittleEndian()) {
12549 // Create a shuffle mask of (1, 0)
12550 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12551 ConstantInt::get(Int32Ty, 0)
12552 };
12553 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12554
12555 // Reverse the double words in the vector we will extract from.
12556 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12557 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
12558
12559 // Reverse the index.
12560 Index = MaxIndex - Index;
12561 }
12562
12563 // Intrinsic expects the first arg to be a vector of int.
12564 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12565 Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
12566 return Builder.CreateCall(F, Ops);
12567 }
12568
12569 case PPC::BI__builtin_vsx_extractuword: {
12570 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
12571
12572 // Intrinsic expects the first argument to be a vector of doublewords.
12573 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12574
12575 // The second argument is a compile time constant int that needs to
12576 // be clamped to the range [0, 12].
12577 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
12578 assert(ArgCI &&((ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12579, __PRETTY_FUNCTION__))
12579 "Second Arg to xxextractuw intrinsic must be a constant integer!")((ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12579, __PRETTY_FUNCTION__))
;
12580 const int64_t MaxIndex = 12;
12581 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12582
12583 if (getTarget().isLittleEndian()) {
12584 // Reverse the index.
12585 Index = MaxIndex - Index;
12586 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12587
12588 // Emit the call, then reverse the double words of the results vector.
12589 Value *Call = Builder.CreateCall(F, Ops);
12590
12591 // Create a shuffle mask of (1, 0)
12592 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12593 ConstantInt::get(Int32Ty, 0)
12594 };
12595 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12596
12597 Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
12598 return ShuffleCall;
12599 } else {
12600 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12601 return Builder.CreateCall(F, Ops);
12602 }
12603 }
12604
12605 case PPC::BI__builtin_vsx_xxpermdi: {
12606 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12607 assert(ArgCI && "Third arg must be constant integer!")((ArgCI && "Third arg must be constant integer!") ? static_cast
<void> (0) : __assert_fail ("ArgCI && \"Third arg must be constant integer!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12607, __PRETTY_FUNCTION__))
;
12608
12609 unsigned Index = ArgCI->getZExtValue();
12610 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12611 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12612
12613 // Account for endianness by treating this as just a shuffle. So we use the
12614 // same indices for both LE and BE in order to produce expected results in
12615 // both cases.
12616 unsigned ElemIdx0 = (Index & 2) >> 1;
12617 unsigned ElemIdx1 = 2 + (Index & 1);
12618
12619 Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
12620 ConstantInt::get(Int32Ty, ElemIdx1)};
12621 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12622
12623 Value *ShuffleCall =
12624 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12625 QualType BIRetType = E->getType();
12626 auto RetTy = ConvertType(BIRetType);
12627 return Builder.CreateBitCast(ShuffleCall, RetTy);
12628 }
12629
12630 case PPC::BI__builtin_vsx_xxsldwi: {
12631 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12632 assert(ArgCI && "Third argument must be a compile time constant")((ArgCI && "Third argument must be a compile time constant"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Third argument must be a compile time constant\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12632, __PRETTY_FUNCTION__))
;
12633 unsigned Index = ArgCI->getZExtValue() & 0x3;
12634 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12635 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
12636
12637 // Create a shuffle mask
12638 unsigned ElemIdx0;
12639 unsigned ElemIdx1;
12640 unsigned ElemIdx2;
12641 unsigned ElemIdx3;
12642 if (getTarget().isLittleEndian()) {
12643 // Little endian element N comes from element 8+N-Index of the
12644 // concatenated wide vector (of course, using modulo arithmetic on
12645 // the total number of elements).
12646 ElemIdx0 = (8 - Index) % 8;
12647 ElemIdx1 = (9 - Index) % 8;
12648 ElemIdx2 = (10 - Index) % 8;
12649 ElemIdx3 = (11 - Index) % 8;
12650 } else {
12651 // Big endian ElemIdx<N> = Index + N
12652 ElemIdx0 = Index;
12653 ElemIdx1 = Index + 1;
12654 ElemIdx2 = Index + 2;
12655 ElemIdx3 = Index + 3;
12656 }
12657
12658 Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
12659 ConstantInt::get(Int32Ty, ElemIdx1),
12660 ConstantInt::get(Int32Ty, ElemIdx2),
12661 ConstantInt::get(Int32Ty, ElemIdx3)};
12662
12663 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12664 Value *ShuffleCall =
12665 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12666 QualType BIRetType = E->getType();
12667 auto RetTy = ConvertType(BIRetType);
12668 return Builder.CreateBitCast(ShuffleCall, RetTy);
12669 }
12670
12671 case PPC::BI__builtin_pack_vector_int128: {
12672 bool isLittleEndian = getTarget().isLittleEndian();
12673 Value *UndefValue =
12674 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2));
12675 Value *Res = Builder.CreateInsertElement(
12676 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
12677 Res = Builder.CreateInsertElement(Res, Ops[1],
12678 (uint64_t)(isLittleEndian ? 0 : 1));
12679 return Builder.CreateBitCast(Res, ConvertType(E->getType()));
12680 }
12681
12682 case PPC::BI__builtin_unpack_vector_int128: {
12683 ConstantInt *Index = cast<ConstantInt>(Ops[1]);
12684 Value *Unpacked = Builder.CreateBitCast(
12685 Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2));
12686
12687 if (getTarget().isLittleEndian())
12688 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
12689
12690 return Builder.CreateExtractElement(Unpacked, Index);
12691 }
12692 }
12693}
12694
12695Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
12696 const CallExpr *E) {
12697 switch (BuiltinID) {
12698 case AMDGPU::BI__builtin_amdgcn_div_scale:
12699 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
12700 // Translate from the intrinsics's struct return to the builtin's out
12701 // argument.
12702
12703 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
12704
12705 llvm::Value *X = EmitScalarExpr(E->getArg(0));
12706 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
12707 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
12708
12709 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
12710 X->getType());
12711
12712 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
12713
12714 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
12715 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
12716
12717 llvm::Type *RealFlagType
12718 = FlagOutPtr.getPointer()->getType()->getPointerElementType();
12719
12720 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
12721 Builder.CreateStore(FlagExt, FlagOutPtr);
12722 return Result;
12723 }
12724 case AMDGPU::BI__builtin_amdgcn_div_fmas:
12725 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
12726 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12727 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12728 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12729 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
12730
12731 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
12732 Src0->getType());
12733 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
12734 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
12735 }
12736
12737 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
12738 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
12739 case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
12740 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
12741 case AMDGPU::BI__builtin_amdgcn_mov_dpp:
12742 case AMDGPU::BI__builtin_amdgcn_update_dpp: {
12743 llvm::SmallVector<llvm::Value *, 6> Args;
12744 for (unsigned I = 0; I != E->getNumArgs(); ++I)
12745 Args.push_back(EmitScalarExpr(E->getArg(I)));
12746 assert(Args.size() == 5 || Args.size() == 6)((Args.size() == 5 || Args.size() == 6) ? static_cast<void
> (0) : __assert_fail ("Args.size() == 5 || Args.size() == 6"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12746, __PRETTY_FUNCTION__))
;
12747 if (Args.size() == 5)
12748 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
12749 Function *F =
12750 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
12751 return Builder.CreateCall(F, Args);
12752 }
12753 case AMDGPU::BI__builtin_amdgcn_div_fixup:
12754 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
12755 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
12756 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
12757 case AMDGPU::BI__builtin_amdgcn_trig_preop:
12758 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
12759 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
12760 case AMDGPU::BI__builtin_amdgcn_rcp:
12761 case AMDGPU::BI__builtin_amdgcn_rcpf:
12762 case AMDGPU::BI__builtin_amdgcn_rcph:
12763 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
12764 case AMDGPU::BI__builtin_amdgcn_rsq:
12765 case AMDGPU::BI__builtin_amdgcn_rsqf:
12766 case AMDGPU::BI__builtin_amdgcn_rsqh:
12767 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
12768 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
12769 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
12770 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
12771 case AMDGPU::BI__builtin_amdgcn_sinf:
12772 case AMDGPU::BI__builtin_amdgcn_sinh:
12773 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
12774 case AMDGPU::BI__builtin_amdgcn_cosf:
12775 case AMDGPU::BI__builtin_amdgcn_cosh:
12776 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
12777 case AMDGPU::BI__builtin_amdgcn_log_clampf:
12778 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
12779 case AMDGPU::BI__builtin_amdgcn_ldexp:
12780 case AMDGPU::BI__builtin_amdgcn_ldexpf:
12781 case AMDGPU::BI__builtin_amdgcn_ldexph:
12782 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
12783 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
12784 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
12785 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
12786 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
12787 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
12788 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
12789 Value *Src0 = EmitScalarExpr(E->getArg(0));
12790 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12791 { Builder.getInt32Ty(), Src0->getType() });
12792 return Builder.CreateCall(F, Src0);
12793 }
12794 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
12795 Value *Src0 = EmitScalarExpr(E->getArg(0));
12796 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12797 { Builder.getInt16Ty(), Src0->getType() });
12798 return Builder.CreateCall(F, Src0);
12799 }
12800 case AMDGPU::BI__builtin_amdgcn_fract:
12801 case AMDGPU::BI__builtin_amdgcn_fractf:
12802 case AMDGPU::BI__builtin_amdgcn_fracth:
12803 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
12804 case AMDGPU::BI__builtin_amdgcn_lerp:
12805 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
12806 case AMDGPU::BI__builtin_amdgcn_ubfe:
12807 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
12808 case AMDGPU::BI__builtin_amdgcn_sbfe:
12809 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
12810 case AMDGPU::BI__builtin_amdgcn_uicmp:
12811 case AMDGPU::BI__builtin_amdgcn_uicmpl:
12812 case AMDGPU::BI__builtin_amdgcn_sicmp:
12813 case AMDGPU::BI__builtin_amdgcn_sicmpl: {
12814 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12815 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12816 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12817
12818 // FIXME-GFX10: How should 32 bit mask be handled?
12819 Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
12820 { Builder.getInt64Ty(), Src0->getType() });
12821 return Builder.CreateCall(F, { Src0, Src1, Src2 });
12822 }
12823 case AMDGPU::BI__builtin_amdgcn_fcmp:
12824 case AMDGPU::BI__builtin_amdgcn_fcmpf: {
12825 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12826 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12827 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12828
12829 // FIXME-GFX10: How should 32 bit mask be handled?
12830 Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
12831 { Builder.getInt64Ty(), Src0->getType() });
12832 return Builder.CreateCall(F, { Src0, Src1, Src2 });
12833 }
12834 case AMDGPU::BI__builtin_amdgcn_class:
12835 case AMDGPU::BI__builtin_amdgcn_classf:
12836 case AMDGPU::BI__builtin_amdgcn_classh:
12837 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
12838 case AMDGPU::BI__builtin_amdgcn_fmed3f:
12839 case AMDGPU::BI__builtin_amdgcn_fmed3h:
12840 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
12841 case AMDGPU::BI__builtin_amdgcn_ds_append:
12842 case AMDGPU::BI__builtin_amdgcn_ds_consume: {
12843 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
12844 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
12845 Value *Src0 = EmitScalarExpr(E->getArg(0));
12846 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
12847 return Builder.CreateCall(F, { Src0, Builder.getFalse() });
12848 }
12849 case AMDGPU::BI__builtin_amdgcn_read_exec: {
12850 CallInst *CI = cast<CallInst>(
12851 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
12852 CI->setConvergent();
12853 return CI;
12854 }
12855 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
12856 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
12857 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
12858 "exec_lo" : "exec_hi";
12859 CallInst *CI = cast<CallInst>(
12860 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
12861 CI->setConvergent();
12862 return CI;
12863 }
12864 // amdgcn workitem
12865 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
12866 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
12867 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
12868 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
12869 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
12870 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
12871
12872 // r600 intrinsics
12873 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
12874 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
12875 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
12876 case AMDGPU::BI__builtin_r600_read_tidig_x:
12877 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
12878 case AMDGPU::BI__builtin_r600_read_tidig_y:
12879 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
12880 case AMDGPU::BI__builtin_r600_read_tidig_z:
12881 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
12882 default:
12883 return nullptr;
12884 }
12885}
12886
12887/// Handle a SystemZ function in which the final argument is a pointer
12888/// to an int that receives the post-instruction CC value. At the LLVM level
12889/// this is represented as a function that returns a {result, cc} pair.
12890static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
12891 unsigned IntrinsicID,
12892 const CallExpr *E) {
12893 unsigned NumArgs = E->getNumArgs() - 1;
12894 SmallVector<Value *, 8> Args(NumArgs);
12895 for (unsigned I = 0; I < NumArgs; ++I)
12896 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
12897 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
12898 Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
12899 Value *Call = CGF.Builder.CreateCall(F, Args);
12900 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
12901 CGF.Builder.CreateStore(CC, CCPtr);
12902 return CGF.Builder.CreateExtractValue(Call, 0);
12903}
12904
12905Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
12906 const CallExpr *E) {
12907 switch (BuiltinID) {
12908 case SystemZ::BI__builtin_tbegin: {
12909 Value *TDB = EmitScalarExpr(E->getArg(0));
12910 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
12911 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
12912 return Builder.CreateCall(F, {TDB, Control});
12913 }
12914 case SystemZ::BI__builtin_tbegin_nofloat: {
12915 Value *TDB = EmitScalarExpr(E->getArg(0));
12916 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
12917 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
12918 return Builder.CreateCall(F, {TDB, Control});
12919 }
12920 case SystemZ::BI__builtin_tbeginc: {
12921 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
12922 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
12923 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
12924 return Builder.CreateCall(F, {TDB, Control});
12925 }
12926 case SystemZ::BI__builtin_tabort: {
12927 Value *Data = EmitScalarExpr(E->getArg(0));
12928 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
12929 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
12930 }
12931 case SystemZ::BI__builtin_non_tx_store: {
12932 Value *Address = EmitScalarExpr(E->getArg(0));
12933 Value *Data = EmitScalarExpr(E->getArg(1));
12934 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
12935 return Builder.CreateCall(F, {Data, Address});
12936 }
12937
12938 // Vector builtins. Note that most vector builtins are mapped automatically
12939 // to target-specific LLVM intrinsics. The ones handled specially here can
12940 // be represented via standard LLVM IR, which is preferable to enable common
12941 // LLVM optimizations.
12942
12943 case SystemZ::BI__builtin_s390_vpopctb:
12944 case SystemZ::BI__builtin_s390_vpopcth:
12945 case SystemZ::BI__builtin_s390_vpopctf:
12946 case SystemZ::BI__builtin_s390_vpopctg: {
12947 llvm::Type *ResultType = ConvertType(E->getType());
12948 Value *X = EmitScalarExpr(E->getArg(0));
12949 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12950 return Builder.CreateCall(F, X);
12951 }
12952
12953 case SystemZ::BI__builtin_s390_vclzb:
12954 case SystemZ::BI__builtin_s390_vclzh:
12955 case SystemZ::BI__builtin_s390_vclzf:
12956 case SystemZ::BI__builtin_s390_vclzg: {
12957 llvm::Type *ResultType = ConvertType(E->getType());
12958 Value *X = EmitScalarExpr(E->getArg(0));
12959 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12960 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12961 return Builder.CreateCall(F, {X, Undef});
12962 }
12963
12964 case SystemZ::BI__builtin_s390_vctzb:
12965 case SystemZ::BI__builtin_s390_vctzh:
12966 case SystemZ::BI__builtin_s390_vctzf:
12967 case SystemZ::BI__builtin_s390_vctzg: {
12968 llvm::Type *ResultType = ConvertType(E->getType());
12969 Value *X = EmitScalarExpr(E->getArg(0));
12970 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12971 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12972 return Builder.CreateCall(F, {X, Undef});
12973 }
12974
12975 case SystemZ::BI__builtin_s390_vfsqsb:
12976 case SystemZ::BI__builtin_s390_vfsqdb: {
12977 llvm::Type *ResultType = ConvertType(E->getType());
12978 Value *X = EmitScalarExpr(E->getArg(0));
12979 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
12980 return Builder.CreateCall(F, X);
12981 }
12982 case SystemZ::BI__builtin_s390_vfmasb:
12983 case SystemZ::BI__builtin_s390_vfmadb: {
12984 llvm::Type *ResultType = ConvertType(E->getType());
12985 Value *X = EmitScalarExpr(E->getArg(0));
12986 Value *Y = EmitScalarExpr(E->getArg(1));
12987 Value *Z = EmitScalarExpr(E->getArg(2));
12988 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12989 return Builder.CreateCall(F, {X, Y, Z});
12990 }
12991 case SystemZ::BI__builtin_s390_vfmssb:
12992 case SystemZ::BI__builtin_s390_vfmsdb: {
12993 llvm::Type *ResultType = ConvertType(E->getType());
12994 Value *X = EmitScalarExpr(E->getArg(0));
12995 Value *Y = EmitScalarExpr(E->getArg(1));
12996 Value *Z = EmitScalarExpr(E->getArg(2));
12997 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12998 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12999 return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
13000 }
13001 case SystemZ::BI__builtin_s390_vfnmasb:
13002 case SystemZ::BI__builtin_s390_vfnmadb: {
13003 llvm::Type *ResultType = ConvertType(E->getType());
13004 Value *X = EmitScalarExpr(E->getArg(0));
13005 Value *Y = EmitScalarExpr(E->getArg(1));
13006 Value *Z = EmitScalarExpr(E->getArg(2));
13007 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
13008 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13009 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
13010 }
13011 case SystemZ::BI__builtin_s390_vfnmssb:
13012 case SystemZ::BI__builtin_s390_vfnmsdb: {
13013 llvm::Type *ResultType = ConvertType(E->getType());
13014 Value *X = EmitScalarExpr(E->getArg(0));
13015 Value *Y = EmitScalarExpr(E->getArg(1));
13016 Value *Z = EmitScalarExpr(E->getArg(2));
13017 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
13018 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13019 Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
13020 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
13021 }
13022 case SystemZ::BI__builtin_s390_vflpsb:
13023 case SystemZ::BI__builtin_s390_vflpdb: {
13024 llvm::Type *ResultType = ConvertType(E->getType());
13025 Value *X = EmitScalarExpr(E->getArg(0));
13026 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
13027 return Builder.CreateCall(F, X);
13028 }
13029 case SystemZ::BI__builtin_s390_vflnsb:
13030 case SystemZ::BI__builtin_s390_vflndb: {
13031 llvm::Type *ResultType = ConvertType(E->getType());
13032 Value *X = EmitScalarExpr(E->getArg(0));
13033 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
13034 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
13035 return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
13036 }
13037 case SystemZ::BI__builtin_s390_vfisb:
13038 case SystemZ::BI__builtin_s390_vfidb: {
13039 llvm::Type *ResultType = ConvertType(E->getType());
13040 Value *X = EmitScalarExpr(E->getArg(0));
13041 // Constant-fold the M4 and M5 mask arguments.
13042 llvm::APSInt M4, M5;
13043 bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
13044 bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
13045 assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?")((IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?"
) ? static_cast<void> (0) : __assert_fail ("IsConstM4 && IsConstM5 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13045, __PRETTY_FUNCTION__))
;
13046 (void)IsConstM4; (void)IsConstM5;
13047 // Check whether this instance can be represented via a LLVM standard
13048 // intrinsic. We only support some combinations of M4 and M5.
13049 Intrinsic::ID ID = Intrinsic::not_intrinsic;
13050 switch (M4.getZExtValue()) {
13051 default: break;
13052 case 0: // IEEE-inexact exception allowed
13053 switch (M5.getZExtValue()) {
13054 default: break;
13055 case 0: ID = Intrinsic::rint; break;
13056 }
13057 break;
13058 case 4: // IEEE-inexact exception suppressed
13059 switch (M5.getZExtValue()) {
13060 default: break;
13061 case 0: ID = Intrinsic::nearbyint; break;
13062 case 1: ID = Intrinsic::round; break;
13063 case 5: ID = Intrinsic::trunc; break;
13064 case 6: ID = Intrinsic::ceil; break;
13065 case 7: ID = Intrinsic::floor; break;
13066 }
13067 break;
13068 }
13069 if (ID != Intrinsic::not_intrinsic) {
13070 Function *F = CGM.getIntrinsic(ID, ResultType);
13071 return Builder.CreateCall(F, X);
13072 }
13073 switch (BuiltinID) {
13074 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
13075 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
13076 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13076)
;
13077 }
13078 Function *F = CGM.getIntrinsic(ID);
13079 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13080 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
13081 return Builder.CreateCall(F, {X, M4Value, M5Value});
13082 }
13083 case SystemZ::BI__builtin_s390_vfmaxsb:
13084 case SystemZ::BI__builtin_s390_vfmaxdb: {
13085 llvm::Type *ResultType = ConvertType(E->getType());
13086 Value *X = EmitScalarExpr(E->getArg(0));
13087 Value *Y = EmitScalarExpr(E->getArg(1));
13088 // Constant-fold the M4 mask argument.
13089 llvm::APSInt M4;
13090 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
13091 assert(IsConstM4 && "Constant arg isn't actually constant?")((IsConstM4 && "Constant arg isn't actually constant?"
) ? static_cast<void> (0) : __assert_fail ("IsConstM4 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13091, __PRETTY_FUNCTION__))
;
13092 (void)IsConstM4;
13093 // Check whether this instance can be represented via a LLVM standard
13094 // intrinsic. We only support some values of M4.
13095 Intrinsic::ID ID = Intrinsic::not_intrinsic;
13096 switch (M4.getZExtValue()) {
13097 default: break;
13098 case 4: ID = Intrinsic::maxnum; break;
13099 }
13100 if (ID != Intrinsic::not_intrinsic) {
13101 Function *F = CGM.getIntrinsic(ID, ResultType);
13102 return Builder.CreateCall(F, {X, Y});
13103 }
13104 switch (BuiltinID) {
13105 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
13106 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
13107 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13107)
;
13108 }
13109 Function *F = CGM.getIntrinsic(ID);
13110 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13111 return Builder.CreateCall(F, {X, Y, M4Value});
13112 }
13113 case SystemZ::BI__builtin_s390_vfminsb:
13114 case SystemZ::BI__builtin_s390_vfmindb: {
13115 llvm::Type *ResultType = ConvertType(E->getType());
13116 Value *X = EmitScalarExpr(E->getArg(0));
13117 Value *Y = EmitScalarExpr(E->getArg(1));
13118 // Constant-fold the M4 mask argument.
13119 llvm::APSInt M4;
13120 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
13121 assert(IsConstM4 && "Constant arg isn't actually constant?")((IsConstM4 && "Constant arg isn't actually constant?"
) ? static_cast<void> (0) : __assert_fail ("IsConstM4 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13121, __PRETTY_FUNCTION__))
;
13122 (void)IsConstM4;
13123 // Check whether this instance can be represented via a LLVM standard
13124 // intrinsic. We only support some values of M4.
13125 Intrinsic::ID ID = Intrinsic::not_intrinsic;
13126 switch (M4.getZExtValue()) {
13127 default: break;
13128 case 4: ID = Intrinsic::minnum; break;
13129 }
13130 if (ID != Intrinsic::not_intrinsic) {
13131 Function *F = CGM.getIntrinsic(ID, ResultType);
13132 return Builder.CreateCall(F, {X, Y});
13133 }
13134 switch (BuiltinID) {
13135 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
13136 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
13137 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13137)
;
13138 }
13139 Function *F = CGM.getIntrinsic(ID);
13140 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13141 return Builder.CreateCall(F, {X, Y, M4Value});
13142 }
13143
13144 case SystemZ::BI__builtin_s390_vlbrh:
13145 case SystemZ::BI__builtin_s390_vlbrf:
13146 case SystemZ::BI__builtin_s390_vlbrg: {
13147 llvm::Type *ResultType = ConvertType(E->getType());
13148 Value *X = EmitScalarExpr(E->getArg(0));
13149 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
13150 return Builder.CreateCall(F, X);
13151 }
13152
13153 // Vector intrinsics that output the post-instruction CC value.
13154
13155#define INTRINSIC_WITH_CC(NAME) \
13156 case SystemZ::BI__builtin_##NAME: \
13157 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
13158
13159 INTRINSIC_WITH_CC(s390_vpkshs);
13160 INTRINSIC_WITH_CC(s390_vpksfs);
13161 INTRINSIC_WITH_CC(s390_vpksgs);
13162
13163 INTRINSIC_WITH_CC(s390_vpklshs);
13164 INTRINSIC_WITH_CC(s390_vpklsfs);
13165 INTRINSIC_WITH_CC(s390_vpklsgs);
13166
13167 INTRINSIC_WITH_CC(s390_vceqbs);
13168 INTRINSIC_WITH_CC(s390_vceqhs);
13169 INTRINSIC_WITH_CC(s390_vceqfs);
13170 INTRINSIC_WITH_CC(s390_vceqgs);
13171
13172 INTRINSIC_WITH_CC(s390_vchbs);
13173 INTRINSIC_WITH_CC(s390_vchhs);
13174 INTRINSIC_WITH_CC(s390_vchfs);
13175 INTRINSIC_WITH_CC(s390_vchgs);
13176
13177 INTRINSIC_WITH_CC(s390_vchlbs);
13178 INTRINSIC_WITH_CC(s390_vchlhs);
13179 INTRINSIC_WITH_CC(s390_vchlfs);
13180 INTRINSIC_WITH_CC(s390_vchlgs);
13181
13182 INTRINSIC_WITH_CC(s390_vfaebs);
13183 INTRINSIC_WITH_CC(s390_vfaehs);
13184 INTRINSIC_WITH_CC(s390_vfaefs);
13185
13186 INTRINSIC_WITH_CC(s390_vfaezbs);
13187 INTRINSIC_WITH_CC(s390_vfaezhs);
13188 INTRINSIC_WITH_CC(s390_vfaezfs);
13189
13190 INTRINSIC_WITH_CC(s390_vfeebs);
13191 INTRINSIC_WITH_CC(s390_vfeehs);
13192 INTRINSIC_WITH_CC(s390_vfeefs);
13193
13194 INTRINSIC_WITH_CC(s390_vfeezbs);
13195 INTRINSIC_WITH_CC(s390_vfeezhs);
13196 INTRINSIC_WITH_CC(s390_vfeezfs);
13197
13198 INTRINSIC_WITH_CC(s390_vfenebs);
13199 INTRINSIC_WITH_CC(s390_vfenehs);
13200 INTRINSIC_WITH_CC(s390_vfenefs);
13201
13202 INTRINSIC_WITH_CC(s390_vfenezbs);
13203 INTRINSIC_WITH_CC(s390_vfenezhs);
13204 INTRINSIC_WITH_CC(s390_vfenezfs);
13205
13206 INTRINSIC_WITH_CC(s390_vistrbs);
13207 INTRINSIC_WITH_CC(s390_vistrhs);
13208 INTRINSIC_WITH_CC(s390_vistrfs);
13209
13210 INTRINSIC_WITH_CC(s390_vstrcbs);
13211 INTRINSIC_WITH_CC(s390_vstrchs);
13212 INTRINSIC_WITH_CC(s390_vstrcfs);
13213
13214 INTRINSIC_WITH_CC(s390_vstrczbs);
13215 INTRINSIC_WITH_CC(s390_vstrczhs);
13216 INTRINSIC_WITH_CC(s390_vstrczfs);
13217
13218 INTRINSIC_WITH_CC(s390_vfcesbs);
13219 INTRINSIC_WITH_CC(s390_vfcedbs);
13220 INTRINSIC_WITH_CC(s390_vfchsbs);
13221 INTRINSIC_WITH_CC(s390_vfchdbs);
13222 INTRINSIC_WITH_CC(s390_vfchesbs);
13223 INTRINSIC_WITH_CC(s390_vfchedbs);
13224
13225 INTRINSIC_WITH_CC(s390_vftcisb);
13226 INTRINSIC_WITH_CC(s390_vftcidb);
13227
13228 INTRINSIC_WITH_CC(s390_vstrsb);
13229 INTRINSIC_WITH_CC(s390_vstrsh);
13230 INTRINSIC_WITH_CC(s390_vstrsf);
13231
13232 INTRINSIC_WITH_CC(s390_vstrszb);
13233 INTRINSIC_WITH_CC(s390_vstrszh);
13234 INTRINSIC_WITH_CC(s390_vstrszf);
13235
13236#undef INTRINSIC_WITH_CC
13237
13238 default:
13239 return nullptr;
13240 }
13241}
13242
13243namespace {
13244// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
13245struct NVPTXMmaLdstInfo {
13246 unsigned NumResults; // Number of elements to load/store
13247 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
13248 unsigned IID_col;
13249 unsigned IID_row;
13250};
13251
13252#define MMA_INTR(geom_op_type, layout) \
13253 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
13254#define MMA_LDST(n, geom_op_type) \
13255 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
13256
13257static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
13258 switch (BuiltinID) {
13259 // FP MMA loads
13260 case NVPTX::BI__hmma_m16n16k16_ld_a:
13261 return MMA_LDST(8, m16n16k16_load_a_f16);
13262 case NVPTX::BI__hmma_m16n16k16_ld_b:
13263 return MMA_LDST(8, m16n16k16_load_b_f16);
13264 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13265 return MMA_LDST(4, m16n16k16_load_c_f16);
13266 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13267 return MMA_LDST(8, m16n16k16_load_c_f32);
13268 case NVPTX::BI__hmma_m32n8k16_ld_a:
13269 return MMA_LDST(8, m32n8k16_load_a_f16);
13270 case NVPTX::BI__hmma_m32n8k16_ld_b:
13271 return MMA_LDST(8, m32n8k16_load_b_f16);
13272 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13273 return MMA_LDST(4, m32n8k16_load_c_f16);
13274 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13275 return MMA_LDST(8, m32n8k16_load_c_f32);
13276 case NVPTX::BI__hmma_m8n32k16_ld_a:
13277 return MMA_LDST(8, m8n32k16_load_a_f16);
13278 case NVPTX::BI__hmma_m8n32k16_ld_b:
13279 return MMA_LDST(8, m8n32k16_load_b_f16);
13280 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13281 return MMA_LDST(4, m8n32k16_load_c_f16);
13282 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13283 return MMA_LDST(8, m8n32k16_load_c_f32);
13284
13285 // Integer MMA loads
13286 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13287 return MMA_LDST(2, m16n16k16_load_a_s8);
13288 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13289 return MMA_LDST(2, m16n16k16_load_a_u8);
13290 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13291 return MMA_LDST(2, m16n16k16_load_b_s8);
13292 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13293 return MMA_LDST(2, m16n16k16_load_b_u8);
13294 case NVPTX::BI__imma_m16n16k16_ld_c:
13295 return MMA_LDST(8, m16n16k16_load_c_s32);
13296 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13297 return MMA_LDST(4, m32n8k16_load_a_s8);
13298 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13299 return MMA_LDST(4, m32n8k16_load_a_u8);
13300 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13301 return MMA_LDST(1, m32n8k16_load_b_s8);
13302 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13303 return MMA_LDST(1, m32n8k16_load_b_u8);
13304 case NVPTX::BI__imma_m32n8k16_ld_c:
13305 return MMA_LDST(8, m32n8k16_load_c_s32);
13306 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13307 return MMA_LDST(1, m8n32k16_load_a_s8);
13308 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13309 return MMA_LDST(1, m8n32k16_load_a_u8);
13310 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13311 return MMA_LDST(4, m8n32k16_load_b_s8);
13312 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13313 return MMA_LDST(4, m8n32k16_load_b_u8);
13314 case NVPTX::BI__imma_m8n32k16_ld_c:
13315 return MMA_LDST(8, m8n32k16_load_c_s32);
13316
13317 // Sub-integer MMA loads.
13318 // Only row/col layout is supported by A/B fragments.
13319 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13320 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
13321 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13322 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
13323 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13324 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
13325 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13326 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
13327 case NVPTX::BI__imma_m8n8k32_ld_c:
13328 return MMA_LDST(2, m8n8k32_load_c_s32);
13329 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13330 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
13331 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13332 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
13333 case NVPTX::BI__bmma_m8n8k128_ld_c:
13334 return MMA_LDST(2, m8n8k128_load_c_s32);
13335
13336 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
13337 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
13338 // use fragment C for both loads and stores.
13339 // FP MMA stores.
13340 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13341 return MMA_LDST(4, m16n16k16_store_d_f16);
13342 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13343 return MMA_LDST(8, m16n16k16_store_d_f32);
13344 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13345 return MMA_LDST(4, m32n8k16_store_d_f16);
13346 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13347 return MMA_LDST(8, m32n8k16_store_d_f32);
13348 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13349 return MMA_LDST(4, m8n32k16_store_d_f16);
13350 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13351 return MMA_LDST(8, m8n32k16_store_d_f32);
13352
13353 // Integer and sub-integer MMA stores.
13354 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
13355 // name, integer loads/stores use LLVM's i32.
13356 case NVPTX::BI__imma_m16n16k16_st_c_i32:
13357 return MMA_LDST(8, m16n16k16_store_d_s32);
13358 case NVPTX::BI__imma_m32n8k16_st_c_i32:
13359 return MMA_LDST(8, m32n8k16_store_d_s32);
13360 case NVPTX::BI__imma_m8n32k16_st_c_i32:
13361 return MMA_LDST(8, m8n32k16_store_d_s32);
13362 case NVPTX::BI__imma_m8n8k32_st_c_i32:
13363 return MMA_LDST(2, m8n8k32_store_d_s32);
13364 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
13365 return MMA_LDST(2, m8n8k128_store_d_s32);
13366
13367 default:
13368 llvm_unreachable("Unknown MMA builtin")::llvm::llvm_unreachable_internal("Unknown MMA builtin", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13368)
;
13369 }
13370}
13371#undef MMA_LDST
13372#undef MMA_INTR
13373
13374
13375struct NVPTXMmaInfo {
13376 unsigned NumEltsA;
13377 unsigned NumEltsB;
13378 unsigned NumEltsC;
13379 unsigned NumEltsD;
13380 std::array<unsigned, 8> Variants;
13381
13382 unsigned getMMAIntrinsic(int Layout, bool Satf) {
13383 unsigned Index = Layout * 2 + Satf;
13384 if (Index >= Variants.size())
13385 return 0;
13386 return Variants[Index];
13387 }
13388};
13389
13390 // Returns an intrinsic that matches Layout and Satf for valid combinations of
13391 // Layout and Satf, 0 otherwise.
13392static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
13393 // clang-format off
13394#define MMA_VARIANTS(geom, type) {{ \
13395 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
13396 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
13397 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
13398 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13399 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
13400 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
13401 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \
13402 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \
13403 }}
13404// Sub-integer MMA only supports row.col layout.
13405#define MMA_VARIANTS_I4(geom, type) {{ \
13406 0, \
13407 0, \
13408 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
13409 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13410 0, \
13411 0, \
13412 0, \
13413 0 \
13414 }}
13415// b1 MMA does not support .satfinite.
13416#define MMA_VARIANTS_B1(geom, type) {{ \
13417 0, \
13418 0, \
13419 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
13420 0, \
13421 0, \
13422 0, \
13423 0, \
13424 0 \
13425 }}
13426 // clang-format on
13427 switch (BuiltinID) {
13428 // FP MMA
13429 // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
13430 // NumEltsN of return value are ordered as A,B,C,D.
13431 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13432 return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
13433 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13434 return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
13435 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13436 return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
13437 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13438 return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
13439 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13440 return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
13441 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13442 return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
13443 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13444 return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
13445 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13446 return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
13447 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13448 return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
13449 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13450 return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
13451 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13452 return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
13453 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13454 return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
13455
13456 // Integer MMA
13457 case NVPTX::BI__imma_m16n16k16_mma_s8:
13458 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
13459 case NVPTX::BI__imma_m16n16k16_mma_u8:
13460 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
13461 case NVPTX::BI__imma_m32n8k16_mma_s8:
13462 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
13463 case NVPTX::BI__imma_m32n8k16_mma_u8:
13464 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
13465 case NVPTX::BI__imma_m8n32k16_mma_s8:
13466 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
13467 case NVPTX::BI__imma_m8n32k16_mma_u8:
13468 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
13469
13470 // Sub-integer MMA
13471 case NVPTX::BI__imma_m8n8k32_mma_s4:
13472 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
13473 case NVPTX::BI__imma_m8n8k32_mma_u4:
13474 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
13475 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
13476 return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
13477 default:
13478 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13478)
;
13479 }
13480#undef MMA_VARIANTS
13481#undef MMA_VARIANTS_I4
13482#undef MMA_VARIANTS_B1
13483}
13484
13485} // namespace
13486
13487Value *
13488CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
13489 auto MakeLdg = [&](unsigned IntrinsicID) {
13490 Value *Ptr = EmitScalarExpr(E->getArg(0));
13491 clang::CharUnits Align =
13492 getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
13493 return Builder.CreateCall(
13494 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13495 Ptr->getType()}),
13496 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
13497 };
13498 auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
13499 Value *Ptr = EmitScalarExpr(E->getArg(0));
13500 return Builder.CreateCall(
13501 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13502 Ptr->getType()}),
13503 {Ptr, EmitScalarExpr(E->getArg(1))});
13504 };
13505 switch (BuiltinID) {
13506 case NVPTX::BI__nvvm_atom_add_gen_i:
13507 case NVPTX::BI__nvvm_atom_add_gen_l:
13508 case NVPTX::BI__nvvm_atom_add_gen_ll:
13509 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
13510
13511 case NVPTX::BI__nvvm_atom_sub_gen_i:
13512 case NVPTX::BI__nvvm_atom_sub_gen_l:
13513 case NVPTX::BI__nvvm_atom_sub_gen_ll:
13514 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
13515
13516 case NVPTX::BI__nvvm_atom_and_gen_i:
13517 case NVPTX::BI__nvvm_atom_and_gen_l:
13518 case NVPTX::BI__nvvm_atom_and_gen_ll:
13519 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
13520
13521 case NVPTX::BI__nvvm_atom_or_gen_i:
13522 case NVPTX::BI__nvvm_atom_or_gen_l:
13523 case NVPTX::BI__nvvm_atom_or_gen_ll:
13524 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
13525
13526 case NVPTX::BI__nvvm_atom_xor_gen_i:
13527 case NVPTX::BI__nvvm_atom_xor_gen_l:
13528 case NVPTX::BI__nvvm_atom_xor_gen_ll:
13529 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
13530
13531 case NVPTX::BI__nvvm_atom_xchg_gen_i:
13532 case NVPTX::BI__nvvm_atom_xchg_gen_l:
13533 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
13534 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
13535
13536 case NVPTX::BI__nvvm_atom_max_gen_i:
13537 case NVPTX::BI__nvvm_atom_max_gen_l:
13538 case NVPTX::BI__nvvm_atom_max_gen_ll:
13539 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
13540
13541 case NVPTX::BI__nvvm_atom_max_gen_ui:
13542 case NVPTX::BI__nvvm_atom_max_gen_ul:
13543 case NVPTX::BI__nvvm_atom_max_gen_ull:
13544 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
13545
13546 case NVPTX::BI__nvvm_atom_min_gen_i:
13547 case NVPTX::BI__nvvm_atom_min_gen_l:
13548 case NVPTX::BI__nvvm_atom_min_gen_ll:
13549 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
13550
13551 case NVPTX::BI__nvvm_atom_min_gen_ui:
13552 case NVPTX::BI__nvvm_atom_min_gen_ul:
13553 case NVPTX::BI__nvvm_atom_min_gen_ull:
13554 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
13555
13556 case NVPTX::BI__nvvm_atom_cas_gen_i:
13557 case NVPTX::BI__nvvm_atom_cas_gen_l:
13558 case NVPTX::BI__nvvm_atom_cas_gen_ll:
13559 // __nvvm_atom_cas_gen_* should return the old value rather than the
13560 // success flag.
13561 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
13562
13563 case NVPTX::BI__nvvm_atom_add_gen_f:
13564 case NVPTX::BI__nvvm_atom_add_gen_d: {
13565 Value *Ptr = EmitScalarExpr(E->getArg(0));
13566 Value *Val = EmitScalarExpr(E->getArg(1));
13567 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
13568 AtomicOrdering::SequentiallyConsistent);
13569 }
13570
13571 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
13572 Value *Ptr = EmitScalarExpr(E->getArg(0));
13573 Value *Val = EmitScalarExpr(E->getArg(1));
13574 Function *FnALI32 =
13575 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
13576 return Builder.CreateCall(FnALI32, {Ptr, Val});
13577 }
13578
13579 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
13580 Value *Ptr = EmitScalarExpr(E->getArg(0));
13581 Value *Val = EmitScalarExpr(E->getArg(1));
13582 Function *FnALD32 =
13583 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
13584 return Builder.CreateCall(FnALD32, {Ptr, Val});
13585 }
13586
13587 case NVPTX::BI__nvvm_ldg_c:
13588 case NVPTX::BI__nvvm_ldg_c2:
13589 case NVPTX::BI__nvvm_ldg_c4:
13590 case NVPTX::BI__nvvm_ldg_s:
13591 case NVPTX::BI__nvvm_ldg_s2:
13592 case NVPTX::BI__nvvm_ldg_s4:
13593 case NVPTX::BI__nvvm_ldg_i:
13594 case NVPTX::BI__nvvm_ldg_i2:
13595 case NVPTX::BI__nvvm_ldg_i4:
13596 case NVPTX::BI__nvvm_ldg_l:
13597 case NVPTX::BI__nvvm_ldg_ll:
13598 case NVPTX::BI__nvvm_ldg_ll2:
13599 case NVPTX::BI__nvvm_ldg_uc:
13600 case NVPTX::BI__nvvm_ldg_uc2:
13601 case NVPTX::BI__nvvm_ldg_uc4:
13602 case NVPTX::BI__nvvm_ldg_us:
13603 case NVPTX::BI__nvvm_ldg_us2:
13604 case NVPTX::BI__nvvm_ldg_us4:
13605 case NVPTX::BI__nvvm_ldg_ui:
13606 case NVPTX::BI__nvvm_ldg_ui2:
13607 case NVPTX::BI__nvvm_ldg_ui4:
13608 case NVPTX::BI__nvvm_ldg_ul:
13609 case NVPTX::BI__nvvm_ldg_ull:
13610 case NVPTX::BI__nvvm_ldg_ull2:
13611 // PTX Interoperability section 2.2: "For a vector with an even number of
13612 // elements, its alignment is set to number of elements times the alignment
13613 // of its member: n*alignof(t)."
13614 return MakeLdg(Intrinsic::nvvm_ldg_global_i);
13615 case NVPTX::BI__nvvm_ldg_f:
13616 case NVPTX::BI__nvvm_ldg_f2:
13617 case NVPTX::BI__nvvm_ldg_f4:
13618 case NVPTX::BI__nvvm_ldg_d:
13619 case NVPTX::BI__nvvm_ldg_d2:
13620 return MakeLdg(Intrinsic::nvvm_ldg_global_f);
13621
13622 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
13623 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
13624 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
13625 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
13626 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
13627 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
13628 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
13629 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
13630 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
13631 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
13632 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
13633 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
13634 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
13635 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
13636 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
13637 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
13638 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
13639 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
13640 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
13641 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
13642 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
13643 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
13644 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
13645 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
13646 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
13647 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
13648 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
13649 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
13650 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
13651 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
13652 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
13653 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
13654 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
13655 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
13656 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
13657 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
13658 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
13659 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
13660 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
13661 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
13662 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
13663 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
13664 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
13665 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
13666 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
13667 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
13668 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
13669 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
13670 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
13671 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
13672 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
13673 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
13674 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
13675 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
13676 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
13677 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
13678 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
13679 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
13680 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
13681 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
13682 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
13683 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
13684 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
13685 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
13686 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
13687 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
13688 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
13689 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
13690 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
13691 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
13692 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
13693 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
13694 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
13695 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
13696 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
13697 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
13698 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
13699 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
13700 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
13701 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
13702 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
13703 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
13704 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
13705 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
13706 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
13707 Value *Ptr = EmitScalarExpr(E->getArg(0));
13708 return Builder.CreateCall(
13709 CGM.getIntrinsic(
13710 Intrinsic::nvvm_atomic_cas_gen_i_cta,
13711 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
13712 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
13713 }
13714 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
13715 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
13716 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
13717 Value *Ptr = EmitScalarExpr(E->getArg(0));
13718 return Builder.CreateCall(
13719 CGM.getIntrinsic(
13720 Intrinsic::nvvm_atomic_cas_gen_i_sys,
13721 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
13722 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
13723 }
13724 case NVPTX::BI__nvvm_match_all_sync_i32p:
13725 case NVPTX::BI__nvvm_match_all_sync_i64p: {
13726 Value *Mask = EmitScalarExpr(E->getArg(0));
13727 Value *Val = EmitScalarExpr(E->getArg(1));
13728 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
13729 Value *ResultPair = Builder.CreateCall(
13730 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
13731 ? Intrinsic::nvvm_match_all_sync_i32p
13732 : Intrinsic::nvvm_match_all_sync_i64p),
13733 {Mask, Val});
13734 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
13735 PredOutPtr.getElementType());
13736 Builder.CreateStore(Pred, PredOutPtr);
13737 return Builder.CreateExtractValue(ResultPair, 0);
13738 }
13739
13740 // FP MMA loads
13741 case NVPTX::BI__hmma_m16n16k16_ld_a:
13742 case NVPTX::BI__hmma_m16n16k16_ld_b:
13743 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13744 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13745 case NVPTX::BI__hmma_m32n8k16_ld_a:
13746 case NVPTX::BI__hmma_m32n8k16_ld_b:
13747 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13748 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13749 case NVPTX::BI__hmma_m8n32k16_ld_a:
13750 case NVPTX::BI__hmma_m8n32k16_ld_b:
13751 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13752 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13753 // Integer MMA loads.
13754 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13755 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13756 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13757 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13758 case NVPTX::BI__imma_m16n16k16_ld_c:
13759 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13760 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13761 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13762 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13763 case NVPTX::BI__imma_m32n8k16_ld_c:
13764 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13765 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13766 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13767 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13768 case NVPTX::BI__imma_m8n32k16_ld_c:
13769 // Sub-integer MMA loads.
13770 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13771 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13772 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13773 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13774 case NVPTX::BI__imma_m8n8k32_ld_c:
13775 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13776 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13777 case NVPTX::BI__bmma_m8n8k128_ld_c:
13778 {
13779 Address Dst = EmitPointerWithAlignment(E->getArg(0));
13780 Value *Src = EmitScalarExpr(E->getArg(1));
13781 Value *Ldm = EmitScalarExpr(E->getArg(2));
13782 llvm::APSInt isColMajorArg;
13783 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
13784 return nullptr;
13785 bool isColMajor = isColMajorArg.getSExtValue();
13786 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
13787 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
13788 if (IID == 0)
13789 return nullptr;
13790
13791 Value *Result =
13792 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
13793
13794 // Save returned values.
13795 assert(II.NumResults)((II.NumResults) ? static_cast<void> (0) : __assert_fail
("II.NumResults", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13795, __PRETTY_FUNCTION__))
;
13796 if (II.NumResults == 1) {
13797 Builder.CreateAlignedStore(Result, Dst.getPointer(),
13798 CharUnits::fromQuantity(4));
13799 } else {
13800 for (unsigned i = 0; i < II.NumResults; ++i) {
13801 Builder.CreateAlignedStore(
13802 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
13803 Dst.getElementType()),
13804 Builder.CreateGEP(Dst.getPointer(),
13805 llvm::ConstantInt::get(IntTy, i)),
13806 CharUnits::fromQuantity(4));
13807 }
13808 }
13809 return Result;
13810 }
13811
13812 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13813 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13814 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13815 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13816 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13817 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13818 case NVPTX::BI__imma_m16n16k16_st_c_i32:
13819 case NVPTX::BI__imma_m32n8k16_st_c_i32:
13820 case NVPTX::BI__imma_m8n32k16_st_c_i32:
13821 case NVPTX::BI__imma_m8n8k32_st_c_i32:
13822 case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
13823 Value *Dst = EmitScalarExpr(E->getArg(0));
13824 Address Src = EmitPointerWithAlignment(E->getArg(1));
13825 Value *Ldm = EmitScalarExpr(E->getArg(2));
13826 llvm::APSInt isColMajorArg;
13827 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
13828 return nullptr;
13829 bool isColMajor = isColMajorArg.getSExtValue();
13830 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
13831 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
13832 if (IID == 0)
13833 return nullptr;
13834 Function *Intrinsic =
13835 CGM.getIntrinsic(IID, Dst->getType());
13836 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
13837 SmallVector<Value *, 10> Values = {Dst};
13838 for (unsigned i = 0; i < II.NumResults; ++i) {
13839 Value *V = Builder.CreateAlignedLoad(
13840 Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
13841 CharUnits::fromQuantity(4));
13842 Values.push_back(Builder.CreateBitCast(V, ParamType));
13843 }
13844 Values.push_back(Ldm);
13845 Value *Result = Builder.CreateCall(Intrinsic, Values);
13846 return Result;
13847 }
13848
13849 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
13850 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
13851 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13852 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13853 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13854 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13855 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13856 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13857 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13858 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13859 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13860 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13861 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13862 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13863 case NVPTX::BI__imma_m16n16k16_mma_s8:
13864 case NVPTX::BI__imma_m16n16k16_mma_u8:
13865 case NVPTX::BI__imma_m32n8k16_mma_s8:
13866 case NVPTX::BI__imma_m32n8k16_mma_u8:
13867 case NVPTX::BI__imma_m8n32k16_mma_s8:
13868 case NVPTX::BI__imma_m8n32k16_mma_u8:
13869 case NVPTX::BI__imma_m8n8k32_mma_s4:
13870 case NVPTX::BI__imma_m8n8k32_mma_u4:
13871 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
13872 Address Dst = EmitPointerWithAlignment(E->getArg(0));
13873 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
13874 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
13875 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
13876 llvm::APSInt LayoutArg;
13877 if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
13878 return nullptr;
13879 int Layout = LayoutArg.getSExtValue();
13880 if (Layout < 0 || Layout > 3)
13881 return nullptr;
13882 llvm::APSInt SatfArg;
13883 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
13884 SatfArg = 0; // .b1 does not have satf argument.
13885 else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
13886 return nullptr;
13887 bool Satf = SatfArg.getSExtValue();
13888 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
13889 unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
13890 if (IID == 0) // Unsupported combination of Layout/Satf.
13891 return nullptr;
13892
13893 SmallVector<Value *, 24> Values;
13894 Function *Intrinsic = CGM.getIntrinsic(IID);
13895 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
13896 // Load A
13897 for (unsigned i = 0; i < MI.NumEltsA; ++i) {
13898 Value *V = Builder.CreateAlignedLoad(
13899 Builder.CreateGEP(SrcA.getPointer(),
13900 llvm::ConstantInt::get(IntTy, i)),
13901 CharUnits::fromQuantity(4));
13902 Values.push_back(Builder.CreateBitCast(V, AType));
13903 }
13904 // Load B
13905 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
13906 for (unsigned i = 0; i < MI.NumEltsB; ++i) {
13907 Value *V = Builder.CreateAlignedLoad(
13908 Builder.CreateGEP(SrcB.getPointer(),
13909 llvm::ConstantInt::get(IntTy, i)),
13910 CharUnits::fromQuantity(4));
13911 Values.push_back(Builder.CreateBitCast(V, BType));
13912 }
13913 // Load C
13914 llvm::Type *CType =
13915 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
13916 for (unsigned i = 0; i < MI.NumEltsC; ++i) {
13917 Value *V = Builder.CreateAlignedLoad(
13918 Builder.CreateGEP(SrcC.getPointer(),
13919 llvm::ConstantInt::get(IntTy, i)),
13920 CharUnits::fromQuantity(4));
13921 Values.push_back(Builder.CreateBitCast(V, CType));
13922 }
13923 Value *Result = Builder.CreateCall(Intrinsic, Values);
13924 llvm::Type *DType = Dst.getElementType();
13925 for (unsigned i = 0; i < MI.NumEltsD; ++i)
13926 Builder.CreateAlignedStore(
13927 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
13928 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
13929 CharUnits::fromQuantity(4));
13930 return Result;
13931 }
13932 default:
13933 return nullptr;
13934 }
13935}
13936
13937Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
13938 const CallExpr *E) {
13939 switch (BuiltinID) {
13940 case WebAssembly::BI__builtin_wasm_memory_size: {
13941 llvm::Type *ResultType = ConvertType(E->getType());
13942 Value *I = EmitScalarExpr(E->getArg(0));
13943 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
13944 return Builder.CreateCall(Callee, I);
13945 }
13946 case WebAssembly::BI__builtin_wasm_memory_grow: {
13947 llvm::Type *ResultType = ConvertType(E->getType());
13948 Value *Args[] = {
13949 EmitScalarExpr(E->getArg(0)),
13950 EmitScalarExpr(E->getArg(1))
13951 };
13952 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
13953 return Builder.CreateCall(Callee, Args);
13954 }
13955 case WebAssembly::BI__builtin_wasm_memory_init: {
13956 llvm::APSInt SegConst;
13957 if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
13958 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13958)
;
13959 llvm::APSInt MemConst;
13960 if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext()))
13961 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13961)
;
13962 if (!MemConst.isNullValue())
13963 ErrorUnsupported(E, "non-zero memory index");
13964 Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst),
13965 llvm::ConstantInt::get(getLLVMContext(), MemConst),
13966 EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)),
13967 EmitScalarExpr(E->getArg(4))};
13968 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init);
13969 return Builder.CreateCall(Callee, Args);
13970 }
13971 case WebAssembly::BI__builtin_wasm_data_drop: {
13972 llvm::APSInt SegConst;
13973 if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
13974 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13974)
;
13975 Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst);
13976 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop);
13977 return Builder.CreateCall(Callee, {Arg});
13978 }
13979 case WebAssembly::BI__builtin_wasm_tls_size: {
13980 llvm::Type *ResultType = ConvertType(E->getType());
13981 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
13982 return Builder.CreateCall(Callee);
13983 }
13984 case WebAssembly::BI__builtin_wasm_tls_align: {
13985 llvm::Type *ResultType = ConvertType(E->getType());
13986 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
13987 return Builder.CreateCall(Callee);
13988 }
13989 case WebAssembly::BI__builtin_wasm_tls_base: {
13990 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
13991 return Builder.CreateCall(Callee);
13992 }
13993 case WebAssembly::BI__builtin_wasm_throw: {
13994 Value *Tag = EmitScalarExpr(E->getArg(0));
13995 Value *Obj = EmitScalarExpr(E->getArg(1));
13996 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
13997 return Builder.CreateCall(Callee, {Tag, Obj});
13998 }
13999 case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
14000 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
14001 return Builder.CreateCall(Callee);
14002 }
14003 case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
14004 Value *Addr = EmitScalarExpr(E->getArg(0));
14005 Value *Expected = EmitScalarExpr(E->getArg(1));
14006 Value *Timeout = EmitScalarExpr(E->getArg(2));
14007 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
14008 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
14009 }
14010 case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
14011 Value *Addr = EmitScalarExpr(E->getArg(0));
14012 Value *Expected = EmitScalarExpr(E->getArg(1));
14013 Value *Timeout = EmitScalarExpr(E->getArg(2));
14014 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
14015 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
14016 }
14017 case WebAssembly::BI__builtin_wasm_atomic_notify: {
14018 Value *Addr = EmitScalarExpr(E->getArg(0));
14019 Value *Count = EmitScalarExpr(E->getArg(1));
14020 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
14021 return Builder.CreateCall(Callee, {Addr, Count});
14022 }
14023 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
14024 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
14025 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
14026 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
14027 Value *Src = EmitScalarExpr(E->getArg(0));
14028 llvm::Type *ResT = ConvertType(E->getType());
14029 Function *Callee =
14030 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
14031 return Builder.CreateCall(Callee, {Src});
14032 }
14033 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
14034 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
14035 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
14036 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
14037 Value *Src = EmitScalarExpr(E->getArg(0));
14038 llvm::Type *ResT = ConvertType(E->getType());
14039 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
14040 {ResT, Src->getType()});
14041 return Builder.CreateCall(Callee, {Src});
14042 }
14043 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
14044 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
14045 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
14046 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
14047 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4:
14048 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: {
14049 Value *Src = EmitScalarExpr(E->getArg(0));
14050 llvm::Type *ResT = ConvertType(E->getType());
14051 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
14052 {ResT, Src->getType()});
14053 return Builder.CreateCall(Callee, {Src});
14054 }
14055 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
14056 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
14057 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
14058 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
14059 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4:
14060 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: {
14061 Value *Src = EmitScalarExpr(E->getArg(0));
14062 llvm::Type *ResT = ConvertType(E->getType());
14063 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
14064 {ResT, Src->getType()});
14065 return Builder.CreateCall(Callee, {Src});
14066 }
14067 case WebAssembly::BI__builtin_wasm_min_f32:
14068 case WebAssembly::BI__builtin_wasm_min_f64:
14069 case WebAssembly::BI__builtin_wasm_min_f32x4:
14070 case WebAssembly::BI__builtin_wasm_min_f64x2: {
14071 Value *LHS = EmitScalarExpr(E->getArg(0));
14072 Value *RHS = EmitScalarExpr(E->getArg(1));
14073 Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
14074 ConvertType(E->getType()));
14075 return Builder.CreateCall(Callee, {LHS, RHS});
14076 }
14077 case WebAssembly::BI__builtin_wasm_max_f32:
14078 case WebAssembly::BI__builtin_wasm_max_f64:
14079 case WebAssembly::BI__builtin_wasm_max_f32x4:
14080 case WebAssembly::BI__builtin_wasm_max_f64x2: {
14081 Value *LHS = EmitScalarExpr(E->getArg(0));
14082 Value *RHS = EmitScalarExpr(E->getArg(1));
14083 Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
14084 ConvertType(E->getType()));
14085 return Builder.CreateCall(Callee, {LHS, RHS});
14086 }
14087 case WebAssembly::BI__builtin_wasm_swizzle_v8x16: {
14088 Value *Src = EmitScalarExpr(E->getArg(0));
14089 Value *Indices = EmitScalarExpr(E->getArg(1));
14090 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
14091 return Builder.CreateCall(Callee, {Src, Indices});
14092 }
14093 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
14094 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
14095 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
14096 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
14097 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
14098 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
14099 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
14100 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
14101 llvm::APSInt LaneConst;
14102 if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
14103 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14103)
;
14104 Value *Vec = EmitScalarExpr(E->getArg(0));
14105 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
14106 Value *Extract = Builder.CreateExtractElement(Vec, Lane);
14107 switch (BuiltinID) {
14108 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
14109 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
14110 return Builder.CreateSExt(Extract, ConvertType(E->getType()));
14111 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
14112 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
14113 return Builder.CreateZExt(Extract, ConvertType(E->getType()));
14114 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
14115 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
14116 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
14117 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
14118 return Extract;
14119 default:
14120 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14120)
;
14121 }
14122 }
14123 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
14124 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
14125 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
14126 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
14127 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
14128 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
14129 llvm::APSInt LaneConst;
14130 if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
14131 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14131)
;
14132 Value *Vec = EmitScalarExpr(E->getArg(0));
14133 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
14134 Value *Val = EmitScalarExpr(E->getArg(2));
14135 switch (BuiltinID) {
14136 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
14137 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
14138 llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType();
14139 Value *Trunc = Builder.CreateTrunc(Val, ElemType);
14140 return Builder.CreateInsertElement(Vec, Trunc, Lane);
14141 }
14142 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
14143 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
14144 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
14145 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
14146 return Builder.CreateInsertElement(Vec, Val, Lane);
14147 default:
14148 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14148)
;
14149 }
14150 }
14151 case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
14152 case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
14153 case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
14154 case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
14155 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
14156 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
14157 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
14158 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
14159 unsigned IntNo;
14160 switch (BuiltinID) {
14161 case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
14162 case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
14163 IntNo = Intrinsic::sadd_sat;
14164 break;
14165 case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
14166 case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
14167 IntNo = Intrinsic::uadd_sat;
14168 break;
14169 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
14170 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
14171 IntNo = Intrinsic::wasm_sub_saturate_signed;
14172 break;
14173 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
14174 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
14175 IntNo = Intrinsic::wasm_sub_saturate_unsigned;
14176 break;
14177 default:
14178 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14178)
;
14179 }
14180 Value *LHS = EmitScalarExpr(E->getArg(0));
14181 Value *RHS = EmitScalarExpr(E->getArg(1));
14182 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
14183 return Builder.CreateCall(Callee, {LHS, RHS});
14184 }
14185 case WebAssembly::BI__builtin_wasm_bitselect: {
14186 Value *V1 = EmitScalarExpr(E->getArg(0));
14187 Value *V2 = EmitScalarExpr(E->getArg(1));
14188 Value *C = EmitScalarExpr(E->getArg(2));
14189 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
14190 ConvertType(E->getType()));
14191 return Builder.CreateCall(Callee, {V1, V2, C});
14192 }
14193 case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14194 case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14195 case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14196 case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14197 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14198 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14199 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14200 case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
14201 unsigned IntNo;
14202 switch (BuiltinID) {
14203 case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14204 case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14205 case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14206 case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14207 IntNo = Intrinsic::wasm_anytrue;
14208 break;
14209 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14210 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14211 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14212 case WebAssembly::BI__builtin_wasm_all_true_i64x2:
14213 IntNo = Intrinsic::wasm_alltrue;
14214 break;
14215 default:
14216 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14216)
;
14217 }
14218 Value *Vec = EmitScalarExpr(E->getArg(0));
14219 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
14220 return Builder.CreateCall(Callee, {Vec});
14221 }
14222 case WebAssembly::BI__builtin_wasm_abs_f32x4:
14223 case WebAssembly::BI__builtin_wasm_abs_f64x2: {
14224 Value *Vec = EmitScalarExpr(E->getArg(0));
14225 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
14226 return Builder.CreateCall(Callee, {Vec});
14227 }
14228 case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
14229 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
14230 Value *Vec = EmitScalarExpr(E->getArg(0));
14231 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
14232 return Builder.CreateCall(Callee, {Vec});
14233 }
14234 case WebAssembly::BI__builtin_wasm_qfma_f32x4:
14235 case WebAssembly::BI__builtin_wasm_qfms_f32x4:
14236 case WebAssembly::BI__builtin_wasm_qfma_f64x2:
14237 case WebAssembly::BI__builtin_wasm_qfms_f64x2: {
14238 Value *A = EmitScalarExpr(E->getArg(0));
14239 Value *B = EmitScalarExpr(E->getArg(1));
14240 Value *C = EmitScalarExpr(E->getArg(2));
14241 unsigned IntNo;
14242 switch (BuiltinID) {
14243 case WebAssembly::BI__builtin_wasm_qfma_f32x4:
14244 case WebAssembly::BI__builtin_wasm_qfma_f64x2:
14245 IntNo = Intrinsic::wasm_qfma;
14246 break;
14247 case WebAssembly::BI__builtin_wasm_qfms_f32x4:
14248 case WebAssembly::BI__builtin_wasm_qfms_f64x2:
14249 IntNo = Intrinsic::wasm_qfms;
14250 break;
14251 default:
14252 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14252)
;
14253 }
14254 Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
14255 return Builder.CreateCall(Callee, {A, B, C});
14256 }
14257 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
14258 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
14259 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
14260 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
14261 Value *Low = EmitScalarExpr(E->getArg(0));
14262 Value *High = EmitScalarExpr(E->getArg(1));
14263 unsigned IntNo;
14264 switch (BuiltinID) {
14265 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
14266 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
14267 IntNo = Intrinsic::wasm_narrow_signed;
14268 break;
14269 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
14270 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
14271 IntNo = Intrinsic::wasm_narrow_unsigned;
14272 break;
14273 default:
14274 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14274)
;
14275 }
14276 Function *Callee =
14277 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
14278 return Builder.CreateCall(Callee, {Low, High});
14279 }
14280 case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
14281 case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
14282 case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
14283 case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
14284 case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
14285 case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
14286 case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
14287 case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: {
14288 Value *Vec = EmitScalarExpr(E->getArg(0));
14289 unsigned IntNo;
14290 switch (BuiltinID) {
14291 case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
14292 case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
14293 IntNo = Intrinsic::wasm_widen_low_signed;
14294 break;
14295 case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
14296 case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
14297 IntNo = Intrinsic::wasm_widen_high_signed;
14298 break;
14299 case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
14300 case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
14301 IntNo = Intrinsic::wasm_widen_low_unsigned;
14302 break;
14303 case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
14304 case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8:
14305 IntNo = Intrinsic::wasm_widen_high_unsigned;
14306 break;
14307 default:
14308 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14308)
;
14309 }
14310 Function *Callee =
14311 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Vec->getType()});
14312 return Builder.CreateCall(Callee, Vec);
14313 }
14314 default:
14315 return nullptr;
14316 }
14317}
14318
14319Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
14320 const CallExpr *E) {
14321 SmallVector<llvm::Value *, 4> Ops;
14322 Intrinsic::ID ID = Intrinsic::not_intrinsic;
14323
14324 auto MakeCircLd = [&](unsigned IntID, bool HasImm) {
14325 // The base pointer is passed by address, so it needs to be loaded.
14326 Address BP = EmitPointerWithAlignment(E->getArg(0));
14327 BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14328 BP.getAlignment());
14329 llvm::Value *Base = Builder.CreateLoad(BP);
14330 // Operands are Base, Increment, Modifier, Start.
14331 if (HasImm)
14332 Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14333 EmitScalarExpr(E->getArg(3)) };
14334 else
14335 Ops = { Base, EmitScalarExpr(E->getArg(1)),
14336 EmitScalarExpr(E->getArg(2)) };
14337
14338 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14339 llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1);
14340 llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14341 NewBase->getType()->getPointerTo());
14342 Address Dest = EmitPointerWithAlignment(E->getArg(0));
14343 // The intrinsic generates two results. The new value for the base pointer
14344 // needs to be stored.
14345 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14346 return Builder.CreateExtractValue(Result, 0);
14347 };
14348
14349 auto MakeCircSt = [&](unsigned IntID, bool HasImm) {
14350 // The base pointer is passed by address, so it needs to be loaded.
14351 Address BP = EmitPointerWithAlignment(E->getArg(0));
14352 BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14353 BP.getAlignment());
14354 llvm::Value *Base = Builder.CreateLoad(BP);
14355 // Operands are Base, Increment, Modifier, Value, Start.
14356 if (HasImm)
14357 Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14358 EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) };
14359 else
14360 Ops = { Base, EmitScalarExpr(E->getArg(1)),
14361 EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) };
14362
14363 llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14364 llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14365 NewBase->getType()->getPointerTo());
14366 Address Dest = EmitPointerWithAlignment(E->getArg(0));
14367 // The intrinsic generates one result, which is the new value for the base
14368 // pointer. It needs to be stored.
14369 return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14370 };
14371
14372 // Handle the conversion of bit-reverse load intrinsics to bit code.
14373 // The intrinsic call after this function only reads from memory and the
14374 // write to memory is dealt by the store instruction.
14375 auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) {
14376 // The intrinsic generates one result, which is the new value for the base
14377 // pointer. It needs to be returned. The result of the load instruction is
14378 // passed to intrinsic by address, so the value needs to be stored.
14379 llvm::Value *BaseAddress =
14380 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
14381
14382 // Expressions like &(*pt++) will be incremented per evaluation.
14383 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
14384 // per call.
14385 Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
14386 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
14387 DestAddr.getAlignment());
14388 llvm::Value *DestAddress = DestAddr.getPointer();
14389
14390 // Operands are Base, Dest, Modifier.
14391 // The intrinsic format in LLVM IR is defined as
14392 // { ValueType, i8* } (i8*, i32).
14393 Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))};
14394
14395 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14396 // The value needs to be stored as the variable is passed by reference.
14397 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
14398
14399 // The store needs to be truncated to fit the destination type.
14400 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
14401 // to be handled with stores of respective destination type.
14402 DestVal = Builder.CreateTrunc(DestVal, DestTy);
14403
14404 llvm::Value *DestForStore =
14405 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
14406 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
14407 // The updated value of the base pointer is returned.
14408 return Builder.CreateExtractValue(Result, 1);
14409 };
14410
14411 switch (BuiltinID) {
14412 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
14413 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
14414 Address Dest = EmitPointerWithAlignment(E->getArg(2));
14415 unsigned Size;
14416 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
14417 Size = 512;
14418 ID = Intrinsic::hexagon_V6_vaddcarry;
14419 } else {
14420 Size = 1024;
14421 ID = Intrinsic::hexagon_V6_vaddcarry_128B;
14422 }
14423 Dest = Builder.CreateBitCast(Dest,
14424 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14425 LoadInst *QLd = Builder.CreateLoad(Dest);
14426 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14427 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14428 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14429 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14430 Vprd->getType()->getPointerTo(0));
14431 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14432 return Builder.CreateExtractValue(Result, 0);
14433 }
14434 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
14435 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
14436 Address Dest = EmitPointerWithAlignment(E->getArg(2));
14437 unsigned Size;
14438 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
14439 Size = 512;
14440 ID = Intrinsic::hexagon_V6_vsubcarry;
14441 } else {
14442 Size = 1024;
14443 ID = Intrinsic::hexagon_V6_vsubcarry_128B;
14444 }
14445 Dest = Builder.CreateBitCast(Dest,
14446 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14447 LoadInst *QLd = Builder.CreateLoad(Dest);
14448 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14449 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14450 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14451 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14452 Vprd->getType()->getPointerTo(0));
14453 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14454 return Builder.CreateExtractValue(Result, 0);
14455 }
14456 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
14457 return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true);
14458 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
14459 return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci, /*HasImm*/true);
14460 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
14461 return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true);
14462 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
14463 return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci, /*HasImm*/true);
14464 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
14465 return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci, /*HasImm*/true);
14466 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
14467 return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci, /*HasImm*/true);
14468 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
14469 return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false);
14470 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
14471 return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr, /*HasImm*/false);
14472 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
14473 return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false);
14474 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
14475 return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr, /*HasImm*/false);
14476 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
14477 return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr, /*HasImm*/false);
14478 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
14479 return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr, /*HasImm*/false);
14480 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
14481 return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true);
14482 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
14483 return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true);
14484 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
14485 return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true);
14486 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
14487 return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true);
14488 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
14489 return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true);
14490 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
14491 return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false);
14492 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
14493 return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false);
14494 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
14495 return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false);
14496 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
14497 return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false);
14498 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
14499 return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false);
14500 case Hexagon::BI__builtin_brev_ldub:
14501 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
14502 case Hexagon::BI__builtin_brev_ldb:
14503 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
14504 case Hexagon::BI__builtin_brev_lduh:
14505 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
14506 case Hexagon::BI__builtin_brev_ldh:
14507 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
14508 case Hexagon::BI__builtin_brev_ldw:
14509 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
14510 case Hexagon::BI__builtin_brev_ldd:
14511 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
14512 default:
14513 break;
14514 } // switch
14515
14516 return nullptr;
14517}

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h

1//===- DeclBase.h - Base Classes for representing declarations --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl and DeclContext interfaces.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECLBASE_H
14#define LLVM_CLANG_AST_DECLBASE_H
15
16#include "clang/AST/ASTDumperUtils.h"
17#include "clang/AST/AttrIterator.h"
18#include "clang/AST/DeclarationName.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/LLVM.h"
21#include "clang/Basic/SourceLocation.h"
22#include "clang/Basic/Specifiers.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/PrettyStackTrace.h"
31#include "llvm/Support/VersionTuple.h"
32#include <algorithm>
33#include <cassert>
34#include <cstddef>
35#include <iterator>
36#include <string>
37#include <type_traits>
38#include <utility>
39
40namespace clang {
41
42class ASTContext;
43class ASTMutationListener;
44class Attr;
45class BlockDecl;
46class DeclContext;
47class ExternalSourceSymbolAttr;
48class FunctionDecl;
49class FunctionType;
50class IdentifierInfo;
51enum Linkage : unsigned char;
52class LinkageSpecDecl;
53class Module;
54class NamedDecl;
55class ObjCCategoryDecl;
56class ObjCCategoryImplDecl;
57class ObjCContainerDecl;
58class ObjCImplDecl;
59class ObjCImplementationDecl;
60class ObjCInterfaceDecl;
61class ObjCMethodDecl;
62class ObjCProtocolDecl;
63struct PrintingPolicy;
64class RecordDecl;
65class SourceManager;
66class Stmt;
67class StoredDeclsMap;
68class TemplateDecl;
69class TranslationUnitDecl;
70class UsingDirectiveDecl;
71
72/// Captures the result of checking the availability of a
73/// declaration.
74enum AvailabilityResult {
75 AR_Available = 0,
76 AR_NotYetIntroduced,
77 AR_Deprecated,
78 AR_Unavailable
79};
80
81/// Decl - This represents one declaration (or definition), e.g. a variable,
82/// typedef, function, struct, etc.
83///
84/// Note: There are objects tacked on before the *beginning* of Decl
85/// (and its subclasses) in its Decl::operator new(). Proper alignment
86/// of all subclasses (not requiring more than the alignment of Decl) is
87/// asserted in DeclBase.cpp.
88class alignas(8) Decl {
89public:
90 /// Lists the kind of concrete classes of Decl.
91 enum Kind {
92#define DECL(DERIVED, BASE) DERIVED,
93#define ABSTRACT_DECL(DECL)
94#define DECL_RANGE(BASE, START, END) \
95 first##BASE = START, last##BASE = END,
96#define LAST_DECL_RANGE(BASE, START, END) \
97 first##BASE = START, last##BASE = END
98#include "clang/AST/DeclNodes.inc"
99 };
100
101 /// A placeholder type used to construct an empty shell of a
102 /// decl-derived type that will be filled in later (e.g., by some
103 /// deserialization method).
104 struct EmptyShell {};
105
106 /// IdentifierNamespace - The different namespaces in which
107 /// declarations may appear. According to C99 6.2.3, there are
108 /// four namespaces, labels, tags, members and ordinary
109 /// identifiers. C++ describes lookup completely differently:
110 /// certain lookups merely "ignore" certain kinds of declarations,
111 /// usually based on whether the declaration is of a type, etc.
112 ///
113 /// These are meant as bitmasks, so that searches in
114 /// C++ can look into the "tag" namespace during ordinary lookup.
115 ///
116 /// Decl currently provides 15 bits of IDNS bits.
117 enum IdentifierNamespace {
118 /// Labels, declared with 'x:' and referenced with 'goto x'.
119 IDNS_Label = 0x0001,
120
121 /// Tags, declared with 'struct foo;' and referenced with
122 /// 'struct foo'. All tags are also types. This is what
123 /// elaborated-type-specifiers look for in C.
124 /// This also contains names that conflict with tags in the
125 /// same scope but that are otherwise ordinary names (non-type
126 /// template parameters and indirect field declarations).
127 IDNS_Tag = 0x0002,
128
129 /// Types, declared with 'struct foo', typedefs, etc.
130 /// This is what elaborated-type-specifiers look for in C++,
131 /// but note that it's ill-formed to find a non-tag.
132 IDNS_Type = 0x0004,
133
134 /// Members, declared with object declarations within tag
135 /// definitions. In C, these can only be found by "qualified"
136 /// lookup in member expressions. In C++, they're found by
137 /// normal lookup.
138 IDNS_Member = 0x0008,
139
140 /// Namespaces, declared with 'namespace foo {}'.
141 /// Lookup for nested-name-specifiers find these.
142 IDNS_Namespace = 0x0010,
143
144 /// Ordinary names. In C, everything that's not a label, tag,
145 /// member, or function-local extern ends up here.
146 IDNS_Ordinary = 0x0020,
147
148 /// Objective C \@protocol.
149 IDNS_ObjCProtocol = 0x0040,
150
151 /// This declaration is a friend function. A friend function
152 /// declaration is always in this namespace but may also be in
153 /// IDNS_Ordinary if it was previously declared.
154 IDNS_OrdinaryFriend = 0x0080,
155
156 /// This declaration is a friend class. A friend class
157 /// declaration is always in this namespace but may also be in
158 /// IDNS_Tag|IDNS_Type if it was previously declared.
159 IDNS_TagFriend = 0x0100,
160
161 /// This declaration is a using declaration. A using declaration
162 /// *introduces* a number of other declarations into the current
163 /// scope, and those declarations use the IDNS of their targets,
164 /// but the actual using declarations go in this namespace.
165 IDNS_Using = 0x0200,
166
167 /// This declaration is a C++ operator declared in a non-class
168 /// context. All such operators are also in IDNS_Ordinary.
169 /// C++ lexical operator lookup looks for these.
170 IDNS_NonMemberOperator = 0x0400,
171
172 /// This declaration is a function-local extern declaration of a
173 /// variable or function. This may also be IDNS_Ordinary if it
174 /// has been declared outside any function. These act mostly like
175 /// invisible friend declarations, but are also visible to unqualified
176 /// lookup within the scope of the declaring function.
177 IDNS_LocalExtern = 0x0800,
178
179 /// This declaration is an OpenMP user defined reduction construction.
180 IDNS_OMPReduction = 0x1000,
181
182 /// This declaration is an OpenMP user defined mapper.
183 IDNS_OMPMapper = 0x2000,
184 };
185
186 /// ObjCDeclQualifier - 'Qualifiers' written next to the return and
187 /// parameter types in method declarations. Other than remembering
188 /// them and mangling them into the method's signature string, these
189 /// are ignored by the compiler; they are consumed by certain
190 /// remote-messaging frameworks.
191 ///
192 /// in, inout, and out are mutually exclusive and apply only to
193 /// method parameters. bycopy and byref are mutually exclusive and
194 /// apply only to method parameters (?). oneway applies only to
195 /// results. All of these expect their corresponding parameter to
196 /// have a particular type. None of this is currently enforced by
197 /// clang.
198 ///
199 /// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier.
200 enum ObjCDeclQualifier {
201 OBJC_TQ_None = 0x0,
202 OBJC_TQ_In = 0x1,
203 OBJC_TQ_Inout = 0x2,
204 OBJC_TQ_Out = 0x4,
205 OBJC_TQ_Bycopy = 0x8,
206 OBJC_TQ_Byref = 0x10,
207 OBJC_TQ_Oneway = 0x20,
208
209 /// The nullability qualifier is set when the nullability of the
210 /// result or parameter was expressed via a context-sensitive
211 /// keyword.
212 OBJC_TQ_CSNullability = 0x40
213 };
214
215 /// The kind of ownership a declaration has, for visibility purposes.
216 /// This enumeration is designed such that higher values represent higher
217 /// levels of name hiding.
218 enum class ModuleOwnershipKind : unsigned {
219 /// This declaration is not owned by a module.
220 Unowned,
221
222 /// This declaration has an owning module, but is globally visible
223 /// (typically because its owning module is visible and we know that
224 /// modules cannot later become hidden in this compilation).
225 /// After serialization and deserialization, this will be converted
226 /// to VisibleWhenImported.
227 Visible,
228
229 /// This declaration has an owning module, and is visible when that
230 /// module is imported.
231 VisibleWhenImported,
232
233 /// This declaration has an owning module, but is only visible to
234 /// lookups that occur within that module.
235 ModulePrivate
236 };
237
238protected:
239 /// The next declaration within the same lexical
240 /// DeclContext. These pointers form the linked list that is
241 /// traversed via DeclContext's decls_begin()/decls_end().
242 ///
243 /// The extra two bits are used for the ModuleOwnershipKind.
244 llvm::PointerIntPair<Decl *, 2, ModuleOwnershipKind> NextInContextAndBits;
245
246private:
247 friend class DeclContext;
248
249 struct MultipleDC {
250 DeclContext *SemanticDC;
251 DeclContext *LexicalDC;
252 };
253
254 /// DeclCtx - Holds either a DeclContext* or a MultipleDC*.
255 /// For declarations that don't contain C++ scope specifiers, it contains
256 /// the DeclContext where the Decl was declared.
257 /// For declarations with C++ scope specifiers, it contains a MultipleDC*
258 /// with the context where it semantically belongs (SemanticDC) and the
259 /// context where it was lexically declared (LexicalDC).
260 /// e.g.:
261 ///
262 /// namespace A {
263 /// void f(); // SemanticDC == LexicalDC == 'namespace A'
264 /// }
265 /// void A::f(); // SemanticDC == namespace 'A'
266 /// // LexicalDC == global namespace
267 llvm::PointerUnion<DeclContext*, MultipleDC*> DeclCtx;
268
269 bool isInSemaDC() const { return DeclCtx.is<DeclContext*>(); }
270 bool isOutOfSemaDC() const { return DeclCtx.is<MultipleDC*>(); }
271
272 MultipleDC *getMultipleDC() const {
273 return DeclCtx.get<MultipleDC*>();
274 }
275
276 DeclContext *getSemanticDC() const {
277 return DeclCtx.get<DeclContext*>();
278 }
279
280 /// Loc - The location of this decl.
281 SourceLocation Loc;
282
283 /// DeclKind - This indicates which class this is.
284 unsigned DeclKind : 7;
285
286 /// InvalidDecl - This indicates a semantic error occurred.
287 unsigned InvalidDecl : 1;
288
289 /// HasAttrs - This indicates whether the decl has attributes or not.
290 unsigned HasAttrs : 1;
291
292 /// Implicit - Whether this declaration was implicitly generated by
293 /// the implementation rather than explicitly written by the user.
294 unsigned Implicit : 1;
295
296 /// Whether this declaration was "used", meaning that a definition is
297 /// required.
298 unsigned Used : 1;
299
300 /// Whether this declaration was "referenced".
301 /// The difference with 'Used' is whether the reference appears in a
302 /// evaluated context or not, e.g. functions used in uninstantiated templates
303 /// are regarded as "referenced" but not "used".
304 unsigned Referenced : 1;
305
306 /// Whether this declaration is a top-level declaration (function,
307 /// global variable, etc.) that is lexically inside an objc container
308 /// definition.
309 unsigned TopLevelDeclInObjCContainer : 1;
310
311 /// Whether statistic collection is enabled.
312 static bool StatisticsEnabled;
313
314protected:
315 friend class ASTDeclReader;
316 friend class ASTDeclWriter;
317 friend class ASTNodeImporter;
318 friend class ASTReader;
319 friend class CXXClassMemberWrapper;
320 friend class LinkageComputer;
321 template<typename decl_type> friend class Redeclarable;
322
323 /// Access - Used by C++ decls for the access specifier.
324 // NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum
325 unsigned Access : 2;
326
327 /// Whether this declaration was loaded from an AST file.
328 unsigned FromASTFile : 1;
329
330 /// IdentifierNamespace - This specifies what IDNS_* namespace this lives in.
331 unsigned IdentifierNamespace : 14;
332
333 /// If 0, we have not computed the linkage of this declaration.
334 /// Otherwise, it is the linkage + 1.
335 mutable unsigned CacheValidAndLinkage : 3;
336
337 /// Allocate memory for a deserialized declaration.
338 ///
339 /// This routine must be used to allocate memory for any declaration that is
340 /// deserialized from a module file.
341 ///
342 /// \param Size The size of the allocated object.
343 /// \param Ctx The context in which we will allocate memory.
344 /// \param ID The global ID of the deserialized declaration.
345 /// \param Extra The amount of extra space to allocate after the object.
346 void *operator new(std::size_t Size, const ASTContext &Ctx, unsigned ID,
347 std::size_t Extra = 0);
348
349 /// Allocate memory for a non-deserialized declaration.
350 void *operator new(std::size_t Size, const ASTContext &Ctx,
351 DeclContext *Parent, std::size_t Extra = 0);
352
353private:
354 bool AccessDeclContextSanity() const;
355
356 /// Get the module ownership kind to use for a local lexical child of \p DC,
357 /// which may be either a local or (rarely) an imported declaration.
358 static ModuleOwnershipKind getModuleOwnershipKindForChildOf(DeclContext *DC) {
359 if (DC) {
360 auto *D = cast<Decl>(DC);
361 auto MOK = D->getModuleOwnershipKind();
362 if (MOK != ModuleOwnershipKind::Unowned &&
363 (!D->isFromASTFile() || D->hasLocalOwningModuleStorage()))
364 return MOK;
365 // If D is not local and we have no local module storage, then we don't
366 // need to track module ownership at all.
367 }
368 return ModuleOwnershipKind::Unowned;
369 }
370
371public:
372 Decl() = delete;
373 Decl(const Decl&) = delete;
374 Decl(Decl &&) = delete;
375 Decl &operator=(const Decl&) = delete;
376 Decl &operator=(Decl&&) = delete;
377
378protected:
379 Decl(Kind DK, DeclContext *DC, SourceLocation L)
380 : NextInContextAndBits(nullptr, getModuleOwnershipKindForChildOf(DC)),
381 DeclCtx(DC), Loc(L), DeclKind(DK), InvalidDecl(false), HasAttrs(false),
382 Implicit(false), Used(false), Referenced(false),
383 TopLevelDeclInObjCContainer(false), Access(AS_none), FromASTFile(0),
384 IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
385 CacheValidAndLinkage(0) {
386 if (StatisticsEnabled) add(DK);
387 }
388
389 Decl(Kind DK, EmptyShell Empty)
390 : DeclKind(DK), InvalidDecl(false), HasAttrs(false), Implicit(false),
391 Used(false), Referenced(false), TopLevelDeclInObjCContainer(false),
392 Access(AS_none), FromASTFile(0),
393 IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
394 CacheValidAndLinkage(0) {
395 if (StatisticsEnabled) add(DK);
396 }
397
398 virtual ~Decl();
399
400 /// Update a potentially out-of-date declaration.
401 void updateOutOfDate(IdentifierInfo &II) const;
402
403 Linkage getCachedLinkage() const {
404 return Linkage(CacheValidAndLinkage - 1);
405 }
406
407 void setCachedLinkage(Linkage L) const {
408 CacheValidAndLinkage = L + 1;
409 }
410
411 bool hasCachedLinkage() const {
412 return CacheValidAndLinkage;
413 }
414
415public:
416 /// Source range that this declaration covers.
417 virtual SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
418 return SourceRange(getLocation(), getLocation());
419 }
420
421 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
422 return getSourceRange().getBegin();
423 }
424
425 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
426 return getSourceRange().getEnd();
427 }
428
429 SourceLocation getLocation() const { return Loc; }
430 void setLocation(SourceLocation L) { Loc = L; }
431
432 Kind getKind() const { return static_cast<Kind>(DeclKind); }
433 const char *getDeclKindName() const;
434
435 Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); }
436 const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();}
437
438 DeclContext *getDeclContext() {
439 if (isInSemaDC())
440 return getSemanticDC();
441 return getMultipleDC()->SemanticDC;
442 }
443 const DeclContext *getDeclContext() const {
444 return const_cast<Decl*>(this)->getDeclContext();
445 }
446
447 /// Find the innermost non-closure ancestor of this declaration,
448 /// walking up through blocks, lambdas, etc. If that ancestor is
449 /// not a code context (!isFunctionOrMethod()), returns null.
450 ///
451 /// A declaration may be its own non-closure context.
452 Decl *getNonClosureContext();
453 const Decl *getNonClosureContext() const {
454 return const_cast<Decl*>(this)->getNonClosureContext();
455 }
456
457 TranslationUnitDecl *getTranslationUnitDecl();
458 const TranslationUnitDecl *getTranslationUnitDecl() const {
459 return const_cast<Decl*>(this)->getTranslationUnitDecl();
460 }
461
462 bool isInAnonymousNamespace() const;
463
464 bool isInStdNamespace() const;
465
466 ASTContext &getASTContext() const LLVM_READONLY__attribute__((__pure__));
467
468 void setAccess(AccessSpecifier AS) {
469 Access = AS;
470 assert(AccessDeclContextSanity())((AccessDeclContextSanity()) ? static_cast<void> (0) : __assert_fail
("AccessDeclContextSanity()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 470, __PRETTY_FUNCTION__))
;
471 }
472
473 AccessSpecifier getAccess() const {
474 assert(AccessDeclContextSanity())((AccessDeclContextSanity()) ? static_cast<void> (0) : __assert_fail
("AccessDeclContextSanity()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 474, __PRETTY_FUNCTION__))
;
475 return AccessSpecifier(Access);
476 }
477
478 /// Retrieve the access specifier for this declaration, even though
479 /// it may not yet have been properly set.
480 AccessSpecifier getAccessUnsafe() const {
481 return AccessSpecifier(Access);
482 }
483
484 bool hasAttrs() const { return HasAttrs; }
485
486 void setAttrs(const AttrVec& Attrs) {
487 return setAttrsImpl(Attrs, getASTContext());
488 }
489
490 AttrVec &getAttrs() {
491 return const_cast<AttrVec&>(const_cast<const Decl*>(this)->getAttrs());
492 }
493
494 const AttrVec &getAttrs() const;
495 void dropAttrs();
496 void addAttr(Attr *A);
497
498 using attr_iterator = AttrVec::const_iterator;
499 using attr_range = llvm::iterator_range<attr_iterator>;
500
501 attr_range attrs() const {
502 return attr_range(attr_begin(), attr_end());
503 }
504
505 attr_iterator attr_begin() const {
506 return hasAttrs() ? getAttrs().begin() : nullptr;
507 }
508 attr_iterator attr_end() const {
509 return hasAttrs() ? getAttrs().end() : nullptr;
510 }
511
512 template <typename T>
513 void dropAttr() {
514 if (!HasAttrs) return;
515
516 AttrVec &Vec = getAttrs();
517 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), isa<T, Attr*>), Vec.end());
518
519 if (Vec.empty())
520 HasAttrs = false;
521 }
522
523 template <typename T>
524 llvm::iterator_range<specific_attr_iterator<T>> specific_attrs() const {
525 return llvm::make_range(specific_attr_begin<T>(), specific_attr_end<T>());
526 }
527
528 template <typename T>
529 specific_attr_iterator<T> specific_attr_begin() const {
530 return specific_attr_iterator<T>(attr_begin());
531 }
532
533 template <typename T>
534 specific_attr_iterator<T> specific_attr_end() const {
535 return specific_attr_iterator<T>(attr_end());
536 }
537
538 template<typename T> T *getAttr() const {
539 return hasAttrs() ? getSpecificAttr<T>(getAttrs()) : nullptr;
540 }
541
542 template<typename T> bool hasAttr() const {
543 return hasAttrs() && hasSpecificAttr<T>(getAttrs());
3
Assuming the condition is false
4
Returning zero, which participates in a condition later
544 }
545
546 /// getMaxAlignment - return the maximum alignment specified by attributes
547 /// on this decl, 0 if there are none.
548 unsigned getMaxAlignment() const;
549
550 /// setInvalidDecl - Indicates the Decl had a semantic error. This
551 /// allows for graceful error recovery.
552 void setInvalidDecl(bool Invalid = true);
553 bool isInvalidDecl() const { return (bool) InvalidDecl; }
554
555 /// isImplicit - Indicates whether the declaration was implicitly
556 /// generated by the implementation. If false, this declaration
557 /// was written explicitly in the source code.
558 bool isImplicit() const { return Implicit; }
559 void setImplicit(bool I = true) { Implicit = I; }
560
561 /// Whether *any* (re-)declaration of the entity was used, meaning that
562 /// a definition is required.
563 ///
564 /// \param CheckUsedAttr When true, also consider the "used" attribute
565 /// (in addition to the "used" bit set by \c setUsed()) when determining
566 /// whether the function is used.
567 bool isUsed(bool CheckUsedAttr = true) const;
568
569 /// Set whether the declaration is used, in the sense of odr-use.
570 ///
571 /// This should only be used immediately after creating a declaration.
572 /// It intentionally doesn't notify any listeners.
573 void setIsUsed() { getCanonicalDecl()->Used = true; }
574
575 /// Mark the declaration used, in the sense of odr-use.
576 ///
577 /// This notifies any mutation listeners in addition to setting a bit
578 /// indicating the declaration is used.
579 void markUsed(ASTContext &C);
580
581 /// Whether any declaration of this entity was referenced.
582 bool isReferenced() const;
583
584 /// Whether this declaration was referenced. This should not be relied
585 /// upon for anything other than debugging.
586 bool isThisDeclarationReferenced() const { return Referenced; }
587
588 void setReferenced(bool R = true) { Referenced = R; }
589
590 /// Whether this declaration is a top-level declaration (function,
591 /// global variable, etc.) that is lexically inside an objc container
592 /// definition.
593 bool isTopLevelDeclInObjCContainer() const {
594 return TopLevelDeclInObjCContainer;
595 }
596
597 void setTopLevelDeclInObjCContainer(bool V = true) {
598 TopLevelDeclInObjCContainer = V;
599 }
600
601 /// Looks on this and related declarations for an applicable
602 /// external source symbol attribute.
603 ExternalSourceSymbolAttr *getExternalSourceSymbolAttr() const;
604
605 /// Whether this declaration was marked as being private to the
606 /// module in which it was defined.
607 bool isModulePrivate() const {
608 return getModuleOwnershipKind() == ModuleOwnershipKind::ModulePrivate;
609 }
610
611 /// Return true if this declaration has an attribute which acts as
612 /// definition of the entity, such as 'alias' or 'ifunc'.
613 bool hasDefiningAttr() const;
614
615 /// Return this declaration's defining attribute if it has one.
616 const Attr *getDefiningAttr() const;
617
618protected:
619 /// Specify that this declaration was marked as being private
620 /// to the module in which it was defined.
621 void setModulePrivate() {
622 // The module-private specifier has no effect on unowned declarations.
623 // FIXME: We should track this in some way for source fidelity.
624 if (getModuleOwnershipKind() == ModuleOwnershipKind::Unowned)
625 return;
626 setModuleOwnershipKind(ModuleOwnershipKind::ModulePrivate);
627 }
628
629 /// Set the owning module ID.
630 void setOwningModuleID(unsigned ID) {
631 assert(isFromASTFile() && "Only works on a deserialized declaration")((isFromASTFile() && "Only works on a deserialized declaration"
) ? static_cast<void> (0) : __assert_fail ("isFromASTFile() && \"Only works on a deserialized declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 631, __PRETTY_FUNCTION__))
;
632 *((unsigned*)this - 2) = ID;
633 }
634
635public:
636 /// Determine the availability of the given declaration.
637 ///
638 /// This routine will determine the most restrictive availability of
639 /// the given declaration (e.g., preferring 'unavailable' to
640 /// 'deprecated').
641 ///
642 /// \param Message If non-NULL and the result is not \c
643 /// AR_Available, will be set to a (possibly empty) message
644 /// describing why the declaration has not been introduced, is
645 /// deprecated, or is unavailable.
646 ///
647 /// \param EnclosingVersion The version to compare with. If empty, assume the
648 /// deployment target version.
649 ///
650 /// \param RealizedPlatform If non-NULL and the availability result is found
651 /// in an available attribute it will set to the platform which is written in
652 /// the available attribute.
653 AvailabilityResult
654 getAvailability(std::string *Message = nullptr,
655 VersionTuple EnclosingVersion = VersionTuple(),
656 StringRef *RealizedPlatform = nullptr) const;
657
658 /// Retrieve the version of the target platform in which this
659 /// declaration was introduced.
660 ///
661 /// \returns An empty version tuple if this declaration has no 'introduced'
662 /// availability attributes, or the version tuple that's specified in the
663 /// attribute otherwise.
664 VersionTuple getVersionIntroduced() const;
665
666 /// Determine whether this declaration is marked 'deprecated'.
667 ///
668 /// \param Message If non-NULL and the declaration is deprecated,
669 /// this will be set to the message describing why the declaration
670 /// was deprecated (which may be empty).
671 bool isDeprecated(std::string *Message = nullptr) const {
672 return getAvailability(Message) == AR_Deprecated;
673 }
674
675 /// Determine whether this declaration is marked 'unavailable'.
676 ///
677 /// \param Message If non-NULL and the declaration is unavailable,
678 /// this will be set to the message describing why the declaration
679 /// was made unavailable (which may be empty).
680 bool isUnavailable(std::string *Message = nullptr) const {
681 return getAvailability(Message) == AR_Unavailable;
682 }
683
684 /// Determine whether this is a weak-imported symbol.
685 ///
686 /// Weak-imported symbols are typically marked with the
687 /// 'weak_import' attribute, but may also be marked with an
688 /// 'availability' attribute where we're targing a platform prior to
689 /// the introduction of this feature.
690 bool isWeakImported() const;
691
692 /// Determines whether this symbol can be weak-imported,
693 /// e.g., whether it would be well-formed to add the weak_import
694 /// attribute.
695 ///
696 /// \param IsDefinition Set to \c true to indicate that this
697 /// declaration cannot be weak-imported because it has a definition.
698 bool canBeWeakImported(bool &IsDefinition) const;
699
700 /// Determine whether this declaration came from an AST file (such as
701 /// a precompiled header or module) rather than having been parsed.
702 bool isFromASTFile() const { return FromASTFile; }
703
704 /// Retrieve the global declaration ID associated with this
705 /// declaration, which specifies where this Decl was loaded from.
706 unsigned getGlobalID() const {
707 if (isFromASTFile())
708 return *((const unsigned*)this - 1);
709 return 0;
710 }
711
712 /// Retrieve the global ID of the module that owns this particular
713 /// declaration.
714 unsigned getOwningModuleID() const {
715 if (isFromASTFile())
716 return *((const unsigned*)this - 2);
717 return 0;
718 }
719
720private:
721 Module *getOwningModuleSlow() const;
722
723protected:
724 bool hasLocalOwningModuleStorage() const;
725
726public:
727 /// Get the imported owning module, if this decl is from an imported
728 /// (non-local) module.
729 Module *getImportedOwningModule() const {
730 if (!isFromASTFile() || !hasOwningModule())
731 return nullptr;
732
733 return getOwningModuleSlow();
734 }
735
736 /// Get the local owning module, if known. Returns nullptr if owner is
737 /// not yet known or declaration is not from a module.
738 Module *getLocalOwningModule() const {
739 if (isFromASTFile() || !hasOwningModule())
740 return nullptr;
741
742 assert(hasLocalOwningModuleStorage() &&((hasLocalOwningModuleStorage() && "owned local decl but no local module storage"
) ? static_cast<void> (0) : __assert_fail ("hasLocalOwningModuleStorage() && \"owned local decl but no local module storage\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 743, __PRETTY_FUNCTION__))
743 "owned local decl but no local module storage")((hasLocalOwningModuleStorage() && "owned local decl but no local module storage"
) ? static_cast<void> (0) : __assert_fail ("hasLocalOwningModuleStorage() && \"owned local decl but no local module storage\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 743, __PRETTY_FUNCTION__))
;
744 return reinterpret_cast<Module *const *>(this)[-1];
745 }
746 void setLocalOwningModule(Module *M) {
747 assert(!isFromASTFile() && hasOwningModule() &&((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 749, __PRETTY_FUNCTION__))
748 hasLocalOwningModuleStorage() &&((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 749, __PRETTY_FUNCTION__))
749 "should not have a cached owning module")((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 749, __PRETTY_FUNCTION__))
;
750 reinterpret_cast<Module **>(this)[-1] = M;
751 }
752
753 /// Is this declaration owned by some module?
754 bool hasOwningModule() const {
755 return getModuleOwnershipKind() != ModuleOwnershipKind::Unowned;
756 }
757
758 /// Get the module that owns this declaration (for visibility purposes).
759 Module *getOwningModule() const {
760 return isFromASTFile() ? getImportedOwningModule() : getLocalOwningModule();
761 }
762
763 /// Get the module that owns this declaration for linkage purposes.
764 /// There only ever is such a module under the C++ Modules TS.
765 ///
766 /// \param IgnoreLinkage Ignore the linkage of the entity; assume that
767 /// all declarations in a global module fragment are unowned.
768 Module *getOwningModuleForLinkage(bool IgnoreLinkage = false) const;
769
770 /// Determine whether this declaration might be hidden from name
771 /// lookup. Note that the declaration might be visible even if this returns
772 /// \c false, if the owning module is visible within the query context.
773 // FIXME: Rename this to make it clearer what it does.
774 bool isHidden() const {
775 return (int)getModuleOwnershipKind() > (int)ModuleOwnershipKind::Visible;
776 }
777
778 /// Set that this declaration is globally visible, even if it came from a
779 /// module that is not visible.
780 void setVisibleDespiteOwningModule() {
781 if (isHidden())
782 setModuleOwnershipKind(ModuleOwnershipKind::Visible);
783 }
784
785 /// Get the kind of module ownership for this declaration.
786 ModuleOwnershipKind getModuleOwnershipKind() const {
787 return NextInContextAndBits.getInt();
788 }
789
790 /// Set whether this declaration is hidden from name lookup.
791 void setModuleOwnershipKind(ModuleOwnershipKind MOK) {
792 assert(!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 795, __PRETTY_FUNCTION__))
793 MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 795, __PRETTY_FUNCTION__))
794 !hasLocalOwningModuleStorage()) &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 795, __PRETTY_FUNCTION__))
795 "no storage available for owning module for this declaration")((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 795, __PRETTY_FUNCTION__))
;
796 NextInContextAndBits.setInt(MOK);
797 }
798
799 unsigned getIdentifierNamespace() const {
800 return IdentifierNamespace;
801 }
802
803 bool isInIdentifierNamespace(unsigned NS) const {
804 return getIdentifierNamespace() & NS;
805 }
806
807 static unsigned getIdentifierNamespaceForKind(Kind DK);
808
809 bool hasTagIdentifierNamespace() const {
810 return isTagIdentifierNamespace(getIdentifierNamespace());
811 }
812
813 static bool isTagIdentifierNamespace(unsigned NS) {
814 // TagDecls have Tag and Type set and may also have TagFriend.
815 return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type);
816 }
817
818 /// getLexicalDeclContext - The declaration context where this Decl was
819 /// lexically declared (LexicalDC). May be different from
820 /// getDeclContext() (SemanticDC).
821 /// e.g.:
822 ///
823 /// namespace A {
824 /// void f(); // SemanticDC == LexicalDC == 'namespace A'
825 /// }
826 /// void A::f(); // SemanticDC == namespace 'A'
827 /// // LexicalDC == global namespace
828 DeclContext *getLexicalDeclContext() {
829 if (isInSemaDC())
830 return getSemanticDC();
831 return getMultipleDC()->LexicalDC;
832 }
833 const DeclContext *getLexicalDeclContext() const {
834 return const_cast<Decl*>(this)->getLexicalDeclContext();
835 }
836
837 /// Determine whether this declaration is declared out of line (outside its
838 /// semantic context).
839 virtual bool isOutOfLine() const;
840
841 /// setDeclContext - Set both the semantic and lexical DeclContext
842 /// to DC.
843 void setDeclContext(DeclContext *DC);
844
845 void setLexicalDeclContext(DeclContext *DC);
846
847 /// Determine whether this declaration is a templated entity (whether it is
848 // within the scope of a template parameter).
849 bool isTemplated() const;
850
851 /// isDefinedOutsideFunctionOrMethod - This predicate returns true if this
852 /// scoped decl is defined outside the current function or method. This is
853 /// roughly global variables and functions, but also handles enums (which
854 /// could be defined inside or outside a function etc).
855 bool isDefinedOutsideFunctionOrMethod() const {
856 return getParentFunctionOrMethod() == nullptr;
857 }
858
859 /// Returns true if this declaration lexically is inside a function.
860 /// It recognizes non-defining declarations as well as members of local
861 /// classes:
862 /// \code
863 /// void foo() { void bar(); }
864 /// void foo2() { class ABC { void bar(); }; }
865 /// \endcode
866 bool isLexicallyWithinFunctionOrMethod() const;
867
868 /// If this decl is defined inside a function/method/block it returns
869 /// the corresponding DeclContext, otherwise it returns null.
870 const DeclContext *getParentFunctionOrMethod() const;
871 DeclContext *getParentFunctionOrMethod() {
872 return const_cast<DeclContext*>(
873 const_cast<const Decl*>(this)->getParentFunctionOrMethod());
874 }
875
876 /// Retrieves the "canonical" declaration of the given declaration.
877 virtual Decl *getCanonicalDecl() { return this; }
878 const Decl *getCanonicalDecl() const {
879 return const_cast<Decl*>(this)->getCanonicalDecl();
880 }
881
882 /// Whether this particular Decl is a canonical one.
883 bool isCanonicalDecl() const { return getCanonicalDecl() == this; }
884
885protected:
886 /// Returns the next redeclaration or itself if this is the only decl.
887 ///
888 /// Decl subclasses that can be redeclared should override this method so that
889 /// Decl::redecl_iterator can iterate over them.
890 virtual Decl *getNextRedeclarationImpl() { return this; }
891
892 /// Implementation of getPreviousDecl(), to be overridden by any
893 /// subclass that has a redeclaration chain.
894 virtual Decl *getPreviousDeclImpl() { return nullptr; }
895
896 /// Implementation of getMostRecentDecl(), to be overridden by any
897 /// subclass that has a redeclaration chain.
898 virtual Decl *getMostRecentDeclImpl() { return this; }
899
900public:
901 /// Iterates through all the redeclarations of the same decl.
902 class redecl_iterator {
903 /// Current - The current declaration.
904 Decl *Current = nullptr;
905 Decl *Starter;
906
907 public:
908 using value_type = Decl *;
909 using reference = const value_type &;
910 using pointer = const value_type *;
911 using iterator_category = std::forward_iterator_tag;
912 using difference_type = std::ptrdiff_t;
913
914 redecl_iterator() = default;
915 explicit redecl_iterator(Decl *C) : Current(C), Starter(C) {}
916
917 reference operator*() const { return Current; }
918 value_type operator->() const { return Current; }
919
920 redecl_iterator& operator++() {
921 assert(Current && "Advancing while iterator has reached end")((Current && "Advancing while iterator has reached end"
) ? static_cast<void> (0) : __assert_fail ("Current && \"Advancing while iterator has reached end\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 921, __PRETTY_FUNCTION__))
;
922 // Get either previous decl or latest decl.
923 Decl *Next = Current->getNextRedeclarationImpl();
924 assert(Next && "Should return next redeclaration or itself, never null!")((Next && "Should return next redeclaration or itself, never null!"
) ? static_cast<void> (0) : __assert_fail ("Next && \"Should return next redeclaration or itself, never null!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 924, __PRETTY_FUNCTION__))
;
925 Current = (Next != Starter) ? Next : nullptr;
926 return *this;
927 }
928
929 redecl_iterator operator++(int) {
930 redecl_iterator tmp(*this);
931 ++(*this);
932 return tmp;
933 }
934
935 friend bool operator==(redecl_iterator x, redecl_iterator y) {
936 return x.Current == y.Current;
937 }
938
939 friend bool operator!=(redecl_iterator x, redecl_iterator y) {
940 return x.Current != y.Current;
941 }
942 };
943
944 using redecl_range = llvm::iterator_range<redecl_iterator>;
945
946 /// Returns an iterator range for all the redeclarations of the same
947 /// decl. It will iterate at least once (when this decl is the only one).
948 redecl_range redecls() const {
949 return redecl_range(redecls_begin(), redecls_end());
950 }
951
952 redecl_iterator redecls_begin() const {
953 return redecl_iterator(const_cast<Decl *>(this));
954 }
955
956 redecl_iterator redecls_end() const { return redecl_iterator(); }
957
958 /// Retrieve the previous declaration that declares the same entity
959 /// as this declaration, or NULL if there is no previous declaration.
960 Decl *getPreviousDecl() { return getPreviousDeclImpl(); }
961
962 /// Retrieve the previous declaration that declares the same entity
963 /// as this declaration, or NULL if there is no previous declaration.
964 const Decl *getPreviousDecl() const {
965 return const_cast<Decl *>(this)->getPreviousDeclImpl();
966 }
967
968 /// True if this is the first declaration in its redeclaration chain.
969 bool isFirstDecl() const {
970 return getPreviousDecl() == nullptr;
971 }
972
973 /// Retrieve the most recent declaration that declares the same entity
974 /// as this declaration (which may be this declaration).
975 Decl *getMostRecentDecl() { return getMostRecentDeclImpl(); }
976
977 /// Retrieve the most recent declaration that declares the same entity
978 /// as this declaration (which may be this declaration).
979 const Decl *getMostRecentDecl() const {
980 return const_cast<Decl *>(this)->getMostRecentDeclImpl();
981 }
982
983 /// getBody - If this Decl represents a declaration for a body of code,
984 /// such as a function or method definition, this method returns the
985 /// top-level Stmt* of that body. Otherwise this method returns null.
986 virtual Stmt* getBody() const { return nullptr; }
987
988 /// Returns true if this \c Decl represents a declaration for a body of
989 /// code, such as a function or method definition.
990 /// Note that \c hasBody can also return true if any redeclaration of this
991 /// \c Decl represents a declaration for a body of code.
992 virtual bool hasBody() const { return getBody() != nullptr; }
993
994 /// getBodyRBrace - Gets the right brace of the body, if a body exists.
995 /// This works whether the body is a CompoundStmt or a CXXTryStmt.
996 SourceLocation getBodyRBrace() const;
997
998 // global temp stats (until we have a per-module visitor)
999 static void add(Kind k);
1000 static void EnableStatistics();
1001 static void PrintStats();
1002
1003 /// isTemplateParameter - Determines whether this declaration is a
1004 /// template parameter.
1005 bool isTemplateParameter() const;
1006
1007 /// isTemplateParameter - Determines whether this declaration is a
1008 /// template parameter pack.
1009 bool isTemplateParameterPack() const;
1010
1011 /// Whether this declaration is a parameter pack.
1012 bool isParameterPack() const;
1013
1014 /// returns true if this declaration is a template
1015 bool isTemplateDecl() const;
1016
1017 /// Whether this declaration is a function or function template.
1018 bool isFunctionOrFunctionTemplate() const {
1019 return (DeclKind >= Decl::firstFunction &&
1020 DeclKind <= Decl::lastFunction) ||
1021 DeclKind == FunctionTemplate;
1022 }
1023
1024 /// If this is a declaration that describes some template, this
1025 /// method returns that template declaration.
1026 TemplateDecl *getDescribedTemplate() const;
1027
1028 /// Returns the function itself, or the templated function if this is a
1029 /// function template.
1030 FunctionDecl *getAsFunction() LLVM_READONLY__attribute__((__pure__));
1031
1032 const FunctionDecl *getAsFunction() const {
1033 return const_cast<Decl *>(this)->getAsFunction();
1034 }
1035
1036 /// Changes the namespace of this declaration to reflect that it's
1037 /// a function-local extern declaration.
1038 ///
1039 /// These declarations appear in the lexical context of the extern
1040 /// declaration, but in the semantic context of the enclosing namespace
1041 /// scope.
1042 void setLocalExternDecl() {
1043 Decl *Prev = getPreviousDecl();
1044 IdentifierNamespace &= ~IDNS_Ordinary;
1045
1046 // It's OK for the declaration to still have the "invisible friend" flag or
1047 // the "conflicts with tag declarations in this scope" flag for the outer
1048 // scope.
1049 assert((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 &&(((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag
)) == 0 && "namespace is not ordinary") ? static_cast
<void> (0) : __assert_fail ("(IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 && \"namespace is not ordinary\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1050, __PRETTY_FUNCTION__))
1050 "namespace is not ordinary")(((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag
)) == 0 && "namespace is not ordinary") ? static_cast
<void> (0) : __assert_fail ("(IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 && \"namespace is not ordinary\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1050, __PRETTY_FUNCTION__))
;
1051
1052 IdentifierNamespace |= IDNS_LocalExtern;
1053 if (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary)
1054 IdentifierNamespace |= IDNS_Ordinary;
1055 }
1056
1057 /// Determine whether this is a block-scope declaration with linkage.
1058 /// This will either be a local variable declaration declared 'extern', or a
1059 /// local function declaration.
1060 bool isLocalExternDecl() {
1061 return IdentifierNamespace & IDNS_LocalExtern;
1062 }
1063
1064 /// Changes the namespace of this declaration to reflect that it's
1065 /// the object of a friend declaration.
1066 ///
1067 /// These declarations appear in the lexical context of the friending
1068 /// class, but in the semantic context of the actual entity. This property
1069 /// applies only to a specific decl object; other redeclarations of the
1070 /// same entity may not (and probably don't) share this property.
1071 void setObjectOfFriendDecl(bool PerformFriendInjection = false) {
1072 unsigned OldNS = IdentifierNamespace;
1073 assert((OldNS & (IDNS_Tag | IDNS_Ordinary |(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1076, __PRETTY_FUNCTION__))
1074 IDNS_TagFriend | IDNS_OrdinaryFriend |(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1076, __PRETTY_FUNCTION__))
1075 IDNS_LocalExtern | IDNS_NonMemberOperator)) &&(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1076, __PRETTY_FUNCTION__))
1076 "namespace includes neither ordinary nor tag")(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1076, __PRETTY_FUNCTION__))
;
1077 assert(!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type |((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1080, __PRETTY_FUNCTION__))
1078 IDNS_TagFriend | IDNS_OrdinaryFriend |((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1080, __PRETTY_FUNCTION__))
1079 IDNS_LocalExtern | IDNS_NonMemberOperator)) &&((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1080, __PRETTY_FUNCTION__))
1080 "namespace includes other than ordinary or tag")((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1080, __PRETTY_FUNCTION__))
;
1081
1082 Decl *Prev = getPreviousDecl();
1083 IdentifierNamespace &= ~(IDNS_Ordinary | IDNS_Tag | IDNS_Type);
1084
1085 if (OldNS & (IDNS_Tag | IDNS_TagFriend)) {
1086 IdentifierNamespace |= IDNS_TagFriend;
1087 if (PerformFriendInjection ||
1088 (Prev && Prev->getIdentifierNamespace() & IDNS_Tag))
1089 IdentifierNamespace |= IDNS_Tag | IDNS_Type;
1090 }
1091
1092 if (OldNS & (IDNS_Ordinary | IDNS_OrdinaryFriend |
1093 IDNS_LocalExtern | IDNS_NonMemberOperator)) {
1094 IdentifierNamespace |= IDNS_OrdinaryFriend;
1095 if (PerformFriendInjection ||
1096 (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary))
1097 IdentifierNamespace |= IDNS_Ordinary;
1098 }
1099 }
1100
1101 enum FriendObjectKind {
1102 FOK_None, ///< Not a friend object.
1103 FOK_Declared, ///< A friend of a previously-declared entity.
1104 FOK_Undeclared ///< A friend of a previously-undeclared entity.
1105 };
1106
1107 /// Determines whether this declaration is the object of a
1108 /// friend declaration and, if so, what kind.
1109 ///
1110 /// There is currently no direct way to find the associated FriendDecl.
1111 FriendObjectKind getFriendObjectKind() const {
1112 unsigned mask =
1113 (IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend));
1114 if (!mask) return FOK_None;
1115 return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ? FOK_Declared
1116 : FOK_Undeclared);
1117 }
1118
1119 /// Specifies that this declaration is a C++ overloaded non-member.
1120 void setNonMemberOperator() {
1121 assert(getKind() == Function || getKind() == FunctionTemplate)((getKind() == Function || getKind() == FunctionTemplate) ? static_cast
<void> (0) : __assert_fail ("getKind() == Function || getKind() == FunctionTemplate"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1121, __PRETTY_FUNCTION__))
;
1122 assert((IdentifierNamespace & IDNS_Ordinary) &&(((IdentifierNamespace & IDNS_Ordinary) && "visible non-member operators should be in ordinary namespace"
) ? static_cast<void> (0) : __assert_fail ("(IdentifierNamespace & IDNS_Ordinary) && \"visible non-member operators should be in ordinary namespace\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1123, __PRETTY_FUNCTION__))
1123 "visible non-member operators should be in ordinary namespace")(((IdentifierNamespace & IDNS_Ordinary) && "visible non-member operators should be in ordinary namespace"
) ? static_cast<void> (0) : __assert_fail ("(IdentifierNamespace & IDNS_Ordinary) && \"visible non-member operators should be in ordinary namespace\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 1123, __PRETTY_FUNCTION__))
;
1124 IdentifierNamespace |= IDNS_NonMemberOperator;
1125 }
1126
1127 static bool classofKind(Kind K) { return true; }
1128 static DeclContext *castToDeclContext(const Decl *);
1129 static Decl *castFromDeclContext(const DeclContext *);
1130
1131 void print(raw_ostream &Out, unsigned Indentation = 0,
1132 bool PrintInstantiation = false) const;
1133 void print(raw_ostream &Out, const PrintingPolicy &Policy,
1134 unsigned Indentation = 0, bool PrintInstantiation = false) const;
1135 static void printGroup(Decl** Begin, unsigned NumDecls,
1136 raw_ostream &Out, const PrintingPolicy &Policy,
1137 unsigned Indentation = 0);
1138
1139 // Debuggers don't usually respect default arguments.
1140 void dump() const;
1141
1142 // Same as dump(), but forces color printing.
1143 void dumpColor() const;
1144
1145 void dump(raw_ostream &Out, bool Deserialize = false,
1146 ASTDumpOutputFormat OutputFormat = ADOF_Default) const;
1147
1148 /// \return Unique reproducible object identifier
1149 int64_t getID() const;
1150
1151 /// Looks through the Decl's underlying type to extract a FunctionType
1152 /// when possible. Will return null if the type underlying the Decl does not
1153 /// have a FunctionType.
1154 const FunctionType *getFunctionType(bool BlocksToo = true) const;
1155
1156private:
1157 void setAttrsImpl(const AttrVec& Attrs, ASTContext &Ctx);
1158 void setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC,
1159 ASTContext &Ctx);
1160
1161protected:
1162 ASTMutationListener *getASTMutationListener() const;
1163};
1164
1165/// Determine whether two declarations declare the same entity.
1166inline bool declaresSameEntity(const Decl *D1, const Decl *D2) {
1167 if (!D1 || !D2)
1168 return false;
1169
1170 if (D1 == D2)
1171 return true;
1172
1173 return D1->getCanonicalDecl() == D2->getCanonicalDecl();
1174}
1175
1176/// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when
1177/// doing something to a specific decl.
1178class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry {
1179 const Decl *TheDecl;
1180 SourceLocation Loc;
1181 SourceManager &SM;
1182 const char *Message;
1183
1184public:
1185 PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L,
1186 SourceManager &sm, const char *Msg)
1187 : TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {}
1188
1189 void print(raw_ostream &OS) const override;
1190};
1191
1192/// The results of name lookup within a DeclContext. This is either a
1193/// single result (with no stable storage) or a collection of results (with
1194/// stable storage provided by the lookup table).
1195class DeclContextLookupResult {
1196 using ResultTy = ArrayRef<NamedDecl *>;
1197
1198 ResultTy Result;
1199
1200 // If there is only one lookup result, it would be invalidated by
1201 // reallocations of the name table, so store it separately.
1202 NamedDecl *Single = nullptr;
1203
1204 static NamedDecl *const SingleElementDummyList;
1205
1206public:
1207 DeclContextLookupResult() = default;
1208 DeclContextLookupResult(ArrayRef<NamedDecl *> Result)
1209 : Result(Result) {}
1210 DeclContextLookupResult(NamedDecl *Single)
1211 : Result(SingleElementDummyList), Single(Single) {}
1212
1213 class iterator;
1214
1215 using IteratorBase =
1216 llvm::iterator_adaptor_base<iterator, ResultTy::iterator,
1217 std::random_access_iterator_tag,
1218 NamedDecl *const>;
1219
1220 class iterator : public IteratorBase {
1221 value_type SingleElement;
1222
1223 public:
1224 explicit iterator(pointer Pos, value_type Single = nullptr)
1225 : IteratorBase(Pos), SingleElement(Single) {}
1226
1227 reference operator*() const {
1228 return SingleElement ? SingleElement : IteratorBase::operator*();
1229 }
1230 };
1231
1232 using const_iterator = iterator;
1233 using pointer = iterator::pointer;
1234 using reference = iterator::reference;
1235
1236 iterator begin() const { return iterator(Result.begin(), Single); }
1237 iterator end() const { return iterator(Result.end(), Single); }
1238
1239 bool empty() const { return Result.empty(); }
1240 pointer data() const { return Single ? &Single : Result.data(); }
1241 size_t size() const { return Single ? 1 : Result.size(); }
1242 reference front() const { return Single ? Single : Result.front(); }
1243 reference back() const { return Single ? Single : Result.back(); }
1244 reference operator[](size_t N) const { return Single ? Single : Result[N]; }
1245
1246 // FIXME: Remove this from the interface
1247 DeclContextLookupResult slice(size_t N) const {
1248 DeclContextLookupResult Sliced = Result.slice(N);
1249 Sliced.Single = Single;
1250 return Sliced;
1251 }
1252};
1253
1254/// DeclContext - This is used only as base class of specific decl types that
1255/// can act as declaration contexts. These decls are (only the top classes
1256/// that directly derive from DeclContext are mentioned, not their subclasses):
1257///
1258/// TranslationUnitDecl
1259/// ExternCContext
1260/// NamespaceDecl
1261/// TagDecl
1262/// OMPDeclareReductionDecl
1263/// OMPDeclareMapperDecl
1264/// FunctionDecl
1265/// ObjCMethodDecl
1266/// ObjCContainerDecl
1267/// LinkageSpecDecl
1268/// ExportDecl
1269/// BlockDecl
1270/// CapturedDecl
1271class DeclContext {
1272 /// For makeDeclVisibleInContextImpl
1273 friend class ASTDeclReader;
1274 /// For reconcileExternalVisibleStorage, CreateStoredDeclsMap,
1275 /// hasNeedToReconcileExternalVisibleStorage
1276 friend class ExternalASTSource;
1277 /// For CreateStoredDeclsMap
1278 friend class DependentDiagnostic;
1279 /// For hasNeedToReconcileExternalVisibleStorage,
1280 /// hasLazyLocalLexicalLookups, hasLazyExternalLexicalLookups
1281 friend class ASTWriter;
1282
1283 // We use uint64_t in the bit-fields below since some bit-fields
1284 // cross the unsigned boundary and this breaks the packing.
1285
1286 /// Stores the bits used by DeclContext.
1287 /// If modified NumDeclContextBit, the ctor of DeclContext and the accessor
1288 /// methods in DeclContext should be updated appropriately.
1289 class DeclContextBitfields {
1290 friend class DeclContext;
1291 /// DeclKind - This indicates which class this is.
1292 uint64_t DeclKind : 7;
1293
1294 /// Whether this declaration context also has some external
1295 /// storage that contains additional declarations that are lexically
1296 /// part of this context.
1297 mutable uint64_t ExternalLexicalStorage : 1;
1298
1299 /// Whether this declaration context also has some external
1300 /// storage that contains additional declarations that are visible
1301 /// in this context.
1302 mutable uint64_t ExternalVisibleStorage : 1;
1303
1304 /// Whether this declaration context has had externally visible
1305 /// storage added since the last lookup. In this case, \c LookupPtr's
1306 /// invariant may not hold and needs to be fixed before we perform
1307 /// another lookup.
1308 mutable uint64_t NeedToReconcileExternalVisibleStorage : 1;
1309
1310 /// If \c true, this context may have local lexical declarations
1311 /// that are missing from the lookup table.
1312 mutable uint64_t HasLazyLocalLexicalLookups : 1;
1313
1314 /// If \c true, the external source may have lexical declarations
1315 /// that are missing from the lookup table.
1316 mutable uint64_t HasLazyExternalLexicalLookups : 1;
1317
1318 /// If \c true, lookups should only return identifier from
1319 /// DeclContext scope (for example TranslationUnit). Used in
1320 /// LookupQualifiedName()
1321 mutable uint64_t UseQualifiedLookup : 1;
1322 };
1323
1324 /// Number of bits in DeclContextBitfields.
1325 enum { NumDeclContextBits = 13 };
1326
1327 /// Stores the bits used by TagDecl.
1328 /// If modified NumTagDeclBits and the accessor
1329 /// methods in TagDecl should be updated appropriately.
1330 class TagDeclBitfields {
1331 friend class TagDecl;
1332 /// For the bits in DeclContextBitfields
1333 uint64_t : NumDeclContextBits;
1334
1335 /// The TagKind enum.
1336 uint64_t TagDeclKind : 3;
1337
1338 /// True if this is a definition ("struct foo {};"), false if it is a
1339 /// declaration ("struct foo;"). It is not considered a definition
1340 /// until the definition has been fully processed.
1341 uint64_t IsCompleteDefinition : 1;
1342
1343 /// True if this is currently being defined.
1344 uint64_t IsBeingDefined : 1;
1345
1346 /// True if this tag declaration is "embedded" (i.e., defined or declared
1347 /// for the very first time) in the syntax of a declarator.
1348 uint64_t IsEmbeddedInDeclarator : 1;
1349
1350 /// True if this tag is free standing, e.g. "struct foo;".
1351 uint64_t IsFreeStanding : 1;
1352
1353 /// Indicates whether it is possible for declarations of this kind
1354 /// to have an out-of-date definition.
1355 ///
1356 /// This option is only enabled when modules are enabled.
1357 uint64_t MayHaveOutOfDateDef : 1;
1358
1359 /// Has the full definition of this type been required by a use somewhere in
1360 /// the TU.
1361 uint64_t IsCompleteDefinitionRequired : 1;
1362 };
1363
1364 /// Number of non-inherited bits in TagDeclBitfields.
1365 enum { NumTagDeclBits = 9 };
1366
1367 /// Stores the bits used by EnumDecl.
1368 /// If modified NumEnumDeclBit and the accessor
1369 /// methods in EnumDecl should be updated appropriately.
1370 class EnumDeclBitfields {
1371 friend class EnumDecl;
1372 /// For the bits in DeclContextBitfields.
1373 uint64_t : NumDeclContextBits;
1374 /// For the bits in TagDeclBitfields.
1375 uint64_t : NumTagDeclBits;
1376
1377 /// Width in bits required to store all the non-negative
1378 /// enumerators of this enum.
1379 uint64_t NumPositiveBits : 8;
1380
1381 /// Width in bits required to store all the negative
1382 /// enumerators of this enum.
1383 uint64_t NumNegativeBits : 8;
1384
1385 /// True if this tag declaration is a scoped enumeration. Only
1386 /// possible in C++11 mode.
1387 uint64_t IsScoped : 1;
1388
1389 /// If this tag declaration is a scoped enum,
1390 /// then this is true if the scoped enum was declared using the class
1391 /// tag, false if it was declared with the struct tag. No meaning is
1392 /// associated if this tag declaration is not a scoped enum.
1393 uint64_t IsScopedUsingClassTag : 1;
1394
1395 /// True if this is an enumeration with fixed underlying type. Only
1396 /// possible in C++11, Microsoft extensions, or Objective C mode.
1397 uint64_t IsFixed : 1;
1398
1399 /// True if a valid hash is stored in ODRHash.
1400 uint64_t HasODRHash : 1;
1401 };
1402
1403 /// Number of non-inherited bits in EnumDeclBitfields.
1404 enum { NumEnumDeclBits = 20 };
1405
1406 /// Stores the bits used by RecordDecl.
1407 /// If modified NumRecordDeclBits and the accessor
1408 /// methods in RecordDecl should be updated appropriately.
1409 class RecordDeclBitfields {
1410 friend class RecordDecl;
1411 /// For the bits in DeclContextBitfields.
1412 uint64_t : NumDeclContextBits;
1413 /// For the bits in TagDeclBitfields.
1414 uint64_t : NumTagDeclBits;
1415
1416 /// This is true if this struct ends with a flexible
1417 /// array member (e.g. int X[]) or if this union contains a struct that does.
1418 /// If so, this cannot be contained in arrays or other structs as a member.
1419 uint64_t HasFlexibleArrayMember : 1;
1420
1421 /// Whether this is the type of an anonymous struct or union.
1422 uint64_t AnonymousStructOrUnion : 1;
1423
1424 /// This is true if this struct has at least one member
1425 /// containing an Objective-C object pointer type.
1426 uint64_t HasObjectMember : 1;
1427
1428 /// This is true if struct has at least one member of
1429 /// 'volatile' type.
1430 uint64_t HasVolatileMember : 1;
1431
1432 /// Whether the field declarations of this record have been loaded
1433 /// from external storage. To avoid unnecessary deserialization of
1434 /// methods/nested types we allow deserialization of just the fields
1435 /// when needed.
1436 mutable uint64_t LoadedFieldsFromExternalStorage : 1;
1437
1438 /// Basic properties of non-trivial C structs.
1439 uint64_t NonTrivialToPrimitiveDefaultInitialize : 1;
1440 uint64_t NonTrivialToPrimitiveCopy : 1;
1441 uint64_t NonTrivialToPrimitiveDestroy : 1;
1442
1443 /// The following bits indicate whether this is or contains a C union that
1444 /// is non-trivial to default-initialize, destruct, or copy. These bits
1445 /// imply the associated basic non-triviality predicates declared above.
1446 uint64_t HasNonTrivialToPrimitiveDefaultInitializeCUnion : 1;
1447 uint64_t HasNonTrivialToPrimitiveDestructCUnion : 1;
1448 uint64_t HasNonTrivialToPrimitiveCopyCUnion : 1;
1449
1450 /// Indicates whether this struct is destroyed in the callee.
1451 uint64_t ParamDestroyedInCallee : 1;
1452
1453 /// Represents the way this type is passed to a function.
1454 uint64_t ArgPassingRestrictions : 2;
1455 };
1456
1457 /// Number of non-inherited bits in RecordDeclBitfields.
1458 enum { NumRecordDeclBits = 14 };
1459
1460 /// Stores the bits used by OMPDeclareReductionDecl.
1461 /// If modified NumOMPDeclareReductionDeclBits and the accessor
1462 /// methods in OMPDeclareReductionDecl should be updated appropriately.
1463 class OMPDeclareReductionDeclBitfields {
1464 friend class OMPDeclareReductionDecl;
1465 /// For the bits in DeclContextBitfields
1466 uint64_t : NumDeclContextBits;
1467
1468 /// Kind of initializer,
1469 /// function call or omp_priv<init_expr> initializtion.
1470 uint64_t InitializerKind : 2;
1471 };
1472
1473 /// Number of non-inherited bits in OMPDeclareReductionDeclBitfields.
1474 enum { NumOMPDeclareReductionDeclBits = 2 };
1475
1476 /// Stores the bits used by FunctionDecl.
1477 /// If modified NumFunctionDeclBits and the accessor
1478 /// methods in FunctionDecl and CXXDeductionGuideDecl
1479 /// (for IsCopyDeductionCandidate) should be updated appropriately.
1480 class FunctionDeclBitfields {
1481 friend class FunctionDecl;
1482 /// For IsCopyDeductionCandidate
1483 friend class CXXDeductionGuideDecl;
1484 /// For the bits in DeclContextBitfields.
1485 uint64_t : NumDeclContextBits;
1486
1487 uint64_t SClass : 3;
1488 uint64_t IsInline : 1;
1489 uint64_t IsInlineSpecified : 1;
1490
1491 uint64_t IsVirtualAsWritten : 1;
1492 uint64_t IsPure : 1;
1493 uint64_t HasInheritedPrototype : 1;
1494 uint64_t HasWrittenPrototype : 1;
1495 uint64_t IsDeleted : 1;
1496 /// Used by CXXMethodDecl
1497 uint64_t IsTrivial : 1;
1498
1499 /// This flag indicates whether this function is trivial for the purpose of
1500 /// calls. This is meaningful only when this function is a copy/move
1501 /// constructor or a destructor.
1502 uint64_t IsTrivialForCall : 1;
1503
1504 /// Used by CXXMethodDecl
1505 uint64_t IsDefaulted : 1;
1506 /// Used by CXXMethodDecl
1507 uint64_t IsExplicitlyDefaulted : 1;
1508 uint64_t HasImplicitReturnZero : 1;
1509 uint64_t IsLateTemplateParsed : 1;
1510
1511 /// Kind of contexpr specifier as defined by ConstexprSpecKind.
1512 uint64_t ConstexprKind : 2;
1513 uint64_t InstantiationIsPending : 1;
1514
1515 /// Indicates if the function uses __try.
1516 uint64_t UsesSEHTry : 1;
1517
1518 /// Indicates if the function was a definition
1519 /// but its body was skipped.
1520 uint64_t HasSkippedBody : 1;
1521
1522 /// Indicates if the function declaration will
1523 /// have a body, once we're done parsing it.
1524 uint64_t WillHaveBody : 1;
1525
1526 /// Indicates that this function is a multiversioned
1527 /// function using attribute 'target'.
1528 uint64_t IsMultiVersion : 1;
1529
1530 /// [C++17] Only used by CXXDeductionGuideDecl. Indicates that
1531 /// the Deduction Guide is the implicitly generated 'copy
1532 /// deduction candidate' (is used during overload resolution).
1533 uint64_t IsCopyDeductionCandidate : 1;
1534
1535 /// Store the ODRHash after first calculation.
1536 uint64_t HasODRHash : 1;
1537 };
1538
1539 /// Number of non-inherited bits in FunctionDeclBitfields.
1540 enum { NumFunctionDeclBits = 25 };
1541
1542 /// Stores the bits used by CXXConstructorDecl. If modified
1543 /// NumCXXConstructorDeclBits and the accessor
1544 /// methods in CXXConstructorDecl should be updated appropriately.
1545 class CXXConstructorDeclBitfields {
1546 friend class CXXConstructorDecl;
1547 /// For the bits in DeclContextBitfields.
1548 uint64_t : NumDeclContextBits;
1549 /// For the bits in FunctionDeclBitfields.
1550 uint64_t : NumFunctionDeclBits;
1551
1552 /// 24 bits to fit in the remaining available space.
1553 /// Note that this makes CXXConstructorDeclBitfields take
1554 /// exactly 64 bits and thus the width of NumCtorInitializers
1555 /// will need to be shrunk if some bit is added to NumDeclContextBitfields,
1556 /// NumFunctionDeclBitfields or CXXConstructorDeclBitfields.
1557 uint64_t NumCtorInitializers : 23;
1558 uint64_t IsInheritingConstructor : 1;
1559
1560 /// Whether this constructor has a trail-allocated explicit specifier.
1561 uint64_t HasTrailingExplicitSpecifier : 1;
1562 /// If this constructor does't have a trail-allocated explicit specifier.
1563 /// Whether this constructor is explicit specified.
1564 uint64_t IsSimpleExplicit : 1;
1565 };
1566
1567 /// Number of non-inherited bits in CXXConstructorDeclBitfields.
1568 enum {
1569 NumCXXConstructorDeclBits = 64 - NumDeclContextBits - NumFunctionDeclBits
1570 };
1571
1572 /// Stores the bits used by ObjCMethodDecl.
1573 /// If modified NumObjCMethodDeclBits and the accessor
1574 /// methods in ObjCMethodDecl should be updated appropriately.
1575 class ObjCMethodDeclBitfields {
1576 friend class ObjCMethodDecl;
1577
1578 /// For the bits in DeclContextBitfields.
1579 uint64_t : NumDeclContextBits;
1580
1581 /// The conventional meaning of this method; an ObjCMethodFamily.
1582 /// This is not serialized; instead, it is computed on demand and
1583 /// cached.
1584 mutable uint64_t Family : ObjCMethodFamilyBitWidth;
1585
1586 /// instance (true) or class (false) method.
1587 uint64_t IsInstance : 1;
1588 uint64_t IsVariadic : 1;
1589
1590 /// True if this method is the getter or setter for an explicit property.
1591 uint64_t IsPropertyAccessor : 1;
1592
1593 /// Method has a definition.
1594 uint64_t IsDefined : 1;
1595
1596 /// Method redeclaration in the same interface.
1597 uint64_t IsRedeclaration : 1;
1598
1599 /// Is redeclared in the same interface.
1600 mutable uint64_t HasRedeclaration : 1;
1601
1602 /// \@required/\@optional
1603 uint64_t DeclImplementation : 2;
1604
1605 /// in, inout, etc.
1606 uint64_t objcDeclQualifier : 7;
1607
1608 /// Indicates whether this method has a related result type.
1609 uint64_t RelatedResultType : 1;
1610
1611 /// Whether the locations of the selector identifiers are in a
1612 /// "standard" position, a enum SelectorLocationsKind.
1613 uint64_t SelLocsKind : 2;
1614
1615 /// Whether this method overrides any other in the class hierarchy.
1616 ///
1617 /// A method is said to override any method in the class's
1618 /// base classes, its protocols, or its categories' protocols, that has
1619 /// the same selector and is of the same kind (class or instance).
1620 /// A method in an implementation is not considered as overriding the same
1621 /// method in the interface or its categories.
1622 uint64_t IsOverriding : 1;
1623
1624 /// Indicates if the method was a definition but its body was skipped.
1625 uint64_t HasSkippedBody : 1;
1626 };
1627
1628 /// Number of non-inherited bits in ObjCMethodDeclBitfields.
1629 enum { NumObjCMethodDeclBits = 24 };
1630
1631 /// Stores the bits used by ObjCContainerDecl.
1632 /// If modified NumObjCContainerDeclBits and the accessor
1633 /// methods in ObjCContainerDecl should be updated appropriately.
1634 class ObjCContainerDeclBitfields {
1635 friend class ObjCContainerDecl;
1636 /// For the bits in DeclContextBitfields
1637 uint32_t : NumDeclContextBits;
1638
1639 // Not a bitfield but this saves space.
1640 // Note that ObjCContainerDeclBitfields is full.
1641 SourceLocation AtStart;
1642 };
1643
1644 /// Number of non-inherited bits in ObjCContainerDeclBitfields.
1645 /// Note that here we rely on the fact that SourceLocation is 32 bits
1646 /// wide. We check this with the static_assert in the ctor of DeclContext.
1647 enum { NumObjCContainerDeclBits = 64 - NumDeclContextBits };
1648
1649 /// Stores the bits used by LinkageSpecDecl.
1650 /// If modified NumLinkageSpecDeclBits and the accessor
1651 /// methods in LinkageSpecDecl should be updated appropriately.
1652 class LinkageSpecDeclBitfields {
1653 friend class LinkageSpecDecl;
1654 /// For the bits in DeclContextBitfields.
1655 uint64_t : NumDeclContextBits;
1656
1657 /// The language for this linkage specification with values
1658 /// in the enum LinkageSpecDecl::LanguageIDs.
1659 uint64_t Language : 3;
1660
1661 /// True if this linkage spec has braces.
1662 /// This is needed so that hasBraces() returns the correct result while the
1663 /// linkage spec body is being parsed. Once RBraceLoc has been set this is
1664 /// not used, so it doesn't need to be serialized.
1665 uint64_t HasBraces : 1;
1666 };
1667
1668 /// Number of non-inherited bits in LinkageSpecDeclBitfields.
1669 enum { NumLinkageSpecDeclBits = 4 };
1670
1671 /// Stores the bits used by BlockDecl.
1672 /// If modified NumBlockDeclBits and the accessor
1673 /// methods in BlockDecl should be updated appropriately.
1674 class BlockDeclBitfields {
1675 friend class BlockDecl;
1676 /// For the bits in DeclContextBitfields.
1677 uint64_t : NumDeclContextBits;
1678
1679 uint64_t IsVariadic : 1;
1680 uint64_t CapturesCXXThis : 1;
1681 uint64_t BlockMissingReturnType : 1;
1682 uint64_t IsConversionFromLambda : 1;
1683
1684 /// A bit that indicates this block is passed directly to a function as a
1685 /// non-escaping parameter.
1686 uint64_t DoesNotEscape : 1;
1687
1688 /// A bit that indicates whether it's possible to avoid coying this block to
1689 /// the heap when it initializes or is assigned to a local variable with
1690 /// automatic storage.
1691 uint64_t CanAvoidCopyToHeap : 1;
1692 };
1693
1694 /// Number of non-inherited bits in BlockDeclBitfields.
1695 enum { NumBlockDeclBits = 5 };
1696
1697 /// Pointer to the data structure used to lookup declarations
1698 /// within this context (or a DependentStoredDeclsMap if this is a
1699 /// dependent context). We maintain the invariant that, if the map
1700 /// contains an entry for a DeclarationName (and we haven't lazily
1701 /// omitted anything), then it contains all relevant entries for that
1702 /// name (modulo the hasExternalDecls() flag).
1703 mutable StoredDeclsMap *LookupPtr = nullptr;
1704
1705protected:
1706 /// This anonymous union stores the bits belonging to DeclContext and classes
1707 /// deriving from it. The goal is to use otherwise wasted
1708 /// space in DeclContext to store data belonging to derived classes.
1709 /// The space saved is especially significient when pointers are aligned
1710 /// to 8 bytes. In this case due to alignment requirements we have a
1711 /// little less than 8 bytes free in DeclContext which we can use.
1712 /// We check that none of the classes in this union is larger than
1713 /// 8 bytes with static_asserts in the ctor of DeclContext.
1714 union {
1715 DeclContextBitfields DeclContextBits;
1716 TagDeclBitfields TagDeclBits;
1717 EnumDeclBitfields EnumDeclBits;
1718 RecordDeclBitfields RecordDeclBits;
1719 OMPDeclareReductionDeclBitfields OMPDeclareReductionDeclBits;
1720 FunctionDeclBitfields FunctionDeclBits;
1721 CXXConstructorDeclBitfields CXXConstructorDeclBits;
1722 ObjCMethodDeclBitfields ObjCMethodDeclBits;
1723 ObjCContainerDeclBitfields ObjCContainerDeclBits;
1724 LinkageSpecDeclBitfields LinkageSpecDeclBits;
1725 BlockDeclBitfields BlockDeclBits;
1726
1727 static_assert(sizeof(DeclContextBitfields) <= 8,
1728 "DeclContextBitfields is larger than 8 bytes!");
1729 static_assert(sizeof(TagDeclBitfields) <= 8,
1730 "TagDeclBitfields is larger than 8 bytes!");
1731 static_assert(sizeof(EnumDeclBitfields) <= 8,
1732 "EnumDeclBitfields is larger than 8 bytes!");
1733 static_assert(sizeof(RecordDeclBitfields) <= 8,
1734 "RecordDeclBitfields is larger than 8 bytes!");
1735 static_assert(sizeof(OMPDeclareReductionDeclBitfields) <= 8,
1736 "OMPDeclareReductionDeclBitfields is larger than 8 bytes!");
1737 static_assert(sizeof(FunctionDeclBitfields) <= 8,
1738 "FunctionDeclBitfields is larger than 8 bytes!");
1739 static_assert(sizeof(CXXConstructorDeclBitfields) <= 8,
1740 "CXXConstructorDeclBitfields is larger than 8 bytes!");
1741 static_assert(sizeof(ObjCMethodDeclBitfields) <= 8,
1742 "ObjCMethodDeclBitfields is larger than 8 bytes!");
1743 static_assert(sizeof(ObjCContainerDeclBitfields) <= 8,
1744 "ObjCContainerDeclBitfields is larger than 8 bytes!");
1745 static_assert(sizeof(LinkageSpecDeclBitfields) <= 8,
1746 "LinkageSpecDeclBitfields is larger than 8 bytes!");
1747 static_assert(sizeof(BlockDeclBitfields) <= 8,
1748 "BlockDeclBitfields is larger than 8 bytes!");
1749 };
1750
1751 /// FirstDecl - The first declaration stored within this declaration
1752 /// context.
1753 mutable Decl *FirstDecl = nullptr;
1754
1755 /// LastDecl - The last declaration stored within this declaration
1756 /// context. FIXME: We could probably cache this value somewhere
1757 /// outside of the DeclContext, to reduce the size of DeclContext by
1758 /// another pointer.
1759 mutable Decl *LastDecl = nullptr;
1760
1761 /// Build up a chain of declarations.
1762 ///
1763 /// \returns the first/last pair of declarations.
1764 static std::pair<Decl *, Decl *>
1765 BuildDeclChain(ArrayRef<Decl*> Decls, bool FieldsAlreadyLoaded);
1766
1767 DeclContext(Decl::Kind K);
1768
1769public:
1770 ~DeclContext();
1771
1772 Decl::Kind getDeclKind() const {
1773 return static_cast<Decl::Kind>(DeclContextBits.DeclKind);
1774 }
1775
1776 const char *getDeclKindName() const;
1777
1778 /// getParent - Returns the containing DeclContext.
1779 DeclContext *getParent() {
1780 return cast<Decl>(this)->getDeclContext();
1781 }
1782 const DeclContext *getParent() const {
1783 return const_cast<DeclContext*>(this)->getParent();
1784 }
1785
1786 /// getLexicalParent - Returns the containing lexical DeclContext. May be
1787 /// different from getParent, e.g.:
1788 ///
1789 /// namespace A {
1790 /// struct S;
1791 /// }
1792 /// struct A::S {}; // getParent() == namespace 'A'
1793 /// // getLexicalParent() == translation unit
1794 ///
1795 DeclContext *getLexicalParent() {
1796 return cast<Decl>(this)->getLexicalDeclContext();
1797 }
1798 const DeclContext *getLexicalParent() const {
1799 return const_cast<DeclContext*>(this)->getLexicalParent();
1800 }
1801
1802 DeclContext *getLookupParent();
1803
1804 const DeclContext *getLookupParent() const {
1805 return const_cast<DeclContext*>(this)->getLookupParent();
1806 }
1807
1808 ASTContext &getParentASTContext() const {
1809 return cast<Decl>(this)->getASTContext();
1810 }
1811
1812 bool isClosure() const { return getDeclKind() == Decl::Block; }
1813
1814 /// Return this DeclContext if it is a BlockDecl. Otherwise, return the
1815 /// innermost enclosing BlockDecl or null if there are no enclosing blocks.
1816 const BlockDecl *getInnermostBlockDecl() const;
1817
1818 bool isObjCContainer() const {
1819 switch (getDeclKind()) {
1820 case Decl::ObjCCategory:
1821 case Decl::ObjCCategoryImpl:
1822 case Decl::ObjCImplementation:
1823 case Decl::ObjCInterface:
1824 case Decl::ObjCProtocol:
1825 return true;
1826 default:
1827 return false;
1828 }
1829 }
1830
1831 bool isFunctionOrMethod() const {
1832 switch (getDeclKind()) {
1833 case Decl::Block:
1834 case Decl::Captured:
1835 case Decl::ObjCMethod:
1836 return true;
1837 default:
1838 return getDeclKind() >= Decl::firstFunction &&
1839 getDeclKind() <= Decl::lastFunction;
1840 }
1841 }
1842
1843 /// Test whether the context supports looking up names.
1844 bool isLookupContext() const {
1845 return !isFunctionOrMethod() && getDeclKind() != Decl::LinkageSpec &&
1846 getDeclKind() != Decl::Export;
1847 }
1848
1849 bool isFileContext() const {
1850 return getDeclKind() == Decl::TranslationUnit ||
1851 getDeclKind() == Decl::Namespace;
1852 }
1853
1854 bool isTranslationUnit() const {
1855 return getDeclKind() == Decl::TranslationUnit;
1856 }
1857
1858 bool isRecord() const {
1859 return getDeclKind() >= Decl::firstRecord &&
1860 getDeclKind() <= Decl::lastRecord;
1861 }
1862
1863 bool isNamespace() const { return getDeclKind() == Decl::Namespace; }
1864
1865 bool isStdNamespace() const;
1866
1867 bool isInlineNamespace() const;
1868
1869 /// Determines whether this context is dependent on a
1870 /// template parameter.
1871 bool isDependentContext() const;
1872
1873 /// isTransparentContext - Determines whether this context is a
1874 /// "transparent" context, meaning that the members declared in this
1875 /// context are semantically declared in the nearest enclosing
1876 /// non-transparent (opaque) context but are lexically declared in
1877 /// this context. For example, consider the enumerators of an
1878 /// enumeration type:
1879 /// @code
1880 /// enum E {
1881 /// Val1
1882 /// };
1883 /// @endcode
1884 /// Here, E is a transparent context, so its enumerator (Val1) will
1885 /// appear (semantically) that it is in the same context of E.
1886 /// Examples of transparent contexts include: enumerations (except for
1887 /// C++0x scoped enums), and C++ linkage specifications.
1888 bool isTransparentContext() const;
1889
1890 /// Determines whether this context or some of its ancestors is a
1891 /// linkage specification context that specifies C linkage.
1892 bool isExternCContext() const;
1893
1894 /// Retrieve the nearest enclosing C linkage specification context.
1895 const LinkageSpecDecl *getExternCContext() const;
1896
1897 /// Determines whether this context or some of its ancestors is a
1898 /// linkage specification context that specifies C++ linkage.
1899 bool isExternCXXContext() const;
1900
1901 /// Determine whether this declaration context is equivalent
1902 /// to the declaration context DC.
1903 bool Equals(const DeclContext *DC) const {
1904 return DC && this->getPrimaryContext() == DC->getPrimaryContext();
1905 }
1906
1907 /// Determine whether this declaration context encloses the
1908 /// declaration context DC.
1909 bool Encloses(const DeclContext *DC) const;
1910
1911 /// Find the nearest non-closure ancestor of this context,
1912 /// i.e. the innermost semantic parent of this context which is not
1913 /// a closure. A context may be its own non-closure ancestor.
1914 Decl *getNonClosureAncestor();
1915 const Decl *getNonClosureAncestor() const {
1916 return const_cast<DeclContext*>(this)->getNonClosureAncestor();
1917 }
1918
1919 /// getPrimaryContext - There may be many different
1920 /// declarations of the same entity (including forward declarations
1921 /// of classes, multiple definitions of namespaces, etc.), each with
1922 /// a different set of declarations. This routine returns the
1923 /// "primary" DeclContext structure, which will contain the
1924 /// information needed to perform name lookup into this context.
1925 DeclContext *getPrimaryContext();
1926 const DeclContext *getPrimaryContext() const {
1927 return const_cast<DeclContext*>(this)->getPrimaryContext();
1928 }
1929
1930 /// getRedeclContext - Retrieve the context in which an entity conflicts with
1931 /// other entities of the same name, or where it is a redeclaration if the
1932 /// two entities are compatible. This skips through transparent contexts.
1933 DeclContext *getRedeclContext();
1934 const DeclContext *getRedeclContext() const {
1935 return const_cast<DeclContext *>(this)->getRedeclContext();
1936 }
1937
1938 /// Retrieve the nearest enclosing namespace context.
1939 DeclContext *getEnclosingNamespaceContext();
1940 const DeclContext *getEnclosingNamespaceContext() const {
1941 return const_cast<DeclContext *>(this)->getEnclosingNamespaceContext();
1942 }
1943
1944 /// Retrieve the outermost lexically enclosing record context.
1945 RecordDecl *getOuterLexicalRecordContext();
1946 const RecordDecl *getOuterLexicalRecordContext() const {
1947 return const_cast<DeclContext *>(this)->getOuterLexicalRecordContext();
1948 }
1949
1950 /// Test if this context is part of the enclosing namespace set of
1951 /// the context NS, as defined in C++0x [namespace.def]p9. If either context
1952 /// isn't a namespace, this is equivalent to Equals().
1953 ///
1954 /// The enclosing namespace set of a namespace is the namespace and, if it is
1955 /// inline, its enclosing namespace, recursively.
1956 bool InEnclosingNamespaceSetOf(const DeclContext *NS) const;
1957
1958 /// Collects all of the declaration contexts that are semantically
1959 /// connected to this declaration context.
1960 ///
1961 /// For declaration contexts that have multiple semantically connected but
1962 /// syntactically distinct contexts, such as C++ namespaces, this routine
1963 /// retrieves the complete set of such declaration contexts in source order.
1964 /// For example, given:
1965 ///
1966 /// \code
1967 /// namespace N {
1968 /// int x;
1969 /// }
1970 /// namespace N {
1971 /// int y;
1972 /// }
1973 /// \endcode
1974 ///
1975 /// The \c Contexts parameter will contain both definitions of N.
1976 ///
1977 /// \param Contexts Will be cleared and set to the set of declaration
1978 /// contexts that are semanticaly connected to this declaration context,
1979 /// in source order, including this context (which may be the only result,
1980 /// for non-namespace contexts).
1981 void collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts);
1982
1983 /// decl_iterator - Iterates through the declarations stored
1984 /// within this context.
1985 class decl_iterator {
1986 /// Current - The current declaration.
1987 Decl *Current = nullptr;
1988
1989 public:
1990 using value_type = Decl *;
1991 using reference = const value_type &;
1992 using pointer = const value_type *;
1993 using iterator_category = std::forward_iterator_tag;
1994 using difference_type = std::ptrdiff_t;
1995
1996 decl_iterator() = default;
1997 explicit decl_iterator(Decl *C) : Current(C) {}
1998
1999 reference operator*() const { return Current; }
2000
2001 // This doesn't meet the iterator requirements, but it's convenient
2002 value_type operator->() const { return Current; }
2003
2004 decl_iterator& operator++() {
2005 Current = Current->getNextDeclInContext();
2006 return *this;
2007 }
2008
2009 decl_iterator operator++(int) {
2010 decl_iterator tmp(*this);
2011 ++(*this);
2012 return tmp;
2013 }
2014
2015 friend bool operator==(decl_iterator x, decl_iterator y) {
2016 return x.Current == y.Current;
2017 }
2018
2019 friend bool operator!=(decl_iterator x, decl_iterator y) {
2020 return x.Current != y.Current;
2021 }
2022 };
2023
2024 using decl_range = llvm::iterator_range<decl_iterator>;
2025
2026 /// decls_begin/decls_end - Iterate over the declarations stored in
2027 /// this context.
2028 decl_range decls() const { return decl_range(decls_begin(), decls_end()); }
2029 decl_iterator decls_begin() const;
2030 decl_iterator decls_end() const { return decl_iterator(); }
2031 bool decls_empty() const;
2032
2033 /// noload_decls_begin/end - Iterate over the declarations stored in this
2034 /// context that are currently loaded; don't attempt to retrieve anything
2035 /// from an external source.
2036 decl_range noload_decls() const {
2037 return decl_range(noload_decls_begin(), noload_decls_end());
2038 }
2039 decl_iterator noload_decls_begin() const { return decl_iterator(FirstDecl); }
2040 decl_iterator noload_decls_end() const { return decl_iterator(); }
2041
2042 /// specific_decl_iterator - Iterates over a subrange of
2043 /// declarations stored in a DeclContext, providing only those that
2044 /// are of type SpecificDecl (or a class derived from it). This
2045 /// iterator is used, for example, to provide iteration over just
2046 /// the fields within a RecordDecl (with SpecificDecl = FieldDecl).
2047 template<typename SpecificDecl>
2048 class specific_decl_iterator {
2049 /// Current - The current, underlying declaration iterator, which
2050 /// will either be NULL or will point to a declaration of
2051 /// type SpecificDecl.
2052 DeclContext::decl_iterator Current;
2053
2054 /// SkipToNextDecl - Advances the current position up to the next
2055 /// declaration of type SpecificDecl that also meets the criteria
2056 /// required by Acceptable.
2057 void SkipToNextDecl() {
2058 while (*Current && !isa<SpecificDecl>(*Current))
2059 ++Current;
2060 }
2061
2062 public:
2063 using value_type = SpecificDecl *;
2064 // TODO: Add reference and pointer types (with some appropriate proxy type)
2065 // if we ever have a need for them.
2066 using reference = void;
2067 using pointer = void;
2068 using difference_type =
2069 std::iterator_traits<DeclContext::decl_iterator>::difference_type;
2070 using iterator_category = std::forward_iterator_tag;
2071
2072 specific_decl_iterator() = default;
2073
2074 /// specific_decl_iterator - Construct a new iterator over a
2075 /// subset of the declarations the range [C,
2076 /// end-of-declarations). If A is non-NULL, it is a pointer to a
2077 /// member function of SpecificDecl that should return true for
2078 /// all of the SpecificDecl instances that will be in the subset
2079 /// of iterators. For example, if you want Objective-C instance
2080 /// methods, SpecificDecl will be ObjCMethodDecl and A will be
2081 /// &ObjCMethodDecl::isInstanceMethod.
2082 explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
2083 SkipToNextDecl();
2084 }
2085
2086 value_type operator*() const { return cast<SpecificDecl>(*Current); }
2087
2088 // This doesn't meet the iterator requirements, but it's convenient
2089 value_type operator->() const { return **this; }
2090
2091 specific_decl_iterator& operator++() {
2092 ++Current;
2093 SkipToNextDecl();
2094 return *this;
2095 }
2096
2097 specific_decl_iterator operator++(int) {
2098 specific_decl_iterator tmp(*this);
2099 ++(*this);
2100 return tmp;
2101 }
2102
2103 friend bool operator==(const specific_decl_iterator& x,
2104 const specific_decl_iterator& y) {
2105 return x.Current == y.Current;
2106 }
2107
2108 friend bool operator!=(const specific_decl_iterator& x,
2109 const specific_decl_iterator& y) {
2110 return x.Current != y.Current;
2111 }
2112 };
2113
2114 /// Iterates over a filtered subrange of declarations stored
2115 /// in a DeclContext.
2116 ///
2117 /// This iterator visits only those declarations that are of type
2118 /// SpecificDecl (or a class derived from it) and that meet some
2119 /// additional run-time criteria. This iterator is used, for
2120 /// example, to provide access to the instance methods within an
2121 /// Objective-C interface (with SpecificDecl = ObjCMethodDecl and
2122 /// Acceptable = ObjCMethodDecl::isInstanceMethod).
2123 template<typename SpecificDecl, bool (SpecificDecl::*Acceptable)() const>
2124 class filtered_decl_iterator {
2125 /// Current - The current, underlying declaration iterator, which
2126 /// will either be NULL or will point to a declaration of
2127 /// type SpecificDecl.
2128 DeclContext::decl_iterator Current;
2129
2130 /// SkipToNextDecl - Advances the current position up to the next
2131 /// declaration of type SpecificDecl that also meets the criteria
2132 /// required by Acceptable.
2133 void SkipToNextDecl() {
2134 while (*Current &&
2135 (!isa<SpecificDecl>(*Current) ||
2136 (Acceptable && !(cast<SpecificDecl>(*Current)->*Acceptable)())))
2137 ++Current;
2138 }
2139
2140 public:
2141 using value_type = SpecificDecl *;
2142 // TODO: Add reference and pointer types (with some appropriate proxy type)
2143 // if we ever have a need for them.
2144 using reference = void;
2145 using pointer = void;
2146 using difference_type =
2147 std::iterator_traits<DeclContext::decl_iterator>::difference_type;
2148 using iterator_category = std::forward_iterator_tag;
2149
2150 filtered_decl_iterator() = default;
2151
2152 /// filtered_decl_iterator - Construct a new iterator over a
2153 /// subset of the declarations the range [C,
2154 /// end-of-declarations). If A is non-NULL, it is a pointer to a
2155 /// member function of SpecificDecl that should return true for
2156 /// all of the SpecificDecl instances that will be in the subset
2157 /// of iterators. For example, if you want Objective-C instance
2158 /// methods, SpecificDecl will be ObjCMethodDecl and A will be
2159 /// &ObjCMethodDecl::isInstanceMethod.
2160 explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
2161 SkipToNextDecl();
2162 }
2163
2164 value_type operator*() const { return cast<SpecificDecl>(*Current); }
2165 value_type operator->() const { return cast<SpecificDecl>(*Current); }
2166
2167 filtered_decl_iterator& operator++() {
2168 ++Current;
2169 SkipToNextDecl();
2170 return *this;
2171 }
2172
2173 filtered_decl_iterator operator++(int) {
2174 filtered_decl_iterator tmp(*this);
2175 ++(*this);
2176 return tmp;
2177 }
2178
2179 friend bool operator==(const filtered_decl_iterator& x,
2180 const filtered_decl_iterator& y) {
2181 return x.Current == y.Current;
2182 }
2183
2184 friend bool operator!=(const filtered_decl_iterator& x,
2185 const filtered_decl_iterator& y) {
2186 return x.Current != y.Current;
2187 }
2188 };
2189
2190 /// Add the declaration D into this context.
2191 ///
2192 /// This routine should be invoked when the declaration D has first
2193 /// been declared, to place D into the context where it was
2194 /// (lexically) defined. Every declaration must be added to one
2195 /// (and only one!) context, where it can be visited via
2196 /// [decls_begin(), decls_end()). Once a declaration has been added
2197 /// to its lexical context, the corresponding DeclContext owns the
2198 /// declaration.
2199 ///
2200 /// If D is also a NamedDecl, it will be made visible within its
2201 /// semantic context via makeDeclVisibleInContext.
2202 void addDecl(Decl *D);
2203
2204 /// Add the declaration D into this context, but suppress
2205 /// searches for external declarations with the same name.
2206 ///
2207 /// Although analogous in function to addDecl, this removes an
2208 /// important check. This is only useful if the Decl is being
2209 /// added in response to an external search; in all other cases,
2210 /// addDecl() is the right function to use.
2211 /// See the ASTImporter for use cases.
2212 void addDeclInternal(Decl *D);
2213
2214 /// Add the declaration D to this context without modifying
2215 /// any lookup tables.
2216 ///
2217 /// This is useful for some operations in dependent contexts where
2218 /// the semantic context might not be dependent; this basically
2219 /// only happens with friends.
2220 void addHiddenDecl(Decl *D);
2221
2222 /// Removes a declaration from this context.
2223 void removeDecl(Decl *D);
2224
2225 /// Checks whether a declaration is in this context.
2226 bool containsDecl(Decl *D) const;
2227
2228 /// Checks whether a declaration is in this context.
2229 /// This also loads the Decls from the external source before the check.
2230 bool containsDeclAndLoad(Decl *D) const;
2231
2232 using lookup_result = DeclContextLookupResult;
2233 using lookup_iterator = lookup_result::iterator;
2234
2235 /// lookup - Find the declarations (if any) with the given Name in
2236 /// this context. Returns a range of iterators that contains all of
2237 /// the declarations with this name, with object, function, member,
2238 /// and enumerator names preceding any tag name. Note that this
2239 /// routine will not look into parent contexts.
2240 lookup_result lookup(DeclarationName Name) const;
2241
2242 /// Find the declarations with the given name that are visible
2243 /// within this context; don't attempt to retrieve anything from an
2244 /// external source.
2245 lookup_result noload_lookup(DeclarationName Name);
2246
2247 /// A simplistic name lookup mechanism that performs name lookup
2248 /// into this declaration context without consulting the external source.
2249 ///
2250 /// This function should almost never be used, because it subverts the
2251 /// usual relationship between a DeclContext and the external source.
2252 /// See the ASTImporter for the (few, but important) use cases.
2253 ///
2254 /// FIXME: This is very inefficient; replace uses of it with uses of
2255 /// noload_lookup.
2256 void localUncachedLookup(DeclarationName Name,
2257 SmallVectorImpl<NamedDecl *> &Results);
2258
2259 /// Makes a declaration visible within this context.
2260 ///
2261 /// This routine makes the declaration D visible to name lookup
2262 /// within this context and, if this is a transparent context,
2263 /// within its parent contexts up to the first enclosing
2264 /// non-transparent context. Making a declaration visible within a
2265 /// context does not transfer ownership of a declaration, and a
2266 /// declaration can be visible in many contexts that aren't its
2267 /// lexical context.
2268 ///
2269 /// If D is a redeclaration of an existing declaration that is
2270 /// visible from this context, as determined by
2271 /// NamedDecl::declarationReplaces, the previous declaration will be
2272 /// replaced with D.
2273 void makeDeclVisibleInContext(NamedDecl *D);
2274
2275 /// all_lookups_iterator - An iterator that provides a view over the results
2276 /// of looking up every possible name.
2277 class all_lookups_iterator;
2278
2279 using lookups_range = llvm::iterator_range<all_lookups_iterator>;
2280
2281 lookups_range lookups() const;
2282 // Like lookups(), but avoids loading external declarations.
2283 // If PreserveInternalState, avoids building lookup data structures too.
2284 lookups_range noload_lookups(bool PreserveInternalState) const;
2285
2286 /// Iterators over all possible lookups within this context.
2287 all_lookups_iterator lookups_begin() const;
2288 all_lookups_iterator lookups_end() const;
2289
2290 /// Iterators over all possible lookups within this context that are
2291 /// currently loaded; don't attempt to retrieve anything from an external
2292 /// source.
2293 all_lookups_iterator noload_lookups_begin() const;
2294 all_lookups_iterator noload_lookups_end() const;
2295
2296 struct udir_iterator;
2297
2298 using udir_iterator_base =
2299 llvm::iterator_adaptor_base<udir_iterator, lookup_iterator,
2300 std::random_access_iterator_tag,
2301 UsingDirectiveDecl *>;
2302
2303 struct udir_iterator : udir_iterator_base {
2304 udir_iterator(lookup_iterator I) : udir_iterator_base(I) {}
2305
2306 UsingDirectiveDecl *operator*() const;
2307 };
2308
2309 using udir_range = llvm::iterator_range<udir_iterator>;
2310
2311 udir_range using_directives() const;
2312
2313 // These are all defined in DependentDiagnostic.h.
2314 class ddiag_iterator;
2315
2316 using ddiag_range = llvm::iterator_range<DeclContext::ddiag_iterator>;
2317
2318 inline ddiag_range ddiags() const;
2319
2320 // Low-level accessors
2321
2322 /// Mark that there are external lexical declarations that we need
2323 /// to include in our lookup table (and that are not available as external
2324 /// visible lookups). These extra lookup results will be found by walking
2325 /// the lexical declarations of this context. This should be used only if
2326 /// setHasExternalLexicalStorage() has been called on any decl context for
2327 /// which this is the primary context.
2328 void setMustBuildLookupTable() {
2329 assert(this == getPrimaryContext() &&((this == getPrimaryContext() && "should only be called on primary context"
) ? static_cast<void> (0) : __assert_fail ("this == getPrimaryContext() && \"should only be called on primary context\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 2330, __PRETTY_FUNCTION__))
2330 "should only be called on primary context")((this == getPrimaryContext() && "should only be called on primary context"
) ? static_cast<void> (0) : __assert_fail ("this == getPrimaryContext() && \"should only be called on primary context\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 2330, __PRETTY_FUNCTION__))
;
2331 DeclContextBits.HasLazyExternalLexicalLookups = true;
2332 }
2333
2334 /// Retrieve the internal representation of the lookup structure.
2335 /// This may omit some names if we are lazily building the structure.
2336 StoredDeclsMap *getLookupPtr() const { return LookupPtr; }
2337
2338 /// Ensure the lookup structure is fully-built and return it.
2339 StoredDeclsMap *buildLookup();
2340
2341 /// Whether this DeclContext has external storage containing
2342 /// additional declarations that are lexically in this context.
2343 bool hasExternalLexicalStorage() const {
2344 return DeclContextBits.ExternalLexicalStorage;
2345 }
2346
2347 /// State whether this DeclContext has external storage for
2348 /// declarations lexically in this context.
2349 void setHasExternalLexicalStorage(bool ES = true) const {
2350 DeclContextBits.ExternalLexicalStorage = ES;
2351 }
2352
2353 /// Whether this DeclContext has external storage containing
2354 /// additional declarations that are visible in this context.
2355 bool hasExternalVisibleStorage() const {
2356 return DeclContextBits.ExternalVisibleStorage;
2357 }
2358
2359 /// State whether this DeclContext has external storage for
2360 /// declarations visible in this context.
2361 void setHasExternalVisibleStorage(bool ES = true) const {
2362 DeclContextBits.ExternalVisibleStorage = ES;
2363 if (ES && LookupPtr)
2364 DeclContextBits.NeedToReconcileExternalVisibleStorage = true;
2365 }
2366
2367 /// Determine whether the given declaration is stored in the list of
2368 /// declarations lexically within this context.
2369 bool isDeclInLexicalTraversal(const Decl *D) const {
2370 return D && (D->NextInContextAndBits.getPointer() || D == FirstDecl ||
2371 D == LastDecl);
2372 }
2373
2374 bool setUseQualifiedLookup(bool use = true) const {
2375 bool old_value = DeclContextBits.UseQualifiedLookup;
2376 DeclContextBits.UseQualifiedLookup = use;
2377 return old_value;
2378 }
2379
2380 bool shouldUseQualifiedLookup() const {
2381 return DeclContextBits.UseQualifiedLookup;
2382 }
2383
2384 static bool classof(const Decl *D);
2385 static bool classof(const DeclContext *D) { return true; }
2386
2387 void dumpDeclContext() const;
2388 void dumpLookups() const;
2389 void dumpLookups(llvm::raw_ostream &OS, bool DumpDecls = false,
2390 bool Deserialize = false) const;
2391
2392private:
2393 /// Whether this declaration context has had externally visible
2394 /// storage added since the last lookup. In this case, \c LookupPtr's
2395 /// invariant may not hold and needs to be fixed before we perform
2396 /// another lookup.
2397 bool hasNeedToReconcileExternalVisibleStorage() const {
2398 return DeclContextBits.NeedToReconcileExternalVisibleStorage;
2399 }
2400
2401 /// State that this declaration context has had externally visible
2402 /// storage added since the last lookup. In this case, \c LookupPtr's
2403 /// invariant may not hold and needs to be fixed before we perform
2404 /// another lookup.
2405 void setNeedToReconcileExternalVisibleStorage(bool Need = true) const {
2406 DeclContextBits.NeedToReconcileExternalVisibleStorage = Need;
2407 }
2408
2409 /// If \c true, this context may have local lexical declarations
2410 /// that are missing from the lookup table.
2411 bool hasLazyLocalLexicalLookups() const {
2412 return DeclContextBits.HasLazyLocalLexicalLookups;
2413 }
2414
2415 /// If \c true, this context may have local lexical declarations
2416 /// that are missing from the lookup table.
2417 void setHasLazyLocalLexicalLookups(bool HasLLLL = true) const {
2418 DeclContextBits.HasLazyLocalLexicalLookups = HasLLLL;
2419 }
2420
2421 /// If \c true, the external source may have lexical declarations
2422 /// that are missing from the lookup table.
2423 bool hasLazyExternalLexicalLookups() const {
2424 return DeclContextBits.HasLazyExternalLexicalLookups;
2425 }
2426
2427 /// If \c true, the external source may have lexical declarations
2428 /// that are missing from the lookup table.
2429 void setHasLazyExternalLexicalLookups(bool HasLELL = true) const {
2430 DeclContextBits.HasLazyExternalLexicalLookups = HasLELL;
2431 }
2432
2433 void reconcileExternalVisibleStorage() const;
2434 bool LoadLexicalDeclsFromExternalStorage() const;
2435
2436 /// Makes a declaration visible within this context, but
2437 /// suppresses searches for external declarations with the same
2438 /// name.
2439 ///
2440 /// Analogous to makeDeclVisibleInContext, but for the exclusive
2441 /// use of addDeclInternal().
2442 void makeDeclVisibleInContextInternal(NamedDecl *D);
2443
2444 StoredDeclsMap *CreateStoredDeclsMap(ASTContext &C) const;
2445
2446 void loadLazyLocalLexicalLookups();
2447 void buildLookupImpl(DeclContext *DCtx, bool Internal);
2448 void makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal,
2449 bool Rediscoverable);
2450 void makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal);
2451};
2452
2453inline bool Decl::isTemplateParameter() const {
2454 return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm ||
2455 getKind() == TemplateTemplateParm;
2456}
2457
2458// Specialization selected when ToTy is not a known subclass of DeclContext.
2459template <class ToTy,
2460 bool IsKnownSubtype = ::std::is_base_of<DeclContext, ToTy>::value>
2461struct cast_convert_decl_context {
2462 static const ToTy *doit(const DeclContext *Val) {
2463 return static_cast<const ToTy*>(Decl::castFromDeclContext(Val));
2464 }
2465
2466 static ToTy *doit(DeclContext *Val) {
2467 return static_cast<ToTy*>(Decl::castFromDeclContext(Val));
2468 }
2469};
2470
2471// Specialization selected when ToTy is a known subclass of DeclContext.
2472template <class ToTy>
2473struct cast_convert_decl_context<ToTy, true> {
2474 static const ToTy *doit(const DeclContext *Val) {
2475 return static_cast<const ToTy*>(Val);
2476 }
2477
2478 static ToTy *doit(DeclContext *Val) {
2479 return static_cast<ToTy*>(Val);
2480 }
2481};
2482
2483} // namespace clang
2484
2485namespace llvm {
2486
2487/// isa<T>(DeclContext*)
2488template <typename To>
2489struct isa_impl<To, ::clang::DeclContext> {
2490 static bool doit(const ::clang::DeclContext &Val) {
2491 return To::classofKind(Val.getDeclKind());
2492 }
2493};
2494
2495/// cast<T>(DeclContext*)
2496template<class ToTy>
2497struct cast_convert_val<ToTy,
2498 const ::clang::DeclContext,const ::clang::DeclContext> {
2499 static const ToTy &doit(const ::clang::DeclContext &Val) {
2500 return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
2501 }
2502};
2503
2504template<class ToTy>
2505struct cast_convert_val<ToTy, ::clang::DeclContext, ::clang::DeclContext> {
2506 static ToTy &doit(::clang::DeclContext &Val) {
2507 return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
2508 }
2509};
2510
2511template<class ToTy>
2512struct cast_convert_val<ToTy,
2513 const ::clang::DeclContext*, const ::clang::DeclContext*> {
2514 static const ToTy *doit(const ::clang::DeclContext *Val) {
2515 return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
2516 }
2517};
2518
2519template<class ToTy>
2520struct cast_convert_val<ToTy, ::clang::DeclContext*, ::clang::DeclContext*> {
2521 static ToTy *doit(::clang::DeclContext *Val) {
2522 return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
2523 }
2524};
2525
2526/// Implement cast_convert_val for Decl -> DeclContext conversions.
2527template<class FromTy>
2528struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> {
2529 static ::clang::DeclContext &doit(const FromTy &Val) {
2530 return *FromTy::castToDeclContext(&Val);
2531 }
2532};
2533
2534template<class FromTy>
2535struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> {
2536 static ::clang::DeclContext *doit(const FromTy *Val) {
2537 return FromTy::castToDeclContext(Val);
2538 }
2539};
2540
2541template<class FromTy>
2542struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> {
2543 static const ::clang::DeclContext &doit(const FromTy &Val) {
2544 return *FromTy::castToDeclContext(&Val);
2545 }
2546};
2547
2548template<class FromTy>
2549struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> {
2550 static const ::clang::DeclContext *doit(const FromTy *Val) {
2551 return FromTy::castToDeclContext(Val);
2552 }
2553};
2554
2555} // namespace llvm
2556
2557#endif // LLVM_CLANG_AST_DECLBASE_H