Bug Summary

File:tools/clang/lib/CodeGen/CGExprCXX.cpp
Warning:line 427, column 25
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn373517/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn373517=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-02-234743-9763-1 -x c++ /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp
1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/Basic/CodeGenOptions.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "llvm/IR/Intrinsics.h"
23
24using namespace clang;
25using namespace CodeGen;
26
27namespace {
28struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
32};
33}
34
35static MemberCallInfo
36commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 41, __PRETTY_FUNCTION__))
41 isa<CXXOperatorCallExpr>(CE))((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 41, __PRETTY_FUNCTION__))
;
42 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 43, __PRETTY_FUNCTION__))
43 "Trying to emit a member or operator call expr on a static method!")((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 43, __PRETTY_FUNCTION__))
;
44
45 // Push the this ptr.
46 const CXXRecordDecl *RD =
47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49
50 // If there is an implicit parameter (e.g. VTT), emit it.
51 if (ImplicitParam) {
52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53 }
54
55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57 unsigned PrefixSize = Args.size() - 1;
58
59 // And the rest of the call args.
60 if (RtlArgs) {
61 // Special case: if the caller emitted the arguments right-to-left already
62 // (prior to emitting the *this argument), we're done. This happens for
63 // assignment operators.
64 Args.addFrom(*RtlArgs);
65 } else if (CE) {
66 // Special case: skip first argument of CXXOperatorCall (it is "this").
67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69 CE->getDirectCallee());
70 } else {
71 assert(((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
72 FPT->getNumParams() == 0 &&((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
73 "No CallExpr specified for function with non-zero number of arguments")((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
;
74 }
75 return {required, PrefixSize};
76}
77
78RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79 const CXXMethodDecl *MD, const CGCallee &Callee,
80 ReturnValueSlot ReturnValue,
81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82 const CallExpr *CE, CallArgList *RtlArgs) {
83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84 CallArgList Args;
85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90 CE ? CE->getExprLoc() : SourceLocation());
91}
92
93RValue CodeGenFunction::EmitCXXDestructorCall(
94 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
95 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
96 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
97
98 assert(!ThisTy.isNull())((!ThisTy.isNull()) ? static_cast<void> (0) : __assert_fail
("!ThisTy.isNull()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 98, __PRETTY_FUNCTION__))
;
99 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&((ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent()
&& "Pointer/Object mixup") ? static_cast<void>
(0) : __assert_fail ("ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && \"Pointer/Object mixup\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 100, __PRETTY_FUNCTION__))
100 "Pointer/Object mixup")((ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent()
&& "Pointer/Object mixup") ? static_cast<void>
(0) : __assert_fail ("ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && \"Pointer/Object mixup\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 100, __PRETTY_FUNCTION__))
;
101
102 LangAS SrcAS = ThisTy.getAddressSpace();
103 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
104 if (SrcAS != DstAS) {
105 QualType DstTy = DtorDecl->getThisType();
106 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
107 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
108 NewType);
109 }
110
111 CallArgList Args;
112 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
113 ImplicitParamTy, CE, Args, nullptr);
114 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
115 ReturnValueSlot(), Args);
116}
117
118RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
119 const CXXPseudoDestructorExpr *E) {
120 QualType DestroyedType = E->getDestroyedType();
121 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
122 // Automatic Reference Counting:
123 // If the pseudo-expression names a retainable object with weak or
124 // strong lifetime, the object shall be released.
125 Expr *BaseExpr = E->getBase();
126 Address BaseValue = Address::invalid();
127 Qualifiers BaseQuals;
128
129 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
130 if (E->isArrow()) {
131 BaseValue = EmitPointerWithAlignment(BaseExpr);
132 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
133 BaseQuals = PTy->getPointeeType().getQualifiers();
134 } else {
135 LValue BaseLV = EmitLValue(BaseExpr);
136 BaseValue = BaseLV.getAddress();
137 QualType BaseTy = BaseExpr->getType();
138 BaseQuals = BaseTy.getQualifiers();
139 }
140
141 switch (DestroyedType.getObjCLifetime()) {
142 case Qualifiers::OCL_None:
143 case Qualifiers::OCL_ExplicitNone:
144 case Qualifiers::OCL_Autoreleasing:
145 break;
146
147 case Qualifiers::OCL_Strong:
148 EmitARCRelease(Builder.CreateLoad(BaseValue,
149 DestroyedType.isVolatileQualified()),
150 ARCPreciseLifetime);
151 break;
152
153 case Qualifiers::OCL_Weak:
154 EmitARCDestroyWeak(BaseValue);
155 break;
156 }
157 } else {
158 // C++ [expr.pseudo]p1:
159 // The result shall only be used as the operand for the function call
160 // operator (), and the result of such a call has type void. The only
161 // effect is the evaluation of the postfix-expression before the dot or
162 // arrow.
163 EmitIgnoredExpr(E->getBase());
164 }
165
166 return RValue::get(nullptr);
167}
168
169static CXXRecordDecl *getCXXRecord(const Expr *E) {
170 QualType T = E->getType();
171 if (const PointerType *PTy = T->getAs<PointerType>())
172 T = PTy->getPointeeType();
173 const RecordType *Ty = T->castAs<RecordType>();
174 return cast<CXXRecordDecl>(Ty->getDecl());
175}
176
177// Note: This function also emit constructor calls to support a MSVC
178// extensions allowing explicit constructor function call.
179RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
180 ReturnValueSlot ReturnValue) {
181 const Expr *callee = CE->getCallee()->IgnoreParens();
182
183 if (isa<BinaryOperator>(callee))
1
Assuming 'callee' is a 'BinaryOperator'
2
Taking true branch
184 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
3
Calling 'CodeGenFunction::EmitCXXMemberPointerCallExpr'
185
186 const MemberExpr *ME = cast<MemberExpr>(callee);
187 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
188
189 if (MD->isStatic()) {
190 // The method is static, emit it as we would a regular call.
191 CGCallee callee =
192 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
193 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
194 ReturnValue);
195 }
196
197 bool HasQualifier = ME->hasQualifier();
198 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
199 bool IsArrow = ME->isArrow();
200 const Expr *Base = ME->getBase();
201
202 return EmitCXXMemberOrOperatorMemberCallExpr(
203 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
204}
205
206RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
207 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
208 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
209 const Expr *Base) {
210 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE))((isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr
>(CE)) ? static_cast<void> (0) : __assert_fail ("isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 210, __PRETTY_FUNCTION__))
;
211
212 // Compute the object pointer.
213 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
214
215 const CXXMethodDecl *DevirtualizedMethod = nullptr;
216 if (CanUseVirtualCall &&
217 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
218 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
219 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
220 assert(DevirtualizedMethod)((DevirtualizedMethod) ? static_cast<void> (0) : __assert_fail
("DevirtualizedMethod", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 220, __PRETTY_FUNCTION__))
;
221 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
222 const Expr *Inner = Base->ignoreParenBaseCasts();
223 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
224 MD->getReturnType().getCanonicalType())
225 // If the return types are not the same, this might be a case where more
226 // code needs to run to compensate for it. For example, the derived
227 // method might return a type that inherits form from the return
228 // type of MD and has a prefix.
229 // For now we just avoid devirtualizing these covariant cases.
230 DevirtualizedMethod = nullptr;
231 else if (getCXXRecord(Inner) == DevirtualizedClass)
232 // If the class of the Inner expression is where the dynamic method
233 // is defined, build the this pointer from it.
234 Base = Inner;
235 else if (getCXXRecord(Base) != DevirtualizedClass) {
236 // If the method is defined in a class that is not the best dynamic
237 // one or the one of the full expression, we would have to build
238 // a derived-to-base cast to compute the correct this pointer, but
239 // we don't have support for that yet, so do a virtual call.
240 DevirtualizedMethod = nullptr;
241 }
242 }
243
244 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
245 // operator before the LHS.
246 CallArgList RtlArgStorage;
247 CallArgList *RtlArgs = nullptr;
248 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
249 if (OCE->isAssignmentOp()) {
250 RtlArgs = &RtlArgStorage;
251 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
252 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
253 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
254 }
255 }
256
257 LValue This;
258 if (IsArrow) {
259 LValueBaseInfo BaseInfo;
260 TBAAAccessInfo TBAAInfo;
261 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
262 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
263 } else {
264 This = EmitLValue(Base);
265 }
266
267 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
268 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
269 // constructing a new complete object of type Ctor.
270 assert(!RtlArgs)((!RtlArgs) ? static_cast<void> (0) : __assert_fail ("!RtlArgs"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 270, __PRETTY_FUNCTION__))
;
271 assert(ReturnValue.isNull() && "Constructor shouldn't have return value")((ReturnValue.isNull() && "Constructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Constructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 271, __PRETTY_FUNCTION__))
;
272 CallArgList Args;
273 commonEmitCXXMemberOrOperatorCall(
274 *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
275 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
276
277 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
278 /*Delegating=*/false, This.getAddress(), Args,
279 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
280 /*NewPointerIsChecked=*/false);
281 return RValue::get(nullptr);
282 }
283
284 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
285 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
286 if (!MD->getParent()->mayInsertExtraPadding()) {
287 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
288 // We don't like to generate the trivial copy/move assignment operator
289 // when it isn't necessary; just produce the proper effect here.
290 LValue RHS = isa<CXXOperatorCallExpr>(CE)
291 ? MakeNaturalAlignAddrLValue(
292 (*RtlArgs)[0].getRValue(*this).getScalarVal(),
293 (*(CE->arg_begin() + 1))->getType())
294 : EmitLValue(*CE->arg_begin());
295 EmitAggregateAssign(This, RHS, CE->getType());
296 return RValue::get(This.getPointer());
297 }
298 llvm_unreachable("unknown trivial member function")::llvm::llvm_unreachable_internal("unknown trivial member function"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 298)
;
299 }
300 }
301
302 // Compute the function type we're calling.
303 const CXXMethodDecl *CalleeDecl =
304 DevirtualizedMethod ? DevirtualizedMethod : MD;
305 const CGFunctionInfo *FInfo = nullptr;
306 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
307 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
308 GlobalDecl(Dtor, Dtor_Complete));
309 else
310 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
311
312 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
313
314 // C++11 [class.mfct.non-static]p2:
315 // If a non-static member function of a class X is called for an object that
316 // is not of type X, or of a type derived from X, the behavior is undefined.
317 SourceLocation CallLoc;
318 ASTContext &C = getContext();
319 if (CE)
320 CallLoc = CE->getExprLoc();
321
322 SanitizerSet SkippedChecks;
323 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
324 auto *IOA = CMCE->getImplicitObjectArgument();
325 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
326 if (IsImplicitObjectCXXThis)
327 SkippedChecks.set(SanitizerKind::Alignment, true);
328 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
329 SkippedChecks.set(SanitizerKind::Null, true);
330 }
331 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
332 C.getRecordType(CalleeDecl->getParent()),
333 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
334
335 // C++ [class.virtual]p12:
336 // Explicit qualification with the scope operator (5.1) suppresses the
337 // virtual call mechanism.
338 //
339 // We also don't emit a virtual call if the base expression has a record type
340 // because then we know what the type is.
341 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
342
343 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
344 assert(CE->arg_begin() == CE->arg_end() &&((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
345 "Destructor shouldn't have explicit parameters")((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
;
346 assert(ReturnValue.isNull() && "Destructor shouldn't have return value")((ReturnValue.isNull() && "Destructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Destructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 346, __PRETTY_FUNCTION__))
;
347 if (UseVirtualCall) {
348 CGM.getCXXABI().EmitVirtualDestructorCall(
349 *this, Dtor, Dtor_Complete, This.getAddress(),
350 cast<CXXMemberCallExpr>(CE));
351 } else {
352 GlobalDecl GD(Dtor, Dtor_Complete);
353 CGCallee Callee;
354 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
355 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
356 else if (!DevirtualizedMethod)
357 Callee =
358 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
359 else {
360 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
361 }
362
363 QualType ThisTy =
364 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
365 EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
366 /*ImplicitParam=*/nullptr,
367 /*ImplicitParamTy=*/QualType(), nullptr);
368 }
369 return RValue::get(nullptr);
370 }
371
372 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
373 // 'CalleeDecl' instead.
374
375 CGCallee Callee;
376 if (UseVirtualCall) {
377 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378 } else {
379 if (SanOpts.has(SanitizerKind::CFINVCall) &&
380 MD->getParent()->isDynamicClass()) {
381 llvm::Value *VTable;
382 const CXXRecordDecl *RD;
383 std::tie(VTable, RD) =
384 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385 MD->getParent());
386 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
387 }
388
389 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391 else if (!DevirtualizedMethod)
392 Callee =
393 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
394 else {
395 Callee =
396 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
397 GlobalDecl(DevirtualizedMethod));
398 }
399 }
400
401 if (MD->isVirtual()) {
402 Address NewThisAddr =
403 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
404 *this, CalleeDecl, This.getAddress(), UseVirtualCall);
405 This.setAddress(NewThisAddr);
406 }
407
408 return EmitCXXMemberOrOperatorCall(
409 CalleeDecl, Callee, ReturnValue, This.getPointer(),
410 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
411}
412
413RValue
414CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
415 ReturnValueSlot ReturnValue) {
416 const BinaryOperator *BO =
417 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
4
The object is a 'BinaryOperator'
418 const Expr *BaseExpr = BO->getLHS();
419 const Expr *MemFnExpr = BO->getRHS();
420
421 const MemberPointerType *MPT =
422 MemFnExpr->getType()->castAs<MemberPointerType>();
5
The object is a 'MemberPointerType'
423
424 const FunctionProtoType *FPT =
425 MPT->getPointeeType()->castAs<FunctionProtoType>();
6
The object is a 'FunctionProtoType'
426 const CXXRecordDecl *RD =
427 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
7
Assuming the object is not a 'RecordType'
8
Called C++ object pointer is null
428
429 // Emit the 'this' pointer.
430 Address This = Address::invalid();
431 if (BO->getOpcode() == BO_PtrMemI)
432 This = EmitPointerWithAlignment(BaseExpr);
433 else
434 This = EmitLValue(BaseExpr).getAddress();
435
436 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
437 QualType(MPT->getClass(), 0));
438
439 // Get the member function pointer.
440 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
441
442 // Ask the ABI to load the callee. Note that This is modified.
443 llvm::Value *ThisPtrForCall = nullptr;
444 CGCallee Callee =
445 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
446 ThisPtrForCall, MemFnPtr, MPT);
447
448 CallArgList Args;
449
450 QualType ThisType =
451 getContext().getPointerType(getContext().getTagDeclType(RD));
452
453 // Push the this ptr.
454 Args.add(RValue::get(ThisPtrForCall), ThisType);
455
456 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
457
458 // And the rest of the call args
459 EmitCallArgs(Args, FPT, E->arguments());
460 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
461 /*PrefixSize=*/0),
462 Callee, ReturnValue, Args, nullptr, E->getExprLoc());
463}
464
465RValue
466CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
467 const CXXMethodDecl *MD,
468 ReturnValueSlot ReturnValue) {
469 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 470, __PRETTY_FUNCTION__))
470 "Trying to emit a member call expr on a static method!")((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 470, __PRETTY_FUNCTION__))
;
471 return EmitCXXMemberOrOperatorMemberCallExpr(
472 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
473 /*IsArrow=*/false, E->getArg(0));
474}
475
476RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
477 ReturnValueSlot ReturnValue) {
478 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
479}
480
481static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
482 Address DestPtr,
483 const CXXRecordDecl *Base) {
484 if (Base->isEmpty())
485 return;
486
487 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
488
489 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
490 CharUnits NVSize = Layout.getNonVirtualSize();
491
492 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
493 // present, they are initialized by the most derived class before calling the
494 // constructor.
495 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
496 Stores.emplace_back(CharUnits::Zero(), NVSize);
497
498 // Each store is split by the existence of a vbptr.
499 CharUnits VBPtrWidth = CGF.getPointerSize();
500 std::vector<CharUnits> VBPtrOffsets =
501 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
502 for (CharUnits VBPtrOffset : VBPtrOffsets) {
503 // Stop before we hit any virtual base pointers located in virtual bases.
504 if (VBPtrOffset >= NVSize)
505 break;
506 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
507 CharUnits LastStoreOffset = LastStore.first;
508 CharUnits LastStoreSize = LastStore.second;
509
510 CharUnits SplitBeforeOffset = LastStoreOffset;
511 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
512 assert(!SplitBeforeSize.isNegative() && "negative store size!")((!SplitBeforeSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitBeforeSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 512, __PRETTY_FUNCTION__))
;
513 if (!SplitBeforeSize.isZero())
514 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
515
516 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
517 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
518 assert(!SplitAfterSize.isNegative() && "negative store size!")((!SplitAfterSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitAfterSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 518, __PRETTY_FUNCTION__))
;
519 if (!SplitAfterSize.isZero())
520 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
521 }
522
523 // If the type contains a pointer to data member we can't memset it to zero.
524 // Instead, create a null constant and copy it to the destination.
525 // TODO: there are other patterns besides zero that we can usefully memset,
526 // like -1, which happens to be the pattern used by member-pointers.
527 // TODO: isZeroInitializable can be over-conservative in the case where a
528 // virtual base contains a member pointer.
529 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
530 if (!NullConstantForBase->isNullValue()) {
531 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
532 CGF.CGM.getModule(), NullConstantForBase->getType(),
533 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
534 NullConstantForBase, Twine());
535
536 CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
537 DestPtr.getAlignment());
538 NullVariable->setAlignment(Align.getQuantity());
539
540 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
541
542 // Get and call the appropriate llvm.memcpy overload.
543 for (std::pair<CharUnits, CharUnits> Store : Stores) {
544 CharUnits StoreOffset = Store.first;
545 CharUnits StoreSize = Store.second;
546 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
547 CGF.Builder.CreateMemCpy(
548 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
549 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
550 StoreSizeVal);
551 }
552
553 // Otherwise, just memset the whole thing to zero. This is legal
554 // because in LLVM, all default initializers (other than the ones we just
555 // handled above) are guaranteed to have a bit pattern of all zeros.
556 } else {
557 for (std::pair<CharUnits, CharUnits> Store : Stores) {
558 CharUnits StoreOffset = Store.first;
559 CharUnits StoreSize = Store.second;
560 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
561 CGF.Builder.CreateMemSet(
562 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
563 CGF.Builder.getInt8(0), StoreSizeVal);
564 }
565 }
566}
567
568void
569CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
570 AggValueSlot Dest) {
571 assert(!Dest.isIgnored() && "Must have a destination!")((!Dest.isIgnored() && "Must have a destination!") ? static_cast
<void> (0) : __assert_fail ("!Dest.isIgnored() && \"Must have a destination!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 571, __PRETTY_FUNCTION__))
;
572 const CXXConstructorDecl *CD = E->getConstructor();
573
574 // If we require zero initialization before (or instead of) calling the
575 // constructor, as can be the case with a non-user-provided default
576 // constructor, emit the zero initialization now, unless destination is
577 // already zeroed.
578 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
579 switch (E->getConstructionKind()) {
580 case CXXConstructExpr::CK_Delegating:
581 case CXXConstructExpr::CK_Complete:
582 EmitNullInitialization(Dest.getAddress(), E->getType());
583 break;
584 case CXXConstructExpr::CK_VirtualBase:
585 case CXXConstructExpr::CK_NonVirtualBase:
586 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
587 CD->getParent());
588 break;
589 }
590 }
591
592 // If this is a call to a trivial default constructor, do nothing.
593 if (CD->isTrivial() && CD->isDefaultConstructor())
594 return;
595
596 // Elide the constructor if we're constructing from a temporary.
597 // The temporary check is required because Sema sets this on NRVO
598 // returns.
599 if (getLangOpts().ElideConstructors && E->isElidable()) {
600 assert(getContext().hasSameUnqualifiedType(E->getType(),((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 601, __PRETTY_FUNCTION__))
601 E->getArg(0)->getType()))((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 601, __PRETTY_FUNCTION__))
;
602 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
603 EmitAggExpr(E->getArg(0), Dest);
604 return;
605 }
606 }
607
608 if (const ArrayType *arrayType
609 = getContext().getAsArrayType(E->getType())) {
610 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
611 Dest.isSanitizerChecked());
612 } else {
613 CXXCtorType Type = Ctor_Complete;
614 bool ForVirtualBase = false;
615 bool Delegating = false;
616
617 switch (E->getConstructionKind()) {
618 case CXXConstructExpr::CK_Delegating:
619 // We should be emitting a constructor; GlobalDecl will assert this
620 Type = CurGD.getCtorType();
621 Delegating = true;
622 break;
623
624 case CXXConstructExpr::CK_Complete:
625 Type = Ctor_Complete;
626 break;
627
628 case CXXConstructExpr::CK_VirtualBase:
629 ForVirtualBase = true;
630 LLVM_FALLTHROUGH[[gnu::fallthrough]];
631
632 case CXXConstructExpr::CK_NonVirtualBase:
633 Type = Ctor_Base;
634 }
635
636 // Call the constructor.
637 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
638 }
639}
640
641void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
642 const Expr *Exp) {
643 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
644 Exp = E->getSubExpr();
645 assert(isa<CXXConstructExpr>(Exp) &&((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 646, __PRETTY_FUNCTION__))
646 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr")((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 646, __PRETTY_FUNCTION__))
;
647 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
648 const CXXConstructorDecl *CD = E->getConstructor();
649 RunCleanupsScope Scope(*this);
650
651 // If we require zero initialization before (or instead of) calling the
652 // constructor, as can be the case with a non-user-provided default
653 // constructor, emit the zero initialization now.
654 // FIXME. Do I still need this for a copy ctor synthesis?
655 if (E->requiresZeroInitialization())
656 EmitNullInitialization(Dest, E->getType());
657
658 assert(!getContext().getAsConstantArrayType(E->getType())((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 659, __PRETTY_FUNCTION__))
659 && "EmitSynthesizedCXXCopyCtor - Copied-in Array")((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 659, __PRETTY_FUNCTION__))
;
660 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
661}
662
663static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
664 const CXXNewExpr *E) {
665 if (!E->isArray())
666 return CharUnits::Zero();
667
668 // No cookie is required if the operator new[] being used is the
669 // reserved placement operator new[].
670 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
671 return CharUnits::Zero();
672
673 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
674}
675
676static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
677 const CXXNewExpr *e,
678 unsigned minElements,
679 llvm::Value *&numElements,
680 llvm::Value *&sizeWithoutCookie) {
681 QualType type = e->getAllocatedType();
682
683 if (!e->isArray()) {
684 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
685 sizeWithoutCookie
686 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
687 return sizeWithoutCookie;
688 }
689
690 // The width of size_t.
691 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
692
693 // Figure out the cookie size.
694 llvm::APInt cookieSize(sizeWidth,
695 CalculateCookiePadding(CGF, e).getQuantity());
696
697 // Emit the array size expression.
698 // We multiply the size of all dimensions for NumElements.
699 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
700 numElements =
701 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
702 if (!numElements)
703 numElements = CGF.EmitScalarExpr(*e->getArraySize());
704 assert(isa<llvm::IntegerType>(numElements->getType()))((isa<llvm::IntegerType>(numElements->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(numElements->getType())"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 704, __PRETTY_FUNCTION__))
;
705
706 // The number of elements can be have an arbitrary integer type;
707 // essentially, we need to multiply it by a constant factor, add a
708 // cookie size, and verify that the result is representable as a
709 // size_t. That's just a gloss, though, and it's wrong in one
710 // important way: if the count is negative, it's an error even if
711 // the cookie size would bring the total size >= 0.
712 bool isSigned
713 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
714 llvm::IntegerType *numElementsType
715 = cast<llvm::IntegerType>(numElements->getType());
716 unsigned numElementsWidth = numElementsType->getBitWidth();
717
718 // Compute the constant factor.
719 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
720 while (const ConstantArrayType *CAT
721 = CGF.getContext().getAsConstantArrayType(type)) {
722 type = CAT->getElementType();
723 arraySizeMultiplier *= CAT->getSize();
724 }
725
726 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
727 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
728 typeSizeMultiplier *= arraySizeMultiplier;
729
730 // This will be a size_t.
731 llvm::Value *size;
732
733 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
734 // Don't bloat the -O0 code.
735 if (llvm::ConstantInt *numElementsC =
736 dyn_cast<llvm::ConstantInt>(numElements)) {
737 const llvm::APInt &count = numElementsC->getValue();
738
739 bool hasAnyOverflow = false;
740
741 // If 'count' was a negative number, it's an overflow.
742 if (isSigned && count.isNegative())
743 hasAnyOverflow = true;
744
745 // We want to do all this arithmetic in size_t. If numElements is
746 // wider than that, check whether it's already too big, and if so,
747 // overflow.
748 else if (numElementsWidth > sizeWidth &&
749 numElementsWidth - sizeWidth > count.countLeadingZeros())
750 hasAnyOverflow = true;
751
752 // Okay, compute a count at the right width.
753 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
754
755 // If there is a brace-initializer, we cannot allocate fewer elements than
756 // there are initializers. If we do, that's treated like an overflow.
757 if (adjustedCount.ult(minElements))
758 hasAnyOverflow = true;
759
760 // Scale numElements by that. This might overflow, but we don't
761 // care because it only overflows if allocationSize does, too, and
762 // if that overflows then we shouldn't use this.
763 numElements = llvm::ConstantInt::get(CGF.SizeTy,
764 adjustedCount * arraySizeMultiplier);
765
766 // Compute the size before cookie, and track whether it overflowed.
767 bool overflow;
768 llvm::APInt allocationSize
769 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
770 hasAnyOverflow |= overflow;
771
772 // Add in the cookie, and check whether it's overflowed.
773 if (cookieSize != 0) {
774 // Save the current size without a cookie. This shouldn't be
775 // used if there was overflow.
776 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
777
778 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
779 hasAnyOverflow |= overflow;
780 }
781
782 // On overflow, produce a -1 so operator new will fail.
783 if (hasAnyOverflow) {
784 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
785 } else {
786 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
787 }
788
789 // Otherwise, we might need to use the overflow intrinsics.
790 } else {
791 // There are up to five conditions we need to test for:
792 // 1) if isSigned, we need to check whether numElements is negative;
793 // 2) if numElementsWidth > sizeWidth, we need to check whether
794 // numElements is larger than something representable in size_t;
795 // 3) if minElements > 0, we need to check whether numElements is smaller
796 // than that.
797 // 4) we need to compute
798 // sizeWithoutCookie := numElements * typeSizeMultiplier
799 // and check whether it overflows; and
800 // 5) if we need a cookie, we need to compute
801 // size := sizeWithoutCookie + cookieSize
802 // and check whether it overflows.
803
804 llvm::Value *hasOverflow = nullptr;
805
806 // If numElementsWidth > sizeWidth, then one way or another, we're
807 // going to have to do a comparison for (2), and this happens to
808 // take care of (1), too.
809 if (numElementsWidth > sizeWidth) {
810 llvm::APInt threshold(numElementsWidth, 1);
811 threshold <<= sizeWidth;
812
813 llvm::Value *thresholdV
814 = llvm::ConstantInt::get(numElementsType, threshold);
815
816 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
817 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
818
819 // Otherwise, if we're signed, we want to sext up to size_t.
820 } else if (isSigned) {
821 if (numElementsWidth < sizeWidth)
822 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
823
824 // If there's a non-1 type size multiplier, then we can do the
825 // signedness check at the same time as we do the multiply
826 // because a negative number times anything will cause an
827 // unsigned overflow. Otherwise, we have to do it here. But at least
828 // in this case, we can subsume the >= minElements check.
829 if (typeSizeMultiplier == 1)
830 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
831 llvm::ConstantInt::get(CGF.SizeTy, minElements));
832
833 // Otherwise, zext up to size_t if necessary.
834 } else if (numElementsWidth < sizeWidth) {
835 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
836 }
837
838 assert(numElements->getType() == CGF.SizeTy)((numElements->getType() == CGF.SizeTy) ? static_cast<void
> (0) : __assert_fail ("numElements->getType() == CGF.SizeTy"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 838, __PRETTY_FUNCTION__))
;
839
840 if (minElements) {
841 // Don't allow allocation of fewer elements than we have initializers.
842 if (!hasOverflow) {
843 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
844 llvm::ConstantInt::get(CGF.SizeTy, minElements));
845 } else if (numElementsWidth > sizeWidth) {
846 // The other existing overflow subsumes this check.
847 // We do an unsigned comparison, since any signed value < -1 is
848 // taken care of either above or below.
849 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
850 CGF.Builder.CreateICmpULT(numElements,
851 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
852 }
853 }
854
855 size = numElements;
856
857 // Multiply by the type size if necessary. This multiplier
858 // includes all the factors for nested arrays.
859 //
860 // This step also causes numElements to be scaled up by the
861 // nested-array factor if necessary. Overflow on this computation
862 // can be ignored because the result shouldn't be used if
863 // allocation fails.
864 if (typeSizeMultiplier != 1) {
865 llvm::Function *umul_with_overflow
866 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
867
868 llvm::Value *tsmV =
869 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
870 llvm::Value *result =
871 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
872
873 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
874 if (hasOverflow)
875 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
876 else
877 hasOverflow = overflowed;
878
879 size = CGF.Builder.CreateExtractValue(result, 0);
880
881 // Also scale up numElements by the array size multiplier.
882 if (arraySizeMultiplier != 1) {
883 // If the base element type size is 1, then we can re-use the
884 // multiply we just did.
885 if (typeSize.isOne()) {
886 assert(arraySizeMultiplier == typeSizeMultiplier)((arraySizeMultiplier == typeSizeMultiplier) ? static_cast<
void> (0) : __assert_fail ("arraySizeMultiplier == typeSizeMultiplier"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 886, __PRETTY_FUNCTION__))
;
887 numElements = size;
888
889 // Otherwise we need a separate multiply.
890 } else {
891 llvm::Value *asmV =
892 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
893 numElements = CGF.Builder.CreateMul(numElements, asmV);
894 }
895 }
896 } else {
897 // numElements doesn't need to be scaled.
898 assert(arraySizeMultiplier == 1)((arraySizeMultiplier == 1) ? static_cast<void> (0) : __assert_fail
("arraySizeMultiplier == 1", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 898, __PRETTY_FUNCTION__))
;
899 }
900
901 // Add in the cookie size if necessary.
902 if (cookieSize != 0) {
903 sizeWithoutCookie = size;
904
905 llvm::Function *uadd_with_overflow
906 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
907
908 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
909 llvm::Value *result =
910 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
911
912 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
913 if (hasOverflow)
914 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
915 else
916 hasOverflow = overflowed;
917
918 size = CGF.Builder.CreateExtractValue(result, 0);
919 }
920
921 // If we had any possibility of dynamic overflow, make a select to
922 // overwrite 'size' with an all-ones value, which should cause
923 // operator new to throw.
924 if (hasOverflow)
925 size = CGF.Builder.CreateSelect(hasOverflow,
926 llvm::Constant::getAllOnesValue(CGF.SizeTy),
927 size);
928 }
929
930 if (cookieSize == 0)
931 sizeWithoutCookie = size;
932 else
933 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?")((sizeWithoutCookie && "didn't set sizeWithoutCookie?"
) ? static_cast<void> (0) : __assert_fail ("sizeWithoutCookie && \"didn't set sizeWithoutCookie?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 933, __PRETTY_FUNCTION__))
;
934
935 return size;
936}
937
938static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
939 QualType AllocType, Address NewPtr,
940 AggValueSlot::Overlap_t MayOverlap) {
941 // FIXME: Refactor with EmitExprAsInit.
942 switch (CGF.getEvaluationKind(AllocType)) {
943 case TEK_Scalar:
944 CGF.EmitScalarInit(Init, nullptr,
945 CGF.MakeAddrLValue(NewPtr, AllocType), false);
946 return;
947 case TEK_Complex:
948 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
949 /*isInit*/ true);
950 return;
951 case TEK_Aggregate: {
952 AggValueSlot Slot
953 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
954 AggValueSlot::IsDestructed,
955 AggValueSlot::DoesNotNeedGCBarriers,
956 AggValueSlot::IsNotAliased,
957 MayOverlap, AggValueSlot::IsNotZeroed,
958 AggValueSlot::IsSanitizerChecked);
959 CGF.EmitAggExpr(Init, Slot);
960 return;
961 }
962 }
963 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 963)
;
964}
965
966void CodeGenFunction::EmitNewArrayInitializer(
967 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
968 Address BeginPtr, llvm::Value *NumElements,
969 llvm::Value *AllocSizeWithoutCookie) {
970 // If we have a type with trivial initialization and no initializer,
971 // there's nothing to do.
972 if (!E->hasInitializer())
973 return;
974
975 Address CurPtr = BeginPtr;
976
977 unsigned InitListElements = 0;
978
979 const Expr *Init = E->getInitializer();
980 Address EndOfInit = Address::invalid();
981 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
982 EHScopeStack::stable_iterator Cleanup;
983 llvm::Instruction *CleanupDominator = nullptr;
984
985 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
986 CharUnits ElementAlign =
987 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
988
989 // Attempt to perform zero-initialization using memset.
990 auto TryMemsetInitialization = [&]() -> bool {
991 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
992 // we can initialize with a memset to -1.
993 if (!CGM.getTypes().isZeroInitializable(ElementType))
994 return false;
995
996 // Optimization: since zero initialization will just set the memory
997 // to all zeroes, generate a single memset to do it in one shot.
998
999 // Subtract out the size of any elements we've already initialized.
1000 auto *RemainingSize = AllocSizeWithoutCookie;
1001 if (InitListElements) {
1002 // We know this can't overflow; we check this when doing the allocation.
1003 auto *InitializedSize = llvm::ConstantInt::get(
1004 RemainingSize->getType(),
1005 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1006 InitListElements);
1007 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1008 }
1009
1010 // Create the memset.
1011 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1012 return true;
1013 };
1014
1015 // If the initializer is an initializer list, first do the explicit elements.
1016 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1017 // Initializing from a (braced) string literal is a special case; the init
1018 // list element does not initialize a (single) array element.
1019 if (ILE->isStringLiteralInit()) {
1020 // Initialize the initial portion of length equal to that of the string
1021 // literal. The allocation must be for at least this much; we emitted a
1022 // check for that earlier.
1023 AggValueSlot Slot =
1024 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1025 AggValueSlot::IsDestructed,
1026 AggValueSlot::DoesNotNeedGCBarriers,
1027 AggValueSlot::IsNotAliased,
1028 AggValueSlot::DoesNotOverlap,
1029 AggValueSlot::IsNotZeroed,
1030 AggValueSlot::IsSanitizerChecked);
1031 EmitAggExpr(ILE->getInit(0), Slot);
1032
1033 // Move past these elements.
1034 InitListElements =
1035 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1036 ->getSize().getZExtValue();
1037 CurPtr =
1038 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1039 Builder.getSize(InitListElements),
1040 "string.init.end"),
1041 CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1042 ElementSize));
1043
1044 // Zero out the rest, if any remain.
1045 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1046 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1047 bool OK = TryMemsetInitialization();
1048 (void)OK;
1049 assert(OK && "couldn't memset character type?")((OK && "couldn't memset character type?") ? static_cast
<void> (0) : __assert_fail ("OK && \"couldn't memset character type?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1049, __PRETTY_FUNCTION__))
;
1050 }
1051 return;
1052 }
1053
1054 InitListElements = ILE->getNumInits();
1055
1056 // If this is a multi-dimensional array new, we will initialize multiple
1057 // elements with each init list element.
1058 QualType AllocType = E->getAllocatedType();
1059 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1060 AllocType->getAsArrayTypeUnsafe())) {
1061 ElementTy = ConvertTypeForMem(AllocType);
1062 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1063 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1064 }
1065
1066 // Enter a partial-destruction Cleanup if necessary.
1067 if (needsEHCleanup(DtorKind)) {
1068 // In principle we could tell the Cleanup where we are more
1069 // directly, but the control flow can get so varied here that it
1070 // would actually be quite complex. Therefore we go through an
1071 // alloca.
1072 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1073 "array.init.end");
1074 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1075 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1076 ElementType, ElementAlign,
1077 getDestroyer(DtorKind));
1078 Cleanup = EHStack.stable_begin();
1079 }
1080
1081 CharUnits StartAlign = CurPtr.getAlignment();
1082 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1083 // Tell the cleanup that it needs to destroy up to this
1084 // element. TODO: some of these stores can be trivially
1085 // observed to be unnecessary.
1086 if (EndOfInit.isValid()) {
1087 auto FinishedPtr =
1088 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1089 Builder.CreateStore(FinishedPtr, EndOfInit);
1090 }
1091 // FIXME: If the last initializer is an incomplete initializer list for
1092 // an array, and we have an array filler, we can fold together the two
1093 // initialization loops.
1094 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1095 ILE->getInit(i)->getType(), CurPtr,
1096 AggValueSlot::DoesNotOverlap);
1097 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1098 Builder.getSize(1),
1099 "array.exp.next"),
1100 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1101 }
1102
1103 // The remaining elements are filled with the array filler expression.
1104 Init = ILE->getArrayFiller();
1105
1106 // Extract the initializer for the individual array elements by pulling
1107 // out the array filler from all the nested initializer lists. This avoids
1108 // generating a nested loop for the initialization.
1109 while (Init && Init->getType()->isConstantArrayType()) {
1110 auto *SubILE = dyn_cast<InitListExpr>(Init);
1111 if (!SubILE)
1112 break;
1113 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?")((SubILE->getNumInits() == 0 && "explicit inits in array filler?"
) ? static_cast<void> (0) : __assert_fail ("SubILE->getNumInits() == 0 && \"explicit inits in array filler?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1113, __PRETTY_FUNCTION__))
;
1114 Init = SubILE->getArrayFiller();
1115 }
1116
1117 // Switch back to initializing one base element at a time.
1118 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1119 }
1120
1121 // If all elements have already been initialized, skip any further
1122 // initialization.
1123 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1124 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1125 // If there was a Cleanup, deactivate it.
1126 if (CleanupDominator)
1127 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1128 return;
1129 }
1130
1131 assert(Init && "have trailing elements to initialize but no initializer")((Init && "have trailing elements to initialize but no initializer"
) ? static_cast<void> (0) : __assert_fail ("Init && \"have trailing elements to initialize but no initializer\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1131, __PRETTY_FUNCTION__))
;
1132
1133 // If this is a constructor call, try to optimize it out, and failing that
1134 // emit a single loop to initialize all remaining elements.
1135 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1136 CXXConstructorDecl *Ctor = CCE->getConstructor();
1137 if (Ctor->isTrivial()) {
1138 // If new expression did not specify value-initialization, then there
1139 // is no initialization.
1140 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1141 return;
1142
1143 if (TryMemsetInitialization())
1144 return;
1145 }
1146
1147 // Store the new Cleanup position for irregular Cleanups.
1148 //
1149 // FIXME: Share this cleanup with the constructor call emission rather than
1150 // having it create a cleanup of its own.
1151 if (EndOfInit.isValid())
1152 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1153
1154 // Emit a constructor call loop to initialize the remaining elements.
1155 if (InitListElements)
1156 NumElements = Builder.CreateSub(
1157 NumElements,
1158 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1159 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1160 /*NewPointerIsChecked*/true,
1161 CCE->requiresZeroInitialization());
1162 return;
1163 }
1164
1165 // If this is value-initialization, we can usually use memset.
1166 ImplicitValueInitExpr IVIE(ElementType);
1167 if (isa<ImplicitValueInitExpr>(Init)) {
1168 if (TryMemsetInitialization())
1169 return;
1170
1171 // Switch to an ImplicitValueInitExpr for the element type. This handles
1172 // only one case: multidimensional array new of pointers to members. In
1173 // all other cases, we already have an initializer for the array element.
1174 Init = &IVIE;
1175 }
1176
1177 // At this point we should have found an initializer for the individual
1178 // elements of the array.
1179 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1180, __PRETTY_FUNCTION__))
1180 "got wrong type of element to initialize")((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1180, __PRETTY_FUNCTION__))
;
1181
1182 // If we have an empty initializer list, we can usually use memset.
1183 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1184 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1185 return;
1186
1187 // If we have a struct whose every field is value-initialized, we can
1188 // usually use memset.
1189 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1190 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1191 if (RType->getDecl()->isStruct()) {
1192 unsigned NumElements = 0;
1193 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1194 NumElements = CXXRD->getNumBases();
1195 for (auto *Field : RType->getDecl()->fields())
1196 if (!Field->isUnnamedBitfield())
1197 ++NumElements;
1198 // FIXME: Recurse into nested InitListExprs.
1199 if (ILE->getNumInits() == NumElements)
1200 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1201 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1202 --NumElements;
1203 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1204 return;
1205 }
1206 }
1207 }
1208
1209 // Create the loop blocks.
1210 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1211 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1212 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1213
1214 // Find the end of the array, hoisted out of the loop.
1215 llvm::Value *EndPtr =
1216 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1217
1218 // If the number of elements isn't constant, we have to now check if there is
1219 // anything left to initialize.
1220 if (!ConstNum) {
1221 llvm::Value *IsEmpty =
1222 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1223 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1224 }
1225
1226 // Enter the loop.
1227 EmitBlock(LoopBB);
1228
1229 // Set up the current-element phi.
1230 llvm::PHINode *CurPtrPhi =
1231 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1232 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1233
1234 CurPtr = Address(CurPtrPhi, ElementAlign);
1235
1236 // Store the new Cleanup position for irregular Cleanups.
1237 if (EndOfInit.isValid())
1238 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1239
1240 // Enter a partial-destruction Cleanup if necessary.
1241 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1242 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1243 ElementType, ElementAlign,
1244 getDestroyer(DtorKind));
1245 Cleanup = EHStack.stable_begin();
1246 CleanupDominator = Builder.CreateUnreachable();
1247 }
1248
1249 // Emit the initializer into this element.
1250 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1251 AggValueSlot::DoesNotOverlap);
1252
1253 // Leave the Cleanup if we entered one.
1254 if (CleanupDominator) {
1255 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1256 CleanupDominator->eraseFromParent();
1257 }
1258
1259 // Advance to the next element by adjusting the pointer type as necessary.
1260 llvm::Value *NextPtr =
1261 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1262 "array.next");
1263
1264 // Check whether we've gotten to the end of the array and, if so,
1265 // exit the loop.
1266 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1267 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1268 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1269
1270 EmitBlock(ContBB);
1271}
1272
1273static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1274 QualType ElementType, llvm::Type *ElementTy,
1275 Address NewPtr, llvm::Value *NumElements,
1276 llvm::Value *AllocSizeWithoutCookie) {
1277 ApplyDebugLocation DL(CGF, E);
1278 if (E->isArray())
1279 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1280 AllocSizeWithoutCookie);
1281 else if (const Expr *Init = E->getInitializer())
1282 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1283 AggValueSlot::DoesNotOverlap);
1284}
1285
1286/// Emit a call to an operator new or operator delete function, as implicitly
1287/// created by new-expressions and delete-expressions.
1288static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1289 const FunctionDecl *CalleeDecl,
1290 const FunctionProtoType *CalleeType,
1291 const CallArgList &Args) {
1292 llvm::CallBase *CallOrInvoke;
1293 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1294 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1295 RValue RV =
1296 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1297 Args, CalleeType, /*ChainCall=*/false),
1298 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1299
1300 /// C++1y [expr.new]p10:
1301 /// [In a new-expression,] an implementation is allowed to omit a call
1302 /// to a replaceable global allocation function.
1303 ///
1304 /// We model such elidable calls with the 'builtin' attribute.
1305 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1306 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1307 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1308 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1309 llvm::Attribute::Builtin);
1310 }
1311
1312 return RV;
1313}
1314
1315RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1316 const CallExpr *TheCall,
1317 bool IsDelete) {
1318 CallArgList Args;
1319 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1320 // Find the allocation or deallocation function that we're calling.
1321 ASTContext &Ctx = getContext();
1322 DeclarationName Name = Ctx.DeclarationNames
1323 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1324
1325 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1326 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1327 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1328 return EmitNewDeleteCall(*this, FD, Type, Args);
1329 llvm_unreachable("predeclared global operator new/delete is missing")::llvm::llvm_unreachable_internal("predeclared global operator new/delete is missing"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1329)
;
1330}
1331
1332namespace {
1333/// The parameters to pass to a usual operator delete.
1334struct UsualDeleteParams {
1335 bool DestroyingDelete = false;
1336 bool Size = false;
1337 bool Alignment = false;
1338};
1339}
1340
1341static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1342 UsualDeleteParams Params;
1343
1344 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1345 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1346
1347 // The first argument is always a void*.
1348 ++AI;
1349
1350 // The next parameter may be a std::destroying_delete_t.
1351 if (FD->isDestroyingOperatorDelete()) {
1352 Params.DestroyingDelete = true;
1353 assert(AI != AE)((AI != AE) ? static_cast<void> (0) : __assert_fail ("AI != AE"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1353, __PRETTY_FUNCTION__))
;
1354 ++AI;
1355 }
1356
1357 // Figure out what other parameters we should be implicitly passing.
1358 if (AI != AE && (*AI)->isIntegerType()) {
1359 Params.Size = true;
1360 ++AI;
1361 }
1362
1363 if (AI != AE && (*AI)->isAlignValT()) {
1364 Params.Alignment = true;
1365 ++AI;
1366 }
1367
1368 assert(AI == AE && "unexpected usual deallocation function parameter")((AI == AE && "unexpected usual deallocation function parameter"
) ? static_cast<void> (0) : __assert_fail ("AI == AE && \"unexpected usual deallocation function parameter\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1368, __PRETTY_FUNCTION__))
;
1369 return Params;
1370}
1371
1372namespace {
1373 /// A cleanup to call the given 'operator delete' function upon abnormal
1374 /// exit from a new expression. Templated on a traits type that deals with
1375 /// ensuring that the arguments dominate the cleanup if necessary.
1376 template<typename Traits>
1377 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1378 /// Type used to hold llvm::Value*s.
1379 typedef typename Traits::ValueTy ValueTy;
1380 /// Type used to hold RValues.
1381 typedef typename Traits::RValueTy RValueTy;
1382 struct PlacementArg {
1383 RValueTy ArgValue;
1384 QualType ArgType;
1385 };
1386
1387 unsigned NumPlacementArgs : 31;
1388 unsigned PassAlignmentToPlacementDelete : 1;
1389 const FunctionDecl *OperatorDelete;
1390 ValueTy Ptr;
1391 ValueTy AllocSize;
1392 CharUnits AllocAlign;
1393
1394 PlacementArg *getPlacementArgs() {
1395 return reinterpret_cast<PlacementArg *>(this + 1);
1396 }
1397
1398 public:
1399 static size_t getExtraSize(size_t NumPlacementArgs) {
1400 return NumPlacementArgs * sizeof(PlacementArg);
1401 }
1402
1403 CallDeleteDuringNew(size_t NumPlacementArgs,
1404 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1405 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1406 CharUnits AllocAlign)
1407 : NumPlacementArgs(NumPlacementArgs),
1408 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1409 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1410 AllocAlign(AllocAlign) {}
1411
1412 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1413 assert(I < NumPlacementArgs && "index out of range")((I < NumPlacementArgs && "index out of range") ? static_cast
<void> (0) : __assert_fail ("I < NumPlacementArgs && \"index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1413, __PRETTY_FUNCTION__))
;
1414 getPlacementArgs()[I] = {Arg, Type};
1415 }
1416
1417 void Emit(CodeGenFunction &CGF, Flags flags) override {
1418 const FunctionProtoType *FPT =
1419 OperatorDelete->getType()->getAs<FunctionProtoType>();
1420 CallArgList DeleteArgs;
1421
1422 // The first argument is always a void* (or C* for a destroying operator
1423 // delete for class type C).
1424 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1425
1426 // Figure out what other parameters we should be implicitly passing.
1427 UsualDeleteParams Params;
1428 if (NumPlacementArgs) {
1429 // A placement deallocation function is implicitly passed an alignment
1430 // if the placement allocation function was, but is never passed a size.
1431 Params.Alignment = PassAlignmentToPlacementDelete;
1432 } else {
1433 // For a non-placement new-expression, 'operator delete' can take a
1434 // size and/or an alignment if it has the right parameters.
1435 Params = getUsualDeleteParams(OperatorDelete);
1436 }
1437
1438 assert(!Params.DestroyingDelete &&((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1439, __PRETTY_FUNCTION__))
1439 "should not call destroying delete in a new-expression")((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1439, __PRETTY_FUNCTION__))
;
1440
1441 // The second argument can be a std::size_t (for non-placement delete).
1442 if (Params.Size)
1443 DeleteArgs.add(Traits::get(CGF, AllocSize),
1444 CGF.getContext().getSizeType());
1445
1446 // The next (second or third) argument can be a std::align_val_t, which
1447 // is an enum whose underlying type is std::size_t.
1448 // FIXME: Use the right type as the parameter type. Note that in a call
1449 // to operator delete(size_t, ...), we may not have it available.
1450 if (Params.Alignment)
1451 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1452 CGF.SizeTy, AllocAlign.getQuantity())),
1453 CGF.getContext().getSizeType());
1454
1455 // Pass the rest of the arguments, which must match exactly.
1456 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1457 auto Arg = getPlacementArgs()[I];
1458 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1459 }
1460
1461 // Call 'operator delete'.
1462 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1463 }
1464 };
1465}
1466
1467/// Enter a cleanup to call 'operator delete' if the initializer in a
1468/// new-expression throws.
1469static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1470 const CXXNewExpr *E,
1471 Address NewPtr,
1472 llvm::Value *AllocSize,
1473 CharUnits AllocAlign,
1474 const CallArgList &NewArgs) {
1475 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1476
1477 // If we're not inside a conditional branch, then the cleanup will
1478 // dominate and we can do the easier (and more efficient) thing.
1479 if (!CGF.isInConditionalBranch()) {
1480 struct DirectCleanupTraits {
1481 typedef llvm::Value *ValueTy;
1482 typedef RValue RValueTy;
1483 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1484 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1485 };
1486
1487 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1488
1489 DirectCleanup *Cleanup = CGF.EHStack
1490 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1491 E->getNumPlacementArgs(),
1492 E->getOperatorDelete(),
1493 NewPtr.getPointer(),
1494 AllocSize,
1495 E->passAlignment(),
1496 AllocAlign);
1497 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1498 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1499 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1500 }
1501
1502 return;
1503 }
1504
1505 // Otherwise, we need to save all this stuff.
1506 DominatingValue<RValue>::saved_type SavedNewPtr =
1507 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1508 DominatingValue<RValue>::saved_type SavedAllocSize =
1509 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1510
1511 struct ConditionalCleanupTraits {
1512 typedef DominatingValue<RValue>::saved_type ValueTy;
1513 typedef DominatingValue<RValue>::saved_type RValueTy;
1514 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1515 return V.restore(CGF);
1516 }
1517 };
1518 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1519
1520 ConditionalCleanup *Cleanup = CGF.EHStack
1521 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1522 E->getNumPlacementArgs(),
1523 E->getOperatorDelete(),
1524 SavedNewPtr,
1525 SavedAllocSize,
1526 E->passAlignment(),
1527 AllocAlign);
1528 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1529 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1530 Cleanup->setPlacementArg(
1531 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1532 }
1533
1534 CGF.initFullExprCleanup();
1535}
1536
1537llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1538 // The element type being allocated.
1539 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1540
1541 // 1. Build a call to the allocation function.
1542 FunctionDecl *allocator = E->getOperatorNew();
1543
1544 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1545 unsigned minElements = 0;
1546 if (E->isArray() && E->hasInitializer()) {
1547 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1548 if (ILE && ILE->isStringLiteralInit())
1549 minElements =
1550 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1551 ->getSize().getZExtValue();
1552 else if (ILE)
1553 minElements = ILE->getNumInits();
1554 }
1555
1556 llvm::Value *numElements = nullptr;
1557 llvm::Value *allocSizeWithoutCookie = nullptr;
1558 llvm::Value *allocSize =
1559 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1560 allocSizeWithoutCookie);
1561 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1562
1563 // Emit the allocation call. If the allocator is a global placement
1564 // operator, just "inline" it directly.
1565 Address allocation = Address::invalid();
1566 CallArgList allocatorArgs;
1567 if (allocator->isReservedGlobalPlacementOperator()) {
1568 assert(E->getNumPlacementArgs() == 1)((E->getNumPlacementArgs() == 1) ? static_cast<void>
(0) : __assert_fail ("E->getNumPlacementArgs() == 1", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1568, __PRETTY_FUNCTION__))
;
1569 const Expr *arg = *E->placement_arguments().begin();
1570
1571 LValueBaseInfo BaseInfo;
1572 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1573
1574 // The pointer expression will, in many cases, be an opaque void*.
1575 // In these cases, discard the computed alignment and use the
1576 // formal alignment of the allocated type.
1577 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1578 allocation = Address(allocation.getPointer(), allocAlign);
1579
1580 // Set up allocatorArgs for the call to operator delete if it's not
1581 // the reserved global operator.
1582 if (E->getOperatorDelete() &&
1583 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1584 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1585 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1586 }
1587
1588 } else {
1589 const FunctionProtoType *allocatorType =
1590 allocator->getType()->castAs<FunctionProtoType>();
1591 unsigned ParamsToSkip = 0;
1592
1593 // The allocation size is the first argument.
1594 QualType sizeType = getContext().getSizeType();
1595 allocatorArgs.add(RValue::get(allocSize), sizeType);
1596 ++ParamsToSkip;
1597
1598 if (allocSize != allocSizeWithoutCookie) {
1599 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1600 allocAlign = std::max(allocAlign, cookieAlign);
1601 }
1602
1603 // The allocation alignment may be passed as the second argument.
1604 if (E->passAlignment()) {
1605 QualType AlignValT = sizeType;
1606 if (allocatorType->getNumParams() > 1) {
1607 AlignValT = allocatorType->getParamType(1);
1608 assert(getContext().hasSameUnqualifiedType(((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1611, __PRETTY_FUNCTION__))
1609 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1611, __PRETTY_FUNCTION__))
1610 sizeType) &&((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1611, __PRETTY_FUNCTION__))
1611 "wrong type for alignment parameter")((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1611, __PRETTY_FUNCTION__))
;
1612 ++ParamsToSkip;
1613 } else {
1614 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1615 assert(allocator->isVariadic() && "can't pass alignment to allocator")((allocator->isVariadic() && "can't pass alignment to allocator"
) ? static_cast<void> (0) : __assert_fail ("allocator->isVariadic() && \"can't pass alignment to allocator\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1615, __PRETTY_FUNCTION__))
;
1616 }
1617 allocatorArgs.add(
1618 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1619 AlignValT);
1620 }
1621
1622 // FIXME: Why do we not pass a CalleeDecl here?
1623 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1624 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1625
1626 RValue RV =
1627 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1628
1629 // If this was a call to a global replaceable allocation function that does
1630 // not take an alignment argument, the allocator is known to produce
1631 // storage that's suitably aligned for any object that fits, up to a known
1632 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1633 CharUnits allocationAlign = allocAlign;
1634 if (!E->passAlignment() &&
1635 allocator->isReplaceableGlobalAllocationFunction()) {
1636 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1637 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1638 allocationAlign = std::max(
1639 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1640 }
1641
1642 allocation = Address(RV.getScalarVal(), allocationAlign);
1643 }
1644
1645 // Emit a null check on the allocation result if the allocation
1646 // function is allowed to return null (because it has a non-throwing
1647 // exception spec or is the reserved placement new) and we have an
1648 // interesting initializer will be running sanitizers on the initialization.
1649 bool nullCheck = E->shouldNullCheckAllocation() &&
1650 (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1651 sanitizePerformTypeCheck());
1652
1653 llvm::BasicBlock *nullCheckBB = nullptr;
1654 llvm::BasicBlock *contBB = nullptr;
1655
1656 // The null-check means that the initializer is conditionally
1657 // evaluated.
1658 ConditionalEvaluation conditional(*this);
1659
1660 if (nullCheck) {
1661 conditional.begin(*this);
1662
1663 nullCheckBB = Builder.GetInsertBlock();
1664 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1665 contBB = createBasicBlock("new.cont");
1666
1667 llvm::Value *isNull =
1668 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1669 Builder.CreateCondBr(isNull, contBB, notNullBB);
1670 EmitBlock(notNullBB);
1671 }
1672
1673 // If there's an operator delete, enter a cleanup to call it if an
1674 // exception is thrown.
1675 EHScopeStack::stable_iterator operatorDeleteCleanup;
1676 llvm::Instruction *cleanupDominator = nullptr;
1677 if (E->getOperatorDelete() &&
1678 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1679 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1680 allocatorArgs);
1681 operatorDeleteCleanup = EHStack.stable_begin();
1682 cleanupDominator = Builder.CreateUnreachable();
1683 }
1684
1685 assert((allocSize == allocSizeWithoutCookie) ==(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1686, __PRETTY_FUNCTION__))
1686 CalculateCookiePadding(*this, E).isZero())(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1686, __PRETTY_FUNCTION__))
;
1687 if (allocSize != allocSizeWithoutCookie) {
1688 assert(E->isArray())((E->isArray()) ? static_cast<void> (0) : __assert_fail
("E->isArray()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1688, __PRETTY_FUNCTION__))
;
1689 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1690 numElements,
1691 E, allocType);
1692 }
1693
1694 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1695 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1696
1697 // Passing pointer through launder.invariant.group to avoid propagation of
1698 // vptrs information which may be included in previous type.
1699 // To not break LTO with different optimizations levels, we do it regardless
1700 // of optimization level.
1701 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1702 allocator->isReservedGlobalPlacementOperator())
1703 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1704 result.getAlignment());
1705
1706 // Emit sanitizer checks for pointer value now, so that in the case of an
1707 // array it was checked only once and not at each constructor call. We may
1708 // have already checked that the pointer is non-null.
1709 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1710 // we'll null check the wrong pointer here.
1711 SanitizerSet SkippedChecks;
1712 SkippedChecks.set(SanitizerKind::Null, nullCheck);
1713 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1714 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1715 result.getPointer(), allocType, result.getAlignment(),
1716 SkippedChecks, numElements);
1717
1718 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1719 allocSizeWithoutCookie);
1720 if (E->isArray()) {
1721 // NewPtr is a pointer to the base element type. If we're
1722 // allocating an array of arrays, we'll need to cast back to the
1723 // array pointer type.
1724 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1725 if (result.getType() != resultType)
1726 result = Builder.CreateBitCast(result, resultType);
1727 }
1728
1729 // Deactivate the 'operator delete' cleanup if we finished
1730 // initialization.
1731 if (operatorDeleteCleanup.isValid()) {
1732 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1733 cleanupDominator->eraseFromParent();
1734 }
1735
1736 llvm::Value *resultPtr = result.getPointer();
1737 if (nullCheck) {
1738 conditional.end(*this);
1739
1740 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1741 EmitBlock(contBB);
1742
1743 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1744 PHI->addIncoming(resultPtr, notNullBB);
1745 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1746 nullCheckBB);
1747
1748 resultPtr = PHI;
1749 }
1750
1751 return resultPtr;
1752}
1753
1754void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1755 llvm::Value *Ptr, QualType DeleteTy,
1756 llvm::Value *NumElements,
1757 CharUnits CookieSize) {
1758 assert((!NumElements && CookieSize.isZero()) ||(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1759, __PRETTY_FUNCTION__))
1759 DeleteFD->getOverloadedOperator() == OO_Array_Delete)(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1759, __PRETTY_FUNCTION__))
;
1760
1761 const FunctionProtoType *DeleteFTy =
1762 DeleteFD->getType()->getAs<FunctionProtoType>();
1763
1764 CallArgList DeleteArgs;
1765
1766 auto Params = getUsualDeleteParams(DeleteFD);
1767 auto ParamTypeIt = DeleteFTy->param_type_begin();
1768
1769 // Pass the pointer itself.
1770 QualType ArgTy = *ParamTypeIt++;
1771 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1772 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1773
1774 // Pass the std::destroying_delete tag if present.
1775 if (Params.DestroyingDelete) {
1776 QualType DDTag = *ParamTypeIt++;
1777 // Just pass an 'undef'. We expect the tag type to be an empty struct.
1778 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1779 DeleteArgs.add(RValue::get(V), DDTag);
1780 }
1781
1782 // Pass the size if the delete function has a size_t parameter.
1783 if (Params.Size) {
1784 QualType SizeType = *ParamTypeIt++;
1785 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1786 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1787 DeleteTypeSize.getQuantity());
1788
1789 // For array new, multiply by the number of elements.
1790 if (NumElements)
1791 Size = Builder.CreateMul(Size, NumElements);
1792
1793 // If there is a cookie, add the cookie size.
1794 if (!CookieSize.isZero())
1795 Size = Builder.CreateAdd(
1796 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1797
1798 DeleteArgs.add(RValue::get(Size), SizeType);
1799 }
1800
1801 // Pass the alignment if the delete function has an align_val_t parameter.
1802 if (Params.Alignment) {
1803 QualType AlignValType = *ParamTypeIt++;
1804 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1805 getContext().getTypeAlignIfKnown(DeleteTy));
1806 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1807 DeleteTypeAlign.getQuantity());
1808 DeleteArgs.add(RValue::get(Align), AlignValType);
1809 }
1810
1811 assert(ParamTypeIt == DeleteFTy->param_type_end() &&((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1812, __PRETTY_FUNCTION__))
1812 "unknown parameter to usual delete function")((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1812, __PRETTY_FUNCTION__))
;
1813
1814 // Emit the call to delete.
1815 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1816}
1817
1818namespace {
1819 /// Calls the given 'operator delete' on a single object.
1820 struct CallObjectDelete final : EHScopeStack::Cleanup {
1821 llvm::Value *Ptr;
1822 const FunctionDecl *OperatorDelete;
1823 QualType ElementType;
1824
1825 CallObjectDelete(llvm::Value *Ptr,
1826 const FunctionDecl *OperatorDelete,
1827 QualType ElementType)
1828 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1829
1830 void Emit(CodeGenFunction &CGF, Flags flags) override {
1831 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1832 }
1833 };
1834}
1835
1836void
1837CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1838 llvm::Value *CompletePtr,
1839 QualType ElementType) {
1840 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1841 OperatorDelete, ElementType);
1842}
1843
1844/// Emit the code for deleting a single object with a destroying operator
1845/// delete. If the element type has a non-virtual destructor, Ptr has already
1846/// been converted to the type of the parameter of 'operator delete'. Otherwise
1847/// Ptr points to an object of the static type.
1848static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1849 const CXXDeleteExpr *DE, Address Ptr,
1850 QualType ElementType) {
1851 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1852 if (Dtor && Dtor->isVirtual())
1853 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1854 Dtor);
1855 else
1856 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1857}
1858
1859/// Emit the code for deleting a single object.
1860static void EmitObjectDelete(CodeGenFunction &CGF,
1861 const CXXDeleteExpr *DE,
1862 Address Ptr,
1863 QualType ElementType) {
1864 // C++11 [expr.delete]p3:
1865 // If the static type of the object to be deleted is different from its
1866 // dynamic type, the static type shall be a base class of the dynamic type
1867 // of the object to be deleted and the static type shall have a virtual
1868 // destructor or the behavior is undefined.
1869 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1870 DE->getExprLoc(), Ptr.getPointer(),
1871 ElementType);
1872
1873 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1874 assert(!OperatorDelete->isDestroyingOperatorDelete())((!OperatorDelete->isDestroyingOperatorDelete()) ? static_cast
<void> (0) : __assert_fail ("!OperatorDelete->isDestroyingOperatorDelete()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1874, __PRETTY_FUNCTION__))
;
1875
1876 // Find the destructor for the type, if applicable. If the
1877 // destructor is virtual, we'll just emit the vcall and return.
1878 const CXXDestructorDecl *Dtor = nullptr;
1879 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1880 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1881 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1882 Dtor = RD->getDestructor();
1883
1884 if (Dtor->isVirtual()) {
1885 bool UseVirtualCall = true;
1886 const Expr *Base = DE->getArgument();
1887 if (auto *DevirtualizedDtor =
1888 dyn_cast_or_null<const CXXDestructorDecl>(
1889 Dtor->getDevirtualizedMethod(
1890 Base, CGF.CGM.getLangOpts().AppleKext))) {
1891 UseVirtualCall = false;
1892 const CXXRecordDecl *DevirtualizedClass =
1893 DevirtualizedDtor->getParent();
1894 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1895 // Devirtualized to the class of the base type (the type of the
1896 // whole expression).
1897 Dtor = DevirtualizedDtor;
1898 } else {
1899 // Devirtualized to some other type. Would need to cast the this
1900 // pointer to that type but we don't have support for that yet, so
1901 // do a virtual call. FIXME: handle the case where it is
1902 // devirtualized to the derived type (the type of the inner
1903 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1904 UseVirtualCall = true;
1905 }
1906 }
1907 if (UseVirtualCall) {
1908 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1909 Dtor);
1910 return;
1911 }
1912 }
1913 }
1914 }
1915
1916 // Make sure that we call delete even if the dtor throws.
1917 // This doesn't have to a conditional cleanup because we're going
1918 // to pop it off in a second.
1919 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1920 Ptr.getPointer(),
1921 OperatorDelete, ElementType);
1922
1923 if (Dtor)
1924 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1925 /*ForVirtualBase=*/false,
1926 /*Delegating=*/false,
1927 Ptr, ElementType);
1928 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1929 switch (Lifetime) {
1930 case Qualifiers::OCL_None:
1931 case Qualifiers::OCL_ExplicitNone:
1932 case Qualifiers::OCL_Autoreleasing:
1933 break;
1934
1935 case Qualifiers::OCL_Strong:
1936 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1937 break;
1938
1939 case Qualifiers::OCL_Weak:
1940 CGF.EmitARCDestroyWeak(Ptr);
1941 break;
1942 }
1943 }
1944
1945 CGF.PopCleanupBlock();
1946}
1947
1948namespace {
1949 /// Calls the given 'operator delete' on an array of objects.
1950 struct CallArrayDelete final : EHScopeStack::Cleanup {
1951 llvm::Value *Ptr;
1952 const FunctionDecl *OperatorDelete;
1953 llvm::Value *NumElements;
1954 QualType ElementType;
1955 CharUnits CookieSize;
1956
1957 CallArrayDelete(llvm::Value *Ptr,
1958 const FunctionDecl *OperatorDelete,
1959 llvm::Value *NumElements,
1960 QualType ElementType,
1961 CharUnits CookieSize)
1962 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1963 ElementType(ElementType), CookieSize(CookieSize) {}
1964
1965 void Emit(CodeGenFunction &CGF, Flags flags) override {
1966 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1967 CookieSize);
1968 }
1969 };
1970}
1971
1972/// Emit the code for deleting an array of objects.
1973static void EmitArrayDelete(CodeGenFunction &CGF,
1974 const CXXDeleteExpr *E,
1975 Address deletedPtr,
1976 QualType elementType) {
1977 llvm::Value *numElements = nullptr;
1978 llvm::Value *allocatedPtr = nullptr;
1979 CharUnits cookieSize;
1980 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1981 numElements, allocatedPtr, cookieSize);
1982
1983 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer")((allocatedPtr && "ReadArrayCookie didn't set allocated pointer"
) ? static_cast<void> (0) : __assert_fail ("allocatedPtr && \"ReadArrayCookie didn't set allocated pointer\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1983, __PRETTY_FUNCTION__))
;
1984
1985 // Make sure that we call delete even if one of the dtors throws.
1986 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1987 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1988 allocatedPtr, operatorDelete,
1989 numElements, elementType,
1990 cookieSize);
1991
1992 // Destroy the elements.
1993 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1994 assert(numElements && "no element count for a type with a destructor!")((numElements && "no element count for a type with a destructor!"
) ? static_cast<void> (0) : __assert_fail ("numElements && \"no element count for a type with a destructor!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1994, __PRETTY_FUNCTION__))
;
1995
1996 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1997 CharUnits elementAlign =
1998 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1999
2000 llvm::Value *arrayBegin = deletedPtr.getPointer();
2001 llvm::Value *arrayEnd =
2002 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
2003
2004 // Note that it is legal to allocate a zero-length array, and we
2005 // can never fold the check away because the length should always
2006 // come from a cookie.
2007 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2008 CGF.getDestroyer(dtorKind),
2009 /*checkZeroLength*/ true,
2010 CGF.needsEHCleanup(dtorKind));
2011 }
2012
2013 // Pop the cleanup block.
2014 CGF.PopCleanupBlock();
2015}
2016
2017void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2018 const Expr *Arg = E->getArgument();
2019 Address Ptr = EmitPointerWithAlignment(Arg);
2020
2021 // Null check the pointer.
2022 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2023 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2024
2025 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2026
2027 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2028 EmitBlock(DeleteNotNull);
2029
2030 QualType DeleteTy = E->getDestroyedType();
2031
2032 // A destroying operator delete overrides the entire operation of the
2033 // delete expression.
2034 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2035 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2036 EmitBlock(DeleteEnd);
2037 return;
2038 }
2039
2040 // We might be deleting a pointer to array. If so, GEP down to the
2041 // first non-array element.
2042 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2043 if (DeleteTy->isConstantArrayType()) {
2044 llvm::Value *Zero = Builder.getInt32(0);
2045 SmallVector<llvm::Value*,8> GEP;
2046
2047 GEP.push_back(Zero); // point at the outermost array
2048
2049 // For each layer of array type we're pointing at:
2050 while (const ConstantArrayType *Arr
2051 = getContext().getAsConstantArrayType(DeleteTy)) {
2052 // 1. Unpeel the array type.
2053 DeleteTy = Arr->getElementType();
2054
2055 // 2. GEP to the first element of the array.
2056 GEP.push_back(Zero);
2057 }
2058
2059 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2060 Ptr.getAlignment());
2061 }
2062
2063 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType())((ConvertTypeForMem(DeleteTy) == Ptr.getElementType()) ? static_cast
<void> (0) : __assert_fail ("ConvertTypeForMem(DeleteTy) == Ptr.getElementType()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2063, __PRETTY_FUNCTION__))
;
2064
2065 if (E->isArrayForm()) {
2066 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2067 } else {
2068 EmitObjectDelete(*this, E, Ptr, DeleteTy);
2069 }
2070
2071 EmitBlock(DeleteEnd);
2072}
2073
2074static bool isGLValueFromPointerDeref(const Expr *E) {
2075 E = E->IgnoreParens();
2076
2077 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2078 if (!CE->getSubExpr()->isGLValue())
2079 return false;
2080 return isGLValueFromPointerDeref(CE->getSubExpr());
2081 }
2082
2083 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2084 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2085
2086 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2087 if (BO->getOpcode() == BO_Comma)
2088 return isGLValueFromPointerDeref(BO->getRHS());
2089
2090 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2091 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2092 isGLValueFromPointerDeref(ACO->getFalseExpr());
2093
2094 // C++11 [expr.sub]p1:
2095 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2096 if (isa<ArraySubscriptExpr>(E))
2097 return true;
2098
2099 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2100 if (UO->getOpcode() == UO_Deref)
2101 return true;
2102
2103 return false;
2104}
2105
2106static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2107 llvm::Type *StdTypeInfoPtrTy) {
2108 // Get the vtable pointer.
2109 Address ThisPtr = CGF.EmitLValue(E).getAddress();
2110
2111 QualType SrcRecordTy = E->getType();
2112
2113 // C++ [class.cdtor]p4:
2114 // If the operand of typeid refers to the object under construction or
2115 // destruction and the static type of the operand is neither the constructor
2116 // or destructor’s class nor one of its bases, the behavior is undefined.
2117 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2118 ThisPtr.getPointer(), SrcRecordTy);
2119
2120 // C++ [expr.typeid]p2:
2121 // If the glvalue expression is obtained by applying the unary * operator to
2122 // a pointer and the pointer is a null pointer value, the typeid expression
2123 // throws the std::bad_typeid exception.
2124 //
2125 // However, this paragraph's intent is not clear. We choose a very generous
2126 // interpretation which implores us to consider comma operators, conditional
2127 // operators, parentheses and other such constructs.
2128 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2129 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2130 llvm::BasicBlock *BadTypeidBlock =
2131 CGF.createBasicBlock("typeid.bad_typeid");
2132 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2133
2134 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2135 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2136
2137 CGF.EmitBlock(BadTypeidBlock);
2138 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2139 CGF.EmitBlock(EndBlock);
2140 }
2141
2142 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2143 StdTypeInfoPtrTy);
2144}
2145
2146llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2147 llvm::Type *StdTypeInfoPtrTy =
2148 ConvertType(E->getType())->getPointerTo();
2149
2150 if (E->isTypeOperand()) {
2151 llvm::Constant *TypeInfo =
2152 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2153 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2154 }
2155
2156 // C++ [expr.typeid]p2:
2157 // When typeid is applied to a glvalue expression whose type is a
2158 // polymorphic class type, the result refers to a std::type_info object
2159 // representing the type of the most derived object (that is, the dynamic
2160 // type) to which the glvalue refers.
2161 if (E->isPotentiallyEvaluated())
2162 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2163 StdTypeInfoPtrTy);
2164
2165 QualType OperandTy = E->getExprOperand()->getType();
2166 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2167 StdTypeInfoPtrTy);
2168}
2169
2170static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2171 QualType DestTy) {
2172 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2173 if (DestTy->isPointerType())
2174 return llvm::Constant::getNullValue(DestLTy);
2175
2176 /// C++ [expr.dynamic.cast]p9:
2177 /// A failed cast to reference type throws std::bad_cast
2178 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2179 return nullptr;
2180
2181 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2182 return llvm::UndefValue::get(DestLTy);
2183}
2184
2185llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2186 const CXXDynamicCastExpr *DCE) {
2187 CGM.EmitExplicitCastExprType(DCE, this);
2188 QualType DestTy = DCE->getTypeAsWritten();
2189
2190 QualType SrcTy = DCE->getSubExpr()->getType();
2191
2192 // C++ [expr.dynamic.cast]p7:
2193 // If T is "pointer to cv void," then the result is a pointer to the most
2194 // derived object pointed to by v.
2195 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2196
2197 bool isDynamicCastToVoid;
2198 QualType SrcRecordTy;
2199 QualType DestRecordTy;
2200 if (DestPTy) {
2201 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2202 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2203 DestRecordTy = DestPTy->getPointeeType();
2204 } else {
2205 isDynamicCastToVoid = false;
2206 SrcRecordTy = SrcTy;
2207 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2208 }
2209
2210 // C++ [class.cdtor]p5:
2211 // If the operand of the dynamic_cast refers to the object under
2212 // construction or destruction and the static type of the operand is not a
2213 // pointer to or object of the constructor or destructor’s own class or one
2214 // of its bases, the dynamic_cast results in undefined behavior.
2215 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2216 SrcRecordTy);
2217
2218 if (DCE->isAlwaysNull())
2219 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2220 return T;
2221
2222 assert(SrcRecordTy->isRecordType() && "source type must be a record type!")((SrcRecordTy->isRecordType() && "source type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("SrcRecordTy->isRecordType() && \"source type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2222, __PRETTY_FUNCTION__))
;
2223
2224 // C++ [expr.dynamic.cast]p4:
2225 // If the value of v is a null pointer value in the pointer case, the result
2226 // is the null pointer value of type T.
2227 bool ShouldNullCheckSrcValue =
2228 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2229 SrcRecordTy);
2230
2231 llvm::BasicBlock *CastNull = nullptr;
2232 llvm::BasicBlock *CastNotNull = nullptr;
2233 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2234
2235 if (ShouldNullCheckSrcValue) {
2236 CastNull = createBasicBlock("dynamic_cast.null");
2237 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2238
2239 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2240 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2241 EmitBlock(CastNotNull);
2242 }
2243
2244 llvm::Value *Value;
2245 if (isDynamicCastToVoid) {
2246 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2247 DestTy);
2248 } else {
2249 assert(DestRecordTy->isRecordType() &&((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2250, __PRETTY_FUNCTION__))
2250 "destination type must be a record type!")((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2250, __PRETTY_FUNCTION__))
;
2251 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2252 DestTy, DestRecordTy, CastEnd);
2253 CastNotNull = Builder.GetInsertBlock();
2254 }
2255
2256 if (ShouldNullCheckSrcValue) {
2257 EmitBranch(CastEnd);
2258
2259 EmitBlock(CastNull);
2260 EmitBranch(CastEnd);
2261 }
2262
2263 EmitBlock(CastEnd);
2264
2265 if (ShouldNullCheckSrcValue) {
2266 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2267 PHI->addIncoming(Value, CastNotNull);
2268 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2269
2270 Value = PHI;
2271 }
2272
2273 return Value;
2274}