Bug Summary

File:tools/clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 8101, column 22
Division by zero

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGBuiltin.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn324650/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn324650/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn324650/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn324650/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn324650/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn324650/build-llvm/tools/clang/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-02-09-212803-22585-1 -x c++ /build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp

/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp

1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Builtin calls as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGCXXABI.h"
15#include "CGObjCRuntime.h"
16#include "CGOpenCLRuntime.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "TargetInfo.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Decl.h"
23#include "clang/Analysis/Analyses/OSLog.h"
24#include "clang/Basic/TargetBuiltins.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/CodeGen/CGFunctionInfo.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/IR/CallSite.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/InlineAsm.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/MDBuilder.h"
33#include "llvm/Support/ConvertUTF.h"
34#include "llvm/Support/ScopedPrinter.h"
35#include "llvm/Support/TargetParser.h"
36#include <sstream>
37
38using namespace clang;
39using namespace CodeGen;
40using namespace llvm;
41
42static
43int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
44 return std::min(High, std::max(Low, Value));
45}
46
47/// getBuiltinLibFunction - Given a builtin id for a function like
48/// "__builtin_fabsf", return a Function* for "fabsf".
49llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
50 unsigned BuiltinID) {
51 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))(static_cast <bool> (Context.BuiltinInfo.isLibFunction(
BuiltinID)) ? void (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 51, __extension__ __PRETTY_FUNCTION__))
;
52
53 // Get the name, skip over the __builtin_ prefix (if necessary).
54 StringRef Name;
55 GlobalDecl D(FD);
56
57 // If the builtin has been declared explicitly with an assembler label,
58 // use the mangled name. This differs from the plain label on platforms
59 // that prefix labels.
60 if (FD->hasAttr<AsmLabelAttr>())
61 Name = getMangledName(D);
62 else
63 Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
64
65 llvm::FunctionType *Ty =
66 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
67
68 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
69}
70
71/// Emit the conversions required to turn the given value into an
72/// integer of the given size.
73static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
74 QualType T, llvm::IntegerType *IntType) {
75 V = CGF.EmitToMemory(V, T);
76
77 if (V->getType()->isPointerTy())
78 return CGF.Builder.CreatePtrToInt(V, IntType);
79
80 assert(V->getType() == IntType)(static_cast <bool> (V->getType() == IntType) ? void
(0) : __assert_fail ("V->getType() == IntType", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 80, __extension__ __PRETTY_FUNCTION__))
;
81 return V;
82}
83
84static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
85 QualType T, llvm::Type *ResultType) {
86 V = CGF.EmitFromMemory(V, T);
87
88 if (ResultType->isPointerTy())
89 return CGF.Builder.CreateIntToPtr(V, ResultType);
90
91 assert(V->getType() == ResultType)(static_cast <bool> (V->getType() == ResultType) ? void
(0) : __assert_fail ("V->getType() == ResultType", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 91, __extension__ __PRETTY_FUNCTION__))
;
92 return V;
93}
94
95/// Utility to insert an atomic instruction based on Instrinsic::ID
96/// and the expression node.
97static Value *MakeBinaryAtomicValue(CodeGenFunction &CGF,
98 llvm::AtomicRMWInst::BinOp Kind,
99 const CallExpr *E) {
100 QualType T = E->getType();
101 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 101, __extension__ __PRETTY_FUNCTION__))
;
102 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 103, __extension__ __PRETTY_FUNCTION__))
103 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 103, __extension__ __PRETTY_FUNCTION__))
;
104 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 104, __extension__ __PRETTY_FUNCTION__))
;
105
106 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
107 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
108
109 llvm::IntegerType *IntType =
110 llvm::IntegerType::get(CGF.getLLVMContext(),
111 CGF.getContext().getTypeSize(T));
112 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
113
114 llvm::Value *Args[2];
115 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
116 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
117 llvm::Type *ValueType = Args[1]->getType();
118 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
119
120 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
121 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
122 return EmitFromInt(CGF, Result, T, ValueType);
123}
124
125static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
126 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
127 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
128
129 // Convert the type of the pointer to a pointer to the stored type.
130 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
131 Value *BC = CGF.Builder.CreateBitCast(
132 Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
133 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
134 LV.setNontemporal(true);
135 CGF.EmitStoreOfScalar(Val, LV, false);
136 return nullptr;
137}
138
139static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
140 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
141
142 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
143 LV.setNontemporal(true);
144 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
145}
146
147static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
148 llvm::AtomicRMWInst::BinOp Kind,
149 const CallExpr *E) {
150 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
151}
152
153/// Utility to insert an atomic instruction based Instrinsic::ID and
154/// the expression node, where the return value is the result of the
155/// operation.
156static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
157 llvm::AtomicRMWInst::BinOp Kind,
158 const CallExpr *E,
159 Instruction::BinaryOps Op,
160 bool Invert = false) {
161 QualType T = E->getType();
162 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 162, __extension__ __PRETTY_FUNCTION__))
;
163 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 164, __extension__ __PRETTY_FUNCTION__))
164 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 164, __extension__ __PRETTY_FUNCTION__))
;
165 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 165, __extension__ __PRETTY_FUNCTION__))
;
166
167 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
168 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
169
170 llvm::IntegerType *IntType =
171 llvm::IntegerType::get(CGF.getLLVMContext(),
172 CGF.getContext().getTypeSize(T));
173 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
174
175 llvm::Value *Args[2];
176 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
177 llvm::Type *ValueType = Args[1]->getType();
178 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
179 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
180
181 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
182 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
183 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
184 if (Invert)
185 Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
186 llvm::ConstantInt::get(IntType, -1));
187 Result = EmitFromInt(CGF, Result, T, ValueType);
188 return RValue::get(Result);
189}
190
191/// @brief Utility to insert an atomic cmpxchg instruction.
192///
193/// @param CGF The current codegen function.
194/// @param E Builtin call expression to convert to cmpxchg.
195/// arg0 - address to operate on
196/// arg1 - value to compare with
197/// arg2 - new value
198/// @param ReturnBool Specifies whether to return success flag of
199/// cmpxchg result or the old value.
200///
201/// @returns result of cmpxchg, according to ReturnBool
202static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
203 bool ReturnBool) {
204 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
205 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
206 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
207
208 llvm::IntegerType *IntType = llvm::IntegerType::get(
209 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
210 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
211
212 Value *Args[3];
213 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
214 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
215 llvm::Type *ValueType = Args[1]->getType();
216 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
217 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
218
219 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
220 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
221 llvm::AtomicOrdering::SequentiallyConsistent);
222 if (ReturnBool)
223 // Extract boolean success flag and zext it to int.
224 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
225 CGF.ConvertType(E->getType()));
226 else
227 // Extract old value and emit it using the same type as compare value.
228 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
229 ValueType);
230}
231
232// Emit a simple mangled intrinsic that has 1 argument and a return type
233// matching the argument type.
234static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
235 const CallExpr *E,
236 unsigned IntrinsicID) {
237 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
238
239 Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
240 return CGF.Builder.CreateCall(F, Src0);
241}
242
243// Emit an intrinsic that has 2 operands of the same type as its result.
244static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
245 const CallExpr *E,
246 unsigned IntrinsicID) {
247 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
248 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
249
250 Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
251 return CGF.Builder.CreateCall(F, { Src0, Src1 });
252}
253
254// Emit an intrinsic that has 3 operands of the same type as its result.
255static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
256 const CallExpr *E,
257 unsigned IntrinsicID) {
258 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
259 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
260 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
261
262 Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
263 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
264}
265
266// Emit an intrinsic that has 1 float or double operand, and 1 integer.
267static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
268 const CallExpr *E,
269 unsigned IntrinsicID) {
270 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
271 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
272
273 Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
274 return CGF.Builder.CreateCall(F, {Src0, Src1});
275}
276
277/// EmitFAbs - Emit a call to @llvm.fabs().
278static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
279 Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
280 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
281 Call->setDoesNotAccessMemory();
282 return Call;
283}
284
285/// Emit the computation of the sign bit for a floating point value. Returns
286/// the i1 sign bit value.
287static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
288 LLVMContext &C = CGF.CGM.getLLVMContext();
289
290 llvm::Type *Ty = V->getType();
291 int Width = Ty->getPrimitiveSizeInBits();
292 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
293 V = CGF.Builder.CreateBitCast(V, IntTy);
294 if (Ty->isPPC_FP128Ty()) {
295 // We want the sign bit of the higher-order double. The bitcast we just
296 // did works as if the double-double was stored to memory and then
297 // read as an i128. The "store" will put the higher-order double in the
298 // lower address in both little- and big-Endian modes, but the "load"
299 // will treat those bits as a different part of the i128: the low bits in
300 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
301 // we need to shift the high bits down to the low before truncating.
302 Width >>= 1;
303 if (CGF.getTarget().isBigEndian()) {
304 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
305 V = CGF.Builder.CreateLShr(V, ShiftCst);
306 }
307 // We are truncating value in order to extract the higher-order
308 // double, which we will be using to extract the sign from.
309 IntTy = llvm::IntegerType::get(C, Width);
310 V = CGF.Builder.CreateTrunc(V, IntTy);
311 }
312 Value *Zero = llvm::Constant::getNullValue(IntTy);
313 return CGF.Builder.CreateICmpSLT(V, Zero);
314}
315
316static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
317 const CallExpr *E, llvm::Constant *calleeValue) {
318 CGCallee callee = CGCallee::forDirect(calleeValue, FD);
319 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
320}
321
322/// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
323/// depending on IntrinsicID.
324///
325/// \arg CGF The current codegen function.
326/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
327/// \arg X The first argument to the llvm.*.with.overflow.*.
328/// \arg Y The second argument to the llvm.*.with.overflow.*.
329/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
330/// \returns The result (i.e. sum/product) returned by the intrinsic.
331static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
332 const llvm::Intrinsic::ID IntrinsicID,
333 llvm::Value *X, llvm::Value *Y,
334 llvm::Value *&Carry) {
335 // Make sure we have integers of the same width.
336 assert(X->getType() == Y->getType() &&(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 338, __extension__ __PRETTY_FUNCTION__))
337 "Arguments must be the same type. (Did you forget to make sure both "(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 338, __extension__ __PRETTY_FUNCTION__))
338 "arguments have the same integer width?)")(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 338, __extension__ __PRETTY_FUNCTION__))
;
339
340 llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
341 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
342 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
343 return CGF.Builder.CreateExtractValue(Tmp, 0);
344}
345
346static Value *emitRangedBuiltin(CodeGenFunction &CGF,
347 unsigned IntrinsicID,
348 int low, int high) {
349 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
350 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
351 Value *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
352 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
353 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
354 return Call;
355}
356
357namespace {
358 struct WidthAndSignedness {
359 unsigned Width;
360 bool Signed;
361 };
362}
363
364static WidthAndSignedness
365getIntegerWidthAndSignedness(const clang::ASTContext &context,
366 const clang::QualType Type) {
367 assert(Type->isIntegerType() && "Given type is not an integer.")(static_cast <bool> (Type->isIntegerType() &&
"Given type is not an integer.") ? void (0) : __assert_fail (
"Type->isIntegerType() && \"Given type is not an integer.\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 367, __extension__ __PRETTY_FUNCTION__))
;
368 unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
369 bool Signed = Type->isSignedIntegerType();
370 return {Width, Signed};
371}
372
373// Given one or more integer types, this function produces an integer type that
374// encompasses them: any value in one of the given types could be expressed in
375// the encompassing type.
376static struct WidthAndSignedness
377EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
378 assert(Types.size() > 0 && "Empty list of types.")(static_cast <bool> (Types.size() > 0 && "Empty list of types."
) ? void (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 378, __extension__ __PRETTY_FUNCTION__))
;
379
380 // If any of the given types is signed, we must return a signed type.
381 bool Signed = false;
382 for (const auto &Type : Types) {
383 Signed |= Type.Signed;
384 }
385
386 // The encompassing type must have a width greater than or equal to the width
387 // of the specified types. Aditionally, if the encompassing type is signed,
388 // its width must be strictly greater than the width of any unsigned types
389 // given.
390 unsigned Width = 0;
391 for (const auto &Type : Types) {
392 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
393 if (Width < MinWidth) {
394 Width = MinWidth;
395 }
396 }
397
398 return {Width, Signed};
399}
400
401Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
402 llvm::Type *DestType = Int8PtrTy;
403 if (ArgValue->getType() != DestType)
404 ArgValue =
405 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
406
407 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
408 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
409}
410
411/// Checks if using the result of __builtin_object_size(p, @p From) in place of
412/// __builtin_object_size(p, @p To) is correct
413static bool areBOSTypesCompatible(int From, int To) {
414 // Note: Our __builtin_object_size implementation currently treats Type=0 and
415 // Type=2 identically. Encoding this implementation detail here may make
416 // improving __builtin_object_size difficult in the future, so it's omitted.
417 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
418}
419
420static llvm::Value *
421getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
422 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
423}
424
425llvm::Value *
426CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
427 llvm::IntegerType *ResType,
428 llvm::Value *EmittedE) {
429 uint64_t ObjectSize;
430 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
431 return emitBuiltinObjectSize(E, Type, ResType, EmittedE);
432 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
433}
434
435/// Returns a Value corresponding to the size of the given expression.
436/// This Value may be either of the following:
437/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
438/// it)
439/// - A call to the @llvm.objectsize intrinsic
440///
441/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
442/// and we wouldn't otherwise try to reference a pass_object_size parameter,
443/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
444llvm::Value *
445CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
446 llvm::IntegerType *ResType,
447 llvm::Value *EmittedE) {
448 // We need to reference an argument if the pointer is a parameter with the
449 // pass_object_size attribute.
450 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
451 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
452 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
453 if (Param != nullptr && PS != nullptr &&
454 areBOSTypesCompatible(PS->getType(), Type)) {
455 auto Iter = SizeArguments.find(Param);
456 assert(Iter != SizeArguments.end())(static_cast <bool> (Iter != SizeArguments.end()) ? void
(0) : __assert_fail ("Iter != SizeArguments.end()", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 456, __extension__ __PRETTY_FUNCTION__))
;
457
458 const ImplicitParamDecl *D = Iter->second;
459 auto DIter = LocalDeclMap.find(D);
460 assert(DIter != LocalDeclMap.end())(static_cast <bool> (DIter != LocalDeclMap.end()) ? void
(0) : __assert_fail ("DIter != LocalDeclMap.end()", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 460, __extension__ __PRETTY_FUNCTION__))
;
461
462 return EmitLoadOfScalar(DIter->second, /*volatile=*/false,
463 getContext().getSizeType(), E->getLocStart());
464 }
465 }
466
467 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
468 // evaluate E for side-effects. In either case, we shouldn't lower to
469 // @llvm.objectsize.
470 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
471 return getDefaultBuiltinObjectSizeResult(Type, ResType);
472
473 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
474 assert(Ptr->getType()->isPointerTy() &&(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 475, __extension__ __PRETTY_FUNCTION__))
475 "Non-pointer passed to __builtin_object_size?")(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 475, __extension__ __PRETTY_FUNCTION__))
;
476
477 Value *F = CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
478
479 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
480 Value *Min = Builder.getInt1((Type & 2) != 0);
481 // For GCC compatability, __builtin_object_size treat NULL as unknown size.
482 Value *NullIsUnknown = Builder.getTrue();
483 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown});
484}
485
486// Many of MSVC builtins are on both x64 and ARM; to avoid repeating code, we
487// handle them here.
488enum class CodeGenFunction::MSVCIntrin {
489 _BitScanForward,
490 _BitScanReverse,
491 _InterlockedAnd,
492 _InterlockedDecrement,
493 _InterlockedExchange,
494 _InterlockedExchangeAdd,
495 _InterlockedExchangeSub,
496 _InterlockedIncrement,
497 _InterlockedOr,
498 _InterlockedXor,
499 _interlockedbittestandset,
500 __fastfail,
501};
502
503Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
504 const CallExpr *E) {
505 switch (BuiltinID) {
506 case MSVCIntrin::_BitScanForward:
507 case MSVCIntrin::_BitScanReverse: {
508 Value *ArgValue = EmitScalarExpr(E->getArg(1));
509
510 llvm::Type *ArgType = ArgValue->getType();
511 llvm::Type *IndexType =
512 EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
513 llvm::Type *ResultType = ConvertType(E->getType());
514
515 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
516 Value *ResZero = llvm::Constant::getNullValue(ResultType);
517 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
518
519 BasicBlock *Begin = Builder.GetInsertBlock();
520 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
521 Builder.SetInsertPoint(End);
522 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
523
524 Builder.SetInsertPoint(Begin);
525 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
526 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
527 Builder.CreateCondBr(IsZero, End, NotZero);
528 Result->addIncoming(ResZero, Begin);
529
530 Builder.SetInsertPoint(NotZero);
531 Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
532
533 if (BuiltinID == MSVCIntrin::_BitScanForward) {
534 Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
535 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
536 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
537 Builder.CreateStore(ZeroCount, IndexAddress, false);
538 } else {
539 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
540 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
541
542 Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
543 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
544 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
545 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
546 Builder.CreateStore(Index, IndexAddress, false);
547 }
548 Builder.CreateBr(End);
549 Result->addIncoming(ResOne, NotZero);
550
551 Builder.SetInsertPoint(End);
552 return Result;
553 }
554 case MSVCIntrin::_InterlockedAnd:
555 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
556 case MSVCIntrin::_InterlockedExchange:
557 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
558 case MSVCIntrin::_InterlockedExchangeAdd:
559 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
560 case MSVCIntrin::_InterlockedExchangeSub:
561 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
562 case MSVCIntrin::_InterlockedOr:
563 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
564 case MSVCIntrin::_InterlockedXor:
565 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
566
567 case MSVCIntrin::_interlockedbittestandset: {
568 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
569 llvm::Value *Bit = EmitScalarExpr(E->getArg(1));
570 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
571 AtomicRMWInst::Or, Addr,
572 Builder.CreateShl(ConstantInt::get(Bit->getType(), 1), Bit),
573 llvm::AtomicOrdering::SequentiallyConsistent);
574 // Shift the relevant bit to the least significant position, truncate to
575 // the result type, and test the low bit.
576 llvm::Value *Shifted = Builder.CreateLShr(RMWI, Bit);
577 llvm::Value *Truncated =
578 Builder.CreateTrunc(Shifted, ConvertType(E->getType()));
579 return Builder.CreateAnd(Truncated,
580 ConstantInt::get(Truncated->getType(), 1));
581 }
582
583 case MSVCIntrin::_InterlockedDecrement: {
584 llvm::Type *IntTy = ConvertType(E->getType());
585 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
586 AtomicRMWInst::Sub,
587 EmitScalarExpr(E->getArg(0)),
588 ConstantInt::get(IntTy, 1),
589 llvm::AtomicOrdering::SequentiallyConsistent);
590 return Builder.CreateSub(RMWI, ConstantInt::get(IntTy, 1));
591 }
592 case MSVCIntrin::_InterlockedIncrement: {
593 llvm::Type *IntTy = ConvertType(E->getType());
594 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
595 AtomicRMWInst::Add,
596 EmitScalarExpr(E->getArg(0)),
597 ConstantInt::get(IntTy, 1),
598 llvm::AtomicOrdering::SequentiallyConsistent);
599 return Builder.CreateAdd(RMWI, ConstantInt::get(IntTy, 1));
600 }
601
602 case MSVCIntrin::__fastfail: {
603 // Request immediate process termination from the kernel. The instruction
604 // sequences to do this are documented on MSDN:
605 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
606 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
607 StringRef Asm, Constraints;
608 switch (ISA) {
609 default:
610 ErrorUnsupported(E, "__fastfail call for this architecture");
611 break;
612 case llvm::Triple::x86:
613 case llvm::Triple::x86_64:
614 Asm = "int $$0x29";
615 Constraints = "{cx}";
616 break;
617 case llvm::Triple::thumb:
618 Asm = "udf #251";
619 Constraints = "{r0}";
620 break;
621 }
622 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
623 llvm::InlineAsm *IA =
624 llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true);
625 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
626 getLLVMContext(), llvm::AttributeList::FunctionIndex,
627 llvm::Attribute::NoReturn);
628 CallSite CS = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
629 CS.setAttributes(NoReturnAttr);
630 return CS.getInstruction();
631 }
632 }
633 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 633)
;
634}
635
636namespace {
637// ARC cleanup for __builtin_os_log_format
638struct CallObjCArcUse final : EHScopeStack::Cleanup {
639 CallObjCArcUse(llvm::Value *object) : object(object) {}
640 llvm::Value *object;
641
642 void Emit(CodeGenFunction &CGF, Flags flags) override {
643 CGF.EmitARCIntrinsicUse(object);
644 }
645};
646}
647
648Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
649 BuiltinCheckKind Kind) {
650 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 651, __extension__ __PRETTY_FUNCTION__))
651 && "Unsupported builtin check kind")(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 651, __extension__ __PRETTY_FUNCTION__))
;
652
653 Value *ArgValue = EmitScalarExpr(E);
654 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
655 return ArgValue;
656
657 SanitizerScope SanScope(this);
658 Value *Cond = Builder.CreateICmpNE(
659 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
660 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
661 SanitizerHandler::InvalidBuiltin,
662 {EmitCheckSourceLocation(E->getExprLoc()),
663 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
664 None);
665 return ArgValue;
666}
667
668/// Get the argument type for arguments to os_log_helper.
669static CanQualType getOSLogArgType(ASTContext &C, int Size) {
670 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
671 return C.getCanonicalType(UnsignedTy);
672}
673
674llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
675 const analyze_os_log::OSLogBufferLayout &Layout,
676 CharUnits BufferAlignment) {
677 ASTContext &Ctx = getContext();
678
679 llvm::SmallString<64> Name;
680 {
681 raw_svector_ostream OS(Name);
682 OS << "__os_log_helper";
683 OS << "_" << BufferAlignment.getQuantity();
684 OS << "_" << int(Layout.getSummaryByte());
685 OS << "_" << int(Layout.getNumArgsByte());
686 for (const auto &Item : Layout.Items)
687 OS << "_" << int(Item.getSizeByte()) << "_"
688 << int(Item.getDescriptorByte());
689 }
690
691 if (llvm::Function *F = CGM.getModule().getFunction(Name))
692 return F;
693
694 llvm::SmallVector<ImplicitParamDecl, 4> Params;
695 Params.emplace_back(Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"),
696 Ctx.VoidPtrTy, ImplicitParamDecl::Other);
697
698 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
699 char Size = Layout.Items[I].getSizeByte();
700 if (!Size)
701 continue;
702
703 Params.emplace_back(
704 Ctx, nullptr, SourceLocation(),
705 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)),
706 getOSLogArgType(Ctx, Size), ImplicitParamDecl::Other);
707 }
708
709 FunctionArgList Args;
710 for (auto &P : Params)
711 Args.push_back(&P);
712
713 // The helper function has linkonce_odr linkage to enable the linker to merge
714 // identical functions. To ensure the merging always happens, 'noinline' is
715 // attached to the function when compiling with -Oz.
716 const CGFunctionInfo &FI =
717 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
718 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
719 llvm::Function *Fn = llvm::Function::Create(
720 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
721 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
722 CGM.SetLLVMFunctionAttributes(nullptr, FI, Fn);
723 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
724
725 // Attach 'noinline' at -Oz.
726 if (CGM.getCodeGenOpts().OptimizeSize == 2)
727 Fn->addFnAttr(llvm::Attribute::NoInline);
728
729 auto NL = ApplyDebugLocation::CreateEmpty(*this);
730 IdentifierInfo *II = &Ctx.Idents.get(Name);
731 FunctionDecl *FD = FunctionDecl::Create(
732 Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
733 Ctx.VoidTy, nullptr, SC_PrivateExtern, false, false);
734
735 StartFunction(FD, Ctx.VoidTy, Fn, FI, Args);
736
737 // Create a scope with an artificial location for the body of this function.
738 auto AL = ApplyDebugLocation::CreateArtificial(*this);
739
740 CharUnits Offset;
741 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(&Params[0]), "buf"),
742 BufferAlignment);
743 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
744 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
745 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
746 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
747
748 unsigned I = 1;
749 for (const auto &Item : Layout.Items) {
750 Builder.CreateStore(
751 Builder.getInt8(Item.getDescriptorByte()),
752 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
753 Builder.CreateStore(
754 Builder.getInt8(Item.getSizeByte()),
755 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
756
757 CharUnits Size = Item.size();
758 if (!Size.getQuantity())
759 continue;
760
761 Address Arg = GetAddrOfLocalVar(&Params[I]);
762 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
763 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
764 "argDataCast");
765 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
766 Offset += Size;
767 ++I;
768 }
769
770 FinishFunction();
771
772 return Fn;
773}
774
775RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
776 assert(E.getNumArgs() >= 2 &&(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 777, __extension__ __PRETTY_FUNCTION__))
777 "__builtin_os_log_format takes at least 2 arguments")(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 777, __extension__ __PRETTY_FUNCTION__))
;
778 ASTContext &Ctx = getContext();
779 analyze_os_log::OSLogBufferLayout Layout;
780 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
781 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
782 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
783
784 // Ignore argument 1, the format string. It is not currently used.
785 CallArgList Args;
786 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
787
788 for (const auto &Item : Layout.Items) {
789 int Size = Item.getSizeByte();
790 if (!Size)
791 continue;
792
793 llvm::Value *ArgVal;
794
795 if (const Expr *TheExpr = Item.getExpr()) {
796 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
797
798 // Check if this is a retainable type.
799 if (TheExpr->getType()->isObjCRetainableType()) {
800 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 801, __extension__ __PRETTY_FUNCTION__))
801 "Only scalar can be a ObjC retainable type")(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 801, __extension__ __PRETTY_FUNCTION__))
;
802 // Check if the object is constant, if not, save it in
803 // RetainableOperands.
804 if (!isa<Constant>(ArgVal))
805 RetainableOperands.push_back(ArgVal);
806 }
807 } else {
808 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
809 }
810
811 unsigned ArgValSize =
812 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
813 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
814 ArgValSize);
815 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
816 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
817 // If ArgVal has type x86_fp80, zero-extend ArgVal.
818 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
819 Args.add(RValue::get(ArgVal), ArgTy);
820 }
821
822 const CGFunctionInfo &FI =
823 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
824 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
825 Layout, BufAddr.getAlignment());
826 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
827
828 // Push a clang.arc.use cleanup for each object in RetainableOperands. The
829 // cleanup will cause the use to appear after the final log call, keeping
830 // the object valid while it’s held in the log buffer. Note that if there’s
831 // a release cleanup on the object, it will already be active; since
832 // cleanups are emitted in reverse order, the use will occur before the
833 // object is released.
834 if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
835 CGM.getCodeGenOpts().OptimizationLevel != 0)
836 for (llvm::Value *Object : RetainableOperands)
837 pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
838
839 return RValue::get(BufAddr.getPointer());
840}
841
842/// Determine if a binop is a checked mixed-sign multiply we can specialize.
843static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
844 WidthAndSignedness Op1Info,
845 WidthAndSignedness Op2Info,
846 WidthAndSignedness ResultInfo) {
847 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
848 Op1Info.Width == Op2Info.Width && Op1Info.Width >= ResultInfo.Width &&
849 Op1Info.Signed != Op2Info.Signed;
850}
851
852/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
853/// the generic checked-binop irgen.
854static RValue
855EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
856 WidthAndSignedness Op1Info, const clang::Expr *Op2,
857 WidthAndSignedness Op2Info,
858 const clang::Expr *ResultArg, QualType ResultQTy,
859 WidthAndSignedness ResultInfo) {
860 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 862, __extension__ __PRETTY_FUNCTION__))
861 Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 862, __extension__ __PRETTY_FUNCTION__))
862 "Not a mixed-sign multipliction we can specialize")(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 862, __extension__ __PRETTY_FUNCTION__))
;
863
864 // Emit the signed and unsigned operands.
865 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
866 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
867 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
868 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
869
870 llvm::Type *OpTy = Signed->getType();
871 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
872 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
873 llvm::Type *ResTy = ResultPtr.getElementType();
874
875 // Take the absolute value of the signed operand.
876 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
877 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
878 llvm::Value *AbsSigned =
879 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
880
881 // Perform a checked unsigned multiplication.
882 llvm::Value *UnsignedOverflow;
883 llvm::Value *UnsignedResult =
884 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
885 Unsigned, UnsignedOverflow);
886
887 llvm::Value *Overflow, *Result;
888 if (ResultInfo.Signed) {
889 // Signed overflow occurs if the result is greater than INT_MAX or lesser
890 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
891 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width)
892 .zextOrSelf(Op1Info.Width);
893 llvm::Value *MaxResult =
894 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
895 CGF.Builder.CreateZExt(IsNegative, OpTy));
896 llvm::Value *SignedOverflow =
897 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
898 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
899
900 // Prepare the signed result (possibly by negating it).
901 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
902 llvm::Value *SignedResult =
903 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
904 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
905 } else {
906 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
907 llvm::Value *Underflow = CGF.Builder.CreateAnd(
908 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
909 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
910 if (ResultInfo.Width < Op1Info.Width) {
911 auto IntMax =
912 llvm::APInt::getMaxValue(ResultInfo.Width).zext(Op1Info.Width);
913 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
914 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
915 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
916 }
917
918 // Negate the product if it would be negative in infinite precision.
919 Result = CGF.Builder.CreateSelect(
920 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
921
922 Result = CGF.Builder.CreateTrunc(Result, ResTy);
923 }
924 assert(Overflow && Result && "Missing overflow or result")(static_cast <bool> (Overflow && Result &&
"Missing overflow or result") ? void (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 924, __extension__ __PRETTY_FUNCTION__))
;
925
926 bool isVolatile =
927 ResultArg->getType()->getPointeeType().isVolatileQualified();
928 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
929 isVolatile);
930 return RValue::get(Overflow);
931}
932
933RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
934 unsigned BuiltinID, const CallExpr *E,
935 ReturnValueSlot ReturnValue) {
936 // See if we can constant fold this builtin. If so, don't emit it at all.
937 Expr::EvalResult Result;
938 if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
939 !Result.hasSideEffects()) {
940 if (Result.Val.isInt())
941 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
942 Result.Val.getInt()));
943 if (Result.Val.isFloat())
944 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
945 Result.Val.getFloat()));
946 }
947
948 // There are LLVM math intrinsics/instructions corresponding to math library
949 // functions except the LLVM op will never set errno while the math library
950 // might. Also, math builtins have the same semantics as their math library
951 // twins. Thus, we can transform math library and builtin calls to their
952 // LLVM counterparts if the call is marked 'const' (known to never set errno).
953 if (FD->hasAttr<ConstAttr>()) {
954 switch (BuiltinID) {
955 case Builtin::BIceil:
956 case Builtin::BIceilf:
957 case Builtin::BIceill:
958 case Builtin::BI__builtin_ceil:
959 case Builtin::BI__builtin_ceilf:
960 case Builtin::BI__builtin_ceill:
961 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
962
963 case Builtin::BIcopysign:
964 case Builtin::BIcopysignf:
965 case Builtin::BIcopysignl:
966 case Builtin::BI__builtin_copysign:
967 case Builtin::BI__builtin_copysignf:
968 case Builtin::BI__builtin_copysignl:
969 case Builtin::BI__builtin_copysignf128:
970 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
971
972 case Builtin::BIcos:
973 case Builtin::BIcosf:
974 case Builtin::BIcosl:
975 case Builtin::BI__builtin_cos:
976 case Builtin::BI__builtin_cosf:
977 case Builtin::BI__builtin_cosl:
978 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
979
980 case Builtin::BIexp:
981 case Builtin::BIexpf:
982 case Builtin::BIexpl:
983 case Builtin::BI__builtin_exp:
984 case Builtin::BI__builtin_expf:
985 case Builtin::BI__builtin_expl:
986 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
987
988 case Builtin::BIexp2:
989 case Builtin::BIexp2f:
990 case Builtin::BIexp2l:
991 case Builtin::BI__builtin_exp2:
992 case Builtin::BI__builtin_exp2f:
993 case Builtin::BI__builtin_exp2l:
994 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
995
996 case Builtin::BIfabs:
997 case Builtin::BIfabsf:
998 case Builtin::BIfabsl:
999 case Builtin::BI__builtin_fabs:
1000 case Builtin::BI__builtin_fabsf:
1001 case Builtin::BI__builtin_fabsl:
1002 case Builtin::BI__builtin_fabsf128:
1003 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1004
1005 case Builtin::BIfloor:
1006 case Builtin::BIfloorf:
1007 case Builtin::BIfloorl:
1008 case Builtin::BI__builtin_floor:
1009 case Builtin::BI__builtin_floorf:
1010 case Builtin::BI__builtin_floorl:
1011 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
1012
1013 case Builtin::BIfma:
1014 case Builtin::BIfmaf:
1015 case Builtin::BIfmal:
1016 case Builtin::BI__builtin_fma:
1017 case Builtin::BI__builtin_fmaf:
1018 case Builtin::BI__builtin_fmal:
1019 return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
1020
1021 case Builtin::BIfmax:
1022 case Builtin::BIfmaxf:
1023 case Builtin::BIfmaxl:
1024 case Builtin::BI__builtin_fmax:
1025 case Builtin::BI__builtin_fmaxf:
1026 case Builtin::BI__builtin_fmaxl:
1027 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
1028
1029 case Builtin::BIfmin:
1030 case Builtin::BIfminf:
1031 case Builtin::BIfminl:
1032 case Builtin::BI__builtin_fmin:
1033 case Builtin::BI__builtin_fminf:
1034 case Builtin::BI__builtin_fminl:
1035 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
1036
1037 // fmod() is a special-case. It maps to the frem instruction rather than an
1038 // LLVM intrinsic.
1039 case Builtin::BIfmod:
1040 case Builtin::BIfmodf:
1041 case Builtin::BIfmodl:
1042 case Builtin::BI__builtin_fmod:
1043 case Builtin::BI__builtin_fmodf:
1044 case Builtin::BI__builtin_fmodl: {
1045 Value *Arg1 = EmitScalarExpr(E->getArg(0));
1046 Value *Arg2 = EmitScalarExpr(E->getArg(1));
1047 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1048 }
1049
1050 case Builtin::BIlog:
1051 case Builtin::BIlogf:
1052 case Builtin::BIlogl:
1053 case Builtin::BI__builtin_log:
1054 case Builtin::BI__builtin_logf:
1055 case Builtin::BI__builtin_logl:
1056 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
1057
1058 case Builtin::BIlog10:
1059 case Builtin::BIlog10f:
1060 case Builtin::BIlog10l:
1061 case Builtin::BI__builtin_log10:
1062 case Builtin::BI__builtin_log10f:
1063 case Builtin::BI__builtin_log10l:
1064 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
1065
1066 case Builtin::BIlog2:
1067 case Builtin::BIlog2f:
1068 case Builtin::BIlog2l:
1069 case Builtin::BI__builtin_log2:
1070 case Builtin::BI__builtin_log2f:
1071 case Builtin::BI__builtin_log2l:
1072 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
1073
1074 case Builtin::BInearbyint:
1075 case Builtin::BInearbyintf:
1076 case Builtin::BInearbyintl:
1077 case Builtin::BI__builtin_nearbyint:
1078 case Builtin::BI__builtin_nearbyintf:
1079 case Builtin::BI__builtin_nearbyintl:
1080 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
1081
1082 case Builtin::BIpow:
1083 case Builtin::BIpowf:
1084 case Builtin::BIpowl:
1085 case Builtin::BI__builtin_pow:
1086 case Builtin::BI__builtin_powf:
1087 case Builtin::BI__builtin_powl:
1088 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
1089
1090 case Builtin::BIrint:
1091 case Builtin::BIrintf:
1092 case Builtin::BIrintl:
1093 case Builtin::BI__builtin_rint:
1094 case Builtin::BI__builtin_rintf:
1095 case Builtin::BI__builtin_rintl:
1096 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
1097
1098 case Builtin::BIround:
1099 case Builtin::BIroundf:
1100 case Builtin::BIroundl:
1101 case Builtin::BI__builtin_round:
1102 case Builtin::BI__builtin_roundf:
1103 case Builtin::BI__builtin_roundl:
1104 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
1105
1106 case Builtin::BIsin:
1107 case Builtin::BIsinf:
1108 case Builtin::BIsinl:
1109 case Builtin::BI__builtin_sin:
1110 case Builtin::BI__builtin_sinf:
1111 case Builtin::BI__builtin_sinl:
1112 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
1113
1114 case Builtin::BIsqrt:
1115 case Builtin::BIsqrtf:
1116 case Builtin::BIsqrtl:
1117 case Builtin::BI__builtin_sqrt:
1118 case Builtin::BI__builtin_sqrtf:
1119 case Builtin::BI__builtin_sqrtl:
1120 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
1121
1122 case Builtin::BItrunc:
1123 case Builtin::BItruncf:
1124 case Builtin::BItruncl:
1125 case Builtin::BI__builtin_trunc:
1126 case Builtin::BI__builtin_truncf:
1127 case Builtin::BI__builtin_truncl:
1128 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
1129
1130 default:
1131 break;
1132 }
1133 }
1134
1135 switch (BuiltinID) {
1136 default: break;
1137 case Builtin::BI__builtin___CFStringMakeConstantString:
1138 case Builtin::BI__builtin___NSStringMakeConstantString:
1139 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1140 case Builtin::BI__builtin_stdarg_start:
1141 case Builtin::BI__builtin_va_start:
1142 case Builtin::BI__va_start:
1143 case Builtin::BI__builtin_va_end:
1144 return RValue::get(
1145 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1146 ? EmitScalarExpr(E->getArg(0))
1147 : EmitVAListRef(E->getArg(0)).getPointer(),
1148 BuiltinID != Builtin::BI__builtin_va_end));
1149 case Builtin::BI__builtin_va_copy: {
1150 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1151 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1152
1153 llvm::Type *Type = Int8PtrTy;
1154
1155 DstPtr = Builder.CreateBitCast(DstPtr, Type);
1156 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1157 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1158 {DstPtr, SrcPtr}));
1159 }
1160 case Builtin::BI__builtin_abs:
1161 case Builtin::BI__builtin_labs:
1162 case Builtin::BI__builtin_llabs: {
1163 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1164
1165 Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
1166 Value *CmpResult =
1167 Builder.CreateICmpSGE(ArgValue,
1168 llvm::Constant::getNullValue(ArgValue->getType()),
1169 "abscond");
1170 Value *Result =
1171 Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
1172
1173 return RValue::get(Result);
1174 }
1175 case Builtin::BI__builtin_conj:
1176 case Builtin::BI__builtin_conjf:
1177 case Builtin::BI__builtin_conjl: {
1178 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1179 Value *Real = ComplexVal.first;
1180 Value *Imag = ComplexVal.second;
1181 Value *Zero =
1182 Imag->getType()->isFPOrFPVectorTy()
1183 ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
1184 : llvm::Constant::getNullValue(Imag->getType());
1185
1186 Imag = Builder.CreateFSub(Zero, Imag, "sub");
1187 return RValue::getComplex(std::make_pair(Real, Imag));
1188 }
1189 case Builtin::BI__builtin_creal:
1190 case Builtin::BI__builtin_crealf:
1191 case Builtin::BI__builtin_creall:
1192 case Builtin::BIcreal:
1193 case Builtin::BIcrealf:
1194 case Builtin::BIcreall: {
1195 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1196 return RValue::get(ComplexVal.first);
1197 }
1198
1199 case Builtin::BI__builtin_cimag:
1200 case Builtin::BI__builtin_cimagf:
1201 case Builtin::BI__builtin_cimagl:
1202 case Builtin::BIcimag:
1203 case Builtin::BIcimagf:
1204 case Builtin::BIcimagl: {
1205 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1206 return RValue::get(ComplexVal.second);
1207 }
1208
1209 case Builtin::BI__builtin_ctzs:
1210 case Builtin::BI__builtin_ctz:
1211 case Builtin::BI__builtin_ctzl:
1212 case Builtin::BI__builtin_ctzll: {
1213 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
1214
1215 llvm::Type *ArgType = ArgValue->getType();
1216 Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1217
1218 llvm::Type *ResultType = ConvertType(E->getType());
1219 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1220 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1221 if (Result->getType() != ResultType)
1222 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1223 "cast");
1224 return RValue::get(Result);
1225 }
1226 case Builtin::BI__builtin_clzs:
1227 case Builtin::BI__builtin_clz:
1228 case Builtin::BI__builtin_clzl:
1229 case Builtin::BI__builtin_clzll: {
1230 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
1231
1232 llvm::Type *ArgType = ArgValue->getType();
1233 Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1234
1235 llvm::Type *ResultType = ConvertType(E->getType());
1236 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1237 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1238 if (Result->getType() != ResultType)
1239 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1240 "cast");
1241 return RValue::get(Result);
1242 }
1243 case Builtin::BI__builtin_ffs:
1244 case Builtin::BI__builtin_ffsl:
1245 case Builtin::BI__builtin_ffsll: {
1246 // ffs(x) -> x ? cttz(x) + 1 : 0
1247 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1248
1249 llvm::Type *ArgType = ArgValue->getType();
1250 Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1251
1252 llvm::Type *ResultType = ConvertType(E->getType());
1253 Value *Tmp =
1254 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
1255 llvm::ConstantInt::get(ArgType, 1));
1256 Value *Zero = llvm::Constant::getNullValue(ArgType);
1257 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
1258 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
1259 if (Result->getType() != ResultType)
1260 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1261 "cast");
1262 return RValue::get(Result);
1263 }
1264 case Builtin::BI__builtin_parity:
1265 case Builtin::BI__builtin_parityl:
1266 case Builtin::BI__builtin_parityll: {
1267 // parity(x) -> ctpop(x) & 1
1268 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1269
1270 llvm::Type *ArgType = ArgValue->getType();
1271 Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1272
1273 llvm::Type *ResultType = ConvertType(E->getType());
1274 Value *Tmp = Builder.CreateCall(F, ArgValue);
1275 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
1276 if (Result->getType() != ResultType)
1277 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1278 "cast");
1279 return RValue::get(Result);
1280 }
1281 case Builtin::BI__popcnt16:
1282 case Builtin::BI__popcnt:
1283 case Builtin::BI__popcnt64:
1284 case Builtin::BI__builtin_popcount:
1285 case Builtin::BI__builtin_popcountl:
1286 case Builtin::BI__builtin_popcountll: {
1287 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1288
1289 llvm::Type *ArgType = ArgValue->getType();
1290 Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1291
1292 llvm::Type *ResultType = ConvertType(E->getType());
1293 Value *Result = Builder.CreateCall(F, ArgValue);
1294 if (Result->getType() != ResultType)
1295 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1296 "cast");
1297 return RValue::get(Result);
1298 }
1299 case Builtin::BI_rotr8:
1300 case Builtin::BI_rotr16:
1301 case Builtin::BI_rotr:
1302 case Builtin::BI_lrotr:
1303 case Builtin::BI_rotr64: {
1304 Value *Val = EmitScalarExpr(E->getArg(0));
1305 Value *Shift = EmitScalarExpr(E->getArg(1));
1306
1307 llvm::Type *ArgType = Val->getType();
1308 Shift = Builder.CreateIntCast(Shift, ArgType, false);
1309 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1310 Value *ArgTypeSize = llvm::ConstantInt::get(ArgType, ArgWidth);
1311 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1312
1313 Value *Mask = llvm::ConstantInt::get(ArgType, ArgWidth - 1);
1314 Shift = Builder.CreateAnd(Shift, Mask);
1315 Value *LeftShift = Builder.CreateSub(ArgTypeSize, Shift);
1316
1317 Value *RightShifted = Builder.CreateLShr(Val, Shift);
1318 Value *LeftShifted = Builder.CreateShl(Val, LeftShift);
1319 Value *Rotated = Builder.CreateOr(LeftShifted, RightShifted);
1320
1321 Value *ShiftIsZero = Builder.CreateICmpEQ(Shift, ArgZero);
1322 Value *Result = Builder.CreateSelect(ShiftIsZero, Val, Rotated);
1323 return RValue::get(Result);
1324 }
1325 case Builtin::BI_rotl8:
1326 case Builtin::BI_rotl16:
1327 case Builtin::BI_rotl:
1328 case Builtin::BI_lrotl:
1329 case Builtin::BI_rotl64: {
1330 Value *Val = EmitScalarExpr(E->getArg(0));
1331 Value *Shift = EmitScalarExpr(E->getArg(1));
1332
1333 llvm::Type *ArgType = Val->getType();
1334 Shift = Builder.CreateIntCast(Shift, ArgType, false);
1335 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1336 Value *ArgTypeSize = llvm::ConstantInt::get(ArgType, ArgWidth);
1337 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1338
1339 Value *Mask = llvm::ConstantInt::get(ArgType, ArgWidth - 1);
1340 Shift = Builder.CreateAnd(Shift, Mask);
1341 Value *RightShift = Builder.CreateSub(ArgTypeSize, Shift);
1342
1343 Value *LeftShifted = Builder.CreateShl(Val, Shift);
1344 Value *RightShifted = Builder.CreateLShr(Val, RightShift);
1345 Value *Rotated = Builder.CreateOr(LeftShifted, RightShifted);
1346
1347 Value *ShiftIsZero = Builder.CreateICmpEQ(Shift, ArgZero);
1348 Value *Result = Builder.CreateSelect(ShiftIsZero, Val, Rotated);
1349 return RValue::get(Result);
1350 }
1351 case Builtin::BI__builtin_unpredictable: {
1352 // Always return the argument of __builtin_unpredictable. LLVM does not
1353 // handle this builtin. Metadata for this builtin should be added directly
1354 // to instructions such as branches or switches that use it.
1355 return RValue::get(EmitScalarExpr(E->getArg(0)));
1356 }
1357 case Builtin::BI__builtin_expect: {
1358 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1359 llvm::Type *ArgType = ArgValue->getType();
1360
1361 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
1362 // Don't generate llvm.expect on -O0 as the backend won't use it for
1363 // anything.
1364 // Note, we still IRGen ExpectedValue because it could have side-effects.
1365 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1366 return RValue::get(ArgValue);
1367
1368 Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
1369 Value *Result =
1370 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
1371 return RValue::get(Result);
1372 }
1373 case Builtin::BI__builtin_assume_aligned: {
1374 Value *PtrValue = EmitScalarExpr(E->getArg(0));
1375 Value *OffsetValue =
1376 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
1377
1378 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
1379 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
1380 unsigned Alignment = (unsigned) AlignmentCI->getZExtValue();
1381
1382 EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue);
1383 return RValue::get(PtrValue);
1384 }
1385 case Builtin::BI__assume:
1386 case Builtin::BI__builtin_assume: {
1387 if (E->getArg(0)->HasSideEffects(getContext()))
1388 return RValue::get(nullptr);
1389
1390 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1391 Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
1392 return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
1393 }
1394 case Builtin::BI__builtin_bswap16:
1395 case Builtin::BI__builtin_bswap32:
1396 case Builtin::BI__builtin_bswap64: {
1397 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
1398 }
1399 case Builtin::BI__builtin_bitreverse8:
1400 case Builtin::BI__builtin_bitreverse16:
1401 case Builtin::BI__builtin_bitreverse32:
1402 case Builtin::BI__builtin_bitreverse64: {
1403 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
1404 }
1405 case Builtin::BI__builtin_object_size: {
1406 unsigned Type =
1407 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
1408 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
1409
1410 // We pass this builtin onto the optimizer so that it can figure out the
1411 // object size in more complex cases.
1412 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
1413 /*EmittedE=*/nullptr));
1414 }
1415 case Builtin::BI__builtin_prefetch: {
1416 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
1417 // FIXME: Technically these constants should of type 'int', yes?
1418 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
1419 llvm::ConstantInt::get(Int32Ty, 0);
1420 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
1421 llvm::ConstantInt::get(Int32Ty, 3);
1422 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
1423 Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
1424 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
1425 }
1426 case Builtin::BI__builtin_readcyclecounter: {
1427 Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
1428 return RValue::get(Builder.CreateCall(F));
1429 }
1430 case Builtin::BI__builtin___clear_cache: {
1431 Value *Begin = EmitScalarExpr(E->getArg(0));
1432 Value *End = EmitScalarExpr(E->getArg(1));
1433 Value *F = CGM.getIntrinsic(Intrinsic::clear_cache);
1434 return RValue::get(Builder.CreateCall(F, {Begin, End}));
1435 }
1436 case Builtin::BI__builtin_trap:
1437 return RValue::get(EmitTrapCall(Intrinsic::trap));
1438 case Builtin::BI__debugbreak:
1439 return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
1440 case Builtin::BI__builtin_unreachable: {
1441 EmitUnreachable(E->getExprLoc());
1442
1443 // We do need to preserve an insertion point.
1444 EmitBlock(createBasicBlock("unreachable.cont"));
1445
1446 return RValue::get(nullptr);
1447 }
1448
1449 case Builtin::BI__builtin_powi:
1450 case Builtin::BI__builtin_powif:
1451 case Builtin::BI__builtin_powil: {
1452 Value *Base = EmitScalarExpr(E->getArg(0));
1453 Value *Exponent = EmitScalarExpr(E->getArg(1));
1454 llvm::Type *ArgType = Base->getType();
1455 Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
1456 return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
1457 }
1458
1459 case Builtin::BI__builtin_isgreater:
1460 case Builtin::BI__builtin_isgreaterequal:
1461 case Builtin::BI__builtin_isless:
1462 case Builtin::BI__builtin_islessequal:
1463 case Builtin::BI__builtin_islessgreater:
1464 case Builtin::BI__builtin_isunordered: {
1465 // Ordered comparisons: we know the arguments to these are matching scalar
1466 // floating point values.
1467 Value *LHS = EmitScalarExpr(E->getArg(0));
1468 Value *RHS = EmitScalarExpr(E->getArg(1));
1469
1470 switch (BuiltinID) {
1471 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1471)
;
1472 case Builtin::BI__builtin_isgreater:
1473 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
1474 break;
1475 case Builtin::BI__builtin_isgreaterequal:
1476 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
1477 break;
1478 case Builtin::BI__builtin_isless:
1479 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
1480 break;
1481 case Builtin::BI__builtin_islessequal:
1482 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
1483 break;
1484 case Builtin::BI__builtin_islessgreater:
1485 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
1486 break;
1487 case Builtin::BI__builtin_isunordered:
1488 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
1489 break;
1490 }
1491 // ZExt bool to int type.
1492 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
1493 }
1494 case Builtin::BI__builtin_isnan: {
1495 Value *V = EmitScalarExpr(E->getArg(0));
1496 V = Builder.CreateFCmpUNO(V, V, "cmp");
1497 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
1498 }
1499
1500 case Builtin::BIfinite:
1501 case Builtin::BI__finite:
1502 case Builtin::BIfinitef:
1503 case Builtin::BI__finitef:
1504 case Builtin::BIfinitel:
1505 case Builtin::BI__finitel:
1506 case Builtin::BI__builtin_isinf:
1507 case Builtin::BI__builtin_isfinite: {
1508 // isinf(x) --> fabs(x) == infinity
1509 // isfinite(x) --> fabs(x) != infinity
1510 // x != NaN via the ordered compare in either case.
1511 Value *V = EmitScalarExpr(E->getArg(0));
1512 Value *Fabs = EmitFAbs(*this, V);
1513 Constant *Infinity = ConstantFP::getInfinity(V->getType());
1514 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
1515 ? CmpInst::FCMP_OEQ
1516 : CmpInst::FCMP_ONE;
1517 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
1518 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
1519 }
1520
1521 case Builtin::BI__builtin_isinf_sign: {
1522 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
1523 Value *Arg = EmitScalarExpr(E->getArg(0));
1524 Value *AbsArg = EmitFAbs(*this, Arg);
1525 Value *IsInf = Builder.CreateFCmpOEQ(
1526 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
1527 Value *IsNeg = EmitSignBit(*this, Arg);
1528
1529 llvm::Type *IntTy = ConvertType(E->getType());
1530 Value *Zero = Constant::getNullValue(IntTy);
1531 Value *One = ConstantInt::get(IntTy, 1);
1532 Value *NegativeOne = ConstantInt::get(IntTy, -1);
1533 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
1534 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
1535 return RValue::get(Result);
1536 }
1537
1538 case Builtin::BI__builtin_isnormal: {
1539 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
1540 Value *V = EmitScalarExpr(E->getArg(0));
1541 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
1542
1543 Value *Abs = EmitFAbs(*this, V);
1544 Value *IsLessThanInf =
1545 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
1546 APFloat Smallest = APFloat::getSmallestNormalized(
1547 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
1548 Value *IsNormal =
1549 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
1550 "isnormal");
1551 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
1552 V = Builder.CreateAnd(V, IsNormal, "and");
1553 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
1554 }
1555
1556 case Builtin::BI__builtin_fpclassify: {
1557 Value *V = EmitScalarExpr(E->getArg(5));
1558 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
1559
1560 // Create Result
1561 BasicBlock *Begin = Builder.GetInsertBlock();
1562 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
1563 Builder.SetInsertPoint(End);
1564 PHINode *Result =
1565 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
1566 "fpclassify_result");
1567
1568 // if (V==0) return FP_ZERO
1569 Builder.SetInsertPoint(Begin);
1570 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
1571 "iszero");
1572 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
1573 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
1574 Builder.CreateCondBr(IsZero, End, NotZero);
1575 Result->addIncoming(ZeroLiteral, Begin);
1576
1577 // if (V != V) return FP_NAN
1578 Builder.SetInsertPoint(NotZero);
1579 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
1580 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
1581 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
1582 Builder.CreateCondBr(IsNan, End, NotNan);
1583 Result->addIncoming(NanLiteral, NotZero);
1584
1585 // if (fabs(V) == infinity) return FP_INFINITY
1586 Builder.SetInsertPoint(NotNan);
1587 Value *VAbs = EmitFAbs(*this, V);
1588 Value *IsInf =
1589 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
1590 "isinf");
1591 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
1592 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
1593 Builder.CreateCondBr(IsInf, End, NotInf);
1594 Result->addIncoming(InfLiteral, NotNan);
1595
1596 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
1597 Builder.SetInsertPoint(NotInf);
1598 APFloat Smallest = APFloat::getSmallestNormalized(
1599 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
1600 Value *IsNormal =
1601 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
1602 "isnormal");
1603 Value *NormalResult =
1604 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
1605 EmitScalarExpr(E->getArg(3)));
1606 Builder.CreateBr(End);
1607 Result->addIncoming(NormalResult, NotInf);
1608
1609 // return Result
1610 Builder.SetInsertPoint(End);
1611 return RValue::get(Result);
1612 }
1613
1614 case Builtin::BIalloca:
1615 case Builtin::BI_alloca:
1616 case Builtin::BI__builtin_alloca: {
1617 Value *Size = EmitScalarExpr(E->getArg(0));
1618 const TargetInfo &TI = getContext().getTargetInfo();
1619 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
1620 unsigned SuitableAlignmentInBytes =
1621 CGM.getContext()
1622 .toCharUnitsFromBits(TI.getSuitableAlign())
1623 .getQuantity();
1624 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
1625 AI->setAlignment(SuitableAlignmentInBytes);
1626 return RValue::get(AI);
1627 }
1628
1629 case Builtin::BI__builtin_alloca_with_align: {
1630 Value *Size = EmitScalarExpr(E->getArg(0));
1631 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
1632 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
1633 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
1634 unsigned AlignmentInBytes =
1635 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
1636 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
1637 AI->setAlignment(AlignmentInBytes);
1638 return RValue::get(AI);
1639 }
1640
1641 case Builtin::BIbzero:
1642 case Builtin::BI__builtin_bzero: {
1643 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1644 Value *SizeVal = EmitScalarExpr(E->getArg(1));
1645 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
1646 E->getArg(0)->getExprLoc(), FD, 0);
1647 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
1648 return RValue::get(nullptr);
1649 }
1650 case Builtin::BImemcpy:
1651 case Builtin::BI__builtin_memcpy: {
1652 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1653 Address Src = EmitPointerWithAlignment(E->getArg(1));
1654 Value *SizeVal = EmitScalarExpr(E->getArg(2));
1655 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
1656 E->getArg(0)->getExprLoc(), FD, 0);
1657 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
1658 E->getArg(1)->getExprLoc(), FD, 1);
1659 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
1660 return RValue::get(Dest.getPointer());
1661 }
1662
1663 case Builtin::BI__builtin_char_memchr:
1664 BuiltinID = Builtin::BI__builtin_memchr;
1665 break;
1666
1667 case Builtin::BI__builtin___memcpy_chk: {
1668 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
1669 llvm::APSInt Size, DstSize;
1670 if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
1671 !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
1672 break;
1673 if (Size.ugt(DstSize))
1674 break;
1675 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1676 Address Src = EmitPointerWithAlignment(E->getArg(1));
1677 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
1678 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
1679 return RValue::get(Dest.getPointer());
1680 }
1681
1682 case Builtin::BI__builtin_objc_memmove_collectable: {
1683 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
1684 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
1685 Value *SizeVal = EmitScalarExpr(E->getArg(2));
1686 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
1687 DestAddr, SrcAddr, SizeVal);
1688 return RValue::get(DestAddr.getPointer());
1689 }
1690
1691 case Builtin::BI__builtin___memmove_chk: {
1692 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
1693 llvm::APSInt Size, DstSize;
1694 if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
1695 !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
1696 break;
1697 if (Size.ugt(DstSize))
1698 break;
1699 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1700 Address Src = EmitPointerWithAlignment(E->getArg(1));
1701 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
1702 Builder.CreateMemMove(Dest, Src, SizeVal, false);
1703 return RValue::get(Dest.getPointer());
1704 }
1705
1706 case Builtin::BImemmove:
1707 case Builtin::BI__builtin_memmove: {
1708 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1709 Address Src = EmitPointerWithAlignment(E->getArg(1));
1710 Value *SizeVal = EmitScalarExpr(E->getArg(2));
1711 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
1712 E->getArg(0)->getExprLoc(), FD, 0);
1713 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
1714 E->getArg(1)->getExprLoc(), FD, 1);
1715 Builder.CreateMemMove(Dest, Src, SizeVal, false);
1716 return RValue::get(Dest.getPointer());
1717 }
1718 case Builtin::BImemset:
1719 case Builtin::BI__builtin_memset: {
1720 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1721 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
1722 Builder.getInt8Ty());
1723 Value *SizeVal = EmitScalarExpr(E->getArg(2));
1724 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
1725 E->getArg(0)->getExprLoc(), FD, 0);
1726 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
1727 return RValue::get(Dest.getPointer());
1728 }
1729 case Builtin::BI__builtin___memset_chk: {
1730 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
1731 llvm::APSInt Size, DstSize;
1732 if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
1733 !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
1734 break;
1735 if (Size.ugt(DstSize))
1736 break;
1737 Address Dest = EmitPointerWithAlignment(E->getArg(0));
1738 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
1739 Builder.getInt8Ty());
1740 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
1741 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
1742 return RValue::get(Dest.getPointer());
1743 }
1744 case Builtin::BI__builtin_wmemcmp: {
1745 // The MSVC runtime library does not provide a definition of wmemcmp, so we
1746 // need an inline implementation.
1747 if (!getTarget().getTriple().isOSMSVCRT())
1748 break;
1749
1750 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
1751
1752 Value *Dst = EmitScalarExpr(E->getArg(0));
1753 Value *Src = EmitScalarExpr(E->getArg(1));
1754 Value *Size = EmitScalarExpr(E->getArg(2));
1755
1756 BasicBlock *Entry = Builder.GetInsertBlock();
1757 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
1758 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
1759 BasicBlock *Next = createBasicBlock("wmemcmp.next");
1760 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
1761 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
1762 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
1763
1764 EmitBlock(CmpGT);
1765 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
1766 DstPhi->addIncoming(Dst, Entry);
1767 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
1768 SrcPhi->addIncoming(Src, Entry);
1769 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
1770 SizePhi->addIncoming(Size, Entry);
1771 CharUnits WCharAlign =
1772 getContext().getTypeAlignInChars(getContext().WCharTy);
1773 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
1774 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
1775 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
1776 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
1777
1778 EmitBlock(CmpLT);
1779 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
1780 Builder.CreateCondBr(DstLtSrc, Exit, Next);
1781
1782 EmitBlock(Next);
1783 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
1784 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
1785 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
1786 Value *NextSizeEq0 =
1787 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
1788 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
1789 DstPhi->addIncoming(NextDst, Next);
1790 SrcPhi->addIncoming(NextSrc, Next);
1791 SizePhi->addIncoming(NextSize, Next);
1792
1793 EmitBlock(Exit);
1794 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
1795 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
1796 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
1797 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
1798 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
1799 return RValue::get(Ret);
1800 }
1801 case Builtin::BI__builtin_dwarf_cfa: {
1802 // The offset in bytes from the first argument to the CFA.
1803 //
1804 // Why on earth is this in the frontend? Is there any reason at
1805 // all that the backend can't reasonably determine this while
1806 // lowering llvm.eh.dwarf.cfa()?
1807 //
1808 // TODO: If there's a satisfactory reason, add a target hook for
1809 // this instead of hard-coding 0, which is correct for most targets.
1810 int32_t Offset = 0;
1811
1812 Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
1813 return RValue::get(Builder.CreateCall(F,
1814 llvm::ConstantInt::get(Int32Ty, Offset)));
1815 }
1816 case Builtin::BI__builtin_return_address: {
1817 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
1818 getContext().UnsignedIntTy);
1819 Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
1820 return RValue::get(Builder.CreateCall(F, Depth));
1821 }
1822 case Builtin::BI_ReturnAddress: {
1823 Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
1824 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
1825 }
1826 case Builtin::BI__builtin_frame_address: {
1827 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
1828 getContext().UnsignedIntTy);
1829 Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
1830 return RValue::get(Builder.CreateCall(F, Depth));
1831 }
1832 case Builtin::BI__builtin_extract_return_addr: {
1833 Value *Address = EmitScalarExpr(E->getArg(0));
1834 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
1835 return RValue::get(Result);
1836 }
1837 case Builtin::BI__builtin_frob_return_addr: {
1838 Value *Address = EmitScalarExpr(E->getArg(0));
1839 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
1840 return RValue::get(Result);
1841 }
1842 case Builtin::BI__builtin_dwarf_sp_column: {
1843 llvm::IntegerType *Ty
1844 = cast<llvm::IntegerType>(ConvertType(E->getType()));
1845 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
1846 if (Column == -1) {
1847 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
1848 return RValue::get(llvm::UndefValue::get(Ty));
1849 }
1850 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
1851 }
1852 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
1853 Value *Address = EmitScalarExpr(E->getArg(0));
1854 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
1855 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
1856 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
1857 }
1858 case Builtin::BI__builtin_eh_return: {
1859 Value *Int = EmitScalarExpr(E->getArg(0));
1860 Value *Ptr = EmitScalarExpr(E->getArg(1));
1861
1862 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
1863 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1864, __extension__ __PRETTY_FUNCTION__))
1864 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1864, __extension__ __PRETTY_FUNCTION__))
;
1865 Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
1866 ? Intrinsic::eh_return_i32
1867 : Intrinsic::eh_return_i64);
1868 Builder.CreateCall(F, {Int, Ptr});
1869 Builder.CreateUnreachable();
1870
1871 // We do need to preserve an insertion point.
1872 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
1873
1874 return RValue::get(nullptr);
1875 }
1876 case Builtin::BI__builtin_unwind_init: {
1877 Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
1878 return RValue::get(Builder.CreateCall(F));
1879 }
1880 case Builtin::BI__builtin_extend_pointer: {
1881 // Extends a pointer to the size of an _Unwind_Word, which is
1882 // uint64_t on all platforms. Generally this gets poked into a
1883 // register and eventually used as an address, so if the
1884 // addressing registers are wider than pointers and the platform
1885 // doesn't implicitly ignore high-order bits when doing
1886 // addressing, we need to make sure we zext / sext based on
1887 // the platform's expectations.
1888 //
1889 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
1890
1891 // Cast the pointer to intptr_t.
1892 Value *Ptr = EmitScalarExpr(E->getArg(0));
1893 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
1894
1895 // If that's 64 bits, we're done.
1896 if (IntPtrTy->getBitWidth() == 64)
1897 return RValue::get(Result);
1898
1899 // Otherwise, ask the codegen data what to do.
1900 if (getTargetHooks().extendPointerWithSExt())
1901 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
1902 else
1903 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
1904 }
1905 case Builtin::BI__builtin_setjmp: {
1906 // Buffer is a void**.
1907 Address Buf = EmitPointerWithAlignment(E->getArg(0));
1908
1909 // Store the frame pointer to the setjmp buffer.
1910 Value *FrameAddr =
1911 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
1912 ConstantInt::get(Int32Ty, 0));
1913 Builder.CreateStore(FrameAddr, Buf);
1914
1915 // Store the stack pointer to the setjmp buffer.
1916 Value *StackAddr =
1917 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
1918 Address StackSaveSlot =
1919 Builder.CreateConstInBoundsGEP(Buf, 2, getPointerSize());
1920 Builder.CreateStore(StackAddr, StackSaveSlot);
1921
1922 // Call LLVM's EH setjmp, which is lightweight.
1923 Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
1924 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
1925 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
1926 }
1927 case Builtin::BI__builtin_longjmp: {
1928 Value *Buf = EmitScalarExpr(E->getArg(0));
1929 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
1930
1931 // Call LLVM's EH longjmp, which is lightweight.
1932 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
1933
1934 // longjmp doesn't return; mark this as unreachable.
1935 Builder.CreateUnreachable();
1936
1937 // We do need to preserve an insertion point.
1938 EmitBlock(createBasicBlock("longjmp.cont"));
1939
1940 return RValue::get(nullptr);
1941 }
1942 case Builtin::BI__sync_fetch_and_add:
1943 case Builtin::BI__sync_fetch_and_sub:
1944 case Builtin::BI__sync_fetch_and_or:
1945 case Builtin::BI__sync_fetch_and_and:
1946 case Builtin::BI__sync_fetch_and_xor:
1947 case Builtin::BI__sync_fetch_and_nand:
1948 case Builtin::BI__sync_add_and_fetch:
1949 case Builtin::BI__sync_sub_and_fetch:
1950 case Builtin::BI__sync_and_and_fetch:
1951 case Builtin::BI__sync_or_and_fetch:
1952 case Builtin::BI__sync_xor_and_fetch:
1953 case Builtin::BI__sync_nand_and_fetch:
1954 case Builtin::BI__sync_val_compare_and_swap:
1955 case Builtin::BI__sync_bool_compare_and_swap:
1956 case Builtin::BI__sync_lock_test_and_set:
1957 case Builtin::BI__sync_lock_release:
1958 case Builtin::BI__sync_swap:
1959 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1959)
;
1960 case Builtin::BI__sync_fetch_and_add_1:
1961 case Builtin::BI__sync_fetch_and_add_2:
1962 case Builtin::BI__sync_fetch_and_add_4:
1963 case Builtin::BI__sync_fetch_and_add_8:
1964 case Builtin::BI__sync_fetch_and_add_16:
1965 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
1966 case Builtin::BI__sync_fetch_and_sub_1:
1967 case Builtin::BI__sync_fetch_and_sub_2:
1968 case Builtin::BI__sync_fetch_and_sub_4:
1969 case Builtin::BI__sync_fetch_and_sub_8:
1970 case Builtin::BI__sync_fetch_and_sub_16:
1971 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
1972 case Builtin::BI__sync_fetch_and_or_1:
1973 case Builtin::BI__sync_fetch_and_or_2:
1974 case Builtin::BI__sync_fetch_and_or_4:
1975 case Builtin::BI__sync_fetch_and_or_8:
1976 case Builtin::BI__sync_fetch_and_or_16:
1977 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
1978 case Builtin::BI__sync_fetch_and_and_1:
1979 case Builtin::BI__sync_fetch_and_and_2:
1980 case Builtin::BI__sync_fetch_and_and_4:
1981 case Builtin::BI__sync_fetch_and_and_8:
1982 case Builtin::BI__sync_fetch_and_and_16:
1983 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
1984 case Builtin::BI__sync_fetch_and_xor_1:
1985 case Builtin::BI__sync_fetch_and_xor_2:
1986 case Builtin::BI__sync_fetch_and_xor_4:
1987 case Builtin::BI__sync_fetch_and_xor_8:
1988 case Builtin::BI__sync_fetch_and_xor_16:
1989 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
1990 case Builtin::BI__sync_fetch_and_nand_1:
1991 case Builtin::BI__sync_fetch_and_nand_2:
1992 case Builtin::BI__sync_fetch_and_nand_4:
1993 case Builtin::BI__sync_fetch_and_nand_8:
1994 case Builtin::BI__sync_fetch_and_nand_16:
1995 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
1996
1997 // Clang extensions: not overloaded yet.
1998 case Builtin::BI__sync_fetch_and_min:
1999 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
2000 case Builtin::BI__sync_fetch_and_max:
2001 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
2002 case Builtin::BI__sync_fetch_and_umin:
2003 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
2004 case Builtin::BI__sync_fetch_and_umax:
2005 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
2006
2007 case Builtin::BI__sync_add_and_fetch_1:
2008 case Builtin::BI__sync_add_and_fetch_2:
2009 case Builtin::BI__sync_add_and_fetch_4:
2010 case Builtin::BI__sync_add_and_fetch_8:
2011 case Builtin::BI__sync_add_and_fetch_16:
2012 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
2013 llvm::Instruction::Add);
2014 case Builtin::BI__sync_sub_and_fetch_1:
2015 case Builtin::BI__sync_sub_and_fetch_2:
2016 case Builtin::BI__sync_sub_and_fetch_4:
2017 case Builtin::BI__sync_sub_and_fetch_8:
2018 case Builtin::BI__sync_sub_and_fetch_16:
2019 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
2020 llvm::Instruction::Sub);
2021 case Builtin::BI__sync_and_and_fetch_1:
2022 case Builtin::BI__sync_and_and_fetch_2:
2023 case Builtin::BI__sync_and_and_fetch_4:
2024 case Builtin::BI__sync_and_and_fetch_8:
2025 case Builtin::BI__sync_and_and_fetch_16:
2026 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
2027 llvm::Instruction::And);
2028 case Builtin::BI__sync_or_and_fetch_1:
2029 case Builtin::BI__sync_or_and_fetch_2:
2030 case Builtin::BI__sync_or_and_fetch_4:
2031 case Builtin::BI__sync_or_and_fetch_8:
2032 case Builtin::BI__sync_or_and_fetch_16:
2033 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
2034 llvm::Instruction::Or);
2035 case Builtin::BI__sync_xor_and_fetch_1:
2036 case Builtin::BI__sync_xor_and_fetch_2:
2037 case Builtin::BI__sync_xor_and_fetch_4:
2038 case Builtin::BI__sync_xor_and_fetch_8:
2039 case Builtin::BI__sync_xor_and_fetch_16:
2040 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
2041 llvm::Instruction::Xor);
2042 case Builtin::BI__sync_nand_and_fetch_1:
2043 case Builtin::BI__sync_nand_and_fetch_2:
2044 case Builtin::BI__sync_nand_and_fetch_4:
2045 case Builtin::BI__sync_nand_and_fetch_8:
2046 case Builtin::BI__sync_nand_and_fetch_16:
2047 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
2048 llvm::Instruction::And, true);
2049
2050 case Builtin::BI__sync_val_compare_and_swap_1:
2051 case Builtin::BI__sync_val_compare_and_swap_2:
2052 case Builtin::BI__sync_val_compare_and_swap_4:
2053 case Builtin::BI__sync_val_compare_and_swap_8:
2054 case Builtin::BI__sync_val_compare_and_swap_16:
2055 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
2056
2057 case Builtin::BI__sync_bool_compare_and_swap_1:
2058 case Builtin::BI__sync_bool_compare_and_swap_2:
2059 case Builtin::BI__sync_bool_compare_and_swap_4:
2060 case Builtin::BI__sync_bool_compare_and_swap_8:
2061 case Builtin::BI__sync_bool_compare_and_swap_16:
2062 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
2063
2064 case Builtin::BI__sync_swap_1:
2065 case Builtin::BI__sync_swap_2:
2066 case Builtin::BI__sync_swap_4:
2067 case Builtin::BI__sync_swap_8:
2068 case Builtin::BI__sync_swap_16:
2069 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2070
2071 case Builtin::BI__sync_lock_test_and_set_1:
2072 case Builtin::BI__sync_lock_test_and_set_2:
2073 case Builtin::BI__sync_lock_test_and_set_4:
2074 case Builtin::BI__sync_lock_test_and_set_8:
2075 case Builtin::BI__sync_lock_test_and_set_16:
2076 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2077
2078 case Builtin::BI__sync_lock_release_1:
2079 case Builtin::BI__sync_lock_release_2:
2080 case Builtin::BI__sync_lock_release_4:
2081 case Builtin::BI__sync_lock_release_8:
2082 case Builtin::BI__sync_lock_release_16: {
2083 Value *Ptr = EmitScalarExpr(E->getArg(0));
2084 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
2085 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
2086 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
2087 StoreSize.getQuantity() * 8);
2088 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
2089 llvm::StoreInst *Store =
2090 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
2091 StoreSize);
2092 Store->setAtomic(llvm::AtomicOrdering::Release);
2093 return RValue::get(nullptr);
2094 }
2095
2096 case Builtin::BI__sync_synchronize: {
2097 // We assume this is supposed to correspond to a C++0x-style
2098 // sequentially-consistent fence (i.e. this is only usable for
2099 // synchonization, not device I/O or anything like that). This intrinsic
2100 // is really badly designed in the sense that in theory, there isn't
2101 // any way to safely use it... but in practice, it mostly works
2102 // to use it with non-atomic loads and stores to get acquire/release
2103 // semantics.
2104 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
2105 return RValue::get(nullptr);
2106 }
2107
2108 case Builtin::BI__builtin_nontemporal_load:
2109 return RValue::get(EmitNontemporalLoad(*this, E));
2110 case Builtin::BI__builtin_nontemporal_store:
2111 return RValue::get(EmitNontemporalStore(*this, E));
2112 case Builtin::BI__c11_atomic_is_lock_free:
2113 case Builtin::BI__atomic_is_lock_free: {
2114 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
2115 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
2116 // _Atomic(T) is always properly-aligned.
2117 const char *LibCallName = "__atomic_is_lock_free";
2118 CallArgList Args;
2119 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
2120 getContext().getSizeType());
2121 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
2122 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
2123 getContext().VoidPtrTy);
2124 else
2125 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
2126 getContext().VoidPtrTy);
2127 const CGFunctionInfo &FuncInfo =
2128 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
2129 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
2130 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2131 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
2132 ReturnValueSlot(), Args);
2133 }
2134
2135 case Builtin::BI__atomic_test_and_set: {
2136 // Look at the argument type to determine whether this is a volatile
2137 // operation. The parameter type is always volatile.
2138 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2139 bool Volatile =
2140 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2141
2142 Value *Ptr = EmitScalarExpr(E->getArg(0));
2143 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
2144 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2145 Value *NewVal = Builder.getInt8(1);
2146 Value *Order = EmitScalarExpr(E->getArg(1));
2147 if (isa<llvm::ConstantInt>(Order)) {
2148 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2149 AtomicRMWInst *Result = nullptr;
2150 switch (ord) {
2151 case 0: // memory_order_relaxed
2152 default: // invalid order
2153 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2154 llvm::AtomicOrdering::Monotonic);
2155 break;
2156 case 1: // memory_order_consume
2157 case 2: // memory_order_acquire
2158 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2159 llvm::AtomicOrdering::Acquire);
2160 break;
2161 case 3: // memory_order_release
2162 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2163 llvm::AtomicOrdering::Release);
2164 break;
2165 case 4: // memory_order_acq_rel
2166
2167 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2168 llvm::AtomicOrdering::AcquireRelease);
2169 break;
2170 case 5: // memory_order_seq_cst
2171 Result = Builder.CreateAtomicRMW(
2172 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2173 llvm::AtomicOrdering::SequentiallyConsistent);
2174 break;
2175 }
2176 Result->setVolatile(Volatile);
2177 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2178 }
2179
2180 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2181
2182 llvm::BasicBlock *BBs[5] = {
2183 createBasicBlock("monotonic", CurFn),
2184 createBasicBlock("acquire", CurFn),
2185 createBasicBlock("release", CurFn),
2186 createBasicBlock("acqrel", CurFn),
2187 createBasicBlock("seqcst", CurFn)
2188 };
2189 llvm::AtomicOrdering Orders[5] = {
2190 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
2191 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
2192 llvm::AtomicOrdering::SequentiallyConsistent};
2193
2194 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2195 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2196
2197 Builder.SetInsertPoint(ContBB);
2198 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
2199
2200 for (unsigned i = 0; i < 5; ++i) {
2201 Builder.SetInsertPoint(BBs[i]);
2202 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
2203 Ptr, NewVal, Orders[i]);
2204 RMW->setVolatile(Volatile);
2205 Result->addIncoming(RMW, BBs[i]);
2206 Builder.CreateBr(ContBB);
2207 }
2208
2209 SI->addCase(Builder.getInt32(0), BBs[0]);
2210 SI->addCase(Builder.getInt32(1), BBs[1]);
2211 SI->addCase(Builder.getInt32(2), BBs[1]);
2212 SI->addCase(Builder.getInt32(3), BBs[2]);
2213 SI->addCase(Builder.getInt32(4), BBs[3]);
2214 SI->addCase(Builder.getInt32(5), BBs[4]);
2215
2216 Builder.SetInsertPoint(ContBB);
2217 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2218 }
2219
2220 case Builtin::BI__atomic_clear: {
2221 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2222 bool Volatile =
2223 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2224
2225 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
2226 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
2227 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2228 Value *NewVal = Builder.getInt8(0);
2229 Value *Order = EmitScalarExpr(E->getArg(1));
2230 if (isa<llvm::ConstantInt>(Order)) {
2231 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2232 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2233 switch (ord) {
2234 case 0: // memory_order_relaxed
2235 default: // invalid order
2236 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
2237 break;
2238 case 3: // memory_order_release
2239 Store->setOrdering(llvm::AtomicOrdering::Release);
2240 break;
2241 case 5: // memory_order_seq_cst
2242 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
2243 break;
2244 }
2245 return RValue::get(nullptr);
2246 }
2247
2248 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2249
2250 llvm::BasicBlock *BBs[3] = {
2251 createBasicBlock("monotonic", CurFn),
2252 createBasicBlock("release", CurFn),
2253 createBasicBlock("seqcst", CurFn)
2254 };
2255 llvm::AtomicOrdering Orders[3] = {
2256 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
2257 llvm::AtomicOrdering::SequentiallyConsistent};
2258
2259 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2260 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2261
2262 for (unsigned i = 0; i < 3; ++i) {
2263 Builder.SetInsertPoint(BBs[i]);
2264 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2265 Store->setOrdering(Orders[i]);
2266 Builder.CreateBr(ContBB);
2267 }
2268
2269 SI->addCase(Builder.getInt32(0), BBs[0]);
2270 SI->addCase(Builder.getInt32(3), BBs[1]);
2271 SI->addCase(Builder.getInt32(5), BBs[2]);
2272
2273 Builder.SetInsertPoint(ContBB);
2274 return RValue::get(nullptr);
2275 }
2276
2277 case Builtin::BI__atomic_thread_fence:
2278 case Builtin::BI__atomic_signal_fence:
2279 case Builtin::BI__c11_atomic_thread_fence:
2280 case Builtin::BI__c11_atomic_signal_fence: {
2281 llvm::SyncScope::ID SSID;
2282 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
2283 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
2284 SSID = llvm::SyncScope::SingleThread;
2285 else
2286 SSID = llvm::SyncScope::System;
2287 Value *Order = EmitScalarExpr(E->getArg(0));
2288 if (isa<llvm::ConstantInt>(Order)) {
2289 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2290 switch (ord) {
2291 case 0: // memory_order_relaxed
2292 default: // invalid order
2293 break;
2294 case 1: // memory_order_consume
2295 case 2: // memory_order_acquire
2296 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
2297 break;
2298 case 3: // memory_order_release
2299 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
2300 break;
2301 case 4: // memory_order_acq_rel
2302 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
2303 break;
2304 case 5: // memory_order_seq_cst
2305 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
2306 break;
2307 }
2308 return RValue::get(nullptr);
2309 }
2310
2311 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
2312 AcquireBB = createBasicBlock("acquire", CurFn);
2313 ReleaseBB = createBasicBlock("release", CurFn);
2314 AcqRelBB = createBasicBlock("acqrel", CurFn);
2315 SeqCstBB = createBasicBlock("seqcst", CurFn);
2316 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2317
2318 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2319 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
2320
2321 Builder.SetInsertPoint(AcquireBB);
2322 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
2323 Builder.CreateBr(ContBB);
2324 SI->addCase(Builder.getInt32(1), AcquireBB);
2325 SI->addCase(Builder.getInt32(2), AcquireBB);
2326
2327 Builder.SetInsertPoint(ReleaseBB);
2328 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
2329 Builder.CreateBr(ContBB);
2330 SI->addCase(Builder.getInt32(3), ReleaseBB);
2331
2332 Builder.SetInsertPoint(AcqRelBB);
2333 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
2334 Builder.CreateBr(ContBB);
2335 SI->addCase(Builder.getInt32(4), AcqRelBB);
2336
2337 Builder.SetInsertPoint(SeqCstBB);
2338 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
2339 Builder.CreateBr(ContBB);
2340 SI->addCase(Builder.getInt32(5), SeqCstBB);
2341
2342 Builder.SetInsertPoint(ContBB);
2343 return RValue::get(nullptr);
2344 }
2345
2346 case Builtin::BI__builtin_signbit:
2347 case Builtin::BI__builtin_signbitf:
2348 case Builtin::BI__builtin_signbitl: {
2349 return RValue::get(
2350 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
2351 ConvertType(E->getType())));
2352 }
2353 case Builtin::BI__annotation: {
2354 // Re-encode each wide string to UTF8 and make an MDString.
2355 SmallVector<Metadata *, 1> Strings;
2356 for (const Expr *Arg : E->arguments()) {
2357 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
2358 assert(Str->getCharByteWidth() == 2)(static_cast <bool> (Str->getCharByteWidth() == 2) ?
void (0) : __assert_fail ("Str->getCharByteWidth() == 2",
"/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2358, __extension__ __PRETTY_FUNCTION__))
;
2359 StringRef WideBytes = Str->getBytes();
2360 std::string StrUtf8;
2361 if (!convertUTF16ToUTF8String(
2362 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
2363 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
2364 continue;
2365 }
2366 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
2367 }
2368
2369 // Build and MDTuple of MDStrings and emit the intrinsic call.
2370 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
2371 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
2372 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
2373 return RValue::getIgnored();
2374 }
2375 case Builtin::BI__builtin_annotation: {
2376 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
2377 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
2378 AnnVal->getType());
2379
2380 // Get the annotation string, go through casts. Sema requires this to be a
2381 // non-wide string literal, potentially casted, so the cast<> is safe.
2382 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
2383 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
2384 return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
2385 }
2386 case Builtin::BI__builtin_addcb:
2387 case Builtin::BI__builtin_addcs:
2388 case Builtin::BI__builtin_addc:
2389 case Builtin::BI__builtin_addcl:
2390 case Builtin::BI__builtin_addcll:
2391 case Builtin::BI__builtin_subcb:
2392 case Builtin::BI__builtin_subcs:
2393 case Builtin::BI__builtin_subc:
2394 case Builtin::BI__builtin_subcl:
2395 case Builtin::BI__builtin_subcll: {
2396
2397 // We translate all of these builtins from expressions of the form:
2398 // int x = ..., y = ..., carryin = ..., carryout, result;
2399 // result = __builtin_addc(x, y, carryin, &carryout);
2400 //
2401 // to LLVM IR of the form:
2402 //
2403 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
2404 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
2405 // %carry1 = extractvalue {i32, i1} %tmp1, 1
2406 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
2407 // i32 %carryin)
2408 // %result = extractvalue {i32, i1} %tmp2, 0
2409 // %carry2 = extractvalue {i32, i1} %tmp2, 1
2410 // %tmp3 = or i1 %carry1, %carry2
2411 // %tmp4 = zext i1 %tmp3 to i32
2412 // store i32 %tmp4, i32* %carryout
2413
2414 // Scalarize our inputs.
2415 llvm::Value *X = EmitScalarExpr(E->getArg(0));
2416 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
2417 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
2418 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
2419
2420 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
2421 llvm::Intrinsic::ID IntrinsicId;
2422 switch (BuiltinID) {
2423 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2423)
;
2424 case Builtin::BI__builtin_addcb:
2425 case Builtin::BI__builtin_addcs:
2426 case Builtin::BI__builtin_addc:
2427 case Builtin::BI__builtin_addcl:
2428 case Builtin::BI__builtin_addcll:
2429 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
2430 break;
2431 case Builtin::BI__builtin_subcb:
2432 case Builtin::BI__builtin_subcs:
2433 case Builtin::BI__builtin_subc:
2434 case Builtin::BI__builtin_subcl:
2435 case Builtin::BI__builtin_subcll:
2436 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
2437 break;
2438 }
2439
2440 // Construct our resulting LLVM IR expression.
2441 llvm::Value *Carry1;
2442 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
2443 X, Y, Carry1);
2444 llvm::Value *Carry2;
2445 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
2446 Sum1, Carryin, Carry2);
2447 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
2448 X->getType());
2449 Builder.CreateStore(CarryOut, CarryOutPtr);
2450 return RValue::get(Sum2);
2451 }
2452
2453 case Builtin::BI__builtin_add_overflow:
2454 case Builtin::BI__builtin_sub_overflow:
2455 case Builtin::BI__builtin_mul_overflow: {
2456 const clang::Expr *LeftArg = E->getArg(0);
2457 const clang::Expr *RightArg = E->getArg(1);
2458 const clang::Expr *ResultArg = E->getArg(2);
2459
2460 clang::QualType ResultQTy =
2461 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
2462
2463 WidthAndSignedness LeftInfo =
2464 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
2465 WidthAndSignedness RightInfo =
2466 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
2467 WidthAndSignedness ResultInfo =
2468 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
2469
2470 // Handle mixed-sign multiplication as a special case, because adding
2471 // runtime or backend support for our generic irgen would be too expensive.
2472 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
2473 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
2474 RightInfo, ResultArg, ResultQTy,
2475 ResultInfo);
2476
2477 WidthAndSignedness EncompassingInfo =
2478 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
2479
2480 llvm::Type *EncompassingLLVMTy =
2481 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
2482
2483 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
2484
2485 llvm::Intrinsic::ID IntrinsicId;
2486 switch (BuiltinID) {
2487 default:
2488 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2488)
;
2489 case Builtin::BI__builtin_add_overflow:
2490 IntrinsicId = EncompassingInfo.Signed
2491 ? llvm::Intrinsic::sadd_with_overflow
2492 : llvm::Intrinsic::uadd_with_overflow;
2493 break;
2494 case Builtin::BI__builtin_sub_overflow:
2495 IntrinsicId = EncompassingInfo.Signed
2496 ? llvm::Intrinsic::ssub_with_overflow
2497 : llvm::Intrinsic::usub_with_overflow;
2498 break;
2499 case Builtin::BI__builtin_mul_overflow:
2500 IntrinsicId = EncompassingInfo.Signed
2501 ? llvm::Intrinsic::smul_with_overflow
2502 : llvm::Intrinsic::umul_with_overflow;
2503 break;
2504 }
2505
2506 llvm::Value *Left = EmitScalarExpr(LeftArg);
2507 llvm::Value *Right = EmitScalarExpr(RightArg);
2508 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
2509
2510 // Extend each operand to the encompassing type.
2511 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
2512 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
2513
2514 // Perform the operation on the extended values.
2515 llvm::Value *Overflow, *Result;
2516 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
2517
2518 if (EncompassingInfo.Width > ResultInfo.Width) {
2519 // The encompassing type is wider than the result type, so we need to
2520 // truncate it.
2521 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
2522
2523 // To see if the truncation caused an overflow, we will extend
2524 // the result and then compare it to the original result.
2525 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
2526 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
2527 llvm::Value *TruncationOverflow =
2528 Builder.CreateICmpNE(Result, ResultTruncExt);
2529
2530 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
2531 Result = ResultTrunc;
2532 }
2533
2534 // Finally, store the result using the pointer.
2535 bool isVolatile =
2536 ResultArg->getType()->getPointeeType().isVolatileQualified();
2537 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
2538
2539 return RValue::get(Overflow);
2540 }
2541
2542 case Builtin::BI__builtin_uadd_overflow:
2543 case Builtin::BI__builtin_uaddl_overflow:
2544 case Builtin::BI__builtin_uaddll_overflow:
2545 case Builtin::BI__builtin_usub_overflow:
2546 case Builtin::BI__builtin_usubl_overflow:
2547 case Builtin::BI__builtin_usubll_overflow:
2548 case Builtin::BI__builtin_umul_overflow:
2549 case Builtin::BI__builtin_umull_overflow:
2550 case Builtin::BI__builtin_umulll_overflow:
2551 case Builtin::BI__builtin_sadd_overflow:
2552 case Builtin::BI__builtin_saddl_overflow:
2553 case Builtin::BI__builtin_saddll_overflow:
2554 case Builtin::BI__builtin_ssub_overflow:
2555 case Builtin::BI__builtin_ssubl_overflow:
2556 case Builtin::BI__builtin_ssubll_overflow:
2557 case Builtin::BI__builtin_smul_overflow:
2558 case Builtin::BI__builtin_smull_overflow:
2559 case Builtin::BI__builtin_smulll_overflow: {
2560
2561 // We translate all of these builtins directly to the relevant llvm IR node.
2562
2563 // Scalarize our inputs.
2564 llvm::Value *X = EmitScalarExpr(E->getArg(0));
2565 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
2566 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
2567
2568 // Decide which of the overflow intrinsics we are lowering to:
2569 llvm::Intrinsic::ID IntrinsicId;
2570 switch (BuiltinID) {
2571 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2571)
;
2572 case Builtin::BI__builtin_uadd_overflow:
2573 case Builtin::BI__builtin_uaddl_overflow:
2574 case Builtin::BI__builtin_uaddll_overflow:
2575 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
2576 break;
2577 case Builtin::BI__builtin_usub_overflow:
2578 case Builtin::BI__builtin_usubl_overflow:
2579 case Builtin::BI__builtin_usubll_overflow:
2580 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
2581 break;
2582 case Builtin::BI__builtin_umul_overflow:
2583 case Builtin::BI__builtin_umull_overflow:
2584 case Builtin::BI__builtin_umulll_overflow:
2585 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
2586 break;
2587 case Builtin::BI__builtin_sadd_overflow:
2588 case Builtin::BI__builtin_saddl_overflow:
2589 case Builtin::BI__builtin_saddll_overflow:
2590 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
2591 break;
2592 case Builtin::BI__builtin_ssub_overflow:
2593 case Builtin::BI__builtin_ssubl_overflow:
2594 case Builtin::BI__builtin_ssubll_overflow:
2595 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
2596 break;
2597 case Builtin::BI__builtin_smul_overflow:
2598 case Builtin::BI__builtin_smull_overflow:
2599 case Builtin::BI__builtin_smulll_overflow:
2600 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
2601 break;
2602 }
2603
2604
2605 llvm::Value *Carry;
2606 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
2607 Builder.CreateStore(Sum, SumOutPtr);
2608
2609 return RValue::get(Carry);
2610 }
2611 case Builtin::BI__builtin_addressof:
2612 return RValue::get(EmitLValue(E->getArg(0)).getPointer());
2613 case Builtin::BI__builtin_operator_new:
2614 return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
2615 E->getArg(0), false);
2616 case Builtin::BI__builtin_operator_delete:
2617 return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
2618 E->getArg(0), true);
2619 case Builtin::BI__noop:
2620 // __noop always evaluates to an integer literal zero.
2621 return RValue::get(ConstantInt::get(IntTy, 0));
2622 case Builtin::BI__builtin_call_with_static_chain: {
2623 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
2624 const Expr *Chain = E->getArg(1);
2625 return EmitCall(Call->getCallee()->getType(),
2626 EmitCallee(Call->getCallee()), Call, ReturnValue,
2627 EmitScalarExpr(Chain));
2628 }
2629 case Builtin::BI_InterlockedExchange8:
2630 case Builtin::BI_InterlockedExchange16:
2631 case Builtin::BI_InterlockedExchange:
2632 case Builtin::BI_InterlockedExchangePointer:
2633 return RValue::get(
2634 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
2635 case Builtin::BI_InterlockedCompareExchangePointer: {
2636 llvm::Type *RTy;
2637 llvm::IntegerType *IntType =
2638 IntegerType::get(getLLVMContext(),
2639 getContext().getTypeSize(E->getType()));
2640 llvm::Type *IntPtrType = IntType->getPointerTo();
2641
2642 llvm::Value *Destination =
2643 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
2644
2645 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
2646 RTy = Exchange->getType();
2647 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
2648
2649 llvm::Value *Comparand =
2650 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
2651
2652 auto Result =
2653 Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
2654 AtomicOrdering::SequentiallyConsistent,
2655 AtomicOrdering::SequentiallyConsistent);
2656 Result->setVolatile(true);
2657
2658 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
2659 0),
2660 RTy));
2661 }
2662 case Builtin::BI_InterlockedCompareExchange8:
2663 case Builtin::BI_InterlockedCompareExchange16:
2664 case Builtin::BI_InterlockedCompareExchange:
2665 case Builtin::BI_InterlockedCompareExchange64: {
2666 AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg(
2667 EmitScalarExpr(E->getArg(0)),
2668 EmitScalarExpr(E->getArg(2)),
2669 EmitScalarExpr(E->getArg(1)),
2670 AtomicOrdering::SequentiallyConsistent,
2671 AtomicOrdering::SequentiallyConsistent);
2672 CXI->setVolatile(true);
2673 return RValue::get(Builder.CreateExtractValue(CXI, 0));
2674 }
2675 case Builtin::BI_InterlockedIncrement16:
2676 case Builtin::BI_InterlockedIncrement:
2677 return RValue::get(
2678 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
2679 case Builtin::BI_InterlockedDecrement16:
2680 case Builtin::BI_InterlockedDecrement:
2681 return RValue::get(
2682 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
2683 case Builtin::BI_InterlockedAnd8:
2684 case Builtin::BI_InterlockedAnd16:
2685 case Builtin::BI_InterlockedAnd:
2686 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
2687 case Builtin::BI_InterlockedExchangeAdd8:
2688 case Builtin::BI_InterlockedExchangeAdd16:
2689 case Builtin::BI_InterlockedExchangeAdd:
2690 return RValue::get(
2691 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
2692 case Builtin::BI_InterlockedExchangeSub8:
2693 case Builtin::BI_InterlockedExchangeSub16:
2694 case Builtin::BI_InterlockedExchangeSub:
2695 return RValue::get(
2696 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
2697 case Builtin::BI_InterlockedOr8:
2698 case Builtin::BI_InterlockedOr16:
2699 case Builtin::BI_InterlockedOr:
2700 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
2701 case Builtin::BI_InterlockedXor8:
2702 case Builtin::BI_InterlockedXor16:
2703 case Builtin::BI_InterlockedXor:
2704 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
2705 case Builtin::BI_interlockedbittestandset:
2706 return RValue::get(
2707 EmitMSVCBuiltinExpr(MSVCIntrin::_interlockedbittestandset, E));
2708
2709 case Builtin::BI__exception_code:
2710 case Builtin::BI_exception_code:
2711 return RValue::get(EmitSEHExceptionCode());
2712 case Builtin::BI__exception_info:
2713 case Builtin::BI_exception_info:
2714 return RValue::get(EmitSEHExceptionInfo());
2715 case Builtin::BI__abnormal_termination:
2716 case Builtin::BI_abnormal_termination:
2717 return RValue::get(EmitSEHAbnormalTermination());
2718 case Builtin::BI_setjmpex: {
2719 if (getTarget().getTriple().isOSMSVCRT()) {
2720 llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
2721 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
2722 getLLVMContext(), llvm::AttributeList::FunctionIndex,
2723 llvm::Attribute::ReturnsTwice);
2724 llvm::Constant *SetJmpEx = CGM.CreateRuntimeFunction(
2725 llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
2726 "_setjmpex", ReturnsTwiceAttr, /*Local=*/true);
2727 llvm::Value *Buf = Builder.CreateBitOrPointerCast(
2728 EmitScalarExpr(E->getArg(0)), Int8PtrTy);
2729 llvm::Value *FrameAddr =
2730 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
2731 ConstantInt::get(Int32Ty, 0));
2732 llvm::Value *Args[] = {Buf, FrameAddr};
2733 llvm::CallSite CS = EmitRuntimeCallOrInvoke(SetJmpEx, Args);
2734 CS.setAttributes(ReturnsTwiceAttr);
2735 return RValue::get(CS.getInstruction());
2736 }
2737 break;
2738 }
2739 case Builtin::BI_setjmp: {
2740 if (getTarget().getTriple().isOSMSVCRT()) {
2741 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
2742 getLLVMContext(), llvm::AttributeList::FunctionIndex,
2743 llvm::Attribute::ReturnsTwice);
2744 llvm::Value *Buf = Builder.CreateBitOrPointerCast(
2745 EmitScalarExpr(E->getArg(0)), Int8PtrTy);
2746 llvm::CallSite CS;
2747 if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
2748 llvm::Type *ArgTypes[] = {Int8PtrTy, IntTy};
2749 llvm::Constant *SetJmp3 = CGM.CreateRuntimeFunction(
2750 llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/true),
2751 "_setjmp3", ReturnsTwiceAttr, /*Local=*/true);
2752 llvm::Value *Count = ConstantInt::get(IntTy, 0);
2753 llvm::Value *Args[] = {Buf, Count};
2754 CS = EmitRuntimeCallOrInvoke(SetJmp3, Args);
2755 } else {
2756 llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
2757 llvm::Constant *SetJmp = CGM.CreateRuntimeFunction(
2758 llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
2759 "_setjmp", ReturnsTwiceAttr, /*Local=*/true);
2760 llvm::Value *FrameAddr =
2761 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
2762 ConstantInt::get(Int32Ty, 0));
2763 llvm::Value *Args[] = {Buf, FrameAddr};
2764 CS = EmitRuntimeCallOrInvoke(SetJmp, Args);
2765 }
2766 CS.setAttributes(ReturnsTwiceAttr);
2767 return RValue::get(CS.getInstruction());
2768 }
2769 break;
2770 }
2771
2772 case Builtin::BI__GetExceptionInfo: {
2773 if (llvm::GlobalVariable *GV =
2774 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
2775 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
2776 break;
2777 }
2778
2779 case Builtin::BI__fastfail:
2780 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
2781
2782 case Builtin::BI__builtin_coro_size: {
2783 auto & Context = getContext();
2784 auto SizeTy = Context.getSizeType();
2785 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
2786 Value *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
2787 return RValue::get(Builder.CreateCall(F));
2788 }
2789
2790 case Builtin::BI__builtin_coro_id:
2791 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
2792 case Builtin::BI__builtin_coro_promise:
2793 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
2794 case Builtin::BI__builtin_coro_resume:
2795 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
2796 case Builtin::BI__builtin_coro_frame:
2797 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
2798 case Builtin::BI__builtin_coro_free:
2799 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
2800 case Builtin::BI__builtin_coro_destroy:
2801 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
2802 case Builtin::BI__builtin_coro_done:
2803 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
2804 case Builtin::BI__builtin_coro_alloc:
2805 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
2806 case Builtin::BI__builtin_coro_begin:
2807 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
2808 case Builtin::BI__builtin_coro_end:
2809 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
2810 case Builtin::BI__builtin_coro_suspend:
2811 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
2812 case Builtin::BI__builtin_coro_param:
2813 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
2814
2815 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
2816 case Builtin::BIread_pipe:
2817 case Builtin::BIwrite_pipe: {
2818 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
2819 *Arg1 = EmitScalarExpr(E->getArg(1));
2820 CGOpenCLRuntime OpenCLRT(CGM);
2821 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
2822 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
2823
2824 // Type of the generic packet parameter.
2825 unsigned GenericAS =
2826 getContext().getTargetAddressSpace(LangAS::opencl_generic);
2827 llvm::Type *I8PTy = llvm::PointerType::get(
2828 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
2829
2830 // Testing which overloaded version we should generate the call for.
2831 if (2U == E->getNumArgs()) {
2832 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
2833 : "__write_pipe_2";
2834 // Creating a generic function type to be able to call with any builtin or
2835 // user defined type.
2836 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
2837 llvm::FunctionType *FTy = llvm::FunctionType::get(
2838 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2839 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
2840 return RValue::get(
2841 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
2842 {Arg0, BCast, PacketSize, PacketAlign}));
2843 } else {
2844 assert(4 == E->getNumArgs() &&(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2845, __extension__ __PRETTY_FUNCTION__))
2845 "Illegal number of parameters to pipe function")(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2845, __extension__ __PRETTY_FUNCTION__))
;
2846 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
2847 : "__write_pipe_4";
2848
2849 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
2850 Int32Ty, Int32Ty};
2851 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
2852 *Arg3 = EmitScalarExpr(E->getArg(3));
2853 llvm::FunctionType *FTy = llvm::FunctionType::get(
2854 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2855 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
2856 // We know the third argument is an integer type, but we may need to cast
2857 // it to i32.
2858 if (Arg2->getType() != Int32Ty)
2859 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
2860 return RValue::get(Builder.CreateCall(
2861 CGM.CreateRuntimeFunction(FTy, Name),
2862 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
2863 }
2864 }
2865 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
2866 // functions
2867 case Builtin::BIreserve_read_pipe:
2868 case Builtin::BIreserve_write_pipe:
2869 case Builtin::BIwork_group_reserve_read_pipe:
2870 case Builtin::BIwork_group_reserve_write_pipe:
2871 case Builtin::BIsub_group_reserve_read_pipe:
2872 case Builtin::BIsub_group_reserve_write_pipe: {
2873 // Composing the mangled name for the function.
2874 const char *Name;
2875 if (BuiltinID == Builtin::BIreserve_read_pipe)
2876 Name = "__reserve_read_pipe";
2877 else if (BuiltinID == Builtin::BIreserve_write_pipe)
2878 Name = "__reserve_write_pipe";
2879 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
2880 Name = "__work_group_reserve_read_pipe";
2881 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
2882 Name = "__work_group_reserve_write_pipe";
2883 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
2884 Name = "__sub_group_reserve_read_pipe";
2885 else
2886 Name = "__sub_group_reserve_write_pipe";
2887
2888 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
2889 *Arg1 = EmitScalarExpr(E->getArg(1));
2890 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
2891 CGOpenCLRuntime OpenCLRT(CGM);
2892 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
2893 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
2894
2895 // Building the generic function prototype.
2896 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
2897 llvm::FunctionType *FTy = llvm::FunctionType::get(
2898 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2899 // We know the second argument is an integer type, but we may need to cast
2900 // it to i32.
2901 if (Arg1->getType() != Int32Ty)
2902 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
2903 return RValue::get(
2904 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
2905 {Arg0, Arg1, PacketSize, PacketAlign}));
2906 }
2907 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
2908 // functions
2909 case Builtin::BIcommit_read_pipe:
2910 case Builtin::BIcommit_write_pipe:
2911 case Builtin::BIwork_group_commit_read_pipe:
2912 case Builtin::BIwork_group_commit_write_pipe:
2913 case Builtin::BIsub_group_commit_read_pipe:
2914 case Builtin::BIsub_group_commit_write_pipe: {
2915 const char *Name;
2916 if (BuiltinID == Builtin::BIcommit_read_pipe)
2917 Name = "__commit_read_pipe";
2918 else if (BuiltinID == Builtin::BIcommit_write_pipe)
2919 Name = "__commit_write_pipe";
2920 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
2921 Name = "__work_group_commit_read_pipe";
2922 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
2923 Name = "__work_group_commit_write_pipe";
2924 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
2925 Name = "__sub_group_commit_read_pipe";
2926 else
2927 Name = "__sub_group_commit_write_pipe";
2928
2929 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
2930 *Arg1 = EmitScalarExpr(E->getArg(1));
2931 CGOpenCLRuntime OpenCLRT(CGM);
2932 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
2933 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
2934
2935 // Building the generic function prototype.
2936 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
2937 llvm::FunctionType *FTy =
2938 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
2939 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2940
2941 return RValue::get(
2942 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
2943 {Arg0, Arg1, PacketSize, PacketAlign}));
2944 }
2945 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
2946 case Builtin::BIget_pipe_num_packets:
2947 case Builtin::BIget_pipe_max_packets: {
2948 const char *Name;
2949 if (BuiltinID == Builtin::BIget_pipe_num_packets)
2950 Name = "__get_pipe_num_packets";
2951 else
2952 Name = "__get_pipe_max_packets";
2953
2954 // Building the generic function prototype.
2955 Value *Arg0 = EmitScalarExpr(E->getArg(0));
2956 CGOpenCLRuntime OpenCLRT(CGM);
2957 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
2958 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
2959 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
2960 llvm::FunctionType *FTy = llvm::FunctionType::get(
2961 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
2962
2963 return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
2964 {Arg0, PacketSize, PacketAlign}));
2965 }
2966
2967 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
2968 case Builtin::BIto_global:
2969 case Builtin::BIto_local:
2970 case Builtin::BIto_private: {
2971 auto Arg0 = EmitScalarExpr(E->getArg(0));
2972 auto NewArgT = llvm::PointerType::get(Int8Ty,
2973 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
2974 auto NewRetT = llvm::PointerType::get(Int8Ty,
2975 CGM.getContext().getTargetAddressSpace(
2976 E->getType()->getPointeeType().getAddressSpace()));
2977 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
2978 llvm::Value *NewArg;
2979 if (Arg0->getType()->getPointerAddressSpace() !=
2980 NewArgT->getPointerAddressSpace())
2981 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
2982 else
2983 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
2984 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
2985 auto NewCall =
2986 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
2987 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
2988 ConvertType(E->getType())));
2989 }
2990
2991 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
2992 // It contains four different overload formats specified in Table 6.13.17.1.
2993 case Builtin::BIenqueue_kernel: {
2994 StringRef Name; // Generated function call name
2995 unsigned NumArgs = E->getNumArgs();
2996
2997 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
2998 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
2999 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3000
3001 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
3002 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
3003 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
3004 llvm::Value *Range = NDRangeL.getAddress().getPointer();
3005 llvm::Type *RangeTy = NDRangeL.getAddress().getType();
3006
3007 if (NumArgs == 4) {
3008 // The most basic form of the call with parameters:
3009 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
3010 Name = "__enqueue_kernel_basic";
3011 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
3012 GenericVoidPtrTy};
3013 llvm::FunctionType *FTy = llvm::FunctionType::get(
3014 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3015
3016 auto Info =
3017 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3018 llvm::Value *Kernel =
3019 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3020 llvm::Value *Block =
3021 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3022
3023 AttrBuilder B;
3024 B.addAttribute(Attribute::ByVal);
3025 llvm::AttributeList ByValAttrSet =
3026 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
3027
3028 auto RTCall =
3029 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
3030 {Queue, Flags, Range, Kernel, Block});
3031 RTCall->setAttributes(ByValAttrSet);
3032 return RValue::get(RTCall);
3033 }
3034 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")(static_cast <bool> (NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? void (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3034, __extension__ __PRETTY_FUNCTION__))
;
3035
3036 // Create a temporary array to hold the sizes of local pointer arguments
3037 // for the block. \p First is the position of the first size argument.
3038 auto CreateArrayForSizeVar = [=](unsigned First) {
3039 auto *AT = llvm::ArrayType::get(SizeTy, NumArgs - First);
3040 auto *Arr = Builder.CreateAlloca(AT);
3041 llvm::Value *Ptr;
3042 // Each of the following arguments specifies the size of the corresponding
3043 // argument passed to the enqueued block.
3044 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
3045 for (unsigned I = First; I < NumArgs; ++I) {
3046 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
3047 auto *GEP = Builder.CreateGEP(Arr, {Zero, Index});
3048 if (I == First)
3049 Ptr = GEP;
3050 auto *V =
3051 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
3052 Builder.CreateAlignedStore(
3053 V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
3054 }
3055 return Ptr;
3056 };
3057
3058 // Could have events and/or vaargs.
3059 if (E->getArg(3)->getType()->isBlockPointerType()) {
3060 // No events passed, but has variadic arguments.
3061 Name = "__enqueue_kernel_vaargs";
3062 auto Info =
3063 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3064 llvm::Value *Kernel =
3065 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3066 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3067 auto *PtrToSizeArray = CreateArrayForSizeVar(4);
3068
3069 // Create a vector of the arguments, as well as a constant value to
3070 // express to the runtime the number of variadic arguments.
3071 std::vector<llvm::Value *> Args = {
3072 Queue, Flags, Range,
3073 Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
3074 PtrToSizeArray};
3075 std::vector<llvm::Type *> ArgTys = {
3076 QueueTy, IntTy, RangeTy,
3077 GenericVoidPtrTy, GenericVoidPtrTy, IntTy,
3078 PtrToSizeArray->getType()};
3079
3080 llvm::FunctionType *FTy = llvm::FunctionType::get(
3081 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3082 return RValue::get(
3083 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3084 llvm::ArrayRef<llvm::Value *>(Args)));
3085 }
3086 // Any calls now have event arguments passed.
3087 if (NumArgs >= 7) {
3088 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
3089 llvm::Type *EventPtrTy = EventTy->getPointerTo(
3090 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3091
3092 llvm::Value *NumEvents =
3093 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
3094 llvm::Value *EventList =
3095 E->getArg(4)->getType()->isArrayType()
3096 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
3097 : EmitScalarExpr(E->getArg(4));
3098 llvm::Value *ClkEvent = EmitScalarExpr(E->getArg(5));
3099 // Convert to generic address space.
3100 EventList = Builder.CreatePointerCast(EventList, EventPtrTy);
3101 ClkEvent = Builder.CreatePointerCast(ClkEvent, EventPtrTy);
3102 auto Info =
3103 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
3104 llvm::Value *Kernel =
3105 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3106 llvm::Value *Block =
3107 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3108
3109 std::vector<llvm::Type *> ArgTys = {
3110 QueueTy, Int32Ty, RangeTy, Int32Ty,
3111 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
3112
3113 std::vector<llvm::Value *> Args = {Queue, Flags, Range, NumEvents,
3114 EventList, ClkEvent, Kernel, Block};
3115
3116 if (NumArgs == 7) {
3117 // Has events but no variadics.
3118 Name = "__enqueue_kernel_basic_events";
3119 llvm::FunctionType *FTy = llvm::FunctionType::get(
3120 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3121 return RValue::get(
3122 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3123 llvm::ArrayRef<llvm::Value *>(Args)));
3124 }
3125 // Has event info and variadics
3126 // Pass the number of variadics to the runtime function too.
3127 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
3128 ArgTys.push_back(Int32Ty);
3129 Name = "__enqueue_kernel_events_vaargs";
3130
3131 auto *PtrToSizeArray = CreateArrayForSizeVar(7);
3132 Args.push_back(PtrToSizeArray);
3133 ArgTys.push_back(PtrToSizeArray->getType());
3134
3135 llvm::FunctionType *FTy = llvm::FunctionType::get(
3136 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3137 return RValue::get(
3138 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3139 llvm::ArrayRef<llvm::Value *>(Args)));
3140 }
3141 LLVM_FALLTHROUGH[[clang::fallthrough]];
3142 }
3143 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
3144 // parameter.
3145 case Builtin::BIget_kernel_work_group_size: {
3146 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3147 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3148 auto Info =
3149 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3150 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3151 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3152 return RValue::get(Builder.CreateCall(
3153 CGM.CreateRuntimeFunction(
3154 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3155 false),
3156 "__get_kernel_work_group_size_impl"),
3157 {Kernel, Arg}));
3158 }
3159 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
3160 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3161 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3162 auto Info =
3163 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3164 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3165 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3166 return RValue::get(Builder.CreateCall(
3167 CGM.CreateRuntimeFunction(
3168 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3169 false),
3170 "__get_kernel_preferred_work_group_multiple_impl"),
3171 {Kernel, Arg}));
3172 }
3173 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
3174 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
3175 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3176 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3177 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
3178 llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
3179 auto Info =
3180 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
3181 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3182 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3183 const char *Name =
3184 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
3185 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
3186 : "__get_kernel_sub_group_count_for_ndrange_impl";
3187 return RValue::get(Builder.CreateCall(
3188 CGM.CreateRuntimeFunction(
3189 llvm::FunctionType::get(
3190 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
3191 false),
3192 Name),
3193 {NDRange, Kernel, Block}));
3194 }
3195
3196 case Builtin::BI__builtin_store_half:
3197 case Builtin::BI__builtin_store_halff: {
3198 Value *Val = EmitScalarExpr(E->getArg(0));
3199 Address Address = EmitPointerWithAlignment(E->getArg(1));
3200 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
3201 return RValue::get(Builder.CreateStore(HalfVal, Address));
3202 }
3203 case Builtin::BI__builtin_load_half: {
3204 Address Address = EmitPointerWithAlignment(E->getArg(0));
3205 Value *HalfVal = Builder.CreateLoad(Address);
3206 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
3207 }
3208 case Builtin::BI__builtin_load_halff: {
3209 Address Address = EmitPointerWithAlignment(E->getArg(0));
3210 Value *HalfVal = Builder.CreateLoad(Address);
3211 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
3212 }
3213 case Builtin::BIprintf:
3214 if (getTarget().getTriple().isNVPTX())
3215 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
3216 break;
3217 case Builtin::BI__builtin_canonicalize:
3218 case Builtin::BI__builtin_canonicalizef:
3219 case Builtin::BI__builtin_canonicalizel:
3220 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
3221
3222 case Builtin::BI__builtin_thread_pointer: {
3223 if (!getContext().getTargetInfo().isTLSSupported())
3224 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
3225 // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
3226 break;
3227 }
3228 case Builtin::BI__builtin_os_log_format:
3229 return emitBuiltinOSLogFormat(*E);
3230
3231 case Builtin::BI__builtin_os_log_format_buffer_size: {
3232 analyze_os_log::OSLogBufferLayout Layout;
3233 analyze_os_log::computeOSLogBufferLayout(CGM.getContext(), E, Layout);
3234 return RValue::get(ConstantInt::get(ConvertType(E->getType()),
3235 Layout.size().getQuantity()));
3236 }
3237
3238 case Builtin::BI__xray_customevent: {
3239 if (!ShouldXRayInstrumentFunction())
3240 return RValue::getIgnored();
3241 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
3242 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
3243 return RValue::getIgnored();
3244
3245 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
3246 auto FTy = F->getFunctionType();
3247 auto Arg0 = E->getArg(0);
3248 auto Arg0Val = EmitScalarExpr(Arg0);
3249 auto Arg0Ty = Arg0->getType();
3250 auto PTy0 = FTy->getParamType(0);
3251 if (PTy0 != Arg0Val->getType()) {
3252 if (Arg0Ty->isArrayType())
3253 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
3254 else
3255 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
3256 }
3257 auto Arg1 = EmitScalarExpr(E->getArg(1));
3258 auto PTy1 = FTy->getParamType(1);
3259 if (PTy1 != Arg1->getType())
3260 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
3261 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
3262 }
3263
3264 case Builtin::BI__builtin_ms_va_start:
3265 case Builtin::BI__builtin_ms_va_end:
3266 return RValue::get(
3267 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
3268 BuiltinID == Builtin::BI__builtin_ms_va_start));
3269
3270 case Builtin::BI__builtin_ms_va_copy: {
3271 // Lower this manually. We can't reliably determine whether or not any
3272 // given va_copy() is for a Win64 va_list from the calling convention
3273 // alone, because it's legal to do this from a System V ABI function.
3274 // With opaque pointer types, we won't have enough information in LLVM
3275 // IR to determine this from the argument types, either. Best to do it
3276 // now, while we have enough information.
3277 Address DestAddr = EmitMSVAListRef(E->getArg(0));
3278 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
3279
3280 llvm::Type *BPP = Int8PtrPtrTy;
3281
3282 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
3283 DestAddr.getAlignment());
3284 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
3285 SrcAddr.getAlignment());
3286
3287 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
3288 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
3289 }
3290 }
3291
3292 // If this is an alias for a lib function (e.g. __builtin_sin), emit
3293 // the call using the normal call path, but using the unmangled
3294 // version of the function name.
3295 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
3296 return emitLibraryCall(*this, FD, E,
3297 CGM.getBuiltinLibFunction(FD, BuiltinID));
3298
3299 // If this is a predefined lib function (e.g. malloc), emit the call
3300 // using exactly the normal call path.
3301 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3302 return emitLibraryCall(*this, FD, E,
3303 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
3304
3305 // Check that a call to a target specific builtin has the correct target
3306 // features.
3307 // This is down here to avoid non-target specific builtins, however, if
3308 // generic builtins start to require generic target features then we
3309 // can move this up to the beginning of the function.
3310 checkTargetFeatures(E, FD);
3311
3312 // See if we have a target specific intrinsic.
3313 const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
3314 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
3315 StringRef Prefix =
3316 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
3317 if (!Prefix.empty()) {
3318 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
3319 // NOTE we dont need to perform a compatibility flag check here since the
3320 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
3321 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
3322 if (IntrinsicID == Intrinsic::not_intrinsic)
3323 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
3324 }
3325
3326 if (IntrinsicID != Intrinsic::not_intrinsic) {
3327 SmallVector<Value*, 16> Args;
3328
3329 // Find out if any arguments are required to be integer constant
3330 // expressions.
3331 unsigned ICEArguments = 0;
3332 ASTContext::GetBuiltinTypeError Error;
3333 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
3334 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3334, __extension__ __PRETTY_FUNCTION__))
;
3335
3336 Function *F = CGM.getIntrinsic(IntrinsicID);
3337 llvm::FunctionType *FTy = F->getFunctionType();
3338
3339 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
3340 Value *ArgValue;
3341 // If this is a normal argument, just emit it as a scalar.
3342 if ((ICEArguments & (1 << i)) == 0) {
3343 ArgValue = EmitScalarExpr(E->getArg(i));
3344 } else {
3345 // If this is required to be a constant, constant fold it so that we
3346 // know that the generated intrinsic gets a ConstantInt.
3347 llvm::APSInt Result;
3348 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
3349 assert(IsConst && "Constant arg isn't actually constant?")(static_cast <bool> (IsConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3349, __extension__ __PRETTY_FUNCTION__))
;
3350 (void)IsConst;
3351 ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
3352 }
3353
3354 // If the intrinsic arg type is different from the builtin arg type
3355 // we need to do a bit cast.
3356 llvm::Type *PTy = FTy->getParamType(i);
3357 if (PTy != ArgValue->getType()) {
3358 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3359, __extension__ __PRETTY_FUNCTION__))
3359 "Must be able to losslessly bit cast to param")(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3359, __extension__ __PRETTY_FUNCTION__))
;
3360 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
3361 }
3362
3363 Args.push_back(ArgValue);
3364 }
3365
3366 Value *V = Builder.CreateCall(F, Args);
3367 QualType BuiltinRetType = E->getType();
3368
3369 llvm::Type *RetTy = VoidTy;
3370 if (!BuiltinRetType->isVoidType())
3371 RetTy = ConvertType(BuiltinRetType);
3372
3373 if (RetTy != V->getType()) {
3374 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3375, __extension__ __PRETTY_FUNCTION__))
3375 "Must be able to losslessly bit cast result type")(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3375, __extension__ __PRETTY_FUNCTION__))
;
3376 V = Builder.CreateBitCast(V, RetTy);
3377 }
3378
3379 return RValue::get(V);
3380 }
3381
3382 // See if we have a target specific builtin that needs to be lowered.
3383 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
3384 return RValue::get(V);
3385
3386 ErrorUnsupported(E, "builtin function");
3387
3388 // Unknown builtin, for now just dump it out and return undef.
3389 return GetUndefRValue(E->getType());
3390}
3391
3392static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
3393 unsigned BuiltinID, const CallExpr *E,
3394 llvm::Triple::ArchType Arch) {
3395 switch (Arch) {
3396 case llvm::Triple::arm:
3397 case llvm::Triple::armeb:
3398 case llvm::Triple::thumb:
3399 case llvm::Triple::thumbeb:
3400 return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch);
3401 case llvm::Triple::aarch64:
3402 case llvm::Triple::aarch64_be:
3403 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
3404 case llvm::Triple::x86:
3405 case llvm::Triple::x86_64:
3406 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
3407 case llvm::Triple::ppc:
3408 case llvm::Triple::ppc64:
3409 case llvm::Triple::ppc64le:
3410 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
3411 case llvm::Triple::r600:
3412 case llvm::Triple::amdgcn:
3413 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
3414 case llvm::Triple::systemz:
3415 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
3416 case llvm::Triple::nvptx:
3417 case llvm::Triple::nvptx64:
3418 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
3419 case llvm::Triple::wasm32:
3420 case llvm::Triple::wasm64:
3421 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
3422 case llvm::Triple::hexagon:
3423 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
3424 default:
3425 return nullptr;
3426 }
3427}
3428
3429Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
3430 const CallExpr *E) {
3431 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
3432 assert(getContext().getAuxTargetInfo() && "Missing aux target info")(static_cast <bool> (getContext().getAuxTargetInfo() &&
"Missing aux target info") ? void (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3432, __extension__ __PRETTY_FUNCTION__))
;
3433 return EmitTargetArchBuiltinExpr(
3434 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
3435 getContext().getAuxTargetInfo()->getTriple().getArch());
3436 }
3437
3438 return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
3439 getTarget().getTriple().getArch());
3440}
3441
3442static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
3443 NeonTypeFlags TypeFlags,
3444 llvm::Triple::ArchType Arch,
3445 bool V1Ty=false) {
3446 int IsQuad = TypeFlags.isQuad();
3447 switch (TypeFlags.getEltType()) {
3448 case NeonTypeFlags::Int8:
3449 case NeonTypeFlags::Poly8:
3450 return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
3451 case NeonTypeFlags::Int16:
3452 case NeonTypeFlags::Poly16:
3453 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
3454 case NeonTypeFlags::Float16:
3455 // FIXME: Only AArch64 backend can so far properly handle half types.
3456 // Remove else part once ARM backend support for half is complete.
3457 if (Arch == llvm::Triple::aarch64)
3458 return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
3459 else
3460 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
3461 case NeonTypeFlags::Int32:
3462 return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
3463 case NeonTypeFlags::Int64:
3464 case NeonTypeFlags::Poly64:
3465 return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
3466 case NeonTypeFlags::Poly128:
3467 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
3468 // There is a lot of i128 and f128 API missing.
3469 // so we use v16i8 to represent poly128 and get pattern matched.
3470 return llvm::VectorType::get(CGF->Int8Ty, 16);
3471 case NeonTypeFlags::Float32:
3472 return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
3473 case NeonTypeFlags::Float64:
3474 return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
3475 }
3476 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3476)
;
3477}
3478
3479static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
3480 NeonTypeFlags IntTypeFlags) {
3481 int IsQuad = IntTypeFlags.isQuad();
3482 switch (IntTypeFlags.getEltType()) {
3483 case NeonTypeFlags::Int16:
3484 return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
3485 case NeonTypeFlags::Int32:
3486 return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
3487 case NeonTypeFlags::Int64:
3488 return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
3489 default:
3490 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3490)
;
3491 }
3492}
3493
3494Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
3495 unsigned nElts = V->getType()->getVectorNumElements();
3496 Value* SV = llvm::ConstantVector::getSplat(nElts, C);
3497 return Builder.CreateShuffleVector(V, V, SV, "lane");
3498}
3499
3500Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
3501 const char *name,
3502 unsigned shift, bool rightshift) {
3503 unsigned j = 0;
3504 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
3505 ai != ae; ++ai, ++j)
3506 if (shift > 0 && shift == j)
3507 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
3508 else
3509 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
3510
3511 return Builder.CreateCall(F, Ops, name);
3512}
3513
3514Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
3515 bool neg) {
3516 int SV = cast<ConstantInt>(V)->getSExtValue();
3517 return ConstantInt::get(Ty, neg ? -SV : SV);
3518}
3519
3520// \brief Right-shift a vector by a constant.
3521Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
3522 llvm::Type *Ty, bool usgn,
3523 const char *name) {
3524 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3525
3526 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
3527 int EltSize = VTy->getScalarSizeInBits();
3528
3529 Vec = Builder.CreateBitCast(Vec, Ty);
3530
3531 // lshr/ashr are undefined when the shift amount is equal to the vector
3532 // element size.
3533 if (ShiftAmt == EltSize) {
3534 if (usgn) {
3535 // Right-shifting an unsigned value by its size yields 0.
3536 return llvm::ConstantAggregateZero::get(VTy);
3537 } else {
3538 // Right-shifting a signed value by its size is equivalent
3539 // to a shift of size-1.
3540 --ShiftAmt;
3541 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
3542 }
3543 }
3544
3545 Shift = EmitNeonShiftVector(Shift, Ty, false);
3546 if (usgn)
3547 return Builder.CreateLShr(Vec, Shift, name);
3548 else
3549 return Builder.CreateAShr(Vec, Shift, name);
3550}
3551
3552enum {
3553 AddRetType = (1 << 0),
3554 Add1ArgType = (1 << 1),
3555 Add2ArgTypes = (1 << 2),
3556
3557 VectorizeRetType = (1 << 3),
3558 VectorizeArgTypes = (1 << 4),
3559
3560 InventFloatType = (1 << 5),
3561 UnsignedAlts = (1 << 6),
3562
3563 Use64BitVectors = (1 << 7),
3564 Use128BitVectors = (1 << 8),
3565
3566 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
3567 VectorRet = AddRetType | VectorizeRetType,
3568 VectorRetGetArgs01 =
3569 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
3570 FpCmpzModifiers =
3571 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
3572};
3573
3574namespace {
3575struct NeonIntrinsicInfo {
3576 const char *NameHint;
3577 unsigned BuiltinID;
3578 unsigned LLVMIntrinsic;
3579 unsigned AltLLVMIntrinsic;
3580 unsigned TypeModifier;
3581
3582 bool operator<(unsigned RHSBuiltinID) const {
3583 return BuiltinID < RHSBuiltinID;
3584 }
3585 bool operator<(const NeonIntrinsicInfo &TE) const {
3586 return BuiltinID < TE.BuiltinID;
3587 }
3588};
3589} // end anonymous namespace
3590
3591#define NEONMAP0(NameBase) \
3592 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
3593
3594#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
3595 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
3596 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
3597
3598#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
3599 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
3600 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
3601 TypeModifier }
3602
3603static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
3604 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
3605 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
3606 NEONMAP1(vabs_v, arm_neon_vabs, 0),
3607 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
3608 NEONMAP0(vaddhn_v),
3609 NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
3610 NEONMAP1(vaeseq_v, arm_neon_aese, 0),
3611 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
3612 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
3613 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
3614 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
3615 NEONMAP1(vcage_v, arm_neon_vacge, 0),
3616 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
3617 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
3618 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
3619 NEONMAP1(vcale_v, arm_neon_vacge, 0),
3620 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
3621 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
3622 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
3623 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
3624 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
3625 NEONMAP1(vclz_v, ctlz, Add1ArgType),
3626 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
3627 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
3628 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
3629 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
3630 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
3631 NEONMAP0(vcvt_f32_v),
3632 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
3633 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
3634 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
3635 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
3636 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
3637 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
3638 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
3639 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
3640 NEONMAP0(vcvt_s16_v),
3641 NEONMAP0(vcvt_s32_v),
3642 NEONMAP0(vcvt_s64_v),
3643 NEONMAP0(vcvt_u16_v),
3644 NEONMAP0(vcvt_u32_v),
3645 NEONMAP0(vcvt_u64_v),
3646 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
3647 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
3648 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
3649 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
3650 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
3651 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
3652 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
3653 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
3654 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
3655 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
3656 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
3657 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
3658 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
3659 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
3660 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
3661 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
3662 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
3663 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
3664 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
3665 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
3666 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
3667 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
3668 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
3669 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
3670 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
3671 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
3672 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
3673 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
3674 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
3675 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
3676 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
3677 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
3678 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
3679 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
3680 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
3681 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
3682 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
3683 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
3684 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
3685 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
3686 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
3687 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
3688 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
3689 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
3690 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
3691 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
3692 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
3693 NEONMAP0(vcvtq_f32_v),
3694 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
3695 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
3696 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
3697 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
3698 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
3699 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
3700 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
3701 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
3702 NEONMAP0(vcvtq_s16_v),
3703 NEONMAP0(vcvtq_s32_v),
3704 NEONMAP0(vcvtq_s64_v),
3705 NEONMAP0(vcvtq_u16_v),
3706 NEONMAP0(vcvtq_u32_v),
3707 NEONMAP0(vcvtq_u64_v),
3708 NEONMAP0(vext_v),
3709 NEONMAP0(vextq_v),
3710 NEONMAP0(vfma_v),
3711 NEONMAP0(vfmaq_v),
3712 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
3713 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
3714 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
3715 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
3716 NEONMAP0(vld1_dup_v),
3717 NEONMAP1(vld1_v, arm_neon_vld1, 0),
3718 NEONMAP0(vld1q_dup_v),
3719 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
3720 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
3721 NEONMAP1(vld2_v, arm_neon_vld2, 0),
3722 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
3723 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
3724 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
3725 NEONMAP1(vld3_v, arm_neon_vld3, 0),
3726 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
3727 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
3728 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
3729 NEONMAP1(vld4_v, arm_neon_vld4, 0),
3730 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
3731 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
3732 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
3733 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
3734 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
3735 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
3736 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
3737 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
3738 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
3739 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
3740 NEONMAP0(vmovl_v),
3741 NEONMAP0(vmovn_v),
3742 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
3743 NEONMAP0(vmull_v),
3744 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
3745 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
3746 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
3747 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
3748 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
3749 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
3750 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
3751 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
3752 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
3753 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
3754 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
3755 NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
3756 NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
3757 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
3758 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
3759 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
3760 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
3761 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
3762 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
3763 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
3764 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
3765 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
3766 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
3767 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
3768 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
3769 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
3770 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
3771 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
3772 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
3773 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
3774 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
3775 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
3776 NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
3777 NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
3778 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
3779 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
3780 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
3781 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
3782 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
3783 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
3784 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
3785 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
3786 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
3787 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
3788 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
3789 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
3790 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
3791 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
3792 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
3793 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
3794 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
3795 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
3796 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
3797 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
3798 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
3799 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
3800 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
3801 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
3802 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
3803 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
3804 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
3805 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
3806 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
3807 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
3808 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
3809 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
3810 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
3811 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
3812 NEONMAP0(vshl_n_v),
3813 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
3814 NEONMAP0(vshll_n_v),
3815 NEONMAP0(vshlq_n_v),
3816 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
3817 NEONMAP0(vshr_n_v),
3818 NEONMAP0(vshrn_n_v),
3819 NEONMAP0(vshrq_n_v),
3820 NEONMAP1(vst1_v, arm_neon_vst1, 0),
3821 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
3822 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
3823 NEONMAP1(vst2_v, arm_neon_vst2, 0),
3824 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
3825 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
3826 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
3827 NEONMAP1(vst3_v, arm_neon_vst3, 0),
3828 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
3829 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
3830 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
3831 NEONMAP1(vst4_v, arm_neon_vst4, 0),
3832 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
3833 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
3834 NEONMAP0(vsubhn_v),
3835 NEONMAP0(vtrn_v),
3836 NEONMAP0(vtrnq_v),
3837 NEONMAP0(vtst_v),
3838 NEONMAP0(vtstq_v),
3839 NEONMAP0(vuzp_v),
3840 NEONMAP0(vuzpq_v),
3841 NEONMAP0(vzip_v),
3842 NEONMAP0(vzipq_v)
3843};
3844
3845static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
3846 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
3847 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
3848 NEONMAP0(vaddhn_v),
3849 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
3850 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
3851 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
3852 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
3853 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
3854 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
3855 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
3856 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
3857 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
3858 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
3859 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
3860 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
3861 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
3862 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
3863 NEONMAP1(vclz_v, ctlz, Add1ArgType),
3864 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
3865 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
3866 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
3867 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
3868 NEONMAP0(vcvt_f16_v),
3869 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
3870 NEONMAP0(vcvt_f32_v),
3871 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3872 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3873 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3874 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
3875 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
3876 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
3877 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
3878 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
3879 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
3880 NEONMAP0(vcvtq_f16_v),
3881 NEONMAP0(vcvtq_f32_v),
3882 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3883 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3884 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
3885 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
3886 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
3887 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
3888 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
3889 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
3890 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
3891 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
3892 NEONMAP0(vext_v),
3893 NEONMAP0(vextq_v),
3894 NEONMAP0(vfma_v),
3895 NEONMAP0(vfmaq_v),
3896 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
3897 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
3898 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
3899 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
3900 NEONMAP0(vmovl_v),
3901 NEONMAP0(vmovn_v),
3902 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
3903 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
3904 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
3905 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
3906 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
3907 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
3908 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
3909 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
3910 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
3911 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
3912 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
3913 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
3914 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
3915 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
3916 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
3917 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
3918 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
3919 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
3920 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
3921 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
3922 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
3923 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
3924 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
3925 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
3926 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
3927 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
3928 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
3929 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
3930 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
3931 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
3932 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
3933 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
3934 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
3935 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
3936 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
3937 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
3938 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
3939 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
3940 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
3941 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
3942 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
3943 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
3944 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
3945 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
3946 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
3947 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
3948 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
3949 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
3950 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
3951 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
3952 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
3953 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
3954 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
3955 NEONMAP0(vshl_n_v),
3956 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
3957 NEONMAP0(vshll_n_v),
3958 NEONMAP0(vshlq_n_v),
3959 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
3960 NEONMAP0(vshr_n_v),
3961 NEONMAP0(vshrn_n_v),
3962 NEONMAP0(vshrq_n_v),
3963 NEONMAP0(vsubhn_v),
3964 NEONMAP0(vtst_v),
3965 NEONMAP0(vtstq_v),
3966};
3967
3968static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
3969 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
3970 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
3971 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
3972 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
3973 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
3974 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
3975 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
3976 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
3977 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
3978 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
3979 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
3980 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
3981 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
3982 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
3983 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
3984 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
3985 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
3986 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
3987 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
3988 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
3989 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
3990 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
3991 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
3992 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
3993 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
3994 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
3995 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
3996 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
3997 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
3998 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
3999 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4000 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4001 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4002 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4003 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4004 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4005 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4006 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4007 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4008 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4009 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4010 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4011 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4012 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4013 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4014 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4015 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4016 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4017 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
4018 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4019 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4020 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4021 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4022 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4023 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4024 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4025 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4026 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4027 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4028 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4029 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4030 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4031 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4032 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4033 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4034 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4035 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4036 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4037 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4038 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
4039 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
4040 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
4041 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4042 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4043 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4044 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4045 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4046 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4047 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4048 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4049 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4050 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4051 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4052 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
4053 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4054 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
4055 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4056 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4057 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
4058 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
4059 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4060 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4061 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
4062 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
4063 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
4064 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
4065 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
4066 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
4067 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
4068 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
4069 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4070 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4071 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4072 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4073 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
4074 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4075 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4076 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4077 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
4078 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4079 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
4080 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
4081 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
4082 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4083 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4084 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
4085 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
4086 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4087 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4088 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
4089 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
4090 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
4091 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
4092 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
4093 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
4094 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
4095 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
4096 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
4097 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
4098 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
4099 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4100 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4101 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4102 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4103 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
4104 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
4105 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4106 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4107 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4108 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4109 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
4110 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
4111 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
4112 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
4113 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
4114 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
4115 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
4116 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
4117 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
4118 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
4119 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
4120 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
4121 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
4122 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
4123 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
4124 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
4125 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
4126 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
4127 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
4128 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
4129 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
4130 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
4131 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
4132 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
4133 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
4134 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
4135 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
4136 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
4137 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
4138 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
4139 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
4140 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
4141 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
4142 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
4143 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
4144 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
4145 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
4146 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
4147 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
4148 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
4149 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
4150 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
4151 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
4152 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
4153 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
4154 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
4155 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
4156 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
4157 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
4158 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
4159 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
4160 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
4161 // FP16 scalar intrinisics go here.
4162 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
4163 NEONMAP1(vabsh_f16, aarch64_neon_abs, Add1ArgType),
4164 NEONMAP1(vcageh_f16, aarch64_neon_facge, AddRetType | Add1ArgType),
4165 NEONMAP1(vcagth_f16, aarch64_neon_facgt, AddRetType | Add1ArgType),
4166 NEONMAP1(vcaleh_f16, aarch64_neon_facge, AddRetType | Add1ArgType),
4167 NEONMAP1(vcalth_f16, aarch64_neon_facgt, AddRetType | Add1ArgType),
4168 NEONMAP1(vcvtah_s16_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4169 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4170 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4171 NEONMAP1(vcvtah_u16_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4172 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4173 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4174 NEONMAP1(vcvth_n_f16_s16, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4175 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4176 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4177 NEONMAP1(vcvth_n_f16_u16, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4178 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4179 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4180 NEONMAP1(vcvth_n_s16_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4181 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4182 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4183 NEONMAP1(vcvth_n_u16_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4184 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4185 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4186 NEONMAP1(vcvtmh_s16_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4187 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4188 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4189 NEONMAP1(vcvtmh_u16_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4190 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4191 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4192 NEONMAP1(vcvtnh_s16_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4193 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4194 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4195 NEONMAP1(vcvtnh_u16_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4196 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4197 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4198 NEONMAP1(vcvtph_s16_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4199 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4200 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4201 NEONMAP1(vcvtph_u16_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4202 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4203 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4204 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
4205 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
4206 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
4207 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
4208 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
4209};
4210
4211#undef NEONMAP0
4212#undef NEONMAP1
4213#undef NEONMAP2
4214
4215static bool NEONSIMDIntrinsicsProvenSorted = false;
4216
4217static bool AArch64SIMDIntrinsicsProvenSorted = false;
4218static bool AArch64SISDIntrinsicsProvenSorted = false;
4219
4220
4221static const NeonIntrinsicInfo *
4222findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
4223 unsigned BuiltinID, bool &MapProvenSorted) {
4224
4225#ifndef NDEBUG
4226 if (!MapProvenSorted) {
4227 assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)))(static_cast <bool> (std::is_sorted(std::begin(IntrinsicMap
), std::end(IntrinsicMap))) ? void (0) : __assert_fail ("std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap))"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4227, __extension__ __PRETTY_FUNCTION__))
;
4228 MapProvenSorted = true;
4229 }
4230#endif
4231
4232 const NeonIntrinsicInfo *Builtin =
4233 std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
4234
4235 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
4236 return Builtin;
4237
4238 return nullptr;
4239}
4240
4241Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4242 unsigned Modifier,
4243 llvm::Type *ArgType,
4244 const CallExpr *E) {
4245 int VectorSize = 0;
4246 if (Modifier & Use64BitVectors)
4247 VectorSize = 64;
4248 else if (Modifier & Use128BitVectors)
4249 VectorSize = 128;
4250
4251 // Return type.
4252 SmallVector<llvm::Type *, 3> Tys;
4253 if (Modifier & AddRetType) {
4254 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
4255 if (Modifier & VectorizeRetType)
4256 Ty = llvm::VectorType::get(
4257 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
4258
4259 Tys.push_back(Ty);
4260 }
4261
4262 // Arguments.
4263 if (Modifier & VectorizeArgTypes) {
4264 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
4265 ArgType = llvm::VectorType::get(ArgType, Elts);
4266 }
4267
4268 if (Modifier & (Add1ArgType | Add2ArgTypes))
4269 Tys.push_back(ArgType);
4270
4271 if (Modifier & Add2ArgTypes)
4272 Tys.push_back(ArgType);
4273
4274 if (Modifier & InventFloatType)
4275 Tys.push_back(FloatTy);
4276
4277 return CGM.getIntrinsic(IntrinsicID, Tys);
4278}
4279
4280static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
4281 const NeonIntrinsicInfo &SISDInfo,
4282 SmallVectorImpl<Value *> &Ops,
4283 const CallExpr *E) {
4284 unsigned BuiltinID = SISDInfo.BuiltinID;
4285 unsigned int Int = SISDInfo.LLVMIntrinsic;
4286 unsigned Modifier = SISDInfo.TypeModifier;
4287 const char *s = SISDInfo.NameHint;
4288
4289 switch (BuiltinID) {
4290 case NEON::BI__builtin_neon_vcled_s64:
4291 case NEON::BI__builtin_neon_vcled_u64:
4292 case NEON::BI__builtin_neon_vcles_f32:
4293 case NEON::BI__builtin_neon_vcled_f64:
4294 case NEON::BI__builtin_neon_vcltd_s64:
4295 case NEON::BI__builtin_neon_vcltd_u64:
4296 case NEON::BI__builtin_neon_vclts_f32:
4297 case NEON::BI__builtin_neon_vcltd_f64:
4298 case NEON::BI__builtin_neon_vcales_f32:
4299 case NEON::BI__builtin_neon_vcaled_f64:
4300 case NEON::BI__builtin_neon_vcalts_f32:
4301 case NEON::BI__builtin_neon_vcaltd_f64:
4302 // Only one direction of comparisons actually exist, cmle is actually a cmge
4303 // with swapped operands. The table gives us the right intrinsic but we
4304 // still need to do the swap.
4305 std::swap(Ops[0], Ops[1]);
4306 break;
4307 }
4308
4309 assert(Int && "Generic code assumes a valid intrinsic")(static_cast <bool> (Int && "Generic code assumes a valid intrinsic"
) ? void (0) : __assert_fail ("Int && \"Generic code assumes a valid intrinsic\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4309, __extension__ __PRETTY_FUNCTION__))
;
4310
4311 // Determine the type(s) of this overloaded AArch64 intrinsic.
4312 const Expr *Arg = E->getArg(0);
4313 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
4314 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
4315
4316 int j = 0;
4317 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
4318 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4319 ai != ae; ++ai, ++j) {
4320 llvm::Type *ArgTy = ai->getType();
4321 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
4322 ArgTy->getPrimitiveSizeInBits())
4323 continue;
4324
4325 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy())(static_cast <bool> (ArgTy->isVectorTy() && !
Ops[j]->getType()->isVectorTy()) ? void (0) : __assert_fail
("ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4325, __extension__ __PRETTY_FUNCTION__))
;
4326 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
4327 // it before inserting.
4328 Ops[j] =
4329 CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
4330 Ops[j] =
4331 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
4332 }
4333
4334 Value *Result = CGF.EmitNeonCall(F, Ops, s);
4335 llvm::Type *ResultType = CGF.ConvertType(E->getType());
4336 if (ResultType->getPrimitiveSizeInBits() <
4337 Result->getType()->getPrimitiveSizeInBits())
4338 return CGF.Builder.CreateExtractElement(Result, C0);
4339
4340 return CGF.Builder.CreateBitCast(Result, ResultType, s);
4341}
4342
4343Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
4344 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
4345 const char *NameHint, unsigned Modifier, const CallExpr *E,
4346 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
4347 llvm::Triple::ArchType Arch) {
4348 // Get the last argument, which specifies the vector type.
4349 llvm::APSInt NeonTypeConst;
4350 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
4351 if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
4352 return nullptr;
4353
4354 // Determine the type of this overloaded NEON intrinsic.
4355 NeonTypeFlags Type(NeonTypeConst.getZExtValue());
4356 bool Usgn = Type.isUnsigned();
4357 bool Quad = Type.isQuad();
4358
4359 llvm::VectorType *VTy = GetNeonType(this, Type, Arch);
4360 llvm::Type *Ty = VTy;
4361 if (!Ty)
4362 return nullptr;
4363
4364 auto getAlignmentValue32 = [&](Address addr) -> Value* {
4365 return Builder.getInt32(addr.getAlignment().getQuantity());
4366 };
4367
4368 unsigned Int = LLVMIntrinsic;
4369 if ((Modifier & UnsignedAlts) && !Usgn)
4370 Int = AltLLVMIntrinsic;
4371
4372 switch (BuiltinID) {
4373 default: break;
4374 case NEON::BI__builtin_neon_vabs_v:
4375 case NEON::BI__builtin_neon_vabsq_v:
4376 if (VTy->getElementType()->isFloatingPointTy())
4377 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
4378 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
4379 case NEON::BI__builtin_neon_vaddhn_v: {
4380 llvm::VectorType *SrcTy =
4381 llvm::VectorType::getExtendedElementVectorType(VTy);
4382
4383 // %sum = add <4 x i32> %lhs, %rhs
4384 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4385 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
4386 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
4387
4388 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
4389 Constant *ShiftAmt =
4390 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
4391 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
4392
4393 // %res = trunc <4 x i32> %high to <4 x i16>
4394 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
4395 }
4396 case NEON::BI__builtin_neon_vcale_v:
4397 case NEON::BI__builtin_neon_vcaleq_v:
4398 case NEON::BI__builtin_neon_vcalt_v:
4399 case NEON::BI__builtin_neon_vcaltq_v:
4400 std::swap(Ops[0], Ops[1]);
4401 LLVM_FALLTHROUGH[[clang::fallthrough]];
4402 case NEON::BI__builtin_neon_vcage_v:
4403 case NEON::BI__builtin_neon_vcageq_v:
4404 case NEON::BI__builtin_neon_vcagt_v:
4405 case NEON::BI__builtin_neon_vcagtq_v: {
4406 llvm::Type *Ty;
4407 switch (VTy->getScalarSizeInBits()) {
4408 default: llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4408)
;
4409 case 32:
4410 Ty = FloatTy;
4411 break;
4412 case 64:
4413 Ty = DoubleTy;
4414 break;
4415 case 16:
4416 Ty = HalfTy;
4417 break;
4418 }
4419 llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
4420 llvm::Type *Tys[] = { VTy, VecFlt };
4421 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
4422 return EmitNeonCall(F, Ops, NameHint);
4423 }
4424 case NEON::BI__builtin_neon_vclz_v:
4425 case NEON::BI__builtin_neon_vclzq_v:
4426 // We generate target-independent intrinsic, which needs a second argument
4427 // for whether or not clz of zero is undefined; on ARM it isn't.
4428 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
4429 break;
4430 case NEON::BI__builtin_neon_vcvt_f32_v:
4431 case NEON::BI__builtin_neon_vcvtq_f32_v:
4432 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4433 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), Arch);
4434 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
4435 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
4436 case NEON::BI__builtin_neon_vcvt_f16_v:
4437 case NEON::BI__builtin_neon_vcvtq_f16_v:
4438 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4439 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), Arch);
4440 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
4441 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
4442 case NEON::BI__builtin_neon_vcvt_n_f16_v:
4443 case NEON::BI__builtin_neon_vcvt_n_f32_v:
4444 case NEON::BI__builtin_neon_vcvt_n_f64_v:
4445 case NEON::BI__builtin_neon_vcvtq_n_f16_v:
4446 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
4447 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
4448 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
4449 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
4450 Function *F = CGM.getIntrinsic(Int, Tys);
4451 return EmitNeonCall(F, Ops, "vcvt_n");
4452 }
4453 case NEON::BI__builtin_neon_vcvt_n_s16_v:
4454 case NEON::BI__builtin_neon_vcvt_n_s32_v:
4455 case NEON::BI__builtin_neon_vcvt_n_u16_v:
4456 case NEON::BI__builtin_neon_vcvt_n_u32_v:
4457 case NEON::BI__builtin_neon_vcvt_n_s64_v:
4458 case NEON::BI__builtin_neon_vcvt_n_u64_v:
4459 case NEON::BI__builtin_neon_vcvtq_n_s16_v:
4460 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
4461 case NEON::BI__builtin_neon_vcvtq_n_u16_v:
4462 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
4463 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
4464 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
4465 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
4466 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
4467 return EmitNeonCall(F, Ops, "vcvt_n");
4468 }
4469 case NEON::BI__builtin_neon_vcvt_s32_v:
4470 case NEON::BI__builtin_neon_vcvt_u32_v:
4471 case NEON::BI__builtin_neon_vcvt_s64_v:
4472 case NEON::BI__builtin_neon_vcvt_u64_v:
4473 case NEON::BI__builtin_neon_vcvt_s16_v:
4474 case NEON::BI__builtin_neon_vcvt_u16_v:
4475 case NEON::BI__builtin_neon_vcvtq_s32_v:
4476 case NEON::BI__builtin_neon_vcvtq_u32_v:
4477 case NEON::BI__builtin_neon_vcvtq_s64_v:
4478 case NEON::BI__builtin_neon_vcvtq_u64_v:
4479 case NEON::BI__builtin_neon_vcvtq_s16_v:
4480 case NEON::BI__builtin_neon_vcvtq_u16_v: {
4481 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
4482 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
4483 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
4484 }
4485 case NEON::BI__builtin_neon_vcvta_s16_v:
4486 case NEON::BI__builtin_neon_vcvta_s32_v:
4487 case NEON::BI__builtin_neon_vcvta_s64_v:
4488 case NEON::BI__builtin_neon_vcvta_u32_v:
4489 case NEON::BI__builtin_neon_vcvta_u64_v:
4490 case NEON::BI__builtin_neon_vcvtaq_s16_v:
4491 case NEON::BI__builtin_neon_vcvtaq_s32_v:
4492 case NEON::BI__builtin_neon_vcvtaq_s64_v:
4493 case NEON::BI__builtin_neon_vcvtaq_u16_v:
4494 case NEON::BI__builtin_neon_vcvtaq_u32_v:
4495 case NEON::BI__builtin_neon_vcvtaq_u64_v:
4496 case NEON::BI__builtin_neon_vcvtn_s16_v:
4497 case NEON::BI__builtin_neon_vcvtn_s32_v:
4498 case NEON::BI__builtin_neon_vcvtn_s64_v:
4499 case NEON::BI__builtin_neon_vcvtn_u16_v:
4500 case NEON::BI__builtin_neon_vcvtn_u32_v:
4501 case NEON::BI__builtin_neon_vcvtn_u64_v:
4502 case NEON::BI__builtin_neon_vcvtnq_s16_v:
4503 case NEON::BI__builtin_neon_vcvtnq_s32_v:
4504 case NEON::BI__builtin_neon_vcvtnq_s64_v:
4505 case NEON::BI__builtin_neon_vcvtnq_u16_v:
4506 case NEON::BI__builtin_neon_vcvtnq_u32_v:
4507 case NEON::BI__builtin_neon_vcvtnq_u64_v:
4508 case NEON::BI__builtin_neon_vcvtp_s16_v:
4509 case NEON::BI__builtin_neon_vcvtp_s32_v:
4510 case NEON::BI__builtin_neon_vcvtp_s64_v:
4511 case NEON::BI__builtin_neon_vcvtp_u16_v:
4512 case NEON::BI__builtin_neon_vcvtp_u32_v:
4513 case NEON::BI__builtin_neon_vcvtp_u64_v:
4514 case NEON::BI__builtin_neon_vcvtpq_s16_v:
4515 case NEON::BI__builtin_neon_vcvtpq_s32_v:
4516 case NEON::BI__builtin_neon_vcvtpq_s64_v:
4517 case NEON::BI__builtin_neon_vcvtpq_u16_v:
4518 case NEON::BI__builtin_neon_vcvtpq_u32_v:
4519 case NEON::BI__builtin_neon_vcvtpq_u64_v:
4520 case NEON::BI__builtin_neon_vcvtm_s16_v:
4521 case NEON::BI__builtin_neon_vcvtm_s32_v:
4522 case NEON::BI__builtin_neon_vcvtm_s64_v:
4523 case NEON::BI__builtin_neon_vcvtm_u16_v:
4524 case NEON::BI__builtin_neon_vcvtm_u32_v:
4525 case NEON::BI__builtin_neon_vcvtm_u64_v:
4526 case NEON::BI__builtin_neon_vcvtmq_s16_v:
4527 case NEON::BI__builtin_neon_vcvtmq_s32_v:
4528 case NEON::BI__builtin_neon_vcvtmq_s64_v:
4529 case NEON::BI__builtin_neon_vcvtmq_u16_v:
4530 case NEON::BI__builtin_neon_vcvtmq_u32_v:
4531 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
4532 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
4533 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
4534 }
4535 case NEON::BI__builtin_neon_vext_v:
4536 case NEON::BI__builtin_neon_vextq_v: {
4537 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
4538 SmallVector<uint32_t, 16> Indices;
4539 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
4540 Indices.push_back(i+CV);
4541
4542 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4543 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4544 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
4545 }
4546 case NEON::BI__builtin_neon_vfma_v:
4547 case NEON::BI__builtin_neon_vfmaq_v: {
4548 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
4549 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4550 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4551 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4552
4553 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
4554 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
4555 }
4556 case NEON::BI__builtin_neon_vld1_v:
4557 case NEON::BI__builtin_neon_vld1q_v: {
4558 llvm::Type *Tys[] = {Ty, Int8PtrTy};
4559 Ops.push_back(getAlignmentValue32(PtrOp0));
4560 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
4561 }
4562 case NEON::BI__builtin_neon_vld2_v:
4563 case NEON::BI__builtin_neon_vld2q_v:
4564 case NEON::BI__builtin_neon_vld3_v:
4565 case NEON::BI__builtin_neon_vld3q_v:
4566 case NEON::BI__builtin_neon_vld4_v:
4567 case NEON::BI__builtin_neon_vld4q_v: {
4568 llvm::Type *Tys[] = {Ty, Int8PtrTy};
4569 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
4570 Value *Align = getAlignmentValue32(PtrOp1);
4571 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
4572 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4573 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4574 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
4575 }
4576 case NEON::BI__builtin_neon_vld1_dup_v:
4577 case NEON::BI__builtin_neon_vld1q_dup_v: {
4578 Value *V = UndefValue::get(Ty);
4579 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
4580 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
4581 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
4582 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
4583 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
4584 return EmitNeonSplat(Ops[0], CI);
4585 }
4586 case NEON::BI__builtin_neon_vld2_lane_v:
4587 case NEON::BI__builtin_neon_vld2q_lane_v:
4588 case NEON::BI__builtin_neon_vld3_lane_v:
4589 case NEON::BI__builtin_neon_vld3q_lane_v:
4590 case NEON::BI__builtin_neon_vld4_lane_v:
4591 case NEON::BI__builtin_neon_vld4q_lane_v: {
4592 llvm::Type *Tys[] = {Ty, Int8PtrTy};
4593 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
4594 for (unsigned I = 2; I < Ops.size() - 1; ++I)
4595 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
4596 Ops.push_back(getAlignmentValue32(PtrOp1));
4597 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
4598 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4599 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4600 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
4601 }
4602 case NEON::BI__builtin_neon_vmovl_v: {
4603 llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
4604 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
4605 if (Usgn)
4606 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
4607 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
4608 }
4609 case NEON::BI__builtin_neon_vmovn_v: {
4610 llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
4611 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
4612 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
4613 }
4614 case NEON::BI__builtin_neon_vmull_v:
4615 // FIXME: the integer vmull operations could be emitted in terms of pure
4616 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
4617 // hoisting the exts outside loops. Until global ISel comes along that can
4618 // see through such movement this leads to bad CodeGen. So we need an
4619 // intrinsic for now.
4620 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
4621 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
4622 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
4623 case NEON::BI__builtin_neon_vpadal_v:
4624 case NEON::BI__builtin_neon_vpadalq_v: {
4625 // The source operand type has twice as many elements of half the size.
4626 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
4627 llvm::Type *EltTy =
4628 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
4629 llvm::Type *NarrowTy =
4630 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
4631 llvm::Type *Tys[2] = { Ty, NarrowTy };
4632 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
4633 }
4634 case NEON::BI__builtin_neon_vpaddl_v:
4635 case NEON::BI__builtin_neon_vpaddlq_v: {
4636 // The source operand type has twice as many elements of half the size.
4637 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
4638 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
4639 llvm::Type *NarrowTy =
4640 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
4641 llvm::Type *Tys[2] = { Ty, NarrowTy };
4642 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
4643 }
4644 case NEON::BI__builtin_neon_vqdmlal_v:
4645 case NEON::BI__builtin_neon_vqdmlsl_v: {
4646 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
4647 Ops[1] =
4648 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
4649 Ops.resize(2);
4650 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
4651 }
4652 case NEON::BI__builtin_neon_vqshl_n_v:
4653 case NEON::BI__builtin_neon_vqshlq_n_v:
4654 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
4655 1, false);
4656 case NEON::BI__builtin_neon_vqshlu_n_v:
4657 case NEON::BI__builtin_neon_vqshluq_n_v:
4658 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
4659 1, false);
4660 case NEON::BI__builtin_neon_vrecpe_v:
4661 case NEON::BI__builtin_neon_vrecpeq_v:
4662 case NEON::BI__builtin_neon_vrsqrte_v:
4663 case NEON::BI__builtin_neon_vrsqrteq_v:
4664 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
4665 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
4666
4667 case NEON::BI__builtin_neon_vrshr_n_v:
4668 case NEON::BI__builtin_neon_vrshrq_n_v:
4669 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
4670 1, true);
4671 case NEON::BI__builtin_neon_vshl_n_v:
4672 case NEON::BI__builtin_neon_vshlq_n_v:
4673 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
4674 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
4675 "vshl_n");
4676 case NEON::BI__builtin_neon_vshll_n_v: {
4677 llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
4678 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4679 if (Usgn)
4680 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
4681 else
4682 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
4683 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
4684 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
4685 }
4686 case NEON::BI__builtin_neon_vshrn_n_v: {
4687 llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
4688 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4689 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
4690 if (Usgn)
4691 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
4692 else
4693 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
4694 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
4695 }
4696 case NEON::BI__builtin_neon_vshr_n_v:
4697 case NEON::BI__builtin_neon_vshrq_n_v:
4698 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
4699 case NEON::BI__builtin_neon_vst1_v:
4700 case NEON::BI__builtin_neon_vst1q_v:
4701 case NEON::BI__builtin_neon_vst2_v:
4702 case NEON::BI__builtin_neon_vst2q_v:
4703 case NEON::BI__builtin_neon_vst3_v:
4704 case NEON::BI__builtin_neon_vst3q_v:
4705 case NEON::BI__builtin_neon_vst4_v:
4706 case NEON::BI__builtin_neon_vst4q_v:
4707 case NEON::BI__builtin_neon_vst2_lane_v:
4708 case NEON::BI__builtin_neon_vst2q_lane_v:
4709 case NEON::BI__builtin_neon_vst3_lane_v:
4710 case NEON::BI__builtin_neon_vst3q_lane_v:
4711 case NEON::BI__builtin_neon_vst4_lane_v:
4712 case NEON::BI__builtin_neon_vst4q_lane_v: {
4713 llvm::Type *Tys[] = {Int8PtrTy, Ty};
4714 Ops.push_back(getAlignmentValue32(PtrOp0));
4715 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
4716 }
4717 case NEON::BI__builtin_neon_vsubhn_v: {
4718 llvm::VectorType *SrcTy =
4719 llvm::VectorType::getExtendedElementVectorType(VTy);
4720
4721 // %sum = add <4 x i32> %lhs, %rhs
4722 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4723 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
4724 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
4725
4726 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
4727 Constant *ShiftAmt =
4728 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
4729 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
4730
4731 // %res = trunc <4 x i32> %high to <4 x i16>
4732 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
4733 }
4734 case NEON::BI__builtin_neon_vtrn_v:
4735 case NEON::BI__builtin_neon_vtrnq_v: {
4736 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4737 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4738 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4739 Value *SV = nullptr;
4740
4741 for (unsigned vi = 0; vi != 2; ++vi) {
4742 SmallVector<uint32_t, 16> Indices;
4743 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
4744 Indices.push_back(i+vi);
4745 Indices.push_back(i+e+vi);
4746 }
4747 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
4748 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
4749 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
4750 }
4751 return SV;
4752 }
4753 case NEON::BI__builtin_neon_vtst_v:
4754 case NEON::BI__builtin_neon_vtstq_v: {
4755 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4756 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4757 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
4758 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
4759 ConstantAggregateZero::get(Ty));
4760 return Builder.CreateSExt(Ops[0], Ty, "vtst");
4761 }
4762 case NEON::BI__builtin_neon_vuzp_v:
4763 case NEON::BI__builtin_neon_vuzpq_v: {
4764 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4765 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4766 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4767 Value *SV = nullptr;
4768
4769 for (unsigned vi = 0; vi != 2; ++vi) {
4770 SmallVector<uint32_t, 16> Indices;
4771 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
4772 Indices.push_back(2*i+vi);
4773
4774 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
4775 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
4776 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
4777 }
4778 return SV;
4779 }
4780 case NEON::BI__builtin_neon_vzip_v:
4781 case NEON::BI__builtin_neon_vzipq_v: {
4782 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4783 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4784 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4785 Value *SV = nullptr;
4786
4787 for (unsigned vi = 0; vi != 2; ++vi) {
4788 SmallVector<uint32_t, 16> Indices;
4789 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
4790 Indices.push_back((i + vi*e) >> 1);
4791 Indices.push_back(((i + vi*e) >> 1)+e);
4792 }
4793 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
4794 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
4795 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
4796 }
4797 return SV;
4798 }
4799 }
4800
4801 assert(Int && "Expected valid intrinsic number")(static_cast <bool> (Int && "Expected valid intrinsic number"
) ? void (0) : __assert_fail ("Int && \"Expected valid intrinsic number\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4801, __extension__ __PRETTY_FUNCTION__))
;
4802
4803 // Determine the type(s) of this overloaded AArch64 intrinsic.
4804 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
4805
4806 Value *Result = EmitNeonCall(F, Ops, NameHint);
4807 llvm::Type *ResultType = ConvertType(E->getType());
4808 // AArch64 intrinsic one-element vector type cast to
4809 // scalar type expected by the builtin
4810 return Builder.CreateBitCast(Result, ResultType, NameHint);
4811}
4812
4813Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
4814 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
4815 const CmpInst::Predicate Ip, const Twine &Name) {
4816 llvm::Type *OTy = Op->getType();
4817
4818 // FIXME: this is utterly horrific. We should not be looking at previous
4819 // codegen context to find out what needs doing. Unfortunately TableGen
4820 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
4821 // (etc).
4822 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
4823 OTy = BI->getOperand(0)->getType();
4824
4825 Op = Builder.CreateBitCast(Op, OTy);
4826 if (OTy->getScalarType()->isFloatingPointTy()) {
4827 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
4828 } else {
4829 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
4830 }
4831 return Builder.CreateSExt(Op, Ty, Name);
4832}
4833
4834static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
4835 Value *ExtOp, Value *IndexOp,
4836 llvm::Type *ResTy, unsigned IntID,
4837 const char *Name) {
4838 SmallVector<Value *, 2> TblOps;
4839 if (ExtOp)
4840 TblOps.push_back(ExtOp);
4841
4842 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
4843 SmallVector<uint32_t, 16> Indices;
4844 llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
4845 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
4846 Indices.push_back(2*i);
4847 Indices.push_back(2*i+1);
4848 }
4849
4850 int PairPos = 0, End = Ops.size() - 1;
4851 while (PairPos < End) {
4852 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
4853 Ops[PairPos+1], Indices,
4854 Name));
4855 PairPos += 2;
4856 }
4857
4858 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
4859 // of the 128-bit lookup table with zero.
4860 if (PairPos == End) {
4861 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
4862 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
4863 ZeroTbl, Indices, Name));
4864 }
4865
4866 Function *TblF;
4867 TblOps.push_back(IndexOp);
4868 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
4869
4870 return CGF.EmitNeonCall(TblF, TblOps, Name);
4871}
4872
4873Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
4874 unsigned Value;
4875 switch (BuiltinID) {
4876 default:
4877 return nullptr;
4878 case ARM::BI__builtin_arm_nop:
4879 Value = 0;
4880 break;
4881 case ARM::BI__builtin_arm_yield:
4882 case ARM::BI__yield:
4883 Value = 1;
4884 break;
4885 case ARM::BI__builtin_arm_wfe:
4886 case ARM::BI__wfe:
4887 Value = 2;
4888 break;
4889 case ARM::BI__builtin_arm_wfi:
4890 case ARM::BI__wfi:
4891 Value = 3;
4892 break;
4893 case ARM::BI__builtin_arm_sev:
4894 case ARM::BI__sev:
4895 Value = 4;
4896 break;
4897 case ARM::BI__builtin_arm_sevl:
4898 case ARM::BI__sevl:
4899 Value = 5;
4900 break;
4901 }
4902
4903 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
4904 llvm::ConstantInt::get(Int32Ty, Value));
4905}
4906
4907// Generates the IR for the read/write special register builtin,
4908// ValueType is the type of the value that is to be written or read,
4909// RegisterType is the type of the register being written to or read from.
4910static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
4911 const CallExpr *E,
4912 llvm::Type *RegisterType,
4913 llvm::Type *ValueType,
4914 bool IsRead,
4915 StringRef SysReg = "") {
4916 // write and register intrinsics only support 32 and 64 bit operations.
4917 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4918, __extension__ __PRETTY_FUNCTION__))
4918 && "Unsupported size for register.")(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4918, __extension__ __PRETTY_FUNCTION__))
;
4919
4920 CodeGen::CGBuilderTy &Builder = CGF.Builder;
4921 CodeGen::CodeGenModule &CGM = CGF.CGM;
4922 LLVMContext &Context = CGM.getLLVMContext();
4923
4924 if (SysReg.empty()) {
4925 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
4926 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
4927 }
4928
4929 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
4930 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
4931 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
4932
4933 llvm::Type *Types[] = { RegisterType };
4934
4935 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
4936 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4937, __extension__ __PRETTY_FUNCTION__))
4937 && "Can't fit 64-bit value in 32-bit register")(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4937, __extension__ __PRETTY_FUNCTION__))
;
4938
4939 if (IsRead) {
4940 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
4941 llvm::Value *Call = Builder.CreateCall(F, Metadata);
4942
4943 if (MixedTypes)
4944 // Read into 64 bit register and then truncate result to 32 bit.
4945 return Builder.CreateTrunc(Call, ValueType);
4946
4947 if (ValueType->isPointerTy())
4948 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
4949 return Builder.CreateIntToPtr(Call, ValueType);
4950
4951 return Call;
4952 }
4953
4954 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
4955 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
4956 if (MixedTypes) {
4957 // Extend 32 bit write value to 64 bit to pass to write.
4958 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
4959 return Builder.CreateCall(F, { Metadata, ArgValue });
4960 }
4961
4962 if (ValueType->isPointerTy()) {
4963 // Have VoidPtrTy ArgValue but want to return an i32/i64.
4964 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
4965 return Builder.CreateCall(F, { Metadata, ArgValue });
4966 }
4967
4968 return Builder.CreateCall(F, { Metadata, ArgValue });
4969}
4970
4971/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
4972/// argument that specifies the vector type.
4973static bool HasExtraNeonArgument(unsigned BuiltinID) {
4974 switch (BuiltinID) {
4975 default: break;
4976 case NEON::BI__builtin_neon_vget_lane_i8:
4977 case NEON::BI__builtin_neon_vget_lane_i16:
4978 case NEON::BI__builtin_neon_vget_lane_i32:
4979 case NEON::BI__builtin_neon_vget_lane_i64:
4980 case NEON::BI__builtin_neon_vget_lane_f32:
4981 case NEON::BI__builtin_neon_vgetq_lane_i8:
4982 case NEON::BI__builtin_neon_vgetq_lane_i16:
4983 case NEON::BI__builtin_neon_vgetq_lane_i32:
4984 case NEON::BI__builtin_neon_vgetq_lane_i64:
4985 case NEON::BI__builtin_neon_vgetq_lane_f32:
4986 case NEON::BI__builtin_neon_vset_lane_i8:
4987 case NEON::BI__builtin_neon_vset_lane_i16:
4988 case NEON::BI__builtin_neon_vset_lane_i32:
4989 case NEON::BI__builtin_neon_vset_lane_i64:
4990 case NEON::BI__builtin_neon_vset_lane_f32:
4991 case NEON::BI__builtin_neon_vsetq_lane_i8:
4992 case NEON::BI__builtin_neon_vsetq_lane_i16:
4993 case NEON::BI__builtin_neon_vsetq_lane_i32:
4994 case NEON::BI__builtin_neon_vsetq_lane_i64:
4995 case NEON::BI__builtin_neon_vsetq_lane_f32:
4996 case NEON::BI__builtin_neon_vsha1h_u32:
4997 case NEON::BI__builtin_neon_vsha1cq_u32:
4998 case NEON::BI__builtin_neon_vsha1pq_u32:
4999 case NEON::BI__builtin_neon_vsha1mq_u32:
5000 case clang::ARM::BI_MoveToCoprocessor:
5001 case clang::ARM::BI_MoveToCoprocessor2:
5002 return false;
5003 }
5004 return true;
5005}
5006
5007Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
5008 const CallExpr *E,
5009 llvm::Triple::ArchType Arch) {
5010 if (auto Hint = GetValueForARMHint(BuiltinID))
5011 return Hint;
5012
5013 if (BuiltinID == ARM::BI__emit) {
5014 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
5015 llvm::FunctionType *FTy =
5016 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
5017
5018 APSInt Value;
5019 if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext()))
5020 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5020)
;
5021
5022 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
5023
5024 llvm::InlineAsm *Emit =
5025 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
5026 /*SideEffects=*/true)
5027 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
5028 /*SideEffects=*/true);
5029
5030 return Builder.CreateCall(Emit);
5031 }
5032
5033 if (BuiltinID == ARM::BI__builtin_arm_dbg) {
5034 Value *Option = EmitScalarExpr(E->getArg(0));
5035 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
5036 }
5037
5038 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
5039 Value *Address = EmitScalarExpr(E->getArg(0));
5040 Value *RW = EmitScalarExpr(E->getArg(1));
5041 Value *IsData = EmitScalarExpr(E->getArg(2));
5042
5043 // Locality is not supported on ARM target
5044 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
5045
5046 Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
5047 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
5048 }
5049
5050 if (BuiltinID == ARM::BI__builtin_arm_rbit) {
5051 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
5052 return Builder.CreateCall(
5053 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
5054 }
5055
5056 if (BuiltinID == ARM::BI__clear_cache) {
5057 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5057, __extension__ __PRETTY_FUNCTION__))
;
5058 const FunctionDecl *FD = E->getDirectCallee();
5059 Value *Ops[2];
5060 for (unsigned i = 0; i < 2; i++)
5061 Ops[i] = EmitScalarExpr(E->getArg(i));
5062 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
5063 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
5064 StringRef Name = FD->getName();
5065 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
5066 }
5067
5068 if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
5069 BuiltinID == ARM::BI__builtin_arm_mcrr2) {
5070 Function *F;
5071
5072 switch (BuiltinID) {
5073 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5073)
;
5074 case ARM::BI__builtin_arm_mcrr:
5075 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
5076 break;
5077 case ARM::BI__builtin_arm_mcrr2:
5078 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
5079 break;
5080 }
5081
5082 // MCRR{2} instruction has 5 operands but
5083 // the intrinsic has 4 because Rt and Rt2
5084 // are represented as a single unsigned 64
5085 // bit integer in the intrinsic definition
5086 // but internally it's represented as 2 32
5087 // bit integers.
5088
5089 Value *Coproc = EmitScalarExpr(E->getArg(0));
5090 Value *Opc1 = EmitScalarExpr(E->getArg(1));
5091 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
5092 Value *CRm = EmitScalarExpr(E->getArg(3));
5093
5094 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
5095 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
5096 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
5097 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
5098
5099 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
5100 }
5101
5102 if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
5103 BuiltinID == ARM::BI__builtin_arm_mrrc2) {
5104 Function *F;
5105
5106 switch (BuiltinID) {
5107 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5107)
;
5108 case ARM::BI__builtin_arm_mrrc:
5109 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
5110 break;
5111 case ARM::BI__builtin_arm_mrrc2:
5112 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
5113 break;
5114 }
5115
5116 Value *Coproc = EmitScalarExpr(E->getArg(0));
5117 Value *Opc1 = EmitScalarExpr(E->getArg(1));
5118 Value *CRm = EmitScalarExpr(E->getArg(2));
5119 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
5120
5121 // Returns an unsigned 64 bit integer, represented
5122 // as two 32 bit integers.
5123
5124 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
5125 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
5126 Rt = Builder.CreateZExt(Rt, Int64Ty);
5127 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
5128
5129 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
5130 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
5131 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
5132
5133 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
5134 }
5135
5136 if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
5137 ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
5138 BuiltinID == ARM::BI__builtin_arm_ldaex) &&
5139 getContext().getTypeSize(E->getType()) == 64) ||
5140 BuiltinID == ARM::BI__ldrexd) {
5141 Function *F;
5142
5143 switch (BuiltinID) {
5144 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5144)
;
5145 case ARM::BI__builtin_arm_ldaex:
5146 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
5147 break;
5148 case ARM::BI__builtin_arm_ldrexd:
5149 case ARM::BI__builtin_arm_ldrex:
5150 case ARM::BI__ldrexd:
5151 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
5152 break;
5153 }
5154
5155 Value *LdPtr = EmitScalarExpr(E->getArg(0));
5156 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
5157 "ldrexd");
5158
5159 Value *Val0 = Builder.CreateExtractValue(Val, 1);
5160 Value *Val1 = Builder.CreateExtractValue(Val, 0);
5161 Val0 = Builder.CreateZExt(Val0, Int64Ty);
5162 Val1 = Builder.CreateZExt(Val1, Int64Ty);
5163
5164 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
5165 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
5166 Val = Builder.CreateOr(Val, Val1);
5167 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
5168 }
5169
5170 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
5171 BuiltinID == ARM::BI__builtin_arm_ldaex) {
5172 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
5173
5174 QualType Ty = E->getType();
5175 llvm::Type *RealResTy = ConvertType(Ty);
5176 llvm::Type *PtrTy = llvm::IntegerType::get(
5177 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
5178 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
5179
5180 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
5181 ? Intrinsic::arm_ldaex
5182 : Intrinsic::arm_ldrex,
5183 PtrTy);
5184 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
5185
5186 if (RealResTy->isPointerTy())
5187 return Builder.CreateIntToPtr(Val, RealResTy);
5188 else {
5189 llvm::Type *IntResTy = llvm::IntegerType::get(
5190 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
5191 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
5192 return Builder.CreateBitCast(Val, RealResTy);
5193 }
5194 }
5195
5196 if (BuiltinID == ARM::BI__builtin_arm_strexd ||
5197 ((BuiltinID == ARM::BI__builtin_arm_stlex ||
5198 BuiltinID == ARM::BI__builtin_arm_strex) &&
5199 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
5200 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
5201 ? Intrinsic::arm_stlexd
5202 : Intrinsic::arm_strexd);
5203 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
5204
5205 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
5206 Value *Val = EmitScalarExpr(E->getArg(0));
5207 Builder.CreateStore(Val, Tmp);
5208
5209 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
5210 Val = Builder.CreateLoad(LdPtr);
5211
5212 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
5213 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
5214 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
5215 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
5216 }
5217
5218 if (BuiltinID == ARM::BI__builtin_arm_strex ||
5219 BuiltinID == ARM::BI__builtin_arm_stlex) {
5220 Value *StoreVal = EmitScalarExpr(E->getArg(0));
5221 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
5222
5223 QualType Ty = E->getArg(0)->getType();
5224 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
5225 getContext().getTypeSize(Ty));
5226 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
5227
5228 if (StoreVal->getType()->isPointerTy())
5229 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
5230 else {
5231 llvm::Type *IntTy = llvm::IntegerType::get(
5232 getLLVMContext(),
5233 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
5234 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
5235 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
5236 }
5237
5238 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
5239 ? Intrinsic::arm_stlex
5240 : Intrinsic::arm_strex,
5241 StoreAddr->getType());
5242 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
5243 }
5244
5245 switch (BuiltinID) {
5246 case ARM::BI__iso_volatile_load8:
5247 case ARM::BI__iso_volatile_load16:
5248 case ARM::BI__iso_volatile_load32:
5249 case ARM::BI__iso_volatile_load64: {
5250 Value *Ptr = EmitScalarExpr(E->getArg(0));
5251 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
5252 CharUnits LoadSize = getContext().getTypeSizeInChars(ElTy);
5253 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
5254 LoadSize.getQuantity() * 8);
5255 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
5256 llvm::LoadInst *Load =
5257 Builder.CreateAlignedLoad(Ptr, LoadSize);
5258 Load->setVolatile(true);
5259 return Load;
5260 }
5261 case ARM::BI__iso_volatile_store8:
5262 case ARM::BI__iso_volatile_store16:
5263 case ARM::BI__iso_volatile_store32:
5264 case ARM::BI__iso_volatile_store64: {
5265 Value *Ptr = EmitScalarExpr(E->getArg(0));
5266 Value *Value = EmitScalarExpr(E->getArg(1));
5267 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
5268 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
5269 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
5270 StoreSize.getQuantity() * 8);
5271 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
5272 llvm::StoreInst *Store =
5273 Builder.CreateAlignedStore(Value, Ptr,
5274 StoreSize);
5275 Store->setVolatile(true);
5276 return Store;
5277 }
5278 }
5279
5280 if (BuiltinID == ARM::BI__builtin_arm_clrex) {
5281 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
5282 return Builder.CreateCall(F);
5283 }
5284
5285 // CRC32
5286 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
5287 switch (BuiltinID) {
5288 case ARM::BI__builtin_arm_crc32b:
5289 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
5290 case ARM::BI__builtin_arm_crc32cb:
5291 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
5292 case ARM::BI__builtin_arm_crc32h:
5293 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
5294 case ARM::BI__builtin_arm_crc32ch:
5295 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
5296 case ARM::BI__builtin_arm_crc32w:
5297 case ARM::BI__builtin_arm_crc32d:
5298 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
5299 case ARM::BI__builtin_arm_crc32cw:
5300 case ARM::BI__builtin_arm_crc32cd:
5301 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
5302 }
5303
5304 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
5305 Value *Arg0 = EmitScalarExpr(E->getArg(0));
5306 Value *Arg1 = EmitScalarExpr(E->getArg(1));
5307
5308 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
5309 // intrinsics, hence we need different codegen for these cases.
5310 if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
5311 BuiltinID == ARM::BI__builtin_arm_crc32cd) {
5312 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
5313 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
5314 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
5315 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
5316
5317 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
5318 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
5319 return Builder.CreateCall(F, {Res, Arg1b});
5320 } else {
5321 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
5322
5323 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
5324 return Builder.CreateCall(F, {Arg0, Arg1});
5325 }
5326 }
5327
5328 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
5329 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
5330 BuiltinID == ARM::BI__builtin_arm_rsrp ||
5331 BuiltinID == ARM::BI__builtin_arm_wsr ||
5332 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
5333 BuiltinID == ARM::BI__builtin_arm_wsrp) {
5334
5335 bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
5336 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
5337 BuiltinID == ARM::BI__builtin_arm_rsrp;
5338
5339 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
5340 BuiltinID == ARM::BI__builtin_arm_wsrp;
5341
5342 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
5343 BuiltinID == ARM::BI__builtin_arm_wsr64;
5344
5345 llvm::Type *ValueType;
5346 llvm::Type *RegisterType;
5347 if (IsPointerBuiltin) {
5348 ValueType = VoidPtrTy;
5349 RegisterType = Int32Ty;
5350 } else if (Is64Bit) {
5351 ValueType = RegisterType = Int64Ty;
5352 } else {
5353 ValueType = RegisterType = Int32Ty;
5354 }
5355
5356 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
5357 }
5358
5359 // Find out if any arguments are required to be integer constant
5360 // expressions.
5361 unsigned ICEArguments = 0;
5362 ASTContext::GetBuiltinTypeError Error;
5363 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5364 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5364, __extension__ __PRETTY_FUNCTION__))
;
5365
5366 auto getAlignmentValue32 = [&](Address addr) -> Value* {
5367 return Builder.getInt32(addr.getAlignment().getQuantity());
5368 };
5369
5370 Address PtrOp0 = Address::invalid();
5371 Address PtrOp1 = Address::invalid();
5372 SmallVector<Value*, 4> Ops;
5373 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
5374 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
5375 for (unsigned i = 0, e = NumArgs; i != e; i++) {
5376 if (i == 0) {
5377 switch (BuiltinID) {
5378 case NEON::BI__builtin_neon_vld1_v:
5379 case NEON::BI__builtin_neon_vld1q_v:
5380 case NEON::BI__builtin_neon_vld1q_lane_v:
5381 case NEON::BI__builtin_neon_vld1_lane_v:
5382 case NEON::BI__builtin_neon_vld1_dup_v:
5383 case NEON::BI__builtin_neon_vld1q_dup_v:
5384 case NEON::BI__builtin_neon_vst1_v:
5385 case NEON::BI__builtin_neon_vst1q_v:
5386 case NEON::BI__builtin_neon_vst1q_lane_v:
5387 case NEON::BI__builtin_neon_vst1_lane_v:
5388 case NEON::BI__builtin_neon_vst2_v:
5389 case NEON::BI__builtin_neon_vst2q_v:
5390 case NEON::BI__builtin_neon_vst2_lane_v:
5391 case NEON::BI__builtin_neon_vst2q_lane_v:
5392 case NEON::BI__builtin_neon_vst3_v:
5393 case NEON::BI__builtin_neon_vst3q_v:
5394 case NEON::BI__builtin_neon_vst3_lane_v:
5395 case NEON::BI__builtin_neon_vst3q_lane_v:
5396 case NEON::BI__builtin_neon_vst4_v:
5397 case NEON::BI__builtin_neon_vst4q_v:
5398 case NEON::BI__builtin_neon_vst4_lane_v:
5399 case NEON::BI__builtin_neon_vst4q_lane_v:
5400 // Get the alignment for the argument in addition to the value;
5401 // we'll use it later.
5402 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
5403 Ops.push_back(PtrOp0.getPointer());
5404 continue;
5405 }
5406 }
5407 if (i == 1) {
5408 switch (BuiltinID) {
5409 case NEON::BI__builtin_neon_vld2_v:
5410 case NEON::BI__builtin_neon_vld2q_v:
5411 case NEON::BI__builtin_neon_vld3_v:
5412 case NEON::BI__builtin_neon_vld3q_v:
5413 case NEON::BI__builtin_neon_vld4_v:
5414 case NEON::BI__builtin_neon_vld4q_v:
5415 case NEON::BI__builtin_neon_vld2_lane_v:
5416 case NEON::BI__builtin_neon_vld2q_lane_v:
5417 case NEON::BI__builtin_neon_vld3_lane_v:
5418 case NEON::BI__builtin_neon_vld3q_lane_v:
5419 case NEON::BI__builtin_neon_vld4_lane_v:
5420 case NEON::BI__builtin_neon_vld4q_lane_v:
5421 case NEON::BI__builtin_neon_vld2_dup_v:
5422 case NEON::BI__builtin_neon_vld3_dup_v:
5423 case NEON::BI__builtin_neon_vld4_dup_v:
5424 // Get the alignment for the argument in addition to the value;
5425 // we'll use it later.
5426 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
5427 Ops.push_back(PtrOp1.getPointer());
5428 continue;
5429 }
5430 }
5431
5432 if ((ICEArguments & (1 << i)) == 0) {
5433 Ops.push_back(EmitScalarExpr(E->getArg(i)));
5434 } else {
5435 // If this is required to be a constant, constant fold it so that we know
5436 // that the generated intrinsic gets a ConstantInt.
5437 llvm::APSInt Result;
5438 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
5439 assert(IsConst && "Constant arg isn't actually constant?")(static_cast <bool> (IsConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5439, __extension__ __PRETTY_FUNCTION__))
; (void)IsConst;
5440 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
5441 }
5442 }
5443
5444 switch (BuiltinID) {
5445 default: break;
5446
5447 case NEON::BI__builtin_neon_vget_lane_i8:
5448 case NEON::BI__builtin_neon_vget_lane_i16:
5449 case NEON::BI__builtin_neon_vget_lane_i32:
5450 case NEON::BI__builtin_neon_vget_lane_i64:
5451 case NEON::BI__builtin_neon_vget_lane_f32:
5452 case NEON::BI__builtin_neon_vgetq_lane_i8:
5453 case NEON::BI__builtin_neon_vgetq_lane_i16:
5454 case NEON::BI__builtin_neon_vgetq_lane_i32:
5455 case NEON::BI__builtin_neon_vgetq_lane_i64:
5456 case NEON::BI__builtin_neon_vgetq_lane_f32:
5457 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
5458
5459 case NEON::BI__builtin_neon_vset_lane_i8:
5460 case NEON::BI__builtin_neon_vset_lane_i16:
5461 case NEON::BI__builtin_neon_vset_lane_i32:
5462 case NEON::BI__builtin_neon_vset_lane_i64:
5463 case NEON::BI__builtin_neon_vset_lane_f32:
5464 case NEON::BI__builtin_neon_vsetq_lane_i8:
5465 case NEON::BI__builtin_neon_vsetq_lane_i16:
5466 case NEON::BI__builtin_neon_vsetq_lane_i32:
5467 case NEON::BI__builtin_neon_vsetq_lane_i64:
5468 case NEON::BI__builtin_neon_vsetq_lane_f32:
5469 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
5470
5471 case NEON::BI__builtin_neon_vsha1h_u32:
5472 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
5473 "vsha1h");
5474 case NEON::BI__builtin_neon_vsha1cq_u32:
5475 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
5476 "vsha1h");
5477 case NEON::BI__builtin_neon_vsha1pq_u32:
5478 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
5479 "vsha1h");
5480 case NEON::BI__builtin_neon_vsha1mq_u32:
5481 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
5482 "vsha1h");
5483
5484 // The ARM _MoveToCoprocessor builtins put the input register value as
5485 // the first argument, but the LLVM intrinsic expects it as the third one.
5486 case ARM::BI_MoveToCoprocessor:
5487 case ARM::BI_MoveToCoprocessor2: {
5488 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
5489 Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
5490 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
5491 Ops[3], Ops[4], Ops[5]});
5492 }
5493 case ARM::BI_BitScanForward:
5494 case ARM::BI_BitScanForward64:
5495 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
5496 case ARM::BI_BitScanReverse:
5497 case ARM::BI_BitScanReverse64:
5498 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
5499
5500 case ARM::BI_InterlockedAnd64:
5501 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
5502 case ARM::BI_InterlockedExchange64:
5503 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
5504 case ARM::BI_InterlockedExchangeAdd64:
5505 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
5506 case ARM::BI_InterlockedExchangeSub64:
5507 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
5508 case ARM::BI_InterlockedOr64:
5509 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
5510 case ARM::BI_InterlockedXor64:
5511 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
5512 case ARM::BI_InterlockedDecrement64:
5513 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
5514 case ARM::BI_InterlockedIncrement64:
5515 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
5516 }
5517
5518 // Get the last argument, which specifies the vector type.
5519 assert(HasExtraArg)(static_cast <bool> (HasExtraArg) ? void (0) : __assert_fail
("HasExtraArg", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5519, __extension__ __PRETTY_FUNCTION__))
;
5520 llvm::APSInt Result;
5521 const Expr *Arg = E->getArg(E->getNumArgs()-1);
5522 if (!Arg->isIntegerConstantExpr(Result, getContext()))
5523 return nullptr;
5524
5525 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
5526 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
5527 // Determine the overloaded type of this builtin.
5528 llvm::Type *Ty;
5529 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
5530 Ty = FloatTy;
5531 else
5532 Ty = DoubleTy;
5533
5534 // Determine whether this is an unsigned conversion or not.
5535 bool usgn = Result.getZExtValue() == 1;
5536 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
5537
5538 // Call the appropriate intrinsic.
5539 Function *F = CGM.getIntrinsic(Int, Ty);
5540 return Builder.CreateCall(F, Ops, "vcvtr");
5541 }
5542
5543 // Determine the type of this overloaded NEON intrinsic.
5544 NeonTypeFlags Type(Result.getZExtValue());
5545 bool usgn = Type.isUnsigned();
5546 bool rightShift = false;
5547
5548 llvm::VectorType *VTy = GetNeonType(this, Type, Arch);
5549 llvm::Type *Ty = VTy;
5550 if (!Ty)
5551 return nullptr;
5552
5553 // Many NEON builtins have identical semantics and uses in ARM and
5554 // AArch64. Emit these in a single function.
5555 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
5556 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
5557 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
5558 if (Builtin)
5559 return EmitCommonNeonBuiltinExpr(
5560 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
5561 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
5562
5563 unsigned Int;
5564 switch (BuiltinID) {
5565 default: return nullptr;
5566 case NEON::BI__builtin_neon_vld1q_lane_v:
5567 // Handle 64-bit integer elements as a special case. Use shuffles of
5568 // one-element vectors to avoid poor code for i64 in the backend.
5569 if (VTy->getElementType()->isIntegerTy(64)) {
5570 // Extract the other lane.
5571 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5572 uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
5573 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
5574 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
5575 // Load the value as a one-element vector.
5576 Ty = llvm::VectorType::get(VTy->getElementType(), 1);
5577 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5578 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
5579 Value *Align = getAlignmentValue32(PtrOp0);
5580 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
5581 // Combine them.
5582 uint32_t Indices[] = {1 - Lane, Lane};
5583 SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
5584 return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
5585 }
5586 LLVM_FALLTHROUGH[[clang::fallthrough]];
5587 case NEON::BI__builtin_neon_vld1_lane_v: {
5588 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5589 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
5590 Value *Ld = Builder.CreateLoad(PtrOp0);
5591 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
5592 }
5593 case NEON::BI__builtin_neon_vld2_dup_v:
5594 case NEON::BI__builtin_neon_vld3_dup_v:
5595 case NEON::BI__builtin_neon_vld4_dup_v: {
5596 // Handle 64-bit elements as a special-case. There is no "dup" needed.
5597 if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
5598 switch (BuiltinID) {
5599 case NEON::BI__builtin_neon_vld2_dup_v:
5600 Int = Intrinsic::arm_neon_vld2;
5601 break;
5602 case NEON::BI__builtin_neon_vld3_dup_v:
5603 Int = Intrinsic::arm_neon_vld3;
5604 break;
5605 case NEON::BI__builtin_neon_vld4_dup_v:
5606 Int = Intrinsic::arm_neon_vld4;
5607 break;
5608 default: llvm_unreachable("unknown vld_dup intrinsic?")::llvm::llvm_unreachable_internal("unknown vld_dup intrinsic?"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5608)
;
5609 }
5610 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5611 Function *F = CGM.getIntrinsic(Int, Tys);
5612 llvm::Value *Align = getAlignmentValue32(PtrOp1);
5613 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, "vld_dup");
5614 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5615 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5616 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5617 }
5618 switch (BuiltinID) {
5619 case NEON::BI__builtin_neon_vld2_dup_v:
5620 Int = Intrinsic::arm_neon_vld2lane;
5621 break;
5622 case NEON::BI__builtin_neon_vld3_dup_v:
5623 Int = Intrinsic::arm_neon_vld3lane;
5624 break;
5625 case NEON::BI__builtin_neon_vld4_dup_v:
5626 Int = Intrinsic::arm_neon_vld4lane;
5627 break;
5628 default: llvm_unreachable("unknown vld_dup intrinsic?")::llvm::llvm_unreachable_internal("unknown vld_dup intrinsic?"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5628)
;
5629 }
5630 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5631 Function *F = CGM.getIntrinsic(Int, Tys);
5632 llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
5633
5634 SmallVector<Value*, 6> Args;
5635 Args.push_back(Ops[1]);
5636 Args.append(STy->getNumElements(), UndefValue::get(Ty));
5637
5638 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
5639 Args.push_back(CI);
5640 Args.push_back(getAlignmentValue32(PtrOp1));
5641
5642 Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
5643 // splat lane 0 to all elts in each vector of the result.
5644 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5645 Value *Val = Builder.CreateExtractValue(Ops[1], i);
5646 Value *Elt = Builder.CreateBitCast(Val, Ty);
5647 Elt = EmitNeonSplat(Elt, CI);
5648 Elt = Builder.CreateBitCast(Elt, Val->getType());
5649 Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
5650 }
5651 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5652 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5653 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5654 }
5655 case NEON::BI__builtin_neon_vqrshrn_n_v:
5656 Int =
5657 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
5658 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
5659 1, true);
5660 case NEON::BI__builtin_neon_vqrshrun_n_v:
5661 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
5662 Ops, "vqrshrun_n", 1, true);
5663 case NEON::BI__builtin_neon_vqshrn_n_v:
5664 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
5665 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
5666 1, true);
5667 case NEON::BI__builtin_neon_vqshrun_n_v:
5668 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
5669 Ops, "vqshrun_n", 1, true);
5670 case NEON::BI__builtin_neon_vrecpe_v:
5671 case NEON::BI__builtin_neon_vrecpeq_v:
5672 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
5673 Ops, "vrecpe");
5674 case NEON::BI__builtin_neon_vrshrn_n_v:
5675 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
5676 Ops, "vrshrn_n", 1, true);
5677 case NEON::BI__builtin_neon_vrsra_n_v:
5678 case NEON::BI__builtin_neon_vrsraq_n_v:
5679 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5680 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5681 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
5682 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
5683 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
5684 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
5685 case NEON::BI__builtin_neon_vsri_n_v:
5686 case NEON::BI__builtin_neon_vsriq_n_v:
5687 rightShift = true;
5688 LLVM_FALLTHROUGH[[clang::fallthrough]];
5689 case NEON::BI__builtin_neon_vsli_n_v:
5690 case NEON::BI__builtin_neon_vsliq_n_v:
5691 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
5692 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
5693 Ops, "vsli_n");
5694 case NEON::BI__builtin_neon_vsra_n_v:
5695 case NEON::BI__builtin_neon_vsraq_n_v:
5696 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5697 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
5698 return Builder.CreateAdd(Ops[0], Ops[1]);
5699 case NEON::BI__builtin_neon_vst1q_lane_v:
5700 // Handle 64-bit integer elements as a special case. Use a shuffle to get
5701 // a one-element vector and avoid poor code for i64 in the backend.
5702 if (VTy->getElementType()->isIntegerTy(64)) {
5703 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5704 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
5705 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
5706 Ops[2] = getAlignmentValue32(PtrOp0);
5707 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
5708 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
5709 Tys), Ops);
5710 }
5711 LLVM_FALLTHROUGH[[clang::fallthrough]];
5712 case NEON::BI__builtin_neon_vst1_lane_v: {
5713 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5714 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
5715 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5716 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
5717 return St;
5718 }
5719 case NEON::BI__builtin_neon_vtbl1_v:
5720 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
5721 Ops, "vtbl1");
5722 case NEON::BI__builtin_neon_vtbl2_v:
5723 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
5724 Ops, "vtbl2");
5725 case NEON::BI__builtin_neon_vtbl3_v:
5726 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
5727 Ops, "vtbl3");
5728 case NEON::BI__builtin_neon_vtbl4_v:
5729 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
5730 Ops, "vtbl4");
5731 case NEON::BI__builtin_neon_vtbx1_v:
5732 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
5733 Ops, "vtbx1");
5734 case NEON::BI__builtin_neon_vtbx2_v:
5735 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
5736 Ops, "vtbx2");
5737 case NEON::BI__builtin_neon_vtbx3_v:
5738 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
5739 Ops, "vtbx3");
5740 case NEON::BI__builtin_neon_vtbx4_v:
5741 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
5742 Ops, "vtbx4");
5743 }
5744}
5745
5746static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
5747 const CallExpr *E,
5748 SmallVectorImpl<Value *> &Ops,
5749 llvm::Triple::ArchType Arch) {
5750 unsigned int Int = 0;
5751 const char *s = nullptr;
5752
5753 switch (BuiltinID) {
5754 default:
5755 return nullptr;
5756 case NEON::BI__builtin_neon_vtbl1_v:
5757 case NEON::BI__builtin_neon_vqtbl1_v:
5758 case NEON::BI__builtin_neon_vqtbl1q_v:
5759 case NEON::BI__builtin_neon_vtbl2_v:
5760 case NEON::BI__builtin_neon_vqtbl2_v:
5761 case NEON::BI__builtin_neon_vqtbl2q_v:
5762 case NEON::BI__builtin_neon_vtbl3_v:
5763 case NEON::BI__builtin_neon_vqtbl3_v:
5764 case NEON::BI__builtin_neon_vqtbl3q_v:
5765 case NEON::BI__builtin_neon_vtbl4_v:
5766 case NEON::BI__builtin_neon_vqtbl4_v:
5767 case NEON::BI__builtin_neon_vqtbl4q_v:
5768 break;
5769 case NEON::BI__builtin_neon_vtbx1_v:
5770 case NEON::BI__builtin_neon_vqtbx1_v:
5771 case NEON::BI__builtin_neon_vqtbx1q_v:
5772 case NEON::BI__builtin_neon_vtbx2_v:
5773 case NEON::BI__builtin_neon_vqtbx2_v:
5774 case NEON::BI__builtin_neon_vqtbx2q_v:
5775 case NEON::BI__builtin_neon_vtbx3_v:
5776 case NEON::BI__builtin_neon_vqtbx3_v:
5777 case NEON::BI__builtin_neon_vqtbx3q_v:
5778 case NEON::BI__builtin_neon_vtbx4_v:
5779 case NEON::BI__builtin_neon_vqtbx4_v:
5780 case NEON::BI__builtin_neon_vqtbx4q_v:
5781 break;
5782 }
5783
5784 assert(E->getNumArgs() >= 3)(static_cast <bool> (E->getNumArgs() >= 3) ? void
(0) : __assert_fail ("E->getNumArgs() >= 3", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5784, __extension__ __PRETTY_FUNCTION__))
;
5785
5786 // Get the last argument, which specifies the vector type.
5787 llvm::APSInt Result;
5788 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5789 if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
5790 return nullptr;
5791
5792 // Determine the type of this overloaded NEON intrinsic.
5793 NeonTypeFlags Type(Result.getZExtValue());
5794 llvm::VectorType *Ty = GetNeonType(&CGF, Type, Arch);
5795 if (!Ty)
5796 return nullptr;
5797
5798 CodeGen::CGBuilderTy &Builder = CGF.Builder;
5799
5800 // AArch64 scalar builtins are not overloaded, they do not have an extra
5801 // argument that specifies the vector type, need to handle each case.
5802 switch (BuiltinID) {
5803 case NEON::BI__builtin_neon_vtbl1_v: {
5804 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
5805 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
5806 "vtbl1");
5807 }
5808 case NEON::BI__builtin_neon_vtbl2_v: {
5809 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
5810 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
5811 "vtbl1");
5812 }
5813 case NEON::BI__builtin_neon_vtbl3_v: {
5814 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
5815 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
5816 "vtbl2");
5817 }
5818 case NEON::BI__builtin_neon_vtbl4_v: {
5819 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
5820 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
5821 "vtbl2");
5822 }
5823 case NEON::BI__builtin_neon_vtbx1_v: {
5824 Value *TblRes =
5825 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
5826 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
5827
5828 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
5829 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
5830 CmpRes = Builder.CreateSExt(CmpRes, Ty);
5831
5832 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
5833 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
5834 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
5835 }
5836 case NEON::BI__builtin_neon_vtbx2_v: {
5837 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
5838 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
5839 "vtbx1");
5840 }
5841 case NEON::BI__builtin_neon_vtbx3_v: {
5842 Value *TblRes =
5843 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
5844 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
5845
5846 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
5847 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
5848 TwentyFourV);
5849 CmpRes = Builder.CreateSExt(CmpRes, Ty);
5850
5851 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
5852 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
5853 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
5854 }
5855 case NEON::BI__builtin_neon_vtbx4_v: {
5856 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
5857 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
5858 "vtbx2");
5859 }
5860 case NEON::BI__builtin_neon_vqtbl1_v:
5861 case NEON::BI__builtin_neon_vqtbl1q_v:
5862 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
5863 case NEON::BI__builtin_neon_vqtbl2_v:
5864 case NEON::BI__builtin_neon_vqtbl2q_v: {
5865 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
5866 case NEON::BI__builtin_neon_vqtbl3_v:
5867 case NEON::BI__builtin_neon_vqtbl3q_v:
5868 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
5869 case NEON::BI__builtin_neon_vqtbl4_v:
5870 case NEON::BI__builtin_neon_vqtbl4q_v:
5871 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
5872 case NEON::BI__builtin_neon_vqtbx1_v:
5873 case NEON::BI__builtin_neon_vqtbx1q_v:
5874 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
5875 case NEON::BI__builtin_neon_vqtbx2_v:
5876 case NEON::BI__builtin_neon_vqtbx2q_v:
5877 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
5878 case NEON::BI__builtin_neon_vqtbx3_v:
5879 case NEON::BI__builtin_neon_vqtbx3q_v:
5880 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
5881 case NEON::BI__builtin_neon_vqtbx4_v:
5882 case NEON::BI__builtin_neon_vqtbx4q_v:
5883 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
5884 }
5885 }
5886
5887 if (!Int)
5888 return nullptr;
5889
5890 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
5891 return CGF.EmitNeonCall(F, Ops, s);
5892}
5893
5894Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
5895 llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
5896 Op = Builder.CreateBitCast(Op, Int16Ty);
5897 Value *V = UndefValue::get(VTy);
5898 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5899 Op = Builder.CreateInsertElement(V, Op, CI);
5900 return Op;
5901}
5902
5903Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
5904 const CallExpr *E,
5905 llvm::Triple::ArchType Arch) {
5906 unsigned HintID = static_cast<unsigned>(-1);
5907 switch (BuiltinID) {
5908 default: break;
5909 case AArch64::BI__builtin_arm_nop:
5910 HintID = 0;
5911 break;
5912 case AArch64::BI__builtin_arm_yield:
5913 HintID = 1;
5914 break;
5915 case AArch64::BI__builtin_arm_wfe:
5916 HintID = 2;
5917 break;
5918 case AArch64::BI__builtin_arm_wfi:
5919 HintID = 3;
5920 break;
5921 case AArch64::BI__builtin_arm_sev:
5922 HintID = 4;
5923 break;
5924 case AArch64::BI__builtin_arm_sevl:
5925 HintID = 5;
5926 break;
5927 }
5928
5929 if (HintID != static_cast<unsigned>(-1)) {
5930 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
5931 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
5932 }
5933
5934 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
5935 Value *Address = EmitScalarExpr(E->getArg(0));
5936 Value *RW = EmitScalarExpr(E->getArg(1));
5937 Value *CacheLevel = EmitScalarExpr(E->getArg(2));
5938 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
5939 Value *IsData = EmitScalarExpr(E->getArg(4));
5940
5941 Value *Locality = nullptr;
5942 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
5943 // Temporal fetch, needs to convert cache level to locality.
5944 Locality = llvm::ConstantInt::get(Int32Ty,
5945 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
5946 } else {
5947 // Streaming fetch.
5948 Locality = llvm::ConstantInt::get(Int32Ty, 0);
5949 }
5950
5951 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
5952 // PLDL3STRM or PLDL2STRM.
5953 Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
5954 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
5955 }
5956
5957 if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
5958 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5959, __extension__ __PRETTY_FUNCTION__))
5959 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5959, __extension__ __PRETTY_FUNCTION__))
;
5960 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
5961 return Builder.CreateCall(
5962 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
5963 }
5964 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
5965 assert((getContext().getTypeSize(E->getType()) == 64) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5966, __extension__ __PRETTY_FUNCTION__))
5966 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5966, __extension__ __PRETTY_FUNCTION__))
;
5967 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
5968 return Builder.CreateCall(
5969 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
5970 }
5971
5972 if (BuiltinID == AArch64::BI__clear_cache) {
5973 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5973, __extension__ __PRETTY_FUNCTION__))
;
5974 const FunctionDecl *FD = E->getDirectCallee();
5975 Value *Ops[2];
5976 for (unsigned i = 0; i < 2; i++)
5977 Ops[i] = EmitScalarExpr(E->getArg(i));
5978 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
5979 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
5980 StringRef Name = FD->getName();
5981 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
5982 }
5983
5984 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
5985 BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
5986 getContext().getTypeSize(E->getType()) == 128) {
5987 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
5988 ? Intrinsic::aarch64_ldaxp
5989 : Intrinsic::aarch64_ldxp);
5990
5991 Value *LdPtr = EmitScalarExpr(E->getArg(0));
5992 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
5993 "ldxp");
5994
5995 Value *Val0 = Builder.CreateExtractValue(Val, 1);
5996 Value *Val1 = Builder.CreateExtractValue(Val, 0);
5997 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
5998 Val0 = Builder.CreateZExt(Val0, Int128Ty);
5999 Val1 = Builder.CreateZExt(Val1, Int128Ty);
6000
6001 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
6002 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6003 Val = Builder.CreateOr(Val, Val1);
6004 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6005 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
6006 BuiltinID == AArch64::BI__builtin_arm_ldaex) {
6007 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6008
6009 QualType Ty = E->getType();
6010 llvm::Type *RealResTy = ConvertType(Ty);
6011 llvm::Type *PtrTy = llvm::IntegerType::get(
6012 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6013 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6014
6015 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
6016 ? Intrinsic::aarch64_ldaxr
6017 : Intrinsic::aarch64_ldxr,
6018 PtrTy);
6019 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
6020
6021 if (RealResTy->isPointerTy())
6022 return Builder.CreateIntToPtr(Val, RealResTy);
6023
6024 llvm::Type *IntResTy = llvm::IntegerType::get(
6025 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6026 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6027 return Builder.CreateBitCast(Val, RealResTy);
6028 }
6029
6030 if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
6031 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
6032 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
6033 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
6034 ? Intrinsic::aarch64_stlxp
6035 : Intrinsic::aarch64_stxp);
6036 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
6037
6038 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6039 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
6040
6041 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
6042 llvm::Value *Val = Builder.CreateLoad(Tmp);
6043
6044 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6045 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6046 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
6047 Int8PtrTy);
6048 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
6049 }
6050
6051 if (BuiltinID == AArch64::BI__builtin_arm_strex ||
6052 BuiltinID == AArch64::BI__builtin_arm_stlex) {
6053 Value *StoreVal = EmitScalarExpr(E->getArg(0));
6054 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6055
6056 QualType Ty = E->getArg(0)->getType();
6057 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6058 getContext().getTypeSize(Ty));
6059 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6060
6061 if (StoreVal->getType()->isPointerTy())
6062 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
6063 else {
6064 llvm::Type *IntTy = llvm::IntegerType::get(
6065 getLLVMContext(),
6066 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6067 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6068 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
6069 }
6070
6071 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
6072 ? Intrinsic::aarch64_stlxr
6073 : Intrinsic::aarch64_stxr,
6074 StoreAddr->getType());
6075 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
6076 }
6077
6078 if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
6079 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
6080 return Builder.CreateCall(F);
6081 }
6082
6083 // CRC32
6084 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6085 switch (BuiltinID) {
6086 case AArch64::BI__builtin_arm_crc32b:
6087 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
6088 case AArch64::BI__builtin_arm_crc32cb:
6089 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
6090 case AArch64::BI__builtin_arm_crc32h:
6091 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
6092 case AArch64::BI__builtin_arm_crc32ch:
6093 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
6094 case AArch64::BI__builtin_arm_crc32w:
6095 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
6096 case AArch64::BI__builtin_arm_crc32cw:
6097 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
6098 case AArch64::BI__builtin_arm_crc32d:
6099 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
6100 case AArch64::BI__builtin_arm_crc32cd:
6101 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
6102 }
6103
6104 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6105 Value *Arg0 = EmitScalarExpr(E->getArg(0));
6106 Value *Arg1 = EmitScalarExpr(E->getArg(1));
6107 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6108
6109 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
6110 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
6111
6112 return Builder.CreateCall(F, {Arg0, Arg1});
6113 }
6114
6115 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
6116 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6117 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6118 BuiltinID == AArch64::BI__builtin_arm_wsr ||
6119 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6120 BuiltinID == AArch64::BI__builtin_arm_wsrp) {
6121
6122 bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
6123 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6124 BuiltinID == AArch64::BI__builtin_arm_rsrp;
6125
6126 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6127 BuiltinID == AArch64::BI__builtin_arm_wsrp;
6128
6129 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
6130 BuiltinID != AArch64::BI__builtin_arm_wsr;
6131
6132 llvm::Type *ValueType;
6133 llvm::Type *RegisterType = Int64Ty;
6134 if (IsPointerBuiltin) {
6135 ValueType = VoidPtrTy;
6136 } else if (Is64Bit) {
6137 ValueType = Int64Ty;
6138 } else {
6139 ValueType = Int32Ty;
6140 }
6141
6142 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
6143 }
6144
6145 // Find out if any arguments are required to be integer constant
6146 // expressions.
6147 unsigned ICEArguments = 0;
6148 ASTContext::GetBuiltinTypeError Error;
6149 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6150 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6150, __extension__ __PRETTY_FUNCTION__))
;
6151
6152 llvm::SmallVector<Value*, 4> Ops;
6153 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
6154 if ((ICEArguments & (1 << i)) == 0) {
6155 Ops.push_back(EmitScalarExpr(E->getArg(i)));
6156 } else {
6157 // If this is required to be a constant, constant fold it so that we know
6158 // that the generated intrinsic gets a ConstantInt.
6159 llvm::APSInt Result;
6160 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6161 assert(IsConst && "Constant arg isn't actually constant?")(static_cast <bool> (IsConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6161, __extension__ __PRETTY_FUNCTION__))
;
6162 (void)IsConst;
6163 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6164 }
6165 }
6166
6167 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
6168 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
6169 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
6170
6171 if (Builtin) {
6172 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
6173 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
6174 assert(Result && "SISD intrinsic should have been handled")(static_cast <bool> (Result && "SISD intrinsic should have been handled"
) ? void (0) : __assert_fail ("Result && \"SISD intrinsic should have been handled\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6174, __extension__ __PRETTY_FUNCTION__))
;
6175 return Result;
6176 }
6177
6178 llvm::APSInt Result;
6179 const Expr *Arg = E->getArg(E->getNumArgs()-1);
6180 NeonTypeFlags Type(0);
6181 if (Arg->isIntegerConstantExpr(Result, getContext()))
6182 // Determine the type of this overloaded NEON intrinsic.
6183 Type = NeonTypeFlags(Result.getZExtValue());
6184
6185 bool usgn = Type.isUnsigned();
6186 bool quad = Type.isQuad();
6187
6188 // Handle non-overloaded intrinsics first.
6189 switch (BuiltinID) {
6190 default: break;
6191 case NEON::BI__builtin_neon_vldrq_p128: {
6192 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
6193 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
6194 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
6195 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
6196 CharUnits::fromQuantity(16));
6197 }
6198 case NEON::BI__builtin_neon_vstrq_p128: {
6199 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
6200 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
6201 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
6202 }
6203 case NEON::BI__builtin_neon_vcvts_u32_f32:
6204 case NEON::BI__builtin_neon_vcvtd_u64_f64:
6205 usgn = true;
6206 LLVM_FALLTHROUGH[[clang::fallthrough]];
6207 case NEON::BI__builtin_neon_vcvts_s32_f32:
6208 case NEON::BI__builtin_neon_vcvtd_s64_f64: {
6209 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6210 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
6211 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
6212 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
6213 Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
6214 if (usgn)
6215 return Builder.CreateFPToUI(Ops[0], InTy);
6216 return Builder.CreateFPToSI(Ops[0], InTy);
6217 }
6218 case NEON::BI__builtin_neon_vcvts_f32_u32:
6219 case NEON::BI__builtin_neon_vcvtd_f64_u64:
6220 usgn = true;
6221 LLVM_FALLTHROUGH[[clang::fallthrough]];
6222 case NEON::BI__builtin_neon_vcvts_f32_s32:
6223 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
6224 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6225 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
6226 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
6227 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
6228 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
6229 if (usgn)
6230 return Builder.CreateUIToFP(Ops[0], FTy);
6231 return Builder.CreateSIToFP(Ops[0], FTy);
6232 }
6233 case NEON::BI__builtin_neon_vcvth_f16_u16:
6234 case NEON::BI__builtin_neon_vcvth_f16_u32:
6235 case NEON::BI__builtin_neon_vcvth_f16_u64:
6236 usgn = true;
6237 // FALL THROUGH
6238 case NEON::BI__builtin_neon_vcvth_f16_s16:
6239 case NEON::BI__builtin_neon_vcvth_f16_s32:
6240 case NEON::BI__builtin_neon_vcvth_f16_s64: {
6241 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6242 llvm::Type *FTy = HalfTy;
6243 llvm::Type *InTy;
6244 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
6245 InTy = Int64Ty;
6246 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
6247 InTy = Int32Ty;
6248 else
6249 InTy = Int16Ty;
6250 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
6251 if (usgn)
6252 return Builder.CreateUIToFP(Ops[0], FTy);
6253 return Builder.CreateSIToFP(Ops[0], FTy);
6254 }
6255 case NEON::BI__builtin_neon_vcvth_u16_f16:
6256 usgn = true;
6257 // FALL THROUGH
6258 case NEON::BI__builtin_neon_vcvth_s16_f16: {
6259 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6260 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
6261 if (usgn)
6262 return Builder.CreateFPToUI(Ops[0], Int16Ty);
6263 return Builder.CreateFPToSI(Ops[0], Int16Ty);
6264 }
6265 case NEON::BI__builtin_neon_vcvth_u32_f16:
6266 usgn = true;
6267 // FALL THROUGH
6268 case NEON::BI__builtin_neon_vcvth_s32_f16: {
6269 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6270 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
6271 if (usgn)
6272 return Builder.CreateFPToUI(Ops[0], Int32Ty);
6273 return Builder.CreateFPToSI(Ops[0], Int32Ty);
6274 }
6275 case NEON::BI__builtin_neon_vcvth_u64_f16:
6276 usgn = true;
6277 // FALL THROUGH
6278 case NEON::BI__builtin_neon_vcvth_s64_f16: {
6279 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6280 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
6281 if (usgn)
6282 return Builder.CreateFPToUI(Ops[0], Int64Ty);
6283 return Builder.CreateFPToSI(Ops[0], Int64Ty);
6284 }
6285 case NEON::BI__builtin_neon_vpaddd_s64: {
6286 llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
6287 Value *Vec = EmitScalarExpr(E->getArg(0));
6288 // The vector is v2f64, so make sure it's bitcast to that.
6289 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
6290 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
6291 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
6292 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
6293 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
6294 // Pairwise addition of a v2f64 into a scalar f64.
6295 return Builder.CreateAdd(Op0, Op1, "vpaddd");
6296 }
6297 case NEON::BI__builtin_neon_vpaddd_f64: {
6298 llvm::Type *Ty =
6299 llvm::VectorType::get(DoubleTy, 2);
6300 Value *Vec = EmitScalarExpr(E->getArg(0));
6301 // The vector is v2f64, so make sure it's bitcast to that.
6302 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
6303 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
6304 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
6305 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
6306 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
6307 // Pairwise addition of a v2f64 into a scalar f64.
6308 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
6309 }
6310 case NEON::BI__builtin_neon_vpadds_f32: {
6311 llvm::Type *Ty =
6312 llvm::VectorType::get(FloatTy, 2);
6313 Value *Vec = EmitScalarExpr(E->getArg(0));
6314 // The vector is v2f32, so make sure it's bitcast to that.
6315 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
6316 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
6317 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
6318 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
6319 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
6320 // Pairwise addition of a v2f32 into a scalar f32.
6321 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
6322 }
6323 case NEON::BI__builtin_neon_vceqzd_s64:
6324 case NEON::BI__builtin_neon_vceqzd_f64:
6325 case NEON::BI__builtin_neon_vceqzs_f32:
6326 case NEON::BI__builtin_neon_vceqzh_f16:
6327 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6328 return EmitAArch64CompareBuiltinExpr(
6329 Ops[0], ConvertType(E->getCallReturnType(getContext())),
6330 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
6331 case NEON::BI__builtin_neon_vcgezd_s64:
6332 case NEON::BI__builtin_neon_vcgezd_f64:
6333 case NEON::BI__builtin_neon_vcgezs_f32:
6334 case NEON::BI__builtin_neon_vcgezh_f16:
6335 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6336 return EmitAArch64CompareBuiltinExpr(
6337 Ops[0], ConvertType(E->getCallReturnType(getContext())),
6338 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
6339 case NEON::BI__builtin_neon_vclezd_s64:
6340 case NEON::BI__builtin_neon_vclezd_f64:
6341 case NEON::BI__builtin_neon_vclezs_f32:
6342 case NEON::BI__builtin_neon_vclezh_f16:
6343 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6344 return EmitAArch64CompareBuiltinExpr(
6345 Ops[0], ConvertType(E->getCallReturnType(getContext())),
6346 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
6347 case NEON::BI__builtin_neon_vcgtzd_s64:
6348 case NEON::BI__builtin_neon_vcgtzd_f64:
6349 case NEON::BI__builtin_neon_vcgtzs_f32:
6350 case NEON::BI__builtin_neon_vcgtzh_f16:
6351 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6352 return EmitAArch64CompareBuiltinExpr(
6353 Ops[0], ConvertType(E->getCallReturnType(getContext())),
6354 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
6355 case NEON::BI__builtin_neon_vcltzd_s64:
6356 case NEON::BI__builtin_neon_vcltzd_f64:
6357 case NEON::BI__builtin_neon_vcltzs_f32:
6358 case NEON::BI__builtin_neon_vcltzh_f16:
6359 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6360 return EmitAArch64CompareBuiltinExpr(
6361 Ops[0], ConvertType(E->getCallReturnType(getContext())),
6362 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
6363
6364 case NEON::BI__builtin_neon_vceqzd_u64: {
6365 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6366 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
6367 Ops[0] =
6368 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
6369 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
6370 }
6371 case NEON::BI__builtin_neon_vceqd_f64:
6372 case NEON::BI__builtin_neon_vcled_f64:
6373 case NEON::BI__builtin_neon_vcltd_f64:
6374 case NEON::BI__builtin_neon_vcged_f64:
6375 case NEON::BI__builtin_neon_vcgtd_f64: {
6376 llvm::CmpInst::Predicate P;
6377 switch (BuiltinID) {
6378 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6378)
;
6379 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
6380 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
6381 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
6382 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
6383 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
6384 }
6385 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6386 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
6387 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
6388 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
6389 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
6390 }
6391 case NEON::BI__builtin_neon_vceqs_f32:
6392 case NEON::BI__builtin_neon_vcles_f32:
6393 case NEON::BI__builtin_neon_vclts_f32:
6394 case NEON::BI__builtin_neon_vcges_f32:
6395 case NEON::BI__builtin_neon_vcgts_f32: {
6396 llvm::CmpInst::Predicate P;
6397 switch (BuiltinID) {
6398 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6398)
;
6399 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
6400 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
6401 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
6402 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
6403 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
6404 }
6405 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6406 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
6407 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
6408 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
6409 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
6410 }
6411 case NEON::BI__builtin_neon_vceqh_f16:
6412 case NEON::BI__builtin_neon_vcleh_f16:
6413 case NEON::BI__builtin_neon_vclth_f16:
6414 case NEON::BI__builtin_neon_vcgeh_f16:
6415 case NEON::BI__builtin_neon_vcgth_f16: {
6416 llvm::CmpInst::Predicate P;
6417 switch (BuiltinID) {
6418 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6418)
;
6419 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
6420 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
6421 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
6422 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
6423 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
6424 }
6425 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6426 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
6427 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
6428 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
6429 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
6430 }
6431 case NEON::BI__builtin_neon_vceqd_s64:
6432 case NEON::BI__builtin_neon_vceqd_u64:
6433 case NEON::BI__builtin_neon_vcgtd_s64:
6434 case NEON::BI__builtin_neon_vcgtd_u64:
6435 case NEON::BI__builtin_neon_vcltd_s64:
6436 case NEON::BI__builtin_neon_vcltd_u64:
6437 case NEON::BI__builtin_neon_vcged_u64:
6438 case NEON::BI__builtin_neon_vcged_s64:
6439 case NEON::BI__builtin_neon_vcled_u64:
6440 case NEON::BI__builtin_neon_vcled_s64: {
6441 llvm::CmpInst::Predicate P;
6442 switch (BuiltinID) {
6443 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6443)
;
6444 case NEON::BI__builtin_neon_vceqd_s64:
6445 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
6446 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
6447 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
6448 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
6449 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
6450 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
6451 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
6452 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
6453 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
6454 }
6455 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6456 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
6457 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
6458 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
6459 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
6460 }
6461 case NEON::BI__builtin_neon_vtstd_s64:
6462 case NEON::BI__builtin_neon_vtstd_u64: {
6463 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6464 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
6465 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
6466 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
6467 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
6468 llvm::Constant::getNullValue(Int64Ty));
6469 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
6470 }
6471 case NEON::BI__builtin_neon_vset_lane_i8:
6472 case NEON::BI__builtin_neon_vset_lane_i16:
6473 case NEON::BI__builtin_neon_vset_lane_i32:
6474 case NEON::BI__builtin_neon_vset_lane_i64:
6475 case NEON::BI__builtin_neon_vset_lane_f32:
6476 case NEON::BI__builtin_neon_vsetq_lane_i8:
6477 case NEON::BI__builtin_neon_vsetq_lane_i16:
6478 case NEON::BI__builtin_neon_vsetq_lane_i32:
6479 case NEON::BI__builtin_neon_vsetq_lane_i64:
6480 case NEON::BI__builtin_neon_vsetq_lane_f32:
6481 Ops.push_back(EmitScalarExpr(E->getArg(2)));
6482 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6483 case NEON::BI__builtin_neon_vset_lane_f64:
6484 // The vector type needs a cast for the v1f64 variant.
6485 Ops[1] = Builder.CreateBitCast(Ops[1],
6486 llvm::VectorType::get(DoubleTy, 1));
6487 Ops.push_back(EmitScalarExpr(E->getArg(2)));
6488 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6489 case NEON::BI__builtin_neon_vsetq_lane_f64:
6490 // The vector type needs a cast for the v2f64 variant.
6491 Ops[1] = Builder.CreateBitCast(Ops[1],
6492 llvm::VectorType::get(DoubleTy, 2));
6493 Ops.push_back(EmitScalarExpr(E->getArg(2)));
6494 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6495
6496 case NEON::BI__builtin_neon_vget_lane_i8:
6497 case NEON::BI__builtin_neon_vdupb_lane_i8:
6498 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
6499 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6500 "vget_lane");
6501 case NEON::BI__builtin_neon_vgetq_lane_i8:
6502 case NEON::BI__builtin_neon_vdupb_laneq_i8:
6503 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
6504 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6505 "vgetq_lane");
6506 case NEON::BI__builtin_neon_vget_lane_i16:
6507 case NEON::BI__builtin_neon_vduph_lane_i16:
6508 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
6509 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6510 "vget_lane");
6511 case NEON::BI__builtin_neon_vgetq_lane_i16:
6512 case NEON::BI__builtin_neon_vduph_laneq_i16:
6513 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
6514 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6515 "vgetq_lane");
6516 case NEON::BI__builtin_neon_vget_lane_i32:
6517 case NEON::BI__builtin_neon_vdups_lane_i32:
6518 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
6519 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6520 "vget_lane");
6521 case NEON::BI__builtin_neon_vdups_lane_f32:
6522 Ops[0] = Builder.CreateBitCast(Ops[0],
6523 llvm::VectorType::get(FloatTy, 2));
6524 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6525 "vdups_lane");
6526 case NEON::BI__builtin_neon_vgetq_lane_i32:
6527 case NEON::BI__builtin_neon_vdups_laneq_i32:
6528 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
6529 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6530 "vgetq_lane");
6531 case NEON::BI__builtin_neon_vget_lane_i64:
6532 case NEON::BI__builtin_neon_vdupd_lane_i64:
6533 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
6534 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6535 "vget_lane");
6536 case NEON::BI__builtin_neon_vdupd_lane_f64:
6537 Ops[0] = Builder.CreateBitCast(Ops[0],
6538 llvm::VectorType::get(DoubleTy, 1));
6539 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6540 "vdupd_lane");
6541 case NEON::BI__builtin_neon_vgetq_lane_i64:
6542 case NEON::BI__builtin_neon_vdupd_laneq_i64:
6543 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
6544 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6545 "vgetq_lane");
6546 case NEON::BI__builtin_neon_vget_lane_f32:
6547 Ops[0] = Builder.CreateBitCast(Ops[0],
6548 llvm::VectorType::get(FloatTy, 2));
6549 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6550 "vget_lane");
6551 case NEON::BI__builtin_neon_vget_lane_f64:
6552 Ops[0] = Builder.CreateBitCast(Ops[0],
6553 llvm::VectorType::get(DoubleTy, 1));
6554 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6555 "vget_lane");
6556 case NEON::BI__builtin_neon_vgetq_lane_f32:
6557 case NEON::BI__builtin_neon_vdups_laneq_f32:
6558 Ops[0] = Builder.CreateBitCast(Ops[0],
6559 llvm::VectorType::get(FloatTy, 4));
6560 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6561 "vgetq_lane");
6562 case NEON::BI__builtin_neon_vgetq_lane_f64:
6563 case NEON::BI__builtin_neon_vdupd_laneq_f64:
6564 Ops[0] = Builder.CreateBitCast(Ops[0],
6565 llvm::VectorType::get(DoubleTy, 2));
6566 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
6567 "vgetq_lane");
6568 case NEON::BI__builtin_neon_vaddh_f16:
6569 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6570 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
6571 case NEON::BI__builtin_neon_vsubh_f16:
6572 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6573 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
6574 case NEON::BI__builtin_neon_vmulh_f16:
6575 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6576 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
6577 case NEON::BI__builtin_neon_vdivh_f16:
6578 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6579 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
6580 case NEON::BI__builtin_neon_vfmah_f16: {
6581 Value *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
6582 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6583 return Builder.CreateCall(F,
6584 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
6585 }
6586 case NEON::BI__builtin_neon_vfmsh_f16: {
6587 Value *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
6588 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
6589 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
6590 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6591 return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
6592 }
6593 case NEON::BI__builtin_neon_vaddd_s64:
6594 case NEON::BI__builtin_neon_vaddd_u64:
6595 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
6596 case NEON::BI__builtin_neon_vsubd_s64:
6597 case NEON::BI__builtin_neon_vsubd_u64:
6598 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
6599 case NEON::BI__builtin_neon_vqdmlalh_s16:
6600 case NEON::BI__builtin_neon_vqdmlslh_s16: {
6601 SmallVector<Value *, 2> ProductOps;
6602 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
6603 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
6604 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
6605 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
6606 ProductOps, "vqdmlXl");
6607 Constant *CI = ConstantInt::get(SizeTy, 0);
6608 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
6609
6610 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
6611 ? Intrinsic::aarch64_neon_sqadd
6612 : Intrinsic::aarch64_neon_sqsub;
6613 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
6614 }
6615 case NEON::BI__builtin_neon_vqshlud_n_s64: {
6616 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6617 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
6618 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
6619 Ops, "vqshlu_n");
6620 }
6621 case NEON::BI__builtin_neon_vqshld_n_u64:
6622 case NEON::BI__builtin_neon_vqshld_n_s64: {
6623 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
6624 ? Intrinsic::aarch64_neon_uqshl
6625 : Intrinsic::aarch64_neon_sqshl;
6626 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6627 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
6628 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
6629 }
6630 case NEON::BI__builtin_neon_vrshrd_n_u64:
6631 case NEON::BI__builtin_neon_vrshrd_n_s64: {
6632 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
6633 ? Intrinsic::aarch64_neon_urshl
6634 : Intrinsic::aarch64_neon_srshl;
6635 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6636 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
6637 Ops[1] = ConstantInt::get(Int64Ty, -SV);
6638 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
6639 }
6640 case NEON::BI__builtin_neon_vrsrad_n_u64:
6641 case NEON::BI__builtin_neon_vrsrad_n_s64: {
6642 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
6643 ? Intrinsic::aarch64_neon_urshl
6644 : Intrinsic::aarch64_neon_srshl;
6645 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
6646 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
6647 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
6648 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
6649 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
6650 }
6651 case NEON::BI__builtin_neon_vshld_n_s64:
6652 case NEON::BI__builtin_neon_vshld_n_u64: {
6653 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
6654 return Builder.CreateShl(
6655 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
6656 }
6657 case NEON::BI__builtin_neon_vshrd_n_s64: {
6658 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
6659 return Builder.CreateAShr(
6660 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
6661 Amt->getZExtValue())),
6662 "shrd_n");
6663 }
6664 case NEON::BI__builtin_neon_vshrd_n_u64: {
6665 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
6666 uint64_t ShiftAmt = Amt->getZExtValue();
6667 // Right-shifting an unsigned value by its size yields 0.
6668 if (ShiftAmt == 64)
6669 return ConstantInt::get(Int64Ty, 0);
6670 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
6671 "shrd_n");
6672 }
6673 case NEON::BI__builtin_neon_vsrad_n_s64: {
6674 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
6675 Ops[1] = Builder.CreateAShr(
6676 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
6677 Amt->getZExtValue())),
6678 "shrd_n");
6679 return Builder.CreateAdd(Ops[0], Ops[1]);
6680 }
6681 case NEON::BI__builtin_neon_vsrad_n_u64: {
6682 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
6683 uint64_t ShiftAmt = Amt->getZExtValue();
6684 // Right-shifting an unsigned value by its size yields 0.
6685 // As Op + 0 = Op, return Ops[0] directly.
6686 if (ShiftAmt == 64)
6687 return Ops[0];
6688 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
6689 "shrd_n");
6690 return Builder.CreateAdd(Ops[0], Ops[1]);
6691 }
6692 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
6693 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
6694 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
6695 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
6696 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
6697 "lane");
6698 SmallVector<Value *, 2> ProductOps;
6699 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
6700 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
6701 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
6702 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
6703 ProductOps, "vqdmlXl");
6704 Constant *CI = ConstantInt::get(SizeTy, 0);
6705 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
6706 Ops.pop_back();
6707
6708 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
6709 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
6710 ? Intrinsic::aarch64_neon_sqadd
6711 : Intrinsic::aarch64_neon_sqsub;
6712 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
6713 }
6714 case NEON::BI__builtin_neon_vqdmlals_s32:
6715 case NEON::BI__builtin_neon_vqdmlsls_s32: {
6716 SmallVector<Value *, 2> ProductOps;
6717 ProductOps.push_back(Ops[1]);
6718 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
6719 Ops[1] =
6720 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
6721 ProductOps, "vqdmlXl");
6722
6723 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
6724 ? Intrinsic::aarch64_neon_sqadd
6725 : Intrinsic::aarch64_neon_sqsub;
6726 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
6727 }
6728 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
6729 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
6730 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
6731 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
6732 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
6733 "lane");
6734 SmallVector<Value *, 2> ProductOps;
6735 ProductOps.push_back(Ops[1]);
6736 ProductOps.push_back(Ops[2]);
6737 Ops[1] =
6738 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
6739 ProductOps, "vqdmlXl");
6740 Ops.pop_back();
6741
6742 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
6743 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
6744 ? Intrinsic::aarch64_neon_sqadd
6745 : Intrinsic::aarch64_neon_sqsub;
6746 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
6747 }
6748 }
6749
6750 llvm::VectorType *VTy = GetNeonType(this, Type, Arch);
6751 llvm::Type *Ty = VTy;
6752 if (!Ty)
6753 return nullptr;
6754
6755 // Not all intrinsics handled by the common case work for AArch64 yet, so only
6756 // defer to common code if it's been added to our special map.
6757 Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
6758 AArch64SIMDIntrinsicsProvenSorted);
6759
6760 if (Builtin)
6761 return EmitCommonNeonBuiltinExpr(
6762 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
6763 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
6764 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
6765
6766 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
6767 return V;
6768
6769 unsigned Int;
6770 switch (BuiltinID) {
6771 default: return nullptr;
6772 case NEON::BI__builtin_neon_vbsl_v:
6773 case NEON::BI__builtin_neon_vbslq_v: {
6774 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
6775 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
6776 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
6777 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
6778
6779 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
6780 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
6781 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
6782 return Builder.CreateBitCast(Ops[0], Ty);
6783 }
6784 case NEON::BI__builtin_neon_vfma_lane_v:
6785 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
6786 // The ARM builtins (and instructions) have the addend as the first
6787 // operand, but the 'fma' intrinsics have it last. Swap it around here.
6788 Value *Addend = Ops[0];
6789 Value *Multiplicand = Ops[1];
6790 Value *LaneSource = Ops[2];
6791 Ops[0] = Multiplicand;
6792 Ops[1] = LaneSource;
6793 Ops[2] = Addend;
6794
6795 // Now adjust things to handle the lane access.
6796 llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
6797 llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
6798 VTy;
6799 llvm::Constant *cst = cast<Constant>(Ops[3]);
6800 Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
6801 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
6802 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
6803
6804 Ops.pop_back();
6805 Int = Intrinsic::fma;
6806 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
6807 }
6808 case NEON::BI__builtin_neon_vfma_laneq_v: {
6809 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
6810 // v1f64 fma should be mapped to Neon scalar f64 fma
6811 if (VTy && VTy->getElementType() == DoubleTy) {
6812 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
6813 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
6814 llvm::Type *VTy = GetNeonType(this,
6815 NeonTypeFlags(NeonTypeFlags::Float64, false, true), Arch);
6816 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
6817 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
6818 Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
6819 Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
6820 return Builder.CreateBitCast(Result, Ty);
6821 }
6822 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
6823 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6824 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6825
6826 llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
6827 VTy->getNumElements() * 2);
6828 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
6829 Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
6830 cast<ConstantInt>(Ops[3]));
6831 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
6832
6833 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
6834 }
6835 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
6836 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
6837 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6838 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6839
6840 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6841 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
6842 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
6843 }
6844 case NEON::BI__builtin_neon_vfmah_lane_f16:
6845 case NEON::BI__builtin_neon_vfmas_lane_f32:
6846 case NEON::BI__builtin_neon_vfmah_laneq_f16:
6847 case NEON::BI__builtin_neon_vfmas_laneq_f32:
6848 case NEON::BI__builtin_neon_vfmad_lane_f64:
6849 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
6850 Ops.push_back(EmitScalarExpr(E->getArg(3)));
6851 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6852 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
6853 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
6854 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
6855 }
6856 case NEON::BI__builtin_neon_vmull_v:
6857 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6858 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
6859 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
6860 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6861 case NEON::BI__builtin_neon_vmax_v:
6862 case NEON::BI__builtin_neon_vmaxq_v:
6863 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6864 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
6865 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
6866 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
6867 case NEON::BI__builtin_neon_vmaxh_f16: {
6868 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6869 Int = Intrinsic::aarch64_neon_fmax;
6870 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
6871 }
6872 case NEON::BI__builtin_neon_vmin_v:
6873 case NEON::BI__builtin_neon_vminq_v:
6874 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6875 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
6876 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
6877 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
6878 case NEON::BI__builtin_neon_vminh_f16: {
6879 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6880 Int = Intrinsic::aarch64_neon_fmin;
6881 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
6882 }
6883 case NEON::BI__builtin_neon_vabd_v:
6884 case NEON::BI__builtin_neon_vabdq_v:
6885 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6886 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
6887 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
6888 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
6889 case NEON::BI__builtin_neon_vpadal_v:
6890 case NEON::BI__builtin_neon_vpadalq_v: {
6891 unsigned ArgElts = VTy->getNumElements();
6892 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
6893 unsigned BitWidth = EltTy->getBitWidth();
6894 llvm::Type *ArgTy = llvm::VectorType::get(
6895 llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
6896 llvm::Type* Tys[2] = { VTy, ArgTy };
6897 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
6898 SmallVector<llvm::Value*, 1> TmpOps;
6899 TmpOps.push_back(Ops[1]);
6900 Function *F = CGM.getIntrinsic(Int, Tys);
6901 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
6902 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
6903 return Builder.CreateAdd(tmp, addend);
6904 }
6905 case NEON::BI__builtin_neon_vpmin_v:
6906 case NEON::BI__builtin_neon_vpminq_v:
6907 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6908 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
6909 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
6910 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
6911 case NEON::BI__builtin_neon_vpmax_v:
6912 case NEON::BI__builtin_neon_vpmaxq_v:
6913 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
6914 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
6915 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
6916 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
6917 case NEON::BI__builtin_neon_vminnm_v:
6918 case NEON::BI__builtin_neon_vminnmq_v:
6919 Int = Intrinsic::aarch64_neon_fminnm;
6920 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
6921 case NEON::BI__builtin_neon_vminnmh_f16:
6922 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6923 Int = Intrinsic::aarch64_neon_fminnm;
6924 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
6925 case NEON::BI__builtin_neon_vmaxnm_v:
6926 case NEON::BI__builtin_neon_vmaxnmq_v:
6927 Int = Intrinsic::aarch64_neon_fmaxnm;
6928 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
6929 case NEON::BI__builtin_neon_vmaxnmh_f16:
6930 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6931 Int = Intrinsic::aarch64_neon_fmaxnm;
6932 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
6933 case NEON::BI__builtin_neon_vrecpss_f32: {
6934 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6935 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
6936 Ops, "vrecps");
6937 }
6938 case NEON::BI__builtin_neon_vrecpsd_f64:
6939 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6940 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
6941 Ops, "vrecps");
6942 case NEON::BI__builtin_neon_vrecpsh_f16:
6943 Ops.push_back(EmitScalarExpr(E->getArg(1)));
6944 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
6945 Ops, "vrecps");
6946 case NEON::BI__builtin_neon_vqshrun_n_v:
6947 Int = Intrinsic::aarch64_neon_sqshrun;
6948 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
6949 case NEON::BI__builtin_neon_vqrshrun_n_v:
6950 Int = Intrinsic::aarch64_neon_sqrshrun;
6951 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
6952 case NEON::BI__builtin_neon_vqshrn_n_v:
6953 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
6954 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
6955 case NEON::BI__builtin_neon_vrshrn_n_v:
6956 Int = Intrinsic::aarch64_neon_rshrn;
6957 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
6958 case NEON::BI__builtin_neon_vqrshrn_n_v:
6959 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
6960 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
6961 case NEON::BI__builtin_neon_vrndah_f16: {
6962 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6963 Int = Intrinsic::round;
6964 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
6965 }
6966 case NEON::BI__builtin_neon_vrnda_v:
6967 case NEON::BI__builtin_neon_vrndaq_v: {
6968 Int = Intrinsic::round;
6969 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
6970 }
6971 case NEON::BI__builtin_neon_vrndih_f16: {
6972 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6973 Int = Intrinsic::nearbyint;
6974 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
6975 }
6976 case NEON::BI__builtin_neon_vrndi_v:
6977 case NEON::BI__builtin_neon_vrndiq_v: {
6978 Int = Intrinsic::nearbyint;
6979 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
6980 }
6981 case NEON::BI__builtin_neon_vrndmh_f16: {
6982 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6983 Int = Intrinsic::floor;
6984 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
6985 }
6986 case NEON::BI__builtin_neon_vrndm_v:
6987 case NEON::BI__builtin_neon_vrndmq_v: {
6988 Int = Intrinsic::floor;
6989 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
6990 }
6991 case NEON::BI__builtin_neon_vrndnh_f16: {
6992 Ops.push_back(EmitScalarExpr(E->getArg(0)));
6993 Int = Intrinsic::aarch64_neon_frintn;
6994 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
6995 }
6996 case NEON::BI__builtin_neon_vrndn_v:
6997 case NEON::BI__builtin_neon_vrndnq_v: {
6998 Int = Intrinsic::aarch64_neon_frintn;
6999 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
7000 }
7001 case NEON::BI__builtin_neon_vrndph_f16: {
7002 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7003 Int = Intrinsic::ceil;
7004 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
7005 }
7006 case NEON::BI__builtin_neon_vrndp_v:
7007 case NEON::BI__builtin_neon_vrndpq_v: {
7008 Int = Intrinsic::ceil;
7009 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
7010 }
7011 case NEON::BI__builtin_neon_vrndxh_f16: {
7012 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7013 Int = Intrinsic::rint;
7014 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
7015 }
7016 case NEON::BI__builtin_neon_vrndx_v:
7017 case NEON::BI__builtin_neon_vrndxq_v: {
7018 Int = Intrinsic::rint;
7019 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
7020 }
7021 case NEON::BI__builtin_neon_vrndh_f16: {
7022 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7023 Int = Intrinsic::trunc;
7024 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
7025 }
7026 case NEON::BI__builtin_neon_vrnd_v:
7027 case NEON::BI__builtin_neon_vrndq_v: {
7028 Int = Intrinsic::trunc;
7029 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
7030 }
7031 case NEON::BI__builtin_neon_vceqz_v:
7032 case NEON::BI__builtin_neon_vceqzq_v:
7033 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
7034 ICmpInst::ICMP_EQ, "vceqz");
7035 case NEON::BI__builtin_neon_vcgez_v:
7036 case NEON::BI__builtin_neon_vcgezq_v:
7037 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
7038 ICmpInst::ICMP_SGE, "vcgez");
7039 case NEON::BI__builtin_neon_vclez_v:
7040 case NEON::BI__builtin_neon_vclezq_v:
7041 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
7042 ICmpInst::ICMP_SLE, "vclez");
7043 case NEON::BI__builtin_neon_vcgtz_v:
7044 case NEON::BI__builtin_neon_vcgtzq_v:
7045 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
7046 ICmpInst::ICMP_SGT, "vcgtz");
7047 case NEON::BI__builtin_neon_vcltz_v:
7048 case NEON::BI__builtin_neon_vcltzq_v:
7049 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
7050 ICmpInst::ICMP_SLT, "vcltz");
7051 case NEON::BI__builtin_neon_vcvt_f64_v:
7052 case NEON::BI__builtin_neon_vcvtq_f64_v:
7053 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7054 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad), Arch);
7055 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7056 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7057 case NEON::BI__builtin_neon_vcvt_f64_f32: {
7058 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7059, __extension__ __PRETTY_FUNCTION__))
7059 "unexpected vcvt_f64_f32 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7059, __extension__ __PRETTY_FUNCTION__))
;
7060 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
7061 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag, Arch));
7062
7063 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
7064 }
7065 case NEON::BI__builtin_neon_vcvt_f32_f64: {
7066 assert(Type.getEltType() == NeonTypeFlags::Float32 &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7067, __extension__ __PRETTY_FUNCTION__))
7067 "unexpected vcvt_f32_f64 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7067, __extension__ __PRETTY_FUNCTION__))
;
7068 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
7069 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag, Arch));
7070
7071 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
7072 }
7073 case NEON::BI__builtin_neon_vcvt_s32_v:
7074 case NEON::BI__builtin_neon_vcvt_u32_v:
7075 case NEON::BI__builtin_neon_vcvt_s64_v:
7076 case NEON::BI__builtin_neon_vcvt_u64_v:
7077 case NEON::BI__builtin_neon_vcvt_s16_v:
7078 case NEON::BI__builtin_neon_vcvt_u16_v:
7079 case NEON::BI__builtin_neon_vcvtq_s32_v:
7080 case NEON::BI__builtin_neon_vcvtq_u32_v:
7081 case NEON::BI__builtin_neon_vcvtq_s64_v:
7082 case NEON::BI__builtin_neon_vcvtq_u64_v:
7083 case NEON::BI__builtin_neon_vcvtq_s16_v:
7084 case NEON::BI__builtin_neon_vcvtq_u16_v: {
7085 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
7086 if (usgn)
7087 return Builder.CreateFPToUI(Ops[0], Ty);
7088 return Builder.CreateFPToSI(Ops[0], Ty);
7089 }
7090 case NEON::BI__builtin_neon_vcvta_s16_v:
7091 case NEON::BI__builtin_neon_vcvta_s32_v:
7092 case NEON::BI__builtin_neon_vcvtaq_s16_v:
7093 case NEON::BI__builtin_neon_vcvtaq_s32_v:
7094 case NEON::BI__builtin_neon_vcvta_u32_v:
7095 case NEON::BI__builtin_neon_vcvtaq_u16_v:
7096 case NEON::BI__builtin_neon_vcvtaq_u32_v:
7097 case NEON::BI__builtin_neon_vcvta_s64_v:
7098 case NEON::BI__builtin_neon_vcvtaq_s64_v:
7099 case NEON::BI__builtin_neon_vcvta_u64_v:
7100 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
7101 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
7102 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7103 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
7104 }
7105 case NEON::BI__builtin_neon_vcvtm_s16_v:
7106 case NEON::BI__builtin_neon_vcvtm_s32_v:
7107 case NEON::BI__builtin_neon_vcvtmq_s16_v:
7108 case NEON::BI__builtin_neon_vcvtmq_s32_v:
7109 case NEON::BI__builtin_neon_vcvtm_u16_v:
7110 case NEON::BI__builtin_neon_vcvtm_u32_v:
7111 case NEON::BI__builtin_neon_vcvtmq_u16_v:
7112 case NEON::BI__builtin_neon_vcvtmq_u32_v:
7113 case NEON::BI__builtin_neon_vcvtm_s64_v:
7114 case NEON::BI__builtin_neon_vcvtmq_s64_v:
7115 case NEON::BI__builtin_neon_vcvtm_u64_v:
7116 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
7117 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
7118 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7119 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
7120 }
7121 case NEON::BI__builtin_neon_vcvtn_s16_v:
7122 case NEON::BI__builtin_neon_vcvtn_s32_v:
7123 case NEON::BI__builtin_neon_vcvtnq_s16_v:
7124 case NEON::BI__builtin_neon_vcvtnq_s32_v:
7125 case NEON::BI__builtin_neon_vcvtn_u16_v:
7126 case NEON::BI__builtin_neon_vcvtn_u32_v:
7127 case NEON::BI__builtin_neon_vcvtnq_u16_v:
7128 case NEON::BI__builtin_neon_vcvtnq_u32_v:
7129 case NEON::BI__builtin_neon_vcvtn_s64_v:
7130 case NEON::BI__builtin_neon_vcvtnq_s64_v:
7131 case NEON::BI__builtin_neon_vcvtn_u64_v:
7132 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
7133 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
7134 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7135 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
7136 }
7137 case NEON::BI__builtin_neon_vcvtp_s16_v:
7138 case NEON::BI__builtin_neon_vcvtp_s32_v:
7139 case NEON::BI__builtin_neon_vcvtpq_s16_v:
7140 case NEON::BI__builtin_neon_vcvtpq_s32_v:
7141 case NEON::BI__builtin_neon_vcvtp_u16_v:
7142 case NEON::BI__builtin_neon_vcvtp_u32_v:
7143 case NEON::BI__builtin_neon_vcvtpq_u16_v:
7144 case NEON::BI__builtin_neon_vcvtpq_u32_v:
7145 case NEON::BI__builtin_neon_vcvtp_s64_v:
7146 case NEON::BI__builtin_neon_vcvtpq_s64_v:
7147 case NEON::BI__builtin_neon_vcvtp_u64_v:
7148 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
7149 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
7150 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7151 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
7152 }
7153 case NEON::BI__builtin_neon_vmulx_v:
7154 case NEON::BI__builtin_neon_vmulxq_v: {
7155 Int = Intrinsic::aarch64_neon_fmulx;
7156 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
7157 }
7158 case NEON::BI__builtin_neon_vmul_lane_v:
7159 case NEON::BI__builtin_neon_vmul_laneq_v: {
7160 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
7161 bool Quad = false;
7162 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
7163 Quad = true;
7164 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
7165 llvm::Type *VTy = GetNeonType(this,
7166 NeonTypeFlags(NeonTypeFlags::Float64, false, Quad), Arch);
7167 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
7168 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
7169 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
7170 return Builder.CreateBitCast(Result, Ty);
7171 }
7172 case NEON::BI__builtin_neon_vnegd_s64:
7173 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
7174 case NEON::BI__builtin_neon_vnegh_f16:
7175 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
7176 case NEON::BI__builtin_neon_vpmaxnm_v:
7177 case NEON::BI__builtin_neon_vpmaxnmq_v: {
7178 Int = Intrinsic::aarch64_neon_fmaxnmp;
7179 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
7180 }
7181 case NEON::BI__builtin_neon_vpminnm_v:
7182 case NEON::BI__builtin_neon_vpminnmq_v: {
7183 Int = Intrinsic::aarch64_neon_fminnmp;
7184 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
7185 }
7186 case NEON::BI__builtin_neon_vsqrth_f16: {
7187 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7188 Int = Intrinsic::sqrt;
7189 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
7190 }
7191 case NEON::BI__builtin_neon_vsqrt_v:
7192 case NEON::BI__builtin_neon_vsqrtq_v: {
7193 Int = Intrinsic::sqrt;
7194 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7195 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
7196 }
7197 case NEON::BI__builtin_neon_vrbit_v:
7198 case NEON::BI__builtin_neon_vrbitq_v: {
7199 Int = Intrinsic::aarch64_neon_rbit;
7200 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
7201 }
7202 case NEON::BI__builtin_neon_vaddv_u8:
7203 // FIXME: These are handled by the AArch64 scalar code.
7204 usgn = true;
7205 LLVM_FALLTHROUGH[[clang::fallthrough]];
7206 case NEON::BI__builtin_neon_vaddv_s8: {
7207 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
7208 Ty = Int32Ty;
7209 VTy = llvm::VectorType::get(Int8Ty, 8);
7210 llvm::Type *Tys[2] = { Ty, VTy };
7211 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7212 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
7213 return Builder.CreateTrunc(Ops[0], Int8Ty);
7214 }
7215 case NEON::BI__builtin_neon_vaddv_u16:
7216 usgn = true;
7217 LLVM_FALLTHROUGH[[clang::fallthrough]];
7218 case NEON::BI__builtin_neon_vaddv_s16: {
7219 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
7220 Ty = Int32Ty;
7221 VTy = llvm::VectorType::get(Int16Ty, 4);
7222 llvm::Type *Tys[2] = { Ty, VTy };
7223 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7224 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
7225 return Builder.CreateTrunc(Ops[0], Int16Ty);
7226 }
7227 case NEON::BI__builtin_neon_vaddvq_u8:
7228 usgn = true;
7229 LLVM_FALLTHROUGH[[clang::fallthrough]];
7230 case NEON::BI__builtin_neon_vaddvq_s8: {
7231 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
7232 Ty = Int32Ty;
7233 VTy = llvm::VectorType::get(Int8Ty, 16);
7234 llvm::Type *Tys[2] = { Ty, VTy };
7235 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7236 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
7237 return Builder.CreateTrunc(Ops[0], Int8Ty);
7238 }
7239 case NEON::BI__builtin_neon_vaddvq_u16:
7240 usgn = true;
7241 LLVM_FALLTHROUGH[[clang::fallthrough]];
7242 case NEON::BI__builtin_neon_vaddvq_s16: {
7243 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
7244 Ty = Int32Ty;
7245 VTy = llvm::VectorType::get(Int16Ty, 8);
7246 llvm::Type *Tys[2] = { Ty, VTy };
7247 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7248 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
7249 return Builder.CreateTrunc(Ops[0], Int16Ty);
7250 }
7251 case NEON::BI__builtin_neon_vmaxv_u8: {
7252 Int = Intrinsic::aarch64_neon_umaxv;
7253 Ty = Int32Ty;
7254 VTy = llvm::VectorType::get(Int8Ty, 8);
7255 llvm::Type *Tys[2] = { Ty, VTy };
7256 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7257 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7258 return Builder.CreateTrunc(Ops[0], Int8Ty);
7259 }
7260 case NEON::BI__builtin_neon_vmaxv_u16: {
7261 Int = Intrinsic::aarch64_neon_umaxv;
7262 Ty = Int32Ty;
7263 VTy = llvm::VectorType::get(Int16Ty, 4);
7264 llvm::Type *Tys[2] = { Ty, VTy };
7265 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7266 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7267 return Builder.CreateTrunc(Ops[0], Int16Ty);
7268 }
7269 case NEON::BI__builtin_neon_vmaxvq_u8: {
7270 Int = Intrinsic::aarch64_neon_umaxv;
7271 Ty = Int32Ty;
7272 VTy = llvm::VectorType::get(Int8Ty, 16);
7273 llvm::Type *Tys[2] = { Ty, VTy };
7274 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7275 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7276 return Builder.CreateTrunc(Ops[0], Int8Ty);
7277 }
7278 case NEON::BI__builtin_neon_vmaxvq_u16: {
7279 Int = Intrinsic::aarch64_neon_umaxv;
7280 Ty = Int32Ty;
7281 VTy = llvm::VectorType::get(Int16Ty, 8);
7282 llvm::Type *Tys[2] = { Ty, VTy };
7283 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7284 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7285 return Builder.CreateTrunc(Ops[0], Int16Ty);
7286 }
7287 case NEON::BI__builtin_neon_vmaxv_s8: {
7288 Int = Intrinsic::aarch64_neon_smaxv;
7289 Ty = Int32Ty;
7290 VTy = llvm::VectorType::get(Int8Ty, 8);
7291 llvm::Type *Tys[2] = { Ty, VTy };
7292 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7293 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7294 return Builder.CreateTrunc(Ops[0], Int8Ty);
7295 }
7296 case NEON::BI__builtin_neon_vmaxv_s16: {
7297 Int = Intrinsic::aarch64_neon_smaxv;
7298 Ty = Int32Ty;
7299 VTy = llvm::VectorType::get(Int16Ty, 4);
7300 llvm::Type *Tys[2] = { Ty, VTy };
7301 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7302 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7303 return Builder.CreateTrunc(Ops[0], Int16Ty);
7304 }
7305 case NEON::BI__builtin_neon_vmaxvq_s8: {
7306 Int = Intrinsic::aarch64_neon_smaxv;
7307 Ty = Int32Ty;
7308 VTy = llvm::VectorType::get(Int8Ty, 16);
7309 llvm::Type *Tys[2] = { Ty, VTy };
7310 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7311 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7312 return Builder.CreateTrunc(Ops[0], Int8Ty);
7313 }
7314 case NEON::BI__builtin_neon_vmaxvq_s16: {
7315 Int = Intrinsic::aarch64_neon_smaxv;
7316 Ty = Int32Ty;
7317 VTy = llvm::VectorType::get(Int16Ty, 8);
7318 llvm::Type *Tys[2] = { Ty, VTy };
7319 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7320 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7321 return Builder.CreateTrunc(Ops[0], Int16Ty);
7322 }
7323 case NEON::BI__builtin_neon_vmaxv_f16: {
7324 Int = Intrinsic::aarch64_neon_fmaxv;
7325 Ty = HalfTy;
7326 VTy = llvm::VectorType::get(HalfTy, 4);
7327 llvm::Type *Tys[2] = { Ty, VTy };
7328 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7329 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7330 return Builder.CreateTrunc(Ops[0], HalfTy);
7331 }
7332 case NEON::BI__builtin_neon_vmaxvq_f16: {
7333 Int = Intrinsic::aarch64_neon_fmaxv;
7334 Ty = HalfTy;
7335 VTy = llvm::VectorType::get(HalfTy, 8);
7336 llvm::Type *Tys[2] = { Ty, VTy };
7337 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7338 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
7339 return Builder.CreateTrunc(Ops[0], HalfTy);
7340 }
7341 case NEON::BI__builtin_neon_vminv_u8: {
7342 Int = Intrinsic::aarch64_neon_uminv;
7343 Ty = Int32Ty;
7344 VTy = llvm::VectorType::get(Int8Ty, 8);
7345 llvm::Type *Tys[2] = { Ty, VTy };
7346 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7347 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7348 return Builder.CreateTrunc(Ops[0], Int8Ty);
7349 }
7350 case NEON::BI__builtin_neon_vminv_u16: {
7351 Int = Intrinsic::aarch64_neon_uminv;
7352 Ty = Int32Ty;
7353 VTy = llvm::VectorType::get(Int16Ty, 4);
7354 llvm::Type *Tys[2] = { Ty, VTy };
7355 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7356 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7357 return Builder.CreateTrunc(Ops[0], Int16Ty);
7358 }
7359 case NEON::BI__builtin_neon_vminvq_u8: {
7360 Int = Intrinsic::aarch64_neon_uminv;
7361 Ty = Int32Ty;
7362 VTy = llvm::VectorType::get(Int8Ty, 16);
7363 llvm::Type *Tys[2] = { Ty, VTy };
7364 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7365 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7366 return Builder.CreateTrunc(Ops[0], Int8Ty);
7367 }
7368 case NEON::BI__builtin_neon_vminvq_u16: {
7369 Int = Intrinsic::aarch64_neon_uminv;
7370 Ty = Int32Ty;
7371 VTy = llvm::VectorType::get(Int16Ty, 8);
7372 llvm::Type *Tys[2] = { Ty, VTy };
7373 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7374 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7375 return Builder.CreateTrunc(Ops[0], Int16Ty);
7376 }
7377 case NEON::BI__builtin_neon_vminv_s8: {
7378 Int = Intrinsic::aarch64_neon_sminv;
7379 Ty = Int32Ty;
7380 VTy = llvm::VectorType::get(Int8Ty, 8);
7381 llvm::Type *Tys[2] = { Ty, VTy };
7382 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7383 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7384 return Builder.CreateTrunc(Ops[0], Int8Ty);
7385 }
7386 case NEON::BI__builtin_neon_vminv_s16: {
7387 Int = Intrinsic::aarch64_neon_sminv;
7388 Ty = Int32Ty;
7389 VTy = llvm::VectorType::get(Int16Ty, 4);
7390 llvm::Type *Tys[2] = { Ty, VTy };
7391 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7392 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7393 return Builder.CreateTrunc(Ops[0], Int16Ty);
7394 }
7395 case NEON::BI__builtin_neon_vminvq_s8: {
7396 Int = Intrinsic::aarch64_neon_sminv;
7397 Ty = Int32Ty;
7398 VTy = llvm::VectorType::get(Int8Ty, 16);
7399 llvm::Type *Tys[2] = { Ty, VTy };
7400 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7401 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7402 return Builder.CreateTrunc(Ops[0], Int8Ty);
7403 }
7404 case NEON::BI__builtin_neon_vminvq_s16: {
7405 Int = Intrinsic::aarch64_neon_sminv;
7406 Ty = Int32Ty;
7407 VTy = llvm::VectorType::get(Int16Ty, 8);
7408 llvm::Type *Tys[2] = { Ty, VTy };
7409 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7410 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7411 return Builder.CreateTrunc(Ops[0], Int16Ty);
7412 }
7413 case NEON::BI__builtin_neon_vminv_f16: {
7414 Int = Intrinsic::aarch64_neon_fminv;
7415 Ty = HalfTy;
7416 VTy = llvm::VectorType::get(HalfTy, 4);
7417 llvm::Type *Tys[2] = { Ty, VTy };
7418 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7419 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7420 return Builder.CreateTrunc(Ops[0], HalfTy);
7421 }
7422 case NEON::BI__builtin_neon_vminvq_f16: {
7423 Int = Intrinsic::aarch64_neon_fminv;
7424 Ty = HalfTy;
7425 VTy = llvm::VectorType::get(HalfTy, 8);
7426 llvm::Type *Tys[2] = { Ty, VTy };
7427 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7428 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
7429 return Builder.CreateTrunc(Ops[0], HalfTy);
7430 }
7431 case NEON::BI__builtin_neon_vmaxnmv_f16: {
7432 Int = Intrinsic::aarch64_neon_fmaxnmv;
7433 Ty = HalfTy;
7434 VTy = llvm::VectorType::get(HalfTy, 4);
7435 llvm::Type *Tys[2] = { Ty, VTy };
7436 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7437 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
7438 return Builder.CreateTrunc(Ops[0], HalfTy);
7439 }
7440 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
7441 Int = Intrinsic::aarch64_neon_fmaxnmv;
7442 Ty = HalfTy;
7443 VTy = llvm::VectorType::get(HalfTy, 8);
7444 llvm::Type *Tys[2] = { Ty, VTy };
7445 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7446 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
7447 return Builder.CreateTrunc(Ops[0], HalfTy);
7448 }
7449 case NEON::BI__builtin_neon_vminnmv_f16: {
7450 Int = Intrinsic::aarch64_neon_fminnmv;
7451 Ty = HalfTy;
7452 VTy = llvm::VectorType::get(HalfTy, 4);
7453 llvm::Type *Tys[2] = { Ty, VTy };
7454 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7455 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
7456 return Builder.CreateTrunc(Ops[0], HalfTy);
7457 }
7458 case NEON::BI__builtin_neon_vminnmvq_f16: {
7459 Int = Intrinsic::aarch64_neon_fminnmv;
7460 Ty = HalfTy;
7461 VTy = llvm::VectorType::get(HalfTy, 8);
7462 llvm::Type *Tys[2] = { Ty, VTy };
7463 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7464 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
7465 return Builder.CreateTrunc(Ops[0], HalfTy);
7466 }
7467 case NEON::BI__builtin_neon_vmul_n_f64: {
7468 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
7469 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
7470 return Builder.CreateFMul(Ops[0], RHS);
7471 }
7472 case NEON::BI__builtin_neon_vaddlv_u8: {
7473 Int = Intrinsic::aarch64_neon_uaddlv;
7474 Ty = Int32Ty;
7475 VTy = llvm::VectorType::get(Int8Ty, 8);
7476 llvm::Type *Tys[2] = { Ty, VTy };
7477 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7478 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7479 return Builder.CreateTrunc(Ops[0], Int16Ty);
7480 }
7481 case NEON::BI__builtin_neon_vaddlv_u16: {
7482 Int = Intrinsic::aarch64_neon_uaddlv;
7483 Ty = Int32Ty;
7484 VTy = llvm::VectorType::get(Int16Ty, 4);
7485 llvm::Type *Tys[2] = { Ty, VTy };
7486 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7487 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7488 }
7489 case NEON::BI__builtin_neon_vaddlvq_u8: {
7490 Int = Intrinsic::aarch64_neon_uaddlv;
7491 Ty = Int32Ty;
7492 VTy = llvm::VectorType::get(Int8Ty, 16);
7493 llvm::Type *Tys[2] = { Ty, VTy };
7494 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7495 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7496 return Builder.CreateTrunc(Ops[0], Int16Ty);
7497 }
7498 case NEON::BI__builtin_neon_vaddlvq_u16: {
7499 Int = Intrinsic::aarch64_neon_uaddlv;
7500 Ty = Int32Ty;
7501 VTy = llvm::VectorType::get(Int16Ty, 8);
7502 llvm::Type *Tys[2] = { Ty, VTy };
7503 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7504 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7505 }
7506 case NEON::BI__builtin_neon_vaddlv_s8: {
7507 Int = Intrinsic::aarch64_neon_saddlv;
7508 Ty = Int32Ty;
7509 VTy = llvm::VectorType::get(Int8Ty, 8);
7510 llvm::Type *Tys[2] = { Ty, VTy };
7511 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7512 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7513 return Builder.CreateTrunc(Ops[0], Int16Ty);
7514 }
7515 case NEON::BI__builtin_neon_vaddlv_s16: {
7516 Int = Intrinsic::aarch64_neon_saddlv;
7517 Ty = Int32Ty;
7518 VTy = llvm::VectorType::get(Int16Ty, 4);
7519 llvm::Type *Tys[2] = { Ty, VTy };
7520 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7521 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7522 }
7523 case NEON::BI__builtin_neon_vaddlvq_s8: {
7524 Int = Intrinsic::aarch64_neon_saddlv;
7525 Ty = Int32Ty;
7526 VTy = llvm::VectorType::get(Int8Ty, 16);
7527 llvm::Type *Tys[2] = { Ty, VTy };
7528 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7529 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7530 return Builder.CreateTrunc(Ops[0], Int16Ty);
7531 }
7532 case NEON::BI__builtin_neon_vaddlvq_s16: {
7533 Int = Intrinsic::aarch64_neon_saddlv;
7534 Ty = Int32Ty;
7535 VTy = llvm::VectorType::get(Int16Ty, 8);
7536 llvm::Type *Tys[2] = { Ty, VTy };
7537 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7538 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
7539 }
7540 case NEON::BI__builtin_neon_vsri_n_v:
7541 case NEON::BI__builtin_neon_vsriq_n_v: {
7542 Int = Intrinsic::aarch64_neon_vsri;
7543 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
7544 return EmitNeonCall(Intrin, Ops, "vsri_n");
7545 }
7546 case NEON::BI__builtin_neon_vsli_n_v:
7547 case NEON::BI__builtin_neon_vsliq_n_v: {
7548 Int = Intrinsic::aarch64_neon_vsli;
7549 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
7550 return EmitNeonCall(Intrin, Ops, "vsli_n");
7551 }
7552 case NEON::BI__builtin_neon_vsra_n_v:
7553 case NEON::BI__builtin_neon_vsraq_n_v:
7554 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7555 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7556 return Builder.CreateAdd(Ops[0], Ops[1]);
7557 case NEON::BI__builtin_neon_vrsra_n_v:
7558 case NEON::BI__builtin_neon_vrsraq_n_v: {
7559 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
7560 SmallVector<llvm::Value*,2> TmpOps;
7561 TmpOps.push_back(Ops[1]);
7562 TmpOps.push_back(Ops[2]);
7563 Function* F = CGM.getIntrinsic(Int, Ty);
7564 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
7565 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
7566 return Builder.CreateAdd(Ops[0], tmp);
7567 }
7568 // FIXME: Sharing loads & stores with 32-bit is complicated by the absence
7569 // of an Align parameter here.
7570 case NEON::BI__builtin_neon_vld1_x2_v:
7571 case NEON::BI__builtin_neon_vld1q_x2_v:
7572 case NEON::BI__builtin_neon_vld1_x3_v:
7573 case NEON::BI__builtin_neon_vld1q_x3_v:
7574 case NEON::BI__builtin_neon_vld1_x4_v:
7575 case NEON::BI__builtin_neon_vld1q_x4_v: {
7576 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
7577 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7578 llvm::Type *Tys[2] = { VTy, PTy };
7579 unsigned Int;
7580 switch (BuiltinID) {
7581 case NEON::BI__builtin_neon_vld1_x2_v:
7582 case NEON::BI__builtin_neon_vld1q_x2_v:
7583 Int = Intrinsic::aarch64_neon_ld1x2;
7584 break;
7585 case NEON::BI__builtin_neon_vld1_x3_v:
7586 case NEON::BI__builtin_neon_vld1q_x3_v:
7587 Int = Intrinsic::aarch64_neon_ld1x3;
7588 break;
7589 case NEON::BI__builtin_neon_vld1_x4_v:
7590 case NEON::BI__builtin_neon_vld1q_x4_v:
7591 Int = Intrinsic::aarch64_neon_ld1x4;
7592 break;
7593 }
7594 Function *F = CGM.getIntrinsic(Int, Tys);
7595 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
7596 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7597 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7598 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7599 }
7600 case NEON::BI__builtin_neon_vst1_x2_v:
7601 case NEON::BI__builtin_neon_vst1q_x2_v:
7602 case NEON::BI__builtin_neon_vst1_x3_v:
7603 case NEON::BI__builtin_neon_vst1q_x3_v:
7604 case NEON::BI__builtin_neon_vst1_x4_v:
7605 case NEON::BI__builtin_neon_vst1q_x4_v: {
7606 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
7607 llvm::Type *Tys[2] = { VTy, PTy };
7608 unsigned Int;
7609 switch (BuiltinID) {
7610 case NEON::BI__builtin_neon_vst1_x2_v:
7611 case NEON::BI__builtin_neon_vst1q_x2_v:
7612 Int = Intrinsic::aarch64_neon_st1x2;
7613 break;
7614 case NEON::BI__builtin_neon_vst1_x3_v:
7615 case NEON::BI__builtin_neon_vst1q_x3_v:
7616 Int = Intrinsic::aarch64_neon_st1x3;
7617 break;
7618 case NEON::BI__builtin_neon_vst1_x4_v:
7619 case NEON::BI__builtin_neon_vst1q_x4_v:
7620 Int = Intrinsic::aarch64_neon_st1x4;
7621 break;
7622 }
7623 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
7624 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
7625 }
7626 case NEON::BI__builtin_neon_vld1_v:
7627 case NEON::BI__builtin_neon_vld1q_v: {
7628 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
7629 auto Alignment = CharUnits::fromQuantity(
7630 BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
7631 return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
7632 }
7633 case NEON::BI__builtin_neon_vst1_v:
7634 case NEON::BI__builtin_neon_vst1q_v:
7635 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
7636 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
7637 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7638 case NEON::BI__builtin_neon_vld1_lane_v:
7639 case NEON::BI__builtin_neon_vld1q_lane_v: {
7640 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7641 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
7642 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7643 auto Alignment = CharUnits::fromQuantity(
7644 BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
7645 Ops[0] =
7646 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
7647 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
7648 }
7649 case NEON::BI__builtin_neon_vld1_dup_v:
7650 case NEON::BI__builtin_neon_vld1q_dup_v: {
7651 Value *V = UndefValue::get(Ty);
7652 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
7653 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7654 auto Alignment = CharUnits::fromQuantity(
7655 BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
7656 Ops[0] =
7657 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
7658 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
7659 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
7660 return EmitNeonSplat(Ops[0], CI);
7661 }
7662 case NEON::BI__builtin_neon_vst1_lane_v:
7663 case NEON::BI__builtin_neon_vst1q_lane_v:
7664 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7665 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7666 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7667 return Builder.CreateDefaultAlignedStore(Ops[1],
7668 Builder.CreateBitCast(Ops[0], Ty));
7669 case NEON::BI__builtin_neon_vld2_v:
7670 case NEON::BI__builtin_neon_vld2q_v: {
7671 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
7672 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7673 llvm::Type *Tys[2] = { VTy, PTy };
7674 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
7675 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
7676 Ops[0] = Builder.CreateBitCast(Ops[0],
7677 llvm::PointerType::getUnqual(Ops[1]->getType()));
7678 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7679 }
7680 case NEON::BI__builtin_neon_vld3_v:
7681 case NEON::BI__builtin_neon_vld3q_v: {
7682 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
7683 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7684 llvm::Type *Tys[2] = { VTy, PTy };
7685 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
7686 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
7687 Ops[0] = Builder.CreateBitCast(Ops[0],
7688 llvm::PointerType::getUnqual(Ops[1]->getType()));
7689 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7690 }
7691 case NEON::BI__builtin_neon_vld4_v:
7692 case NEON::BI__builtin_neon_vld4q_v: {
7693 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
7694 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7695 llvm::Type *Tys[2] = { VTy, PTy };
7696 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
7697 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
7698 Ops[0] = Builder.CreateBitCast(Ops[0],
7699 llvm::PointerType::getUnqual(Ops[1]->getType()));
7700 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7701 }
7702 case NEON::BI__builtin_neon_vld2_dup_v:
7703 case NEON::BI__builtin_neon_vld2q_dup_v: {
7704 llvm::Type *PTy =
7705 llvm::PointerType::getUnqual(VTy->getElementType());
7706 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7707 llvm::Type *Tys[2] = { VTy, PTy };
7708 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
7709 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
7710 Ops[0] = Builder.CreateBitCast(Ops[0],
7711 llvm::PointerType::getUnqual(Ops[1]->getType()));
7712 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7713 }
7714 case NEON::BI__builtin_neon_vld3_dup_v:
7715 case NEON::BI__builtin_neon_vld3q_dup_v: {
7716 llvm::Type *PTy =
7717 llvm::PointerType::getUnqual(VTy->getElementType());
7718 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7719 llvm::Type *Tys[2] = { VTy, PTy };
7720 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
7721 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
7722 Ops[0] = Builder.CreateBitCast(Ops[0],
7723 llvm::PointerType::getUnqual(Ops[1]->getType()));
7724 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7725 }
7726 case NEON::BI__builtin_neon_vld4_dup_v:
7727 case NEON::BI__builtin_neon_vld4q_dup_v: {
7728 llvm::Type *PTy =
7729 llvm::PointerType::getUnqual(VTy->getElementType());
7730 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7731 llvm::Type *Tys[2] = { VTy, PTy };
7732 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
7733 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
7734 Ops[0] = Builder.CreateBitCast(Ops[0],
7735 llvm::PointerType::getUnqual(Ops[1]->getType()));
7736 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7737 }
7738 case NEON::BI__builtin_neon_vld2_lane_v:
7739 case NEON::BI__builtin_neon_vld2q_lane_v: {
7740 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
7741 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
7742 Ops.push_back(Ops[1]);
7743 Ops.erase(Ops.begin()+1);
7744 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7745 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7746 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7747 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
7748 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7749 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7750 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7751 }
7752 case NEON::BI__builtin_neon_vld3_lane_v:
7753 case NEON::BI__builtin_neon_vld3q_lane_v: {
7754 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
7755 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
7756 Ops.push_back(Ops[1]);
7757 Ops.erase(Ops.begin()+1);
7758 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7759 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7760 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
7761 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
7762 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
7763 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7764 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7765 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7766 }
7767 case NEON::BI__builtin_neon_vld4_lane_v:
7768 case NEON::BI__builtin_neon_vld4q_lane_v: {
7769 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
7770 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
7771 Ops.push_back(Ops[1]);
7772 Ops.erase(Ops.begin()+1);
7773 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7774 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7775 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
7776 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
7777 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
7778 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
7779 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7780 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7781 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7782 }
7783 case NEON::BI__builtin_neon_vst2_v:
7784 case NEON::BI__builtin_neon_vst2q_v: {
7785 Ops.push_back(Ops[0]);
7786 Ops.erase(Ops.begin());
7787 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
7788 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
7789 Ops, "");
7790 }
7791 case NEON::BI__builtin_neon_vst2_lane_v:
7792 case NEON::BI__builtin_neon_vst2q_lane_v: {
7793 Ops.push_back(Ops[0]);
7794 Ops.erase(Ops.begin());
7795 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7796 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
7797 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
7798 Ops, "");
7799 }
7800 case NEON::BI__builtin_neon_vst3_v:
7801 case NEON::BI__builtin_neon_vst3q_v: {
7802 Ops.push_back(Ops[0]);
7803 Ops.erase(Ops.begin());
7804 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
7805 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
7806 Ops, "");
7807 }
7808 case NEON::BI__builtin_neon_vst3_lane_v:
7809 case NEON::BI__builtin_neon_vst3q_lane_v: {
7810 Ops.push_back(Ops[0]);
7811 Ops.erase(Ops.begin());
7812 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7813 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
7814 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
7815 Ops, "");
7816 }
7817 case NEON::BI__builtin_neon_vst4_v:
7818 case NEON::BI__builtin_neon_vst4q_v: {
7819 Ops.push_back(Ops[0]);
7820 Ops.erase(Ops.begin());
7821 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
7822 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
7823 Ops, "");
7824 }
7825 case NEON::BI__builtin_neon_vst4_lane_v:
7826 case NEON::BI__builtin_neon_vst4q_lane_v: {
7827 Ops.push_back(Ops[0]);
7828 Ops.erase(Ops.begin());
7829 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
7830 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
7831 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
7832 Ops, "");
7833 }
7834 case NEON::BI__builtin_neon_vtrn_v:
7835 case NEON::BI__builtin_neon_vtrnq_v: {
7836 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7837 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7838 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7839 Value *SV = nullptr;
7840
7841 for (unsigned vi = 0; vi != 2; ++vi) {
7842 SmallVector<uint32_t, 16> Indices;
7843 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7844 Indices.push_back(i+vi);
7845 Indices.push_back(i+e+vi);
7846 }
7847 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7848 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
7849 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7850 }
7851 return SV;
7852 }
7853 case NEON::BI__builtin_neon_vuzp_v:
7854 case NEON::BI__builtin_neon_vuzpq_v: {
7855 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7856 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7857 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7858 Value *SV = nullptr;
7859
7860 for (unsigned vi = 0; vi != 2; ++vi) {
7861 SmallVector<uint32_t, 16> Indices;
7862 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7863 Indices.push_back(2*i+vi);
7864
7865 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7866 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7867 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7868 }
7869 return SV;
7870 }
7871 case NEON::BI__builtin_neon_vzip_v:
7872 case NEON::BI__builtin_neon_vzipq_v: {
7873 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7874 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7875 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7876 Value *SV = nullptr;
7877
7878 for (unsigned vi = 0; vi != 2; ++vi) {
7879 SmallVector<uint32_t, 16> Indices;
7880 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7881 Indices.push_back((i + vi*e) >> 1);
7882 Indices.push_back(((i + vi*e) >> 1)+e);
7883 }
7884 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7885 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
7886 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7887 }
7888 return SV;
7889 }
7890 case NEON::BI__builtin_neon_vqtbl1q_v: {
7891 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
7892 Ops, "vtbl1");
7893 }
7894 case NEON::BI__builtin_neon_vqtbl2q_v: {
7895 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
7896 Ops, "vtbl2");
7897 }
7898 case NEON::BI__builtin_neon_vqtbl3q_v: {
7899 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
7900 Ops, "vtbl3");
7901 }
7902 case NEON::BI__builtin_neon_vqtbl4q_v: {
7903 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
7904 Ops, "vtbl4");
7905 }
7906 case NEON::BI__builtin_neon_vqtbx1q_v: {
7907 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
7908 Ops, "vtbx1");
7909 }
7910 case NEON::BI__builtin_neon_vqtbx2q_v: {
7911 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
7912 Ops, "vtbx2");
7913 }
7914 case NEON::BI__builtin_neon_vqtbx3q_v: {
7915 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
7916 Ops, "vtbx3");
7917 }
7918 case NEON::BI__builtin_neon_vqtbx4q_v: {
7919 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
7920 Ops, "vtbx4");
7921 }
7922 case NEON::BI__builtin_neon_vsqadd_v:
7923 case NEON::BI__builtin_neon_vsqaddq_v: {
7924 Int = Intrinsic::aarch64_neon_usqadd;
7925 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
7926 }
7927 case NEON::BI__builtin_neon_vuqadd_v:
7928 case NEON::BI__builtin_neon_vuqaddq_v: {
7929 Int = Intrinsic::aarch64_neon_suqadd;
7930 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
7931 }
7932 }
7933}
7934
7935llvm::Value *CodeGenFunction::
7936BuildVector(ArrayRef<llvm::Value*> Ops) {
7937 assert((Ops.size() & (Ops.size() - 1)) == 0 &&(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7938, __extension__ __PRETTY_FUNCTION__))
7938 "Not a power-of-two sized vector!")(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7938, __extension__ __PRETTY_FUNCTION__))
;
7939 bool AllConstants = true;
7940 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
7941 AllConstants &= isa<Constant>(Ops[i]);
7942
7943 // If this is a constant vector, create a ConstantVector.
7944 if (AllConstants) {
7945 SmallVector<llvm::Constant*, 16> CstOps;
7946 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
7947 CstOps.push_back(cast<Constant>(Ops[i]));
7948 return llvm::ConstantVector::get(CstOps);
7949 }
7950
7951 // Otherwise, insertelement the values to build the vector.
7952 Value *Result =
7953 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
7954
7955 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
7956 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
7957
7958 return Result;
7959}
7960
7961// Convert the mask from an integer type to a vector of i1.
7962static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
7963 unsigned NumElts) {
7964
7965 llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
7966 cast<IntegerType>(Mask->getType())->getBitWidth());
7967 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
7968
7969 // If we have less than 8 elements, then the starting mask was an i8 and
7970 // we need to extract down to the right number of elements.
7971 if (NumElts < 8) {
7972 uint32_t Indices[4];
7973 for (unsigned i = 0; i != NumElts; ++i)
7974 Indices[i] = i;
7975 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
7976 makeArrayRef(Indices, NumElts),
7977 "extract");
7978 }
7979 return MaskVec;
7980}
7981
7982static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
7983 SmallVectorImpl<Value *> &Ops,
7984 unsigned Align) {
7985 // Cast the pointer to right type.
7986 Ops[0] = CGF.Builder.CreateBitCast(Ops[0],
7987 llvm::PointerType::getUnqual(Ops[1]->getType()));
7988
7989 // If the mask is all ones just emit a regular store.
7990 if (const auto *C = dyn_cast<Constant>(Ops[2]))
7991 if (C->isAllOnesValue())
7992 return CGF.Builder.CreateAlignedStore(Ops[1], Ops[0], Align);
7993
7994 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
7995 Ops[1]->getType()->getVectorNumElements());
7996
7997 return CGF.Builder.CreateMaskedStore(Ops[1], Ops[0], Align, MaskVec);
7998}
7999
8000static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
8001 SmallVectorImpl<Value *> &Ops, unsigned Align) {
8002 // Cast the pointer to right type.
8003 Ops[0] = CGF.Builder.CreateBitCast(Ops[0],
8004 llvm::PointerType::getUnqual(Ops[1]->getType()));
8005
8006 // If the mask is all ones just emit a regular store.
8007 if (const auto *C = dyn_cast<Constant>(Ops[2]))
8008 if (C->isAllOnesValue())
8009 return CGF.Builder.CreateAlignedLoad(Ops[0], Align);
8010
8011 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
8012 Ops[1]->getType()->getVectorNumElements());
8013
8014 return CGF.Builder.CreateMaskedLoad(Ops[0], Align, MaskVec, Ops[1]);
8015}
8016
8017static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
8018 unsigned NumElts, SmallVectorImpl<Value *> &Ops,
8019 bool InvertLHS = false) {
8020 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
8021 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
8022
8023 if (InvertLHS)
8024 LHS = CGF.Builder.CreateNot(LHS);
8025
8026 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
8027 CGF.Builder.getIntNTy(std::max(NumElts, 8U)));
8028}
8029
8030static Value *EmitX86SubVectorBroadcast(CodeGenFunction &CGF,
8031 SmallVectorImpl<Value *> &Ops,
8032 llvm::Type *DstTy,
8033 unsigned SrcSizeInBits,
8034 unsigned Align) {
8035 // Load the subvector.
8036 Ops[0] = CGF.Builder.CreateAlignedLoad(Ops[0], Align);
8037
8038 // Create broadcast mask.
8039 unsigned NumDstElts = DstTy->getVectorNumElements();
8040 unsigned NumSrcElts = SrcSizeInBits / DstTy->getScalarSizeInBits();
8041
8042 SmallVector<uint32_t, 8> Mask;
8043 for (unsigned i = 0; i != NumDstElts; i += NumSrcElts)
8044 for (unsigned j = 0; j != NumSrcElts; ++j)
8045 Mask.push_back(j);
8046
8047 return CGF.Builder.CreateShuffleVector(Ops[0], Ops[0], Mask, "subvecbcst");
8048}
8049
8050static Value *EmitX86Select(CodeGenFunction &CGF,
8051 Value *Mask, Value *Op0, Value *Op1) {
8052
8053 // If the mask is all ones just return first argument.
8054 if (const auto *C = dyn_cast<Constant>(Mask))
8055 if (C->isAllOnesValue())
8056 return Op0;
8057
8058 Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
8059
8060 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
8061}
8062
8063static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
8064 bool Signed, ArrayRef<Value *> Ops) {
8065 assert((Ops.size() == 2 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8066, __extension__ __PRETTY_FUNCTION__))
8066 "Unexpected number of arguments")(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8066, __extension__ __PRETTY_FUNCTION__))
;
8067 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
2
Calling 'Type::getVectorNumElements'
28
Returning from 'Type::getVectorNumElements'
29
'NumElts' initialized here
8068 Value *Cmp;
8069
8070 if (CC == 3) {
30
Taking false branch
8071 Cmp = Constant::getNullValue(
8072 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
8073 } else if (CC == 7) {
31
Taking false branch
8074 Cmp = Constant::getAllOnesValue(
8075 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
8076 } else {
8077 ICmpInst::Predicate Pred;
8078 switch (CC) {
32
Control jumps to 'case 1:' at line 8081
8079 default: llvm_unreachable("Unknown condition code")::llvm::llvm_unreachable_internal("Unknown condition code", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8079)
;
8080 case 0: Pred = ICmpInst::ICMP_EQ; break;
8081 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
33
'?' condition is true
34
Execution continues on line 8087
8082 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
8083 case 4: Pred = ICmpInst::ICMP_NE; break;
8084 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
8085 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
8086 }
8087 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
8088 }
8089
8090 if (Ops.size() == 4) {
35
Assuming the condition is false
36
Taking false branch
8091 const auto *C = dyn_cast<Constant>(Ops[3]);
8092 if (!C || !C->isAllOnesValue())
8093 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, Ops[3], NumElts));
8094 }
8095
8096 if (NumElts < 8) {
37
Assuming 'NumElts' is < 8
38
Taking true branch
8097 uint32_t Indices[8];
8098 for (unsigned i = 0; i != NumElts; ++i)
39
Assuming 'i' is equal to 'NumElts'
40
Loop condition is false. Execution continues on line 8100
8099 Indices[i] = i;
8100 for (unsigned i = NumElts; i != 8; ++i)
41
Loop condition is true. Entering loop body
8101 Indices[i] = i % NumElts + NumElts;
42
Division by zero
8102 Cmp = CGF.Builder.CreateShuffleVector(
8103 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
8104 }
8105 return CGF.Builder.CreateBitCast(Cmp,
8106 IntegerType::get(CGF.getLLVMContext(),
8107 std::max(NumElts, 8U)));
8108}
8109
8110static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
8111 Value *Zero = Constant::getNullValue(In->getType());
8112 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
1
Calling 'EmitX86MaskedCompare'
8113}
8114
8115static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
8116
8117 llvm::Type *Ty = Ops[0]->getType();
8118 Value *Zero = llvm::Constant::getNullValue(Ty);
8119 Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
8120 Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
8121 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
8122 if (Ops.size() == 1)
8123 return Res;
8124 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
8125}
8126
8127static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
8128 ArrayRef<Value *> Ops) {
8129 Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
8130 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
8131
8132 if (Ops.size() == 2)
8133 return Res;
8134
8135 assert(Ops.size() == 4)(static_cast <bool> (Ops.size() == 4) ? void (0) : __assert_fail
("Ops.size() == 4", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8135, __extension__ __PRETTY_FUNCTION__))
;
8136 return EmitX86Select(CGF, Ops[3], Res, Ops[2]);
8137}
8138
8139static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
8140 llvm::Type *DstTy) {
8141 unsigned NumberOfElements = DstTy->getVectorNumElements();
8142 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
8143 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
8144}
8145
8146Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
8147 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
8148 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
8149 return EmitX86CpuIs(CPUStr);
8150}
8151
8152Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
8153
8154 llvm::Type *Int32Ty = Builder.getInt32Ty();
8155
8156 // Matching the struct layout from the compiler-rt/libgcc structure that is
8157 // filled in:
8158 // unsigned int __cpu_vendor;
8159 // unsigned int __cpu_type;
8160 // unsigned int __cpu_subtype;
8161 // unsigned int __cpu_features[1];
8162 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
8163 llvm::ArrayType::get(Int32Ty, 1));
8164
8165 // Grab the global __cpu_model.
8166 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
8167
8168 // Calculate the index needed to access the correct field based on the
8169 // range. Also adjust the expected value.
8170 unsigned Index;
8171 unsigned Value;
8172 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
8173#define X86_VENDOR(ENUM, STRING) \
8174 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
8175#define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \
8176 .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
8177#define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \
8178 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
8179#define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \
8180 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
8181#include "llvm/Support/X86TargetParser.def"
8182 .Default({0, 0});
8183 assert(Value != 0 && "Invalid CPUStr passed to CpuIs")(static_cast <bool> (Value != 0 && "Invalid CPUStr passed to CpuIs"
) ? void (0) : __assert_fail ("Value != 0 && \"Invalid CPUStr passed to CpuIs\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8183, __extension__ __PRETTY_FUNCTION__))
;
8184
8185 // Grab the appropriate field from __cpu_model.
8186 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
8187 ConstantInt::get(Int32Ty, Index)};
8188 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
8189 CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
8190
8191 // Check the value of the field against the requested value.
8192 return Builder.CreateICmpEQ(CpuValue,
8193 llvm::ConstantInt::get(Int32Ty, Value));
8194}
8195
8196Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
8197 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
8198 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
8199 return EmitX86CpuSupports(FeatureStr);
8200}
8201
8202Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
8203 // Processor features and mapping to processor feature value.
8204
8205 uint32_t FeaturesMask = 0;
8206
8207 for (const StringRef &FeatureStr : FeatureStrs) {
8208 unsigned Feature =
8209 StringSwitch<unsigned>(FeatureStr)
8210#define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
8211#include "llvm/Support/X86TargetParser.def"
8212 ;
8213 FeaturesMask |= (1U << Feature);
8214 }
8215
8216 // Matching the struct layout from the compiler-rt/libgcc structure that is
8217 // filled in:
8218 // unsigned int __cpu_vendor;
8219 // unsigned int __cpu_type;
8220 // unsigned int __cpu_subtype;
8221 // unsigned int __cpu_features[1];
8222 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
8223 llvm::ArrayType::get(Int32Ty, 1));
8224
8225 // Grab the global __cpu_model.
8226 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
8227
8228 // Grab the first (0th) element from the field __cpu_features off of the
8229 // global in the struct STy.
8230 Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 3),
8231 ConstantInt::get(Int32Ty, 0)};
8232 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
8233 Value *Features =
8234 Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
8235
8236 // Check the value of the bit corresponding to the feature requested.
8237 Value *Bitset = Builder.CreateAnd(
8238 Features, llvm::ConstantInt::get(Int32Ty, FeaturesMask));
8239 return Builder.CreateICmpNE(Bitset, llvm::ConstantInt::get(Int32Ty, 0));
8240}
8241
8242Value *CodeGenFunction::EmitX86CpuInit() {
8243 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
8244 /*Variadic*/ false);
8245 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
8246 return Builder.CreateCall(Func);
8247}
8248
8249Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
8250 const CallExpr *E) {
8251 if (BuiltinID == X86::BI__builtin_cpu_is)
8252 return EmitX86CpuIs(E);
8253 if (BuiltinID == X86::BI__builtin_cpu_supports)
8254 return EmitX86CpuSupports(E);
8255 if (BuiltinID == X86::BI__builtin_cpu_init)
8256 return EmitX86CpuInit();
8257
8258 SmallVector<Value*, 4> Ops;
8259
8260 // Find out if any arguments are required to be integer constant expressions.
8261 unsigned ICEArguments = 0;
8262 ASTContext::GetBuiltinTypeError Error;
8263 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8264 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8264, __extension__ __PRETTY_FUNCTION__))
;
8265
8266 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8267 // If this is a normal argument, just emit it as a scalar.
8268 if ((ICEArguments & (1 << i)) == 0) {
8269 Ops.push_back(EmitScalarExpr(E->getArg(i)));
8270 continue;
8271 }
8272
8273 // If this is required to be a constant, constant fold it so that we know
8274 // that the generated intrinsic gets a ConstantInt.
8275 llvm::APSInt Result;
8276 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
8277 assert(IsConst && "Constant arg isn't actually constant?")(static_cast <bool> (IsConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8277, __extension__ __PRETTY_FUNCTION__))
; (void)IsConst;
8278 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
8279 }
8280
8281 // These exist so that the builtin that takes an immediate can be bounds
8282 // checked by clang to avoid passing bad immediates to the backend. Since
8283 // AVX has a larger immediate than SSE we would need separate builtins to
8284 // do the different bounds checking. Rather than create a clang specific
8285 // SSE only builtin, this implements eight separate builtins to match gcc
8286 // implementation.
8287 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
8288 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
8289 llvm::Function *F = CGM.getIntrinsic(ID);
8290 return Builder.CreateCall(F, Ops);
8291 };
8292
8293 // For the vector forms of FP comparisons, translate the builtins directly to
8294 // IR.
8295 // TODO: The builtins could be removed if the SSE header files used vector
8296 // extension comparisons directly (vector ordered/unordered may need
8297 // additional support via __builtin_isnan()).
8298 auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
8299 Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
8300 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
8301 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
8302 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
8303 return Builder.CreateBitCast(Sext, FPVecTy);
8304 };
8305
8306 switch (BuiltinID) {
8307 default: return nullptr;
8308 case X86::BI_mm_prefetch: {
8309 Value *Address = Ops[0];
8310 ConstantInt *C = cast<ConstantInt>(Ops[1]);
8311 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
8312 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
8313 Value *Data = ConstantInt::get(Int32Ty, 1);
8314 Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
8315 return Builder.CreateCall(F, {Address, RW, Locality, Data});
8316 }
8317 case X86::BI_mm_clflush: {
8318 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
8319 Ops[0]);
8320 }
8321 case X86::BI_mm_lfence: {
8322 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
8323 }
8324 case X86::BI_mm_mfence: {
8325 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
8326 }
8327 case X86::BI_mm_sfence: {
8328 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
8329 }
8330 case X86::BI_mm_pause: {
8331 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
8332 }
8333 case X86::BI__rdtsc: {
8334 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
8335 }
8336 case X86::BI__builtin_ia32_undef128:
8337 case X86::BI__builtin_ia32_undef256:
8338 case X86::BI__builtin_ia32_undef512:
8339 // The x86 definition of "undef" is not the same as the LLVM definition
8340 // (PR32176). We leave optimizing away an unnecessary zero constant to the
8341 // IR optimizer and backend.
8342 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
8343 // value, we should use that here instead of a zero.
8344 return llvm::Constant::getNullValue(ConvertType(E->getType()));
8345 case X86::BI__builtin_ia32_vec_init_v8qi:
8346 case X86::BI__builtin_ia32_vec_init_v4hi:
8347 case X86::BI__builtin_ia32_vec_init_v2si:
8348 return Builder.CreateBitCast(BuildVector(Ops),
8349 llvm::Type::getX86_MMXTy(getLLVMContext()));
8350 case X86::BI__builtin_ia32_vec_ext_v2si:
8351 return Builder.CreateExtractElement(Ops[0],
8352 llvm::ConstantInt::get(Ops[1]->getType(), 0));
8353 case X86::BI_mm_setcsr:
8354 case X86::BI__builtin_ia32_ldmxcsr: {
8355 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8356 Builder.CreateStore(Ops[0], Tmp);
8357 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
8358 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
8359 }
8360 case X86::BI_mm_getcsr:
8361 case X86::BI__builtin_ia32_stmxcsr: {
8362 Address Tmp = CreateMemTemp(E->getType());
8363 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
8364 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
8365 return Builder.CreateLoad(Tmp, "stmxcsr");
8366 }
8367 case X86::BI__builtin_ia32_xsave:
8368 case X86::BI__builtin_ia32_xsave64:
8369 case X86::BI__builtin_ia32_xrstor:
8370 case X86::BI__builtin_ia32_xrstor64:
8371 case X86::BI__builtin_ia32_xsaveopt:
8372 case X86::BI__builtin_ia32_xsaveopt64:
8373 case X86::BI__builtin_ia32_xrstors:
8374 case X86::BI__builtin_ia32_xrstors64:
8375 case X86::BI__builtin_ia32_xsavec:
8376 case X86::BI__builtin_ia32_xsavec64:
8377 case X86::BI__builtin_ia32_xsaves:
8378 case X86::BI__builtin_ia32_xsaves64: {
8379 Intrinsic::ID ID;
8380#define INTRINSIC_X86_XSAVE_ID(NAME) \
8381 case X86::BI__builtin_ia32_##NAME: \
8382 ID = Intrinsic::x86_##NAME; \
8383 break
8384 switch (BuiltinID) {
8385 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8385)
;
8386 INTRINSIC_X86_XSAVE_ID(xsave);
8387 INTRINSIC_X86_XSAVE_ID(xsave64);
8388 INTRINSIC_X86_XSAVE_ID(xrstor);
8389 INTRINSIC_X86_XSAVE_ID(xrstor64);
8390 INTRINSIC_X86_XSAVE_ID(xsaveopt);
8391 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
8392 INTRINSIC_X86_XSAVE_ID(xrstors);
8393 INTRINSIC_X86_XSAVE_ID(xrstors64);
8394 INTRINSIC_X86_XSAVE_ID(xsavec);
8395 INTRINSIC_X86_XSAVE_ID(xsavec64);
8396 INTRINSIC_X86_XSAVE_ID(xsaves);
8397 INTRINSIC_X86_XSAVE_ID(xsaves64);
8398 }
8399#undef INTRINSIC_X86_XSAVE_ID
8400 Value *Mhi = Builder.CreateTrunc(
8401 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
8402 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
8403 Ops[1] = Mhi;
8404 Ops.push_back(Mlo);
8405 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
8406 }
8407 case X86::BI__builtin_ia32_storedqudi128_mask:
8408 case X86::BI__builtin_ia32_storedqusi128_mask:
8409 case X86::BI__builtin_ia32_storedquhi128_mask:
8410 case X86::BI__builtin_ia32_storedquqi128_mask:
8411 case X86::BI__builtin_ia32_storeupd128_mask:
8412 case X86::BI__builtin_ia32_storeups128_mask:
8413 case X86::BI__builtin_ia32_storedqudi256_mask:
8414 case X86::BI__builtin_ia32_storedqusi256_mask:
8415 case X86::BI__builtin_ia32_storedquhi256_mask:
8416 case X86::BI__builtin_ia32_storedquqi256_mask:
8417 case X86::BI__builtin_ia32_storeupd256_mask:
8418 case X86::BI__builtin_ia32_storeups256_mask:
8419 case X86::BI__builtin_ia32_storedqudi512_mask:
8420 case X86::BI__builtin_ia32_storedqusi512_mask:
8421 case X86::BI__builtin_ia32_storedquhi512_mask:
8422 case X86::BI__builtin_ia32_storedquqi512_mask:
8423 case X86::BI__builtin_ia32_storeupd512_mask:
8424 case X86::BI__builtin_ia32_storeups512_mask:
8425 return EmitX86MaskedStore(*this, Ops, 1);
8426
8427 case X86::BI__builtin_ia32_storess128_mask:
8428 case X86::BI__builtin_ia32_storesd128_mask: {
8429 return EmitX86MaskedStore(*this, Ops, 16);
8430 }
8431 case X86::BI__builtin_ia32_vpopcntb_128:
8432 case X86::BI__builtin_ia32_vpopcntd_128:
8433 case X86::BI__builtin_ia32_vpopcntq_128:
8434 case X86::BI__builtin_ia32_vpopcntw_128:
8435 case X86::BI__builtin_ia32_vpopcntb_256:
8436 case X86::BI__builtin_ia32_vpopcntd_256:
8437 case X86::BI__builtin_ia32_vpopcntq_256:
8438 case X86::BI__builtin_ia32_vpopcntw_256:
8439 case X86::BI__builtin_ia32_vpopcntb_512:
8440 case X86::BI__builtin_ia32_vpopcntd_512:
8441 case X86::BI__builtin_ia32_vpopcntq_512:
8442 case X86::BI__builtin_ia32_vpopcntw_512: {
8443 llvm::Type *ResultType = ConvertType(E->getType());
8444 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
8445 return Builder.CreateCall(F, Ops);
8446 }
8447 case X86::BI__builtin_ia32_cvtmask2b128:
8448 case X86::BI__builtin_ia32_cvtmask2b256:
8449 case X86::BI__builtin_ia32_cvtmask2b512:
8450 case X86::BI__builtin_ia32_cvtmask2w128:
8451 case X86::BI__builtin_ia32_cvtmask2w256:
8452 case X86::BI__builtin_ia32_cvtmask2w512:
8453 case X86::BI__builtin_ia32_cvtmask2d128:
8454 case X86::BI__builtin_ia32_cvtmask2d256:
8455 case X86::BI__builtin_ia32_cvtmask2d512:
8456 case X86::BI__builtin_ia32_cvtmask2q128:
8457 case X86::BI__builtin_ia32_cvtmask2q256:
8458 case X86::BI__builtin_ia32_cvtmask2q512:
8459 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
8460
8461 case X86::BI__builtin_ia32_cvtb2mask128:
8462 case X86::BI__builtin_ia32_cvtb2mask256:
8463 case X86::BI__builtin_ia32_cvtb2mask512:
8464 case X86::BI__builtin_ia32_cvtw2mask128:
8465 case X86::BI__builtin_ia32_cvtw2mask256:
8466 case X86::BI__builtin_ia32_cvtw2mask512:
8467 case X86::BI__builtin_ia32_cvtd2mask128:
8468 case X86::BI__builtin_ia32_cvtd2mask256:
8469 case X86::BI__builtin_ia32_cvtd2mask512:
8470 case X86::BI__builtin_ia32_cvtq2mask128:
8471 case X86::BI__builtin_ia32_cvtq2mask256:
8472 case X86::BI__builtin_ia32_cvtq2mask512:
8473 return EmitX86ConvertToMask(*this, Ops[0]);
8474
8475 case X86::BI__builtin_ia32_movdqa32store128_mask:
8476 case X86::BI__builtin_ia32_movdqa64store128_mask:
8477 case X86::BI__builtin_ia32_storeaps128_mask:
8478 case X86::BI__builtin_ia32_storeapd128_mask:
8479 case X86::BI__builtin_ia32_movdqa32store256_mask:
8480 case X86::BI__builtin_ia32_movdqa64store256_mask:
8481 case X86::BI__builtin_ia32_storeaps256_mask:
8482 case X86::BI__builtin_ia32_storeapd256_mask:
8483 case X86::BI__builtin_ia32_movdqa32store512_mask:
8484 case X86::BI__builtin_ia32_movdqa64store512_mask:
8485 case X86::BI__builtin_ia32_storeaps512_mask:
8486 case X86::BI__builtin_ia32_storeapd512_mask: {
8487 unsigned Align =
8488 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
8489 return EmitX86MaskedStore(*this, Ops, Align);
8490 }
8491 case X86::BI__builtin_ia32_loadups128_mask:
8492 case X86::BI__builtin_ia32_loadups256_mask:
8493 case X86::BI__builtin_ia32_loadups512_mask:
8494 case X86::BI__builtin_ia32_loadupd128_mask:
8495 case X86::BI__builtin_ia32_loadupd256_mask:
8496 case X86::BI__builtin_ia32_loadupd512_mask:
8497 case X86::BI__builtin_ia32_loaddquqi128_mask:
8498 case X86::BI__builtin_ia32_loaddquqi256_mask:
8499 case X86::BI__builtin_ia32_loaddquqi512_mask:
8500 case X86::BI__builtin_ia32_loaddquhi128_mask:
8501 case X86::BI__builtin_ia32_loaddquhi256_mask:
8502 case X86::BI__builtin_ia32_loaddquhi512_mask:
8503 case X86::BI__builtin_ia32_loaddqusi128_mask:
8504 case X86::BI__builtin_ia32_loaddqusi256_mask:
8505 case X86::BI__builtin_ia32_loaddqusi512_mask:
8506 case X86::BI__builtin_ia32_loaddqudi128_mask:
8507 case X86::BI__builtin_ia32_loaddqudi256_mask:
8508 case X86::BI__builtin_ia32_loaddqudi512_mask:
8509 return EmitX86MaskedLoad(*this, Ops, 1);
8510
8511 case X86::BI__builtin_ia32_loadss128_mask:
8512 case X86::BI__builtin_ia32_loadsd128_mask:
8513 return EmitX86MaskedLoad(*this, Ops, 16);
8514
8515 case X86::BI__builtin_ia32_loadaps128_mask:
8516 case X86::BI__builtin_ia32_loadaps256_mask:
8517 case X86::BI__builtin_ia32_loadaps512_mask:
8518 case X86::BI__builtin_ia32_loadapd128_mask:
8519 case X86::BI__builtin_ia32_loadapd256_mask:
8520 case X86::BI__builtin_ia32_loadapd512_mask:
8521 case X86::BI__builtin_ia32_movdqa32load128_mask:
8522 case X86::BI__builtin_ia32_movdqa32load256_mask:
8523 case X86::BI__builtin_ia32_movdqa32load512_mask:
8524 case X86::BI__builtin_ia32_movdqa64load128_mask:
8525 case X86::BI__builtin_ia32_movdqa64load256_mask:
8526 case X86::BI__builtin_ia32_movdqa64load512_mask: {
8527 unsigned Align =
8528 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
8529 return EmitX86MaskedLoad(*this, Ops, Align);
8530 }
8531
8532 case X86::BI__builtin_ia32_vbroadcastf128_pd256:
8533 case X86::BI__builtin_ia32_vbroadcastf128_ps256: {
8534 llvm::Type *DstTy = ConvertType(E->getType());
8535 return EmitX86SubVectorBroadcast(*this, Ops, DstTy, 128, 1);
8536 }
8537
8538 case X86::BI__builtin_ia32_storehps:
8539 case X86::BI__builtin_ia32_storelps: {
8540 llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
8541 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
8542
8543 // cast val v2i64
8544 Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
8545
8546 // extract (0, 1)
8547 unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
8548 llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index);
8549 Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
8550
8551 // cast pointer to i64 & store
8552 Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
8553 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8554 }
8555 case X86::BI__builtin_ia32_palignr128:
8556 case X86::BI__builtin_ia32_palignr256:
8557 case X86::BI__builtin_ia32_palignr512_mask: {
8558 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
8559
8560 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
8561 assert(NumElts % 16 == 0)(static_cast <bool> (NumElts % 16 == 0) ? void (0) : __assert_fail
("NumElts % 16 == 0", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8561, __extension__ __PRETTY_FUNCTION__))
;
8562
8563 // If palignr is shifting the pair of vectors more than the size of two
8564 // lanes, emit zero.
8565 if (ShiftVal >= 32)
8566 return llvm::Constant::getNullValue(ConvertType(E->getType()));
8567
8568 // If palignr is shifting the pair of input vectors more than one lane,
8569 // but less than two lanes, convert to shifting in zeroes.
8570 if (ShiftVal > 16) {
8571 ShiftVal -= 16;
8572 Ops[1] = Ops[0];
8573 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
8574 }
8575
8576 uint32_t Indices[64];
8577 // 256-bit palignr operates on 128-bit lanes so we need to handle that
8578 for (unsigned l = 0; l != NumElts; l += 16) {
8579 for (unsigned i = 0; i != 16; ++i) {
8580 unsigned Idx = ShiftVal + i;
8581 if (Idx >= 16)
8582 Idx += NumElts - 16; // End of lane, switch operand.
8583 Indices[l + i] = Idx + l;
8584 }
8585 }
8586
8587 Value *Align = Builder.CreateShuffleVector(Ops[1], Ops[0],
8588 makeArrayRef(Indices, NumElts),
8589 "palignr");
8590
8591 // If this isn't a masked builtin, just return the align operation.
8592 if (Ops.size() == 3)
8593 return Align;
8594
8595 return EmitX86Select(*this, Ops[4], Align, Ops[3]);
8596 }
8597
8598 case X86::BI__builtin_ia32_vperm2f128_pd256:
8599 case X86::BI__builtin_ia32_vperm2f128_ps256:
8600 case X86::BI__builtin_ia32_vperm2f128_si256:
8601 case X86::BI__builtin_ia32_permti256: {
8602 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
8603 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
8604
8605 // This takes a very simple approach since there are two lanes and a
8606 // shuffle can have 2 inputs. So we reserve the first input for the first
8607 // lane and the second input for the second lane. This may result in
8608 // duplicate sources, but this can be dealt with in the backend.
8609
8610 Value *OutOps[2];
8611 uint32_t Indices[8];
8612 for (unsigned l = 0; l != 2; ++l) {
8613 // Determine the source for this lane.
8614 if (Imm & (1 << ((l * 4) + 3)))
8615 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
8616 else if (Imm & (1 << ((l * 4) + 1)))
8617 OutOps[l] = Ops[1];
8618 else
8619 OutOps[l] = Ops[0];
8620
8621 for (unsigned i = 0; i != NumElts/2; ++i) {
8622 // Start with ith element of the source for this lane.
8623 unsigned Idx = (l * NumElts) + i;
8624 // If bit 0 of the immediate half is set, switch to the high half of
8625 // the source.
8626 if (Imm & (1 << (l * 4)))
8627 Idx += NumElts/2;
8628 Indices[(l * (NumElts/2)) + i] = Idx;
8629 }
8630 }
8631
8632 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
8633 makeArrayRef(Indices, NumElts),
8634 "vperm");
8635 }
8636
8637 case X86::BI__builtin_ia32_movnti:
8638 case X86::BI__builtin_ia32_movnti64:
8639 case X86::BI__builtin_ia32_movntsd:
8640 case X86::BI__builtin_ia32_movntss: {
8641 llvm::MDNode *Node = llvm::MDNode::get(
8642 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
8643
8644 Value *Ptr = Ops[0];
8645 Value *Src = Ops[1];
8646
8647 // Extract the 0'th element of the source vector.
8648 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
8649 BuiltinID == X86::BI__builtin_ia32_movntss)
8650 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
8651
8652 // Convert the type of the pointer to a pointer to the stored type.
8653 Value *BC = Builder.CreateBitCast(
8654 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
8655
8656 // Unaligned nontemporal store of the scalar value.
8657 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
8658 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
8659 SI->setAlignment(1);
8660 return SI;
8661 }
8662
8663 case X86::BI__builtin_ia32_selectb_128:
8664 case X86::BI__builtin_ia32_selectb_256:
8665 case X86::BI__builtin_ia32_selectb_512:
8666 case X86::BI__builtin_ia32_selectw_128:
8667 case X86::BI__builtin_ia32_selectw_256:
8668 case X86::BI__builtin_ia32_selectw_512:
8669 case X86::BI__builtin_ia32_selectd_128:
8670 case X86::BI__builtin_ia32_selectd_256:
8671 case X86::BI__builtin_ia32_selectd_512:
8672 case X86::BI__builtin_ia32_selectq_128:
8673 case X86::BI__builtin_ia32_selectq_256:
8674 case X86::BI__builtin_ia32_selectq_512:
8675 case X86::BI__builtin_ia32_selectps_128:
8676 case X86::BI__builtin_ia32_selectps_256:
8677 case X86::BI__builtin_ia32_selectps_512:
8678 case X86::BI__builtin_ia32_selectpd_128:
8679 case X86::BI__builtin_ia32_selectpd_256:
8680 case X86::BI__builtin_ia32_selectpd_512:
8681 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
8682 case X86::BI__builtin_ia32_cmpb128_mask:
8683 case X86::BI__builtin_ia32_cmpb256_mask:
8684 case X86::BI__builtin_ia32_cmpb512_mask:
8685 case X86::BI__builtin_ia32_cmpw128_mask:
8686 case X86::BI__builtin_ia32_cmpw256_mask:
8687 case X86::BI__builtin_ia32_cmpw512_mask:
8688 case X86::BI__builtin_ia32_cmpd128_mask:
8689 case X86::BI__builtin_ia32_cmpd256_mask:
8690 case X86::BI__builtin_ia32_cmpd512_mask:
8691 case X86::BI__builtin_ia32_cmpq128_mask:
8692 case X86::BI__builtin_ia32_cmpq256_mask:
8693 case X86::BI__builtin_ia32_cmpq512_mask: {
8694 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
8695 return EmitX86MaskedCompare(*this, CC, true, Ops);
8696 }
8697 case X86::BI__builtin_ia32_ucmpb128_mask:
8698 case X86::BI__builtin_ia32_ucmpb256_mask:
8699 case X86::BI__builtin_ia32_ucmpb512_mask:
8700 case X86::BI__builtin_ia32_ucmpw128_mask:
8701 case X86::BI__builtin_ia32_ucmpw256_mask:
8702 case X86::BI__builtin_ia32_ucmpw512_mask:
8703 case X86::BI__builtin_ia32_ucmpd128_mask:
8704 case X86::BI__builtin_ia32_ucmpd256_mask:
8705 case X86::BI__builtin_ia32_ucmpd512_mask:
8706 case X86::BI__builtin_ia32_ucmpq128_mask:
8707 case X86::BI__builtin_ia32_ucmpq256_mask:
8708 case X86::BI__builtin_ia32_ucmpq512_mask: {
8709 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
8710 return EmitX86MaskedCompare(*this, CC, false, Ops);
8711 }
8712
8713 case X86::BI__builtin_ia32_kortestchi:
8714 case X86::BI__builtin_ia32_kortestzhi: {
8715 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, 16, Ops);
8716 Value *C;
8717 if (BuiltinID == X86::BI__builtin_ia32_kortestchi)
8718 C = llvm::Constant::getAllOnesValue(Builder.getInt16Ty());
8719 else
8720 C = llvm::Constant::getNullValue(Builder.getInt16Ty());
8721 Value *Cmp = Builder.CreateICmpEQ(Or, C);
8722 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
8723 }
8724
8725 case X86::BI__builtin_ia32_kandhi:
8726 return EmitX86MaskLogic(*this, Instruction::And, 16, Ops);
8727 case X86::BI__builtin_ia32_kandnhi:
8728 return EmitX86MaskLogic(*this, Instruction::And, 16, Ops, true);
8729 case X86::BI__builtin_ia32_korhi:
8730 return EmitX86MaskLogic(*this, Instruction::Or, 16, Ops);
8731 case X86::BI__builtin_ia32_kxnorhi:
8732 return EmitX86MaskLogic(*this, Instruction::Xor, 16, Ops, true);
8733 case X86::BI__builtin_ia32_kxorhi:
8734 return EmitX86MaskLogic(*this, Instruction::Xor, 16, Ops);
8735 case X86::BI__builtin_ia32_knothi: {
8736 Ops[0] = getMaskVecValue(*this, Ops[0], 16);
8737 return Builder.CreateBitCast(Builder.CreateNot(Ops[0]),
8738 Builder.getInt16Ty());
8739 }
8740
8741 case X86::BI__builtin_ia32_kunpckdi:
8742 case X86::BI__builtin_ia32_kunpcksi:
8743 case X86::BI__builtin_ia32_kunpckhi: {
8744 unsigned NumElts = Ops[0]->getType()->getScalarSizeInBits();
8745 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
8746 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
8747 uint32_t Indices[64];
8748 for (unsigned i = 0; i != NumElts; ++i)
8749 Indices[i] = i;
8750
8751 // First extract half of each vector. This gives better codegen than
8752 // doing it in a single shuffle.
8753 LHS = Builder.CreateShuffleVector(LHS, LHS,
8754 makeArrayRef(Indices, NumElts / 2));
8755 RHS = Builder.CreateShuffleVector(RHS, RHS,
8756 makeArrayRef(Indices, NumElts / 2));
8757 // Concat the vectors.
8758 Value *Res = Builder.CreateShuffleVector(LHS, RHS,
8759 makeArrayRef(Indices, NumElts));
8760 return Builder.CreateBitCast(Res, Ops[0]->getType());
8761 }
8762
8763 case X86::BI__builtin_ia32_vplzcntd_128_mask:
8764 case X86::BI__builtin_ia32_vplzcntd_256_mask:
8765 case X86::BI__builtin_ia32_vplzcntd_512_mask:
8766 case X86::BI__builtin_ia32_vplzcntq_128_mask:
8767 case X86::BI__builtin_ia32_vplzcntq_256_mask:
8768 case X86::BI__builtin_ia32_vplzcntq_512_mask: {
8769 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
8770 return EmitX86Select(*this, Ops[2],
8771 Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}),
8772 Ops[1]);
8773 }
8774
8775 case X86::BI__builtin_ia32_pabsb128:
8776 case X86::BI__builtin_ia32_pabsw128:
8777 case X86::BI__builtin_ia32_pabsd128:
8778 case X86::BI__builtin_ia32_pabsb256:
8779 case X86::BI__builtin_ia32_pabsw256:
8780 case X86::BI__builtin_ia32_pabsd256:
8781 case X86::BI__builtin_ia32_pabsq128_mask:
8782 case X86::BI__builtin_ia32_pabsq256_mask:
8783 case X86::BI__builtin_ia32_pabsb512_mask:
8784 case X86::BI__builtin_ia32_pabsw512_mask:
8785 case X86::BI__builtin_ia32_pabsd512_mask:
8786 case X86::BI__builtin_ia32_pabsq512_mask:
8787 return EmitX86Abs(*this, Ops);
8788
8789 case X86::BI__builtin_ia32_pmaxsb128:
8790 case X86::BI__builtin_ia32_pmaxsw128:
8791 case X86::BI__builtin_ia32_pmaxsd128:
8792 case X86::BI__builtin_ia32_pmaxsq128_mask:
8793 case X86::BI__builtin_ia32_pmaxsb256:
8794 case X86::BI__builtin_ia32_pmaxsw256:
8795 case X86::BI__builtin_ia32_pmaxsd256:
8796 case X86::BI__builtin_ia32_pmaxsq256_mask:
8797 case X86::BI__builtin_ia32_pmaxsb512_mask:
8798 case X86::BI__builtin_ia32_pmaxsw512_mask:
8799 case X86::BI__builtin_ia32_pmaxsd512_mask:
8800 case X86::BI__builtin_ia32_pmaxsq512_mask:
8801 return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
8802 case X86::BI__builtin_ia32_pmaxub128:
8803 case X86::BI__builtin_ia32_pmaxuw128:
8804 case X86::BI__builtin_ia32_pmaxud128:
8805 case X86::BI__builtin_ia32_pmaxuq128_mask:
8806 case X86::BI__builtin_ia32_pmaxub256:
8807 case X86::BI__builtin_ia32_pmaxuw256:
8808 case X86::BI__builtin_ia32_pmaxud256:
8809 case X86::BI__builtin_ia32_pmaxuq256_mask:
8810 case X86::BI__builtin_ia32_pmaxub512_mask:
8811 case X86::BI__builtin_ia32_pmaxuw512_mask:
8812 case X86::BI__builtin_ia32_pmaxud512_mask:
8813 case X86::BI__builtin_ia32_pmaxuq512_mask:
8814 return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
8815 case X86::BI__builtin_ia32_pminsb128:
8816 case X86::BI__builtin_ia32_pminsw128:
8817 case X86::BI__builtin_ia32_pminsd128:
8818 case X86::BI__builtin_ia32_pminsq128_mask:
8819 case X86::BI__builtin_ia32_pminsb256:
8820 case X86::BI__builtin_ia32_pminsw256:
8821 case X86::BI__builtin_ia32_pminsd256:
8822 case X86::BI__builtin_ia32_pminsq256_mask:
8823 case X86::BI__builtin_ia32_pminsb512_mask:
8824 case X86::BI__builtin_ia32_pminsw512_mask:
8825 case X86::BI__builtin_ia32_pminsd512_mask:
8826 case X86::BI__builtin_ia32_pminsq512_mask:
8827 return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
8828 case X86::BI__builtin_ia32_pminub128:
8829 case X86::BI__builtin_ia32_pminuw128:
8830 case X86::BI__builtin_ia32_pminud128:
8831 case X86::BI__builtin_ia32_pminuq128_mask:
8832 case X86::BI__builtin_ia32_pminub256:
8833 case X86::BI__builtin_ia32_pminuw256:
8834 case X86::BI__builtin_ia32_pminud256:
8835 case X86::BI__builtin_ia32_pminuq256_mask:
8836 case X86::BI__builtin_ia32_pminub512_mask:
8837 case X86::BI__builtin_ia32_pminuw512_mask:
8838 case X86::BI__builtin_ia32_pminud512_mask:
8839 case X86::BI__builtin_ia32_pminuq512_mask:
8840 return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
8841
8842 // 3DNow!
8843 case X86::BI__builtin_ia32_pswapdsf:
8844 case X86::BI__builtin_ia32_pswapdsi: {
8845 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
8846 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
8847 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
8848 return Builder.CreateCall(F, Ops, "pswapd");
8849 }
8850 case X86::BI__builtin_ia32_rdrand16_step:
8851 case X86::BI__builtin_ia32_rdrand32_step:
8852 case X86::BI__builtin_ia32_rdrand64_step:
8853 case X86::BI__builtin_ia32_rdseed16_step:
8854 case X86::BI__builtin_ia32_rdseed32_step:
8855 case X86::BI__builtin_ia32_rdseed64_step: {
8856 Intrinsic::ID ID;
8857 switch (BuiltinID) {
8858 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8858)
;
8859 case X86::BI__builtin_ia32_rdrand16_step:
8860 ID = Intrinsic::x86_rdrand_16;
8861 break;
8862 case X86::BI__builtin_ia32_rdrand32_step:
8863 ID = Intrinsic::x86_rdrand_32;
8864 break;
8865 case X86::BI__builtin_ia32_rdrand64_step:
8866 ID = Intrinsic::x86_rdrand_64;
8867 break;
8868 case X86::BI__builtin_ia32_rdseed16_step:
8869 ID = Intrinsic::x86_rdseed_16;
8870 break;
8871 case X86::BI__builtin_ia32_rdseed32_step:
8872 ID = Intrinsic::x86_rdseed_32;
8873 break;
8874 case X86::BI__builtin_ia32_rdseed64_step:
8875 ID = Intrinsic::x86_rdseed_64;
8876 break;
8877 }
8878
8879 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
8880 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
8881 Ops[0]);
8882 return Builder.CreateExtractValue(Call, 1);
8883 }
8884
8885 // SSE packed comparison intrinsics
8886 case X86::BI__builtin_ia32_cmpeqps:
8887 case X86::BI__builtin_ia32_cmpeqpd:
8888 return getVectorFCmpIR(CmpInst::FCMP_OEQ);
8889 case X86::BI__builtin_ia32_cmpltps:
8890 case X86::BI__builtin_ia32_cmpltpd:
8891 return getVectorFCmpIR(CmpInst::FCMP_OLT);
8892 case X86::BI__builtin_ia32_cmpleps:
8893 case X86::BI__builtin_ia32_cmplepd:
8894 return getVectorFCmpIR(CmpInst::FCMP_OLE);
8895 case X86::BI__builtin_ia32_cmpunordps:
8896 case X86::BI__builtin_ia32_cmpunordpd:
8897 return getVectorFCmpIR(CmpInst::FCMP_UNO);
8898 case X86::BI__builtin_ia32_cmpneqps:
8899 case X86::BI__builtin_ia32_cmpneqpd:
8900 return getVectorFCmpIR(CmpInst::FCMP_UNE);
8901 case X86::BI__builtin_ia32_cmpnltps:
8902 case X86::BI__builtin_ia32_cmpnltpd:
8903 return getVectorFCmpIR(CmpInst::FCMP_UGE);
8904 case X86::BI__builtin_ia32_cmpnleps:
8905 case X86::BI__builtin_ia32_cmpnlepd:
8906 return getVectorFCmpIR(CmpInst::FCMP_UGT);
8907 case X86::BI__builtin_ia32_cmpordps:
8908 case X86::BI__builtin_ia32_cmpordpd:
8909 return getVectorFCmpIR(CmpInst::FCMP_ORD);
8910 case X86::BI__builtin_ia32_cmpps:
8911 case X86::BI__builtin_ia32_cmpps256:
8912 case X86::BI__builtin_ia32_cmppd:
8913 case X86::BI__builtin_ia32_cmppd256: {
8914 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
8915 // If this one of the SSE immediates, we can use native IR.
8916 if (CC < 8) {
8917 FCmpInst::Predicate Pred;
8918 switch (CC) {
8919 case 0: Pred = FCmpInst::FCMP_OEQ; break;
8920 case 1: Pred = FCmpInst::FCMP_OLT; break;
8921 case 2: Pred = FCmpInst::FCMP_OLE; break;
8922 case 3: Pred = FCmpInst::FCMP_UNO; break;
8923 case 4: Pred = FCmpInst::FCMP_UNE; break;
8924 case 5: Pred = FCmpInst::FCMP_UGE; break;
8925 case 6: Pred = FCmpInst::FCMP_UGT; break;
8926 case 7: Pred = FCmpInst::FCMP_ORD; break;
8927 }
8928 return getVectorFCmpIR(Pred);
8929 }
8930
8931 // We can't handle 8-31 immediates with native IR, use the intrinsic.
8932 // Except for predicates that create constants.
8933 Intrinsic::ID ID;
8934 switch (BuiltinID) {
8935 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8935)
;
8936 case X86::BI__builtin_ia32_cmpps:
8937 ID = Intrinsic::x86_sse_cmp_ps;
8938 break;
8939 case X86::BI__builtin_ia32_cmpps256:
8940 // _CMP_TRUE_UQ, _CMP_TRUE_US produce -1,-1... vector
8941 // on any input and _CMP_FALSE_OQ, _CMP_FALSE_OS produce 0, 0...
8942 if (CC == 0xf || CC == 0xb || CC == 0x1b || CC == 0x1f) {
8943 Value *Constant = (CC == 0xf || CC == 0x1f) ?
8944 llvm::Constant::getAllOnesValue(Builder.getInt32Ty()) :
8945 llvm::Constant::getNullValue(Builder.getInt32Ty());
8946 Value *Vec = Builder.CreateVectorSplat(
8947 Ops[0]->getType()->getVectorNumElements(), Constant);
8948 return Builder.CreateBitCast(Vec, Ops[0]->getType());
8949 }
8950 ID = Intrinsic::x86_avx_cmp_ps_256;
8951 break;
8952 case X86::BI__builtin_ia32_cmppd:
8953 ID = Intrinsic::x86_sse2_cmp_pd;
8954 break;
8955 case X86::BI__builtin_ia32_cmppd256:
8956 // _CMP_TRUE_UQ, _CMP_TRUE_US produce -1,-1... vector
8957 // on any input and _CMP_FALSE_OQ, _CMP_FALSE_OS produce 0, 0...
8958 if (CC == 0xf || CC == 0xb || CC == 0x1b || CC == 0x1f) {
8959 Value *Constant = (CC == 0xf || CC == 0x1f) ?
8960 llvm::Constant::getAllOnesValue(Builder.getInt64Ty()) :
8961 llvm::Constant::getNullValue(Builder.getInt64Ty());
8962 Value *Vec = Builder.CreateVectorSplat(
8963 Ops[0]->getType()->getVectorNumElements(), Constant);
8964 return Builder.CreateBitCast(Vec, Ops[0]->getType());
8965 }
8966 ID = Intrinsic::x86_avx_cmp_pd_256;
8967 break;
8968 }
8969
8970 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
8971 }
8972
8973 // SSE scalar comparison intrinsics
8974 case X86::BI__builtin_ia32_cmpeqss:
8975 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
8976 case X86::BI__builtin_ia32_cmpltss:
8977 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
8978 case X86::BI__builtin_ia32_cmpless:
8979 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
8980 case X86::BI__builtin_ia32_cmpunordss:
8981 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
8982 case X86::BI__builtin_ia32_cmpneqss:
8983 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
8984 case X86::BI__builtin_ia32_cmpnltss:
8985 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
8986 case X86::BI__builtin_ia32_cmpnless:
8987 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
8988 case X86::BI__builtin_ia32_cmpordss:
8989 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
8990 case X86::BI__builtin_ia32_cmpeqsd:
8991 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
8992 case X86::BI__builtin_ia32_cmpltsd:
8993 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
8994 case X86::BI__builtin_ia32_cmplesd:
8995 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
8996 case X86::BI__builtin_ia32_cmpunordsd:
8997 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
8998 case X86::BI__builtin_ia32_cmpneqsd:
8999 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
9000 case X86::BI__builtin_ia32_cmpnltsd:
9001 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
9002 case X86::BI__builtin_ia32_cmpnlesd:
9003 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
9004 case X86::BI__builtin_ia32_cmpordsd:
9005 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
9006
9007 case X86::BI__emul:
9008 case X86::BI__emulu: {
9009 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
9010 bool isSigned = (BuiltinID == X86::BI__emul);
9011 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
9012 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
9013 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
9014 }
9015 case X86::BI__mulh:
9016 case X86::BI__umulh:
9017 case X86::BI_mul128:
9018 case X86::BI_umul128: {
9019 llvm::Type *ResType = ConvertType(E->getType());
9020 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9021
9022 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
9023 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
9024 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
9025
9026 Value *MulResult, *HigherBits;
9027 if (IsSigned) {
9028 MulResult = Builder.CreateNSWMul(LHS, RHS);
9029 HigherBits = Builder.CreateAShr(MulResult, 64);
9030 } else {
9031 MulResult = Builder.CreateNUWMul(LHS, RHS);
9032 HigherBits = Builder.CreateLShr(MulResult, 64);
9033 }
9034 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
9035
9036 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
9037 return HigherBits;
9038
9039 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
9040 Builder.CreateStore(HigherBits, HighBitsAddress);
9041 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
9042 }
9043
9044 case X86::BI__faststorefence: {
9045 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9046 llvm::SyncScope::System);
9047 }
9048 case X86::BI_ReadWriteBarrier:
9049 case X86::BI_ReadBarrier:
9050 case X86::BI_WriteBarrier: {
9051 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9052 llvm::SyncScope::SingleThread);
9053 }
9054 case X86::BI_BitScanForward:
9055 case X86::BI_BitScanForward64:
9056 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
9057 case X86::BI_BitScanReverse:
9058 case X86::BI_BitScanReverse64:
9059 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
9060
9061 case X86::BI_InterlockedAnd64:
9062 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
9063 case X86::BI_InterlockedExchange64:
9064 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
9065 case X86::BI_InterlockedExchangeAdd64:
9066 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
9067 case X86::BI_InterlockedExchangeSub64:
9068 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
9069 case X86::BI_InterlockedOr64:
9070 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
9071 case X86::BI_InterlockedXor64:
9072 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
9073 case X86::BI_InterlockedDecrement64:
9074 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
9075 case X86::BI_InterlockedIncrement64:
9076 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
9077 case X86::BI_InterlockedCompareExchange128: {
9078 // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
9079 // instead it takes pointers to 64bit ints for Destination and
9080 // ComparandResult, and exchange is taken as two 64bit ints (high & low).
9081 // The previous value is written to ComparandResult, and success is
9082 // returned.
9083
9084 llvm::Type *Int128Ty = Builder.getInt128Ty();
9085 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
9086
9087 Value *Destination =
9088 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PtrTy);
9089 Value *ExchangeHigh128 =
9090 Builder.CreateZExt(EmitScalarExpr(E->getArg(1)), Int128Ty);
9091 Value *ExchangeLow128 =
9092 Builder.CreateZExt(EmitScalarExpr(E->getArg(2)), Int128Ty);
9093 Address ComparandResult(
9094 Builder.CreateBitCast(EmitScalarExpr(E->getArg(3)), Int128PtrTy),
9095 getContext().toCharUnitsFromBits(128));
9096
9097 Value *Exchange = Builder.CreateOr(
9098 Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
9099 ExchangeLow128);
9100
9101 Value *Comparand = Builder.CreateLoad(ComparandResult);
9102
9103 AtomicCmpXchgInst *CXI =
9104 Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
9105 AtomicOrdering::SequentiallyConsistent,
9106 AtomicOrdering::SequentiallyConsistent);
9107 CXI->setVolatile(true);
9108
9109 // Write the result back to the inout pointer.
9110 Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
9111
9112 // Get the success boolean and zero extend it to i8.
9113 Value *Success = Builder.CreateExtractValue(CXI, 1);
9114 return Builder.CreateZExt(Success, ConvertType(E->getType()));
9115 }
9116
9117 case X86::BI_AddressOfReturnAddress: {
9118 Value *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
9119 return Builder.CreateCall(F);
9120 }
9121 case X86::BI__stosb: {
9122 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
9123 // instruction, but it will create a memset that won't be optimized away.
9124 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
9125 }
9126 case X86::BI__ud2:
9127 // llvm.trap makes a ud2a instruction on x86.
9128 return EmitTrapCall(Intrinsic::trap);
9129 case X86::BI__int2c: {
9130 // This syscall signals a driver assertion failure in x86 NT kernels.
9131 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
9132 llvm::InlineAsm *IA =
9133 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*SideEffects=*/true);
9134 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
9135 getLLVMContext(), llvm::AttributeList::FunctionIndex,
9136 llvm::Attribute::NoReturn);
9137 CallSite CS = Builder.CreateCall(IA);
9138 CS.setAttributes(NoReturnAttr);
9139 return CS.getInstruction();
9140 }
9141 case X86::BI__readfsbyte:
9142 case X86::BI__readfsword:
9143 case X86::BI__readfsdword:
9144 case X86::BI__readfsqword: {
9145 llvm::Type *IntTy = ConvertType(E->getType());
9146 Value *Ptr = Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
9147 llvm::PointerType::get(IntTy, 257));
9148 LoadInst *Load = Builder.CreateAlignedLoad(
9149 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
9150 Load->setVolatile(true);
9151 return Load;
9152 }
9153 case X86::BI__readgsbyte:
9154 case X86::BI__readgsword:
9155 case X86::BI__readgsdword:
9156 case X86::BI__readgsqword: {
9157 llvm::Type *IntTy = ConvertType(E->getType());
9158 Value *Ptr = Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
9159 llvm::PointerType::get(IntTy, 256));
9160 LoadInst *Load = Builder.CreateAlignedLoad(
9161 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
9162 Load->setVolatile(true);
9163 return Load;
9164 }
9165 }
9166}
9167
9168
9169Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
9170 const CallExpr *E) {
9171 SmallVector<Value*, 4> Ops;
9172
9173 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
9174 Ops.push_back(EmitScalarExpr(E->getArg(i)));
9175
9176 Intrinsic::ID ID = Intrinsic::not_intrinsic;
9177
9178 switch (BuiltinID) {
9179 default: return nullptr;
9180
9181 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
9182 // call __builtin_readcyclecounter.
9183 case PPC::BI__builtin_ppc_get_timebase:
9184 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
9185
9186 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
9187 case PPC::BI__builtin_altivec_lvx:
9188 case PPC::BI__builtin_altivec_lvxl:
9189 case PPC::BI__builtin_altivec_lvebx:
9190 case PPC::BI__builtin_altivec_lvehx:
9191 case PPC::BI__builtin_altivec_lvewx:
9192 case PPC::BI__builtin_altivec_lvsl:
9193 case PPC::BI__builtin_altivec_lvsr:
9194 case PPC::BI__builtin_vsx_lxvd2x:
9195 case PPC::BI__builtin_vsx_lxvw4x:
9196 case PPC::BI__builtin_vsx_lxvd2x_be:
9197 case PPC::BI__builtin_vsx_lxvw4x_be:
9198 case PPC::BI__builtin_vsx_lxvl:
9199 case PPC::BI__builtin_vsx_lxvll:
9200 {
9201 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
9202 BuiltinID == PPC::BI__builtin_vsx_lxvll){
9203 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
9204 }else {
9205 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
9206 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
9207 Ops.pop_back();
9208 }
9209
9210 switch (BuiltinID) {
9211 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!")::llvm::llvm_unreachable_internal("Unsupported ld/lvsl/lvsr intrinsic!"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9211)
;
9212 case PPC::BI__builtin_altivec_lvx:
9213 ID = Intrinsic::ppc_altivec_lvx;
9214 break;
9215 case PPC::BI__builtin_altivec_lvxl:
9216 ID = Intrinsic::ppc_altivec_lvxl;
9217 break;
9218 case PPC::BI__builtin_altivec_lvebx:
9219 ID = Intrinsic::ppc_altivec_lvebx;
9220 break;
9221 case PPC::BI__builtin_altivec_lvehx:
9222 ID = Intrinsic::ppc_altivec_lvehx;
9223 break;
9224 case PPC::BI__builtin_altivec_lvewx:
9225 ID = Intrinsic::ppc_altivec_lvewx;
9226 break;
9227 case PPC::BI__builtin_altivec_lvsl:
9228 ID = Intrinsic::ppc_altivec_lvsl;
9229 break;
9230 case PPC::BI__builtin_altivec_lvsr:
9231 ID = Intrinsic::ppc_altivec_lvsr;
9232 break;
9233 case PPC::BI__builtin_vsx_lxvd2x:
9234 ID = Intrinsic::ppc_vsx_lxvd2x;
9235 break;
9236 case PPC::BI__builtin_vsx_lxvw4x:
9237 ID = Intrinsic::ppc_vsx_lxvw4x;
9238 break;
9239 case PPC::BI__builtin_vsx_lxvd2x_be:
9240 ID = Intrinsic::ppc_vsx_lxvd2x_be;
9241 break;
9242 case PPC::BI__builtin_vsx_lxvw4x_be:
9243 ID = Intrinsic::ppc_vsx_lxvw4x_be;
9244 break;
9245 case PPC::BI__builtin_vsx_lxvl:
9246 ID = Intrinsic::ppc_vsx_lxvl;
9247 break;
9248 case PPC::BI__builtin_vsx_lxvll:
9249 ID = Intrinsic::ppc_vsx_lxvll;
9250 break;
9251 }
9252 llvm::Function *F = CGM.getIntrinsic(ID);
9253 return Builder.CreateCall(F, Ops, "");
9254 }
9255
9256 // vec_st, vec_xst_be
9257 case PPC::BI__builtin_altivec_stvx:
9258 case PPC::BI__builtin_altivec_stvxl:
9259 case PPC::BI__builtin_altivec_stvebx:
9260 case PPC::BI__builtin_altivec_stvehx:
9261 case PPC::BI__builtin_altivec_stvewx:
9262 case PPC::BI__builtin_vsx_stxvd2x:
9263 case PPC::BI__builtin_vsx_stxvw4x:
9264 case PPC::BI__builtin_vsx_stxvd2x_be:
9265 case PPC::BI__builtin_vsx_stxvw4x_be:
9266 case PPC::BI__builtin_vsx_stxvl:
9267 case PPC::BI__builtin_vsx_stxvll:
9268 {
9269 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
9270 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
9271 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
9272 }else {
9273 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
9274 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
9275 Ops.pop_back();
9276 }
9277
9278 switch (BuiltinID) {
9279 default: llvm_unreachable("Unsupported st intrinsic!")::llvm::llvm_unreachable_internal("Unsupported st intrinsic!"
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9279)
;
9280 case PPC::BI__builtin_altivec_stvx:
9281 ID = Intrinsic::ppc_altivec_stvx;
9282 break;
9283 case PPC::BI__builtin_altivec_stvxl:
9284 ID = Intrinsic::ppc_altivec_stvxl;
9285 break;
9286 case PPC::BI__builtin_altivec_stvebx:
9287 ID = Intrinsic::ppc_altivec_stvebx;
9288 break;
9289 case PPC::BI__builtin_altivec_stvehx:
9290 ID = Intrinsic::ppc_altivec_stvehx;
9291 break;
9292 case PPC::BI__builtin_altivec_stvewx:
9293 ID = Intrinsic::ppc_altivec_stvewx;
9294 break;
9295 case PPC::BI__builtin_vsx_stxvd2x:
9296 ID = Intrinsic::ppc_vsx_stxvd2x;
9297 break;
9298 case PPC::BI__builtin_vsx_stxvw4x:
9299 ID = Intrinsic::ppc_vsx_stxvw4x;
9300 break;
9301 case PPC::BI__builtin_vsx_stxvd2x_be:
9302 ID = Intrinsic::ppc_vsx_stxvd2x_be;
9303 break;
9304 case PPC::BI__builtin_vsx_stxvw4x_be:
9305 ID = Intrinsic::ppc_vsx_stxvw4x_be;
9306 break;
9307 case PPC::BI__builtin_vsx_stxvl:
9308 ID = Intrinsic::ppc_vsx_stxvl;
9309 break;
9310 case PPC::BI__builtin_vsx_stxvll:
9311 ID = Intrinsic::ppc_vsx_stxvll;
9312 break;
9313 }
9314 llvm::Function *F = CGM.getIntrinsic(ID);
9315 return Builder.CreateCall(F, Ops, "");
9316 }
9317 // Square root
9318 case PPC::BI__builtin_vsx_xvsqrtsp:
9319 case PPC::BI__builtin_vsx_xvsqrtdp: {
9320 llvm::Type *ResultType = ConvertType(E->getType());
9321 Value *X = EmitScalarExpr(E->getArg(0));
9322 ID = Intrinsic::sqrt;
9323 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
9324 return Builder.CreateCall(F, X);
9325 }
9326 // Count leading zeros
9327 case PPC::BI__builtin_altivec_vclzb:
9328 case PPC::BI__builtin_altivec_vclzh:
9329 case PPC::BI__builtin_altivec_vclzw:
9330 case PPC::BI__builtin_altivec_vclzd: {
9331 llvm::Type *ResultType = ConvertType(E->getType());
9332 Value *X = EmitScalarExpr(E->getArg(0));
9333 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
9334 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
9335 return Builder.CreateCall(F, {X, Undef});
9336 }
9337 case PPC::BI__builtin_altivec_vctzb:
9338 case PPC::BI__builtin_altivec_vctzh:
9339 case PPC::BI__builtin_altivec_vctzw:
9340 case PPC::BI__builtin_altivec_vctzd: {
9341 llvm::Type *ResultType = ConvertType(E->getType());
9342 Value *X = EmitScalarExpr(E->getArg(0));
9343 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
9344 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
9345 return Builder.CreateCall(F, {X, Undef});
9346 }
9347 case PPC::BI__builtin_altivec_vpopcntb:
9348 case PPC::BI__builtin_altivec_vpopcnth:
9349 case PPC::BI__builtin_altivec_vpopcntw:
9350 case PPC::BI__builtin_altivec_vpopcntd: {
9351 llvm::Type *ResultType = ConvertType(E->getType());
9352 Value *X = EmitScalarExpr(E->getArg(0));
9353 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
9354 return Builder.CreateCall(F, X);
9355 }
9356 // Copy sign
9357 case PPC::BI__builtin_vsx_xvcpsgnsp:
9358 case PPC::BI__builtin_vsx_xvcpsgndp: {
9359 llvm::Type *ResultType = ConvertType(E->getType());
9360 Value *X = EmitScalarExpr(E->getArg(0));
9361 Value *Y = EmitScalarExpr(E->getArg(1));
9362 ID = Intrinsic::copysign;
9363 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
9364 return Builder.CreateCall(F, {X, Y});
9365 }
9366 // Rounding/truncation
9367 case PPC::BI__builtin_vsx_xvrspip:
9368 case PPC::BI__builtin_vsx_xvrdpip:
9369 case PPC::BI__builtin_vsx_xvrdpim:
9370 case PPC::BI__builtin_vsx_xvrspim:
9371 case PPC::BI__builtin_vsx_xvrdpi:
9372 case PPC::BI__builtin_vsx_xvrspi:
9373 case PPC::BI__builtin_vsx_xvrdpic:
9374 case PPC::BI__builtin_vsx_xvrspic:
9375 case PPC::BI__builtin_vsx_xvrdpiz:
9376 case PPC::BI__builtin_vsx_xvrspiz: {
9377 llvm::Type *ResultType = ConvertType(E->getType());
9378 Value *X = EmitScalarExpr(E->getArg(0));
9379 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
9380 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
9381 ID = Intrinsic::floor;
9382 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
9383 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
9384 ID = Intrinsic::round;
9385 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
9386 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
9387 ID = Intrinsic::nearbyint;
9388 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
9389 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
9390 ID = Intrinsic::ceil;
9391 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
9392 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
9393 ID = Intrinsic::trunc;
9394 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
9395 return Builder.CreateCall(F, X);
9396 }
9397
9398 // Absolute value
9399 case PPC::BI__builtin_vsx_xvabsdp:
9400 case PPC::BI__builtin_vsx_xvabssp: {
9401 llvm::Type *ResultType = ConvertType(E->getType());
9402 Value *X = EmitScalarExpr(E->getArg(0));
9403 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
9404 return Builder.CreateCall(F, X);
9405 }
9406
9407 // FMA variations
9408 case PPC::BI__builtin_vsx_xvmaddadp:
9409 case PPC::BI__builtin_vsx_xvmaddasp:
9410 case PPC::BI__builtin_vsx_xvnmaddadp:
9411 case PPC::BI__builtin_vsx_xvnmaddasp:
9412 case PPC::BI__builtin_vsx_xvmsubadp:
9413 case PPC::BI__builtin_vsx_xvmsubasp:
9414 case PPC::BI__builtin_vsx_xvnmsubadp:
9415 case PPC::BI__builtin_vsx_xvnmsubasp: {
9416 llvm::Type *ResultType = ConvertType(E->getType());
9417 Value *X = EmitScalarExpr(E->getArg(0));
9418 Value *Y = EmitScalarExpr(E->getArg(1));
9419 Value *Z = EmitScalarExpr(E->getArg(2));
9420 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
9421 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
9422 switch (BuiltinID) {
9423 case PPC::BI__builtin_vsx_xvmaddadp:
9424 case PPC::BI__builtin_vsx_xvmaddasp:
9425 return Builder.CreateCall(F, {X, Y, Z});
9426 case PPC::BI__builtin_vsx_xvnmaddadp:
9427 case PPC::BI__builtin_vsx_xvnmaddasp:
9428 return Builder.CreateFSub(Zero,
9429 Builder.CreateCall(F, {X, Y, Z}), "sub");
9430 case PPC::BI__builtin_vsx_xvmsubadp:
9431 case PPC::BI__builtin_vsx_xvmsubasp:
9432 return Builder.CreateCall(F,
9433 {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
9434 case PPC::BI__builtin_vsx_xvnmsubadp:
9435 case PPC::BI__builtin_vsx_xvnmsubasp:
9436 Value *FsubRes =
9437 Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
9438 return Builder.CreateFSub(Zero, FsubRes, "sub");
9439 }
9440 llvm_unreachable("Unknown FMA operation")::llvm::llvm_unreachable_internal("Unknown FMA operation", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9440)
;
9441 return nullptr; // Suppress no-return warning
9442 }
9443
9444 case PPC::BI__builtin_vsx_insertword: {
9445 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
9446
9447 // Third argument is a compile time constant int. It must be clamped to
9448 // to the range [0, 12].
9449 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
9450 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9451, __extension__ __PRETTY_FUNCTION__))
9451 "Third arg to xxinsertw intrinsic must be constant integer")(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9451, __extension__ __PRETTY_FUNCTION__))
;
9452 const int64_t MaxIndex = 12;
9453 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
9454
9455 // The builtin semantics don't exactly match the xxinsertw instructions
9456 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
9457 // word from the first argument, and inserts it in the second argument. The
9458 // instruction extracts the word from its second input register and inserts
9459 // it into its first input register, so swap the first and second arguments.
9460 std::swap(Ops[0], Ops[1]);
9461
9462 // Need to cast the second argument from a vector of unsigned int to a
9463 // vector of long long.
9464 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
9465
9466 if (getTarget().isLittleEndian()) {
9467 // Create a shuffle mask of (1, 0)
9468 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
9469 ConstantInt::get(Int32Ty, 0)
9470 };
9471 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
9472
9473 // Reverse the double words in the vector we will extract from.
9474 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
9475 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
9476
9477 // Reverse the index.
9478 Index = MaxIndex - Index;
9479 }
9480
9481 // Intrinsic expects the first arg to be a vector of int.
9482 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
9483 Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
9484 return Builder.CreateCall(F, Ops);
9485 }
9486
9487 case PPC::BI__builtin_vsx_extractuword: {
9488 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
9489
9490 // Intrinsic expects the first argument to be a vector of doublewords.
9491 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
9492
9493 // The second argument is a compile time constant int that needs to
9494 // be clamped to the range [0, 12].
9495 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
9496 assert(ArgCI &&(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9497, __extension__ __PRETTY_FUNCTION__))
9497 "Second Arg to xxextractuw intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9497, __extension__ __PRETTY_FUNCTION__))
;
9498 const int64_t MaxIndex = 12;
9499 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
9500
9501 if (getTarget().isLittleEndian()) {
9502 // Reverse the index.
9503 Index = MaxIndex - Index;
9504 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
9505
9506 // Emit the call, then reverse the double words of the results vector.
9507 Value *Call = Builder.CreateCall(F, Ops);
9508
9509 // Create a shuffle mask of (1, 0)
9510 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
9511 ConstantInt::get(Int32Ty, 0)
9512 };
9513 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
9514
9515 Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
9516 return ShuffleCall;
9517 } else {
9518 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
9519 return Builder.CreateCall(F, Ops);
9520 }
9521 }
9522
9523 case PPC::BI__builtin_vsx_xxpermdi: {
9524 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
9525 assert(ArgCI && "Third arg must be constant integer!")(static_cast <bool> (ArgCI && "Third arg must be constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg must be constant integer!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9525, __extension__ __PRETTY_FUNCTION__))
;
9526
9527 unsigned Index = ArgCI->getZExtValue();
9528 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
9529 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
9530
9531 // Element zero comes from the first input vector and element one comes from
9532 // the second. The element indices within each vector are numbered in big
9533 // endian order so the shuffle mask must be adjusted for this on little
9534 // endian platforms (i.e. index is complemented and source vector reversed).
9535 unsigned ElemIdx0;
9536 unsigned ElemIdx1;
9537 if (getTarget().isLittleEndian()) {
9538 ElemIdx0 = (~Index & 1) + 2;
9539 ElemIdx1 = (~Index & 2) >> 1;
9540 } else { // BigEndian
9541 ElemIdx0 = (Index & 2) >> 1;
9542 ElemIdx1 = 2 + (Index & 1);
9543 }
9544
9545 Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
9546 ConstantInt::get(Int32Ty, ElemIdx1)};
9547 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
9548
9549 Value *ShuffleCall =
9550 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
9551 QualType BIRetType = E->getType();
9552 auto RetTy = ConvertType(BIRetType);
9553 return Builder.CreateBitCast(ShuffleCall, RetTy);
9554 }
9555
9556 case PPC::BI__builtin_vsx_xxsldwi: {
9557 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
9558 assert(ArgCI && "Third argument must be a compile time constant")(static_cast <bool> (ArgCI && "Third argument must be a compile time constant"
) ? void (0) : __assert_fail ("ArgCI && \"Third argument must be a compile time constant\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9558, __extension__ __PRETTY_FUNCTION__))
;
9559 unsigned Index = ArgCI->getZExtValue() & 0x3;
9560 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
9561 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
9562
9563 // Create a shuffle mask
9564 unsigned ElemIdx0;
9565 unsigned ElemIdx1;
9566 unsigned ElemIdx2;
9567 unsigned ElemIdx3;
9568 if (getTarget().isLittleEndian()) {
9569 // Little endian element N comes from element 8+N-Index of the
9570 // concatenated wide vector (of course, using modulo arithmetic on
9571 // the total number of elements).
9572 ElemIdx0 = (8 - Index) % 8;
9573 ElemIdx1 = (9 - Index) % 8;
9574 ElemIdx2 = (10 - Index) % 8;
9575 ElemIdx3 = (11 - Index) % 8;
9576 } else {
9577 // Big endian ElemIdx<N> = Index + N
9578 ElemIdx0 = Index;
9579 ElemIdx1 = Index + 1;
9580 ElemIdx2 = Index + 2;
9581 ElemIdx3 = Index + 3;
9582 }
9583
9584 Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
9585 ConstantInt::get(Int32Ty, ElemIdx1),
9586 ConstantInt::get(Int32Ty, ElemIdx2),
9587 ConstantInt::get(Int32Ty, ElemIdx3)};
9588
9589 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
9590 Value *ShuffleCall =
9591 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
9592 QualType BIRetType = E->getType();
9593 auto RetTy = ConvertType(BIRetType);
9594 return Builder.CreateBitCast(ShuffleCall, RetTy);
9595 }
9596 }
9597}
9598
9599Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
9600 const CallExpr *E) {
9601 switch (BuiltinID) {
9602 case AMDGPU::BI__builtin_amdgcn_div_scale:
9603 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
9604 // Translate from the intrinsics's struct return to the builtin's out
9605 // argument.
9606
9607 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
9608
9609 llvm::Value *X = EmitScalarExpr(E->getArg(0));
9610 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
9611 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
9612
9613 llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
9614 X->getType());
9615
9616 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
9617
9618 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
9619 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
9620
9621 llvm::Type *RealFlagType
9622 = FlagOutPtr.getPointer()->getType()->getPointerElementType();
9623
9624 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
9625 Builder.CreateStore(FlagExt, FlagOutPtr);
9626 return Result;
9627 }
9628 case AMDGPU::BI__builtin_amdgcn_div_fmas:
9629 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
9630 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
9631 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
9632 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
9633 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
9634
9635 llvm::Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
9636 Src0->getType());
9637 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
9638 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
9639 }
9640
9641 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
9642 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
9643 case AMDGPU::BI__builtin_amdgcn_mov_dpp: {
9644 llvm::SmallVector<llvm::Value *, 5> Args;
9645 for (unsigned I = 0; I != 5; ++I)
9646 Args.push_back(EmitScalarExpr(E->getArg(I)));
9647 Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_mov_dpp,
9648 Args[0]->getType());
9649 return Builder.CreateCall(F, Args);
9650 }
9651 case AMDGPU::BI__builtin_amdgcn_div_fixup:
9652 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
9653 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
9654 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
9655 case AMDGPU::BI__builtin_amdgcn_trig_preop:
9656 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
9657 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
9658 case AMDGPU::BI__builtin_amdgcn_rcp:
9659 case AMDGPU::BI__builtin_amdgcn_rcpf:
9660 case AMDGPU::BI__builtin_amdgcn_rcph:
9661 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
9662 case AMDGPU::BI__builtin_amdgcn_rsq:
9663 case AMDGPU::BI__builtin_amdgcn_rsqf:
9664 case AMDGPU::BI__builtin_amdgcn_rsqh:
9665 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
9666 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
9667 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
9668 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
9669 case AMDGPU::BI__builtin_amdgcn_sinf:
9670 case AMDGPU::BI__builtin_amdgcn_sinh:
9671 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
9672 case AMDGPU::BI__builtin_amdgcn_cosf:
9673 case AMDGPU::BI__builtin_amdgcn_cosh:
9674 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
9675 case AMDGPU::BI__builtin_amdgcn_log_clampf:
9676 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
9677 case AMDGPU::BI__builtin_amdgcn_ldexp:
9678 case AMDGPU::BI__builtin_amdgcn_ldexpf:
9679 case AMDGPU::BI__builtin_amdgcn_ldexph:
9680 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
9681 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
9682 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
9683 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
9684 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
9685 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
9686 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
9687 Value *Src0 = EmitScalarExpr(E->getArg(0));
9688 Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
9689 { Builder.getInt32Ty(), Src0->getType() });
9690 return Builder.CreateCall(F, Src0);
9691 }
9692 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
9693 Value *Src0 = EmitScalarExpr(E->getArg(0));
9694 Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
9695 { Builder.getInt16Ty(), Src0->getType() });
9696 return Builder.CreateCall(F, Src0);
9697 }
9698 case AMDGPU::BI__builtin_amdgcn_fract:
9699 case AMDGPU::BI__builtin_amdgcn_fractf:
9700 case AMDGPU::BI__builtin_amdgcn_fracth:
9701 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
9702 case AMDGPU::BI__builtin_amdgcn_lerp:
9703 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
9704 case AMDGPU::BI__builtin_amdgcn_uicmp:
9705 case AMDGPU::BI__builtin_amdgcn_uicmpl:
9706 case AMDGPU::BI__builtin_amdgcn_sicmp:
9707 case AMDGPU::BI__builtin_amdgcn_sicmpl:
9708 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_icmp);
9709 case AMDGPU::BI__builtin_amdgcn_fcmp:
9710 case AMDGPU::BI__builtin_amdgcn_fcmpf:
9711 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fcmp);
9712 case AMDGPU::BI__builtin_amdgcn_class:
9713 case AMDGPU::BI__builtin_amdgcn_classf:
9714 case AMDGPU::BI__builtin_amdgcn_classh:
9715 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
9716 case AMDGPU::BI__builtin_amdgcn_fmed3f:
9717 case AMDGPU::BI__builtin_amdgcn_fmed3h:
9718 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
9719 case AMDGPU::BI__builtin_amdgcn_read_exec: {
9720 CallInst *CI = cast<CallInst>(
9721 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
9722 CI->setConvergent();
9723 return CI;
9724 }
9725 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
9726 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
9727 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
9728 "exec_lo" : "exec_hi";
9729 CallInst *CI = cast<CallInst>(
9730 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
9731 CI->setConvergent();
9732 return CI;
9733 }
9734
9735 // amdgcn workitem
9736 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
9737 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
9738 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
9739 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
9740 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
9741 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
9742
9743 // r600 intrinsics
9744 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
9745 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
9746 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
9747 case AMDGPU::BI__builtin_r600_read_tidig_x:
9748 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
9749 case AMDGPU::BI__builtin_r600_read_tidig_y:
9750 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
9751 case AMDGPU::BI__builtin_r600_read_tidig_z:
9752 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
9753 default:
9754 return nullptr;
9755 }
9756}
9757
9758/// Handle a SystemZ function in which the final argument is a pointer
9759/// to an int that receives the post-instruction CC value. At the LLVM level
9760/// this is represented as a function that returns a {result, cc} pair.
9761static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
9762 unsigned IntrinsicID,
9763 const CallExpr *E) {
9764 unsigned NumArgs = E->getNumArgs() - 1;
9765 SmallVector<Value *, 8> Args(NumArgs);
9766 for (unsigned I = 0; I < NumArgs; ++I)
9767 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
9768 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
9769 Value *F = CGF.CGM.getIntrinsic(IntrinsicID);
9770 Value *Call = CGF.Builder.CreateCall(F, Args);
9771 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
9772 CGF.Builder.CreateStore(CC, CCPtr);
9773 return CGF.Builder.CreateExtractValue(Call, 0);
9774}
9775
9776Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
9777 const CallExpr *E) {
9778 switch (BuiltinID) {
9779 case SystemZ::BI__builtin_tbegin: {
9780 Value *TDB = EmitScalarExpr(E->getArg(0));
9781 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
9782 Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
9783 return Builder.CreateCall(F, {TDB, Control});
9784 }
9785 case SystemZ::BI__builtin_tbegin_nofloat: {
9786 Value *TDB = EmitScalarExpr(E->getArg(0));
9787 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
9788 Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
9789 return Builder.CreateCall(F, {TDB, Control});
9790 }
9791 case SystemZ::BI__builtin_tbeginc: {
9792 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
9793 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
9794 Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
9795 return Builder.CreateCall(F, {TDB, Control});
9796 }
9797 case SystemZ::BI__builtin_tabort: {
9798 Value *Data = EmitScalarExpr(E->getArg(0));
9799 Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
9800 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
9801 }
9802 case SystemZ::BI__builtin_non_tx_store: {
9803 Value *Address = EmitScalarExpr(E->getArg(0));
9804 Value *Data = EmitScalarExpr(E->getArg(1));
9805 Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
9806 return Builder.CreateCall(F, {Data, Address});
9807 }
9808
9809 // Vector builtins. Note that most vector builtins are mapped automatically
9810 // to target-specific LLVM intrinsics. The ones handled specially here can
9811 // be represented via standard LLVM IR, which is preferable to enable common
9812 // LLVM optimizations.
9813
9814 case SystemZ::BI__builtin_s390_vpopctb:
9815 case SystemZ::BI__builtin_s390_vpopcth:
9816 case SystemZ::BI__builtin_s390_vpopctf:
9817 case SystemZ::BI__builtin_s390_vpopctg: {
9818 llvm::Type *ResultType = ConvertType(E->getType());
9819 Value *X = EmitScalarExpr(E->getArg(0));
9820 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
9821 return Builder.CreateCall(F, X);
9822 }
9823
9824 case SystemZ::BI__builtin_s390_vclzb:
9825 case SystemZ::BI__builtin_s390_vclzh:
9826 case SystemZ::BI__builtin_s390_vclzf:
9827 case SystemZ::BI__builtin_s390_vclzg: {
9828 llvm::Type *ResultType = ConvertType(E->getType());
9829 Value *X = EmitScalarExpr(E->getArg(0));
9830 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
9831 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
9832 return Builder.CreateCall(F, {X, Undef});
9833 }
9834
9835 case SystemZ::BI__builtin_s390_vctzb:
9836 case SystemZ::BI__builtin_s390_vctzh:
9837 case SystemZ::BI__builtin_s390_vctzf:
9838 case SystemZ::BI__builtin_s390_vctzg: {
9839 llvm::Type *ResultType = ConvertType(E->getType());
9840 Value *X = EmitScalarExpr(E->getArg(0));
9841 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
9842 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
9843 return Builder.CreateCall(F, {X, Undef});
9844 }
9845
9846 case SystemZ::BI__builtin_s390_vfsqsb:
9847 case SystemZ::BI__builtin_s390_vfsqdb: {
9848 llvm::Type *ResultType = ConvertType(E->getType());
9849 Value *X = EmitScalarExpr(E->getArg(0));
9850 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
9851 return Builder.CreateCall(F, X);
9852 }
9853 case SystemZ::BI__builtin_s390_vfmasb:
9854 case SystemZ::BI__builtin_s390_vfmadb: {
9855 llvm::Type *ResultType = ConvertType(E->getType());
9856 Value *X = EmitScalarExpr(E->getArg(0));
9857 Value *Y = EmitScalarExpr(E->getArg(1));
9858 Value *Z = EmitScalarExpr(E->getArg(2));
9859 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
9860 return Builder.CreateCall(F, {X, Y, Z});
9861 }
9862 case SystemZ::BI__builtin_s390_vfmssb:
9863 case SystemZ::BI__builtin_s390_vfmsdb: {
9864 llvm::Type *ResultType = ConvertType(E->getType());
9865 Value *X = EmitScalarExpr(E->getArg(0));
9866 Value *Y = EmitScalarExpr(E->getArg(1));
9867 Value *Z = EmitScalarExpr(E->getArg(2));
9868 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
9869 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
9870 return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
9871 }
9872 case SystemZ::BI__builtin_s390_vfnmasb:
9873 case SystemZ::BI__builtin_s390_vfnmadb: {
9874 llvm::Type *ResultType = ConvertType(E->getType());
9875 Value *X = EmitScalarExpr(E->getArg(0));
9876 Value *Y = EmitScalarExpr(E->getArg(1));
9877 Value *Z = EmitScalarExpr(E->getArg(2));
9878 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
9879 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
9880 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
9881 }
9882 case SystemZ::BI__builtin_s390_vfnmssb:
9883 case SystemZ::BI__builtin_s390_vfnmsdb: {
9884 llvm::Type *ResultType = ConvertType(E->getType());
9885 Value *X = EmitScalarExpr(E->getArg(0));
9886 Value *Y = EmitScalarExpr(E->getArg(1));
9887 Value *Z = EmitScalarExpr(E->getArg(2));
9888 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
9889 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
9890 Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
9891 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
9892 }
9893 case SystemZ::BI__builtin_s390_vflpsb:
9894 case SystemZ::BI__builtin_s390_vflpdb: {
9895 llvm::Type *ResultType = ConvertType(E->getType());
9896 Value *X = EmitScalarExpr(E->getArg(0));
9897 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
9898 return Builder.CreateCall(F, X);
9899 }
9900 case SystemZ::BI__builtin_s390_vflnsb:
9901 case SystemZ::BI__builtin_s390_vflndb: {
9902 llvm::Type *ResultType = ConvertType(E->getType());
9903 Value *X = EmitScalarExpr(E->getArg(0));
9904 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
9905 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
9906 return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
9907 }
9908 case SystemZ::BI__builtin_s390_vfisb:
9909 case SystemZ::BI__builtin_s390_vfidb: {
9910 llvm::Type *ResultType = ConvertType(E->getType());
9911 Value *X = EmitScalarExpr(E->getArg(0));
9912 // Constant-fold the M4 and M5 mask arguments.
9913 llvm::APSInt M4, M5;
9914 bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
9915 bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
9916 assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?")(static_cast <bool> (IsConstM4 && IsConstM5 &&
"Constant arg isn't actually constant?") ? void (0) : __assert_fail
("IsConstM4 && IsConstM5 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9916, __extension__ __PRETTY_FUNCTION__))
;
9917 (void)IsConstM4; (void)IsConstM5;
9918 // Check whether this instance can be represented via a LLVM standard
9919 // intrinsic. We only support some combinations of M4 and M5.
9920 Intrinsic::ID ID = Intrinsic::not_intrinsic;
9921 switch (M4.getZExtValue()) {
9922 default: break;
9923 case 0: // IEEE-inexact exception allowed
9924 switch (M5.getZExtValue()) {
9925 default: break;
9926 case 0: ID = Intrinsic::rint; break;
9927 }
9928 break;
9929 case 4: // IEEE-inexact exception suppressed
9930 switch (M5.getZExtValue()) {
9931 default: break;
9932 case 0: ID = Intrinsic::nearbyint; break;
9933 case 1: ID = Intrinsic::round; break;
9934 case 5: ID = Intrinsic::trunc; break;
9935 case 6: ID = Intrinsic::ceil; break;
9936 case 7: ID = Intrinsic::floor; break;
9937 }
9938 break;
9939 }
9940 if (ID != Intrinsic::not_intrinsic) {
9941 Function *F = CGM.getIntrinsic(ID, ResultType);
9942 return Builder.CreateCall(F, X);
9943 }
9944 switch (BuiltinID) {
9945 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
9946 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
9947 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9947)
;
9948 }
9949 Function *F = CGM.getIntrinsic(ID);
9950 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
9951 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
9952 return Builder.CreateCall(F, {X, M4Value, M5Value});
9953 }
9954 case SystemZ::BI__builtin_s390_vfmaxsb:
9955 case SystemZ::BI__builtin_s390_vfmaxdb: {
9956 llvm::Type *ResultType = ConvertType(E->getType());
9957 Value *X = EmitScalarExpr(E->getArg(0));
9958 Value *Y = EmitScalarExpr(E->getArg(1));
9959 // Constant-fold the M4 mask argument.
9960 llvm::APSInt M4;
9961 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
9962 assert(IsConstM4 && "Constant arg isn't actually constant?")(static_cast <bool> (IsConstM4 && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConstM4 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9962, __extension__ __PRETTY_FUNCTION__))
;
9963 (void)IsConstM4;
9964 // Check whether this instance can be represented via a LLVM standard
9965 // intrinsic. We only support some values of M4.
9966 Intrinsic::ID ID = Intrinsic::not_intrinsic;
9967 switch (M4.getZExtValue()) {
9968 default: break;
9969 case 4: ID = Intrinsic::maxnum; break;
9970 }
9971 if (ID != Intrinsic::not_intrinsic) {
9972 Function *F = CGM.getIntrinsic(ID, ResultType);
9973 return Builder.CreateCall(F, {X, Y});
9974 }
9975 switch (BuiltinID) {
9976 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
9977 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
9978 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9978)
;
9979 }
9980 Function *F = CGM.getIntrinsic(ID);
9981 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
9982 return Builder.CreateCall(F, {X, Y, M4Value});
9983 }
9984 case SystemZ::BI__builtin_s390_vfminsb:
9985 case SystemZ::BI__builtin_s390_vfmindb: {
9986 llvm::Type *ResultType = ConvertType(E->getType());
9987 Value *X = EmitScalarExpr(E->getArg(0));
9988 Value *Y = EmitScalarExpr(E->getArg(1));
9989 // Constant-fold the M4 mask argument.
9990 llvm::APSInt M4;
9991 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
9992 assert(IsConstM4 && "Constant arg isn't actually constant?")(static_cast <bool> (IsConstM4 && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("IsConstM4 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9992, __extension__ __PRETTY_FUNCTION__))
;
9993 (void)IsConstM4;
9994 // Check whether this instance can be represented via a LLVM standard
9995 // intrinsic. We only support some values of M4.
9996 Intrinsic::ID ID = Intrinsic::not_intrinsic;
9997 switch (M4.getZExtValue()) {
9998 default: break;
9999 case 4: ID = Intrinsic::minnum; break;
10000 }
10001 if (ID != Intrinsic::not_intrinsic) {
10002 Function *F = CGM.getIntrinsic(ID, ResultType);
10003 return Builder.CreateCall(F, {X, Y});
10004 }
10005 switch (BuiltinID) {
10006 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
10007 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
10008 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10008)
;
10009 }
10010 Function *F = CGM.getIntrinsic(ID);
10011 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
10012 return Builder.CreateCall(F, {X, Y, M4Value});
10013 }
10014
10015 // Vector intrisincs that output the post-instruction CC value.
10016
10017#define INTRINSIC_WITH_CC(NAME) \
10018 case SystemZ::BI__builtin_##NAME: \
10019 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
10020
10021 INTRINSIC_WITH_CC(s390_vpkshs);
10022 INTRINSIC_WITH_CC(s390_vpksfs);
10023 INTRINSIC_WITH_CC(s390_vpksgs);
10024
10025 INTRINSIC_WITH_CC(s390_vpklshs);
10026 INTRINSIC_WITH_CC(s390_vpklsfs);
10027 INTRINSIC_WITH_CC(s390_vpklsgs);
10028
10029 INTRINSIC_WITH_CC(s390_vceqbs);
10030 INTRINSIC_WITH_CC(s390_vceqhs);
10031 INTRINSIC_WITH_CC(s390_vceqfs);
10032 INTRINSIC_WITH_CC(s390_vceqgs);
10033
10034 INTRINSIC_WITH_CC(s390_vchbs);
10035 INTRINSIC_WITH_CC(s390_vchhs);
10036 INTRINSIC_WITH_CC(s390_vchfs);
10037 INTRINSIC_WITH_CC(s390_vchgs);
10038
10039 INTRINSIC_WITH_CC(s390_vchlbs);
10040 INTRINSIC_WITH_CC(s390_vchlhs);
10041 INTRINSIC_WITH_CC(s390_vchlfs);
10042 INTRINSIC_WITH_CC(s390_vchlgs);
10043
10044 INTRINSIC_WITH_CC(s390_vfaebs);
10045 INTRINSIC_WITH_CC(s390_vfaehs);
10046 INTRINSIC_WITH_CC(s390_vfaefs);
10047
10048 INTRINSIC_WITH_CC(s390_vfaezbs);
10049 INTRINSIC_WITH_CC(s390_vfaezhs);
10050 INTRINSIC_WITH_CC(s390_vfaezfs);
10051
10052 INTRINSIC_WITH_CC(s390_vfeebs);
10053 INTRINSIC_WITH_CC(s390_vfeehs);
10054 INTRINSIC_WITH_CC(s390_vfeefs);
10055
10056 INTRINSIC_WITH_CC(s390_vfeezbs);
10057 INTRINSIC_WITH_CC(s390_vfeezhs);
10058 INTRINSIC_WITH_CC(s390_vfeezfs);
10059
10060 INTRINSIC_WITH_CC(s390_vfenebs);
10061 INTRINSIC_WITH_CC(s390_vfenehs);
10062 INTRINSIC_WITH_CC(s390_vfenefs);
10063
10064 INTRINSIC_WITH_CC(s390_vfenezbs);
10065 INTRINSIC_WITH_CC(s390_vfenezhs);
10066 INTRINSIC_WITH_CC(s390_vfenezfs);
10067
10068 INTRINSIC_WITH_CC(s390_vistrbs);
10069 INTRINSIC_WITH_CC(s390_vistrhs);
10070 INTRINSIC_WITH_CC(s390_vistrfs);
10071
10072 INTRINSIC_WITH_CC(s390_vstrcbs);
10073 INTRINSIC_WITH_CC(s390_vstrchs);
10074 INTRINSIC_WITH_CC(s390_vstrcfs);
10075
10076 INTRINSIC_WITH_CC(s390_vstrczbs);
10077 INTRINSIC_WITH_CC(s390_vstrczhs);
10078 INTRINSIC_WITH_CC(s390_vstrczfs);
10079
10080 INTRINSIC_WITH_CC(s390_vfcesbs);
10081 INTRINSIC_WITH_CC(s390_vfcedbs);
10082 INTRINSIC_WITH_CC(s390_vfchsbs);
10083 INTRINSIC_WITH_CC(s390_vfchdbs);
10084 INTRINSIC_WITH_CC(s390_vfchesbs);
10085 INTRINSIC_WITH_CC(s390_vfchedbs);
10086
10087 INTRINSIC_WITH_CC(s390_vftcisb);
10088 INTRINSIC_WITH_CC(s390_vftcidb);
10089
10090#undef INTRINSIC_WITH_CC
10091
10092 default:
10093 return nullptr;
10094 }
10095}
10096
10097Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
10098 const CallExpr *E) {
10099 auto MakeLdg = [&](unsigned IntrinsicID) {
10100 Value *Ptr = EmitScalarExpr(E->getArg(0));
10101 clang::CharUnits Align =
10102 getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
10103 return Builder.CreateCall(
10104 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
10105 Ptr->getType()}),
10106 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
10107 };
10108 auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
10109 Value *Ptr = EmitScalarExpr(E->getArg(0));
10110 return Builder.CreateCall(
10111 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
10112 Ptr->getType()}),
10113 {Ptr, EmitScalarExpr(E->getArg(1))});
10114 };
10115 switch (BuiltinID) {
10116 case NVPTX::BI__nvvm_atom_add_gen_i:
10117 case NVPTX::BI__nvvm_atom_add_gen_l:
10118 case NVPTX::BI__nvvm_atom_add_gen_ll:
10119 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
10120
10121 case NVPTX::BI__nvvm_atom_sub_gen_i:
10122 case NVPTX::BI__nvvm_atom_sub_gen_l:
10123 case NVPTX::BI__nvvm_atom_sub_gen_ll:
10124 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
10125
10126 case NVPTX::BI__nvvm_atom_and_gen_i:
10127 case NVPTX::BI__nvvm_atom_and_gen_l:
10128 case NVPTX::BI__nvvm_atom_and_gen_ll:
10129 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
10130
10131 case NVPTX::BI__nvvm_atom_or_gen_i:
10132 case NVPTX::BI__nvvm_atom_or_gen_l:
10133 case NVPTX::BI__nvvm_atom_or_gen_ll:
10134 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
10135
10136 case NVPTX::BI__nvvm_atom_xor_gen_i:
10137 case NVPTX::BI__nvvm_atom_xor_gen_l:
10138 case NVPTX::BI__nvvm_atom_xor_gen_ll:
10139 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
10140
10141 case NVPTX::BI__nvvm_atom_xchg_gen_i:
10142 case NVPTX::BI__nvvm_atom_xchg_gen_l:
10143 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
10144 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
10145
10146 case NVPTX::BI__nvvm_atom_max_gen_i:
10147 case NVPTX::BI__nvvm_atom_max_gen_l:
10148 case NVPTX::BI__nvvm_atom_max_gen_ll:
10149 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
10150
10151 case NVPTX::BI__nvvm_atom_max_gen_ui:
10152 case NVPTX::BI__nvvm_atom_max_gen_ul:
10153 case NVPTX::BI__nvvm_atom_max_gen_ull:
10154 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
10155
10156 case NVPTX::BI__nvvm_atom_min_gen_i:
10157 case NVPTX::BI__nvvm_atom_min_gen_l:
10158 case NVPTX::BI__nvvm_atom_min_gen_ll:
10159 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
10160
10161 case NVPTX::BI__nvvm_atom_min_gen_ui:
10162 case NVPTX::BI__nvvm_atom_min_gen_ul:
10163 case NVPTX::BI__nvvm_atom_min_gen_ull:
10164 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
10165
10166 case NVPTX::BI__nvvm_atom_cas_gen_i:
10167 case NVPTX::BI__nvvm_atom_cas_gen_l:
10168 case NVPTX::BI__nvvm_atom_cas_gen_ll:
10169 // __nvvm_atom_cas_gen_* should return the old value rather than the
10170 // success flag.
10171 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
10172
10173 case NVPTX::BI__nvvm_atom_add_gen_f: {
10174 Value *Ptr = EmitScalarExpr(E->getArg(0));
10175 Value *Val = EmitScalarExpr(E->getArg(1));
10176 // atomicrmw only deals with integer arguments so we need to use
10177 // LLVM's nvvm_atomic_load_add_f32 intrinsic for that.
10178 Value *FnALAF32 =
10179 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType());
10180 return Builder.CreateCall(FnALAF32, {Ptr, Val});
10181 }
10182
10183 case NVPTX::BI__nvvm_atom_add_gen_d: {
10184 Value *Ptr = EmitScalarExpr(E->getArg(0));
10185 Value *Val = EmitScalarExpr(E->getArg(1));
10186 // atomicrmw only deals with integer arguments, so we need to use
10187 // LLVM's nvvm_atomic_load_add_f64 intrinsic.
10188 Value *FnALAF64 =
10189 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f64, Ptr->getType());
10190 return Builder.CreateCall(FnALAF64, {Ptr, Val});
10191 }
10192
10193 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
10194 Value *Ptr = EmitScalarExpr(E->getArg(0));
10195 Value *Val = EmitScalarExpr(E->getArg(1));
10196 Value *FnALI32 =
10197 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
10198 return Builder.CreateCall(FnALI32, {Ptr, Val});
10199 }
10200
10201 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
10202 Value *Ptr = EmitScalarExpr(E->getArg(0));
10203 Value *Val = EmitScalarExpr(E->getArg(1));
10204 Value *FnALD32 =
10205 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
10206 return Builder.CreateCall(FnALD32, {Ptr, Val});
10207 }
10208
10209 case NVPTX::BI__nvvm_ldg_c:
10210 case NVPTX::BI__nvvm_ldg_c2:
10211 case NVPTX::BI__nvvm_ldg_c4:
10212 case NVPTX::BI__nvvm_ldg_s:
10213 case NVPTX::BI__nvvm_ldg_s2:
10214 case NVPTX::BI__nvvm_ldg_s4:
10215 case NVPTX::BI__nvvm_ldg_i:
10216 case NVPTX::BI__nvvm_ldg_i2:
10217 case NVPTX::BI__nvvm_ldg_i4:
10218 case NVPTX::BI__nvvm_ldg_l:
10219 case NVPTX::BI__nvvm_ldg_ll:
10220 case NVPTX::BI__nvvm_ldg_ll2:
10221 case NVPTX::BI__nvvm_ldg_uc:
10222 case NVPTX::BI__nvvm_ldg_uc2:
10223 case NVPTX::BI__nvvm_ldg_uc4:
10224 case NVPTX::BI__nvvm_ldg_us:
10225 case NVPTX::BI__nvvm_ldg_us2:
10226 case NVPTX::BI__nvvm_ldg_us4:
10227 case NVPTX::BI__nvvm_ldg_ui:
10228 case NVPTX::BI__nvvm_ldg_ui2:
10229 case NVPTX::BI__nvvm_ldg_ui4:
10230 case NVPTX::BI__nvvm_ldg_ul:
10231 case NVPTX::BI__nvvm_ldg_ull:
10232 case NVPTX::BI__nvvm_ldg_ull2:
10233 // PTX Interoperability section 2.2: "For a vector with an even number of
10234 // elements, its alignment is set to number of elements times the alignment
10235 // of its member: n*alignof(t)."
10236 return MakeLdg(Intrinsic::nvvm_ldg_global_i);
10237 case NVPTX::BI__nvvm_ldg_f:
10238 case NVPTX::BI__nvvm_ldg_f2:
10239 case NVPTX::BI__nvvm_ldg_f4:
10240 case NVPTX::BI__nvvm_ldg_d:
10241 case NVPTX::BI__nvvm_ldg_d2:
10242 return MakeLdg(Intrinsic::nvvm_ldg_global_f);
10243
10244 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
10245 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
10246 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
10247 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
10248 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
10249 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
10250 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
10251 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
10252 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
10253 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
10254 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
10255 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
10256 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
10257 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
10258 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
10259 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
10260 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
10261 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
10262 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
10263 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
10264 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
10265 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
10266 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
10267 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
10268 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
10269 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
10270 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
10271 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
10272 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
10273 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
10274 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
10275 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
10276 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
10277 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
10278 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
10279 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
10280 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
10281 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
10282 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
10283 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
10284 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
10285 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
10286 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
10287 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
10288 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
10289 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
10290 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
10291 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
10292 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
10293 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
10294 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
10295 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
10296 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
10297 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
10298 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
10299 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
10300 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
10301 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
10302 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
10303 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
10304 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
10305 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
10306 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
10307 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
10308 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
10309 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
10310 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
10311 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
10312 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
10313 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
10314 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
10315 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
10316 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
10317 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
10318 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
10319 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
10320 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
10321 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
10322 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
10323 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
10324 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
10325 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
10326 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
10327 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
10328 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
10329 Value *Ptr = EmitScalarExpr(E->getArg(0));
10330 return Builder.CreateCall(
10331 CGM.getIntrinsic(
10332 Intrinsic::nvvm_atomic_cas_gen_i_cta,
10333 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
10334 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
10335 }
10336 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
10337 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
10338 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
10339 Value *Ptr = EmitScalarExpr(E->getArg(0));
10340 return Builder.CreateCall(
10341 CGM.getIntrinsic(
10342 Intrinsic::nvvm_atomic_cas_gen_i_sys,
10343 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
10344 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
10345 }
10346 case NVPTX::BI__nvvm_match_all_sync_i32p:
10347 case NVPTX::BI__nvvm_match_all_sync_i64p: {
10348 Value *Mask = EmitScalarExpr(E->getArg(0));
10349 Value *Val = EmitScalarExpr(E->getArg(1));
10350 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
10351 Value *ResultPair = Builder.CreateCall(
10352 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
10353 ? Intrinsic::nvvm_match_all_sync_i32p
10354 : Intrinsic::nvvm_match_all_sync_i64p),
10355 {Mask, Val});
10356 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
10357 PredOutPtr.getElementType());
10358 Builder.CreateStore(Pred, PredOutPtr);
10359 return Builder.CreateExtractValue(ResultPair, 0);
10360 }
10361 case NVPTX::BI__hmma_m16n16k16_ld_a:
10362 case NVPTX::BI__hmma_m16n16k16_ld_b:
10363 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
10364 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: {
10365 Address Dst = EmitPointerWithAlignment(E->getArg(0));
10366 Value *Src = EmitScalarExpr(E->getArg(1));
10367 Value *Ldm = EmitScalarExpr(E->getArg(2));
10368 llvm::APSInt isColMajorArg;
10369 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
10370 return nullptr;
10371 bool isColMajor = isColMajorArg.getSExtValue();
10372 unsigned IID;
10373 unsigned NumResults;
10374 switch (BuiltinID) {
10375 case NVPTX::BI__hmma_m16n16k16_ld_a:
10376 IID = isColMajor ? Intrinsic::nvvm_wmma_load_a_f16_col_stride
10377 : Intrinsic::nvvm_wmma_load_a_f16_row_stride;
10378 NumResults = 8;
10379 break;
10380 case NVPTX::BI__hmma_m16n16k16_ld_b:
10381 IID = isColMajor ? Intrinsic::nvvm_wmma_load_b_f16_col_stride
10382 : Intrinsic::nvvm_wmma_load_b_f16_row_stride;
10383 NumResults = 8;
10384 break;
10385 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
10386 IID = isColMajor ? Intrinsic::nvvm_wmma_load_c_f16_col_stride
10387 : Intrinsic::nvvm_wmma_load_c_f16_row_stride;
10388 NumResults = 4;
10389 break;
10390 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
10391 IID = isColMajor ? Intrinsic::nvvm_wmma_load_c_f32_col_stride
10392 : Intrinsic::nvvm_wmma_load_c_f32_row_stride;
10393 NumResults = 8;
10394 break;
10395 default:
10396 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10396)
;
10397 }
10398 Value *Result =
10399 Builder.CreateCall(CGM.getIntrinsic(IID),
10400 {Builder.CreatePointerCast(Src, VoidPtrTy), Ldm});
10401
10402 // Save returned values.
10403 for (unsigned i = 0; i < NumResults; ++i) {
10404 Builder.CreateAlignedStore(
10405 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
10406 Dst.getElementType()),
10407 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
10408 CharUnits::fromQuantity(4));
10409 }
10410 return Result;
10411 }
10412
10413 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
10414 case NVPTX::BI__hmma_m16n16k16_st_c_f32: {
10415 Value *Dst = EmitScalarExpr(E->getArg(0));
10416 Address Src = EmitPointerWithAlignment(E->getArg(1));
10417 Value *Ldm = EmitScalarExpr(E->getArg(2));
10418 llvm::APSInt isColMajorArg;
10419 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
10420 return nullptr;
10421 bool isColMajor = isColMajorArg.getSExtValue();
10422 unsigned IID;
10423 unsigned NumResults = 8;
10424 // PTX Instructions (and LLVM instrinsics) are defined for slice _d_, yet
10425 // for some reason nvcc builtins use _c_.
10426 switch (BuiltinID) {
10427 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
10428 IID = isColMajor ? Intrinsic::nvvm_wmma_store_d_f16_col_stride
10429 : Intrinsic::nvvm_wmma_store_d_f16_row_stride;
10430 NumResults = 4;
10431 break;
10432 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
10433 IID = isColMajor ? Intrinsic::nvvm_wmma_store_d_f32_col_stride
10434 : Intrinsic::nvvm_wmma_store_d_f32_row_stride;
10435 break;
10436 default:
10437 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10437)
;
10438 }
10439 Function *Intrinsic = CGM.getIntrinsic(IID);
10440 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
10441 SmallVector<Value *, 10> Values;
10442 Values.push_back(Builder.CreatePointerCast(Dst, VoidPtrTy));
10443 for (unsigned i = 0; i < NumResults; ++i) {
10444 Value *V = Builder.CreateAlignedLoad(
10445 Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
10446 CharUnits::fromQuantity(4));
10447 Values.push_back(Builder.CreateBitCast(V, ParamType));
10448 }
10449 Values.push_back(Ldm);
10450 Value *Result = Builder.CreateCall(Intrinsic, Values);
10451 return Result;
10452 }
10453
10454 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf)
10455 // --> Intrinsic::nvvm_wmma_mma_sync<layout A,B><DType><CType><Satf>
10456 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
10457 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
10458 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
10459 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: {
10460 Address Dst = EmitPointerWithAlignment(E->getArg(0));
10461 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
10462 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
10463 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
10464 llvm::APSInt LayoutArg;
10465 if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
10466 return nullptr;
10467 int Layout = LayoutArg.getSExtValue();
10468 if (Layout < 0 || Layout > 3)
10469 return nullptr;
10470 llvm::APSInt SatfArg;
10471 if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
10472 return nullptr;
10473 bool Satf = SatfArg.getSExtValue();
10474
10475 // clang-format off
10476#define MMA_VARIANTS(type) {{ \
10477 Intrinsic::nvvm_wmma_mma_sync_row_row_##type, \
10478 Intrinsic::nvvm_wmma_mma_sync_row_row_##type##_satfinite, \
10479 Intrinsic::nvvm_wmma_mma_sync_row_col_##type, \
10480 Intrinsic::nvvm_wmma_mma_sync_row_col_##type##_satfinite, \
10481 Intrinsic::nvvm_wmma_mma_sync_col_row_##type, \
10482 Intrinsic::nvvm_wmma_mma_sync_col_row_##type##_satfinite, \
10483 Intrinsic::nvvm_wmma_mma_sync_col_col_##type, \
10484 Intrinsic::nvvm_wmma_mma_sync_col_col_##type##_satfinite \
10485 }}
10486 // clang-format on
10487
10488 auto getMMAIntrinsic = [Layout, Satf](std::array<unsigned, 8> Variants) {
10489 unsigned Index = Layout * 2 + Satf;
10490 assert(Index < 8)(static_cast <bool> (Index < 8) ? void (0) : __assert_fail
("Index < 8", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10490, __extension__ __PRETTY_FUNCTION__))
;
10491 return Variants[Index];
10492 };
10493 unsigned IID;
10494 unsigned NumEltsC;
10495 unsigned NumEltsD;
10496 switch (BuiltinID) {
10497 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
10498 IID = getMMAIntrinsic(MMA_VARIANTS(f16_f16));
10499 NumEltsC = 4;
10500 NumEltsD = 4;
10501 break;
10502 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
10503 IID = getMMAIntrinsic(MMA_VARIANTS(f32_f16));
10504 NumEltsC = 4;
10505 NumEltsD = 8;
10506 break;
10507 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
10508 IID = getMMAIntrinsic(MMA_VARIANTS(f16_f32));
10509 NumEltsC = 8;
10510 NumEltsD = 4;
10511 break;
10512 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
10513 IID = getMMAIntrinsic(MMA_VARIANTS(f32_f32));
10514 NumEltsC = 8;
10515 NumEltsD = 8;
10516 break;
10517 default:
10518 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "/build/llvm-toolchain-snapshot-7~svn324650/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10518)
;
10519 }
10520#undef MMA_VARIANTS
10521
10522 SmallVector<Value *, 24> Values;
10523 Function *Intrinsic = CGM.getIntrinsic(IID);
10524 llvm::Type *ABType = Intrinsic->getFunctionType()->getParamType(0);
10525 // Load A
10526 for (unsigned i = 0; i < 8; ++i) {
10527 Value *V = Builder.CreateAlignedLoad(
10528 Builder.CreateGEP(SrcA.getPointer(),
10529 llvm::ConstantInt::get(IntTy, i)),
10530 CharUnits::fromQuantity(4));
10531 Values.push_back(Builder.CreateBitCast(V, ABType));
10532 }
10533 // Load B
10534 for (unsigned i = 0; i < 8; ++i) {
10535 Value *V = Builder.CreateAlignedLoad(
10536 Builder.CreateGEP(SrcB.getPointer(),
10537 llvm::ConstantInt::get(IntTy, i)),
10538 CharUnits::fromQuantity(4));
10539 Values.push_back(Builder.CreateBitCast(V, ABType));
10540 }
10541 // Load C
10542 llvm::Type *CType = Intrinsic->getFunctionType()->getParamType(16);
10543 for (unsigned i = 0; i < NumEltsC; ++i) {
10544 Value *V = Builder.CreateAlignedLoad(
10545 Builder.CreateGEP(SrcC.getPointer(),
10546 llvm::ConstantInt::get(IntTy, i)),
10547 CharUnits::fromQuantity(4));
10548 Values.push_back(Builder.CreateBitCast(V, CType));
10549 }
10550 Value *Result = Builder.CreateCall(Intrinsic, Values);
10551 llvm::Type *DType = Dst.getElementType();
10552 for (unsigned i = 0; i < NumEltsD; ++i)
10553 Builder.CreateAlignedStore(
10554 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
10555 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
10556 CharUnits::fromQuantity(4));
10557 return Result;
10558 }
10559 default:
10560 return nullptr;
10561 }
10562}
10563
10564Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
10565 const CallExpr *E) {
10566 switch (BuiltinID) {
10567 case WebAssembly::BI__builtin_wasm_mem_size: {
10568 llvm::Type *ResultType = ConvertType(E->getType());
10569 Value *I = EmitScalarExpr(E->getArg(0));
10570 Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_mem_size, ResultType);
10571 return Builder.CreateCall(Callee, I);
10572 }
10573 case WebAssembly::BI__builtin_wasm_mem_grow: {
10574 llvm::Type *ResultType = ConvertType(E->getType());
10575 Value *Args[] = {
10576 EmitScalarExpr(E->getArg(0)),
10577 EmitScalarExpr(E->getArg(1))
10578 };
10579 Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_mem_grow, ResultType);
10580 return Builder.CreateCall(Callee, Args);
10581 }
10582 case WebAssembly::BI__builtin_wasm_current_memory: {
10583 llvm::Type *ResultType = ConvertType(E->getType());
10584 Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_current_memory, ResultType);
10585 return Builder.CreateCall(Callee);
10586 }
10587 case WebAssembly::BI__builtin_wasm_grow_memory: {
10588 Value *X = EmitScalarExpr(E->getArg(0));
10589 Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_grow_memory, X->getType());
10590 return Builder.CreateCall(Callee, X);
10591 }
10592 case WebAssembly::BI__builtin_wasm_throw: {
10593 Value *Tag = EmitScalarExpr(E->getArg(0));
10594 Value *Obj = EmitScalarExpr(E->getArg(1));
10595 Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
10596 return Builder.CreateCall(Callee, {Tag, Obj});
10597 }
10598 case WebAssembly::BI__builtin_wasm_rethrow: {
10599 Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
10600 return Builder.CreateCall(Callee);
10601 }
10602
10603 default:
10604 return nullptr;
10605 }
10606}
10607
10608Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
10609 const CallExpr *E) {
10610 SmallVector<llvm::Value *, 4> Ops;
10611 Intrinsic::ID ID = Intrinsic::not_intrinsic;
10612
10613 switch (BuiltinID) {
10614 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
10615 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
10616 Address Dest = EmitPointerWithAlignment(E->getArg(2));
10617 unsigned Size;
10618 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
10619 Size = 512;
10620 ID = Intrinsic::hexagon_V6_vaddcarry;
10621 } else {
10622 Size = 1024;
10623 ID = Intrinsic::hexagon_V6_vaddcarry_128B;
10624 }
10625 Dest = Builder.CreateBitCast(Dest,
10626 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
10627 LoadInst *QLd = Builder.CreateLoad(Dest);
10628 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
10629 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
10630 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
10631 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
10632 Vprd->getType()->getPointerTo(0));
10633 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
10634 return Builder.CreateExtractValue(Result, 0);
10635 }
10636 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
10637 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
10638 Address Dest = EmitPointerWithAlignment(E->getArg(2));
10639 unsigned Size;
10640 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
10641 Size = 512;
10642 ID = Intrinsic::hexagon_V6_vsubcarry;
10643 } else {
10644 Size = 1024;
10645 ID = Intrinsic::hexagon_V6_vsubcarry_128B;
10646 }
10647 Dest = Builder.CreateBitCast(Dest,
10648 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
10649 LoadInst *QLd = Builder.CreateLoad(Dest);
10650 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
10651 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
10652 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
10653 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
10654 Vprd->getType()->getPointerTo(0));
10655 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
10656 return Builder.CreateExtractValue(Result, 0);
10657 }
10658 } // switch
10659
10660 return nullptr;
10661}

/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/IR/DerivedTypes.h

1//===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declarations of classes that represent "derived
11// types". These are things like "arrays of x" or "structure of x, y, z" or
12// "function returning x taking (y,z) as parameters", etc...
13//
14// The implementations of these classes live in the Type.cpp file.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_IR_DERIVEDTYPES_H
19#define LLVM_IR_DERIVEDTYPES_H
20
21#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/IR/Type.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/Compiler.h"
27#include <cassert>
28#include <cstdint>
29
30namespace llvm {
31
32class Value;
33class APInt;
34class LLVMContext;
35
36/// Class to represent integer types. Note that this class is also used to
37/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38/// Int64Ty.
39/// @brief Integer representation type
40class IntegerType : public Type {
41 friend class LLVMContextImpl;
42
43protected:
44 explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45 setSubclassData(NumBits);
46 }
47
48public:
49 /// This enum is just used to hold constants we need for IntegerType.
50 enum {
51 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
52 MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
53 ///< Note that bit width is stored in the Type classes SubclassData field
54 ///< which has 24 bits. This yields a maximum bit width of 16,777,215
55 ///< bits.
56 };
57
58 /// This static method is the primary way of constructing an IntegerType.
59 /// If an IntegerType with the same NumBits value was previously instantiated,
60 /// that instance will be returned. Otherwise a new one will be created. Only
61 /// one instance with a given NumBits value is ever created.
62 /// @brief Get or create an IntegerType instance.
63 static IntegerType *get(LLVMContext &C, unsigned NumBits);
64
65 /// @brief Get the number of bits in this IntegerType
66 unsigned getBitWidth() const { return getSubclassData(); }
67
68 /// Return a bitmask with ones set for all of the bits that can be set by an
69 /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
70 uint64_t getBitMask() const {
71 return ~uint64_t(0UL) >> (64-getBitWidth());
72 }
73
74 /// Return a uint64_t with just the most significant bit set (the sign bit, if
75 /// the value is treated as a signed number).
76 uint64_t getSignBit() const {
77 return 1ULL << (getBitWidth()-1);
78 }
79
80 /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
81 /// @returns a bit mask with ones set for all the bits of this type.
82 /// @brief Get a bit mask for this type.
83 APInt getMask() const;
84
85 /// This method determines if the width of this IntegerType is a power-of-2
86 /// in terms of 8 bit bytes.
87 /// @returns true if this is a power-of-2 byte width.
88 /// @brief Is this a power-of-2 byte-width IntegerType ?
89 bool isPowerOf2ByteWidth() const;
90
91 /// Methods for support type inquiry through isa, cast, and dyn_cast.
92 static bool classof(const Type *T) {
93 return T->getTypeID() == IntegerTyID;
94 }
95};
96
97unsigned Type::getIntegerBitWidth() const {
98 return cast<IntegerType>(this)->getBitWidth();
99}
100
101/// Class to represent function types
102///
103class FunctionType : public Type {
104 FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
105
106public:
107 FunctionType(const FunctionType &) = delete;
108 FunctionType &operator=(const FunctionType &) = delete;
109
110 /// This static method is the primary way of constructing a FunctionType.
111 static FunctionType *get(Type *Result,
112 ArrayRef<Type*> Params, bool isVarArg);
113
114 /// Create a FunctionType taking no parameters.
115 static FunctionType *get(Type *Result, bool isVarArg);
116
117 /// Return true if the specified type is valid as a return type.
118 static bool isValidReturnType(Type *RetTy);
119
120 /// Return true if the specified type is valid as an argument type.
121 static bool isValidArgumentType(Type *ArgTy);
122
123 bool isVarArg() const { return getSubclassData()!=0; }
124 Type *getReturnType() const { return ContainedTys[0]; }
125
126 using param_iterator = Type::subtype_iterator;
127
128 param_iterator param_begin() const { return ContainedTys + 1; }
129 param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
130 ArrayRef<Type *> params() const {
131 return makeArrayRef(param_begin(), param_end());
132 }
133
134 /// Parameter type accessors.
135 Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
136
137 /// Return the number of fixed parameters this function type requires.
138 /// This does not consider varargs.
139 unsigned getNumParams() const { return NumContainedTys - 1; }
140
141 /// Methods for support type inquiry through isa, cast, and dyn_cast.
142 static bool classof(const Type *T) {
143 return T->getTypeID() == FunctionTyID;
144 }
145};
146static_assert(alignof(FunctionType) >= alignof(Type *),
147 "Alignment sufficient for objects appended to FunctionType");
148
149bool Type::isFunctionVarArg() const {
150 return cast<FunctionType>(this)->isVarArg();
151}
152
153Type *Type::getFunctionParamType(unsigned i) const {
154 return cast<FunctionType>(this)->getParamType(i);
155}
156
157unsigned Type::getFunctionNumParams() const {
158 return cast<FunctionType>(this)->getNumParams();
159}
160
161/// Common super class of ArrayType, StructType and VectorType.
162class CompositeType : public Type {
163protected:
164 explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
165
166public:
167 /// Given an index value into the type, return the type of the element.
168 Type *getTypeAtIndex(const Value *V) const;
169 Type *getTypeAtIndex(unsigned Idx) const;
170 bool indexValid(const Value *V) const;
171 bool indexValid(unsigned Idx) const;
172
173 /// Methods for support type inquiry through isa, cast, and dyn_cast.
174 static bool classof(const Type *T) {
175 return T->getTypeID() == ArrayTyID ||
176 T->getTypeID() == StructTyID ||
177 T->getTypeID() == VectorTyID;
178 }
179};
180
181/// Class to represent struct types. There are two different kinds of struct
182/// types: Literal structs and Identified structs.
183///
184/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
185/// always have a body when created. You can get one of these by using one of
186/// the StructType::get() forms.
187///
188/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
189/// uniqued. The names for identified structs are managed at the LLVMContext
190/// level, so there can only be a single identified struct with a given name in
191/// a particular LLVMContext. Identified structs may also optionally be opaque
192/// (have no body specified). You get one of these by using one of the
193/// StructType::create() forms.
194///
195/// Independent of what kind of struct you have, the body of a struct type are
196/// laid out in memory consequtively with the elements directly one after the
197/// other (if the struct is packed) or (if not packed) with padding between the
198/// elements as defined by DataLayout (which is required to match what the code
199/// generator for a target expects).
200///
201class StructType : public CompositeType {
202 StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
203
204 enum {
205 /// This is the contents of the SubClassData field.
206 SCDB_HasBody = 1,
207 SCDB_Packed = 2,
208 SCDB_IsLiteral = 4,
209 SCDB_IsSized = 8
210 };
211
212 /// For a named struct that actually has a name, this is a pointer to the
213 /// symbol table entry (maintained by LLVMContext) for the struct.
214 /// This is null if the type is an literal struct or if it is a identified
215 /// type that has an empty name.
216 void *SymbolTableEntry = nullptr;
217
218public:
219 StructType(const StructType &) = delete;
220 StructType &operator=(const StructType &) = delete;
221
222 /// This creates an identified struct.
223 static StructType *create(LLVMContext &Context, StringRef Name);
224 static StructType *create(LLVMContext &Context);
225
226 static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
227 bool isPacked = false);
228 static StructType *create(ArrayRef<Type *> Elements);
229 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
230 StringRef Name, bool isPacked = false);
231 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
232 template <class... Tys>
233 static typename std::enable_if<are_base_of<Type, Tys...>::value,
234 StructType *>::type
235 create(StringRef Name, Type *elt1, Tys *... elts) {
236 assert(elt1 && "Cannot create a struct type with no elements with this")(static_cast <bool> (elt1 && "Cannot create a struct type with no elements with this"
) ? void (0) : __assert_fail ("elt1 && \"Cannot create a struct type with no elements with this\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/IR/DerivedTypes.h"
, 236, __extension__ __PRETTY_FUNCTION__))
;
237 SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
238 return create(StructFields, Name);
239 }
240
241 /// This static method is the primary way to create a literal StructType.
242 static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
243 bool isPacked = false);
244
245 /// Create an empty structure type.
246 static StructType *get(LLVMContext &Context, bool isPacked = false);
247
248 /// This static method is a convenience method for creating structure types by
249 /// specifying the elements as arguments. Note that this method always returns
250 /// a non-packed struct, and requires at least one element type.
251 template <class... Tys>
252 static typename std::enable_if<are_base_of<Type, Tys...>::value,
253 StructType *>::type
254 get(Type *elt1, Tys *... elts) {
255 assert(elt1 && "Cannot create a struct type with no elements with this")(static_cast <bool> (elt1 && "Cannot create a struct type with no elements with this"
) ? void (0) : __assert_fail ("elt1 && \"Cannot create a struct type with no elements with this\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/IR/DerivedTypes.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
256 LLVMContext &Ctx = elt1->getContext();
257 SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
258 return llvm::StructType::get(Ctx, StructFields);
259 }
260
261 bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
262
263 /// Return true if this type is uniqued by structural equivalence, false if it
264 /// is a struct definition.
265 bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
266
267 /// Return true if this is a type with an identity that has no body specified
268 /// yet. These prints as 'opaque' in .ll files.
269 bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
270
271 /// isSized - Return true if this is a sized type.
272 bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
273
274 /// Return true if this is a named struct that has a non-empty name.
275 bool hasName() const { return SymbolTableEntry != nullptr; }
276
277 /// Return the name for this struct type if it has an identity.
278 /// This may return an empty string for an unnamed struct type. Do not call
279 /// this on an literal type.
280 StringRef getName() const;
281
282 /// Change the name of this type to the specified name, or to a name with a
283 /// suffix if there is a collision. Do not call this on an literal type.
284 void setName(StringRef Name);
285
286 /// Specify a body for an opaque identified type.
287 void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
288
289 template <typename... Tys>
290 typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
291 setBody(Type *elt1, Tys *... elts) {
292 assert(elt1 && "Cannot create a struct type with no elements with this")(static_cast <bool> (elt1 && "Cannot create a struct type with no elements with this"
) ? void (0) : __assert_fail ("elt1 && \"Cannot create a struct type with no elements with this\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/IR/DerivedTypes.h"
, 292, __extension__ __PRETTY_FUNCTION__))
;
293 SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
294 setBody(StructFields);
295 }
296
297 /// Return true if the specified type is valid as a element type.
298 static bool isValidElementType(Type *ElemTy);
299
300 // Iterator access to the elements.
301 using element_iterator = Type::subtype_iterator;
302
303 element_iterator element_begin() const { return ContainedTys; }
304 element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
305 ArrayRef<Type *> const elements() const {
306 return makeArrayRef(element_begin(), element_end());
307 }
308
309 /// Return true if this is layout identical to the specified struct.
310 bool isLayoutIdentical(StructType *Other) const;
311
312 /// Random access to the elements
313 unsigned getNumElements() const { return NumContainedTys; }
314 Type *getElementType(unsigned N) const {
315 assert(N < NumContainedTys && "Element number out of range!")(static_cast <bool> (N < NumContainedTys && "Element number out of range!"
) ? void (0) : __assert_fail ("N < NumContainedTys && \"Element number out of range!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/IR/DerivedTypes.h"
, 315, __extension__ __PRETTY_FUNCTION__))
;
316 return ContainedTys[N];
317 }
318
319 /// Methods for support type inquiry through isa, cast, and dyn_cast.
320 static bool classof(const Type *T) {
321 return T->getTypeID() == StructTyID;
322 }
323};
324
325StringRef Type::getStructName() const {
326 return cast<StructType>(this)->getName();
327}
328
329unsigned Type::getStructNumElements() const {
330 return cast<StructType>(this)->getNumElements();
331}
332
333Type *Type::getStructElementType(unsigned N) const {
334 return cast<StructType>(this)->getElementType(N);
335}
336
337/// This is the superclass of the array and vector type classes. Both of these
338/// represent "arrays" in memory. The array type represents a specifically sized
339/// array, and the vector type represents a specifically sized array that allows
340/// for use of SIMD instructions. SequentialType holds the common features of
341/// both, which stem from the fact that both lay their components out in memory
342/// identically.
343class SequentialType : public CompositeType {
344 Type *ContainedType; ///< Storage for the single contained type.
345 uint64_t NumElements;
346
347protected:
348 SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
349 : CompositeType(ElType->getContext(), TID), ContainedType(ElType),
350 NumElements(NumElements) {
351 ContainedTys = &ContainedType;
352 NumContainedTys = 1;
353 }
354
355public:
356 SequentialType(const SequentialType &) = delete;
357 SequentialType &operator=(const SequentialType &) = delete;
358
359 uint64_t getNumElements() const { return NumElements; }
360 Type *getElementType() const { return ContainedType; }
361
362 /// Methods for support type inquiry through isa, cast, and dyn_cast.
363 static bool classof(const Type *T) {
364 return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
365 }
366};
367
368/// Class to represent array types.
369class ArrayType : public SequentialType {
370 ArrayType(Type *ElType, uint64_t NumEl);
371
372public:
373 ArrayType(const ArrayType &) = delete;
374 ArrayType &operator=(const ArrayType &) = delete;
375
376 /// This static method is the primary way to construct an ArrayType
377 static ArrayType *get(Type *ElementType, uint64_t NumElements);
378
379 /// Return true if the specified type is valid as a element type.
380 static bool isValidElementType(Type *ElemTy);
381
382 /// Methods for support type inquiry through isa, cast, and dyn_cast.
383 static bool classof(const Type *T) {
384 return T->getTypeID() == ArrayTyID;
385 }
386};
387
388uint64_t Type::getArrayNumElements() const {
389 return cast<ArrayType>(this)->getNumElements();
390}
391
392/// Class to represent vector types.
393class VectorType : public SequentialType {
394 VectorType(Type *ElType, unsigned NumEl);
395
396public:
397 VectorType(const VectorType &) = delete;
398 VectorType &operator=(const VectorType &) = delete;
399
400 /// This static method is the primary way to construct an VectorType.
401 static VectorType *get(Type *ElementType, unsigned NumElements);
402
403 /// This static method gets a VectorType with the same number of elements as
404 /// the input type, and the element type is an integer type of the same width
405 /// as the input element type.
406 static VectorType *getInteger(VectorType *VTy) {
407 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
408 assert(EltBits && "Element size must be of a non-zero size")(static_cast <bool> (EltBits && "Element size must be of a non-zero size"
) ? void (0) : __assert_fail ("EltBits && \"Element size must be of a non-zero size\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/IR/DerivedTypes.h"
, 408, __extension__ __PRETTY_FUNCTION__))
;
409 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
410 return VectorType::get(EltTy, VTy->getNumElements());
411 }
412
413 /// This static method is like getInteger except that the element types are
414 /// twice as wide as the elements in the input type.
415 static VectorType *getExtendedElementVectorType(VectorType *VTy) {
416 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
417 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
418 return VectorType::get(EltTy, VTy->getNumElements());
419 }
420
421 /// This static method is like getInteger except that the element types are
422 /// half as wide as the elements in the input type.
423 static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
424 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
425 assert((EltBits & 1) == 0 &&(static_cast <bool> ((EltBits & 1) == 0 && "Cannot truncate vector element with odd bit-width"
) ? void (0) : __assert_fail ("(EltBits & 1) == 0 && \"Cannot truncate vector element with odd bit-width\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/IR/DerivedTypes.h"
, 426, __extension__ __PRETTY_FUNCTION__))
426 "Cannot truncate vector element with odd bit-width")(static_cast <bool> ((EltBits & 1) == 0 && "Cannot truncate vector element with odd bit-width"
) ? void (0) : __assert_fail ("(EltBits & 1) == 0 && \"Cannot truncate vector element with odd bit-width\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/IR/DerivedTypes.h"
, 426, __extension__ __PRETTY_FUNCTION__))
;
427 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
428 return VectorType::get(EltTy, VTy->getNumElements());
429 }
430
431 /// This static method returns a VectorType with half as many elements as the
432 /// input type and the same element type.
433 static VectorType *getHalfElementsVectorType(VectorType *VTy) {
434 unsigned NumElts = VTy->getNumElements();
435 assert ((NumElts & 1) == 0 &&(static_cast <bool> ((NumElts & 1) == 0 && "Cannot halve vector with odd number of elements."
) ? void (0) : __assert_fail ("(NumElts & 1) == 0 && \"Cannot halve vector with odd number of elements.\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/IR/DerivedTypes.h"
, 436, __extension__ __PRETTY_FUNCTION__))
436 "Cannot halve vector with odd number of elements.")(static_cast <bool> ((NumElts & 1) == 0 && "Cannot halve vector with odd number of elements."
) ? void (0) : __assert_fail ("(NumElts & 1) == 0 && \"Cannot halve vector with odd number of elements.\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/IR/DerivedTypes.h"
, 436, __extension__ __PRETTY_FUNCTION__))
;
437 return VectorType::get(VTy->getElementType(), NumElts/2);
438 }
439
440 /// This static method returns a VectorType with twice as many elements as the
441 /// input type and the same element type.
442 static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
443 unsigned NumElts = VTy->getNumElements();
444 return VectorType::get(VTy->getElementType(), NumElts*2);
445 }
446
447 /// Return true if the specified type is valid as a element type.
448 static bool isValidElementType(Type *ElemTy);
449
450 /// Return the number of bits in the Vector type.
451 /// Returns zero when the vector is a vector of pointers.
452 unsigned getBitWidth() const {
453 return getNumElements() * getElementType()->getPrimitiveSizeInBits();
454 }
455
456 /// Methods for support type inquiry through isa, cast, and dyn_cast.
457 static bool classof(const Type *T) {
458 return T->getTypeID() == VectorTyID;
15
Calling 'Type::getTypeID'
16
Returning from 'Type::getTypeID'
17
Assuming the condition is true
459 }
460};
461
462unsigned Type::getVectorNumElements() const {
463 return cast<VectorType>(this)->getNumElements();
3
Calling 'cast'
25
Returning from 'cast'
26
Calling 'SequentialType::getNumElements'
27
Returning from 'SequentialType::getNumElements'
464}
465
466/// Class to represent pointers.
467class PointerType : public Type {
468 explicit PointerType(Type *ElType, unsigned AddrSpace);
469
470 Type *PointeeTy;
471
472public:
473 PointerType(const PointerType &) = delete;
474 PointerType &operator=(const PointerType &) = delete;
475
476 /// This constructs a pointer to an object of the specified type in a numbered
477 /// address space.
478 static PointerType *get(Type *ElementType, unsigned AddressSpace);
479
480 /// This constructs a pointer to an object of the specified type in the
481 /// generic address space (address space zero).
482 static PointerType *getUnqual(Type *ElementType) {
483 return PointerType::get(ElementType, 0);
484 }
485
486 Type *getElementType() const { return PointeeTy; }
487
488 /// Return true if the specified type is valid as a element type.
489 static bool isValidElementType(Type *ElemTy);
490
491 /// Return true if we can load or store from a pointer to this type.
492 static bool isLoadableOrStorableType(Type *ElemTy);
493
494 /// Return the address space of the Pointer type.
495 inline unsigned getAddressSpace() const { return getSubclassData(); }
496
497 /// Implement support type inquiry through isa, cast, and dyn_cast.
498 static bool classof(const Type *T) {
499 return T->getTypeID() == PointerTyID;
500 }
501};
502
503unsigned Type::getPointerAddressSpace() const {
504 return cast<PointerType>(getScalarType())->getAddressSpace();
505}
506
507} // end namespace llvm
508
509#endif // LLVM_IR_DERIVEDTYPES_H

/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
11// and dyn_cast_or_null<X>() templates.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_SUPPORT_CASTING_H
16#define LLVM_SUPPORT_CASTING_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/type_traits.h"
20#include <cassert>
21#include <memory>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// isa<x> Support Templates
28//===----------------------------------------------------------------------===//
29
30// Define a template that can be specialized by smart pointers to reflect the
31// fact that they are automatically dereferenced, and are not involved with the
32// template selection process... the default implementation is a noop.
33//
34template<typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template<typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType =
44 typename add_const_past_pointer<NonConstSimpleType>::type;
45 using RetType =
46 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
47
48 static RetType getSimplifiedValue(const From& Val) {
49 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
7
Calling 'simplify_type::getSimplifiedValue'
8
Returning from 'simplify_type::getSimplifiedValue'
50 }
51};
52
53// The core of the implementation of isa<X> is here; To and From should be
54// the names of classes. This template can be specialized to customize the
55// implementation of isa<> without rewriting it from scratch.
56template <typename To, typename From, typename Enabler = void>
57struct isa_impl {
58 static inline bool doit(const From &Val) {
59 return To::classof(&Val);
14
Calling 'VectorType::classof'
18
Returning from 'VectorType::classof'
60 }
61};
62
63/// \brief Always allow upcasts, and perform no dynamic check for them.
64template <typename To, typename From>
65struct isa_impl<
66 To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
67 static inline bool doit(const From &) { return true; }
68};
69
70template <typename To, typename From> struct isa_impl_cl {
71 static inline bool doit(const From &Val) {
72 return isa_impl<To, From>::doit(Val);
73 }
74};
75
76template <typename To, typename From> struct isa_impl_cl<To, const From> {
77 static inline bool doit(const From &Val) {
78 return isa_impl<To, From>::doit(Val);
79 }
80};
81
82template <typename To, typename From>
83struct isa_impl_cl<To, const std::unique_ptr<From>> {
84 static inline bool doit(const std::unique_ptr<From> &Val) {
85 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 85, __extension__ __PRETTY_FUNCTION__))
;
86 return isa_impl_cl<To, From>::doit(*Val);
87 }
88};
89
90template <typename To, typename From> struct isa_impl_cl<To, From*> {
91 static inline bool doit(const From *Val) {
92 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 92, __extension__ __PRETTY_FUNCTION__))
;
93 return isa_impl<To, From>::doit(*Val);
94 }
95};
96
97template <typename To, typename From> struct isa_impl_cl<To, From*const> {
98 static inline bool doit(const From *Val) {
99 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 99, __extension__ __PRETTY_FUNCTION__))
;
100 return isa_impl<To, From>::doit(*Val);
101 }
102};
103
104template <typename To, typename From> struct isa_impl_cl<To, const From*> {
105 static inline bool doit(const From *Val) {
106 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 106, __extension__ __PRETTY_FUNCTION__))
;
12
Within the expansion of the macro 'assert':
107 return isa_impl<To, From>::doit(*Val);
13
Calling 'isa_impl::doit'
19
Returning from 'isa_impl::doit'
108 }
109};
110
111template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
112 static inline bool doit(const From *Val) {
113 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 113, __extension__ __PRETTY_FUNCTION__))
;
114 return isa_impl<To, From>::doit(*Val);
115 }
116};
117
118template<typename To, typename From, typename SimpleFrom>
119struct isa_impl_wrap {
120 // When From != SimplifiedType, we can simplify the type some more by using
121 // the simplify_type template.
122 static bool doit(const From &Val) {
123 return isa_impl_wrap<To, SimpleFrom,
10
Calling 'isa_impl_wrap::doit'
21
Returning from 'isa_impl_wrap::doit'
124 typename simplify_type<SimpleFrom>::SimpleType>::doit(
125 simplify_type<const From>::getSimplifiedValue(Val));
6
Calling 'simplify_type::getSimplifiedValue'
9
Returning from 'simplify_type::getSimplifiedValue'
126 }
127};
128
129template<typename To, typename FromTy>
130struct isa_impl_wrap<To, FromTy, FromTy> {
131 // When From == SimpleType, we are as simple as we are going to get.
132 static bool doit(const FromTy &Val) {
133 return isa_impl_cl<To,FromTy>::doit(Val);
11
Calling 'isa_impl_cl::doit'
20
Returning from 'isa_impl_cl::doit'
134 }
135};
136
137// isa<X> - Return true if the parameter to the template is an instance of the
138// template type argument. Used like this:
139//
140// if (isa<Type>(myVal)) { ... }
141//
142template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
143 return isa_impl_wrap<X, const Y,
5
Calling 'isa_impl_wrap::doit'
22
Returning from 'isa_impl_wrap::doit'
144 typename simplify_type<const Y>::SimpleType>::doit(Val);
145}
146
147//===----------------------------------------------------------------------===//
148// cast<x> Support Templates
149//===----------------------------------------------------------------------===//
150
151template<class To, class From> struct cast_retty;
152
153// Calculate what type the 'cast' function should return, based on a requested
154// type of To and a source type of From.
155template<class To, class From> struct cast_retty_impl {
156 using ret_type = To &; // Normal case, return Ty&
157};
158template<class To, class From> struct cast_retty_impl<To, const From> {
159 using ret_type = const To &; // Normal case, return Ty&
160};
161
162template<class To, class From> struct cast_retty_impl<To, From*> {
163 using ret_type = To *; // Pointer arg case, return Ty*
164};
165
166template<class To, class From> struct cast_retty_impl<To, const From*> {
167 using ret_type = const To *; // Constant pointer arg case, return const Ty*
168};
169
170template<class To, class From> struct cast_retty_impl<To, const From*const> {
171 using ret_type = const To *; // Constant pointer arg case, return const Ty*
172};
173
174template <class To, class From>
175struct cast_retty_impl<To, std::unique_ptr<From>> {
176private:
177 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
178 using ResultType = typename std::remove_pointer<PointerType>::type;
179
180public:
181 using ret_type = std::unique_ptr<ResultType>;
182};
183
184template<class To, class From, class SimpleFrom>
185struct cast_retty_wrap {
186 // When the simplified type and the from type are not the same, use the type
187 // simplifier to reduce the type, then reuse cast_retty_impl to get the
188 // resultant type.
189 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
190};
191
192template<class To, class FromTy>
193struct cast_retty_wrap<To, FromTy, FromTy> {
194 // When the simplified type is equal to the from type, use it directly.
195 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
196};
197
198template<class To, class From>
199struct cast_retty {
200 using ret_type = typename cast_retty_wrap<
201 To, From, typename simplify_type<From>::SimpleType>::ret_type;
202};
203
204// Ensure the non-simple values are converted using the simplify_type template
205// that may be specialized by smart pointers...
206//
207template<class To, class From, class SimpleFrom> struct cast_convert_val {
208 // This is not a simple type, use the template to simplify it...
209 static typename cast_retty<To, From>::ret_type doit(From &Val) {
210 return cast_convert_val<To, SimpleFrom,
211 typename simplify_type<SimpleFrom>::SimpleType>::doit(
212 simplify_type<From>::getSimplifiedValue(Val));
213 }
214};
215
216template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
217 // This _is_ a simple type, just cast it.
218 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
219 typename cast_retty<To, FromTy>::ret_type Res2
220 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
221 return Res2;
222 }
223};
224
225template <class X> struct is_simple_type {
226 static const bool value =
227 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
228};
229
230// cast<X> - Return the argument parameter cast to the specified type. This
231// casting operator asserts that the type is correct, so it does not return null
232// on failure. It does not allow a null argument (use cast_or_null for that).
233// It is typically used like this:
234//
235// cast<Instruction>(myVal)->getParent()
236//
237template <class X, class Y>
238inline typename std::enable_if<!is_simple_type<Y>::value,
239 typename cast_retty<X, const Y>::ret_type>::type
240cast(const Y &Val) {
241 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 241, __extension__ __PRETTY_FUNCTION__))
;
242 return cast_convert_val<
243 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
244}
245
246template <class X, class Y>
247inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
248 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 248, __extension__ __PRETTY_FUNCTION__))
;
249 return cast_convert_val<X, Y,
250 typename simplify_type<Y>::SimpleType>::doit(Val);
251}
252
253template <class X, class Y>
254inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
4
Within the expansion of the macro 'assert':
a
Calling 'isa'
b
Returning from 'isa'
256 return cast_convert_val<X, Y*,
23
Calling 'cast_convert_val::doit'
24
Returning from 'cast_convert_val::doit'
257 typename simplify_type<Y*>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
262cast(std::unique_ptr<Y> &&Val) {
263 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 263, __extension__ __PRETTY_FUNCTION__))
;
264 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
265 return ret_type(
266 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
267 Val.release()));
268}
269
270// cast_or_null<X> - Functionally identical to cast, except that a null value is
271// accepted.
272//
273template <class X, class Y>
274LLVM_NODISCARD[[clang::warn_unused_result]] inline
275 typename std::enable_if<!is_simple_type<Y>::value,
276 typename cast_retty<X, const Y>::ret_type>::type
277 cast_or_null(const Y &Val) {
278 if (!Val)
279 return nullptr;
280 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 280, __extension__ __PRETTY_FUNCTION__))
;
281 return cast<X>(Val);
282}
283
284template <class X, class Y>
285LLVM_NODISCARD[[clang::warn_unused_result]] inline
286 typename std::enable_if<!is_simple_type<Y>::value,
287 typename cast_retty<X, Y>::ret_type>::type
288 cast_or_null(Y &Val) {
289 if (!Val)
290 return nullptr;
291 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 291, __extension__ __PRETTY_FUNCTION__))
;
292 return cast<X>(Val);
293}
294
295template <class X, class Y>
296LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
297cast_or_null(Y *Val) {
298 if (!Val) return nullptr;
299 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn324650/include/llvm/Support/Casting.h"
, 299, __extension__ __PRETTY_FUNCTION__))
;
300 return cast<X>(Val);
301}
302
303template <class X, class Y>
304inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
305cast_or_null(std::unique_ptr<Y> &&Val) {
306 if (!Val)
307 return nullptr;
308 return cast<X>(std::move(Val));
309}
310
311// dyn_cast<X> - Return the argument parameter cast to the specified type. This
312// casting operator returns null if the argument is of the wrong type, so it can
313// be used to test for a type as well as cast if successful. This should be
314// used in the context of an if statement like this:
315//
316// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
317//
318
319template <class X, class Y>
320LLVM_NODISCARD[[clang::warn_unused_result]] inline
321 typename std::enable_if<!is_simple_type<Y>::value,
322 typename cast_retty<X, const Y>::ret_type>::type
323 dyn_cast(const Y &Val) {
324 return isa<X>(Val) ? cast<X>(Val) : nullptr;
325}
326
327template <class X, class Y>
328LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
329 return isa<X>(Val) ? cast<X>(Val) : nullptr;
330}
331
332template <class X, class Y>
333LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
334 return isa<X>(Val) ? cast<X>(Val) : nullptr;
335}
336
337// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
338// value is accepted.
339//
340template <class X, class Y>
341LLVM_NODISCARD[[clang::warn_unused_result]] inline
342 typename std::enable_if<!is_simple_type<Y>::value,
343 typename cast_retty<X, const Y>::ret_type>::type
344 dyn_cast_or_null(const Y &Val) {
345 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
346}
347
348template <class X, class Y>
349LLVM_NODISCARD[[clang::warn_unused_result]] inline
350 typename std::enable_if<!is_simple_type<Y>::value,
351 typename cast_retty<X, Y>::ret_type>::type
352 dyn_cast_or_null(Y &Val) {
353 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
354}
355
356template <class X, class Y>
357LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
358dyn_cast_or_null(Y *Val) {
359 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
360}
361
362// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
363// taking ownership of the input pointer iff isa<X>(Val) is true. If the
364// cast is successful, From refers to nullptr on exit and the casted value
365// is returned. If the cast is unsuccessful, the function returns nullptr
366// and From is unchanged.
367template <class X, class Y>
368LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
369 -> decltype(cast<X>(Val)) {
370 if (!isa<X>(Val))
371 return nullptr;
372 return cast<X>(std::move(Val));
373}
374
375template <class X, class Y>
376LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
377 -> decltype(cast<X>(Val)) {
378 return unique_dyn_cast<X, Y>(Val);
379}
380
381// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
382// a null value is accepted.
383template <class X, class Y>
384LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
385 -> decltype(cast<X>(Val)) {
386 if (!Val)
387 return nullptr;
388 return unique_dyn_cast<X, Y>(Val);
389}
390
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
393 -> decltype(cast<X>(Val)) {
394 return unique_dyn_cast_or_null<X, Y>(Val);
395}
396
397} // end namespace llvm
398
399#endif // LLVM_SUPPORT_CASTING_H