Bug Summary

File:tools/clang/lib/CodeGen/CGExprCXX.cpp
Warning:line 1155, column 34
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374877/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374877=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-233810-7101-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp

1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/Basic/CodeGenOptions.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "llvm/IR/Intrinsics.h"
23
24using namespace clang;
25using namespace CodeGen;
26
27namespace {
28struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
32};
33}
34
35static MemberCallInfo
36commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 41, __PRETTY_FUNCTION__))
41 isa<CXXOperatorCallExpr>(CE))((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 41, __PRETTY_FUNCTION__))
;
42 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 43, __PRETTY_FUNCTION__))
43 "Trying to emit a member or operator call expr on a static method!")((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 43, __PRETTY_FUNCTION__))
;
44
45 // Push the this ptr.
46 const CXXRecordDecl *RD =
47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49
50 // If there is an implicit parameter (e.g. VTT), emit it.
51 if (ImplicitParam) {
52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53 }
54
55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57 unsigned PrefixSize = Args.size() - 1;
58
59 // And the rest of the call args.
60 if (RtlArgs) {
61 // Special case: if the caller emitted the arguments right-to-left already
62 // (prior to emitting the *this argument), we're done. This happens for
63 // assignment operators.
64 Args.addFrom(*RtlArgs);
65 } else if (CE) {
66 // Special case: skip first argument of CXXOperatorCall (it is "this").
67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69 CE->getDirectCallee());
70 } else {
71 assert(((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
72 FPT->getNumParams() == 0 &&((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
73 "No CallExpr specified for function with non-zero number of arguments")((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
;
74 }
75 return {required, PrefixSize};
76}
77
78RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79 const CXXMethodDecl *MD, const CGCallee &Callee,
80 ReturnValueSlot ReturnValue,
81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82 const CallExpr *CE, CallArgList *RtlArgs) {
83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84 CallArgList Args;
85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90 CE ? CE->getExprLoc() : SourceLocation());
91}
92
93RValue CodeGenFunction::EmitCXXDestructorCall(
94 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
95 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
96 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
97
98 assert(!ThisTy.isNull())((!ThisTy.isNull()) ? static_cast<void> (0) : __assert_fail
("!ThisTy.isNull()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 98, __PRETTY_FUNCTION__))
;
99 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&((ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent()
&& "Pointer/Object mixup") ? static_cast<void>
(0) : __assert_fail ("ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && \"Pointer/Object mixup\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 100, __PRETTY_FUNCTION__))
100 "Pointer/Object mixup")((ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent()
&& "Pointer/Object mixup") ? static_cast<void>
(0) : __assert_fail ("ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && \"Pointer/Object mixup\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 100, __PRETTY_FUNCTION__))
;
101
102 LangAS SrcAS = ThisTy.getAddressSpace();
103 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
104 if (SrcAS != DstAS) {
105 QualType DstTy = DtorDecl->getThisType();
106 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
107 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
108 NewType);
109 }
110
111 CallArgList Args;
112 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
113 ImplicitParamTy, CE, Args, nullptr);
114 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
115 ReturnValueSlot(), Args);
116}
117
118RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
119 const CXXPseudoDestructorExpr *E) {
120 QualType DestroyedType = E->getDestroyedType();
121 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
122 // Automatic Reference Counting:
123 // If the pseudo-expression names a retainable object with weak or
124 // strong lifetime, the object shall be released.
125 Expr *BaseExpr = E->getBase();
126 Address BaseValue = Address::invalid();
127 Qualifiers BaseQuals;
128
129 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
130 if (E->isArrow()) {
131 BaseValue = EmitPointerWithAlignment(BaseExpr);
132 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
133 BaseQuals = PTy->getPointeeType().getQualifiers();
134 } else {
135 LValue BaseLV = EmitLValue(BaseExpr);
136 BaseValue = BaseLV.getAddress();
137 QualType BaseTy = BaseExpr->getType();
138 BaseQuals = BaseTy.getQualifiers();
139 }
140
141 switch (DestroyedType.getObjCLifetime()) {
142 case Qualifiers::OCL_None:
143 case Qualifiers::OCL_ExplicitNone:
144 case Qualifiers::OCL_Autoreleasing:
145 break;
146
147 case Qualifiers::OCL_Strong:
148 EmitARCRelease(Builder.CreateLoad(BaseValue,
149 DestroyedType.isVolatileQualified()),
150 ARCPreciseLifetime);
151 break;
152
153 case Qualifiers::OCL_Weak:
154 EmitARCDestroyWeak(BaseValue);
155 break;
156 }
157 } else {
158 // C++ [expr.pseudo]p1:
159 // The result shall only be used as the operand for the function call
160 // operator (), and the result of such a call has type void. The only
161 // effect is the evaluation of the postfix-expression before the dot or
162 // arrow.
163 EmitIgnoredExpr(E->getBase());
164 }
165
166 return RValue::get(nullptr);
167}
168
169static CXXRecordDecl *getCXXRecord(const Expr *E) {
170 QualType T = E->getType();
171 if (const PointerType *PTy = T->getAs<PointerType>())
172 T = PTy->getPointeeType();
173 const RecordType *Ty = T->castAs<RecordType>();
174 return cast<CXXRecordDecl>(Ty->getDecl());
175}
176
177// Note: This function also emit constructor calls to support a MSVC
178// extensions allowing explicit constructor function call.
179RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
180 ReturnValueSlot ReturnValue) {
181 const Expr *callee = CE->getCallee()->IgnoreParens();
182
183 if (isa<BinaryOperator>(callee))
184 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
185
186 const MemberExpr *ME = cast<MemberExpr>(callee);
187 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
188
189 if (MD->isStatic()) {
190 // The method is static, emit it as we would a regular call.
191 CGCallee callee =
192 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
193 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
194 ReturnValue);
195 }
196
197 bool HasQualifier = ME->hasQualifier();
198 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
199 bool IsArrow = ME->isArrow();
200 const Expr *Base = ME->getBase();
201
202 return EmitCXXMemberOrOperatorMemberCallExpr(
203 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
204}
205
206RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
207 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
208 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
209 const Expr *Base) {
210 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE))((isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr
>(CE)) ? static_cast<void> (0) : __assert_fail ("isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 210, __PRETTY_FUNCTION__))
;
211
212 // Compute the object pointer.
213 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
214
215 const CXXMethodDecl *DevirtualizedMethod = nullptr;
216 if (CanUseVirtualCall &&
217 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
218 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
219 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
220 assert(DevirtualizedMethod)((DevirtualizedMethod) ? static_cast<void> (0) : __assert_fail
("DevirtualizedMethod", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 220, __PRETTY_FUNCTION__))
;
221 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
222 const Expr *Inner = Base->ignoreParenBaseCasts();
223 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
224 MD->getReturnType().getCanonicalType())
225 // If the return types are not the same, this might be a case where more
226 // code needs to run to compensate for it. For example, the derived
227 // method might return a type that inherits form from the return
228 // type of MD and has a prefix.
229 // For now we just avoid devirtualizing these covariant cases.
230 DevirtualizedMethod = nullptr;
231 else if (getCXXRecord(Inner) == DevirtualizedClass)
232 // If the class of the Inner expression is where the dynamic method
233 // is defined, build the this pointer from it.
234 Base = Inner;
235 else if (getCXXRecord(Base) != DevirtualizedClass) {
236 // If the method is defined in a class that is not the best dynamic
237 // one or the one of the full expression, we would have to build
238 // a derived-to-base cast to compute the correct this pointer, but
239 // we don't have support for that yet, so do a virtual call.
240 DevirtualizedMethod = nullptr;
241 }
242 }
243
244 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
245 // operator before the LHS.
246 CallArgList RtlArgStorage;
247 CallArgList *RtlArgs = nullptr;
248 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
249 if (OCE->isAssignmentOp()) {
250 RtlArgs = &RtlArgStorage;
251 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
252 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
253 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
254 }
255 }
256
257 LValue This;
258 if (IsArrow) {
259 LValueBaseInfo BaseInfo;
260 TBAAAccessInfo TBAAInfo;
261 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
262 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
263 } else {
264 This = EmitLValue(Base);
265 }
266
267 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
268 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
269 // constructing a new complete object of type Ctor.
270 assert(!RtlArgs)((!RtlArgs) ? static_cast<void> (0) : __assert_fail ("!RtlArgs"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 270, __PRETTY_FUNCTION__))
;
271 assert(ReturnValue.isNull() && "Constructor shouldn't have return value")((ReturnValue.isNull() && "Constructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Constructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 271, __PRETTY_FUNCTION__))
;
272 CallArgList Args;
273 commonEmitCXXMemberOrOperatorCall(
274 *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
275 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
276
277 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
278 /*Delegating=*/false, This.getAddress(), Args,
279 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
280 /*NewPointerIsChecked=*/false);
281 return RValue::get(nullptr);
282 }
283
284 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
285 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
286 if (!MD->getParent()->mayInsertExtraPadding()) {
287 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
288 // We don't like to generate the trivial copy/move assignment operator
289 // when it isn't necessary; just produce the proper effect here.
290 LValue RHS = isa<CXXOperatorCallExpr>(CE)
291 ? MakeNaturalAlignAddrLValue(
292 (*RtlArgs)[0].getRValue(*this).getScalarVal(),
293 (*(CE->arg_begin() + 1))->getType())
294 : EmitLValue(*CE->arg_begin());
295 EmitAggregateAssign(This, RHS, CE->getType());
296 return RValue::get(This.getPointer());
297 }
298 llvm_unreachable("unknown trivial member function")::llvm::llvm_unreachable_internal("unknown trivial member function"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 298)
;
299 }
300 }
301
302 // Compute the function type we're calling.
303 const CXXMethodDecl *CalleeDecl =
304 DevirtualizedMethod ? DevirtualizedMethod : MD;
305 const CGFunctionInfo *FInfo = nullptr;
306 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
307 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
308 GlobalDecl(Dtor, Dtor_Complete));
309 else
310 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
311
312 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
313
314 // C++11 [class.mfct.non-static]p2:
315 // If a non-static member function of a class X is called for an object that
316 // is not of type X, or of a type derived from X, the behavior is undefined.
317 SourceLocation CallLoc;
318 ASTContext &C = getContext();
319 if (CE)
320 CallLoc = CE->getExprLoc();
321
322 SanitizerSet SkippedChecks;
323 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
324 auto *IOA = CMCE->getImplicitObjectArgument();
325 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
326 if (IsImplicitObjectCXXThis)
327 SkippedChecks.set(SanitizerKind::Alignment, true);
328 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
329 SkippedChecks.set(SanitizerKind::Null, true);
330 }
331 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
332 C.getRecordType(CalleeDecl->getParent()),
333 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
334
335 // C++ [class.virtual]p12:
336 // Explicit qualification with the scope operator (5.1) suppresses the
337 // virtual call mechanism.
338 //
339 // We also don't emit a virtual call if the base expression has a record type
340 // because then we know what the type is.
341 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
342
343 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
344 assert(CE->arg_begin() == CE->arg_end() &&((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
345 "Destructor shouldn't have explicit parameters")((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
;
346 assert(ReturnValue.isNull() && "Destructor shouldn't have return value")((ReturnValue.isNull() && "Destructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Destructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 346, __PRETTY_FUNCTION__))
;
347 if (UseVirtualCall) {
348 CGM.getCXXABI().EmitVirtualDestructorCall(
349 *this, Dtor, Dtor_Complete, This.getAddress(),
350 cast<CXXMemberCallExpr>(CE));
351 } else {
352 GlobalDecl GD(Dtor, Dtor_Complete);
353 CGCallee Callee;
354 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
355 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
356 else if (!DevirtualizedMethod)
357 Callee =
358 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
359 else {
360 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
361 }
362
363 QualType ThisTy =
364 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
365 EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
366 /*ImplicitParam=*/nullptr,
367 /*ImplicitParamTy=*/QualType(), nullptr);
368 }
369 return RValue::get(nullptr);
370 }
371
372 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
373 // 'CalleeDecl' instead.
374
375 CGCallee Callee;
376 if (UseVirtualCall) {
377 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378 } else {
379 if (SanOpts.has(SanitizerKind::CFINVCall) &&
380 MD->getParent()->isDynamicClass()) {
381 llvm::Value *VTable;
382 const CXXRecordDecl *RD;
383 std::tie(VTable, RD) =
384 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385 MD->getParent());
386 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
387 }
388
389 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391 else if (!DevirtualizedMethod)
392 Callee =
393 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
394 else {
395 Callee =
396 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
397 GlobalDecl(DevirtualizedMethod));
398 }
399 }
400
401 if (MD->isVirtual()) {
402 Address NewThisAddr =
403 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
404 *this, CalleeDecl, This.getAddress(), UseVirtualCall);
405 This.setAddress(NewThisAddr);
406 }
407
408 return EmitCXXMemberOrOperatorCall(
409 CalleeDecl, Callee, ReturnValue, This.getPointer(),
410 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
411}
412
413RValue
414CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
415 ReturnValueSlot ReturnValue) {
416 const BinaryOperator *BO =
417 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
418 const Expr *BaseExpr = BO->getLHS();
419 const Expr *MemFnExpr = BO->getRHS();
420
421 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
422 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
423 const auto *RD =
424 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
425
426 // Emit the 'this' pointer.
427 Address This = Address::invalid();
428 if (BO->getOpcode() == BO_PtrMemI)
429 This = EmitPointerWithAlignment(BaseExpr);
430 else
431 This = EmitLValue(BaseExpr).getAddress();
432
433 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
434 QualType(MPT->getClass(), 0));
435
436 // Get the member function pointer.
437 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
438
439 // Ask the ABI to load the callee. Note that This is modified.
440 llvm::Value *ThisPtrForCall = nullptr;
441 CGCallee Callee =
442 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
443 ThisPtrForCall, MemFnPtr, MPT);
444
445 CallArgList Args;
446
447 QualType ThisType =
448 getContext().getPointerType(getContext().getTagDeclType(RD));
449
450 // Push the this ptr.
451 Args.add(RValue::get(ThisPtrForCall), ThisType);
452
453 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
454
455 // And the rest of the call args
456 EmitCallArgs(Args, FPT, E->arguments());
457 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
458 /*PrefixSize=*/0),
459 Callee, ReturnValue, Args, nullptr, E->getExprLoc());
460}
461
462RValue
463CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
464 const CXXMethodDecl *MD,
465 ReturnValueSlot ReturnValue) {
466 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 467, __PRETTY_FUNCTION__))
467 "Trying to emit a member call expr on a static method!")((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 467, __PRETTY_FUNCTION__))
;
468 return EmitCXXMemberOrOperatorMemberCallExpr(
469 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
470 /*IsArrow=*/false, E->getArg(0));
471}
472
473RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
474 ReturnValueSlot ReturnValue) {
475 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
476}
477
478static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
479 Address DestPtr,
480 const CXXRecordDecl *Base) {
481 if (Base->isEmpty())
482 return;
483
484 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
485
486 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
487 CharUnits NVSize = Layout.getNonVirtualSize();
488
489 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
490 // present, they are initialized by the most derived class before calling the
491 // constructor.
492 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
493 Stores.emplace_back(CharUnits::Zero(), NVSize);
494
495 // Each store is split by the existence of a vbptr.
496 CharUnits VBPtrWidth = CGF.getPointerSize();
497 std::vector<CharUnits> VBPtrOffsets =
498 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
499 for (CharUnits VBPtrOffset : VBPtrOffsets) {
500 // Stop before we hit any virtual base pointers located in virtual bases.
501 if (VBPtrOffset >= NVSize)
502 break;
503 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
504 CharUnits LastStoreOffset = LastStore.first;
505 CharUnits LastStoreSize = LastStore.second;
506
507 CharUnits SplitBeforeOffset = LastStoreOffset;
508 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
509 assert(!SplitBeforeSize.isNegative() && "negative store size!")((!SplitBeforeSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitBeforeSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 509, __PRETTY_FUNCTION__))
;
510 if (!SplitBeforeSize.isZero())
511 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
512
513 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
514 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
515 assert(!SplitAfterSize.isNegative() && "negative store size!")((!SplitAfterSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitAfterSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 515, __PRETTY_FUNCTION__))
;
516 if (!SplitAfterSize.isZero())
517 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
518 }
519
520 // If the type contains a pointer to data member we can't memset it to zero.
521 // Instead, create a null constant and copy it to the destination.
522 // TODO: there are other patterns besides zero that we can usefully memset,
523 // like -1, which happens to be the pattern used by member-pointers.
524 // TODO: isZeroInitializable can be over-conservative in the case where a
525 // virtual base contains a member pointer.
526 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
527 if (!NullConstantForBase->isNullValue()) {
528 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
529 CGF.CGM.getModule(), NullConstantForBase->getType(),
530 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
531 NullConstantForBase, Twine());
532
533 CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
534 DestPtr.getAlignment());
535 NullVariable->setAlignment(Align.getAsAlign());
536
537 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
538
539 // Get and call the appropriate llvm.memcpy overload.
540 for (std::pair<CharUnits, CharUnits> Store : Stores) {
541 CharUnits StoreOffset = Store.first;
542 CharUnits StoreSize = Store.second;
543 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
544 CGF.Builder.CreateMemCpy(
545 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
546 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
547 StoreSizeVal);
548 }
549
550 // Otherwise, just memset the whole thing to zero. This is legal
551 // because in LLVM, all default initializers (other than the ones we just
552 // handled above) are guaranteed to have a bit pattern of all zeros.
553 } else {
554 for (std::pair<CharUnits, CharUnits> Store : Stores) {
555 CharUnits StoreOffset = Store.first;
556 CharUnits StoreSize = Store.second;
557 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
558 CGF.Builder.CreateMemSet(
559 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
560 CGF.Builder.getInt8(0), StoreSizeVal);
561 }
562 }
563}
564
565void
566CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
567 AggValueSlot Dest) {
568 assert(!Dest.isIgnored() && "Must have a destination!")((!Dest.isIgnored() && "Must have a destination!") ? static_cast
<void> (0) : __assert_fail ("!Dest.isIgnored() && \"Must have a destination!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 568, __PRETTY_FUNCTION__))
;
569 const CXXConstructorDecl *CD = E->getConstructor();
570
571 // If we require zero initialization before (or instead of) calling the
572 // constructor, as can be the case with a non-user-provided default
573 // constructor, emit the zero initialization now, unless destination is
574 // already zeroed.
575 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
576 switch (E->getConstructionKind()) {
577 case CXXConstructExpr::CK_Delegating:
578 case CXXConstructExpr::CK_Complete:
579 EmitNullInitialization(Dest.getAddress(), E->getType());
580 break;
581 case CXXConstructExpr::CK_VirtualBase:
582 case CXXConstructExpr::CK_NonVirtualBase:
583 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
584 CD->getParent());
585 break;
586 }
587 }
588
589 // If this is a call to a trivial default constructor, do nothing.
590 if (CD->isTrivial() && CD->isDefaultConstructor())
591 return;
592
593 // Elide the constructor if we're constructing from a temporary.
594 // The temporary check is required because Sema sets this on NRVO
595 // returns.
596 if (getLangOpts().ElideConstructors && E->isElidable()) {
597 assert(getContext().hasSameUnqualifiedType(E->getType(),((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 598, __PRETTY_FUNCTION__))
598 E->getArg(0)->getType()))((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 598, __PRETTY_FUNCTION__))
;
599 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
600 EmitAggExpr(E->getArg(0), Dest);
601 return;
602 }
603 }
604
605 if (const ArrayType *arrayType
606 = getContext().getAsArrayType(E->getType())) {
607 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
608 Dest.isSanitizerChecked());
609 } else {
610 CXXCtorType Type = Ctor_Complete;
611 bool ForVirtualBase = false;
612 bool Delegating = false;
613
614 switch (E->getConstructionKind()) {
615 case CXXConstructExpr::CK_Delegating:
616 // We should be emitting a constructor; GlobalDecl will assert this
617 Type = CurGD.getCtorType();
618 Delegating = true;
619 break;
620
621 case CXXConstructExpr::CK_Complete:
622 Type = Ctor_Complete;
623 break;
624
625 case CXXConstructExpr::CK_VirtualBase:
626 ForVirtualBase = true;
627 LLVM_FALLTHROUGH[[gnu::fallthrough]];
628
629 case CXXConstructExpr::CK_NonVirtualBase:
630 Type = Ctor_Base;
631 }
632
633 // Call the constructor.
634 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
635 }
636}
637
638void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
639 const Expr *Exp) {
640 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
641 Exp = E->getSubExpr();
642 assert(isa<CXXConstructExpr>(Exp) &&((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 643, __PRETTY_FUNCTION__))
643 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr")((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 643, __PRETTY_FUNCTION__))
;
644 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
645 const CXXConstructorDecl *CD = E->getConstructor();
646 RunCleanupsScope Scope(*this);
647
648 // If we require zero initialization before (or instead of) calling the
649 // constructor, as can be the case with a non-user-provided default
650 // constructor, emit the zero initialization now.
651 // FIXME. Do I still need this for a copy ctor synthesis?
652 if (E->requiresZeroInitialization())
653 EmitNullInitialization(Dest, E->getType());
654
655 assert(!getContext().getAsConstantArrayType(E->getType())((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 656, __PRETTY_FUNCTION__))
656 && "EmitSynthesizedCXXCopyCtor - Copied-in Array")((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 656, __PRETTY_FUNCTION__))
;
657 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
658}
659
660static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
661 const CXXNewExpr *E) {
662 if (!E->isArray())
663 return CharUnits::Zero();
664
665 // No cookie is required if the operator new[] being used is the
666 // reserved placement operator new[].
667 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
668 return CharUnits::Zero();
669
670 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
671}
672
673static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
674 const CXXNewExpr *e,
675 unsigned minElements,
676 llvm::Value *&numElements,
677 llvm::Value *&sizeWithoutCookie) {
678 QualType type = e->getAllocatedType();
679
680 if (!e->isArray()) {
4
Taking true branch
681 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
682 sizeWithoutCookie
683 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
684 return sizeWithoutCookie;
5
Returning without writing to 'numElements'
685 }
686
687 // The width of size_t.
688 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
689
690 // Figure out the cookie size.
691 llvm::APInt cookieSize(sizeWidth,
692 CalculateCookiePadding(CGF, e).getQuantity());
693
694 // Emit the array size expression.
695 // We multiply the size of all dimensions for NumElements.
696 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
697 numElements =
698 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
699 if (!numElements)
700 numElements = CGF.EmitScalarExpr(*e->getArraySize());
701 assert(isa<llvm::IntegerType>(numElements->getType()))((isa<llvm::IntegerType>(numElements->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(numElements->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 701, __PRETTY_FUNCTION__))
;
702
703 // The number of elements can be have an arbitrary integer type;
704 // essentially, we need to multiply it by a constant factor, add a
705 // cookie size, and verify that the result is representable as a
706 // size_t. That's just a gloss, though, and it's wrong in one
707 // important way: if the count is negative, it's an error even if
708 // the cookie size would bring the total size >= 0.
709 bool isSigned
710 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
711 llvm::IntegerType *numElementsType
712 = cast<llvm::IntegerType>(numElements->getType());
713 unsigned numElementsWidth = numElementsType->getBitWidth();
714
715 // Compute the constant factor.
716 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
717 while (const ConstantArrayType *CAT
718 = CGF.getContext().getAsConstantArrayType(type)) {
719 type = CAT->getElementType();
720 arraySizeMultiplier *= CAT->getSize();
721 }
722
723 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
724 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
725 typeSizeMultiplier *= arraySizeMultiplier;
726
727 // This will be a size_t.
728 llvm::Value *size;
729
730 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
731 // Don't bloat the -O0 code.
732 if (llvm::ConstantInt *numElementsC =
733 dyn_cast<llvm::ConstantInt>(numElements)) {
734 const llvm::APInt &count = numElementsC->getValue();
735
736 bool hasAnyOverflow = false;
737
738 // If 'count' was a negative number, it's an overflow.
739 if (isSigned && count.isNegative())
740 hasAnyOverflow = true;
741
742 // We want to do all this arithmetic in size_t. If numElements is
743 // wider than that, check whether it's already too big, and if so,
744 // overflow.
745 else if (numElementsWidth > sizeWidth &&
746 numElementsWidth - sizeWidth > count.countLeadingZeros())
747 hasAnyOverflow = true;
748
749 // Okay, compute a count at the right width.
750 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
751
752 // If there is a brace-initializer, we cannot allocate fewer elements than
753 // there are initializers. If we do, that's treated like an overflow.
754 if (adjustedCount.ult(minElements))
755 hasAnyOverflow = true;
756
757 // Scale numElements by that. This might overflow, but we don't
758 // care because it only overflows if allocationSize does, too, and
759 // if that overflows then we shouldn't use this.
760 numElements = llvm::ConstantInt::get(CGF.SizeTy,
761 adjustedCount * arraySizeMultiplier);
762
763 // Compute the size before cookie, and track whether it overflowed.
764 bool overflow;
765 llvm::APInt allocationSize
766 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
767 hasAnyOverflow |= overflow;
768
769 // Add in the cookie, and check whether it's overflowed.
770 if (cookieSize != 0) {
771 // Save the current size without a cookie. This shouldn't be
772 // used if there was overflow.
773 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
774
775 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
776 hasAnyOverflow |= overflow;
777 }
778
779 // On overflow, produce a -1 so operator new will fail.
780 if (hasAnyOverflow) {
781 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
782 } else {
783 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
784 }
785
786 // Otherwise, we might need to use the overflow intrinsics.
787 } else {
788 // There are up to five conditions we need to test for:
789 // 1) if isSigned, we need to check whether numElements is negative;
790 // 2) if numElementsWidth > sizeWidth, we need to check whether
791 // numElements is larger than something representable in size_t;
792 // 3) if minElements > 0, we need to check whether numElements is smaller
793 // than that.
794 // 4) we need to compute
795 // sizeWithoutCookie := numElements * typeSizeMultiplier
796 // and check whether it overflows; and
797 // 5) if we need a cookie, we need to compute
798 // size := sizeWithoutCookie + cookieSize
799 // and check whether it overflows.
800
801 llvm::Value *hasOverflow = nullptr;
802
803 // If numElementsWidth > sizeWidth, then one way or another, we're
804 // going to have to do a comparison for (2), and this happens to
805 // take care of (1), too.
806 if (numElementsWidth > sizeWidth) {
807 llvm::APInt threshold(numElementsWidth, 1);
808 threshold <<= sizeWidth;
809
810 llvm::Value *thresholdV
811 = llvm::ConstantInt::get(numElementsType, threshold);
812
813 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
814 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
815
816 // Otherwise, if we're signed, we want to sext up to size_t.
817 } else if (isSigned) {
818 if (numElementsWidth < sizeWidth)
819 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
820
821 // If there's a non-1 type size multiplier, then we can do the
822 // signedness check at the same time as we do the multiply
823 // because a negative number times anything will cause an
824 // unsigned overflow. Otherwise, we have to do it here. But at least
825 // in this case, we can subsume the >= minElements check.
826 if (typeSizeMultiplier == 1)
827 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
828 llvm::ConstantInt::get(CGF.SizeTy, minElements));
829
830 // Otherwise, zext up to size_t if necessary.
831 } else if (numElementsWidth < sizeWidth) {
832 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
833 }
834
835 assert(numElements->getType() == CGF.SizeTy)((numElements->getType() == CGF.SizeTy) ? static_cast<void
> (0) : __assert_fail ("numElements->getType() == CGF.SizeTy"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 835, __PRETTY_FUNCTION__))
;
836
837 if (minElements) {
838 // Don't allow allocation of fewer elements than we have initializers.
839 if (!hasOverflow) {
840 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
841 llvm::ConstantInt::get(CGF.SizeTy, minElements));
842 } else if (numElementsWidth > sizeWidth) {
843 // The other existing overflow subsumes this check.
844 // We do an unsigned comparison, since any signed value < -1 is
845 // taken care of either above or below.
846 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
847 CGF.Builder.CreateICmpULT(numElements,
848 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
849 }
850 }
851
852 size = numElements;
853
854 // Multiply by the type size if necessary. This multiplier
855 // includes all the factors for nested arrays.
856 //
857 // This step also causes numElements to be scaled up by the
858 // nested-array factor if necessary. Overflow on this computation
859 // can be ignored because the result shouldn't be used if
860 // allocation fails.
861 if (typeSizeMultiplier != 1) {
862 llvm::Function *umul_with_overflow
863 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
864
865 llvm::Value *tsmV =
866 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
867 llvm::Value *result =
868 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
869
870 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
871 if (hasOverflow)
872 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
873 else
874 hasOverflow = overflowed;
875
876 size = CGF.Builder.CreateExtractValue(result, 0);
877
878 // Also scale up numElements by the array size multiplier.
879 if (arraySizeMultiplier != 1) {
880 // If the base element type size is 1, then we can re-use the
881 // multiply we just did.
882 if (typeSize.isOne()) {
883 assert(arraySizeMultiplier == typeSizeMultiplier)((arraySizeMultiplier == typeSizeMultiplier) ? static_cast<
void> (0) : __assert_fail ("arraySizeMultiplier == typeSizeMultiplier"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 883, __PRETTY_FUNCTION__))
;
884 numElements = size;
885
886 // Otherwise we need a separate multiply.
887 } else {
888 llvm::Value *asmV =
889 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
890 numElements = CGF.Builder.CreateMul(numElements, asmV);
891 }
892 }
893 } else {
894 // numElements doesn't need to be scaled.
895 assert(arraySizeMultiplier == 1)((arraySizeMultiplier == 1) ? static_cast<void> (0) : __assert_fail
("arraySizeMultiplier == 1", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 895, __PRETTY_FUNCTION__))
;
896 }
897
898 // Add in the cookie size if necessary.
899 if (cookieSize != 0) {
900 sizeWithoutCookie = size;
901
902 llvm::Function *uadd_with_overflow
903 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
904
905 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
906 llvm::Value *result =
907 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
908
909 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
910 if (hasOverflow)
911 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
912 else
913 hasOverflow = overflowed;
914
915 size = CGF.Builder.CreateExtractValue(result, 0);
916 }
917
918 // If we had any possibility of dynamic overflow, make a select to
919 // overwrite 'size' with an all-ones value, which should cause
920 // operator new to throw.
921 if (hasOverflow)
922 size = CGF.Builder.CreateSelect(hasOverflow,
923 llvm::Constant::getAllOnesValue(CGF.SizeTy),
924 size);
925 }
926
927 if (cookieSize == 0)
928 sizeWithoutCookie = size;
929 else
930 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?")((sizeWithoutCookie && "didn't set sizeWithoutCookie?"
) ? static_cast<void> (0) : __assert_fail ("sizeWithoutCookie && \"didn't set sizeWithoutCookie?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 930, __PRETTY_FUNCTION__))
;
931
932 return size;
933}
934
935static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
936 QualType AllocType, Address NewPtr,
937 AggValueSlot::Overlap_t MayOverlap) {
938 // FIXME: Refactor with EmitExprAsInit.
939 switch (CGF.getEvaluationKind(AllocType)) {
940 case TEK_Scalar:
941 CGF.EmitScalarInit(Init, nullptr,
942 CGF.MakeAddrLValue(NewPtr, AllocType), false);
943 return;
944 case TEK_Complex:
945 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
946 /*isInit*/ true);
947 return;
948 case TEK_Aggregate: {
949 AggValueSlot Slot
950 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
951 AggValueSlot::IsDestructed,
952 AggValueSlot::DoesNotNeedGCBarriers,
953 AggValueSlot::IsNotAliased,
954 MayOverlap, AggValueSlot::IsNotZeroed,
955 AggValueSlot::IsSanitizerChecked);
956 CGF.EmitAggExpr(Init, Slot);
957 return;
958 }
959 }
960 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 960)
;
961}
962
963void CodeGenFunction::EmitNewArrayInitializer(
964 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
965 Address BeginPtr, llvm::Value *NumElements,
966 llvm::Value *AllocSizeWithoutCookie) {
967 // If we have a type with trivial initialization and no initializer,
968 // there's nothing to do.
969 if (!E->hasInitializer())
25
Calling 'CXXNewExpr::hasInitializer'
28
Returning from 'CXXNewExpr::hasInitializer'
29
Taking false branch
970 return;
971
972 Address CurPtr = BeginPtr;
973
974 unsigned InitListElements = 0;
975
976 const Expr *Init = E->getInitializer();
977 Address EndOfInit = Address::invalid();
978 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
979 EHScopeStack::stable_iterator Cleanup;
980 llvm::Instruction *CleanupDominator = nullptr;
981
982 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
983 CharUnits ElementAlign =
984 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
985
986 // Attempt to perform zero-initialization using memset.
987 auto TryMemsetInitialization = [&]() -> bool {
988 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
989 // we can initialize with a memset to -1.
990 if (!CGM.getTypes().isZeroInitializable(ElementType))
991 return false;
992
993 // Optimization: since zero initialization will just set the memory
994 // to all zeroes, generate a single memset to do it in one shot.
995
996 // Subtract out the size of any elements we've already initialized.
997 auto *RemainingSize = AllocSizeWithoutCookie;
998 if (InitListElements) {
999 // We know this can't overflow; we check this when doing the allocation.
1000 auto *InitializedSize = llvm::ConstantInt::get(
1001 RemainingSize->getType(),
1002 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1003 InitListElements);
1004 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1005 }
1006
1007 // Create the memset.
1008 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1009 return true;
1010 };
1011
1012 // If the initializer is an initializer list, first do the explicit elements.
1013 if (const InitListExpr *ILE
30.1
'ILE' is non-null
30.1
'ILE' is non-null
= dyn_cast<InitListExpr>(Init)) {
30
Assuming 'Init' is a 'InitListExpr'
31
Taking true branch
1014 // Initializing from a (braced) string literal is a special case; the init
1015 // list element does not initialize a (single) array element.
1016 if (ILE->isStringLiteralInit()) {
32
Assuming the condition is false
33
Taking false branch
1017 // Initialize the initial portion of length equal to that of the string
1018 // literal. The allocation must be for at least this much; we emitted a
1019 // check for that earlier.
1020 AggValueSlot Slot =
1021 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1022 AggValueSlot::IsDestructed,
1023 AggValueSlot::DoesNotNeedGCBarriers,
1024 AggValueSlot::IsNotAliased,
1025 AggValueSlot::DoesNotOverlap,
1026 AggValueSlot::IsNotZeroed,
1027 AggValueSlot::IsSanitizerChecked);
1028 EmitAggExpr(ILE->getInit(0), Slot);
1029
1030 // Move past these elements.
1031 InitListElements =
1032 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1033 ->getSize().getZExtValue();
1034 CurPtr =
1035 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1036 Builder.getSize(InitListElements),
1037 "string.init.end"),
1038 CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1039 ElementSize));
1040
1041 // Zero out the rest, if any remain.
1042 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1043 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1044 bool OK = TryMemsetInitialization();
1045 (void)OK;
1046 assert(OK && "couldn't memset character type?")((OK && "couldn't memset character type?") ? static_cast
<void> (0) : __assert_fail ("OK && \"couldn't memset character type?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1046, __PRETTY_FUNCTION__))
;
1047 }
1048 return;
1049 }
1050
1051 InitListElements = ILE->getNumInits();
1052
1053 // If this is a multi-dimensional array new, we will initialize multiple
1054 // elements with each init list element.
1055 QualType AllocType = E->getAllocatedType();
1056 if (const ConstantArrayType *CAT
34.1
'CAT' is null
34.1
'CAT' is null
= dyn_cast_or_null<ConstantArrayType>(
34
Assuming null pointer is passed into cast
35
Taking false branch
1057 AllocType->getAsArrayTypeUnsafe())) {
1058 ElementTy = ConvertTypeForMem(AllocType);
1059 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1060 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1061 }
1062
1063 // Enter a partial-destruction Cleanup if necessary.
1064 if (needsEHCleanup(DtorKind)) {
36
Taking false branch
1065 // In principle we could tell the Cleanup where we are more
1066 // directly, but the control flow can get so varied here that it
1067 // would actually be quite complex. Therefore we go through an
1068 // alloca.
1069 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1070 "array.init.end");
1071 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1072 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1073 ElementType, ElementAlign,
1074 getDestroyer(DtorKind));
1075 Cleanup = EHStack.stable_begin();
1076 }
1077
1078 CharUnits StartAlign = CurPtr.getAlignment();
1079 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
37
Assuming 'i' is equal to 'e'
38
Loop condition is false. Execution continues on line 1101
1080 // Tell the cleanup that it needs to destroy up to this
1081 // element. TODO: some of these stores can be trivially
1082 // observed to be unnecessary.
1083 if (EndOfInit.isValid()) {
1084 auto FinishedPtr =
1085 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1086 Builder.CreateStore(FinishedPtr, EndOfInit);
1087 }
1088 // FIXME: If the last initializer is an incomplete initializer list for
1089 // an array, and we have an array filler, we can fold together the two
1090 // initialization loops.
1091 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1092 ILE->getInit(i)->getType(), CurPtr,
1093 AggValueSlot::DoesNotOverlap);
1094 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1095 Builder.getSize(1),
1096 "array.exp.next"),
1097 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1098 }
1099
1100 // The remaining elements are filled with the array filler expression.
1101 Init = ILE->getArrayFiller();
1102
1103 // Extract the initializer for the individual array elements by pulling
1104 // out the array filler from all the nested initializer lists. This avoids
1105 // generating a nested loop for the initialization.
1106 while (Init && Init->getType()->isConstantArrayType()) {
39
Assuming 'Init' is non-null
40
Loop condition is false. Execution continues on line 1115
1107 auto *SubILE = dyn_cast<InitListExpr>(Init);
1108 if (!SubILE)
1109 break;
1110 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?")((SubILE->getNumInits() == 0 && "explicit inits in array filler?"
) ? static_cast<void> (0) : __assert_fail ("SubILE->getNumInits() == 0 && \"explicit inits in array filler?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1110, __PRETTY_FUNCTION__))
;
1111 Init = SubILE->getArrayFiller();
1112 }
1113
1114 // Switch back to initializing one base element at a time.
1115 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1116 }
1117
1118 // If all elements have already been initialized, skip any further
1119 // initialization.
1120 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1121 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
41
Assuming 'ConstNum' is null
1122 // If there was a Cleanup, deactivate it.
1123 if (CleanupDominator)
1124 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1125 return;
1126 }
1127
1128 assert
41.1
'Init' is non-null
41.1
'Init' is non-null
(Init && "have trailing elements to initialize but no initializer")((Init && "have trailing elements to initialize but no initializer"
) ? static_cast<void> (0) : __assert_fail ("Init && \"have trailing elements to initialize but no initializer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1128, __PRETTY_FUNCTION__))
;
42
'?' condition is true
1129
1130 // If this is a constructor call, try to optimize it out, and failing that
1131 // emit a single loop to initialize all remaining elements.
1132 if (const CXXConstructExpr *CCE
43.1
'CCE' is non-null
43.1
'CCE' is non-null
= dyn_cast<CXXConstructExpr>(Init)) {
43
Assuming 'Init' is a 'CXXConstructExpr'
44
Taking true branch
1133 CXXConstructorDecl *Ctor = CCE->getConstructor();
1134 if (Ctor->isTrivial()) {
45
Assuming the condition is false
46
Taking false branch
1135 // If new expression did not specify value-initialization, then there
1136 // is no initialization.
1137 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1138 return;
1139
1140 if (TryMemsetInitialization())
1141 return;
1142 }
1143
1144 // Store the new Cleanup position for irregular Cleanups.
1145 //
1146 // FIXME: Share this cleanup with the constructor call emission rather than
1147 // having it create a cleanup of its own.
1148 if (EndOfInit.isValid())
47
Taking false branch
1149 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1150
1151 // Emit a constructor call loop to initialize the remaining elements.
1152 if (InitListElements)
48
Assuming 'InitListElements' is not equal to 0
49
Taking true branch
1153 NumElements = Builder.CreateSub(
1154 NumElements,
1155 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
50
Called C++ object pointer is null
1156 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1157 /*NewPointerIsChecked*/true,
1158 CCE->requiresZeroInitialization());
1159 return;
1160 }
1161
1162 // If this is value-initialization, we can usually use memset.
1163 ImplicitValueInitExpr IVIE(ElementType);
1164 if (isa<ImplicitValueInitExpr>(Init)) {
1165 if (TryMemsetInitialization())
1166 return;
1167
1168 // Switch to an ImplicitValueInitExpr for the element type. This handles
1169 // only one case: multidimensional array new of pointers to members. In
1170 // all other cases, we already have an initializer for the array element.
1171 Init = &IVIE;
1172 }
1173
1174 // At this point we should have found an initializer for the individual
1175 // elements of the array.
1176 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1177, __PRETTY_FUNCTION__))
1177 "got wrong type of element to initialize")((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1177, __PRETTY_FUNCTION__))
;
1178
1179 // If we have an empty initializer list, we can usually use memset.
1180 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1181 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1182 return;
1183
1184 // If we have a struct whose every field is value-initialized, we can
1185 // usually use memset.
1186 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1187 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1188 if (RType->getDecl()->isStruct()) {
1189 unsigned NumElements = 0;
1190 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1191 NumElements = CXXRD->getNumBases();
1192 for (auto *Field : RType->getDecl()->fields())
1193 if (!Field->isUnnamedBitfield())
1194 ++NumElements;
1195 // FIXME: Recurse into nested InitListExprs.
1196 if (ILE->getNumInits() == NumElements)
1197 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1198 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1199 --NumElements;
1200 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1201 return;
1202 }
1203 }
1204 }
1205
1206 // Create the loop blocks.
1207 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1208 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1209 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1210
1211 // Find the end of the array, hoisted out of the loop.
1212 llvm::Value *EndPtr =
1213 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1214
1215 // If the number of elements isn't constant, we have to now check if there is
1216 // anything left to initialize.
1217 if (!ConstNum) {
1218 llvm::Value *IsEmpty =
1219 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1220 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1221 }
1222
1223 // Enter the loop.
1224 EmitBlock(LoopBB);
1225
1226 // Set up the current-element phi.
1227 llvm::PHINode *CurPtrPhi =
1228 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1229 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1230
1231 CurPtr = Address(CurPtrPhi, ElementAlign);
1232
1233 // Store the new Cleanup position for irregular Cleanups.
1234 if (EndOfInit.isValid())
1235 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1236
1237 // Enter a partial-destruction Cleanup if necessary.
1238 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1239 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1240 ElementType, ElementAlign,
1241 getDestroyer(DtorKind));
1242 Cleanup = EHStack.stable_begin();
1243 CleanupDominator = Builder.CreateUnreachable();
1244 }
1245
1246 // Emit the initializer into this element.
1247 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1248 AggValueSlot::DoesNotOverlap);
1249
1250 // Leave the Cleanup if we entered one.
1251 if (CleanupDominator) {
1252 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1253 CleanupDominator->eraseFromParent();
1254 }
1255
1256 // Advance to the next element by adjusting the pointer type as necessary.
1257 llvm::Value *NextPtr =
1258 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1259 "array.next");
1260
1261 // Check whether we've gotten to the end of the array and, if so,
1262 // exit the loop.
1263 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1264 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1265 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1266
1267 EmitBlock(ContBB);
1268}
1269
1270static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1271 QualType ElementType, llvm::Type *ElementTy,
1272 Address NewPtr, llvm::Value *NumElements,
1273 llvm::Value *AllocSizeWithoutCookie) {
1274 ApplyDebugLocation DL(CGF, E);
1275 if (E->isArray())
22
Taking true branch
1276 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
23
Passing null pointer value via 5th parameter 'NumElements'
24
Calling 'CodeGenFunction::EmitNewArrayInitializer'
1277 AllocSizeWithoutCookie);
1278 else if (const Expr *Init = E->getInitializer())
1279 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1280 AggValueSlot::DoesNotOverlap);
1281}
1282
1283/// Emit a call to an operator new or operator delete function, as implicitly
1284/// created by new-expressions and delete-expressions.
1285static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1286 const FunctionDecl *CalleeDecl,
1287 const FunctionProtoType *CalleeType,
1288 const CallArgList &Args) {
1289 llvm::CallBase *CallOrInvoke;
1290 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1291 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1292 RValue RV =
1293 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1294 Args, CalleeType, /*ChainCall=*/false),
1295 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1296
1297 /// C++1y [expr.new]p10:
1298 /// [In a new-expression,] an implementation is allowed to omit a call
1299 /// to a replaceable global allocation function.
1300 ///
1301 /// We model such elidable calls with the 'builtin' attribute.
1302 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1303 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1304 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1305 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1306 llvm::Attribute::Builtin);
1307 }
1308
1309 return RV;
1310}
1311
1312RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1313 const CallExpr *TheCall,
1314 bool IsDelete) {
1315 CallArgList Args;
1316 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1317 // Find the allocation or deallocation function that we're calling.
1318 ASTContext &Ctx = getContext();
1319 DeclarationName Name = Ctx.DeclarationNames
1320 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1321
1322 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1323 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1324 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1325 return EmitNewDeleteCall(*this, FD, Type, Args);
1326 llvm_unreachable("predeclared global operator new/delete is missing")::llvm::llvm_unreachable_internal("predeclared global operator new/delete is missing"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1326)
;
1327}
1328
1329namespace {
1330/// The parameters to pass to a usual operator delete.
1331struct UsualDeleteParams {
1332 bool DestroyingDelete = false;
1333 bool Size = false;
1334 bool Alignment = false;
1335};
1336}
1337
1338static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1339 UsualDeleteParams Params;
1340
1341 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1342 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1343
1344 // The first argument is always a void*.
1345 ++AI;
1346
1347 // The next parameter may be a std::destroying_delete_t.
1348 if (FD->isDestroyingOperatorDelete()) {
1349 Params.DestroyingDelete = true;
1350 assert(AI != AE)((AI != AE) ? static_cast<void> (0) : __assert_fail ("AI != AE"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1350, __PRETTY_FUNCTION__))
;
1351 ++AI;
1352 }
1353
1354 // Figure out what other parameters we should be implicitly passing.
1355 if (AI != AE && (*AI)->isIntegerType()) {
1356 Params.Size = true;
1357 ++AI;
1358 }
1359
1360 if (AI != AE && (*AI)->isAlignValT()) {
1361 Params.Alignment = true;
1362 ++AI;
1363 }
1364
1365 assert(AI == AE && "unexpected usual deallocation function parameter")((AI == AE && "unexpected usual deallocation function parameter"
) ? static_cast<void> (0) : __assert_fail ("AI == AE && \"unexpected usual deallocation function parameter\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1365, __PRETTY_FUNCTION__))
;
1366 return Params;
1367}
1368
1369namespace {
1370 /// A cleanup to call the given 'operator delete' function upon abnormal
1371 /// exit from a new expression. Templated on a traits type that deals with
1372 /// ensuring that the arguments dominate the cleanup if necessary.
1373 template<typename Traits>
1374 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1375 /// Type used to hold llvm::Value*s.
1376 typedef typename Traits::ValueTy ValueTy;
1377 /// Type used to hold RValues.
1378 typedef typename Traits::RValueTy RValueTy;
1379 struct PlacementArg {
1380 RValueTy ArgValue;
1381 QualType ArgType;
1382 };
1383
1384 unsigned NumPlacementArgs : 31;
1385 unsigned PassAlignmentToPlacementDelete : 1;
1386 const FunctionDecl *OperatorDelete;
1387 ValueTy Ptr;
1388 ValueTy AllocSize;
1389 CharUnits AllocAlign;
1390
1391 PlacementArg *getPlacementArgs() {
1392 return reinterpret_cast<PlacementArg *>(this + 1);
1393 }
1394
1395 public:
1396 static size_t getExtraSize(size_t NumPlacementArgs) {
1397 return NumPlacementArgs * sizeof(PlacementArg);
1398 }
1399
1400 CallDeleteDuringNew(size_t NumPlacementArgs,
1401 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1402 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1403 CharUnits AllocAlign)
1404 : NumPlacementArgs(NumPlacementArgs),
1405 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1406 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1407 AllocAlign(AllocAlign) {}
1408
1409 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1410 assert(I < NumPlacementArgs && "index out of range")((I < NumPlacementArgs && "index out of range") ? static_cast
<void> (0) : __assert_fail ("I < NumPlacementArgs && \"index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1410, __PRETTY_FUNCTION__))
;
1411 getPlacementArgs()[I] = {Arg, Type};
1412 }
1413
1414 void Emit(CodeGenFunction &CGF, Flags flags) override {
1415 const FunctionProtoType *FPT =
1416 OperatorDelete->getType()->getAs<FunctionProtoType>();
1417 CallArgList DeleteArgs;
1418
1419 // The first argument is always a void* (or C* for a destroying operator
1420 // delete for class type C).
1421 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1422
1423 // Figure out what other parameters we should be implicitly passing.
1424 UsualDeleteParams Params;
1425 if (NumPlacementArgs) {
1426 // A placement deallocation function is implicitly passed an alignment
1427 // if the placement allocation function was, but is never passed a size.
1428 Params.Alignment = PassAlignmentToPlacementDelete;
1429 } else {
1430 // For a non-placement new-expression, 'operator delete' can take a
1431 // size and/or an alignment if it has the right parameters.
1432 Params = getUsualDeleteParams(OperatorDelete);
1433 }
1434
1435 assert(!Params.DestroyingDelete &&((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1436, __PRETTY_FUNCTION__))
1436 "should not call destroying delete in a new-expression")((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1436, __PRETTY_FUNCTION__))
;
1437
1438 // The second argument can be a std::size_t (for non-placement delete).
1439 if (Params.Size)
1440 DeleteArgs.add(Traits::get(CGF, AllocSize),
1441 CGF.getContext().getSizeType());
1442
1443 // The next (second or third) argument can be a std::align_val_t, which
1444 // is an enum whose underlying type is std::size_t.
1445 // FIXME: Use the right type as the parameter type. Note that in a call
1446 // to operator delete(size_t, ...), we may not have it available.
1447 if (Params.Alignment)
1448 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1449 CGF.SizeTy, AllocAlign.getQuantity())),
1450 CGF.getContext().getSizeType());
1451
1452 // Pass the rest of the arguments, which must match exactly.
1453 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1454 auto Arg = getPlacementArgs()[I];
1455 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1456 }
1457
1458 // Call 'operator delete'.
1459 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1460 }
1461 };
1462}
1463
1464/// Enter a cleanup to call 'operator delete' if the initializer in a
1465/// new-expression throws.
1466static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1467 const CXXNewExpr *E,
1468 Address NewPtr,
1469 llvm::Value *AllocSize,
1470 CharUnits AllocAlign,
1471 const CallArgList &NewArgs) {
1472 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1473
1474 // If we're not inside a conditional branch, then the cleanup will
1475 // dominate and we can do the easier (and more efficient) thing.
1476 if (!CGF.isInConditionalBranch()) {
1477 struct DirectCleanupTraits {
1478 typedef llvm::Value *ValueTy;
1479 typedef RValue RValueTy;
1480 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1481 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1482 };
1483
1484 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1485
1486 DirectCleanup *Cleanup = CGF.EHStack
1487 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1488 E->getNumPlacementArgs(),
1489 E->getOperatorDelete(),
1490 NewPtr.getPointer(),
1491 AllocSize,
1492 E->passAlignment(),
1493 AllocAlign);
1494 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1495 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1496 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1497 }
1498
1499 return;
1500 }
1501
1502 // Otherwise, we need to save all this stuff.
1503 DominatingValue<RValue>::saved_type SavedNewPtr =
1504 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1505 DominatingValue<RValue>::saved_type SavedAllocSize =
1506 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1507
1508 struct ConditionalCleanupTraits {
1509 typedef DominatingValue<RValue>::saved_type ValueTy;
1510 typedef DominatingValue<RValue>::saved_type RValueTy;
1511 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1512 return V.restore(CGF);
1513 }
1514 };
1515 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1516
1517 ConditionalCleanup *Cleanup = CGF.EHStack
1518 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1519 E->getNumPlacementArgs(),
1520 E->getOperatorDelete(),
1521 SavedNewPtr,
1522 SavedAllocSize,
1523 E->passAlignment(),
1524 AllocAlign);
1525 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1526 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1527 Cleanup->setPlacementArg(
1528 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1529 }
1530
1531 CGF.initFullExprCleanup();
1532}
1533
1534llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1535 // The element type being allocated.
1536 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1537
1538 // 1. Build a call to the allocation function.
1539 FunctionDecl *allocator = E->getOperatorNew();
1540
1541 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1542 unsigned minElements = 0;
1543 if (E->isArray() && E->hasInitializer()) {
1
Assuming the condition is false
1544 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1545 if (ILE && ILE->isStringLiteralInit())
1546 minElements =
1547 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1548 ->getSize().getZExtValue();
1549 else if (ILE)
1550 minElements = ILE->getNumInits();
1551 }
1552
1553 llvm::Value *numElements = nullptr;
2
'numElements' initialized to a null pointer value
1554 llvm::Value *allocSizeWithoutCookie = nullptr;
1555 llvm::Value *allocSize =
1556 EmitCXXNewAllocSize(*this, E, minElements, numElements,
3
Calling 'EmitCXXNewAllocSize'
6
Returning from 'EmitCXXNewAllocSize'
1557 allocSizeWithoutCookie);
1558 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1559
1560 // Emit the allocation call. If the allocator is a global placement
1561 // operator, just "inline" it directly.
1562 Address allocation = Address::invalid();
1563 CallArgList allocatorArgs;
1564 if (allocator->isReservedGlobalPlacementOperator()) {
7
Assuming the condition is false
8
Taking false branch
1565 assert(E->getNumPlacementArgs() == 1)((E->getNumPlacementArgs() == 1) ? static_cast<void>
(0) : __assert_fail ("E->getNumPlacementArgs() == 1", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1565, __PRETTY_FUNCTION__))
;
1566 const Expr *arg = *E->placement_arguments().begin();
1567
1568 LValueBaseInfo BaseInfo;
1569 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1570
1571 // The pointer expression will, in many cases, be an opaque void*.
1572 // In these cases, discard the computed alignment and use the
1573 // formal alignment of the allocated type.
1574 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1575 allocation = Address(allocation.getPointer(), allocAlign);
1576
1577 // Set up allocatorArgs for the call to operator delete if it's not
1578 // the reserved global operator.
1579 if (E->getOperatorDelete() &&
1580 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1581 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1582 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1583 }
1584
1585 } else {
1586 const FunctionProtoType *allocatorType =
1587 allocator->getType()->castAs<FunctionProtoType>();
9
The object is a 'FunctionProtoType'
1588 unsigned ParamsToSkip = 0;
1589
1590 // The allocation size is the first argument.
1591 QualType sizeType = getContext().getSizeType();
1592 allocatorArgs.add(RValue::get(allocSize), sizeType);
1593 ++ParamsToSkip;
1594
1595 if (allocSize
9.1
'allocSize' is equal to 'allocSizeWithoutCookie'
9.1
'allocSize' is equal to 'allocSizeWithoutCookie'
!= allocSizeWithoutCookie) {
10
Taking false branch
1596 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1597 allocAlign = std::max(allocAlign, cookieAlign);
1598 }
1599
1600 // The allocation alignment may be passed as the second argument.
1601 if (E->passAlignment()) {
11
Assuming the condition is false
12
Taking false branch
1602 QualType AlignValT = sizeType;
1603 if (allocatorType->getNumParams() > 1) {
1604 AlignValT = allocatorType->getParamType(1);
1605 assert(getContext().hasSameUnqualifiedType(((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1606 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1607 sizeType) &&((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1608 "wrong type for alignment parameter")((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
;
1609 ++ParamsToSkip;
1610 } else {
1611 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1612 assert(allocator->isVariadic() && "can't pass alignment to allocator")((allocator->isVariadic() && "can't pass alignment to allocator"
) ? static_cast<void> (0) : __assert_fail ("allocator->isVariadic() && \"can't pass alignment to allocator\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1612, __PRETTY_FUNCTION__))
;
1613 }
1614 allocatorArgs.add(
1615 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1616 AlignValT);
1617 }
1618
1619 // FIXME: Why do we not pass a CalleeDecl here?
1620 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1621 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1622
1623 RValue RV =
1624 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1625
1626 // If this was a call to a global replaceable allocation function that does
1627 // not take an alignment argument, the allocator is known to produce
1628 // storage that's suitably aligned for any object that fits, up to a known
1629 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1630 CharUnits allocationAlign = allocAlign;
1631 if (!E->passAlignment() &&
13
Assuming the condition is false
1632 allocator->isReplaceableGlobalAllocationFunction()) {
1633 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1634 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1635 allocationAlign = std::max(
1636 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1637 }
1638
1639 allocation = Address(RV.getScalarVal(), allocationAlign);
1640 }
1641
1642 // Emit a null check on the allocation result if the allocation
1643 // function is allowed to return null (because it has a non-throwing
1644 // exception spec or is the reserved placement new) and we have an
1645 // interesting initializer will be running sanitizers on the initialization.
1646 bool nullCheck = E->shouldNullCheckAllocation() &&
14
Assuming the condition is false
1647 (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1648 sanitizePerformTypeCheck());
1649
1650 llvm::BasicBlock *nullCheckBB = nullptr;
1651 llvm::BasicBlock *contBB = nullptr;
1652
1653 // The null-check means that the initializer is conditionally
1654 // evaluated.
1655 ConditionalEvaluation conditional(*this);
1656
1657 if (nullCheck
14.1
'nullCheck' is false
14.1
'nullCheck' is false
) {
15
Taking false branch
1658 conditional.begin(*this);
1659
1660 nullCheckBB = Builder.GetInsertBlock();
1661 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1662 contBB = createBasicBlock("new.cont");
1663
1664 llvm::Value *isNull =
1665 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1666 Builder.CreateCondBr(isNull, contBB, notNullBB);
1667 EmitBlock(notNullBB);
1668 }
1669
1670 // If there's an operator delete, enter a cleanup to call it if an
1671 // exception is thrown.
1672 EHScopeStack::stable_iterator operatorDeleteCleanup;
1673 llvm::Instruction *cleanupDominator = nullptr;
1674 if (E->getOperatorDelete() &&
16
Assuming the condition is false
1675 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1676 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1677 allocatorArgs);
1678 operatorDeleteCleanup = EHStack.stable_begin();
1679 cleanupDominator = Builder.CreateUnreachable();
1680 }
1681
1682 assert((allocSize == allocSizeWithoutCookie) ==(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1683, __PRETTY_FUNCTION__))
17
'?' condition is true
1683 CalculateCookiePadding(*this, E).isZero())(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1683, __PRETTY_FUNCTION__))
;
1684 if (allocSize
17.1
'allocSize' is equal to 'allocSizeWithoutCookie'
17.1
'allocSize' is equal to 'allocSizeWithoutCookie'
!= allocSizeWithoutCookie) {
18
Taking false branch
1685 assert(E->isArray())((E->isArray()) ? static_cast<void> (0) : __assert_fail
("E->isArray()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1685, __PRETTY_FUNCTION__))
;
1686 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1687 numElements,
1688 E, allocType);
1689 }
1690
1691 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1692 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1693
1694 // Passing pointer through launder.invariant.group to avoid propagation of
1695 // vptrs information which may be included in previous type.
1696 // To not break LTO with different optimizations levels, we do it regardless
1697 // of optimization level.
1698 if (CGM.getCodeGenOpts().StrictVTablePointers &&
19
Assuming field 'StrictVTablePointers' is 0
1699 allocator->isReservedGlobalPlacementOperator())
1700 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1701 result.getAlignment());
1702
1703 // Emit sanitizer checks for pointer value now, so that in the case of an
1704 // array it was checked only once and not at each constructor call. We may
1705 // have already checked that the pointer is non-null.
1706 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1707 // we'll null check the wrong pointer here.
1708 SanitizerSet SkippedChecks;
1709 SkippedChecks.set(SanitizerKind::Null, nullCheck);
1710 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1711 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1712 result.getPointer(), allocType, result.getAlignment(),
1713 SkippedChecks, numElements);
1714
1715 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
20
Passing null pointer value via 6th parameter 'NumElements'
21
Calling 'EmitNewInitializer'
1716 allocSizeWithoutCookie);
1717 if (E->isArray()) {
1718 // NewPtr is a pointer to the base element type. If we're
1719 // allocating an array of arrays, we'll need to cast back to the
1720 // array pointer type.
1721 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1722 if (result.getType() != resultType)
1723 result = Builder.CreateBitCast(result, resultType);
1724 }
1725
1726 // Deactivate the 'operator delete' cleanup if we finished
1727 // initialization.
1728 if (operatorDeleteCleanup.isValid()) {
1729 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1730 cleanupDominator->eraseFromParent();
1731 }
1732
1733 llvm::Value *resultPtr = result.getPointer();
1734 if (nullCheck) {
1735 conditional.end(*this);
1736
1737 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1738 EmitBlock(contBB);
1739
1740 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1741 PHI->addIncoming(resultPtr, notNullBB);
1742 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1743 nullCheckBB);
1744
1745 resultPtr = PHI;
1746 }
1747
1748 return resultPtr;
1749}
1750
1751void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1752 llvm::Value *Ptr, QualType DeleteTy,
1753 llvm::Value *NumElements,
1754 CharUnits CookieSize) {
1755 assert((!NumElements && CookieSize.isZero()) ||(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1756, __PRETTY_FUNCTION__))
1756 DeleteFD->getOverloadedOperator() == OO_Array_Delete)(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1756, __PRETTY_FUNCTION__))
;
1757
1758 const FunctionProtoType *DeleteFTy =
1759 DeleteFD->getType()->getAs<FunctionProtoType>();
1760
1761 CallArgList DeleteArgs;
1762
1763 auto Params = getUsualDeleteParams(DeleteFD);
1764 auto ParamTypeIt = DeleteFTy->param_type_begin();
1765
1766 // Pass the pointer itself.
1767 QualType ArgTy = *ParamTypeIt++;
1768 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1769 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1770
1771 // Pass the std::destroying_delete tag if present.
1772 if (Params.DestroyingDelete) {
1773 QualType DDTag = *ParamTypeIt++;
1774 // Just pass an 'undef'. We expect the tag type to be an empty struct.
1775 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1776 DeleteArgs.add(RValue::get(V), DDTag);
1777 }
1778
1779 // Pass the size if the delete function has a size_t parameter.
1780 if (Params.Size) {
1781 QualType SizeType = *ParamTypeIt++;
1782 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1783 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1784 DeleteTypeSize.getQuantity());
1785
1786 // For array new, multiply by the number of elements.
1787 if (NumElements)
1788 Size = Builder.CreateMul(Size, NumElements);
1789
1790 // If there is a cookie, add the cookie size.
1791 if (!CookieSize.isZero())
1792 Size = Builder.CreateAdd(
1793 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1794
1795 DeleteArgs.add(RValue::get(Size), SizeType);
1796 }
1797
1798 // Pass the alignment if the delete function has an align_val_t parameter.
1799 if (Params.Alignment) {
1800 QualType AlignValType = *ParamTypeIt++;
1801 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1802 getContext().getTypeAlignIfKnown(DeleteTy));
1803 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1804 DeleteTypeAlign.getQuantity());
1805 DeleteArgs.add(RValue::get(Align), AlignValType);
1806 }
1807
1808 assert(ParamTypeIt == DeleteFTy->param_type_end() &&((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1809, __PRETTY_FUNCTION__))
1809 "unknown parameter to usual delete function")((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1809, __PRETTY_FUNCTION__))
;
1810
1811 // Emit the call to delete.
1812 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1813}
1814
1815namespace {
1816 /// Calls the given 'operator delete' on a single object.
1817 struct CallObjectDelete final : EHScopeStack::Cleanup {
1818 llvm::Value *Ptr;
1819 const FunctionDecl *OperatorDelete;
1820 QualType ElementType;
1821
1822 CallObjectDelete(llvm::Value *Ptr,
1823 const FunctionDecl *OperatorDelete,
1824 QualType ElementType)
1825 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1826
1827 void Emit(CodeGenFunction &CGF, Flags flags) override {
1828 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1829 }
1830 };
1831}
1832
1833void
1834CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1835 llvm::Value *CompletePtr,
1836 QualType ElementType) {
1837 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1838 OperatorDelete, ElementType);
1839}
1840
1841/// Emit the code for deleting a single object with a destroying operator
1842/// delete. If the element type has a non-virtual destructor, Ptr has already
1843/// been converted to the type of the parameter of 'operator delete'. Otherwise
1844/// Ptr points to an object of the static type.
1845static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1846 const CXXDeleteExpr *DE, Address Ptr,
1847 QualType ElementType) {
1848 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1849 if (Dtor && Dtor->isVirtual())
1850 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1851 Dtor);
1852 else
1853 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1854}
1855
1856/// Emit the code for deleting a single object.
1857static void EmitObjectDelete(CodeGenFunction &CGF,
1858 const CXXDeleteExpr *DE,
1859 Address Ptr,
1860 QualType ElementType) {
1861 // C++11 [expr.delete]p3:
1862 // If the static type of the object to be deleted is different from its
1863 // dynamic type, the static type shall be a base class of the dynamic type
1864 // of the object to be deleted and the static type shall have a virtual
1865 // destructor or the behavior is undefined.
1866 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1867 DE->getExprLoc(), Ptr.getPointer(),
1868 ElementType);
1869
1870 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1871 assert(!OperatorDelete->isDestroyingOperatorDelete())((!OperatorDelete->isDestroyingOperatorDelete()) ? static_cast
<void> (0) : __assert_fail ("!OperatorDelete->isDestroyingOperatorDelete()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1871, __PRETTY_FUNCTION__))
;
1872
1873 // Find the destructor for the type, if applicable. If the
1874 // destructor is virtual, we'll just emit the vcall and return.
1875 const CXXDestructorDecl *Dtor = nullptr;
1876 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1877 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1878 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1879 Dtor = RD->getDestructor();
1880
1881 if (Dtor->isVirtual()) {
1882 bool UseVirtualCall = true;
1883 const Expr *Base = DE->getArgument();
1884 if (auto *DevirtualizedDtor =
1885 dyn_cast_or_null<const CXXDestructorDecl>(
1886 Dtor->getDevirtualizedMethod(
1887 Base, CGF.CGM.getLangOpts().AppleKext))) {
1888 UseVirtualCall = false;
1889 const CXXRecordDecl *DevirtualizedClass =
1890 DevirtualizedDtor->getParent();
1891 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1892 // Devirtualized to the class of the base type (the type of the
1893 // whole expression).
1894 Dtor = DevirtualizedDtor;
1895 } else {
1896 // Devirtualized to some other type. Would need to cast the this
1897 // pointer to that type but we don't have support for that yet, so
1898 // do a virtual call. FIXME: handle the case where it is
1899 // devirtualized to the derived type (the type of the inner
1900 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1901 UseVirtualCall = true;
1902 }
1903 }
1904 if (UseVirtualCall) {
1905 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1906 Dtor);
1907 return;
1908 }
1909 }
1910 }
1911 }
1912
1913 // Make sure that we call delete even if the dtor throws.
1914 // This doesn't have to a conditional cleanup because we're going
1915 // to pop it off in a second.
1916 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1917 Ptr.getPointer(),
1918 OperatorDelete, ElementType);
1919
1920 if (Dtor)
1921 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1922 /*ForVirtualBase=*/false,
1923 /*Delegating=*/false,
1924 Ptr, ElementType);
1925 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1926 switch (Lifetime) {
1927 case Qualifiers::OCL_None:
1928 case Qualifiers::OCL_ExplicitNone:
1929 case Qualifiers::OCL_Autoreleasing:
1930 break;
1931
1932 case Qualifiers::OCL_Strong:
1933 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1934 break;
1935
1936 case Qualifiers::OCL_Weak:
1937 CGF.EmitARCDestroyWeak(Ptr);
1938 break;
1939 }
1940 }
1941
1942 CGF.PopCleanupBlock();
1943}
1944
1945namespace {
1946 /// Calls the given 'operator delete' on an array of objects.
1947 struct CallArrayDelete final : EHScopeStack::Cleanup {
1948 llvm::Value *Ptr;
1949 const FunctionDecl *OperatorDelete;
1950 llvm::Value *NumElements;
1951 QualType ElementType;
1952 CharUnits CookieSize;
1953
1954 CallArrayDelete(llvm::Value *Ptr,
1955 const FunctionDecl *OperatorDelete,
1956 llvm::Value *NumElements,
1957 QualType ElementType,
1958 CharUnits CookieSize)
1959 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1960 ElementType(ElementType), CookieSize(CookieSize) {}
1961
1962 void Emit(CodeGenFunction &CGF, Flags flags) override {
1963 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1964 CookieSize);
1965 }
1966 };
1967}
1968
1969/// Emit the code for deleting an array of objects.
1970static void EmitArrayDelete(CodeGenFunction &CGF,
1971 const CXXDeleteExpr *E,
1972 Address deletedPtr,
1973 QualType elementType) {
1974 llvm::Value *numElements = nullptr;
1975 llvm::Value *allocatedPtr = nullptr;
1976 CharUnits cookieSize;
1977 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1978 numElements, allocatedPtr, cookieSize);
1979
1980 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer")((allocatedPtr && "ReadArrayCookie didn't set allocated pointer"
) ? static_cast<void> (0) : __assert_fail ("allocatedPtr && \"ReadArrayCookie didn't set allocated pointer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1980, __PRETTY_FUNCTION__))
;
1981
1982 // Make sure that we call delete even if one of the dtors throws.
1983 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1984 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1985 allocatedPtr, operatorDelete,
1986 numElements, elementType,
1987 cookieSize);
1988
1989 // Destroy the elements.
1990 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1991 assert(numElements && "no element count for a type with a destructor!")((numElements && "no element count for a type with a destructor!"
) ? static_cast<void> (0) : __assert_fail ("numElements && \"no element count for a type with a destructor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1991, __PRETTY_FUNCTION__))
;
1992
1993 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1994 CharUnits elementAlign =
1995 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1996
1997 llvm::Value *arrayBegin = deletedPtr.getPointer();
1998 llvm::Value *arrayEnd =
1999 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
2000
2001 // Note that it is legal to allocate a zero-length array, and we
2002 // can never fold the check away because the length should always
2003 // come from a cookie.
2004 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2005 CGF.getDestroyer(dtorKind),
2006 /*checkZeroLength*/ true,
2007 CGF.needsEHCleanup(dtorKind));
2008 }
2009
2010 // Pop the cleanup block.
2011 CGF.PopCleanupBlock();
2012}
2013
2014void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2015 const Expr *Arg = E->getArgument();
2016 Address Ptr = EmitPointerWithAlignment(Arg);
2017
2018 // Null check the pointer.
2019 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2020 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2021
2022 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2023
2024 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2025 EmitBlock(DeleteNotNull);
2026
2027 QualType DeleteTy = E->getDestroyedType();
2028
2029 // A destroying operator delete overrides the entire operation of the
2030 // delete expression.
2031 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2032 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2033 EmitBlock(DeleteEnd);
2034 return;
2035 }
2036
2037 // We might be deleting a pointer to array. If so, GEP down to the
2038 // first non-array element.
2039 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2040 if (DeleteTy->isConstantArrayType()) {
2041 llvm::Value *Zero = Builder.getInt32(0);
2042 SmallVector<llvm::Value*,8> GEP;
2043
2044 GEP.push_back(Zero); // point at the outermost array
2045
2046 // For each layer of array type we're pointing at:
2047 while (const ConstantArrayType *Arr
2048 = getContext().getAsConstantArrayType(DeleteTy)) {
2049 // 1. Unpeel the array type.
2050 DeleteTy = Arr->getElementType();
2051
2052 // 2. GEP to the first element of the array.
2053 GEP.push_back(Zero);
2054 }
2055
2056 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2057 Ptr.getAlignment());
2058 }
2059
2060 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType())((ConvertTypeForMem(DeleteTy) == Ptr.getElementType()) ? static_cast
<void> (0) : __assert_fail ("ConvertTypeForMem(DeleteTy) == Ptr.getElementType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2060, __PRETTY_FUNCTION__))
;
2061
2062 if (E->isArrayForm()) {
2063 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2064 } else {
2065 EmitObjectDelete(*this, E, Ptr, DeleteTy);
2066 }
2067
2068 EmitBlock(DeleteEnd);
2069}
2070
2071static bool isGLValueFromPointerDeref(const Expr *E) {
2072 E = E->IgnoreParens();
2073
2074 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2075 if (!CE->getSubExpr()->isGLValue())
2076 return false;
2077 return isGLValueFromPointerDeref(CE->getSubExpr());
2078 }
2079
2080 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2081 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2082
2083 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2084 if (BO->getOpcode() == BO_Comma)
2085 return isGLValueFromPointerDeref(BO->getRHS());
2086
2087 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2088 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2089 isGLValueFromPointerDeref(ACO->getFalseExpr());
2090
2091 // C++11 [expr.sub]p1:
2092 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2093 if (isa<ArraySubscriptExpr>(E))
2094 return true;
2095
2096 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2097 if (UO->getOpcode() == UO_Deref)
2098 return true;
2099
2100 return false;
2101}
2102
2103static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2104 llvm::Type *StdTypeInfoPtrTy) {
2105 // Get the vtable pointer.
2106 Address ThisPtr = CGF.EmitLValue(E).getAddress();
2107
2108 QualType SrcRecordTy = E->getType();
2109
2110 // C++ [class.cdtor]p4:
2111 // If the operand of typeid refers to the object under construction or
2112 // destruction and the static type of the operand is neither the constructor
2113 // or destructor’s class nor one of its bases, the behavior is undefined.
2114 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2115 ThisPtr.getPointer(), SrcRecordTy);
2116
2117 // C++ [expr.typeid]p2:
2118 // If the glvalue expression is obtained by applying the unary * operator to
2119 // a pointer and the pointer is a null pointer value, the typeid expression
2120 // throws the std::bad_typeid exception.
2121 //
2122 // However, this paragraph's intent is not clear. We choose a very generous
2123 // interpretation which implores us to consider comma operators, conditional
2124 // operators, parentheses and other such constructs.
2125 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2126 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2127 llvm::BasicBlock *BadTypeidBlock =
2128 CGF.createBasicBlock("typeid.bad_typeid");
2129 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2130
2131 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2132 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2133
2134 CGF.EmitBlock(BadTypeidBlock);
2135 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2136 CGF.EmitBlock(EndBlock);
2137 }
2138
2139 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2140 StdTypeInfoPtrTy);
2141}
2142
2143llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2144 llvm::Type *StdTypeInfoPtrTy =
2145 ConvertType(E->getType())->getPointerTo();
2146
2147 if (E->isTypeOperand()) {
2148 llvm::Constant *TypeInfo =
2149 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2150 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2151 }
2152
2153 // C++ [expr.typeid]p2:
2154 // When typeid is applied to a glvalue expression whose type is a
2155 // polymorphic class type, the result refers to a std::type_info object
2156 // representing the type of the most derived object (that is, the dynamic
2157 // type) to which the glvalue refers.
2158 if (E->isPotentiallyEvaluated())
2159 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2160 StdTypeInfoPtrTy);
2161
2162 QualType OperandTy = E->getExprOperand()->getType();
2163 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2164 StdTypeInfoPtrTy);
2165}
2166
2167static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2168 QualType DestTy) {
2169 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2170 if (DestTy->isPointerType())
2171 return llvm::Constant::getNullValue(DestLTy);
2172
2173 /// C++ [expr.dynamic.cast]p9:
2174 /// A failed cast to reference type throws std::bad_cast
2175 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2176 return nullptr;
2177
2178 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2179 return llvm::UndefValue::get(DestLTy);
2180}
2181
2182llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2183 const CXXDynamicCastExpr *DCE) {
2184 CGM.EmitExplicitCastExprType(DCE, this);
2185 QualType DestTy = DCE->getTypeAsWritten();
2186
2187 QualType SrcTy = DCE->getSubExpr()->getType();
2188
2189 // C++ [expr.dynamic.cast]p7:
2190 // If T is "pointer to cv void," then the result is a pointer to the most
2191 // derived object pointed to by v.
2192 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2193
2194 bool isDynamicCastToVoid;
2195 QualType SrcRecordTy;
2196 QualType DestRecordTy;
2197 if (DestPTy) {
2198 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2199 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2200 DestRecordTy = DestPTy->getPointeeType();
2201 } else {
2202 isDynamicCastToVoid = false;
2203 SrcRecordTy = SrcTy;
2204 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2205 }
2206
2207 // C++ [class.cdtor]p5:
2208 // If the operand of the dynamic_cast refers to the object under
2209 // construction or destruction and the static type of the operand is not a
2210 // pointer to or object of the constructor or destructor’s own class or one
2211 // of its bases, the dynamic_cast results in undefined behavior.
2212 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2213 SrcRecordTy);
2214
2215 if (DCE->isAlwaysNull())
2216 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2217 return T;
2218
2219 assert(SrcRecordTy->isRecordType() && "source type must be a record type!")((SrcRecordTy->isRecordType() && "source type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("SrcRecordTy->isRecordType() && \"source type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2219, __PRETTY_FUNCTION__))
;
2220
2221 // C++ [expr.dynamic.cast]p4:
2222 // If the value of v is a null pointer value in the pointer case, the result
2223 // is the null pointer value of type T.
2224 bool ShouldNullCheckSrcValue =
2225 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2226 SrcRecordTy);
2227
2228 llvm::BasicBlock *CastNull = nullptr;
2229 llvm::BasicBlock *CastNotNull = nullptr;
2230 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2231
2232 if (ShouldNullCheckSrcValue) {
2233 CastNull = createBasicBlock("dynamic_cast.null");
2234 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2235
2236 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2237 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2238 EmitBlock(CastNotNull);
2239 }
2240
2241 llvm::Value *Value;
2242 if (isDynamicCastToVoid) {
2243 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2244 DestTy);
2245 } else {
2246 assert(DestRecordTy->isRecordType() &&((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2247, __PRETTY_FUNCTION__))
2247 "destination type must be a record type!")((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2247, __PRETTY_FUNCTION__))
;
2248 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2249 DestTy, DestRecordTy, CastEnd);
2250 CastNotNull = Builder.GetInsertBlock();
2251 }
2252
2253 if (ShouldNullCheckSrcValue) {
2254 EmitBranch(CastEnd);
2255
2256 EmitBlock(CastNull);
2257 EmitBranch(CastEnd);
2258 }
2259
2260 EmitBlock(CastEnd);
2261
2262 if (ShouldNullCheckSrcValue) {
2263 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2264 PHI->addIncoming(Value, CastNotNull);
2265 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2266
2267 Value = PHI;
2268 }
2269
2270 return Value;
2271}

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h

1//===- ExprCXX.h - Classes for representing expressions ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/OperationKinds.h"
24#include "clang/AST/Stmt.h"
25#include "clang/AST/TemplateBase.h"
26#include "clang/AST/Type.h"
27#include "clang/AST/UnresolvedSet.h"
28#include "clang/Basic/ExceptionSpecificationType.h"
29#include "clang/Basic/ExpressionTraits.h"
30#include "clang/Basic/LLVM.h"
31#include "clang/Basic/Lambda.h"
32#include "clang/Basic/LangOptions.h"
33#include "clang/Basic/OperatorKinds.h"
34#include "clang/Basic/SourceLocation.h"
35#include "clang/Basic/Specifiers.h"
36#include "clang/Basic/TypeTraits.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/None.h"
39#include "llvm/ADT/Optional.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/TrailingObjects.h"
46#include <cassert>
47#include <cstddef>
48#include <cstdint>
49#include <memory>
50
51namespace clang {
52
53class ASTContext;
54class DeclAccessPair;
55class IdentifierInfo;
56class LambdaCapture;
57class NonTypeTemplateParmDecl;
58class TemplateParameterList;
59
60//===--------------------------------------------------------------------===//
61// C++ Expressions.
62//===--------------------------------------------------------------------===//
63
64/// A call to an overloaded operator written using operator
65/// syntax.
66///
67/// Represents a call to an overloaded operator written using operator
68/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
69/// normal call, this AST node provides better information about the
70/// syntactic representation of the call.
71///
72/// In a C++ template, this expression node kind will be used whenever
73/// any of the arguments are type-dependent. In this case, the
74/// function itself will be a (possibly empty) set of functions and
75/// function templates that were found by name lookup at template
76/// definition time.
77class CXXOperatorCallExpr final : public CallExpr {
78 friend class ASTStmtReader;
79 friend class ASTStmtWriter;
80
81 SourceRange Range;
82
83 // CXXOperatorCallExpr has some trailing objects belonging
84 // to CallExpr. See CallExpr for the details.
85
86 SourceRange getSourceRangeImpl() const LLVM_READONLY__attribute__((__pure__));
87
88 CXXOperatorCallExpr(OverloadedOperatorKind OpKind, Expr *Fn,
89 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
90 SourceLocation OperatorLoc, FPOptions FPFeatures,
91 ADLCallKind UsesADL);
92
93 CXXOperatorCallExpr(unsigned NumArgs, EmptyShell Empty);
94
95public:
96 static CXXOperatorCallExpr *
97 Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn,
98 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
99 SourceLocation OperatorLoc, FPOptions FPFeatures,
100 ADLCallKind UsesADL = NotADL);
101
102 static CXXOperatorCallExpr *CreateEmpty(const ASTContext &Ctx,
103 unsigned NumArgs, EmptyShell Empty);
104
105 /// Returns the kind of overloaded operator that this expression refers to.
106 OverloadedOperatorKind getOperator() const {
107 return static_cast<OverloadedOperatorKind>(
108 CXXOperatorCallExprBits.OperatorKind);
109 }
110
111 static bool isAssignmentOp(OverloadedOperatorKind Opc) {
112 return Opc == OO_Equal || Opc == OO_StarEqual || Opc == OO_SlashEqual ||
113 Opc == OO_PercentEqual || Opc == OO_PlusEqual ||
114 Opc == OO_MinusEqual || Opc == OO_LessLessEqual ||
115 Opc == OO_GreaterGreaterEqual || Opc == OO_AmpEqual ||
116 Opc == OO_CaretEqual || Opc == OO_PipeEqual;
117 }
118 bool isAssignmentOp() const { return isAssignmentOp(getOperator()); }
119
120 /// Is this written as an infix binary operator?
121 bool isInfixBinaryOp() const;
122
123 /// Returns the location of the operator symbol in the expression.
124 ///
125 /// When \c getOperator()==OO_Call, this is the location of the right
126 /// parentheses; when \c getOperator()==OO_Subscript, this is the location
127 /// of the right bracket.
128 SourceLocation getOperatorLoc() const { return getRParenLoc(); }
129
130 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) {
131 OverloadedOperatorKind Operator = getOperator();
132 return (Operator < OO_Plus || Operator >= OO_Arrow ||
133 Operator == OO_PlusPlus || Operator == OO_MinusMinus)
134 ? getBeginLoc()
135 : getOperatorLoc();
136 }
137
138 SourceLocation getBeginLoc() const { return Range.getBegin(); }
139 SourceLocation getEndLoc() const { return Range.getEnd(); }
140 SourceRange getSourceRange() const { return Range; }
141
142 static bool classof(const Stmt *T) {
143 return T->getStmtClass() == CXXOperatorCallExprClass;
144 }
145
146 // Set the FP contractability status of this operator. Only meaningful for
147 // operations on floating point types.
148 void setFPFeatures(FPOptions F) {
149 CXXOperatorCallExprBits.FPFeatures = F.getInt();
150 }
151 FPOptions getFPFeatures() const {
152 return FPOptions(CXXOperatorCallExprBits.FPFeatures);
153 }
154
155 // Get the FP contractability status of this operator. Only meaningful for
156 // operations on floating point types.
157 bool isFPContractableWithinStatement() const {
158 return getFPFeatures().allowFPContractWithinStatement();
159 }
160};
161
162/// Represents a call to a member function that
163/// may be written either with member call syntax (e.g., "obj.func()"
164/// or "objptr->func()") or with normal function-call syntax
165/// ("func()") within a member function that ends up calling a member
166/// function. The callee in either case is a MemberExpr that contains
167/// both the object argument and the member function, while the
168/// arguments are the arguments within the parentheses (not including
169/// the object argument).
170class CXXMemberCallExpr final : public CallExpr {
171 // CXXMemberCallExpr has some trailing objects belonging
172 // to CallExpr. See CallExpr for the details.
173
174 CXXMemberCallExpr(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
175 ExprValueKind VK, SourceLocation RP, unsigned MinNumArgs);
176
177 CXXMemberCallExpr(unsigned NumArgs, EmptyShell Empty);
178
179public:
180 static CXXMemberCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
181 ArrayRef<Expr *> Args, QualType Ty,
182 ExprValueKind VK, SourceLocation RP,
183 unsigned MinNumArgs = 0);
184
185 static CXXMemberCallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
186 EmptyShell Empty);
187
188 /// Retrieve the implicit object argument for the member call.
189 ///
190 /// For example, in "x.f(5)", this returns the sub-expression "x".
191 Expr *getImplicitObjectArgument() const;
192
193 /// Retrieve the type of the object argument.
194 ///
195 /// Note that this always returns a non-pointer type.
196 QualType getObjectType() const;
197
198 /// Retrieve the declaration of the called method.
199 CXXMethodDecl *getMethodDecl() const;
200
201 /// Retrieve the CXXRecordDecl for the underlying type of
202 /// the implicit object argument.
203 ///
204 /// Note that this is may not be the same declaration as that of the class
205 /// context of the CXXMethodDecl which this function is calling.
206 /// FIXME: Returns 0 for member pointer call exprs.
207 CXXRecordDecl *getRecordDecl() const;
208
209 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) {
210 SourceLocation CLoc = getCallee()->getExprLoc();
211 if (CLoc.isValid())
212 return CLoc;
213
214 return getBeginLoc();
215 }
216
217 static bool classof(const Stmt *T) {
218 return T->getStmtClass() == CXXMemberCallExprClass;
219 }
220};
221
222/// Represents a call to a CUDA kernel function.
223class CUDAKernelCallExpr final : public CallExpr {
224 friend class ASTStmtReader;
225
226 enum { CONFIG, END_PREARG };
227
228 // CUDAKernelCallExpr has some trailing objects belonging
229 // to CallExpr. See CallExpr for the details.
230
231 CUDAKernelCallExpr(Expr *Fn, CallExpr *Config, ArrayRef<Expr *> Args,
232 QualType Ty, ExprValueKind VK, SourceLocation RP,
233 unsigned MinNumArgs);
234
235 CUDAKernelCallExpr(unsigned NumArgs, EmptyShell Empty);
236
237public:
238 static CUDAKernelCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
239 CallExpr *Config, ArrayRef<Expr *> Args,
240 QualType Ty, ExprValueKind VK,
241 SourceLocation RP, unsigned MinNumArgs = 0);
242
243 static CUDAKernelCallExpr *CreateEmpty(const ASTContext &Ctx,
244 unsigned NumArgs, EmptyShell Empty);
245
246 const CallExpr *getConfig() const {
247 return cast_or_null<CallExpr>(getPreArg(CONFIG));
248 }
249 CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
250
251 static bool classof(const Stmt *T) {
252 return T->getStmtClass() == CUDAKernelCallExprClass;
253 }
254};
255
256/// Abstract class common to all of the C++ "named"/"keyword" casts.
257///
258/// This abstract class is inherited by all of the classes
259/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
260/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
261/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
262class CXXNamedCastExpr : public ExplicitCastExpr {
263private:
264 // the location of the casting op
265 SourceLocation Loc;
266
267 // the location of the right parenthesis
268 SourceLocation RParenLoc;
269
270 // range for '<' '>'
271 SourceRange AngleBrackets;
272
273protected:
274 friend class ASTStmtReader;
275
276 CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
277 CastKind kind, Expr *op, unsigned PathSize,
278 TypeSourceInfo *writtenTy, SourceLocation l,
279 SourceLocation RParenLoc,
280 SourceRange AngleBrackets)
281 : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
282 RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
283
284 explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
285 : ExplicitCastExpr(SC, Shell, PathSize) {}
286
287public:
288 const char *getCastName() const;
289
290 /// Retrieve the location of the cast operator keyword, e.g.,
291 /// \c static_cast.
292 SourceLocation getOperatorLoc() const { return Loc; }
293
294 /// Retrieve the location of the closing parenthesis.
295 SourceLocation getRParenLoc() const { return RParenLoc; }
296
297 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
298 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParenLoc; }
299 SourceRange getAngleBrackets() const LLVM_READONLY__attribute__((__pure__)) { return AngleBrackets; }
300
301 static bool classof(const Stmt *T) {
302 switch (T->getStmtClass()) {
303 case CXXStaticCastExprClass:
304 case CXXDynamicCastExprClass:
305 case CXXReinterpretCastExprClass:
306 case CXXConstCastExprClass:
307 return true;
308 default:
309 return false;
310 }
311 }
312};
313
314/// A C++ \c static_cast expression (C++ [expr.static.cast]).
315///
316/// This expression node represents a C++ static cast, e.g.,
317/// \c static_cast<int>(1.0).
318class CXXStaticCastExpr final
319 : public CXXNamedCastExpr,
320 private llvm::TrailingObjects<CXXStaticCastExpr, CXXBaseSpecifier *> {
321 CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
322 unsigned pathSize, TypeSourceInfo *writtenTy,
323 SourceLocation l, SourceLocation RParenLoc,
324 SourceRange AngleBrackets)
325 : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
326 writtenTy, l, RParenLoc, AngleBrackets) {}
327
328 explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
329 : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) {}
330
331public:
332 friend class CastExpr;
333 friend TrailingObjects;
334
335 static CXXStaticCastExpr *Create(const ASTContext &Context, QualType T,
336 ExprValueKind VK, CastKind K, Expr *Op,
337 const CXXCastPath *Path,
338 TypeSourceInfo *Written, SourceLocation L,
339 SourceLocation RParenLoc,
340 SourceRange AngleBrackets);
341 static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
342 unsigned PathSize);
343
344 static bool classof(const Stmt *T) {
345 return T->getStmtClass() == CXXStaticCastExprClass;
346 }
347};
348
349/// A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
350///
351/// This expression node represents a dynamic cast, e.g.,
352/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
353/// check to determine how to perform the type conversion.
354class CXXDynamicCastExpr final
355 : public CXXNamedCastExpr,
356 private llvm::TrailingObjects<CXXDynamicCastExpr, CXXBaseSpecifier *> {
357 CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
358 Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
359 SourceLocation l, SourceLocation RParenLoc,
360 SourceRange AngleBrackets)
361 : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
362 writtenTy, l, RParenLoc, AngleBrackets) {}
363
364 explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
365 : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) {}
366
367public:
368 friend class CastExpr;
369 friend TrailingObjects;
370
371 static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
372 ExprValueKind VK, CastKind Kind, Expr *Op,
373 const CXXCastPath *Path,
374 TypeSourceInfo *Written, SourceLocation L,
375 SourceLocation RParenLoc,
376 SourceRange AngleBrackets);
377
378 static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
379 unsigned pathSize);
380
381 bool isAlwaysNull() const;
382
383 static bool classof(const Stmt *T) {
384 return T->getStmtClass() == CXXDynamicCastExprClass;
385 }
386};
387
388/// A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
389///
390/// This expression node represents a reinterpret cast, e.g.,
391/// @c reinterpret_cast<int>(VoidPtr).
392///
393/// A reinterpret_cast provides a differently-typed view of a value but
394/// (in Clang, as in most C++ implementations) performs no actual work at
395/// run time.
396class CXXReinterpretCastExpr final
397 : public CXXNamedCastExpr,
398 private llvm::TrailingObjects<CXXReinterpretCastExpr,
399 CXXBaseSpecifier *> {
400 CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
401 Expr *op, unsigned pathSize,
402 TypeSourceInfo *writtenTy, SourceLocation l,
403 SourceLocation RParenLoc,
404 SourceRange AngleBrackets)
405 : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
406 pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}
407
408 CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
409 : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) {}
410
411public:
412 friend class CastExpr;
413 friend TrailingObjects;
414
415 static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
416 ExprValueKind VK, CastKind Kind,
417 Expr *Op, const CXXCastPath *Path,
418 TypeSourceInfo *WrittenTy, SourceLocation L,
419 SourceLocation RParenLoc,
420 SourceRange AngleBrackets);
421 static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
422 unsigned pathSize);
423
424 static bool classof(const Stmt *T) {
425 return T->getStmtClass() == CXXReinterpretCastExprClass;
426 }
427};
428
429/// A C++ \c const_cast expression (C++ [expr.const.cast]).
430///
431/// This expression node represents a const cast, e.g.,
432/// \c const_cast<char*>(PtrToConstChar).
433///
434/// A const_cast can remove type qualifiers but does not change the underlying
435/// value.
436class CXXConstCastExpr final
437 : public CXXNamedCastExpr,
438 private llvm::TrailingObjects<CXXConstCastExpr, CXXBaseSpecifier *> {
439 CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
440 TypeSourceInfo *writtenTy, SourceLocation l,
441 SourceLocation RParenLoc, SourceRange AngleBrackets)
442 : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
443 0, writtenTy, l, RParenLoc, AngleBrackets) {}
444
445 explicit CXXConstCastExpr(EmptyShell Empty)
446 : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) {}
447
448public:
449 friend class CastExpr;
450 friend TrailingObjects;
451
452 static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
453 ExprValueKind VK, Expr *Op,
454 TypeSourceInfo *WrittenTy, SourceLocation L,
455 SourceLocation RParenLoc,
456 SourceRange AngleBrackets);
457 static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
458
459 static bool classof(const Stmt *T) {
460 return T->getStmtClass() == CXXConstCastExprClass;
461 }
462};
463
464/// A call to a literal operator (C++11 [over.literal])
465/// written as a user-defined literal (C++11 [lit.ext]).
466///
467/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
468/// is semantically equivalent to a normal call, this AST node provides better
469/// information about the syntactic representation of the literal.
470///
471/// Since literal operators are never found by ADL and can only be declared at
472/// namespace scope, a user-defined literal is never dependent.
473class UserDefinedLiteral final : public CallExpr {
474 friend class ASTStmtReader;
475 friend class ASTStmtWriter;
476
477 /// The location of a ud-suffix within the literal.
478 SourceLocation UDSuffixLoc;
479
480 // UserDefinedLiteral has some trailing objects belonging
481 // to CallExpr. See CallExpr for the details.
482
483 UserDefinedLiteral(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
484 ExprValueKind VK, SourceLocation LitEndLoc,
485 SourceLocation SuffixLoc);
486
487 UserDefinedLiteral(unsigned NumArgs, EmptyShell Empty);
488
489public:
490 static UserDefinedLiteral *Create(const ASTContext &Ctx, Expr *Fn,
491 ArrayRef<Expr *> Args, QualType Ty,
492 ExprValueKind VK, SourceLocation LitEndLoc,
493 SourceLocation SuffixLoc);
494
495 static UserDefinedLiteral *CreateEmpty(const ASTContext &Ctx,
496 unsigned NumArgs, EmptyShell Empty);
497
498 /// The kind of literal operator which is invoked.
499 enum LiteralOperatorKind {
500 /// Raw form: operator "" X (const char *)
501 LOK_Raw,
502
503 /// Raw form: operator "" X<cs...> ()
504 LOK_Template,
505
506 /// operator "" X (unsigned long long)
507 LOK_Integer,
508
509 /// operator "" X (long double)
510 LOK_Floating,
511
512 /// operator "" X (const CharT *, size_t)
513 LOK_String,
514
515 /// operator "" X (CharT)
516 LOK_Character
517 };
518
519 /// Returns the kind of literal operator invocation
520 /// which this expression represents.
521 LiteralOperatorKind getLiteralOperatorKind() const;
522
523 /// If this is not a raw user-defined literal, get the
524 /// underlying cooked literal (representing the literal with the suffix
525 /// removed).
526 Expr *getCookedLiteral();
527 const Expr *getCookedLiteral() const {
528 return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
529 }
530
531 SourceLocation getBeginLoc() const {
532 if (getLiteralOperatorKind() == LOK_Template)
533 return getRParenLoc();
534 return getArg(0)->getBeginLoc();
535 }
536
537 SourceLocation getEndLoc() const { return getRParenLoc(); }
538
539 /// Returns the location of a ud-suffix in the expression.
540 ///
541 /// For a string literal, there may be multiple identical suffixes. This
542 /// returns the first.
543 SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
544
545 /// Returns the ud-suffix specified for this literal.
546 const IdentifierInfo *getUDSuffix() const;
547
548 static bool classof(const Stmt *S) {
549 return S->getStmtClass() == UserDefinedLiteralClass;
550 }
551};
552
553/// A boolean literal, per ([C++ lex.bool] Boolean literals).
554class CXXBoolLiteralExpr : public Expr {
555public:
556 CXXBoolLiteralExpr(bool Val, QualType Ty, SourceLocation Loc)
557 : Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
558 false, false) {
559 CXXBoolLiteralExprBits.Value = Val;
560 CXXBoolLiteralExprBits.Loc = Loc;
561 }
562
563 explicit CXXBoolLiteralExpr(EmptyShell Empty)
564 : Expr(CXXBoolLiteralExprClass, Empty) {}
565
566 bool getValue() const { return CXXBoolLiteralExprBits.Value; }
567 void setValue(bool V) { CXXBoolLiteralExprBits.Value = V; }
568
569 SourceLocation getBeginLoc() const { return getLocation(); }
570 SourceLocation getEndLoc() const { return getLocation(); }
571
572 SourceLocation getLocation() const { return CXXBoolLiteralExprBits.Loc; }
573 void setLocation(SourceLocation L) { CXXBoolLiteralExprBits.Loc = L; }
574
575 static bool classof(const Stmt *T) {
576 return T->getStmtClass() == CXXBoolLiteralExprClass;
577 }
578
579 // Iterators
580 child_range children() {
581 return child_range(child_iterator(), child_iterator());
582 }
583
584 const_child_range children() const {
585 return const_child_range(const_child_iterator(), const_child_iterator());
586 }
587};
588
589/// The null pointer literal (C++11 [lex.nullptr])
590///
591/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
592class CXXNullPtrLiteralExpr : public Expr {
593public:
594 CXXNullPtrLiteralExpr(QualType Ty, SourceLocation Loc)
595 : Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false,
596 false, false, false) {
597 CXXNullPtrLiteralExprBits.Loc = Loc;
598 }
599
600 explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
601 : Expr(CXXNullPtrLiteralExprClass, Empty) {}
602
603 SourceLocation getBeginLoc() const { return getLocation(); }
604 SourceLocation getEndLoc() const { return getLocation(); }
605
606 SourceLocation getLocation() const { return CXXNullPtrLiteralExprBits.Loc; }
607 void setLocation(SourceLocation L) { CXXNullPtrLiteralExprBits.Loc = L; }
608
609 static bool classof(const Stmt *T) {
610 return T->getStmtClass() == CXXNullPtrLiteralExprClass;
611 }
612
613 child_range children() {
614 return child_range(child_iterator(), child_iterator());
615 }
616
617 const_child_range children() const {
618 return const_child_range(const_child_iterator(), const_child_iterator());
619 }
620};
621
622/// Implicit construction of a std::initializer_list<T> object from an
623/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
624class CXXStdInitializerListExpr : public Expr {
625 Stmt *SubExpr = nullptr;
626
627 CXXStdInitializerListExpr(EmptyShell Empty)
628 : Expr(CXXStdInitializerListExprClass, Empty) {}
629
630public:
631 friend class ASTReader;
632 friend class ASTStmtReader;
633
634 CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
635 : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
636 Ty->isDependentType(), SubExpr->isValueDependent(),
637 SubExpr->isInstantiationDependent(),
638 SubExpr->containsUnexpandedParameterPack()),
639 SubExpr(SubExpr) {}
640
641 Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
642 const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
643
644 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
645 return SubExpr->getBeginLoc();
646 }
647
648 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
649 return SubExpr->getEndLoc();
650 }
651
652 /// Retrieve the source range of the expression.
653 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
654 return SubExpr->getSourceRange();
655 }
656
657 static bool classof(const Stmt *S) {
658 return S->getStmtClass() == CXXStdInitializerListExprClass;
659 }
660
661 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
662
663 const_child_range children() const {
664 return const_child_range(&SubExpr, &SubExpr + 1);
665 }
666};
667
668/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
669/// the \c type_info that corresponds to the supplied type, or the (possibly
670/// dynamic) type of the supplied expression.
671///
672/// This represents code like \c typeid(int) or \c typeid(*objPtr)
673class CXXTypeidExpr : public Expr {
674private:
675 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
676 SourceRange Range;
677
678public:
679 CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
680 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
681 // typeid is never type-dependent (C++ [temp.dep.expr]p4)
682 false,
683 // typeid is value-dependent if the type or expression are
684 // dependent
685 Operand->getType()->isDependentType(),
686 Operand->getType()->isInstantiationDependentType(),
687 Operand->getType()->containsUnexpandedParameterPack()),
688 Operand(Operand), Range(R) {}
689
690 CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
691 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
692 // typeid is never type-dependent (C++ [temp.dep.expr]p4)
693 false,
694 // typeid is value-dependent if the type or expression are
695 // dependent
696 Operand->isTypeDependent() || Operand->isValueDependent(),
697 Operand->isInstantiationDependent(),
698 Operand->containsUnexpandedParameterPack()),
699 Operand(Operand), Range(R) {}
700
701 CXXTypeidExpr(EmptyShell Empty, bool isExpr)
702 : Expr(CXXTypeidExprClass, Empty) {
703 if (isExpr)
704 Operand = (Expr*)nullptr;
705 else
706 Operand = (TypeSourceInfo*)nullptr;
707 }
708
709 /// Determine whether this typeid has a type operand which is potentially
710 /// evaluated, per C++11 [expr.typeid]p3.
711 bool isPotentiallyEvaluated() const;
712
713 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
714
715 /// Retrieves the type operand of this typeid() expression after
716 /// various required adjustments (removing reference types, cv-qualifiers).
717 QualType getTypeOperand(ASTContext &Context) const;
718
719 /// Retrieve source information for the type operand.
720 TypeSourceInfo *getTypeOperandSourceInfo() const {
721 assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)")((isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)"
) ? static_cast<void> (0) : __assert_fail ("isTypeOperand() && \"Cannot call getTypeOperand for typeid(expr)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 721, __PRETTY_FUNCTION__))
;
722 return Operand.get<TypeSourceInfo *>();
723 }
724
725 void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
726 assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)")((isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)"
) ? static_cast<void> (0) : __assert_fail ("isTypeOperand() && \"Cannot call getTypeOperand for typeid(expr)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 726, __PRETTY_FUNCTION__))
;
727 Operand = TSI;
728 }
729
730 Expr *getExprOperand() const {
731 assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)")((!isTypeOperand() && "Cannot call getExprOperand for typeid(type)"
) ? static_cast<void> (0) : __assert_fail ("!isTypeOperand() && \"Cannot call getExprOperand for typeid(type)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 731, __PRETTY_FUNCTION__))
;
732 return static_cast<Expr*>(Operand.get<Stmt *>());
733 }
734
735 void setExprOperand(Expr *E) {
736 assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)")((!isTypeOperand() && "Cannot call getExprOperand for typeid(type)"
) ? static_cast<void> (0) : __assert_fail ("!isTypeOperand() && \"Cannot call getExprOperand for typeid(type)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 736, __PRETTY_FUNCTION__))
;
737 Operand = E;
738 }
739
740 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
741 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
742 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
743 void setSourceRange(SourceRange R) { Range = R; }
744
745 static bool classof(const Stmt *T) {
746 return T->getStmtClass() == CXXTypeidExprClass;
747 }
748
749 // Iterators
750 child_range children() {
751 if (isTypeOperand())
752 return child_range(child_iterator(), child_iterator());
753 auto **begin = reinterpret_cast<Stmt **>(&Operand);
754 return child_range(begin, begin + 1);
755 }
756
757 const_child_range children() const {
758 if (isTypeOperand())
759 return const_child_range(const_child_iterator(), const_child_iterator());
760
761 auto **begin =
762 reinterpret_cast<Stmt **>(&const_cast<CXXTypeidExpr *>(this)->Operand);
763 return const_child_range(begin, begin + 1);
764 }
765};
766
767/// A member reference to an MSPropertyDecl.
768///
769/// This expression always has pseudo-object type, and therefore it is
770/// typically not encountered in a fully-typechecked expression except
771/// within the syntactic form of a PseudoObjectExpr.
772class MSPropertyRefExpr : public Expr {
773 Expr *BaseExpr;
774 MSPropertyDecl *TheDecl;
775 SourceLocation MemberLoc;
776 bool IsArrow;
777 NestedNameSpecifierLoc QualifierLoc;
778
779public:
780 friend class ASTStmtReader;
781
782 MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
783 QualType ty, ExprValueKind VK,
784 NestedNameSpecifierLoc qualifierLoc,
785 SourceLocation nameLoc)
786 : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
787 /*type-dependent*/ false, baseExpr->isValueDependent(),
788 baseExpr->isInstantiationDependent(),
789 baseExpr->containsUnexpandedParameterPack()),
790 BaseExpr(baseExpr), TheDecl(decl),
791 MemberLoc(nameLoc), IsArrow(isArrow),
792 QualifierLoc(qualifierLoc) {}
793
794 MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
795
796 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
797 return SourceRange(getBeginLoc(), getEndLoc());
798 }
799
800 bool isImplicitAccess() const {
801 return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
802 }
803
804 SourceLocation getBeginLoc() const {
805 if (!isImplicitAccess())
806 return BaseExpr->getBeginLoc();
807 else if (QualifierLoc)
808 return QualifierLoc.getBeginLoc();
809 else
810 return MemberLoc;
811 }
812
813 SourceLocation getEndLoc() const { return getMemberLoc(); }
814
815 child_range children() {
816 return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
817 }
818
819 const_child_range children() const {
820 auto Children = const_cast<MSPropertyRefExpr *>(this)->children();
821 return const_child_range(Children.begin(), Children.end());
822 }
823
824 static bool classof(const Stmt *T) {
825 return T->getStmtClass() == MSPropertyRefExprClass;
826 }
827
828 Expr *getBaseExpr() const { return BaseExpr; }
829 MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
830 bool isArrow() const { return IsArrow; }
831 SourceLocation getMemberLoc() const { return MemberLoc; }
832 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
833};
834
835/// MS property subscript expression.
836/// MSVC supports 'property' attribute and allows to apply it to the
837/// declaration of an empty array in a class or structure definition.
838/// For example:
839/// \code
840/// __declspec(property(get=GetX, put=PutX)) int x[];
841/// \endcode
842/// The above statement indicates that x[] can be used with one or more array
843/// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and
844/// p->x[a][b] = i will be turned into p->PutX(a, b, i).
845/// This is a syntactic pseudo-object expression.
846class MSPropertySubscriptExpr : public Expr {
847 friend class ASTStmtReader;
848
849 enum { BASE_EXPR, IDX_EXPR, NUM_SUBEXPRS = 2 };
850
851 Stmt *SubExprs[NUM_SUBEXPRS];
852 SourceLocation RBracketLoc;
853
854 void setBase(Expr *Base) { SubExprs[BASE_EXPR] = Base; }
855 void setIdx(Expr *Idx) { SubExprs[IDX_EXPR] = Idx; }
856
857public:
858 MSPropertySubscriptExpr(Expr *Base, Expr *Idx, QualType Ty, ExprValueKind VK,
859 ExprObjectKind OK, SourceLocation RBracketLoc)
860 : Expr(MSPropertySubscriptExprClass, Ty, VK, OK, Idx->isTypeDependent(),
861 Idx->isValueDependent(), Idx->isInstantiationDependent(),
862 Idx->containsUnexpandedParameterPack()),
863 RBracketLoc(RBracketLoc) {
864 SubExprs[BASE_EXPR] = Base;
865 SubExprs[IDX_EXPR] = Idx;
866 }
867
868 /// Create an empty array subscript expression.
869 explicit MSPropertySubscriptExpr(EmptyShell Shell)
870 : Expr(MSPropertySubscriptExprClass, Shell) {}
871
872 Expr *getBase() { return cast<Expr>(SubExprs[BASE_EXPR]); }
873 const Expr *getBase() const { return cast<Expr>(SubExprs[BASE_EXPR]); }
874
875 Expr *getIdx() { return cast<Expr>(SubExprs[IDX_EXPR]); }
876 const Expr *getIdx() const { return cast<Expr>(SubExprs[IDX_EXPR]); }
877
878 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
879 return getBase()->getBeginLoc();
880 }
881
882 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RBracketLoc; }
883
884 SourceLocation getRBracketLoc() const { return RBracketLoc; }
885 void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
886
887 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) {
888 return getBase()->getExprLoc();
889 }
890
891 static bool classof(const Stmt *T) {
892 return T->getStmtClass() == MSPropertySubscriptExprClass;
893 }
894
895 // Iterators
896 child_range children() {
897 return child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
898 }
899
900 const_child_range children() const {
901 return const_child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
902 }
903};
904
905/// A Microsoft C++ @c __uuidof expression, which gets
906/// the _GUID that corresponds to the supplied type or expression.
907///
908/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
909class CXXUuidofExpr : public Expr {
910private:
911 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
912 StringRef UuidStr;
913 SourceRange Range;
914
915public:
916 CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, StringRef UuidStr,
917 SourceRange R)
918 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary, false,
919 Operand->getType()->isDependentType(),
920 Operand->getType()->isInstantiationDependentType(),
921 Operand->getType()->containsUnexpandedParameterPack()),
922 Operand(Operand), UuidStr(UuidStr), Range(R) {}
923
924 CXXUuidofExpr(QualType Ty, Expr *Operand, StringRef UuidStr, SourceRange R)
925 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary, false,
926 Operand->isTypeDependent(), Operand->isInstantiationDependent(),
927 Operand->containsUnexpandedParameterPack()),
928 Operand(Operand), UuidStr(UuidStr), Range(R) {}
929
930 CXXUuidofExpr(EmptyShell Empty, bool isExpr)
931 : Expr(CXXUuidofExprClass, Empty) {
932 if (isExpr)
933 Operand = (Expr*)nullptr;
934 else
935 Operand = (TypeSourceInfo*)nullptr;
936 }
937
938 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
939
940 /// Retrieves the type operand of this __uuidof() expression after
941 /// various required adjustments (removing reference types, cv-qualifiers).
942 QualType getTypeOperand(ASTContext &Context) const;
943
944 /// Retrieve source information for the type operand.
945 TypeSourceInfo *getTypeOperandSourceInfo() const {
946 assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)")((isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)"
) ? static_cast<void> (0) : __assert_fail ("isTypeOperand() && \"Cannot call getTypeOperand for __uuidof(expr)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 946, __PRETTY_FUNCTION__))
;
947 return Operand.get<TypeSourceInfo *>();
948 }
949
950 void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
951 assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)")((isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)"
) ? static_cast<void> (0) : __assert_fail ("isTypeOperand() && \"Cannot call getTypeOperand for __uuidof(expr)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 951, __PRETTY_FUNCTION__))
;
952 Operand = TSI;
953 }
954
955 Expr *getExprOperand() const {
956 assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)")((!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)"
) ? static_cast<void> (0) : __assert_fail ("!isTypeOperand() && \"Cannot call getExprOperand for __uuidof(type)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 956, __PRETTY_FUNCTION__))
;
957 return static_cast<Expr*>(Operand.get<Stmt *>());
958 }
959
960 void setExprOperand(Expr *E) {
961 assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)")((!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)"
) ? static_cast<void> (0) : __assert_fail ("!isTypeOperand() && \"Cannot call getExprOperand for __uuidof(type)\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 961, __PRETTY_FUNCTION__))
;
962 Operand = E;
963 }
964
965 void setUuidStr(StringRef US) { UuidStr = US; }
966 StringRef getUuidStr() const { return UuidStr; }
967
968 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
969 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
970 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
971 void setSourceRange(SourceRange R) { Range = R; }
972
973 static bool classof(const Stmt *T) {
974 return T->getStmtClass() == CXXUuidofExprClass;
975 }
976
977 // Iterators
978 child_range children() {
979 if (isTypeOperand())
980 return child_range(child_iterator(), child_iterator());
981 auto **begin = reinterpret_cast<Stmt **>(&Operand);
982 return child_range(begin, begin + 1);
983 }
984
985 const_child_range children() const {
986 if (isTypeOperand())
987 return const_child_range(const_child_iterator(), const_child_iterator());
988 auto **begin =
989 reinterpret_cast<Stmt **>(&const_cast<CXXUuidofExpr *>(this)->Operand);
990 return const_child_range(begin, begin + 1);
991 }
992};
993
994/// Represents the \c this expression in C++.
995///
996/// This is a pointer to the object on which the current member function is
997/// executing (C++ [expr.prim]p3). Example:
998///
999/// \code
1000/// class Foo {
1001/// public:
1002/// void bar();
1003/// void test() { this->bar(); }
1004/// };
1005/// \endcode
1006class CXXThisExpr : public Expr {
1007public:
1008 CXXThisExpr(SourceLocation L, QualType Ty, bool IsImplicit)
1009 : Expr(CXXThisExprClass, Ty, VK_RValue, OK_Ordinary,
1010 // 'this' is type-dependent if the class type of the enclosing
1011 // member function is dependent (C++ [temp.dep.expr]p2)
1012 Ty->isDependentType(), Ty->isDependentType(),
1013 Ty->isInstantiationDependentType(),
1014 /*ContainsUnexpandedParameterPack=*/false) {
1015 CXXThisExprBits.IsImplicit = IsImplicit;
1016 CXXThisExprBits.Loc = L;
1017 }
1018
1019 CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
1020
1021 SourceLocation getLocation() const { return CXXThisExprBits.Loc; }
1022 void setLocation(SourceLocation L) { CXXThisExprBits.Loc = L; }
1023
1024 SourceLocation getBeginLoc() const { return getLocation(); }
1025 SourceLocation getEndLoc() const { return getLocation(); }
1026
1027 bool isImplicit() const { return CXXThisExprBits.IsImplicit; }
1028 void setImplicit(bool I) { CXXThisExprBits.IsImplicit = I; }
1029
1030 static bool classof(const Stmt *T) {
1031 return T->getStmtClass() == CXXThisExprClass;
1032 }
1033
1034 // Iterators
1035 child_range children() {
1036 return child_range(child_iterator(), child_iterator());
1037 }
1038
1039 const_child_range children() const {
1040 return const_child_range(const_child_iterator(), const_child_iterator());
1041 }
1042};
1043
1044/// A C++ throw-expression (C++ [except.throw]).
1045///
1046/// This handles 'throw' (for re-throwing the current exception) and
1047/// 'throw' assignment-expression. When assignment-expression isn't
1048/// present, Op will be null.
1049class CXXThrowExpr : public Expr {
1050 friend class ASTStmtReader;
1051
1052 /// The optional expression in the throw statement.
1053 Stmt *Operand;
1054
1055public:
1056 // \p Ty is the void type which is used as the result type of the
1057 // expression. The \p Loc is the location of the throw keyword.
1058 // \p Operand is the expression in the throw statement, and can be
1059 // null if not present.
1060 CXXThrowExpr(Expr *Operand, QualType Ty, SourceLocation Loc,
1061 bool IsThrownVariableInScope)
1062 : Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
1063 Operand && Operand->isInstantiationDependent(),
1064 Operand && Operand->containsUnexpandedParameterPack()),
1065 Operand(Operand) {
1066 CXXThrowExprBits.ThrowLoc = Loc;
1067 CXXThrowExprBits.IsThrownVariableInScope = IsThrownVariableInScope;
1068 }
1069 CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
1070
1071 const Expr *getSubExpr() const { return cast_or_null<Expr>(Operand); }
1072 Expr *getSubExpr() { return cast_or_null<Expr>(Operand); }
1073
1074 SourceLocation getThrowLoc() const { return CXXThrowExprBits.ThrowLoc; }
1075
1076 /// Determines whether the variable thrown by this expression (if any!)
1077 /// is within the innermost try block.
1078 ///
1079 /// This information is required to determine whether the NRVO can apply to
1080 /// this variable.
1081 bool isThrownVariableInScope() const {
1082 return CXXThrowExprBits.IsThrownVariableInScope;
1083 }
1084
1085 SourceLocation getBeginLoc() const { return getThrowLoc(); }
1086 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
1087 if (!getSubExpr())
1088 return getThrowLoc();
1089 return getSubExpr()->getEndLoc();
1090 }
1091
1092 static bool classof(const Stmt *T) {
1093 return T->getStmtClass() == CXXThrowExprClass;
1094 }
1095
1096 // Iterators
1097 child_range children() {
1098 return child_range(&Operand, Operand ? &Operand + 1 : &Operand);
1099 }
1100
1101 const_child_range children() const {
1102 return const_child_range(&Operand, Operand ? &Operand + 1 : &Operand);
1103 }
1104};
1105
1106/// A default argument (C++ [dcl.fct.default]).
1107///
1108/// This wraps up a function call argument that was created from the
1109/// corresponding parameter's default argument, when the call did not
1110/// explicitly supply arguments for all of the parameters.
1111class CXXDefaultArgExpr final : public Expr {
1112 friend class ASTStmtReader;
1113
1114 /// The parameter whose default is being used.
1115 ParmVarDecl *Param;
1116
1117 /// The context where the default argument expression was used.
1118 DeclContext *UsedContext;
1119
1120 CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *Param,
1121 DeclContext *UsedContext)
1122 : Expr(SC,
1123 Param->hasUnparsedDefaultArg()
1124 ? Param->getType().getNonReferenceType()
1125 : Param->getDefaultArg()->getType(),
1126 Param->getDefaultArg()->getValueKind(),
1127 Param->getDefaultArg()->getObjectKind(), false, false, false,
1128 false),
1129 Param(Param), UsedContext(UsedContext) {
1130 CXXDefaultArgExprBits.Loc = Loc;
1131 }
1132
1133public:
1134 CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
1135
1136 // \p Param is the parameter whose default argument is used by this
1137 // expression.
1138 static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
1139 ParmVarDecl *Param,
1140 DeclContext *UsedContext) {
1141 return new (C)
1142 CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param, UsedContext);
1143 }
1144
1145 // Retrieve the parameter that the argument was created from.
1146 const ParmVarDecl *getParam() const { return Param; }
1147 ParmVarDecl *getParam() { return Param; }
1148
1149 // Retrieve the actual argument to the function call.
1150 const Expr *getExpr() const { return getParam()->getDefaultArg(); }
1151 Expr *getExpr() { return getParam()->getDefaultArg(); }
1152
1153 const DeclContext *getUsedContext() const { return UsedContext; }
1154 DeclContext *getUsedContext() { return UsedContext; }
1155
1156 /// Retrieve the location where this default argument was actually used.
1157 SourceLocation getUsedLocation() const { return CXXDefaultArgExprBits.Loc; }
1158
1159 /// Default argument expressions have no representation in the
1160 /// source, so they have an empty source range.
1161 SourceLocation getBeginLoc() const { return SourceLocation(); }
1162 SourceLocation getEndLoc() const { return SourceLocation(); }
1163
1164 SourceLocation getExprLoc() const { return getUsedLocation(); }
1165
1166 static bool classof(const Stmt *T) {
1167 return T->getStmtClass() == CXXDefaultArgExprClass;
1168 }
1169
1170 // Iterators
1171 child_range children() {
1172 return child_range(child_iterator(), child_iterator());
1173 }
1174
1175 const_child_range children() const {
1176 return const_child_range(const_child_iterator(), const_child_iterator());
1177 }
1178};
1179
1180/// A use of a default initializer in a constructor or in aggregate
1181/// initialization.
1182///
1183/// This wraps a use of a C++ default initializer (technically,
1184/// a brace-or-equal-initializer for a non-static data member) when it
1185/// is implicitly used in a mem-initializer-list in a constructor
1186/// (C++11 [class.base.init]p8) or in aggregate initialization
1187/// (C++1y [dcl.init.aggr]p7).
1188class CXXDefaultInitExpr : public Expr {
1189 friend class ASTReader;
1190 friend class ASTStmtReader;
1191
1192 /// The field whose default is being used.
1193 FieldDecl *Field;
1194
1195 /// The context where the default initializer expression was used.
1196 DeclContext *UsedContext;
1197
1198 CXXDefaultInitExpr(const ASTContext &Ctx, SourceLocation Loc,
1199 FieldDecl *Field, QualType Ty, DeclContext *UsedContext);
1200
1201 CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
1202
1203public:
1204 /// \p Field is the non-static data member whose default initializer is used
1205 /// by this expression.
1206 static CXXDefaultInitExpr *Create(const ASTContext &Ctx, SourceLocation Loc,
1207 FieldDecl *Field, DeclContext *UsedContext) {
1208 return new (Ctx) CXXDefaultInitExpr(Ctx, Loc, Field, Field->getType(), UsedContext);
1209 }
1210
1211 /// Get the field whose initializer will be used.
1212 FieldDecl *getField() { return Field; }
1213 const FieldDecl *getField() const { return Field; }
1214
1215 /// Get the initialization expression that will be used.
1216 const Expr *getExpr() const {
1217 assert(Field->getInClassInitializer() && "initializer hasn't been parsed")((Field->getInClassInitializer() && "initializer hasn't been parsed"
) ? static_cast<void> (0) : __assert_fail ("Field->getInClassInitializer() && \"initializer hasn't been parsed\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 1217, __PRETTY_FUNCTION__))
;
1218 return Field->getInClassInitializer();
1219 }
1220 Expr *getExpr() {
1221 assert(Field->getInClassInitializer() && "initializer hasn't been parsed")((Field->getInClassInitializer() && "initializer hasn't been parsed"
) ? static_cast<void> (0) : __assert_fail ("Field->getInClassInitializer() && \"initializer hasn't been parsed\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 1221, __PRETTY_FUNCTION__))
;
1222 return Field->getInClassInitializer();
1223 }
1224
1225 const DeclContext *getUsedContext() const { return UsedContext; }
1226 DeclContext *getUsedContext() { return UsedContext; }
1227
1228 /// Retrieve the location where this default initializer expression was
1229 /// actually used.
1230 SourceLocation getUsedLocation() const { return getBeginLoc(); }
1231
1232 SourceLocation getBeginLoc() const { return CXXDefaultInitExprBits.Loc; }
1233 SourceLocation getEndLoc() const { return CXXDefaultInitExprBits.Loc; }
1234
1235 static bool classof(const Stmt *T) {
1236 return T->getStmtClass() == CXXDefaultInitExprClass;
1237 }
1238
1239 // Iterators
1240 child_range children() {
1241 return child_range(child_iterator(), child_iterator());
1242 }
1243
1244 const_child_range children() const {
1245 return const_child_range(const_child_iterator(), const_child_iterator());
1246 }
1247};
1248
1249/// Represents a C++ temporary.
1250class CXXTemporary {
1251 /// The destructor that needs to be called.
1252 const CXXDestructorDecl *Destructor;
1253
1254 explicit CXXTemporary(const CXXDestructorDecl *destructor)
1255 : Destructor(destructor) {}
1256
1257public:
1258 static CXXTemporary *Create(const ASTContext &C,
1259 const CXXDestructorDecl *Destructor);
1260
1261 const CXXDestructorDecl *getDestructor() const { return Destructor; }
1262
1263 void setDestructor(const CXXDestructorDecl *Dtor) {
1264 Destructor = Dtor;
1265 }
1266};
1267
1268/// Represents binding an expression to a temporary.
1269///
1270/// This ensures the destructor is called for the temporary. It should only be
1271/// needed for non-POD, non-trivially destructable class types. For example:
1272///
1273/// \code
1274/// struct S {
1275/// S() { } // User defined constructor makes S non-POD.
1276/// ~S() { } // User defined destructor makes it non-trivial.
1277/// };
1278/// void test() {
1279/// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
1280/// }
1281/// \endcode
1282class CXXBindTemporaryExpr : public Expr {
1283 CXXTemporary *Temp = nullptr;
1284 Stmt *SubExpr = nullptr;
1285
1286 CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
1287 : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
1288 VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
1289 SubExpr->isValueDependent(),
1290 SubExpr->isInstantiationDependent(),
1291 SubExpr->containsUnexpandedParameterPack()),
1292 Temp(temp), SubExpr(SubExpr) {}
1293
1294public:
1295 CXXBindTemporaryExpr(EmptyShell Empty)
1296 : Expr(CXXBindTemporaryExprClass, Empty) {}
1297
1298 static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
1299 Expr* SubExpr);
1300
1301 CXXTemporary *getTemporary() { return Temp; }
1302 const CXXTemporary *getTemporary() const { return Temp; }
1303 void setTemporary(CXXTemporary *T) { Temp = T; }
1304
1305 const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1306 Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1307 void setSubExpr(Expr *E) { SubExpr = E; }
1308
1309 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
1310 return SubExpr->getBeginLoc();
1311 }
1312
1313 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
1314 return SubExpr->getEndLoc();
1315 }
1316
1317 // Implement isa/cast/dyncast/etc.
1318 static bool classof(const Stmt *T) {
1319 return T->getStmtClass() == CXXBindTemporaryExprClass;
1320 }
1321
1322 // Iterators
1323 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
1324
1325 const_child_range children() const {
1326 return const_child_range(&SubExpr, &SubExpr + 1);
1327 }
1328};
1329
1330/// Represents a call to a C++ constructor.
1331class CXXConstructExpr : public Expr {
1332 friend class ASTStmtReader;
1333
1334public:
1335 enum ConstructionKind {
1336 CK_Complete,
1337 CK_NonVirtualBase,
1338 CK_VirtualBase,
1339 CK_Delegating
1340 };
1341
1342private:
1343 /// A pointer to the constructor which will be ultimately called.
1344 CXXConstructorDecl *Constructor;
1345
1346 SourceRange ParenOrBraceRange;
1347
1348 /// The number of arguments.
1349 unsigned NumArgs;
1350
1351 // We would like to stash the arguments of the constructor call after
1352 // CXXConstructExpr. However CXXConstructExpr is used as a base class of
1353 // CXXTemporaryObjectExpr which makes the use of llvm::TrailingObjects
1354 // impossible.
1355 //
1356 // Instead we manually stash the trailing object after the full object
1357 // containing CXXConstructExpr (that is either CXXConstructExpr or
1358 // CXXTemporaryObjectExpr).
1359 //
1360 // The trailing objects are:
1361 //
1362 // * An array of getNumArgs() "Stmt *" for the arguments of the
1363 // constructor call.
1364
1365 /// Return a pointer to the start of the trailing arguments.
1366 /// Defined just after CXXTemporaryObjectExpr.
1367 inline Stmt **getTrailingArgs();
1368 const Stmt *const *getTrailingArgs() const {
1369 return const_cast<CXXConstructExpr *>(this)->getTrailingArgs();
1370 }
1371
1372protected:
1373 /// Build a C++ construction expression.
1374 CXXConstructExpr(StmtClass SC, QualType Ty, SourceLocation Loc,
1375 CXXConstructorDecl *Ctor, bool Elidable,
1376 ArrayRef<Expr *> Args, bool HadMultipleCandidates,
1377 bool ListInitialization, bool StdInitListInitialization,
1378 bool ZeroInitialization, ConstructionKind ConstructKind,
1379 SourceRange ParenOrBraceRange);
1380
1381 /// Build an empty C++ construction expression.
1382 CXXConstructExpr(StmtClass SC, EmptyShell Empty, unsigned NumArgs);
1383
1384 /// Return the size in bytes of the trailing objects. Used by
1385 /// CXXTemporaryObjectExpr to allocate the right amount of storage.
1386 static unsigned sizeOfTrailingObjects(unsigned NumArgs) {
1387 return NumArgs * sizeof(Stmt *);
1388 }
1389
1390public:
1391 /// Create a C++ construction expression.
1392 static CXXConstructExpr *
1393 Create(const ASTContext &Ctx, QualType Ty, SourceLocation Loc,
1394 CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args,
1395 bool HadMultipleCandidates, bool ListInitialization,
1396 bool StdInitListInitialization, bool ZeroInitialization,
1397 ConstructionKind ConstructKind, SourceRange ParenOrBraceRange);
1398
1399 /// Create an empty C++ construction expression.
1400 static CXXConstructExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs);
1401
1402 /// Get the constructor that this expression will (ultimately) call.
1403 CXXConstructorDecl *getConstructor() const { return Constructor; }
1404
1405 SourceLocation getLocation() const { return CXXConstructExprBits.Loc; }
1406 void setLocation(SourceLocation Loc) { CXXConstructExprBits.Loc = Loc; }
1407
1408 /// Whether this construction is elidable.
1409 bool isElidable() const { return CXXConstructExprBits.Elidable; }
1410 void setElidable(bool E) { CXXConstructExprBits.Elidable = E; }
1411
1412 /// Whether the referred constructor was resolved from
1413 /// an overloaded set having size greater than 1.
1414 bool hadMultipleCandidates() const {
1415 return CXXConstructExprBits.HadMultipleCandidates;
1416 }
1417 void setHadMultipleCandidates(bool V) {
1418 CXXConstructExprBits.HadMultipleCandidates = V;
1419 }
1420
1421 /// Whether this constructor call was written as list-initialization.
1422 bool isListInitialization() const {
1423 return CXXConstructExprBits.ListInitialization;
1424 }
1425 void setListInitialization(bool V) {
1426 CXXConstructExprBits.ListInitialization = V;
1427 }
1428
1429 /// Whether this constructor call was written as list-initialization,
1430 /// but was interpreted as forming a std::initializer_list<T> from the list
1431 /// and passing that as a single constructor argument.
1432 /// See C++11 [over.match.list]p1 bullet 1.
1433 bool isStdInitListInitialization() const {
1434 return CXXConstructExprBits.StdInitListInitialization;
1435 }
1436 void setStdInitListInitialization(bool V) {
1437 CXXConstructExprBits.StdInitListInitialization = V;
1438 }
1439
1440 /// Whether this construction first requires
1441 /// zero-initialization before the initializer is called.
1442 bool requiresZeroInitialization() const {
1443 return CXXConstructExprBits.ZeroInitialization;
1444 }
1445 void setRequiresZeroInitialization(bool ZeroInit) {
1446 CXXConstructExprBits.ZeroInitialization = ZeroInit;
1447 }
1448
1449 /// Determine whether this constructor is actually constructing
1450 /// a base class (rather than a complete object).
1451 ConstructionKind getConstructionKind() const {
1452 return static_cast<ConstructionKind>(CXXConstructExprBits.ConstructionKind);
1453 }
1454 void setConstructionKind(ConstructionKind CK) {
1455 CXXConstructExprBits.ConstructionKind = CK;
1456 }
1457
1458 using arg_iterator = ExprIterator;
1459 using const_arg_iterator = ConstExprIterator;
1460 using arg_range = llvm::iterator_range<arg_iterator>;
1461 using const_arg_range = llvm::iterator_range<const_arg_iterator>;
1462
1463 arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
1464 const_arg_range arguments() const {
1465 return const_arg_range(arg_begin(), arg_end());
1466 }
1467
1468 arg_iterator arg_begin() { return getTrailingArgs(); }
1469 arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
1470 const_arg_iterator arg_begin() const { return getTrailingArgs(); }
1471 const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
1472
1473 Expr **getArgs() { return reinterpret_cast<Expr **>(getTrailingArgs()); }
1474 const Expr *const *getArgs() const {
1475 return reinterpret_cast<const Expr *const *>(getTrailingArgs());
1476 }
1477
1478 /// Return the number of arguments to the constructor call.
1479 unsigned getNumArgs() const { return NumArgs; }
1480
1481 /// Return the specified argument.
1482 Expr *getArg(unsigned Arg) {
1483 assert(Arg < getNumArgs() && "Arg access out of range!")((Arg < getNumArgs() && "Arg access out of range!"
) ? static_cast<void> (0) : __assert_fail ("Arg < getNumArgs() && \"Arg access out of range!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 1483, __PRETTY_FUNCTION__))
;
1484 return getArgs()[Arg];
1485 }
1486 const Expr *getArg(unsigned Arg) const {
1487 assert(Arg < getNumArgs() && "Arg access out of range!")((Arg < getNumArgs() && "Arg access out of range!"
) ? static_cast<void> (0) : __assert_fail ("Arg < getNumArgs() && \"Arg access out of range!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 1487, __PRETTY_FUNCTION__))
;
1488 return getArgs()[Arg];
1489 }
1490
1491 /// Set the specified argument.
1492 void setArg(unsigned Arg, Expr *ArgExpr) {
1493 assert(Arg < getNumArgs() && "Arg access out of range!")((Arg < getNumArgs() && "Arg access out of range!"
) ? static_cast<void> (0) : __assert_fail ("Arg < getNumArgs() && \"Arg access out of range!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 1493, __PRETTY_FUNCTION__))
;
1494 getArgs()[Arg] = ArgExpr;
1495 }
1496
1497 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
1498 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
1499 SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
1500 void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
1501
1502 static bool classof(const Stmt *T) {
1503 return T->getStmtClass() == CXXConstructExprClass ||
1504 T->getStmtClass() == CXXTemporaryObjectExprClass;
1505 }
1506
1507 // Iterators
1508 child_range children() {
1509 return child_range(getTrailingArgs(), getTrailingArgs() + getNumArgs());
1510 }
1511
1512 const_child_range children() const {
1513 auto Children = const_cast<CXXConstructExpr *>(this)->children();
1514 return const_child_range(Children.begin(), Children.end());
1515 }
1516};
1517
1518/// Represents a call to an inherited base class constructor from an
1519/// inheriting constructor. This call implicitly forwards the arguments from
1520/// the enclosing context (an inheriting constructor) to the specified inherited
1521/// base class constructor.
1522class CXXInheritedCtorInitExpr : public Expr {
1523private:
1524 CXXConstructorDecl *Constructor = nullptr;
1525
1526 /// The location of the using declaration.
1527 SourceLocation Loc;
1528
1529 /// Whether this is the construction of a virtual base.
1530 unsigned ConstructsVirtualBase : 1;
1531
1532 /// Whether the constructor is inherited from a virtual base class of the
1533 /// class that we construct.
1534 unsigned InheritedFromVirtualBase : 1;
1535
1536public:
1537 friend class ASTStmtReader;
1538
1539 /// Construct a C++ inheriting construction expression.
1540 CXXInheritedCtorInitExpr(SourceLocation Loc, QualType T,
1541 CXXConstructorDecl *Ctor, bool ConstructsVirtualBase,
1542 bool InheritedFromVirtualBase)
1543 : Expr(CXXInheritedCtorInitExprClass, T, VK_RValue, OK_Ordinary, false,
1544 false, false, false),
1545 Constructor(Ctor), Loc(Loc),
1546 ConstructsVirtualBase(ConstructsVirtualBase),
1547 InheritedFromVirtualBase(InheritedFromVirtualBase) {
1548 assert(!T->isDependentType())((!T->isDependentType()) ? static_cast<void> (0) : __assert_fail
("!T->isDependentType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 1548, __PRETTY_FUNCTION__))
;
1549 }
1550
1551 /// Construct an empty C++ inheriting construction expression.
1552 explicit CXXInheritedCtorInitExpr(EmptyShell Empty)
1553 : Expr(CXXInheritedCtorInitExprClass, Empty),
1554 ConstructsVirtualBase(false), InheritedFromVirtualBase(false) {}
1555
1556 /// Get the constructor that this expression will call.
1557 CXXConstructorDecl *getConstructor() const { return Constructor; }
1558
1559 /// Determine whether this constructor is actually constructing
1560 /// a base class (rather than a complete object).
1561 bool constructsVBase() const { return ConstructsVirtualBase; }
1562 CXXConstructExpr::ConstructionKind getConstructionKind() const {
1563 return ConstructsVirtualBase ? CXXConstructExpr::CK_VirtualBase
1564 : CXXConstructExpr::CK_NonVirtualBase;
1565 }
1566
1567 /// Determine whether the inherited constructor is inherited from a
1568 /// virtual base of the object we construct. If so, we are not responsible
1569 /// for calling the inherited constructor (the complete object constructor
1570 /// does that), and so we don't need to pass any arguments.
1571 bool inheritedFromVBase() const { return InheritedFromVirtualBase; }
1572
1573 SourceLocation getLocation() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
1574 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
1575 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
1576
1577 static bool classof(const Stmt *T) {
1578 return T->getStmtClass() == CXXInheritedCtorInitExprClass;
1579 }
1580
1581 child_range children() {
1582 return child_range(child_iterator(), child_iterator());
1583 }
1584
1585 const_child_range children() const {
1586 return const_child_range(const_child_iterator(), const_child_iterator());
1587 }
1588};
1589
1590/// Represents an explicit C++ type conversion that uses "functional"
1591/// notation (C++ [expr.type.conv]).
1592///
1593/// Example:
1594/// \code
1595/// x = int(0.5);
1596/// \endcode
1597class CXXFunctionalCastExpr final
1598 : public ExplicitCastExpr,
1599 private llvm::TrailingObjects<CXXFunctionalCastExpr, CXXBaseSpecifier *> {
1600 SourceLocation LParenLoc;
1601 SourceLocation RParenLoc;
1602
1603 CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1604 TypeSourceInfo *writtenTy,
1605 CastKind kind, Expr *castExpr, unsigned pathSize,
1606 SourceLocation lParenLoc, SourceLocation rParenLoc)
1607 : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1608 castExpr, pathSize, writtenTy),
1609 LParenLoc(lParenLoc), RParenLoc(rParenLoc) {}
1610
1611 explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1612 : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) {}
1613
1614public:
1615 friend class CastExpr;
1616 friend TrailingObjects;
1617
1618 static CXXFunctionalCastExpr *Create(const ASTContext &Context, QualType T,
1619 ExprValueKind VK,
1620 TypeSourceInfo *Written,
1621 CastKind Kind, Expr *Op,
1622 const CXXCastPath *Path,
1623 SourceLocation LPLoc,
1624 SourceLocation RPLoc);
1625 static CXXFunctionalCastExpr *CreateEmpty(const ASTContext &Context,
1626 unsigned PathSize);
1627
1628 SourceLocation getLParenLoc() const { return LParenLoc; }
1629 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1630 SourceLocation getRParenLoc() const { return RParenLoc; }
1631 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1632
1633 /// Determine whether this expression models list-initialization.
1634 bool isListInitialization() const { return LParenLoc.isInvalid(); }
1635
1636 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
1637 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
1638
1639 static bool classof(const Stmt *T) {
1640 return T->getStmtClass() == CXXFunctionalCastExprClass;
1641 }
1642};
1643
1644/// Represents a C++ functional cast expression that builds a
1645/// temporary object.
1646///
1647/// This expression type represents a C++ "functional" cast
1648/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1649/// constructor to build a temporary object. With N == 1 arguments the
1650/// functional cast expression will be represented by CXXFunctionalCastExpr.
1651/// Example:
1652/// \code
1653/// struct X { X(int, float); }
1654///
1655/// X create_X() {
1656/// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1657/// };
1658/// \endcode
1659class CXXTemporaryObjectExpr final : public CXXConstructExpr {
1660 friend class ASTStmtReader;
1661
1662 // CXXTemporaryObjectExpr has some trailing objects belonging
1663 // to CXXConstructExpr. See the comment inside CXXConstructExpr
1664 // for more details.
1665
1666 TypeSourceInfo *TSI;
1667
1668 CXXTemporaryObjectExpr(CXXConstructorDecl *Cons, QualType Ty,
1669 TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
1670 SourceRange ParenOrBraceRange,
1671 bool HadMultipleCandidates, bool ListInitialization,
1672 bool StdInitListInitialization,
1673 bool ZeroInitialization);
1674
1675 CXXTemporaryObjectExpr(EmptyShell Empty, unsigned NumArgs);
1676
1677public:
1678 static CXXTemporaryObjectExpr *
1679 Create(const ASTContext &Ctx, CXXConstructorDecl *Cons, QualType Ty,
1680 TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
1681 SourceRange ParenOrBraceRange, bool HadMultipleCandidates,
1682 bool ListInitialization, bool StdInitListInitialization,
1683 bool ZeroInitialization);
1684
1685 static CXXTemporaryObjectExpr *CreateEmpty(const ASTContext &Ctx,
1686 unsigned NumArgs);
1687
1688 TypeSourceInfo *getTypeSourceInfo() const { return TSI; }
1689
1690 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
1691 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
1692
1693 static bool classof(const Stmt *T) {
1694 return T->getStmtClass() == CXXTemporaryObjectExprClass;
1695 }
1696};
1697
1698Stmt **CXXConstructExpr::getTrailingArgs() {
1699 if (auto *E = dyn_cast<CXXTemporaryObjectExpr>(this))
1700 return reinterpret_cast<Stmt **>(E + 1);
1701 assert((getStmtClass() == CXXConstructExprClass) &&(((getStmtClass() == CXXConstructExprClass) && "Unexpected class deriving from CXXConstructExpr!"
) ? static_cast<void> (0) : __assert_fail ("(getStmtClass() == CXXConstructExprClass) && \"Unexpected class deriving from CXXConstructExpr!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 1702, __PRETTY_FUNCTION__))
1702 "Unexpected class deriving from CXXConstructExpr!")(((getStmtClass() == CXXConstructExprClass) && "Unexpected class deriving from CXXConstructExpr!"
) ? static_cast<void> (0) : __assert_fail ("(getStmtClass() == CXXConstructExprClass) && \"Unexpected class deriving from CXXConstructExpr!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 1702, __PRETTY_FUNCTION__))
;
1703 return reinterpret_cast<Stmt **>(this + 1);
1704}
1705
1706/// A C++ lambda expression, which produces a function object
1707/// (of unspecified type) that can be invoked later.
1708///
1709/// Example:
1710/// \code
1711/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1712/// values.erase(std::remove_if(values.begin(), values.end(),
1713/// [=](double value) { return value > cutoff; });
1714/// }
1715/// \endcode
1716///
1717/// C++11 lambda expressions can capture local variables, either by copying
1718/// the values of those local variables at the time the function
1719/// object is constructed (not when it is called!) or by holding a
1720/// reference to the local variable. These captures can occur either
1721/// implicitly or can be written explicitly between the square
1722/// brackets ([...]) that start the lambda expression.
1723///
1724/// C++1y introduces a new form of "capture" called an init-capture that
1725/// includes an initializing expression (rather than capturing a variable),
1726/// and which can never occur implicitly.
1727class LambdaExpr final : public Expr,
1728 private llvm::TrailingObjects<LambdaExpr, Stmt *> {
1729 /// The source range that covers the lambda introducer ([...]).
1730 SourceRange IntroducerRange;
1731
1732 /// The source location of this lambda's capture-default ('=' or '&').
1733 SourceLocation CaptureDefaultLoc;
1734
1735 /// The number of captures.
1736 unsigned NumCaptures : 16;
1737
1738 /// The default capture kind, which is a value of type
1739 /// LambdaCaptureDefault.
1740 unsigned CaptureDefault : 2;
1741
1742 /// Whether this lambda had an explicit parameter list vs. an
1743 /// implicit (and empty) parameter list.
1744 unsigned ExplicitParams : 1;
1745
1746 /// Whether this lambda had the result type explicitly specified.
1747 unsigned ExplicitResultType : 1;
1748
1749 /// The location of the closing brace ('}') that completes
1750 /// the lambda.
1751 ///
1752 /// The location of the brace is also available by looking up the
1753 /// function call operator in the lambda class. However, it is
1754 /// stored here to improve the performance of getSourceRange(), and
1755 /// to avoid having to deserialize the function call operator from a
1756 /// module file just to determine the source range.
1757 SourceLocation ClosingBrace;
1758
1759 /// Construct a lambda expression.
1760 LambdaExpr(QualType T, SourceRange IntroducerRange,
1761 LambdaCaptureDefault CaptureDefault,
1762 SourceLocation CaptureDefaultLoc, ArrayRef<LambdaCapture> Captures,
1763 bool ExplicitParams, bool ExplicitResultType,
1764 ArrayRef<Expr *> CaptureInits, SourceLocation ClosingBrace,
1765 bool ContainsUnexpandedParameterPack);
1766
1767 /// Construct an empty lambda expression.
1768 LambdaExpr(EmptyShell Empty, unsigned NumCaptures)
1769 : Expr(LambdaExprClass, Empty), NumCaptures(NumCaptures),
1770 CaptureDefault(LCD_None), ExplicitParams(false),
1771 ExplicitResultType(false) {
1772 getStoredStmts()[NumCaptures] = nullptr;
1773 }
1774
1775 Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); }
1776
1777 Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }
1778
1779public:
1780 friend class ASTStmtReader;
1781 friend class ASTStmtWriter;
1782 friend TrailingObjects;
1783
1784 /// Construct a new lambda expression.
1785 static LambdaExpr *
1786 Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange,
1787 LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc,
1788 ArrayRef<LambdaCapture> Captures, bool ExplicitParams,
1789 bool ExplicitResultType, ArrayRef<Expr *> CaptureInits,
1790 SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack);
1791
1792 /// Construct a new lambda expression that will be deserialized from
1793 /// an external source.
1794 static LambdaExpr *CreateDeserialized(const ASTContext &C,
1795 unsigned NumCaptures);
1796
1797 /// Determine the default capture kind for this lambda.
1798 LambdaCaptureDefault getCaptureDefault() const {
1799 return static_cast<LambdaCaptureDefault>(CaptureDefault);
1800 }
1801
1802 /// Retrieve the location of this lambda's capture-default, if any.
1803 SourceLocation getCaptureDefaultLoc() const {
1804 return CaptureDefaultLoc;
1805 }
1806
1807 /// Determine whether one of this lambda's captures is an init-capture.
1808 bool isInitCapture(const LambdaCapture *Capture) const;
1809
1810 /// An iterator that walks over the captures of the lambda,
1811 /// both implicit and explicit.
1812 using capture_iterator = const LambdaCapture *;
1813
1814 /// An iterator over a range of lambda captures.
1815 using capture_range = llvm::iterator_range<capture_iterator>;
1816
1817 /// Retrieve this lambda's captures.
1818 capture_range captures() const;
1819
1820 /// Retrieve an iterator pointing to the first lambda capture.
1821 capture_iterator capture_begin() const;
1822
1823 /// Retrieve an iterator pointing past the end of the
1824 /// sequence of lambda captures.
1825 capture_iterator capture_end() const;
1826
1827 /// Determine the number of captures in this lambda.
1828 unsigned capture_size() const { return NumCaptures; }
1829
1830 /// Retrieve this lambda's explicit captures.
1831 capture_range explicit_captures() const;
1832
1833 /// Retrieve an iterator pointing to the first explicit
1834 /// lambda capture.
1835 capture_iterator explicit_capture_begin() const;
1836
1837 /// Retrieve an iterator pointing past the end of the sequence of
1838 /// explicit lambda captures.
1839 capture_iterator explicit_capture_end() const;
1840
1841 /// Retrieve this lambda's implicit captures.
1842 capture_range implicit_captures() const;
1843
1844 /// Retrieve an iterator pointing to the first implicit
1845 /// lambda capture.
1846 capture_iterator implicit_capture_begin() const;
1847
1848 /// Retrieve an iterator pointing past the end of the sequence of
1849 /// implicit lambda captures.
1850 capture_iterator implicit_capture_end() const;
1851
1852 /// Iterator that walks over the capture initialization
1853 /// arguments.
1854 using capture_init_iterator = Expr **;
1855
1856 /// Const iterator that walks over the capture initialization
1857 /// arguments.
1858 using const_capture_init_iterator = Expr *const *;
1859
1860 /// Retrieve the initialization expressions for this lambda's captures.
1861 llvm::iterator_range<capture_init_iterator> capture_inits() {
1862 return llvm::make_range(capture_init_begin(), capture_init_end());
1863 }
1864
1865 /// Retrieve the initialization expressions for this lambda's captures.
1866 llvm::iterator_range<const_capture_init_iterator> capture_inits() const {
1867 return llvm::make_range(capture_init_begin(), capture_init_end());
1868 }
1869
1870 /// Retrieve the first initialization argument for this
1871 /// lambda expression (which initializes the first capture field).
1872 capture_init_iterator capture_init_begin() {
1873 return reinterpret_cast<Expr **>(getStoredStmts());
1874 }
1875
1876 /// Retrieve the first initialization argument for this
1877 /// lambda expression (which initializes the first capture field).
1878 const_capture_init_iterator capture_init_begin() const {
1879 return reinterpret_cast<Expr *const *>(getStoredStmts());
1880 }
1881
1882 /// Retrieve the iterator pointing one past the last
1883 /// initialization argument for this lambda expression.
1884 capture_init_iterator capture_init_end() {
1885 return capture_init_begin() + NumCaptures;
1886 }
1887
1888 /// Retrieve the iterator pointing one past the last
1889 /// initialization argument for this lambda expression.
1890 const_capture_init_iterator capture_init_end() const {
1891 return capture_init_begin() + NumCaptures;
1892 }
1893
1894 /// Retrieve the source range covering the lambda introducer,
1895 /// which contains the explicit capture list surrounded by square
1896 /// brackets ([...]).
1897 SourceRange getIntroducerRange() const { return IntroducerRange; }
1898
1899 /// Retrieve the class that corresponds to the lambda.
1900 ///
1901 /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
1902 /// captures in its fields and provides the various operations permitted
1903 /// on a lambda (copying, calling).
1904 CXXRecordDecl *getLambdaClass() const;
1905
1906 /// Retrieve the function call operator associated with this
1907 /// lambda expression.
1908 CXXMethodDecl *getCallOperator() const;
1909
1910 /// Retrieve the function template call operator associated with this
1911 /// lambda expression.
1912 FunctionTemplateDecl *getDependentCallOperator() const;
1913
1914 /// If this is a generic lambda expression, retrieve the template
1915 /// parameter list associated with it, or else return null.
1916 TemplateParameterList *getTemplateParameterList() const;
1917
1918 /// Get the template parameters were explicitly specified (as opposed to being
1919 /// invented by use of an auto parameter).
1920 ArrayRef<NamedDecl *> getExplicitTemplateParameters() const;
1921
1922 /// Whether this is a generic lambda.
1923 bool isGenericLambda() const { return getTemplateParameterList(); }
1924
1925 /// Retrieve the body of the lambda.
1926 CompoundStmt *getBody() const;
1927
1928 /// Determine whether the lambda is mutable, meaning that any
1929 /// captures values can be modified.
1930 bool isMutable() const;
1931
1932 /// Determine whether this lambda has an explicit parameter
1933 /// list vs. an implicit (empty) parameter list.
1934 bool hasExplicitParameters() const { return ExplicitParams; }
1935
1936 /// Whether this lambda had its result type explicitly specified.
1937 bool hasExplicitResultType() const { return ExplicitResultType; }
1938
1939 static bool classof(const Stmt *T) {
1940 return T->getStmtClass() == LambdaExprClass;
1941 }
1942
1943 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
1944 return IntroducerRange.getBegin();
1945 }
1946
1947 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return ClosingBrace; }
1948
1949 child_range children() {
1950 // Includes initialization exprs plus body stmt
1951 return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1952 }
1953
1954 const_child_range children() const {
1955 return const_child_range(getStoredStmts(),
1956 getStoredStmts() + NumCaptures + 1);
1957 }
1958};
1959
1960/// An expression "T()" which creates a value-initialized rvalue of type
1961/// T, which is a non-class type. See (C++98 [5.2.3p2]).
1962class CXXScalarValueInitExpr : public Expr {
1963 friend class ASTStmtReader;
1964
1965 TypeSourceInfo *TypeInfo;
1966
1967public:
1968 /// Create an explicitly-written scalar-value initialization
1969 /// expression.
1970 CXXScalarValueInitExpr(QualType Type, TypeSourceInfo *TypeInfo,
1971 SourceLocation RParenLoc)
1972 : Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary, false,
1973 false, Type->isInstantiationDependentType(),
1974 Type->containsUnexpandedParameterPack()),
1975 TypeInfo(TypeInfo) {
1976 CXXScalarValueInitExprBits.RParenLoc = RParenLoc;
1977 }
1978
1979 explicit CXXScalarValueInitExpr(EmptyShell Shell)
1980 : Expr(CXXScalarValueInitExprClass, Shell) {}
1981
1982 TypeSourceInfo *getTypeSourceInfo() const {
1983 return TypeInfo;
1984 }
1985
1986 SourceLocation getRParenLoc() const {
1987 return CXXScalarValueInitExprBits.RParenLoc;
1988 }
1989
1990 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
1991 SourceLocation getEndLoc() const { return getRParenLoc(); }
1992
1993 static bool classof(const Stmt *T) {
1994 return T->getStmtClass() == CXXScalarValueInitExprClass;
1995 }
1996
1997 // Iterators
1998 child_range children() {
1999 return child_range(child_iterator(), child_iterator());
2000 }
2001
2002 const_child_range children() const {
2003 return const_child_range(const_child_iterator(), const_child_iterator());
2004 }
2005};
2006
2007/// Represents a new-expression for memory allocation and constructor
2008/// calls, e.g: "new CXXNewExpr(foo)".
2009class CXXNewExpr final
2010 : public Expr,
2011 private llvm::TrailingObjects<CXXNewExpr, Stmt *, SourceRange> {
2012 friend class ASTStmtReader;
2013 friend class ASTStmtWriter;
2014 friend TrailingObjects;
2015
2016 /// Points to the allocation function used.
2017 FunctionDecl *OperatorNew;
2018
2019 /// Points to the deallocation function used in case of error. May be null.
2020 FunctionDecl *OperatorDelete;
2021
2022 /// The allocated type-source information, as written in the source.
2023 TypeSourceInfo *AllocatedTypeInfo;
2024
2025 /// Range of the entire new expression.
2026 SourceRange Range;
2027
2028 /// Source-range of a paren-delimited initializer.
2029 SourceRange DirectInitRange;
2030
2031 // CXXNewExpr is followed by several optional trailing objects.
2032 // They are in order:
2033 //
2034 // * An optional "Stmt *" for the array size expression.
2035 // Present if and ony if isArray().
2036 //
2037 // * An optional "Stmt *" for the init expression.
2038 // Present if and only if hasInitializer().
2039 //
2040 // * An array of getNumPlacementArgs() "Stmt *" for the placement new
2041 // arguments, if any.
2042 //
2043 // * An optional SourceRange for the range covering the parenthesized type-id
2044 // if the allocated type was expressed as a parenthesized type-id.
2045 // Present if and only if isParenTypeId().
2046 unsigned arraySizeOffset() const { return 0; }
2047 unsigned initExprOffset() const { return arraySizeOffset() + isArray(); }
2048 unsigned placementNewArgsOffset() const {
2049 return initExprOffset() + hasInitializer();
2050 }
2051
2052 unsigned numTrailingObjects(OverloadToken<Stmt *>) const {
2053 return isArray() + hasInitializer() + getNumPlacementArgs();
2054 }
2055
2056 unsigned numTrailingObjects(OverloadToken<SourceRange>) const {
2057 return isParenTypeId();
2058 }
2059
2060public:
2061 enum InitializationStyle {
2062 /// New-expression has no initializer as written.
2063 NoInit,
2064
2065 /// New-expression has a C++98 paren-delimited initializer.
2066 CallInit,
2067
2068 /// New-expression has a C++11 list-initializer.
2069 ListInit
2070 };
2071
2072private:
2073 /// Build a c++ new expression.
2074 CXXNewExpr(bool IsGlobalNew, FunctionDecl *OperatorNew,
2075 FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
2076 bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
2077 SourceRange TypeIdParens, Optional<Expr *> ArraySize,
2078 InitializationStyle InitializationStyle, Expr *Initializer,
2079 QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
2080 SourceRange DirectInitRange);
2081
2082 /// Build an empty c++ new expression.
2083 CXXNewExpr(EmptyShell Empty, bool IsArray, unsigned NumPlacementArgs,
2084 bool IsParenTypeId);
2085
2086public:
2087 /// Create a c++ new expression.
2088 static CXXNewExpr *
2089 Create(const ASTContext &Ctx, bool IsGlobalNew, FunctionDecl *OperatorNew,
2090 FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
2091 bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
2092 SourceRange TypeIdParens, Optional<Expr *> ArraySize,
2093 InitializationStyle InitializationStyle, Expr *Initializer,
2094 QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
2095 SourceRange DirectInitRange);
2096
2097 /// Create an empty c++ new expression.
2098 static CXXNewExpr *CreateEmpty(const ASTContext &Ctx, bool IsArray,
2099 bool HasInit, unsigned NumPlacementArgs,
2100 bool IsParenTypeId);
2101
2102 QualType getAllocatedType() const {
2103 return getType()->castAs<PointerType>()->getPointeeType();
2104 }
2105
2106 TypeSourceInfo *getAllocatedTypeSourceInfo() const {
2107 return AllocatedTypeInfo;
2108 }
2109
2110 /// True if the allocation result needs to be null-checked.
2111 ///
2112 /// C++11 [expr.new]p13:
2113 /// If the allocation function returns null, initialization shall
2114 /// not be done, the deallocation function shall not be called,
2115 /// and the value of the new-expression shall be null.
2116 ///
2117 /// C++ DR1748:
2118 /// If the allocation function is a reserved placement allocation
2119 /// function that returns null, the behavior is undefined.
2120 ///
2121 /// An allocation function is not allowed to return null unless it
2122 /// has a non-throwing exception-specification. The '03 rule is
2123 /// identical except that the definition of a non-throwing
2124 /// exception specification is just "is it throw()?".
2125 bool shouldNullCheckAllocation() const;
2126
2127 FunctionDecl *getOperatorNew() const { return OperatorNew; }
2128 void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
2129 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
2130 void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
2131
2132 bool isArray() const { return CXXNewExprBits.IsArray; }
2133
2134 Optional<Expr *> getArraySize() {
2135 if (!isArray())
2136 return None;
2137 return cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]);
2138 }
2139 Optional<const Expr *> getArraySize() const {
2140 if (!isArray())
2141 return None;
2142 return cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]);
2143 }
2144
2145 unsigned getNumPlacementArgs() const {
2146 return CXXNewExprBits.NumPlacementArgs;
2147 }
2148
2149 Expr **getPlacementArgs() {
2150 return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>() +
2151 placementNewArgsOffset());
2152 }
2153
2154 Expr *getPlacementArg(unsigned I) {
2155 assert((I < getNumPlacementArgs()) && "Index out of range!")(((I < getNumPlacementArgs()) && "Index out of range!"
) ? static_cast<void> (0) : __assert_fail ("(I < getNumPlacementArgs()) && \"Index out of range!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 2155, __PRETTY_FUNCTION__))
;
2156 return getPlacementArgs()[I];
2157 }
2158 const Expr *getPlacementArg(unsigned I) const {
2159 return const_cast<CXXNewExpr *>(this)->getPlacementArg(I);
2160 }
2161
2162 bool isParenTypeId() const { return CXXNewExprBits.IsParenTypeId; }
2163 SourceRange getTypeIdParens() const {
2164 return isParenTypeId() ? getTrailingObjects<SourceRange>()[0]
2165 : SourceRange();
2166 }
2167
2168 bool isGlobalNew() const { return CXXNewExprBits.IsGlobalNew; }
2169
2170 /// Whether this new-expression has any initializer at all.
2171 bool hasInitializer() const {
2172 return CXXNewExprBits.StoredInitializationStyle > 0;
26
Assuming field 'StoredInitializationStyle' is > 0
27
Returning the value 1, which participates in a condition later
2173 }
2174
2175 /// The kind of initializer this new-expression has.
2176 InitializationStyle getInitializationStyle() const {
2177 if (CXXNewExprBits.StoredInitializationStyle == 0)
2178 return NoInit;
2179 return static_cast<InitializationStyle>(
2180 CXXNewExprBits.StoredInitializationStyle - 1);
2181 }
2182
2183 /// The initializer of this new-expression.
2184 Expr *getInitializer() {
2185 return hasInitializer()
2186 ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
2187 : nullptr;
2188 }
2189 const Expr *getInitializer() const {
2190 return hasInitializer()
2191 ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
2192 : nullptr;
2193 }
2194
2195 /// Returns the CXXConstructExpr from this new-expression, or null.
2196 const CXXConstructExpr *getConstructExpr() const {
2197 return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
2198 }
2199
2200 /// Indicates whether the required alignment should be implicitly passed to
2201 /// the allocation function.
2202 bool passAlignment() const { return CXXNewExprBits.ShouldPassAlignment; }
2203
2204 /// Answers whether the usual array deallocation function for the
2205 /// allocated type expects the size of the allocation as a
2206 /// parameter.
2207 bool doesUsualArrayDeleteWantSize() const {
2208 return CXXNewExprBits.UsualArrayDeleteWantsSize;
2209 }
2210
2211 using arg_iterator = ExprIterator;
2212 using const_arg_iterator = ConstExprIterator;
2213
2214 llvm::iterator_range<arg_iterator> placement_arguments() {
2215 return llvm::make_range(placement_arg_begin(), placement_arg_end());
2216 }
2217
2218 llvm::iterator_range<const_arg_iterator> placement_arguments() const {
2219 return llvm::make_range(placement_arg_begin(), placement_arg_end());
2220 }
2221
2222 arg_iterator placement_arg_begin() {
2223 return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
2224 }
2225 arg_iterator placement_arg_end() {
2226 return placement_arg_begin() + getNumPlacementArgs();
2227 }
2228 const_arg_iterator placement_arg_begin() const {
2229 return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
2230 }
2231 const_arg_iterator placement_arg_end() const {
2232 return placement_arg_begin() + getNumPlacementArgs();
2233 }
2234
2235 using raw_arg_iterator = Stmt **;
2236
2237 raw_arg_iterator raw_arg_begin() { return getTrailingObjects<Stmt *>(); }
2238 raw_arg_iterator raw_arg_end() {
2239 return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
2240 }
2241 const_arg_iterator raw_arg_begin() const {
2242 return getTrailingObjects<Stmt *>();
2243 }
2244 const_arg_iterator raw_arg_end() const {
2245 return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
2246 }
2247
2248 SourceLocation getBeginLoc() const { return Range.getBegin(); }
2249 SourceLocation getEndLoc() const { return Range.getEnd(); }
2250
2251 SourceRange getDirectInitRange() const { return DirectInitRange; }
2252 SourceRange getSourceRange() const { return Range; }
2253
2254 static bool classof(const Stmt *T) {
2255 return T->getStmtClass() == CXXNewExprClass;
2256 }
2257
2258 // Iterators
2259 child_range children() { return child_range(raw_arg_begin(), raw_arg_end()); }
2260
2261 const_child_range children() const {
2262 return const_child_range(const_cast<CXXNewExpr *>(this)->children());
2263 }
2264};
2265
2266/// Represents a \c delete expression for memory deallocation and
2267/// destructor calls, e.g. "delete[] pArray".
2268class CXXDeleteExpr : public Expr {
2269 friend class ASTStmtReader;
2270
2271 /// Points to the operator delete overload that is used. Could be a member.
2272 FunctionDecl *OperatorDelete = nullptr;
2273
2274 /// The pointer expression to be deleted.
2275 Stmt *Argument = nullptr;
2276
2277public:
2278 CXXDeleteExpr(QualType Ty, bool GlobalDelete, bool ArrayForm,
2279 bool ArrayFormAsWritten, bool UsualArrayDeleteWantsSize,
2280 FunctionDecl *OperatorDelete, Expr *Arg, SourceLocation Loc)
2281 : Expr(CXXDeleteExprClass, Ty, VK_RValue, OK_Ordinary, false,
2282 Arg->isValueDependent(), Arg->isInstantiationDependent(),
2283 Arg->containsUnexpandedParameterPack()),
2284 OperatorDelete(OperatorDelete), Argument(Arg) {
2285 CXXDeleteExprBits.GlobalDelete = GlobalDelete;
2286 CXXDeleteExprBits.ArrayForm = ArrayForm;
2287 CXXDeleteExprBits.ArrayFormAsWritten = ArrayFormAsWritten;
2288 CXXDeleteExprBits.UsualArrayDeleteWantsSize = UsualArrayDeleteWantsSize;
2289 CXXDeleteExprBits.Loc = Loc;
2290 }
2291
2292 explicit CXXDeleteExpr(EmptyShell Shell) : Expr(CXXDeleteExprClass, Shell) {}
2293
2294 bool isGlobalDelete() const { return CXXDeleteExprBits.GlobalDelete; }
2295 bool isArrayForm() const { return CXXDeleteExprBits.ArrayForm; }
2296 bool isArrayFormAsWritten() const {
2297 return CXXDeleteExprBits.ArrayFormAsWritten;
2298 }
2299
2300 /// Answers whether the usual array deallocation function for the
2301 /// allocated type expects the size of the allocation as a
2302 /// parameter. This can be true even if the actual deallocation
2303 /// function that we're using doesn't want a size.
2304 bool doesUsualArrayDeleteWantSize() const {
2305 return CXXDeleteExprBits.UsualArrayDeleteWantsSize;
2306 }
2307
2308 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
2309
2310 Expr *getArgument() { return cast<Expr>(Argument); }
2311 const Expr *getArgument() const { return cast<Expr>(Argument); }
2312
2313 /// Retrieve the type being destroyed.
2314 ///
2315 /// If the type being destroyed is a dependent type which may or may not
2316 /// be a pointer, return an invalid type.
2317 QualType getDestroyedType() const;
2318
2319 SourceLocation getBeginLoc() const { return CXXDeleteExprBits.Loc; }
2320 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
2321 return Argument->getEndLoc();
2322 }
2323
2324 static bool classof(const Stmt *T) {
2325 return T->getStmtClass() == CXXDeleteExprClass;
2326 }
2327
2328 // Iterators
2329 child_range children() { return child_range(&Argument, &Argument + 1); }
2330
2331 const_child_range children() const {
2332 return const_child_range(&Argument, &Argument + 1);
2333 }
2334};
2335
2336/// Stores the type being destroyed by a pseudo-destructor expression.
2337class PseudoDestructorTypeStorage {
2338 /// Either the type source information or the name of the type, if
2339 /// it couldn't be resolved due to type-dependence.
2340 llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
2341
2342 /// The starting source location of the pseudo-destructor type.
2343 SourceLocation Location;
2344
2345public:
2346 PseudoDestructorTypeStorage() = default;
2347
2348 PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
2349 : Type(II), Location(Loc) {}
2350
2351 PseudoDestructorTypeStorage(TypeSourceInfo *Info);
2352
2353 TypeSourceInfo *getTypeSourceInfo() const {
2354 return Type.dyn_cast<TypeSourceInfo *>();
2355 }
2356
2357 IdentifierInfo *getIdentifier() const {
2358 return Type.dyn_cast<IdentifierInfo *>();
2359 }
2360
2361 SourceLocation getLocation() const { return Location; }
2362};
2363
2364/// Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
2365///
2366/// A pseudo-destructor is an expression that looks like a member access to a
2367/// destructor of a scalar type, except that scalar types don't have
2368/// destructors. For example:
2369///
2370/// \code
2371/// typedef int T;
2372/// void f(int *p) {
2373/// p->T::~T();
2374/// }
2375/// \endcode
2376///
2377/// Pseudo-destructors typically occur when instantiating templates such as:
2378///
2379/// \code
2380/// template<typename T>
2381/// void destroy(T* ptr) {
2382/// ptr->T::~T();
2383/// }
2384/// \endcode
2385///
2386/// for scalar types. A pseudo-destructor expression has no run-time semantics
2387/// beyond evaluating the base expression.
2388class CXXPseudoDestructorExpr : public Expr {
2389 friend class ASTStmtReader;
2390
2391 /// The base expression (that is being destroyed).
2392 Stmt *Base = nullptr;
2393
2394 /// Whether the operator was an arrow ('->'); otherwise, it was a
2395 /// period ('.').
2396 bool IsArrow : 1;
2397
2398 /// The location of the '.' or '->' operator.
2399 SourceLocation OperatorLoc;
2400
2401 /// The nested-name-specifier that follows the operator, if present.
2402 NestedNameSpecifierLoc QualifierLoc;
2403
2404 /// The type that precedes the '::' in a qualified pseudo-destructor
2405 /// expression.
2406 TypeSourceInfo *ScopeType = nullptr;
2407
2408 /// The location of the '::' in a qualified pseudo-destructor
2409 /// expression.
2410 SourceLocation ColonColonLoc;
2411
2412 /// The location of the '~'.
2413 SourceLocation TildeLoc;
2414
2415 /// The type being destroyed, or its name if we were unable to
2416 /// resolve the name.
2417 PseudoDestructorTypeStorage DestroyedType;
2418
2419public:
2420 CXXPseudoDestructorExpr(const ASTContext &Context,
2421 Expr *Base, bool isArrow, SourceLocation OperatorLoc,
2422 NestedNameSpecifierLoc QualifierLoc,
2423 TypeSourceInfo *ScopeType,
2424 SourceLocation ColonColonLoc,
2425 SourceLocation TildeLoc,
2426 PseudoDestructorTypeStorage DestroyedType);
2427
2428 explicit CXXPseudoDestructorExpr(EmptyShell Shell)
2429 : Expr(CXXPseudoDestructorExprClass, Shell), IsArrow(false) {}
2430
2431 Expr *getBase() const { return cast<Expr>(Base); }
2432
2433 /// Determines whether this member expression actually had
2434 /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2435 /// x->Base::foo.
2436 bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
2437
2438 /// Retrieves the nested-name-specifier that qualifies the type name,
2439 /// with source-location information.
2440 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2441
2442 /// If the member name was qualified, retrieves the
2443 /// nested-name-specifier that precedes the member name. Otherwise, returns
2444 /// null.
2445 NestedNameSpecifier *getQualifier() const {
2446 return QualifierLoc.getNestedNameSpecifier();
2447 }
2448
2449 /// Determine whether this pseudo-destructor expression was written
2450 /// using an '->' (otherwise, it used a '.').
2451 bool isArrow() const { return IsArrow; }
2452
2453 /// Retrieve the location of the '.' or '->' operator.
2454 SourceLocation getOperatorLoc() const { return OperatorLoc; }
2455
2456 /// Retrieve the scope type in a qualified pseudo-destructor
2457 /// expression.
2458 ///
2459 /// Pseudo-destructor expressions can have extra qualification within them
2460 /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
2461 /// Here, if the object type of the expression is (or may be) a scalar type,
2462 /// \p T may also be a scalar type and, therefore, cannot be part of a
2463 /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
2464 /// destructor expression.
2465 TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
2466
2467 /// Retrieve the location of the '::' in a qualified pseudo-destructor
2468 /// expression.
2469 SourceLocation getColonColonLoc() const { return ColonColonLoc; }
2470
2471 /// Retrieve the location of the '~'.
2472 SourceLocation getTildeLoc() const { return TildeLoc; }
2473
2474 /// Retrieve the source location information for the type
2475 /// being destroyed.
2476 ///
2477 /// This type-source information is available for non-dependent
2478 /// pseudo-destructor expressions and some dependent pseudo-destructor
2479 /// expressions. Returns null if we only have the identifier for a
2480 /// dependent pseudo-destructor expression.
2481 TypeSourceInfo *getDestroyedTypeInfo() const {
2482 return DestroyedType.getTypeSourceInfo();
2483 }
2484
2485 /// In a dependent pseudo-destructor expression for which we do not
2486 /// have full type information on the destroyed type, provides the name
2487 /// of the destroyed type.
2488 IdentifierInfo *getDestroyedTypeIdentifier() const {
2489 return DestroyedType.getIdentifier();
2490 }
2491
2492 /// Retrieve the type being destroyed.
2493 QualType getDestroyedType() const;
2494
2495 /// Retrieve the starting location of the type being destroyed.
2496 SourceLocation getDestroyedTypeLoc() const {
2497 return DestroyedType.getLocation();
2498 }
2499
2500 /// Set the name of destroyed type for a dependent pseudo-destructor
2501 /// expression.
2502 void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
2503 DestroyedType = PseudoDestructorTypeStorage(II, Loc);
2504 }
2505
2506 /// Set the destroyed type.
2507 void setDestroyedType(TypeSourceInfo *Info) {
2508 DestroyedType = PseudoDestructorTypeStorage(Info);
2509 }
2510
2511 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
2512 return Base->getBeginLoc();
2513 }
2514 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
2515
2516 static bool classof(const Stmt *T) {
2517 return T->getStmtClass() == CXXPseudoDestructorExprClass;
2518 }
2519
2520 // Iterators
2521 child_range children() { return child_range(&Base, &Base + 1); }
2522
2523 const_child_range children() const {
2524 return const_child_range(&Base, &Base + 1);
2525 }
2526};
2527
2528/// A type trait used in the implementation of various C++11 and
2529/// Library TR1 trait templates.
2530///
2531/// \code
2532/// __is_pod(int) == true
2533/// __is_enum(std::string) == false
2534/// __is_trivially_constructible(vector<int>, int*, int*)
2535/// \endcode
2536class TypeTraitExpr final
2537 : public Expr,
2538 private llvm::TrailingObjects<TypeTraitExpr, TypeSourceInfo *> {
2539 /// The location of the type trait keyword.
2540 SourceLocation Loc;
2541
2542 /// The location of the closing parenthesis.
2543 SourceLocation RParenLoc;
2544
2545 // Note: The TypeSourceInfos for the arguments are allocated after the
2546 // TypeTraitExpr.
2547
2548 TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2549 ArrayRef<TypeSourceInfo *> Args,
2550 SourceLocation RParenLoc,
2551 bool Value);
2552
2553 TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) {}
2554
2555 size_t numTrailingObjects(OverloadToken<TypeSourceInfo *>) const {
2556 return getNumArgs();
2557 }
2558
2559public:
2560 friend class ASTStmtReader;
2561 friend class ASTStmtWriter;
2562 friend TrailingObjects;
2563
2564 /// Create a new type trait expression.
2565 static TypeTraitExpr *Create(const ASTContext &C, QualType T,
2566 SourceLocation Loc, TypeTrait Kind,
2567 ArrayRef<TypeSourceInfo *> Args,
2568 SourceLocation RParenLoc,
2569 bool Value);
2570
2571 static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
2572 unsigned NumArgs);
2573
2574 /// Determine which type trait this expression uses.
2575 TypeTrait getTrait() const {
2576 return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2577 }
2578
2579 bool getValue() const {
2580 assert(!isValueDependent())((!isValueDependent()) ? static_cast<void> (0) : __assert_fail
("!isValueDependent()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 2580, __PRETTY_FUNCTION__))
;
2581 return TypeTraitExprBits.Value;
2582 }
2583
2584 /// Determine the number of arguments to this type trait.
2585 unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2586
2587 /// Retrieve the Ith argument.
2588 TypeSourceInfo *getArg(unsigned I) const {
2589 assert(I < getNumArgs() && "Argument out-of-range")((I < getNumArgs() && "Argument out-of-range") ? static_cast
<void> (0) : __assert_fail ("I < getNumArgs() && \"Argument out-of-range\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 2589, __PRETTY_FUNCTION__))
;
2590 return getArgs()[I];
2591 }
2592
2593 /// Retrieve the argument types.
2594 ArrayRef<TypeSourceInfo *> getArgs() const {
2595 return llvm::makeArrayRef(getTrailingObjects<TypeSourceInfo *>(),
2596 getNumArgs());
2597 }
2598
2599 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
2600 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParenLoc; }
2601
2602 static bool classof(const Stmt *T) {
2603 return T->getStmtClass() == TypeTraitExprClass;
2604 }
2605
2606 // Iterators
2607 child_range children() {
2608 return child_range(child_iterator(), child_iterator());
2609 }
2610
2611 const_child_range children() const {
2612 return const_child_range(const_child_iterator(), const_child_iterator());
2613 }
2614};
2615
2616/// An Embarcadero array type trait, as used in the implementation of
2617/// __array_rank and __array_extent.
2618///
2619/// Example:
2620/// \code
2621/// __array_rank(int[10][20]) == 2
2622/// __array_extent(int, 1) == 20
2623/// \endcode
2624class ArrayTypeTraitExpr : public Expr {
2625 /// The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2626 unsigned ATT : 2;
2627
2628 /// The value of the type trait. Unspecified if dependent.
2629 uint64_t Value = 0;
2630
2631 /// The array dimension being queried, or -1 if not used.
2632 Expr *Dimension;
2633
2634 /// The location of the type trait keyword.
2635 SourceLocation Loc;
2636
2637 /// The location of the closing paren.
2638 SourceLocation RParen;
2639
2640 /// The type being queried.
2641 TypeSourceInfo *QueriedType = nullptr;
2642
2643public:
2644 friend class ASTStmtReader;
2645
2646 ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2647 TypeSourceInfo *queried, uint64_t value,
2648 Expr *dimension, SourceLocation rparen, QualType ty)
2649 : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2650 false, queried->getType()->isDependentType(),
2651 (queried->getType()->isInstantiationDependentType() ||
2652 (dimension && dimension->isInstantiationDependent())),
2653 queried->getType()->containsUnexpandedParameterPack()),
2654 ATT(att), Value(value), Dimension(dimension),
2655 Loc(loc), RParen(rparen), QueriedType(queried) {}
2656
2657 explicit ArrayTypeTraitExpr(EmptyShell Empty)
2658 : Expr(ArrayTypeTraitExprClass, Empty), ATT(0) {}
2659
2660 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
2661 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParen; }
2662
2663 ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2664
2665 QualType getQueriedType() const { return QueriedType->getType(); }
2666
2667 TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2668
2669 uint64_t getValue() const { assert(!isTypeDependent())((!isTypeDependent()) ? static_cast<void> (0) : __assert_fail
("!isTypeDependent()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 2669, __PRETTY_FUNCTION__))
; return Value; }
2670
2671 Expr *getDimensionExpression() const { return Dimension; }
2672
2673 static bool classof(const Stmt *T) {
2674 return T->getStmtClass() == ArrayTypeTraitExprClass;
2675 }
2676
2677 // Iterators
2678 child_range children() {
2679 return child_range(child_iterator(), child_iterator());
2680 }
2681
2682 const_child_range children() const {
2683 return const_child_range(const_child_iterator(), const_child_iterator());
2684 }
2685};
2686
2687/// An expression trait intrinsic.
2688///
2689/// Example:
2690/// \code
2691/// __is_lvalue_expr(std::cout) == true
2692/// __is_lvalue_expr(1) == false
2693/// \endcode
2694class ExpressionTraitExpr : public Expr {
2695 /// The trait. A ExpressionTrait enum in MSVC compatible unsigned.
2696 unsigned ET : 31;
2697
2698 /// The value of the type trait. Unspecified if dependent.
2699 unsigned Value : 1;
2700
2701 /// The location of the type trait keyword.
2702 SourceLocation Loc;
2703
2704 /// The location of the closing paren.
2705 SourceLocation RParen;
2706
2707 /// The expression being queried.
2708 Expr* QueriedExpression = nullptr;
2709
2710public:
2711 friend class ASTStmtReader;
2712
2713 ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2714 Expr *queried, bool value,
2715 SourceLocation rparen, QualType resultType)
2716 : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2717 false, // Not type-dependent
2718 // Value-dependent if the argument is type-dependent.
2719 queried->isTypeDependent(),
2720 queried->isInstantiationDependent(),
2721 queried->containsUnexpandedParameterPack()),
2722 ET(et), Value(value), Loc(loc), RParen(rparen),
2723 QueriedExpression(queried) {}
2724
2725 explicit ExpressionTraitExpr(EmptyShell Empty)
2726 : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false) {}
2727
2728 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
2729 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParen; }
2730
2731 ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2732
2733 Expr *getQueriedExpression() const { return QueriedExpression; }
2734
2735 bool getValue() const { return Value; }
2736
2737 static bool classof(const Stmt *T) {
2738 return T->getStmtClass() == ExpressionTraitExprClass;
2739 }
2740
2741 // Iterators
2742 child_range children() {
2743 return child_range(child_iterator(), child_iterator());
2744 }
2745
2746 const_child_range children() const {
2747 return const_child_range(const_child_iterator(), const_child_iterator());
2748 }
2749};
2750
2751/// A reference to an overloaded function set, either an
2752/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2753class OverloadExpr : public Expr {
2754 friend class ASTStmtReader;
2755 friend class ASTStmtWriter;
2756
2757 /// The common name of these declarations.
2758 DeclarationNameInfo NameInfo;
2759
2760 /// The nested-name-specifier that qualifies the name, if any.
2761 NestedNameSpecifierLoc QualifierLoc;
2762
2763protected:
2764 OverloadExpr(StmtClass SC, const ASTContext &Context,
2765 NestedNameSpecifierLoc QualifierLoc,
2766 SourceLocation TemplateKWLoc,
2767 const DeclarationNameInfo &NameInfo,
2768 const TemplateArgumentListInfo *TemplateArgs,
2769 UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2770 bool KnownDependent, bool KnownInstantiationDependent,
2771 bool KnownContainsUnexpandedParameterPack);
2772
2773 OverloadExpr(StmtClass SC, EmptyShell Empty, unsigned NumResults,
2774 bool HasTemplateKWAndArgsInfo);
2775
2776 /// Return the results. Defined after UnresolvedMemberExpr.
2777 inline DeclAccessPair *getTrailingResults();
2778 const DeclAccessPair *getTrailingResults() const {
2779 return const_cast<OverloadExpr *>(this)->getTrailingResults();
2780 }
2781
2782 /// Return the optional template keyword and arguments info.
2783 /// Defined after UnresolvedMemberExpr.
2784 inline ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo();
2785 const ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo() const {
2786 return const_cast<OverloadExpr *>(this)
2787 ->getTrailingASTTemplateKWAndArgsInfo();
2788 }
2789
2790 /// Return the optional template arguments. Defined after
2791 /// UnresolvedMemberExpr.
2792 inline TemplateArgumentLoc *getTrailingTemplateArgumentLoc();
2793 const TemplateArgumentLoc *getTrailingTemplateArgumentLoc() const {
2794 return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
2795 }
2796
2797 bool hasTemplateKWAndArgsInfo() const {
2798 return OverloadExprBits.HasTemplateKWAndArgsInfo;
2799 }
2800
2801public:
2802 struct FindResult {
2803 OverloadExpr *Expression;
2804 bool IsAddressOfOperand;
2805 bool HasFormOfMemberPointer;
2806 };
2807
2808 /// Finds the overloaded expression in the given expression \p E of
2809 /// OverloadTy.
2810 ///
2811 /// \return the expression (which must be there) and true if it has
2812 /// the particular form of a member pointer expression
2813 static FindResult find(Expr *E) {
2814 assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload))((E->getType()->isSpecificBuiltinType(BuiltinType::Overload
)) ? static_cast<void> (0) : __assert_fail ("E->getType()->isSpecificBuiltinType(BuiltinType::Overload)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 2814, __PRETTY_FUNCTION__))
;
2815
2816 FindResult Result;
2817
2818 E = E->IgnoreParens();
2819 if (isa<UnaryOperator>(E)) {
2820 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf)((cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) ?
static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 2820, __PRETTY_FUNCTION__))
;
2821 E = cast<UnaryOperator>(E)->getSubExpr();
2822 auto *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2823
2824 Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2825 Result.IsAddressOfOperand = true;
2826 Result.Expression = Ovl;
2827 } else {
2828 Result.HasFormOfMemberPointer = false;
2829 Result.IsAddressOfOperand = false;
2830 Result.Expression = cast<OverloadExpr>(E);
2831 }
2832
2833 return Result;
2834 }
2835
2836 /// Gets the naming class of this lookup, if any.
2837 /// Defined after UnresolvedMemberExpr.
2838 inline CXXRecordDecl *getNamingClass();
2839 const CXXRecordDecl *getNamingClass() const {
2840 return const_cast<OverloadExpr *>(this)->getNamingClass();
2841 }
2842
2843 using decls_iterator = UnresolvedSetImpl::iterator;
2844
2845 decls_iterator decls_begin() const {
2846 return UnresolvedSetIterator(getTrailingResults());
2847 }
2848 decls_iterator decls_end() const {
2849 return UnresolvedSetIterator(getTrailingResults() + getNumDecls());
2850 }
2851 llvm::iterator_range<decls_iterator> decls() const {
2852 return llvm::make_range(decls_begin(), decls_end());
2853 }
2854
2855 /// Gets the number of declarations in the unresolved set.
2856 unsigned getNumDecls() const { return OverloadExprBits.NumResults; }
2857
2858 /// Gets the full name info.
2859 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2860
2861 /// Gets the name looked up.
2862 DeclarationName getName() const { return NameInfo.getName(); }
2863
2864 /// Gets the location of the name.
2865 SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2866
2867 /// Fetches the nested-name qualifier, if one was given.
2868 NestedNameSpecifier *getQualifier() const {
2869 return QualifierLoc.getNestedNameSpecifier();
2870 }
2871
2872 /// Fetches the nested-name qualifier with source-location
2873 /// information, if one was given.
2874 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2875
2876 /// Retrieve the location of the template keyword preceding
2877 /// this name, if any.
2878 SourceLocation getTemplateKeywordLoc() const {
2879 if (!hasTemplateKWAndArgsInfo())
2880 return SourceLocation();
2881 return getTrailingASTTemplateKWAndArgsInfo()->TemplateKWLoc;
2882 }
2883
2884 /// Retrieve the location of the left angle bracket starting the
2885 /// explicit template argument list following the name, if any.
2886 SourceLocation getLAngleLoc() const {
2887 if (!hasTemplateKWAndArgsInfo())
2888 return SourceLocation();
2889 return getTrailingASTTemplateKWAndArgsInfo()->LAngleLoc;
2890 }
2891
2892 /// Retrieve the location of the right angle bracket ending the
2893 /// explicit template argument list following the name, if any.
2894 SourceLocation getRAngleLoc() const {
2895 if (!hasTemplateKWAndArgsInfo())
2896 return SourceLocation();
2897 return getTrailingASTTemplateKWAndArgsInfo()->RAngleLoc;
2898 }
2899
2900 /// Determines whether the name was preceded by the template keyword.
2901 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2902
2903 /// Determines whether this expression had explicit template arguments.
2904 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2905
2906 TemplateArgumentLoc const *getTemplateArgs() const {
2907 if (!hasExplicitTemplateArgs())
2908 return nullptr;
2909 return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
2910 }
2911
2912 unsigned getNumTemplateArgs() const {
2913 if (!hasExplicitTemplateArgs())
2914 return 0;
2915
2916 return getTrailingASTTemplateKWAndArgsInfo()->NumTemplateArgs;
2917 }
2918
2919 ArrayRef<TemplateArgumentLoc> template_arguments() const {
2920 return {getTemplateArgs(), getNumTemplateArgs()};
2921 }
2922
2923 /// Copies the template arguments into the given structure.
2924 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2925 if (hasExplicitTemplateArgs())
2926 getTrailingASTTemplateKWAndArgsInfo()->copyInto(getTemplateArgs(), List);
2927 }
2928
2929 static bool classof(const Stmt *T) {
2930 return T->getStmtClass() == UnresolvedLookupExprClass ||
2931 T->getStmtClass() == UnresolvedMemberExprClass;
2932 }
2933};
2934
2935/// A reference to a name which we were able to look up during
2936/// parsing but could not resolve to a specific declaration.
2937///
2938/// This arises in several ways:
2939/// * we might be waiting for argument-dependent lookup;
2940/// * the name might resolve to an overloaded function;
2941/// and eventually:
2942/// * the lookup might have included a function template.
2943///
2944/// These never include UnresolvedUsingValueDecls, which are always class
2945/// members and therefore appear only in UnresolvedMemberLookupExprs.
2946class UnresolvedLookupExpr final
2947 : public OverloadExpr,
2948 private llvm::TrailingObjects<UnresolvedLookupExpr, DeclAccessPair,
2949 ASTTemplateKWAndArgsInfo,
2950 TemplateArgumentLoc> {
2951 friend class ASTStmtReader;
2952 friend class OverloadExpr;
2953 friend TrailingObjects;
2954
2955 /// The naming class (C++ [class.access.base]p5) of the lookup, if
2956 /// any. This can generally be recalculated from the context chain,
2957 /// but that can be fairly expensive for unqualified lookups.
2958 CXXRecordDecl *NamingClass;
2959
2960 // UnresolvedLookupExpr is followed by several trailing objects.
2961 // They are in order:
2962 //
2963 // * An array of getNumResults() DeclAccessPair for the results. These are
2964 // undesugared, which is to say, they may include UsingShadowDecls.
2965 // Access is relative to the naming class.
2966 //
2967 // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
2968 // template keyword and arguments. Present if and only if
2969 // hasTemplateKWAndArgsInfo().
2970 //
2971 // * An array of getNumTemplateArgs() TemplateArgumentLoc containing
2972 // location information for the explicitly specified template arguments.
2973
2974 UnresolvedLookupExpr(const ASTContext &Context, CXXRecordDecl *NamingClass,
2975 NestedNameSpecifierLoc QualifierLoc,
2976 SourceLocation TemplateKWLoc,
2977 const DeclarationNameInfo &NameInfo, bool RequiresADL,
2978 bool Overloaded,
2979 const TemplateArgumentListInfo *TemplateArgs,
2980 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2981
2982 UnresolvedLookupExpr(EmptyShell Empty, unsigned NumResults,
2983 bool HasTemplateKWAndArgsInfo);
2984
2985 unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const {
2986 return getNumDecls();
2987 }
2988
2989 unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
2990 return hasTemplateKWAndArgsInfo();
2991 }
2992
2993public:
2994 static UnresolvedLookupExpr *
2995 Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
2996 NestedNameSpecifierLoc QualifierLoc,
2997 const DeclarationNameInfo &NameInfo, bool RequiresADL, bool Overloaded,
2998 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2999
3000 static UnresolvedLookupExpr *
3001 Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
3002 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
3003 const DeclarationNameInfo &NameInfo, bool RequiresADL,
3004 const TemplateArgumentListInfo *Args, UnresolvedSetIterator Begin,
3005 UnresolvedSetIterator End);
3006
3007 static UnresolvedLookupExpr *CreateEmpty(const ASTContext &Context,
3008 unsigned NumResults,
3009 bool HasTemplateKWAndArgsInfo,
3010 unsigned NumTemplateArgs);
3011
3012 /// True if this declaration should be extended by
3013 /// argument-dependent lookup.
3014 bool requiresADL() const { return UnresolvedLookupExprBits.RequiresADL; }
3015
3016 /// True if this lookup is overloaded.
3017 bool isOverloaded() const { return UnresolvedLookupExprBits.Overloaded; }
3018
3019 /// Gets the 'naming class' (in the sense of C++0x
3020 /// [class.access.base]p5) of the lookup. This is the scope
3021 /// that was looked in to find these results.
3022 CXXRecordDecl *getNamingClass() { return NamingClass; }
3023 const CXXRecordDecl *getNamingClass() const { return NamingClass; }
3024
3025 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3026 if (NestedNameSpecifierLoc l = getQualifierLoc())
3027 return l.getBeginLoc();
3028 return getNameInfo().getBeginLoc();
3029 }
3030
3031 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3032 if (hasExplicitTemplateArgs())
3033 return getRAngleLoc();
3034 return getNameInfo().getEndLoc();
3035 }
3036
3037 child_range children() {
3038 return child_range(child_iterator(), child_iterator());
3039 }
3040
3041 const_child_range children() const {
3042 return const_child_range(const_child_iterator(), const_child_iterator());
3043 }
3044
3045 static bool classof(const Stmt *T) {
3046 return T->getStmtClass() == UnresolvedLookupExprClass;
3047 }
3048};
3049
3050/// A qualified reference to a name whose declaration cannot
3051/// yet be resolved.
3052///
3053/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
3054/// it expresses a reference to a declaration such as
3055/// X<T>::value. The difference, however, is that an
3056/// DependentScopeDeclRefExpr node is used only within C++ templates when
3057/// the qualification (e.g., X<T>::) refers to a dependent type. In
3058/// this case, X<T>::value cannot resolve to a declaration because the
3059/// declaration will differ from one instantiation of X<T> to the
3060/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
3061/// qualifier (X<T>::) and the name of the entity being referenced
3062/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
3063/// declaration can be found.
3064class DependentScopeDeclRefExpr final
3065 : public Expr,
3066 private llvm::TrailingObjects<DependentScopeDeclRefExpr,
3067 ASTTemplateKWAndArgsInfo,
3068 TemplateArgumentLoc> {
3069 friend class ASTStmtReader;
3070 friend class ASTStmtWriter;
3071 friend TrailingObjects;
3072
3073 /// The nested-name-specifier that qualifies this unresolved
3074 /// declaration name.
3075 NestedNameSpecifierLoc QualifierLoc;
3076
3077 /// The name of the entity we will be referencing.
3078 DeclarationNameInfo NameInfo;
3079
3080 DependentScopeDeclRefExpr(QualType Ty, NestedNameSpecifierLoc QualifierLoc,
3081 SourceLocation TemplateKWLoc,
3082 const DeclarationNameInfo &NameInfo,
3083 const TemplateArgumentListInfo *Args);
3084
3085 size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3086 return hasTemplateKWAndArgsInfo();
3087 }
3088
3089 bool hasTemplateKWAndArgsInfo() const {
3090 return DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo;
3091 }
3092
3093public:
3094 static DependentScopeDeclRefExpr *
3095 Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
3096 SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo,
3097 const TemplateArgumentListInfo *TemplateArgs);
3098
3099 static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &Context,
3100 bool HasTemplateKWAndArgsInfo,
3101 unsigned NumTemplateArgs);
3102
3103 /// Retrieve the name that this expression refers to.
3104 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
3105
3106 /// Retrieve the name that this expression refers to.
3107 DeclarationName getDeclName() const { return NameInfo.getName(); }
3108
3109 /// Retrieve the location of the name within the expression.
3110 ///
3111 /// For example, in "X<T>::value" this is the location of "value".
3112 SourceLocation getLocation() const { return NameInfo.getLoc(); }
3113
3114 /// Retrieve the nested-name-specifier that qualifies the
3115 /// name, with source location information.
3116 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3117
3118 /// Retrieve the nested-name-specifier that qualifies this
3119 /// declaration.
3120 NestedNameSpecifier *getQualifier() const {
3121 return QualifierLoc.getNestedNameSpecifier();
3122 }
3123
3124 /// Retrieve the location of the template keyword preceding
3125 /// this name, if any.
3126 SourceLocation getTemplateKeywordLoc() const {
3127 if (!hasTemplateKWAndArgsInfo())
3128 return SourceLocation();
3129 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
3130 }
3131
3132 /// Retrieve the location of the left angle bracket starting the
3133 /// explicit template argument list following the name, if any.
3134 SourceLocation getLAngleLoc() const {
3135 if (!hasTemplateKWAndArgsInfo())
3136 return SourceLocation();
3137 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
3138 }
3139
3140 /// Retrieve the location of the right angle bracket ending the
3141 /// explicit template argument list following the name, if any.
3142 SourceLocation getRAngleLoc() const {
3143 if (!hasTemplateKWAndArgsInfo())
3144 return SourceLocation();
3145 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
3146 }
3147
3148 /// Determines whether the name was preceded by the template keyword.
3149 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3150
3151 /// Determines whether this lookup had explicit template arguments.
3152 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3153
3154 /// Copies the template arguments (if present) into the given
3155 /// structure.
3156 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3157 if (hasExplicitTemplateArgs())
3158 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
3159 getTrailingObjects<TemplateArgumentLoc>(), List);
3160 }
3161
3162 TemplateArgumentLoc const *getTemplateArgs() const {
3163 if (!hasExplicitTemplateArgs())
3164 return nullptr;
3165
3166 return getTrailingObjects<TemplateArgumentLoc>();
3167 }
3168
3169 unsigned getNumTemplateArgs() const {
3170 if (!hasExplicitTemplateArgs())
3171 return 0;
3172
3173 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
3174 }
3175
3176 ArrayRef<TemplateArgumentLoc> template_arguments() const {
3177 return {getTemplateArgs(), getNumTemplateArgs()};
3178 }
3179
3180 /// Note: getBeginLoc() is the start of the whole DependentScopeDeclRefExpr,
3181 /// and differs from getLocation().getStart().
3182 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3183 return QualifierLoc.getBeginLoc();
3184 }
3185
3186 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3187 if (hasExplicitTemplateArgs())
3188 return getRAngleLoc();
3189 return getLocation();
3190 }
3191
3192 static bool classof(const Stmt *T) {
3193 return T->getStmtClass() == DependentScopeDeclRefExprClass;
3194 }
3195
3196 child_range children() {
3197 return child_range(child_iterator(), child_iterator());
3198 }
3199
3200 const_child_range children() const {
3201 return const_child_range(const_child_iterator(), const_child_iterator());
3202 }
3203};
3204
3205/// Represents an expression -- generally a full-expression -- that
3206/// introduces cleanups to be run at the end of the sub-expression's
3207/// evaluation. The most common source of expression-introduced
3208/// cleanups is temporary objects in C++, but several other kinds of
3209/// expressions can create cleanups, including basically every
3210/// call in ARC that returns an Objective-C pointer.
3211///
3212/// This expression also tracks whether the sub-expression contains a
3213/// potentially-evaluated block literal. The lifetime of a block
3214/// literal is the extent of the enclosing scope.
3215class ExprWithCleanups final
3216 : public FullExpr,
3217 private llvm::TrailingObjects<ExprWithCleanups, BlockDecl *> {
3218public:
3219 /// The type of objects that are kept in the cleanup.
3220 /// It's useful to remember the set of blocks; we could also
3221 /// remember the set of temporaries, but there's currently
3222 /// no need.
3223 using CleanupObject = BlockDecl *;
3224
3225private:
3226 friend class ASTStmtReader;
3227 friend TrailingObjects;
3228
3229 ExprWithCleanups(EmptyShell, unsigned NumObjects);
3230 ExprWithCleanups(Expr *SubExpr, bool CleanupsHaveSideEffects,
3231 ArrayRef<CleanupObject> Objects);
3232
3233public:
3234 static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
3235 unsigned numObjects);
3236
3237 static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
3238 bool CleanupsHaveSideEffects,
3239 ArrayRef<CleanupObject> objects);
3240
3241 ArrayRef<CleanupObject> getObjects() const {
3242 return llvm::makeArrayRef(getTrailingObjects<CleanupObject>(),
3243 getNumObjects());
3244 }
3245
3246 unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
3247
3248 CleanupObject getObject(unsigned i) const {
3249 assert(i < getNumObjects() && "Index out of range")((i < getNumObjects() && "Index out of range") ? static_cast
<void> (0) : __assert_fail ("i < getNumObjects() && \"Index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 3249, __PRETTY_FUNCTION__))
;
3250 return getObjects()[i];
3251 }
3252
3253 bool cleanupsHaveSideEffects() const {
3254 return ExprWithCleanupsBits.CleanupsHaveSideEffects;
3255 }
3256
3257 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3258 return SubExpr->getBeginLoc();
3259 }
3260
3261 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3262 return SubExpr->getEndLoc();
3263 }
3264
3265 // Implement isa/cast/dyncast/etc.
3266 static bool classof(const Stmt *T) {
3267 return T->getStmtClass() == ExprWithCleanupsClass;
3268 }
3269
3270 // Iterators
3271 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
3272
3273 const_child_range children() const {
3274 return const_child_range(&SubExpr, &SubExpr + 1);
3275 }
3276};
3277
3278/// Describes an explicit type conversion that uses functional
3279/// notion but could not be resolved because one or more arguments are
3280/// type-dependent.
3281///
3282/// The explicit type conversions expressed by
3283/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
3284/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
3285/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
3286/// type-dependent. For example, this would occur in a template such
3287/// as:
3288///
3289/// \code
3290/// template<typename T, typename A1>
3291/// inline T make_a(const A1& a1) {
3292/// return T(a1);
3293/// }
3294/// \endcode
3295///
3296/// When the returned expression is instantiated, it may resolve to a
3297/// constructor call, conversion function call, or some kind of type
3298/// conversion.
3299class CXXUnresolvedConstructExpr final
3300 : public Expr,
3301 private llvm::TrailingObjects<CXXUnresolvedConstructExpr, Expr *> {
3302 friend class ASTStmtReader;
3303 friend TrailingObjects;
3304
3305 /// The type being constructed.
3306 TypeSourceInfo *TSI;
3307
3308 /// The location of the left parentheses ('(').
3309 SourceLocation LParenLoc;
3310
3311 /// The location of the right parentheses (')').
3312 SourceLocation RParenLoc;
3313
3314 CXXUnresolvedConstructExpr(TypeSourceInfo *TSI, SourceLocation LParenLoc,
3315 ArrayRef<Expr *> Args, SourceLocation RParenLoc);
3316
3317 CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
3318 : Expr(CXXUnresolvedConstructExprClass, Empty) {
3319 CXXUnresolvedConstructExprBits.NumArgs = NumArgs;
3320 }
3321
3322public:
3323 static CXXUnresolvedConstructExpr *Create(const ASTContext &Context,
3324 TypeSourceInfo *Type,
3325 SourceLocation LParenLoc,
3326 ArrayRef<Expr *> Args,
3327 SourceLocation RParenLoc);
3328
3329 static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &Context,
3330 unsigned NumArgs);
3331
3332 /// Retrieve the type that is being constructed, as specified
3333 /// in the source code.
3334 QualType getTypeAsWritten() const { return TSI->getType(); }
3335
3336 /// Retrieve the type source information for the type being
3337 /// constructed.
3338 TypeSourceInfo *getTypeSourceInfo() const { return TSI; }
3339
3340 /// Retrieve the location of the left parentheses ('(') that
3341 /// precedes the argument list.
3342 SourceLocation getLParenLoc() const { return LParenLoc; }
3343 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3344
3345 /// Retrieve the location of the right parentheses (')') that
3346 /// follows the argument list.
3347 SourceLocation getRParenLoc() const { return RParenLoc; }
3348 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3349
3350 /// Determine whether this expression models list-initialization.
3351 /// If so, there will be exactly one subexpression, which will be
3352 /// an InitListExpr.
3353 bool isListInitialization() const { return LParenLoc.isInvalid(); }
3354
3355 /// Retrieve the number of arguments.
3356 unsigned arg_size() const { return CXXUnresolvedConstructExprBits.NumArgs; }
3357
3358 using arg_iterator = Expr **;
3359 using arg_range = llvm::iterator_range<arg_iterator>;
3360
3361 arg_iterator arg_begin() { return getTrailingObjects<Expr *>(); }
3362 arg_iterator arg_end() { return arg_begin() + arg_size(); }
3363 arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
3364
3365 using const_arg_iterator = const Expr* const *;
3366 using const_arg_range = llvm::iterator_range<const_arg_iterator>;
3367
3368 const_arg_iterator arg_begin() const { return getTrailingObjects<Expr *>(); }
3369 const_arg_iterator arg_end() const { return arg_begin() + arg_size(); }
3370 const_arg_range arguments() const {
3371 return const_arg_range(arg_begin(), arg_end());
3372 }
3373
3374 Expr *getArg(unsigned I) {
3375 assert(I < arg_size() && "Argument index out-of-range")((I < arg_size() && "Argument index out-of-range")
? static_cast<void> (0) : __assert_fail ("I < arg_size() && \"Argument index out-of-range\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 3375, __PRETTY_FUNCTION__))
;
3376 return arg_begin()[I];
3377 }
3378
3379 const Expr *getArg(unsigned I) const {
3380 assert(I < arg_size() && "Argument index out-of-range")((I < arg_size() && "Argument index out-of-range")
? static_cast<void> (0) : __assert_fail ("I < arg_size() && \"Argument index out-of-range\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 3380, __PRETTY_FUNCTION__))
;
3381 return arg_begin()[I];
3382 }
3383
3384 void setArg(unsigned I, Expr *E) {
3385 assert(I < arg_size() && "Argument index out-of-range")((I < arg_size() && "Argument index out-of-range")
? static_cast<void> (0) : __assert_fail ("I < arg_size() && \"Argument index out-of-range\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 3385, __PRETTY_FUNCTION__))
;
3386 arg_begin()[I] = E;
3387 }
3388
3389 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
3390 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3391 if (!RParenLoc.isValid() && arg_size() > 0)
3392 return getArg(arg_size() - 1)->getEndLoc();
3393 return RParenLoc;
3394 }
3395
3396 static bool classof(const Stmt *T) {
3397 return T->getStmtClass() == CXXUnresolvedConstructExprClass;
3398 }
3399
3400 // Iterators
3401 child_range children() {
3402 auto **begin = reinterpret_cast<Stmt **>(arg_begin());
3403 return child_range(begin, begin + arg_size());
3404 }
3405
3406 const_child_range children() const {
3407 auto **begin = reinterpret_cast<Stmt **>(
3408 const_cast<CXXUnresolvedConstructExpr *>(this)->arg_begin());
3409 return const_child_range(begin, begin + arg_size());
3410 }
3411};
3412
3413/// Represents a C++ member access expression where the actual
3414/// member referenced could not be resolved because the base
3415/// expression or the member name was dependent.
3416///
3417/// Like UnresolvedMemberExprs, these can be either implicit or
3418/// explicit accesses. It is only possible to get one of these with
3419/// an implicit access if a qualifier is provided.
3420class CXXDependentScopeMemberExpr final
3421 : public Expr,
3422 private llvm::TrailingObjects<CXXDependentScopeMemberExpr,
3423 ASTTemplateKWAndArgsInfo,
3424 TemplateArgumentLoc, NamedDecl *> {
3425 friend class ASTStmtReader;
3426 friend class ASTStmtWriter;
3427 friend TrailingObjects;
3428
3429 /// The expression for the base pointer or class reference,
3430 /// e.g., the \c x in x.f. Can be null in implicit accesses.
3431 Stmt *Base;
3432
3433 /// The type of the base expression. Never null, even for
3434 /// implicit accesses.
3435 QualType BaseType;
3436
3437 /// The nested-name-specifier that precedes the member name, if any.
3438 /// FIXME: This could be in principle store as a trailing object.
3439 /// However the performance impact of doing so should be investigated first.
3440 NestedNameSpecifierLoc QualifierLoc;
3441
3442 /// The member to which this member expression refers, which
3443 /// can be name, overloaded operator, or destructor.
3444 ///
3445 /// FIXME: could also be a template-id
3446 DeclarationNameInfo MemberNameInfo;
3447
3448 // CXXDependentScopeMemberExpr is followed by several trailing objects,
3449 // some of which optional. They are in order:
3450 //
3451 // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
3452 // template keyword and arguments. Present if and only if
3453 // hasTemplateKWAndArgsInfo().
3454 //
3455 // * An array of getNumTemplateArgs() TemplateArgumentLoc containing location
3456 // information for the explicitly specified template arguments.
3457 //
3458 // * An optional NamedDecl *. In a qualified member access expression such
3459 // as t->Base::f, this member stores the resolves of name lookup in the
3460 // context of the member access expression, to be used at instantiation
3461 // time. Present if and only if hasFirstQualifierFoundInScope().
3462
3463 bool hasTemplateKWAndArgsInfo() const {
3464 return CXXDependentScopeMemberExprBits.HasTemplateKWAndArgsInfo;
3465 }
3466
3467 bool hasFirstQualifierFoundInScope() const {
3468 return CXXDependentScopeMemberExprBits.HasFirstQualifierFoundInScope;
3469 }
3470
3471 unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3472 return hasTemplateKWAndArgsInfo();
3473 }
3474
3475 unsigned numTrailingObjects(OverloadToken<TemplateArgumentLoc>) const {
3476 return getNumTemplateArgs();
3477 }
3478
3479 unsigned numTrailingObjects(OverloadToken<NamedDecl *>) const {
3480 return hasFirstQualifierFoundInScope();
3481 }
3482
3483 CXXDependentScopeMemberExpr(const ASTContext &Ctx, Expr *Base,
3484 QualType BaseType, bool IsArrow,
3485 SourceLocation OperatorLoc,
3486 NestedNameSpecifierLoc QualifierLoc,
3487 SourceLocation TemplateKWLoc,
3488 NamedDecl *FirstQualifierFoundInScope,
3489 DeclarationNameInfo MemberNameInfo,
3490 const TemplateArgumentListInfo *TemplateArgs);
3491
3492 CXXDependentScopeMemberExpr(EmptyShell Empty, bool HasTemplateKWAndArgsInfo,
3493 bool HasFirstQualifierFoundInScope);
3494
3495public:
3496 static CXXDependentScopeMemberExpr *
3497 Create(const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow,
3498 SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
3499 SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
3500 DeclarationNameInfo MemberNameInfo,
3501 const TemplateArgumentListInfo *TemplateArgs);
3502
3503 static CXXDependentScopeMemberExpr *
3504 CreateEmpty(const ASTContext &Ctx, bool HasTemplateKWAndArgsInfo,
3505 unsigned NumTemplateArgs, bool HasFirstQualifierFoundInScope);
3506
3507 /// True if this is an implicit access, i.e. one in which the
3508 /// member being accessed was not written in the source. The source
3509 /// location of the operator is invalid in this case.
3510 bool isImplicitAccess() const {
3511 if (!Base)
3512 return true;
3513 return cast<Expr>(Base)->isImplicitCXXThis();
3514 }
3515
3516 /// Retrieve the base object of this member expressions,
3517 /// e.g., the \c x in \c x.m.
3518 Expr *getBase() const {
3519 assert(!isImplicitAccess())((!isImplicitAccess()) ? static_cast<void> (0) : __assert_fail
("!isImplicitAccess()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/ExprCXX.h"
, 3519, __PRETTY_FUNCTION__))
;
3520 return cast<Expr>(Base);
3521 }
3522
3523 QualType getBaseType() const { return BaseType; }
3524
3525 /// Determine whether this member expression used the '->'
3526 /// operator; otherwise, it used the '.' operator.
3527 bool isArrow() const { return CXXDependentScopeMemberExprBits.IsArrow; }
3528
3529 /// Retrieve the location of the '->' or '.' operator.
3530 SourceLocation getOperatorLoc() const {
3531 return CXXDependentScopeMemberExprBits.OperatorLoc;
3532 }
3533
3534 /// Retrieve the nested-name-specifier that qualifies the member name.
3535 NestedNameSpecifier *getQualifier() const {
3536 return QualifierLoc.getNestedNameSpecifier();
3537 }
3538
3539 /// Retrieve the nested-name-specifier that qualifies the member
3540 /// name, with source location information.
3541 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3542
3543 /// Retrieve the first part of the nested-name-specifier that was
3544 /// found in the scope of the member access expression when the member access
3545 /// was initially parsed.
3546 ///
3547 /// This function only returns a useful result when member access expression
3548 /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3549 /// returned by this function describes what was found by unqualified name
3550 /// lookup for the identifier "Base" within the scope of the member access
3551 /// expression itself. At template instantiation time, this information is
3552 /// combined with the results of name lookup into the type of the object
3553 /// expression itself (the class type of x).
3554 NamedDecl *getFirstQualifierFoundInScope() const {
3555 if (!hasFirstQualifierFoundInScope())
3556 return nullptr;
3557 return *getTrailingObjects<NamedDecl *>();
3558 }
3559
3560 /// Retrieve the name of the member that this expression refers to.
3561 const DeclarationNameInfo &getMemberNameInfo() const {
3562 return MemberNameInfo;
3563 }
3564
3565 /// Retrieve the name of the member that this expression refers to.
3566