Bug Summary

File:tools/clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 7821, column 22
Division by zero

Annotated Source Code

[?] Use j/k keys for keyboard navigation

/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp

1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Builtin calls as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGCXXABI.h"
15#include "CGObjCRuntime.h"
16#include "CGOpenCLRuntime.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "TargetInfo.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Decl.h"
23#include "clang/Analysis/Analyses/OSLog.h"
24#include "clang/Basic/TargetBuiltins.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/CodeGen/CGFunctionInfo.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/IR/CallSite.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/InlineAsm.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/MDBuilder.h"
33#include "llvm/Support/ConvertUTF.h"
34#include "llvm/Support/ScopedPrinter.h"
35#include "llvm/Support/TargetParser.h"
36#include <sstream>
37
38using namespace clang;
39using namespace CodeGen;
40using namespace llvm;
41
42static
43int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
44 return std::min(High, std::max(Low, Value));
45}
46
47/// getBuiltinLibFunction - Given a builtin id for a function like
48/// "__builtin_fabsf", return a Function* for "fabsf".
49llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
50 unsigned BuiltinID) {
51 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))(static_cast <bool> (Context.BuiltinInfo.isLibFunction(
BuiltinID)) ? void (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 51, __extension__ __PRETTY_FUNCTION__))
;
52
53 // Get the name, skip over the __builtin_ prefix (if necessary).
54 StringRef Name;
55 GlobalDecl D(FD);
56
57 // If the builtin has been declared explicitly with an assembler label,
58 // use the mangled name. This differs from the plain label on platforms
59 // that prefix labels.
60 if (FD->hasAttr<AsmLabelAttr>())
61 Name = getMangledName(D);
62 else
63 Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
64
65 llvm::FunctionType *Ty =
66 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
67
68 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
69}
70
71/// Emit the conversions required to turn the given value into an
72/// integer of the given size.
73static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
74 QualType T, llvm::IntegerType *IntType) {
75 V = CGF.EmitToMemory(V, T);
76
77 if (V->getType()->isPointerTy())
78 return CGF.Builder.CreatePtrToInt(V, IntType);
79
80 assert(V->getType() == IntType)(static_cast <bool> (V->getType() == IntType) ? void
(0) : __assert_fail ("V->getType() == IntType", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 80, __extension__ __PRETTY_FUNCTION__))
;
81 return V;
82}
83
84static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
85 QualType T, llvm::Type *ResultType) {
86 V = CGF.EmitFromMemory(V, T);
87
88 if (ResultType->isPointerTy())
89 return CGF.Builder.CreateIntToPtr(V, ResultType);
90
91 assert(V->getType() == ResultType)(static_cast <bool> (V->getType() == ResultType) ? void
(0) : __assert_fail ("V->getType() == ResultType", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 91, __extension__ __PRETTY_FUNCTION__))
;
92 return V;
93}
94
95/// Utility to insert an atomic instruction based on Instrinsic::ID
96/// and the expression node.
97static Value *MakeBinaryAtomicValue(CodeGenFunction &CGF,
98 llvm::AtomicRMWInst::BinOp Kind,
99 const CallExpr *E) {
100 QualType T = E->getType();
101 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 101, __extension__ __PRETTY_FUNCTION__))
;
102 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 103, __extension__ __PRETTY_FUNCTION__))
103 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 103, __extension__ __PRETTY_FUNCTION__))
;
104 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 104, __extension__ __PRETTY_FUNCTION__))
;
105
106 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
107 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
108
109 llvm::IntegerType *IntType =
110 llvm::IntegerType::get(CGF.getLLVMContext(),
111 CGF.getContext().getTypeSize(T));
112 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
113
114 llvm::Value *Args[2];
115 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
116 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
117 llvm::Type *ValueType = Args[1]->getType();
118 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
119
120 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
121 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
122 return EmitFromInt(CGF, Result, T, ValueType);
123}
124
125static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
126 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
127 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
128
129 // Convert the type of the pointer to a pointer to the stored type.
130 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
131 Value *BC = CGF.Builder.CreateBitCast(
132 Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
133 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
134 LV.setNontemporal(true);
135 CGF.EmitStoreOfScalar(Val, LV, false);
136 return nullptr;
137}
138
139static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
140 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
141
142 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
143 LV.setNontemporal(true);
144 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
145}
146
147static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
148 llvm::AtomicRMWInst::BinOp Kind,
149 const CallExpr *E) {
150 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
151}
152
153/// Utility to insert an atomic instruction based Instrinsic::ID and
154/// the expression node, where the return value is the result of the
155/// operation.
156static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
157 llvm::AtomicRMWInst::BinOp Kind,
158 const CallExpr *E,
159 Instruction::BinaryOps Op,
160 bool Invert = false) {
161 QualType T = E->getType();
162 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 162, __extension__ __PRETTY_FUNCTION__))
;
163 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 164, __extension__ __PRETTY_FUNCTION__))
164 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 164, __extension__ __PRETTY_FUNCTION__))
;
165 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 165, __extension__ __PRETTY_FUNCTION__))
;
166
167 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
168 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
169
170 llvm::IntegerType *IntType =
171 llvm::IntegerType::get(CGF.getLLVMContext(),
172 CGF.getContext().getTypeSize(T));
173 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
174
175 llvm::Value *Args[2];
176 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
177 llvm::Type *ValueType = Args[1]->getType();
178 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
179 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
180
181 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
182 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
183 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
184 if (Invert)
185 Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
186 llvm::ConstantInt::get(IntType, -1));
187 Result = EmitFromInt(CGF, Result, T, ValueType);
188 return RValue::get(Result);
189}
190
191/// @brief Utility to insert an atomic cmpxchg instruction.
192///
193/// @param CGF The current codegen function.
194/// @param E Builtin call expression to convert to cmpxchg.
195/// arg0 - address to operate on
196/// arg1 - value to compare with
197/// arg2 - new value
198/// @param ReturnBool Specifies whether to return success flag of
199/// cmpxchg result or the old value.
200///
201/// @returns result of cmpxchg, according to ReturnBool
202static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
203 bool ReturnBool) {
204 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
205 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
206 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
207
208 llvm::IntegerType *IntType = llvm::IntegerType::get(
209 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
210 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
211
212 Value *Args[3];
213 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
214 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
215 llvm::Type *ValueType = Args[1]->getType();
216 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
217 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
218
219 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
220 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
221 llvm::AtomicOrdering::SequentiallyConsistent);
222 if (ReturnBool)
223 // Extract boolean success flag and zext it to int.
224 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
225 CGF.ConvertType(E->getType()));
226 else
227 // Extract old value and emit it using the same type as compare value.
228 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
229 ValueType);
230}
231
232// Emit a simple mangled intrinsic that has 1 argument and a return type
233// matching the argument type.
234static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
235 const CallExpr *E,
236 unsigned IntrinsicID) {
237 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
238
239 Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
240 return CGF.Builder.CreateCall(F, Src0);
241}
242
243// Emit an intrinsic that has 2 operands of the same type as its result.
244static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
245 const CallExpr *E,
246 unsigned IntrinsicID) {
247 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
248 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
249
250 Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
251 return CGF.Builder.CreateCall(F, { Src0, Src1 });
252}
253
254// Emit an intrinsic that has 3 operands of the same type as its result.
255static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
256 const CallExpr *E,
257 unsigned IntrinsicID) {
258 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
259 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
260 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
261
262 Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
263 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
264}
265
266// Emit an intrinsic that has 1 float or double operand, and 1 integer.
267static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
268 const CallExpr *E,
269 unsigned IntrinsicID) {
270 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
271 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
272
273 Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
274 return CGF.Builder.CreateCall(F, {Src0, Src1});
275}
276
277/// EmitFAbs - Emit a call to @llvm.fabs().
278static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
279 Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
280 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
281 Call->setDoesNotAccessMemory();
282 return Call;
283}
284
285/// Emit the computation of the sign bit for a floating point value. Returns
286/// the i1 sign bit value.
287static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
288 LLVMContext &C = CGF.CGM.getLLVMContext();
289
290 llvm::Type *Ty = V->getType();
291 int Width = Ty->getPrimitiveSizeInBits();
292 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
293 V = CGF.Builder.CreateBitCast(V, IntTy);
294 if (Ty->isPPC_FP128Ty()) {
295 // We want the sign bit of the higher-order double. The bitcast we just
296 // did works as if the double-double was stored to memory and then
297 // read as an i128. The "store" will put the higher-order double in the
298 // lower address in both little- and big-Endian modes, but the "load"
299 // will treat those bits as a different part of the i128: the low bits in
300 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
301 // we need to shift the high bits down to the low before truncating.
302 Width >>= 1;
303 if (CGF.getTarget().isBigEndian()) {
304 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
305 V = CGF.Builder.CreateLShr(V, ShiftCst);
306 }
307 // We are truncating value in order to extract the higher-order
308 // double, which we will be using to extract the sign from.
309 IntTy = llvm::IntegerType::get(C, Width);
310 V = CGF.Builder.CreateTrunc(V, IntTy);
311 }
312 Value *Zero = llvm::Constant::getNullValue(IntTy);
313 return CGF.Builder.CreateICmpSLT(V, Zero);
314}
315
316static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
317 const CallExpr *E, llvm::Constant *calleeValue) {
318 CGCallee callee = CGCallee::forDirect(calleeValue, FD);
319 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
320}
321
322/// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
323/// depending on IntrinsicID.
324///
325/// \arg CGF The current codegen function.
326/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
327/// \arg X The first argument to the llvm.*.with.overflow.*.
328/// \arg Y The second argument to the llvm.*.with.overflow.*.
329/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
330/// \returns The result (i.e. sum/product) returned by the intrinsic.
331static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
332 const llvm::Intrinsic::ID IntrinsicID,
333 llvm::Value *X, llvm::Value *Y,
334 llvm::Value *&Carry) {
335 // Make sure we have integers of the same width.
336 assert(X->getType() == Y->getType() &&(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 338, __extension__ __PRETTY_FUNCTION__))
337 "Arguments must be the same type. (Did you forget to make sure both "(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 338, __extension__ __PRETTY_FUNCTION__))
338 "arguments have the same integer width?)")(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 338, __extension__ __PRETTY_FUNCTION__))
;
339
340 llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
341 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
342 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
343 return CGF.Builder.CreateExtractValue(Tmp, 0);
344}
345
346static Value *emitRangedBuiltin(CodeGenFunction &CGF,
347 unsigned IntrinsicID,
348 int low, int high) {
349 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
350 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
351 Value *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
352 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
353 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
354 return Call;
355}
356
357namespace {
358 struct WidthAndSignedness {
359 unsigned Width;
360 bool Signed;
361 };
362}
363
364static WidthAndSignedness
365getIntegerWidthAndSignedness(const clang::ASTContext &context,
366 const clang::QualType Type) {
367 assert(Type->isIntegerType() && "Given type is not an integer.")(static_cast <bool> (Type->isIntegerType() &&
"Given type is not an integer.") ? void (0) : __assert_fail (
"Type->isIntegerType() && \"Given type is not an integer.\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 367, __extension__ __PRETTY_FUNCTION__))
;
368 unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
369 bool Signed = Type->isSignedIntegerType();
370 return {Width, Signed};
371}
372
373// Given one or more integer types, this function produces an integer type that
374// encompasses them: any value in one of the given types could be expressed in
375// the encompassing type.
376static struct WidthAndSignedness
377EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
378 assert(Types.size() > 0 && "Empty list of types.")(static_cast <bool> (Types.size() > 0 && "Empty list of types."
) ? void (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 378, __extension__ __PRETTY_FUNCTION__))
;
379
380 // If any of the given types is signed, we must return a signed type.
381 bool Signed = false;
382 for (const auto &Type : Types) {
383 Signed |= Type.Signed;
384 }
385
386 // The encompassing type must have a width greater than or equal to the width
387 // of the specified types. Aditionally, if the encompassing type is signed,
388 // its width must be strictly greater than the width of any unsigned types
389 // given.
390 unsigned Width = 0;
391 for (const auto &Type : Types) {
392 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
393 if (Width < MinWidth) {
394 Width = MinWidth;
395 }
396 }
397
398 return {Width, Signed};
399}
400
401Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
402 llvm::Type *DestType = Int8PtrTy;
403 if (ArgValue->getType() != DestType)
404 ArgValue =
405 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
406
407 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
408 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
409}
410
411/// Checks if using the result of __builtin_object_size(p, @p From) in place of
412/// __builtin_object_size(p, @p To) is correct
413static bool areBOSTypesCompatible(int From, int To) {
414 // Note: Our __builtin_object_size implementation currently treats Type=0 and
415 // Type=2 identically. Encoding this implementation detail here may make
416 // improving __builtin_object_size difficult in the future, so it's omitted.
417 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
418}
419
420static llvm::Value *
421getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
422 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
423}
424
425llvm::Value *
426CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
427 llvm::IntegerType *ResType,
428 llvm::Value *EmittedE) {
429 uint64_t ObjectSize;
430 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
431 return emitBuiltinObjectSize(E, Type, ResType, EmittedE);
432 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
433}
434
435/// Returns a Value corresponding to the size of the given expression.
436/// This Value may be either of the following:
437/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
438/// it)
439/// - A call to the @llvm.objectsize intrinsic
440///
441/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
442/// and we wouldn't otherwise try to reference a pass_object_size parameter,
443/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
444llvm::Value *
445CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
446 llvm::IntegerType *ResType,
447 llvm::Value *EmittedE) {
448 // We need to reference an argument if the pointer is a parameter with the
449 // pass_object_size attribute.
450 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
451 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
452 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
453 if (Param != nullptr && PS != nullptr &&
454 areBOSTypesCompatible(PS->getType(), Type)) {
455 auto Iter = SizeArguments.find(Param);
456 assert(Iter != SizeArguments.end())(static_cast <bool> (Iter != SizeArguments.end()) ? void
(0) : __assert_fail ("Iter != SizeArguments.end()", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 456, __extension__ __PRETTY_FUNCTION__))
;
457
458 const ImplicitParamDecl *D = Iter->second;
459 auto DIter = LocalDeclMap.find(D);
460 assert(DIter != LocalDeclMap.end())(static_cast <bool> (DIter != LocalDeclMap.end()) ? void
(0) : __assert_fail ("DIter != LocalDeclMap.end()", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 460, __extension__ __PRETTY_FUNCTION__))
;
461
462 return EmitLoadOfScalar(DIter->second, /*volatile=*/false,
463 getContext().getSizeType(), E->getLocStart());
464 }
465 }
466
467 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
468 // evaluate E for side-effects. In either case, we shouldn't lower to
469 // @llvm.objectsize.
470 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
471 return getDefaultBuiltinObjectSizeResult(Type, ResType);
472
473 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
474 assert(Ptr->getType()->isPointerTy() &&(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 475, __extension__ __PRETTY_FUNCTION__))
475 "Non-pointer passed to __builtin_object_size?")(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 475, __extension__ __PRETTY_FUNCTION__))
;
476
477 Value *F = CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
478
479 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
480 Value *Min = Builder.getInt1((Type & 2) != 0);
481 // For GCC compatability, __builtin_object_size treat NULL as unknown size.
482 Value *NullIsUnknown = Builder.getTrue();
483 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown});
484}
485
486// Many of MSVC builtins are on both x64 and ARM; to avoid repeating code, we
487// handle them here.
488enum class CodeGenFunction::MSVCIntrin {
489 _BitScanForward,
490 _BitScanReverse,
491 _InterlockedAnd,
492 _InterlockedDecrement,
493 _InterlockedExchange,
494 _InterlockedExchangeAdd,
495 _InterlockedExchangeSub,
496 _InterlockedIncrement,
497 _InterlockedOr,
498 _InterlockedXor,
499 _interlockedbittestandset,
500 __fastfail,
501};
502
503Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
504 const CallExpr *E) {
505 switch (BuiltinID) {
506 case MSVCIntrin::_BitScanForward:
507 case MSVCIntrin::_BitScanReverse: {
508 Value *ArgValue = EmitScalarExpr(E->getArg(1));
509
510 llvm::Type *ArgType = ArgValue->getType();
511 llvm::Type *IndexType =
512 EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
513 llvm::Type *ResultType = ConvertType(E->getType());
514
515 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
516 Value *ResZero = llvm::Constant::getNullValue(ResultType);
517 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
518
519 BasicBlock *Begin = Builder.GetInsertBlock();
520 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
521 Builder.SetInsertPoint(End);
522 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
523
524 Builder.SetInsertPoint(Begin);
525 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
526 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
527 Builder.CreateCondBr(IsZero, End, NotZero);
528 Result->addIncoming(ResZero, Begin);
529
530 Builder.SetInsertPoint(NotZero);
531 Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
532
533 if (BuiltinID == MSVCIntrin::_BitScanForward) {
534 Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
535 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
536 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
537 Builder.CreateStore(ZeroCount, IndexAddress, false);
538 } else {
539 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
540 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
541
542 Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
543 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
544 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
545 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
546 Builder.CreateStore(Index, IndexAddress, false);
547 }
548 Builder.CreateBr(End);
549 Result->addIncoming(ResOne, NotZero);
550
551 Builder.SetInsertPoint(End);
552 return Result;
553 }
554 case MSVCIntrin::_InterlockedAnd:
555 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
556 case MSVCIntrin::_InterlockedExchange:
557 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
558 case MSVCIntrin::_InterlockedExchangeAdd:
559 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
560 case MSVCIntrin::_InterlockedExchangeSub:
561 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
562 case MSVCIntrin::_InterlockedOr:
563 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
564 case MSVCIntrin::_InterlockedXor:
565 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
566
567 case MSVCIntrin::_interlockedbittestandset: {
568 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
569 llvm::Value *Bit = EmitScalarExpr(E->getArg(1));
570 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
571 AtomicRMWInst::Or, Addr,
572 Builder.CreateShl(ConstantInt::get(Bit->getType(), 1), Bit),
573 llvm::AtomicOrdering::SequentiallyConsistent);
574 // Shift the relevant bit to the least significant position, truncate to
575 // the result type, and test the low bit.
576 llvm::Value *Shifted = Builder.CreateLShr(RMWI, Bit);
577 llvm::Value *Truncated =
578 Builder.CreateTrunc(Shifted, ConvertType(E->getType()));
579 return Builder.CreateAnd(Truncated,
580 ConstantInt::get(Truncated->getType(), 1));
581 }
582
583 case MSVCIntrin::_InterlockedDecrement: {
584 llvm::Type *IntTy = ConvertType(E->getType());
585 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
586 AtomicRMWInst::Sub,
587 EmitScalarExpr(E->getArg(0)),
588 ConstantInt::get(IntTy, 1),
589 llvm::AtomicOrdering::SequentiallyConsistent);
590 return Builder.CreateSub(RMWI, ConstantInt::get(IntTy, 1));
591 }
592 case MSVCIntrin::_InterlockedIncrement: {
593 llvm::Type *IntTy = ConvertType(E->getType());
594 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
595 AtomicRMWInst::Add,
596 EmitScalarExpr(E->getArg(0)),
597 ConstantInt::get(IntTy, 1),
598 llvm::AtomicOrdering::SequentiallyConsistent);
599 return Builder.CreateAdd(RMWI, ConstantInt::get(IntTy, 1));
600 }
601
602 case MSVCIntrin::__fastfail: {
603 // Request immediate process termination from the kernel. The instruction
604 // sequences to do this are documented on MSDN:
605 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
606 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
607 StringRef Asm, Constraints;
608 switch (ISA) {
609 default:
610 ErrorUnsupported(E, "__fastfail call for this architecture");
611 break;
612 case llvm::Triple::x86:
613 case llvm::Triple::x86_64:
614 Asm = "int $$0x29";
615 Constraints = "{cx}";
616 break;
617 case llvm::Triple::thumb:
618 Asm = "udf #251";
619 Constraints = "{r0}";
620 break;
621 }
622 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
623 llvm::InlineAsm *IA =
624 llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true);
625 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
626 getLLVMContext(), llvm::AttributeList::FunctionIndex,
627 llvm::Attribute::NoReturn);
628 CallSite CS = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
629 CS.setAttributes(NoReturnAttr);
630 return CS.getInstruction();
631 }
632 }
633 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 633)
;
634}
635
636namespace {
637// ARC cleanup for __builtin_os_log_format
638struct CallObjCArcUse final : EHScopeStack::Cleanup {
639 CallObjCArcUse(llvm::Value *object) : object(object) {}
640 llvm::Value *object;
641
642 void Emit(CodeGenFunction &CGF, Flags flags) override {
643 CGF.EmitARCIntrinsicUse(object);
644 }
645};
646}
647
648Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
649 BuiltinCheckKind Kind) {
650 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 651, __extension__ __PRETTY_FUNCTION__))
651 && "Unsupported builtin check kind")(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 651, __extension__ __PRETTY_FUNCTION__))
;
652
653 Value *ArgValue = EmitScalarExpr(E);
654 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
655 return ArgValue;
656
657 SanitizerScope SanScope(this);
658 Value *Cond = Builder.CreateICmpNE(
659 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
660 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
661 SanitizerHandler::InvalidBuiltin,
662 {EmitCheckSourceLocation(E->getExprLoc()),
663 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
664 None);
665 return ArgValue;
666}
667
668/// Get the argument type for arguments to os_log_helper.
669static CanQualType getOSLogArgType(ASTContext &C, int Size) {
670 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
671 return C.getCanonicalType(UnsignedTy);
672}
673
674llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
675 const analyze_os_log::OSLogBufferLayout &Layout,
676 CharUnits BufferAlignment) {
677 ASTContext &Ctx = getContext();
678
679 llvm::SmallString<64> Name;
680 {
681 raw_svector_ostream OS(Name);
682 OS << "__os_log_helper";
683 OS << "_" << BufferAlignment.getQuantity();
684 OS << "_" << int(Layout.getSummaryByte());
685 OS << "_" << int(Layout.getNumArgsByte());
686 for (const auto &Item : Layout.Items)
687 OS << "_" << int(Item.getSizeByte()) << "_"
688 << int(Item.getDescriptorByte());
689 }
690
691 if (llvm::Function *F = CGM.getModule().getFunction(Name))
692 return F;
693
694 llvm::SmallVector<ImplicitParamDecl, 4> Params;
695 Params.emplace_back(Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"),
696 Ctx.VoidPtrTy, ImplicitParamDecl::Other);
697
698 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
699 char Size = Layout.Items[I].getSizeByte();
700 if (!Size)
701 continue;
702
703 Params.emplace_back(
704 Ctx, nullptr, SourceLocation(),
705 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)),
706 getOSLogArgType(Ctx, Size), ImplicitParamDecl::Other);
707 }
708
709 FunctionArgList Args;
710 for (auto &P : Params)
711 Args.push_back(&P);
712
713 // The helper function has linkonce_odr linkage to enable the linker to merge
714 // identical functions. To ensure the merging always happens, 'noinline' is
715 // attached to the function when compiling with -Oz.
716 const CGFunctionInfo &FI =
717 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
718 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
719 llvm::Function *Fn = llvm::Function::Create(
720 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
721 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
722 CGM.SetLLVMFunctionAttributes(nullptr, FI, Fn);
723 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
724
725 // Attach 'noinline' at -Oz.
726 if (CGM.getCodeGenOpts().OptimizeSize == 2)
727 Fn->addFnAttr(llvm::Attribute::NoInline);
728
729 auto NL = ApplyDebugLocation::CreateEmpty(*this);
730 IdentifierInfo *II = &Ctx.Idents.get(Name);
731 FunctionDecl *FD = FunctionDecl::Create(
732 Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
733 Ctx.VoidTy, nullptr, SC_PrivateExtern, false, false);
734
735 StartFunction(FD, Ctx.VoidTy, Fn, FI, Args);
736
737 // Create a scope with an artificial location for the body of this function.
738 auto AL = ApplyDebugLocation::CreateArtificial(*this);
739
740 CharUnits Offset;
741 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(&Params[0]), "buf"),
742 BufferAlignment);
743 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
744 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
745 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
746 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
747
748 unsigned I = 1;
749 for (const auto &Item : Layout.Items) {
750 Builder.CreateStore(
751 Builder.getInt8(Item.getDescriptorByte()),
752 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
753 Builder.CreateStore(
754 Builder.getInt8(Item.getSizeByte()),
755 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
756
757 CharUnits Size = Item.size();
758 if (!Size.getQuantity())
759 continue;
760
761 Address Arg = GetAddrOfLocalVar(&Params[I]);
762 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
763 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
764 "argDataCast");
765 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
766 Offset += Size;
767 ++I;
768 }
769
770 FinishFunction();
771
772 return Fn;
773}
774
775RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
776 assert(E.getNumArgs() >= 2 &&(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 777, __extension__ __PRETTY_FUNCTION__))
777 "__builtin_os_log_format takes at least 2 arguments")(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 777, __extension__ __PRETTY_FUNCTION__))
;
778 ASTContext &Ctx = getContext();
779 analyze_os_log::OSLogBufferLayout Layout;
780 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
781 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
782 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
783
784 // Ignore argument 1, the format string. It is not currently used.
785 CallArgList Args;
786 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
787
788 for (const auto &Item : Layout.Items) {
789 int Size = Item.getSizeByte();
790 if (!Size)
791 continue;
792
793 llvm::Value *ArgVal;
794
795 if (const Expr *TheExpr = Item.getExpr()) {
796 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
797
798 // Check if this is a retainable type.
799 if (TheExpr->getType()->isObjCRetainableType()) {
800 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 801, __extension__ __PRETTY_FUNCTION__))
801 "Only scalar can be a ObjC retainable type")(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 801, __extension__ __PRETTY_FUNCTION__))
;
802 // Check if the object is constant, if not, save it in
803 // RetainableOperands.
804 if (!isa<Constant>(ArgVal))
805 RetainableOperands.push_back(ArgVal);
806 }
807 } else {
808 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
809 }
810
811 unsigned ArgValSize =
812 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
813 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
814 ArgValSize);
815 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
816 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
817 // If ArgVal has type x86_fp80, zero-extend ArgVal.
818 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
819 Args.add(RValue::get(ArgVal), ArgTy);
820 }
821
822 const CGFunctionInfo &FI =
823 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
824 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
825 Layout, BufAddr.getAlignment());
826 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
827
828 // Push a clang.arc.use cleanup for each object in RetainableOperands. The
829 // cleanup will cause the use to appear after the final log call, keeping
830 // the object valid while it’s held in the log buffer. Note that if there’s
831 // a release cleanup on the object, it will already be active; since
832 // cleanups are emitted in reverse order, the use will occur before the
833 // object is released.
834 if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
835 CGM.getCodeGenOpts().OptimizationLevel != 0)
836 for (llvm::Value *Object : RetainableOperands)
837 pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
838
839 return RValue::get(BufAddr.getPointer());
840}
841
842/// Determine if a binop is a checked mixed-sign multiply we can specialize.
843static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
844 WidthAndSignedness Op1Info,
845 WidthAndSignedness Op2Info,
846 WidthAndSignedness ResultInfo) {
847 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
848 Op1Info.Width == Op2Info.Width && Op1Info.Width >= ResultInfo.Width &&
849 Op1Info.Signed != Op2Info.Signed;
850}
851
852/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
853/// the generic checked-binop irgen.
854static RValue
855EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
856 WidthAndSignedness Op1Info, const clang::Expr *Op2,
857 WidthAndSignedness Op2Info,
858 const clang::Expr *ResultArg, QualType ResultQTy,
859 WidthAndSignedness ResultInfo) {
860 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 862, __extension__ __PRETTY_FUNCTION__))
861 Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 862, __extension__ __PRETTY_FUNCTION__))
862 "Not a mixed-sign multipliction we can specialize")(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 862, __extension__ __PRETTY_FUNCTION__))
;
863
864 // Emit the signed and unsigned operands.
865 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
866 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
867 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
868 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
869
870 llvm::Type *OpTy = Signed->getType();
871 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
872 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
873 llvm::Type *ResTy = ResultPtr.getElementType();
874
875 // Take the absolute value of the signed operand.
876 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
877 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
878 llvm::Value *AbsSigned =
879 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
880
881 // Perform a checked unsigned multiplication.
882 llvm::Value *UnsignedOverflow;
883 llvm::Value *UnsignedResult =
884 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
885 Unsigned, UnsignedOverflow);
886
887 llvm::Value *Overflow, *Result;
888 if (ResultInfo.Signed) {
889 // Signed overflow occurs if the result is greater than INT_MAX or lesser
890 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
891 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width)
892 .zextOrSelf(Op1Info.Width);
893 llvm::Value *MaxResult =
894 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
895 CGF.Builder.CreateZExt(IsNegative, OpTy));
896 llvm::Value *SignedOverflow =
897 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
898 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
899
900 // Prepare the signed result (possibly by negating it).
901 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
902 llvm::Value *SignedResult =
903 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
904 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
905 } else {
906 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
907 llvm::Value *Underflow = CGF.Builder.CreateAnd(
908 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
909 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
910 if (ResultInfo.Width < Op1Info.Width) {
911 auto IntMax =
912 llvm::APInt::getMaxValue(ResultInfo.Width).zext(Op1Info.Width);
913 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
914 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
915 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
916 }
917
918 Result = CGF.Builder.CreateTrunc(UnsignedResult, ResTy);
919 }
920 assert(Overflow && Result && "Missing overflow or result")(static_cast <bool> (Overflow && Result &&
"Missing overflow or result") ? void (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 920, __extension__ __PRETTY_FUNCTION__))
;
921
922 bool isVolatile =
923 ResultArg->getType()->getPointeeType().isVolatileQualified();
924 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
925 isVolatile);
926 return RValue::get(Overflow);
927}
928
929RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
930 unsigned BuiltinID, const CallExpr *E,
931 ReturnValueSlot ReturnValue) {
932 // See if we can constant fold this builtin. If so, don't emit it at all.
933 Expr::EvalResult Result;
934 if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
935 !Result.hasSideEffects()) {
936 if (Result.Val.isInt())
937 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
938 Result.Val.getInt()));
939 if (Result.Val.isFloat())
940 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
941 Result.Val.getFloat()));
942 }
943
944 // There are LLVM math intrinsics/instructions corresponding to math library
945 // functions except the LLVM op will never set errno while the math library
946 // might. Also, math builtins have the same semantics as their math library
947 // twins. Thus, we can transform math library and builtin calls to their
948 // LLVM counterparts if the call is marked 'const' (known to never set errno).
949 if (FD->hasAttr<ConstAttr>()) {
950 switch (BuiltinID) {
951 case Builtin::BIceil:
952 case Builtin::BIceilf:
953 case Builtin::BIceill:
954 case Builtin::BI__builtin_ceil:
955 case Builtin::BI__builtin_ceilf:
956 case Builtin::BI__builtin_ceill:
957 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
958
959 case Builtin::BIcopysign:
960 case Builtin::BIcopysignf:
961 case Builtin::BIcopysignl:
962 case Builtin::BI__builtin_copysign:
963 case Builtin::BI__builtin_copysignf:
964 case Builtin::BI__builtin_copysignl:
965 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
966
967 case Builtin::BIcos:
968 case Builtin::BIcosf:
969 case Builtin::BIcosl:
970 case Builtin::BI__builtin_cos:
971 case Builtin::BI__builtin_cosf:
972 case Builtin::BI__builtin_cosl:
973 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
974
975 case Builtin::BIexp:
976 case Builtin::BIexpf:
977 case Builtin::BIexpl:
978 case Builtin::BI__builtin_exp:
979 case Builtin::BI__builtin_expf:
980 case Builtin::BI__builtin_expl:
981 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
982
983 case Builtin::BIexp2:
984 case Builtin::BIexp2f:
985 case Builtin::BIexp2l:
986 case Builtin::BI__builtin_exp2:
987 case Builtin::BI__builtin_exp2f:
988 case Builtin::BI__builtin_exp2l:
989 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
990
991 case Builtin::BIfabs:
992 case Builtin::BIfabsf:
993 case Builtin::BIfabsl:
994 case Builtin::BI__builtin_fabs:
995 case Builtin::BI__builtin_fabsf:
996 case Builtin::BI__builtin_fabsl:
997 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
998
999 case Builtin::BIfloor:
1000 case Builtin::BIfloorf:
1001 case Builtin::BIfloorl:
1002 case Builtin::BI__builtin_floor:
1003 case Builtin::BI__builtin_floorf:
1004 case Builtin::BI__builtin_floorl:
1005 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
1006
1007 case Builtin::BIfma:
1008 case Builtin::BIfmaf:
1009 case Builtin::BIfmal:
1010 case Builtin::BI__builtin_fma:
1011 case Builtin::BI__builtin_fmaf:
1012 case Builtin::BI__builtin_fmal:
1013 return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
1014
1015 case Builtin::BIfmax:
1016 case Builtin::BIfmaxf:
1017 case Builtin::BIfmaxl:
1018 case Builtin::BI__builtin_fmax:
1019 case Builtin::BI__builtin_fmaxf:
1020 case Builtin::BI__builtin_fmaxl:
1021 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
1022
1023 case Builtin::BIfmin:
1024 case Builtin::BIfminf:
1025 case Builtin::BIfminl:
1026 case Builtin::BI__builtin_fmin:
1027 case Builtin::BI__builtin_fminf:
1028 case Builtin::BI__builtin_fminl:
1029 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
1030
1031 // fmod() is a special-case. It maps to the frem instruction rather than an
1032 // LLVM intrinsic.
1033 case Builtin::BIfmod:
1034 case Builtin::BIfmodf:
1035 case Builtin::BIfmodl:
1036 case Builtin::BI__builtin_fmod:
1037 case Builtin::BI__builtin_fmodf:
1038 case Builtin::BI__builtin_fmodl: {
1039 Value *Arg1 = EmitScalarExpr(E->getArg(0));
1040 Value *Arg2 = EmitScalarExpr(E->getArg(1));
1041 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1042 }
1043
1044 case Builtin::BIlog:
1045 case Builtin::BIlogf:
1046 case Builtin::BIlogl:
1047 case Builtin::BI__builtin_log:
1048 case Builtin::BI__builtin_logf:
1049 case Builtin::BI__builtin_logl:
1050 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
1051
1052 case Builtin::BIlog10:
1053 case Builtin::BIlog10f:
1054 case Builtin::BIlog10l:
1055 case Builtin::BI__builtin_log10:
1056 case Builtin::BI__builtin_log10f:
1057 case Builtin::BI__builtin_log10l:
1058 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
1059
1060 case Builtin::BIlog2:
1061 case Builtin::BIlog2f:
1062 case Builtin::BIlog2l:
1063 case Builtin::BI__builtin_log2:
1064 case Builtin::BI__builtin_log2f:
1065 case Builtin::BI__builtin_log2l:
1066 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
1067
1068 case Builtin::BInearbyint:
1069 case Builtin::BInearbyintf:
1070 case Builtin::BInearbyintl:
1071 case Builtin::BI__builtin_nearbyint:
1072 case Builtin::BI__builtin_nearbyintf:
1073 case Builtin::BI__builtin_nearbyintl:
1074 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
1075
1076 case Builtin::BIpow:
1077 case Builtin::BIpowf:
1078 case Builtin::BIpowl:
1079 case Builtin::BI__builtin_pow:
1080 case Builtin::BI__builtin_powf:
1081 case Builtin::BI__builtin_powl:
1082 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
1083
1084 case Builtin::BIrint:
1085 case Builtin::BIrintf:
1086 case Builtin::BIrintl:
1087 case Builtin::BI__builtin_rint:
1088 case Builtin::BI__builtin_rintf:
1089 case Builtin::BI__builtin_rintl:
1090 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
1091
1092 case Builtin::BIround:
1093 case Builtin::BIroundf:
1094 case Builtin::BIroundl:
1095 case Builtin::BI__builtin_round:
1096 case Builtin::BI__builtin_roundf:
1097 case Builtin::BI__builtin_roundl:
1098 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
1099
1100 case Builtin::BIsin:
1101 case Builtin::BIsinf:
1102 case Builtin::BIsinl:
1103 case Builtin::BI__builtin_sin:
1104 case Builtin::BI__builtin_sinf:
1105 case Builtin::BI__builtin_sinl:
1106 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
1107
1108 case Builtin::BIsqrt:
1109 case Builtin::BIsqrtf:
1110 case Builtin::BIsqrtl:
1111 case Builtin::BI__builtin_sqrt:
1112 case Builtin::BI__builtin_sqrtf:
1113 case Builtin::BI__builtin_sqrtl:
1114 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
1115
1116 case Builtin::BItrunc:
1117 case Builtin::BItruncf:
1118 case Builtin::BItruncl:
1119 case Builtin::BI__builtin_trunc:
1120 case Builtin::BI__builtin_truncf:
1121 case Builtin::BI__builtin_truncl:
1122 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
1123
1124 default:
1125 break;
1126 }
1127 }
1128
1129 switch (BuiltinID) {
1130 default: break;
1131 case Builtin::BI__builtin___CFStringMakeConstantString:
1132 case Builtin::BI__builtin___NSStringMakeConstantString:
1133 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1134 case Builtin::BI__builtin_stdarg_start:
1135 case Builtin::BI__builtin_va_start:
1136 case Builtin::BI__va_start:
1137 case Builtin::BI__builtin_va_end:
1138 return RValue::get(
1139 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1140 ? EmitScalarExpr(E->getArg(0))
1141 : EmitVAListRef(E->getArg(0)).getPointer(),
1142 BuiltinID != Builtin::BI__builtin_va_end));
1143 case Builtin::BI__builtin_va_copy: {
1144 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1145 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1146
1147 llvm::Type *Type = Int8PtrTy;
1148
1149 DstPtr = Builder.CreateBitCast(DstPtr, Type);
1150 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1151 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1152 {DstPtr, SrcPtr}));
1153 }
1154 case Builtin::BI__builtin_abs:
1155 case Builtin::BI__builtin_labs:
1156 case Builtin::BI__builtin_llabs: {
1157 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1158
1159 Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
1160 Value *CmpResult =
1161 Builder.CreateICmpSGE(ArgValue,
1162 llvm::Constant::getNullValue(ArgValue->getType()),
1163 "abscond");
1164 Value *Result =
1165 Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
1166
1167 return RValue::get(Result);
1168 }
1169 case Builtin::BI__builtin_conj:
1170 case Builtin::BI__builtin_conjf:
1171 case Builtin::BI__builtin_conjl: {
1172 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1173 Value *Real = ComplexVal.first;
1174 Value *Imag = ComplexVal.second;
1175 Value *Zero =
1176 Imag->getType()->isFPOrFPVectorTy()
1177 ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
1178 : llvm::Constant::getNullValue(Imag->getType());
1179
1180 Imag = Builder.CreateFSub(Zero, Imag, "sub");
1181 return RValue::getComplex(std::make_pair(Real, Imag));
1182 }
1183 case Builtin::BI__builtin_creal:
1184 case Builtin::BI__builtin_crealf:
1185 case Builtin::BI__builtin_creall:
1186 case Builtin::BIcreal:
1187 case Builtin::BIcrealf:
1188 case Builtin::BIcreall: {
1189 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1190 return RValue::get(ComplexVal.first);
1191 }
1192
1193 case Builtin::BI__builtin_cimag:
1194 case Builtin::BI__builtin_cimagf:
1195 case Builtin::BI__builtin_cimagl:
1196 case Builtin::BIcimag:
1197 case Builtin::BIcimagf:
1198 case Builtin::BIcimagl: {
1199 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1200 return RValue::get(ComplexVal.second);
1201 }
1202
1203 case Builtin::BI__builtin_ctzs:
1204 case Builtin::BI__builtin_ctz:
1205 case Builtin::BI__builtin_ctzl:
1206 case Builtin::BI__builtin_ctzll: {
1207 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
1208
1209 llvm::Type *ArgType = ArgValue->getType();
1210 Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1211
1212 llvm::Type *ResultType = ConvertType(E->getType());
1213 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1214 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1215 if (Result->getType() != ResultType)
1216 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1217 "cast");
1218 return RValue::get(Result);
1219 }
1220 case Builtin::BI__builtin_clzs:
1221 case Builtin::BI__builtin_clz:
1222 case Builtin::BI__builtin_clzl:
1223 case Builtin::BI__builtin_clzll: {
1224 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
1225
1226 llvm::Type *ArgType = ArgValue->getType();
1227 Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1228
1229 llvm::Type *ResultType = ConvertType(E->getType());
1230 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1231 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1232 if (Result->getType() != ResultType)
1233 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1234 "cast");
1235 return RValue::get(Result);
1236 }
1237 case Builtin::BI__builtin_ffs:
1238 case Builtin::BI__builtin_ffsl:
1239 case Builtin::BI__builtin_ffsll: {
1240 // ffs(x) -> x ? cttz(x) + 1 : 0
1241 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1242
1243 llvm::Type *ArgType = ArgValue->getType();
1244 Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1245
1246 llvm::Type *ResultType = ConvertType(E->getType());
1247 Value *Tmp =
1248 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
1249 llvm::ConstantInt::get(ArgType, 1));
1250 Value *Zero = llvm::Constant::getNullValue(ArgType);
1251 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
1252 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
1253 if (Result->getType() != ResultType)
1254 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1255 "cast");
1256 return RValue::get(Result);
1257 }
1258 case Builtin::BI__builtin_parity:
1259 case Builtin::BI__builtin_parityl:
1260 case Builtin::BI__builtin_parityll: {
1261 // parity(x) -> ctpop(x) & 1
1262 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1263
1264 llvm::Type *ArgType = ArgValue->getType();
1265 Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1266
1267 llvm::Type *ResultType = ConvertType(E->getType());
1268 Value *Tmp = Builder.CreateCall(F, ArgValue);
1269 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
1270 if (Result->getType() != ResultType)
1271 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1272 "cast");
1273 return RValue::get(Result);
1274 }
1275 case Builtin::BI__popcnt16:
1276 case Builtin::BI__popcnt:
1277 case Builtin::BI__popcnt64:
1278 case Builtin::BI__builtin_popcount:
1279 case Builtin::BI__builtin_popcountl:
1280 case Builtin::BI__builtin_popcountll: {
1281 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1282
1283 llvm::Type *ArgType = ArgValue->getType();
1284 Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1285
1286 llvm::Type *ResultType = ConvertType(E->getType());
1287 Value *Result = Builder.CreateCall(F, ArgValue);
1288 if (Result->getType() != ResultType)
1289 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1290 "cast");
1291 return RValue::get(Result);
1292 }
1293 case Builtin::BI_rotr8:
1294 case Builtin::BI_rotr16:
1295 case Builtin::BI_rotr:
1296 case Builtin::BI_lrotr:
1297 case Builtin::BI_rotr64: {
1298 Value *Val = EmitScalarExpr(E->getArg(0));
1299 Value *Shift = EmitScalarExpr(E->getArg(1));
1300
1301 llvm::Type *ArgType = Val->getType();
1302 Shift = Builder.CreateIntCast(Shift, ArgType, false);
1303 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1304 Value *ArgTypeSize = llvm::ConstantInt::get(ArgType, ArgWidth);
1305 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1306
1307 Value *Mask = llvm::ConstantInt::get(ArgType, ArgWidth - 1);
1308 Shift = Builder.CreateAnd(Shift, Mask);
1309 Value *LeftShift = Builder.CreateSub(ArgTypeSize, Shift);
1310
1311 Value *RightShifted = Builder.CreateLShr(Val, Shift);
1312 Value *LeftShifted = Builder.CreateShl(Val, LeftShift);
1313 Value *Rotated = Builder.CreateOr(LeftShifted, RightShifted);
1314
1315 Value *ShiftIsZero = Builder.CreateICmpEQ(Shift, ArgZero);
1316 Value *Result = Builder.CreateSelect(ShiftIsZero, Val, Rotated);
1317 return RValue::get(Result);
1318 }
1319 case Builtin::BI_rotl8:
1320 case Builtin::BI_rotl16:
1321 case Builtin::BI_rotl:
1322 case Builtin::BI_lrotl:
1323 case Builtin::BI_rotl64: {
1324 Value *Val = EmitScalarExpr(E->getArg(0));
1325 Value *Shift = EmitScalarExpr(E->getArg(1));
1326
1327 llvm::Type *ArgType = Val->getType();
1328 Shift = Builder.CreateIntCast(Shift, ArgType, false);
1329 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1330 Value *ArgTypeSize = llvm::ConstantInt::get(ArgType, ArgWidth);
1331 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1332
1333 Value *Mask = llvm::ConstantInt::get(ArgType, ArgWidth - 1);
1334 Shift = Builder.CreateAnd(Shift, Mask);
1335 Value *RightShift = Builder.CreateSub(ArgTypeSize, Shift);
1336
1337 Value *LeftShifted = Builder.CreateShl(Val, Shift);
1338 Value *RightShifted = Builder.CreateLShr(Val, RightShift);
1339 Value *Rotated = Builder.CreateOr(LeftShifted, RightShifted);
1340
1341 Value *ShiftIsZero = Builder.CreateICmpEQ(Shift, ArgZero);
1342 Value *Result = Builder.CreateSelect(ShiftIsZero, Val, Rotated);
1343 return RValue::get(Result);
1344 }
1345 case Builtin::BI__builtin_unpredictable: {
1346 // Always return the argument of __builtin_unpredictable. LLVM does not
1347 // handle this builtin. Metadata for this builtin should be added directly
1348 // to instructions such as branches or switches that use it.
1349 return RValue::get(EmitScalarExpr(E->getArg(0)));
1350 }
1351 case Builtin::BI__builtin_expect: {
1352 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1353 llvm::Type *ArgType = ArgValue->getType();
1354
1355 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
1356 // Don't generate llvm.expect on -O0 as the backend won't use it for
1357 // anything.
1358 // Note, we still IRGen ExpectedValue because it could have side-effects.
1359 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1360 return RValue::get(ArgValue);
1361
1362 Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
1363 Value *Result =
1364 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
1365 return RValue::get(Result);
1366 }
1367 case Builtin::BI__builtin_assume_aligned: {
1368 Value *PtrValue = EmitScalarExpr(E->getArg(0));
1369 Value *OffsetValue =
1370 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
1371
1372 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
1373 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
1374 unsigned Alignment = (unsigned) AlignmentCI->getZExtValue();
1375
1376 EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue);
1377 return RValue::get(PtrValue);
1378 }
1379 case Builtin::BI__assume:
1380 case Builtin::BI__builtin_assume: {
1381 if (E->getArg(0)->HasSideEffects(getContext()))
1382 return RValue::get(nullptr);
1383
1384 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1385 Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
1386 return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
1387 }
1388 case Builtin::BI__builtin_bswap16:
1389 case Builtin::BI__builtin_bswap32:
1390 case Builtin::BI__builtin_bswap64: {
1391 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
1392 }
1393 case Builtin::BI__builtin_bitreverse8:
1394 case Builtin::BI__builtin_bitreverse16:
1395 case Builtin::BI__builtin_bitreverse32:
1396 case Builtin::BI__builtin_bitreverse64: {
1397 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
1398 }
1399 case Builtin::BI__builtin_object_size: {
1400 unsigned Type =
1401 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
1402 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
1403
1404 // We pass this builtin onto the optimizer so that it can figure out the
1405 // object size in more complex cases.
1406 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
1407 /*EmittedE=*/nullptr));
1408 }
1409 case Builtin::BI__builtin_prefetch: {
1410 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
1411 // FIXME: Technically these constants should of type 'int', yes?
1412 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
1413 llvm::ConstantInt::get(Int32Ty, 0);
1414 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
1415 llvm::ConstantInt::get(Int32Ty, 3);
1416 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
1417 Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
1418 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
1419 }
1420 case Builtin::BI__builtin_readcyclecounter: {
1421 Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
1422 return RValue::get(Builder.CreateCall(F));
1423 }
1424 case Builtin::BI__builtin___clear_cache: {
1425 Value *Begin = EmitScalarExpr(E->getArg(0));
1426 Value *End = EmitScalarExpr(E->getArg(1));
1427 Value *F = CGM.getIntrinsic(Intrinsic::clear_cache);
1428 return RValue::get(Builder.CreateCall(F, {Begin, End}));
1429 }
1430 case Builtin::BI__builtin_trap:
1431 return RValue::get(EmitTrapCall(Intrinsic::trap));
1432 case Builtin::BI__debugbreak:
1433 return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
1434 case Builtin::BI__builtin_unreachable: {
1435 EmitUnreachable(E->getExprLoc());
1436
1437 // We do need to preserve an insertion point.
1438 EmitBlock(createBasicBlock("unreachable.cont"));
1439
1440 return RValue::get(nullptr);
1441 }
1442
1443 case Builtin::BI__builtin_powi:
1444 case Builtin::BI__builtin_powif:
1445 case Builtin::BI__builtin_powil: {
1446 Value *Base = EmitScalarExpr(E->getArg(0));
1447 Value *Exponent = EmitScalarExpr(E->getArg(1));
1448 llvm::Type *ArgType = Base->getType();
1449 Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
1450 return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
1451 }
1452
1453 case Builtin::BI__builtin_isgreater:
1454 case Builtin::BI__builtin_isgreaterequal:
1455 case Builtin::BI__builtin_isless:
1456 case Builtin::BI__builtin_islessequal:
1457 case Builtin::BI__builtin_islessgreater:
1458 case Builtin::BI__builtin_isunordered: {
1459 // Ordered comparisons: we know the arguments to these are matching scalar
1460 // floating point values.
1461 Value *LHS = EmitScalarExpr(E->getArg(0));
1462 Value *RHS = EmitScalarExpr(E->getArg(1));
1463
1464 switch (BuiltinID) {
1465 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1465)
;
1466 case Builtin::BI__builtin_isgreater:
1467 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
1468 break;
1469 case Builtin::BI__builtin_isgreaterequal:
1470 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
1471 break;
1472 case Builtin::BI__builtin_isless:
1473 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
1474 break;
1475 case Builtin::BI__builtin_islessequal:
1476 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
1477 break;
1478 case Builtin::BI__builtin_islessgreater:
1479 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
1480 break;
1481 case Builtin::BI__builtin_isunordered:
1482 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
1483 break;
1484 }
1485 // ZExt bool to int type.
1486 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
1487 }
1488 case Builtin::BI__builtin_isnan: {
1489 Value *V = EmitScalarExpr(E->getArg(0));
1490 V = Builder.CreateFCmpUNO(V, V, "cmp");
1491 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
1492 }
1493
1494 case Builtin::BIfinite:
1495 case Builtin::BI__finite:
1496 case Builtin::BIfinitef:
1497 case Builtin::BI__finitef:
1498 case Builtin::BIfinitel:
1499 case Builtin::BI__finitel:
1500 case Builtin::BI__builtin_isinf:
1501 case Builtin::BI__builtin_isfinite: {
1502 // isinf(x) --> fabs(x) == infinity
1503 // isfinite(x) --> fabs(x) != infinity
1504 // x != NaN via the ordered compare in either case.
1505 Value *V = EmitScalarExpr(E->getArg(0));
1506 Value *Fabs = EmitFAbs(*this, V);
1507 Constant *Infinity = ConstantFP::getInfinity(V->getType());
1508 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
1509 ? CmpInst::FCMP_OEQ
1510 : CmpInst::FCMP_ONE;
1511 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
1512 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
1513 }
1514
1515 case Builtin::BI__builtin_isinf_sign: {
1516 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
1517 Value *Arg = EmitScalarExpr(E->getArg(0));
1518 Value *AbsArg = EmitFAbs(*this, Arg);
1519 Value *IsInf = Builder.CreateFCmpOEQ(
1520 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
1521 Value *IsNeg = EmitSignBit(*this, Arg);
1522
1523 llvm::Type *IntTy = ConvertType(E->getType());
1524 Value *Zero = Constant::getNullValue(IntTy);
1525 Value *One = ConstantInt::get(IntTy, 1);
1526 Value *NegativeOne = ConstantInt::get(IntTy, -1);
1527 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
1528 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
1529 return RValue::get(Result);
1530 }
1531
1532 case Builtin::BI__builtin_isnormal: {
1533 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
1534 Value *V = EmitScalarExpr(E->getArg(0));
1535 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
1536
1537 Value *Abs = EmitFAbs(*this, V);
1538 Value *IsLessThanInf =
1539 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
1540 APFloat Smallest = APFloat::getSmallestNormalized(
1541 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
1542 Value *IsNormal =
1543 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
1544 "isnormal");
1545 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
1546 V = Builder.CreateAnd(V, IsNormal, "and");
1547 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
1548 }
1549
1550 case Builtin::BI__builtin_fpclassify: {
1551 Value *V = EmitScalarExpr(E->getArg(5));
1552 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
1553
1554 // Create Result
1555 BasicBlock *Begin = Builder.GetInsertBlock();
1556 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
1557 Builder.SetInsertPoint(End);
1558 PHINode *Result =
1559 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
1560 "fpclassify_result");
1561
1562 // if (V==0) return FP_ZERO
1563 Builder.SetInsertPoint(Begin);
1564 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
1565 "iszero");
1566 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
1567 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
1568 Builder.CreateCondBr(IsZero, End, NotZero);
1569 Result->addIncoming(ZeroLiteral, Begin);
1570
1571 // if (V != V) return FP_NAN
1572 Builder.SetInsertPoint(NotZero);
1573 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
1574 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
1575 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
1576 Builder.CreateCondBr(IsNan, End, NotNan);
1577 Result->addIncoming(NanLiteral, NotZero);
1578
1579 // if (fabs(V) == infinity) return FP_INFINITY
1580 Builder.SetInsertPoint(NotNan);
1581 Value *VAbs = EmitFAbs(*this, V);
1582 Value *IsInf =
1583 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
1584 "isinf");
1585 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
1586 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
1587 Builder.CreateCondBr(IsInf, End, NotInf);
1588 Result->addIncoming(InfLiteral, NotNan);
1589
1590 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
1591 Builder.SetInsertPoint(NotInf);
1592 APFloat Smallest = APFloat::getSmallestNormalized(
1593 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
1594 Value *IsNormal =
1595 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
1596 "isnormal");
1597 Value *NormalResult =
1598 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
1599 EmitScalarExpr(E->getArg(3)));
1600 Builder.CreateBr(End);
1601 Result->addIncoming(NormalResult, NotInf);
1602
1603 // return Result
1604 Builder.SetInsertPoint(End);
1605 return RValue::get(Result);
1606 }
1607
1608 case Builtin::BIalloca:
1609 case Builtin::BI_alloca:
1610 case Builtin::BI__builtin_alloca: {
1611 Value *Size = EmitScalarExpr(E->getArg(0));
1612 const TargetInfo &TI = getContext().getTargetInfo();
1613 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
1614 unsigned SuitableAlignmentInBytes =
1615 CGM.getContext()
1616 .toCharUnitsFromBits(TI.getSuitableAlign())
1617 .getQuantity();
1618 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
1619 AI->setAlignment(SuitableAlignmentInBytes);
1620 return RValue::get(AI);
1621 }
1622
1623 case Builtin::BI__builtin_alloca_with_align: {
1624 Value *Size = EmitScalarExpr(E->getArg(0));
1625 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
1626 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
1627 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
1628 unsigned AlignmentInBytes =
1629 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
1630 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
1631 AI->setAlignment(AlignmentInBytes);
1632 return RValue::get(AI);
1633 }
1634
1635 case Builtin::BIbzero:
1636 case Builtin::BI__builtin_bzero: {
1637 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1638 Value *SizeVal = EmitScalarExpr(E->getArg(1));
1639 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
1640 E->getArg(0)->getExprLoc(), FD, 0);
1641 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
1642 return RValue::get(nullptr);
1643 }
1644 case Builtin::BImemcpy:
1645 case Builtin::BI__builtin_memcpy: {
1646 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1647 Address Src = EmitPointerWithAlignment(E->getArg(1));
1648 Value *SizeVal = EmitScalarExpr(E->getArg(2));
1649 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
1650 E->getArg(0)->getExprLoc(), FD, 0);
1651 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
1652 E->getArg(1)->getExprLoc(), FD, 1);
1653 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
1654 return RValue::get(Dest.getPointer());
1655 }
1656
1657 case Builtin::BI__builtin_char_memchr:
1658 BuiltinID = Builtin::BI__builtin_memchr;
1659 break;
1660
1661 case Builtin::BI__builtin___memcpy_chk: {
1662 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
1663 llvm::APSInt Size, DstSize;
1664 if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
1665 !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
1666 break;
1667 if (Size.ugt(DstSize))
1668 break;
1669 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1670 Address Src = EmitPointerWithAlignment(E->getArg(1));
1671 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
1672 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
1673 return RValue::get(Dest.getPointer());
1674 }
1675
1676 case Builtin::BI__builtin_objc_memmove_collectable: {
1677 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
1678 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
1679 Value *SizeVal = EmitScalarExpr(E->getArg(2));
1680 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
1681 DestAddr, SrcAddr, SizeVal);
1682 return RValue::get(DestAddr.getPointer());
1683 }
1684
1685 case Builtin::BI__builtin___memmove_chk: {
1686 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
1687 llvm::APSInt Size, DstSize;
1688 if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
1689 !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
1690 break;
1691 if (Size.ugt(DstSize))
1692 break;
1693 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1694 Address Src = EmitPointerWithAlignment(E->getArg(1));
1695 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
1696 Builder.CreateMemMove(Dest, Src, SizeVal, false);
1697 return RValue::get(Dest.getPointer());
1698 }
1699
1700 case Builtin::BImemmove:
1701 case Builtin::BI__builtin_memmove: {
1702 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1703 Address Src = EmitPointerWithAlignment(E->getArg(1));
1704 Value *SizeVal = EmitScalarExpr(E->getArg(2));
1705 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
1706 E->getArg(0)->getExprLoc(), FD, 0);
1707 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
1708 E->getArg(1)->getExprLoc(), FD, 1);
1709 Builder.CreateMemMove(Dest, Src, SizeVal, false);
1710 return RValue::get(Dest.getPointer());
1711 }
1712 case Builtin::BImemset:
1713 case Builtin::BI__builtin_memset: {
1714 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1715 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
1716 Builder.getInt8Ty());
1717 Value *SizeVal = EmitScalarExpr(E->getArg(2));
1718 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
1719 E->getArg(0)->getExprLoc(), FD, 0);
1720 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
1721 return RValue::get(Dest.getPointer());
1722 }
1723 case Builtin::BI__builtin___memset_chk: {
1724 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
1725 llvm::APSInt Size, DstSize;
1726 if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
1727 !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
1728 break;
1729 if (Size.ugt(DstSize))
1730 break;
1731 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1732 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
1733 Builder.getInt8Ty());
1734 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
1735 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
1736 return RValue::get(Dest.getPointer());
1737 }
1738 case Builtin::BI__builtin_dwarf_cfa: {
1739 // The offset in bytes from the first argument to the CFA.
1740 //
1741 // Why on earth is this in the frontend? Is there any reason at
1742 // all that the backend can't reasonably determine this while
1743 // lowering llvm.eh.dwarf.cfa()?
1744 //
1745 // TODO: If there's a satisfactory reason, add a target hook for
1746 // this instead of hard-coding 0, which is correct for most targets.
1747 int32_t Offset = 0;
1748
1749 Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
1750 return RValue::get(Builder.CreateCall(F,
1751 llvm::ConstantInt::get(Int32Ty, Offset)));
1752 }
1753 case Builtin::BI__builtin_return_address: {
1754 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
1755 getContext().UnsignedIntTy);
1756 Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
1757 return RValue::get(Builder.CreateCall(F, Depth));
1758 }
1759 case Builtin::BI_ReturnAddress: {
1760 Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
1761 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
1762 }
1763 case Builtin::BI__builtin_frame_address: {
1764 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
1765 getContext().UnsignedIntTy);
1766 Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
1767 return RValue::get(Builder.CreateCall(F, Depth));
1768 }
1769 case Builtin::BI__builtin_extract_return_addr: {
1770 Value *Address = EmitScalarExpr(E->getArg(0));
1771 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
1772 return RValue::get(Result);
1773 }
1774 case Builtin::BI__builtin_frob_return_addr: {
1775 Value *Address = EmitScalarExpr(E->getArg(0));
1776 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
1777 return RValue::get(Result);
1778 }
1779 case Builtin::BI__builtin_dwarf_sp_column: {
1780 llvm::IntegerType *Ty
1781 = cast<llvm::IntegerType>(ConvertType(E->getType()));
1782 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
1783 if (Column == -1) {
1784 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
1785 return RValue::get(llvm::UndefValue::get(Ty));
1786 }
1787 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
1788 }
1789 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
1790 Value *Address = EmitScalarExpr(E->getArg(0));
1791 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
1792 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
1793 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
1794 }
1795 case Builtin::BI__builtin_eh_return: {
1796 Value *Int = EmitScalarExpr(E->getArg(0));
1797 Value *Ptr = EmitScalarExpr(E->getArg(1));
1798
1799 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
1800 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1801, __extension__ __PRETTY_FUNCTION__))
1801 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1801, __extension__ __PRETTY_FUNCTION__))
;
1802 Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
1803 ? Intrinsic::eh_return_i32
1804 : Intrinsic::eh_return_i64);
1805 Builder.CreateCall(F, {Int, Ptr});
1806 Builder.CreateUnreachable();
1807
1808 // We do need to preserve an insertion point.
1809 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
1810
1811 return RValue::get(nullptr);
1812 }
1813 case Builtin::BI__builtin_unwind_init: {
1814 Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
1815 return RValue::get(Builder.CreateCall(F));
1816 }
1817 case Builtin::BI__builtin_extend_pointer: {
1818 // Extends a pointer to the size of an _Unwind_Word, which is
1819 // uint64_t on all platforms. Generally this gets poked into a
1820 // register and eventually used as an address, so if the
1821 // addressing registers are wider than pointers and the platform
1822 // doesn't implicitly ignore high-order bits when doing
1823 // addressing, we need to make sure we zext / sext based on
1824 // the platform's expectations.
1825 //
1826 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
1827
1828 // Cast the pointer to intptr_t.
1829 Value *Ptr = EmitScalarExpr(E->getArg(0));
1830 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
1831
1832 // If that's 64 bits, we're done.
1833 if (IntPtrTy->getBitWidth() == 64)
1834 return RValue::get(Result);
1835
1836 // Otherwise, ask the codegen data what to do.
1837 if (getTargetHooks().extendPointerWithSExt())
1838 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
1839 else
1840 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
1841 }
1842 case Builtin::BI__builtin_setjmp: {
1843 // Buffer is a void**.
1844 Address Buf = EmitPointerWithAlignment(E->getArg(0));
1845
1846 // Store the frame pointer to the setjmp buffer.
1847 Value *FrameAddr =
1848 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
1849 ConstantInt::get(Int32Ty, 0));
1850 Builder.CreateStore(FrameAddr, Buf);
1851
1852 // Store the stack pointer to the setjmp buffer.
1853 Value *StackAddr =
1854 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
1855 Address StackSaveSlot =
1856 Builder.CreateConstInBoundsGEP(Buf, 2, getPointerSize());
1857 Builder.CreateStore(StackAddr, StackSaveSlot);
1858
1859 // Call LLVM's EH setjmp, which is lightweight.
1860 Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
1861 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
1862 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
1863 }
1864 case Builtin::BI__builtin_longjmp: {
1865 Value *Buf = EmitScalarExpr(E->getArg(0));
1866 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
1867
1868 // Call LLVM's EH longjmp, which is lightweight.
1869 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
1870
1871 // longjmp doesn't return; mark this as unreachable.
1872 Builder.CreateUnreachable();
1873
1874 // We do need to preserve an insertion point.
1875 EmitBlock(createBasicBlock("longjmp.cont"));
1876
1877 return RValue::get(nullptr);
1878 }
1879 case Builtin::BI__sync_fetch_and_add:
1880 case Builtin::BI__sync_fetch_and_sub:
1881 case Builtin::BI__sync_fetch_and_or:
1882 case Builtin::BI__sync_fetch_and_and:
1883 case Builtin::BI__sync_fetch_and_xor:
1884 case Builtin::BI__sync_fetch_and_nand:
1885 case Builtin::BI__sync_add_and_fetch:
1886 case Builtin::BI__sync_sub_and_fetch:
1887 case Builtin::BI__sync_and_and_fetch:
1888 case Builtin::BI__sync_or_and_fetch:
1889 case Builtin::BI__sync_xor_and_fetch:
1890 case Builtin::BI__sync_nand_and_fetch:
1891 case Builtin::BI__sync_val_compare_and_swap:
1892 case Builtin::BI__sync_bool_compare_and_swap:
1893 case Builtin::BI__sync_lock_test_and_set:
1894 case Builtin::BI__sync_lock_release:
1895 case Builtin::BI__sync_swap:
1896 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1896)
;
1897 case Builtin::BI__sync_fetch_and_add_1:
1898 case Builtin::BI__sync_fetch_and_add_2:
1899 case Builtin::BI__sync_fetch_and_add_4:
1900 case Builtin::BI__sync_fetch_and_add_8:
1901 case Builtin::BI__sync_fetch_and_add_16:
1902 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
1903 case Builtin::BI__sync_fetch_and_sub_1:
1904 case Builtin::BI__sync_fetch_and_sub_2:
1905 case Builtin::BI__sync_fetch_and_sub_4:
1906 case Builtin::BI__sync_fetch_and_sub_8:
1907 case Builtin::BI__sync_fetch_and_sub_16:
1908 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
1909 case Builtin::BI__sync_fetch_and_or_1:
1910 case Builtin::BI__sync_fetch_and_or_2:
1911 case Builtin::BI__sync_fetch_and_or_4:
1912 case Builtin::BI__sync_fetch_and_or_8:
1913 case Builtin::BI__sync_fetch_and_or_16:
1914 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
1915 case Builtin::BI__sync_fetch_and_and_1:
1916 case Builtin::BI__sync_fetch_and_and_2:
1917 case Builtin::BI__sync_fetch_and_and_4:
1918 case Builtin::BI__sync_fetch_and_and_8:
1919 case Builtin::BI__sync_fetch_and_and_16:
1920 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
1921 case Builtin::BI__sync_fetch_and_xor_1:
1922 case Builtin::BI__sync_fetch_and_xor_2:
1923 case Builtin::BI__sync_fetch_and_xor_4:
1924 case Builtin::BI__sync_fetch_and_xor_8:
1925 case Builtin::BI__sync_fetch_and_xor_16:
1926 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
1927 case Builtin::BI__sync_fetch_and_nand_1:
1928 case Builtin::BI__sync_fetch_and_nand_2:
1929 case Builtin::BI__sync_fetch_and_nand_4:
1930 case Builtin::BI__sync_fetch_and_nand_8:
1931 case Builtin::BI__sync_fetch_and_nand_16:
1932 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
1933
1934 // Clang extensions: not overloaded yet.
1935 case Builtin::BI__sync_fetch_and_min:
1936 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
1937 case Builtin::BI__sync_fetch_and_max:
1938 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
1939 case Builtin::BI__sync_fetch_and_umin:
1940 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
1941 case Builtin::BI__sync_fetch_and_umax:
1942 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
1943
1944 case Builtin::BI__sync_add_and_fetch_1:
1945 case Builtin::BI__sync_add_and_fetch_2:
1946 case Builtin::BI__sync_add_and_fetch_4:
1947 case Builtin::BI__sync_add_and_fetch_8:
1948 case Builtin::BI__sync_add_and_fetch_16:
1949 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
1950 llvm::Instruction::Add);
1951 case Builtin::BI__sync_sub_and_fetch_1:
1952 case Builtin::BI__sync_sub_and_fetch_2:
1953 case Builtin::BI__sync_sub_and_fetch_4:
1954 case Builtin::BI__sync_sub_and_fetch_8:
1955 case Builtin::BI__sync_sub_and_fetch_16:
1956 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
1957 llvm::Instruction::Sub);
1958 case Builtin::BI__sync_and_and_fetch_1:
1959 case Builtin::BI__sync_and_and_fetch_2:
1960 case Builtin::BI__sync_and_and_fetch_4:
1961 case Builtin::BI__sync_and_and_fetch_8:
1962 case Builtin::BI__sync_and_and_fetch_16:
1963 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
1964 llvm::Instruction::And);
1965 case Builtin::BI__sync_or_and_fetch_1:
1966 case Builtin::BI__sync_or_and_fetch_2:
1967 case Builtin::BI__sync_or_and_fetch_4:
1968 case Builtin::BI__sync_or_and_fetch_8:
1969 case Builtin::BI__sync_or_and_fetch_16:
1970 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
1971 llvm::Instruction::Or);
1972 case Builtin::BI__sync_xor_and_fetch_1:
1973 case Builtin::BI__sync_xor_and_fetch_2:
1974 case Builtin::BI__sync_xor_and_fetch_4:
1975 case Builtin::BI__sync_xor_and_fetch_8:
1976 case Builtin::BI__sync_xor_and_fetch_16:
1977 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
1978 llvm::Instruction::Xor);
1979 case Builtin::BI__sync_nand_and_fetch_1:
1980 case Builtin::BI__sync_nand_and_fetch_2:
1981 case Builtin::BI__sync_nand_and_fetch_4:
1982 case Builtin::BI__sync_nand_and_fetch_8:
1983 case Builtin::BI__sync_nand_and_fetch_16:
1984 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
1985 llvm::Instruction::And, true);
1986
1987 case Builtin::BI__sync_val_compare_and_swap_1:
1988 case Builtin::BI__sync_val_compare_and_swap_2:
1989 case Builtin::BI__sync_val_compare_and_swap_4:
1990 case Builtin::BI__sync_val_compare_and_swap_8:
1991 case Builtin::BI__sync_val_compare_and_swap_16:
1992 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
1993
1994 case Builtin::BI__sync_bool_compare_and_swap_1:
1995 case Builtin::BI__sync_bool_compare_and_swap_2:
1996 case Builtin::BI__sync_bool_compare_and_swap_4:
1997 case Builtin::BI__sync_bool_compare_and_swap_8:
1998 case Builtin::BI__sync_bool_compare_and_swap_16:
1999 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
2000
2001 case Builtin::BI__sync_swap_1:
2002 case Builtin::BI__sync_swap_2:
2003 case Builtin::BI__sync_swap_4:
2004 case Builtin::BI__sync_swap_8:
2005 case Builtin::BI__sync_swap_16:
2006 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2007
2008 case Builtin::BI__sync_lock_test_and_set_1:
2009 case Builtin::BI__sync_lock_test_and_set_2:
2010 case Builtin::BI__sync_lock_test_and_set_4:
2011 case Builtin::BI__sync_lock_test_and_set_8:
2012 case Builtin::BI__sync_lock_test_and_set_16:
2013 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2014
2015 case Builtin::BI__sync_lock_release_1:
2016 case Builtin::BI__sync_lock_release_2:
2017 case Builtin::BI__sync_lock_release_4:
2018 case Builtin::BI__sync_lock_release_8:
2019 case Builtin::BI__sync_lock_release_16: {
2020 Value *Ptr = EmitScalarExpr(E->getArg(0));
2021 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
2022 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
2023 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
2024 StoreSize.getQuantity() * 8);
2025 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
2026 llvm::StoreInst *Store =
2027 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
2028 StoreSize);
2029 Store->setAtomic(llvm::AtomicOrdering::Release);
2030 return RValue::get(nullptr);
2031 }
2032
2033 case Builtin::BI__sync_synchronize: {
2034 // We assume this is supposed to correspond to a C++0x-style
2035 // sequentially-consistent fence (i.e. this is only usable for
2036 // synchonization, not device I/O or anything like that). This intrinsic
2037 // is really badly designed in the sense that in theory, there isn't
2038 // any way to safely use it... but in practice, it mostly works
2039 // to use it with non-atomic loads and stores to get acquire/release
2040 // semantics.
2041 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
2042 return RValue::get(nullptr);
2043 }
2044
2045 case Builtin::BI__builtin_nontemporal_load:
2046 return RValue::get(EmitNontemporalLoad(*this, E));
2047 case Builtin::BI__builtin_nontemporal_store:
2048 return RValue::get(EmitNontemporalStore(*this, E));
2049 case Builtin::BI__c11_atomic_is_lock_free:
2050 case Builtin::BI__atomic_is_lock_free: {
2051 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
2052 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
2053 // _Atomic(T) is always properly-aligned.
2054 const char *LibCallName = "__atomic_is_lock_free";
2055 CallArgList Args;
2056 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
2057 getContext().getSizeType());
2058 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
2059 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
2060 getContext().VoidPtrTy);
2061 else
2062 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
2063 getContext().VoidPtrTy);
2064 const CGFunctionInfo &FuncInfo =
2065 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
2066 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
2067 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2068 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
2069 ReturnValueSlot(), Args);
2070 }
2071
2072 case Builtin::BI__atomic_test_and_set: {
2073 // Look at the argument type to determine whether this is a volatile
2074 // operation. The parameter type is always volatile.
2075 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2076 bool Volatile =
2077 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2078
2079 Value *Ptr = EmitScalarExpr(E->getArg(0));
2080 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
2081 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2082 Value *NewVal = Builder.getInt8(1);
2083 Value *Order = EmitScalarExpr(E->getArg(1));
2084 if (isa<llvm::ConstantInt>(Order)) {
2085 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2086 AtomicRMWInst *Result = nullptr;
2087 switch (ord) {
2088 case 0: // memory_order_relaxed
2089 default: // invalid order
2090 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2091 llvm::AtomicOrdering::Monotonic);
2092 break;
2093 case 1: // memory_order_consume
2094 case 2: // memory_order_acquire
2095 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2096 llvm::AtomicOrdering::Acquire);
2097 break;
2098 case 3: // memory_order_release
2099 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2100 llvm::AtomicOrdering::Release);
2101 break;
2102 case 4: // memory_order_acq_rel
2103
2104 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2105 llvm::AtomicOrdering::AcquireRelease);
2106 break;
2107 case 5: // memory_order_seq_cst
2108 Result = Builder.CreateAtomicRMW(
2109 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2110 llvm::AtomicOrdering::SequentiallyConsistent);
2111 break;
2112 }
2113 Result->setVolatile(Volatile);
2114 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2115 }
2116
2117 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2118
2119 llvm::BasicBlock *BBs[5] = {
2120 createBasicBlock("monotonic", CurFn),
2121 createBasicBlock("acquire", CurFn),
2122 createBasicBlock("release", CurFn),
2123 createBasicBlock("acqrel", CurFn),
2124 createBasicBlock("seqcst", CurFn)
2125 };
2126 llvm::AtomicOrdering Orders[5] = {
2127 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
2128 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
2129 llvm::AtomicOrdering::SequentiallyConsistent};
2130
2131 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2132 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2133
2134 Builder.SetInsertPoint(ContBB);
2135 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
2136
2137 for (unsigned i = 0; i < 5; ++i) {
2138 Builder.SetInsertPoint(BBs[i]);
2139 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
2140 Ptr, NewVal, Orders[i]);
2141 RMW->setVolatile(Volatile);
2142 Result->addIncoming(RMW, BBs[i]);
2143 Builder.CreateBr(ContBB);
2144 }
2145
2146 SI->addCase(Builder.getInt32(0), BBs[0]);
2147 SI->addCase(Builder.getInt32(1), BBs[1]);
2148 SI->addCase(Builder.getInt32(2), BBs[1]);
2149 SI->addCase(Builder.getInt32(3), BBs[2]);
2150 SI->addCase(Builder.getInt32(4), BBs[3]);
2151 SI->addCase(Builder.getInt32(5), BBs[4]);
2152
2153 Builder.SetInsertPoint(ContBB);
2154 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2155 }
2156
2157 case Builtin::BI__atomic_clear: {
2158 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2159 bool Volatile =
2160 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2161
2162 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
2163 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
2164 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2165 Value *NewVal = Builder.getInt8(0);
2166 Value *Order = EmitScalarExpr(E->getArg(1));
2167 if (isa<llvm::ConstantInt>(Order)) {
2168 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2169 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2170 switch (ord) {
2171 case 0: // memory_order_relaxed
2172 default: // invalid order
2173 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
2174 break;
2175 case 3: // memory_order_release
2176 Store->setOrdering(llvm::AtomicOrdering::Release);
2177 break;
2178 case 5: // memory_order_seq_cst
2179 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
2180 break;
2181 }
2182 return RValue::get(nullptr);
2183 }
2184
2185 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2186
2187 llvm::BasicBlock *BBs[3] = {
2188 createBasicBlock("monotonic", CurFn),
2189 createBasicBlock("release", CurFn),
2190 createBasicBlock("seqcst", CurFn)
2191 };
2192 llvm::AtomicOrdering Orders[3] = {
2193 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
2194 llvm::AtomicOrdering::SequentiallyConsistent};
2195
2196 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2197 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2198
2199 for (unsigned i = 0; i < 3; ++i) {
2200 Builder.SetInsertPoint(BBs[i]);
2201 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2202 Store->setOrdering(Orders[i]);
2203 Builder.CreateBr(ContBB);
2204 }
2205
2206 SI->addCase(Builder.getInt32(0), BBs[0]);
2207 SI->addCase(Builder.getInt32(3), BBs[1]);
2208 SI->addCase(Builder.getInt32(5), BBs[2]);
2209
2210 Builder.SetInsertPoint(ContBB);
2211 return RValue::get(nullptr);
2212 }
2213
2214 case Builtin::BI__atomic_thread_fence:
2215 case Builtin::BI__atomic_signal_fence:
2216 case Builtin::BI__c11_atomic_thread_fence:
2217 case Builtin::BI__c11_atomic_signal_fence: {
2218 llvm::SyncScope::ID SSID;
2219 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
2220 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
2221 SSID = llvm::SyncScope::SingleThread;
2222 else
2223 SSID = llvm::SyncScope::System;
2224 Value *Order = EmitScalarExpr(E->getArg(0));
2225 if (isa<llvm::ConstantInt>(Order)) {
2226 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2227 switch (ord) {
2228 case 0: // memory_order_relaxed
2229 default: // invalid order
2230 break;
2231 case 1: // memory_order_consume
2232 case 2: // memory_order_acquire
2233 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
2234 break;
2235 case 3: // memory_order_release
2236 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
2237 break;
2238 case 4: // memory_order_acq_rel
2239 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
2240 break;
2241 case 5: // memory_order_seq_cst
2242 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
2243 break;
2244 }
2245 return RValue::get(nullptr);
2246 }
2247
2248 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
2249 AcquireBB = createBasicBlock("acquire", CurFn);
2250 ReleaseBB = createBasicBlock("release", CurFn);
2251 AcqRelBB = createBasicBlock("acqrel", CurFn);
2252 SeqCstBB = createBasicBlock("seqcst", CurFn);
2253 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2254
2255 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2256 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
2257
2258 Builder.SetInsertPoint(AcquireBB);
2259 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
2260 Builder.CreateBr(ContBB);
2261 SI->addCase(Builder.getInt32(1), AcquireBB);
2262 SI->addCase(Builder.getInt32(2), AcquireBB);
2263
2264 Builder.SetInsertPoint(ReleaseBB);
2265 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
2266 Builder.CreateBr(ContBB);
2267 SI->addCase(Builder.getInt32(3), ReleaseBB);
2268
2269 Builder.SetInsertPoint(AcqRelBB);
2270 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
2271 Builder.CreateBr(ContBB);
2272 SI->addCase(Builder.getInt32(4), AcqRelBB);
2273
2274 Builder.SetInsertPoint(SeqCstBB);
2275 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
2276 Builder.CreateBr(ContBB);
2277 SI->addCase(Builder.getInt32(5), SeqCstBB);
2278
2279 Builder.SetInsertPoint(ContBB);
2280 return RValue::get(nullptr);
2281 }
2282
2283 case Builtin::BI__builtin_signbit:
2284 case Builtin::BI__builtin_signbitf:
2285 case Builtin::BI__builtin_signbitl: {
2286 return RValue::get(
2287 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
2288 ConvertType(E->getType())));
2289 }
2290 case Builtin::BI__annotation: {
2291 // Re-encode each wide string to UTF8 and make an MDString.
2292 SmallVector<Metadata *, 1> Strings;
2293 for (const Expr *Arg : E->arguments()) {
2294 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
2295 assert(Str->getCharByteWidth() == 2)(static_cast <bool> (Str->getCharByteWidth() == 2) ?
void (0) : __assert_fail ("Str->getCharByteWidth() == 2",
"/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2295, __extension__ __PRETTY_FUNCTION__))
;
2296 StringRef WideBytes = Str->getBytes();
2297 std::string StrUtf8;
2298 if (!convertUTF16ToUTF8String(
2299 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
2300 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
2301 continue;
2302 }
2303 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
2304 }
2305
2306 // Build and MDTuple of MDStrings and emit the intrinsic call.
2307 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
2308 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
2309 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
2310 return RValue::getIgnored();
2311 }
2312 case Builtin::BI__builtin_annotation: {
2313 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
2314 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
2315 AnnVal->getType());
2316
2317 // Get the annotation string, go through casts. Sema requires this to be a
2318 // non-wide string literal, potentially casted, so the cast<> is safe.
2319 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
2320 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
2321 return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
2322 }
2323 case Builtin::BI__builtin_addcb:
2324 case Builtin::BI__builtin_addcs:
2325 case Builtin::BI__builtin_addc:
2326 case Builtin::BI__builtin_addcl:
2327 case Builtin::BI__builtin_addcll:
2328 case Builtin::BI__builtin_subcb:
2329 case Builtin::BI__builtin_subcs:
2330 case Builtin::BI__builtin_subc:
2331 case Builtin::BI__builtin_subcl:
2332 case Builtin::BI__builtin_subcll: {
2333
2334 // We translate all of these builtins from expressions of the form:
2335 // int x = ..., y = ..., carryin = ..., carryout, result;
2336 // result = __builtin_addc(x, y, carryin, &carryout);
2337 //
2338 // to LLVM IR of the form:
2339 //
2340 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
2341 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
2342 // %carry1 = extractvalue {i32, i1} %tmp1, 1
2343 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
2344 // i32 %carryin)
2345 // %result = extractvalue {i32, i1} %tmp2, 0
2346 // %carry2 = extractvalue {i32, i1} %tmp2, 1
2347 // %tmp3 = or i1 %carry1, %carry2
2348 // %tmp4 = zext i1 %tmp3 to i32
2349 // store i32 %tmp4, i32* %carryout
2350
2351 // Scalarize our inputs.
2352 llvm::Value *X = EmitScalarExpr(E->getArg(0));
2353 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
2354 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
2355 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
2356
2357 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
2358 llvm::Intrinsic::ID IntrinsicId;
2359 switch (BuiltinID) {
2360 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2360)
;
2361 case Builtin::BI__builtin_addcb:
2362 case Builtin::BI__builtin_addcs:
2363 case Builtin::BI__builtin_addc:
2364 case Builtin::BI__builtin_addcl:
2365 case Builtin::BI__builtin_addcll:
2366 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
2367 break;
2368 case Builtin::BI__builtin_subcb:
2369 case Builtin::BI__builtin_subcs:
2370 case Builtin::BI__builtin_subc:
2371 case Builtin::BI__builtin_subcl:
2372 case Builtin::BI__builtin_subcll:
2373 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
2374 break;
2375 }
2376
2377 // Construct our resulting LLVM IR expression.
2378 llvm::Value *Carry1;
2379 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
2380 X, Y, Carry1);
2381 llvm::Value *Carry2;
2382 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
2383 Sum1, Carryin, Carry2);
2384 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
2385 X->getType());
2386 Builder.CreateStore(CarryOut, CarryOutPtr);
2387 return RValue::get(Sum2);
2388 }
2389
2390 case Builtin::BI__builtin_add_overflow:
2391 case Builtin::BI__builtin_sub_overflow:
2392 case Builtin::BI__builtin_mul_overflow: {
2393 const clang::Expr *LeftArg = E->getArg(0);
2394 const clang::Expr *RightArg = E->getArg(1);
2395 const clang::Expr *ResultArg = E->getArg(2);
2396
2397 clang::QualType ResultQTy =
2398 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
2399
2400 WidthAndSignedness LeftInfo =
2401 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
2402 WidthAndSignedness RightInfo =
2403 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
2404 WidthAndSignedness ResultInfo =
2405 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
2406
2407 // Handle mixed-sign multiplication as a special case, because adding
2408 // runtime or backend support for our generic irgen would be too expensive.
2409 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
2410 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
2411 RightInfo, ResultArg, ResultQTy,
2412 ResultInfo);
2413
2414 WidthAndSignedness EncompassingInfo =
2415 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
2416
2417 llvm::Type *EncompassingLLVMTy =
2418 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
2419
2420 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
2421
2422 llvm::Intrinsic::ID IntrinsicId;
2423 switch (BuiltinID) {
2424 default:
2425 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2425)
;
2426 case Builtin::BI__builtin_add_overflow:
2427 IntrinsicId = EncompassingInfo.Signed
2428 ? llvm::Intrinsic::sadd_with_overflow
2429 : llvm::Intrinsic::uadd_with_overflow;
2430 break;
2431 case Builtin::BI__builtin_sub_overflow:
2432 IntrinsicId = EncompassingInfo.Signed
2433 ? llvm::Intrinsic::ssub_with_overflow
2434 : llvm::Intrinsic::usub_with_overflow;
2435 break;
2436 case Builtin::BI__builtin_mul_overflow:
2437 IntrinsicId = EncompassingInfo.Signed
2438 ? llvm::Intrinsic::smul_with_overflow
2439 : llvm::Intrinsic::umul_with_overflow;
2440 break;
2441 }
2442
2443 llvm::Value *Left = EmitScalarExpr(LeftArg);
2444 llvm::Value *Right = EmitScalarExpr(RightArg);
2445 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
2446
2447 // Extend each operand to the encompassing type.
2448 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
2449 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
2450
2451 // Perform the operation on the extended values.
2452 llvm::Value *Overflow, *Result;
2453 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
2454
2455 if (EncompassingInfo.Width > ResultInfo.Width) {
2456 // The encompassing type is wider than the result type, so we need to
2457 // truncate it.
2458 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
2459
2460 // To see if the truncation caused an overflow, we will extend
2461 // the result and then compare it to the original result.
2462 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
2463 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
2464 llvm::Value *TruncationOverflow =
2465 Builder.CreateICmpNE(Result, ResultTruncExt);
2466
2467 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
2468 Result = ResultTrunc;
2469 }
2470
2471 // Finally, store the result using the pointer.
2472 bool isVolatile =
2473 ResultArg->getType()->getPointeeType().isVolatileQualified();
2474 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
2475
2476 return RValue::get(Overflow);
2477 }
2478
2479 case Builtin::BI__builtin_uadd_overflow:
2480 case Builtin::BI__builtin_uaddl_overflow:
2481 case Builtin::BI__builtin_uaddll_overflow:
2482 case Builtin::BI__builtin_usub_overflow:
2483 case Builtin::BI__builtin_usubl_overflow:
2484 case Builtin::BI__builtin_usubll_overflow:
2485 case Builtin::BI__builtin_umul_overflow:
2486 case Builtin::BI__builtin_umull_overflow:
2487 case Builtin::BI__builtin_umulll_overflow:
2488 case Builtin::BI__builtin_sadd_overflow:
2489 case Builtin::BI__builtin_saddl_overflow:
2490 case Builtin::BI__builtin_saddll_overflow:
2491 case Builtin::BI__builtin_ssub_overflow:
2492 case Builtin::BI__builtin_ssubl_overflow:
2493 case Builtin::BI__builtin_ssubll_overflow:
2494 case Builtin::BI__builtin_smul_overflow:
2495 case Builtin::BI__builtin_smull_overflow:
2496 case Builtin::BI__builtin_smulll_overflow: {
2497
2498 // We translate all of these builtins directly to the relevant llvm IR node.
2499
2500 // Scalarize our inputs.
2501 llvm::Value *X = EmitScalarExpr(E->getArg(0));
2502 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
2503 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
2504
2505 // Decide which of the overflow intrinsics we are lowering to:
2506 llvm::Intrinsic::ID IntrinsicId;
2507 switch (BuiltinID) {
2508 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2508)
;
2509 case Builtin::BI__builtin_uadd_overflow:
2510 case Builtin::BI__builtin_uaddl_overflow:
2511 case Builtin::BI__builtin_uaddll_overflow:
2512 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
2513 break;
2514 case Builtin::BI__builtin_usub_overflow:
2515 case Builtin::BI__builtin_usubl_overflow:
2516 case Builtin::BI__builtin_usubll_overflow:
2517 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
2518 break;
2519 case Builtin::BI__builtin_umul_overflow:
2520 case Builtin::BI__builtin_umull_overflow:
2521 case Builtin::BI__builtin_umulll_overflow:
2522 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
2523 break;
2524 case Builtin::BI__builtin_sadd_overflow:
2525 case Builtin::BI__builtin_saddl_overflow:
2526 case Builtin::BI__builtin_saddll_overflow:
2527 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
2528 break;
2529 case Builtin::BI__builtin_ssub_overflow:
2530 case Builtin::BI__builtin_ssubl_overflow:
2531 case Builtin::BI__builtin_ssubll_overflow:
2532 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
2533 break;
2534 case Builtin::BI__builtin_smul_overflow:
2535 case Builtin::BI__builtin_smull_overflow:
2536 case Builtin::BI__builtin_smulll_overflow:
2537 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
2538 break;
2539 }
2540
2541
2542 llvm::Value *Carry;
2543 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
2544 Builder.CreateStore(Sum, SumOutPtr);
2545
2546 return RValue::get(Carry);
2547 }
2548 case Builtin::BI__builtin_addressof:
2549 return RValue::get(EmitLValue(E->getArg(0)).getPointer());
2550 case Builtin::BI__builtin_operator_new:
2551 return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
2552 E->getArg(0), false);
2553 case Builtin::BI__builtin_operator_delete:
2554 return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
2555 E->getArg(0), true);
2556 case Builtin::BI__noop:
2557 // __noop always evaluates to an integer literal zero.
2558 return RValue::get(ConstantInt::get(IntTy, 0));
2559 case Builtin::BI__builtin_call_with_static_chain: {
2560 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
2561 const Expr *Chain = E->getArg(1);
2562 return EmitCall(Call->getCallee()->getType(),
2563 EmitCallee(Call->getCallee()), Call, ReturnValue,
2564 EmitScalarExpr(Chain));
2565 }
2566 case Builtin::BI_InterlockedExchange8:
2567 case Builtin::BI_InterlockedExchange16:
2568 case Builtin::BI_InterlockedExchange:
2569 case Builtin::BI_InterlockedExchangePointer:
2570 return RValue::get(
2571 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
2572 case Builtin::BI_InterlockedCompareExchangePointer: {
2573 llvm::Type *RTy;
2574 llvm::IntegerType *IntType =
2575 IntegerType::get(getLLVMContext(),
2576 getContext().getTypeSize(E->getType()));
2577 llvm::Type *IntPtrType = IntType->getPointerTo();
2578
2579 llvm::Value *Destination =
2580 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
2581
2582 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
2583 RTy = Exchange->getType();
2584 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
2585
2586 llvm::Value *Comparand =
2587 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
2588
2589 auto Result =
2590 Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
2591 AtomicOrdering::SequentiallyConsistent,
2592 AtomicOrdering::SequentiallyConsistent);
2593 Result->setVolatile(true);
2594
2595 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
2596 0),
2597 RTy));
2598 }
2599 case Builtin::BI_InterlockedCompareExchange8:
2600 case Builtin::BI_InterlockedCompareExchange16:
2601 case Builtin::BI_InterlockedCompareExchange:
2602 case Builtin::BI_InterlockedCompareExchange64: {
2603 AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg(
2604 EmitScalarExpr(E->getArg(0)),
2605 EmitScalarExpr(E->getArg(2)),
2606 EmitScalarExpr(E->getArg(1)),
2607 AtomicOrdering::SequentiallyConsistent,
2608 AtomicOrdering::SequentiallyConsistent);
2609 CXI->setVolatile(true);
2610 return RValue::get(Builder.CreateExtractValue(CXI, 0));
2611 }
2612 case Builtin::BI_InterlockedIncrement16:
2613 case Builtin::BI_InterlockedIncrement:
2614 return RValue::get(
2615 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
2616 case Builtin::BI_InterlockedDecrement16:
2617 case Builtin::BI_InterlockedDecrement:
2618 return RValue::get(
2619 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
2620 case Builtin::BI_InterlockedAnd8:
2621 case Builtin::BI_InterlockedAnd16:
2622 case Builtin::BI_InterlockedAnd:
2623 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
2624 case Builtin::BI_InterlockedExchangeAdd8:
2625 case Builtin::BI_InterlockedExchangeAdd16:
2626 case Builtin::BI_InterlockedExchangeAdd:
2627 return RValue::get(
2628 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
2629 case Builtin::BI_InterlockedExchangeSub8:
2630 case Builtin::BI_InterlockedExchangeSub16:
2631 case Builtin::BI_InterlockedExchangeSub:
2632 return RValue::get(
2633 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
2634 case Builtin::BI_InterlockedOr8:
2635 case Builtin::BI_InterlockedOr16:
2636 case Builtin::BI_InterlockedOr:
2637 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
2638 case Builtin::BI_InterlockedXor8:
2639 case Builtin::BI_InterlockedXor16:
2640 case Builtin::BI_InterlockedXor:
2641 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
2642 case Builtin::BI_interlockedbittestandset:
2643 return RValue::get(
2644 EmitMSVCBuiltinExpr(MSVCIntrin::_interlockedbittestandset, E));
2645
2646 case Builtin::BI__exception_code:
2647 case Builtin::BI_exception_code:
2648 return RValue::get(EmitSEHExceptionCode());
2649 case Builtin::BI__exception_info:
2650 case Builtin::BI_exception_info:
2651 return RValue::get(EmitSEHExceptionInfo());
2652 case Builtin::BI__abnormal_termination:
2653 case Builtin::BI_abnormal_termination:
2654 return RValue::get(EmitSEHAbnormalTermination());
2655 case Builtin::BI_setjmpex: {
2656 if (getTarget().getTriple().isOSMSVCRT()) {
2657 llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
2658 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
2659 getLLVMContext(), llvm::AttributeList::FunctionIndex,
2660 llvm::Attribute::ReturnsTwice);
2661 llvm::Constant *SetJmpEx = CGM.CreateRuntimeFunction(
2662 llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
2663 "_setjmpex", ReturnsTwiceAttr, /*Local=*/true);
2664 llvm::Value *Buf = Builder.CreateBitOrPointerCast(
2665 EmitScalarExpr(E->getArg(0)), Int8PtrTy);
2666 llvm::Value *FrameAddr =
2667 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
2668 ConstantInt::get(Int32Ty, 0));
2669 llvm::Value *Args[] = {Buf, FrameAddr};
2670 llvm::CallSite CS = EmitRuntimeCallOrInvoke(SetJmpEx, Args);
2671 CS.setAttributes(ReturnsTwiceAttr);
2672 return RValue::get(CS.getInstruction());
2673 }
2674 break;
2675 }
2676 case Builtin::BI_setjmp: {
2677 if (getTarget().getTriple().isOSMSVCRT()) {
2678 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
2679 getLLVMContext(), llvm::AttributeList::FunctionIndex,
2680 llvm::Attribute::ReturnsTwice);
2681 llvm::Value *Buf = Builder.CreateBitOrPointerCast(
2682 EmitScalarExpr(E->getArg(0)), Int8PtrTy);
2683 llvm::CallSite CS;
2684 if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
2685 llvm::Type *ArgTypes[] = {Int8PtrTy, IntTy};
2686 llvm::Constant *SetJmp3 = CGM.CreateRuntimeFunction(
2687 llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/true),
2688 "_setjmp3", ReturnsTwiceAttr, /*Local=*/true);
2689 llvm::Value *Count = ConstantInt::get(IntTy, 0);
2690 llvm::Value *Args[] = {Buf, Count};
2691 CS = EmitRuntimeCallOrInvoke(SetJmp3, Args);
2692 } else {
2693 llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
2694 llvm::Constant *SetJmp = CGM.CreateRuntimeFunction(
2695 llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
2696 "_setjmp", ReturnsTwiceAttr, /*Local=*/true);
2697 llvm::Value *FrameAddr =
2698 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
2699 ConstantInt::get(Int32Ty, 0));
2700 llvm::Value *Args[] = {Buf, FrameAddr};
2701 CS = EmitRuntimeCallOrInvoke(SetJmp, Args);
2702 }
2703 CS.setAttributes(ReturnsTwiceAttr);
2704 return RValue::get(CS.getInstruction());
2705 }
2706 break;
2707 }
2708
2709 case Builtin::BI__GetExceptionInfo: {
2710 if (llvm::GlobalVariable *GV =
2711 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
2712 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
2713 break;
2714 }
2715
2716 case Builtin::BI__fastfail:
2717 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
2718
2719 case Builtin::BI__builtin_coro_size: {
2720 auto & Context = getContext();
2721 auto SizeTy = Context.getSizeType();
2722 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
2723 Value *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
2724 return RValue::get(Builder.CreateCall(F));
2725 }
2726
2727 case Builtin::BI__builtin_coro_id:
2728 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
2729 case Builtin::BI__builtin_coro_promise:
2730 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
2731 case Builtin::BI__builtin_coro_resume:
2732 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
2733 case Builtin::BI__builtin_coro_frame:
2734 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
2735 case Builtin::BI__builtin_coro_free:
2736 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
2737 case Builtin::BI__builtin_coro_destroy:
2738 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
2739 case Builtin::BI__builtin_coro_done:
2740 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
2741 case Builtin::BI__builtin_coro_alloc:
2742 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
2743 case Builtin::BI__builtin_coro_begin:
2744 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
2745 case Builtin::BI__builtin_coro_end:
2746 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
2747 case Builtin::BI__builtin_coro_suspend:
2748 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
2749 case Builtin::BI__builtin_coro_param:
2750 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
2751
2752 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
2753 case Builtin::BIread_pipe:
2754 case Builtin::BIwrite_pipe: {
2755 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
2756 *Arg1 = EmitScalarExpr(E->getArg(1));
2757 CGOpenCLRuntime OpenCLRT(CGM);
2758 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
2759 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
2760
2761 // Type of the generic packet parameter.
2762 unsigned GenericAS =
2763 getContext().getTargetAddressSpace(LangAS::opencl_generic);
2764 llvm::Type *I8PTy = llvm::PointerType::get(
2765 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
2766
2767 // Testing which overloaded version we should generate the call for.
2768 if (2U == E->getNumArgs()) {
2769 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
2770 : "__write_pipe_2";
2771 // Creating a generic function type to be able to call with any builtin or
2772 // user defined type.
2773 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
2774 llvm::FunctionType *FTy = llvm::FunctionType::get(
2775 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2776 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
2777 return RValue::get(
2778 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
2779 {Arg0, BCast, PacketSize, PacketAlign}));
2780 } else {
2781 assert(4 == E->getNumArgs() &&(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2782, __extension__ __PRETTY_FUNCTION__))
2782 "Illegal number of parameters to pipe function")(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2782, __extension__ __PRETTY_FUNCTION__))
;
2783 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
2784 : "__write_pipe_4";
2785
2786 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
2787 Int32Ty, Int32Ty};
2788 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
2789 *Arg3 = EmitScalarExpr(E->getArg(3));
2790 llvm::FunctionType *FTy = llvm::FunctionType::get(
2791 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2792 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
2793 // We know the third argument is an integer type, but we may need to cast
2794 // it to i32.
2795 if (Arg2->getType() != Int32Ty)
2796 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
2797 return RValue::get(Builder.CreateCall(
2798 CGM.CreateRuntimeFunction(FTy, Name),
2799 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
2800 }
2801 }
2802 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
2803 // functions
2804 case Builtin::BIreserve_read_pipe:
2805 case Builtin::BIreserve_write_pipe:
2806 case Builtin::BIwork_group_reserve_read_pipe:
2807 case Builtin::BIwork_group_reserve_write_pipe:
2808 case Builtin::BIsub_group_reserve_read_pipe:
2809 case Builtin::BIsub_group_reserve_write_pipe: {
2810 // Composing the mangled name for the function.
2811 const char *Name;
2812 if (BuiltinID == Builtin::BIreserve_read_pipe)
2813 Name = "__reserve_read_pipe";
2814 else if (BuiltinID == Builtin::BIreserve_write_pipe)
2815 Name = "__reserve_write_pipe";
2816 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
2817 Name = "__work_group_reserve_read_pipe";
2818 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
2819 Name = "__work_group_reserve_write_pipe";
2820 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
2821 Name = "__sub_group_reserve_read_pipe";
2822 else
2823 Name = "__sub_group_reserve_write_pipe";
2824
2825 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
2826 *Arg1 = EmitScalarExpr(E->getArg(1));
2827 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
2828 CGOpenCLRuntime OpenCLRT(CGM);
2829 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
2830 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
2831
2832 // Building the generic function prototype.
2833 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
2834 llvm::FunctionType *FTy = llvm::FunctionType::get(
2835 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2836 // We know the second argument is an integer type, but we may need to cast
2837 // it to i32.
2838 if (Arg1->getType() != Int32Ty)
2839 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
2840 return RValue::get(
2841 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
2842 {Arg0, Arg1, PacketSize, PacketAlign}));
2843 }
2844 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
2845 // functions
2846 case Builtin::BIcommit_read_pipe:
2847 case Builtin::BIcommit_write_pipe:
2848 case Builtin::BIwork_group_commit_read_pipe:
2849 case Builtin::BIwork_group_commit_write_pipe:
2850 case Builtin::BIsub_group_commit_read_pipe:
2851 case Builtin::BIsub_group_commit_write_pipe: {
2852 const char *Name;
2853 if (BuiltinID == Builtin::BIcommit_read_pipe)
2854 Name = "__commit_read_pipe";
2855 else if (BuiltinID == Builtin::BIcommit_write_pipe)
2856 Name = "__commit_write_pipe";
2857 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
2858 Name = "__work_group_commit_read_pipe";
2859 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
2860 Name = "__work_group_commit_write_pipe";
2861 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
2862 Name = "__sub_group_commit_read_pipe";
2863 else
2864 Name = "__sub_group_commit_write_pipe";
2865
2866 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
2867 *Arg1 = EmitScalarExpr(E->getArg(1));
2868 CGOpenCLRuntime OpenCLRT(CGM);
2869 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
2870 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
2871
2872 // Building the generic function prototype.
2873 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
2874 llvm::FunctionType *FTy =
2875 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
2876 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2877
2878 return RValue::get(
2879 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
2880 {Arg0, Arg1, PacketSize, PacketAlign}));
2881 }
2882 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
2883 case Builtin::BIget_pipe_num_packets:
2884 case Builtin::BIget_pipe_max_packets: {
2885 const char *Name;
2886 if (BuiltinID == Builtin::BIget_pipe_num_packets)
2887 Name = "__get_pipe_num_packets";
2888 else
2889 Name = "__get_pipe_max_packets";
2890
2891 // Building the generic function prototype.
2892 Value *Arg0 = EmitScalarExpr(E->getArg(0));
2893 CGOpenCLRuntime OpenCLRT(CGM);
2894 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
2895 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
2896 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
2897 llvm::FunctionType *FTy = llvm::FunctionType::get(
2898 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2899
2900 return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
2901 {Arg0, PacketSize, PacketAlign}));
2902 }
2903
2904 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
2905 case Builtin::BIto_global:
2906 case Builtin::BIto_local:
2907 case Builtin::BIto_private: {
2908 auto Arg0 = EmitScalarExpr(E->getArg(0));
2909 auto NewArgT = llvm::PointerType::get(Int8Ty,
2910 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
2911 auto NewRetT = llvm::PointerType::get(Int8Ty,
2912 CGM.getContext().getTargetAddressSpace(
2913 E->getType()->getPointeeType().getAddressSpace()));
2914 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
2915 llvm::Value *NewArg;
2916 if (Arg0->getType()->getPointerAddressSpace() !=
2917 NewArgT->getPointerAddressSpace())
2918 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
2919 else
2920 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
2921 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
2922 auto NewCall =
2923 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
2924 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
2925 ConvertType(E->getType())));
2926 }
2927
2928 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
2929 // It contains four different overload formats specified in Table 6.13.17.1.
2930 case Builtin::BIenqueue_kernel: {
2931 StringRef Name; // Generated function call name
2932 unsigned NumArgs = E->getNumArgs();
2933
2934 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
2935 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
2936 getContext().getTargetAddressSpace(LangAS::opencl_generic));
2937
2938 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
2939 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
2940 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
2941 llvm::Value *Range = NDRangeL.getAddress().getPointer();
2942 llvm::Type *RangeTy = NDRangeL.getAddress().getType();
2943
2944 if (NumArgs == 4) {
2945 // The most basic form of the call with parameters:
2946 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
2947 Name = "__enqueue_kernel_basic";
2948 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
2949 GenericVoidPtrTy};
2950 llvm::FunctionType *FTy = llvm::FunctionType::get(
2951 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2952
2953 auto Info =
2954 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
2955 llvm::Value *Kernel =
2956 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
2957 llvm::Value *Block =
2958 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
2959
2960 AttrBuilder B;
2961 B.addAttribute(Attribute::ByVal);
2962 llvm::AttributeList ByValAttrSet =
2963 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
2964
2965 auto RTCall =
2966 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
2967 {Queue, Flags, Range, Kernel, Block});
2968 RTCall->setAttributes(ByValAttrSet);
2969 return RValue::get(RTCall);
2970 }
2971 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")(static_cast <bool> (NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? void (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2971, __extension__ __PRETTY_FUNCTION__))
;
2972
2973 // Create a temporary array to hold the sizes of local pointer arguments
2974 // for the block. \p First is the position of the first size argument.
2975 auto CreateArrayForSizeVar = [=](unsigned First) {
2976 auto *AT = llvm::ArrayType::get(SizeTy, NumArgs - First);
2977 auto *Arr = Builder.CreateAlloca(AT);
2978 llvm::Value *Ptr;
2979 // Each of the following arguments specifies the size of the corresponding
2980 // argument passed to the enqueued block.
2981 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
2982 for (unsigned I = First; I < NumArgs; ++I) {
2983 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
2984 auto *GEP = Builder.CreateGEP(Arr, {Zero, Index});
2985 if (I == First)
2986 Ptr = GEP;
2987 auto *V =
2988 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
2989 Builder.CreateAlignedStore(
2990 V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
2991 }
2992 return Ptr;
2993 };
2994
2995 // Could have events and/or vaargs.
2996 if (E->getArg(3)->getType()->isBlockPointerType()) {
2997 // No events passed, but has variadic arguments.
2998 Name = "__enqueue_kernel_vaargs";
2999 auto Info =
3000 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3001 llvm::Value *Kernel =
3002 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3003 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3004 auto *PtrToSizeArray = CreateArrayForSizeVar(4);
3005
3006 // Create a vector of the arguments, as well as a constant value to
3007 // express to the runtime the number of variadic arguments.
3008 std::vector<llvm::Value *> Args = {
3009 Queue, Flags, Range,
3010 Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
3011 PtrToSizeArray};
3012 std::vector<llvm::Type *> ArgTys = {
3013 QueueTy, IntTy, RangeTy,
3014 GenericVoidPtrTy, GenericVoidPtrTy, IntTy,
3015 PtrToSizeArray->getType()};
3016
3017 llvm::FunctionType *FTy = llvm::FunctionType::get(
3018 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3019 return RValue::get(
3020 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3021 llvm::ArrayRef<llvm::Value *>(Args)));
3022 }
3023 // Any calls now have event arguments passed.
3024 if (NumArgs >= 7) {
3025 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
3026 llvm::Type *EventPtrTy = EventTy->getPointerTo(
3027 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3028
3029 llvm::Value *NumEvents =
3030 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
3031 llvm::Value *EventList =
3032 E->getArg(4)->getType()->isArrayType()
3033 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
3034 : EmitScalarExpr(E->getArg(4));
3035 llvm::Value *ClkEvent = EmitScalarExpr(E->getArg(5));
3036 // Convert to generic address space.
3037 EventList = Builder.CreatePointerCast(EventList, EventPtrTy);
3038 ClkEvent = Builder.CreatePointerCast(ClkEvent, EventPtrTy);
3039 auto Info =
3040 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
3041 llvm::Value *Kernel =
3042 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3043 llvm::Value *Block =
3044 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3045
3046 std::vector<llvm::Type *> ArgTys = {
3047 QueueTy, Int32Ty, RangeTy, Int32Ty,
3048 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
3049
3050 std::vector<llvm::Value *> Args = {Queue, Flags, Range, NumEvents,
3051 EventList, ClkEvent, Kernel, Block};
3052
3053 if (NumArgs == 7) {
3054 // Has events but no variadics.
3055 Name = "__enqueue_kernel_basic_events";
3056 llvm::FunctionType *FTy = llvm::FunctionType::get(
3057 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3058 return RValue::get(
3059 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3060 llvm::ArrayRef<llvm::Value *>(Args)));
3061 }
3062 // Has event info and variadics
3063 // Pass the number of variadics to the runtime function too.
3064 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
3065 ArgTys.push_back(Int32Ty);
3066 Name = "__enqueue_kernel_events_vaargs";
3067
3068 auto *PtrToSizeArray = CreateArrayForSizeVar(7);
3069 Args.push_back(PtrToSizeArray);
3070 ArgTys.push_back(PtrToSizeArray->getType());
3071
3072 llvm::FunctionType *FTy = llvm::FunctionType::get(
3073 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3074 return RValue::get(
3075 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3076 llvm::ArrayRef<llvm::Value *>(Args)));
3077 }
3078 LLVM_FALLTHROUGH[[clang::fallthrough]];
3079 }
3080 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
3081 // parameter.
3082 case Builtin::BIget_kernel_work_group_size: {
3083 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3084 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3085 auto Info =
3086 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3087 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3088 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3089 return RValue::get(Builder.CreateCall(
3090 CGM.CreateRuntimeFunction(
3091 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3092 false),
3093 "__get_kernel_work_group_size_impl"),
3094 {Kernel, Arg}));
3095 }
3096 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
3097 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3098 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3099 auto Info =
3100 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3101 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3102 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3103 return RValue::get(Builder.CreateCall(
3104 CGM.CreateRuntimeFunction(
3105 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3106 false),
3107 "__get_kernel_preferred_work_group_multiple_impl"),
3108 {Kernel, Arg}));
3109 }
3110 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
3111 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
3112 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3113 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3114 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
3115 llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
3116 auto Info =
3117 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
3118 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3119 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3120 const char *Name =
3121 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
3122 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
3123 : "__get_kernel_sub_group_count_for_ndrange_impl";
3124 return RValue::get(Builder.CreateCall(
3125 CGM.CreateRuntimeFunction(
3126 llvm::FunctionType::get(
3127 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
3128 false),
3129 Name),
3130 {NDRange, Kernel, Block}));
3131 }
3132
3133 case Builtin::BI__builtin_store_half:
3134 case Builtin::BI__builtin_store_halff: {
3135 Value *Val = EmitScalarExpr(E->getArg(0));
3136 Address Address = EmitPointerWithAlignment(E->getArg(1));
3137 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
3138 return RValue::get(Builder.CreateStore(HalfVal, Address));
3139 }
3140 case Builtin::BI__builtin_load_half: {
3141 Address Address = EmitPointerWithAlignment(E->getArg(0));
3142 Value *HalfVal = Builder.CreateLoad(Address);
3143 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
3144 }
3145 case Builtin::BI__builtin_load_halff: {
3146 Address Address = EmitPointerWithAlignment(E->getArg(0));
3147 Value *HalfVal = Builder.CreateLoad(Address);
3148 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
3149 }
3150 case Builtin::BIprintf:
3151 if (getTarget().getTriple().isNVPTX())
3152 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
3153 break;
3154 case Builtin::BI__builtin_canonicalize:
3155 case Builtin::BI__builtin_canonicalizef:
3156 case Builtin::BI__builtin_canonicalizel:
3157 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
3158
3159 case Builtin::BI__builtin_thread_pointer: {
3160 if (!getContext().getTargetInfo().isTLSSupported())
3161 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
3162 // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
3163 break;
3164 }
3165 case Builtin::BI__builtin_os_log_format:
3166 return emitBuiltinOSLogFormat(*E);
3167
3168 case Builtin::BI__builtin_os_log_format_buffer_size: {
3169 analyze_os_log::OSLogBufferLayout Layout;
3170 analyze_os_log::computeOSLogBufferLayout(CGM.getContext(), E, Layout);
3171 return RValue::get(ConstantInt::get(ConvertType(E->getType()),
3172 Layout.size().getQuantity()));
3173 }
3174
3175 case Builtin::BI__xray_customevent: {
3176 if (!ShouldXRayInstrumentFunction())
3177 return RValue::getIgnored();
3178 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
3179 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
3180 return RValue::getIgnored();
3181
3182 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
3183 auto FTy = F->getFunctionType();
3184 auto Arg0 = E->getArg(0);
3185 auto Arg0Val = EmitScalarExpr(Arg0);
3186 auto Arg0Ty = Arg0->getType();
3187 auto PTy0 = FTy->getParamType(0);
3188 if (PTy0 != Arg0Val->getType()) {
3189 if (Arg0Ty->isArrayType())
3190 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
3191 else
3192 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
3193 }
3194 auto Arg1 = EmitScalarExpr(E->getArg(1));
3195 auto PTy1 = FTy->getParamType(1);
3196 if (PTy1 != Arg1->getType())
3197 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
3198 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
3199 }
3200
3201 case Builtin::BI__builtin_ms_va_start:
3202 case Builtin::BI__builtin_ms_va_end:
3203 return RValue::get(
3204 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
3205 BuiltinID == Builtin::BI__builtin_ms_va_start));
3206
3207 case Builtin::BI__builtin_ms_va_copy: {
3208 // Lower this manually. We can't reliably determine whether or not any
3209 // given va_copy() is for a Win64 va_list from the calling convention
3210 // alone, because it's legal to do this from a System V ABI function.
3211 // With opaque pointer types, we won't have enough information in LLVM
3212 // IR to determine this from the argument types, either. Best to do it
3213 // now, while we have enough information.
3214 Address DestAddr = EmitMSVAListRef(E->getArg(0));
3215 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
3216
3217 llvm::Type *BPP = Int8PtrPtrTy;
3218
3219 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
3220 DestAddr.getAlignment());
3221 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
3222 SrcAddr.getAlignment());
3223
3224 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
3225 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
3226 }
3227 }
3228
3229 // If this is an alias for a lib function (e.g. __builtin_sin), emit
3230 // the call using the normal call path, but using the unmangled
3231 // version of the function name.
3232 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
3233 return emitLibraryCall(*this, FD, E,
3234 CGM.getBuiltinLibFunction(FD, BuiltinID));
3235
3236 // If this is a predefined lib function (e.g. malloc), emit the call
3237 // using exactly the normal call path.
3238 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3239 return emitLibraryCall(*this, FD, E,
3240 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
3241
3242 // Check that a call to a target specific builtin has the correct target
3243 // features.
3244 // This is down here to avoid non-target specific builtins, however, if
3245 // generic builtins start to require generic target features then we
3246 // can move this up to the beginning of the function.
3247 checkTargetFeatures(E, FD);
3248
3249 // See if we have a target specific intrinsic.
3250 const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
3251 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
3252 StringRef Prefix =
3253 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
3254 if (!Prefix.empty()) {
3255 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
3256 // NOTE we dont need to perform a compatibility flag check here since the
3257 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
3258 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
3259 if (IntrinsicID == Intrinsic::not_intrinsic)
3260 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
3261 }
3262
3263 if (IntrinsicID != Intrinsic::not_intrinsic) {
3264 SmallVector<Value*, 16> Args;
3265
3266 // Find out if any arguments are required to be integer constant
3267 // expressions.
3268 unsigned ICEArguments = 0;
3269 ASTContext::GetBuiltinTypeError Error;
3270 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
3271 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3271, __extension__ __PRETTY_FUNCTION__))
;
3272
3273 Function *F = CGM.getIntrinsic(IntrinsicID);
3274 llvm::FunctionType *FTy = F->getFunctionType();
3275
3276 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
3277 Value *ArgValue;
3278 // If this is a normal argument, just emit it as a scalar.
3279 if ((ICEArguments & (1 << i)) == 0) {
3280 ArgValue = EmitScalarExpr(E->getArg(i));
3281 } else {
3282 // If this is required to be a constant, constant fold it so that we
3283 // know that the generated intrinsic gets a ConstantInt.
3284 llvm::APSInt Result;
3285 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
3286 assert(IsConst && "Constant arg isn't actually constant?")(static_cast <bool> (IsConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3286, __extension__ __PRETTY_FUNCTION__))
;
3287 (void)IsConst;
3288 ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
3289 }
3290
3291 // If the intrinsic arg type is different from the builtin arg type
3292 // we need to do a bit cast.
3293 llvm::Type *PTy = FTy->getParamType(i);
3294 if (PTy != ArgValue->getType()) {
3295 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3296, __extension__ __PRETTY_FUNCTION__))
3296 "Must be able to losslessly bit cast to param")(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3296, __extension__ __PRETTY_FUNCTION__))
;
3297 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
3298 }
3299
3300 Args.push_back(ArgValue);
3301 }
3302
3303 Value *V = Builder.CreateCall(F, Args);
3304 QualType BuiltinRetType = E->getType();
3305
3306 llvm::Type *RetTy = VoidTy;
3307 if (!BuiltinRetType->isVoidType())
3308 RetTy = ConvertType(BuiltinRetType);
3309
3310 if (RetTy != V->getType()) {
3311 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3312, __extension__ __PRETTY_FUNCTION__))
3312 "Must be able to losslessly bit cast result type")(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3312, __extension__ __PRETTY_FUNCTION__))
;
3313 V = Builder.CreateBitCast(V, RetTy);
3314 }
3315
3316 return RValue::get(V);
3317 }
3318
3319 // See if we have a target specific builtin that needs to be lowered.
3320 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
3321 return RValue::get(V);
3322
3323 ErrorUnsupported(E, "builtin function");
3324
3325 // Unknown builtin, for now just dump it out and return undef.
3326 return GetUndefRValue(E->getType());
3327}
3328
3329static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
3330 unsigned BuiltinID, const CallExpr *E,
3331 llvm::Triple::ArchType Arch) {
3332 switch (Arch) {
3333 case llvm::Triple::arm:
3334 case llvm::Triple::armeb:
3335 case llvm::Triple::thumb:
3336 case llvm::Triple::thumbeb:
3337 return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch);
3338 case llvm::Triple::aarch64:
3339 case llvm::Triple::aarch64_be:
3340 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
3341 case llvm::Triple::x86:
3342 case llvm::Triple::x86_64:
3343 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
3344 case llvm::Triple::ppc:
3345 case llvm::Triple::ppc64:
3346 case llvm::Triple::ppc64le:
3347 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
3348 case llvm::Triple::r600:
3349 case llvm::Triple::amdgcn:
3350 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
3351 case llvm::Triple::systemz:
3352 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
3353 case llvm::Triple::nvptx:
3354 case llvm::Triple::nvptx64:
3355 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
3356 case llvm::Triple::wasm32:
3357 case llvm::Triple::wasm64:
3358 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
3359 case llvm::Triple::hexagon:
3360 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
3361 default:
3362 return nullptr;
3363 }
3364}
3365
3366Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
3367 const CallExpr *E) {
3368 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
3369 assert(getContext().getAuxTargetInfo() && "Missing aux target info")(static_cast <bool> (getContext().getAuxTargetInfo() &&
"Missing aux target info") ? void (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3369, __extension__ __PRETTY_FUNCTION__))
;
3370 return EmitTargetArchBuiltinExpr(
3371 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
3372 getContext().getAuxTargetInfo()->getTriple().getArch());
3373 }
3374
3375 return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
3376 getTarget().getTriple().getArch());
3377}
3378
3379static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
3380 NeonTypeFlags TypeFlags,
3381 llvm::Triple::ArchType Arch,
3382 bool V1Ty=false) {
3383 int IsQuad = TypeFlags.isQuad();
3384 switch (TypeFlags.getEltType()) {
3385 case NeonTypeFlags::Int8:
3386 case NeonTypeFlags::Poly8:
3387 return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
3388 case NeonTypeFlags::Int16:
3389 case NeonTypeFlags::Poly16:
3390 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
3391 case NeonTypeFlags::Float16:
3392 // FIXME: Only AArch64 backend can so far properly handle half types.
3393 // Remove else part once ARM backend support for half is complete.
3394 if (Arch == llvm::Triple::aarch64)
3395 return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
3396 else
3397 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
3398 case NeonTypeFlags::Int32:
3399 return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
3400 case NeonTypeFlags::Int64:
3401 case NeonTypeFlags::Poly64:
3402 return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
3403 case NeonTypeFlags::Poly128:
3404 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
3405 // There is a lot of i128 and f128 API missing.
3406 // so we use v16i8 to represent poly128 and get pattern matched.
3407 return llvm::VectorType::get(CGF->Int8Ty, 16);
3408 case NeonTypeFlags::Float32:
3409 return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
3410 case NeonTypeFlags::Float64:
3411 return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
3412 }
3413 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3413)
;
3414}
3415
3416static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
3417 NeonTypeFlags IntTypeFlags) {
3418 int IsQuad = IntTypeFlags.isQuad();
3419 switch (IntTypeFlags.getEltType()) {
3420 case NeonTypeFlags::Int16:
3421 return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
3422 case NeonTypeFlags::Int32:
3423 return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
3424 case NeonTypeFlags::Int64:
3425 return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
3426 default:
3427 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3427)
;
3428 }
3429}
3430
3431Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
3432 unsigned nElts = V->getType()->getVectorNumElements();
3433 Value* SV = llvm::ConstantVector::getSplat(nElts, C);
3434 return Builder.CreateShuffleVector(V, V, SV, "lane");
3435}
3436
3437Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
3438 const char *name,
3439 unsigned shift, bool rightshift) {
3440 unsigned j = 0;
3441 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
3442 ai != ae; ++ai, ++j)
3443 if (shift > 0 && shift == j)
3444 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
3445 else
3446 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
3447
3448 return Builder.CreateCall(F, Ops, name);
3449}
3450
3451Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
3452 bool neg) {
3453 int SV = cast<ConstantInt>(V)->getSExtValue();
3454 return ConstantInt::get(Ty, neg ? -SV : SV);
3455}
3456
3457// \brief Right-shift a vector by a constant.
3458Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
3459 llvm::Type *Ty, bool usgn,
3460 const char *name) {
3461 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3462
3463 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
3464 int EltSize = VTy->getScalarSizeInBits();
3465
3466 Vec = Builder.CreateBitCast(Vec, Ty);
3467
3468 // lshr/ashr are undefined when the shift amount is equal to the vector
3469 // element size.
3470 if (ShiftAmt == EltSize) {
3471 if (usgn) {
3472 // Right-shifting an unsigned value by its size yields 0.
3473 return llvm::ConstantAggregateZero::get(VTy);
3474 } else {
3475 // Right-shifting a signed value by its size is equivalent
3476 // to a shift of size-1.
3477 --ShiftAmt;
3478 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
3479 }
3480 }
3481
3482 Shift = EmitNeonShiftVector(Shift, Ty, false);
3483 if (usgn)
3484 return Builder.CreateLShr(Vec, Shift, name);
3485 else
3486 return Builder.CreateAShr(Vec, Shift, name);
3487}
3488
3489enum {
3490 AddRetType = (1 << 0),
3491 Add1ArgType = (1 << 1),
3492 Add2ArgTypes = (1 << 2),
3493
3494 VectorizeRetType = (1 << 3),
3495 VectorizeArgTypes = (1 << 4),
3496
3497 InventFloatType = (1 << 5),
3498 UnsignedAlts = (1 << 6),
3499
3500 Use64BitVectors = (1 << 7),
3501 Use128BitVectors = (1 << 8),
3502
3503 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
3504 VectorRet = AddRetType | VectorizeRetType,
3505 VectorRetGetArgs01 =
3506 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
3507 FpCmpzModifiers =
3508 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
3509};
3510
3511namespace {
3512struct NeonIntrinsicInfo {
3513 const char *NameHint;
3514 unsigned BuiltinID;
3515 unsigned LLVMIntrinsic;
3516 unsigned AltLLVMIntrinsic;
3517 unsigned TypeModifier;
3518
3519 bool operator<(unsigned RHSBuiltinID) const {
3520 return BuiltinID < RHSBuiltinID;
3521 }
3522 bool operator<(const NeonIntrinsicInfo &TE) const {
3523 return BuiltinID < TE.BuiltinID;
3524 }
3525};
3526} // end anonymous namespace
3527
3528#define NEONMAP0(NameBase) \
3529 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
3530
3531#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
3532 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
3533 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
3534
3535#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
3536 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
3537 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
3538 TypeModifier }
3539
3540static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
3541 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
3542 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
3543 NEONMAP1(vabs_v, arm_neon_vabs, 0),
3544 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
3545 NEONMAP0(vaddhn_v),
3546 NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
3547 NEONMAP1(vaeseq_v, arm_neon_aese, 0),
3548 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
3549 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
3550 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
3551 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
3552 NEONMAP1(vcage_v, arm_neon_vacge, 0),
3553 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
3554 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
3555 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
3556 NEONMAP1(vcale_v, arm_neon_vacge, 0),
3557 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
3558 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
3559 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
3560 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
3561 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
3562 NEONMAP1(vclz_v, ctlz, Add1ArgType),
3563 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
3564 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
3565 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
3566 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
3567 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
3568 NEONMAP0(vcvt_f32_v),
3569 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
3570 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
3571 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
3572 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
3573 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
3574 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
3575 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
3576 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
3577 NEONMAP0(vcvt_s16_v),
3578 NEONMAP0(vcvt_s32_v),
3579 NEONMAP0(vcvt_s64_v),
3580 NEONMAP0(vcvt_u16_v),
3581 NEONMAP0(vcvt_u32_v),
3582 NEONMAP0(vcvt_u64_v),
3583 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
3584 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
3585 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
3586 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
3587 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
3588 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
3589 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
3590 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
3591 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
3592 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
3593 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
3594 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
3595 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
3596 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
3597 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
3598 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
3599 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
3600 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
3601 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
3602 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
3603 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
3604 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
3605 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
3606 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
3607 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
3608 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
3609 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
3610 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
3611 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
3612 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
3613 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
3614 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
3615 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
3616 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
3617 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
3618 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
3619 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
3620 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
3621 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
3622 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
3623 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
3624 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
3625 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
3626 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
3627 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
3628 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
3629 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
3630 NEONMAP0(vcvtq_f32_v),
3631 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
3632 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
3633 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
3634 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
3635 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
3636 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
3637 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
3638 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
3639 NEONMAP0(vcvtq_s16_v),
3640 NEONMAP0(vcvtq_s32_v),
3641 NEONMAP0(vcvtq_s64_v),
3642 NEONMAP0(vcvtq_u16_v),
3643 NEONMAP0(vcvtq_u32_v),
3644 NEONMAP0(vcvtq_u64_v),
3645 NEONMAP0(vext_v),
3646 NEONMAP0(vextq_v),
3647 NEONMAP0(vfma_v),
3648 NEONMAP0(vfmaq_v),
3649 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
3650 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
3651 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
3652 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
3653 NEONMAP0(vld1_dup_v),
3654 NEONMAP1(vld1_v, arm_neon_vld1, 0),
3655 NEONMAP0(vld1q_dup_v),
3656 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
3657 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
3658 NEONMAP1(vld2_v, arm_neon_vld2, 0),
3659 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
3660 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
3661 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
3662 NEONMAP1(vld3_v, arm_neon_vld3, 0),
3663 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
3664 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
3665 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
3666 NEONMAP1(vld4_v, arm_neon_vld4, 0),
3667 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
3668 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
3669 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
3670 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
3671 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
3672 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
3673 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
3674 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
3675 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
3676 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
3677 NEONMAP0(vmovl_v),
3678 NEONMAP0(vmovn_v),
3679 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
3680 NEONMAP0(vmull_v),
3681 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
3682 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
3683 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
3684 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
3685 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
3686 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
3687 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
3688 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
3689 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
3690 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
3691 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
3692 NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
3693 NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
3694 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
3695 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
3696 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
3697 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
3698 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
3699 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
3700 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
3701 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
3702 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
3703 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
3704 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
3705 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
3706 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
3707 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
3708 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
3709 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
3710 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
3711 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
3712 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
3713 NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
3714 NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
3715 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
3716 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
3717 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
3718 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
3719 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
3720 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
3721 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
3722 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
3723 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
3724 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
3725 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
3726 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
3727 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
3728 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
3729 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
3730 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
3731 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
3732 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
3733 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
3734 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
3735 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
3736 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
3737 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
3738 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
3739 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
3740 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
3741 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
3742 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
3743 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
3744 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
3745 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
3746 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
3747 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
3748 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
3749 NEONMAP0(vshl_n_v),
3750 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
3751 NEONMAP0(vshll_n_v),
3752 NEONMAP0(vshlq_n_v),
3753 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
3754 NEONMAP0(vshr_n_v),
3755 NEONMAP0(vshrn_n_v),
3756 NEONMAP0(vshrq_n_v),
3757 NEONMAP1(vst1_v, arm_neon_vst1, 0),
3758 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
3759 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
3760 NEONMAP1(vst2_v, arm_neon_vst2, 0),
3761 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
3762 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
3763 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
3764 NEONMAP1(vst3_v, arm_neon_vst3, 0),
3765 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
3766 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
3767 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
3768 NEONMAP1(vst4_v, arm_neon_vst4, 0),
3769 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
3770 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
3771 NEONMAP0(vsubhn_v),
3772 NEONMAP0(vtrn_v),
3773 NEONMAP0(vtrnq_v),
3774 NEONMAP0(vtst_v),
3775 NEONMAP0(vtstq_v),
3776 NEONMAP0(vuzp_v),
3777 NEONMAP0(vuzpq_v),
3778 NEONMAP0(vzip_v),
3779 NEONMAP0(vzipq_v)
3780};
3781
3782static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
3783 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
3784 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
3785 NEONMAP0(vaddhn_v),
3786 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
3787 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
3788 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
3789 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
3790 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
3791 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
3792 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
3793 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
3794 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
3795 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
3796 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
3797 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
3798 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
3799 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
3800 NEONMAP1(vclz_v, ctlz, Add1ArgType),
3801 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
3802 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
3803 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
3804 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
3805 NEONMAP0(vcvt_f16_v),
3806 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
3807 NEONMAP0(vcvt_f32_v),
3808 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3809 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3810 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3811 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
3812 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
3813 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
3814 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
3815 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
3816 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
3817 NEONMAP0(vcvtq_f16_v),
3818 NEONMAP0(vcvtq_f32_v),
3819 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3820 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3821 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3822 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
3823 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
3824 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
3825 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
3826 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
3827 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
3828 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
3829 NEONMAP0(vext_v),
3830 NEONMAP0(vextq_v),
3831 NEONMAP0(vfma_v),
3832 NEONMAP0(vfmaq_v),
3833 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
3834 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
3835 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
3836 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
3837 NEONMAP0(vmovl_v),
3838 NEONMAP0(vmovn_v),
3839 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
3840 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
3841 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
3842 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
3843 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
3844 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
3845 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
3846 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
3847 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
3848 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
3849 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
3850 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
3851 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
3852 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
3853 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
3854 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
3855 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
3856 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
3857 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
3858 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
3859 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
3860 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
3861 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
3862 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
3863 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
3864 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
3865 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
3866 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
3867 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
3868 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
3869 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
3870 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
3871 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
3872 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
3873 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
3874 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
3875 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
3876 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
3877 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
3878 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
3879 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
3880 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
3881 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
3882 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
3883 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
3884 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
3885 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
3886 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
3887 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
3888 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
3889 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
3890 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
3891 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
3892 NEONMAP0(vshl_n_v),
3893 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
3894 NEONMAP0(vshll_n_v),
3895 NEONMAP0(vshlq_n_v),
3896 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
3897 NEONMAP0(vshr_n_v),
3898 NEONMAP0(vshrn_n_v),
3899 NEONMAP0(vshrq_n_v),
3900 NEONMAP0(vsubhn_v),
3901 NEONMAP0(vtst_v),
3902 NEONMAP0(vtstq_v),
3903};
3904
3905static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
3906 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
3907 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
3908 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
3909 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
3910 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
3911 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
3912 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
3913 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
3914 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
3915 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
3916 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
3917 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
3918 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
3919 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
3920 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
3921 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
3922 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
3923 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
3924 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
3925 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
3926 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
3927 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
3928 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
3929 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
3930 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
3931 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
3932 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
3933 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
3934 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
3935 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
3936 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
3937 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
3938 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
3939 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
3940 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
3941 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
3942 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
3943 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
3944 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
3945 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
3946 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
3947 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
3948 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
3949 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
3950 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
3951 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
3952 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
3953 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
3954 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
3955 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
3956 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
3957 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
3958 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
3959 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
3960 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
3961 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
3962 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
3963 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
3964 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
3965 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
3966 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
3967 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
3968 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
3969 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
3970 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
3971 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
3972 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
3973 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
3974 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
3975 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
3976 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
3977 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
3978 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
3979 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
3980 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
3981 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
3982 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
3983 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
3984 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
3985 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
3986 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
3987 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
3988 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
3989 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
3990 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
3991 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
3992 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
3993 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
3994 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
3995 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
3996 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
3997 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
3998 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
3999 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
4000 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
4001 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
4002 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
4003 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
4004 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
4005 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
4006 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4007 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4008 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4009 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4010 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
4011 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4012 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4013 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4014 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
4015 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4016 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
4017 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
4018 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
4019 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4020 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4021 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
4022 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
4023 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4024 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4025 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
4026 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
4027 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
4028 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
4029 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
4030 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
4031 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
4032 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
4033 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
4034 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
4035 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
4036 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4037 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4038 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4039 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4040 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
4041 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
4042 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4043 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4044 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4045 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4046 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
4047 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
4048 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
4049 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
4050 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
4051 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
4052 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
4053 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
4054 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
4055 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
4056 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
4057 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
4058 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
4059 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
4060 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
4061 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
4062 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
4063 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
4064 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
4065 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
4066 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
4067 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
4068 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
4069 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
4070 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
4071 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
4072 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
4073 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
4074 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
4075 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
4076 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
4077 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
4078 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
4079 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
4080 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
4081 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
4082 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
4083 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
4084 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
4085 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
4086 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
4087 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
4088 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
4089 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
4090 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
4091 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
4092 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
4093 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
4094 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
4095 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
4096 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
4097 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
4098};
4099
4100#undef NEONMAP0
4101#undef NEONMAP1
4102#undef NEONMAP2
4103
4104static bool NEONSIMDIntrinsicsProvenSorted = false;
4105
4106static bool AArch64SIMDIntrinsicsProvenSorted = false;
4107static bool AArch64SISDIntrinsicsProvenSorted = false;
4108
4109
4110static const NeonIntrinsicInfo *
4111findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
4112 unsigned BuiltinID, bool &MapProvenSorted) {
4113
4114#ifndef NDEBUG
4115 if (!MapProvenSorted) {
4116 assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)))(static_cast <bool> (std::is_sorted(std::begin(IntrinsicMap
), std::end(IntrinsicMap))) ? void (0) : __assert_fail ("std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap))"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4116, __extension__ __PRETTY_FUNCTION__))
;
4117 MapProvenSorted = true;
4118 }
4119#endif
4120
4121 const NeonIntrinsicInfo *Builtin =
4122 std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
4123
4124 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
4125 return Builtin;
4126
4127 return nullptr;
4128}
4129
4130Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4131 unsigned Modifier,
4132 llvm::Type *ArgType,
4133 const CallExpr *E) {
4134 int VectorSize = 0;
4135 if (Modifier & Use64BitVectors)
4136 VectorSize = 64;
4137 else if (Modifier & Use128BitVectors)
4138 VectorSize = 128;
4139
4140 // Return type.
4141 SmallVector<llvm::Type *, 3> Tys;
4142 if (Modifier & AddRetType) {
4143 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
4144 if (Modifier & VectorizeRetType)
4145 Ty = llvm::VectorType::get(
4146 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
4147
4148 Tys.push_back(Ty);
4149 }
4150
4151 // Arguments.
4152 if (Modifier & VectorizeArgTypes) {
4153 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
4154 ArgType = llvm::VectorType::get(ArgType, Elts);
4155 }
4156
4157 if (Modifier & (Add1ArgType | Add2ArgTypes))
4158 Tys.push_back(ArgType);
4159
4160 if (Modifier & Add2ArgTypes)
4161 Tys.push_back(ArgType);
4162
4163 if (Modifier & InventFloatType)
4164 Tys.push_back(FloatTy);
4165
4166 return CGM.getIntrinsic(IntrinsicID, Tys);
4167}
4168
4169static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
4170 const NeonIntrinsicInfo &SISDInfo,
4171 SmallVectorImpl<Value *> &Ops,
4172 const CallExpr *E) {
4173 unsigned BuiltinID = SISDInfo.BuiltinID;
4174 unsigned int Int = SISDInfo.LLVMIntrinsic;
4175 unsigned Modifier = SISDInfo.TypeModifier;
4176 const char *s = SISDInfo.NameHint;
4177
4178 switch (BuiltinID) {
4179 case NEON::BI__builtin_neon_vcled_s64:
4180 case NEON::BI__builtin_neon_vcled_u64:
4181 case NEON::BI__builtin_neon_vcles_f32:
4182 case NEON::BI__builtin_neon_vcled_f64:
4183 case NEON::BI__builtin_neon_vcltd_s64:
4184 case NEON::BI__builtin_neon_vcltd_u64:
4185 case NEON::BI__builtin_neon_vclts_f32:
4186 case NEON::BI__builtin_neon_vcltd_f64:
4187 case NEON::BI__builtin_neon_vcales_f32:
4188 case NEON::BI__builtin_neon_vcaled_f64:
4189 case NEON::BI__builtin_neon_vcalts_f32:
4190 case NEON::BI__builtin_neon_vcaltd_f64:
4191 // Only one direction of comparisons actually exist, cmle is actually a cmge
4192 // with swapped operands. The table gives us the right intrinsic but we
4193 // still need to do the swap.
4194 std::swap(Ops[0], Ops[1]);
4195 break;
4196 }
4197
4198 assert(Int && "Generic code assumes a valid intrinsic")(static_cast <bool> (Int && "Generic code assumes a valid intrinsic"
) ? void (0) : __assert_fail ("Int && \"Generic code assumes a valid intrinsic\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4198, __extension__ __PRETTY_FUNCTION__))
;
4199
4200 // Determine the type(s) of this overloaded AArch64 intrinsic.
4201 const Expr *Arg = E->getArg(0);
4202 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
4203 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
4204
4205 int j = 0;
4206 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
4207 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4208 ai != ae; ++ai, ++j) {
4209 llvm::Type *ArgTy = ai->getType();
4210 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
4211 ArgTy->getPrimitiveSizeInBits())
4212 continue;
4213
4214 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy())(static_cast <bool> (ArgTy->isVectorTy() && !
Ops[j]->getType()->isVectorTy()) ? void (0) : __assert_fail
("ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4214, __extension__ __PRETTY_FUNCTION__))
;
4215 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
4216 // it before inserting.
4217 Ops[j] =
4218 CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
4219 Ops[j] =
4220 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
4221 }
4222
4223 Value *Result = CGF.EmitNeonCall(F, Ops, s);
4224 llvm::Type *ResultType = CGF.ConvertType(E->getType());
4225 if (ResultType->getPrimitiveSizeInBits() <
4226 Result->getType()->getPrimitiveSizeInBits())
4227 return CGF.Builder.CreateExtractElement(Result, C0);
4228
4229 return CGF.Builder.CreateBitCast(Result, ResultType, s);
4230}
4231
4232Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
4233 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
4234 const char *NameHint, unsigned Modifier, const CallExpr *E,
4235 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
4236 llvm::Triple::ArchType Arch) {
4237 // Get the last argument, which specifies the vector type.
4238 llvm::APSInt NeonTypeConst;
4239 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
4240 if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
4241 return nullptr;
4242
4243 // Determine the type of this overloaded NEON intrinsic.
4244 NeonTypeFlags Type(NeonTypeConst.getZExtValue());
4245 bool Usgn = Type.isUnsigned();
4246 bool Quad = Type.isQuad();
4247
4248 llvm::VectorType *VTy = GetNeonType(this, Type, Arch);
4249 llvm::Type *Ty = VTy;
4250 if (!Ty)
4251 return nullptr;
4252
4253 auto getAlignmentValue32 = [&](Address addr) -> Value* {
4254 return Builder.getInt32(addr.getAlignment().getQuantity());
4255 };
4256
4257 unsigned Int = LLVMIntrinsic;
4258 if ((Modifier & UnsignedAlts) && !Usgn)
4259 Int = AltLLVMIntrinsic;
4260
4261 switch (BuiltinID) {
4262 default: break;
4263 case NEON::BI__builtin_neon_vabs_v:
4264 case NEON::BI__builtin_neon_vabsq_v:
4265 if (VTy->getElementType()->isFloatingPointTy())
4266 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
4267 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
4268 case NEON::BI__builtin_neon_vaddhn_v: {
4269 llvm::VectorType *SrcTy =
4270 llvm::VectorType::getExtendedElementVectorType(VTy);
4271
4272 // %sum = add <4 x i32> %lhs, %rhs
4273 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4274 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
4275 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
4276
4277 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
4278 Constant *ShiftAmt =
4279 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
4280 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
4281
4282 // %res = trunc <4 x i32> %high to <4 x i16>
4283 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
4284 }
4285 case NEON::BI__builtin_neon_vcale_v:
4286 case NEON::BI__builtin_neon_vcaleq_v:
4287 case NEON::BI__builtin_neon_vcalt_v:
4288 case NEON::BI__builtin_neon_vcaltq_v:
4289 std::swap(Ops[0], Ops[1]);
4290 LLVM_FALLTHROUGH[[clang::fallthrough]];
4291 case NEON::BI__builtin_neon_vcage_v:
4292 case NEON::BI__builtin_neon_vcageq_v:
4293 case NEON::BI__builtin_neon_vcagt_v:
4294 case NEON::BI__builtin_neon_vcagtq_v: {
4295 llvm::Type *Ty;
4296 switch (VTy->getScalarSizeInBits()) {
4297 default: llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4297)
;
4298 case 32:
4299 Ty = FloatTy;
4300 break;
4301 case 64:
4302 Ty = DoubleTy;
4303 break;
4304 case 16:
4305 Ty = HalfTy;
4306 break;
4307 }
4308 llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
4309 llvm::Type *Tys[] = { VTy, VecFlt };
4310 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
4311 return EmitNeonCall(F, Ops, NameHint);
4312 }
4313 case NEON::BI__builtin_neon_vclz_v:
4314 case NEON::BI__builtin_neon_vclzq_v:
4315 // We generate target-independent intrinsic, which needs a second argument
4316 // for whether or not clz of zero is undefined; on ARM it isn't.
4317 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
4318 break;
4319 case NEON::BI__builtin_neon_vcvt_f32_v:
4320 case NEON::BI__builtin_neon_vcvtq_f32_v:
4321 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4322 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), Arch);
4323 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
4324 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
4325 case NEON::BI__builtin_neon_vcvt_f16_v:
4326 case NEON::BI__builtin_neon_vcvtq_f16_v:
4327 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4328 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), Arch);
4329 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
4330 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
4331 case NEON::BI__builtin_neon_vcvt_n_f16_v:
4332 case NEON::BI__builtin_neon_vcvt_n_f32_v:
4333 case NEON::BI__builtin_neon_vcvt_n_f64_v:
4334 case NEON::BI__builtin_neon_vcvtq_n_f16_v:
4335 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
4336 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
4337 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
4338 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
4339 Function *F = CGM.getIntrinsic(Int, Tys);
4340 return EmitNeonCall(F, Ops, "vcvt_n");
4341 }
4342 case NEON::BI__builtin_neon_vcvt_n_s16_v:
4343 case NEON::BI__builtin_neon_vcvt_n_s32_v:
4344 case NEON::BI__builtin_neon_vcvt_n_u16_v:
4345 case NEON::BI__builtin_neon_vcvt_n_u32_v:
4346 case NEON::BI__builtin_neon_vcvt_n_s64_v:
4347 case NEON::BI__builtin_neon_vcvt_n_u64_v:
4348 case NEON::BI__builtin_neon_vcvtq_n_s16_v:
4349 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
4350 case NEON::BI__builtin_neon_vcvtq_n_u16_v:
4351 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
4352 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
4353 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
4354 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
4355 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
4356 return EmitNeonCall(F, Ops, "vcvt_n");
4357 }
4358 case NEON::BI__builtin_neon_vcvt_s32_v:
4359 case NEON::BI__builtin_neon_vcvt_u32_v:
4360 case NEON::BI__builtin_neon_vcvt_s64_v:
4361 case NEON::BI__builtin_neon_vcvt_u64_v:
4362 case NEON::BI__builtin_neon_vcvt_s16_v:
4363 case NEON::BI__builtin_neon_vcvt_u16_v:
4364 case NEON::BI__builtin_neon_vcvtq_s32_v:
4365 case NEON::BI__builtin_neon_vcvtq_u32_v:
4366 case NEON::BI__builtin_neon_vcvtq_s64_v:
4367 case NEON::BI__builtin_neon_vcvtq_u64_v:
4368 case NEON::BI__builtin_neon_vcvtq_s16_v:
4369 case NEON::BI__builtin_neon_vcvtq_u16_v: {
4370 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
4371 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
4372 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
4373 }
4374 case NEON::BI__builtin_neon_vcvta_s16_v:
4375 case NEON::BI__builtin_neon_vcvta_s32_v:
4376 case NEON::BI__builtin_neon_vcvta_s64_v:
4377 case NEON::BI__builtin_neon_vcvta_u32_v:
4378 case NEON::BI__builtin_neon_vcvta_u64_v:
4379 case NEON::BI__builtin_neon_vcvtaq_s16_v:
4380 case NEON::BI__builtin_neon_vcvtaq_s32_v:
4381 case NEON::BI__builtin_neon_vcvtaq_s64_v:
4382 case NEON::BI__builtin_neon_vcvtaq_u16_v:
4383 case NEON::BI__builtin_neon_vcvtaq_u32_v:
4384 case NEON::BI__builtin_neon_vcvtaq_u64_v:
4385 case NEON::BI__builtin_neon_vcvtn_s16_v:
4386 case NEON::BI__builtin_neon_vcvtn_s32_v:
4387 case NEON::BI__builtin_neon_vcvtn_s64_v:
4388 case NEON::BI__builtin_neon_vcvtn_u16_v:
4389 case NEON::BI__builtin_neon_vcvtn_u32_v:
4390 case NEON::BI__builtin_neon_vcvtn_u64_v:
4391 case NEON::BI__builtin_neon_vcvtnq_s16_v:
4392 case NEON::BI__builtin_neon_vcvtnq_s32_v:
4393 case NEON::BI__builtin_neon_vcvtnq_s64_v:
4394 case NEON::BI__builtin_neon_vcvtnq_u16_v:
4395 case NEON::BI__builtin_neon_vcvtnq_u32_v:
4396 case NEON::BI__builtin_neon_vcvtnq_u64_v:
4397 case NEON::BI__builtin_neon_vcvtp_s16_v:
4398 case NEON::BI__builtin_neon_vcvtp_s32_v:
4399 case NEON::BI__builtin_neon_vcvtp_s64_v:
4400 case NEON::BI__builtin_neon_vcvtp_u16_v:
4401 case NEON::BI__builtin_neon_vcvtp_u32_v:
4402 case NEON::BI__builtin_neon_vcvtp_u64_v:
4403 case NEON::BI__builtin_neon_vcvtpq_s16_v:
4404 case NEON::BI__builtin_neon_vcvtpq_s32_v:
4405 case NEON::BI__builtin_neon_vcvtpq_s64_v:
4406 case NEON::BI__builtin_neon_vcvtpq_u16_v:
4407 case NEON::BI__builtin_neon_vcvtpq_u32_v:
4408 case NEON::BI__builtin_neon_vcvtpq_u64_v:
4409 case NEON::BI__builtin_neon_vcvtm_s16_v:
4410 case NEON::BI__builtin_neon_vcvtm_s32_v:
4411 case NEON::BI__builtin_neon_vcvtm_s64_v:
4412 case NEON::BI__builtin_neon_vcvtm_u16_v:
4413 case NEON::BI__builtin_neon_vcvtm_u32_v:
4414 case NEON::BI__builtin_neon_vcvtm_u64_v:
4415 case NEON::BI__builtin_neon_vcvtmq_s16_v:
4416 case NEON::BI__builtin_neon_vcvtmq_s32_v:
4417 case NEON::BI__builtin_neon_vcvtmq_s64_v:
4418 case NEON::BI__builtin_neon_vcvtmq_u16_v:
4419 case NEON::BI__builtin_neon_vcvtmq_u32_v:
4420 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
4421 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
4422 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
4423 }
4424 case NEON::BI__builtin_neon_vext_v:
4425 case NEON::BI__builtin_neon_vextq_v: {
4426 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
4427 SmallVector<uint32_t, 16> Indices;
4428 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
4429 Indices.push_back(i+CV);
4430
4431 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4432 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4433 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
4434 }
4435 case NEON::BI__builtin_neon_vfma_v:
4436 case NEON::BI__builtin_neon_vfmaq_v: {
4437 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
4438 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4439 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4440 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4441
4442 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
4443 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
4444 }
4445 case NEON::BI__builtin_neon_vld1_v:
4446 case NEON::BI__builtin_neon_vld1q_v: {
4447 llvm::Type *Tys[] = {Ty, Int8PtrTy};
4448 Ops.push_back(getAlignmentValue32(PtrOp0));
4449 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
4450 }
4451 case NEON::BI__builtin_neon_vld2_v:
4452 case NEON::BI__builtin_neon_vld2q_v:
4453 case NEON::BI__builtin_neon_vld3_v:
4454 case NEON::BI__builtin_neon_vld3q_v:
4455 case NEON::BI__builtin_neon_vld4_v:
4456 case NEON::BI__builtin_neon_vld4q_v: {
4457 llvm::Type *Tys[] = {Ty, Int8PtrTy};
4458 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
4459 Value *Align = getAlignmentValue32(PtrOp1);
4460 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
4461 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4462 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4463 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
4464 }
4465 case NEON::BI__builtin_neon_vld1_dup_v:
4466 case NEON::BI__builtin_neon_vld1q_dup_v: {
4467 Value *V = UndefValue::get(Ty);
4468 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
4469 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
4470 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
4471 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
4472 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
4473 return EmitNeonSplat(Ops[0], CI);
4474 }
4475 case NEON::BI__builtin_neon_vld2_lane_v:
4476 case NEON::BI__builtin_neon_vld2q_lane_v:
4477 case NEON::BI__builtin_neon_vld3_lane_v:
4478 case NEON::BI__builtin_neon_vld3q_lane_v:
4479 case NEON::BI__builtin_neon_vld4_lane_v:
4480 case NEON::BI__builtin_neon_vld4q_lane_v: {
4481 llvm::Type *Tys[] = {Ty, Int8PtrTy};
4482 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
4483 for (unsigned I = 2; I < Ops.size() - 1; ++I)
4484 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
4485 Ops.push_back(getAlignmentValue32(PtrOp1));
4486 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
4487 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4488 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4489 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
4490 }
4491 case NEON::BI__builtin_neon_vmovl_v: {
4492 llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
4493 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
4494 if (Usgn)
4495 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
4496 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
4497 }
4498 case NEON::BI__builtin_neon_vmovn_v: {
4499 llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
4500 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
4501 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
4502 }
4503 case NEON::BI__builtin_neon_vmull_v:
4504 // FIXME: the integer vmull operations could be emitted in terms of pure
4505 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
4506 // hoisting the exts outside loops. Until global ISel comes along that can
4507 // see through such movement this leads to bad CodeGen. So we need an
4508 // intrinsic for now.
4509 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
4510 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
4511 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
4512 case NEON::BI__builtin_neon_vpadal_v:
4513 case NEON::BI__builtin_neon_vpadalq_v: {
4514 // The source operand type has twice as many elements of half the size.
4515 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
4516 llvm::Type *EltTy =
4517 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
4518 llvm::Type *NarrowTy =
4519 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
4520 llvm::Type *Tys[2] = { Ty, NarrowTy };
4521 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
4522 }
4523 case NEON::BI__builtin_neon_vpaddl_v:
4524 case NEON::BI__builtin_neon_vpaddlq_v: {
4525 // The source operand type has twice as many elements of half the size.
4526 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
4527 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
4528 llvm::Type *NarrowTy =
4529 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
4530 llvm::Type *Tys[2] = { Ty, NarrowTy };
4531 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
4532 }
4533 case NEON::BI__builtin_neon_vqdmlal_v:
4534 case NEON::BI__builtin_neon_vqdmlsl_v: {
4535 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
4536 Ops[1] =
4537 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
4538 Ops.resize(2);
4539 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
4540 }
4541 case NEON::BI__builtin_neon_vqshl_n_v:
4542 case NEON::BI__builtin_neon_vqshlq_n_v:
4543 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
4544 1, false);
4545 case NEON::BI__builtin_neon_vqshlu_n_v:
4546 case NEON::BI__builtin_neon_vqshluq_n_v:
4547 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
4548 1, false);
4549 case NEON::BI__builtin_neon_vrecpe_v:
4550 case NEON::BI__builtin_neon_vrecpeq_v:
4551 case NEON::BI__builtin_neon_vrsqrte_v:
4552 case NEON::BI__builtin_neon_vrsqrteq_v:
4553 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
4554 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
4555
4556 case NEON::BI__builtin_neon_vrshr_n_v:
4557 case NEON::BI__builtin_neon_vrshrq_n_v:
4558 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
4559 1, true);
4560 case NEON::BI__builtin_neon_vshl_n_v:
4561 case NEON::BI__builtin_neon_vshlq_n_v:
4562 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
4563 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
4564 "vshl_n");
4565 case NEON::BI__builtin_neon_vshll_n_v: {
4566 llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
4567 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4568 if (Usgn)
4569 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
4570 else
4571 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
4572 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
4573 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
4574 }
4575 case NEON::BI__builtin_neon_vshrn_n_v: {
4576 llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
4577 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4578 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
4579 if (Usgn)
4580 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
4581 else
4582 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
4583 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
4584 }
4585 case NEON::BI__builtin_neon_vshr_n_v:
4586 case NEON::BI__builtin_neon_vshrq_n_v:
4587 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
4588 case NEON::BI__builtin_neon_vst1_v:
4589 case NEON::BI__builtin_neon_vst1q_v:
4590 case NEON::BI__builtin_neon_vst2_v:
4591 case NEON::BI__builtin_neon_vst2q_v:
4592 case NEON::BI__builtin_neon_vst3_v:
4593 case NEON::BI__builtin_neon_vst3q_v:
4594 case NEON::BI__builtin_neon_vst4_v:
4595 case NEON::BI__builtin_neon_vst4q_v:
4596 case NEON::BI__builtin_neon_vst2_lane_v:
4597 case NEON::BI__builtin_neon_vst2q_lane_v:
4598 case NEON::BI__builtin_neon_vst3_lane_v:
4599 case NEON::BI__builtin_neon_vst3q_lane_v:
4600 case NEON::BI__builtin_neon_vst4_lane_v:
4601 case NEON::BI__builtin_neon_vst4q_lane_v: {
4602 llvm::Type *Tys[] = {Int8PtrTy, Ty};
4603 Ops.push_back(getAlignmentValue32(PtrOp0));
4604 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
4605 }
4606 case NEON::BI__builtin_neon_vsubhn_v: {
4607 llvm::VectorType *SrcTy =
4608 llvm::VectorType::getExtendedElementVectorType(VTy);
4609
4610 // %sum = add <4 x i32> %lhs, %rhs
4611 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4612 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
4613 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
4614
4615 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
4616 Constant *ShiftAmt =
4617 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
4618 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
4619
4620 // %res = trunc <4 x i32> %high to <4 x i16>
4621 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
4622 }
4623 case NEON::BI__builtin_neon_vtrn_v:
4624 case NEON::BI__builtin_neon_vtrnq_v: {
4625 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4626 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4627 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4628 Value *SV = nullptr;
4629
4630 for (unsigned vi = 0; vi != 2; ++vi) {
4631 SmallVector<uint32_t, 16> Indices;
4632 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
4633 Indices.push_back(i+vi);
4634 Indices.push_back(i+e+vi);
4635 }
4636 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
4637 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
4638 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
4639 }
4640 return SV;
4641 }
4642 case NEON::BI__builtin_neon_vtst_v:
4643 case NEON::BI__builtin_neon_vtstq_v: {
4644 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4645 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4646 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
4647 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
4648 ConstantAggregateZero::get(Ty));
4649 return Builder.CreateSExt(Ops[0], Ty, "vtst");
4650 }
4651 case NEON::BI__builtin_neon_vuzp_v:
4652 case NEON::BI__builtin_neon_vuzpq_v: {
4653 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4654 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4655 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4656 Value *SV = nullptr;
4657
4658 for (unsigned vi = 0; vi != 2; ++vi) {
4659 SmallVector<uint32_t, 16> Indices;
4660 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
4661 Indices.push_back(2*i+vi);
4662
4663 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
4664 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
4665 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
4666 }
4667 return SV;
4668 }
4669 case NEON::BI__builtin_neon_vzip_v:
4670 case NEON::BI__builtin_neon_vzipq_v: {
4671 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4672 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4673 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4674 Value *SV = nullptr;
4675
4676 for (unsigned vi = 0; vi != 2; ++vi) {
4677 SmallVector<uint32_t, 16> Indices;
4678 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
4679 Indices.push_back((i + vi*e) >> 1);
4680 Indices.push_back(((i + vi*e) >> 1)+e);
4681 }
4682 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
4683 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
4684 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
4685 }
4686 return SV;
4687 }
4688 }
4689
4690 assert(Int && "Expected valid intrinsic number")(static_cast <bool> (Int && "Expected valid intrinsic number"
) ? void (0) : __assert_fail ("Int && \"Expected valid intrinsic number\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4690, __extension__ __PRETTY_FUNCTION__))
;
4691
4692 // Determine the type(s) of this overloaded AArch64 intrinsic.
4693 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
4694
4695 Value *Result = EmitNeonCall(F, Ops, NameHint);
4696 llvm::Type *ResultType = ConvertType(E->getType());
4697 // AArch64 intrinsic one-element vector type cast to
4698 // scalar type expected by the builtin
4699 return Builder.CreateBitCast(Result, ResultType, NameHint);
4700}
4701
4702Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
4703 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
4704 const CmpInst::Predicate Ip, const Twine &Name) {
4705 llvm::Type *OTy = Op->getType();
4706
4707 // FIXME: this is utterly horrific. We should not be looking at previous
4708 // codegen context to find out what needs doing. Unfortunately TableGen
4709 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
4710 // (etc).
4711 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
4712 OTy = BI->getOperand(0)->getType();
4713
4714 Op = Builder.CreateBitCast(Op, OTy);
4715 if (OTy->getScalarType()->isFloatingPointTy()) {
4716 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
4717 } else {
4718 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
4719 }
4720 return Builder.CreateSExt(Op, Ty, Name);
4721}
4722
4723static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
4724 Value *ExtOp, Value *IndexOp,
4725 llvm::Type *ResTy, unsigned IntID,
4726 const char *Name) {
4727 SmallVector<Value *, 2> TblOps;
4728 if (ExtOp)
4729 TblOps.push_back(ExtOp);
4730
4731 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
4732 SmallVector<uint32_t, 16> Indices;
4733 llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
4734 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
4735 Indices.push_back(2*i);
4736 Indices.push_back(2*i+1);
4737 }
4738
4739 int PairPos = 0, End = Ops.size() - 1;
4740 while (PairPos < End) {
4741 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
4742 Ops[PairPos+1], Indices,
4743 Name));
4744 PairPos += 2;
4745 }
4746
4747 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
4748 // of the 128-bit lookup table with zero.
4749 if (PairPos == End) {
4750 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
4751 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
4752 ZeroTbl, Indices, Name));
4753 }
4754
4755 Function *TblF;
4756 TblOps.push_back(IndexOp);
4757 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
4758
4759 return CGF.EmitNeonCall(TblF, TblOps, Name);
4760}
4761
4762Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
4763 unsigned Value;
4764 switch (BuiltinID) {
4765 default:
4766 return nullptr;
4767 case ARM::BI__builtin_arm_nop:
4768 Value = 0;
4769 break;
4770 case ARM::BI__builtin_arm_yield:
4771 case ARM::BI__yield:
4772 Value = 1;
4773 break;
4774 case ARM::BI__builtin_arm_wfe:
4775 case ARM::BI__wfe:
4776 Value = 2;
4777 break;
4778 case ARM::BI__builtin_arm_wfi:
4779 case ARM::BI__wfi:
4780 Value = 3;
4781 break;
4782 case ARM::BI__builtin_arm_sev:
4783 case ARM::BI__sev:
4784 Value = 4;
4785 break;
4786 case ARM::BI__builtin_arm_sevl:
4787 case ARM::BI__sevl:
4788 Value = 5;
4789 break;
4790 }
4791
4792 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
4793 llvm::ConstantInt::get(Int32Ty, Value));
4794}
4795
4796// Generates the IR for the read/write special register builtin,
4797// ValueType is the type of the value that is to be written or read,
4798// RegisterType is the type of the register being written to or read from.
4799static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
4800 const CallExpr *E,
4801 llvm::Type *RegisterType,
4802 llvm::Type *ValueType,
4803 bool IsRead,
4804 StringRef SysReg = "") {
4805 // write and register intrinsics only support 32 and 64 bit operations.
4806 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4807, __extension__ __PRETTY_FUNCTION__))
4807 && "Unsupported size for register.")(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4807, __extension__ __PRETTY_FUNCTION__))
;
4808
4809 CodeGen::CGBuilderTy &Builder = CGF.Builder;
4810 CodeGen::CodeGenModule &CGM = CGF.CGM;
4811 LLVMContext &Context = CGM.getLLVMContext();
4812
4813 if (SysReg.empty()) {
4814 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
4815 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
4816 }
4817
4818 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
4819 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
4820 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
4821
4822 llvm::Type *Types[] = { RegisterType };
4823
4824 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
4825 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4826, __extension__ __PRETTY_FUNCTION__))
4826 && "Can't fit 64-bit value in 32-bit register")(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4826, __extension__ __PRETTY_FUNCTION__))
;
4827
4828 if (IsRead) {
4829 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
4830 llvm::Value *Call = Builder.CreateCall(F, Metadata);
4831
4832 if (MixedTypes)
4833 // Read into 64 bit register and then truncate result to 32 bit.
4834 return Builder.CreateTrunc(Call, ValueType);
4835
4836 if (ValueType->isPointerTy())
4837 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
4838 return Builder.CreateIntToPtr(Call, ValueType);
4839
4840 return Call;
4841 }
4842
4843 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
4844 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
4845 if (MixedTypes) {
4846 // Extend 32 bit write value to 64 bit to pass to write.
4847 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
4848 return Builder.CreateCall(F, { Metadata, ArgValue });
4849 }
4850
4851 if (ValueType->isPointerTy()) {
4852 // Have VoidPtrTy ArgValue but want to return an i32/i64.
4853 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
4854 return Builder.CreateCall(F, { Metadata, ArgValue });
4855 }
4856
4857 return Builder.CreateCall(F, { Metadata, ArgValue });
4858}
4859
4860/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
4861/// argument that specifies the vector type.
4862static bool HasExtraNeonArgument(unsigned BuiltinID) {
4863 switch (BuiltinID) {
4864 default: break;
4865 case NEON::BI__builtin_neon_vget_lane_i8:
4866 case NEON::BI__builtin_neon_vget_lane_i16:
4867 case NEON::BI__builtin_neon_vget_lane_i32:
4868 case NEON::BI__builtin_neon_vget_lane_i64:
4869 case NEON::BI__builtin_neon_vget_lane_f32:
4870 case NEON::BI__builtin_neon_vgetq_lane_i8:
4871 case NEON::BI__builtin_neon_vgetq_lane_i16:
4872 case NEON::BI__builtin_neon_vgetq_lane_i32:
4873 case NEON::BI__builtin_neon_vgetq_lane_i64:
4874 case NEON::BI__builtin_neon_vgetq_lane_f32:
4875 case NEON::BI__builtin_neon_vset_lane_i8:
4876 case NEON::BI__builtin_neon_vset_lane_i16:
4877 case NEON::BI__builtin_neon_vset_lane_i32:
4878 case NEON::BI__builtin_neon_vset_lane_i64:
4879 case NEON::BI__builtin_neon_vset_lane_f32:
4880 case NEON::BI__builtin_neon_vsetq_lane_i8:
4881 case NEON::BI__builtin_neon_vsetq_lane_i16:
4882 case NEON::BI__builtin_neon_vsetq_lane_i32:
4883 case NEON::BI__builtin_neon_vsetq_lane_i64:
4884 case NEON::BI__builtin_neon_vsetq_lane_f32:
4885 case NEON::BI__builtin_neon_vsha1h_u32:
4886 case NEON::BI__builtin_neon_vsha1cq_u32:
4887 case NEON::BI__builtin_neon_vsha1pq_u32:
4888 case NEON::BI__builtin_neon_vsha1mq_u32:
4889 case clang::ARM::BI_MoveToCoprocessor:
4890 case clang::ARM::BI_MoveToCoprocessor2:
4891 return false;
4892 }
4893 return true;
4894}
4895
4896Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
4897 const CallExpr *E,
4898 llvm::Triple::ArchType Arch) {
4899 if (auto Hint = GetValueForARMHint(BuiltinID))
4900 return Hint;
4901
4902 if (BuiltinID == ARM::BI__emit) {
4903 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
4904 llvm::FunctionType *FTy =
4905 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
4906
4907 APSInt Value;
4908 if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext()))
4909 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4909)
;
4910
4911 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
4912
4913 llvm::InlineAsm *Emit =
4914 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
4915 /*SideEffects=*/true)
4916 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
4917 /*SideEffects=*/true);
4918
4919 return Builder.CreateCall(Emit);
4920 }
4921
4922 if (BuiltinID == ARM::BI__builtin_arm_dbg) {
4923 Value *Option = EmitScalarExpr(E->getArg(0));
4924 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
4925 }
4926
4927 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
4928 Value *Address = EmitScalarExpr(E->getArg(0));
4929 Value *RW = EmitScalarExpr(E->getArg(1));
4930 Value *IsData = EmitScalarExpr(E->getArg(2));
4931
4932 // Locality is not supported on ARM target
4933 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
4934
4935 Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
4936 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
4937 }
4938
4939 if (BuiltinID == ARM::BI__builtin_arm_rbit) {
4940 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
4941 return Builder.CreateCall(
4942 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
4943 }
4944
4945 if (BuiltinID == ARM::BI__clear_cache) {
4946 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4946, __extension__ __PRETTY_FUNCTION__))
;
4947 const FunctionDecl *FD = E->getDirectCallee();
4948 Value *Ops[2];
4949 for (unsigned i = 0; i < 2; i++)
4950 Ops[i] = EmitScalarExpr(E->getArg(i));
4951 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
4952 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
4953 StringRef Name = FD->getName();
4954 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
4955 }
4956
4957 if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
4958 BuiltinID == ARM::BI__builtin_arm_mcrr2) {
4959 Function *F;
4960
4961 switch (BuiltinID) {
4962 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4962)
;
4963 case ARM::BI__builtin_arm_mcrr:
4964 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
4965 break;
4966 case ARM::BI__builtin_arm_mcrr2:
4967 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
4968 break;
4969 }
4970
4971 // MCRR{2} instruction has 5 operands but
4972 // the intrinsic has 4 because Rt and Rt2
4973 // are represented as a single unsigned 64
4974 // bit integer in the intrinsic definition
4975 // but internally it's represented as 2 32
4976 // bit integers.
4977
4978 Value *Coproc = EmitScalarExpr(E->getArg(0));
4979 Value *Opc1 = EmitScalarExpr(E->getArg(1));
4980 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
4981 Value *CRm = EmitScalarExpr(E->getArg(3));
4982
4983 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
4984 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
4985 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
4986 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
4987
4988 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
4989 }
4990
4991 if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
4992 BuiltinID == ARM::BI__builtin_arm_mrrc2) {
4993 Function *F;
4994
4995 switch (BuiltinID) {
4996 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4996)
;
4997 case ARM::BI__builtin_arm_mrrc:
4998 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
4999 break;
5000 case ARM::BI__builtin_arm_mrrc2:
5001 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
5002 break;
5003 }
5004
5005 Value *Coproc = EmitScalarExpr(E->getArg(0));
5006 Value *Opc1 = EmitScalarExpr(E->getArg(1));
5007 Value *CRm = EmitScalarExpr(E->getArg(2));
5008 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
5009
5010 // Returns an unsigned 64 bit integer, represented
5011 // as two 32 bit integers.
5012
5013 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
5014 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
5015 Rt = Builder.CreateZExt(Rt, Int64Ty);
5016 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
5017
5018 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
5019 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
5020 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
5021
5022 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
5023 }
5024
5025 if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
5026 ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
5027 BuiltinID == ARM::BI__builtin_arm_ldaex) &&
5028 getContext().getTypeSize(E->getType()) == 64) ||
5029 BuiltinID == ARM::BI__ldrexd) {
5030 Function *F;
5031
5032 switch (BuiltinID) {
5033 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5033)
;
5034 case ARM::BI__builtin_arm_ldaex:
5035 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
5036 break;
5037 case ARM::BI__builtin_arm_ldrexd:
5038 case ARM::BI__builtin_arm_ldrex:
5039 case ARM::BI__ldrexd:
5040 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
5041 break;
5042 }
5043
5044 Value *LdPtr = EmitScalarExpr(E->getArg(0));
5045 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
5046 "ldrexd");
5047
5048 Value *Val0 = Builder.CreateExtractValue(Val, 1);
5049 Value *Val1 = Builder.CreateExtractValue(Val, 0);
5050 Val0 = Builder.CreateZExt(Val0, Int64Ty);
5051 Val1 = Builder.CreateZExt(Val1, Int64Ty);
5052
5053 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
5054 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
5055 Val = Builder.CreateOr(Val, Val1);
5056 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
5057 }
5058
5059 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
5060 BuiltinID == ARM::BI__builtin_arm_ldaex) {
5061 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
5062
5063 QualType Ty = E->getType();
5064 llvm::Type *RealResTy = ConvertType(Ty);
5065 llvm::Type *PtrTy = llvm::IntegerType::get(
5066 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
5067 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
5068
5069 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
5070 ? Intrinsic::arm_ldaex
5071 : Intrinsic::arm_ldrex,
5072 PtrTy);
5073 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
5074
5075 if (RealResTy->isPointerTy())
5076 return Builder.CreateIntToPtr(Val, RealResTy);
5077 else {
5078 llvm::Type *IntResTy = llvm::IntegerType::get(
5079 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
5080 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
5081 return Builder.CreateBitCast(Val, RealResTy);
5082 }
5083 }
5084
5085 if (BuiltinID == ARM::BI__builtin_arm_strexd ||
5086 ((BuiltinID == ARM::BI__builtin_arm_stlex ||
5087 BuiltinID == ARM::BI__builtin_arm_strex) &&
5088 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
5089 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
5090 ? Intrinsic::arm_stlexd
5091 : Intrinsic::arm_strexd);
5092 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
5093
5094 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
5095 Value *Val = EmitScalarExpr(E->getArg(0));
5096 Builder.CreateStore(Val, Tmp);
5097
5098 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
5099 Val = Builder.CreateLoad(LdPtr);
5100
5101 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
5102 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
5103 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
5104 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
5105 }
5106
5107 if (BuiltinID == ARM::BI__builtin_arm_strex ||
5108 BuiltinID == ARM::BI__builtin_arm_stlex) {
5109 Value *StoreVal = EmitScalarExpr(E->getArg(0));
5110 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
5111
5112 QualType Ty = E->getArg(0)->getType();
5113 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
5114 getContext().getTypeSize(Ty));
5115 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
5116
5117 if (StoreVal->getType()->isPointerTy())
5118 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
5119 else {
5120 llvm::Type *IntTy = llvm::IntegerType::get(
5121 getLLVMContext(),
5122 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
5123 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
5124 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
5125 }
5126
5127 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
5128 ? Intrinsic::arm_stlex
5129 : Intrinsic::arm_strex,
5130 StoreAddr->getType());
5131 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
5132 }
5133
5134 switch (BuiltinID) {
5135 case ARM::BI__iso_volatile_load8:
5136 case ARM::BI__iso_volatile_load16:
5137 case ARM::BI__iso_volatile_load32:
5138 case ARM::BI__iso_volatile_load64: {
5139 Value *Ptr = EmitScalarExpr(E->getArg(0));
5140 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
5141 CharUnits LoadSize = getContext().getTypeSizeInChars(ElTy);
5142 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
5143 LoadSize.getQuantity() * 8);
5144 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
5145 llvm::LoadInst *Load =
5146 Builder.CreateAlignedLoad(Ptr, LoadSize);
5147 Load->setVolatile(true);
5148 return Load;
5149 }
5150 case ARM::BI__iso_volatile_store8:
5151 case ARM::BI__iso_volatile_store16:
5152 case ARM::BI__iso_volatile_store32:
5153 case ARM::BI__iso_volatile_store64: {
5154 Value *Ptr = EmitScalarExpr(E->getArg(0));
5155 Value *Value = EmitScalarExpr(E->getArg(1));
5156 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
5157 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
5158 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
5159 StoreSize.getQuantity() * 8);
5160 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
5161 llvm::StoreInst *Store =
5162 Builder.CreateAlignedStore(Value, Ptr,
5163 StoreSize);
5164 Store->setVolatile(true);
5165 return Store;
5166 }
5167 }
5168
5169 if (BuiltinID == ARM::BI__builtin_arm_clrex) {
5170 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
5171 return Builder.CreateCall(F);
5172 }
5173
5174 // CRC32
5175 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
5176 switch (BuiltinID) {
5177 case ARM::BI__builtin_arm_crc32b:
5178 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
5179 case ARM::BI__builtin_arm_crc32cb:
5180 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
5181 case ARM::BI__builtin_arm_crc32h:
5182 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
5183 case ARM::BI__builtin_arm_crc32ch:
5184 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
5185 case ARM::BI__builtin_arm_crc32w:
5186 case ARM::BI__builtin_arm_crc32d:
5187 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
5188 case ARM::BI__builtin_arm_crc32cw:
5189 case ARM::BI__builtin_arm_crc32cd:
5190 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
5191 }
5192
5193 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
5194 Value *Arg0 = EmitScalarExpr(E->getArg(0));
5195 Value *Arg1 = EmitScalarExpr(E->getArg(1));
5196
5197 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
5198 // intrinsics, hence we need different codegen for these cases.
5199 if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
5200 BuiltinID == ARM::BI__builtin_arm_crc32cd) {
5201 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
5202 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
5203 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
5204 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
5205
5206 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
5207 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
5208 return Builder.CreateCall(F, {Res, Arg1b});
5209 } else {
5210 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
5211
5212 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
5213 return Builder.CreateCall(F, {Arg0, Arg1});
5214 }
5215 }
5216
5217 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
5218 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
5219 BuiltinID == ARM::BI__builtin_arm_rsrp ||
5220 BuiltinID == ARM::BI__builtin_arm_wsr ||
5221 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
5222 BuiltinID == ARM::BI__builtin_arm_wsrp) {
5223
5224 bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
5225 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
5226 BuiltinID == ARM::BI__builtin_arm_rsrp;
5227
5228 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
5229 BuiltinID == ARM::BI__builtin_arm_wsrp;
5230
5231 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
5232 BuiltinID == ARM::BI__builtin_arm_wsr64;
5233
5234 llvm::Type *ValueType;
5235 llvm::Type *RegisterType;
5236 if (IsPointerBuiltin) {
5237 ValueType = VoidPtrTy;
5238 RegisterType = Int32Ty;
5239 } else if (Is64Bit) {
5240 ValueType = RegisterType = Int64Ty;
5241 } else {
5242 ValueType = RegisterType = Int32Ty;
5243 }
5244
5245 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
5246 }
5247
5248 // Find out if any arguments are required to be integer constant
5249 // expressions.
5250 unsigned ICEArguments = 0;
5251 ASTContext::GetBuiltinTypeError Error;
5252 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5253 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5253, __extension__ __PRETTY_FUNCTION__))
;
5254
5255 auto getAlignmentValue32 = [&](Address addr) -> Value* {
5256 return Builder.getInt32(addr.getAlignment().getQuantity());
5257 };
5258
5259 Address PtrOp0 = Address::invalid();
5260 Address PtrOp1 = Address::invalid();
5261 SmallVector<Value*, 4> Ops;
5262 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
5263 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
5264 for (unsigned i = 0, e = NumArgs; i != e; i++) {
5265 if (i == 0) {
5266 switch (BuiltinID) {
5267 case NEON::BI__builtin_neon_vld1_v:
5268 case NEON::BI__builtin_neon_vld1q_v:
5269 case NEON::BI__builtin_neon_vld1q_lane_v:
5270 case NEON::BI__builtin_neon_vld1_lane_v:
5271 case NEON::BI__builtin_neon_vld1_dup_v:
5272 case NEON::BI__builtin_neon_vld1q_dup_v:
5273 case NEON::BI__builtin_neon_vst1_v:
5274 case NEON::BI__builtin_neon_vst1q_v:
5275 case NEON::BI__builtin_neon_vst1q_lane_v:
5276 case NEON::BI__builtin_neon_vst1_lane_v:
5277 case NEON::BI__builtin_neon_vst2_v:
5278 case NEON::BI__builtin_neon_vst2q_v:
5279 case NEON::BI__builtin_neon_vst2_lane_v:
5280 case NEON::BI__builtin_neon_vst2q_lane_v:
5281 case NEON::BI__builtin_neon_vst3_v:
5282 case NEON::BI__builtin_neon_vst3q_v:
5283 case NEON::BI__builtin_neon_vst3_lane_v:
5284 case NEON::BI__builtin_neon_vst3q_lane_v:
5285 case NEON::BI__builtin_neon_vst4_v:
5286 case NEON::BI__builtin_neon_vst4q_v:
5287 case NEON::BI__builtin_neon_vst4_lane_v:
5288 case NEON::BI__builtin_neon_vst4q_lane_v:
5289 // Get the alignment for the argument in addition to the value;
5290 // we'll use it later.
5291 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
5292 Ops.push_back(PtrOp0.getPointer());
5293 continue;
5294 }
5295 }
5296 if (i == 1) {
5297 switch (BuiltinID) {
5298 case NEON::BI__builtin_neon_vld2_v:
5299 case NEON::BI__builtin_neon_vld2q_v:
5300 case NEON::BI__builtin_neon_vld3_v:
5301 case NEON::BI__builtin_neon_vld3q_v:
5302 case NEON::BI__builtin_neon_vld4_v:
5303 case NEON::BI__builtin_neon_vld4q_v:
5304 case NEON::BI__builtin_neon_vld2_lane_v:
5305 case NEON::BI__builtin_neon_vld2q_lane_v:
5306 case NEON::BI__builtin_neon_vld3_lane_v:
5307 case NEON::BI__builtin_neon_vld3q_lane_v:
5308 case NEON::BI__builtin_neon_vld4_lane_v:
5309 case NEON::BI__builtin_neon_vld4q_lane_v:
5310 case NEON::BI__builtin_neon_vld2_dup_v:
5311 case NEON::BI__builtin_neon_vld3_dup_v:
5312 case NEON::BI__builtin_neon_vld4_dup_v:
5313 // Get the alignment for the argument in addition to the value;
5314 // we'll use it later.
5315 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
5316 Ops.push_back(PtrOp1.getPointer());
5317 continue;
5318 }
5319 }
5320
5321 if ((ICEArguments & (1 << i)) == 0) {
5322 Ops.push_back(EmitScalarExpr(E->getArg(i)));
5323 } else {
5324 // If this is required to be a constant, constant fold it so that we know
5325 // that the generated intrinsic gets a ConstantInt.
5326 llvm::APSInt Result;
5327 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
5328 assert(IsConst && "Constant arg isn't actually constant?")(static_cast <bool> (IsConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5328, __extension__ __PRETTY_FUNCTION__))
; (void)IsConst;
5329 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
5330 }
5331 }
5332
5333 switch (BuiltinID) {
5334 default: break;
5335
5336 case NEON::BI__builtin_neon_vget_lane_i8:
5337 case NEON::BI__builtin_neon_vget_lane_i16:
5338 case NEON::BI__builtin_neon_vget_lane_i32:
5339 case NEON::BI__builtin_neon_vget_lane_i64:
5340 case NEON::BI__builtin_neon_vget_lane_f32:
5341 case NEON::BI__builtin_neon_vgetq_lane_i8:
5342 case NEON::BI__builtin_neon_vgetq_lane_i16:
5343 case NEON::BI__builtin_neon_vgetq_lane_i32:
5344 case NEON::BI__builtin_neon_vgetq_lane_i64:
5345 case NEON::BI__builtin_neon_vgetq_lane_f32:
5346 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
5347
5348 case NEON::BI__builtin_neon_vset_lane_i8:
5349 case NEON::BI__builtin_neon_vset_lane_i16:
5350 case NEON::BI__builtin_neon_vset_lane_i32:
5351 case NEON::BI__builtin_neon_vset_lane_i64:
5352 case NEON::BI__builtin_neon_vset_lane_f32:
5353 case NEON::BI__builtin_neon_vsetq_lane_i8:
5354 case NEON::BI__builtin_neon_vsetq_lane_i16:
5355 case NEON::BI__builtin_neon_vsetq_lane_i32:
5356 case NEON::BI__builtin_neon_vsetq_lane_i64:
5357 case NEON::BI__builtin_neon_vsetq_lane_f32:
5358 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
5359
5360 case NEON::BI__builtin_neon_vsha1h_u32:
5361 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
5362 "vsha1h");
5363 case NEON::BI__builtin_neon_vsha1cq_u32:
5364 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
5365 "vsha1h");
5366 case NEON::BI__builtin_neon_vsha1pq_u32:
5367 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
5368 "vsha1h");
5369 case NEON::BI__builtin_neon_vsha1mq_u32:
5370 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
5371 "vsha1h");
5372
5373 // The ARM _MoveToCoprocessor builtins put the input register value as
5374 // the first argument, but the LLVM intrinsic expects it as the third one.
5375 case ARM::BI_MoveToCoprocessor:
5376 case ARM::BI_MoveToCoprocessor2: {
5377 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
5378 Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
5379 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
5380 Ops[3], Ops[4], Ops[5]});
5381 }
5382 case ARM::BI_BitScanForward:
5383 case ARM::BI_BitScanForward64:
5384 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
5385 case ARM::BI_BitScanReverse:
5386 case ARM::BI_BitScanReverse64:
5387 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
5388
5389 case ARM::BI_InterlockedAnd64:
5390 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
5391 case ARM::BI_InterlockedExchange64:
5392 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
5393 case ARM::BI_InterlockedExchangeAdd64:
5394 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
5395 case ARM::BI_InterlockedExchangeSub64:
5396 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
5397 case ARM::BI_InterlockedOr64:
5398 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
5399 case ARM::BI_InterlockedXor64:
5400 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
5401 case ARM::BI_InterlockedDecrement64:
5402 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
5403 case ARM::BI_InterlockedIncrement64:
5404 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
5405 }
5406
5407 // Get the last argument, which specifies the vector type.
5408 assert(HasExtraArg)(static_cast <bool> (HasExtraArg) ? void (0) : __assert_fail
("HasExtraArg", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5408, __extension__ __PRETTY_FUNCTION__))
;
5409 llvm::APSInt Result;
5410 const Expr *Arg = E->getArg(E->getNumArgs()-1);
5411 if (!Arg->isIntegerConstantExpr(Result, getContext()))
5412 return nullptr;
5413
5414 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
5415 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
5416 // Determine the overloaded type of this builtin.
5417 llvm::Type *Ty;
5418 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
5419 Ty = FloatTy;
5420 else
5421 Ty = DoubleTy;
5422
5423 // Determine whether this is an unsigned conversion or not.
5424 bool usgn = Result.getZExtValue() == 1;
5425 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
5426
5427 // Call the appropriate intrinsic.
5428 Function *F = CGM.getIntrinsic(Int, Ty);
5429 return Builder.CreateCall(F, Ops, "vcvtr");
5430 }
5431
5432 // Determine the type of this overloaded NEON intrinsic.
5433 NeonTypeFlags Type(Result.getZExtValue());
5434 bool usgn = Type.isUnsigned();
5435 bool rightShift = false;
5436
5437 llvm::VectorType *VTy = GetNeonType(this, Type, Arch);
5438 llvm::Type *Ty = VTy;
5439 if (!Ty)
5440 return nullptr;
5441
5442 // Many NEON builtins have identical semantics and uses in ARM and
5443 // AArch64. Emit these in a single function.
5444 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
5445 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
5446 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
5447 if (Builtin)
5448 return EmitCommonNeonBuiltinExpr(
5449 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
5450 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
5451
5452 unsigned Int;
5453 switch (BuiltinID) {
5454 default: return nullptr;
5455 case NEON::BI__builtin_neon_vld1q_lane_v:
5456 // Handle 64-bit integer elements as a special case. Use shuffles of
5457 // one-element vectors to avoid poor code for i64 in the backend.
5458 if (VTy->getElementType()->isIntegerTy(64)) {
5459 // Extract the other lane.
5460 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5461 uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
5462 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
5463 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
5464 // Load the value as a one-element vector.
5465 Ty = llvm::VectorType::get(VTy->getElementType(), 1);
5466 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5467 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
5468 Value *Align = getAlignmentValue32(PtrOp0);
5469 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
5470 // Combine them.
5471 uint32_t Indices[] = {1 - Lane, Lane};
5472 SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
5473 return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
5474 }
5475 LLVM_FALLTHROUGH[[clang::fallthrough]];
5476 case NEON::BI__builtin_neon_vld1_lane_v: {
5477 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5478 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
5479 Value *Ld = Builder.CreateLoad(PtrOp0);
5480 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
5481 }
5482 case NEON::BI__builtin_neon_vld2_dup_v:
5483 case NEON::BI__builtin_neon_vld3_dup_v:
5484 case NEON::BI__builtin_neon_vld4_dup_v: {
5485 // Handle 64-bit elements as a special-case. There is no "dup" needed.
5486 if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
5487 switch (BuiltinID) {
5488 case NEON::BI__builtin_neon_vld2_dup_v:
5489 Int = Intrinsic::arm_neon_vld2;
5490 break;
5491 case NEON::BI__builtin_neon_vld3_dup_v:
5492 Int = Intrinsic::arm_neon_vld3;
5493 break;
5494 case NEON::BI__builtin_neon_vld4_dup_v:
5495 Int = Intrinsic::arm_neon_vld4;
5496 break;
5497 default: llvm_unreachable("unknown vld_dup intrinsic?")::llvm::llvm_unreachable_internal("unknown vld_dup intrinsic?"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5497)
;
5498 }
5499 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5500 Function *F = CGM.getIntrinsic(Int, Tys);
5501 llvm::Value *Align = getAlignmentValue32(PtrOp1);
5502 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, "vld_dup");
5503 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5504 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5505 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5506 }
5507 switch (BuiltinID) {
5508 case NEON::BI__builtin_neon_vld2_dup_v:
5509 Int = Intrinsic::arm_neon_vld2lane;
5510 break;
5511 case NEON::BI__builtin_neon_vld3_dup_v:
5512 Int = Intrinsic::arm_neon_vld3lane;
5513 break;
5514 case NEON::BI__builtin_neon_vld4_dup_v:
5515 Int = Intrinsic::arm_neon_vld4lane;
5516 break;
5517 default: llvm_unreachable("unknown vld_dup intrinsic?")::llvm::llvm_unreachable_internal("unknown vld_dup intrinsic?"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5517)
;
5518 }
5519 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5520 Function *F = CGM.getIntrinsic(Int, Tys);
5521 llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
5522
5523 SmallVector<Value*, 6> Args;
5524 Args.push_back(Ops[1]);
5525 Args.append(STy->getNumElements(), UndefValue::get(Ty));
5526
5527 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
5528 Args.push_back(CI);
5529 Args.push_back(getAlignmentValue32(PtrOp1));
5530
5531 Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
5532 // splat lane 0 to all elts in each vector of the result.
5533 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5534 Value *Val = Builder.CreateExtractValue(Ops[1], i);
5535 Value *Elt = Builder.CreateBitCast(Val, Ty);
5536 Elt = EmitNeonSplat(Elt, CI);
5537 Elt = Builder.CreateBitCast(Elt, Val->getType());
5538 Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
5539 }
5540 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5541 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5542 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5543 }
5544 case NEON::BI__builtin_neon_vqrshrn_n_v:
5545 Int =
5546 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
5547 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
5548 1, true);
5549 case NEON::BI__builtin_neon_vqrshrun_n_v:
5550 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
5551 Ops, "vqrshrun_n", 1, true);
5552 case NEON::BI__builtin_neon_vqshrn_n_v:
5553 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
5554 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
5555 1, true);
5556 case NEON::BI__builtin_neon_vqshrun_n_v:
5557 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
5558 Ops, "vqshrun_n", 1, true);
5559 case NEON::BI__builtin_neon_vrecpe_v:
5560 case NEON::BI__builtin_neon_vrecpeq_v:
5561 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
5562 Ops, "vrecpe");
5563 case NEON::BI__builtin_neon_vrshrn_n_v:
5564 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
5565 Ops, "vrshrn_n", 1, true);
5566 case NEON::BI__builtin_neon_vrsra_n_v:
5567 case NEON::BI__builtin_neon_vrsraq_n_v:
5568 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5569 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5570 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
5571 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
5572 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
5573 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
5574 case NEON::BI__builtin_neon_vsri_n_v:
5575 case NEON::BI__builtin_neon_vsriq_n_v:
5576 rightShift = true;
5577 LLVM_FALLTHROUGH[[clang::fallthrough]];
5578 case NEON::BI__builtin_neon_vsli_n_v:
5579 case NEON::BI__builtin_neon_vsliq_n_v:
5580 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
5581 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
5582 Ops, "vsli_n");
5583 case NEON::BI__builtin_neon_vsra_n_v:
5584 case NEON::BI__builtin_neon_vsraq_n_v:
5585 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5586 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
5587 return Builder.CreateAdd(Ops[0], Ops[1]);
5588 case NEON::BI__builtin_neon_vst1q_lane_v:
5589 // Handle 64-bit integer elements as a special case. Use a shuffle to get
5590 // a one-element vector and avoid poor code for i64 in the backend.
5591 if (VTy->getElementType()->isIntegerTy(64)) {
5592 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5593 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
5594 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
5595 Ops[2] = getAlignmentValue32(PtrOp0);
5596 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
5597 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
5598 Tys), Ops);
5599 }
5600 LLVM_FALLTHROUGH[[clang::fallthrough]];
5601 case NEON::BI__builtin_neon_vst1_lane_v: {
5602 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5603 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
5604 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5605 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
5606 return St;
5607 }
5608 case NEON::BI__builtin_neon_vtbl1_v:
5609 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
5610 Ops, "vtbl1");
5611 case NEON::BI__builtin_neon_vtbl2_v:
5612 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
5613 Ops, "vtbl2");
5614 case NEON::BI__builtin_neon_vtbl3_v:
5615 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
5616 Ops, "vtbl3");
5617 case NEON::BI__builtin_neon_vtbl4_v:
5618 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
5619 Ops, "vtbl4");
5620 case NEON::BI__builtin_neon_vtbx1_v:
5621 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
5622 Ops, "vtbx1");
5623 case NEON::BI__builtin_neon_vtbx2_v:
5624 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
5625 Ops, "vtbx2");
5626 case NEON::BI__builtin_neon_vtbx3_v:
5627 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
5628 Ops, "vtbx3");
5629 case NEON::BI__builtin_neon_vtbx4_v:
5630 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
5631 Ops, "vtbx4");
5632 }
5633}
5634
5635static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
5636 const CallExpr *E,
5637 SmallVectorImpl<Value *> &Ops,
5638 llvm::Triple::ArchType Arch) {
5639 unsigned int Int = 0;
5640 const char *s = nullptr;
5641
5642 switch (BuiltinID) {
5643 default:
5644 return nullptr;
5645 case NEON::BI__builtin_neon_vtbl1_v:
5646 case NEON::BI__builtin_neon_vqtbl1_v:
5647 case NEON::BI__builtin_neon_vqtbl1q_v:
5648 case NEON::BI__builtin_neon_vtbl2_v:
5649 case NEON::BI__builtin_neon_vqtbl2_v:
5650 case NEON::BI__builtin_neon_vqtbl2q_v:
5651 case NEON::BI__builtin_neon_vtbl3_v:
5652 case NEON::BI__builtin_neon_vqtbl3_v:
5653 case NEON::BI__builtin_neon_vqtbl3q_v:
5654 case NEON::BI__builtin_neon_vtbl4_v:
5655 case NEON::BI__builtin_neon_vqtbl4_v:
5656 case NEON::BI__builtin_neon_vqtbl4q_v:
5657 break;
5658 case NEON::BI__builtin_neon_vtbx1_v:
5659 case NEON::BI__builtin_neon_vqtbx1_v:
5660 case NEON::BI__builtin_neon_vqtbx1q_v:
5661 case NEON::BI__builtin_neon_vtbx2_v:
5662 case NEON::BI__builtin_neon_vqtbx2_v:
5663 case NEON::BI__builtin_neon_vqtbx2q_v:
5664 case NEON::BI__builtin_neon_vtbx3_v:
5665 case NEON::BI__builtin_neon_vqtbx3_v:
5666 case NEON::BI__builtin_neon_vqtbx3q_v:
5667 case NEON::BI__builtin_neon_vtbx4_v:
5668 case NEON::BI__builtin_neon_vqtbx4_v:
5669 case NEON::BI__builtin_neon_vqtbx4q_v:
5670 break;
5671 }
5672
5673 assert(E->getNumArgs() >= 3)(static_cast <bool> (E->getNumArgs() >= 3) ? void
(0) : __assert_fail ("E->getNumArgs() >= 3", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5673, __extension__ __PRETTY_FUNCTION__))
;
5674
5675 // Get the last argument, which specifies the vector type.
5676 llvm::APSInt Result;
5677 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5678 if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
5679 return nullptr;
5680
5681 // Determine the type of this overloaded NEON intrinsic.
5682 NeonTypeFlags Type(Result.getZExtValue());
5683 llvm::VectorType *Ty = GetNeonType(&CGF, Type, Arch);
5684 if (!Ty)
5685 return nullptr;
5686
5687 CodeGen::CGBuilderTy &Builder = CGF.Builder;
5688
5689 // AArch64 scalar builtins are not overloaded, they do not have an extra
5690 // argument that specifies the vector type, need to handle each case.
5691 switch (BuiltinID) {
5692 case NEON::BI__builtin_neon_vtbl1_v: {
5693 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
5694 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
5695 "vtbl1");
5696 }
5697 case NEON::BI__builtin_neon_vtbl2_v: {
5698 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
5699 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
5700 "vtbl1");
5701 }
5702 case NEON::BI__builtin_neon_vtbl3_v: {
5703 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
5704 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
5705 "vtbl2");
5706 }
5707 case NEON::BI__builtin_neon_vtbl4_v: {
5708 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
5709 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
5710 "vtbl2");
5711 }
5712 case NEON::BI__builtin_neon_vtbx1_v: {
5713 Value *TblRes =
5714 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
5715 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
5716
5717 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
5718 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
5719 CmpRes = Builder.CreateSExt(CmpRes, Ty);
5720
5721 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
5722 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
5723 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
5724 }
5725 case NEON::BI__builtin_neon_vtbx2_v: {
5726 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
5727 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
5728 "vtbx1");
5729 }
5730 case NEON::BI__builtin_neon_vtbx3_v: {
5731 Value *TblRes =
5732 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
5733 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
5734
5735 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
5736 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
5737 TwentyFourV);
5738 CmpRes = Builder.CreateSExt(CmpRes, Ty);
5739
5740 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
5741 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
5742 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
5743 }
5744 case NEON::BI__builtin_neon_vtbx4_v: {
5745 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
5746 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
5747 "vtbx2");
5748 }
5749 case NEON::BI__builtin_neon_vqtbl1_v:
5750 case NEON::BI__builtin_neon_vqtbl1q_v:
5751 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
5752 case NEON::BI__builtin_neon_vqtbl2_v:
5753 case NEON::BI__builtin_neon_vqtbl2q_v: {
5754 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
5755 case NEON::BI__builtin_neon_vqtbl3_v:
5756 case NEON::BI__builtin_neon_vqtbl3q_v:
5757 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
5758 case NEON::BI__builtin_neon_vqtbl4_v:
5759 case NEON::BI__builtin_neon_vqtbl4q_v:
5760 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
5761 case NEON::BI__builtin_neon_vqtbx1_v:
5762 case NEON::BI__builtin_neon_vqtbx1q_v:
5763 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
5764 case NEON::BI__builtin_neon_vqtbx2_v:
5765 case NEON::BI__builtin_neon_vqtbx2q_v:
5766 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
5767 case NEON::BI__builtin_neon_vqtbx3_v:
5768 case NEON::BI__builtin_neon_vqtbx3q_v:
5769 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
5770 case NEON::BI__builtin_neon_vqtbx4_v:
5771 case NEON::BI__builtin_neon_vqtbx4q_v:
5772 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
5773 }
5774 }
5775
5776 if (!Int)
5777 return nullptr;
5778
5779 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
5780 return CGF.EmitNeonCall(F, Ops, s);
5781}
5782
5783Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
5784 llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
5785 Op = Builder.CreateBitCast(Op, Int16Ty);
5786 Value *V = UndefValue::get(VTy);
5787 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5788 Op = Builder.CreateInsertElement(V, Op, CI);
5789 return Op;
5790}
5791
5792Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
5793 const CallExpr *E,
5794 llvm::Triple::ArchType Arch) {
5795 unsigned HintID = static_cast<unsigned>(-1);
5796 switch (BuiltinID) {
5797 default: break;
5798 case AArch64::BI__builtin_arm_nop:
5799 HintID = 0;
5800 break;
5801 case AArch64::BI__builtin_arm_yield:
5802 HintID = 1;
5803 break;
5804 case AArch64::BI__builtin_arm_wfe:
5805 HintID = 2;
5806 break;
5807 case AArch64::BI__builtin_arm_wfi:
5808 HintID = 3;
5809 break;
5810 case AArch64::BI__builtin_arm_sev:
5811 HintID = 4;
5812 break;
5813 case AArch64::BI__builtin_arm_sevl:
5814 HintID = 5;
5815 break;
5816 }
5817
5818 if (HintID != static_cast<unsigned>(-1)) {
5819 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
5820 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
5821 }
5822
5823 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
5824 Value *Address = EmitScalarExpr(E->getArg(0));
5825 Value *RW = EmitScalarExpr(E->getArg(1));
5826 Value *CacheLevel = EmitScalarExpr(E->getArg(2));
5827 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
5828 Value *IsData = EmitScalarExpr(E->getArg(4));
5829
5830 Value *Locality = nullptr;
5831 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
5832 // Temporal fetch, needs to convert cache level to locality.
5833 Locality = llvm::ConstantInt::get(Int32Ty,
5834 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
5835 } else {
5836 // Streaming fetch.
5837 Locality = llvm::ConstantInt::get(Int32Ty, 0);
5838 }
5839
5840 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
5841 // PLDL3STRM or PLDL2STRM.
5842 Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
5843 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
5844 }
5845
5846 if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
5847 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5848, __extension__ __PRETTY_FUNCTION__))
5848 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5848, __extension__ __PRETTY_FUNCTION__))
;
5849 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
5850 return Builder.CreateCall(
5851 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
5852 }
5853 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
5854 assert((getContext().getTypeSize(E->getType()) == 64) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5855, __extension__ __PRETTY_FUNCTION__))
5855 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5855, __extension__ __PRETTY_FUNCTION__))
;
5856 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
5857 return Builder.CreateCall(
5858 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
5859 }
5860
5861 if (BuiltinID == AArch64::BI__clear_cache) {
5862 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5862, __extension__ __PRETTY_FUNCTION__))
;
5863 const FunctionDecl *FD = E->getDirectCallee();
5864 Value *Ops[2];
5865 for (unsigned i = 0; i < 2; i++)
5866 Ops[i] = EmitScalarExpr(E->getArg(i));
5867 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
5868 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
5869 StringRef Name = FD->getName();
5870 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
5871 }
5872
5873 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
5874 BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
5875 getContext().getTypeSize(E->getType()) == 128) {
5876 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
5877 ? Intrinsic::aarch64_ldaxp
5878 : Intrinsic::aarch64_ldxp);
5879
5880 Value *LdPtr = EmitScalarExpr(E->getArg(0));
5881 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
5882 "ldxp");
5883
5884 Value *Val0 = Builder.CreateExtractValue(Val, 1);
5885 Value *Val1 = Builder.CreateExtractValue(Val, 0);
5886 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
5887 Val0 = Builder.CreateZExt(Val0, Int128Ty);
5888 Val1 = Builder.CreateZExt(Val1, Int128Ty);
5889
5890 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
5891 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
5892 Val = Builder.CreateOr(Val, Val1);
5893 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
5894 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
5895 BuiltinID == AArch64::BI__builtin_arm_ldaex) {
5896 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
5897
5898 QualType Ty = E->getType();
5899 llvm::Type *RealResTy = ConvertType(Ty);
5900 llvm::Type *PtrTy = llvm::IntegerType::get(
5901 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
5902 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
5903
5904 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
5905 ? Intrinsic::aarch64_ldaxr
5906 : Intrinsic::aarch64_ldxr,
5907 PtrTy);
5908 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
5909
5910 if (RealResTy->isPointerTy())
5911 return Builder.CreateIntToPtr(Val, RealResTy);
5912
5913 llvm::Type *IntResTy = llvm::IntegerType::get(
5914 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
5915 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
5916 return Builder.CreateBitCast(Val, RealResTy);
5917 }
5918
5919 if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
5920 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
5921 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
5922 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
5923 ? Intrinsic::aarch64_stlxp
5924 : Intrinsic::aarch64_stxp);
5925 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
5926
5927 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
5928 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
5929
5930 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
5931 llvm::Value *Val = Builder.CreateLoad(Tmp);
5932
5933 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
5934 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
5935 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
5936 Int8PtrTy);
5937 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
5938 }
5939
5940 if (BuiltinID == AArch64::BI__builtin_arm_strex ||
5941 BuiltinID == AArch64::BI__builtin_arm_stlex) {
5942 Value *StoreVal = EmitScalarExpr(E->getArg(0));
5943 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
5944
5945 QualType Ty = E->getArg(0)->getType();
5946 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
5947 getContext().getTypeSize(Ty));
5948 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
5949
5950 if (StoreVal->getType()->isPointerTy())
5951 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
5952 else {
5953 llvm::Type *IntTy = llvm::IntegerType::get(
5954 getLLVMContext(),
5955 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
5956 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
5957 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
5958 }
5959
5960 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
5961 ? Intrinsic::aarch64_stlxr
5962 : Intrinsic::aarch64_stxr,
5963 StoreAddr->getType());
5964 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
5965 }
5966
5967 if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
5968 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
5969 return Builder.CreateCall(F);
5970 }
5971
5972 // CRC32
5973 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
5974 switch (BuiltinID) {
5975 case AArch64::BI__builtin_arm_crc32b:
5976 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
5977 case AArch64::BI__builtin_arm_crc32cb:
5978 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
5979 case AArch64::BI__builtin_arm_crc32h:
5980 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
5981 case AArch64::BI__builtin_arm_crc32ch:
5982 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
5983 case AArch64::BI__builtin_arm_crc32w:
5984 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
5985 case AArch64::BI__builtin_arm_crc32cw:
5986 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
5987 case AArch64::BI__builtin_arm_crc32d:
5988 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
5989 case AArch64::BI__builtin_arm_crc32cd:
5990 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
5991 }
5992
5993 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
5994 Value *Arg0 = EmitScalarExpr(E->getArg(0));
5995 Value *Arg1 = EmitScalarExpr(E->getArg(1));
5996 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
5997
5998 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
5999 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
6000
6001 return Builder.CreateCall(F, {Arg0, Arg1});
6002 }
6003
6004 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
6005 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6006 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6007 BuiltinID == AArch64::BI__builtin_arm_wsr ||
6008 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6009 BuiltinID == AArch64::BI__builtin_arm_wsrp) {
6010
6011 bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
6012 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6013 BuiltinID == AArch64::BI__builtin_arm_rsrp;
6014
6015 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6016 BuiltinID == AArch64::BI__builtin_arm_wsrp;
6017
6018 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
6019 BuiltinID != AArch64::BI__builtin_arm_wsr;
6020
6021 llvm::Type *ValueType;
6022 llvm::Type *RegisterType = Int64Ty;
6023 if (IsPointerBuiltin) {
6024 ValueType = VoidPtrTy;
6025 } else if (Is64Bit) {
6026 ValueType = Int64Ty;
6027 } else {
6028 ValueType = Int32Ty;
6029 }
6030
6031 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
6032 }
6033
6034 // Find out if any arguments are required to be integer constant
6035 // expressions.
6036 unsigned ICEArguments = 0;
6037 ASTContext::GetBuiltinTypeError Error;
6038 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6039 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6039, __extension__ __PRETTY_FUNCTION__))
;
6040
6041 llvm::SmallVector<Value*, 4> Ops;
6042 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
6043 if ((ICEArguments & (1 << i)) == 0) {
6044 Ops.push_back(EmitScalarExpr(E->getArg(i)));
6045 } else {
6046 // If this is required to be a constant, constant fold it so that we know
6047 // that the generated intrinsic gets a ConstantInt.
6048 llvm::APSInt Result;
6049 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6050 assert(IsConst && "Constant arg isn't actually constant?")(static_cast <bool> (IsConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6050, __extension__ __PRETTY_FUNCTION__))
;
6051 (void)IsConst;
6052 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6053 }
6054 }
6055
6056 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
6057 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
6058 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
6059
6060 if (Builtin) {
6061 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
6062 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
6063 assert(Result && "SISD intrinsic should have been handled")(static_cast <bool> (Result && "SISD intrinsic should have been handled"
) ? void (0) : __assert_fail ("Result && \"SISD intrinsic should have been handled\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6063, __extension__ __PRETTY_FUNCTION__))
;
6064 return Result;
6065 }
6066
6067 llvm::APSInt Result;
6068 const Expr *Arg = E->getArg(E->getNumArgs()-1);
6069 NeonTypeFlags Type(0);
6070 if (Arg->isIntegerConstantExpr(Result, getContext()))
6071 // Determine the type of this overloaded NEON intrinsic.
6072 Type = NeonTypeFlags(Result.getZExtValue());
6073
6074 bool usgn = Type.isUnsigned();
6075 bool quad = Type.isQuad();
6076
6077 // Handle non-overloaded intrinsics first.
6078 switch (BuiltinID) {
6079 default: break;
6080 case NEON::BI__builtin_neon_vldrq_p128: {
6081 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
6082 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
6083 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
6084 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
6085 CharUnits::fromQuantity(16));
6086 }
6087 case NEON::BI__builtin_neon_vstrq_p128: {
6088 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
6089 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
6090 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
6091 }
6092 case NEON::BI__builtin_neon_vcvts_u32_f32:
6093 case NEON::BI__builtin_neon_vcvtd_u64_f64:
6094 usgn = true;
6095 LLVM_FALLTHROUGH[[clang::fallthrough]];
6096 case NEON::BI__builtin_neon_vcvts_s32_f32:
6097 case NEON::BI__builtin_neon_vcvtd_s64_f64: {
6098 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6099 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
6100 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
6101 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
6102 Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
6103 if (usgn)
6104 return Builder.CreateFPToUI(Ops[0], InTy);
6105 return Builder.CreateFPToSI(Ops[0], InTy);
6106 }
6107 case NEON::BI__builtin_neon_vcvts_f32_u32:
6108 case NEON::BI__builtin_neon_vcvtd_f64_u64:
6109 usgn = true;
6110 LLVM_FALLTHROUGH[[clang::fallthrough]];
6111 case NEON::BI__builtin_neon_vcvts_f32_s32:
6112 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
6113 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6114 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
6115 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
6116 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
6117 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
6118 if (usgn)
6119 return Builder.CreateUIToFP(Ops[0], FTy);
6120 return Builder.CreateSIToFP(Ops[0], FTy);
6121 }
6122 case NEON::BI__builtin_neon_vpaddd_s64: {
6123 llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
6124 Value *Vec = EmitScalarExpr(E->getArg(0));
6125 // The vector is v2f64, so make sure it's bitcast to that.
6126 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
6127 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
6128 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
6129 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
6130 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
6131 // Pairwise addition of a v2f64 into a scalar f64.
6132 return Builder.CreateAdd(Op0, Op1, "vpaddd");
6133 }
6134 case NEON::BI__builtin_neon_vpaddd_f64: {
6135 llvm::Type *Ty =
6136 llvm::VectorType::get(DoubleTy, 2);
6137 Value *Vec = EmitScalarExpr(E->getArg(0));
6138 // The vector is v2f64, so make sure it's bitcast to that.
6139 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
6140 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
6141 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
6142 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
6143 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
6144 // Pairwise addition of a v2f64 into a scalar f64.
6145 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
6146 }
6147 case NEON::BI__builtin_neon_vpadds_f32: {
6148 llvm::Type *Ty =
6149 llvm::VectorType::get(FloatTy, 2);
6150 Value *Vec = EmitScalarExpr(E->getArg(0));
6151 // The vector is v2f32, so make sure it's bitcast to that.
6152 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
6153 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
6154 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
6155 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
6156 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
6157 // Pairwise addition of a v2f32 into a scalar f32.
6158 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
6159 }
6160 case NEON::BI__builtin_neon_vceqzd_s64:
6161 case NEON::BI__builtin_neon_vceqzd_f64:
6162 case NEON::BI__builtin_neon_vceqzs_f32:
6163 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6164 return EmitAArch64CompareBuiltinExpr(
6165 Ops[0], ConvertType(E->getCallReturnType(getContext())),
6166 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
6167 case NEON::BI__builtin_neon_vcgezd_s64:
6168 case NEON::BI__builtin_neon_vcgezd_f64:
6169 case NEON::BI__builtin_neon_vcgezs_f32:
6170 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6171 return EmitAArch64CompareBuiltinExpr(
6172 Ops[0], ConvertType(E->getCallReturnType(getContext())),
6173 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
6174 case NEON::BI__builtin_neon_vclezd_s64:
6175 case NEON::BI__builtin_neon_vclezd_f64:
6176 case NEON::BI__builtin_neon_vclezs_f32:
6177 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6178 return EmitAArch64CompareBuiltinExpr(
6179 Ops[0], ConvertType(E->getCallReturnType(getContext())),
6180 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
6181 case NEON::BI__builtin_neon_vcgtzd_s64:
6182 case NEON::BI__builtin_neon_vcgtzd_f64:
6183 case NEON::BI__builtin_neon_vcgtzs_f32:
6184 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6185 return EmitAArch64CompareBuiltinExpr(
6186 Ops[0], ConvertType(E->getCallReturnType(getContext())),
6187 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
6188 case NEON::BI__builtin_neon_vcltzd_s64:
6189 case NEON::BI__builtin_neon_vcltzd_f64:
6190 case NEON::BI__builtin_neon_vcltzs_f32:
6191 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6192 return EmitAArch64CompareBuiltinExpr(
6193 Ops[0], ConvertType(E->getCallReturnType(getContext())),
6194 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
6195
6196 case NEON::BI__builtin_neon_vceqzd_u64: {
6197 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6198 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
6199 Ops[0] =
6200 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
6201 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
6202 }
6203 case NEON::BI__builtin_neon_vceqd_f64:
6204 case NEON::BI__builtin_neon_vcled_f64:
6205 case NEON::BI__builtin_neon_vcltd_f64:
6206 case NEON::BI__builtin_neon_vcged_f64:
6207 case NEON::BI__builtin_neon_vcgtd_f64: {
6208 llvm::CmpInst::Predicate P;
6209 switch (BuiltinID) {
6210 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6210)
;
6211 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
6212 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
6213 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
6214 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
6215 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
6216 }
6217 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6218 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
6219 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
6220 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
6221 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
6222 }
6223 case NEON::BI__builtin_neon_vceqs_f32:
6224 case NEON::BI__builtin_neon_vcles_f32:
6225 case NEON::BI__builtin_neon_vclts_f32:
6226 case NEON::BI__builtin_neon_vcges_f32:
6227 case NEON::BI__builtin_neon_vcgts_f32: {
6228 llvm::CmpInst::Predicate P;
6229 switch (BuiltinID) {
6230 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6230)
;
6231 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
6232 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
6233 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
6234 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
6235 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
6236 }
6237 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6238 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
6239 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
6240 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
6241 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
6242 }
6243 case NEON::BI__builtin_neon_vceqd_s64:
6244 case NEON::BI__builtin_neon_vceqd_u64:
6245 case NEON::BI__builtin_neon_vcgtd_s64:
6246 case NEON::BI__builtin_neon_vcgtd_u64:
6247 case NEON::BI__builtin_neon_vcltd_s64:
6248 case NEON::BI__builtin_neon_vcltd_u64:
6249 case NEON::BI__builtin_neon_vcged_u64:
6250 case NEON::BI__builtin_neon_vcged_s64:
6251 case NEON::BI__builtin_neon_vcled_u64:
6252 case NEON::BI__builtin_neon_vcled_s64: {
6253 llvm::CmpInst::Predicate P;
6254 switch (BuiltinID) {
6255 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6255)
;
6256 case NEON::BI__builtin_neon_vceqd_s64:
6257 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
6258 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
6259 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
6260 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
6261 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
6262 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
6263 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
6264 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
6265 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
6266 }
6267 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6268 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
6269 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
6270 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
6271 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
6272 }
6273 case NEON::BI__builtin_neon_vtstd_s64:
6274 case NEON::BI__builtin_neon_vtstd_u64: {
6275 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6276 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
6277 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
6278 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
6279 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
6280 llvm::Constant::getNullValue(Int64Ty));
6281 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
6282 }
6283 case NEON::BI__builtin_neon_vset_lane_i8:
6284 case NEON::BI__builtin_neon_vset_lane_i16:
6285 case NEON::BI__builtin_neon_vset_lane_i32:
6286 case NEON::BI__builtin_neon_vset_lane_i64:
6287 case NEON::BI__builtin_neon_vset_lane_f32:
6288 case NEON::BI__builtin_neon_vsetq_lane_i8:
6289 case NEON::BI__builtin_neon_vsetq_lane_i16:
6290 case NEON::BI__builtin_neon_vsetq_lane_i32:
6291 case NEON::BI__builtin_neon_vsetq_lane_i64:
6292 case NEON::BI__builtin_neon_vsetq_lane_f32:
6293 Ops.push_back(EmitScalarExpr(E->getArg(2)));
6294 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6295 case NEON::BI__builtin_neon_vset_lane_f64:
6296 // The vector type needs a cast for the v1f64 variant.
6297 Ops[1] = Builder.CreateBitCast(Ops[1],
6298 llvm::VectorType::get(DoubleTy, 1));
6299 Ops.push_back(EmitScalarExpr(E->getArg(2)));
6300 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6301 case NEON::BI__builtin_neon_vsetq_lane_f64:
6302 // The vector type needs a cast for the v2f64 variant.
6303 Ops[1] = Builder.CreateBitCast(Ops[1],
6304 llvm::VectorType::get(DoubleTy, 2));
6305 Ops.push_back(EmitScalarExpr(E->getArg(2)));
6306 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6307
6308 case NEON::BI__builtin_neon_vget_lane_i8:
6309 case NEON::BI__builtin_neon_vdupb_lane_i8:
6310 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
6311 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6312 "vget_lane");
6313 case NEON::BI__builtin_neon_vgetq_lane_i8:
6314 case NEON::BI__builtin_neon_vdupb_laneq_i8:
6315 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
6316 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6317 "vgetq_lane");
6318 case NEON::BI__builtin_neon_vget_lane_i16:
6319 case NEON::BI__builtin_neon_vduph_lane_i16:
6320 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
6321 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6322 "vget_lane");
6323 case NEON::BI__builtin_neon_vgetq_lane_i16:
6324 case NEON::BI__builtin_neon_vduph_laneq_i16:
6325 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
6326 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6327 "vgetq_lane");
6328 case NEON::BI__builtin_neon_vget_lane_i32:
6329 case NEON::BI__builtin_neon_vdups_lane_i32:
6330 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
6331 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6332 "vget_lane");
6333 case NEON::BI__builtin_neon_vdups_lane_f32:
6334 Ops[0] = Builder.CreateBitCast(Ops[0],
6335 llvm::VectorType::get(FloatTy, 2));
6336 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6337 "vdups_lane");
6338 case NEON::BI__builtin_neon_vgetq_lane_i32:
6339 case NEON::BI__builtin_neon_vdups_laneq_i32:
6340 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
6341 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6342 "vgetq_lane");
6343 case NEON::BI__builtin_neon_vget_lane_i64:
6344 case NEON::BI__builtin_neon_vdupd_lane_i64:
6345 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
6346 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6347 "vget_lane");
6348 case NEON::BI__builtin_neon_vdupd_lane_f64:
6349 Ops[0] = Builder.CreateBitCast(Ops[0],
6350 llvm::VectorType::get(DoubleTy, 1));
6351 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6352 "vdupd_lane");
6353 case NEON::BI__builtin_neon_vgetq_lane_i64:
6354 case NEON::BI__builtin_neon_vdupd_laneq_i64:
6355 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
6356 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6357 "vgetq_lane");
6358 case NEON::BI__builtin_neon_vget_lane_f32:
6359 Ops[0] = Builder.CreateBitCast(Ops[0],
6360 llvm::VectorType::get(FloatTy, 2));
6361 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6362 "vget_lane");
6363 case NEON::BI__builtin_neon_vget_lane_f64:
6364 Ops[0] = Builder.CreateBitCast(Ops[0],
6365 llvm::VectorType::get(DoubleTy, 1));
6366 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6367 "vget_lane");
6368 case NEON::BI__builtin_neon_vgetq_lane_f32:
6369 case NEON::BI__builtin_neon_vdups_laneq_f32:
6370 Ops[0] = Builder.CreateBitCast(Ops[0],
6371 llvm::VectorType::get(FloatTy, 4));
6372 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6373 "vgetq_lane");
6374 case NEON::BI__builtin_neon_vgetq_lane_f64:
6375 case NEON::BI__builtin_neon_vdupd_laneq_f64:
6376 Ops[0] = Builder.CreateBitCast(Ops[0],
6377 llvm::VectorType::get(DoubleTy, 2));
6378 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6379 "vgetq_lane");
6380 case NEON::BI__builtin_neon_vaddd_s64:
6381 case NEON::BI__builtin_neon_vaddd_u64:
6382 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
6383 case NEON::BI__builtin_neon_vsubd_s64:
6384 case NEON::BI__builtin_neon_vsubd_u64:
6385 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
6386 case NEON::BI__builtin_neon_vqdmlalh_s16:
6387 case NEON::BI__builtin_neon_vqdmlslh_s16: {
6388 SmallVector<Value *, 2> ProductOps;
6389 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
6390 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
6391 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
6392 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
6393 ProductOps, "vqdmlXl");
6394 Constant *CI = ConstantInt::get(SizeTy, 0);
6395 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
6396
6397 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
6398 ? Intrinsic::aarch64_neon_sqadd
6399 : Intrinsic::aarch64_neon_sqsub;
6400 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
6401 }
6402 case NEON::BI__builtin_neon_vqshlud_n_s64: {
6403 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6404 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
6405 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
6406 Ops, "vqshlu_n");
6407 }
6408 case NEON::BI__builtin_neon_vqshld_n_u64:
6409 case NEON::BI__builtin_neon_vqshld_n_s64: {
6410 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
6411 ? Intrinsic::aarch64_neon_uqshl
6412 : Intrinsic::aarch64_neon_sqshl;
6413 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6414 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
6415 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
6416 }
6417 case NEON::BI__builtin_neon_vrshrd_n_u64:
6418 case NEON::BI__builtin_neon_vrshrd_n_s64: {
6419 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
6420 ? Intrinsic::aarch64_neon_urshl
6421 : Intrinsic::aarch64_neon_srshl;
6422 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6423 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
6424 Ops[1] = ConstantInt::get(Int64Ty, -SV);
6425 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
6426 }
6427 case NEON::BI__builtin_neon_vrsrad_n_u64:
6428 case NEON::BI__builtin_neon_vrsrad_n_s64: {
6429 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
6430 ? Intrinsic::aarch64_neon_urshl
6431 : Intrinsic::aarch64_neon_srshl;
6432 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
6433 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
6434 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
6435 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
6436 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
6437 }
6438 case NEON::BI__builtin_neon_vshld_n_s64:
6439 case NEON::BI__builtin_neon_vshld_n_u64: {
6440 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
6441 return Builder.CreateShl(
6442 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
6443 }
6444 case NEON::BI__builtin_neon_vshrd_n_s64: {
6445 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
6446 return Builder.CreateAShr(
6447 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
6448 Amt->getZExtValue())),
6449 "shrd_n");
6450 }
6451 case NEON::BI__builtin_neon_vshrd_n_u64: {
6452 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
6453 uint64_t ShiftAmt = Amt->getZExtValue();
6454 // Right-shifting an unsigned value by its size yields 0.
6455 if (ShiftAmt == 64)
6456 return ConstantInt::get(Int64Ty, 0);
6457 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
6458 "shrd_n");
6459 }
6460 case NEON::BI__builtin_neon_vsrad_n_s64: {
6461 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
6462 Ops[1] = Builder.CreateAShr(
6463 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
6464 Amt->getZExtValue())),
6465 "shrd_n");
6466 return Builder.CreateAdd(Ops[0], Ops[1]);
6467 }
6468 case NEON::BI__builtin_neon_vsrad_n_u64: {
6469 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
6470 uint64_t ShiftAmt = Amt->getZExtValue();
6471 // Right-shifting an unsigned value by its size yields 0.
6472 // As Op + 0 = Op, return Ops[0] directly.
6473 if (ShiftAmt == 64)
6474 return Ops[0];
6475 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
6476 "shrd_n");
6477 return Builder.CreateAdd(Ops[0], Ops[1]);
6478 }
6479 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
6480 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
6481 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
6482 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
6483 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
6484 "lane");
6485 SmallVector<Value *, 2> ProductOps;
6486 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
6487 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
6488 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
6489 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
6490 ProductOps, "vqdmlXl");
6491 Constant *CI = ConstantInt::get(SizeTy, 0);
6492 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
6493 Ops.pop_back();
6494
6495 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
6496 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
6497 ? Intrinsic::aarch64_neon_sqadd
6498 : Intrinsic::aarch64_neon_sqsub;
6499 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
6500 }
6501 case NEON::BI__builtin_neon_vqdmlals_s32:
6502 case NEON::BI__builtin_neon_vqdmlsls_s32: {
6503 SmallVector<Value *, 2> ProductOps;
6504 ProductOps.push_back(Ops[1]);
6505 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
6506 Ops[1] =
6507 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
6508 ProductOps, "vqdmlXl");
6509
6510 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
6511 ? Intrinsic::aarch64_neon_sqadd
6512 : Intrinsic::aarch64_neon_sqsub;
6513 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
6514 }
6515 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
6516 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
6517 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
6518 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
6519 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
6520 "lane");
6521 SmallVector<Value *, 2> ProductOps;
6522 ProductOps.push_back(Ops[1]);
6523 ProductOps.push_back(Ops[2]);
6524 Ops[1] =
6525 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
6526 ProductOps, "vqdmlXl");
6527 Ops.pop_back();
6528
6529 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
6530 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
6531 ? Intrinsic::aarch64_neon_sqadd
6532 : Intrinsic::aarch64_neon_sqsub;
6533 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
6534 }
6535 }
6536
6537 llvm::VectorType *VTy = GetNeonType(this, Type, Arch);
6538 llvm::Type *Ty = VTy;
6539 if (!Ty)
6540 return nullptr;
6541
6542 // Not all intrinsics handled by the common case work for AArch64 yet, so only
6543 // defer to common code if it's been added to our special map.
6544 Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
6545 AArch64SIMDIntrinsicsProvenSorted);
6546
6547 if (Builtin)
6548 return EmitCommonNeonBuiltinExpr(
6549 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
6550 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
6551 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
6552
6553 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
6554 return V;
6555
6556 unsigned Int;
6557 switch (BuiltinID) {
6558 default: return nullptr;
6559 case NEON::BI__builtin_neon_vbsl_v:
6560 case NEON::BI__builtin_neon_vbslq_v: {
6561 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
6562 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
6563 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
6564 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
6565
6566 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
6567 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
6568 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
6569 return Builder.CreateBitCast(Ops[0], Ty);
6570 }
6571 case NEON::BI__builtin_neon_vfma_lane_v:
6572 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
6573 // The ARM builtins (and instructions) have the addend as the first
6574 // operand, but the 'fma' intrinsics have it last. Swap it around here.
6575 Value *Addend = Ops[0];
6576 Value *Multiplicand = Ops[1];
6577 Value *LaneSource = Ops[2];
6578 Ops[0] = Multiplicand;
6579 Ops[1] = LaneSource;
6580 Ops[2] = Addend;
6581
6582 // Now adjust things to handle the lane access.
6583 llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
6584 llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
6585 VTy;
6586 llvm::Constant *cst = cast<Constant>(Ops[3]);
6587 Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
6588 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
6589 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
6590
6591 Ops.pop_back();
6592 Int = Intrinsic::fma;
6593 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
6594 }
6595 case NEON::BI__builtin_neon_vfma_laneq_v: {
6596 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
6597 // v1f64 fma should be mapped to Neon scalar f64 fma
6598 if (VTy && VTy->getElementType() == DoubleTy) {
6599 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
6600 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
6601 llvm::Type *VTy = GetNeonType(this,
6602 NeonTypeFlags(NeonTypeFlags::Float64, false, true), Arch);
6603 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
6604 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
6605 Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
6606 Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
6607 return Builder.CreateBitCast(Result, Ty);
6608 }
6609 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
6610 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6611 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6612
6613 llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
6614 VTy->getNumElements() * 2);
6615 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
6616 Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
6617 cast<ConstantInt>(Ops[3]));
6618 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
6619
6620 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
6621 }
6622 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
6623 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
6624 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6625 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6626
6627 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6628 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
6629 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
6630 }
6631 case NEON::BI__builtin_neon_vfmah_lane_f16:
6632 case NEON::BI__builtin_neon_vfmas_lane_f32:
6633 case NEON::BI__builtin_neon_vfmah_laneq_f16:
6634 case NEON::BI__builtin_neon_vfmas_laneq_f32:
6635 case NEON::BI__builtin_neon_vfmad_lane_f64:
6636 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
6637 Ops.push_back(EmitScalarExpr(E->getArg(3)));
6638 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6639 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
6640 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
6641 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
6642 }
6643 case NEON::BI__builtin_neon_vmull_v:
6644 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6645 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
6646 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
6647 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6648 case NEON::BI__builtin_neon_vmax_v:
6649 case NEON::BI__builtin_neon_vmaxq_v:
6650 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6651 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
6652 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
6653 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
6654 case NEON::BI__builtin_neon_vmin_v:
6655 case NEON::BI__builtin_neon_vminq_v:
6656 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6657 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
6658 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
6659 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
6660 case NEON::BI__builtin_neon_vabd_v:
6661 case NEON::BI__builtin_neon_vabdq_v:
6662 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6663 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
6664 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
6665 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
6666 case NEON::BI__builtin_neon_vpadal_v:
6667 case NEON::BI__builtin_neon_vpadalq_v: {
6668 unsigned ArgElts = VTy->getNumElements();
6669 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
6670 unsigned BitWidth = EltTy->getBitWidth();
6671 llvm::Type *ArgTy = llvm::VectorType::get(
6672 llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
6673 llvm::Type* Tys[2] = { VTy, ArgTy };
6674 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
6675 SmallVector<llvm::Value*, 1> TmpOps;
6676 TmpOps.push_back(Ops[1]);
6677 Function *F = CGM.getIntrinsic(Int, Tys);
6678 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
6679 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
6680 return Builder.CreateAdd(tmp, addend);
6681 }
6682 case NEON::BI__builtin_neon_vpmin_v:
6683 case NEON::BI__builtin_neon_vpminq_v:
6684 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6685 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
6686 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
6687 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
6688 case NEON::BI__builtin_neon_vpmax_v:
6689 case NEON::BI__builtin_neon_vpmaxq_v:
6690 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6691 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
6692 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
6693 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
6694 case NEON::BI__builtin_neon_vminnm_v:
6695 case NEON::BI__builtin_neon_vminnmq_v:
6696 Int = Intrinsic::aarch64_neon_fminnm;
6697 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
6698 case NEON::BI__builtin_neon_vmaxnm_v:
6699 case NEON::BI__builtin_neon_vmaxnmq_v:
6700 Int = Intrinsic::aarch64_neon_fmaxnm;
6701 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
6702 case NEON::BI__builtin_neon_vrecpss_f32: {
6703 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6704 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
6705 Ops, "vrecps");
6706 }
6707 case NEON::BI__builtin_neon_vrecpsd_f64: {
6708 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6709 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
6710 Ops, "vrecps");
6711 }
6712 case NEON::BI__builtin_neon_vqshrun_n_v:
6713 Int = Intrinsic::aarch64_neon_sqshrun;
6714 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
6715 case NEON::BI__builtin_neon_vqrshrun_n_v:
6716 Int = Intrinsic::aarch64_neon_sqrshrun;
6717 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
6718 case NEON::BI__builtin_neon_vqshrn_n_v:
6719 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
6720 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
6721 case NEON::BI__builtin_neon_vrshrn_n_v:
6722 Int = Intrinsic::aarch64_neon_rshrn;
6723 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
6724 case NEON::BI__builtin_neon_vqrshrn_n_v:
6725 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
6726 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
6727 case NEON::BI__builtin_neon_vrnda_v:
6728 case NEON::BI__builtin_neon_vrndaq_v: {
6729 Int = Intrinsic::round;
6730 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
6731 }
6732 case NEON::BI__builtin_neon_vrndi_v:
6733 case NEON::BI__builtin_neon_vrndiq_v: {
6734 Int = Intrinsic::nearbyint;
6735 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
6736 }
6737 case NEON::BI__builtin_neon_vrndm_v:
6738 case NEON::BI__builtin_neon_vrndmq_v: {
6739 Int = Intrinsic::floor;
6740 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
6741 }
6742 case NEON::BI__builtin_neon_vrndn_v:
6743 case NEON::BI__builtin_neon_vrndnq_v: {
6744 Int = Intrinsic::aarch64_neon_frintn;
6745 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
6746 }
6747 case NEON::BI__builtin_neon_vrndp_v:
6748 case NEON::BI__builtin_neon_vrndpq_v: {
6749 Int = Intrinsic::ceil;
6750 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
6751 }
6752 case NEON::BI__builtin_neon_vrndx_v:
6753 case NEON::BI__builtin_neon_vrndxq_v: {
6754 Int = Intrinsic::rint;
6755 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
6756 }
6757 case NEON::BI__builtin_neon_vrnd_v:
6758 case NEON::BI__builtin_neon_vrndq_v: {
6759 Int = Intrinsic::trunc;
6760 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
6761 }
6762 case NEON::BI__builtin_neon_vceqz_v:
6763 case NEON::BI__builtin_neon_vceqzq_v:
6764 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6765 ICmpInst::ICMP_EQ, "vceqz");
6766 case NEON::BI__builtin_neon_vcgez_v:
6767 case NEON::BI__builtin_neon_vcgezq_v:
6768 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6769 ICmpInst::ICMP_SGE, "vcgez");
6770 case NEON::BI__builtin_neon_vclez_v:
6771 case NEON::BI__builtin_neon_vclezq_v:
6772 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6773 ICmpInst::ICMP_SLE, "vclez");
6774 case NEON::BI__builtin_neon_vcgtz_v:
6775 case NEON::BI__builtin_neon_vcgtzq_v:
6776 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6777 ICmpInst::ICMP_SGT, "vcgtz");
6778 case NEON::BI__builtin_neon_vcltz_v:
6779 case NEON::BI__builtin_neon_vcltzq_v:
6780 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6781 ICmpInst::ICMP_SLT, "vcltz");
6782 case NEON::BI__builtin_neon_vcvt_f64_v:
6783 case NEON::BI__builtin_neon_vcvtq_f64_v:
6784 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6785 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad), Arch);
6786 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6787 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6788 case NEON::BI__builtin_neon_vcvt_f64_f32: {
6789 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6790, __extension__ __PRETTY_FUNCTION__))
6790 "unexpected vcvt_f64_f32 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6790, __extension__ __PRETTY_FUNCTION__))
;
6791 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
6792 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag, Arch));
6793
6794 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
6795 }
6796 case NEON::BI__builtin_neon_vcvt_f32_f64: {
6797 assert(Type.getEltType() == NeonTypeFlags::Float32 &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6798, __extension__ __PRETTY_FUNCTION__))
6798 "unexpected vcvt_f32_f64 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6798, __extension__ __PRETTY_FUNCTION__))
;
6799 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
6800 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag, Arch));
6801
6802 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
6803 }
6804 case NEON::BI__builtin_neon_vcvt_s32_v:
6805 case NEON::BI__builtin_neon_vcvt_u32_v:
6806 case NEON::BI__builtin_neon_vcvt_s64_v:
6807 case NEON::BI__builtin_neon_vcvt_u64_v:
6808 case NEON::BI__builtin_neon_vcvt_s16_v:
6809 case NEON::BI__builtin_neon_vcvt_u16_v:
6810 case NEON::BI__builtin_neon_vcvtq_s32_v:
6811 case NEON::BI__builtin_neon_vcvtq_u32_v:
6812 case NEON::BI__builtin_neon_vcvtq_s64_v:
6813 case NEON::BI__builtin_neon_vcvtq_u64_v:
6814 case NEON::BI__builtin_neon_vcvtq_s16_v:
6815 case NEON::BI__builtin_neon_vcvtq_u16_v: {
6816 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6817 if (usgn)
6818 return Builder.CreateFPToUI(Ops[0], Ty);
6819 return Builder.CreateFPToSI(Ops[0], Ty);
6820 }
6821 case NEON::BI__builtin_neon_vcvta_s16_v:
6822 case NEON::BI__builtin_neon_vcvta_s32_v:
6823 case NEON::BI__builtin_neon_vcvtaq_s16_v:
6824 case NEON::BI__builtin_neon_vcvtaq_s32_v:
6825 case NEON::BI__builtin_neon_vcvta_u32_v:
6826 case NEON::BI__builtin_neon_vcvtaq_u16_v:
6827 case NEON::BI__builtin_neon_vcvtaq_u32_v:
6828 case NEON::BI__builtin_neon_vcvta_s64_v:
6829 case NEON::BI__builtin_neon_vcvtaq_s64_v:
6830 case NEON::BI__builtin_neon_vcvta_u64_v:
6831 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
6832 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
6833 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6834 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
6835 }
6836 case NEON::BI__builtin_neon_vcvtm_s16_v:
6837 case NEON::BI__builtin_neon_vcvtm_s32_v:
6838 case NEON::BI__builtin_neon_vcvtmq_s16_v:
6839 case NEON::BI__builtin_neon_vcvtmq_s32_v:
6840 case NEON::BI__builtin_neon_vcvtm_u16_v:
6841 case NEON::BI__builtin_neon_vcvtm_u32_v:
6842 case NEON::BI__builtin_neon_vcvtmq_u16_v:
6843 case NEON::BI__builtin_neon_vcvtmq_u32_v:
6844 case NEON::BI__builtin_neon_vcvtm_s64_v:
6845 case NEON::BI__builtin_neon_vcvtmq_s64_v:
6846 case NEON::BI__builtin_neon_vcvtm_u64_v:
6847 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6848 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
6849 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6850 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
6851 }
6852 case NEON::BI__builtin_neon_vcvtn_s16_v:
6853 case NEON::BI__builtin_neon_vcvtn_s32_v:
6854 case NEON::BI__builtin_neon_vcvtnq_s16_v:
6855 case NEON::BI__builtin_neon_vcvtnq_s32_v:
6856 case NEON::BI__builtin_neon_vcvtn_u16_v:
6857 case NEON::BI__builtin_neon_vcvtn_u32_v:
6858 case NEON::BI__builtin_neon_vcvtnq_u16_v:
6859 case NEON::BI__builtin_neon_vcvtnq_u32_v:
6860 case NEON::BI__builtin_neon_vcvtn_s64_v:
6861 case NEON::BI__builtin_neon_vcvtnq_s64_v:
6862 case NEON::BI__builtin_neon_vcvtn_u64_v:
6863 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
6864 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
6865 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6866 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
6867 }
6868 case NEON::BI__builtin_neon_vcvtp_s16_v:
6869 case NEON::BI__builtin_neon_vcvtp_s32_v:
6870 case NEON::BI__builtin_neon_vcvtpq_s16_v:
6871 case NEON::BI__builtin_neon_vcvtpq_s32_v:
6872 case NEON::BI__builtin_neon_vcvtp_u16_v:
6873 case NEON::BI__builtin_neon_vcvtp_u32_v:
6874 case NEON::BI__builtin_neon_vcvtpq_u16_v:
6875 case NEON::BI__builtin_neon_vcvtpq_u32_v:
6876 case NEON::BI__builtin_neon_vcvtp_s64_v:
6877 case NEON::BI__builtin_neon_vcvtpq_s64_v:
6878 case NEON::BI__builtin_neon_vcvtp_u64_v:
6879 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
6880 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
6881 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6882 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
6883 }
6884 case NEON::BI__builtin_neon_vmulx_v:
6885 case NEON::BI__builtin_neon_vmulxq_v: {
6886 Int = Intrinsic::aarch64_neon_fmulx;
6887 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
6888 }
6889 case NEON::BI__builtin_neon_vmul_lane_v:
6890 case NEON::BI__builtin_neon_vmul_laneq_v: {
6891 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
6892 bool Quad = false;
6893 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
6894 Quad = true;
6895 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
6896 llvm::Type *VTy = GetNeonType(this,
6897 NeonTypeFlags(NeonTypeFlags::Float64, false, Quad), Arch);
6898 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6899 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
6900 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
6901 return Builder.CreateBitCast(Result, Ty);
6902 }
6903 case NEON::BI__builtin_neon_vnegd_s64:
6904 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
6905 case NEON::BI__builtin_neon_vpmaxnm_v:
6906 case NEON::BI__builtin_neon_vpmaxnmq_v: {
6907 Int = Intrinsic::aarch64_neon_fmaxnmp;
6908 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
6909 }
6910 case NEON::BI__builtin_neon_vpminnm_v:
6911 case NEON::BI__builtin_neon_vpminnmq_v: {
6912 Int = Intrinsic::aarch64_neon_fminnmp;
6913 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
6914 }
6915 case NEON::BI__builtin_neon_vsqrt_v:
6916 case NEON::BI__builtin_neon_vsqrtq_v: {
6917 Int = Intrinsic::sqrt;
6918 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6919 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
6920 }
6921 case NEON::BI__builtin_neon_vrbit_v:
6922 case NEON::BI__builtin_neon_vrbitq_v: {
6923 Int = Intrinsic::aarch64_neon_rbit;
6924 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
6925 }
6926 case NEON::BI__builtin_neon_vaddv_u8:
6927 // FIXME: These are handled by the AArch64 scalar code.
6928 usgn = true;
6929 LLVM_FALLTHROUGH[[clang::fallthrough]];
6930 case NEON::BI__builtin_neon_vaddv_s8: {
6931 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
6932 Ty = Int32Ty;
6933 VTy = llvm::VectorType::get(Int8Ty, 8);
6934 llvm::Type *Tys[2] = { Ty, VTy };
6935 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6936 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
6937 return Builder.CreateTrunc(Ops[0], Int8Ty);
6938 }
6939 case NEON::BI__builtin_neon_vaddv_u16:
6940 usgn = true;
6941 LLVM_FALLTHROUGH[[clang::fallthrough]];
6942 case NEON::BI__builtin_neon_vaddv_s16: {
6943 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
6944 Ty = Int32Ty;
6945 VTy = llvm::VectorType::get(Int16Ty, 4);
6946 llvm::Type *Tys[2] = { Ty, VTy };
6947 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6948 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
6949 return Builder.CreateTrunc(Ops[0], Int16Ty);
6950 }
6951 case NEON::BI__builtin_neon_vaddvq_u8:
6952 usgn = true;
6953 LLVM_FALLTHROUGH[[clang::fallthrough]];
6954 case NEON::BI__builtin_neon_vaddvq_s8: {
6955 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
6956 Ty = Int32Ty;
6957 VTy = llvm::VectorType::get(Int8Ty, 16);
6958 llvm::Type *Tys[2] = { Ty, VTy };
6959 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6960 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
6961 return Builder.CreateTrunc(Ops[0], Int8Ty);
6962 }
6963 case NEON::BI__builtin_neon_vaddvq_u16:
6964 usgn = true;
6965 LLVM_FALLTHROUGH[[clang::fallthrough]];
6966 case NEON::BI__builtin_neon_vaddvq_s16: {
6967 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
6968 Ty = Int32Ty;
6969 VTy = llvm::VectorType::get(Int16Ty, 8);
6970 llvm::Type *Tys[2] = { Ty, VTy };
6971 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6972 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
6973 return Builder.CreateTrunc(Ops[0], Int16Ty);
6974 }
6975 case NEON::BI__builtin_neon_vmaxv_u8: {
6976 Int = Intrinsic::aarch64_neon_umaxv;
6977 Ty = Int32Ty;
6978 VTy = llvm::VectorType::get(Int8Ty, 8);
6979 llvm::Type *Tys[2] = { Ty, VTy };
6980 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6981 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
6982 return Builder.CreateTrunc(Ops[0], Int8Ty);
6983 }
6984 case NEON::BI__builtin_neon_vmaxv_u16: {
6985 Int = Intrinsic::aarch64_neon_umaxv;
6986 Ty = Int32Ty;
6987 VTy = llvm::VectorType::get(Int16Ty, 4);
6988 llvm::Type *Tys[2] = { Ty, VTy };
6989 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6990 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
6991 return Builder.CreateTrunc(Ops[0], Int16Ty);
6992 }
6993 case NEON::BI__builtin_neon_vmaxvq_u8: {
6994 Int = Intrinsic::aarch64_neon_umaxv;
6995 Ty = Int32Ty;
6996 VTy = llvm::VectorType::get(Int8Ty, 16);
6997 llvm::Type *Tys[2] = { Ty, VTy };
6998 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6999 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7000 return Builder.CreateTrunc(Ops[0], Int8Ty);
7001 }
7002 case NEON::BI__builtin_neon_vmaxvq_u16: {
7003 Int = Intrinsic::aarch64_neon_umaxv;
7004 Ty = Int32Ty;
7005 VTy = llvm::VectorType::get(Int16Ty, 8);
7006 llvm::Type *Tys[2] = { Ty, VTy };
7007 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7008 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7009 return Builder.CreateTrunc(Ops[0], Int16Ty);
7010 }
7011 case NEON::BI__builtin_neon_vmaxv_s8: {
7012 Int = Intrinsic::aarch64_neon_smaxv;
7013 Ty = Int32Ty;
7014 VTy = llvm::VectorType::get(Int8Ty, 8);
7015 llvm::Type *Tys[2] = { Ty, VTy };
7016 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7017 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7018 return Builder.CreateTrunc(Ops[0], Int8Ty);
7019 }
7020 case NEON::BI__builtin_neon_vmaxv_s16: {
7021 Int = Intrinsic::aarch64_neon_smaxv;
7022 Ty = Int32Ty;
7023 VTy = llvm::VectorType::get(Int16Ty, 4);
7024 llvm::Type *Tys[2] = { Ty, VTy };
7025 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7026 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7027 return Builder.CreateTrunc(Ops[0], Int16Ty);
7028 }
7029 case NEON::BI__builtin_neon_vmaxvq_s8: {
7030 Int = Intrinsic::aarch64_neon_smaxv;
7031 Ty = Int32Ty;
7032 VTy = llvm::VectorType::get(Int8Ty, 16);
7033 llvm::Type *Tys[2] = { Ty, VTy };
7034 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7035 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7036 return Builder.CreateTrunc(Ops[0], Int8Ty);
7037 }
7038 case NEON::BI__builtin_neon_vmaxvq_s16: {
7039 Int = Intrinsic::aarch64_neon_smaxv;
7040 Ty = Int32Ty;
7041 VTy = llvm::VectorType::get(Int16Ty, 8);
7042 llvm::Type *Tys[2] = { Ty, VTy };
7043 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7044 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7045 return Builder.CreateTrunc(Ops[0], Int16Ty);
7046 }
7047 case NEON::BI__builtin_neon_vmaxv_f16: {
7048 Int = Intrinsic::aarch64_neon_fmaxv;
7049 Ty = HalfTy;
7050 VTy = llvm::VectorType::get(HalfTy, 4);
7051 llvm::Type *Tys[2] = { Ty, VTy };
7052 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7053 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7054 return Builder.CreateTrunc(Ops[0], HalfTy);
7055 }
7056 case NEON::BI__builtin_neon_vmaxvq_f16: {
7057 Int = Intrinsic::aarch64_neon_fmaxv;
7058 Ty = HalfTy;
7059 VTy = llvm::VectorType::get(HalfTy, 8);
7060 llvm::Type *Tys[2] = { Ty, VTy };
7061 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7062 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7063 return Builder.CreateTrunc(Ops[0], HalfTy);
7064 }
7065 case NEON::BI__builtin_neon_vminv_u8: {
7066 Int = Intrinsic::aarch64_neon_uminv;
7067 Ty = Int32Ty;
7068 VTy = llvm::VectorType::get(Int8Ty, 8);
7069 llvm::Type *Tys[2] = { Ty, VTy };
7070 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7071 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7072 return Builder.CreateTrunc(Ops[0], Int8Ty);
7073 }
7074 case NEON::BI__builtin_neon_vminv_u16: {
7075 Int = Intrinsic::aarch64_neon_uminv;
7076 Ty = Int32Ty;
7077 VTy = llvm::VectorType::get(Int16Ty, 4);
7078 llvm::Type *Tys[2] = { Ty, VTy };
7079 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7080 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7081 return Builder.CreateTrunc(Ops[0], Int16Ty);
7082 }
7083 case NEON::BI__builtin_neon_vminvq_u8: {
7084 Int = Intrinsic::aarch64_neon_uminv;
7085 Ty = Int32Ty;
7086 VTy = llvm::VectorType::get(Int8Ty, 16);
7087 llvm::Type *Tys[2] = { Ty, VTy };
7088 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7089 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7090 return Builder.CreateTrunc(Ops[0], Int8Ty);
7091 }
7092 case NEON::BI__builtin_neon_vminvq_u16: {
7093 Int = Intrinsic::aarch64_neon_uminv;
7094 Ty = Int32Ty;
7095 VTy = llvm::VectorType::get(Int16Ty, 8);
7096 llvm::Type *Tys[2] = { Ty, VTy };
7097 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7098 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7099 return Builder.CreateTrunc(Ops[0], Int16Ty);
7100 }
7101 case NEON::BI__builtin_neon_vminv_s8: {
7102 Int = Intrinsic::aarch64_neon_sminv;
7103 Ty = Int32Ty;
7104 VTy = llvm::VectorType::get(Int8Ty, 8);
7105 llvm::Type *Tys[2] = { Ty, VTy };
7106 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7107 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7108 return Builder.CreateTrunc(Ops[0], Int8Ty);
7109 }
7110 case NEON::BI__builtin_neon_vminv_s16: {
7111 Int = Intrinsic::aarch64_neon_sminv;
7112 Ty = Int32Ty;
7113 VTy = llvm::VectorType::get(Int16Ty, 4);
7114 llvm::Type *Tys[2] = { Ty, VTy };
7115 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7116 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7117 return Builder.CreateTrunc(Ops[0], Int16Ty);
7118 }
7119 case NEON::BI__builtin_neon_vminvq_s8: {
7120 Int = Intrinsic::aarch64_neon_sminv;
7121 Ty = Int32Ty;
7122 VTy = llvm::VectorType::get(Int8Ty, 16);
7123 llvm::Type *Tys[2] = { Ty, VTy };
7124 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7125 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7126 return Builder.CreateTrunc(Ops[0], Int8Ty);
7127 }
7128 case NEON::BI__builtin_neon_vminvq_s16: {
7129 Int = Intrinsic::aarch64_neon_sminv;
7130 Ty = Int32Ty;
7131 VTy = llvm::VectorType::get(Int16Ty, 8);
7132 llvm::Type *Tys[2] = { Ty, VTy };
7133 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7134 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7135 return Builder.CreateTrunc(Ops[0], Int16Ty);
7136 }
7137 case NEON::BI__builtin_neon_vminv_f16: {
7138 Int = Intrinsic::aarch64_neon_fminv;
7139 Ty = HalfTy;
7140 VTy = llvm::VectorType::get(HalfTy, 4);
7141 llvm::Type *Tys[2] = { Ty, VTy };
7142 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7143 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7144 return Builder.CreateTrunc(Ops[0], HalfTy);
7145 }
7146 case NEON::BI__builtin_neon_vminvq_f16: {
7147 Int = Intrinsic::aarch64_neon_fminv;
7148 Ty = HalfTy;
7149 VTy = llvm::VectorType::get(HalfTy, 8);
7150 llvm::Type *Tys[2] = { Ty, VTy };
7151 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7152 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7153 return Builder.CreateTrunc(Ops[0], HalfTy);
7154 }
7155 case NEON::BI__builtin_neon_vmaxnmv_f16: {
7156 Int = Intrinsic::aarch64_neon_fmaxnmv;
7157 Ty = HalfTy;
7158 VTy = llvm::VectorType::get(HalfTy, 4);
7159 llvm::Type *Tys[2] = { Ty, VTy };
7160 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7161 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
7162 return Builder.CreateTrunc(Ops[0], HalfTy);
7163 }
7164 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
7165 Int = Intrinsic::aarch64_neon_fmaxnmv;
7166 Ty = HalfTy;
7167 VTy = llvm::VectorType::get(HalfTy, 8);
7168 llvm::Type *Tys[2] = { Ty, VTy };
7169 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7170 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
7171 return Builder.CreateTrunc(Ops[0], HalfTy);
7172 }
7173 case NEON::BI__builtin_neon_vminnmv_f16: {
7174 Int = Intrinsic::aarch64_neon_fminnmv;
7175 Ty = HalfTy;
7176 VTy = llvm::VectorType::get(HalfTy, 4);
7177 llvm::Type *Tys[2] = { Ty, VTy };
7178 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7179 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
7180 return Builder.CreateTrunc(Ops[0], HalfTy);
7181 }
7182 case NEON::BI__builtin_neon_vminnmvq_f16: {
7183 Int = Intrinsic::aarch64_neon_fminnmv;
7184 Ty = HalfTy;
7185 VTy = llvm::VectorType::get(HalfTy, 8);
7186 llvm::Type *Tys[2] = { Ty, VTy };
7187 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7188 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
7189 return Builder.CreateTrunc(Ops[0], HalfTy);
7190 }
7191 case NEON::BI__builtin_neon_vmul_n_f64: {
7192 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
7193 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
7194 return Builder.CreateFMul(Ops[0], RHS);
7195 }
7196 case NEON::BI__builtin_neon_vaddlv_u8: {
7197 Int = Intrinsic::aarch64_neon_uaddlv;
7198 Ty = Int32Ty;
7199 VTy = llvm::VectorType::get(Int8Ty, 8);
7200 llvm::Type *Tys[2] = { Ty, VTy };
7201 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7202 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7203 return Builder.CreateTrunc(Ops[0], Int16Ty);
7204 }
7205 case NEON::BI__builtin_neon_vaddlv_u16: {
7206 Int = Intrinsic::aarch64_neon_uaddlv;
7207 Ty = Int32Ty;
7208 VTy = llvm::VectorType::get(Int16Ty, 4);
7209 llvm::Type *Tys[2] = { Ty, VTy };
7210 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7211 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7212 }
7213 case NEON::BI__builtin_neon_vaddlvq_u8: {
7214 Int = Intrinsic::aarch64_neon_uaddlv;
7215 Ty = Int32Ty;
7216 VTy = llvm::VectorType::get(Int8Ty, 16);
7217 llvm::Type *Tys[2] = { Ty, VTy };
7218 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7219 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7220 return Builder.CreateTrunc(Ops[0], Int16Ty);
7221 }
7222 case NEON::BI__builtin_neon_vaddlvq_u16: {
7223 Int = Intrinsic::aarch64_neon_uaddlv;
7224 Ty = Int32Ty;
7225 VTy = llvm::VectorType::get(Int16Ty, 8);
7226 llvm::Type *Tys[2] = { Ty, VTy };
7227 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7228 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7229 }
7230 case NEON::BI__builtin_neon_vaddlv_s8: {
7231 Int = Intrinsic::aarch64_neon_saddlv;
7232 Ty = Int32Ty;
7233 VTy = llvm::VectorType::get(Int8Ty, 8);
7234 llvm::Type *Tys[2] = { Ty, VTy };
7235 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7236 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7237 return Builder.CreateTrunc(Ops[0], Int16Ty);
7238 }
7239 case NEON::BI__builtin_neon_vaddlv_s16: {
7240 Int = Intrinsic::aarch64_neon_saddlv;
7241 Ty = Int32Ty;
7242 VTy = llvm::VectorType::get(Int16Ty, 4);
7243 llvm::Type *Tys[2] = { Ty, VTy };
7244 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7245 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7246 }
7247 case NEON::BI__builtin_neon_vaddlvq_s8: {
7248 Int = Intrinsic::aarch64_neon_saddlv;
7249 Ty = Int32Ty;
7250 VTy = llvm::VectorType::get(Int8Ty, 16);
7251 llvm::Type *Tys[2] = { Ty, VTy };
7252 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7253 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7254 return Builder.CreateTrunc(Ops[0], Int16Ty);
7255 }
7256 case NEON::BI__builtin_neon_vaddlvq_s16: {
7257 Int = Intrinsic::aarch64_neon_saddlv;
7258 Ty = Int32Ty;
7259 VTy = llvm::VectorType::get(Int16Ty, 8);
7260 llvm::Type *Tys[2] = { Ty, VTy };
7261 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7262 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7263 }
7264 case NEON::BI__builtin_neon_vsri_n_v:
7265 case NEON::BI__builtin_neon_vsriq_n_v: {
7266 Int = Intrinsic::aarch64_neon_vsri;
7267 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
7268 return EmitNeonCall(Intrin, Ops, "vsri_n");
7269 }
7270 case NEON::BI__builtin_neon_vsli_n_v:
7271 case NEON::BI__builtin_neon_vsliq_n_v: {
7272 Int = Intrinsic::aarch64_neon_vsli;
7273 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
7274 return EmitNeonCall(Intrin, Ops, "vsli_n");
7275 }
7276 case NEON::BI__builtin_neon_vsra_n_v:
7277 case NEON::BI__builtin_neon_vsraq_n_v:
7278 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7279 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7280 return Builder.CreateAdd(Ops[0], Ops[1]);
7281 case NEON::BI__builtin_neon_vrsra_n_v:
7282 case NEON::BI__builtin_neon_vrsraq_n_v: {
7283 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
7284 SmallVector<llvm::Value*,2> TmpOps;
7285 TmpOps.push_back(Ops[1]);
7286 TmpOps.push_back(Ops[2]);
7287 Function* F = CGM.getIntrinsic(Int, Ty);
7288 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
7289 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
7290 return Builder.CreateAdd(Ops[0], tmp);
7291 }
7292 // FIXME: Sharing loads & stores with 32-bit is complicated by the absence
7293 // of an Align parameter here.
7294 case NEON::BI__builtin_neon_vld1_x2_v:
7295 case NEON::BI__builtin_neon_vld1q_x2_v:
7296 case NEON::BI__builtin_neon_vld1_x3_v:
7297 case NEON::BI__builtin_neon_vld1q_x3_v:
7298 case NEON::BI__builtin_neon_vld1_x4_v:
7299 case NEON::BI__builtin_neon_vld1q_x4_v: {
7300 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
7301 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7302 llvm::Type *Tys[2] = { VTy, PTy };
7303 unsigned Int;
7304 switch (BuiltinID) {
7305 case NEON::BI__builtin_neon_vld1_x2_v:
7306 case NEON::BI__builtin_neon_vld1q_x2_v:
7307 Int = Intrinsic::aarch64_neon_ld1x2;
7308 break;
7309 case NEON::BI__builtin_neon_vld1_x3_v:
7310 case NEON::BI__builtin_neon_vld1q_x3_v:
7311 Int = Intrinsic::aarch64_neon_ld1x3;
7312 break;
7313 case NEON::BI__builtin_neon_vld1_x4_v:
7314 case NEON::BI__builtin_neon_vld1q_x4_v:
7315 Int = Intrinsic::aarch64_neon_ld1x4;
7316 break;
7317 }
7318 Function *F = CGM.getIntrinsic(Int, Tys);
7319 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
7320 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7321 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7322 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7323 }
7324 case NEON::BI__builtin_neon_vst1_x2_v:
7325 case NEON::BI__builtin_neon_vst1q_x2_v:
7326 case NEON::BI__builtin_neon_vst1_x3_v:
7327 case NEON::BI__builtin_neon_vst1q_x3_v:
7328 case NEON::BI__builtin_neon_vst1_x4_v:
7329 case NEON::BI__builtin_neon_vst1q_x4_v: {
7330 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
7331 llvm::Type *Tys[2] = { VTy, PTy };
7332 unsigned Int;
7333 switch (BuiltinID) {
7334 case NEON::BI__builtin_neon_vst1_x2_v:
7335 case NEON::BI__builtin_neon_vst1q_x2_v:
7336 Int = Intrinsic::aarch64_neon_st1x2;
7337 break;
7338 case NEON::BI__builtin_neon_vst1_x3_v:
7339 case NEON::BI__builtin_neon_vst1q_x3_v:
7340 Int = Intrinsic::aarch64_neon_st1x3;
7341 break;
7342 case NEON::BI__builtin_neon_vst1_x4_v:
7343 case NEON::BI__builtin_neon_vst1q_x4_v:
7344 Int = Intrinsic::aarch64_neon_st1x4;
7345 break;
7346 }
7347 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
7348 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
7349 }
7350 case NEON::BI__builtin_neon_vld1_v:
7351 case NEON::BI__builtin_neon_vld1q_v: {
7352 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
7353 auto Alignment = CharUnits::fromQuantity(
7354 BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
7355 return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
7356 }
7357 case NEON::BI__builtin_neon_vst1_v:
7358 case NEON::BI__builtin_neon_vst1q_v:
7359 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
7360 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
7361 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7362 case NEON::BI__builtin_neon_vld1_lane_v:
7363 case NEON::BI__builtin_neon_vld1q_lane_v: {
7364 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7365 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
7366 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7367 auto Alignment = CharUnits::fromQuantity(
7368 BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
7369 Ops[0] =
7370 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
7371 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
7372 }
7373 case NEON::BI__builtin_neon_vld1_dup_v:
7374 case NEON::BI__builtin_neon_vld1q_dup_v: {
7375 Value *V = UndefValue::get(Ty);
7376 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
7377 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7378 auto Alignment = CharUnits::fromQuantity(
7379 BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
7380 Ops[0] =
7381 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
7382 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
7383 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
7384 return EmitNeonSplat(Ops[0], CI);
7385 }
7386 case NEON::BI__builtin_neon_vst1_lane_v:
7387 case NEON::BI__builtin_neon_vst1q_lane_v:
7388 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7389 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7390 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7391 return Builder.CreateDefaultAlignedStore(Ops[1],
7392 Builder.CreateBitCast(Ops[0], Ty));
7393 case NEON::BI__builtin_neon_vld2_v:
7394 case NEON::BI__builtin_neon_vld2q_v: {
7395 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
7396 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7397 llvm::Type *Tys[2] = { VTy, PTy };
7398 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
7399 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
7400 Ops[0] = Builder.CreateBitCast(Ops[0],
7401 llvm::PointerType::getUnqual(Ops[1]->getType()));
7402 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7403 }
7404 case NEON::BI__builtin_neon_vld3_v:
7405 case NEON::BI__builtin_neon_vld3q_v: {
7406 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
7407 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7408 llvm::Type *Tys[2] = { VTy, PTy };
7409 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
7410 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
7411 Ops[0] = Builder.CreateBitCast(Ops[0],
7412 llvm::PointerType::getUnqual(Ops[1]->getType()));
7413 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7414 }
7415 case NEON::BI__builtin_neon_vld4_v:
7416 case NEON::BI__builtin_neon_vld4q_v: {
7417 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
7418 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7419 llvm::Type *Tys[2] = { VTy, PTy };
7420 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
7421 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
7422 Ops[0] = Builder.CreateBitCast(Ops[0],
7423 llvm::PointerType::getUnqual(Ops[1]->getType()));
7424 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7425 }
7426 case NEON::BI__builtin_neon_vld2_dup_v:
7427 case NEON::BI__builtin_neon_vld2q_dup_v: {
7428 llvm::Type *PTy =
7429 llvm::PointerType::getUnqual(VTy->getElementType());
7430 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7431 llvm::Type *Tys[2] = { VTy, PTy };
7432 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
7433 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
7434 Ops[0] = Builder.CreateBitCast(Ops[0],
7435 llvm::PointerType::getUnqual(Ops[1]->getType()));
7436 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7437 }
7438 case NEON::BI__builtin_neon_vld3_dup_v:
7439 case NEON::BI__builtin_neon_vld3q_dup_v: {
7440 llvm::Type *PTy =
7441 llvm::PointerType::getUnqual(VTy->getElementType());
7442 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7443 llvm::Type *Tys[2] = { VTy, PTy };
7444 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
7445 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
7446 Ops[0] = Builder.CreateBitCast(Ops[0],
7447 llvm::PointerType::getUnqual(Ops[1]->getType()));
7448 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7449 }
7450 case NEON::BI__builtin_neon_vld4_dup_v:
7451 case NEON::BI__builtin_neon_vld4q_dup_v: {
7452 llvm::Type *PTy =
7453 llvm::PointerType::getUnqual(VTy->getElementType());
7454 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7455 llvm::Type *Tys[2] = { VTy, PTy };
7456 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
7457 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
7458 Ops[0] = Builder.CreateBitCast(Ops[0],
7459 llvm::PointerType::getUnqual(Ops[1]->getType()));
7460 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7461 }
7462 case NEON::BI__builtin_neon_vld2_lane_v:
7463 case NEON::BI__builtin_neon_vld2q_lane_v: {
7464 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
7465 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
7466 Ops.push_back(Ops[1]);
7467 Ops.erase(Ops.begin()+1);
7468 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7469 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7470 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7471 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
7472 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7473 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7474 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7475 }
7476 case NEON::BI__builtin_neon_vld3_lane_v:
7477 case NEON::BI__builtin_neon_vld3q_lane_v: {
7478 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
7479 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
7480 Ops.push_back(Ops[1]);
7481 Ops.erase(Ops.begin()+1);
7482 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7483 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7484 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
7485 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
7486 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
7487 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7488 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7489 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7490 }
7491 case NEON::BI__builtin_neon_vld4_lane_v:
7492 case NEON::BI__builtin_neon_vld4q_lane_v: {
7493 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
7494 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
7495 Ops.push_back(Ops[1]);
7496 Ops.erase(Ops.begin()+1);
7497 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7498 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7499 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
7500 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
7501 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
7502 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
7503 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7504 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7505 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7506 }
7507 case NEON::BI__builtin_neon_vst2_v:
7508 case NEON::BI__builtin_neon_vst2q_v: {
7509 Ops.push_back(Ops[0]);
7510 Ops.erase(Ops.begin());
7511 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
7512 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
7513 Ops, "");
7514 }
7515 case NEON::BI__builtin_neon_vst2_lane_v:
7516 case NEON::BI__builtin_neon_vst2q_lane_v: {
7517 Ops.push_back(Ops[0]);
7518 Ops.erase(Ops.begin());
7519 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7520 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
7521 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
7522 Ops, "");
7523 }
7524 case NEON::BI__builtin_neon_vst3_v:
7525 case NEON::BI__builtin_neon_vst3q_v: {
7526 Ops.push_back(Ops[0]);
7527 Ops.erase(Ops.begin());
7528 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
7529 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
7530 Ops, "");
7531 }
7532 case NEON::BI__builtin_neon_vst3_lane_v:
7533 case NEON::BI__builtin_neon_vst3q_lane_v: {
7534 Ops.push_back(Ops[0]);
7535 Ops.erase(Ops.begin());
7536 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7537 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
7538 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
7539 Ops, "");
7540 }
7541 case NEON::BI__builtin_neon_vst4_v:
7542 case NEON::BI__builtin_neon_vst4q_v: {
7543 Ops.push_back(Ops[0]);
7544 Ops.erase(Ops.begin());
7545 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
7546 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
7547 Ops, "");
7548 }
7549 case NEON::BI__builtin_neon_vst4_lane_v:
7550 case NEON::BI__builtin_neon_vst4q_lane_v: {
7551 Ops.push_back(Ops[0]);
7552 Ops.erase(Ops.begin());
7553 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
7554 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
7555 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
7556 Ops, "");
7557 }
7558 case NEON::BI__builtin_neon_vtrn_v:
7559 case NEON::BI__builtin_neon_vtrnq_v: {
7560 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7561 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7562 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7563 Value *SV = nullptr;
7564
7565 for (unsigned vi = 0; vi != 2; ++vi) {
7566 SmallVector<uint32_t, 16> Indices;
7567 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7568 Indices.push_back(i+vi);
7569 Indices.push_back(i+e+vi);
7570 }
7571 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7572 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
7573 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7574 }
7575 return SV;
7576 }
7577 case NEON::BI__builtin_neon_vuzp_v:
7578 case NEON::BI__builtin_neon_vuzpq_v: {
7579 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7580 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7581 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7582 Value *SV = nullptr;
7583
7584 for (unsigned vi = 0; vi != 2; ++vi) {
7585 SmallVector<uint32_t, 16> Indices;
7586 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7587 Indices.push_back(2*i+vi);
7588
7589 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7590 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7591 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7592 }
7593 return SV;
7594 }
7595 case NEON::BI__builtin_neon_vzip_v:
7596 case NEON::BI__builtin_neon_vzipq_v: {
7597 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7598 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7599 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7600 Value *SV = nullptr;
7601
7602 for (unsigned vi = 0; vi != 2; ++vi) {
7603 SmallVector<uint32_t, 16> Indices;
7604 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7605 Indices.push_back((i + vi*e) >> 1);
7606 Indices.push_back(((i + vi*e) >> 1)+e);
7607 }
7608 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7609 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
7610 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7611 }
7612 return SV;
7613 }
7614 case NEON::BI__builtin_neon_vqtbl1q_v: {
7615 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
7616 Ops, "vtbl1");
7617 }
7618 case NEON::BI__builtin_neon_vqtbl2q_v: {
7619 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
7620 Ops, "vtbl2");
7621 }
7622 case NEON::BI__builtin_neon_vqtbl3q_v: {
7623 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
7624 Ops, "vtbl3");
7625 }
7626 case NEON::BI__builtin_neon_vqtbl4q_v: {
7627 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
7628 Ops, "vtbl4");
7629 }
7630 case NEON::BI__builtin_neon_vqtbx1q_v: {
7631 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
7632 Ops, "vtbx1");
7633 }
7634 case NEON::BI__builtin_neon_vqtbx2q_v: {
7635 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
7636 Ops, "vtbx2");
7637 }
7638 case NEON::BI__builtin_neon_vqtbx3q_v: {
7639 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
7640 Ops, "vtbx3");
7641 }
7642 case NEON::BI__builtin_neon_vqtbx4q_v: {
7643 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
7644 Ops, "vtbx4");
7645 }
7646 case NEON::BI__builtin_neon_vsqadd_v:
7647 case NEON::BI__builtin_neon_vsqaddq_v: {
7648 Int = Intrinsic::aarch64_neon_usqadd;
7649 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
7650 }
7651 case NEON::BI__builtin_neon_vuqadd_v:
7652 case NEON::BI__builtin_neon_vuqaddq_v: {
7653 Int = Intrinsic::aarch64_neon_suqadd;
7654 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
7655 }
7656 }
7657}
7658
7659llvm::Value *CodeGenFunction::
7660BuildVector(ArrayRef<llvm::Value*> Ops) {
7661 assert((Ops.size() & (Ops.size() - 1)) == 0 &&(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7662, __extension__ __PRETTY_FUNCTION__))
7662 "Not a power-of-two sized vector!")(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7662, __extension__ __PRETTY_FUNCTION__))
;
7663 bool AllConstants = true;
7664 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
7665 AllConstants &= isa<Constant>(Ops[i]);
7666
7667 // If this is a constant vector, create a ConstantVector.
7668 if (AllConstants) {
7669 SmallVector<llvm::Constant*, 16> CstOps;
7670 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
7671 CstOps.push_back(cast<Constant>(Ops[i]));
7672 return llvm::ConstantVector::get(CstOps);
7673 }
7674
7675 // Otherwise, insertelement the values to build the vector.
7676 Value *Result =
7677 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
7678
7679 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
7680 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
7681
7682 return Result;
7683}
7684
7685// Convert the mask from an integer type to a vector of i1.
7686static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
7687 unsigned NumElts) {
7688
7689 llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
7690 cast<IntegerType>(Mask->getType())->getBitWidth());
7691 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
7692
7693 // If we have less than 8 elements, then the starting mask was an i8 and
7694 // we need to extract down to the right number of elements.
7695 if (NumElts < 8) {
7696 uint32_t Indices[4];
7697 for (unsigned i = 0; i != NumElts; ++i)
7698 Indices[i] = i;
7699 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
7700 makeArrayRef(Indices, NumElts),
7701 "extract");
7702 }
7703 return MaskVec;
7704}
7705
7706static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
7707 SmallVectorImpl<Value *> &Ops,
7708 unsigned Align) {
7709 // Cast the pointer to right type.
7710 Ops[0] = CGF.Builder.CreateBitCast(Ops[0],
7711 llvm::PointerType::getUnqual(Ops[1]->getType()));
7712
7713 // If the mask is all ones just emit a regular store.
7714 if (const auto *C = dyn_cast<Constant>(Ops[2]))
7715 if (C->isAllOnesValue())
7716 return CGF.Builder.CreateAlignedStore(Ops[1], Ops[0], Align);
7717
7718 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
7719 Ops[1]->getType()->getVectorNumElements());
7720
7721 return CGF.Builder.CreateMaskedStore(Ops[1], Ops[0], Align, MaskVec);
7722}
7723
7724static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
7725 SmallVectorImpl<Value *> &Ops, unsigned Align) {
7726 // Cast the pointer to right type.
7727 Ops[0] = CGF.Builder.CreateBitCast(Ops[0],
7728 llvm::PointerType::getUnqual(Ops[1]->getType()));
7729
7730 // If the mask is all ones just emit a regular store.
7731 if (const auto *C = dyn_cast<Constant>(Ops[2]))
7732 if (C->isAllOnesValue())
7733 return CGF.Builder.CreateAlignedLoad(Ops[0], Align);
7734
7735 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
7736 Ops[1]->getType()->getVectorNumElements());
7737
7738 return CGF.Builder.CreateMaskedLoad(Ops[0], Align, MaskVec, Ops[1]);
7739}
7740
7741static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
7742 unsigned NumElts, SmallVectorImpl<Value *> &Ops,
7743 bool InvertLHS = false) {
7744 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
7745 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
7746
7747 if (InvertLHS)
7748 LHS = CGF.Builder.CreateNot(LHS);
7749
7750 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
7751 CGF.Builder.getIntNTy(std::max(NumElts, 8U)));
7752}
7753
7754static Value *EmitX86SubVectorBroadcast(CodeGenFunction &CGF,
7755 SmallVectorImpl<Value *> &Ops,
7756 llvm::Type *DstTy,
7757 unsigned SrcSizeInBits,
7758 unsigned Align) {
7759 // Load the subvector.
7760 Ops[0] = CGF.Builder.CreateAlignedLoad(Ops[0], Align);
7761
7762 // Create broadcast mask.
7763 unsigned NumDstElts = DstTy->getVectorNumElements();
7764 unsigned NumSrcElts = SrcSizeInBits / DstTy->getScalarSizeInBits();
7765
7766 SmallVector<uint32_t, 8> Mask;
7767 for (unsigned i = 0; i != NumDstElts; i += NumSrcElts)
7768 for (unsigned j = 0; j != NumSrcElts; ++j)
7769 Mask.push_back(j);
7770
7771 return CGF.Builder.CreateShuffleVector(Ops[0], Ops[0], Mask, "subvecbcst");
7772}
7773
7774static Value *EmitX86Select(CodeGenFunction &CGF,
7775 Value *Mask, Value *Op0, Value *Op1) {
7776
7777 // If the mask is all ones just return first argument.
7778 if (const auto *C = dyn_cast<Constant>(Mask))
7779 if (C->isAllOnesValue())
7780 return Op0;
7781
7782 Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
7783
7784 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
7785}
7786
7787static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
7788 bool Signed, SmallVectorImpl<Value *> &Ops) {
7789 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
1
Calling 'Type::getVectorNumElements'
27
Returning from 'Type::getVectorNumElements'
28
'NumElts' initialized here
7790 Value *Cmp;
7791
7792 if (CC == 3) {
29
Assuming 'CC' is not equal to 3
30
Taking false branch
7793 Cmp = Constant::getNullValue(
7794 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
7795 } else if (CC == 7) {
31
Assuming 'CC' is equal to 7
32
Taking true branch
7796 Cmp = Constant::getAllOnesValue(
7797 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
7798 } else {
7799 ICmpInst::Predicate Pred;
7800 switch (CC) {
7801 default: llvm_unreachable("Unknown condition code")::llvm::llvm_unreachable_internal("Unknown condition code", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7801)
;
7802 case 0: Pred = ICmpInst::ICMP_EQ; break;
7803 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
7804 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
7805 case 4: Pred = ICmpInst::ICMP_NE; break;
7806 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
7807 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
7808 }
7809 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
7810 }
7811
7812 const auto *C = dyn_cast<Constant>(Ops.back());
7813 if (!C || !C->isAllOnesValue())
33
Assuming 'C' is non-null
34
Assuming the condition is false
35
Taking false branch
7814 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, Ops.back(), NumElts));
7815
7816 if (NumElts < 8) {
36
Assuming 'NumElts' is < 8
37
Taking true branch
7817 uint32_t Indices[8];
7818 for (unsigned i = 0; i != NumElts; ++i)
38
Assuming 'i' is equal to 'NumElts'
39
Loop condition is false. Execution continues on line 7820
7819 Indices[i] = i;
7820 for (unsigned i = NumElts; i != 8; ++i)
40
Loop condition is true. Entering loop body
7821 Indices[i] = i % NumElts + NumElts;
41
Division by zero
7822 Cmp = CGF.Builder.CreateShuffleVector(
7823 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
7824 }
7825 return CGF.Builder.CreateBitCast(Cmp,
7826 IntegerType::get(CGF.getLLVMContext(),
7827 std::max(NumElts, 8U)));
7828}
7829
7830static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
7831
7832 llvm::Type *Ty = Ops[0]->getType();
7833 Value *Zero = llvm::Constant::getNullValue(Ty);
7834 Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
7835 Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
7836 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
7837 if (Ops.size() == 1)
7838 return Res;
7839 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
7840}
7841
7842static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
7843 ArrayRef<Value *> Ops) {
7844 Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
7845 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
7846
7847 if (Ops.size() == 2)
7848 return Res;
7849
7850 assert(Ops.size() == 4)(static_cast <bool> (Ops.size() == 4) ? void (0) : __assert_fail
("Ops.size() == 4", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7850, __extension__ __PRETTY_FUNCTION__))
;
7851 return EmitX86Select(CGF, Ops[3], Res, Ops[2]);
7852}
7853
7854static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
7855 llvm::Type *DstTy) {
7856 unsigned NumberOfElements = DstTy->getVectorNumElements();
7857 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
7858 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
7859}
7860
7861Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
7862 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
7863 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
7864 return EmitX86CpuIs(CPUStr);
7865}
7866
7867Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
7868
7869 llvm::Type *Int32Ty = Builder.getInt32Ty();
7870
7871 // Matching the struct layout from the compiler-rt/libgcc structure that is
7872 // filled in:
7873 // unsigned int __cpu_vendor;
7874 // unsigned int __cpu_type;
7875 // unsigned int __cpu_subtype;
7876 // unsigned int __cpu_features[1];
7877 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
7878 llvm::ArrayType::get(Int32Ty, 1));
7879
7880 // Grab the global __cpu_model.
7881 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
7882
7883 // Calculate the index needed to access the correct field based on the
7884 // range. Also adjust the expected value.
7885 unsigned Index;
7886 unsigned Value;
7887 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
7888#define X86_VENDOR(ENUM, STRING) \
7889 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
7890#define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \
7891 .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
7892#define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \
7893 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
7894#define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \
7895 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
7896#include "llvm/Support/X86TargetParser.def"
7897 .Default({0, 0});
7898 assert(Value != 0 && "Invalid CPUStr passed to CpuIs")(static_cast <bool> (Value != 0 && "Invalid CPUStr passed to CpuIs"
) ? void (0) : __assert_fail ("Value != 0 && \"Invalid CPUStr passed to CpuIs\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7898, __extension__ __PRETTY_FUNCTION__))
;
7899
7900 // Grab the appropriate field from __cpu_model.
7901 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
7902 ConstantInt::get(Int32Ty, Index)};
7903 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
7904 CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
7905
7906 // Check the value of the field against the requested value.
7907 return Builder.CreateICmpEQ(CpuValue,
7908 llvm::ConstantInt::get(Int32Ty, Value));
7909}
7910
7911Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
7912 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
7913 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
7914 return EmitX86CpuSupports(FeatureStr);
7915}
7916
7917Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
7918 // Processor features and mapping to processor feature value.
7919
7920 uint32_t FeaturesMask = 0;
7921
7922 for (const StringRef &FeatureStr : FeatureStrs) {
7923 unsigned Feature =
7924 StringSwitch<unsigned>(FeatureStr)
7925#define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
7926#include "llvm/Support/X86TargetParser.def"
7927 ;
7928 FeaturesMask |= (1U << Feature);
7929 }
7930
7931 // Matching the struct layout from the compiler-rt/libgcc structure that is
7932 // filled in:
7933 // unsigned int __cpu_vendor;
7934 // unsigned int __cpu_type;
7935 // unsigned int __cpu_subtype;
7936 // unsigned int __cpu_features[1];
7937 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
7938 llvm::ArrayType::get(Int32Ty, 1));
7939
7940 // Grab the global __cpu_model.
7941 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
7942
7943 // Grab the first (0th) element from the field __cpu_features off of the
7944 // global in the struct STy.
7945 Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 3),
7946 ConstantInt::get(Int32Ty, 0)};
7947 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
7948 Value *Features =
7949 Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
7950
7951 // Check the value of the bit corresponding to the feature requested.
7952 Value *Bitset = Builder.CreateAnd(
7953 Features, llvm::ConstantInt::get(Int32Ty, FeaturesMask));
7954 return Builder.CreateICmpNE(Bitset, llvm::ConstantInt::get(Int32Ty, 0));
7955}
7956
7957Value *CodeGenFunction::EmitX86CpuInit() {
7958 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
7959 /*Variadic*/ false);
7960 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
7961 return Builder.CreateCall(Func);
7962}
7963
7964Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
7965 const CallExpr *E) {
7966 if (BuiltinID == X86::BI__builtin_cpu_is)
7967 return EmitX86CpuIs(E);
7968 if (BuiltinID == X86::BI__builtin_cpu_supports)
7969 return EmitX86CpuSupports(E);
7970 if (BuiltinID == X86::BI__builtin_cpu_init)
7971 return EmitX86CpuInit();
7972
7973 SmallVector<Value*, 4> Ops;
7974
7975 // Find out if any arguments are required to be integer constant expressions.
7976 unsigned ICEArguments = 0;
7977 ASTContext::GetBuiltinTypeError Error;
7978 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7979 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7979, __extension__ __PRETTY_FUNCTION__))
;
7980
7981 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
7982 // If this is a normal argument, just emit it as a scalar.
7983 if ((ICEArguments & (1 << i)) == 0) {
7984 Ops.push_back(EmitScalarExpr(E->getArg(i)));
7985 continue;
7986 }
7987
7988 // If this is required to be a constant, constant fold it so that we know
7989 // that the generated intrinsic gets a ConstantInt.
7990 llvm::APSInt Result;
7991 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
7992 assert(IsConst && "Constant arg isn't actually constant?")(static_cast <bool> (IsConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7992, __extension__ __PRETTY_FUNCTION__))
; (void)IsConst;
7993 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
7994 }
7995
7996 // These exist so that the builtin that takes an immediate can be bounds
7997 // checked by clang to avoid passing bad immediates to the backend. Since
7998 // AVX has a larger immediate than SSE we would need separate builtins to
7999 // do the different bounds checking. Rather than create a clang specific
8000 // SSE only builtin, this implements eight separate builtins to match gcc
8001 // implementation.
8002 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
8003 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
8004 llvm::Function *F = CGM.getIntrinsic(ID);
8005 return Builder.CreateCall(F, Ops);
8006 };
8007
8008 // For the vector forms of FP comparisons, translate the builtins directly to
8009 // IR.
8010 // TODO: The builtins could be removed if the SSE header files used vector
8011 // extension comparisons directly (vector ordered/unordered may need
8012 // additional support via __builtin_isnan()).
8013 auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
8014 Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
8015 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
8016 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
8017 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
8018 return Builder.CreateBitCast(Sext, FPVecTy);
8019 };
8020
8021 switch (BuiltinID) {
8022 default: return nullptr;
8023 case X86::BI_mm_prefetch: {
8024 Value *Address = Ops[0];
8025 ConstantInt *C = cast<ConstantInt>(Ops[1]);
8026 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
8027 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
8028 Value *Data = ConstantInt::get(Int32Ty, 1);
8029 Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
8030 return Builder.CreateCall(F, {Address, RW, Locality, Data});
8031 }
8032 case X86::BI_mm_clflush: {
8033 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
8034 Ops[0]);
8035 }
8036 case X86::BI_mm_lfence: {
8037 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
8038 }
8039 case X86::BI_mm_mfence: {
8040 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
8041 }
8042 case X86::BI_mm_sfence: {
8043 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
8044 }
8045 case X86::BI_mm_pause: {
8046 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
8047 }
8048 case X86::BI__rdtsc: {
8049 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
8050 }
8051 case X86::BI__builtin_ia32_undef128:
8052 case X86::BI__builtin_ia32_undef256:
8053 case X86::BI__builtin_ia32_undef512:
8054 // The x86 definition of "undef" is not the same as the LLVM definition
8055 // (PR32176). We leave optimizing away an unnecessary zero constant to the
8056 // IR optimizer and backend.
8057 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
8058 // value, we should use that here instead of a zero.
8059 return llvm::Constant::getNullValue(ConvertType(E->getType()));
8060 case X86::BI__builtin_ia32_vec_init_v8qi:
8061 case X86::BI__builtin_ia32_vec_init_v4hi:
8062 case X86::BI__builtin_ia32_vec_init_v2si:
8063 return Builder.CreateBitCast(BuildVector(Ops),
8064 llvm::Type::getX86_MMXTy(getLLVMContext()));
8065 case X86::BI__builtin_ia32_vec_ext_v2si:
8066 return Builder.CreateExtractElement(Ops[0],
8067 llvm::ConstantInt::get(Ops[1]->getType(), 0));
8068 case X86::BI_mm_setcsr:
8069 case X86::BI__builtin_ia32_ldmxcsr: {
8070 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8071 Builder.CreateStore(Ops[0], Tmp);
8072 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
8073 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
8074 }
8075 case X86::BI_mm_getcsr:
8076 case X86::BI__builtin_ia32_stmxcsr: {
8077 Address Tmp = CreateMemTemp(E->getType());
8078 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
8079 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
8080 return Builder.CreateLoad(Tmp, "stmxcsr");
8081 }
8082 case X86::BI__builtin_ia32_xsave:
8083 case X86::BI__builtin_ia32_xsave64:
8084 case X86::BI__builtin_ia32_xrstor:
8085 case X86::BI__builtin_ia32_xrstor64:
8086 case X86::BI__builtin_ia32_xsaveopt:
8087 case X86::BI__builtin_ia32_xsaveopt64:
8088 case X86::BI__builtin_ia32_xrstors:
8089 case X86::BI__builtin_ia32_xrstors64:
8090 case X86::BI__builtin_ia32_xsavec:
8091 case X86::BI__builtin_ia32_xsavec64:
8092 case X86::BI__builtin_ia32_xsaves:
8093 case X86::BI__builtin_ia32_xsaves64: {
8094 Intrinsic::ID ID;
8095#define INTRINSIC_X86_XSAVE_ID(NAME) \
8096 case X86::BI__builtin_ia32_##NAME: \
8097 ID = Intrinsic::x86_##NAME; \
8098 break
8099 switch (BuiltinID) {
8100 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8100)
;
8101 INTRINSIC_X86_XSAVE_ID(xsave);
8102 INTRINSIC_X86_XSAVE_ID(xsave64);
8103 INTRINSIC_X86_XSAVE_ID(xrstor);
8104 INTRINSIC_X86_XSAVE_ID(xrstor64);
8105 INTRINSIC_X86_XSAVE_ID(xsaveopt);
8106 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
8107 INTRINSIC_X86_XSAVE_ID(xrstors);
8108 INTRINSIC_X86_XSAVE_ID(xrstors64);
8109 INTRINSIC_X86_XSAVE_ID(xsavec);
8110 INTRINSIC_X86_XSAVE_ID(xsavec64);
8111 INTRINSIC_X86_XSAVE_ID(xsaves);
8112 INTRINSIC_X86_XSAVE_ID(xsaves64);
8113 }
8114#undef INTRINSIC_X86_XSAVE_ID
8115 Value *Mhi = Builder.CreateTrunc(
8116 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
8117 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
8118 Ops[1] = Mhi;
8119 Ops.push_back(Mlo);
8120 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
8121 }
8122 case X86::BI__builtin_ia32_storedqudi128_mask:
8123 case X86::BI__builtin_ia32_storedqusi128_mask:
8124 case X86::BI__builtin_ia32_storedquhi128_mask:
8125 case X86::BI__builtin_ia32_storedquqi128_mask:
8126 case X86::BI__builtin_ia32_storeupd128_mask:
8127 case X86::BI__builtin_ia32_storeups128_mask:
8128 case X86::BI__builtin_ia32_storedqudi256_mask:
8129 case X86::BI__builtin_ia32_storedqusi256_mask:
8130 case X86::BI__builtin_ia32_storedquhi256_mask:
8131 case X86::BI__builtin_ia32_storedquqi256_mask:
8132 case X86::BI__builtin_ia32_storeupd256_mask:
8133 case X86::BI__builtin_ia32_storeups256_mask:
8134 case X86::BI__builtin_ia32_storedqudi512_mask:
8135 case X86::BI__builtin_ia32_storedqusi512_mask:
8136 case X86::BI__builtin_ia32_storedquhi512_mask:
8137 case X86::BI__builtin_ia32_storedquqi512_mask:
8138 case X86::BI__builtin_ia32_storeupd512_mask:
8139 case X86::BI__builtin_ia32_storeups512_mask:
8140 return EmitX86MaskedStore(*this, Ops, 1);
8141
8142 case X86::BI__builtin_ia32_storess128_mask:
8143 case X86::BI__builtin_ia32_storesd128_mask: {
8144 return EmitX86MaskedStore(*this, Ops, 16);
8145 }
8146 case X86::BI__builtin_ia32_vpopcntb_128:
8147 case X86::BI__builtin_ia32_vpopcntd_128:
8148 case X86::BI__builtin_ia32_vpopcntq_128:
8149 case X86::BI__builtin_ia32_vpopcntw_128:
8150 case X86::BI__builtin_ia32_vpopcntb_256:
8151 case X86::BI__builtin_ia32_vpopcntd_256:
8152 case X86::BI__builtin_ia32_vpopcntq_256:
8153 case X86::BI__builtin_ia32_vpopcntw_256:
8154 case X86::BI__builtin_ia32_vpopcntb_512:
8155 case X86::BI__builtin_ia32_vpopcntd_512:
8156 case X86::BI__builtin_ia32_vpopcntq_512:
8157 case X86::BI__builtin_ia32_vpopcntw_512: {
8158 llvm::Type *ResultType = ConvertType(E->getType());
8159 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
8160 return Builder.CreateCall(F, Ops);
8161 }
8162 case X86::BI__builtin_ia32_cvtmask2b128:
8163 case X86::BI__builtin_ia32_cvtmask2b256:
8164 case X86::BI__builtin_ia32_cvtmask2b512:
8165 case X86::BI__builtin_ia32_cvtmask2w128:
8166 case X86::BI__builtin_ia32_cvtmask2w256:
8167 case X86::BI__builtin_ia32_cvtmask2w512:
8168 case X86::BI__builtin_ia32_cvtmask2d128:
8169 case X86::BI__builtin_ia32_cvtmask2d256:
8170 case X86::BI__builtin_ia32_cvtmask2d512:
8171 case X86::BI__builtin_ia32_cvtmask2q128:
8172 case X86::BI__builtin_ia32_cvtmask2q256:
8173 case X86::BI__builtin_ia32_cvtmask2q512:
8174 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
8175
8176 case X86::BI__builtin_ia32_movdqa32store128_mask:
8177 case X86::BI__builtin_ia32_movdqa64store128_mask:
8178 case X86::BI__builtin_ia32_storeaps128_mask:
8179 case X86::BI__builtin_ia32_storeapd128_mask:
8180 case X86::BI__builtin_ia32_movdqa32store256_mask:
8181 case X86::BI__builtin_ia32_movdqa64store256_mask:
8182 case X86::BI__builtin_ia32_storeaps256_mask:
8183 case X86::BI__builtin_ia32_storeapd256_mask:
8184 case X86::BI__builtin_ia32_movdqa32store512_mask:
8185 case X86::BI__builtin_ia32_movdqa64store512_mask:
8186 case X86::BI__builtin_ia32_storeaps512_mask:
8187 case X86::BI__builtin_ia32_storeapd512_mask: {
8188 unsigned Align =
8189 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
8190 return EmitX86MaskedStore(*this, Ops, Align);
8191 }
8192 case X86::BI__builtin_ia32_loadups128_mask:
8193 case X86::BI__builtin_ia32_loadups256_mask:
8194 case X86::BI__builtin_ia32_loadups512_mask:
8195 case X86::BI__builtin_ia32_loadupd128_mask:
8196 case X86::BI__builtin_ia32_loadupd256_mask:
8197 case X86::BI__builtin_ia32_loadupd512_mask:
8198 case X86::BI__builtin_ia32_loaddquqi128_mask:
8199 case X86::BI__builtin_ia32_loaddquqi256_mask:
8200 case X86::BI__builtin_ia32_loaddquqi512_mask:
8201 case X86::BI__builtin_ia32_loaddquhi128_mask:
8202 case X86::BI__builtin_ia32_loaddquhi256_mask:
8203 case X86::BI__builtin_ia32_loaddquhi512_mask:
8204 case X86::BI__builtin_ia32_loaddqusi128_mask:
8205 case X86::BI__builtin_ia32_loaddqusi256_mask:
8206 case X86::BI__builtin_ia32_loaddqusi512_mask:
8207 case X86::BI__builtin_ia32_loaddqudi128_mask:
8208 case X86::BI__builtin_ia32_loaddqudi256_mask:
8209 case X86::BI__builtin_ia32_loaddqudi512_mask:
8210 return EmitX86MaskedLoad(*this, Ops, 1);
8211
8212 case X86::BI__builtin_ia32_loadss128_mask:
8213 case X86::BI__builtin_ia32_loadsd128_mask:
8214 return EmitX86MaskedLoad(*this, Ops, 16);
8215
8216 case X86::BI__builtin_ia32_loadaps128_mask:
8217 case X86::BI__builtin_ia32_loadaps256_mask:
8218 case X86::BI__builtin_ia32_loadaps512_mask:
8219 case X86::BI__builtin_ia32_loadapd128_mask:
8220 case X86::BI__builtin_ia32_loadapd256_mask:
8221 case X86::BI__builtin_ia32_loadapd512_mask:
8222 case X86::BI__builtin_ia32_movdqa32load128_mask:
8223 case X86::BI__builtin_ia32_movdqa32load256_mask:
8224 case X86::BI__builtin_ia32_movdqa32load512_mask:
8225 case X86::BI__builtin_ia32_movdqa64load128_mask:
8226 case X86::BI__builtin_ia32_movdqa64load256_mask:
8227 case X86::BI__builtin_ia32_movdqa64load512_mask: {
8228 unsigned Align =
8229 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
8230 return EmitX86MaskedLoad(*this, Ops, Align);
8231 }
8232
8233 case X86::BI__builtin_ia32_vbroadcastf128_pd256:
8234 case X86::BI__builtin_ia32_vbroadcastf128_ps256: {
8235 llvm::Type *DstTy = ConvertType(E->getType());
8236 return EmitX86SubVectorBroadcast(*this, Ops, DstTy, 128, 1);
8237 }
8238
8239 case X86::BI__builtin_ia32_storehps:
8240 case X86::BI__builtin_ia32_storelps: {
8241 llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
8242 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
8243
8244 // cast val v2i64
8245 Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
8246
8247 // extract (0, 1)
8248 unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
8249 llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index);
8250 Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
8251
8252 // cast pointer to i64 & store
8253 Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
8254 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8255 }
8256 case X86::BI__builtin_ia32_palignr128:
8257 case X86::BI__builtin_ia32_palignr256:
8258 case X86::BI__builtin_ia32_palignr512_mask: {
8259 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
8260
8261 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
8262 assert(NumElts % 16 == 0)(static_cast <bool> (NumElts % 16 == 0) ? void (0) : __assert_fail
("NumElts % 16 == 0", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8262, __extension__ __PRETTY_FUNCTION__))
;
8263
8264 // If palignr is shifting the pair of vectors more than the size of two
8265 // lanes, emit zero.
8266 if (ShiftVal >= 32)
8267 return llvm::Constant::getNullValue(ConvertType(E->getType()));
8268
8269 // If palignr is shifting the pair of input vectors more than one lane,
8270 // but less than two lanes, convert to shifting in zeroes.
8271 if (ShiftVal > 16) {
8272 ShiftVal -= 16;
8273 Ops[1] = Ops[0];
8274 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
8275 }
8276
8277 uint32_t Indices[64];
8278 // 256-bit palignr operates on 128-bit lanes so we need to handle that
8279 for (unsigned l = 0; l != NumElts; l += 16) {
8280 for (unsigned i = 0; i != 16; ++i) {
8281 unsigned Idx = ShiftVal + i;
8282 if (Idx >= 16)
8283 Idx += NumElts - 16; // End of lane, switch operand.
8284 Indices[l + i] = Idx + l;
8285 }
8286 }
8287
8288 Value *Align = Builder.CreateShuffleVector(Ops[1], Ops[0],
8289 makeArrayRef(Indices, NumElts),
8290 "palignr");
8291
8292 // If this isn't a masked builtin, just return the align operation.
8293 if (Ops.size() == 3)
8294 return Align;
8295
8296 return EmitX86Select(*this, Ops[4], Align, Ops[3]);
8297 }
8298
8299 case X86::BI__builtin_ia32_vperm2f128_pd256:
8300 case X86::BI__builtin_ia32_vperm2f128_ps256:
8301 case X86::BI__builtin_ia32_vperm2f128_si256:
8302 case X86::BI__builtin_ia32_permti256: {
8303 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
8304 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
8305
8306 // This takes a very simple approach since there are two lanes and a
8307 // shuffle can have 2 inputs. So we reserve the first input for the first
8308 // lane and the second input for the second lane. This may result in
8309 // duplicate sources, but this can be dealt with in the backend.
8310
8311 Value *OutOps[2];
8312 uint32_t Indices[8];
8313 for (unsigned l = 0; l != 2; ++l) {
8314 // Determine the source for this lane.
8315 if (Imm & (1 << ((l * 4) + 3)))
8316 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
8317 else if (Imm & (1 << ((l * 4) + 1)))
8318 OutOps[l] = Ops[1];
8319 else
8320 OutOps[l] = Ops[0];
8321
8322 for (unsigned i = 0; i != NumElts/2; ++i) {
8323 // Start with ith element of the source for this lane.
8324 unsigned Idx = (l * NumElts) + i;
8325 // If bit 0 of the immediate half is set, switch to the high half of
8326 // the source.
8327 if (Imm & (1 << (l * 4)))
8328 Idx += NumElts/2;
8329 Indices[(l * (NumElts/2)) + i] = Idx;
8330 }
8331 }
8332
8333 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
8334 makeArrayRef(Indices, NumElts),
8335 "vperm");
8336 }
8337
8338 case X86::BI__builtin_ia32_movnti:
8339 case X86::BI__builtin_ia32_movnti64:
8340 case X86::BI__builtin_ia32_movntsd:
8341 case X86::BI__builtin_ia32_movntss: {
8342 llvm::MDNode *Node = llvm::MDNode::get(
8343 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
8344
8345 Value *Ptr = Ops[0];
8346 Value *Src = Ops[1];
8347
8348 // Extract the 0'th element of the source vector.
8349 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
8350 BuiltinID == X86::BI__builtin_ia32_movntss)
8351 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
8352
8353 // Convert the type of the pointer to a pointer to the stored type.
8354 Value *BC = Builder.CreateBitCast(
8355 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
8356
8357 // Unaligned nontemporal store of the scalar value.
8358 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
8359 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
8360 SI->setAlignment(1);
8361 return SI;
8362 }
8363
8364 case X86::BI__builtin_ia32_selectb_128:
8365 case X86::BI__builtin_ia32_selectb_256:
8366 case X86::BI__builtin_ia32_selectb_512:
8367 case X86::BI__builtin_ia32_selectw_128:
8368 case X86::BI__builtin_ia32_selectw_256:
8369 case X86::BI__builtin_ia32_selectw_512:
8370 case X86::BI__builtin_ia32_selectd_128:
8371 case X86::BI__builtin_ia32_selectd_256:
8372 case X86::BI__builtin_ia32_selectd_512:
8373 case X86::BI__builtin_ia32_selectq_128:
8374 case X86::BI__builtin_ia32_selectq_256:
8375 case X86::BI__builtin_ia32_selectq_512:
8376 case X86::BI__builtin_ia32_selectps_128:
8377 case X86::BI__builtin_ia32_selectps_256:
8378 case X86::BI__builtin_ia32_selectps_512:
8379 case X86::BI__builtin_ia32_selectpd_128:
8380 case X86::BI__builtin_ia32_selectpd_256:
8381 case X86::BI__builtin_ia32_selectpd_512:
8382 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
8383 case X86::BI__builtin_ia32_cmpb128_mask:
8384 case X86::BI__builtin_ia32_cmpb256_mask:
8385 case X86::BI__builtin_ia32_cmpb512_mask:
8386 case X86::BI__builtin_ia32_cmpw128_mask:
8387 case X86::BI__builtin_ia32_cmpw256_mask:
8388 case X86::BI__builtin_ia32_cmpw512_mask:
8389 case X86::BI__builtin_ia32_cmpd128_mask:
8390 case X86::BI__builtin_ia32_cmpd256_mask:
8391 case X86::BI__builtin_ia32_cmpd512_mask:
8392 case X86::BI__builtin_ia32_cmpq128_mask:
8393 case X86::BI__builtin_ia32_cmpq256_mask:
8394 case X86::BI__builtin_ia32_cmpq512_mask: {
8395 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
8396 return EmitX86MaskedCompare(*this, CC, true, Ops);
8397 }
8398 case X86::BI__builtin_ia32_ucmpb128_mask:
8399 case X86::BI__builtin_ia32_ucmpb256_mask:
8400 case X86::BI__builtin_ia32_ucmpb512_mask:
8401 case X86::BI__builtin_ia32_ucmpw128_mask:
8402 case X86::BI__builtin_ia32_ucmpw256_mask:
8403 case X86::BI__builtin_ia32_ucmpw512_mask:
8404 case X86::BI__builtin_ia32_ucmpd128_mask:
8405 case X86::BI__builtin_ia32_ucmpd256_mask:
8406 case X86::BI__builtin_ia32_ucmpd512_mask:
8407 case X86::BI__builtin_ia32_ucmpq128_mask:
8408 case X86::BI__builtin_ia32_ucmpq256_mask:
8409 case X86::BI__builtin_ia32_ucmpq512_mask: {
8410 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
8411 return EmitX86MaskedCompare(*this, CC, false, Ops);
8412 }
8413
8414 case X86::BI__builtin_ia32_kandhi:
8415 return EmitX86MaskLogic(*this, Instruction::And, 16, Ops);
8416 case X86::BI__builtin_ia32_kandnhi:
8417 return EmitX86MaskLogic(*this, Instruction::And, 16, Ops, true);
8418 case X86::BI__builtin_ia32_korhi:
8419 return EmitX86MaskLogic(*this, Instruction::Or, 16, Ops);
8420 case X86::BI__builtin_ia32_kxnorhi:
8421 return EmitX86MaskLogic(*this, Instruction::Xor, 16, Ops, true);
8422 case X86::BI__builtin_ia32_kxorhi:
8423 return EmitX86MaskLogic(*this, Instruction::Xor, 16, Ops);
8424 case X86::BI__builtin_ia32_knothi: {
8425 Ops[0] = getMaskVecValue(*this, Ops[0], 16);
8426 return Builder.CreateBitCast(Builder.CreateNot(Ops[0]),
8427 Builder.getInt16Ty());
8428 }
8429
8430 case X86::BI__builtin_ia32_vplzcntd_128_mask:
8431 case X86::BI__builtin_ia32_vplzcntd_256_mask:
8432 case X86::BI__builtin_ia32_vplzcntd_512_mask:
8433 case X86::BI__builtin_ia32_vplzcntq_128_mask:
8434 case X86::BI__builtin_ia32_vplzcntq_256_mask:
8435 case X86::BI__builtin_ia32_vplzcntq_512_mask: {
8436 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
8437 return EmitX86Select(*this, Ops[2],
8438 Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}),
8439 Ops[1]);
8440 }
8441
8442 case X86::BI__builtin_ia32_pabsb128:
8443 case X86::BI__builtin_ia32_pabsw128:
8444 case X86::BI__builtin_ia32_pabsd128:
8445 case X86::BI__builtin_ia32_pabsb256:
8446 case X86::BI__builtin_ia32_pabsw256:
8447 case X86::BI__builtin_ia32_pabsd256:
8448 case X86::BI__builtin_ia32_pabsq128_mask:
8449 case X86::BI__builtin_ia32_pabsq256_mask:
8450 case X86::BI__builtin_ia32_pabsb512_mask:
8451 case X86::BI__builtin_ia32_pabsw512_mask:
8452 case X86::BI__builtin_ia32_pabsd512_mask:
8453 case X86::BI__builtin_ia32_pabsq512_mask:
8454 return EmitX86Abs(*this, Ops);
8455
8456 case X86::BI__builtin_ia32_pmaxsb128:
8457 case X86::BI__builtin_ia32_pmaxsw128:
8458 case X86::BI__builtin_ia32_pmaxsd128:
8459 case X86::BI__builtin_ia32_pmaxsq128_mask:
8460 case X86::BI__builtin_ia32_pmaxsb256:
8461 case X86::BI__builtin_ia32_pmaxsw256:
8462 case X86::BI__builtin_ia32_pmaxsd256:
8463 case X86::BI__builtin_ia32_pmaxsq256_mask:
8464 case X86::BI__builtin_ia32_pmaxsb512_mask:
8465 case X86::BI__builtin_ia32_pmaxsw512_mask:
8466 case X86::BI__builtin_ia32_pmaxsd512_mask:
8467 case X86::BI__builtin_ia32_pmaxsq512_mask:
8468 return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
8469 case X86::BI__builtin_ia32_pmaxub128:
8470 case X86::BI__builtin_ia32_pmaxuw128:
8471 case X86::BI__builtin_ia32_pmaxud128:
8472 case X86::BI__builtin_ia32_pmaxuq128_mask:
8473 case X86::BI__builtin_ia32_pmaxub256:
8474 case X86::BI__builtin_ia32_pmaxuw256:
8475 case X86::BI__builtin_ia32_pmaxud256:
8476 case X86::BI__builtin_ia32_pmaxuq256_mask:
8477 case X86::BI__builtin_ia32_pmaxub512_mask:
8478 case X86::BI__builtin_ia32_pmaxuw512_mask:
8479 case X86::BI__builtin_ia32_pmaxud512_mask:
8480 case X86::BI__builtin_ia32_pmaxuq512_mask:
8481 return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
8482 case X86::BI__builtin_ia32_pminsb128:
8483 case X86::BI__builtin_ia32_pminsw128:
8484 case X86::BI__builtin_ia32_pminsd128:
8485 case X86::BI__builtin_ia32_pminsq128_mask:
8486 case X86::BI__builtin_ia32_pminsb256:
8487 case X86::BI__builtin_ia32_pminsw256:
8488 case X86::BI__builtin_ia32_pminsd256:
8489 case X86::BI__builtin_ia32_pminsq256_mask:
8490 case X86::BI__builtin_ia32_pminsb512_mask:
8491 case X86::BI__builtin_ia32_pminsw512_mask:
8492 case X86::BI__builtin_ia32_pminsd512_mask:
8493 case X86::BI__builtin_ia32_pminsq512_mask:
8494 return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
8495 case X86::BI__builtin_ia32_pminub128:
8496 case X86::BI__builtin_ia32_pminuw128:
8497 case X86::BI__builtin_ia32_pminud128:
8498 case X86::BI__builtin_ia32_pminuq128_mask:
8499 case X86::BI__builtin_ia32_pminub256:
8500 case X86::BI__builtin_ia32_pminuw256:
8501 case X86::BI__builtin_ia32_pminud256:
8502 case X86::BI__builtin_ia32_pminuq256_mask:
8503 case X86::BI__builtin_ia32_pminub512_mask:
8504 case X86::BI__builtin_ia32_pminuw512_mask:
8505 case X86::BI__builtin_ia32_pminud512_mask:
8506 case X86::BI__builtin_ia32_pminuq512_mask:
8507 return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
8508
8509 // 3DNow!
8510 case X86::BI__builtin_ia32_pswapdsf:
8511 case X86::BI__builtin_ia32_pswapdsi: {
8512 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
8513 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
8514 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
8515 return Builder.CreateCall(F, Ops, "pswapd");
8516 }
8517 case X86::BI__builtin_ia32_rdrand16_step:
8518 case X86::BI__builtin_ia32_rdrand32_step:
8519 case X86::BI__builtin_ia32_rdrand64_step:
8520 case X86::BI__builtin_ia32_rdseed16_step:
8521 case X86::BI__builtin_ia32_rdseed32_step:
8522 case X86::BI__builtin_ia32_rdseed64_step: {
8523 Intrinsic::ID ID;
8524 switch (BuiltinID) {
8525 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8525)
;
8526 case X86::BI__builtin_ia32_rdrand16_step:
8527 ID = Intrinsic::x86_rdrand_16;
8528 break;
8529 case X86::BI__builtin_ia32_rdrand32_step:
8530 ID = Intrinsic::x86_rdrand_32;
8531 break;
8532 case X86::BI__builtin_ia32_rdrand64_step:
8533 ID = Intrinsic::x86_rdrand_64;
8534 break;
8535 case X86::BI__builtin_ia32_rdseed16_step:
8536 ID = Intrinsic::x86_rdseed_16;
8537 break;
8538 case X86::BI__builtin_ia32_rdseed32_step:
8539 ID = Intrinsic::x86_rdseed_32;
8540 break;
8541 case X86::BI__builtin_ia32_rdseed64_step:
8542 ID = Intrinsic::x86_rdseed_64;
8543 break;
8544 }
8545
8546 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
8547 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
8548 Ops[0]);
8549 return Builder.CreateExtractValue(Call, 1);
8550 }
8551
8552 // SSE packed comparison intrinsics
8553 case X86::BI__builtin_ia32_cmpeqps:
8554 case X86::BI__builtin_ia32_cmpeqpd:
8555 return getVectorFCmpIR(CmpInst::FCMP_OEQ);
8556 case X86::BI__builtin_ia32_cmpltps:
8557 case X86::BI__builtin_ia32_cmpltpd:
8558 return getVectorFCmpIR(CmpInst::FCMP_OLT);
8559 case X86::BI__builtin_ia32_cmpleps:
8560 case X86::BI__builtin_ia32_cmplepd:
8561 return getVectorFCmpIR(CmpInst::FCMP_OLE);
8562 case X86::BI__builtin_ia32_cmpunordps:
8563 case X86::BI__builtin_ia32_cmpunordpd:
8564 return getVectorFCmpIR(CmpInst::FCMP_UNO);
8565 case X86::BI__builtin_ia32_cmpneqps:
8566 case X86::BI__builtin_ia32_cmpneqpd:
8567 return getVectorFCmpIR(CmpInst::FCMP_UNE);
8568 case X86::BI__builtin_ia32_cmpnltps:
8569 case X86::BI__builtin_ia32_cmpnltpd:
8570 return getVectorFCmpIR(CmpInst::FCMP_UGE);
8571 case X86::BI__builtin_ia32_cmpnleps:
8572 case X86::BI__builtin_ia32_cmpnlepd:
8573 return getVectorFCmpIR(CmpInst::FCMP_UGT);
8574 case X86::BI__builtin_ia32_cmpordps:
8575 case X86::BI__builtin_ia32_cmpordpd:
8576 return getVectorFCmpIR(CmpInst::FCMP_ORD);
8577 case X86::BI__builtin_ia32_cmpps:
8578 case X86::BI__builtin_ia32_cmpps256:
8579 case X86::BI__builtin_ia32_cmppd:
8580 case X86::BI__builtin_ia32_cmppd256: {
8581 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
8582 // If this one of the SSE immediates, we can use native IR.
8583 if (CC < 8) {
8584 FCmpInst::Predicate Pred;
8585 switch (CC) {
8586 case 0: Pred = FCmpInst::FCMP_OEQ; break;
8587 case 1: Pred = FCmpInst::FCMP_OLT; break;
8588 case 2: Pred = FCmpInst::FCMP_OLE; break;
8589 case 3: Pred = FCmpInst::FCMP_UNO; break;
8590 case 4: Pred = FCmpInst::FCMP_UNE; break;
8591 case 5: Pred = FCmpInst::FCMP_UGE; break;
8592 case 6: Pred = FCmpInst::FCMP_UGT; break;
8593 case 7: Pred = FCmpInst::FCMP_ORD; break;
8594 }
8595 return getVectorFCmpIR(Pred);
8596 }
8597
8598 // We can't handle 8-31 immediates with native IR, use the intrinsic.
8599 // Except for predicates that create constants.
8600 Intrinsic::ID ID;
8601 switch (BuiltinID) {
8602 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8602)
;
8603 case X86::BI__builtin_ia32_cmpps:
8604 ID = Intrinsic::x86_sse_cmp_ps;
8605 break;
8606 case X86::BI__builtin_ia32_cmpps256:
8607 // _CMP_TRUE_UQ, _CMP_TRUE_US produce -1,-1... vector
8608 // on any input and _CMP_FALSE_OQ, _CMP_FALSE_OS produce 0, 0...
8609 if (CC == 0xf || CC == 0xb || CC == 0x1b || CC == 0x1f) {
8610 Value *Constant = (CC == 0xf || CC == 0x1f) ?
8611 llvm::Constant::getAllOnesValue(Builder.getInt32Ty()) :
8612 llvm::Constant::getNullValue(Builder.getInt32Ty());
8613 Value *Vec = Builder.CreateVectorSplat(
8614 Ops[0]->getType()->getVectorNumElements(), Constant);
8615 return Builder.CreateBitCast(Vec, Ops[0]->getType());
8616 }
8617 ID = Intrinsic::x86_avx_cmp_ps_256;
8618 break;
8619 case X86::BI__builtin_ia32_cmppd:
8620 ID = Intrinsic::x86_sse2_cmp_pd;
8621 break;
8622 case X86::BI__builtin_ia32_cmppd256:
8623 // _CMP_TRUE_UQ, _CMP_TRUE_US produce -1,-1... vector
8624 // on any input and _CMP_FALSE_OQ, _CMP_FALSE_OS produce 0, 0...
8625 if (CC == 0xf || CC == 0xb || CC == 0x1b || CC == 0x1f) {
8626 Value *Constant = (CC == 0xf || CC == 0x1f) ?
8627 llvm::Constant::getAllOnesValue(Builder.getInt64Ty()) :
8628 llvm::Constant::getNullValue(Builder.getInt64Ty());
8629 Value *Vec = Builder.CreateVectorSplat(
8630 Ops[0]->getType()->getVectorNumElements(), Constant);
8631 return Builder.CreateBitCast(Vec, Ops[0]->getType());
8632 }
8633 ID = Intrinsic::x86_avx_cmp_pd_256;
8634 break;
8635 }
8636
8637 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
8638 }
8639
8640 // SSE scalar comparison intrinsics
8641 case X86::BI__builtin_ia32_cmpeqss:
8642 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
8643 case X86::BI__builtin_ia32_cmpltss:
8644 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
8645 case X86::BI__builtin_ia32_cmpless:
8646 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
8647 case X86::BI__builtin_ia32_cmpunordss:
8648 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
8649 case X86::BI__builtin_ia32_cmpneqss:
8650 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
8651 case X86::BI__builtin_ia32_cmpnltss:
8652 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
8653 case X86::BI__builtin_ia32_cmpnless:
8654 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
8655 case X86::BI__builtin_ia32_cmpordss:
8656 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
8657 case X86::BI__builtin_ia32_cmpeqsd:
8658 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
8659 case X86::BI__builtin_ia32_cmpltsd:
8660 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
8661 case X86::BI__builtin_ia32_cmplesd:
8662 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
8663 case X86::BI__builtin_ia32_cmpunordsd:
8664 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
8665 case X86::BI__builtin_ia32_cmpneqsd:
8666 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
8667 case X86::BI__builtin_ia32_cmpnltsd:
8668 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
8669 case X86::BI__builtin_ia32_cmpnlesd:
8670 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
8671 case X86::BI__builtin_ia32_cmpordsd:
8672 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
8673
8674 case X86::BI__emul:
8675 case X86::BI__emulu: {
8676 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
8677 bool isSigned = (BuiltinID == X86::BI__emul);
8678 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
8679 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
8680 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
8681 }
8682 case X86::BI__mulh:
8683 case X86::BI__umulh:
8684 case X86::BI_mul128:
8685 case X86::BI_umul128: {
8686 llvm::Type *ResType = ConvertType(E->getType());
8687 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
8688
8689 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
8690 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
8691 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
8692
8693 Value *MulResult, *HigherBits;
8694 if (IsSigned) {
8695 MulResult = Builder.CreateNSWMul(LHS, RHS);
8696 HigherBits = Builder.CreateAShr(MulResult, 64);
8697 } else {
8698 MulResult = Builder.CreateNUWMul(LHS, RHS);
8699 HigherBits = Builder.CreateLShr(MulResult, 64);
8700 }
8701 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
8702
8703 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
8704 return HigherBits;
8705
8706 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
8707 Builder.CreateStore(HigherBits, HighBitsAddress);
8708 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
8709 }
8710
8711 case X86::BI__faststorefence: {
8712 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
8713 llvm::SyncScope::System);
8714 }
8715 case X86::BI_ReadWriteBarrier:
8716 case X86::BI_ReadBarrier:
8717 case X86::BI_WriteBarrier: {
8718 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
8719 llvm::SyncScope::SingleThread);
8720 }
8721 case X86::BI_BitScanForward:
8722 case X86::BI_BitScanForward64:
8723 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
8724 case X86::BI_BitScanReverse:
8725 case X86::BI_BitScanReverse64:
8726 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
8727
8728 case X86::BI_InterlockedAnd64:
8729 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
8730 case X86::BI_InterlockedExchange64:
8731 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
8732 case X86::BI_InterlockedExchangeAdd64:
8733 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
8734 case X86::BI_InterlockedExchangeSub64:
8735 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
8736 case X86::BI_InterlockedOr64:
8737 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
8738 case X86::BI_InterlockedXor64:
8739 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
8740 case X86::BI_InterlockedDecrement64:
8741 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
8742 case X86::BI_InterlockedIncrement64:
8743 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
8744 case X86::BI_InterlockedCompareExchange128: {
8745 // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
8746 // instead it takes pointers to 64bit ints for Destination and
8747 // ComparandResult, and exchange is taken as two 64bit ints (high & low).
8748 // The previous value is written to ComparandResult, and success is
8749 // returned.
8750
8751 llvm::Type *Int128Ty = Builder.getInt128Ty();
8752 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
8753
8754 Value *Destination =
8755 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PtrTy);
8756 Value *ExchangeHigh128 =
8757 Builder.CreateZExt(EmitScalarExpr(E->getArg(1)), Int128Ty);
8758 Value *ExchangeLow128 =
8759 Builder.CreateZExt(EmitScalarExpr(E->getArg(2)), Int128Ty);
8760 Address ComparandResult(
8761 Builder.CreateBitCast(EmitScalarExpr(E->getArg(3)), Int128PtrTy),
8762 getContext().toCharUnitsFromBits(128));
8763
8764 Value *Exchange = Builder.CreateOr(
8765 Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
8766 ExchangeLow128);
8767
8768 Value *Comparand = Builder.CreateLoad(ComparandResult);
8769
8770 AtomicCmpXchgInst *CXI =
8771 Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
8772 AtomicOrdering::SequentiallyConsistent,
8773 AtomicOrdering::SequentiallyConsistent);
8774 CXI->setVolatile(true);
8775
8776 // Write the result back to the inout pointer.
8777 Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
8778
8779 // Get the success boolean and zero extend it to i8.
8780 Value *Success = Builder.CreateExtractValue(CXI, 1);
8781 return Builder.CreateZExt(Success, ConvertType(E->getType()));
8782 }
8783
8784 case X86::BI_AddressOfReturnAddress: {
8785 Value *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
8786 return Builder.CreateCall(F);
8787 }
8788 case X86::BI__stosb: {
8789 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
8790 // instruction, but it will create a memset that won't be optimized away.
8791 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
8792 }
8793 case X86::BI__ud2:
8794 // llvm.trap makes a ud2a instruction on x86.
8795 return EmitTrapCall(Intrinsic::trap);
8796 case X86::BI__int2c: {
8797 // This syscall signals a driver assertion failure in x86 NT kernels.
8798 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
8799 llvm::InlineAsm *IA =
8800 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*SideEffects=*/true);
8801 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
8802 getLLVMContext(), llvm::AttributeList::FunctionIndex,
8803 llvm::Attribute::NoReturn);
8804 CallSite CS = Builder.CreateCall(IA);
8805 CS.setAttributes(NoReturnAttr);
8806 return CS.getInstruction();
8807 }
8808 case X86::BI__readfsbyte:
8809 case X86::BI__readfsword:
8810 case X86::BI__readfsdword:
8811 case X86::BI__readfsqword: {
8812 llvm::Type *IntTy = ConvertType(E->getType());
8813 Value *Ptr = Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
8814 llvm::PointerType::get(IntTy, 257));
8815 LoadInst *Load = Builder.CreateAlignedLoad(
8816 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
8817 Load->setVolatile(true);
8818 return Load;
8819 }
8820 case X86::BI__readgsbyte:
8821 case X86::BI__readgsword:
8822 case X86::BI__readgsdword:
8823 case X86::BI__readgsqword: {
8824 llvm::Type *IntTy = ConvertType(E->getType());
8825 Value *Ptr = Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
8826 llvm::PointerType::get(IntTy, 256));
8827 LoadInst *Load = Builder.CreateAlignedLoad(
8828 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
8829 Load->setVolatile(true);
8830 return Load;
8831 }
8832 }
8833}
8834
8835
8836Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
8837 const CallExpr *E) {
8838 SmallVector<Value*, 4> Ops;
8839
8840 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
8841 Ops.push_back(EmitScalarExpr(E->getArg(i)));
8842
8843 Intrinsic::ID ID = Intrinsic::not_intrinsic;
8844
8845 switch (BuiltinID) {
8846 default: return nullptr;
8847
8848 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
8849 // call __builtin_readcyclecounter.
8850 case PPC::BI__builtin_ppc_get_timebase:
8851 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
8852
8853 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
8854 case PPC::BI__builtin_altivec_lvx:
8855 case PPC::BI__builtin_altivec_lvxl:
8856 case PPC::BI__builtin_altivec_lvebx:
8857 case PPC::BI__builtin_altivec_lvehx:
8858 case PPC::BI__builtin_altivec_lvewx:
8859 case PPC::BI__builtin_altivec_lvsl:
8860 case PPC::BI__builtin_altivec_lvsr:
8861 case PPC::BI__builtin_vsx_lxvd2x:
8862 case PPC::BI__builtin_vsx_lxvw4x:
8863 case PPC::BI__builtin_vsx_lxvd2x_be:
8864 case PPC::BI__builtin_vsx_lxvw4x_be:
8865 case PPC::BI__builtin_vsx_lxvl:
8866 case PPC::BI__builtin_vsx_lxvll:
8867 {
8868 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
8869 BuiltinID == PPC::BI__builtin_vsx_lxvll){
8870 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
8871 }else {
8872 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
8873 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
8874 Ops.pop_back();
8875 }
8876
8877 switch (BuiltinID) {
8878 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!")::llvm::llvm_unreachable_internal("Unsupported ld/lvsl/lvsr intrinsic!"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8878)
;
8879 case PPC::BI__builtin_altivec_lvx:
8880 ID = Intrinsic::ppc_altivec_lvx;
8881 break;
8882 case PPC::BI__builtin_altivec_lvxl:
8883 ID = Intrinsic::ppc_altivec_lvxl;
8884 break;
8885 case PPC::BI__builtin_altivec_lvebx:
8886 ID = Intrinsic::ppc_altivec_lvebx;
8887 break;
8888 case PPC::BI__builtin_altivec_lvehx:
8889 ID = Intrinsic::ppc_altivec_lvehx;
8890 break;
8891 case PPC::BI__builtin_altivec_lvewx:
8892 ID = Intrinsic::ppc_altivec_lvewx;
8893 break;
8894 case PPC::BI__builtin_altivec_lvsl:
8895 ID = Intrinsic::ppc_altivec_lvsl;
8896 break;
8897 case PPC::BI__builtin_altivec_lvsr:
8898 ID = Intrinsic::ppc_altivec_lvsr;
8899 break;
8900 case PPC::BI__builtin_vsx_lxvd2x:
8901 ID = Intrinsic::ppc_vsx_lxvd2x;
8902 break;
8903 case PPC::BI__builtin_vsx_lxvw4x:
8904 ID = Intrinsic::ppc_vsx_lxvw4x;
8905 break;
8906 case PPC::BI__builtin_vsx_lxvd2x_be:
8907 ID = Intrinsic::ppc_vsx_lxvd2x_be;
8908 break;
8909 case PPC::BI__builtin_vsx_lxvw4x_be:
8910 ID = Intrinsic::ppc_vsx_lxvw4x_be;
8911 break;
8912 case PPC::BI__builtin_vsx_lxvl:
8913 ID = Intrinsic::ppc_vsx_lxvl;
8914 break;
8915 case PPC::BI__builtin_vsx_lxvll:
8916 ID = Intrinsic::ppc_vsx_lxvll;
8917 break;
8918 }
8919 llvm::Function *F = CGM.getIntrinsic(ID);
8920 return Builder.CreateCall(F, Ops, "");
8921 }
8922
8923 // vec_st, vec_xst_be
8924 case PPC::BI__builtin_altivec_stvx:
8925 case PPC::BI__builtin_altivec_stvxl:
8926 case PPC::BI__builtin_altivec_stvebx:
8927 case PPC::BI__builtin_altivec_stvehx:
8928 case PPC::BI__builtin_altivec_stvewx:
8929 case PPC::BI__builtin_vsx_stxvd2x:
8930 case PPC::BI__builtin_vsx_stxvw4x:
8931 case PPC::BI__builtin_vsx_stxvd2x_be:
8932 case PPC::BI__builtin_vsx_stxvw4x_be:
8933 case PPC::BI__builtin_vsx_stxvl:
8934 case PPC::BI__builtin_vsx_stxvll:
8935 {
8936 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
8937 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
8938 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
8939 }else {
8940 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
8941 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
8942 Ops.pop_back();
8943 }
8944
8945 switch (BuiltinID) {
8946 default: llvm_unreachable("Unsupported st intrinsic!")::llvm::llvm_unreachable_internal("Unsupported st intrinsic!"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8946)
;
8947 case PPC::BI__builtin_altivec_stvx:
8948 ID = Intrinsic::ppc_altivec_stvx;
8949 break;
8950 case PPC::BI__builtin_altivec_stvxl:
8951 ID = Intrinsic::ppc_altivec_stvxl;
8952 break;
8953 case PPC::BI__builtin_altivec_stvebx:
8954 ID = Intrinsic::ppc_altivec_stvebx;
8955 break;
8956 case PPC::BI__builtin_altivec_stvehx:
8957 ID = Intrinsic::ppc_altivec_stvehx;
8958 break;
8959 case PPC::BI__builtin_altivec_stvewx:
8960 ID = Intrinsic::ppc_altivec_stvewx;
8961 break;
8962 case PPC::BI__builtin_vsx_stxvd2x:
8963 ID = Intrinsic::ppc_vsx_stxvd2x;
8964 break;
8965 case PPC::BI__builtin_vsx_stxvw4x:
8966 ID = Intrinsic::ppc_vsx_stxvw4x;
8967 break;
8968 case PPC::BI__builtin_vsx_stxvd2x_be:
8969 ID = Intrinsic::ppc_vsx_stxvd2x_be;
8970 break;
8971 case PPC::BI__builtin_vsx_stxvw4x_be:
8972 ID = Intrinsic::ppc_vsx_stxvw4x_be;
8973 break;
8974 case PPC::BI__builtin_vsx_stxvl:
8975 ID = Intrinsic::ppc_vsx_stxvl;
8976 break;
8977 case PPC::BI__builtin_vsx_stxvll:
8978 ID = Intrinsic::ppc_vsx_stxvll;
8979 break;
8980 }
8981 llvm::Function *F = CGM.getIntrinsic(ID);
8982 return Builder.CreateCall(F, Ops, "");
8983 }
8984 // Square root
8985 case PPC::BI__builtin_vsx_xvsqrtsp:
8986 case PPC::BI__builtin_vsx_xvsqrtdp: {
8987 llvm::Type *ResultType = ConvertType(E->getType());
8988 Value *X = EmitScalarExpr(E->getArg(0));
8989 ID = Intrinsic::sqrt;
8990 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
8991 return Builder.CreateCall(F, X);
8992 }
8993 // Count leading zeros
8994 case PPC::BI__builtin_altivec_vclzb:
8995 case PPC::BI__builtin_altivec_vclzh:
8996 case PPC::BI__builtin_altivec_vclzw:
8997 case PPC::BI__builtin_altivec_vclzd: {
8998 llvm::Type *ResultType = ConvertType(E->getType());
8999 Value *X = EmitScalarExpr(E->getArg(0));
9000 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
9001 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
9002 return Builder.CreateCall(F, {X, Undef});
9003 }
9004 case PPC::BI__builtin_altivec_vctzb:
9005 case PPC::BI__builtin_altivec_vctzh:
9006 case PPC::BI__builtin_altivec_vctzw:
9007 case PPC::BI__builtin_altivec_vctzd: {
9008 llvm::Type *ResultType = ConvertType(E->getType());
9009 Value *X = EmitScalarExpr(E->getArg(0));
9010 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
9011 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
9012 return Builder.CreateCall(F, {X, Undef});
9013 }
9014 case PPC::BI__builtin_altivec_vpopcntb:
9015 case PPC::BI__builtin_altivec_vpopcnth:
9016 case PPC::BI__builtin_altivec_vpopcntw:
9017 case PPC::BI__builtin_altivec_vpopcntd: {
9018 llvm::Type *ResultType = ConvertType(E->getType());
9019 Value *X = EmitScalarExpr(E->getArg(0));
9020 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
9021 return Builder.CreateCall(F, X);
9022 }
9023 // Copy sign
9024 case PPC::BI__builtin_vsx_xvcpsgnsp:
9025 case PPC::BI__builtin_vsx_xvcpsgndp: {
9026 llvm::Type *ResultType = ConvertType(E->getType());
9027 Value *X = EmitScalarExpr(E->getArg(0));
9028 Value *Y = EmitScalarExpr(E->getArg(1));
9029 ID = Intrinsic::copysign;
9030 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
9031 return Builder.CreateCall(F, {X, Y});
9032 }
9033 // Rounding/truncation
9034 case PPC::BI__builtin_vsx_xvrspip:
9035 case PPC::BI__builtin_vsx_xvrdpip:
9036 case PPC::BI__builtin_vsx_xvrdpim:
9037 case PPC::BI__builtin_vsx_xvrspim:
9038 case PPC::BI__builtin_vsx_xvrdpi:
9039 case PPC::BI__builtin_vsx_xvrspi:
9040 case PPC::BI__builtin_vsx_xvrdpic:
9041 case PPC::BI__builtin_vsx_xvrspic:
9042 case PPC::BI__builtin_vsx_xvrdpiz:
9043 case PPC::BI__builtin_vsx_xvrspiz: {
9044 llvm::Type *ResultType = ConvertType(E->getType());
9045 Value *X = EmitScalarExpr(E->getArg(0));
9046 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
9047 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
9048 ID = Intrinsic::floor;
9049 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
9050 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
9051 ID = Intrinsic::round;
9052 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
9053 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
9054 ID = Intrinsic::nearbyint;
9055 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
9056 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
9057 ID = Intrinsic::ceil;
9058 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
9059 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
9060 ID = Intrinsic::trunc;
9061 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
9062 return Builder.CreateCall(F, X);
9063 }
9064
9065 // Absolute value
9066 case PPC::BI__builtin_vsx_xvabsdp:
9067 case PPC::BI__builtin_vsx_xvabssp: {
9068 llvm::Type *ResultType = ConvertType(E->getType());
9069 Value *X = EmitScalarExpr(E->getArg(0));
9070 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
9071 return Builder.CreateCall(F, X);
9072 }
9073
9074 // FMA variations
9075 case PPC::BI__builtin_vsx_xvmaddadp:
9076 case PPC::BI__builtin_vsx_xvmaddasp:
9077 case PPC::BI__builtin_vsx_xvnmaddadp:
9078 case PPC::BI__builtin_vsx_xvnmaddasp:
9079 case PPC::BI__builtin_vsx_xvmsubadp:
9080 case PPC::BI__builtin_vsx_xvmsubasp:
9081 case PPC::BI__builtin_vsx_xvnmsubadp:
9082 case PPC::BI__builtin_vsx_xvnmsubasp: {
9083 llvm::Type *ResultType = ConvertType(E->getType());
9084 Value *X = EmitScalarExpr(E->getArg(0));
9085 Value *Y = EmitScalarExpr(E->getArg(1));
9086 Value *Z = EmitScalarExpr(E->getArg(2));
9087 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
9088 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
9089 switch (BuiltinID) {
9090 case PPC::BI__builtin_vsx_xvmaddadp:
9091 case PPC::BI__builtin_vsx_xvmaddasp:
9092 return Builder.CreateCall(F, {X, Y, Z});
9093 case PPC::BI__builtin_vsx_xvnmaddadp:
9094 case PPC::BI__builtin_vsx_xvnmaddasp:
9095 return Builder.CreateFSub(Zero,
9096 Builder.CreateCall(F, {X, Y, Z}), "sub");
9097 case PPC::BI__builtin_vsx_xvmsubadp:
9098 case PPC::BI__builtin_vsx_xvmsubasp:
9099 return Builder.CreateCall(F,
9100 {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
9101 case PPC::BI__builtin_vsx_xvnmsubadp:
9102 case PPC::BI__builtin_vsx_xvnmsubasp:
9103 Value *FsubRes =
9104 Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
9105 return Builder.CreateFSub(Zero, FsubRes, "sub");
9106 }
9107 llvm_unreachable("Unknown FMA operation")::llvm::llvm_unreachable_internal("Unknown FMA operation", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9107)
;
9108 return nullptr; // Suppress no-return warning
9109 }
9110
9111 case PPC::BI__builtin_vsx_insertword: {
9112 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
9113
9114 // Third argument is a compile time constant int. It must be clamped to
9115 // to the range [0, 12].
9116 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
9117 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9118, __extension__ __PRETTY_FUNCTION__))
9118 "Third arg to xxinsertw intrinsic must be constant integer")(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9118, __extension__ __PRETTY_FUNCTION__))
;
9119 const int64_t MaxIndex = 12;
9120 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
9121
9122 // The builtin semantics don't exactly match the xxinsertw instructions
9123 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
9124 // word from the first argument, and inserts it in the second argument. The
9125 // instruction extracts the word from its second input register and inserts
9126 // it into its first input register, so swap the first and second arguments.
9127 std::swap(Ops[0], Ops[1]);
9128
9129 // Need to cast the second argument from a vector of unsigned int to a
9130 // vector of long long.
9131 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
9132
9133 if (getTarget().isLittleEndian()) {
9134 // Create a shuffle mask of (1, 0)
9135 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
9136 ConstantInt::get(Int32Ty, 0)
9137 };
9138 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
9139
9140 // Reverse the double words in the vector we will extract from.
9141 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
9142 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
9143
9144 // Reverse the index.
9145 Index = MaxIndex - Index;
9146 }
9147
9148 // Intrinsic expects the first arg to be a vector of int.
9149 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
9150 Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
9151 return Builder.CreateCall(F, Ops);
9152 }
9153
9154 case PPC::BI__builtin_vsx_extractuword: {
9155 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
9156
9157 // Intrinsic expects the first argument to be a vector of doublewords.
9158 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
9159
9160 // The second argument is a compile time constant int that needs to
9161 // be clamped to the range [0, 12].
9162 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
9163 assert(ArgCI &&(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9164, __extension__ __PRETTY_FUNCTION__))
9164 "Second Arg to xxextractuw intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9164, __extension__ __PRETTY_FUNCTION__))
;
9165 const int64_t MaxIndex = 12;
9166 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
9167
9168 if (getTarget().isLittleEndian()) {
9169 // Reverse the index.
9170 Index = MaxIndex - Index;
9171 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
9172
9173 // Emit the call, then reverse the double words of the results vector.
9174 Value *Call = Builder.CreateCall(F, Ops);
9175
9176 // Create a shuffle mask of (1, 0)
9177 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
9178 ConstantInt::get(Int32Ty, 0)
9179 };
9180 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
9181
9182 Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
9183 return ShuffleCall;
9184 } else {
9185 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
9186 return Builder.CreateCall(F, Ops);
9187 }
9188 }
9189
9190 case PPC::BI__builtin_vsx_xxpermdi: {
9191 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
9192 assert(ArgCI && "Third arg must be constant integer!")(static_cast <bool> (ArgCI && "Third arg must be constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg must be constant integer!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9192, __extension__ __PRETTY_FUNCTION__))
;
9193
9194 unsigned Index = ArgCI->getZExtValue();
9195 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
9196 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
9197
9198 // Element zero comes from the first input vector and element one comes from
9199 // the second. The element indices within each vector are numbered in big
9200 // endian order so the shuffle mask must be adjusted for this on little
9201 // endian platforms (i.e. index is complemented and source vector reversed).
9202 unsigned ElemIdx0;
9203 unsigned ElemIdx1;
9204 if (getTarget().isLittleEndian()) {
9205 ElemIdx0 = (~Index & 1) + 2;
9206 ElemIdx1 = (~Index & 2) >> 1;
9207 } else { // BigEndian
9208 ElemIdx0 = (Index & 2) >> 1;
9209 ElemIdx1 = 2 + (Index & 1);
9210 }
9211
9212 Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
9213 ConstantInt::get(Int32Ty, ElemIdx1)};
9214 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
9215
9216 Value *ShuffleCall =
9217 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
9218 QualType BIRetType = E->getType();
9219 auto RetTy = ConvertType(BIRetType);
9220 return Builder.CreateBitCast(ShuffleCall, RetTy);
9221 }
9222
9223 case PPC::BI__builtin_vsx_xxsldwi: {
9224 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
9225 assert(ArgCI && "Third argument must be a compile time constant")(static_cast <bool> (ArgCI && "Third argument must be a compile time constant"
) ? void (0) : __assert_fail ("ArgCI && \"Third argument must be a compile time constant\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9225, __extension__ __PRETTY_FUNCTION__))
;
9226 unsigned Index = ArgCI->getZExtValue() & 0x3;
9227 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
9228 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
9229
9230 // Create a shuffle mask
9231 unsigned ElemIdx0;
9232 unsigned ElemIdx1;
9233 unsigned ElemIdx2;
9234 unsigned ElemIdx3;
9235 if (getTarget().isLittleEndian()) {
9236 // Little endian element N comes from element 8+N-Index of the
9237 // concatenated wide vector (of course, using modulo arithmetic on
9238 // the total number of elements).
9239 ElemIdx0 = (8 - Index) % 8;
9240 ElemIdx1 = (9 - Index) % 8;
9241 ElemIdx2 = (10 - Index) % 8;
9242 ElemIdx3 = (11 - Index) % 8;
9243 } else {
9244 // Big endian ElemIdx<N> = Index + N
9245 ElemIdx0 = Index;
9246 ElemIdx1 = Index + 1;
9247 ElemIdx2 = Index + 2;
9248 ElemIdx3 = Index + 3;
9249 }
9250
9251 Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
9252 ConstantInt::get(Int32Ty, ElemIdx1),
9253 ConstantInt::get(Int32Ty, ElemIdx2),
9254 ConstantInt::get(Int32Ty, ElemIdx3)};
9255
9256 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
9257 Value *ShuffleCall =
9258 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
9259 QualType BIRetType = E->getType();
9260 auto RetTy = ConvertType(BIRetType);
9261 return Builder.CreateBitCast(ShuffleCall, RetTy);
9262 }
9263 }
9264}
9265
9266Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
9267 const CallExpr *E) {
9268 switch (BuiltinID) {
9269 case AMDGPU::BI__builtin_amdgcn_div_scale:
9270 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
9271 // Translate from the intrinsics's struct return to the builtin's out
9272 // argument.
9273
9274 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
9275
9276 llvm::Value *X = EmitScalarExpr(E->getArg(0));
9277 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
9278 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
9279
9280 llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
9281 X->getType());
9282
9283 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
9284
9285 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
9286 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
9287
9288 llvm::Type *RealFlagType
9289 = FlagOutPtr.getPointer()->getType()->getPointerElementType();
9290
9291 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
9292 Builder.CreateStore(FlagExt, FlagOutPtr);
9293 return Result;
9294 }
9295 case AMDGPU::BI__builtin_amdgcn_div_fmas:
9296 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
9297 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
9298 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
9299 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
9300 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
9301
9302 llvm::Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
9303 Src0->getType());
9304 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
9305 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
9306 }
9307
9308 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
9309 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
9310 case AMDGPU::BI__builtin_amdgcn_mov_dpp: {
9311 llvm::SmallVector<llvm::Value *, 5> Args;
9312 for (unsigned I = 0; I != 5; ++I)
9313 Args.push_back(EmitScalarExpr(E->getArg(I)));
9314 Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_mov_dpp,
9315 Args[0]->getType());
9316 return Builder.CreateCall(F, Args);
9317 }
9318 case AMDGPU::BI__builtin_amdgcn_div_fixup:
9319 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
9320 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
9321 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
9322 case AMDGPU::BI__builtin_amdgcn_trig_preop:
9323 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
9324 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
9325 case AMDGPU::BI__builtin_amdgcn_rcp:
9326 case AMDGPU::BI__builtin_amdgcn_rcpf:
9327 case AMDGPU::BI__builtin_amdgcn_rcph:
9328 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
9329 case AMDGPU::BI__builtin_amdgcn_rsq:
9330 case AMDGPU::BI__builtin_amdgcn_rsqf:
9331 case AMDGPU::BI__builtin_amdgcn_rsqh:
9332 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
9333 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
9334 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
9335 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
9336 case AMDGPU::BI__builtin_amdgcn_sinf:
9337 case AMDGPU::BI__builtin_amdgcn_sinh:
9338 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
9339 case AMDGPU::BI__builtin_amdgcn_cosf:
9340 case AMDGPU::BI__builtin_amdgcn_cosh:
9341 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
9342 case AMDGPU::BI__builtin_amdgcn_log_clampf:
9343 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
9344 case AMDGPU::BI__builtin_amdgcn_ldexp:
9345 case AMDGPU::BI__builtin_amdgcn_ldexpf:
9346 case AMDGPU::BI__builtin_amdgcn_ldexph:
9347 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
9348 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
9349 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
9350 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
9351 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
9352 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
9353 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
9354 Value *Src0 = EmitScalarExpr(E->getArg(0));
9355 Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
9356 { Builder.getInt32Ty(), Src0->getType() });
9357 return Builder.CreateCall(F, Src0);
9358 }
9359 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
9360 Value *Src0 = EmitScalarExpr(E->getArg(0));
9361 Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
9362 { Builder.getInt16Ty(), Src0->getType() });
9363 return Builder.CreateCall(F, Src0);
9364 }
9365 case AMDGPU::BI__builtin_amdgcn_fract:
9366 case AMDGPU::BI__builtin_amdgcn_fractf:
9367 case AMDGPU::BI__builtin_amdgcn_fracth:
9368 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
9369 case AMDGPU::BI__builtin_amdgcn_lerp:
9370 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
9371 case AMDGPU::BI__builtin_amdgcn_uicmp:
9372 case AMDGPU::BI__builtin_amdgcn_uicmpl:
9373 case AMDGPU::BI__builtin_amdgcn_sicmp:
9374 case AMDGPU::BI__builtin_amdgcn_sicmpl:
9375 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_icmp);
9376 case AMDGPU::BI__builtin_amdgcn_fcmp:
9377 case AMDGPU::BI__builtin_amdgcn_fcmpf:
9378 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fcmp);
9379 case AMDGPU::BI__builtin_amdgcn_class:
9380 case AMDGPU::BI__builtin_amdgcn_classf:
9381 case AMDGPU::BI__builtin_amdgcn_classh:
9382 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
9383 case AMDGPU::BI__builtin_amdgcn_fmed3f:
9384 case AMDGPU::BI__builtin_amdgcn_fmed3h:
9385 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
9386 case AMDGPU::BI__builtin_amdgcn_read_exec: {
9387 CallInst *CI = cast<CallInst>(
9388 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
9389 CI->setConvergent();
9390 return CI;
9391 }
9392 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
9393 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
9394 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
9395 "exec_lo" : "exec_hi";
9396 CallInst *CI = cast<CallInst>(
9397 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
9398 CI->setConvergent();
9399 return CI;
9400 }
9401
9402 // amdgcn workitem
9403 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
9404 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
9405 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
9406 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
9407 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
9408 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
9409
9410 // r600 intrinsics
9411 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
9412 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
9413 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
9414 case AMDGPU::BI__builtin_r600_read_tidig_x:
9415 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
9416 case AMDGPU::BI__builtin_r600_read_tidig_y:
9417 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
9418 case AMDGPU::BI__builtin_r600_read_tidig_z:
9419 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
9420 default:
9421 return nullptr;
9422 }
9423}
9424
9425/// Handle a SystemZ function in which the final argument is a pointer
9426/// to an int that receives the post-instruction CC value. At the LLVM level
9427/// this is represented as a function that returns a {result, cc} pair.
9428static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
9429 unsigned IntrinsicID,
9430 const CallExpr *E) {
9431 unsigned NumArgs = E->getNumArgs() - 1;
9432 SmallVector<Value *, 8> Args(NumArgs);
9433 for (unsigned I = 0; I < NumArgs; ++I)
9434 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
9435 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
9436 Value *F = CGF.CGM.getIntrinsic(IntrinsicID);
9437 Value *Call = CGF.Builder.CreateCall(F, Args);
9438 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
9439 CGF.Builder.CreateStore(CC, CCPtr);
9440 return CGF.Builder.CreateExtractValue(Call, 0);
9441}
9442
9443Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
9444 const CallExpr *E) {
9445 switch (BuiltinID) {
9446 case SystemZ::BI__builtin_tbegin: {
9447 Value *TDB = EmitScalarExpr(E->getArg(0));
9448 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
9449 Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
9450 return Builder.CreateCall(F, {TDB, Control});
9451 }
9452 case SystemZ::BI__builtin_tbegin_nofloat: {
9453 Value *TDB = EmitScalarExpr(E->getArg(0));
9454 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
9455 Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
9456 return Builder.CreateCall(F, {TDB, Control});
9457 }
9458 case SystemZ::BI__builtin_tbeginc: {
9459 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
9460 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
9461 Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
9462 return Builder.CreateCall(F, {TDB, Control});
9463 }
9464 case SystemZ::BI__builtin_tabort: {
9465 Value *Data = EmitScalarExpr(E->getArg(0));
9466 Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
9467 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
9468 }
9469 case SystemZ::BI__builtin_non_tx_store: {
9470 Value *Address = EmitScalarExpr(E->getArg(0));
9471 Value *Data = EmitScalarExpr(E->getArg(1));
9472 Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
9473 return Builder.CreateCall(F, {Data, Address});
9474 }
9475
9476 // Vector builtins. Note that most vector builtins are mapped automatically
9477 // to target-specific LLVM intrinsics. The ones handled specially here can
9478 // be represented via standard LLVM IR, which is preferable to enable common
9479 // LLVM optimizations.
9480
9481 case SystemZ::BI__builtin_s390_vpopctb:
9482 case SystemZ::BI__builtin_s390_vpopcth:
9483 case SystemZ::BI__builtin_s390_vpopctf:
9484 case SystemZ::BI__builtin_s390_vpopctg: {
9485 llvm::Type *ResultType = ConvertType(E->getType());
9486 Value *X = EmitScalarExpr(E->getArg(0));
9487 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
9488 return Builder.CreateCall(F, X);
9489 }
9490
9491 case SystemZ::BI__builtin_s390_vclzb:
9492 case SystemZ::BI__builtin_s390_vclzh:
9493 case SystemZ::BI__builtin_s390_vclzf:
9494 case SystemZ::BI__builtin_s390_vclzg: {
9495 llvm::Type *ResultType = ConvertType(E->getType());
9496 Value *X = EmitScalarExpr(E->getArg(0));
9497 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
9498 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
9499 return Builder.CreateCall(F, {X, Undef});
9500 }
9501
9502 case SystemZ::BI__builtin_s390_vctzb:
9503 case SystemZ::BI__builtin_s390_vctzh:
9504 case SystemZ::BI__builtin_s390_vctzf:
9505 case SystemZ::BI__builtin_s390_vctzg: {
9506 llvm::Type *ResultType = ConvertType(E->getType());
9507 Value *X = EmitScalarExpr(E->getArg(0));
9508 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
9509 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
9510 return Builder.CreateCall(F, {X, Undef});
9511 }
9512
9513 case SystemZ::BI__builtin_s390_vfsqsb:
9514 case SystemZ::BI__builtin_s390_vfsqdb: {
9515 llvm::Type *ResultType = ConvertType(E->getType());
9516 Value *X = EmitScalarExpr(E->getArg(0));
9517 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
9518 return Builder.CreateCall(F, X);
9519 }
9520 case SystemZ::BI__builtin_s390_vfmasb:
9521 case SystemZ::BI__builtin_s390_vfmadb: {
9522 llvm::Type *ResultType = ConvertType(E->getType());
9523 Value *X = EmitScalarExpr(E->getArg(0));
9524 Value *Y = EmitScalarExpr(E->getArg(1));
9525 Value *Z = EmitScalarExpr(E->getArg(2));
9526 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
9527 return Builder.CreateCall(F, {X, Y, Z});
9528 }
9529 case SystemZ::BI__builtin_s390_vfmssb:
9530 case SystemZ::BI__builtin_s390_vfmsdb: {
9531 llvm::Type *ResultType = ConvertType(E->getType());
9532 Value *X = EmitScalarExpr(E->getArg(0));
9533 Value *Y = EmitScalarExpr(E->getArg(1));
9534 Value *Z = EmitScalarExpr(E->getArg(2));
9535 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
9536 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
9537 return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
9538 }
9539 case SystemZ::BI__builtin_s390_vfnmasb:
9540 case SystemZ::BI__builtin_s390_vfnmadb: {
9541 llvm::Type *ResultType = ConvertType(E->getType());
9542 Value *X = EmitScalarExpr(E->getArg(0));
9543 Value *Y = EmitScalarExpr(E->getArg(1));
9544 Value *Z = EmitScalarExpr(E->getArg(2));
9545 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
9546 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
9547 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
9548 }
9549 case SystemZ::BI__builtin_s390_vfnmssb:
9550 case SystemZ::BI__builtin_s390_vfnmsdb: {
9551 llvm::Type *ResultType = ConvertType(E->getType());
9552 Value *X = EmitScalarExpr(E->getArg(0));
9553 Value *Y = EmitScalarExpr(E->getArg(1));
9554 Value *Z = EmitScalarExpr(E->getArg(2));
9555 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
9556 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
9557 Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
9558 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
9559 }
9560 case SystemZ::BI__builtin_s390_vflpsb:
9561 case SystemZ::BI__builtin_s390_vflpdb: {
9562 llvm::Type *ResultType = ConvertType(E->getType());
9563 Value *X = EmitScalarExpr(E->getArg(0));
9564 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
9565 return Builder.CreateCall(F, X);
9566 }
9567 case SystemZ::BI__builtin_s390_vflnsb:
9568 case SystemZ::BI__builtin_s390_vflndb: {
9569 llvm::Type *ResultType = ConvertType(E->getType());
9570 Value *X = EmitScalarExpr(E->getArg(0));
9571 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
9572 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
9573 return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
9574 }
9575 case SystemZ::BI__builtin_s390_vfisb:
9576 case SystemZ::BI__builtin_s390_vfidb: {
9577 llvm::Type *ResultType = ConvertType(E->getType());
9578 Value *X = EmitScalarExpr(E->getArg(0));
9579 // Constant-fold the M4 and M5 mask arguments.
9580 llvm::APSInt M4, M5;
9581 bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
9582 bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
9583 assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?")(static_cast <bool> (IsConstM4 && IsConstM5 &&
"Constant arg isn't actually constant?") ? void (0) : __assert_fail
("IsConstM4 && IsConstM5 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9583, __extension__ __PRETTY_FUNCTION__))
;
9584 (void)IsConstM4; (void)IsConstM5;
9585 // Check whether this instance can be represented via a LLVM standard
9586 // intrinsic. We only support some combinations of M4 and M5.
9587 Intrinsic::ID ID = Intrinsic::not_intrinsic;
9588 switch (M4.getZExtValue()) {
9589 default: break;
9590 case 0: // IEEE-inexact exception allowed
9591 switch (M5.getZExtValue()) {
9592 default: break;
9593 case 0: ID = Intrinsic::rint; break;
9594 }
9595 break;
9596 case 4: // IEEE-inexact exception suppressed
9597 switch (M5.getZExtValue()) {
9598 default: break;
9599 case 0: ID = Intrinsic::nearbyint; break;
9600 case 1: ID = Intrinsic::round; break;
9601 case 5: ID = Intrinsic::trunc; break;
9602 case 6: ID = Intrinsic::ceil; break;
9603 case 7: ID = Intrinsic::floor; break;
9604 }
9605 break;
9606 }
9607 if (ID != Intrinsic::not_intrinsic) {
9608 Function *F = CGM.getIntrinsic(ID, ResultType);
9609 return Builder.CreateCall(F, X);
9610 }
9611 switch (BuiltinID) {
9612 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
9613 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
9614 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9614)
;
9615 }
9616 Function *F = CGM.getIntrinsic(ID);
9617 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
9618 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
9619 return Builder.CreateCall(F, {X, M4Value, M5Value});
9620 }
9621 case SystemZ::BI__builtin_s390_vfmaxsb:
9622 case SystemZ::BI__builtin_s390_vfmaxdb: {
9623 llvm::Type *ResultType = ConvertType(E->getType());
9624 Value *X = EmitScalarExpr(E->getArg(0));
9625 Value *Y = EmitScalarExpr(E->getArg(1));
9626 // Constant-fold the M4 mask argument.
9627 llvm::APSInt M4;
9628 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
9629 assert(IsConstM4 && "Constant arg isn't actually constant?")(static_cast <bool> (IsConstM4 && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConstM4 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9629, __extension__ __PRETTY_FUNCTION__))
;
9630 (void)IsConstM4;
9631 // Check whether this instance can be represented via a LLVM standard
9632 // intrinsic. We only support some values of M4.
9633 Intrinsic::ID ID = Intrinsic::not_intrinsic;
9634 switch (M4.getZExtValue()) {
9635 default: break;
9636 case 4: ID = Intrinsic::maxnum; break;
9637 }
9638 if (ID != Intrinsic::not_intrinsic) {
9639 Function *F = CGM.getIntrinsic(ID, ResultType);
9640 return Builder.CreateCall(F, {X, Y});
9641 }
9642 switch (BuiltinID) {
9643 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
9644 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
9645 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9645)
;
9646 }
9647 Function *F = CGM.getIntrinsic(ID);
9648 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
9649 return Builder.CreateCall(F, {X, Y, M4Value});
9650 }
9651 case SystemZ::BI__builtin_s390_vfminsb:
9652 case SystemZ::BI__builtin_s390_vfmindb: {
9653 llvm::Type *ResultType = ConvertType(E->getType());
9654 Value *X = EmitScalarExpr(E->getArg(0));
9655 Value *Y = EmitScalarExpr(E->getArg(1));
9656 // Constant-fold the M4 mask argument.
9657 llvm::APSInt M4;
9658 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
9659 assert(IsConstM4 && "Constant arg isn't actually constant?")(static_cast <bool> (IsConstM4 && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConstM4 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9659, __extension__ __PRETTY_FUNCTION__))
;
9660 (void)IsConstM4;
9661 // Check whether this instance can be represented via a LLVM standard
9662 // intrinsic. We only support some values of M4.
9663 Intrinsic::ID ID = Intrinsic::not_intrinsic;
9664 switch (M4.getZExtValue()) {
9665 default: break;
9666 case 4: ID = Intrinsic::minnum; break;
9667 }
9668 if (ID != Intrinsic::not_intrinsic) {
9669 Function *F = CGM.getIntrinsic(ID, ResultType);
9670 return Builder.CreateCall(F, {X, Y});
9671 }
9672 switch (BuiltinID) {
9673 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
9674 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
9675 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9675)
;
9676 }
9677 Function *F = CGM.getIntrinsic(ID);
9678 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
9679 return Builder.CreateCall(F, {X, Y, M4Value});
9680 }
9681
9682 // Vector intrisincs that output the post-instruction CC value.
9683
9684#define INTRINSIC_WITH_CC(NAME) \
9685 case SystemZ::BI__builtin_##NAME: \
9686 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
9687
9688 INTRINSIC_WITH_CC(s390_vpkshs);
9689 INTRINSIC_WITH_CC(s390_vpksfs);
9690 INTRINSIC_WITH_CC(s390_vpksgs);
9691
9692 INTRINSIC_WITH_CC(s390_vpklshs);
9693 INTRINSIC_WITH_CC(s390_vpklsfs);
9694 INTRINSIC_WITH_CC(s390_vpklsgs);
9695
9696 INTRINSIC_WITH_CC(s390_vceqbs);
9697 INTRINSIC_WITH_CC(s390_vceqhs);
9698 INTRINSIC_WITH_CC(s390_vceqfs);
9699 INTRINSIC_WITH_CC(s390_vceqgs);
9700
9701 INTRINSIC_WITH_CC(s390_vchbs);
9702 INTRINSIC_WITH_CC(s390_vchhs);
9703 INTRINSIC_WITH_CC(s390_vchfs);
9704 INTRINSIC_WITH_CC(s390_vchgs);
9705
9706 INTRINSIC_WITH_CC(s390_vchlbs);
9707 INTRINSIC_WITH_CC(s390_vchlhs);
9708 INTRINSIC_WITH_CC(s390_vchlfs);
9709 INTRINSIC_WITH_CC(s390_vchlgs);
9710
9711 INTRINSIC_WITH_CC(s390_vfaebs);
9712 INTRINSIC_WITH_CC(s390_vfaehs);
9713 INTRINSIC_WITH_CC(s390_vfaefs);
9714
9715 INTRINSIC_WITH_CC(s390_vfaezbs);
9716 INTRINSIC_WITH_CC(s390_vfaezhs);
9717 INTRINSIC_WITH_CC(s390_vfaezfs);
9718
9719 INTRINSIC_WITH_CC(s390_vfeebs);
9720 INTRINSIC_WITH_CC(s390_vfeehs);
9721 INTRINSIC_WITH_CC(s390_vfeefs);
9722
9723 INTRINSIC_WITH_CC(s390_vfeezbs);
9724 INTRINSIC_WITH_CC(s390_vfeezhs);
9725 INTRINSIC_WITH_CC(s390_vfeezfs);
9726
9727 INTRINSIC_WITH_CC(s390_vfenebs);
9728 INTRINSIC_WITH_CC(s390_vfenehs);
9729 INTRINSIC_WITH_CC(s390_vfenefs);
9730
9731 INTRINSIC_WITH_CC(s390_vfenezbs);
9732 INTRINSIC_WITH_CC(s390_vfenezhs);
9733 INTRINSIC_WITH_CC(s390_vfenezfs);
9734
9735 INTRINSIC_WITH_CC(s390_vistrbs);
9736 INTRINSIC_WITH_CC(s390_vistrhs);
9737 INTRINSIC_WITH_CC(s390_vistrfs);
9738
9739 INTRINSIC_WITH_CC(s390_vstrcbs);
9740 INTRINSIC_WITH_CC(s390_vstrchs);
9741 INTRINSIC_WITH_CC(s390_vstrcfs);
9742
9743 INTRINSIC_WITH_CC(s390_vstrczbs);
9744 INTRINSIC_WITH_CC(s390_vstrczhs);
9745 INTRINSIC_WITH_CC(s390_vstrczfs);
9746
9747 INTRINSIC_WITH_CC(s390_vfcesbs);
9748 INTRINSIC_WITH_CC(s390_vfcedbs);
9749 INTRINSIC_WITH_CC(s390_vfchsbs);
9750 INTRINSIC_WITH_CC(s390_vfchdbs);
9751 INTRINSIC_WITH_CC(s390_vfchesbs);
9752 INTRINSIC_WITH_CC(s390_vfchedbs);
9753
9754 INTRINSIC_WITH_CC(s390_vftcisb);
9755 INTRINSIC_WITH_CC(s390_vftcidb);
9756
9757#undef INTRINSIC_WITH_CC
9758
9759 default:
9760 return nullptr;
9761 }
9762}
9763
9764Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
9765 const CallExpr *E) {
9766 auto MakeLdg = [&](unsigned IntrinsicID) {
9767 Value *Ptr = EmitScalarExpr(E->getArg(0));
9768 clang::CharUnits Align =
9769 getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
9770 return Builder.CreateCall(
9771 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
9772 Ptr->getType()}),
9773 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
9774 };
9775 auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
9776 Value *Ptr = EmitScalarExpr(E->getArg(0));
9777 return Builder.CreateCall(
9778 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
9779 Ptr->getType()}),
9780 {Ptr, EmitScalarExpr(E->getArg(1))});
9781 };
9782 switch (BuiltinID) {
9783 case NVPTX::BI__nvvm_atom_add_gen_i:
9784 case NVPTX::BI__nvvm_atom_add_gen_l:
9785 case NVPTX::BI__nvvm_atom_add_gen_ll:
9786 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
9787
9788 case NVPTX::BI__nvvm_atom_sub_gen_i:
9789 case NVPTX::BI__nvvm_atom_sub_gen_l:
9790 case NVPTX::BI__nvvm_atom_sub_gen_ll:
9791 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
9792
9793 case NVPTX::BI__nvvm_atom_and_gen_i:
9794 case NVPTX::BI__nvvm_atom_and_gen_l:
9795 case NVPTX::BI__nvvm_atom_and_gen_ll:
9796 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
9797
9798 case NVPTX::BI__nvvm_atom_or_gen_i:
9799 case NVPTX::BI__nvvm_atom_or_gen_l:
9800 case NVPTX::BI__nvvm_atom_or_gen_ll:
9801 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
9802
9803 case NVPTX::BI__nvvm_atom_xor_gen_i:
9804 case NVPTX::BI__nvvm_atom_xor_gen_l:
9805 case NVPTX::BI__nvvm_atom_xor_gen_ll:
9806 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
9807
9808 case NVPTX::BI__nvvm_atom_xchg_gen_i:
9809 case NVPTX::BI__nvvm_atom_xchg_gen_l:
9810 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
9811 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
9812
9813 case NVPTX::BI__nvvm_atom_max_gen_i:
9814 case NVPTX::BI__nvvm_atom_max_gen_l:
9815 case NVPTX::BI__nvvm_atom_max_gen_ll:
9816 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
9817
9818 case NVPTX::BI__nvvm_atom_max_gen_ui:
9819 case NVPTX::BI__nvvm_atom_max_gen_ul:
9820 case NVPTX::BI__nvvm_atom_max_gen_ull:
9821 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
9822
9823 case NVPTX::BI__nvvm_atom_min_gen_i:
9824 case NVPTX::BI__nvvm_atom_min_gen_l:
9825 case NVPTX::BI__nvvm_atom_min_gen_ll:
9826 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
9827
9828 case NVPTX::BI__nvvm_atom_min_gen_ui:
9829 case NVPTX::BI__nvvm_atom_min_gen_ul:
9830 case NVPTX::BI__nvvm_atom_min_gen_ull:
9831 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
9832
9833 case NVPTX::BI__nvvm_atom_cas_gen_i:
9834 case NVPTX::BI__nvvm_atom_cas_gen_l:
9835 case NVPTX::BI__nvvm_atom_cas_gen_ll:
9836 // __nvvm_atom_cas_gen_* should return the old value rather than the
9837 // success flag.
9838 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
9839
9840 case NVPTX::BI__nvvm_atom_add_gen_f: {
9841 Value *Ptr = EmitScalarExpr(E->getArg(0));
9842 Value *Val = EmitScalarExpr(E->getArg(1));
9843 // atomicrmw only deals with integer arguments so we need to use
9844 // LLVM's nvvm_atomic_load_add_f32 intrinsic for that.
9845 Value *FnALAF32 =
9846 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType());
9847 return Builder.CreateCall(FnALAF32, {Ptr, Val});
9848 }
9849
9850 case NVPTX::BI__nvvm_atom_add_gen_d: {
9851 Value *Ptr = EmitScalarExpr(E->getArg(0));
9852 Value *Val = EmitScalarExpr(E->getArg(1));
9853 // atomicrmw only deals with integer arguments, so we need to use
9854 // LLVM's nvvm_atomic_load_add_f64 intrinsic.
9855 Value *FnALAF64 =
9856 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f64, Ptr->getType());
9857 return Builder.CreateCall(FnALAF64, {Ptr, Val});
9858 }
9859
9860 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
9861 Value *Ptr = EmitScalarExpr(E->getArg(0));
9862 Value *Val = EmitScalarExpr(E->getArg(1));
9863 Value *FnALI32 =
9864 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
9865 return Builder.CreateCall(FnALI32, {Ptr, Val});
9866 }
9867
9868 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
9869 Value *Ptr = EmitScalarExpr(E->getArg(0));
9870 Value *Val = EmitScalarExpr(E->getArg(1));
9871 Value *FnALD32 =
9872 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
9873 return Builder.CreateCall(FnALD32, {Ptr, Val});
9874 }
9875
9876 case NVPTX::BI__nvvm_ldg_c:
9877 case NVPTX::BI__nvvm_ldg_c2:
9878 case NVPTX::BI__nvvm_ldg_c4:
9879 case NVPTX::BI__nvvm_ldg_s:
9880 case NVPTX::BI__nvvm_ldg_s2:
9881 case NVPTX::BI__nvvm_ldg_s4:
9882 case NVPTX::BI__nvvm_ldg_i:
9883 case NVPTX::BI__nvvm_ldg_i2:
9884 case NVPTX::BI__nvvm_ldg_i4:
9885 case NVPTX::BI__nvvm_ldg_l:
9886 case NVPTX::BI__nvvm_ldg_ll:
9887 case NVPTX::BI__nvvm_ldg_ll2:
9888 case NVPTX::BI__nvvm_ldg_uc:
9889 case NVPTX::BI__nvvm_ldg_uc2:
9890 case NVPTX::BI__nvvm_ldg_uc4:
9891 case NVPTX::BI__nvvm_ldg_us:
9892 case NVPTX::BI__nvvm_ldg_us2:
9893 case NVPTX::BI__nvvm_ldg_us4:
9894 case NVPTX::BI__nvvm_ldg_ui:
9895 case NVPTX::BI__nvvm_ldg_ui2:
9896 case NVPTX::BI__nvvm_ldg_ui4:
9897 case NVPTX::BI__nvvm_ldg_ul:
9898 case NVPTX::BI__nvvm_ldg_ull:
9899 case NVPTX::BI__nvvm_ldg_ull2:
9900 // PTX Interoperability section 2.2: "For a vector with an even number of
9901 // elements, its alignment is set to number of elements times the alignment
9902 // of its member: n*alignof(t)."
9903 return MakeLdg(Intrinsic::nvvm_ldg_global_i);
9904 case NVPTX::BI__nvvm_ldg_f:
9905 case NVPTX::BI__nvvm_ldg_f2:
9906 case NVPTX::BI__nvvm_ldg_f4:
9907 case NVPTX::BI__nvvm_ldg_d:
9908 case NVPTX::BI__nvvm_ldg_d2:
9909 return MakeLdg(Intrinsic::nvvm_ldg_global_f);
9910
9911 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
9912 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
9913 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
9914 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
9915 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
9916 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
9917 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
9918 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
9919 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
9920 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
9921 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
9922 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
9923 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
9924 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
9925 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
9926 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
9927 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
9928 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
9929 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
9930 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
9931 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
9932 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
9933 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
9934 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
9935 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
9936 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
9937 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
9938 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
9939 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
9940 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
9941 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
9942 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
9943 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
9944 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
9945 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
9946 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
9947 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
9948 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
9949 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
9950 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
9951 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
9952 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
9953 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
9954 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
9955 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
9956 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
9957 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
9958 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
9959 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
9960 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
9961 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
9962 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
9963 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
9964 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
9965 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
9966 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
9967 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
9968 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
9969 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
9970 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
9971 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
9972 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
9973 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
9974 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
9975 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
9976 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
9977 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
9978 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
9979 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
9980 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
9981 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
9982 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
9983 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
9984 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
9985 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
9986 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
9987 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
9988 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
9989 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
9990 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
9991 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
9992 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
9993 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
9994 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
9995 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
9996 Value *Ptr = EmitScalarExpr(E->getArg(0));
9997 return Builder.CreateCall(
9998 CGM.getIntrinsic(
9999 Intrinsic::nvvm_atomic_cas_gen_i_cta,
10000 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
10001 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
10002 }
10003 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
10004 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
10005 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
10006 Value *Ptr = EmitScalarExpr(E->getArg(0));
10007 return Builder.CreateCall(
10008 CGM.getIntrinsic(
10009 Intrinsic::nvvm_atomic_cas_gen_i_sys,
10010 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
10011 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
10012 }
10013 case NVPTX::BI__nvvm_match_all_sync_i32p:
10014 case NVPTX::BI__nvvm_match_all_sync_i64p: {
10015 Value *Mask = EmitScalarExpr(E->getArg(0));
10016 Value *Val = EmitScalarExpr(E->getArg(1));
10017 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
10018 Value *ResultPair = Builder.CreateCall(
10019 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
10020 ? Intrinsic::nvvm_match_all_sync_i32p
10021 : Intrinsic::nvvm_match_all_sync_i64p),
10022 {Mask, Val});
10023 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
10024 PredOutPtr.getElementType());
10025 Builder.CreateStore(Pred, PredOutPtr);
10026 return Builder.CreateExtractValue(ResultPair, 0);
10027 }
10028 case NVPTX::BI__hmma_m16n16k16_ld_a:
10029 case NVPTX::BI__hmma_m16n16k16_ld_b:
10030 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
10031 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: {
10032 Address Dst = EmitPointerWithAlignment(E->getArg(0));
10033 Value *Src = EmitScalarExpr(E->getArg(1));
10034 Value *Ldm = EmitScalarExpr(E->getArg(2));
10035 llvm::APSInt isColMajorArg;
10036 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
10037 return nullptr;
10038 bool isColMajor = isColMajorArg.getSExtValue();
10039 unsigned IID;
10040 unsigned NumResults;
10041 switch (BuiltinID) {
10042 case NVPTX::BI__hmma_m16n16k16_ld_a:
10043 IID = isColMajor ? Intrinsic::nvvm_wmma_load_a_f16_col_stride
10044 : Intrinsic::nvvm_wmma_load_a_f16_row_stride;
10045 NumResults = 8;
10046 break;
10047 case NVPTX::BI__hmma_m16n16k16_ld_b:
10048 IID = isColMajor ? Intrinsic::nvvm_wmma_load_b_f16_col_stride
10049 : Intrinsic::nvvm_wmma_load_b_f16_row_stride;
10050 NumResults = 8;
10051 break;
10052 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
10053 IID = isColMajor ? Intrinsic::nvvm_wmma_load_c_f16_col_stride
10054 : Intrinsic::nvvm_wmma_load_c_f16_row_stride;
10055 NumResults = 4;
10056 break;
10057 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
10058 IID = isColMajor ? Intrinsic::nvvm_wmma_load_c_f32_col_stride
10059 : Intrinsic::nvvm_wmma_load_c_f32_row_stride;
10060 NumResults = 8;
10061 break;
10062 default:
10063 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10063)
;
10064 }
10065 Value *Result =
10066 Builder.CreateCall(CGM.getIntrinsic(IID),
10067 {Builder.CreatePointerCast(Src, VoidPtrTy), Ldm});
10068
10069 // Save returned values.
10070 for (unsigned i = 0; i < NumResults; ++i) {
10071 Builder.CreateAlignedStore(
10072 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
10073 Dst.getElementType()),
10074 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
10075 CharUnits::fromQuantity(4));
10076 }
10077 return Result;
10078 }
10079
10080 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
10081 case NVPTX::BI__hmma_m16n16k16_st_c_f32: {
10082 Value *Dst = EmitScalarExpr(E->getArg(0));
10083 Address Src = EmitPointerWithAlignment(E->getArg(1));
10084 Value *Ldm = EmitScalarExpr(E->getArg(2));
10085 llvm::APSInt isColMajorArg;
10086 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
10087 return nullptr;
10088 bool isColMajor = isColMajorArg.getSExtValue();
10089 unsigned IID;
10090 unsigned NumResults = 8;
10091 // PTX Instructions (and LLVM instrinsics) are defined for slice _d_, yet
10092 // for some reason nvcc builtins use _c_.
10093 switch (BuiltinID) {
10094 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
10095 IID = isColMajor ? Intrinsic::nvvm_wmma_store_d_f16_col_stride
10096 : Intrinsic::nvvm_wmma_store_d_f16_row_stride;
10097 NumResults = 4;
10098 break;
10099 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
10100 IID = isColMajor ? Intrinsic::nvvm_wmma_store_d_f32_col_stride
10101 : Intrinsic::nvvm_wmma_store_d_f32_row_stride;
10102 break;
10103 default:
10104 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10104)
;
10105 }
10106 Function *Intrinsic = CGM.getIntrinsic(IID);
10107 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
10108 SmallVector<Value *, 10> Values;
10109 Values.push_back(Builder.CreatePointerCast(Dst, VoidPtrTy));
10110 for (unsigned i = 0; i < NumResults; ++i) {
10111 Value *V = Builder.CreateAlignedLoad(
10112 Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
10113 CharUnits::fromQuantity(4));
10114 Values.push_back(Builder.CreateBitCast(V, ParamType));
10115 }
10116 Values.push_back(Ldm);
10117 Value *Result = Builder.CreateCall(Intrinsic, Values);
10118 return Result;
10119 }
10120
10121 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf)
10122 // --> Intrinsic::nvvm_wmma_mma_sync<layout A,B><DType><CType><Satf>
10123 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
10124 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
10125 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
10126 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: {
10127 Address Dst = EmitPointerWithAlignment(E->getArg(0));
10128 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
10129 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
10130 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
10131 llvm::APSInt LayoutArg;
10132 if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
10133 return nullptr;
10134 int Layout = LayoutArg.getSExtValue();
10135 if (Layout < 0 || Layout > 3)
10136 return nullptr;
10137 llvm::APSInt SatfArg;
10138 if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
10139 return nullptr;
10140 bool Satf = SatfArg.getSExtValue();
10141
10142 // clang-format off
10143#define MMA_VARIANTS(type) {{ \
10144 Intrinsic::nvvm_wmma_mma_sync_row_row_##type, \
10145 Intrinsic::nvvm_wmma_mma_sync_row_row_##type##_satfinite, \
10146 Intrinsic::nvvm_wmma_mma_sync_row_col_##type, \
10147 Intrinsic::nvvm_wmma_mma_sync_row_col_##type##_satfinite, \
10148 Intrinsic::nvvm_wmma_mma_sync_col_row_##type, \
10149 Intrinsic::nvvm_wmma_mma_sync_col_row_##type##_satfinite, \
10150 Intrinsic::nvvm_wmma_mma_sync_col_col_##type, \
10151 Intrinsic::nvvm_wmma_mma_sync_col_col_##type##_satfinite \
10152 }}
10153 // clang-format on
10154
10155 auto getMMAIntrinsic = [Layout, Satf](std::array<unsigned, 8> Variants) {
10156 unsigned Index = Layout * 2 + Satf;
10157 assert(Index < 8)(static_cast <bool> (Index < 8) ? void (0) : __assert_fail
("Index < 8", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10157, __extension__ __PRETTY_FUNCTION__))
;
10158 return Variants[Index];
10159 };
10160 unsigned IID;
10161 unsigned NumEltsC;
10162 unsigned NumEltsD;
10163 switch (BuiltinID) {
10164 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
10165 IID = getMMAIntrinsic(MMA_VARIANTS(f16_f16));
10166 NumEltsC = 4;
10167 NumEltsD = 4;
10168 break;
10169 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
10170 IID = getMMAIntrinsic(MMA_VARIANTS(f32_f16));
10171 NumEltsC = 4;
10172 NumEltsD = 8;
10173 break;
10174 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
10175 IID = getMMAIntrinsic(MMA_VARIANTS(f16_f32));
10176 NumEltsC = 8;
10177 NumEltsD = 4;
10178 break;
10179 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
10180 IID = getMMAIntrinsic(MMA_VARIANTS(f32_f32));
10181 NumEltsC = 8;
10182 NumEltsD = 8;
10183 break;
10184 default:
10185 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "/build/llvm-toolchain-snapshot-6.0~svn321639/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10185)
;
10186 }
10187#undef MMA_VARIANTS
10188
10189 SmallVector<Value *, 24> Values;
10190 Function *Intrinsic = CGM.getIntrinsic(IID);
10191 llvm::Type *ABType = Intrinsic->getFunctionType()->getParamType(0);
10192 // Load A
10193 for (unsigned i = 0; i < 8; ++i) {
10194 Value *V = Builder.CreateAlignedLoad(
10195 Builder.CreateGEP(SrcA.getPointer(),
10196 llvm::ConstantInt::get(IntTy, i)),
10197 CharUnits::fromQuantity(4));
10198 Values.push_back(Builder.CreateBitCast(V, ABType));
10199 }
10200 // Load B
10201 for (unsigned i = 0; i < 8; ++i) {
10202 Value *V = Builder.CreateAlignedLoad(
10203 Builder.CreateGEP(SrcB.getPointer(),
10204 llvm::ConstantInt::get(IntTy, i)),
10205 CharUnits::fromQuantity(4));
10206 Values.push_back(Builder.CreateBitCast(V, ABType));
10207 }
10208 // Load C
10209 llvm::Type *CType = Intrinsic->getFunctionType()->getParamType(16);
10210 for (unsigned i = 0; i < NumEltsC; ++i) {
10211 Value *V = Builder.CreateAlignedLoad(
10212 Builder.CreateGEP(SrcC.getPointer(),
10213 llvm::ConstantInt::get(IntTy, i)),
10214 CharUnits::fromQuantity(4));
10215 Values.push_back(Builder.CreateBitCast(V, CType));
10216 }
10217 Value *Result = Builder.CreateCall(Intrinsic, Values);
10218 llvm::Type *DType = Dst.getElementType();
10219 for (unsigned i = 0; i < NumEltsD; ++i)
10220 Builder.CreateAlignedStore(
10221 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
10222 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
10223 CharUnits::fromQuantity(4));
10224 return Result;
10225 }
10226 default:
10227 return nullptr;
10228 }
10229}
10230
10231Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
10232 const CallExpr *E) {
10233 switch (BuiltinID) {
10234 case WebAssembly::BI__builtin_wasm_current_memory: {
10235 llvm::Type *ResultType = ConvertType(E->getType());
10236 Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_current_memory, ResultType);
10237 return Builder.CreateCall(Callee);
10238 }
10239 case WebAssembly::BI__builtin_wasm_grow_memory: {
10240 Value *X = EmitScalarExpr(E->getArg(0));
10241 Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_grow_memory, X->getType());
10242 return Builder.CreateCall(Callee, X);
10243 }
10244 case WebAssembly::BI__builtin_wasm_throw: {
10245 Value *Tag = EmitScalarExpr(E->getArg(0));
10246 Value *Obj = EmitScalarExpr(E->getArg(1));
10247 Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
10248 return Builder.CreateCall(Callee, {Tag, Obj});
10249 }
10250 case WebAssembly::BI__builtin_wasm_rethrow: {
10251 Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
10252 return Builder.CreateCall(Callee);
10253 }
10254
10255 default:
10256 return nullptr;
10257 }
10258}
10259
10260Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
10261 const CallExpr *E) {
10262 SmallVector<llvm::Value *, 4> Ops;
10263 Intrinsic::ID ID = Intrinsic::not_intrinsic;
10264
10265 switch (BuiltinID) {
10266 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
10267 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
10268 Address Dest = EmitPointerWithAlignment(E->getArg(2));
10269 unsigned Size;
10270 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
10271 Size = 512;
10272 ID = Intrinsic::hexagon_V6_vaddcarry;
10273 } else {
10274 Size = 1024;
10275 ID = Intrinsic::hexagon_V6_vaddcarry_128B;
10276 }
10277 Dest = Builder.CreateBitCast(Dest,
10278 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
10279 LoadInst *QLd = Builder.CreateLoad(Dest);
10280 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
10281 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
10282 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
10283 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
10284 Vprd->getType()->getPointerTo(0));
10285 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
10286 return Builder.CreateExtractValue(Result, 0);
10287 }
10288 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
10289 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
10290 Address Dest = EmitPointerWithAlignment(E->getArg(2));
10291 unsigned Size;
10292 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
10293 Size = 512;
10294 ID = Intrinsic::hexagon_V6_vsubcarry;
10295 } else {
10296 Size = 1024;
10297 ID = Intrinsic::hexagon_V6_vsubcarry_128B;
10298 }
10299 Dest = Builder.CreateBitCast(Dest,
10300 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
10301 LoadInst *QLd = Builder.CreateLoad(Dest);
10302 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
10303 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
10304 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
10305 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
10306 Vprd->getType()->getPointerTo(0));
10307 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
10308 return Builder.CreateExtractValue(Result, 0);
10309 }
10310 } // switch
10311
10312 return nullptr;
10313}

/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/IR/DerivedTypes.h

1//===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declarations of classes that represent "derived
11// types". These are things like "arrays of x" or "structure of x, y, z" or
12// "function returning x taking (y,z) as parameters", etc...
13//
14// The implementations of these classes live in the Type.cpp file.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_IR_DERIVEDTYPES_H
19#define LLVM_IR_DERIVEDTYPES_H
20
21#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/IR/Type.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/Compiler.h"
27#include <cassert>
28#include <cstdint>
29
30namespace llvm {
31
32class Value;
33class APInt;
34class LLVMContext;
35
36/// Class to represent integer types. Note that this class is also used to
37/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38/// Int64Ty.
39/// @brief Integer representation type
40class IntegerType : public Type {
41 friend class LLVMContextImpl;
42
43protected:
44 explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45 setSubclassData(NumBits);
46 }
47
48public:
49 /// This enum is just used to hold constants we need for IntegerType.
50 enum {
51 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
52 MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
53 ///< Note that bit width is stored in the Type classes SubclassData field
54 ///< which has 24 bits. This yields a maximum bit width of 16,777,215
55 ///< bits.
56 };
57
58 /// This static method is the primary way of constructing an IntegerType.
59 /// If an IntegerType with the same NumBits value was previously instantiated,
60 /// that instance will be returned. Otherwise a new one will be created. Only
61 /// one instance with a given NumBits value is ever created.
62 /// @brief Get or create an IntegerType instance.
63 static IntegerType *get(LLVMContext &C, unsigned NumBits);
64
65 /// @brief Get the number of bits in this IntegerType
66 unsigned getBitWidth() const { return getSubclassData(); }
67
68 /// Return a bitmask with ones set for all of the bits that can be set by an
69 /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
70 uint64_t getBitMask() const {
71 return ~uint64_t(0UL) >> (64-getBitWidth());
72 }
73
74 /// Return a uint64_t with just the most significant bit set (the sign bit, if
75 /// the value is treated as a signed number).
76 uint64_t getSignBit() const {
77 return 1ULL << (getBitWidth()-1);
78 }
79
80 /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
81 /// @returns a bit mask with ones set for all the bits of this type.
82 /// @brief Get a bit mask for this type.
83 APInt getMask() const;
84
85 /// This method determines if the width of this IntegerType is a power-of-2
86 /// in terms of 8 bit bytes.
87 /// @returns true if this is a power-of-2 byte width.
88 /// @brief Is this a power-of-2 byte-width IntegerType ?
89 bool isPowerOf2ByteWidth() const;
90
91 /// Methods for support type inquiry through isa, cast, and dyn_cast.
92 static bool classof(const Type *T) {
93 return T->getTypeID() == IntegerTyID;
94 }
95};
96
97unsigned Type::getIntegerBitWidth() const {
98 return cast<IntegerType>(this)->getBitWidth();
99}
100
101/// Class to represent function types
102///
103class FunctionType : public Type {
104 FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
105
106public:
107 FunctionType(const FunctionType &) = delete;
108 FunctionType &operator=(const FunctionType &) = delete;
109
110 /// This static method is the primary way of constructing a FunctionType.
111 static FunctionType *get(Type *Result,
112 ArrayRef<Type*> Params, bool isVarArg);
113
114 /// Create a FunctionType taking no parameters.
115 static FunctionType *get(Type *Result, bool isVarArg);
116
117 /// Return true if the specified type is valid as a return type.
118 static bool isValidReturnType(Type *RetTy);
119
120 /// Return true if the specified type is valid as an argument type.
121 static bool isValidArgumentType(Type *ArgTy);
122
123 bool isVarArg() const { return getSubclassData()!=0; }
124 Type *getReturnType() const { return ContainedTys[0]; }
125
126 using param_iterator = Type::subtype_iterator;
127
128 param_iterator param_begin() const { return ContainedTys + 1; }
129 param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
130 ArrayRef<Type *> params() const {
131 return makeArrayRef(param_begin(), param_end());
132 }
133
134 /// Parameter type accessors.
135 Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
136
137 /// Return the number of fixed parameters this function type requires.
138 /// This does not consider varargs.
139 unsigned getNumParams() const { return NumContainedTys - 1; }
140
141 /// Methods for support type inquiry through isa, cast, and dyn_cast.
142 static bool classof(const Type *T) {
143 return T->getTypeID() == FunctionTyID;
144 }
145};
146static_assert(alignof(FunctionType) >= alignof(Type *),
147 "Alignment sufficient for objects appended to FunctionType");
148
149bool Type::isFunctionVarArg() const {
150 return cast<FunctionType>(this)->isVarArg();
151}
152
153Type *Type::getFunctionParamType(unsigned i) const {
154 return cast<FunctionType>(this)->getParamType(i);
155}
156
157unsigned Type::getFunctionNumParams() const {
158 return cast<FunctionType>(this)->getNumParams();
159}
160
161/// Common super class of ArrayType, StructType and VectorType.
162class CompositeType : public Type {
163protected:
164 explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
165
166public:
167 /// Given an index value into the type, return the type of the element.
168 Type *getTypeAtIndex(const Value *V) const;
169 Type *getTypeAtIndex(unsigned Idx) const;
170 bool indexValid(const Value *V) const;
171 bool indexValid(unsigned Idx) const;
172
173 /// Methods for support type inquiry through isa, cast, and dyn_cast.
174 static bool classof(const Type *T) {
175 return T->getTypeID() == ArrayTyID ||
176 T->getTypeID() == StructTyID ||
177 T->getTypeID() == VectorTyID;
178 }
179};
180
181/// Class to represent struct types. There are two different kinds of struct
182/// types: Literal structs and Identified structs.
183///
184/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
185/// always have a body when created. You can get one of these by using one of
186/// the StructType::get() forms.
187///
188/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
189/// uniqued. The names for identified structs are managed at the LLVMContext
190/// level, so there can only be a single identified struct with a given name in
191/// a particular LLVMContext. Identified structs may also optionally be opaque
192/// (have no body specified). You get one of these by using one of the
193/// StructType::create() forms.
194///
195/// Independent of what kind of struct you have, the body of a struct type are
196/// laid out in memory consequtively with the elements directly one after the
197/// other (if the struct is packed) or (if not packed) with padding between the
198/// elements as defined by DataLayout (which is required to match what the code
199/// generator for a target expects).
200///
201class StructType : public CompositeType {
202 StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
203
204 enum {
205 /// This is the contents of the SubClassData field.
206 SCDB_HasBody = 1,
207 SCDB_Packed = 2,
208 SCDB_IsLiteral = 4,
209 SCDB_IsSized = 8
210 };
211
212 /// For a named struct that actually has a name, this is a pointer to the
213 /// symbol table entry (maintained by LLVMContext) for the struct.
214 /// This is null if the type is an literal struct or if it is a identified
215 /// type that has an empty name.
216 void *SymbolTableEntry = nullptr;
217
218public:
219 StructType(const StructType &) = delete;
220 StructType &operator=(const StructType &) = delete;
221
222 /// This creates an identified struct.
223 static StructType *create(LLVMContext &Context, StringRef Name);
224 static StructType *create(LLVMContext &Context);
225
226 static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
227 bool isPacked = false);
228 static StructType *create(ArrayRef<Type *> Elements);
229 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
230 StringRef Name, bool isPacked = false);
231 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
232 template <class... Tys>
233 static typename std::enable_if<are_base_of<Type, Tys...>::value,
234 StructType *>::type
235 create(StringRef Name, Type *elt1, Tys *... elts) {
236 assert(elt1 && "Cannot create a struct type with no elements with this")(static_cast <bool> (elt1 && "Cannot create a struct type with no elements with this"
) ? void (0) : __assert_fail ("elt1 && \"Cannot create a struct type with no elements with this\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/IR/DerivedTypes.h"
, 236, __extension__ __PRETTY_FUNCTION__))
;
237 SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
238 return create(StructFields, Name);
239 }
240
241 /// This static method is the primary way to create a literal StructType.
242 static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
243 bool isPacked = false);
244
245 /// Create an empty structure type.
246 static StructType *get(LLVMContext &Context, bool isPacked = false);
247
248 /// This static method is a convenience method for creating structure types by
249 /// specifying the elements as arguments. Note that this method always returns
250 /// a non-packed struct, and requires at least one element type.
251 template <class... Tys>
252 static typename std::enable_if<are_base_of<Type, Tys...>::value,
253 StructType *>::type
254 get(Type *elt1, Tys *... elts) {
255 assert(elt1 && "Cannot create a struct type with no elements with this")(static_cast <bool> (elt1 && "Cannot create a struct type with no elements with this"
) ? void (0) : __assert_fail ("elt1 && \"Cannot create a struct type with no elements with this\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/IR/DerivedTypes.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
256 LLVMContext &Ctx = elt1->getContext();
257 SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
258 return llvm::StructType::get(Ctx, StructFields);
259 }
260
261 bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
262
263 /// Return true if this type is uniqued by structural equivalence, false if it
264 /// is a struct definition.
265 bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
266
267 /// Return true if this is a type with an identity that has no body specified
268 /// yet. These prints as 'opaque' in .ll files.
269 bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
270
271 /// isSized - Return true if this is a sized type.
272 bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
273
274 /// Return true if this is a named struct that has a non-empty name.
275 bool hasName() const { return SymbolTableEntry != nullptr; }
276
277 /// Return the name for this struct type if it has an identity.
278 /// This may return an empty string for an unnamed struct type. Do not call
279 /// this on an literal type.
280 StringRef getName() const;
281
282 /// Change the name of this type to the specified name, or to a name with a
283 /// suffix if there is a collision. Do not call this on an literal type.
284 void setName(StringRef Name);
285
286 /// Specify a body for an opaque identified type.
287 void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
288
289 template <typename... Tys>
290 typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
291 setBody(Type *elt1, Tys *... elts) {
292 assert(elt1 && "Cannot create a struct type with no elements with this")(static_cast <bool> (elt1 && "Cannot create a struct type with no elements with this"
) ? void (0) : __assert_fail ("elt1 && \"Cannot create a struct type with no elements with this\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/IR/DerivedTypes.h"
, 292, __extension__ __PRETTY_FUNCTION__))
;
293 SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
294 setBody(StructFields);
295 }
296
297 /// Return true if the specified type is valid as a element type.
298 static bool isValidElementType(Type *ElemTy);
299
300 // Iterator access to the elements.
301 using element_iterator = Type::subtype_iterator;
302
303 element_iterator element_begin() const { return ContainedTys; }
304 element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
305 ArrayRef<Type *> const elements() const {
306 return makeArrayRef(element_begin(), element_end());
307 }
308
309 /// Return true if this is layout identical to the specified struct.
310 bool isLayoutIdentical(StructType *Other) const;
311
312 /// Random access to the elements
313 unsigned getNumElements() const { return NumContainedTys; }
314 Type *getElementType(unsigned N) const {
315 assert(N < NumContainedTys && "Element number out of range!")(static_cast <bool> (N < NumContainedTys && "Element number out of range!"
) ? void (0) : __assert_fail ("N < NumContainedTys && \"Element number out of range!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/IR/DerivedTypes.h"
, 315, __extension__ __PRETTY_FUNCTION__))
;
316 return ContainedTys[N];
317 }
318
319 /// Methods for support type inquiry through isa, cast, and dyn_cast.
320 static bool classof(const Type *T) {
321 return T->getTypeID() == StructTyID;
322 }
323};
324
325StringRef Type::getStructName() const {
326 return cast<StructType>(this)->getName();
327}
328
329unsigned Type::getStructNumElements() const {
330 return cast<StructType>(this)->getNumElements();
331}
332
333Type *Type::getStructElementType(unsigned N) const {
334 return cast<StructType>(this)->getElementType(N);
335}
336
337/// This is the superclass of the array and vector type classes. Both of these
338/// represent "arrays" in memory. The array type represents a specifically sized
339/// array, and the vector type represents a specifically sized array that allows
340/// for use of SIMD instructions. SequentialType holds the common features of
341/// both, which stem from the fact that both lay their components out in memory
342/// identically.
343class SequentialType : public CompositeType {
344 Type *ContainedType; ///< Storage for the single contained type.
345 uint64_t NumElements;
346
347protected:
348 SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
349 : CompositeType(ElType->getContext(), TID), ContainedType(ElType),
350 NumElements(NumElements) {
351 ContainedTys = &ContainedType;
352 NumContainedTys = 1;
353 }
354
355public:
356 SequentialType(const SequentialType &) = delete;
357 SequentialType &operator=(const SequentialType &) = delete;
358
359 uint64_t getNumElements() const { return NumElements; }
360 Type *getElementType() const { return ContainedType; }
361
362 /// Methods for support type inquiry through isa, cast, and dyn_cast.
363 static bool classof(const Type *T) {
364 return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
365 }
366};
367
368/// Class to represent array types.
369class ArrayType : public SequentialType {
370 ArrayType(Type *ElType, uint64_t NumEl);
371
372public:
373 ArrayType(const ArrayType &) = delete;
374 ArrayType &operator=(const ArrayType &) = delete;
375
376 /// This static method is the primary way to construct an ArrayType
377 static ArrayType *get(Type *ElementType, uint64_t NumElements);
378
379 /// Return true if the specified type is valid as a element type.
380 static bool isValidElementType(Type *ElemTy);
381
382 /// Methods for support type inquiry through isa, cast, and dyn_cast.
383 static bool classof(const Type *T) {
384 return T->getTypeID() == ArrayTyID;
385 }
386};
387
388uint64_t Type::getArrayNumElements() const {
389 return cast<ArrayType>(this)->getNumElements();
390}
391
392/// Class to represent vector types.
393class VectorType : public SequentialType {
394 VectorType(Type *ElType, unsigned NumEl);
395
396public:
397 VectorType(const VectorType &) = delete;
398 VectorType &operator=(const VectorType &) = delete;
399
400 /// This static method is the primary way to construct an VectorType.
401 static VectorType *get(Type *ElementType, unsigned NumElements);
402
403 /// This static method gets a VectorType with the same number of elements as
404 /// the input type, and the element type is an integer type of the same width
405 /// as the input element type.
406 static VectorType *getInteger(VectorType *VTy) {
407 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
408 assert(EltBits && "Element size must be of a non-zero size")(static_cast <bool> (EltBits && "Element size must be of a non-zero size"
) ? void (0) : __assert_fail ("EltBits && \"Element size must be of a non-zero size\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/IR/DerivedTypes.h"
, 408, __extension__ __PRETTY_FUNCTION__))
;
409 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
410 return VectorType::get(EltTy, VTy->getNumElements());
411 }
412
413 /// This static method is like getInteger except that the element types are
414 /// twice as wide as the elements in the input type.
415 static VectorType *getExtendedElementVectorType(VectorType *VTy) {
416 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
417 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
418 return VectorType::get(EltTy, VTy->getNumElements());
419 }
420
421 /// This static method is like getInteger except that the element types are
422 /// half as wide as the elements in the input type.
423 static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
424 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
425 assert((EltBits & 1) == 0 &&(static_cast <bool> ((EltBits & 1) == 0 && "Cannot truncate vector element with odd bit-width"
) ? void (0) : __assert_fail ("(EltBits & 1) == 0 && \"Cannot truncate vector element with odd bit-width\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/IR/DerivedTypes.h"
, 426, __extension__ __PRETTY_FUNCTION__))
426 "Cannot truncate vector element with odd bit-width")(static_cast <bool> ((EltBits & 1) == 0 && "Cannot truncate vector element with odd bit-width"
) ? void (0) : __assert_fail ("(EltBits & 1) == 0 && \"Cannot truncate vector element with odd bit-width\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/IR/DerivedTypes.h"
, 426, __extension__ __PRETTY_FUNCTION__))
;
427 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
428 return VectorType::get(EltTy, VTy->getNumElements());
429 }
430
431 /// This static method returns a VectorType with half as many elements as the
432 /// input type and the same element type.
433 static VectorType *getHalfElementsVectorType(VectorType *VTy) {
434 unsigned NumElts = VTy->getNumElements();
435 assert ((NumElts & 1) == 0 &&(static_cast <bool> ((NumElts & 1) == 0 && "Cannot halve vector with odd number of elements."
) ? void (0) : __assert_fail ("(NumElts & 1) == 0 && \"Cannot halve vector with odd number of elements.\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/IR/DerivedTypes.h"
, 436, __extension__ __PRETTY_FUNCTION__))
436 "Cannot halve vector with odd number of elements.")(static_cast <bool> ((NumElts & 1) == 0 && "Cannot halve vector with odd number of elements."
) ? void (0) : __assert_fail ("(NumElts & 1) == 0 && \"Cannot halve vector with odd number of elements.\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/IR/DerivedTypes.h"
, 436, __extension__ __PRETTY_FUNCTION__))
;
437 return VectorType::get(VTy->getElementType(), NumElts/2);
438 }
439
440 /// This static method returns a VectorType with twice as many elements as the
441 /// input type and the same element type.
442 static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
443 unsigned NumElts = VTy->getNumElements();
444 return VectorType::get(VTy->getElementType(), NumElts*2);
445 }
446
447 /// Return true if the specified type is valid as a element type.
448 static bool isValidElementType(Type *ElemTy);
449
450 /// Return the number of bits in the Vector type.
451 /// Returns zero when the vector is a vector of pointers.
452 unsigned getBitWidth() const {
453 return getNumElements() * getElementType()->getPrimitiveSizeInBits();
454 }
455
456 /// Methods for support type inquiry through isa, cast, and dyn_cast.
457 static bool classof(const Type *T) {
458 return T->getTypeID() == VectorTyID;
14
Calling 'Type::getTypeID'
15
Returning from 'Type::getTypeID'
16
Assuming the condition is true
459 }
460};
461
462unsigned Type::getVectorNumElements() const {
463 return cast<VectorType>(this)->getNumElements();
2
Calling 'cast'
24
Returning from 'cast'
25
Calling 'SequentialType::getNumElements'
26
Returning from 'SequentialType::getNumElements'
464}
465
466/// Class to represent pointers.
467class PointerType : public Type {
468 explicit PointerType(Type *ElType, unsigned AddrSpace);
469
470 Type *PointeeTy;
471
472public:
473 PointerType(const PointerType &) = delete;
474 PointerType &operator=(const PointerType &) = delete;
475
476 /// This constructs a pointer to an object of the specified type in a numbered
477 /// address space.
478 static PointerType *get(Type *ElementType, unsigned AddressSpace);
479
480 /// This constructs a pointer to an object of the specified type in the
481 /// generic address space (address space zero).
482 static PointerType *getUnqual(Type *ElementType) {
483 return PointerType::get(ElementType, 0);
484 }
485
486 Type *getElementType() const { return PointeeTy; }
487
488 /// Return true if the specified type is valid as a element type.
489 static bool isValidElementType(Type *ElemTy);
490
491 /// Return true if we can load or store from a pointer to this type.
492 static bool isLoadableOrStorableType(Type *ElemTy);
493
494 /// Return the address space of the Pointer type.
495 inline unsigned getAddressSpace() const { return getSubclassData(); }
496
497 /// Implement support type inquiry through isa, cast, and dyn_cast.
498 static bool classof(const Type *T) {
499 return T->getTypeID() == PointerTyID;
500 }
501};
502
503unsigned Type::getPointerAddressSpace() const {
504 return cast<PointerType>(getScalarType())->getAddressSpace();
505}
506
507} // end namespace llvm
508
509#endif // LLVM_IR_DERIVEDTYPES_H

/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
11// and dyn_cast_or_null<X>() templates.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_SUPPORT_CASTING_H
16#define LLVM_SUPPORT_CASTING_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/type_traits.h"
20#include <cassert>
21#include <memory>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// isa<x> Support Templates
28//===----------------------------------------------------------------------===//
29
30// Define a template that can be specialized by smart pointers to reflect the
31// fact that they are automatically dereferenced, and are not involved with the
32// template selection process... the default implementation is a noop.
33//
34template<typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template<typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType =
44 typename add_const_past_pointer<NonConstSimpleType>::type;
45 using RetType =
46 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
47
48 static RetType getSimplifiedValue(const From& Val) {
49 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
6
Calling 'simplify_type::getSimplifiedValue'
7
Returning from 'simplify_type::getSimplifiedValue'
50 }
51};
52
53// The core of the implementation of isa<X> is here; To and From should be
54// the names of classes. This template can be specialized to customize the
55// implementation of isa<> without rewriting it from scratch.
56template <typename To, typename From, typename Enabler = void>
57struct isa_impl {
58 static inline bool doit(const From &Val) {
59 return To::classof(&Val);
13
Calling 'VectorType::classof'
17
Returning from 'VectorType::classof'
60 }
61};
62
63/// \brief Always allow upcasts, and perform no dynamic check for them.
64template <typename To, typename From>
65struct isa_impl<
66 To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
67 static inline bool doit(const From &) { return true; }
68};
69
70template <typename To, typename From> struct isa_impl_cl {
71 static inline bool doit(const From &Val) {
72 return isa_impl<To, From>::doit(Val);
73 }
74};
75
76template <typename To, typename From> struct isa_impl_cl<To, const From> {
77 static inline bool doit(const From &Val) {
78 return isa_impl<To, From>::doit(Val);
79 }
80};
81
82template <typename To, typename From>
83struct isa_impl_cl<To, const std::unique_ptr<From>> {
84 static inline bool doit(const std::unique_ptr<From> &Val) {
85 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 85, __extension__ __PRETTY_FUNCTION__))
;
86 return isa_impl_cl<To, From>::doit(*Val);
87 }
88};
89
90template <typename To, typename From> struct isa_impl_cl<To, From*> {
91 static inline bool doit(const From *Val) {
92 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 92, __extension__ __PRETTY_FUNCTION__))
;
93 return isa_impl<To, From>::doit(*Val);
94 }
95};
96
97template <typename To, typename From> struct isa_impl_cl<To, From*const> {
98 static inline bool doit(const From *Val) {
99 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 99, __extension__ __PRETTY_FUNCTION__))
;
100 return isa_impl<To, From>::doit(*Val);
101 }
102};
103
104template <typename To, typename From> struct isa_impl_cl<To, const From*> {
105 static inline bool doit(const From *Val) {
106 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 106, __extension__ __PRETTY_FUNCTION__))
;
11
Within the expansion of the macro 'assert':
107 return isa_impl<To, From>::doit(*Val);
12
Calling 'isa_impl::doit'
18
Returning from 'isa_impl::doit'
108 }
109};
110
111template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
112 static inline bool doit(const From *Val) {
113 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 113, __extension__ __PRETTY_FUNCTION__))
;
114 return isa_impl<To, From>::doit(*Val);
115 }
116};
117
118template<typename To, typename From, typename SimpleFrom>
119struct isa_impl_wrap {
120 // When From != SimplifiedType, we can simplify the type some more by using
121 // the simplify_type template.
122 static bool doit(const From &Val) {
123 return isa_impl_wrap<To, SimpleFrom,
9
Calling 'isa_impl_wrap::doit'
20
Returning from 'isa_impl_wrap::doit'
124 typename simplify_type<SimpleFrom>::SimpleType>::doit(
125 simplify_type<const From>::getSimplifiedValue(Val));
5
Calling 'simplify_type::getSimplifiedValue'
8
Returning from 'simplify_type::getSimplifiedValue'
126 }
127};
128
129template<typename To, typename FromTy>
130struct isa_impl_wrap<To, FromTy, FromTy> {
131 // When From == SimpleType, we are as simple as we are going to get.
132 static bool doit(const FromTy &Val) {
133 return isa_impl_cl<To,FromTy>::doit(Val);
10
Calling 'isa_impl_cl::doit'
19
Returning from 'isa_impl_cl::doit'
134 }
135};
136
137// isa<X> - Return true if the parameter to the template is an instance of the
138// template type argument. Used like this:
139//
140// if (isa<Type>(myVal)) { ... }
141//
142template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
143 return isa_impl_wrap<X, const Y,
4
Calling 'isa_impl_wrap::doit'
21
Returning from 'isa_impl_wrap::doit'
144 typename simplify_type<const Y>::SimpleType>::doit(Val);
145}
146
147//===----------------------------------------------------------------------===//
148// cast<x> Support Templates
149//===----------------------------------------------------------------------===//
150
151template<class To, class From> struct cast_retty;
152
153// Calculate what type the 'cast' function should return, based on a requested
154// type of To and a source type of From.
155template<class To, class From> struct cast_retty_impl {
156 using ret_type = To &; // Normal case, return Ty&
157};
158template<class To, class From> struct cast_retty_impl<To, const From> {
159 using ret_type = const To &; // Normal case, return Ty&
160};
161
162template<class To, class From> struct cast_retty_impl<To, From*> {
163 using ret_type = To *; // Pointer arg case, return Ty*
164};
165
166template<class To, class From> struct cast_retty_impl<To, const From*> {
167 using ret_type = const To *; // Constant pointer arg case, return const Ty*
168};
169
170template<class To, class From> struct cast_retty_impl<To, const From*const> {
171 using ret_type = const To *; // Constant pointer arg case, return const Ty*
172};
173
174template <class To, class From>
175struct cast_retty_impl<To, std::unique_ptr<From>> {
176private:
177 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
178 using ResultType = typename std::remove_pointer<PointerType>::type;
179
180public:
181 using ret_type = std::unique_ptr<ResultType>;
182};
183
184template<class To, class From, class SimpleFrom>
185struct cast_retty_wrap {
186 // When the simplified type and the from type are not the same, use the type
187 // simplifier to reduce the type, then reuse cast_retty_impl to get the
188 // resultant type.
189 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
190};
191
192template<class To, class FromTy>
193struct cast_retty_wrap<To, FromTy, FromTy> {
194 // When the simplified type is equal to the from type, use it directly.
195 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
196};
197
198template<class To, class From>
199struct cast_retty {
200 using ret_type = typename cast_retty_wrap<
201 To, From, typename simplify_type<From>::SimpleType>::ret_type;
202};
203
204// Ensure the non-simple values are converted using the simplify_type template
205// that may be specialized by smart pointers...
206//
207template<class To, class From, class SimpleFrom> struct cast_convert_val {
208 // This is not a simple type, use the template to simplify it...
209 static typename cast_retty<To, From>::ret_type doit(From &Val) {
210 return cast_convert_val<To, SimpleFrom,
211 typename simplify_type<SimpleFrom>::SimpleType>::doit(
212 simplify_type<From>::getSimplifiedValue(Val));
213 }
214};
215
216template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
217 // This _is_ a simple type, just cast it.
218 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
219 typename cast_retty<To, FromTy>::ret_type Res2
220 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
221 return Res2;
222 }
223};
224
225template <class X> struct is_simple_type {
226 static const bool value =
227 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
228};
229
230// cast<X> - Return the argument parameter cast to the specified type. This
231// casting operator asserts that the type is correct, so it does not return null
232// on failure. It does not allow a null argument (use cast_or_null for that).
233// It is typically used like this:
234//
235// cast<Instruction>(myVal)->getParent()
236//
237template <class X, class Y>
238inline typename std::enable_if<!is_simple_type<Y>::value,
239 typename cast_retty<X, const Y>::ret_type>::type
240cast(const Y &Val) {
241 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 241, __extension__ __PRETTY_FUNCTION__))
;
242 return cast_convert_val<
243 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
244}
245
246template <class X, class Y>
247inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
248 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 248, __extension__ __PRETTY_FUNCTION__))
;
249 return cast_convert_val<X, Y,
250 typename simplify_type<Y>::SimpleType>::doit(Val);
251}
252
253template <class X, class Y>
254inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
3
Within the expansion of the macro 'assert':
a
Calling 'isa'
b
Returning from 'isa'
256 return cast_convert_val<X, Y*,
22
Calling 'cast_convert_val::doit'
23
Returning from 'cast_convert_val::doit'
257 typename simplify_type<Y*>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
262cast(std::unique_ptr<Y> &&Val) {
263 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 263, __extension__ __PRETTY_FUNCTION__))
;
264 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
265 return ret_type(
266 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
267 Val.release()));
268}
269
270// cast_or_null<X> - Functionally identical to cast, except that a null value is
271// accepted.
272//
273template <class X, class Y>
274LLVM_NODISCARD[[clang::warn_unused_result]] inline
275 typename std::enable_if<!is_simple_type<Y>::value,
276 typename cast_retty<X, const Y>::ret_type>::type
277 cast_or_null(const Y &Val) {
278 if (!Val)
279 return nullptr;
280 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 280, __extension__ __PRETTY_FUNCTION__))
;
281 return cast<X>(Val);
282}
283
284template <class X, class Y>
285LLVM_NODISCARD[[clang::warn_unused_result]] inline
286 typename std::enable_if<!is_simple_type<Y>::value,
287 typename cast_retty<X, Y>::ret_type>::type
288 cast_or_null(Y &Val) {
289 if (!Val)
290 return nullptr;
291 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 291, __extension__ __PRETTY_FUNCTION__))
;
292 return cast<X>(Val);
293}
294
295template <class X, class Y>
296LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
297cast_or_null(Y *Val) {
298 if (!Val) return nullptr;
299 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/Support/Casting.h"
, 299, __extension__ __PRETTY_FUNCTION__))
;
300 return cast<X>(Val);
301}
302
303template <class X, class Y>
304inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
305cast_or_null(std::unique_ptr<Y> &&Val) {
306 if (!Val)
307 return nullptr;
308 return cast<X>(std::move(Val));
309}
310
311// dyn_cast<X> - Return the argument parameter cast to the specified type. This
312// casting operator returns null if the argument is of the wrong type, so it can
313// be used to test for a type as well as cast if successful. This should be
314// used in the context of an if statement like this:
315//
316// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
317//
318
319template <class X, class Y>
320LLVM_NODISCARD[[clang::warn_unused_result]] inline
321 typename std::enable_if<!is_simple_type<Y>::value,
322 typename cast_retty<X, const Y>::ret_type>::type
323 dyn_cast(const Y &Val) {
324 return isa<X>(Val) ? cast<X>(Val) : nullptr;
325}
326
327template <class X, class Y>
328LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
329 return isa<X>(Val) ? cast<X>(Val) : nullptr;
330}
331
332template <class X, class Y>
333LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
334 return isa<X>(Val) ? cast<X>(Val) : nullptr;
335}
336
337// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
338// value is accepted.
339//
340template <class X, class Y>
341LLVM_NODISCARD[[clang::warn_unused_result]] inline
342 typename std::enable_if<!is_simple_type<Y>::value,
343 typename cast_retty<X, const Y>::ret_type>::type
344 dyn_cast_or_null(const Y &Val) {
345 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
346}
347
348template <class X, class Y>
349LLVM_NODISCARD[[clang::warn_unused_result]] inline
350 typename std::enable_if<!is_simple_type<Y>::value,
351 typename cast_retty<X, Y>::ret_type>::type
352 dyn_cast_or_null(Y &Val) {
353 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
354}
355
356template <class X, class Y>
357LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
358dyn_cast_or_null(Y *Val) {
359 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
360}
361
362// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
363// taking ownership of the input pointer iff isa<X>(Val) is true. If the
364// cast is successful, From refers to nullptr on exit and the casted value
365// is returned. If the cast is unsuccessful, the function returns nullptr
366// and From is unchanged.
367template <class X, class Y>
368LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
369 -> decltype(cast<X>(Val)) {
370 if (!isa<X>(Val))
371 return nullptr;
372 return cast<X>(std::move(Val));
373}
374
375template <class X, class Y>
376LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
377 -> decltype(cast<X>(Val)) {
378 return unique_dyn_cast<X, Y>(Val);
379}
380
381// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
382// a null value is accepted.
383template <class X, class Y>
384LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
385 -> decltype(cast<X>(Val)) {
386 if (!Val)
387 return nullptr;
388 return unique_dyn_cast<X, Y>(Val);
389}
390
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
393 -> decltype(cast<X>(Val)) {
394 return unique_dyn_cast_or_null<X, Y>(Val);
395}
396
397} // end namespace llvm
398
399#endif // LLVM_SUPPORT_CASTING_H