Bug Summary

File:tools/clang/lib/CodeGen/CGExprCXX.cpp
Warning:line 268, column 32
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp
1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with code generation of C++ expressions
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "ConstantEmitter.h"
20#include "clang/CodeGen/CGFunctionInfo.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "llvm/IR/CallSite.h"
23#include "llvm/IR/Intrinsics.h"
24
25using namespace clang;
26using namespace CodeGen;
27
28namespace {
29struct MemberCallInfo {
30 RequiredArgs ReqArgs;
31 // Number of prefix arguments for the call. Ignores the `this` pointer.
32 unsigned PrefixSize;
33};
34}
35
36static MemberCallInfo
37commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
38 llvm::Value *This, llvm::Value *ImplicitParam,
39 QualType ImplicitParamTy, const CallExpr *CE,
40 CallArgList &Args, CallArgList *RtlArgs) {
41 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||(static_cast <bool> (CE == nullptr || isa<CXXMemberCallExpr
>(CE) || isa<CXXOperatorCallExpr>(CE)) ? void (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 42, __extension__ __PRETTY_FUNCTION__))
42 isa<CXXOperatorCallExpr>(CE))(static_cast <bool> (CE == nullptr || isa<CXXMemberCallExpr
>(CE) || isa<CXXOperatorCallExpr>(CE)) ? void (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 42, __extension__ __PRETTY_FUNCTION__))
;
43 assert(MD->isInstance() &&(static_cast <bool> (MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? void (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 44, __extension__ __PRETTY_FUNCTION__))
44 "Trying to emit a member or operator call expr on a static method!")(static_cast <bool> (MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? void (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 44, __extension__ __PRETTY_FUNCTION__))
;
45 ASTContext &C = CGF.getContext();
46
47 // Push the this ptr.
48 const CXXRecordDecl *RD =
49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
50 Args.add(RValue::get(This),
51 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52
53 // If there is an implicit parameter (e.g. VTT), emit it.
54 if (ImplicitParam) {
55 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56 }
57
58 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60 unsigned PrefixSize = Args.size() - 1;
61
62 // And the rest of the call args.
63 if (RtlArgs) {
64 // Special case: if the caller emitted the arguments right-to-left already
65 // (prior to emitting the *this argument), we're done. This happens for
66 // assignment operators.
67 Args.addFrom(*RtlArgs);
68 } else if (CE) {
69 // Special case: skip first argument of CXXOperatorCall (it is "this").
70 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72 CE->getDirectCallee());
73 } else {
74 assert((static_cast <bool> (FPT->getNumParams() == 0 &&
"No CallExpr specified for function with non-zero number of arguments"
) ? void (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 76, __extension__ __PRETTY_FUNCTION__))
75 FPT->getNumParams() == 0 &&(static_cast <bool> (FPT->getNumParams() == 0 &&
"No CallExpr specified for function with non-zero number of arguments"
) ? void (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 76, __extension__ __PRETTY_FUNCTION__))
76 "No CallExpr specified for function with non-zero number of arguments")(static_cast <bool> (FPT->getNumParams() == 0 &&
"No CallExpr specified for function with non-zero number of arguments"
) ? void (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 76, __extension__ __PRETTY_FUNCTION__))
;
77 }
78 return {required, PrefixSize};
79}
80
81RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
82 const CXXMethodDecl *MD, const CGCallee &Callee,
83 ReturnValueSlot ReturnValue,
84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85 const CallExpr *CE, CallArgList *RtlArgs) {
86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87 CallArgList Args;
88 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
93 CE ? CE->getExprLoc() : SourceLocation());
94}
95
96RValue CodeGenFunction::EmitCXXDestructorCall(
97 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
98 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
99 StructorType Type) {
100 CallArgList Args;
101 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
102 ImplicitParamTy, CE, Args, nullptr);
103 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
104 Callee, ReturnValueSlot(), Args);
105}
106
107RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
108 const CXXPseudoDestructorExpr *E) {
109 QualType DestroyedType = E->getDestroyedType();
110 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
111 // Automatic Reference Counting:
112 // If the pseudo-expression names a retainable object with weak or
113 // strong lifetime, the object shall be released.
114 Expr *BaseExpr = E->getBase();
115 Address BaseValue = Address::invalid();
116 Qualifiers BaseQuals;
117
118 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
119 if (E->isArrow()) {
120 BaseValue = EmitPointerWithAlignment(BaseExpr);
121 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
122 BaseQuals = PTy->getPointeeType().getQualifiers();
123 } else {
124 LValue BaseLV = EmitLValue(BaseExpr);
125 BaseValue = BaseLV.getAddress();
126 QualType BaseTy = BaseExpr->getType();
127 BaseQuals = BaseTy.getQualifiers();
128 }
129
130 switch (DestroyedType.getObjCLifetime()) {
131 case Qualifiers::OCL_None:
132 case Qualifiers::OCL_ExplicitNone:
133 case Qualifiers::OCL_Autoreleasing:
134 break;
135
136 case Qualifiers::OCL_Strong:
137 EmitARCRelease(Builder.CreateLoad(BaseValue,
138 DestroyedType.isVolatileQualified()),
139 ARCPreciseLifetime);
140 break;
141
142 case Qualifiers::OCL_Weak:
143 EmitARCDestroyWeak(BaseValue);
144 break;
145 }
146 } else {
147 // C++ [expr.pseudo]p1:
148 // The result shall only be used as the operand for the function call
149 // operator (), and the result of such a call has type void. The only
150 // effect is the evaluation of the postfix-expression before the dot or
151 // arrow.
152 EmitIgnoredExpr(E->getBase());
153 }
154
155 return RValue::get(nullptr);
156}
157
158static CXXRecordDecl *getCXXRecord(const Expr *E) {
159 QualType T = E->getType();
160 if (const PointerType *PTy = T->getAs<PointerType>())
161 T = PTy->getPointeeType();
162 const RecordType *Ty = T->castAs<RecordType>();
163 return cast<CXXRecordDecl>(Ty->getDecl());
164}
165
166// Note: This function also emit constructor calls to support a MSVC
167// extensions allowing explicit constructor function call.
168RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
169 ReturnValueSlot ReturnValue) {
170 const Expr *callee = CE->getCallee()->IgnoreParens();
171
172 if (isa<BinaryOperator>(callee))
173 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174
175 const MemberExpr *ME = cast<MemberExpr>(callee);
176 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177
178 if (MD->isStatic()) {
179 // The method is static, emit it as we would a regular call.
180 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
181 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
182 ReturnValue);
183 }
184
185 bool HasQualifier = ME->hasQualifier();
186 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
187 bool IsArrow = ME->isArrow();
188 const Expr *Base = ME->getBase();
189
190 return EmitCXXMemberOrOperatorMemberCallExpr(
191 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
192}
193
194RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
195 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
196 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
197 const Expr *Base) {
198 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE))(static_cast <bool> (isa<CXXMemberCallExpr>(CE) ||
isa<CXXOperatorCallExpr>(CE)) ? void (0) : __assert_fail
("isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 198, __extension__ __PRETTY_FUNCTION__))
;
199
200 // Compute the object pointer.
201 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
202
203 const CXXMethodDecl *DevirtualizedMethod = nullptr;
204 if (CanUseVirtualCall &&
205 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
206 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
207 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
208 assert(DevirtualizedMethod)(static_cast <bool> (DevirtualizedMethod) ? void (0) : __assert_fail
("DevirtualizedMethod", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 208, __extension__ __PRETTY_FUNCTION__))
;
209 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
210 const Expr *Inner = Base->ignoreParenBaseCasts();
211 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
212 MD->getReturnType().getCanonicalType())
213 // If the return types are not the same, this might be a case where more
214 // code needs to run to compensate for it. For example, the derived
215 // method might return a type that inherits form from the return
216 // type of MD and has a prefix.
217 // For now we just avoid devirtualizing these covariant cases.
218 DevirtualizedMethod = nullptr;
219 else if (getCXXRecord(Inner) == DevirtualizedClass)
220 // If the class of the Inner expression is where the dynamic method
221 // is defined, build the this pointer from it.
222 Base = Inner;
223 else if (getCXXRecord(Base) != DevirtualizedClass) {
224 // If the method is defined in a class that is not the best dynamic
225 // one or the one of the full expression, we would have to build
226 // a derived-to-base cast to compute the correct this pointer, but
227 // we don't have support for that yet, so do a virtual call.
228 DevirtualizedMethod = nullptr;
229 }
230 }
231
232 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
233 // operator before the LHS.
234 CallArgList RtlArgStorage;
235 CallArgList *RtlArgs = nullptr;
1
'RtlArgs' initialized to a null pointer value
236 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
2
Taking false branch
237 if (OCE->isAssignmentOp()) {
238 RtlArgs = &RtlArgStorage;
239 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
240 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
241 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
242 }
243 }
244
245 LValue This;
246 if (IsArrow) {
3
Assuming 'IsArrow' is 0
4
Taking false branch
247 LValueBaseInfo BaseInfo;
248 TBAAAccessInfo TBAAInfo;
249 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
250 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
251 } else {
252 This = EmitLValue(Base);
253 }
254
255
256 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
5
Assuming the condition is true
257 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
6
Taking false branch
258 if (isa<CXXConstructorDecl>(MD) &&
259 cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
260 return RValue::get(nullptr);
261
262 if (!MD->getParent()->mayInsertExtraPadding()) {
7
Assuming the condition is true
8
Taking true branch
263 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
9
Assuming the condition is true
264 // We don't like to generate the trivial copy/move assignment operator
265 // when it isn't necessary; just produce the proper effect here.
266 LValue RHS = isa<CXXOperatorCallExpr>(CE)
10
'?' condition is true
267 ? MakeNaturalAlignAddrLValue(
268 (*RtlArgs)[0].getRValue(*this).getScalarVal(),
11
Called C++ object pointer is null
269 (*(CE->arg_begin() + 1))->getType())
270 : EmitLValue(*CE->arg_begin());
271 EmitAggregateAssign(This, RHS, CE->getType());
272 return RValue::get(This.getPointer());
273 }
274
275 if (isa<CXXConstructorDecl>(MD) &&
276 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
277 // Trivial move and copy ctor are the same.
278 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor")(static_cast <bool> (CE->getNumArgs() == 1 &&
"unexpected argcount for trivial ctor") ? void (0) : __assert_fail
("CE->getNumArgs() == 1 && \"unexpected argcount for trivial ctor\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 278, __extension__ __PRETTY_FUNCTION__))
;
279 const Expr *Arg = *CE->arg_begin();
280 LValue RHS = EmitLValue(Arg);
281 LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType());
282 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
283 // constructing a new complete object of type Ctor.
284 EmitAggregateCopy(Dest, RHS, Arg->getType(),
285 AggValueSlot::DoesNotOverlap);
286 return RValue::get(This.getPointer());
287 }
288 llvm_unreachable("unknown trivial member function")::llvm::llvm_unreachable_internal("unknown trivial member function"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 288)
;
289 }
290 }
291
292 // Compute the function type we're calling.
293 const CXXMethodDecl *CalleeDecl =
294 DevirtualizedMethod ? DevirtualizedMethod : MD;
295 const CGFunctionInfo *FInfo = nullptr;
296 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
297 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
298 Dtor, StructorType::Complete);
299 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
300 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
301 Ctor, StructorType::Complete);
302 else
303 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
304
305 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
306
307 // C++11 [class.mfct.non-static]p2:
308 // If a non-static member function of a class X is called for an object that
309 // is not of type X, or of a type derived from X, the behavior is undefined.
310 SourceLocation CallLoc;
311 ASTContext &C = getContext();
312 if (CE)
313 CallLoc = CE->getExprLoc();
314
315 SanitizerSet SkippedChecks;
316 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
317 auto *IOA = CMCE->getImplicitObjectArgument();
318 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
319 if (IsImplicitObjectCXXThis)
320 SkippedChecks.set(SanitizerKind::Alignment, true);
321 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
322 SkippedChecks.set(SanitizerKind::Null, true);
323 }
324 EmitTypeCheck(
325 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
326 : CodeGenFunction::TCK_MemberCall,
327 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
328 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
329
330 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
331 // 'CalleeDecl' instead.
332
333 // C++ [class.virtual]p12:
334 // Explicit qualification with the scope operator (5.1) suppresses the
335 // virtual call mechanism.
336 //
337 // We also don't emit a virtual call if the base expression has a record type
338 // because then we know what the type is.
339 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
340
341 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
342 assert(CE->arg_begin() == CE->arg_end() &&(static_cast <bool> (CE->arg_begin() == CE->arg_end
() && "Destructor shouldn't have explicit parameters"
) ? void (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 343, __extension__ __PRETTY_FUNCTION__))
343 "Destructor shouldn't have explicit parameters")(static_cast <bool> (CE->arg_begin() == CE->arg_end
() && "Destructor shouldn't have explicit parameters"
) ? void (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 343, __extension__ __PRETTY_FUNCTION__))
;
344 assert(ReturnValue.isNull() && "Destructor shouldn't have return value")(static_cast <bool> (ReturnValue.isNull() && "Destructor shouldn't have return value"
) ? void (0) : __assert_fail ("ReturnValue.isNull() && \"Destructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 344, __extension__ __PRETTY_FUNCTION__))
;
345 if (UseVirtualCall) {
346 CGM.getCXXABI().EmitVirtualDestructorCall(
347 *this, Dtor, Dtor_Complete, This.getAddress(),
348 cast<CXXMemberCallExpr>(CE));
349 } else {
350 CGCallee Callee;
351 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
352 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
353 else if (!DevirtualizedMethod)
354 Callee = CGCallee::forDirect(
355 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
356 Dtor);
357 else {
358 const CXXDestructorDecl *DDtor =
359 cast<CXXDestructorDecl>(DevirtualizedMethod);
360 Callee = CGCallee::forDirect(
361 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
362 DDtor);
363 }
364 EmitCXXMemberOrOperatorCall(
365 CalleeDecl, Callee, ReturnValue, This.getPointer(),
366 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
367 }
368 return RValue::get(nullptr);
369 }
370
371 CGCallee Callee;
372 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
373 Callee = CGCallee::forDirect(
374 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
375 Ctor);
376 } else if (UseVirtualCall) {
377 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378 } else {
379 if (SanOpts.has(SanitizerKind::CFINVCall) &&
380 MD->getParent()->isDynamicClass()) {
381 llvm::Value *VTable;
382 const CXXRecordDecl *RD;
383 std::tie(VTable, RD) =
384 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385 MD->getParent());
386 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getLocStart());
387 }
388
389 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391 else if (!DevirtualizedMethod)
392 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
393 else {
394 Callee = CGCallee::forDirect(
395 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
396 DevirtualizedMethod);
397 }
398 }
399
400 if (MD->isVirtual()) {
401 Address NewThisAddr =
402 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
403 *this, CalleeDecl, This.getAddress(), UseVirtualCall);
404 This.setAddress(NewThisAddr);
405 }
406
407 return EmitCXXMemberOrOperatorCall(
408 CalleeDecl, Callee, ReturnValue, This.getPointer(),
409 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
410}
411
412RValue
413CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
414 ReturnValueSlot ReturnValue) {
415 const BinaryOperator *BO =
416 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
417 const Expr *BaseExpr = BO->getLHS();
418 const Expr *MemFnExpr = BO->getRHS();
419
420 const MemberPointerType *MPT =
421 MemFnExpr->getType()->castAs<MemberPointerType>();
422
423 const FunctionProtoType *FPT =
424 MPT->getPointeeType()->castAs<FunctionProtoType>();
425 const CXXRecordDecl *RD =
426 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
427
428 // Emit the 'this' pointer.
429 Address This = Address::invalid();
430 if (BO->getOpcode() == BO_PtrMemI)
431 This = EmitPointerWithAlignment(BaseExpr);
432 else
433 This = EmitLValue(BaseExpr).getAddress();
434
435 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
436 QualType(MPT->getClass(), 0));
437
438 // Get the member function pointer.
439 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
440
441 // Ask the ABI to load the callee. Note that This is modified.
442 llvm::Value *ThisPtrForCall = nullptr;
443 CGCallee Callee =
444 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
445 ThisPtrForCall, MemFnPtr, MPT);
446
447 CallArgList Args;
448
449 QualType ThisType =
450 getContext().getPointerType(getContext().getTagDeclType(RD));
451
452 // Push the this ptr.
453 Args.add(RValue::get(ThisPtrForCall), ThisType);
454
455 RequiredArgs required =
456 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
457
458 // And the rest of the call args
459 EmitCallArgs(Args, FPT, E->arguments());
460 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
461 /*PrefixSize=*/0),
462 Callee, ReturnValue, Args, nullptr, E->getExprLoc());
463}
464
465RValue
466CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
467 const CXXMethodDecl *MD,
468 ReturnValueSlot ReturnValue) {
469 assert(MD->isInstance() &&(static_cast <bool> (MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? void (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 470, __extension__ __PRETTY_FUNCTION__))
470 "Trying to emit a member call expr on a static method!")(static_cast <bool> (MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? void (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 470, __extension__ __PRETTY_FUNCTION__))
;
471 return EmitCXXMemberOrOperatorMemberCallExpr(
472 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
473 /*IsArrow=*/false, E->getArg(0));
474}
475
476RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
477 ReturnValueSlot ReturnValue) {
478 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
479}
480
481static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
482 Address DestPtr,
483 const CXXRecordDecl *Base) {
484 if (Base->isEmpty())
485 return;
486
487 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
488
489 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
490 CharUnits NVSize = Layout.getNonVirtualSize();
491
492 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
493 // present, they are initialized by the most derived class before calling the
494 // constructor.
495 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
496 Stores.emplace_back(CharUnits::Zero(), NVSize);
497
498 // Each store is split by the existence of a vbptr.
499 CharUnits VBPtrWidth = CGF.getPointerSize();
500 std::vector<CharUnits> VBPtrOffsets =
501 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
502 for (CharUnits VBPtrOffset : VBPtrOffsets) {
503 // Stop before we hit any virtual base pointers located in virtual bases.
504 if (VBPtrOffset >= NVSize)
505 break;
506 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
507 CharUnits LastStoreOffset = LastStore.first;
508 CharUnits LastStoreSize = LastStore.second;
509
510 CharUnits SplitBeforeOffset = LastStoreOffset;
511 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
512 assert(!SplitBeforeSize.isNegative() && "negative store size!")(static_cast <bool> (!SplitBeforeSize.isNegative() &&
"negative store size!") ? void (0) : __assert_fail ("!SplitBeforeSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 512, __extension__ __PRETTY_FUNCTION__))
;
513 if (!SplitBeforeSize.isZero())
514 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
515
516 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
517 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
518 assert(!SplitAfterSize.isNegative() && "negative store size!")(static_cast <bool> (!SplitAfterSize.isNegative() &&
"negative store size!") ? void (0) : __assert_fail ("!SplitAfterSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 518, __extension__ __PRETTY_FUNCTION__))
;
519 if (!SplitAfterSize.isZero())
520 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
521 }
522
523 // If the type contains a pointer to data member we can't memset it to zero.
524 // Instead, create a null constant and copy it to the destination.
525 // TODO: there are other patterns besides zero that we can usefully memset,
526 // like -1, which happens to be the pattern used by member-pointers.
527 // TODO: isZeroInitializable can be over-conservative in the case where a
528 // virtual base contains a member pointer.
529 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
530 if (!NullConstantForBase->isNullValue()) {
531 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
532 CGF.CGM.getModule(), NullConstantForBase->getType(),
533 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
534 NullConstantForBase, Twine());
535
536 CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
537 DestPtr.getAlignment());
538 NullVariable->setAlignment(Align.getQuantity());
539
540 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
541
542 // Get and call the appropriate llvm.memcpy overload.
543 for (std::pair<CharUnits, CharUnits> Store : Stores) {
544 CharUnits StoreOffset = Store.first;
545 CharUnits StoreSize = Store.second;
546 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
547 CGF.Builder.CreateMemCpy(
548 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
549 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
550 StoreSizeVal);
551 }
552
553 // Otherwise, just memset the whole thing to zero. This is legal
554 // because in LLVM, all default initializers (other than the ones we just
555 // handled above) are guaranteed to have a bit pattern of all zeros.
556 } else {
557 for (std::pair<CharUnits, CharUnits> Store : Stores) {
558 CharUnits StoreOffset = Store.first;
559 CharUnits StoreSize = Store.second;
560 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
561 CGF.Builder.CreateMemSet(
562 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
563 CGF.Builder.getInt8(0), StoreSizeVal);
564 }
565 }
566}
567
568void
569CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
570 AggValueSlot Dest) {
571 assert(!Dest.isIgnored() && "Must have a destination!")(static_cast <bool> (!Dest.isIgnored() && "Must have a destination!"
) ? void (0) : __assert_fail ("!Dest.isIgnored() && \"Must have a destination!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 571, __extension__ __PRETTY_FUNCTION__))
;
572 const CXXConstructorDecl *CD = E->getConstructor();
573
574 // If we require zero initialization before (or instead of) calling the
575 // constructor, as can be the case with a non-user-provided default
576 // constructor, emit the zero initialization now, unless destination is
577 // already zeroed.
578 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
579 switch (E->getConstructionKind()) {
580 case CXXConstructExpr::CK_Delegating:
581 case CXXConstructExpr::CK_Complete:
582 EmitNullInitialization(Dest.getAddress(), E->getType());
583 break;
584 case CXXConstructExpr::CK_VirtualBase:
585 case CXXConstructExpr::CK_NonVirtualBase:
586 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
587 CD->getParent());
588 break;
589 }
590 }
591
592 // If this is a call to a trivial default constructor, do nothing.
593 if (CD->isTrivial() && CD->isDefaultConstructor())
594 return;
595
596 // Elide the constructor if we're constructing from a temporary.
597 // The temporary check is required because Sema sets this on NRVO
598 // returns.
599 if (getLangOpts().ElideConstructors && E->isElidable()) {
600 assert(getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(0)->getType())) ? void (0) :
__assert_fail ("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 601, __extension__ __PRETTY_FUNCTION__))
601 E->getArg(0)->getType()))(static_cast <bool> (getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(0)->getType())) ? void (0) :
__assert_fail ("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 601, __extension__ __PRETTY_FUNCTION__))
;
602 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
603 EmitAggExpr(E->getArg(0), Dest);
604 return;
605 }
606 }
607
608 if (const ArrayType *arrayType
609 = getContext().getAsArrayType(E->getType())) {
610 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
611 } else {
612 CXXCtorType Type = Ctor_Complete;
613 bool ForVirtualBase = false;
614 bool Delegating = false;
615
616 switch (E->getConstructionKind()) {
617 case CXXConstructExpr::CK_Delegating:
618 // We should be emitting a constructor; GlobalDecl will assert this
619 Type = CurGD.getCtorType();
620 Delegating = true;
621 break;
622
623 case CXXConstructExpr::CK_Complete:
624 Type = Ctor_Complete;
625 break;
626
627 case CXXConstructExpr::CK_VirtualBase:
628 ForVirtualBase = true;
629 LLVM_FALLTHROUGH[[clang::fallthrough]];
630
631 case CXXConstructExpr::CK_NonVirtualBase:
632 Type = Ctor_Base;
633 }
634
635 // Call the constructor.
636 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
637 Dest.getAddress(), E, Dest.mayOverlap());
638 }
639}
640
641void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
642 const Expr *Exp) {
643 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
644 Exp = E->getSubExpr();
645 assert(isa<CXXConstructExpr>(Exp) &&(static_cast <bool> (isa<CXXConstructExpr>(Exp) &&
"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr") ? void
(0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 646, __extension__ __PRETTY_FUNCTION__))
646 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr")(static_cast <bool> (isa<CXXConstructExpr>(Exp) &&
"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr") ? void
(0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 646, __extension__ __PRETTY_FUNCTION__))
;
647 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
648 const CXXConstructorDecl *CD = E->getConstructor();
649 RunCleanupsScope Scope(*this);
650
651 // If we require zero initialization before (or instead of) calling the
652 // constructor, as can be the case with a non-user-provided default
653 // constructor, emit the zero initialization now.
654 // FIXME. Do I still need this for a copy ctor synthesis?
655 if (E->requiresZeroInitialization())
656 EmitNullInitialization(Dest, E->getType());
657
658 assert(!getContext().getAsConstantArrayType(E->getType())(static_cast <bool> (!getContext().getAsConstantArrayType
(E->getType()) && "EmitSynthesizedCXXCopyCtor - Copied-in Array"
) ? void (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 659, __extension__ __PRETTY_FUNCTION__))
659 && "EmitSynthesizedCXXCopyCtor - Copied-in Array")(static_cast <bool> (!getContext().getAsConstantArrayType
(E->getType()) && "EmitSynthesizedCXXCopyCtor - Copied-in Array"
) ? void (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 659, __extension__ __PRETTY_FUNCTION__))
;
660 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
661}
662
663static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
664 const CXXNewExpr *E) {
665 if (!E->isArray())
666 return CharUnits::Zero();
667
668 // No cookie is required if the operator new[] being used is the
669 // reserved placement operator new[].
670 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
671 return CharUnits::Zero();
672
673 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
674}
675
676static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
677 const CXXNewExpr *e,
678 unsigned minElements,
679 llvm::Value *&numElements,
680 llvm::Value *&sizeWithoutCookie) {
681 QualType type = e->getAllocatedType();
682
683 if (!e->isArray()) {
684 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
685 sizeWithoutCookie
686 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
687 return sizeWithoutCookie;
688 }
689
690 // The width of size_t.
691 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
692
693 // Figure out the cookie size.
694 llvm::APInt cookieSize(sizeWidth,
695 CalculateCookiePadding(CGF, e).getQuantity());
696
697 // Emit the array size expression.
698 // We multiply the size of all dimensions for NumElements.
699 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
700 numElements =
701 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
702 if (!numElements)
703 numElements = CGF.EmitScalarExpr(e->getArraySize());
704 assert(isa<llvm::IntegerType>(numElements->getType()))(static_cast <bool> (isa<llvm::IntegerType>(numElements
->getType())) ? void (0) : __assert_fail ("isa<llvm::IntegerType>(numElements->getType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 704, __extension__ __PRETTY_FUNCTION__))
;
705
706 // The number of elements can be have an arbitrary integer type;
707 // essentially, we need to multiply it by a constant factor, add a
708 // cookie size, and verify that the result is representable as a
709 // size_t. That's just a gloss, though, and it's wrong in one
710 // important way: if the count is negative, it's an error even if
711 // the cookie size would bring the total size >= 0.
712 bool isSigned
713 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
714 llvm::IntegerType *numElementsType
715 = cast<llvm::IntegerType>(numElements->getType());
716 unsigned numElementsWidth = numElementsType->getBitWidth();
717
718 // Compute the constant factor.
719 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
720 while (const ConstantArrayType *CAT
721 = CGF.getContext().getAsConstantArrayType(type)) {
722 type = CAT->getElementType();
723 arraySizeMultiplier *= CAT->getSize();
724 }
725
726 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
727 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
728 typeSizeMultiplier *= arraySizeMultiplier;
729
730 // This will be a size_t.
731 llvm::Value *size;
732
733 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
734 // Don't bloat the -O0 code.
735 if (llvm::ConstantInt *numElementsC =
736 dyn_cast<llvm::ConstantInt>(numElements)) {
737 const llvm::APInt &count = numElementsC->getValue();
738
739 bool hasAnyOverflow = false;
740
741 // If 'count' was a negative number, it's an overflow.
742 if (isSigned && count.isNegative())
743 hasAnyOverflow = true;
744
745 // We want to do all this arithmetic in size_t. If numElements is
746 // wider than that, check whether it's already too big, and if so,
747 // overflow.
748 else if (numElementsWidth > sizeWidth &&
749 numElementsWidth - sizeWidth > count.countLeadingZeros())
750 hasAnyOverflow = true;
751
752 // Okay, compute a count at the right width.
753 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
754
755 // If there is a brace-initializer, we cannot allocate fewer elements than
756 // there are initializers. If we do, that's treated like an overflow.
757 if (adjustedCount.ult(minElements))
758 hasAnyOverflow = true;
759
760 // Scale numElements by that. This might overflow, but we don't
761 // care because it only overflows if allocationSize does, too, and
762 // if that overflows then we shouldn't use this.
763 numElements = llvm::ConstantInt::get(CGF.SizeTy,
764 adjustedCount * arraySizeMultiplier);
765
766 // Compute the size before cookie, and track whether it overflowed.
767 bool overflow;
768 llvm::APInt allocationSize
769 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
770 hasAnyOverflow |= overflow;
771
772 // Add in the cookie, and check whether it's overflowed.
773 if (cookieSize != 0) {
774 // Save the current size without a cookie. This shouldn't be
775 // used if there was overflow.
776 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
777
778 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
779 hasAnyOverflow |= overflow;
780 }
781
782 // On overflow, produce a -1 so operator new will fail.
783 if (hasAnyOverflow) {
784 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
785 } else {
786 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
787 }
788
789 // Otherwise, we might need to use the overflow intrinsics.
790 } else {
791 // There are up to five conditions we need to test for:
792 // 1) if isSigned, we need to check whether numElements is negative;
793 // 2) if numElementsWidth > sizeWidth, we need to check whether
794 // numElements is larger than something representable in size_t;
795 // 3) if minElements > 0, we need to check whether numElements is smaller
796 // than that.
797 // 4) we need to compute
798 // sizeWithoutCookie := numElements * typeSizeMultiplier
799 // and check whether it overflows; and
800 // 5) if we need a cookie, we need to compute
801 // size := sizeWithoutCookie + cookieSize
802 // and check whether it overflows.
803
804 llvm::Value *hasOverflow = nullptr;
805
806 // If numElementsWidth > sizeWidth, then one way or another, we're
807 // going to have to do a comparison for (2), and this happens to
808 // take care of (1), too.
809 if (numElementsWidth > sizeWidth) {
810 llvm::APInt threshold(numElementsWidth, 1);
811 threshold <<= sizeWidth;
812
813 llvm::Value *thresholdV
814 = llvm::ConstantInt::get(numElementsType, threshold);
815
816 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
817 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
818
819 // Otherwise, if we're signed, we want to sext up to size_t.
820 } else if (isSigned) {
821 if (numElementsWidth < sizeWidth)
822 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
823
824 // If there's a non-1 type size multiplier, then we can do the
825 // signedness check at the same time as we do the multiply
826 // because a negative number times anything will cause an
827 // unsigned overflow. Otherwise, we have to do it here. But at least
828 // in this case, we can subsume the >= minElements check.
829 if (typeSizeMultiplier == 1)
830 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
831 llvm::ConstantInt::get(CGF.SizeTy, minElements));
832
833 // Otherwise, zext up to size_t if necessary.
834 } else if (numElementsWidth < sizeWidth) {
835 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
836 }
837
838 assert(numElements->getType() == CGF.SizeTy)(static_cast <bool> (numElements->getType() == CGF.SizeTy
) ? void (0) : __assert_fail ("numElements->getType() == CGF.SizeTy"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 838, __extension__ __PRETTY_FUNCTION__))
;
839
840 if (minElements) {
841 // Don't allow allocation of fewer elements than we have initializers.
842 if (!hasOverflow) {
843 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
844 llvm::ConstantInt::get(CGF.SizeTy, minElements));
845 } else if (numElementsWidth > sizeWidth) {
846 // The other existing overflow subsumes this check.
847 // We do an unsigned comparison, since any signed value < -1 is
848 // taken care of either above or below.
849 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
850 CGF.Builder.CreateICmpULT(numElements,
851 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
852 }
853 }
854
855 size = numElements;
856
857 // Multiply by the type size if necessary. This multiplier
858 // includes all the factors for nested arrays.
859 //
860 // This step also causes numElements to be scaled up by the
861 // nested-array factor if necessary. Overflow on this computation
862 // can be ignored because the result shouldn't be used if
863 // allocation fails.
864 if (typeSizeMultiplier != 1) {
865 llvm::Value *umul_with_overflow
866 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
867
868 llvm::Value *tsmV =
869 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
870 llvm::Value *result =
871 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
872
873 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
874 if (hasOverflow)
875 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
876 else
877 hasOverflow = overflowed;
878
879 size = CGF.Builder.CreateExtractValue(result, 0);
880
881 // Also scale up numElements by the array size multiplier.
882 if (arraySizeMultiplier != 1) {
883 // If the base element type size is 1, then we can re-use the
884 // multiply we just did.
885 if (typeSize.isOne()) {
886 assert(arraySizeMultiplier == typeSizeMultiplier)(static_cast <bool> (arraySizeMultiplier == typeSizeMultiplier
) ? void (0) : __assert_fail ("arraySizeMultiplier == typeSizeMultiplier"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 886, __extension__ __PRETTY_FUNCTION__))
;
887 numElements = size;
888
889 // Otherwise we need a separate multiply.
890 } else {
891 llvm::Value *asmV =
892 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
893 numElements = CGF.Builder.CreateMul(numElements, asmV);
894 }
895 }
896 } else {
897 // numElements doesn't need to be scaled.
898 assert(arraySizeMultiplier == 1)(static_cast <bool> (arraySizeMultiplier == 1) ? void (
0) : __assert_fail ("arraySizeMultiplier == 1", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 898, __extension__ __PRETTY_FUNCTION__))
;
899 }
900
901 // Add in the cookie size if necessary.
902 if (cookieSize != 0) {
903 sizeWithoutCookie = size;
904
905 llvm::Value *uadd_with_overflow
906 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
907
908 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
909 llvm::Value *result =
910 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
911
912 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
913 if (hasOverflow)
914 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
915 else
916 hasOverflow = overflowed;
917
918 size = CGF.Builder.CreateExtractValue(result, 0);
919 }
920
921 // If we had any possibility of dynamic overflow, make a select to
922 // overwrite 'size' with an all-ones value, which should cause
923 // operator new to throw.
924 if (hasOverflow)
925 size = CGF.Builder.CreateSelect(hasOverflow,
926 llvm::Constant::getAllOnesValue(CGF.SizeTy),
927 size);
928 }
929
930 if (cookieSize == 0)
931 sizeWithoutCookie = size;
932 else
933 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?")(static_cast <bool> (sizeWithoutCookie && "didn't set sizeWithoutCookie?"
) ? void (0) : __assert_fail ("sizeWithoutCookie && \"didn't set sizeWithoutCookie?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 933, __extension__ __PRETTY_FUNCTION__))
;
934
935 return size;
936}
937
938static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
939 QualType AllocType, Address NewPtr,
940 AggValueSlot::Overlap_t MayOverlap) {
941 // FIXME: Refactor with EmitExprAsInit.
942 switch (CGF.getEvaluationKind(AllocType)) {
943 case TEK_Scalar:
944 CGF.EmitScalarInit(Init, nullptr,
945 CGF.MakeAddrLValue(NewPtr, AllocType), false);
946 return;
947 case TEK_Complex:
948 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
949 /*isInit*/ true);
950 return;
951 case TEK_Aggregate: {
952 AggValueSlot Slot
953 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
954 AggValueSlot::IsDestructed,
955 AggValueSlot::DoesNotNeedGCBarriers,
956 AggValueSlot::IsNotAliased,
957 MayOverlap);
958 CGF.EmitAggExpr(Init, Slot);
959 return;
960 }
961 }
962 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 962)
;
963}
964
965void CodeGenFunction::EmitNewArrayInitializer(
966 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
967 Address BeginPtr, llvm::Value *NumElements,
968 llvm::Value *AllocSizeWithoutCookie) {
969 // If we have a type with trivial initialization and no initializer,
970 // there's nothing to do.
971 if (!E->hasInitializer())
972 return;
973
974 Address CurPtr = BeginPtr;
975
976 unsigned InitListElements = 0;
977
978 const Expr *Init = E->getInitializer();
979 Address EndOfInit = Address::invalid();
980 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
981 EHScopeStack::stable_iterator Cleanup;
982 llvm::Instruction *CleanupDominator = nullptr;
983
984 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
985 CharUnits ElementAlign =
986 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
987
988 // Attempt to perform zero-initialization using memset.
989 auto TryMemsetInitialization = [&]() -> bool {
990 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
991 // we can initialize with a memset to -1.
992 if (!CGM.getTypes().isZeroInitializable(ElementType))
993 return false;
994
995 // Optimization: since zero initialization will just set the memory
996 // to all zeroes, generate a single memset to do it in one shot.
997
998 // Subtract out the size of any elements we've already initialized.
999 auto *RemainingSize = AllocSizeWithoutCookie;
1000 if (InitListElements) {
1001 // We know this can't overflow; we check this when doing the allocation.
1002 auto *InitializedSize = llvm::ConstantInt::get(
1003 RemainingSize->getType(),
1004 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1005 InitListElements);
1006 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1007 }
1008
1009 // Create the memset.
1010 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1011 return true;
1012 };
1013
1014 // If the initializer is an initializer list, first do the explicit elements.
1015 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1016 // Initializing from a (braced) string literal is a special case; the init
1017 // list element does not initialize a (single) array element.
1018 if (ILE->isStringLiteralInit()) {
1019 // Initialize the initial portion of length equal to that of the string
1020 // literal. The allocation must be for at least this much; we emitted a
1021 // check for that earlier.
1022 AggValueSlot Slot =
1023 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1024 AggValueSlot::IsDestructed,
1025 AggValueSlot::DoesNotNeedGCBarriers,
1026 AggValueSlot::IsNotAliased,
1027 AggValueSlot::DoesNotOverlap);
1028 EmitAggExpr(ILE->getInit(0), Slot);
1029
1030 // Move past these elements.
1031 InitListElements =
1032 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1033 ->getSize().getZExtValue();
1034 CurPtr =
1035 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1036 Builder.getSize(InitListElements),
1037 "string.init.end"),
1038 CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1039 ElementSize));
1040
1041 // Zero out the rest, if any remain.
1042 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1043 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1044 bool OK = TryMemsetInitialization();
1045 (void)OK;
1046 assert(OK && "couldn't memset character type?")(static_cast <bool> (OK && "couldn't memset character type?"
) ? void (0) : __assert_fail ("OK && \"couldn't memset character type?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1046, __extension__ __PRETTY_FUNCTION__))
;
1047 }
1048 return;
1049 }
1050
1051 InitListElements = ILE->getNumInits();
1052
1053 // If this is a multi-dimensional array new, we will initialize multiple
1054 // elements with each init list element.
1055 QualType AllocType = E->getAllocatedType();
1056 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1057 AllocType->getAsArrayTypeUnsafe())) {
1058 ElementTy = ConvertTypeForMem(AllocType);
1059 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1060 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1061 }
1062
1063 // Enter a partial-destruction Cleanup if necessary.
1064 if (needsEHCleanup(DtorKind)) {
1065 // In principle we could tell the Cleanup where we are more
1066 // directly, but the control flow can get so varied here that it
1067 // would actually be quite complex. Therefore we go through an
1068 // alloca.
1069 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1070 "array.init.end");
1071 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1072 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1073 ElementType, ElementAlign,
1074 getDestroyer(DtorKind));
1075 Cleanup = EHStack.stable_begin();
1076 }
1077
1078 CharUnits StartAlign = CurPtr.getAlignment();
1079 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1080 // Tell the cleanup that it needs to destroy up to this
1081 // element. TODO: some of these stores can be trivially
1082 // observed to be unnecessary.
1083 if (EndOfInit.isValid()) {
1084 auto FinishedPtr =
1085 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1086 Builder.CreateStore(FinishedPtr, EndOfInit);
1087 }
1088 // FIXME: If the last initializer is an incomplete initializer list for
1089 // an array, and we have an array filler, we can fold together the two
1090 // initialization loops.
1091 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1092 ILE->getInit(i)->getType(), CurPtr,
1093 AggValueSlot::DoesNotOverlap);
1094 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1095 Builder.getSize(1),
1096 "array.exp.next"),
1097 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1098 }
1099
1100 // The remaining elements are filled with the array filler expression.
1101 Init = ILE->getArrayFiller();
1102
1103 // Extract the initializer for the individual array elements by pulling
1104 // out the array filler from all the nested initializer lists. This avoids
1105 // generating a nested loop for the initialization.
1106 while (Init && Init->getType()->isConstantArrayType()) {
1107 auto *SubILE = dyn_cast<InitListExpr>(Init);
1108 if (!SubILE)
1109 break;
1110 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?")(static_cast <bool> (SubILE->getNumInits() == 0 &&
"explicit inits in array filler?") ? void (0) : __assert_fail
("SubILE->getNumInits() == 0 && \"explicit inits in array filler?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1110, __extension__ __PRETTY_FUNCTION__))
;
1111 Init = SubILE->getArrayFiller();
1112 }
1113
1114 // Switch back to initializing one base element at a time.
1115 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1116 }
1117
1118 // If all elements have already been initialized, skip any further
1119 // initialization.
1120 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1121 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1122 // If there was a Cleanup, deactivate it.
1123 if (CleanupDominator)
1124 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1125 return;
1126 }
1127
1128 assert(Init && "have trailing elements to initialize but no initializer")(static_cast <bool> (Init && "have trailing elements to initialize but no initializer"
) ? void (0) : __assert_fail ("Init && \"have trailing elements to initialize but no initializer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1128, __extension__ __PRETTY_FUNCTION__))
;
1129
1130 // If this is a constructor call, try to optimize it out, and failing that
1131 // emit a single loop to initialize all remaining elements.
1132 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1133 CXXConstructorDecl *Ctor = CCE->getConstructor();
1134 if (Ctor->isTrivial()) {
1135 // If new expression did not specify value-initialization, then there
1136 // is no initialization.
1137 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1138 return;
1139
1140 if (TryMemsetInitialization())
1141 return;
1142 }
1143
1144 // Store the new Cleanup position for irregular Cleanups.
1145 //
1146 // FIXME: Share this cleanup with the constructor call emission rather than
1147 // having it create a cleanup of its own.
1148 if (EndOfInit.isValid())
1149 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1150
1151 // Emit a constructor call loop to initialize the remaining elements.
1152 if (InitListElements)
1153 NumElements = Builder.CreateSub(
1154 NumElements,
1155 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1156 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1157 CCE->requiresZeroInitialization());
1158 return;
1159 }
1160
1161 // If this is value-initialization, we can usually use memset.
1162 ImplicitValueInitExpr IVIE(ElementType);
1163 if (isa<ImplicitValueInitExpr>(Init)) {
1164 if (TryMemsetInitialization())
1165 return;
1166
1167 // Switch to an ImplicitValueInitExpr for the element type. This handles
1168 // only one case: multidimensional array new of pointers to members. In
1169 // all other cases, we already have an initializer for the array element.
1170 Init = &IVIE;
1171 }
1172
1173 // At this point we should have found an initializer for the individual
1174 // elements of the array.
1175 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&(static_cast <bool> (getContext().hasSameUnqualifiedType
(ElementType, Init->getType()) && "got wrong type of element to initialize"
) ? void (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1176, __extension__ __PRETTY_FUNCTION__))
1176 "got wrong type of element to initialize")(static_cast <bool> (getContext().hasSameUnqualifiedType
(ElementType, Init->getType()) && "got wrong type of element to initialize"
) ? void (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1176, __extension__ __PRETTY_FUNCTION__))
;
1177
1178 // If we have an empty initializer list, we can usually use memset.
1179 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1180 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1181 return;
1182
1183 // If we have a struct whose every field is value-initialized, we can
1184 // usually use memset.
1185 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1186 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1187 if (RType->getDecl()->isStruct()) {
1188 unsigned NumElements = 0;
1189 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1190 NumElements = CXXRD->getNumBases();
1191 for (auto *Field : RType->getDecl()->fields())
1192 if (!Field->isUnnamedBitfield())
1193 ++NumElements;
1194 // FIXME: Recurse into nested InitListExprs.
1195 if (ILE->getNumInits() == NumElements)
1196 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1197 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1198 --NumElements;
1199 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1200 return;
1201 }
1202 }
1203 }
1204
1205 // Create the loop blocks.
1206 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1207 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1208 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1209
1210 // Find the end of the array, hoisted out of the loop.
1211 llvm::Value *EndPtr =
1212 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1213
1214 // If the number of elements isn't constant, we have to now check if there is
1215 // anything left to initialize.
1216 if (!ConstNum) {
1217 llvm::Value *IsEmpty =
1218 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1219 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1220 }
1221
1222 // Enter the loop.
1223 EmitBlock(LoopBB);
1224
1225 // Set up the current-element phi.
1226 llvm::PHINode *CurPtrPhi =
1227 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1228 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1229
1230 CurPtr = Address(CurPtrPhi, ElementAlign);
1231
1232 // Store the new Cleanup position for irregular Cleanups.
1233 if (EndOfInit.isValid())
1234 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1235
1236 // Enter a partial-destruction Cleanup if necessary.
1237 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1238 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1239 ElementType, ElementAlign,
1240 getDestroyer(DtorKind));
1241 Cleanup = EHStack.stable_begin();
1242 CleanupDominator = Builder.CreateUnreachable();
1243 }
1244
1245 // Emit the initializer into this element.
1246 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1247 AggValueSlot::DoesNotOverlap);
1248
1249 // Leave the Cleanup if we entered one.
1250 if (CleanupDominator) {
1251 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1252 CleanupDominator->eraseFromParent();
1253 }
1254
1255 // Advance to the next element by adjusting the pointer type as necessary.
1256 llvm::Value *NextPtr =
1257 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1258 "array.next");
1259
1260 // Check whether we've gotten to the end of the array and, if so,
1261 // exit the loop.
1262 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1263 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1264 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1265
1266 EmitBlock(ContBB);
1267}
1268
1269static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1270 QualType ElementType, llvm::Type *ElementTy,
1271 Address NewPtr, llvm::Value *NumElements,
1272 llvm::Value *AllocSizeWithoutCookie) {
1273 ApplyDebugLocation DL(CGF, E);
1274 if (E->isArray())
1275 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1276 AllocSizeWithoutCookie);
1277 else if (const Expr *Init = E->getInitializer())
1278 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1279 AggValueSlot::DoesNotOverlap);
1280}
1281
1282/// Emit a call to an operator new or operator delete function, as implicitly
1283/// created by new-expressions and delete-expressions.
1284static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1285 const FunctionDecl *CalleeDecl,
1286 const FunctionProtoType *CalleeType,
1287 const CallArgList &Args) {
1288 llvm::Instruction *CallOrInvoke;
1289 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1290 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1291 RValue RV =
1292 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1293 Args, CalleeType, /*chainCall=*/false),
1294 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1295
1296 /// C++1y [expr.new]p10:
1297 /// [In a new-expression,] an implementation is allowed to omit a call
1298 /// to a replaceable global allocation function.
1299 ///
1300 /// We model such elidable calls with the 'builtin' attribute.
1301 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1302 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1303 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1304 // FIXME: Add addAttribute to CallSite.
1305 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1306 CI->addAttribute(llvm::AttributeList::FunctionIndex,
1307 llvm::Attribute::Builtin);
1308 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1309 II->addAttribute(llvm::AttributeList::FunctionIndex,
1310 llvm::Attribute::Builtin);
1311 else
1312 llvm_unreachable("unexpected kind of call instruction")::llvm::llvm_unreachable_internal("unexpected kind of call instruction"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1312)
;
1313 }
1314
1315 return RV;
1316}
1317
1318RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1319 const CallExpr *TheCall,
1320 bool IsDelete) {
1321 CallArgList Args;
1322 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1323 // Find the allocation or deallocation function that we're calling.
1324 ASTContext &Ctx = getContext();
1325 DeclarationName Name = Ctx.DeclarationNames
1326 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1327
1328 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1329 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1330 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1331 return EmitNewDeleteCall(*this, FD, Type, Args);
1332 llvm_unreachable("predeclared global operator new/delete is missing")::llvm::llvm_unreachable_internal("predeclared global operator new/delete is missing"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1332)
;
1333}
1334
1335namespace {
1336/// The parameters to pass to a usual operator delete.
1337struct UsualDeleteParams {
1338 bool DestroyingDelete = false;
1339 bool Size = false;
1340 bool Alignment = false;
1341};
1342}
1343
1344static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1345 UsualDeleteParams Params;
1346
1347 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1348 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1349
1350 // The first argument is always a void*.
1351 ++AI;
1352
1353 // The next parameter may be a std::destroying_delete_t.
1354 if (FD->isDestroyingOperatorDelete()) {
1355 Params.DestroyingDelete = true;
1356 assert(AI != AE)(static_cast <bool> (AI != AE) ? void (0) : __assert_fail
("AI != AE", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1356, __extension__ __PRETTY_FUNCTION__))
;
1357 ++AI;
1358 }
1359
1360 // Figure out what other parameters we should be implicitly passing.
1361 if (AI != AE && (*AI)->isIntegerType()) {
1362 Params.Size = true;
1363 ++AI;
1364 }
1365
1366 if (AI != AE && (*AI)->isAlignValT()) {
1367 Params.Alignment = true;
1368 ++AI;
1369 }
1370
1371 assert(AI == AE && "unexpected usual deallocation function parameter")(static_cast <bool> (AI == AE && "unexpected usual deallocation function parameter"
) ? void (0) : __assert_fail ("AI == AE && \"unexpected usual deallocation function parameter\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1371, __extension__ __PRETTY_FUNCTION__))
;
1372 return Params;
1373}
1374
1375namespace {
1376 /// A cleanup to call the given 'operator delete' function upon abnormal
1377 /// exit from a new expression. Templated on a traits type that deals with
1378 /// ensuring that the arguments dominate the cleanup if necessary.
1379 template<typename Traits>
1380 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1381 /// Type used to hold llvm::Value*s.
1382 typedef typename Traits::ValueTy ValueTy;
1383 /// Type used to hold RValues.
1384 typedef typename Traits::RValueTy RValueTy;
1385 struct PlacementArg {
1386 RValueTy ArgValue;
1387 QualType ArgType;
1388 };
1389
1390 unsigned NumPlacementArgs : 31;
1391 unsigned PassAlignmentToPlacementDelete : 1;
1392 const FunctionDecl *OperatorDelete;
1393 ValueTy Ptr;
1394 ValueTy AllocSize;
1395 CharUnits AllocAlign;
1396
1397 PlacementArg *getPlacementArgs() {
1398 return reinterpret_cast<PlacementArg *>(this + 1);
1399 }
1400
1401 public:
1402 static size_t getExtraSize(size_t NumPlacementArgs) {
1403 return NumPlacementArgs * sizeof(PlacementArg);
1404 }
1405
1406 CallDeleteDuringNew(size_t NumPlacementArgs,
1407 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1408 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1409 CharUnits AllocAlign)
1410 : NumPlacementArgs(NumPlacementArgs),
1411 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1412 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1413 AllocAlign(AllocAlign) {}
1414
1415 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1416 assert(I < NumPlacementArgs && "index out of range")(static_cast <bool> (I < NumPlacementArgs &&
"index out of range") ? void (0) : __assert_fail ("I < NumPlacementArgs && \"index out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1416, __extension__ __PRETTY_FUNCTION__))
;
1417 getPlacementArgs()[I] = {Arg, Type};
1418 }
1419
1420 void Emit(CodeGenFunction &CGF, Flags flags) override {
1421 const FunctionProtoType *FPT =
1422 OperatorDelete->getType()->getAs<FunctionProtoType>();
1423 CallArgList DeleteArgs;
1424
1425 // The first argument is always a void* (or C* for a destroying operator
1426 // delete for class type C).
1427 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1428
1429 // Figure out what other parameters we should be implicitly passing.
1430 UsualDeleteParams Params;
1431 if (NumPlacementArgs) {
1432 // A placement deallocation function is implicitly passed an alignment
1433 // if the placement allocation function was, but is never passed a size.
1434 Params.Alignment = PassAlignmentToPlacementDelete;
1435 } else {
1436 // For a non-placement new-expression, 'operator delete' can take a
1437 // size and/or an alignment if it has the right parameters.
1438 Params = getUsualDeleteParams(OperatorDelete);
1439 }
1440
1441 assert(!Params.DestroyingDelete &&(static_cast <bool> (!Params.DestroyingDelete &&
"should not call destroying delete in a new-expression") ? void
(0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1442, __extension__ __PRETTY_FUNCTION__))
1442 "should not call destroying delete in a new-expression")(static_cast <bool> (!Params.DestroyingDelete &&
"should not call destroying delete in a new-expression") ? void
(0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1442, __extension__ __PRETTY_FUNCTION__))
;
1443
1444 // The second argument can be a std::size_t (for non-placement delete).
1445 if (Params.Size)
1446 DeleteArgs.add(Traits::get(CGF, AllocSize),
1447 CGF.getContext().getSizeType());
1448
1449 // The next (second or third) argument can be a std::align_val_t, which
1450 // is an enum whose underlying type is std::size_t.
1451 // FIXME: Use the right type as the parameter type. Note that in a call
1452 // to operator delete(size_t, ...), we may not have it available.
1453 if (Params.Alignment)
1454 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1455 CGF.SizeTy, AllocAlign.getQuantity())),
1456 CGF.getContext().getSizeType());
1457
1458 // Pass the rest of the arguments, which must match exactly.
1459 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1460 auto Arg = getPlacementArgs()[I];
1461 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1462 }
1463
1464 // Call 'operator delete'.
1465 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1466 }
1467 };
1468}
1469
1470/// Enter a cleanup to call 'operator delete' if the initializer in a
1471/// new-expression throws.
1472static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1473 const CXXNewExpr *E,
1474 Address NewPtr,
1475 llvm::Value *AllocSize,
1476 CharUnits AllocAlign,
1477 const CallArgList &NewArgs) {
1478 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1479
1480 // If we're not inside a conditional branch, then the cleanup will
1481 // dominate and we can do the easier (and more efficient) thing.
1482 if (!CGF.isInConditionalBranch()) {
1483 struct DirectCleanupTraits {
1484 typedef llvm::Value *ValueTy;
1485 typedef RValue RValueTy;
1486 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1487 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1488 };
1489
1490 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1491
1492 DirectCleanup *Cleanup = CGF.EHStack
1493 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1494 E->getNumPlacementArgs(),
1495 E->getOperatorDelete(),
1496 NewPtr.getPointer(),
1497 AllocSize,
1498 E->passAlignment(),
1499 AllocAlign);
1500 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1501 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1502 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1503 }
1504
1505 return;
1506 }
1507
1508 // Otherwise, we need to save all this stuff.
1509 DominatingValue<RValue>::saved_type SavedNewPtr =
1510 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1511 DominatingValue<RValue>::saved_type SavedAllocSize =
1512 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1513
1514 struct ConditionalCleanupTraits {
1515 typedef DominatingValue<RValue>::saved_type ValueTy;
1516 typedef DominatingValue<RValue>::saved_type RValueTy;
1517 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1518 return V.restore(CGF);
1519 }
1520 };
1521 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1522
1523 ConditionalCleanup *Cleanup = CGF.EHStack
1524 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1525 E->getNumPlacementArgs(),
1526 E->getOperatorDelete(),
1527 SavedNewPtr,
1528 SavedAllocSize,
1529 E->passAlignment(),
1530 AllocAlign);
1531 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1532 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1533 Cleanup->setPlacementArg(
1534 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1535 }
1536
1537 CGF.initFullExprCleanup();
1538}
1539
1540llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1541 // The element type being allocated.
1542 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1543
1544 // 1. Build a call to the allocation function.
1545 FunctionDecl *allocator = E->getOperatorNew();
1546
1547 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1548 unsigned minElements = 0;
1549 if (E->isArray() && E->hasInitializer()) {
1550 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1551 if (ILE && ILE->isStringLiteralInit())
1552 minElements =
1553 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1554 ->getSize().getZExtValue();
1555 else if (ILE)
1556 minElements = ILE->getNumInits();
1557 }
1558
1559 llvm::Value *numElements = nullptr;
1560 llvm::Value *allocSizeWithoutCookie = nullptr;
1561 llvm::Value *allocSize =
1562 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1563 allocSizeWithoutCookie);
1564 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1565
1566 // Emit the allocation call. If the allocator is a global placement
1567 // operator, just "inline" it directly.
1568 Address allocation = Address::invalid();
1569 CallArgList allocatorArgs;
1570 if (allocator->isReservedGlobalPlacementOperator()) {
1571 assert(E->getNumPlacementArgs() == 1)(static_cast <bool> (E->getNumPlacementArgs() == 1) ?
void (0) : __assert_fail ("E->getNumPlacementArgs() == 1"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1571, __extension__ __PRETTY_FUNCTION__))
;
1572 const Expr *arg = *E->placement_arguments().begin();
1573
1574 LValueBaseInfo BaseInfo;
1575 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1576
1577 // The pointer expression will, in many cases, be an opaque void*.
1578 // In these cases, discard the computed alignment and use the
1579 // formal alignment of the allocated type.
1580 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1581 allocation = Address(allocation.getPointer(), allocAlign);
1582
1583 // Set up allocatorArgs for the call to operator delete if it's not
1584 // the reserved global operator.
1585 if (E->getOperatorDelete() &&
1586 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1587 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1588 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1589 }
1590
1591 } else {
1592 const FunctionProtoType *allocatorType =
1593 allocator->getType()->castAs<FunctionProtoType>();
1594 unsigned ParamsToSkip = 0;
1595
1596 // The allocation size is the first argument.
1597 QualType sizeType = getContext().getSizeType();
1598 allocatorArgs.add(RValue::get(allocSize), sizeType);
1599 ++ParamsToSkip;
1600
1601 if (allocSize != allocSizeWithoutCookie) {
1602 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1603 allocAlign = std::max(allocAlign, cookieAlign);
1604 }
1605
1606 // The allocation alignment may be passed as the second argument.
1607 if (E->passAlignment()) {
1608 QualType AlignValT = sizeType;
1609 if (allocatorType->getNumParams() > 1) {
1610 AlignValT = allocatorType->getParamType(1);
1611 assert(getContext().hasSameUnqualifiedType((static_cast <bool> (getContext().hasSameUnqualifiedType
( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType
(), sizeType) && "wrong type for alignment parameter"
) ? void (0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1614, __extension__ __PRETTY_FUNCTION__))
1612 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),(static_cast <bool> (getContext().hasSameUnqualifiedType
( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType
(), sizeType) && "wrong type for alignment parameter"
) ? void (0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1614, __extension__ __PRETTY_FUNCTION__))
1613 sizeType) &&(static_cast <bool> (getContext().hasSameUnqualifiedType
( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType
(), sizeType) && "wrong type for alignment parameter"
) ? void (0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1614, __extension__ __PRETTY_FUNCTION__))
1614 "wrong type for alignment parameter")(static_cast <bool> (getContext().hasSameUnqualifiedType
( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType
(), sizeType) && "wrong type for alignment parameter"
) ? void (0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1614, __extension__ __PRETTY_FUNCTION__))
;
1615 ++ParamsToSkip;
1616 } else {
1617 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1618 assert(allocator->isVariadic() && "can't pass alignment to allocator")(static_cast <bool> (allocator->isVariadic() &&
"can't pass alignment to allocator") ? void (0) : __assert_fail
("allocator->isVariadic() && \"can't pass alignment to allocator\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1618, __extension__ __PRETTY_FUNCTION__))
;
1619 }
1620 allocatorArgs.add(
1621 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1622 AlignValT);
1623 }
1624
1625 // FIXME: Why do we not pass a CalleeDecl here?
1626 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1627 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1628
1629 RValue RV =
1630 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1631
1632 // If this was a call to a global replaceable allocation function that does
1633 // not take an alignment argument, the allocator is known to produce
1634 // storage that's suitably aligned for any object that fits, up to a known
1635 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1636 CharUnits allocationAlign = allocAlign;
1637 if (!E->passAlignment() &&
1638 allocator->isReplaceableGlobalAllocationFunction()) {
1639 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1640 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1641 allocationAlign = std::max(
1642 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1643 }
1644
1645 allocation = Address(RV.getScalarVal(), allocationAlign);
1646 }
1647
1648 // Emit a null check on the allocation result if the allocation
1649 // function is allowed to return null (because it has a non-throwing
1650 // exception spec or is the reserved placement new) and we have an
1651 // interesting initializer.
1652 bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1653 (!allocType.isPODType(getContext()) || E->hasInitializer());
1654
1655 llvm::BasicBlock *nullCheckBB = nullptr;
1656 llvm::BasicBlock *contBB = nullptr;
1657
1658 // The null-check means that the initializer is conditionally
1659 // evaluated.
1660 ConditionalEvaluation conditional(*this);
1661
1662 if (nullCheck) {
1663 conditional.begin(*this);
1664
1665 nullCheckBB = Builder.GetInsertBlock();
1666 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1667 contBB = createBasicBlock("new.cont");
1668
1669 llvm::Value *isNull =
1670 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1671 Builder.CreateCondBr(isNull, contBB, notNullBB);
1672 EmitBlock(notNullBB);
1673 }
1674
1675 // If there's an operator delete, enter a cleanup to call it if an
1676 // exception is thrown.
1677 EHScopeStack::stable_iterator operatorDeleteCleanup;
1678 llvm::Instruction *cleanupDominator = nullptr;
1679 if (E->getOperatorDelete() &&
1680 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1681 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1682 allocatorArgs);
1683 operatorDeleteCleanup = EHStack.stable_begin();
1684 cleanupDominator = Builder.CreateUnreachable();
1685 }
1686
1687 assert((allocSize == allocSizeWithoutCookie) ==(static_cast <bool> ((allocSize == allocSizeWithoutCookie
) == CalculateCookiePadding(*this, E).isZero()) ? void (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1688, __extension__ __PRETTY_FUNCTION__))
1688 CalculateCookiePadding(*this, E).isZero())(static_cast <bool> ((allocSize == allocSizeWithoutCookie
) == CalculateCookiePadding(*this, E).isZero()) ? void (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1688, __extension__ __PRETTY_FUNCTION__))
;
1689 if (allocSize != allocSizeWithoutCookie) {
1690 assert(E->isArray())(static_cast <bool> (E->isArray()) ? void (0) : __assert_fail
("E->isArray()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1690, __extension__ __PRETTY_FUNCTION__))
;
1691 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1692 numElements,
1693 E, allocType);
1694 }
1695
1696 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1697 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1698
1699 // Passing pointer through invariant.group.barrier to avoid propagation of
1700 // vptrs information which may be included in previous type.
1701 // To not break LTO with different optimizations levels, we do it regardless
1702 // of optimization level.
1703 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1704 allocator->isReservedGlobalPlacementOperator())
1705 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1706 result.getAlignment());
1707
1708 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1709 allocSizeWithoutCookie);
1710 if (E->isArray()) {
1711 // NewPtr is a pointer to the base element type. If we're
1712 // allocating an array of arrays, we'll need to cast back to the
1713 // array pointer type.
1714 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1715 if (result.getType() != resultType)
1716 result = Builder.CreateBitCast(result, resultType);
1717 }
1718
1719 // Deactivate the 'operator delete' cleanup if we finished
1720 // initialization.
1721 if (operatorDeleteCleanup.isValid()) {
1722 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1723 cleanupDominator->eraseFromParent();
1724 }
1725
1726 llvm::Value *resultPtr = result.getPointer();
1727 if (nullCheck) {
1728 conditional.end(*this);
1729
1730 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1731 EmitBlock(contBB);
1732
1733 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1734 PHI->addIncoming(resultPtr, notNullBB);
1735 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1736 nullCheckBB);
1737
1738 resultPtr = PHI;
1739 }
1740
1741 return resultPtr;
1742}
1743
1744void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1745 llvm::Value *Ptr, QualType DeleteTy,
1746 llvm::Value *NumElements,
1747 CharUnits CookieSize) {
1748 assert((!NumElements && CookieSize.isZero()) ||(static_cast <bool> ((!NumElements && CookieSize
.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete
) ? void (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1749, __extension__ __PRETTY_FUNCTION__))
1749 DeleteFD->getOverloadedOperator() == OO_Array_Delete)(static_cast <bool> ((!NumElements && CookieSize
.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete
) ? void (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1749, __extension__ __PRETTY_FUNCTION__))
;
1750
1751 const FunctionProtoType *DeleteFTy =
1752 DeleteFD->getType()->getAs<FunctionProtoType>();
1753
1754 CallArgList DeleteArgs;
1755
1756 auto Params = getUsualDeleteParams(DeleteFD);
1757 auto ParamTypeIt = DeleteFTy->param_type_begin();
1758
1759 // Pass the pointer itself.
1760 QualType ArgTy = *ParamTypeIt++;
1761 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1762 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1763
1764 // Pass the std::destroying_delete tag if present.
1765 if (Params.DestroyingDelete) {
1766 QualType DDTag = *ParamTypeIt++;
1767 // Just pass an 'undef'. We expect the tag type to be an empty struct.
1768 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1769 DeleteArgs.add(RValue::get(V), DDTag);
1770 }
1771
1772 // Pass the size if the delete function has a size_t parameter.
1773 if (Params.Size) {
1774 QualType SizeType = *ParamTypeIt++;
1775 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1776 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1777 DeleteTypeSize.getQuantity());
1778
1779 // For array new, multiply by the number of elements.
1780 if (NumElements)
1781 Size = Builder.CreateMul(Size, NumElements);
1782
1783 // If there is a cookie, add the cookie size.
1784 if (!CookieSize.isZero())
1785 Size = Builder.CreateAdd(
1786 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1787
1788 DeleteArgs.add(RValue::get(Size), SizeType);
1789 }
1790
1791 // Pass the alignment if the delete function has an align_val_t parameter.
1792 if (Params.Alignment) {
1793 QualType AlignValType = *ParamTypeIt++;
1794 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1795 getContext().getTypeAlignIfKnown(DeleteTy));
1796 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1797 DeleteTypeAlign.getQuantity());
1798 DeleteArgs.add(RValue::get(Align), AlignValType);
1799 }
1800
1801 assert(ParamTypeIt == DeleteFTy->param_type_end() &&(static_cast <bool> (ParamTypeIt == DeleteFTy->param_type_end
() && "unknown parameter to usual delete function") ?
void (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1802, __extension__ __PRETTY_FUNCTION__))
1802 "unknown parameter to usual delete function")(static_cast <bool> (ParamTypeIt == DeleteFTy->param_type_end
() && "unknown parameter to usual delete function") ?
void (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1802, __extension__ __PRETTY_FUNCTION__))
;
1803
1804 // Emit the call to delete.
1805 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1806}
1807
1808namespace {
1809 /// Calls the given 'operator delete' on a single object.
1810 struct CallObjectDelete final : EHScopeStack::Cleanup {
1811 llvm::Value *Ptr;
1812 const FunctionDecl *OperatorDelete;
1813 QualType ElementType;
1814
1815 CallObjectDelete(llvm::Value *Ptr,
1816 const FunctionDecl *OperatorDelete,
1817 QualType ElementType)
1818 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1819
1820 void Emit(CodeGenFunction &CGF, Flags flags) override {
1821 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1822 }
1823 };
1824}
1825
1826void
1827CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1828 llvm::Value *CompletePtr,
1829 QualType ElementType) {
1830 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1831 OperatorDelete, ElementType);
1832}
1833
1834/// Emit the code for deleting a single object with a destroying operator
1835/// delete. If the element type has a non-virtual destructor, Ptr has already
1836/// been converted to the type of the parameter of 'operator delete'. Otherwise
1837/// Ptr points to an object of the static type.
1838static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1839 const CXXDeleteExpr *DE, Address Ptr,
1840 QualType ElementType) {
1841 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1842 if (Dtor && Dtor->isVirtual())
1843 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1844 Dtor);
1845 else
1846 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1847}
1848
1849/// Emit the code for deleting a single object.
1850static void EmitObjectDelete(CodeGenFunction &CGF,
1851 const CXXDeleteExpr *DE,
1852 Address Ptr,
1853 QualType ElementType) {
1854 // C++11 [expr.delete]p3:
1855 // If the static type of the object to be deleted is different from its
1856 // dynamic type, the static type shall be a base class of the dynamic type
1857 // of the object to be deleted and the static type shall have a virtual
1858 // destructor or the behavior is undefined.
1859 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1860 DE->getExprLoc(), Ptr.getPointer(),
1861 ElementType);
1862
1863 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1864 assert(!OperatorDelete->isDestroyingOperatorDelete())(static_cast <bool> (!OperatorDelete->isDestroyingOperatorDelete
()) ? void (0) : __assert_fail ("!OperatorDelete->isDestroyingOperatorDelete()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1864, __extension__ __PRETTY_FUNCTION__))
;
1865
1866 // Find the destructor for the type, if applicable. If the
1867 // destructor is virtual, we'll just emit the vcall and return.
1868 const CXXDestructorDecl *Dtor = nullptr;
1869 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1870 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1871 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1872 Dtor = RD->getDestructor();
1873
1874 if (Dtor->isVirtual()) {
1875 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1876 Dtor);
1877 return;
1878 }
1879 }
1880 }
1881
1882 // Make sure that we call delete even if the dtor throws.
1883 // This doesn't have to a conditional cleanup because we're going
1884 // to pop it off in a second.
1885 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1886 Ptr.getPointer(),
1887 OperatorDelete, ElementType);
1888
1889 if (Dtor)
1890 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1891 /*ForVirtualBase=*/false,
1892 /*Delegating=*/false,
1893 Ptr);
1894 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1895 switch (Lifetime) {
1896 case Qualifiers::OCL_None:
1897 case Qualifiers::OCL_ExplicitNone:
1898 case Qualifiers::OCL_Autoreleasing:
1899 break;
1900
1901 case Qualifiers::OCL_Strong:
1902 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1903 break;
1904
1905 case Qualifiers::OCL_Weak:
1906 CGF.EmitARCDestroyWeak(Ptr);
1907 break;
1908 }
1909 }
1910
1911 CGF.PopCleanupBlock();
1912}
1913
1914namespace {
1915 /// Calls the given 'operator delete' on an array of objects.
1916 struct CallArrayDelete final : EHScopeStack::Cleanup {
1917 llvm::Value *Ptr;
1918 const FunctionDecl *OperatorDelete;
1919 llvm::Value *NumElements;
1920 QualType ElementType;
1921 CharUnits CookieSize;
1922
1923 CallArrayDelete(llvm::Value *Ptr,
1924 const FunctionDecl *OperatorDelete,
1925 llvm::Value *NumElements,
1926 QualType ElementType,
1927 CharUnits CookieSize)
1928 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1929 ElementType(ElementType), CookieSize(CookieSize) {}
1930
1931 void Emit(CodeGenFunction &CGF, Flags flags) override {
1932 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1933 CookieSize);
1934 }
1935 };
1936}
1937
1938/// Emit the code for deleting an array of objects.
1939static void EmitArrayDelete(CodeGenFunction &CGF,
1940 const CXXDeleteExpr *E,
1941 Address deletedPtr,
1942 QualType elementType) {
1943 llvm::Value *numElements = nullptr;
1944 llvm::Value *allocatedPtr = nullptr;
1945 CharUnits cookieSize;
1946 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1947 numElements, allocatedPtr, cookieSize);
1948
1949 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer")(static_cast <bool> (allocatedPtr && "ReadArrayCookie didn't set allocated pointer"
) ? void (0) : __assert_fail ("allocatedPtr && \"ReadArrayCookie didn't set allocated pointer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1949, __extension__ __PRETTY_FUNCTION__))
;
1950
1951 // Make sure that we call delete even if one of the dtors throws.
1952 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1953 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1954 allocatedPtr, operatorDelete,
1955 numElements, elementType,
1956 cookieSize);
1957
1958 // Destroy the elements.
1959 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1960 assert(numElements && "no element count for a type with a destructor!")(static_cast <bool> (numElements && "no element count for a type with a destructor!"
) ? void (0) : __assert_fail ("numElements && \"no element count for a type with a destructor!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1960, __extension__ __PRETTY_FUNCTION__))
;
1961
1962 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1963 CharUnits elementAlign =
1964 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1965
1966 llvm::Value *arrayBegin = deletedPtr.getPointer();
1967 llvm::Value *arrayEnd =
1968 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1969
1970 // Note that it is legal to allocate a zero-length array, and we
1971 // can never fold the check away because the length should always
1972 // come from a cookie.
1973 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1974 CGF.getDestroyer(dtorKind),
1975 /*checkZeroLength*/ true,
1976 CGF.needsEHCleanup(dtorKind));
1977 }
1978
1979 // Pop the cleanup block.
1980 CGF.PopCleanupBlock();
1981}
1982
1983void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1984 const Expr *Arg = E->getArgument();
1985 Address Ptr = EmitPointerWithAlignment(Arg);
1986
1987 // Null check the pointer.
1988 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1989 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1990
1991 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1992
1993 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1994 EmitBlock(DeleteNotNull);
1995
1996 QualType DeleteTy = E->getDestroyedType();
1997
1998 // A destroying operator delete overrides the entire operation of the
1999 // delete expression.
2000 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2001 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2002 EmitBlock(DeleteEnd);
2003 return;
2004 }
2005
2006 // We might be deleting a pointer to array. If so, GEP down to the
2007 // first non-array element.
2008 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2009 if (DeleteTy->isConstantArrayType()) {
2010 llvm::Value *Zero = Builder.getInt32(0);
2011 SmallVector<llvm::Value*,8> GEP;
2012
2013 GEP.push_back(Zero); // point at the outermost array
2014
2015 // For each layer of array type we're pointing at:
2016 while (const ConstantArrayType *Arr
2017 = getContext().getAsConstantArrayType(DeleteTy)) {
2018 // 1. Unpeel the array type.
2019 DeleteTy = Arr->getElementType();
2020
2021 // 2. GEP to the first element of the array.
2022 GEP.push_back(Zero);
2023 }
2024
2025 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2026 Ptr.getAlignment());
2027 }
2028
2029 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType())(static_cast <bool> (ConvertTypeForMem(DeleteTy) == Ptr
.getElementType()) ? void (0) : __assert_fail ("ConvertTypeForMem(DeleteTy) == Ptr.getElementType()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2029, __extension__ __PRETTY_FUNCTION__))
;
2030
2031 if (E->isArrayForm()) {
2032 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2033 } else {
2034 EmitObjectDelete(*this, E, Ptr, DeleteTy);
2035 }
2036
2037 EmitBlock(DeleteEnd);
2038}
2039
2040static bool isGLValueFromPointerDeref(const Expr *E) {
2041 E = E->IgnoreParens();
2042
2043 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2044 if (!CE->getSubExpr()->isGLValue())
2045 return false;
2046 return isGLValueFromPointerDeref(CE->getSubExpr());
2047 }
2048
2049 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2050 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2051
2052 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2053 if (BO->getOpcode() == BO_Comma)
2054 return isGLValueFromPointerDeref(BO->getRHS());
2055
2056 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2057 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2058 isGLValueFromPointerDeref(ACO->getFalseExpr());
2059
2060 // C++11 [expr.sub]p1:
2061 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2062 if (isa<ArraySubscriptExpr>(E))
2063 return true;
2064
2065 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2066 if (UO->getOpcode() == UO_Deref)
2067 return true;
2068
2069 return false;
2070}
2071
2072static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2073 llvm::Type *StdTypeInfoPtrTy) {
2074 // Get the vtable pointer.
2075 Address ThisPtr = CGF.EmitLValue(E).getAddress();
2076
2077 QualType SrcRecordTy = E->getType();
2078
2079 // C++ [class.cdtor]p4:
2080 // If the operand of typeid refers to the object under construction or
2081 // destruction and the static type of the operand is neither the constructor
2082 // or destructor’s class nor one of its bases, the behavior is undefined.
2083 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2084 ThisPtr.getPointer(), SrcRecordTy);
2085
2086 // C++ [expr.typeid]p2:
2087 // If the glvalue expression is obtained by applying the unary * operator to
2088 // a pointer and the pointer is a null pointer value, the typeid expression
2089 // throws the std::bad_typeid exception.
2090 //
2091 // However, this paragraph's intent is not clear. We choose a very generous
2092 // interpretation which implores us to consider comma operators, conditional
2093 // operators, parentheses and other such constructs.
2094 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2095 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2096 llvm::BasicBlock *BadTypeidBlock =
2097 CGF.createBasicBlock("typeid.bad_typeid");
2098 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2099
2100 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2101 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2102
2103 CGF.EmitBlock(BadTypeidBlock);
2104 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2105 CGF.EmitBlock(EndBlock);
2106 }
2107
2108 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2109 StdTypeInfoPtrTy);
2110}
2111
2112llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2113 llvm::Type *StdTypeInfoPtrTy =
2114 ConvertType(E->getType())->getPointerTo();
2115
2116 if (E->isTypeOperand()) {
2117 llvm::Constant *TypeInfo =
2118 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2119 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2120 }
2121
2122 // C++ [expr.typeid]p2:
2123 // When typeid is applied to a glvalue expression whose type is a
2124 // polymorphic class type, the result refers to a std::type_info object
2125 // representing the type of the most derived object (that is, the dynamic
2126 // type) to which the glvalue refers.
2127 if (E->isPotentiallyEvaluated())
2128 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2129 StdTypeInfoPtrTy);
2130
2131 QualType OperandTy = E->getExprOperand()->getType();
2132 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2133 StdTypeInfoPtrTy);
2134}
2135
2136static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2137 QualType DestTy) {
2138 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2139 if (DestTy->isPointerType())
2140 return llvm::Constant::getNullValue(DestLTy);
2141
2142 /// C++ [expr.dynamic.cast]p9:
2143 /// A failed cast to reference type throws std::bad_cast
2144 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2145 return nullptr;
2146
2147 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2148 return llvm::UndefValue::get(DestLTy);
2149}
2150
2151llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2152 const CXXDynamicCastExpr *DCE) {
2153 CGM.EmitExplicitCastExprType(DCE, this);
2154 QualType DestTy = DCE->getTypeAsWritten();
2155
2156 QualType SrcTy = DCE->getSubExpr()->getType();
2157
2158 // C++ [expr.dynamic.cast]p7:
2159 // If T is "pointer to cv void," then the result is a pointer to the most
2160 // derived object pointed to by v.
2161 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2162
2163 bool isDynamicCastToVoid;
2164 QualType SrcRecordTy;
2165 QualType DestRecordTy;
2166 if (DestPTy) {
2167 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2168 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2169 DestRecordTy = DestPTy->getPointeeType();
2170 } else {
2171 isDynamicCastToVoid = false;
2172 SrcRecordTy = SrcTy;
2173 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2174 }
2175
2176 // C++ [class.cdtor]p5:
2177 // If the operand of the dynamic_cast refers to the object under
2178 // construction or destruction and the static type of the operand is not a
2179 // pointer to or object of the constructor or destructor’s own class or one
2180 // of its bases, the dynamic_cast results in undefined behavior.
2181 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2182 SrcRecordTy);
2183
2184 if (DCE->isAlwaysNull())
2185 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2186 return T;
2187
2188 assert(SrcRecordTy->isRecordType() && "source type must be a record type!")(static_cast <bool> (SrcRecordTy->isRecordType() &&
"source type must be a record type!") ? void (0) : __assert_fail
("SrcRecordTy->isRecordType() && \"source type must be a record type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2188, __extension__ __PRETTY_FUNCTION__))
;
2189
2190 // C++ [expr.dynamic.cast]p4:
2191 // If the value of v is a null pointer value in the pointer case, the result
2192 // is the null pointer value of type T.
2193 bool ShouldNullCheckSrcValue =
2194 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2195 SrcRecordTy);
2196
2197 llvm::BasicBlock *CastNull = nullptr;
2198 llvm::BasicBlock *CastNotNull = nullptr;
2199 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2200
2201 if (ShouldNullCheckSrcValue) {
2202 CastNull = createBasicBlock("dynamic_cast.null");
2203 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2204
2205 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2206 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2207 EmitBlock(CastNotNull);
2208 }
2209
2210 llvm::Value *Value;
2211 if (isDynamicCastToVoid) {
2212 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2213 DestTy);
2214 } else {
2215 assert(DestRecordTy->isRecordType() &&(static_cast <bool> (DestRecordTy->isRecordType() &&
"destination type must be a record type!") ? void (0) : __assert_fail
("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2216, __extension__ __PRETTY_FUNCTION__))
2216 "destination type must be a record type!")(static_cast <bool> (DestRecordTy->isRecordType() &&
"destination type must be a record type!") ? void (0) : __assert_fail
("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2216, __extension__ __PRETTY_FUNCTION__))
;
2217 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2218 DestTy, DestRecordTy, CastEnd);
2219 CastNotNull = Builder.GetInsertBlock();
2220 }
2221
2222 if (ShouldNullCheckSrcValue) {
2223 EmitBranch(CastEnd);
2224
2225 EmitBlock(CastNull);
2226 EmitBranch(CastEnd);
2227 }
2228
2229 EmitBlock(CastEnd);
2230
2231 if (ShouldNullCheckSrcValue) {
2232 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2233 PHI->addIncoming(Value, CastNotNull);
2234 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2235
2236 Value = PHI;
2237 }
2238
2239 return Value;
2240}
2241
2242void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2243 RunCleanupsScope Scope(*this);
2244 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2245
2246 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2247 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2248 e = E->capture_init_end();
2249 i != e; ++i, ++CurField) {
2250 // Emit initialization
2251 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2252 if (CurField->hasCapturedVLAType()) {
2253 auto VAT = CurField->getCapturedVLAType();
2254 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2255 } else {
2256 EmitInitializerForField(*CurField, LV, *i);
2257 }
2258 }
2259}